Sample records for hybridization array-cgh method

  1. [Comparative results of preimplantation genetic screening by array comparative genomic hybridization and new-generation sequencing].

    PubMed

    Aleksandrova, N V; Shubina, E S; Ekimov, A N; Kodyleva, T A; Mukosey, I S; Makarova, N P; Kulakova, E V; Levkov, L A; Barkov, I Yu; Trofimov, D Yu; Sukhikh, G T

    2017-01-01

    Aneuploidies as quantitative chromosome abnormalities are a main cause of failed development of morphologically normal embryos, implantation failures, and early reproductive losses. Preimplantation genetic screening (PGS) allows a preselection of embryos with a normal karyotype, thus increasing the implantation rate and reducing the frequency of early pregnancy loss after IVF. Modern PGS technologies are based on a genome-wide analysis of the embryo. The first pilot study in Russia was performed to assess the possibility of using semiconductor new-generation sequencing (NGS) as a PGS method. NGS data were collected for 38 biopsied embryos and compared with the data from array comparative genomic hybridization (array-CGH). The concordance between the NGS and array-CGH data was 94.8%. Two samples showed the karyotype 47,XXY by array-CGH and a normal karyotype by NGS. The discrepancies may be explained by loss of efficiency of array-CGH amplicon labeling.

  2. A new normalizing algorithm for BAC CGH arrays with quality control metrics.

    PubMed

    Miecznikowski, Jeffrey C; Gaile, Daniel P; Liu, Song; Shepherd, Lori; Nowak, Norma

    2011-01-01

    The main focus in pin-tip (or print-tip) microarray analysis is determining which probes, genes, or oligonucleotides are differentially expressed. Specifically in array comparative genomic hybridization (aCGH) experiments, researchers search for chromosomal imbalances in the genome. To model this data, scientists apply statistical methods to the structure of the experiment and assume that the data consist of the signal plus random noise. In this paper we propose "SmoothArray", a new method to preprocess comparative genomic hybridization (CGH) bacterial artificial chromosome (BAC) arrays and we show the effects on a cancer dataset. As part of our R software package "aCGHplus," this freely available algorithm removes the variation due to the intensity effects, pin/print-tip, the spatial location on the microarray chip, and the relative location from the well plate. removal of this variation improves the downstream analysis and subsequent inferences made on the data. Further, we present measures to evaluate the quality of the dataset according to the arrayer pins, 384-well plates, plate rows, and plate columns. We compare our method against competing methods using several metrics to measure the biological signal. With this novel normalization algorithm and quality control measures, the user can improve their inferences on datasets and pinpoint problems that may arise in their BAC aCGH technology.

  3. Comparison of array comparative genomic hybridization and quantitative real-time PCR-based aneuploidy screening of blastocyst biopsies.

    PubMed

    Capalbo, Antonio; Treff, Nathan R; Cimadomo, Danilo; Tao, Xin; Upham, Kathleen; Ubaldi, Filippo Maria; Rienzi, Laura; Scott, Richard T

    2015-07-01

    Comprehensive chromosome screening (CCS) methods are being extensively used to select chromosomally normal embryos in human assisted reproduction. Some concerns related to the stage of analysis and which aneuploidy screening method to use still remain. In this study, the reliability of blastocyst-stage aneuploidy screening and the diagnostic performance of the two mostly used CCS methods (quantitative real-time PCR (qPCR) and array comparative genome hybridization (aCGH)) has been assessed. aCGH aneuploid blastocysts were rebiopsied, blinded, and evaluated by qPCR. Discordant cases were subsequently rebiopsied, blinded, and evaluated by single-nucleotide polymorphism (SNP) array-based CCS. Although 81.7% of embryos showed the same diagnosis when comparing aCGH and qPCR-based CCS, 18.3% (22/120) of embryos gave a discordant result for at least one chromosome. SNP array reanalysis showed that a discordance was reported in ten blastocysts for aCGH, mostly due to false positives, and in four cases for qPCR. The discordant aneuploidy call rate per chromosome was significantly higher for aCGH (5.7%) compared with qPCR (0.6%; P<0.01). To corroborate these findings, 39 embryos were simultaneously biopsied for aCGH and qPCR during blastocyst-stage aneuploidy screening cycles. 35 matched including all 21 euploid embryos. Blinded SNP analysis on rebiopsies of the four embryos matched qPCR. These findings demonstrate the high reliability of diagnosis performed at the blastocyst stage with the use of different CCS methods. However, the application of aCGH can be expected to result in a higher aneuploidy rate than other contemporary methods of CCS.

  4. Integrated in silico and biological validation of the blocking effect of Cot-1 DNA on Microarray-CGH.

    PubMed

    Kang, Seung-Hui; Park, Chan Hee; Jeung, Hei Cheul; Kim, Ki-Yeol; Rha, Sun Young; Chung, Hyun Cheol

    2007-06-01

    In array-CGH, various factors may act as variables influencing the result of experiments. Among them, Cot-1 DNA, which has been used as a repetitive sequence-blocking agent, may become an artifact-inducing factor in BAC array-CGH. To identify the effect of Cot-1 DNA on Microarray-CGH experiments, Cot-1 DNA was labeled directly and Microarray-CGH experiments were performed. The results confirmed that probes which hybridized more completely with Cot-1 DNA had a higher sequence similarity to the Alu element. Further, in the sex-mismatched Microarray-CGH experiments, the variation and intensity in the fluorescent signal were reduced in the high intensity probe group in which probes were better hybridized with Cot-1 DNA. Otherwise, those of the low intensity probe group showed no alterations regardless of Cot-1 DNA. These results confirmed by in silico methods that Cot-1 DNA could block repetitive sequences in gDNA and probes. In addition, it was confirmed biologically that the blocking effect of Cot-1 DNA could be presented via its repetitive sequences, especially Alu elements. Thus, in contrast to BAC-array CGH, the use of Cot-1 DNA is advantageous in controlling experimental variation in Microarray-CGH.

  5. [Application of array-based comparative genomic hybridization technique in genetic analysis of patients with spontaneous abortion].

    PubMed

    Chu, Y; Wu, D; Hou, Q F; Huo, X D; Gao, Y; Wang, T; Wang, H D; Yang, Y L; Liao, S X

    2016-08-25

    To investigate the value of array-based comparative genomic hybridization (array-CGH) technique for the detection of chromosomal analysis of miscarried embryo, and to provide genetic counseling for couples with spontaneous abortion. Totally 382 patients who underwent miscarriage were enrolled in this study. All aborted tissues were analyzed with conventional cytogenetic karyotyping and array-CGH, respectively. Through genetic analysis, all of the 382 specimens were successfully analyzed by array-CGH (100.0%, 382/382), and the detection rate of chromosomal aberrations was 46.6% (178/382). However, conventional karyotype analysis was successfully performed in 281 cases (73.6%, 281/382), and 113 (40.2%, 113/281) were found with chromosomal aberrations. Of these 178 samples identified by array-CGH, 163 samples (91.6%, 163/178) were aneuploidy, 15 samples (8.4%, 15/178) were segmental deletion and (or) duplication cases. Four of 10 cases with small segmental deletion and duplication were validated to be transferred from their fathers or mathers who were carriers of submicroscopic reciprocal translocation. Of these 113 abnormal karyotypes founded by conventional karyotyping, 108 cases (95.6%, 108/113) were aneuploidy and 5 cases (4.4%, 5/113) had chromosome structural aberrations. Most array-CGH results were consistent with conventional karyotyping but with 3 cases of discrepancy, which included 2 cases of triploids, 1 case of low-level mosaicism that undetcted by array-CGH. Compared with conventional karyotyping, there is an increased detection rate of chromosomal abnormalities when array-CGH is used to analyse the products of conception, primarilly because of its sucess with nonviable tissues. It could be a first-line method to determine the reason of miscarrage with higher accuracy and sensitivity.

  6. Novel applications of array comparative genomic hybridization in molecular diagnostics.

    PubMed

    Cheung, Sau W; Bi, Weimin

    2018-05-31

    In 2004, the implementation of array comparative genomic hybridization (array comparative genome hybridization [CGH]) into clinical practice marked a new milestone for genetic diagnosis. Array CGH and single-nucleotide polymorphism (SNP) arrays enable genome-wide detection of copy number changes in a high resolution, and therefore microarray has been recognized as the first-tier test for patients with intellectual disability or multiple congenital anomalies, and has also been applied prenatally for detection of clinically relevant copy number variations in the fetus. Area covered: In this review, the authors summarize the evolution of array CGH technology from their diagnostic laboratory, highlighting exonic SNP arrays developed in the past decade which detect small intragenic copy number changes as well as large DNA segments for the region of heterozygosity. The applications of array CGH to human diseases with different modes of inheritance with the emphasis on autosomal recessive disorders are discussed. Expert commentary: An exonic array is a powerful and most efficient clinical tool in detecting genome wide small copy number variants in both dominant and recessive disorders. However, whole-genome sequencing may become the single integrated platform for detection of copy number changes, single-nucleotide changes as well as balanced chromosomal rearrangements in the near future.

  7. Genome-wide comparison of paired fresh frozen and formalin-fixed paraffin-embedded gliomas by custom BAC and oligonucleotide array comparative genomic hybridization: facilitating analysis of archival gliomas.

    PubMed

    Mohapatra, Gayatry; Engler, David A; Starbuck, Kristen D; Kim, James C; Bernay, Derek C; Scangas, George A; Rousseau, Audrey; Batchelor, Tracy T; Betensky, Rebecca A; Louis, David N

    2011-04-01

    Array comparative genomic hybridization (aCGH) is a powerful tool for detecting DNA copy number alterations (CNA). Because diffuse malignant gliomas are often sampled by small biopsies, formalin-fixed paraffin-embedded (FFPE) blocks are often the only tissue available for genetic analysis; FFPE tissues are also needed to study the intratumoral heterogeneity that characterizes these neoplasms. In this paper, we present a combination of evaluations and technical advances that provide strong support for the ready use of oligonucleotide aCGH on FFPE diffuse gliomas. We first compared aCGH using bacterial artificial chromosome (BAC) arrays in 45 paired frozen and FFPE gliomas, and demonstrate a high concordance rate between FFPE and frozen DNA in an individual clone-level analysis of sensitivity and specificity, assuring that under certain array conditions, frozen and FFPE DNA can perform nearly identically. However, because oligonucleotide arrays offer advantages to BAC arrays in genomic coverage and practical availability, we next developed a method of labeling DNA from FFPE tissue that allows efficient hybridization to oligonucleotide arrays. To demonstrate utility in FFPE tissues, we applied this approach to biphasic anaplastic oligoastrocytomas and demonstrate CNA differences between DNA obtained from the two components. Therefore, BAC and oligonucleotide aCGH can be sensitive and specific tools for detecting CNAs in FFPE DNA, and novel labeling techniques enable the routine use of oligonucleotide arrays for FFPE DNA. In combination, these advances should facilitate genome-wide analysis of rare, small and/or histologically heterogeneous gliomas from FFPE tissues.

  8. Detection limit of intragenic deletions with targeted array comparative genomic hybridization

    PubMed Central

    2013-01-01

    Background Pathogenic mutations range from single nucleotide changes to deletions or duplications that encompass a single exon to several genes. The use of gene-centric high-density array comparative genomic hybridization (aCGH) has revolutionized the detection of intragenic copy number variations. We implemented an exon-centric design of high-resolution aCGH to detect single- and multi-exon deletions and duplications in a large set of genes using the OGT 60 K and 180 K arrays. Here we describe the molecular characterization and breakpoint mapping of deletions at the smaller end of the detectable range in several genes using aCGH. Results The method initially implemented to detect single to multiple exon deletions, was able to detect deletions much smaller than anticipated. The selected deletions we describe vary in size, ranging from over 2 kb to as small as 12 base pairs. The smallest of these deletions are only detectable after careful manual review during data analysis. Suspected deletions smaller than the detection size for which the method was optimized, were rigorously followed up and confirmed with PCR-based investigations to uncover the true detection size limit of intragenic deletions with this technology. False-positive deletion calls often demonstrated single nucleotide changes or an insertion causing lower hybridization of probes demonstrating the sensitivity of aCGH. Conclusions With optimizing aCGH design and careful review process, aCGH can uncover intragenic deletions as small as dozen bases. These data provide insight that will help optimize probe coverage in array design and illustrate the true assay sensitivity. Mapping of the breakpoints confirms smaller deletions and contributes to the understanding of the mechanism behind these events. Our knowledge of the mutation spectra of several genes can be expected to change as previously unrecognized intragenic deletions are uncovered. PMID:24304607

  9. arrayCGHbase: an analysis platform for comparative genomic hybridization microarrays

    PubMed Central

    Menten, Björn; Pattyn, Filip; De Preter, Katleen; Robbrecht, Piet; Michels, Evi; Buysse, Karen; Mortier, Geert; De Paepe, Anne; van Vooren, Steven; Vermeesch, Joris; Moreau, Yves; De Moor, Bart; Vermeulen, Stefan; Speleman, Frank; Vandesompele, Jo

    2005-01-01

    Background The availability of the human genome sequence as well as the large number of physically accessible oligonucleotides, cDNA, and BAC clones across the entire genome has triggered and accelerated the use of several platforms for analysis of DNA copy number changes, amongst others microarray comparative genomic hybridization (arrayCGH). One of the challenges inherent to this new technology is the management and analysis of large numbers of data points generated in each individual experiment. Results We have developed arrayCGHbase, a comprehensive analysis platform for arrayCGH experiments consisting of a MIAME (Minimal Information About a Microarray Experiment) supportive database using MySQL underlying a data mining web tool, to store, analyze, interpret, compare, and visualize arrayCGH results in a uniform and user-friendly format. Following its flexible design, arrayCGHbase is compatible with all existing and forthcoming arrayCGH platforms. Data can be exported in a multitude of formats, including BED files to map copy number information on the genome using the Ensembl or UCSC genome browser. Conclusion ArrayCGHbase is a web based and platform independent arrayCGH data analysis tool, that allows users to access the analysis suite through the internet or a local intranet after installation on a private server. ArrayCGHbase is available at . PMID:15910681

  10. Prenatal diagnosis of chromosomal abnormalities using array-based comparative genomic hybridization

    USDA-ARS?s Scientific Manuscript database

    This study was designed to evaluate the feasibility of using a targeted array-CGH strategy for prenatal diagnosis of genomic imbalances in a clinical setting of current pregnancies. Women undergoing prenatal diagnosis were counseled and offered array-CGH (BCM V4.0) in addition to routine chromosome ...

  11. Array CGH analysis of a cohort of Russian patients with intellectual disability.

    PubMed

    Kashevarova, Anna A; Nazarenko, Lyudmila P; Skryabin, Nikolay A; Salyukova, Olga A; Chechetkina, Nataliya N; Tolmacheva, Ekaterina N; Sazhenova, Elena A; Magini, Pamela; Graziano, Claudio; Romeo, Giovanni; Kučinskas, Vaidutis; Lebedev, Igor N

    2014-02-15

    The use of array comparative genomic hybridization (array CGH) as a diagnostic tool in molecular genetics has facilitated the identification of many new microdeletion/microduplication syndromes (MMSs). Furthermore, this method has allowed for the identification of copy number variations (CNVs) whose pathogenic role has yet to be uncovered. Here, we report on our application of array CGH for the identification of pathogenic CNVs in 79 Russian children with intellectual disability (ID). Twenty-six pathogenic or likely pathogenic changes in copy number were detected in 22 patients (28%): 8 CNVs corresponded to known MMSs, and 17 were not associated with previously described syndromes. In this report, we describe our findings and comment on genes potentially associated with ID that are located within the CNV regions. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Single-cell copy number variation detection

    PubMed Central

    2011-01-01

    Detection of chromosomal aberrations from a single cell by array comparative genomic hybridization (single-cell array CGH), instead of from a population of cells, is an emerging technique. However, such detection is challenging because of the genome artifacts and the DNA amplification process inherent to the single cell approach. Current normalization algorithms result in inaccurate aberration detection for single-cell data. We propose a normalization method based on channel, genome composition and recurrent genome artifact corrections. We demonstrate that the proposed channel clone normalization significantly improves the copy number variation detection in both simulated and real single-cell array CGH data. PMID:21854607

  13. Array-CGH Analysis in a Cohort of Phenotypically Well-Characterized Individuals with "Essential" Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Napoli, Eleonora; Russo, Serena; Casula, Laura; Alesi, Viola; Amendola, Filomena Alessandra; Angioni, Adriano; Novelli, Antonio; Valeri, Giovanni; Menghini, Deny; Vicari, Stefano

    2018-01-01

    Copy-number variants (CNVs) are associated with susceptibility to autism spectrum disorder (ASD). To detect the presence of CNVs, we conducted an array-comparative genomic hybridization (array-CGH) analysis in 133 children with "essential" ASD phenotype. Genetic analyses documented that 12 children had causative CNVs (C-CNVs), 29…

  14. Array Comparative Genomic Hybridization as the First-line Investigation for Neonates with Congenital Heart Disease: Experience in a Single Tertiary Center

    PubMed Central

    2018-01-01

    Background and Objectives The purpose of the present study was to investigate the advantages and disadvantages of verifying genetic abnormalities using array comparative genomic hybridization (a-CGH) immediately after diagnosis of congenital heart disease (CHD). Methods Among neonates under the age of 28 days who underwent echocardiography from January 1, 2014 to April 30, 2016, neonates whose chromosomal and genomic abnormalities were tested using a-CGH in cases of an abnormal finding on echocardiography were enrolled. Results Of the 166 patients diagnosed with CHD, 81 underwent a-CGH and 11 patients (11/81, 13.5%) had abnormal findings on a-CGH. 22q11.2 deletion syndrome was the most common (4/11, 36.4%). On the first a-CGH, 4 patients were negative (4/81, 5%). Three of them were finally diagnosed with Williams syndrome using fluorescent in situ hybridization (FISH), 1 patient was diagnosed with Noonan syndrome through exome sequencing. All of them exhibited diffuse pulmonary artery branch hypoplasia, as well as increased velocity of blood flow, on repeated echocardiography. Five patients started rehabilitation therapy at mean 6 months old age in outpatient clinics and epilepsy was diagnosed in 2 patients. Parents of 2 patients (22q11.2 deletion syndrome and Patau syndrome) refused treatment due to the anticipated prognosis. Conclusions Screening tests for genetic abnormalities using a-CGH in neonates with CHD has the advantage of early diagnosis of genetic abnormality during the neonatal period in which there is no obvious symptom of genetic abnormality. However, there are disadvantages that some genetic abnormalities cannot be identified on a-CGH. PMID:29557107

  15. CGHnormaliter: an iterative strategy to enhance normalization of array CGH data with imbalanced aberrations

    PubMed Central

    van Houte, Bart PP; Binsl, Thomas W; Hettling, Hannes; Pirovano, Walter; Heringa, Jaap

    2009-01-01

    Background Array comparative genomic hybridization (aCGH) is a popular technique for detection of genomic copy number imbalances. These play a critical role in the onset of various types of cancer. In the analysis of aCGH data, normalization is deemed a critical pre-processing step. In general, aCGH normalization approaches are similar to those used for gene expression data, albeit both data-types differ inherently. A particular problem with aCGH data is that imbalanced copy numbers lead to improper normalization using conventional methods. Results In this study we present a novel method, called CGHnormaliter, which addresses this issue by means of an iterative normalization procedure. First, provisory balanced copy numbers are identified and subsequently used for normalization. These two steps are then iterated to refine the normalization. We tested our method on three well-studied tumor-related aCGH datasets with experimentally confirmed copy numbers. Results were compared to a conventional normalization approach and two more recent state-of-the-art aCGH normalization strategies. Our findings show that, compared to these three methods, CGHnormaliter yields a higher specificity and precision in terms of identifying the 'true' copy numbers. Conclusion We demonstrate that the normalization of aCGH data can be significantly enhanced using an iterative procedure that effectively eliminates the effect of imbalanced copy numbers. This also leads to a more reliable assessment of aberrations. An R-package containing the implementation of CGHnormaliter is available at . PMID:19709427

  16. Microarray-Based Comparative Genomic Hybridization Using Sex-Matched Reference DNA Provides Greater Sensitivity for Detection of Sex Chromosome Imbalances than Array-Comparative Genomic Hybridization with Sex-Mismatched Reference DNA

    PubMed Central

    Yatsenko, Svetlana A.; Shaw, Chad A.; Ou, Zhishuo; Pursley, Amber N.; Patel, Ankita; Bi, Weimin; Cheung, Sau Wai; Lupski, James R.; Chinault, A. Craig; Beaudet, Arthur L.

    2009-01-01

    In array-comparative genomic hybridization (array-CGH) experiments, the measurement of DNA copy number of sex chromosomal regions depends on the sex of the patient and the reference DNAs used. We evaluated the ability of bacterial artificial chromosomes/P1-derived artificial and oligonucleotide array-CGH analyses to detect constitutional sex chromosome imbalances using sex-mismatched reference DNAs. Twenty-two samples with imbalances involving either the X or Y chromosome, including deletions, duplications, triplications, derivative or isodicentric chromosomes, and aneuploidy, were analyzed. Although concordant results were obtained for approximately one-half of the samples when using sex-mismatched and sex-matched reference DNAs, array-CGH analyses with sex-mismatched reference DNAs did not detect genomic imbalances that were detected using sex-matched reference DNAs in 6 of 22 patients. Small duplications and deletions of the X chromosome were most difficult to detect in female and male patients, respectively, when sex-mismatched reference DNAs were used. Sex-matched reference DNAs in array-CGH analyses provides optimal sensitivity and enables an automated statistical evaluation for the detection of sex chromosome imbalances when compared with an experimental design using sex-mismatched reference DNAs. Using sex-mismatched reference DNAs in array-CGH analyses may generate false-negative, false-positive, and ambiguous results for sex chromosome-specific probes, thus masking potential pathogenic genomic imbalances. Therefore, to optimize both detection of clinically relevant sex chromosome imbalances and ensure proper experimental performance, we suggest that alternative internal controls be developed and used instead of using sex-mismatched reference DNAs. PMID:19324990

  17. Analyses of Genotypes and Phenotypes of Ten Chinese Patients with Wolf-Hirschhorn Syndrome by Multiplex Ligation-dependent Probe Amplification and Array Comparative Genomic Hybridization

    PubMed Central

    Yang, Wen-Xu; Pan, Hong; Li, Lin; Wu, Hai-Rong; Wang, Song-Tao; Bao, Xin-Hua; Jiang, Yu-Wu; Qi, Yu

    2016-01-01

    Background: Wolf-Hirschhorn syndrome (WHS) is a contiguous gene syndrome that is typically caused by a deletion of the distal portion of the short arm of chromosome 4. However, there are few reports about the features of Chinese WHS patients. This study aimed to characterize the clinical and molecular cytogenetic features of Chinese WHS patients using the combination of multiplex ligation-dependent probe amplification (MLPA) and array comparative genomic hybridization (array CGH). Methods: Clinical information was collected from ten patients with WHS. Genomic DNA was extracted from the peripheral blood of the patients. The deletions were analyzed by MLPA and array CGH. Results: All patients exhibited the core clinical symptoms of WHS, including severe growth delay, a Greek warrior helmet facial appearance, differing degrees of intellectual disability, and epilepsy or electroencephalogram anomalies. The 4p deletions ranged from 2.62 Mb to 17.25 Mb in size and included LETM1, WHSC1, and FGFR3. Conclusions: The combined use of MLPA and array CGH is an effective and specific means to diagnose WHS and allows for the precise identification of the breakpoints and sizes of deletions. The deletion of genes in the WHS candidate region is closely correlated with the core WHS phenotype. PMID:26960370

  18. Evaluation of Genomic Instability in the Abnormal Prostate

    DTIC Science & Technology

    2006-12-01

    array CGH maps copy number aberrations relative to the genome sequence by using arrays of BAC or cDNA clones as the hybridization target instead of...data produced from these analyses complicate the interpretation of results . For these reasons, and as outlined by Davies et al., 22 it is desirable...There have been numerous studies of these abnormalities and several techniques, including 9 chromosome painting, array CGH and SNP arrays , have

  19. A robust method to analyze copy number alterations of less than 100 kb in single cells using oligonucleotide array CGH.

    PubMed

    Möhlendick, Birte; Bartenhagen, Christoph; Behrens, Bianca; Honisch, Ellen; Raba, Katharina; Knoefel, Wolfram T; Stoecklein, Nikolas H

    2013-01-01

    Comprehensive genome wide analyses of single cells became increasingly important in cancer research, but remain to be a technically challenging task. Here, we provide a protocol for array comparative genomic hybridization (aCGH) of single cells. The protocol is based on an established adapter-linker PCR (WGAM) and allowed us to detect copy number alterations as small as 56 kb in single cells. In addition we report on factors influencing the success of single cell aCGH downstream of the amplification method, including the characteristics of the reference DNA, the labeling technique, the amount of input DNA, reamplification, the aCGH resolution, and data analysis. In comparison with two other commercially available non-linear single cell amplification methods, WGAM showed a very good performance in aCGH experiments. Finally, we demonstrate that cancer cells that were processed and identified by the CellSearch® System and that were subsequently isolated from the CellSearch® cartridge as single cells by fluorescence activated cell sorting (FACS) could be successfully analyzed using our WGAM-aCGH protocol. We believe that even in the era of next-generation sequencing, our single cell aCGH protocol will be a useful and (cost-) effective approach to study copy number alterations in single cells at resolution comparable to those reported currently for single cell digital karyotyping based on next generation sequencing data.

  20. SeeGH--a software tool for visualization of whole genome array comparative genomic hybridization data.

    PubMed

    Chi, Bryan; DeLeeuw, Ronald J; Coe, Bradley P; MacAulay, Calum; Lam, Wan L

    2004-02-09

    Array comparative genomic hybridization (CGH) is a technique which detects copy number differences in DNA segments. Complete sequencing of the human genome and the development of an array representing a tiling set of tens of thousands of DNA segments spanning the entire human genome has made high resolution copy number analysis throughout the genome possible. Since array CGH provides signal ratio for each DNA segment, visualization would require the reassembly of individual data points into chromosome profiles. We have developed a visualization tool for displaying whole genome array CGH data in the context of chromosomal location. SeeGH is an application that translates spot signal ratio data from array CGH experiments to displays of high resolution chromosome profiles. Data is imported from a simple tab delimited text file obtained from standard microarray image analysis software. SeeGH processes the signal ratio data and graphically displays it in a conventional CGH karyotype diagram with the added features of magnification and DNA segment annotation. In this process, SeeGH imports the data into a database, calculates the average ratio and standard deviation for each replicate spot, and links them to chromosome regions for graphical display. Once the data is displayed, users have the option of hiding or flagging DNA segments based on user defined criteria, and retrieve annotation information such as clone name, NCBI sequence accession number, ratio, base pair position on the chromosome, and standard deviation. SeeGH represents a novel software tool used to view and analyze array CGH data. The software gives users the ability to view the data in an overall genomic view as well as magnify specific chromosomal regions facilitating the precise localization of genetic alterations. SeeGH is easily installed and runs on Microsoft Windows 2000 or later environments.

  1. Customized Oligonucleotide Array-Based Comparative Genomic Hybridization as a Clinical Assay for Genomic Profiling of Chronic Lymphocytic Leukemia

    PubMed Central

    Sargent, Rachel; Jones, Dan; Abruzzo, Lynne V.; Yao, Hui; Bonderover, Jaime; Cisneros, Marissa; Wierda, William G.; Keating, Michael J.; Luthra, Rajyalakshmi

    2009-01-01

    Chromosome gains and losses used for risk stratification in chronic lymphocytic leukemia (CLL) are commonly assessed by multiprobe fluorescence in situ hybridization (FISH) studies. We designed and validated a customized array-comparative genomic hybridization (aCGH) platform as a clinical assay for CLL genomic profiling. A 60-mer, 44,000-probe oligonucleotide array with a 50-kb average spatial resolution was augmented with high-density probe tiling at loci that are frequently aberrant in CLL. Aberrations identified by aCGH were compared with those identified by a FISH panel, including locus-specific probes to ATM (11q22.3), the centromeric region of chromosome 12 (12p11.1–q11), D13S319 (13q14.3), LAMP1 (13q34), and TP53 (17p13.1). In 100 CLL samples, aCGH/FISH concordance was seen for 89% of FISH-called aberrations at the ATM (n = 18), D13S319 (n = 42), LAMP (n = 12), and TP53 (n = 22) loci and for chromosome 12 (n = 14). Eighty-four percentage of FISH/aCGH discordant calls were in samples either at or below the limit of aCGH sensitivity (10% to 25% FISH aberration-containing cells). Therefore, aCGH profiling is a feasible routine clinical test with comparable results to multiprobe FISH studies; however, it may be less sensitive than FISH in cases with low-level aberrations. Further, a customized array design can provide comprehensive genomic profiling with additional accuracy in both identifying and defining the extent of small aberrations at target loci. PMID:19074592

  2. Application of Nexus copy number software for CNV detection and analysis.

    PubMed

    Darvishi, Katayoon

    2010-04-01

    Among human structural genomic variation, copy number variants (CNVs) are the most frequently known component, comprised of gains/losses of DNA segments that are generally 1 kb in length or longer. Array-based comparative genomic hybridization (aCGH) has emerged as a powerful tool for detecting genomic copy number variants (CNVs). With the rapid increase in the density of array technology and with the adaptation of new high-throughput technology, a reliable and computationally scalable method for accurate mapping of recurring DNA copy number aberrations has become a main focus in research. Here we introduce Nexus Copy Number software, a platform-independent tool, to analyze the output files of all types of commercial and custom-made comparative genomic hybridization (CGH) and single-nucleotide polymorphism (SNP) arrays, such as those manufactured by Affymetrix, Agilent Technologies, Illumina, and Roche NimbleGen. It also supports data generated by various array image-analysis software tools such as GenePix, ImaGene, and BlueFuse. (c) 2010 by John Wiley & Sons, Inc.

  3. Bridging the gap from prenatal karyotyping to whole-genome array comparative genomic hybridization in Hong Kong: survey on knowledge and acceptance of health-care providers and pregnant women.

    PubMed

    Cheng, Hiu Yee Heidi; Kan, Anita Sik-Yau; Hui, Pui Wah; Lee, Chin Peng; Tang, Mary Hoi Yin

    2017-12-01

    The use of array comparative genomic hybridization (aCGH) has been increasingly widespread. The challenge of integration of this technology into prenatal diagnosis was the interpretation of results and communicating findings of unclear clinical significance. This study assesses the knowledge and acceptance of prenatal aCGH in Hong Kong obstetricians and pregnant women. The aim is to identify the needs and gaps before implementing the replacement of karyotyping with aCGH. Questionnaires with aCGH information in the form of pamphlets were sent by post to obstetrics and gynecology doctors. For the pregnant women group, a video presentation, pamphlets on aCGH and a self-administered questionnaire were provided at the antenatal clinic. The perception of aCGH between doctors and pregnant women was similar. Doctors not choosing aCGH were more concerned about the difficulty in counseling of variants of unknown significance and adult-onset disease in pregnant women, whereas pregnant women not choosing aCGH were more concerned about the increased waiting time leading to increased anxiety. Prenatal aCGH is perceived as a better test by both doctors and patients. Counseling support, training, and better understanding and communication of findings of unclear clinical significance are necessary to improve doctor-patient experience.

  4. An experimental loop design for the detection of constitutional chromosomal aberrations by array CGH

    PubMed Central

    2009-01-01

    Background Comparative genomic hybridization microarrays for the detection of constitutional chromosomal aberrations is the application of microarray technology coming fastest into routine clinical application. Through genotype-phenotype association, it is also an important technique towards the discovery of disease causing genes and genomewide functional annotation in human. When using a two-channel microarray of genomic DNA probes for array CGH, the basic setup consists in hybridizing a patient against a normal reference sample. Two major disadvantages of this setup are (1) the use of half of the resources to measure a (little informative) reference sample and (2) the possibility that deviating signals are caused by benign copy number variation in the "normal" reference instead of a patient aberration. Instead, we apply an experimental loop design that compares three patients in three hybridizations. Results We develop and compare two statistical methods (linear models of log ratios and mixed models of absolute measurements). In an analysis of 27 patients seen at our genetics center, we observed that the linear models of the log ratios are advantageous over the mixed models of the absolute intensities. Conclusion The loop design and the performance of the statistical analysis contribute to the quick adoption of array CGH as a routine diagnostic tool. They lower the detection limit of mosaicisms and improve the assignment of copy number variation for genetic association studies. PMID:19925645

  5. An experimental loop design for the detection of constitutional chromosomal aberrations by array CGH.

    PubMed

    Allemeersch, Joke; Van Vooren, Steven; Hannes, Femke; De Moor, Bart; Vermeesch, Joris Robert; Moreau, Yves

    2009-11-19

    Comparative genomic hybridization microarrays for the detection of constitutional chromosomal aberrations is the application of microarray technology coming fastest into routine clinical application. Through genotype-phenotype association, it is also an important technique towards the discovery of disease causing genes and genomewide functional annotation in human. When using a two-channel microarray of genomic DNA probes for array CGH, the basic setup consists in hybridizing a patient against a normal reference sample. Two major disadvantages of this setup are (1) the use of half of the resources to measure a (little informative) reference sample and (2) the possibility that deviating signals are caused by benign copy number variation in the "normal" reference instead of a patient aberration. Instead, we apply an experimental loop design that compares three patients in three hybridizations. We develop and compare two statistical methods (linear models of log ratios and mixed models of absolute measurements). In an analysis of 27 patients seen at our genetics center, we observed that the linear models of the log ratios are advantageous over the mixed models of the absolute intensities. The loop design and the performance of the statistical analysis contribute to the quick adoption of array CGH as a routine diagnostic tool. They lower the detection limit of mosaicisms and improve the assignment of copy number variation for genetic association studies.

  6. Molecular karyotyping by array CGH in a Russian cohort of children with intellectual disability, autism, epilepsy and congenital anomalies

    PubMed Central

    2012-01-01

    Background Array comparative genomic hybridization (CGH) has been repeatedly shown to be a successful tool for the identification of genomic variations in a clinical population. During the last decade, the implementation of array CGH has resulted in the identification of new causative submicroscopic chromosome imbalances and copy number variations (CNVs) in neuropsychiatric (neurobehavioral) diseases. Currently, array-CGH-based technologies have become an integral part of molecular diagnosis and research in individuals with neuropsychiatric disorders and children with intellectual disability (mental retardation) and congenital anomalies. Here, we introduce the Russian cohort of children with intellectual disability, autism, epilepsy and congenital anomalies analyzed by BAC array CGH and a novel bioinformatic strategy. Results Among 54 individuals highly selected according to clinical criteria and molecular and cytogenetic data (from 2426 patients evaluated cytogenetically and molecularly between November 2007 and May 2012), chromosomal imbalances were detected in 26 individuals (48%). In two patients (4%), a previously undescribed condition was observed. The latter has been designated as meiotic (constitutional) genomic instability resulted in multiple submicroscopic rearrangements (including CNVs). Using bioinformatic strategy, we were able to identify clinically relevant CNVs in 15 individuals (28%). Selected cases were confirmed by molecular cytogenetic and molecular genetic methods. Eight out of 26 chromosomal imbalances (31%) have not been previously reported. Among them, three cases were co-occurrence of subtle chromosome 9 and 21 deletions. Conclusions We conducted an array CGH study of Russian patients suffering from intellectual disability, autism, epilepsy and congenital anomalies. In total, phenotypic manifestations of clinically relevant genomic variations were found to result from genomic rearrangements affecting 1247 disease-causing and pathway-involved genes. Obviously, a significantly lesser part of them are true candidates for intellectual disability, autism or epilepsy. The success of our preliminary array CGH and bioinformatic study allows us to expand the cohort. According to the available literature, this is the first comprehensive array CGH evaluation of a Russian cohort of children with neuropsychiatric disorders and congenital anomalies. PMID:23272938

  7. Array-based comparative genomic hybridization in 190 Korean patients with developmental delay and/or intellectual disability: a single tertiary care university center study.

    PubMed

    Lee, Cha Gon; Park, Sang-Jin; Yun, Jun-No; Ko, Jung Min; Kim, Hyon-Ju; Yim, Shin-Young; Sohn, Young Bae

    2013-11-01

    This study analyzed and evaluated the demographic, clinical, and cytogenetic data [G-banded karyotyping and array-based comparative genomic hybridization (array CGH)] of patients with unexplained developmental delay or intellectual disability at a single Korean institution. We collected clinical and cytogenetic data based on retrospective charts at Ajou University Medical Center, Suwon, Korea from April 2008 to March 2012. A total of 190 patients were identified. Mean age was 5.1±1.87 years. Array CGH yielded abnormal results in 26 of 190 patients (13.7%). Copy number losses were about two-fold more frequent than gains. A total of 61.5% of all patients had copy number losses. The most common deletion disorders included 22q11.2 deletion syndrome, 15q11.2q12 deletion and 18q deletion syndrome. Copy number gains were identified in 34.6% of patients, and common diseases among these included Potocki-Lupski syndrome, 15q11-13 duplication syndrome and duplication 22q. Abnormal karyotype with normal array CGH results was exhibited in 2.6% of patients; theses included balanced translocation (n=2), inversion (n=2) and low-level mosaicism (n=1). Facial abnormalities (p<0.001) and failure to thrive were (p<0.001) also more frequent in the group of patients with abnormal CGH findings. Array CGH is a useful diagnostic tool in clinical settings in patients with developmental delay or intellectual disability combined with facial abnormalities or failure to thrive.

  8. [Dandy-walker syndrome and microdeletions on chromosome 7].

    PubMed

    Liao, Can; Fu, Fang; Li, Ru; Pan, Min; Yang, Xin; Yi, Cui-xing; Li, Jian; Li, Dong-zhi

    2012-02-01

    To investigate genetic etiology of Dandy-Walker syndrome with array-based comparative genomic hybridization (array-CGH). Eight fetuses with Dandy-Walker malformations but normal karyotypes by conventional cytogenetic technique were selected. DNA samples were extracted and hybridized with Affymetrix cytogenetic 2.7 M arrays by following the manufacturer's standard protocol. The data were analyzed by special software packages. By using array-CGH technique, common deletions and duplication on chromosome 7p21.3 were identified in three cases, within which were central nervous system disease associated genes NDUFA4 and PHF14. Copy number variations (CNVs) of chromosome 7p21.3 region are associated with Dandy-Walker malformations which may be due to haploinsufficiency or overexpression of NDUFA4 and PHF14 genes.

  9. [Analysis of genetics mechanism for the phenotypic diversity in a patient carrying a rare ring chromosome 9].

    PubMed

    Qin, Shengfang; Wang, Xueyan; Li, Yunxing; Wei, Ping; Chen, Chun; Zeng, Lan

    2016-02-01

    To explore the genetics mechanism for the phenotypic variability in a patient carrying a rare ring chromosome 9. The karyotype of the patient was analyzed with cytogenetics method. Presence of sex chromosome was confirmed with fluorescence in situ hybridization. The SRY gene was subjected to PCR amplification and direct sequencing. Potential deletion and duplication were detected with array-based comparative genomic hybridization (array-CGH). The karyotype of the patient has comprised 6 types of cell lines containing a ring chromosome 9. The SRY gene sequence was normal. By array-CGH, the patient has carried a hemizygous deletion at 9p24.3-p23 (174 201-9 721 761) encompassing 30 genes from Online Mendelian Inheritance in Man. The phenotypic variability of the 9p deletion syndrome in conjunct with ring chromosome 9 may be attributable to multiple factors including loss of chromosomal material, insufficient dosage of genes, instability of ring chromosome, and pattern of inheritance.

  10. A bayesian analysis for identifying DNA copy number variations using a compound poisson process.

    PubMed

    Chen, Jie; Yiğiter, Ayten; Wang, Yu-Ping; Deng, Hong-Wen

    2010-01-01

    To study chromosomal aberrations that may lead to cancer formation or genetic diseases, the array-based Comparative Genomic Hybridization (aCGH) technique is often used for detecting DNA copy number variants (CNVs). Various methods have been developed for gaining CNVs information based on aCGH data. However, most of these methods make use of the log-intensity ratios in aCGH data without taking advantage of other information such as the DNA probe (e.g., biomarker) positions/distances contained in the data. Motivated by the specific features of aCGH data, we developed a novel method that takes into account the estimation of a change point or locus of the CNV in aCGH data with its associated biomarker position on the chromosome using a compound Poisson process. We used a Bayesian approach to derive the posterior probability for the estimation of the CNV locus. To detect loci of multiple CNVs in the data, a sliding window process combined with our derived Bayesian posterior probability was proposed. To evaluate the performance of the method in the estimation of the CNV locus, we first performed simulation studies. Finally, we applied our approach to real data from aCGH experiments, demonstrating its applicability.

  11. A comparative genomic hybridization approach to study gene copy number variations among Chinese hamster cell lines.

    PubMed

    Vishwanathan, Nandita; Bandyopadhyay, Arpan; Fu, Hsu-Yuan; Johnson, Kathryn C; Springer, Nathan M; Hu, Wei-Shou

    2017-08-01

    Chinese Hamster Ovary (CHO) cells are aneuploid in nature. The genome of recombinant protein producing CHO cell lines continuously undergoes changes in its structure and organization. We analyzed nine cell lines, including parental cell lines, using a comparative genomic hybridization (CGH) array focused on gene-containing regions. The comparison of CGH with copy-number estimates from sequencing data showed good correlation. Hierarchical clustering of the gene copy number variation data from CGH data revealed the lineage relationships between the cell lines. On analyzing the clones of a clonal population, some regions with altered genomic copy number status were identified indicating genomic changes during passaging. A CGH array is thus an effective tool in quantifying genomic alterations in industrial cell lines and can provide insights into the changes in the genomic structure during cell line derivation and long term culture. Biotechnol. Bioeng. 2017;114: 1903-1908. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. Identification of De Novo and Rare Inherited Copy Number Variants in Children with Syndromic Congenital Heart Defects.

    PubMed

    Hussein, Ibtessam R; Bader, Rima S; Chaudhary, Adeel G; Bassiouni, Randa; Alquaiti, Maha; Ashgan, Fai; Schulten, Hans-Juergen; Al Qahtani, Mohammad H

    2018-06-01

    Congenital heart defects (CHDs) are the most common birth defects in neonatal life. CHDs could be presented as isolated defects or associated with developmental delay (DD) and/or other congenital malformations. A small proportion of cardiac defects are caused by chromosomal abnormalities or single gene defects; however, in a large proportion of cases no genetic diagnosis could be achieved by clinical examination and conventional genetic analysis. The development of genome wide array-Comparative Genomic Hybridization technique (array-CGH) allowed for the detection of cryptic chromosomal imbalances and pathogenic copy number variants (CNVs) not detected by conventional techniques. We investigated 94 patients having CHDs associated with other malformations and/or DD. Clinical examination and Echocardiography was done to all patients to evaluate the type of CHD. To investigate for genome defects we applied high-density array-CGH 2 × 400K (41 patients) and CGH/SNP microarray 2 × 400K (Agilent) for 53 patients. Confirmation of results was done using Fluorescent in situ hybridization (FISH) or qPCR techniques in certain cases. Chromosomal abnormalities such as trisomy 18, 13, 21, microdeletions: del22q11.2, del7q11.23, del18 (p11.32; p11.21), tetrasomy 18p, trisomy 9p, del11q24-q25, add 15p, add(18)(q21.3), and der 9, 15 (q34.2; q11.2) were detected in 21/94 patients (22%) using both conventional cytogenetics methods and array-CGH technique. Cryptic chromosomal anomalies and pathogenic variants were detected in 15/73 (20.5%) cases. CNVs were observed in a large proportion of the studied samples (27/56) (48%). Clustering of variants was observed in chromosome 1p36, 1p21.1, 2q37, 3q29, 5p15, 7p22.3, 8p23, 11p15.5, 14q11.2, 15q11.2, 16p13.3, 16p11.2, 18p11, 21q22, and 22q11.2. CGH/SNP array could detect loss of heterozygosity (LOH) in different chromosomal loci in 10/25 patients. Array-CGH technique allowed for detection of cryptic chromosomal imbalances that could not be detected by conventional cytogenetics methods. CHDs associated with DD/congenital malformations presented with a relatively high rate of cryptic chromosomal abnormalities. Clustering of CNVs in certain genome loci needs further analysis to identify candidate genes that may provide clues for understanding the molecular pathway of cardiac development.

  13. Analysis of Chinese women with primary ovarian insufficiency by high resolution array-comparative genomic hybridization.

    PubMed

    Liao, Can; Fu, Fang; Yang, Xin; Sun, Yi-Min; Li, Dong-Zhi

    2011-06-01

    Primary ovarian insufficiency (POI) is defined as a primary ovarian defect characterized by absent menarche (primary amenorrhea) or premature depletion of ovarian follicles before the age of 40 years. The etiology of primary ovarian insufficiency in human female patients is still unclear. The purpose of this study is to investigate the potential genetic causes in primary amenorrhea patients by high resolution array based comparative genomic hybridization (array-CGH) analysis. Following the standard karyotyping analysis, genomic DNA from whole blood of 15 primary amenorrhea patients and 15 normal control women was hybridized with Affymetrix cytogenetic 2.7M arrays following the standard protocol. Copy number variations identified by array-CGH were confirmed by real time polymerase chain reaction. All the 30 samples were negative by conventional karyotyping analysis. Microdeletions on chromosome 17q21.31-q21.32 with approximately 1.3 Mb were identified in four patients by high resolution array-CGH analysis. This included the female reproductive secretory pathway related factor N-ethylmaleimide-sensitive factor (NSF) gene. The results of the present study suggest that there may be critical regions regulating primary ovarian insufficiency in women with a 17q21.31-q21.32 microdeletion. This effect might be due to the loss of function of the NSF gene/genes within the deleted region or to effects on contiguous genes.

  14. A Streamlined Protocol for Molecular Testing of the DMD Gene within a Diagnostic Laboratory: A Combination of Array Comparative Genomic Hybridization and Bidirectional Sequence Analysis

    PubMed Central

    Marquis-Nicholson, Renate; Lai, Daniel; Love, Jennifer M.; Love, Donald R.

    2013-01-01

    Purpose. The aim of this study was to develop a streamlined mutation screening protocol for the DMD gene in order to confirm a clinical diagnosis of Duchenne or Becker muscular dystrophy in affected males and to clarify the carrier status of female family members. Methods. Sequence analysis and array comparative genomic hybridization (aCGH) were used to identify mutations in the dystrophin DMD gene. We analysed genomic DNA from six individuals with a range of previously characterised mutations and from eight individuals who had not previously undergone any form of molecular analysis. Results. We successfully identified the known mutations in all six patients. A molecular diagnosis was also made in three of the four patients with a clinical diagnosis who had not undergone prior genetic screening, and testing for familial mutations was successfully completed for the remaining four patients. Conclusion. The mutation screening protocol described here meets best practice guidelines for molecular testing of the DMD gene in a diagnostic laboratory. The aCGH method is a superior alternative to more conventional assays such as multiplex ligation-dependent probe amplification (MLPA). The combination of aCGH and sequence analysis will detect mutations in 98% of patients with the Duchenne or Becker muscular dystrophy. PMID:23476807

  15. Preimplantation genetic screening for all 24 chromosomes by microarray comparative genomic hybridization significantly increases implantation rates and clinical pregnancy rates in patients undergoing in vitro fertilization with poor prognosis

    PubMed Central

    Majumdar, Gaurav; Majumdar, Abha; Lall, Meena; Verma, Ishwar C.; Upadhyaya, Kailash C.

    2016-01-01

    CONTEXT: A majority of human embryos produced in vitro are aneuploid, especially in couples undergoing in vitro fertilization (IVF) with poor prognosis. Preimplantation genetic screening (PGS) for all 24 chromosomes has the potential to select the most euploid embryos for transfer in such cases. AIM: To study the efficacy of PGS for all 24 chromosomes by microarray comparative genomic hybridization (array CGH) in Indian couples undergoing IVF cycles with poor prognosis. SETTINGS AND DESIGN: A retrospective, case–control study was undertaken in an institution-based tertiary care IVF center to compare the clinical outcomes of twenty patients, who underwent 21 PGS cycles with poor prognosis, with 128 non-PGS patients in the control group, with the same inclusion criterion as for the PGS group. MATERIALS AND METHODS: Single cells were obtained by laser-assisted embryo biopsy from day 3 embryos and subsequently analyzed by array CGH for all 24 chromosomes. Once the array CGH results were available on the morning of day 5, only chromosomally normal embryos that had progressed to blastocyst stage were transferred. RESULTS: The implantation rate and clinical pregnancy rate (PR) per transfer were found to be significantly higher in the PGS group than in the control group (63.2% vs. 26.2%, P = 0.001 and 73.3% vs. 36.7%, P = 0.006, respectively), while the multiple PRs sharply declined from 31.9% to 9.1% in the PGS group. CONCLUSIONS: In this pilot study, we have shown that PGS by array CGH can improve the clinical outcome in patients undergoing IVF with poor prognosis. PMID:27382234

  16. Detection of clonal evolution in hematopoietic malignancies by combining comparative genomic hybridization and single nucleotide polymorphism arrays.

    PubMed

    Hartmann, Luise; Stephenson, Christine F; Verkamp, Stephanie R; Johnson, Krystal R; Burnworth, Bettina; Hammock, Kelle; Brodersen, Lisa Eidenschink; de Baca, Monica E; Wells, Denise A; Loken, Michael R; Zehentner, Barbara K

    2014-12-01

    Array comparative genomic hybridization (aCGH) has become a powerful tool for analyzing hematopoietic neoplasms and identifying genome-wide copy number changes in a single assay. aCGH also has superior resolution compared with fluorescence in situ hybridization (FISH) or conventional cytogenetics. Integration of single nucleotide polymorphism (SNP) probes with microarray analysis allows additional identification of acquired uniparental disomy, a copy neutral aberration with known potential to contribute to tumor pathogenesis. However, a limitation of microarray analysis has been the inability to detect clonal heterogeneity in a sample. This study comprised 16 samples (acute myeloid leukemia, myelodysplastic syndrome, chronic lymphocytic leukemia, plasma cell neoplasm) with complex cytogenetic features and evidence of clonal evolution. We used an integrated manual peak reassignment approach combining analysis of aCGH and SNP microarray data for characterization of subclonal abnormalities. We compared array findings with results obtained from conventional cytogenetic and FISH studies. Clonal heterogeneity was detected in 13 of 16 samples by microarray on the basis of log2 values. Use of the manual peak reassignment analysis approach improved resolution of the sample's clonal composition and genetic heterogeneity in 10 of 13 (77%) patients. Moreover, in 3 patients, clonal disease progression was revealed by array analysis that was not evident by cytogenetic or FISH studies. Genetic abnormalities originating from separate clonal subpopulations can be identified and further characterized by combining aCGH and SNP hybridization results from 1 integrated microarray chip by use of the manual peak reassignment technique. Its clinical utility in comparison to conventional cytogenetic or FISH studies is demonstrated. © 2014 American Association for Clinical Chemistry.

  17. Randomized comparison of next-generation sequencing and array comparative genomic hybridization for preimplantation genetic screening: a pilot study.

    PubMed

    Yang, Zhihong; Lin, James; Zhang, John; Fong, Wai Ieng; Li, Pei; Zhao, Rong; Liu, Xiaohong; Podevin, William; Kuang, Yanping; Liu, Jiaen

    2015-06-23

    Recent advances in next-generation sequencing (NGS) have provided new methods for preimplantation genetic screening (PGS) of human embryos from in vitro fertilization (IVF) cycles. However, there is still limited information about clinical applications of NGS in IVF and PGS (IVF-PGS) treatments. The present study aimed to investigate the effects of NGS screening on clinical pregnancy and implantation outcomes for PGS patients in comparison to array comparative genomic hybridization (aCGH) screening. This study was performed in two phases. Phase I study evaluated the accuracy of NGS for aneuploidy screening in comparison to aCGH. Whole-genome amplification (WGA) products (n = 164) derived from previous IVF-PGS cycles (n = 38) were retrospectively analyzed with NGS. The NGS results were then compared with those of aCGH. Phase II study further compared clinical pregnancy and implantation outcomes between NGS and aCGH for IVF-PGS patients. A total of 172 patients at mean age 35.2 ± 3.5 years were randomized into two groups: 1) NGS (Group A): patients (n = 86) had embryos screened with NGS and 2) aCGH (Group B): patients (n = 86) had embryos screened with aCGH. For both groups, blastocysts were vitrified after trophectoderm biopsy. One to two euploid blastocysts were thawed and transferred to individual patients primarily based on the PGS results. Ongoing pregnancy and implantation rates were compared between the two study groups. NGS detected all types of aneuploidies of human blastocysts accurately and provided a 100 % 24-chromosome diagnosis consistency with the highly validated aCGH method. Moreover, NGS screening identified euploid blastocysts for transfer and resulted in similarly high ongoing pregnancy rates for PGS patients compared to aCGH screening (74.7 % vs. 69.2 %, respectively, p >0.05). The observed implantation rates were also comparable between the NGS and aCGH groups (70.5 % vs. 66.2 %, respectively, p >0.05). While NGS screening has been recently introduced to assist IVF patients, this is the first randomized clinical study on the efficiency of NGS for preimplantation genetic screening in comparison to aCGH. With the observed high accuracy of 24-chromosome diagnosis and the resulting high ongoing pregnancy and implantation rates, NGS has demonstrated an efficient, robust high-throughput technology for PGS.

  18. Genome profiling of ovarian adenocarcinomas using pangenomic BACs microarray comparative genomic hybridization

    PubMed Central

    Caserta, Donatella; Benkhalifa, Moncef; Baldi, Marina; Fiorentino, Francesco; Qumsiyeh, Mazin; Moscarini, Massimo

    2008-01-01

    Background Routine cytogenetic investigations for ovarian cancers are limited by culture failure and poor growth of cancer cells compared to normal cells. Fluorescence in situ Hybridization (FISH) application or classical comparative genome hybridization techniques are also have their own limitations in detecting genome imbalance especially for small changes that are not known ahead of time and for which FISH probes could not be thus designed. Methods We applied microarray comparative genomic hybridization (A-CGH) using one mega base BAC arrays to investigate chromosomal disorders in ovarian adenocarcinoma in patients with familial history. Results Our data on 10 cases of ovarian cancer revealed losses of 6q (4 cases mainly mosaic loss), 9p (4 cases), 10q (3 cases), 21q (3 cases), 22q (4 cases) with association to a monosomy X and gains of 8q and 9q (occurring together in 8 cases) and gain of 12p. There were other abnormalities such as loss of 17p that were noted in two profiles of the studied cases. Total or mosaic segmental gain of 2p, 3q, 4q, 7q and 13q were also observed. Seven of 10 patients were investigated by FISH to control array CGH results. The FISH data showed a concordance between the 2 methods. Conclusion The data suggest that A-CGH detects unique and common abnormalities with certain exceptions such as tetraploidy and balanced translocation, which may lead to understanding progression of genetic changes as well as aid in early diagnosis and have an impact on therapy and prognosis. PMID:18492273

  19. A segmentation/clustering model for the analysis of array CGH data.

    PubMed

    Picard, F; Robin, S; Lebarbier, E; Daudin, J-J

    2007-09-01

    Microarray-CGH (comparative genomic hybridization) experiments are used to detect and map chromosomal imbalances. A CGH profile can be viewed as a succession of segments that represent homogeneous regions in the genome whose representative sequences share the same relative copy number on average. Segmentation methods constitute a natural framework for the analysis, but they do not provide a biological status for the detected segments. We propose a new model for this segmentation/clustering problem, combining a segmentation model with a mixture model. We present a new hybrid algorithm called dynamic programming-expectation maximization (DP-EM) to estimate the parameters of the model by maximum likelihood. This algorithm combines DP and the EM algorithm. We also propose a model selection heuristic to select the number of clusters and the number of segments. An example of our procedure is presented, based on publicly available data sets. We compare our method to segmentation methods and to hidden Markov models, and we show that the new segmentation/clustering model is a promising alternative that can be applied in the more general context of signal processing.

  20. Array Comparative Genomic Hybridization as the First-line Investigation for Neonates with Congenital Heart Disease: Experience in a Single Tertiary Center.

    PubMed

    Choi, Bo Geum; Hwang, Su Kyung; Kwon, Jung Eun; Kim, Yeo Hyang

    2018-03-01

    The purpose of the present study was to investigate the advantages and disadvantages of verifying genetic abnormalities using array comparative genomic hybridization (a-CGH) immediately after diagnosis of congenital heart disease (CHD). Among neonates under the age of 28 days who underwent echocardiography from January 1, 2014 to April 30, 2016, neonates whose chromosomal and genomic abnormalities were tested using a-CGH in cases of an abnormal finding on echocardiography were enrolled. Of the 166 patients diagnosed with CHD, 81 underwent a-CGH and 11 patients (11/81, 13.5%) had abnormal findings on a-CGH. 22q11.2 deletion syndrome was the most common (4/11, 36.4%). On the first a-CGH, 4 patients were negative (4/81, 5%). Three of them were finally diagnosed with Williams syndrome using fluorescent in situ hybridization (FISH), 1 patient was diagnosed with Noonan syndrome through exome sequencing. All of them exhibited diffuse pulmonary artery branch hypoplasia, as well as increased velocity of blood flow, on repeated echocardiography. Five patients started rehabilitation therapy at mean 6 months old age in outpatient clinics and epilepsy was diagnosed in 2 patients. Parents of 2 patients (22q11.2 deletion syndrome and Patau syndrome) refused treatment due to the anticipated prognosis. Screening tests for genetic abnormalities using a-CGH in neonates with CHD has the advantage of early diagnosis of genetic abnormality during the neonatal period in which there is no obvious symptom of genetic abnormality. However, there are disadvantages that some genetic abnormalities cannot be identified on a-CGH. Copyright © 2018. The Korean Society of Cardiology.

  1. Analysis of genomic alterations in neuroblastoma by multiplex ligation-dependent probe amplification and array comparative genomic hybridization: a comparison of results.

    PubMed

    Combaret, Valérie; Iacono, Isabelle; Bréjon, Stéphanie; Schleiermacher, Gudrun; Pierron, Gäelle; Couturier, Jérôme; Bergeron, Christophe; Blay, Jean-Yves

    2012-12-01

    In cases of neuroblastoma, recurring genetic alterations--losses of the 1p, 3p, 4p, and 11q and/or gains of 1q, 2p, and 17q chromosome arms--are currently used to define the therapeutic strategy in therapeutic protocols for low- and intermediate-risk patients. Different genome-wide analysis techniques, such as array comparative genomic hybridization (aCGH) or multiplex ligation-dependent probe amplification (MLPA), have been suggested for detecting chromosome segmental abnormalities. In this study, we compared the results of the two technologies in the analyses of the DNA of tumor samples from 91 neuroblastoma patients. Similar results were obtained with the two techniques for 75 samples (82%). In five cases (5.5%), the MLPA results were not interpretable. Discrepancies between the aCGH and MLPA results were observed in 11 cases (12%). Among the discrepancies, a 18q21.2-qter gain and 16p11.2 and 11q14.1-q14.3 losses were detected only by aCGH. The MLPA results showed that the 7p, 7q, and 14q chromosome arms were affected in six cases, while in two cases, 2p and 17q gains were observed; these results were confirmed by neither aCGH nor fluorescence in situ hybridization (FISH) analysis. Because of the higher sensitivity and specificity of genome-wide information, reasonable cost, and shorter time of aCGH analysis, we recommend the aCGH procedure for the analysis of genomic alterations in neuroblastoma. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Identification of DNA copy number aberrations by array comparative genomic hybridization in patients with ruptured intracranial aneurysms.

    PubMed

    Choi, Jin Soo; Kim, Seong-Rim; Jeon, Yang-Whan; Lee, Kweon-Haeng; Rha, Hyoung Kyun

    2009-02-01

    We aimed to use array comparative genomic hybridization (CGH) to identify chromosomal loci that contribute to the pathogenesis of ruptured intracranial aneurysms (IAs) in a Korean population and to confirm the results using real-time polymerase chain reaction (PCR). Twenty-three patients with ruptured IAs were enrolled in this study. Array CGH revealed copy number aberrations in 19 chromosomal regions. Chromosomal gains were identified at a high frequency in regions 1p12, 4q24, 5p15.31, 5p15.33, 6p12.2, 6q22.33, 7p21.1, 9q22.1, 10q24.32, 10q26.3, 12q13.13, 17p12, 18q12.3, 18q23, 19p13.3, 20q13.33, 21q11.2, and 21q22.3, whereas chromosomal losses were identified at 15q11.2 and 22q11.21. Real-time PCR confirmed the results of the array CGH studies of the COL6A2, GRIN3B, MUC17, and PRODH genes. This is the first study to identify candidate regions by array CGH in patients with IAs. The identification of genes that may predispose an individual to the development of IAs may lead to a better understanding of the mechanism of IA formation. Multicenter studies comparing cohorts of patients of different ethnicities are needed to better understand the mechanism of IA formation.

  3. Conventional and array-based comparative genomic hybridization analysis of nasopharyngeal carcinomas from the Mediterranean area.

    PubMed

    Rodriguez, S; Khabir, A; Keryer, C; Perrot, C; Drira, M; Ghorbel, A; Jlidi, R; Bernheim, A; Valent, A; Busson, P

    2005-03-01

    Nasopharyngeal carcinoma (NPC) occurs with a high incidence in Southeast Asia and to a lesser extent in the Mediterranean area, especially in Tunisia, Algeria, and Morocco. Cellular gene alterations combined with latent Epstein-Barr virus infection are thought to be essential for NPC oncogenesis. To date, chromosome analysis with comparative genomic hybridization (CGH) has been reported exclusively for NPCs from Southeast Asia. Although NPCs from the Mediterranean area have several distinct clinical and epidemiological features, CGH investigations have been lacking. Chromosome analysis was therefore undertaken on a series of NPC xenografts and biopsies derived from patients of Mediterranean origin. Four xenografts were investigated with a combination of conventional CGH, array-based CGH, and comparative expressed sequence hybridization. In addition, 23 fresh NPC biopsies were analyzed with conventional CGH. Data obtained from xenografts and fresh biopsies were consistent, except that amplification of genes at 18p was observed only in xenografts derived from metastatic tissues. Frequent gains associated with gene overexpression were detected at 1q25 approximately qter (64%) and 12p13 (50%). Losses were noticed mainly at 11q14 approximately q23 (50%), 13q12 approximately q31 (50%), 14q24 approximately q31 (43%), and 3p13 approximately p23 (43%). Comparison with previous reports suggests that Mediterranean NPCs have higher frequencies of gains at 1q and losses at 13q than their Asian counterparts.

  4. A Discovery Resource of Rare Copy Number Variations in Individuals with Autism Spectrum Disorder

    PubMed Central

    Prasad, Aparna; Merico, Daniele; Thiruvahindrapuram, Bhooma; Wei, John; Lionel, Anath C.; Sato, Daisuke; Rickaby, Jessica; Lu, Chao; Szatmari, Peter; Roberts, Wendy; Fernandez, Bridget A.; Marshall, Christian R.; Hatchwell, Eli; Eis, Peggy S.; Scherer, Stephen W.

    2012-01-01

    The identification of rare inherited and de novo copy number variations (CNVs) in human subjects has proven a productive approach to highlight risk genes for autism spectrum disorder (ASD). A variety of microarrays are available to detect CNVs, including single-nucleotide polymorphism (SNP) arrays and comparative genomic hybridization (CGH) arrays. Here, we examine a cohort of 696 unrelated ASD cases using a high-resolution one-million feature CGH microarray, the majority of which were previously genotyped with SNP arrays. Our objective was to discover new CNVs in ASD cases that were not detected by SNP microarray analysis and to delineate novel ASD risk loci via combined analysis of CGH and SNP array data sets on the ASD cohort and CGH data on an additional 1000 control samples. Of the 615 ASD cases analyzed on both SNP and CGH arrays, we found that 13,572 of 21,346 (64%) of the CNVs were exclusively detected by the CGH array. Several of the CGH-specific CNVs are rare in population frequency and impact previously reported ASD genes (e.g., NRXN1, GRM8, DPYD), as well as novel ASD candidate genes (e.g., CIB2, DAPP1, SAE1), and all were inherited except for a de novo CNV in the GPHN gene. A functional enrichment test of gene-sets in ASD cases over controls revealed nucleotide metabolism as a potential novel pathway involved in ASD, which includes several candidate genes for follow-up (e.g., DPYD, UPB1, UPP1, TYMP). Finally, this extensively phenotyped and genotyped ASD clinical cohort serves as an invaluable resource for the next step of genome sequencing for complete genetic variation detection. PMID:23275889

  5. Molecular cytogenetics: an indispensable tool for cancer diagnosis.

    PubMed

    Wan, Thomas Sk; Ma, Edmond Sk

    2012-01-01

    Cytogenetic aberrations may escape detection or recognition in traditional karyotyping. The past decade has seen an explosion of methodological advances in molecular cytogenetics technology. These cytogenetics techniques add color to the black and white world of conventional banding. Fluorescence in-situ hybridization (FISH) study has emerged as an indispensable tool for both basic and clinical research, as well as diagnostics, in leukemia and cancers. FISH can be used to identify chromosomal abnormalities through fluorescent labeled DNA probes that target specific DNA sequences. Subsequently, FISH-based tests such as multicolor karyotyping, comparative genomic hybridization (CGH) and array CGH have been used in emerging clinical applications as they enable resolution of complex karyotypic aberrations and whole global scanning of genomic imbalances. More recently, crossspecies array CGH analysis has also been employed in cancer gene identification. The clinical impact of FISH is pivotal, especially in the diagnosis, prognosis and treatment decisions for hematological diseases, all of which facilitate the practice of personalized medicine. This review summarizes the methodology and current utilization of these FISH techniques in unraveling chromosomal changes and highlights how the field is moving away from conventional methods towards molecular cytogenetics approaches. In addition, the potential of the more recently developed FISH tests in contributing information to genetic abnormalities is illustrated.

  6. Application of Array Comparative Genomic Hybridization in Newborns with Multiple Congenital Anomalies.

    PubMed

    Szczałuba, Krzysztof; Nowakowska, Beata; Sobecka, Katarzyna; Smyk, Marta; Castaneda, Jennifer; Klapecki, Jakub; Kutkowska-Kaźmierczak, Anna; Śmigiel, Robert; Bocian, Ewa; Radkowski, Marek; Demkow, Urszula

    2016-01-01

    Major congenital anomalies are detectable in 2-3 % of the newborn population. Some of their genetic causes are attributable to copy number variations identified by array comparative genomic hybridization (aCGH). The value of aCGH screening as a first-tier test in children with multiple congenital anomalies has been studied and consensus adopted. However, array resolution has not been agreed upon, specifically in the newborn or infant population. Moreover, most array studies have been focused on mixed populations of intellectual disability/developmental delay with or without multiple congenital anomalies, making it difficult to assess the value of microarrays in newborns. The aim of the study was to determine the optimal quality and clinical sensitivity of high-resolution array comparative genomic hybridization in neonates with multiple congenital anomalies. We investigated a group of 54 newborns with multiple congenital anomalies defined as two or more birth defects from more than one organ system. Cytogenetic studies were performed using OGT CytoSure 8 × 60 K microarray. We found ten rearrangements in ten newborns. Of these, one recurrent syndromic microduplication was observed, whereas all other changes were unique. Six rearrangements were definitely pathogenic, including one submicroscopic and five that could be seen on routine karyotype analysis. Four other copy number variants were likely pathogenic. The candidate genes that may explain the phenotype were discussed. In conclusion, high-resolution array comparative hybridization can be applied successfully in newborns with multiple congenital anomalies as the method detects a significant number of pathogenic changes, resulting in early diagnoses. We hypothesize that small changes previously considered benign or even inherited rearrangements should be classified as potentially pathogenic at least until a subsequent clinical assessment would exclude a developmental delay or dysmorphism.

  7. Array comparative genomic hybridization screening in IVF significantly reduces number of embryos available for cryopreservation

    PubMed Central

    Liu, Jiaen; Yang, Zhihong; Salem, Shala A; Rahil, Tayyab; Collins, Gary S; Liu, Xiaohong; Salem, Rifaat D

    2012-01-01

    Objective During IVF, non-transferred embryos are usually selected for cryopreservation on the basis of morphological criteria. This investigation evaluated an application for array comparative genomic hybridization (aCGH) in assessment of surplus embryos prior to cryopreservation. Methods First-time IVF patients undergoing elective single embryo transfer and having at least one extra non-transferred embryo suitable for cryopreservation were offered enrollment in the study. Patients were randomized into two groups: Patients in group A (n=55) had embryos assessed first by morphology and then by aCGH, performed on cells obtained from trophectoderm biopsy on post-fertilization day 5. Only euploid embryos were designated for cryopreservation. Patients in group B (n=48) had embryos assessed by morphology alone, with only good morphology embryos considered suitable for cryopreservation. Results Among biopsied embryos in group A (n=425), euploidy was confirmed in 226 (53.1%). After fresh single embryo transfer, 64 (28.3%) surplus euploid embryos were cryopreserved for 51 patients (92.7%). In group B, 389 good morphology blastocysts were identified and a single top quality blastocyst was selected for fresh transfer. All group B patients (48/48) had at least one blastocyst remaining for cryopreservation. A total of 157 (40.4%) blastocysts were frozen in this group, a significantly larger proportion than was cryopreserved in group A (p=0.017, by chi-squared analysis). Conclusion While aCGH and subsequent frozen embryo transfer are currently used to screen embryos, this is the first investigation to quantify the impact of aCGH specifically on embryo cryopreservation. Incorporation of aCGH screening significantly reduced the total number of cryopreserved blastocysts compared to when suitability for freezing was determined by morphology only. IVF patients should be counseled that the benefits of aCGH screening will likely come at the cost of sharply limiting the number of surplus embryos available for cryopreservation. PMID:22816070

  8. Genomic profiling of plasma cell disorders in a clinical setting: integration of microarray and FISH, after CD138 selection of bone marrow

    PubMed Central

    Berry, Nadine Kaye; Bain, Nicole L; Enjeti, Anoop K; Rowlings, Philip

    2014-01-01

    Aim To evaluate the role of whole genome comparative genomic hybridisation microarray (array-CGH) in detecting genomic imbalances as compared to conventional karyotype (GTG-analysis) or myeloma specific fluorescence in situ hybridisation (FISH) panel in a diagnostic setting for plasma cell dyscrasia (PCD). Methods A myeloma-specific interphase FISH (i-FISH) panel was carried out on CD138 PC-enriched bone marrow (BM) from 20 patients having BM biopsies for evaluation of PCD. Whole genome array-CGH was performed on reference (control) and neoplastic (test patient) genomic DNA extracted from CD138 PC-enriched BM and analysed. Results Comparison of techniques demonstrated a much higher detection rate of genomic imbalances using array-CGH. Genomic imbalances were detected in 1, 19 and 20 patients using GTG-analysis, i-FISH and array-CGH, respectively. Genomic rearrangements were detected in one patient using GTG-analysis and seven patients using i-FISH, while none were detected using array-CGH. I-FISH was the most sensitive method for detecting gene rearrangements and GTG-analysis was the least sensitive method overall. All copy number aberrations observed in GTG-analysis were detected using array-CGH and i-FISH. Conclusions We show that array-CGH performed on CD138-enriched PCs significantly improves the detection of clinically relevant and possibly novel genomic abnormalities in PCD, and thus could be considered as a standard diagnostic technique in combination with IGH rearrangement i-FISH. PMID:23969274

  9. MYC and MYCN amplification can be reliably assessed by aCGH in medulloblastoma.

    PubMed

    Bourdeaut, Franck; Grison, Camille; Maurage, Claude-Alain; Laquerriere, Annie; Vasiljevic, Alexandre; Delisle, Marie-Bernadette; Michalak, Sophie; Figarella-Branger, Dominique; Doz, François; Richer, Wilfrid; Pierron, Gaelle; Miquel, Catherine; Delattre, Olivier; Couturier, Jérôme

    2013-04-01

    As prognostic factors, MYC and MYCN amplifications are routinely assessed in medulloblastomas. Fluorescence in situ hybridization (FISH) is currently considered as the technique of reference. Recently, array comparative genomic hybridization (aCGH) has been developed as an alternative technique to evaluate genomic abnormalities in other tumor types; however, this technique has not been widely adopted as a replacement for FISH in medulloblastoma. In this study, 34 tumors were screened by both FISH and aCGH. In all cases showing amplification by FISH, aCGH also unambiguously revealed the abnormality. The aCGH technique was also performed on tumors showing no amplification by FISH, and the absence of amplification was confirmed in all cases. Interestingly, one tumor showed a subclonal MYC amplification by FISH. This subclonal amplification was observed in approximately 20% of tumor cells and was clearly evident on aCGH. In conclusion, our analysis confirms that aCGH is as safe as FISH for the detection of MYC/MYCN gene amplification. Given its cost efficiency in comparison to two FISH tests and the global genomic information additionally provided by an aCGH experiment, this reproducible technique can be safely retained as an alternative to FISH for routine investigation of medulloblastoma. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Genome-Wide Mapping of Copy Number Variation in Humans: Comparative Analysis of High Resolution Array Platforms

    PubMed Central

    Haraksingh, Rajini R.; Abyzov, Alexej; Gerstein, Mark; Urban, Alexander E.; Snyder, Michael

    2011-01-01

    Accurate and efficient genome-wide detection of copy number variants (CNVs) is essential for understanding human genomic variation, genome-wide CNV association type studies, cytogenetics research and diagnostics, and independent validation of CNVs identified from sequencing based technologies. Numerous, array-based platforms for CNV detection exist utilizing array Comparative Genome Hybridization (aCGH), Single Nucleotide Polymorphism (SNP) genotyping or both. We have quantitatively assessed the abilities of twelve leading genome-wide CNV detection platforms to accurately detect Gold Standard sets of CNVs in the genome of HapMap CEU sample NA12878, and found significant differences in performance. The technologies analyzed were the NimbleGen 4.2 M, 2.1 M and 3×720 K Whole Genome and CNV focused arrays, the Agilent 1×1 M CGH and High Resolution and 2×400 K CNV and SNP+CGH arrays, the Illumina Human Omni1Quad array and the Affymetrix SNP 6.0 array. The Gold Standards used were a 1000 Genomes Project sequencing-based set of 3997 validated CNVs and an ultra high-resolution aCGH-based set of 756 validated CNVs. We found that sensitivity, total number, size range and breakpoint resolution of CNV calls were highest for CNV focused arrays. Our results are important for cost effective CNV detection and validation for both basic and clinical applications. PMID:22140474

  11. Analysis of copy number variations among cattle breeds

    USDA-ARS?s Scientific Manuscript database

    Genomic structural variation is an important and abundant source of genetic and phenotypic variation. Here we describe the first systematic and genome-wide analysis of copy number variations (CNVs) in the modern domesticated cattle using array comparative genomic hybridization (array CGH) and quanti...

  12. Genome-wide array-based comparative genomic hybridization (array-CGH) analysis in Aicardi Syndrome

    USDA-ARS?s Scientific Manuscript database

    Aicardi syndrome is characterized by agenesis of the corpus callosum, chorioretinal lacunae, severe seizures (starting as infantile spasms), neuronal migration defects, mental retardation, costovertebral defects, and typical facial features. Because Aicardi syndrome is sporadic and affects only fem...

  13. Analysis of copy number variations reveals differences among cattle breeds

    USDA-ARS?s Scientific Manuscript database

    Genomic structural variation is an important and abundant source of genetic and phenotypic variation. Here we describe the first systematic and genome-wide analysis of copy number variations (CNVs) in the modern domesticated cattle using array comparative genomic hybridization (array CGH) and quanti...

  14. Non-invasive prenatal screening versus prenatal diagnosis by array comparative genomic hybridization: a comparative retrospective study.

    PubMed

    Sotiriadis, Alexandros; Papoulidis, Ioannis; Siomou, Elisavet; Papageorgiou, Elena; Eleftheriades, Makarios; Papadopoulos, Vasilios; Alexiou, Maria; Manolakos, Emmanouil; Athanasiadis, Apostolos

    2017-06-01

    To calculate the proportion of array comparative genomic hybridization (aCGH) pathogenic results, that would not be detectable by non-invasive prenatal screening (NIPS). This is a comparative study using data from 2779 fetuses, which underwent invasive prenatal diagnosis, and the samples were analyzed using aCGH. The simulated NIPS assay would test for trisomies 21, 18, 13, monosomy X, 47, XXX, 47, XYY, and 47, XXY. Indications for invasive testing were grouped into categories and the absolute, relative rates of pathogenic/likely pathogenic results of aCGH analysis that would not be detectable by NIPS were calculated. The expected rate of aCGH-detected abnormalities that would not be detectable by NIPS was 28.0% (95% CI 14.3-47.6) for nuchal translucency (NT) 95 to 99th centile; 14.3% (95% 5.0-34.6) for NT > 99th centile; 34.2% (95% CI 21.1-50.1) for high-risk first-trimester results (regardless of NT); 52.4% (95% CI 32.4-71.7) for second-trimester markers; and 50.0% (95% CI 26.8-73.2) for advanced maternal age. The overall rate of aCGH pathogenic/likely pathogenic results was 5.0% and 44.0% (95% CI 36.0-52.2) of them would not be detected by NIPS. Approximately half of the abnormal aCGH results would not be detectable by standard NIPS assays, highlighting the necessity of pre-test counseling, and illustrating the limitations of NIPS. © 2017 John Wiley & Sons, Ltd. © 2017 John Wiley & Sons, Ltd.

  15. Genomic profiling of plasma cell disorders in a clinical setting: integration of microarray and FISH, after CD138 selection of bone marrow.

    PubMed

    Berry, Nadine Kaye; Bain, Nicole L; Enjeti, Anoop K; Rowlings, Philip

    2014-01-01

    To evaluate the role of whole genome comparative genomic hybridisation microarray (array-CGH) in detecting genomic imbalances as compared to conventional karyotype (GTG-analysis) or myeloma specific fluorescence in situ hybridisation (FISH) panel in a diagnostic setting for plasma cell dyscrasia (PCD). A myeloma-specific interphase FISH (i-FISH) panel was carried out on CD138 PC-enriched bone marrow (BM) from 20 patients having BM biopsies for evaluation of PCD. Whole genome array-CGH was performed on reference (control) and neoplastic (test patient) genomic DNA extracted from CD138 PC-enriched BM and analysed. Comparison of techniques demonstrated a much higher detection rate of genomic imbalances using array-CGH. Genomic imbalances were detected in 1, 19 and 20 patients using GTG-analysis, i-FISH and array-CGH, respectively. Genomic rearrangements were detected in one patient using GTG-analysis and seven patients using i-FISH, while none were detected using array-CGH. I-FISH was the most sensitive method for detecting gene rearrangements and GTG-analysis was the least sensitive method overall. All copy number aberrations observed in GTG-analysis were detected using array-CGH and i-FISH. We show that array-CGH performed on CD138-enriched PCs significantly improves the detection of clinically relevant and possibly novel genomic abnormalities in PCD, and thus could be considered as a standard diagnostic technique in combination with IGH rearrangement i-FISH.

  16. Selection of euploid blastocysts for cryopreservation with array comparative genomic hybridization (aCGH) results in increased implantation rates in subsequent frozen and thawed embryo transfer cycles

    PubMed Central

    2013-01-01

    Background In assisted reproductive treatments, embryos remaining after fresh embryo transfer are usually selected for cryopreservation based on traditional morphology assessment. Our previous report has demonstrated that array comparative genomic hybridization (aCGH) screening for IVF patients with good prognosis significantly improves clinical and ongoing pregnancy rates in fresh embryo transfer cycles. The current study further investigates the efficiency of applying aCGH in the selection of euploid embryos for cryopreservation as related to pregnancy and implantation outcomes in subsequent frozen embryo transfer (FET) cycles. Methods First-time IVF patients with good prognosis undergoing fresh single embryo transfer and having at least one remaining blastocyst for cryopreservation were prospectively randomized into two groups: 1) Group A patients had embryos assessed by morphology first and then by aCGH screening of trophectoderm cells and 2) Group B patients had embryos evaluated by morphology alone. All patients had at least one blastocyst available for cryopreservation after fresh embryo transfer. There were 15 patients in Group A and 23 patients in Group B who failed to conceive after fresh embryo transfer and completed the FET cycles. Blastocyst survival and implantation rates were compared between the two groups. Results There were no significant differences in blastocyst survival rates between Group A and Group B (90.9% vs. 91.3%, respectively; p >0.05). However, a significantly higher implantation rate was observed in the morphology assessment plus aCGH screening group compared to the morphology assessment alone group (65.0% vs. 33.3%, respectively; p = 0.038). There was no miscarriage observed in Group A while a 16.7% miscarriage rate was recorded in Group B (0% vs. 16.7%, respectively; p >0.05). Conclusions While aCGH screening has been recently applied to select euploid blastocysts for fresh transfer in young, low-risk IVF patients, this is the first prospective study on the impact of aCGH specifically on blastocyst survival and implantation outcomes in the subsequent FET cycles of IVF patients with good prognosis. The present study demonstrates that aCGH screening of blastocysts prior to cryopreservation significantly improves implantation rates and may reduce the risk of miscarriage in subsequent FET cycles. Further randomized clinical studies with a larger sample size are needed to validate these preliminary findings. PMID:23937723

  17. Combined array CGH plus SNP genome analyses in a single assay for optimized clinical testing

    PubMed Central

    Wiszniewska, Joanna; Bi, Weimin; Shaw, Chad; Stankiewicz, Pawel; Kang, Sung-Hae L; Pursley, Amber N; Lalani, Seema; Hixson, Patricia; Gambin, Tomasz; Tsai, Chun-hui; Bock, Hans-Georg; Descartes, Maria; Probst, Frank J; Scaglia, Fernando; Beaudet, Arthur L; Lupski, James R; Eng, Christine; Wai Cheung, Sau; Bacino, Carlos; Patel, Ankita

    2014-01-01

    In clinical diagnostics, both array comparative genomic hybridization (array CGH) and single nucleotide polymorphism (SNP) genotyping have proven to be powerful genomic technologies utilized for the evaluation of developmental delay, multiple congenital anomalies, and neuropsychiatric disorders. Differences in the ability to resolve genomic changes between these arrays may constitute an implementation challenge for clinicians: which platform (SNP vs array CGH) might best detect the underlying genetic cause for the disease in the patient? While only SNP arrays enable the detection of copy number neutral regions of absence of heterozygosity (AOH), they have limited ability to detect single-exon copy number variants (CNVs) due to the distribution of SNPs across the genome. To provide comprehensive clinical testing for both CNVs and copy-neutral AOH, we enhanced our custom-designed high-resolution oligonucleotide array that has exon-targeted coverage of 1860 genes with 60 000 SNP probes, referred to as Chromosomal Microarray Analysis – Comprehensive (CMA-COMP). Of the 3240 cases evaluated by this array, clinically significant CNVs were detected in 445 cases including 21 cases with exonic events. In addition, 162 cases (5.0%) showed at least one AOH region >10 Mb. We demonstrate that even though this array has a lower density of SNP probes than other commercially available SNP arrays, it reliably detected AOH events >10 Mb as well as exonic CNVs beyond the detection limitations of SNP genotyping. Thus, combining SNP probes and exon-targeted array CGH into one platform provides clinically useful genetic screening in an efficient manner. PMID:23695279

  18. [Middle ear salivary gland choristoma related to branchio-oto-renal syndrome diagnosed by array-CGH].

    PubMed

    Amrhein, P; Sittel, C; Spaich, C; Kohlhase, J; Boppert, R; Kohlhof, P; Koitschev, A

    2014-05-01

    Branchio-oto-renal (BOR) syndrome is characterized by ear malformations associated with sensorineural or mixed hearing loss. In addition, preauricular tags, preauricular pits, branchial cleft fistulas and cysts, as well as renal dysplasia are seen. A genetic mutation on chromosome 8, either autosomal dominantly inherited or occuring as a spontaneous mutation, is the cause in the majority of cases. Using array-based comparative genomic hybridization (CGH), it is possible to detect even the smallest genetic changes. Salivary gland choristoma in the middle ear is very rare. Surgical removal and histological clarification are required.

  19. Evaluation of the X-Linked High-Grade Myopia Locus (MYP1) with Cone Dysfunction and Color Vision Deficiencies

    PubMed Central

    Metlapally, Ravikanth; Michaelides, Michel; Bulusu, Anuradha; Li, Yi-Ju; Schwartz, Marianne; Rosenberg, Thomas; Hunt, David M.; Moore, Anthony T.; Züchner, Stephan; Rickman, Catherine Bowes; Young, Terri L.

    2014-01-01

    Purpose X-linked high myopia with mild cone dysfunction and color vision defects has been mapped to chromosome Xq28 (MYP1 locus). CXorf2/TEX28 is a nested, intercalated gene within the red-green opsin cone pigment gene tandem array on Xq28. The authors investigated whether TEX28 gene alterations were associated with the Xq28-linked myopia phenotype. Genomic DNA from five pedigrees (with high myopia and either protanopia or deuteranopia) that mapped to Xq28 were screened for TEX28 copy number variations (CNVs) and sequence variants. Methods To examine for CNVs, ultra-high resolution array-comparative genomic hybridization (array-CGH) assays were performed comparing the subject genomic DNA with control samples (two pairs from two pedigrees). Opsin or TEX28 gene-targeted quantitative real-time gene expression assays (comparative CT method) were performed to validate the array-CGH findings. All exons of TEX28, including intron/exon boundaries, were amplified and sequenced using standard techniques. Results Array-CGH findings revealed predicted duplications in affected patient samples. Although only three copies of TEX28 were previously reported within the opsin array, quantitative real-time analysis of the TEX28 targeted assay of affected male or carrier female individuals in these pedigrees revealed either fewer (one) or more (four or five) copies than did related and control unaffected individuals. Sequence analysis of TEX28 did not reveal any variants associated with the disease status. Conclusions CNVs have been proposed to play a role in disease inheritance and susceptibility as they affect gene dosage. TEX28 gene CNVs appear to be associated with the MYP1 X-linked myopia phenotypes. PMID:19098318

  20. Detection and quantitation of chromosomal mosaicism in human blastocysts using copy number variation sequencing.

    PubMed

    Ruttanajit, Tida; Chanchamroen, Sujin; Cram, David S; Sawakwongpra, Kritchakorn; Suksalak, Wanwisa; Leng, Xue; Fan, Junmei; Wang, Li; Yao, Yuanqing; Quangkananurug, Wiwat

    2016-02-01

    Currently, our understanding of the nature and reproductive potential of blastocysts associated with trophectoderm (TE) lineage chromosomal mosaicism is limited. The objective of this study was to first validate copy number variation sequencing (CNV-Seq) for measuring the level of mosaicism and second, examine the nature and level of mosaicism in TE biopsies of patient's blastocysts. TE biopy samples were analysed by array comparative genomic hybridization (CGH) and CNV-Seq to discriminate between euploid, aneuploid and mosaic blastocysts. Using artificial models of TE mosaicism for five different chromosomes, CNV-Seq accurately and reproducibly quantitated mosaicism at levels of 50% and 20%. In a comparative 24-chromosome study of 49 blastocysts by array CGH and CNV-Seq, 43 blastocysts (87.8%) had a concordant diagnosis and 6 blastocysts (12.2%) were discordant. The discordance was attributed to low to medium levels of chromosomal mosaicism (30-70%) not detected by array CGH. In an expanded study of 399 blastocysts using CNV-Seq as the sole diagnostic method, the proportion of diploid-aneuploid mosaics (34, 8.5%) was significantly higher than aneuploid mosaics (18, 4.5%) (p < 0.02). Mosaicism is a significant chromosomal abnormality associated with the TE lineage of human blastocysts that can be reliably and accurately detected by CNV-Seq. © 2015 John Wiley & Sons, Ltd.

  1. Custom Array Comparative Genomic Hybridization: the Importance of DNA Quality, an Expert Eye, and Variant Validation

    PubMed Central

    Lantieri, Francesca; Malacarne, Michela; Gimelli, Stefania; Santamaria, Giuseppe; Coviello, Domenico; Ceccherini, Isabella

    2017-01-01

    The presence of false positive and false negative results in the Array Comparative Genomic Hybridization (aCGH) design is poorly addressed in literature reports. We took advantage of a custom aCGH recently carried out to analyze its design performance, the use of several Agilent aberrations detection algorithms, and the presence of false results. Our study provides a confirmation that the high density design does not generate more noise than standard designs and, might reach a good resolution. We noticed a not negligible presence of false negative and false positive results in the imbalances call performed by the Agilent software. The Aberration Detection Method 2 (ADM-2) algorithm with a threshold of 6 performed quite well, and the array design proved to be reliable, provided that some additional filters are applied, such as considering only intervals with average absolute log2ratio above 0.3. We also propose an additional filter that takes into account the proportion of probes with log2ratio exceeding suggestive values for gain or loss. In addition, the quality of samples was confirmed to be a crucial parameter. Finally, this work raises the importance of evaluating the samples profiles by eye and the necessity of validating the imbalances detected. PMID:28287439

  2. Micro-Scale Genomic DNA Copy Number Aberrations as Another Means of Mutagenesis in Breast Cancer

    PubMed Central

    Chao, Hann-Hsiang; He, Xiaping; Parker, Joel S.; Zhao, Wei; Perou, Charles M.

    2012-01-01

    Introduction In breast cancer, the basal-like subtype has high levels of genomic instability relative to other breast cancer subtypes with many basal-like-specific regions of aberration. There is evidence that this genomic instability extends to smaller scale genomic aberrations, as shown by a previously described micro-deletion event in the PTEN gene in the Basal-like SUM149 breast cancer cell line. Methods We sought to identify if small regions of genomic DNA copy number changes exist by using a high density, gene-centric Comparative Genomic Hybridizations (CGH) array on cell lines and primary tumors. A custom tiling array for CGH (244,000 probes, 200 bp tiling resolution) was created to identify small regions of genomic change, which was focused on previously identified basal-like-specific, and general cancer genes. Tumor genomic DNA from 94 patients and 2 breast cancer cell lines was labeled and hybridized to these arrays. Aberrations were called using SWITCHdna and the smallest 25% of SWITCHdna-defined genomic segments were called micro-aberrations (<64 contiguous probes, ∼ 15 kb). Results Our data showed that primary tumor breast cancer genomes frequently contained many small-scale copy number gains and losses, termed micro-aberrations, most of which are undetectable using typical-density genome-wide aCGH arrays. The basal-like subtype exhibited the highest incidence of these events. These micro-aberrations sometimes altered expression of the involved gene. We confirmed the presence of the PTEN micro-amplification in SUM149 and by mRNA-seq showed that this resulted in loss of expression of all exons downstream of this event. Micro-aberrations disproportionately affected the 5′ regions of the affected genes, including the promoter region, and high frequency of micro-aberrations was associated with poor survival. Conclusion Using a high-probe-density, gene-centric aCGH microarray, we present evidence of small-scale genomic aberrations that can contribute to gene inactivation. These events may contribute to tumor formation through mechanisms not detected using conventional DNA copy number analyses. PMID:23284754

  3. Comparative genomic hybridization.

    PubMed

    Pinkel, Daniel; Albertson, Donna G

    2005-01-01

    Altering DNA copy number is one of the many ways that gene expression and function may be modified. Some variations are found among normal individuals ( 14, 35, 103 ), others occur in the course of normal processes in some species ( 33 ), and still others participate in causing various disease states. For example, many defects in human development are due to gains and losses of chromosomes and chromosomal segments that occur prior to or shortly after fertilization, whereas DNA dosage alterations that occur in somatic cells are frequent contributors to cancer. Detecting these aberrations, and interpreting them within the context of broader knowledge, facilitates identification of critical genes and pathways involved in biological processes and diseases, and provides clinically relevant information. Over the past several years array comparative genomic hybridization (array CGH) has demonstrated its value for analyzing DNA copy number variations. In this review we discuss the state of the art of array CGH and its applications in medical genetics and cancer, emphasizing general concepts rather than specific results.

  4. Oligonucleotide arrays vs. metaphase-comparative genomic hybridisation and BAC arrays for single-cell analysis: first applications to preimplantation genetic diagnosis for Robertsonian translocation carriers.

    PubMed

    Ramos, Laia; del Rey, Javier; Daina, Gemma; García-Aragonés, Manel; Armengol, Lluís; Fernandez-Encinas, Alba; Parriego, Mònica; Boada, Montserrat; Martinez-Passarell, Olga; Martorell, Maria Rosa; Casagran, Oriol; Benet, Jordi; Navarro, Joaquima

    2014-01-01

    Comprehensive chromosome analysis techniques such as metaphase-Comparative Genomic Hybridisation (CGH) and array-CGH are available for single-cell analysis. However, while metaphase-CGH and BAC array-CGH have been widely used for Preimplantation Genetic Diagnosis, oligonucleotide array-CGH has not been used in an extensive way. A comparison between oligonucleotide array-CGH and metaphase-CGH has been performed analysing 15 single fibroblasts from aneuploid cell-lines and 18 single blastomeres from human cleavage-stage embryos. Afterwards, oligonucleotide array-CGH and BAC array-CGH were also compared analysing 16 single blastomeres from human cleavage-stage embryos. All three comprehensive analysis techniques provided broadly similar cytogenetic profiles; however, non-identical profiles appeared when extensive aneuploidies were present in a cell. Both array techniques provided an optimised analysis procedure and a higher resolution than metaphase-CGH. Moreover, oligonucleotide array-CGH was able to define extra segmental imbalances in 14.7% of the blastomeres and it better determined the specific unbalanced chromosome regions due to a higher resolution of the technique (≈ 20 kb). Applicability of oligonucleotide array-CGH for Preimplantation Genetic Diagnosis has been demonstrated in two cases of Robertsonian translocation carriers 45,XY,der(13;14)(q10;q10). Transfer of euploid embryos was performed in both cases and pregnancy was achieved by one of the couples. This is the first time that an oligonucleotide array-CGH approach has been successfully applied to Preimplantation Genetic Diagnosis for balanced chromosome rearrangement carriers.

  5. Oligonucleotide Arrays vs. Metaphase-Comparative Genomic Hybridisation and BAC Arrays for Single-Cell Analysis: First Applications to Preimplantation Genetic Diagnosis for Robertsonian Translocation Carriers

    PubMed Central

    Ramos, Laia; del Rey, Javier; Daina, Gemma; García-Aragonés, Manel; Armengol, Lluís; Fernandez-Encinas, Alba; Parriego, Mònica; Boada, Montserrat; Martinez-Passarell, Olga; Martorell, Maria Rosa; Casagran, Oriol; Benet, Jordi; Navarro, Joaquima

    2014-01-01

    Comprehensive chromosome analysis techniques such as metaphase-Comparative Genomic Hybridisation (CGH) and array-CGH are available for single-cell analysis. However, while metaphase-CGH and BAC array-CGH have been widely used for Preimplantation Genetic Diagnosis, oligonucleotide array-CGH has not been used in an extensive way. A comparison between oligonucleotide array-CGH and metaphase-CGH has been performed analysing 15 single fibroblasts from aneuploid cell-lines and 18 single blastomeres from human cleavage-stage embryos. Afterwards, oligonucleotide array-CGH and BAC array-CGH were also compared analysing 16 single blastomeres from human cleavage-stage embryos. All three comprehensive analysis techniques provided broadly similar cytogenetic profiles; however, non-identical profiles appeared when extensive aneuploidies were present in a cell. Both array techniques provided an optimised analysis procedure and a higher resolution than metaphase-CGH. Moreover, oligonucleotide array-CGH was able to define extra segmental imbalances in 14.7% of the blastomeres and it better determined the specific unbalanced chromosome regions due to a higher resolution of the technique (≈20 kb). Applicability of oligonucleotide array-CGH for Preimplantation Genetic Diagnosis has been demonstrated in two cases of Robertsonian translocation carriers 45,XY,der(13;14)(q10;q10). Transfer of euploid embryos was performed in both cases and pregnancy was achieved by one of the couples. This is the first time that an oligonucleotide array-CGH approach has been successfully applied to Preimplantation Genetic Diagnosis for balanced chromosome rearrangement carriers. PMID:25415307

  6. Comparative Genomic Hybridization–Array Analysis Enhances the Detection of Aneuploidies and Submicroscopic Imbalances in Spontaneous Miscarriages

    PubMed Central

    Schaeffer, Anthony J. ; Chung, June ; Heretis, Konstantina ; Wong, Andrew ; Ledbetter, David H. ; Lese Martin, Christa 

    2004-01-01

    Miscarriage is a condition that affects 10%–15% of all clinically recognized pregnancies, most of which occur in the first trimester. Approximately 50% of first-trimester miscarriages result from fetal chromosome abnormalities. Currently, G-banded chromosome analysis is used to determine if large-scale genetic imbalances are the cause of these pregnancy losses. This technique relies on the culture of cells derived from the fetus, a technique that has many limitations, including a high rate of culture failure, maternal overgrowth of fetal cells, and poor chromosome morphology. Comparative genomic hybridization (CGH)–array analysis is a powerful new molecular cytogenetic technique that allows genomewide analysis of DNA copy number. By hybridizing patient DNA and normal reference DNA to arrays of genomic clones, unbalanced gains or losses of genetic material across the genome can be detected. In this study, 41 product-of-conception (POC) samples, which were previously analyzed by G-banding, were tested using CGH arrays to determine not only if the array could identify all reported abnormalities, but also whether any previously undetected genomic imbalances would be discovered. The array methodology detected all abnormalities as reported by G-banding analysis and revealed new abnormalities in 4/41 (9.8%) cases. Of those, one trisomy 21 POC was also mosaic for trisomy 20, one had a duplication of the 10q telomere region, one had an interstitial deletion of chromosome 9p, and the fourth had an interstitial duplication of the Prader-Willi/Angelman syndrome region on chromosome 15q, which, if maternally inherited, has been implicated in autism. This retrospective study demonstrates that the DNA-based CGH-array technology overcomes many of the limitations of routine cytogenetic analysis of POC samples while enhancing the detection of fetal chromosome aberrations. PMID:15127362

  7. Analysis of chromosomal abnormalities by CGH-array in patients with dysmorphic and intellectual disability with normal karyotype

    PubMed Central

    Pratte-Santos, Rodrigo; Ribeiro, Katyanne Heringer; Santos, Thainá Altoe; Cintra, Terezinha Sarquis

    2016-01-01

    ABSTRACT Objective To investigate chromosomal abnormalities by CGH-array in patients with dysmorphic features and intellectual disability with normal conventional karyotype. Methods Retrospective study, carried out from January 2012 to February 2014, analyzing the CGH-array results of 39 patients. Results Twenty-six (66.7%) patients had normal results and 13 (33.3%) showed abnormal results - in that, 6 (15.4%) had pathogenic variants, 6 (15.4%) variants designated as uncertain and 1 (2.5%) non-pathogenic variants. Conclusion The characterization of the genetic profile by CGH-array in patients with intellectual disability and dysmorphic features enabled making etiologic diagnosis, followed by genetic counseling for families and specific treatment. PMID:27074231

  8. LS-CAP: an algorithm for identifying cytogenetic aberrations in hepatocellular carcinoma using microarray data.

    PubMed

    He, Xianmin; Wei, Qing; Sun, Meiqian; Fu, Xuping; Fan, Sichang; Li, Yao

    2006-05-01

    Biological techniques such as Array-Comparative genomic hybridization (CGH), fluorescent in situ hybridization (FISH) and affymetrix single nucleotide pleomorphism (SNP) array have been used to detect cytogenetic aberrations. However, on genomic scale, these techniques are labor intensive and time consuming. Comparative genomic microarray analysis (CGMA) has been used to identify cytogenetic changes in hepatocellular carcinoma (HCC) using gene expression microarray data. However, CGMA algorithm can not give precise localization of aberrations, fails to identify small cytogenetic changes, and exhibits false negatives and positives. Locally un-weighted smoothing cytogenetic aberrations prediction (LS-CAP) based on local smoothing and binomial distribution can be expected to address these problems. LS-CAP algorithm was built and used on HCC microarray profiles. Eighteen cytogenetic abnormalities were identified, among them 5 were reported previously, and 12 were proven by CGH studies. LS-CAP effectively reduced the false negatives and positives, and precisely located small fragments with cytogenetic aberrations.

  9. High-resolution array comparative genomic hybridization (aCGH) identifies copy number alterations in diffuse large B-cell lymphoma that predict response to immuno-chemotherapy

    PubMed Central

    Kreisel, F.; Kulkarni, S.; Kerns, R. T.; Hassan, A.; Deshmukh, H.; Nagarajan, R.; Frater, J. L.; Cashen, A.

    2013-01-01

    Despite recent attempts at sub-categorization, including gene expression profiling into prognostically different groups of “germinal center B-cell type” and “activated B-cell type”, diffuse large B-cell lymphoma (DLBCL) remains a biologically heterogenous tumor with no clear prognostic biomarkers to guide therapy. Whole genome, high resolution array comparative genomic hybridization (aCGH) was performed on 4 cases of chemoresistant DLBCL and 4 cases of chemo-responsive DLBCL to identify genetic differences which may correlate with response to R-CHOP therapy. Array CGH analysis identified 7 DNA copy number alteration (CNA) regions exclusive to the chemoresistant group, consisting of amplifications at 1p36.13, 1q42.3, 3p21.31, 7q11.23, and 16p13.3, and loss at 9p21.3, and 14p21.31. Copy number loss of the tumor suppressor genes CDKN2A (p16, p14) and CDKN2B (p15) at 9p21.3 was validated by fluorescence in situ hybridization and immunohistochemistry as independent techniques. In the chemo-sensitive group, 12 CNAs were detected consisting of segment gains on 1p36.11, 1p36.22, 2q11.2, 8q24.3, 12p13.33, and 22q13.2 and segment loss on 6p21.32. RUNX3, a tumor suppressor gene located on 1p36.11 and MTHFR, which encodes for the enzyme methylenetetrahydrofolate reductase, located on 1p36.22 are the only known genes in this group associated with lymphoma. Whole genome aCGH analysis has detected copy number alterations exclusive to either chemoresistant or chemo-responsive DLBCL that may represent consistent clonal changes predictive for prognosis and outcome of chemotherapy. PMID:21504712

  10. Comprehensive genetic assessment of the human embryo: can empiric application of microarray comparative genomic hybridization reduce multiple gestation rate by single fresh blastocyst transfer?

    PubMed

    Sills, Eric Scott; Yang, Zhihong; Walsh, David J; Salem, Shala A

    2012-09-01

    The unacceptable multiple gestation rate currently associated with in vitro fertilization (IVF) would be substantially alleviated if the routine practice of transferring more than one embryo were reconsidered. While transferring a single embryo is an effective method to reduce the clinical problem of multiple gestation, rigid adherence to this approach has been criticized for negatively impacting clinical pregnancy success in IVF. In general, single embryo transfer is viewed cautiously by IVF patients although greater acceptance would result from a more effective embryo selection method. Selection of one embryo for fresh transfer on the basis of chromosomal normalcy should achieve the dual objective of maintaining satisfactory clinical pregnancy rates and minimizing the multiple gestation problem, because embryo aneuploidy is a major contributing factor in implantation failure and miscarriage in IVF. The initial techniques for preimplantation genetic screening unfortunately lacked sufficient sensitivity and did not yield the expected results in IVF. However, newer molecular genetic methods could be incorporated with standard IVF to bring the goal of single embryo transfer within reach. Aiming to make multiple embryo transfers obsolete and unnecessary, and recognizing that array comparative genomic hybridization (aCGH) will typically require an additional 12 h of laboratory time to complete, we propose adopting aCGH for mainstream use in clinical IVF practice. As aCGH technology continues to develop and becomes increasingly available at lower cost, it may soon be considered unusual for IVF laboratories to select a single embryo for fresh transfer without regard to its chromosomal competency. In this report, we provide a rationale supporting aCGH as the preferred methodology to provide a comprehensive genetic assessment of the single embryo before fresh transfer in IVF. The logistics and cost of integrating aCGH with IVF to enable fresh embryo transfer are also discussed.

  11. Genome-wide comparison of paired fresh frozen and formalin-fixed paraffin-embedded gliomas by custom BAC and oligonucleotide array comparative genomic hybridization: facilitating analysis of archival gliomas

    PubMed Central

    Mohapatra, Gayatry; Engler, David A.; Starbuck, Kristen D.; Kim, James C.; Bernay, Derek C.; Scangas, George A.; Rousseau, Audrey; Batchelor, Tracy T.; Betensky, Rebecca A.; Louis, David N.

    2010-01-01

    Molecular genetic analysis of cancer is rapidly evolving as a result of improvement in genomic technologies and the growing applicability of such analyses to clinical oncology. Array based comparative genomic hybridization (aCGH) is a powerful tool for detecting DNA copy number alterations (CNA), particularly in solid tumors, and has been applied to the study of malignant gliomas. In the clinical setting, however, gliomas are often sampled by small biopsies and thus formalin-fixed paraffin-embedded (FFPE) blocks are often the only tissue available for genetic analysis, especially for rare types of gliomas. Moreover, the biological basis for the marked intratumoral heterogeneity in gliomas is most readily addressed in FFPE material. Therefore, for gliomas, the ability to use DNA from FFPE tissue is essential for both clinical and research applications. In this study, we have constructed a custom bacterial artificial chromosome (BAC) array and show excellent sensitivity and specificity for detecting CNAs in a panel of paired frozen and FFPE glioma samples. Our study demonstrates a high concordance rate between CNAs detected in FFPE compared to frozen DNA. We have also developed a method of labeling DNA from FFPE tissue that allows efficient hybridization to oligonucleotide arrays. This labeling technique was applied to a panel of biphasic anaplastic oligoastrocytomas (AOA) to identify genetic changes unique to each component. Together, results from these studies suggest that BAC and oligonucleotide aCGH are sensitive tools for detecting CNAs in FFPE DNA, and can enable genome-wide analysis of rare, small and/or histologically heterogeneous gliomas. PMID:21080181

  12. ADaCGH: A Parallelized Web-Based Application and R Package for the Analysis of aCGH Data

    PubMed Central

    Díaz-Uriarte, Ramón; Rueda, Oscar M.

    2007-01-01

    Background Copy number alterations (CNAs) in genomic DNA have been associated with complex human diseases, including cancer. One of the most common techniques to detect CNAs is array-based comparative genomic hybridization (aCGH). The availability of aCGH platforms and the need for identification of CNAs has resulted in a wealth of methodological studies. Methodology/Principal Findings ADaCGH is an R package and a web-based application for the analysis of aCGH data. It implements eight methods for detection of CNAs, gains and losses of genomic DNA, including all of the best performing ones from two recent reviews (CBS, GLAD, CGHseg, HMM). For improved speed, we use parallel computing (via MPI). Additional information (GO terms, PubMed citations, KEGG and Reactome pathways) is available for individual genes, and for sets of genes with altered copy numbers. Conclusions/Significance ADaCGH represents a qualitative increase in the standards of these types of applications: a) all of the best performing algorithms are included, not just one or two; b) we do not limit ourselves to providing a thin layer of CGI on top of existing BioConductor packages, but instead carefully use parallelization, examining different schemes, and are able to achieve significant decreases in user waiting time (factors up to 45×); c) we have added functionality not currently available in some methods, to adapt to recent recommendations (e.g., merging of segmentation results in wavelet-based and CGHseg algorithms); d) we incorporate redundancy, fault-tolerance and checkpointing, which are unique among web-based, parallelized applications; e) all of the code is available under open source licenses, allowing to build upon, copy, and adapt our code for other software projects. PMID:17710137

  13. Copy number variants analysis in a cohort of isolated and syndromic developmental delay/intellectual disability reveals novel genomic disorders, position effects and candidate disease genes.

    PubMed

    Di Gregorio, E; Riberi, E; Belligni, E F; Biamino, E; Spielmann, M; Ala, U; Calcia, A; Bagnasco, I; Carli, D; Gai, G; Giordano, M; Guala, A; Keller, R; Mandrile, G; Arduino, C; Maffè, A; Naretto, V G; Sirchia, F; Sorasio, L; Ungari, S; Zonta, A; Zacchetti, G; Talarico, F; Pappi, P; Cavalieri, S; Giorgio, E; Mancini, C; Ferrero, M; Brussino, A; Savin, E; Gandione, M; Pelle, A; Giachino, D F; De Marchi, M; Restagno, G; Provero, P; Cirillo Silengo, M; Grosso, E; Buxbaum, J D; Pasini, B; De Rubeis, S; Brusco, A; Ferrero, G B

    2017-10-01

    Array-comparative genomic hybridization (array-CGH) is a widely used technique to detect copy number variants (CNVs) associated with developmental delay/intellectual disability (DD/ID). Identification of genomic disorders in DD/ID. We performed a comprehensive array-CGH investigation of 1,015 consecutive cases with DD/ID and combined literature mining, genetic evidence, evolutionary constraint scores, and functional information in order to assess the pathogenicity of the CNVs. We identified non-benign CNVs in 29% of patients. Amongst the pathogenic variants (11%), detected with a yield consistent with the literature, we found rare genomic disorders and CNVs spanning known disease genes. We further identified and discussed 51 cases with likely pathogenic CNVs spanning novel candidate genes, including genes encoding synaptic components and/or proteins involved in corticogenesis. Additionally, we identified two deletions spanning potential Topological Associated Domain (TAD) boundaries probably affecting the regulatory landscape. We show how phenotypic and genetic analyses of array-CGH data allow unraveling complex cases, identifying rare disease genes, and revealing unexpected position effects. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Progressive but Previously Untreated CLL Patients with Greater Array CGH Complexity Exhibit a Less Durable Response to Chemoimmunotherapy

    PubMed Central

    Kay, Neil E.; Eckel-Passow, Jeanette E.; Braggio, Esteban; VanWier, Scott; Shanafelt, Tait D.; Van Dyke, Daniel L.; Jelinek, Diane F.; Tschumper, Renee C.; Kipps, Thomas; Byrd, John C.; Fonseca, Rafael

    2010-01-01

    To better understand the implications of genomic instability and outcome in B-cell CLL, we sought to address genomic complexity as a predictor of chemosensitivity and ultimately clinical outcome in this disease. We employed array-based comparative genomic hybridization (aCGH), using a one-million probe array and identified gains and losses of genetic material in 48 patients treated on a chemoimmunotherapy (CIT) clinical trial. We identified chromosomal gain or loss in ≥6% of the patients on chromosomes 3, 8, 9, 10, 11, 12, 13, 14 and 17. Higher genomic complexity, as a mechanism favoring clonal selection, was associated with shorter progression-free survival and predicted a poor response to treatment. Of interest, CLL cases with loss of p53 surveillance showed more complex genomic features and were found both in patients with a 17p13.1 deletion and in the more favorable genetic subtype characterized by the presence of 13q14.1 deletion. This aCGH study adds information on the association between inferior trial response and increasing genetic complexity as CLL progresses. PMID:21156228

  15. Mild Intellectual Disability Associated with a Progeny of Father-Daughter Incest: Genetic and Environmental Considerations

    ERIC Educational Resources Information Center

    Ansermet, Francois; Lespinasse, James; Gimelli, Stefania; Bena, Frederique; Paoloni-Giacobino, Ariane

    2010-01-01

    We report the case of a 34-year-old female resulting from a father-daughter sexual abuse and presenting a phenotype of mild intellectual disability with minor dysmorphic features. Karyotyping showed a normal 46, XX constitution. Array-based comparative genomic hybridization (array-CGH) revealed a heterozygote 320kb 6p22.3 microdeletion in the…

  16. A Novel 6.14 Mb Duplication of Chromosome 8p21 in a Patient with Autism and Self Mutilation

    ERIC Educational Resources Information Center

    Ozgen, Heval M.; Staal, Wouter G.; Barber, John C.; de Jonge, Maretha V.; Eleveld, Marc J.; Beemer, Frits A.; Hochstenbach, Ron; Poot, Martin

    2009-01-01

    Autism spectrum disorders (ASDs) are a group of neurodevelopmental disorders with a strong genetic etiology. Cytogenetic abnormalities have been detected in 5-10% of the patients with autism. In this study, we present the clinical, cytogenetic and array-comparative genomic hybridization (array-CGH) evaluation of a 13-year-old male with severe…

  17. Population sequencing reveals breed and sub-species specific CNVs in cattle

    USDA-ARS?s Scientific Manuscript database

    Individualized copy number variation (CNV) maps have highlighted the need for population surveys of cattle to detect rare and common variants. While SNP and comparative genomic hybridization (CGH) arrays have provided preliminary data, next-generation sequence (NGS) data analysis offers an increased...

  18. The Utility of Chromosomal Microarray Analysis in Developmental and Behavioral Pediatrics

    ERIC Educational Resources Information Center

    Beaudet, Arthur L.

    2013-01-01

    Chromosomal microarray analysis (CMA) has emerged as a powerful new tool to identify genomic abnormalities associated with a wide range of developmental disabilities including congenital malformations, cognitive impairment, and behavioral abnormalities. CMA includes array comparative genomic hybridization (CGH) and single nucleotide polymorphism…

  19. Population sequencing reveals breed and sub-species specific CNVs in cattle

    USDA-ARS?s Scientific Manuscript database

    Individualized copy number variation (CNV) maps have highlighted the need for population surveys of cattle to detect the rare and common variants. While SNP and comparative genomic hybridization (CGH) arrays have provided preliminary data, next-generation sequence (NGS) data analysis offers an incre...

  20. ADaCGH: A parallelized web-based application and R package for the analysis of aCGH data.

    PubMed

    Díaz-Uriarte, Ramón; Rueda, Oscar M

    2007-08-15

    Copy number alterations (CNAs) in genomic DNA have been associated with complex human diseases, including cancer. One of the most common techniques to detect CNAs is array-based comparative genomic hybridization (aCGH). The availability of aCGH platforms and the need for identification of CNAs has resulted in a wealth of methodological studies. ADaCGH is an R package and a web-based application for the analysis of aCGH data. It implements eight methods for detection of CNAs, gains and losses of genomic DNA, including all of the best performing ones from two recent reviews (CBS, GLAD, CGHseg, HMM). For improved speed, we use parallel computing (via MPI). Additional information (GO terms, PubMed citations, KEGG and Reactome pathways) is available for individual genes, and for sets of genes with altered copy numbers. ADACGH represents a qualitative increase in the standards of these types of applications: a) all of the best performing algorithms are included, not just one or two; b) we do not limit ourselves to providing a thin layer of CGI on top of existing BioConductor packages, but instead carefully use parallelization, examining different schemes, and are able to achieve significant decreases in user waiting time (factors up to 45x); c) we have added functionality not currently available in some methods, to adapt to recent recommendations (e.g., merging of segmentation results in wavelet-based and CGHseg algorithms); d) we incorporate redundancy, fault-tolerance and checkpointing, which are unique among web-based, parallelized applications; e) all of the code is available under open source licenses, allowing to build upon, copy, and adapt our code for other software projects.

  1. Array-CGH analysis in Rwandan patients presenting development delay/intellectual disability with multiple congenital anomalies.

    PubMed

    Uwineza, Annette; Caberg, Jean-Hubert; Hitayezu, Janvier; Hellin, Anne Cecile; Jamar, Mauricette; Dideberg, Vinciane; Rusingiza, Emmanuel K; Bours, Vincent; Mutesa, Leon

    2014-07-12

    Array-CGH is considered as the first-tier investigation used to identify copy number variations. Right now, there is no available data about the genetic etiology of patients with development delay/intellectual disability and congenital malformation in East Africa. Array comparative genomic hybridization was performed in 50 Rwandan patients with development delay/intellectual disability and multiple congenital abnormalities, using the Agilent's 180 K microarray platform. Fourteen patients (28%) had a global development delay whereas 36 (72%) patients presented intellectual disability. All patients presented multiple congenital abnormalities. Clinically significant copy number variations were found in 13 patients (26%). Size of CNVs ranged from 0,9 Mb to 34 Mb. Six patients had CNVs associated with known syndromes, whereas 7 patients presented rare genomic imbalances. This study showed that CNVs are present in African population and show the importance to implement genetic testing in East-African countries.

  2. Detection of recurrent transmission of 17q12 microdeletion by array comparative genomic hybridization in a fetus with prenatally diagnosed hydronephrosis, hydroureter, and multicystic kidney, and variable clinical spectrum in the family.

    PubMed

    Chen, Chih-Ping; Chang, Shuenn-Dyh; Wang, Tzu-Hao; Wang, Liang-Kai; Tsai, Jeng-Daw; Liu, Yu-Peng; Chern, Schu-Rern; Wu, Peih-Shan; Su, Jun-Wei; Chen, Yu-Ting; Wang, Wayseen

    2013-12-01

    This study was aimed at detection of recurrent transmission of the 17q12 microdeletion in a fetus with congenital anomalies of the kidney and urinary tract. A 35-year-old woman was referred to the hospital at 20 weeks' gestation because of hydronephrosis in the fetus. The mother was normal and healthy. Her second child was a girl who had bilateral dysplastic kidneys that required hemodialysis, and died at the age of 5 years. During this pregnancy, the woman underwent amniocentesis at 18 weeks' gestation because of advanced maternal age. Cytogenetic analysis revealed a karyotype of 46,XY. Prenatal ultrasound showed left hydronephrosis with a tortuous ureter, right hydronephrosis, and increased echogenicity of the kidneys. Fetal magnetic resonance imaging showed right dilated renal calyces, left hydronephrosis, hydroureter, and multicystic kidney. The pregnancy was subsequently terminated. Array comparative genomic hybridization (aCGH) and fluorescence in situ hybridization were applied for genetic analysis using umbilical cord, maternal blood, and cultured amniocytes. aCGH analysis on umbilical cord detected a 1.75-Mb deletion at 17q12 including haploinsufficiency of LHX1 and HNF1B. aCGH analysis on maternal blood detected a 1.54-Mb deletion at 17q12 including haploinsufficiency of LHX1 and HNF1B. Metaphase fluorescence in situ hybridization analysis on cultured amniocytes and maternal blood lymphocytes using 17q12-specific bacterial artificial chromosome probe showed 17q12 microdeletion in the fetus and the mother. Prenatal diagnosis of recurrent renal and urinary tract abnormalities in the fetus should include a differential diagnosis of familial 17q12 microdeletion. Copyright © 2013. Published by Elsevier B.V.

  3. GAB2 Amplification in Squamous Cell Lung Cancer of Non-Smokers

    PubMed Central

    2017-01-01

    Lung squamous cell cancer (SCC) is typically found in smokers and has a very low incidence in non-smokers, indicating differences in the tumor biology of lung SCC in smokers and non-smokers. However, the specific mutations that drive tumor growth in non-smokers have not been identified. To identify mutations in lung SCC of non-smokers, we performed a genetic analysis using arrays comparative genomic hybridization (ArrayCGH). We analyzed 19 patients with lung SCC who underwent surgical treatment between April 2005 and April 2015. Clinical characteristics were reviewed, and DNA was extracted from fresh frozen lung cancer specimens. All of copy number alterations from ArrayCGH were validated using The Cancer Genome Atlas (TCGA) copy number variation (CNV) data of lung SCC. We examined the frequency of copy number changes according to the smoking status (non-smoker [n = 8] or smoker [n = 11]). We identified 16 significantly altered regions from ArrayCGH data, three gain and four loss regions overlapped with the TCGA lung squamous cell carcinoma (LUSC) patients. Within these overlapped significant regions, we detected 15 genes that have been reported in the Cancer Gene census. We also found that the proto-oncogene GAB2 (11q14.1) was significantly amplified in non-smokers patients and vice versa in both ArrayCGH and TCGA data. Immunohistochemical analyses showed that GAB2 protein was relatively upregulated in non-smoker than smoker tissues (37.5% vs. 9.0%, P = 0.007). GAB2 amplification may have an important role in the development of lung SCC in non-smokers. GAB2 may represent a potential biomarker for lung SCC in non-smokers. PMID:28960030

  4. GAB2 Amplification in Squamous Cell Lung Cancer of Non-Smokers.

    PubMed

    Park, Yu Rang; Bae, Soo Hyeon; Ji, Wonjun; Seo, Eul Ju; Lee, Jae Cheol; Kim, Hyeong Ryul; Jang, Se Jin; Choi, Chang Min

    2017-11-01

    Lung squamous cell cancer (SCC) is typically found in smokers and has a very low incidence in non-smokers, indicating differences in the tumor biology of lung SCC in smokers and non-smokers. However, the specific mutations that drive tumor growth in non-smokers have not been identified. To identify mutations in lung SCC of non-smokers, we performed a genetic analysis using arrays comparative genomic hybridization (ArrayCGH). We analyzed 19 patients with lung SCC who underwent surgical treatment between April 2005 and April 2015. Clinical characteristics were reviewed, and DNA was extracted from fresh frozen lung cancer specimens. All of copy number alterations from ArrayCGH were validated using The Cancer Genome Atlas (TCGA) copy number variation (CNV) data of lung SCC. We examined the frequency of copy number changes according to the smoking status (non-smoker [n = 8] or smoker [n = 11]). We identified 16 significantly altered regions from ArrayCGH data, three gain and four loss regions overlapped with the TCGA lung squamous cell carcinoma (LUSC) patients. Within these overlapped significant regions, we detected 15 genes that have been reported in the Cancer Gene census. We also found that the proto-oncogene GAB2 (11q14.1) was significantly amplified in non-smokers patients and vice versa in both ArrayCGH and TCGA data. Immunohistochemical analyses showed that GAB2 protein was relatively upregulated in non-smoker than smoker tissues (37.5% vs. 9.0%, P = 0.007). GAB2 amplification may have an important role in the development of lung SCC in non-smokers. GAB2 may represent a potential biomarker for lung SCC in non-smokers. © 2017 The Korean Academy of Medical Sciences.

  5. The use of population-scale sequencing to identify CNVs impacting productive traits in different cattle breeds

    USDA-ARS?s Scientific Manuscript database

    Individualized copy number variation (CNV) maps have highlighted the need for population surveys of cattle to detect rare and common variants. While SNP and comparative genomic hybridization (CGH) arrays have provided preliminary data, next-generation sequence (NGS) data analysis offers an increased...

  6. Genomic alterations identified by array comparative genomic hybridization as prognostic markers in tamoxifen-treated estrogen receptor-positive breast cancer

    PubMed Central

    Han, Wonshik; Han, Mi-Ryung; Kang, Jason Jongho; Bae, Ji-Yeon; Lee, Ji Hyun; Bae, Young Ju; Lee, Jeong Eon; Shin, Hyuk-Jae; Hwang, Ki-Tae; Hwang, Sung-Eun; Kim, Sung-Won; Noh, Dong-Young

    2006-01-01

    Background A considerable proportion of estrogen receptor (ER)-positive breast cancer recurs despite tamoxifen treatment, which is a serious problem commonly encountered in clinical practice. We tried to find novel prognostic markers in this subtype of breast cancer. Methods We performed array comparative genomic hybridization (CGH) with 1,440 human bacterial artificial chromosome (BAC) clones to assess copy number changes in 28 fresh-frozen ER-positive breast cancer tissues. All of the patients included had received at least 1 year of tamoxifen treatment. Nine patients had distant recurrence within 5 years (Recurrence group) of diagnosis and 19 patients were alive without disease at least 5 years after diagnosis (Non-recurrence group). Results Potential prognostic variables were comparable between the two groups. In an unsupervised clustering analysis, samples from each group were well separated. The most common regions of gain in all samples were 1q32.1, 17q23.3, 8q24.11, 17q12-q21.1, and 8p11.21, and the most common regions of loss were 6q14.1-q16.3, 11q21-q24.3, and 13q13.2-q14.3, as called by CGH-Explorer software. The average frequency of copy number changes was similar between the two groups. The most significant chromosomal alterations found more often in the Recurrence group using two different statistical methods were loss of 11p15.5-p15.4, 1p36.33, 11q13.1, and 11p11.2 (adjusted p values <0.001). In subgroup analysis according to lymph node status, loss of 11p15 and 1p36 were found more often in Recurrence group with borderline significance within the lymph node positive patients (adjusted p = 0.052). Conclusion Our array CGH analysis with BAC clones could detect various genomic alterations in ER-positive breast cancers, and Recurrence group samples showed a significantly different pattern of DNA copy number changes than did Non-recurrence group samples. PMID:16608533

  7. Two novel deletions (array CGH findings) in pigment dispersion syndrome.

    PubMed

    Mikelsaar, Ruth; Molder, Harras; Bartsch, Oliver; Punab, Margus

    2007-12-01

    We report the first male with pigment dispersion syndrome and a balanced translocation t(10;15)(p11.1;q11.1). Cytogenetic analyses using Giemsa banding and FISH methods, and array CGH were performed. Array CGH analyses did not show altered DNA sequences in the breakpoints of the translocation, but revealed two novel deletions in 2q22.1 and 18q22.1. We suppose that the coexistence of t(10;15) and pigment dispersion syndrome in our patient is a coincidence. The deletion in 2q22.1, where the gene LRP1B has been located, may play a major role in the dysembryogenesis of the eye and cause the disorder.

  8. MECP2 duplications in six patients with complex sex chromosome rearrangements

    PubMed Central

    Breman, Amy M; Ramocki, Melissa B; Kang, Sung-Hae L; Williams, Misti; Freedenberg, Debra; Patel, Ankita; Bader, Patricia I; Cheung, Sau Wai

    2011-01-01

    Duplications of the Xq28 chromosome region resulting in functional disomy are associated with a distinct clinical phenotype characterized by infantile hypotonia, severe developmental delay, progressive neurological impairment, absent speech, and proneness to infections. Increased expression of the dosage-sensitive MECP2 gene is considered responsible for the severe neurological impairments observed in affected individuals. Although cytogenetically visible duplications of Xq28 are well documented in the published literature, recent advances using array comparative genomic hybridization (CGH) led to the detection of an increasing number of microduplications spanning MECP2. In rare cases, duplication results from intrachromosomal rearrangement between the X and Y chromosomes. We report six cases with sex chromosome rearrangements involving duplication of MECP2. Cases 1–4 are unbalanced rearrangements between X and Y, resulting in MECP2 duplication. The additional Xq material was translocated to Yp in three cases (cases 1–3), and to the heterochromatic region of Yq12 in one case (case 4). Cases 5 and 6 were identified by array CGH to have a loss in copy number at Xp and a gain in copy number at Xq28 involving the MECP2 gene. In both cases, fluorescent in situ hybridization (FISH) analysis revealed a recombinant X chromosome containing the duplicated material from Xq28 on Xp, resulting from a maternal pericentric inversion. These cases add to a growing number of MECP2 duplications that have been detected by array CGH, while demonstrating the value of confirmatory chromosome and FISH studies for the localization of the duplicated material and the identification of complex rearrangements. PMID:21119712

  9. Bacillus subtilis genome diversity.

    PubMed

    Earl, Ashlee M; Losick, Richard; Kolter, Roberto

    2007-02-01

    Microarray-based comparative genomic hybridization (M-CGH) is a powerful method for rapidly identifying regions of genome diversity among closely related organisms. We used M-CGH to examine the genome diversity of 17 strains belonging to the nonpathogenic species Bacillus subtilis. Our M-CGH results indicate that there is considerable genetic heterogeneity among members of this species; nearly one-third of Bsu168-specific genes exhibited variability, as measured by the microarray hybridization intensities. The variable loci include those encoding proteins involved in antibiotic production, cell wall synthesis, sporulation, and germination. The diversity in these genes may reflect this organism's ability to survive in diverse natural settings.

  10. Integrated high-resolution array CGH and SKY analysis of homozygous deletions and other genomic alterations present in malignant mesothelioma cell lines.

    PubMed

    Klorin, Geula; Rozenblum, Ester; Glebov, Oleg; Walker, Robert L; Park, Yoonsoo; Meltzer, Paul S; Kirsch, Ilan R; Kaye, Frederic J; Roschke, Anna V

    2013-05-01

    High-resolution oligonucleotide array comparative genomic hybridization (aCGH) and spectral karyotyping (SKY) were applied to a panel of malignant mesothelioma (MMt) cell lines. SKY has not been applied to MMt before, and complete karyotypes are reported based on the integration of SKY and aCGH results. A whole genome search for homozygous deletions (HDs) produced the largest set of recurrent and non-recurrent HDs for MMt (52 recurrent HDs in 10 genomic regions; 36 non-recurrent HDs). For the first time, LINGO2, RBFOX1/A2BP1, RPL29, DUSP7, and CCSER1/FAM190A were found to be homozygously deleted in MMt, and some of these genes could be new tumor suppressor genes for MMt. Integration of SKY and aCGH data allowed reconstruction of chromosomal rearrangements that led to the formation of HDs. Our data imply that only with acquisition of structural and/or numerical karyotypic instability can MMt cells attain a complete loss of tumor suppressor genes located in 9p21.3, which is the most frequently homozygously deleted region. Tetraploidization is a late event in the karyotypic progression of MMt cells, after HDs in the 9p21.3 region have already been acquired. Published by Elsevier Inc.

  11. Evaluation of copy number variation detection for a SNP array platform

    PubMed Central

    2014-01-01

    Background Copy Number Variations (CNVs) are usually inferred from Single Nucleotide Polymorphism (SNP) arrays by use of some software packages based on given algorithms. However, there is no clear understanding of the performance of these software packages; it is therefore difficult to select one or several software packages for CNV detection based on the SNP array platform. We selected four publicly available software packages designed for CNV calling from an Affymetrix SNP array, including Birdsuite, dChip, Genotyping Console (GTC) and PennCNV. The publicly available dataset generated by Array-based Comparative Genomic Hybridization (CGH), with a resolution of 24 million probes per sample, was considered to be the “gold standard”. Compared with the CGH-based dataset, the success rate, average stability rate, sensitivity, consistence and reproducibility of these four software packages were assessed compared with the “gold standard”. Specially, we also compared the efficiency of detecting CNVs simultaneously by two, three and all of the software packages with that by a single software package. Results Simply from the quantity of the detected CNVs, Birdsuite detected the most while GTC detected the least. We found that Birdsuite and dChip had obvious detecting bias. And GTC seemed to be inferior because of the least amount of CNVs it detected. Thereafter we investigated the detection consistency produced by one certain software package and the rest three software suits. We found that the consistency of dChip was the lowest while GTC was the highest. Compared with the CNVs detecting result of CGH, in the matching group, GTC called the most matching CNVs, PennCNV-Affy ranked second. In the non-overlapping group, GTC called the least CNVs. With regards to the reproducibility of CNV calling, larger CNVs were usually replicated better. PennCNV-Affy shows the best consistency while Birdsuite shows the poorest. Conclusion We found that PennCNV outperformed the other three packages in the sensitivity and specificity of CNV calling. Obviously, each calling method had its own limitations and advantages for different data analysis. Therefore, the optimized calling methods might be identified using multiple algorithms to evaluate the concordance and discordance of SNP array-based CNV calling. PMID:24555668

  12. CNV detection method optimized for high-resolution arrayCGH by normality test.

    PubMed

    Ahn, Jaegyoon; Yoon, Youngmi; Park, Chihyun; Park, Sanghyun

    2012-04-01

    High-resolution arrayCGH platform makes it possible to detect small gains and losses which previously could not be measured. However, current CNV detection tools fitted to early low-resolution data are not applicable to larger high-resolution data. When CNV detection tools are applied to high-resolution data, they suffer from high false-positives, which increases validation cost. Existing CNV detection tools also require optimal parameter values. In most cases, obtaining these values is a difficult task. This study developed a CNV detection algorithm that is optimized for high-resolution arrayCGH data. This tool operates up to 1500 times faster than existing tools on a high-resolution arrayCGH of whole human chromosomes which has 42 million probes whose average length is 50 bases, while preserving false positive/negative rates. The algorithm also uses a normality test, thereby removing the need for optimal parameters. To our knowledge, this is the first formulation for CNV detecting problems that results in a near-linear empirical overall complexity for real high-resolution data. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Evaluation of the efficacy of constitutional array-based comparative genomic hybridization in the diagnosis of aneuploidy using genomic and amplified DNA.

    PubMed

    Tan, Niap H; Palmer, Rodger; Wang, Rubin

    2010-02-01

    Array-based comparative genomic hybridization (array CGH) is a new molecular technique that has the potential to revolutionize cytogenetics. However, use of high resolution array CGH in the clinical setting is plagued by the problem of widespread copy number variations (CNV) in the human genome. Constitutional microarray, containing only clones that interrogate regions of known constitutional syndromes, may circumvent the dilemma of detecting CNV of unknown clinical significance. The present study investigated the efficacy of constitutional microarray in the diagnosis of trisomy. Test samples included genomic DNA from trisomic cell lines, amplification products of 50 ng of genomic DNA and whole genome amplification products of single cells. DNA amplification was achieved by means of multiple displacement amplification (MDA) over 16 h. The trisomic and sex chromosomes copy number imbalances in the genomic DNA were correctly identified by the constitutional microarrays. However, there was a failure to detect the trisomy in the amplification products of 50 ng of genomic DNA and whole genome amplification products of single cells. Using carefully selected clones, Spectral Genomics constitutional microarray was able to detect the chromosomal copy number imbalances in genomic DNA without the confounding effects of CNV. The diagnostic failure in amplified DNA samples could be attributed to the amplification process. The MDA duration of 16 h generated excessive amount of biases and shortening the duration might minimize the problem.

  14. Molecular cytogenetic analysis of Xq critical regions in premature ovarian failure

    PubMed Central

    2013-01-01

    Background One of the frequent reasons for unsuccessful conception is premature ovarian failure/primary ovarian insufficiency (POF/POI) that is defined as the loss of functional follicles below the age of 40 years. Among the genetic causes the most common one involves the X chromosome, as in Turner syndrome, partial X deletion and X-autosome translocations. Here we report a case of a 27-year-old female patient referred to genetic counselling because of premature ovarian failure. The aim of this case study to perform molecular genetic and cytogenetic analyses in order to identify the exact genetic background of the pathogenic phenotype. Results For premature ovarian failure disease diagnostics we performed the Fragile mental retardation 1 gene analysis using Southern blot technique and Repeat Primed PCR in order to identify the relationship between the Fragile mental retardation 1 gene premutation status and the premature ovarion failure disease. At this early onset, the premature ovarian failure affected patient we detected one normal allele of Fragile mental retardation 1 gene and we couldn’t verify the methylated allele, therefore we performed the cytogenetic analyses using G-banding and fluorescent in situ hybridization methods and a high resolution molecular cytogenetic method, the array comparative genomic hybridization technique. For this patient applying the G-banding, we identified a large deletion on the X chromosome at the critical region (ChrX q21.31-q28) which is associated with the premature ovarian failure phenotype. In order to detect the exact breakpoints, we used a special cytogenetic array ISCA plus CGH array and we verified a 67.355 Mb size loss at the critical region which include total 795 genes. Conclusions We conclude for this case study that the karyotyping is definitely helpful in the evaluation of premature ovarian failure patients, to identify the non submicroscopic chromosomal rearrangement, and using the array CGH technique we can contribute to the most efficient detection and mapping of exact deletion breakpoints of the deleted Xq region. PMID:24359613

  15. Array-CGH in children with mild intellectual disability: a population-based study.

    PubMed

    Coutton, Charles; Dieterich, Klaus; Satre, Véronique; Vieville, Gaëlle; Amblard, Florence; David, Marie; Cans, Christine; Jouk, Pierre-Simon; Devillard, Francoise

    2015-01-01

    Intellectual disability (ID) is characterized by limitation in intellectual function and adaptive behavior, with onset in childhood. Frequent identifiable causes of ID originate from chromosomal imbalances. During the last years, array-CGH has successfully contributed to improve the diagnostic detection rate of genetic abnormalities in patients with ID. Most array-CGH studies focused on patients with moderate or severe intellectual disability. Studies on genetic etiology in children with mild intellectual disability (ID) are very rare. We performed array-CGH analysis in 66 children with mild intellectual disability assessed in a population-based study and for whom no genetic etiology was identified. We found one or more copy number variations (CNVs) in 20 out of 66 (~30 %) patients with a mild ID. In eight of them (~12 %), the CNVs were certainly responsible for the phenotype and in six they were potentially pathogenic for ID. Altogether, array-CGH helped to determine the etiology of ID in 14 patients (~21 %). Our results underscore the clinical relevance of array-CGH to investigate the etiology of isolated idiopathic mild ID in patients or associated with even subtle dysmorphic features or congenital malformations.

  16. High resolution array CGH and gene expression profiling of alveolar soft part sarcoma

    PubMed Central

    Selvarajah, Shamini; Pyne, Saumyadipta; Chen, Eleanor; Sompallae, Ramakrishna; Ligon, Azra H.; Nielsen, Gunnlaugur P.; Dranoff, Glenn; Stack, Edward; Loda, Massimo; Flavin, Richard

    2014-01-01

    Purpose Alveolar soft part sarcoma (ASPS) is a soft tissue sarcoma with poor prognosis, and little molecular evidence for its origin, initiation and progression. The aim of this study was to elucidate candidate molecular pathways involved in tumor pathogenesis. Experimental Design We employed high-throughput array comparative genomic hybridization and cDNA-Mediated Annealing, Selection, Ligation, and Extension Assay to profile the genomic and expression signatures of primary and metastatic ASPS from 17 tumors derived from 11 patients. We used an integrative bioinformatics approach to elucidate the molecular pathways associated with ASPS progression. Fluorescence in situ hybridization was performed to validate the presence of the t(X;17)(p11.2;q25) ASPL-TFE3 fusion and hence confirm the aCGH observations. Results FISH analysis identified the ASPL-TFE3 fusion in all cases. ArrayCGH revealed a higher number of numerical aberrations in metastatic tumors relative to primaries, but failed to identify consistent alterations in either group. Gene expression analysis highlighted 1,063 genes which were differentially expressed between the two groups. Gene set enrichment analysis identified 16 enriched gene sets (p < 0.1) associated with differentially expressed genes. Notable among these were several stem cell gene expression signatures and pathways related to differentiation. In particular, the paired box transcription factor PAX6 was up-regulated in the primary tumors, along with several genes whose mouse orthologs have previously been implicated in Pax6-DNA binding during neural stem cell differentiation. Conclusion In addition to suggesting a tentative neural line of differentiation for ASPS, these results implicate transcriptional deregulation from fusion genes in the pathogenesis of ASPS. PMID:24493828

  17. COMPARISON OF COMPARATIVE GENOMIC HYBRIDIZATIONS TECHNOLOGIES ACROSS MICROARRAY PLATFORMS

    EPA Science Inventory

    Comparative Genomic Hybridization (CGH) measures DNA copy number differences between a reference genome and a test genome. The DNA samples are differentially labeled and hybridized to an immobilized substrate. In early CGH experiments, the DNA targets were hybridized to metaphase...

  18. Rescue karyotyping: a case series of array-based comparative genomic hybridization evaluation of archival conceptual tissue

    PubMed Central

    2014-01-01

    Background Determination of fetal aneuploidy is central to evaluation of recurrent pregnancy loss (RPL). However, obtaining this information at the time of a miscarriage is not always possible or may not have been ordered. Here we report on “rescue karyotyping”, wherein DNA extracted from archived paraffin-embedded pregnancy loss tissue from a prior dilation and curettage (D&C) is evaluated by array-based comparative genomic hybridization (aCGH). Methods A retrospective case series was conducted at an academic medical center. Patients included had unexplained RPL and a prior pregnancy loss for which karyotype information would be clinically informative but was unavailable. After extracting DNA from slides of archived tissue, aCGH with a reduced stringency approach was performed, allowing for analysis of partially degraded DNA. Statistics were computed using STATA v12.1 (College Station, TX). Results Rescue karyotyping was attempted on 20 specimens from 17 women. DNA was successfully extracted in 16 samples (80.0%), enabling analysis at either high or low resolution. The longest interval from tissue collection to DNA extraction was 4.2 years. There was no significant difference in specimen sufficiency for analysis in the collection-to-extraction interval (p = 0.14) or gestational age at pregnancy loss (p = 0.32). Eight specimens showed copy number variants: 3 trisomies, 2 partial chromosomal deletions, 1 mosaic abnormality and 2 unclassified variants. Conclusions Rescue karyotyping using aCGH on DNA extracted from paraffin-embedded tissue provides the opportunity to obtain critical fetal cytogenetic information from a prior loss, even if it occurred years earlier. Given the ubiquitous archiving of paraffin embedded tissue obtained during a D&C and the ease of obtaining results despite long loss-to-testing intervals or early gestational age at time of fetal demise, this may provide a useful technique in the evaluation of couples with recurrent pregnancy loss. PMID:24589081

  19. The database of chromosome imbalance regions and genes resided in lung cancer from Asian and Caucasian identified by array-comparative genomic hybridization

    PubMed Central

    2012-01-01

    Background Cancer-related genes show racial differences. Therefore, identification and characterization of DNA copy number alteration regions in different racial groups helps to dissect the mechanism of tumorigenesis. Methods Array-comparative genomic hybridization (array-CGH) was analyzed for DNA copy number profile in 40 Asian and 20 Caucasian lung cancer patients. Three methods including MetaCore analysis for disease and pathway correlations, concordance analysis between array-CGH database and the expression array database, and literature search for copy number variation genes were performed to select novel lung cancer candidate genes. Four candidate oncogenes were validated for DNA copy number and mRNA and protein expression by quantitative polymerase chain reaction (qPCR), chromogenic in situ hybridization (CISH), reverse transcriptase-qPCR (RT-qPCR), and immunohistochemistry (IHC) in more patients. Results We identified 20 chromosomal imbalance regions harboring 459 genes for Caucasian and 17 regions containing 476 genes for Asian lung cancer patients. Seven common chromosomal imbalance regions harboring 117 genes, included gain on 3p13-14, 6p22.1, 9q21.13, 13q14.1, and 17p13.3; and loss on 3p22.2-22.3 and 13q13.3 were found both in Asian and Caucasian patients. Gene validation for four genes including ARHGAP19 (10q24.1) functioning in Rho activity control, FRAT2 (10q24.1) involved in Wnt signaling, PAFAH1B1 (17p13.3) functioning in motility control, and ZNF322A (6p22.1) involved in MAPK signaling was performed using qPCR and RT-qPCR. Mean gene dosage and mRNA expression level of the four candidate genes in tumor tissues were significantly higher than the corresponding normal tissues (P<0.001~P=0.06). In addition, CISH analysis of patients indicated that copy number amplification indeed occurred for ARHGAP19 and ZNF322A genes in lung cancer patients. IHC analysis of paraffin blocks from Asian Caucasian patients demonstrated that the frequency of PAFAH1B1 protein overexpression was 68% in Asian and 70% in Caucasian. Conclusions Our study provides an invaluable database revealing common and differential imbalance regions at specific chromosomes among Asian and Caucasian lung cancer patients. Four validation methods confirmed our database, which would help in further studies on the mechanism of lung tumorigenesis. PMID:22691236

  20. Partial trisomy 16p (16p12.2→pter) and partial monosomy 22q (22q13.31 →qter) presenting with fetal ascites and ventriculomegaly: prenatal diagnosis and array comparative genomic hybridization characterization.

    PubMed

    Chen, Chih-Ping; Su, Yi-Ning; Young, Richard Shih-Hung; Tsai, Fuu-Jen; Wu, Pei-Chen; Chern, Schu-Rern; Town, Dai-Dyi; Pan, Chen-Wen; Wang, Wayseen

    2010-12-01

    To present prenatal diagnosis and array comparative genomic hybridization (aCGH) characterization of partial trisomy 16p (16p12.2→pter) and partial monosomy 22q (22q13.31→qter) presenting with fetal ascites and ventriculomegaly in the second trimester. A 31-year-old woman, gravida 2, para 1, was referred to the hospital at 20 weeks of gestation because of fetal ascites. Amniocentesis revealed a derivative chromosome 22. Subsequent parental karyotyping revealed that the father carried a balanced reciprocal translocation between 16p12 and 22q13. Bacterial artificial chromosome-based aCGH using amniocyte DNA demonstrated partial trisomy 16p and partial monosomy 22q [arr cgh 16p13.3p12.2 (CTD-3077J14→RP11-650D5)x3, 22q13.31q13.33 (RP1-111J24→CTD-3035C16)x1]. Oligonucleotide-based aCGH showed a 20.9-Mb duplication of distal 16p and an approximate 3.7-Mb deletion of distal 22q. Level II ultrasound revealed fetal ascites and ventriculomegaly. The pregnancy was terminated and a malformed male fetus was delivered with craniofacial dysmorphism and abnormalities of the digits. The fetal karyotype was 46,XY,der(22)t(16;22)(p12.2;q13.31)pat. The paternal karyotype was 46,XY,t(16;22)(p12.2;q13.31). Partial trisomy 16p can be associated with fetal ascites and ventriculomegaly in the second trimester. Prenatal sonographic detection of fetal ascites in association with ventriculomegaly should alert chromosomal abnormalities and prompt cytogenetic investigation, which may lead to the identification of an unexpected parental translocation involving chromosomal segments associated with cerebral and vascular abnormalities. Copyright © 2010 Taiwan Association of Obstetric & Gynecology. Published by Elsevier B.V. All rights reserved.

  1. Partial monosomy 13q (13q21.32--->qter) and partial trisomy 8p (8p1--->pter) presenting with anencephaly and increased nuchal translucency: array comparative genomic hybridization characterization.

    PubMed

    Chen, Chih-Ping; Su, Yi-Ning; Tsai, Fuu-Jen; Lin, Ming-Huei; Wu, Pei-Chen; Chern, Schu-Rern; Lee, Chen-Chi; Pan, Chen-Wen; Wang, Wayseen

    2011-06-01

    To present array comparative genomic hybridization (aCGH) characterization of partial monosomy 13q (13q21.32→qter) and partial trisomy 8p (8p12→pter) presenting with anencephaly and increased nuchal translucency (NT). A 34-year-old primigravid woman was referred to the hospital at 12 weeks of gestation for termination of the pregnancy because of major structural abnormalities of the fetus. Prenatal ultrasound revealed a malformed fetus with anencephaly and an increased NT thickness of 5mm at 12 weeks of gestation. Cytogenetic analysis of the fetus revealed a derivative chromosome 13. The mother was subsequently found to carry a balanced reciprocal translocation between 8p12 and 13q21. Bacterial artificial chromosome-based aCGH using fetal DNA demonstrated partial trisomy 8p and partial monosomy 13q [arr cgh 8p23.3p12 (RP11-1150M5→RP11-1145H12)×3, 13q21.32q34 (RP11-326B4→RP11-450H16)×1]. Oligonucleotide-based aCGH showed a 36.7-Mb duplication of distal 8p and a 48.4-Mb deletion of distal 13q. The fetal karyotype was 46,XY,der(13) t(8;13)(p12;q21.32)mat. The maternal karyotype was 46,XX,t(8;13)(p12;q21.32). The 13q deletion syndrome can be associated with neural tube defects and increased NT in the first trimester. Prenatal sonographic detection of neural tube defects should alert chromosomal abnormalities and prompt cytogenetic investigation, which may lead to the identification of an unexpected parental translocation involving chromosomal segments associated with neural tube development. Copyright © 2011. Published by Elsevier B.V.

  2. Exome sequencing and arrayCGH detection of gene sequence and copy number variation between ILS and ISS mouse strains.

    PubMed

    Dumas, Laura; Dickens, C Michael; Anderson, Nathan; Davis, Jonathan; Bennett, Beth; Radcliffe, Richard A; Sikela, James M

    2014-06-01

    It has been well documented that genetic factors can influence predisposition to develop alcoholism. While the underlying genomic changes may be of several types, two of the most common and disease associated are copy number variations (CNVs) and sequence alterations of protein coding regions. The goal of this study was to identify CNVs and single-nucleotide polymorphisms that occur in gene coding regions that may play a role in influencing the risk of an individual developing alcoholism. Toward this end, two mouse strains were used that have been selectively bred based on their differential sensitivity to alcohol: the Inbred long sleep (ILS) and Inbred short sleep (ISS) mouse strains. Differences in initial response to alcohol have been linked to risk for alcoholism, and the ILS/ISS strains are used to investigate the genetics of initial sensitivity to alcohol. Array comparative genomic hybridization (arrayCGH) and exome sequencing were conducted to identify CNVs and gene coding sequence differences, respectively, between ILS and ISS mice. Mouse arrayCGH was performed using catalog Agilent 1 × 244 k mouse arrays. Subsequently, exome sequencing was carried out using an Illumina HiSeq 2000 instrument. ArrayCGH detected 74 CNVs that were strain-specific (38 ILS/36 ISS), including several ISS-specific deletions that contained genes implicated in brain function and neurotransmitter release. Among several interesting coding variations detected by exome sequencing was the gain of a premature stop codon in the alpha-amylase 2B (AMY2B) gene specifically in the ILS strain. In total, exome sequencing detected 2,597 and 1,768 strain-specific exonic gene variants in the ILS and ISS mice, respectively. This study represents the most comprehensive and detailed genomic comparison of ILS and ISS mouse strains to date. The two complementary genome-wide approaches identified strain-specific CNVs and gene coding sequence variations that should provide strong candidates to contribute to the alcohol-related phenotypic differences associated with these strains.

  3. No evidence for mosaic pathogenic copy number variations in cardiac tissue from patients with congenital heart malformations.

    PubMed

    Winberg, Johanna; Berggren, Håkan; Malm, Torsten; Johansson, Sune; Johansson Ramgren, Jens; Nilsson, Boris; Liedén, Agne; Nordenskjöld, Agneta; Gustavsson, Peter; Nordgren, Ann

    2015-03-01

    The aim of this study was to investigate if pathogenic copy number variations (CNVs) are present in mosaic form in patients with congenital heart malformations. We have collected cardiac tissue and blood samples from 23 patients with congenital heart malformations that underwent cardiac surgery and screened for mosaic gene dose alterations restricted to cardiac tissue using array comparative genomic hybridization (array CGH). We did not find evidence of CNVs in mosaic form after array CGH analysis. Pathogenic CNVs that were present in both cardiac tissue and blood were detected in 2/23 patients (9%), and in addition we found several constitutional CNVs of unclear clinical significance. This is the first study investigating mosaicism for CNVs in heart tissue compared to peripheral blood and the results do not indicate that pathogenic mosaic copy number changes are common in patients with heart malformations. Importantly, in line with previous studies, our results show that constitutional pathogenic CNVs are important factors contributing to congenital heart malformations. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  4. Array CGH Analysis and Developmental Delay: A Diagnostic Tool for Neurologists.

    PubMed

    Cameron, F; Xu, J; Jung, J; Prasad, C

    2013-11-01

    Developmental delay occurs in 1-3% of the population, with unknown etiology in approximately 50% of cases. Initial genetic work up for developmental delay previously included chromosome analysis and subtelomeric FISH (fluorescent in situ hybridization). Array Comparative Genomic Hybridization (aCGH) has emerged as a tool to detect genetic copy number changes and uniparental disomy and is the most sensitive test in providing etiological diagnosis in developmental delay. aCGH allows for the provision of prognosis and recurrence risks, improves access to resources, helps limit further investigations and may alter medical management in many cases. aCGH has led to the delineation of novel genetic syndromes associated with developmental delay. An illustrative case of a 31-year-old man with long standing global developmental delay and recently diagnosed 4q21 deletion syndrome with a deletion of 20.8 Mb genomic interval is provided. aCGH is now recommended as a first line test in children and adults with undiagnosed developmental delay and congenital anomalies. Puce d'hybridation génomique comparative et retard de développement : un outil diagnostic pour les neurologues. Le retard de développement survient chez 1 à 3% de la population et son étiologie est inconnue chez à peu près 50% des cas. L'évaluation génétique initiale pour un retard de développement incluait antérieurement une analyse chromosomique et une analyse par FISH (hybridation in situ en fluorescence) de régions subtélomériques. La puce d'hybridation génomique comparative (CGHa) est devenue un outil de détection des changements du nombre de copies géniques ainsi que de la disomie uniparentale et elle est le test le plus sensible pour fournir un diagnostic étiologique dans le retard de développement. Le CGHa permet d'offrir un pronostic et un risque de récurrence, améliore l'accès aux ressources, aide à limiter les évaluations et peut modifier le traitement médical dans bien des cas. Le CGHa a mené à la définition de nouveaux syndromes génétiques associés à un retard de développement. À titre d'exemple, nous décrivons le cas d'un homme âgé de 31 ans qui présentait un retard de développement global depuis longtemps et chez qui un syndrome associé à une délétion 4q21 a été diagnostiqué récemment, soit une délétion de 20,8 Mb. Le CGHa est maintenant recommandé comme test de première ligne chez les enfants et les adultes présentant un retard de développement et des anomalies congénitales.

  5. A case of 46,XX dysgenesis and marked tall stature; the need for caution in interpreting array comparative genomic hybridization (CGH).

    PubMed

    Narayanan, Vidya Kanamkote; Kharbanda, Mira; Donaldson, Malcolm

    2016-12-01

    Gonadal dysgenesis with an apparently normal 46,XX karyotype is a rare cause of hypergonadotrophic hypogonadism. Tall stature is not a widely recognized association. A 15-year-old girl presented with primary amenorrhoea. Examination showed a non-dysmorphic girl of normal intellect with no breast development (Tanner stage B1P4A1) who was tall compared with her parents: height standard deviation score (SDS) +1.56 vs. midparental height of +0.23 SDS, and slim build (weight -0.13 SDS). Investigations showed a 46,XX karyotype, elevated gonadotropins (FSH 119 and LH 33.7 IU/L), serum estradiol <5 pmol/L, uterine length 3.75 cm with cylindrical shape, and absent ovaries on ultrasound. Initially, a 364055-bp deletion on Xp21.2 was reported on array CGH. However, repeat analysis using BlueGnome CytoChip ISCA 4x180k v2.0 array was normal. With oral ethinyl estradiol induction puberty progressed to B4P4A2 but aged 18.4 years, the patient was remarkably tall with height SDS +2.88, weight SDS +0.97. Caution is needed in interpreting small changes with array CGH, particularly with the older assays. We postulate that the genetic change causing 46,XX gonadal dysgenesis in our patient may have also resulted in unsuppressed somatic growth. More critical height assessment, including parental height measurement, of future patients with 46,XX gonadal dysgenesis is recommended in order to determine whether or not a true association with tall stature may be present in certain cases.

  6. Computational tools for copy number variation (CNV) detection using next-generation sequencing data: features and perspectives.

    PubMed

    Zhao, Min; Wang, Qingguo; Wang, Quan; Jia, Peilin; Zhao, Zhongming

    2013-01-01

    Copy number variation (CNV) is a prevalent form of critical genetic variation that leads to an abnormal number of copies of large genomic regions in a cell. Microarray-based comparative genome hybridization (arrayCGH) or genotyping arrays have been standard technologies to detect large regions subject to copy number changes in genomes until most recently high-resolution sequence data can be analyzed by next-generation sequencing (NGS). During the last several years, NGS-based analysis has been widely applied to identify CNVs in both healthy and diseased individuals. Correspondingly, the strong demand for NGS-based CNV analyses has fuelled development of numerous computational methods and tools for CNV detection. In this article, we review the recent advances in computational methods pertaining to CNV detection using whole genome and whole exome sequencing data. Additionally, we discuss their strengths and weaknesses and suggest directions for future development.

  7. Computational tools for copy number variation (CNV) detection using next-generation sequencing data: features and perspectives

    PubMed Central

    2013-01-01

    Copy number variation (CNV) is a prevalent form of critical genetic variation that leads to an abnormal number of copies of large genomic regions in a cell. Microarray-based comparative genome hybridization (arrayCGH) or genotyping arrays have been standard technologies to detect large regions subject to copy number changes in genomes until most recently high-resolution sequence data can be analyzed by next-generation sequencing (NGS). During the last several years, NGS-based analysis has been widely applied to identify CNVs in both healthy and diseased individuals. Correspondingly, the strong demand for NGS-based CNV analyses has fuelled development of numerous computational methods and tools for CNV detection. In this article, we review the recent advances in computational methods pertaining to CNV detection using whole genome and whole exome sequencing data. Additionally, we discuss their strengths and weaknesses and suggest directions for future development. PMID:24564169

  8. Fast generation of complex modulation video holograms using temporal redundancy compression and hybrid point-source/wave-field approaches

    NASA Astrophysics Data System (ADS)

    Gilles, Antonin; Gioia, Patrick; Cozot, Rémi; Morin, Luce

    2015-09-01

    The hybrid point-source/wave-field method is a newly proposed approach for Computer-Generated Hologram (CGH) calculation, based on the slicing of the scene into several depth layers parallel to the hologram plane. The complex wave scattered by each depth layer is then computed using either a wave-field or a point-source approach according to a threshold criterion on the number of points within the layer. Finally, the complex waves scattered by all the depth layers are summed up in order to obtain the final CGH. Although outperforming both point-source and wave-field methods without producing any visible artifact, this approach has not yet been used for animated holograms, and the possible exploitation of temporal redundancies has not been studied. In this paper, we propose a fast computation of video holograms by taking into account those redundancies. Our algorithm consists of three steps. First, intensity and depth data of the current 3D video frame are extracted and compared with those of the previous frame in order to remove temporally redundant data. Then the CGH pattern for this compressed frame is generated using the hybrid point-source/wave-field approach. The resulting CGH pattern is finally transmitted to the video output and stored in the previous frame buffer. Experimental results reveal that our proposed method is able to produce video holograms at interactive rates without producing any visible artifact.

  9. Integrative Genomics Reveals Mechanisms of Copy Number Alterations Responsible for Transcriptional Deregulation in Colorectal Cancer

    PubMed Central

    Camps, Jordi; Nguyen, Quang Tri; Padilla-Nash, Hesed M.; Knutsen, Turid; McNeil, Nicole E.; Wangsa, Danny; Hummon, Amanda B.; Grade, Marian; Ried, Thomas; Difilippantonio, Michael J.

    2016-01-01

    To evaluate the mechanisms and consequences of chromosomal aberrations in colorectal cancer (CRC), we used a combination of spectral karyotyping, array comparative genomic hybridization (aCGH), and array-based global gene expression profiling on 31 primary carcinomas and 15 established cell lines. Importantly, aCGH showed that the genomic profiles of primary tumors are recapitulated in the cell lines. We revealed a preponderance of chromosome breakpoints at sites of copy number variants (CNVs) in the CRC cell lines, a novel mechanism of DNA breakage in cancer. The integration of gene expression and aCGH led to the identification of 157 genes localized within high-level copy number changes whose transcriptional deregulation was significantly affected across all of the samples, thereby suggesting that these genes play a functional role in CRC. Genomic amplification at 8q24 was the most recurrent event and led to the overexpression of MYC and FAM84B. Copy number dependent gene expression resulted in deregulation of known cancer genes such as APC, FGFR2, and ERBB2. The identification of only 36 genes whose localization near a breakpoint could account for their observed deregulated expression demonstrates that the major mechanism for transcriptional deregulation in CRC is genomic copy number changes resulting from chromosomal aberrations. PMID:19691111

  10. Phenotype in patients with intellectual disability and pathological results in array CGH.

    PubMed

    Caballero Pérez, V; López Pisón, F J; Miramar Gallart, M D; González Álvarez, A; García Jiménez, M C; García Iñiguez, J P; Orden Rueda, C; Gil Hernández, I; Fuertes Rodrigo, C; Fernando Martínez, R; Rodríguez Valle, A; Alcaine Villarroya, M J

    Global developmental delay (GDD) and intellectual disability (ID) are frequent reasons for consultation in paediatric neurology departments. Nowadays, array comparative genomic hybridisation (array-CGH) is one of the most widely used techniques for diagnosing these disorders. Our purpose was to determine the phenotypic features associated with pathological results in this genetic test. We conducted a blind study of the epidemiological, clinical, anthropometric, and morphological features of 80 patients with unexplained ID to determine which features were associated with pathological results in array-CGH. Pathological results were found in 27.5% of the patients. Factors associated with pathological results in array-CGH were a family history of GDD/ID (OR = 12.1), congenital malformations (OR = 5.33), having more than 3 facial dysmorphic features (OR = 20.9), and hypotonia (OR = 3.25). Our findings are consistent with those reported by other published series. We therefore conclude that the probability of having pathological results in array-CGH increases with the presence of any of the features mentioned above in patients with ID/GDD. Copyright © 2016 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  11. Non-invasive preimplantation genetic screening using array comparative genomic hybridization on spent culture media: a proof-of-concept pilot study.

    PubMed

    Feichtinger, Michael; Vaccari, Enrico; Carli, Luca; Wallner, Elisabeth; Mädel, Ulrike; Figl, Katharina; Palini, Simone; Feichtinger, Wilfried

    2017-06-01

    The aim of this pilot study was to assess if array comparative genomic hybridization (aCGH), non-invasive preimplantation genetic screening (PGS) on blastocyst culture media is feasible. Therefore, aCGH analysis was carried out on 22 spent blastocyst culture media samples after polar body PGS because of advanced maternal age. All oocytes were fertilized by intracytoplasmic sperm injection and all embryos underwent assisted hatching. Concordance of polar body analysis and culture media genetic results was assessed. Thirteen out of 18 samples (72.2%) revealed general concordance of ploidy status (euploid or aneuploid). At least one chromosomal aberration was found concordant in 10 out of 15 embryos found to be aneuploid by both polar body and culture media analysis. Overall, 17 out of 35 (48.6%) single chromosomal aneuploidies were concordant between the culture media and polar body analysis. By analysing negative controls (oocytes with fertilization failure), notable maternal contamination was observed. Therefore, non-invasive PGS could serve as a second matrix after polar body or cleavage stage PGS; however, in euploid results, maternal contamination needs to be considered and results interpreted with caution. Copyright © 2017 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  12. CGI: Java Software for Mapping and Visualizing Data from Array-based Comparative Genomic Hybridization and Expression Profiling

    PubMed Central

    Gu, Joyce Xiuweu-Xu; Wei, Michael Yang; Rao, Pulivarthi H.; Lau, Ching C.; Behl, Sanjiv; Man, Tsz-Kwong

    2007-01-01

    With the increasing application of various genomic technologies in biomedical research, there is a need to integrate these data to correlate candidate genes/regions that are identified by different genomic platforms. Although there are tools that can analyze data from individual platforms, essential software for integration of genomic data is still lacking. Here, we present a novel Java-based program called CGI (Cytogenetics-Genomics Integrator) that matches the BAC clones from array-based comparative genomic hybridization (aCGH) to genes from RNA expression profiling datasets. The matching is computed via a fast, backend MySQL database containing UCSC Genome Browser annotations. This program also provides an easy-to-use graphical user interface for visualizing and summarizing the correlation of DNA copy number changes and RNA expression patterns from a set of experiments. In addition, CGI uses a Java applet to display the copy number values of a specific BAC clone in aCGH experiments side by side with the expression levels of genes that are mapped back to that BAC clone from the microarray experiments. The CGI program is built on top of extensible, reusable graphic components specifically designed for biologists. It is cross-platform compatible and the source code is freely available under the General Public License. PMID:19936083

  13. CGI: Java software for mapping and visualizing data from array-based comparative genomic hybridization and expression profiling.

    PubMed

    Gu, Joyce Xiuweu-Xu; Wei, Michael Yang; Rao, Pulivarthi H; Lau, Ching C; Behl, Sanjiv; Man, Tsz-Kwong

    2007-10-06

    With the increasing application of various genomic technologies in biomedical research, there is a need to integrate these data to correlate candidate genes/regions that are identified by different genomic platforms. Although there are tools that can analyze data from individual platforms, essential software for integration of genomic data is still lacking. Here, we present a novel Java-based program called CGI (Cytogenetics-Genomics Integrator) that matches the BAC clones from array-based comparative genomic hybridization (aCGH) to genes from RNA expression profiling datasets. The matching is computed via a fast, backend MySQL database containing UCSC Genome Browser annotations. This program also provides an easy-to-use graphical user interface for visualizing and summarizing the correlation of DNA copy number changes and RNA expression patterns from a set of experiments. In addition, CGI uses a Java applet to display the copy number values of a specific BAC clone in aCGH experiments side by side with the expression levels of genes that are mapped back to that BAC clone from the microarray experiments. The CGI program is built on top of extensible, reusable graphic components specifically designed for biologists. It is cross-platform compatible and the source code is freely available under the General Public License.

  14. New Tools for Embryo Selection: Comprehensive Chromosome Screening by Array Comparative Genomic Hybridization

    PubMed Central

    Cobo, Ana Cristina; Milán, Miguel; Al-Asmar, Nasser; García-Herrero, Sandra; Mir, Pere; Simón, Carlos

    2014-01-01

    The objective of this study was to evaluate the usefulness of comprehensive chromosome screening (CCS) using array comparative genomic hybridization (aCGH). The study included 1420 CCS cycles for recurrent miscarriage (n = 203); repetitive implantation failure (n = 188); severe male factor (n = 116); previous trisomic pregnancy (n = 33); and advanced maternal age (n = 880). CCS was performed in cycles with fresh oocytes and embryos (n = 774); mixed cycles with fresh and vitrified oocytes (n = 320); mixed cycles with fresh and vitrified day-2 embryos (n = 235); and mixed cycles with fresh and vitrified day-3 embryos (n = 91). Day-3 embryo biopsy was performed and analyzed by aCGH followed by day-5 embryo transfer. Consistent implantation (range: 40.5–54.2%) and pregnancy rates per transfer (range: 46.0–62.9%) were obtained for all the indications and independently of the origin of the oocytes or embryos. However, a lower delivery rate per cycle was achieved in women aged over 40 years (18.1%) due to the higher percentage of aneuploid embryos (85.3%) and lower number of cycles with at least one euploid embryo available per transfer (40.3%). We concluded that aneuploidy is one of the major factors which affect embryo implantation. PMID:24877108

  15. A novel deletion in the thyrotropin Beta-subunit gene identified by array comparative genomic hybridization analysis causes central congenital hypothyroidism in a boy originating from Turkey.

    PubMed

    Hermanns, Pia; Couch, Robert; Leonard, Norma; Klotz, Cherise; Pohlenz, Joachim

    2014-01-01

    Isolated central congenital hypothyroidism (ICCH) is rare but important. Most ICCH patients are diagnosed later, which results in severe growth failure and intellectual disability. We describe a boy with ICCH due to a large homozygous TSHβ gene deletion. A 51-day-old male Turkish infant, whose parents were first cousins, was admitted for evaluation of prolonged jaundice. His clinical appearance was compatible with hypothyroidism. Venous thyrotropin (TSH) was undetectably low, with a subsequent low free T4 and a low free T3, suggestive of central hypothyroidism. Using different PCR protocols, we could not amplify both coding exons of the boy's TSHβ gene, which suggested a deletion. An array comparative genomic hybridization (aCGH) using specific probes around the TSHβ gene locus showed him to be homozygous for a 6-kb deletion spanning all exons and parts of the 5' untranslated region of the gene. Infants who are clinically suspected of having hypothyroidism should be evaluated thoroughly, even if their TSH-based screening result is normal. In cases with ICCH and undetectably low TSH serum concentrations, a TSHβ gene deletion should be considered; aCGH should be performed when gene deletions are suspected. In such cases, PCR-based sequencing techniques give negative results.

  16. Ready to clone: CNV detection and breakpoint fine-mapping in breast and ovarian cancer susceptibility genes by high-resolution array CGH.

    PubMed

    Hackmann, Karl; Kuhlee, Franziska; Betcheva-Krajcir, Elitza; Kahlert, Anne-Karin; Mackenroth, Luisa; Klink, Barbara; Di Donato, Nataliya; Tzschach, Andreas; Kast, Karin; Wimberger, Pauline; Schrock, Evelin; Rump, Andreas

    2016-10-01

    Detection of predisposing copy number variants (CNV) in 330 families affected with hereditary breast and ovarian cancer (HBOC). In order to complement mutation detection with Illumina's TruSight Cancer panel, we designed a customized high-resolution 8 × 60k array for CGH (aCGH) that covers all 94 genes from the panel. Copy number variants with immediate clinical relevance were detected in 12 families (3.6%). Besides 3 known CNVs in CHEK2, RAD51C, and BRCA1, we identified 3 novel pathogenic CNVs in BRCA1 (deletion of exons 4-13, deletion of exons 12-18) and ATM (deletion exons 57-63) plus an intragenic duplication of BRCA2 (exons 3-11) and an intronic BRCA1 variant with unknown pathogenicity. The precision of high-resolution aCGH enabled straight forward breakpoint amplification of a BRCA1 deletion which subsequently allowed for fast and economic CNV verification in family members of the index patient. Furthermore, we used our aCGH data to validate an algorithm that was able to detect all identified copy number changes from next-generation sequencing (NGS) data. Copy number detection is a mandatory analysis in HBOC families at least if no predisposing mutations were found by sequencing. Currently, high-resolution array CGH is our first choice of method of analysis due to unmatched detection precision. Although it seems possible to detect CNV from sequencing data, there currently is no satisfying tool to do so in a routine diagnostic setting.

  17. Characterization of canine osteosarcoma by array comparative genomic hybridization and RT-qPCR: signatures of genomic imbalance in canine osteosarcoma parallel the human counterpart.

    PubMed

    Angstadt, Andrea Y; Motsinger-Reif, Alison; Thomas, Rachael; Kisseberth, William C; Guillermo Couto, C; Duval, Dawn L; Nielsen, Dahlia M; Modiano, Jaime F; Breen, Matthew

    2011-11-01

    Osteosarcoma (OS) is the most commonly diagnosed malignant bone tumor in humans and dogs, characterized in both species by extremely complex karyotypes exhibiting high frequencies of genomic imbalance. Evaluation of genomic signatures in human OS using array comparative genomic hybridization (aCGH) has assisted in uncovering genetic mechanisms that result in disease phenotype. Previous low-resolution (10-20 Mb) aCGH analysis of canine OS identified a wide range of recurrent DNA copy number aberrations, indicating extensive genomic instability. In this study, we profiled 123 canine OS tumors by 1 Mb-resolution aCGH to generate a dataset for direct comparison with current data for human OS, concluding that several high frequency aberrations in canine and human OS are orthologous. To ensure complete coverage of gene annotation, we identified the human refseq genes that map to these orthologous aberrant dog regions and found several candidate genes warranting evaluation for OS involvement. Specifically, subsequenct FISH and qRT-PCR analysis of RUNX2, TUSC3, and PTEN indicated that expression levels correlated with genomic copy number status, showcasing RUNX2 as an OS associated gene and TUSC3 as a possible tumor suppressor candidate. Together these data demonstrate the ability of genomic comparative oncology to identify genetic abberations which may be important for OS progression. Large scale screening of genomic imbalance in canine OS further validates the use of the dog as a suitable model for human cancers, supporting the idea that dysregulation discovered in canine cancers will provide an avenue for complementary study in human counterparts. Copyright © 2011 Wiley-Liss, Inc.

  18. An unusual case of Cat-Eye syndrome phenotype and extragonadal mature teratoma: review of the literature.

    PubMed

    Tzetis, Maria; Stefanaki, Kalliopi; Syrmou, Areti; Kosma, Konstantina; Leze, Eleni; Giannikou, Krinio; Oikonomakis, Vasilis; Sofocleous, Christalena; Choulakis, Michael; Kolialexi, Aggeliki; Makrythanasis, Periklis; Kitsiou-Tzeli, Sophia

    2012-07-01

    BACKGROUND Cat-Eye syndrome (CES) with teratoma has not been previously reported. We present the clinical and molecular findings of a 9-month-old girl with features of CES and also a palpable midline neck mass proved to be an extragonadal mature teratoma, additionally characterized by array comparative genomic hybridization (aCGH). RESULTS High resolution oligonucleotide-based aCGH confirmed that the supernumerary marker chromosome (SMC) derived from chromosome 22, as was indicated by molecular cytogenetic analysis with fluorescence in situ hybridization (FISH). Additionally, aCGH clarified the size, breakpoints, and gene content of the duplication (dup 22q11.1q11.21; size:1.6 Mb; breakpoints: 15,438,946-17,041,773; hg18). The teratoma tissue was also tested with aCGH, in which the CES duplication was not found, but the analysis revealed three aberrations: del Xp22.3 (108,864-2788,689; 2.7 Mb hg18), dup Yp11.2 (6688,491-7340,982; 0.65 Mb, hg18), and dup Yq11.2q11.23 (12,570,853-27,177,133; 14.61 Mb, hg18). These results indicated 46 XY (male) karyotype of the teratoma tissue, making this the second report of mature extragonadal teratoma in a female neonate, probably deriving from an included dizygotic twin of opposite sex (fetus in fetu). CONCLUSIONS Our findings extend the phenotypic spectrum of CES syndrome, a disorder with clinical variability, pointing out specific dosage-sensitive genes that might contribute to specific phenotypic features. Copyright © 2012 Wiley Periodicals, Inc.

  19. aCGH-MAS: Analysis of aCGH by means of Multiagent System

    PubMed Central

    Benito, Rocío; Bajo, Javier; Rodríguez, Ana Eugenia; Abáigar, María

    2015-01-01

    There are currently different techniques, such as CGH arrays, to study genetic variations in patients. CGH arrays analyze gains and losses in different regions in the chromosome. Regions with gains or losses in pathologies are important for selecting relevant genes or CNVs (copy-number variations) associated with the variations detected within chromosomes. Information corresponding to mutations, genes, proteins, variations, CNVs, and diseases can be found in different databases and it would be of interest to incorporate information of different sources to extract relevant information. This work proposes a multiagent system to manage the information of aCGH arrays, with the aim of providing an intuitive and extensible system to analyze and interpret the results. The agent roles integrate statistical techniques to select relevant variations and visualization techniques for the interpretation of the final results and to extract relevant information from different sources of information by applying a CBR system. PMID:25874203

  20. Parents' Experience with Pediatric Microarray: Transferrable Lessons in the Era of Genomic Counseling.

    PubMed

    Hayeems, R Z; Babul-Hirji, R; Hoang, N; Weksberg, R; Shuman, C

    2016-04-01

    Advances in genome-based microarray and sequencing technologies hold tremendous promise for understanding, better-managing and/or preventing disease and disease-related risk. Chromosome microarray technology (array based comparative genomic hybridization [aCGH]) is widely utilized in pediatric care to inform diagnostic etiology and medical management. Less clear is how parents experience and perceive the value of this technology. This study explored parents' experiences with aCGH in the pediatric setting, focusing on how they make meaning of various types of test results. We conducted in-person or telephone-based semi-structured interviews with parents of 21 children who underwent aCGH testing in 2010. Transcripts were coded and analyzed thematically according to the principles of interpretive description. We learned that parents expect genomic tests to be of personal use; their experiences with aCGH results characterize this use as intrinsic in the test's ability to provide a much sought-after answer for their child's condition, and instrumental in its ability to guide care, access to services, and family planning. In addition, parents experience uncertainty regardless of whether aCGH results are of pathogenic, uncertain, or benign significance; this triggers frustration, fear, and hope. Findings reported herein better characterize the notion of personal utility and highlight the pervasive nature of uncertainty in the context of genomic testing. Empiric research that links pre-test counseling content and psychosocial outcomes is warranted to optimize patient care.

  1. Deletion of 1p32-p36 is the most frequent genetic change and poor prognostic marker in adenoid cystic carcinoma of the salivary glands.

    PubMed

    Rao, Pulivarthi H; Roberts, Diana; Zhao, Yi-Jue; Bell, Diana; Harris, Charles P; Weber, Randal S; El-Naggar, Adel K

    2008-08-15

    Adenoid cystic carcinoma (ACC) is a relatively uncommon salivary gland malignancy known for its protean phenotypic features and pernicious clinical behavior. Currently, no effective therapy is available for patients with advanced nonresectable, recurrent, and/or metastatic disease. The purpose of this study is to identify prognostic factors other than tumor stage that can be used to predict the outcome of the patients with ACC. We used comparative genomic hybridization (CGH) to identify copy number aberrations in 53 primary ACCs. Array CGH and fluorescence in situ hybridization analysis was used to validate CGH results on selected cases. We correlated these copy number aberrations with clinicopathologic factors using Pearson's chi2 or by the two-tailed Fisher exact test. The disease-specific survival and disease-free intervals were generated by the Kaplan-Meier product limit method. Chromosomal losses (n = 134) were more frequent than gains (n = 74). The most frequent genetic change was the loss of 1p32-p36 in 44% of the cases followed by 6q23-q27, and 12q12-q14. The most frequently gained chromosomal regions were 8 and 18. Of the chromosomal aberrations, loss of 1p32-p36 was the only abnormality significantly associated with patient's outcome. This study, for the first time, identifies loss of 1p32-p36 as a significant aberration in ACC. Molecular characterization of 1p32-36 region using the available genomic technologies may lead to the identification of new genes critical to the development of novel therapeutic targets for this disease copy number aberration.

  2. Genomic Alteration in Head and Neck Squamous Cell Carcinoma (HNSCC) Cell Lines Inferred from Karyotyping, Molecular Cytogenetics, and Array Comparative Genomic Hybridization

    PubMed Central

    Rerkarmnuaychoke, Budsaba; Suntronpong, Aorarat; Fu, Beiyuan; Bodhisuwan, Winai; Peyachoknagul, Surin; Yang, Fengtang; Koontongkaew, Sittichai; Srikulnath, Kornsorn

    2016-01-01

    Genomic alteration in head and neck squamous cell carcinoma (HNSCC) was studied in two cell line pairs (HN30-HN31 and HN4-HN12) using conventional C-banding, multiplex fluorescence in situ hybridization (M-FISH), and array comparative genomic hybridization (array CGH). HN30 and HN4 were derived from primary lesions in the pharynx and base of tongue, respectively, and HN31 and HN12 were derived from lymph-node metastatic lesions belonging to the same patients. Gain of chromosome 1, 7, and 11 were shared in almost all cell lines. Hierarchical clustering revealed that HN31 was closely related to HN4, which shared eight chromosome alteration cases. Large C-positive heterochromatins were found in the centromeric region of chromosome 9 in HN31 and HN4, which suggests complex structural amplification of the repetitive sequence. Array CGH revealed amplification of 7p22.3p11.2, 8q11.23q12.1, and 14q32.33 in all cell lines involved with tumorigenesis and inflammation genes. The amplification of 2p21 (SIX3), 11p15.5 (H19), and 11q21q22.3 (MAML2, PGR, TRPC6, and MMP family) regions, and deletion of 9p23 (PTPRD) and 16q23.1 (WWOX) regions were identified in HN31 and HN12. Interestingly, partial loss of PTPRD (9p23) and WWOX (16q23.1) genes was identified in HN31 and HN12, and the level of gene expression tended to be the down-regulation of PTPRD, with no detectable expression of the WWOX gene. This suggests that the scarcity of PTPRD and WWOX genes might have played an important role in progression of HNSCC, and could be considered as a target for cancer therapy or a biomarker in molecular pathology. PMID:27501229

  3. Genome wide profiling in oral squamous cell carcinoma identifies a four genetic marker signature of prognostic significance

    PubMed Central

    Vincent-Chong, Vui King; Salahshourifar, Iman; Woo, Kar Mun; Anwar, Arif; Razali, Rozaimi; Gudimella, Ranganath; Rahman, Zainal Ariff Abdul; Ismail, Siti Mazlipah; Kallarakkal, Thomas George; Ramanathan, Anand; Wan Mustafa, Wan Mahadzir; Abraham, Mannil Thomas; Tay, Keng Kiong; Zain, Rosnah Binti

    2017-01-01

    Background Cancers of the oral cavity are primarily oral squamous cell carcinomas (OSCCs). Many of the OSCCs present at late stages with an exceptionally poor prognosis. A probable limitation in management of patients with OSCC lies in the insufficient knowledge pertaining to the linkage between copy number alterations in OSCC and oral tumourigenesis thereby resulting in an inability to deliver targeted therapy. Objectives The current study aimed to identify copy number alterations (CNAs) in OSCC using array comparative genomic hybridization (array CGH) and to correlate the CNAs with clinico-pathologic parameters and clinical outcomes. Materials and methods Using array CGH, genome-wide profiling was performed on 75 OSCCs. Selected genes that were harboured in the frequently amplified and deleted regions were validated using quantitative polymerase chain reaction (qPCR). Thereafter, pathway and network functional analysis were carried out using Ingenuity Pathway Analysis (IPA) software. Results Multiple chromosomal regions including 3q, 5p, 7p, 8q, 9p, 10p, 11q were frequently amplified, while 3p and 8p chromosomal regions were frequently deleted. These findings were in confirmation with our previous study using ultra-dense array CGH. In addition, amplification of 8q, 11q, 7p and 9p and deletion of 8p chromosomal regions showed a significant correlation with clinico-pathologic parameters such as the size of the tumour, metastatic lymph nodes and pathological staging. Co-amplification of 7p, 8q, 9p and 11q regions that harbored amplified genes namely CCND1, EGFR, TPM2 and LRP12 respectively, when combined, continues to be an independent prognostic factor in OSCC. Conclusion Amplification of 3q, 5p, 7p, 8q, 9p, 10p, 11q and deletion of 3p and 8p chromosomal regions were recurrent among OSCC patients. Co-alteration of 7p, 8q, 9p and 11q was found to be associated with clinico-pathologic parameters and poor survival. These regions contain genes that play critical roles in tumourigenesis pathways. PMID:28384287

  4. Quantitative PCR high-resolution melting (qPCR-HRM) curve analysis, a new approach to simultaneously screen point mutations and large rearrangements: application to MLH1 germline mutations in Lynch syndrome.

    PubMed

    Rouleau, Etienne; Lefol, Cédrick; Bourdon, Violaine; Coulet, Florence; Noguchi, Tetsuro; Soubrier, Florent; Bièche, Ivan; Olschwang, Sylviane; Sobol, Hagay; Lidereau, Rosette

    2009-06-01

    Several techniques have been developed to screen mismatch repair (MMR) genes for deleterious mutations. Until now, two different techniques were required to screen for both point mutations and large rearrangements. For the first time, we propose a new approach, called "quantitative PCR (qPCR) high-resolution melting (HRM) curve analysis (qPCR-HRM)," which combines qPCR and HRM to obtain a rapid and cost-effective method suitable for testing a large series of samples. We designed PCR amplicons to scan the MLH1 gene using qPCR HRM. Seventy-six patients were fully scanned in replicate, including 14 wild-type patients and 62 patients with known mutations (57 point mutations and five rearrangements). To validate the detected mutations, we used sequencing and/or hybridization on a dedicated MLH1 array-comparative genomic hybridization (array-CGH). All point mutations and rearrangements detected by denaturing high-performance liquid chromatography (dHPLC)+multiplex ligation-dependent probe amplification (MLPA) were successfully detected by qPCR HRM. Three large rearrangements were characterized with the dedicated MLH1 array-CGH. One variant was detected with qPCR HRM in a wild-type patient and was located within the reverse primer. One variant was not detected with qPCR HRM or with dHPLC due to its proximity to a T-stretch. With qPCR HRM, prescreening for point mutations and large rearrangements are performed in one tube and in one step with a single machine, without the need for any automated sequencer in the prescreening process. In replicate, its reagent cost, sensitivity, and specificity are comparable to those of dHPLC+MLPA techniques. However, qPCR HRM outperformed the other techniques in terms of its rapidity and amount of data provided.

  5. Microarray-based comparative genomic hybridization analysis in neonates with congenital anomalies: detection of chromosomal imbalances.

    PubMed

    Emy Dorfman, Luiza; Leite, Júlio César L; Giugliani, Roberto; Riegel, Mariluce

    2015-01-01

    To identify chromosomal imbalances by whole-genome microarray-based comparative genomic hybridization (array-CGH) in DNA samples of neonates with congenital anomalies of unknown cause from a birth defects monitoring program at a public maternity hospital. A blind genomic analysis was performed retrospectively in 35 stored DNA samples of neonates born between July of 2011 and December of 2012. All potential DNA copy number variations detected (CNVs) were matched with those reported in public genomic databases, and their clinical significance was evaluated. Out of a total of 35 samples tested, 13 genomic imbalances were detected in 12/35 cases (34.3%). In 4/35 cases (11.4%), chromosomal imbalances could be defined as pathogenic; in 5/35 (14.3%) cases, DNA CNVs of uncertain clinical significance were identified; and in 4/35 cases (11.4%), normal variants were detected. Among the four cases with results considered causally related to the clinical findings, two of the four (50%) showed causative alterations already associated with well-defined microdeletion syndromes. In two of the four samples (50%), the chromosomal imbalances found, although predicted as pathogenic, had not been previously associated with recognized clinical entities. Array-CGH analysis allowed for a higher rate of detection of chromosomal anomalies, and this determination is especially valuable in neonates with congenital anomalies of unknown etiology, or in cases in which karyotype results cannot be obtained. Moreover, although the interpretation of the results must be refined, this method is a robust and precise tool that can be used in the first-line investigation of congenital anomalies, and should be considered for prospective/retrospective analyses of DNA samples by birth defect monitoring programs. Copyright © 2014 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  6. High-density array-CGH with targeted NGS unmask multiple noncontiguous minute deletions on chromosome 3p21 in mesothelioma.

    PubMed

    Yoshikawa, Yoshie; Emi, Mitsuru; Hashimoto-Tamaoki, Tomoko; Ohmuraya, Masaki; Sato, Ayuko; Tsujimura, Tohru; Hasegawa, Seiki; Nakano, Takashi; Nasu, Masaki; Pastorino, Sandra; Szymiczek, Agata; Bononi, Angela; Tanji, Mika; Pagano, Ian; Gaudino, Giovanni; Napolitano, Andrea; Goparaju, Chandra; Pass, Harvey I; Yang, Haining; Carbone, Michele

    2016-11-22

    We used a custom-made comparative genomic hybridization array (aCGH; average probe interval 254 bp) to screen 33 malignant mesothelioma (MM) biopsies for somatic copy number loss throughout the 3p21 region (10.7 Mb) that harbors 251 genes, including BRCA1 (breast cancer 1)-associated protein 1 (BAP1), the most commonly mutated gene in MM. We identified frequent minute biallelic deletions (<3 kb) in 46 of 251 genes: four were cancer-associated genes: SETD2 (SET domain-containing protein 2) (7 of 33), BAP1 (8 of 33), PBRM1 (polybromo 1) (3 of 33), and SMARCC1 (switch/sucrose nonfermentable- SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily c, member 1) (2 of 33). These four genes were further investigated by targeted next-generation sequencing (tNGS), which revealed sequence-level mutations causing biallelic inactivation. Combined high-density aCGH and tNGS revealed biallelic gene inactivation in SETD2 (9 of 33, 27%), BAP1 (16 of 33, 48%), PBRM1 (5 of 33, 15%), and SMARCC1 (2 of 33, 6%). The incidence of genetic alterations detected is much higher than reported in the literature because minute deletions are not detected by NGS or commercial aCGH. Many of these minute deletions were not contiguous, but rather alternated with segments showing oscillating copy number changes along the 3p21 region. In summary, we found that in MM: (i) multiple minute simultaneous biallelic deletions are frequent in chromosome 3p21, where they occur as distinct events involving multiple genes; (ii) in addition to BAP1, mutations of SETD2, PBRM1, and SMARCC1 are frequent in MM; and (iii) our results suggest that high-density aCGH combined with tNGS provides a more precise estimate of the frequency and types of genes inactivated in human cancer than approaches based exclusively on NGS strategy.

  7. Prenatal diagnosis and molecular cytogenetic characterization of mosaicism for a small supernumerary marker chromosome derived from chromosome 22 associated with cat eye syndrome.

    PubMed

    Chen, Chih-Ping; Ko, Tsang-Ming; Chen, Yi-Yung; Su, Jun-Wei; Wang, Wayseen

    2013-09-15

    We present prenatal diagnosis of mosaicism for a small supernumerary marker chromosome (sSMC) derived from chromosome 22 associated with cat eye syndrome (CES) using cultured amniocytes in a pregnancy with fetal microcephaly, intrauterine growth restriction, left renal hypoplasia, total anomalous pulmonary venous return with dominant right heart and right ear deformity. The sSMC was bisatellited and dicentric, and was characterized by multiplex ligation-dependent probe amplification (MLPA) and array comparative genomic hybridization (aCGH). The SALSA MLPA P250-B1 DiGeorge Probemix showed duplication of gene dosage in the CES region. aCGH showed a 1.26-Mb duplication at 22q11.1-q11.21 encompassing CECR1-CECR7. The sSMC was likely inv dup(22) (q11.21). Prenatal diagnosis of an sSMC(22) at amniocentesis should alert CES. MLPA, aCGH and fetal ultrasound are useful for rapid diagnosis of CES in case of prenatally detected sSMC(22). Copyright © 2013 Elsevier B.V. All rights reserved.

  8. The Diagnostic Yield of Array Comparative Genomic Hybridization Is High Regardless of Severity of Intellectual Disability/Developmental Delay in Children.

    PubMed

    D'Arrigo, Stefano; Gavazzi, Francesco; Alfei, Enrico; Zuffardi, Orsetta; Montomoli, Cristina; Corso, Barbara; Buzzi, Erika; Sciacca, Francesca L; Bulgheroni, Sara; Riva, Daria; Pantaleoni, Chiara

    2016-05-01

    Microarray-based comparative genomic hybridization is a method of molecular analysis that identifies chromosomal anomalies (or copy number variants) that correlate with clinical phenotypes. The aim of the present study was to apply a clinical score previously designated by de Vries to 329 patients with intellectual disability/developmental disorder (intellectual disability/developmental delay) referred to our tertiary center and to see whether the clinical factors are associated with a positive outcome of aCGH analyses. Another goal was to test the association between a positive microarray-based comparative genomic hybridization result and the severity of intellectual disability/developmental delay. Microarray-based comparative genomic hybridization identified structural chromosomal alterations responsible for the intellectual disability/developmental delay phenotype in 16% of our sample. Our study showed that causative copy number variants are frequently found even in cases of mild intellectual disability (30.77%). We want to emphasize the need to conduct microarray-based comparative genomic hybridization on all individuals with intellectual disability/developmental delay, regardless of the severity, because the degree of intellectual disability/developmental delay does not predict the diagnostic yield of microarray-based comparative genomic hybridization. © The Author(s) 2015.

  9. Incidental findings on array comparative genomic hybridization: detection of carrier females of dystrophinopathy without any family history.

    PubMed

    Nguyen, K; Putoux, A; Busa, T; Cordier, M P; Sigaudy, S; Till, M; Chabrol, B; Michel-Calemard, L; Bernard, R; Julia, S; Malzac, P; Labalme, A; Missirian, C; Edery, P; Popovici, C; Philip, N; Sanlaville, D

    2015-05-01

    Array comparative genomic hybridization (aCGH) has progressively replaced conventional karyotype in the diagnostic strategy of intellectual disability (ID) and congenital malformations. This technique increases not only the diagnostic rate but also the possibility of finding unexpected variants unrelated to the indication of referral, namely incidental findings. The incidental finding of copy number variants (CNVs) located in X-linked genes in girls addresses the crucial question of genetic counseling in the family. We report here five cases of CNVs involving the dystrophin gene detected by aCGH in girls referred for developmental delay, without any family history of dystrophinopathy. The rearrangements included three in-frame deletions; one maternally and two paternally inherited, and two frameshift duplications: one de novo and one from undetermined inheritance. In two cases, the deletion identified in a girl was transmitted by the asymptomatic father. In the case of the maternally inherited deletion, prenatal diagnosis of dystrophinopathy was proposed for an ongoing pregnancy, whereas the cause of developmental delay in the index case remained unknown. Through these cases, we discussed the challenges of genetic counseling in the family, regarding the predictive issues for male individuals at risk for a muscular dystrophy without precise knowledge of the clinical consequences of some CNVs in the DMD gene. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Custom oligonucleotide array-based CGH: a reliable diagnostic tool for detection of exonic copy-number changes in multiple targeted genes

    PubMed Central

    Vasson, Aurélie; Leroux, Céline; Orhant, Lucie; Boimard, Mathieu; Toussaint, Aurélie; Leroy, Chrystel; Commere, Virginie; Ghiotti, Tiffany; Deburgrave, Nathalie; Saillour, Yoann; Atlan, Isabelle; Fouveaut, Corinne; Beldjord, Cherif; Valleix, Sophie; Leturcq, France; Dodé, Catherine; Bienvenu, Thierry; Chelly, Jamel; Cossée, Mireille

    2013-01-01

    The frequency of disease-related large rearrangements (referred to as copy-number mutations, CNMs) varies among genes, and search for these mutations has an important place in diagnostic strategies. In recent years, CGH method using custom-designed high-density oligonucleotide-based arrays allowed the development of a powerful tool for detection of alterations at the level of exons and made it possible to provide flexibility through the possibility of modeling chips. The aim of our study was to test custom-designed oligonucleotide CGH array in a diagnostic laboratory setting that analyses several genes involved in various genetic diseases, and to compare it with conventional strategies. To this end, we designed a 12-plex CGH array (135k; 135 000 probes/subarray) (Roche Nimblegen) with exonic and intronic oligonucleotide probes covering 26 genes routinely analyzed in the laboratory. We tested control samples with known CNMs and patients for whom genetic causes underlying their disorders were unknown. The contribution of this technique is undeniable. Indeed, it appeared reproducible, reliable and sensitive enough to detect heterozygous single-exon deletions or duplications, complex rearrangements and somatic mosaicism. In addition, it improves reliability of CNM detection and allows determination of boundaries precisely enough to direct targeted sequencing of breakpoints. All of these points, associated with the possibility of a simultaneous analysis of several genes and scalability ‘homemade' make it a valuable tool as a new diagnostic approach of CNMs. PMID:23340513

  11. Comparative cytogenetic characterization of primary canine melanocytic lesions using array CGH and fluorescence in situ hybridization

    PubMed Central

    Poorman, Kelsey; Borst, Luke; Moroff, Scott; Roy, Siddharth; Labelle, Philippe; Motsinger-Reif, Alison

    2017-01-01

    Melanocytic lesions originating from the oral mucosa or cutaneous epithelium are common in the general dog population, with up to 100,000 diagnoses each year in the USA. Oral melanoma is the most frequent canine neoplasm of the oral cavity, exhibiting a highly aggressive course. Cutaneous melanocytomas occur frequently, but rarely develop into a malignant form. Despite the differential prognosis, it has been assumed that subtypes of melanocytic lesions represent the same disease. To address the relative paucity of information about their genomic status, molecular cytogenetic analysis was performed on the three recognized subtypes of canine melanocytic lesions. Using array comparative genomic hybridization (aCGH) analysis, highly aberrant distinct copy number status across the tumor genome for both of the malignant melanoma subtypes was revealed. The most frequent aberrations included gain of dog chromosome (CFA) 13 and 17 and loss of CFA 22. Melanocytomas possessed fewer genome wide aberrations, yet showed a recurrent gain of CFA 20q15.3–17. A distinctive copy number profile, evident only in oral melanomas, displayed a sigmoidal pattern of copy number loss followed immediately by a gain, around CFA 30q14. Moreover, when assessed by fluorescence in situ hybridization (FISH), copy number aberrations of targeted genes, such as gain of c-MYC (80 % of cases) and loss of CDKN2A (68 % of cases), were observed. This study suggests that in concordance with what is known for human melanomas, canine melanomas of the oral mucosa and cutaneous epithelium are discrete and initiated by different molecular pathways. PMID:25511566

  12. Integrated analysis of copy number alteration and RNA expression profiles of cancer using a high-resolution whole-genome oligonucleotide array.

    PubMed

    Jung, Seung-Hyun; Shin, Seung-Hun; Yim, Seon-Hee; Choi, Hye-Sun; Lee, Sug-Hyung; Chung, Yeun-Jun

    2009-07-31

    Recently, microarray-based comparative genomic hybridization (array-CGH) has emerged as a very efficient technology with higher resolution for the genome-wide identification of copy number alterations (CNA). Although CNAs are thought to affect gene expression, there is no platform currently available for the integrated CNA-expression analysis. To achieve high-resolution copy number analysis integrated with expression profiles, we established human 30k oligoarray-based genome-wide copy number analysis system and explored the applicability of this system for integrated genome and transcriptome analysis using MDA-MB-231 cell line. We compared the CNAs detected by the oligoarray with those detected by the 3k BAC array for validation. The oligoarray identified the single copy difference more accurately and sensitively than the BAC array. Seventeen CNAs detected by both platforms in MDA-MB-231 such as gains of 5p15.33-13.1, 8q11.22-8q21.13, 17p11.2, and losses of 1p32.3, 8p23.3-8p11.21, and 9p21 were consistently identified in previous studies on breast cancer. There were 122 other small CNAs (mean size 1.79 mb) that were detected by oligoarray only, not by BAC-array. We performed genomic qPCR targeting 7 CNA regions, detected by oligoarray only, and one non-CNA region to validate the oligoarray CNA detection. All qPCR results were consistent with the oligoarray-CGH results. When we explored the possibility of combined interpretation of both DNA copy number and RNA expression profiles, mean DNA copy number and RNA expression levels showed a significant correlation. In conclusion, this 30k oligoarray-CGH system can be a reasonable choice for analyzing whole genome CNAs and RNA expression profiles at a lower cost.

  13. Application of bacterial artificial chromosome array-based comparative genomic hybridization and spectral karyotyping to the analysis of glioblastoma multiforme.

    PubMed

    Cowell, John K; Matsui, Sei-Ichi; Wang, Yong D; LaDuca, Jeffrey; Conroy, Jeffrey; McQuaid, Devin; Nowak, Norma J

    2004-05-01

    Identification of genetic losses and gains is valuable in analysis of brain tumors. Locus-by-locus analyses have revealed correlations between prognosis and response to chemotherapy and loss or gain of specific genes and loci. These approaches are labor intensive and do not provide a global view of the genetic changes within the tumor cells. Bacterial artificial chromosome (BAC) arrays, which cover the genome with an average resolution of less than 1 MbP, allow defining the sum total of these genetic changes in a single comparative genomic hybridization (CGH) experiment. These changes are directly overlaid on the human genome sequence, thus providing the extent of the amplification or deletion, reflected by a megabase position, and gene content of the abnormal region. Although this array-based CGH approach (CGHa) seems to detect the extent of the genetic changes in tumors reliably, it has not been robustly tested. We compared genetic changes in four newly derived, early-passage glioma cell lines, using spectral karyotyping (SKY) and CGHa. Chromosome changes seen in cell lines under SKY analysis were also detected with CGHa. In addition, CGHa detected cryptic genetic gains and losses and resolved the nature of subtle marker chromosomes that could not be resolved with SKY, thus providing distinct advantages over previous technologies. There was remarkable general concordance between the CGHa results comparing the cell lines to the original tumor, except that the magnitude of the changes seen in the tumor sample was generally suppressed compared with the cell lines, a consequence of normal cells contaminating the tumor sample. CGHa revealed changes in cell lines that were not present in the original tumors and vice versa, even when analyzed at the earliest passage possible, which highlights the adaptation of the cells to in vitro culture. CGHa proved to be highly accurate and efficient for identifying genetic changes in tumor cells. This approach can accurately identify subtle, novel genetic abnormalities in tumors directly linked to the human genome sequence. CGHa far surpasses the resolution and information provided by conventional metaphase CGH, without relying on in vitro culture of tumors for metaphase spreads.

  14. Quantitative analysis of comparative genomic hybridization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manoir, S. du; Bentz, M.; Joos, S.

    1995-01-01

    Comparative genomic hybridization (CGH) is a new molecular cytogenetic method for the detection of chromosomal imbalances. Following cohybridization of DNA prepared from a sample to be studied and control DNA to normal metaphase spreads, probes are detected via different fluorochromes. The ratio of the test and control fluorescence intensities along a chromosome reflects the relative copy number of segments of a chromosome in the test genome. Quantitative evaluation of CGH experiments is required for the determination of low copy changes, e.g., monosomy or trisomy, and for the definition of the breakpoints involved in unbalanced rearrangements. In this study, a programmore » for quantitation of CGH preparations is presented. This program is based on the extraction of the fluorescence ratio profile along each chromosome, followed by averaging of individual profiles from several metaphase spreads. Objective parameters critical for quantitative evaluations were tested, and the criteria for selection of suitable CGH preparations are described. The granularity of the chromosome painting and the regional inhomogeneity of fluorescence intensities in metaphase spreads proved to be crucial parameters. The coefficient of variation of the ratio value for chromosomes in balanced state (CVBS) provides a general quality criterion for CGH experiments. Different cutoff levels (thresholds) of average fluorescence ratio values were compared for their specificity and sensitivity with regard to the detection of chromosomal imbalances. 27 refs., 15 figs., 1 tab.« less

  15. FISH reanalysis of inner cell mass and trophectoderm samples of previously array-CGH screened blastocysts shows high accuracy of diagnosis and no major diagnostic impact of mosaicism at the blastocyst stage.

    PubMed

    Capalbo, Antonio; Wright, Graham; Elliott, Thomas; Ubaldi, Filippo Maria; Rienzi, Laura; Nagy, Zsolt Peter

    2013-08-01

    Does comprehensive chromosome screening (CCS) of cells sampled from the blastocyst trophectoderm (TE) accurately predict the chromosome complement of the inner cell mass (ICM)? Comprehensive chromosome screening of a TE sample is unlikely to be confounded by mosaicism and has the potential for high diagnostic accuracy. The effectiveness of chromosome aneuploidy screening is limited by the technologies available and chromosome mosaicism in the embryo. Combined with improving methods for cryopreservation and blastocyst culture, TE biopsy and CCS is considered to be a promising approach to select diploid embryos for transfer. The study was performed between January 2011 and August 2011. In the first part, a new ICM isolation method was developed and tested on 20 good morphology blastocysts. In the main phase of the study, fluorescence in situ hybridization (FISH) was used to reanalyse the ICMs and TEs separated from 70 embryos obtained from 26 patients undergoing blastocyst stage array comparative genome hybridization (aCGH) PGS cycles. The isolated ICM and TE fractions were characterized by immunostaining for KRT18. Then, non-transferrable cryopreserved embryos were selected for the FISH reanalysis based on previous genetic diagnosis obtained by TE aCGH analysis. Blastocysts either diploid for chromosome copy number (20) or diagnosed as single- (40) or double aneuploid (10) were included after preparing the embryo into one ICM and three equal-sized TE sections. Accuracy of the aCGH was measured based on FISH reanalysis. Chromosomal segregations resulting in diploid/aneuploid mosaicism were classified as 'low-', 'medium-' and 'high-' grade and categorized with respect to their distribution (1TE, 2TE, 3TE, ICM or ALL embryo). Linear regression model was used to test the relationship between the distributions and the proportion of aneuploid cells across the four embryo sections. Fisher's exact test was used to test for random allocation of aneuploid cells between TE and ICM. All ICM biopsy procedures displayed ICM cells in the recovered fraction with a mean number of ICM cells of 26.2 and a mean TE cell contamination rate of 2%. By FISH reanalysis of previously aCGH-screened blastocysts, a total of 66 aneuploidies were scored, 52 (78.8%) observed in all cells and 14 (21.2%) mosaic. Overall, mosaic chromosomal errors were observed only in 11 out of 70 blastocysts (15.7%) but only 2 cases were classified as mosaic diploid/aneuploid (2.9%). Sensitivity and specificity of aCGH on TE clinical biopsies were 98.0 and 100% per embryo and 95.2 and 99.8% per chromosome, respectively. Linear regression analysis performed on the 11 mosaic diploid/aneuploid chromosomal segregations showed a significant positive correlation between the distribution and the proportion of aneuploid cells across the four-blastocyst sections (P < 0.01). In addition, regression analysis revealed that both the grade and the distribution of mosaic abnormal cells were significantly correlated with the likelihood of being diagnosed by aCGH performed on clinical TE biopsies (P = 0.019 and P < 0.01, respectively). Fisher's exact test for the 66 aneuploidies recorded showed no preferential allocation of abnormal cells between ICM and TE (P = 0.33). The study is limited to non-transferable embryos, reanalyzed for only nine chromosomes and excludes segmental imbalance and uniparental disomy. The prevalence of aneuploidy in the study group is likely to be higher than in the general population of clinical PGD embryos. This study showed high accuracy of diagnosis achievable during blastocyst stage PGS cycles coupled with 24-chromosomes molecular karyotyping analysis. The new ICM isolation strategy developed may open new possibilities for basic research in embryology and for clinical grade derivation of human embryonic stem cells. No specific funding was sought or obtained for this study.

  16. Assessment of copy number variations in 120 patients with Poland syndrome.

    PubMed

    Vaccari, Carlotta Maria; Tassano, Elisa; Torre, Michele; Gimelli, Stefania; Divizia, Maria Teresa; Romanini, Maria Victoria; Bossi, Simone; Musante, Ilaria; Valle, Maura; Senes, Filippo; Catena, Nunzio; Bedeschi, Maria Francesca; Baban, Anwar; Calevo, Maria Grazia; Acquaviva, Massimo; Lerone, Margherita; Ravazzolo, Roberto; Puliti, Aldamaria

    2016-11-25

    Poland Syndrome (PS) is a rare congenital disorder presenting with agenesis/hypoplasia of the pectoralis major muscle variably associated with thoracic and/or upper limb anomalies. Most cases are sporadic, but familial recurrence, with different inheritance patterns, has been observed. The genetic etiology of PS remains unknown. Karyotyping and array-comparative genomic hybridization (CGH) analyses can identify genomic imbalances that can clarify the genetic etiology of congenital and neurodevelopmental disorders. We previously reported a chromosome 11 deletion in twin girls with pectoralis muscle hypoplasia and skeletal anomalies, and a chromosome six deletion in a patient presenting a complex phenotype that included pectoralis muscle hypoplasia. However, the contribution of genomic imbalances to PS remains largely unknown. To investigate the prevalence of chromosomal imbalances in PS, standard cytogenetic and array-CGH analyses were performed in 120 PS patients. Following the application of stringent filter criteria, 14 rare copy number variations (CNVs) were identified in 14 PS patients in different regions outside known common copy number variations: seven genomic duplications and seven genomic deletions, enclosing the two previously reported PS associated chromosomal deletions. These CNVs ranged from 0.04 to 4.71 Mb in size. Bioinformatic analysis of array-CGH data indicated gene enrichment in pathways involved in cell-cell adhesion, DNA binding and apoptosis processes. The analysis also provided a number of candidate genes possibly causing the developmental defects observed in PS patients, among others REV3L, a gene coding for an error-prone DNA polymerase previously associated with Möbius Syndrome with variable phenotypes including pectoralis muscle agenesis. A number of rare CNVs were identified in PS patients, and these involve genes that represent candidates for further evaluation. Rare inherited CNVs may contribute to, or represent risk factors of PS in a multifactorial mode of inheritance.

  17. The effect of first chromosome long arm duplication on survival of endometrial carcinoma

    PubMed Central

    Sever, Erman; Doğer, Emek; Çakıroğlu, Yiğit; Sünnetçi, Deniz; Çine, Naci; Savlı, Hakan; Yücesoy, İzzet

    2014-01-01

    Objective: The aim of this study is to investigate the effect of first chromosome long arm duplication (dup(1q)) in cases with endometrial carcinoma detected with array based comperative genomic hybridization (aCGH) on survival from the cancer. Materials and Methods: A total of 53 patients with the diagnosis of endometrial carcinom due to endometrial biopsy and who have been operated for this reason have been allocated in the study. Frozen section biopsy and staging surgery have been performed for all the cases. Samples obtained from the tumoral mass have been investigated for chromosomal aberrations with aCGH method. Kaplan-Meier and Cox-regression analysis have been performed for survival analysis. Results: Among 53 cases with endometrial carcinomas, dup(1q) was diagnosed in 14 (26.4%) of the cases. For the patient group that has been followed-up for 24 months (3-33 months), dup(1q) (p=.01), optimal cytoreduction (p<.001), lymph node positivity (p=.006), tumor stage >1 (p=.006) and presence of high risk tumor were the factors that were associated with survival. Cox-regression analysis has revealed that optimal cytoreduction was the most important prognostic factor (p=.02). Conclusion: Presence of 1q duplication can be used as a prognostic factor in the preoperative period. PMID:28913021

  18. Application of array-comparative genomic hybridization in tetralogy of Fallot

    PubMed Central

    Liu, Lin; Wang, Hong-Dan; Cui, Cun-Ying; Wu, Dong; Li, Tao; Fan, Tai-Bing; Peng, Bang-Tian; Zhang, Lian-Zhong; Wang, Cheng-Zeng

    2016-01-01

    Abstract To explore the underlying pathogenesis and provide references for genetic counseling and prenatal gene diagnosis, we analyzed the chromosome karyotypes and genome-wide copy number variations (CNVs) in 86 patients with tetralogy of Fallot (TOF) by G-banding karyotype analysis and array-comparative genomic hybridization (aCGH), respectively. And then quantitative polymerase chain reaction was used to validate these candidate CNVs. Based on their different properties, CNVs were categorized into benign CNVs, suspiciously pathogenic CNVs, and indefinite CNVs. Data analysis was based on public databases such as UCSC, DECIPHER, DGV, ISCA, and OMIM. The karyotype was normal in all the 86 patients with TOF. CNVs were detected in 11 patients by aCGH and quantitative polymerase chain reaction. Patient no. 0001, 0010, and 0029 had 2.52-Mb deletion in the chromosome 22q11.21 region; patient no. 0008 had both 595- and 428-kb duplications, respectively, in 12p12.3p12.2 and 14q23.2q23.3 regions; patient no. 0009 had 1.46-Mb duplication in the 1q21.1q21.2 region; patient no. 0016 had 513-kb duplication in the 1q42.13 region; patient no. 0024 had 292-kb duplication in the 16q11.2 region; patient no. 0026 had 270-kb duplication in the 16q24.1 region; patient no. 0028 had 222-kb deletion in the 7q31.1 region; patient no. 0033 had 1.73-Mb duplication in the 17q12 region; and patient no. 0061 had 5.79-Mb deletion in the 1p36.33p36.31 region. aCGH can accurately detect CNVs in the patients with TOF. This is conducive to genetic counseling and prenatal diagnosis for TOF and provides a new clue and theoretical basis for exploring the pathogenesis of congenital heart disease. PMID:27930557

  19. Application of array-comparative genomic hybridization in tetralogy of Fallot.

    PubMed

    Liu, Lin; Wang, Hong-Dan; Cui, Cun-Ying; Wu, Dong; Li, Tao; Fan, Tai-Bing; Peng, Bang-Tian; Zhang, Lian-Zhong; Wang, Cheng-Zeng

    2016-12-01

    To explore the underlying pathogenesis and provide references for genetic counseling and prenatal gene diagnosis, we analyzed the chromosome karyotypes and genome-wide copy number variations (CNVs) in 86 patients with tetralogy of Fallot (TOF) by G-banding karyotype analysis and array-comparative genomic hybridization (aCGH), respectively. And then quantitative polymerase chain reaction was used to validate these candidate CNVs. Based on their different properties, CNVs were categorized into benign CNVs, suspiciously pathogenic CNVs, and indefinite CNVs. Data analysis was based on public databases such as UCSC, DECIPHER, DGV, ISCA, and OMIM.The karyotype was normal in all the 86 patients with TOF. CNVs were detected in 11 patients by aCGH and quantitative polymerase chain reaction. Patient no. 0001, 0010, and 0029 had 2.52-Mb deletion in the chromosome 22q11.21 region; patient no. 0008 had both 595- and 428-kb duplications, respectively, in 12p12.3p12.2 and 14q23.2q23.3 regions; patient no. 0009 had 1.46-Mb duplication in the 1q21.1q21.2 region; patient no. 0016 had 513-kb duplication in the 1q42.13 region; patient no. 0024 had 292-kb duplication in the 16q11.2 region; patient no. 0026 had 270-kb duplication in the 16q24.1 region; patient no. 0028 had 222-kb deletion in the 7q31.1 region; patient no. 0033 had 1.73-Mb duplication in the 17q12 region; and patient no. 0061 had 5.79-Mb deletion in the 1p36.33p36.31 region.aCGH can accurately detect CNVs in the patients with TOF. This is conducive to genetic counseling and prenatal diagnosis for TOF and provides a new clue and theoretical basis for exploring the pathogenesis of congenital heart disease.

  20. Quantitative real-time polymerase chain reaction for the verification of genomic imbalances detected by microarray-based comparative genomic hybridization.

    PubMed

    Yu, Shihui; Kielt, Matthew; Stegner, Andrew L; Kibiryeva, Nataliya; Bittel, Douglas C; Cooley, Linda D

    2009-12-01

    The American College of Medical Genetics guidelines for microarray analysis for constitutional cytogenetic abnormalities require abnormal or ambiguous results from microarray-based comparative genomic hybridization (aCGH) analysis be confirmed by an alternative method. We employed quantitative real-time polymerase chain reaction (qPCR) technology using SYBR Green I reagents for confirmation of 93 abnormal aCGH results (50 deletions and 43 duplications) and 54 parental samples. A novel qPCR protocol using DNA sequences coding for X-linked lethal diseases in males for designing reference primers was established. Of the 81 sets of test primers used for confirmation of 93 abnormal copy number variants (CNVs) in 80 patients, 71 sets worked after the initial primer design (88%), 9 sets were redesigned once, and 1 set twice because of poor amplification. Fifty-four parental samples were tested using 33 sets of test primers to follow up 34 CNVs in 30 patients. Nineteen CNVs were confirmed as inherited, 13 were negative in both parents, and 2 were inconclusive due to a negative result in a single parent. The qPCR assessment clarified aCGH results in two cases and corrected a fluorescence in situ hybridization result in one case. Our data illustrate that qPCR methodology using SYBR Green I reagents is accurate, highly sensitive, specific, rapid, and cost-effective for verification of chromosomal imbalances detected by aCGH in the clinical setting.

  1. Deletion of UBE3A in brothers with Angelman syndrome at the breakpoint with an inversion at 15q11.2.

    PubMed

    Kuroda, Yukiko; Ohashi, Ikuko; Saito, Toshiyuki; Nagai, Jun-Ichi; Ida, Kazumi; Naruto, Takuya; Wada, Takahito; Kurosawa, Kenji

    2014-11-01

    Angelman syndrome (AS) is characterized by severe intellectual disability with ataxia, epilepsy, and behavioral uniqueness. The underlining molecular deficit is the absence of the maternal copy of the imprinted UBE3A gene due to maternal deletions, which is observed in 70-75% of cases, and can be detected using fluorescent in situ hybridization (FISH) of the UBE3A region. Only a few familial AS cases have been reported with a complete deletion of UBE3A. Here, we report on siblings with AS caused by a microdeletion of 15q11.2-q12 encompassing UBE3A at the breakpoint of an inversion at 15q11.2 and 15q26.1. Karyotyping revealed an inversion of 15q, and FISH revealed the deletion of the UBE3A region. Array comparative genomic hybridization (CGH) demonstrated a 467 kb deletion at 15q11.2-q12, encompassing only UBE3A, SNORD115, and PAR1, and a 53 kb deletion at 15q26.1, encompassing a part of SLCO3A1. Their mother had a normal karyotype and array CGH detected no deletion of 15q11.2-q12, so we assumed gonadal mosaicism. This report describes a rare type of familial AS detected using the D15S10 FISH test. © 2014 Wiley Periodicals, Inc.

  2. Selection of single blastocysts for fresh transfer via standard morphology assessment alone and with array CGH for good prognosis IVF patients: results from a randomized pilot study

    PubMed Central

    2012-01-01

    Background Single embryo transfer (SET) remains underutilized as a strategy to reduce multiple gestation risk in IVF, and its overall lower pregnancy rate underscores the need for improved techniques to select one embryo for fresh transfer. This study explored use of comprehensive chromosomal screening by array CGH (aCGH) to provide this advantage and improve pregnancy rate from SET. Methods First-time IVF patients with a good prognosis (age <35, no prior miscarriage) and normal karyotype seeking elective SET were prospectively randomized into two groups: In Group A, embryos were selected on the basis of morphology and comprehensive chromosomal screening via aCGH (from d5 trophectoderm biopsy) while Group B embryos were assessed by morphology only. All patients had a single fresh blastocyst transferred on d6. Laboratory parameters and clinical pregnancy rates were compared between the two groups. Results For patients in Group A (n = 55), 425 blastocysts were biopsied and analyzed via aCGH (7.7 blastocysts/patient). Aneuploidy was detected in 191/425 (44.9%) of blastocysts in this group. For patients in Group B (n = 48), 389 blastocysts were microscopically examined (8.1 blastocysts/patient). Clinical pregnancy rate was significantly higher in the morphology + aCGH group compared to the morphology-only group (70.9 and 45.8%, respectively; p = 0.017); ongoing pregnancy rate for Groups A and B were 69.1 vs. 41.7%, respectively (p = 0.009). There were no twin pregnancies. Conclusion Although aCGH followed by frozen embryo transfer has been used to screen at risk embryos (e.g., known parental chromosomal translocation or history of recurrent pregnancy loss), this is the first description of aCGH fully integrated with a clinical IVF program to select single blastocysts for fresh SET in good prognosis patients. The observed aneuploidy rate (44.9%) among biopsied blastocysts highlights the inherent imprecision of SET when conventional morphology is used alone. Embryos randomized to the aCGH group implanted with greater efficiency, resulted in clinical pregnancy more often, and yielded a lower miscarriage rate than those selected without aCGH. Additional studies are needed to verify our pilot data and confirm a role for on-site, rapid aCGH for IVF patients contemplating fresh SET. PMID:22551456

  3. Peritoneal Mesothelioma with Residential Asbestos Exposure. Report of a Case with Long Survival (Seventeen Years) Analyzed by Cgh-Array.

    PubMed

    Serio, Gabriella; Pezzuto, Federica; Marzullo, Andrea; Scattone, Anna; Cavone, Domenica; Punzi, Alessandra; Fortarezza, Francesco; Gentile, Mattia; Buonadonna, Antonia Lucia; Barbareschi, Mattia; Vimercati, Luigi

    2017-08-22

    Malignant mesothelioma is a rare and aggressive tumor with limited therapeutic options. We report a case of a malignant peritoneal mesothelioma (MPM) epithelioid type, with environmental asbestos exposure, in a 36-year-old man, with a long survival (17 years). The patient received standard treatment which included cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC). Molecular analysis with comparative genomic hybridization (CGH)-array was performed on paraffin-embedded tumoral samples. Multiple chromosomal imbalances were detected. The gains were prevalent. Losses at 1q21, 2q11.1→q13, 8p23.1, 9p12→p11, 9q21.33→q33.1, 9q12→q21.33, and 17p12→p11.2 are observed. Chromosome band 3p21 ( BAP1 ), 9p21 ( CDKN2A ) and 22q12 ( NF2 ) are not affected. Conclusions: the defects observed in this case are uncommon in malignant peritoneal mesothelioma. Some chromosomal aberrations that appear to be random here, might actually be relevant events explaining the response to therapy, the long survival and, finally, may be considered useful prognostic factors in peritoneal malignant mesothelioma (PMM).

  4. Correlation between DNA ploidy, metaphase high-resolution comparative genomic hybridization results and clinical outcome of synovial sarcoma

    PubMed Central

    2011-01-01

    Background Although synovial sarcoma is the 3rd most commonly occurring mesenchymal tumor in young adults, usually with a highly aggressive clinical course; remarkable differences can be seen regarding the clinical outcome. According to comparative genomic hybridization (CGH) data published in the literature, the simple and complex karyotypes show a correlation between the prognosis and clinical outcome. In addition, the connection between DNA ploidy and clinical course is controversial. The aim of this study was using a fine-tuning interpretation of our DNA ploidy results and to compare these with metaphase high-resolution CGH (HR-CGH) results. Methods DNA ploidy was determined on Feulgen-stained smears in 56 synovial sarcoma cases by image cytometry; follow up was available in 46 cases (average: 78 months). In 9 cases HR-CGH analysis was also available. Results 10 cases were found DNA-aneuploid, 46 were DNA-diploid by image cytometry. With fine-tuning of the diploid cases according to the 5c exceeding events (single cell aneuploidy), 33 cases were so called "simple-diploid" (without 5c exceeding events) and 13 cases were "complex-diploid"; containing 5c exceeding events (any number). Aneuploid tumors contained large numbers of genetic alterations with the sum gain of at least 2 chromosomes (A-, B- or C-group) detected by HR-CGH. In the "simple-diploid" cases no or few genetic alterations could be detected, whereas the "complex-diploid" samples numerous aberrations (equal or more than 3) could be found. Conclusions Our results show a correlation between the DNA-ploidy, a fine-tuned DNA-ploidy and the HR-CGH results. Furthermore, we found significant correlation between the different ploidy groups and the clinical outcome (p < 0.05). PMID:22053830

  5. WebaCGH: an interactive online tool for the analysis and display of array comparative genomic hybridisation data.

    PubMed

    Frankenberger, Casey; Wu, Xiaolin; Harmon, Jerry; Church, Deanna; Gangi, Lisa M; Munroe, David J; Urzúa, Ulises

    2006-01-01

    Gene copy number variations occur both in normal cells and in numerous pathologies including cancer and developmental diseases. Array comparative genomic hybridisation (aCGH) is an emerging technology that allows detection of chromosomal gains and losses in a high-resolution format. When aCGH is performed on cDNA and oligonucleotide microarrays, the impact of DNA copy number on gene transcription profiles may be directly compared. We have created an online software tool, WebaCGH, that functions to (i) upload aCGH and gene transcription results from multiple experiments; (ii) identify significant aberrant regions using a local Z-score threshold in user-selected chromosomal segments subjected to smoothing with moving averages; and (iii) display results in a graphical format with full genome and individual chromosome views. In the individual chromosome display, data can be zoomed in/out in both dimensions (i.e. ratio and physical location) and plotted features can have 'mouse over' linking to outside databases to identify loci of interest. Uploaded data can be stored indefinitely for subsequent retrieval and analysis. WebaCGH was created as a Java-based web application using the open-source database MySQL. WebaCGH is freely accessible at http://129.43.22.27/WebaCGH/welcome.htm Xiaolin Wu (forestwu@mail.nih.gov) or Ulises Urzúa (uurzua@med.uchile.cl).

  6. The pitfalls of platform comparison: DNA copy number array technologies assessed

    PubMed Central

    2009-01-01

    Background The accurate and high resolution mapping of DNA copy number aberrations has become an important tool by which to gain insight into the mechanisms of tumourigenesis. There are various commercially available platforms for such studies, but there remains no general consensus as to the optimal platform. There have been several previous platform comparison studies, but they have either described older technologies, used less-complex samples, or have not addressed the issue of the inherent biases in such comparisons. Here we describe a systematic comparison of data from four leading microarray technologies (the Affymetrix Genome-wide SNP 5.0 array, Agilent High-Density CGH Human 244A array, Illumina HumanCNV370-Duo DNA Analysis BeadChip, and the Nimblegen 385 K oligonucleotide array). We compare samples derived from primary breast tumours and their corresponding matched normals, well-established cancer cell lines, and HapMap individuals. By careful consideration and avoidance of potential sources of bias, we aim to provide a fair assessment of platform performance. Results By performing a theoretical assessment of the reproducibility, noise, and sensitivity of each platform, notable differences were revealed. Nimblegen exhibited between-replicate array variances an order of magnitude greater than the other three platforms, with Agilent slightly outperforming the others, and a comparison of self-self hybridizations revealed similar patterns. An assessment of the single probe power revealed that Agilent exhibits the highest sensitivity. Additionally, we performed an in-depth visual assessment of the ability of each platform to detect aberrations of varying sizes. As expected, all platforms were able to identify large aberrations in a robust manner. However, some focal amplifications and deletions were only detected in a subset of the platforms. Conclusion Although there are substantial differences in the design, density, and number of replicate probes, the comparison indicates a generally high level of concordance between platforms, despite differences in the reproducibility, noise, and sensitivity. In general, Agilent tended to be the best aCGH platform and Affymetrix, the superior SNP-CGH platform, but for specific decisions the results described herein provide a guide for platform selection and study design, and the dataset a resource for more tailored comparisons. PMID:19995423

  7. Genotype–phenotype correlations in Down syndrome identified by array CGH in 30 cases of partial trisomy and partial monosomy chromosome 21

    PubMed Central

    Lyle, Robert; Béna, Frédérique; Gagos, Sarantis; Gehrig, Corinne; Lopez, Gipsy; Schinzel, Albert; Lespinasse, James; Bottani, Armand; Dahoun, Sophie; Taine, Laurence; Doco-Fenzy, Martine; Cornillet-Lefèbvre, Pascale; Pelet, Anna; Lyonnet, Stanislas; Toutain, Annick; Colleaux, Laurence; Horst, Jürgen; Kennerknecht, Ingo; Wakamatsu, Nobuaki; Descartes, Maria; Franklin, Judy C; Florentin-Arar, Lina; Kitsiou, Sophia; Aït Yahya-Graison, Emilie; Costantine, Maher; Sinet, Pierre-Marie; Delabar, Jean M; Antonarakis, Stylianos E

    2009-01-01

    Down syndrome (DS) is one of the most frequent congenital birth defects, and the most common genetic cause of mental retardation. In most cases, DS results from the presence of an extra copy of chromosome 21. DS has a complex phenotype, and a major goal of DS research is to identify genotype–phenotype correlations. Cases of partial trisomy 21 and other HSA21 rearrangements associated with DS features could identify genomic regions associated with specific phenotypes. We have developed a BAC array spanning HSA21q and used array comparative genome hybridization (aCGH) to enable high-resolution mapping of pathogenic partial aneuploidies and unbalanced translocations involving HSA21. We report the identification and mapping of 30 pathogenic chromosomal aberrations of HSA21 consisting of 19 partial trisomies and 11 partial monosomies for different segments of HSA21. The breakpoints have been mapped to within ∼85 kb. The majority of the breakpoints (26 of 30) for the partial aneuploidies map within a 10-Mb region. Our data argue against a single DS critical region. We identify susceptibility regions for 25 phenotypes for DS and 27 regions for monosomy 21. However, most of these regions are still broad, and more cases are needed to narrow down the phenotypic maps to a reasonable number of candidate genomic elements per phenotype. PMID:19002211

  8. Partial duplication of chromosome 19 associated with syndromic duane retraction syndrome.

    PubMed

    Abu-Amero, Khaled K; Kondkar, Altaf A; Al Otaibi, Abdullah; Alorainy, Ibrahim A; Khan, Arif O; Hellani, Ali M; Oystreck, Darren T; Bosley, Thomas M

    2015-03-01

    To evaluate possible monogenic and chromosomal anomalies in a patient with unilateral Duane retraction syndrome, modest dysmorphism, cerebral white matter abnormalities, and normal cognitive function. Performing high-resolution array comparative genomic hybridization (array CGH) and sequencing of HOXA1, KIF21A, SALL4, and CHN1 genes. The proband had unilateral Duane retraction syndrome (DRS) type III on the right with low-set ears, prominent forehead, clinodactyly, and a history of frequent infections during early childhood. Motor development and cognitive function were normal. Parents were not related, and no other family member was similarly affected. MRI revealed multiple small areas of high signal on T2 weighted images in cerebral white matter oriented along white matter tracts. Sequencing of HOXA1, KIF21A, SALL4, and CHN1 did not reveal any mutation(s). Array CGH showed a 95 Kb de novo duplication on chromosome 19q13.4 encompassing four killer cell immunoglobulin-like receptor (KIR) genes. Conclusions. KIR genes have not previously been linked to a developmental syndrome, although they are known to be expressed in the human brain and brainstem and to be associated with certain infections and autoimmune diseases, including some affecting the nervous system. DRS and brain neuroimaging abnormalities may imply a central and peripheral oligodendrocyte abnormality related in some fashion to an immunomodulatory disturbance.

  9. Copy number variations of genes involved in stress responses reflect the redox state and DNA damage in brewing yeasts.

    PubMed

    Adamczyk, Jagoda; Deregowska, Anna; Skoneczny, Marek; Skoneczna, Adrianna; Natkanska, Urszula; Kwiatkowska, Aleksandra; Rawska, Ewa; Potocki, Leszek; Kuna, Ewelina; Panek, Anita; Lewinska, Anna; Wnuk, Maciej

    2016-09-01

    The yeast strains of the Saccharomyces sensu stricto complex involved in beer production are a heterogeneous group whose genetic and genomic features are not adequately determined. Thus, the aim of the present study was to provide a genetic characterization of selected group of commercially available brewing yeasts both ale top-fermenting and lager bottom-fermenting strains. Molecular karyotyping revealed that the diversity of chromosome patterns and four strains with the most accented genetic variabilities were selected and subjected to genome-wide array-based comparative genomic hybridization (array-CGH) analysis. The differences in the gene copy number were found in five functional gene categories: (1) maltose metabolism and transport, (2) response to toxin, (3) siderophore transport, (4) cellular aldehyde metabolic process, and (5) L-iditol 2-dehydrogenase activity (p < 0.05). In the Saflager W-34/70 strain (Fermentis) with the most affected array-CGH profile, loss of aryl-alcohol dehydrogenase (AAD) gene dosage correlated with an imbalanced redox state, oxidative DNA damage and breaks, lower levels of nucleolar proteins Nop1 and Fob1, and diminished tolerance to fermentation-associated stress stimuli compared to other strains. We suggest that compromised stress response may not only promote oxidant-based changes in the nucleolus state that may affect fermentation performance but also provide novel directions for future strain improvement.

  10. Identification of a duplication within the GDF9 gene and novel candidate genes for primary ovarian insufficiency (POI) by a customized high-resolution array comparative genomic hybridization platform.

    PubMed

    Norling, A; Hirschberg, A L; Rodriguez-Wallberg, K A; Iwarsson, E; Wedell, A; Barbaro, M

    2014-08-01

    Can high-resolution array comparative genomic hybridization (CGH) analysis of DNA samples from women with primary ovarian insufficiency (POI) improve the diagnosis of the condition and identify novel candidate genes for POI? A mutation affecting the regulatory region of growth differentiation factor 9 (GDF9) was identified for the first time together with several novel candidate genes for POI. Most patients with POI do not receive a molecular diagnosis despite a significant genetic component in the pathogenesis. We performed a case-control study. Twenty-six patients were analyzed by array CGH for identification of copy number variants. Novel changes were investigated in 95 controls and in a separate population of 28 additional patients with POI. The experimental procedures were performed during a 1-year period. DNA samples from 26 patients with POI were analyzed by a customized 1M array-CGH platform with whole genome coverage and probe enrichment targeting 78 genes in sex development. By PCR amplification and sequencing, the breakpoint of an identified partial GDF9 gene duplication was characterized. A multiplex ligation-dependent probe amplification (MLPA) probe set for specific identification of deletions/duplications affecting GDF9 was developed. An MLPA probe set for the identification of additional cases or controls carrying novel candidate regions identified by array-CGH was developed. Sequencing of three candidate genes was performed. Eleven unique copy number changes were identified in a total of 11 patients, including a tandem duplication of 475 bp, containing part of the GDF9 gene promoter region. The duplicated region contains three NOBOX-binding elements and an E-box, important for GDF9 gene regulation. This aberration is likely causative of POI. Fifty-four patients were investigated for copy number changes within GDF9, but no additional cases were found. Ten aberrations constituting novel candidate regions were detected, including a second DNAH6 deletion in a patient with POI. Other identified candidate genes were TSPYL6, SMARCC1, CSPG5 and ZFR2. This is a descriptive study and no functional experiments were performed. The study illustrates the importance of analyzing small copy number changes in addition to sequence alterations in the genetic investigation of patients with POI. Also, promoter regions should be included in the investigation. The study was supported by grants from the Swedish Research council (project no 12198 to A.W. and project no 20324 to A.L.H.), Stockholm County Council (E.I., A.W. and K.R.W.), Foundation Frimurare Barnhuset (A.N., A.W. and M.B.), Karolinska Institutet (A.N., A.L.H., E.I., A.W. and M.B.), Novo Nordic Foundation (A.W.) and Svenska Läkaresällskapet (M.B.). The funding sources had no involvement in the design or analysis of the study. The authors have no competing interests to declare. Not applicable. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology.

  11. Genomic analysis of CD8+ NK/T cell line, ‘SRIK-NKL’, with array-based CGH (aCGH), SKY/FISH and molecular mapping

    PubMed Central

    Rossi, Michael; LaDuca, Jeff; Cowell, John; Srivastava, Bejai I.S.; Matsui, Sei-ichi

    2010-01-01

    We performed aCGH, SKY /FISH, molecular mapping and expression analyses on a permanent CD8+ NK/T cell line, ‘SRIK-NKL’ established from a lymphoma (ALL) patient, in attempt to define the fundamental genetic profile of its unique NK phenotypes. aCGH revealed hemizygous deletion of 6p containing genes responsible for hematopoietic functions. The SKY demonstrated that a constitutive reciprocal translocation, rcpt(5;14)(p13.2;q11) is a stable marker. Using somatic hybrids containing der(5) derived from SRIK-NKL, we found that the breakpoint in one homologue of no. 5 is located upstream of IL7R and also that the breakpoint in no. 14 is located within TRA@. The FISH analysis using BAC which contains TRA@ and its flanking region further revealed a ~231 kb deletion within 14q11 in the der(5) but not in the normal homologue of no. 14. The RT-PCR analysis detected mRNA for TRA@ transcripts which were extending across, but not including, the deleted region. IL7R was detected at least at mRNA levels. These findings were consistent with the immunological findings that TRA@ and IL7R are both expressed at mRNA levels and TRA@ at cytoplasmic protein levels in SRIK-NKL cells. In addition to rept(5;14), aCGH identified novel copy number abnormalities suggesting that the unique phenotype of the SRIK-NKL cell line is not solely due to the TRA@ rearrangement. These findings provide supportive evidence for the notion that SRIK-NKL cells may be useful for studying not only the function of NK cells but also genetic deregulations associated with leukemiogenesis. PMID:17640729

  12. CNV-seq, a new method to detect copy number variation using high-throughput sequencing.

    PubMed

    Xie, Chao; Tammi, Martti T

    2009-03-06

    DNA copy number variation (CNV) has been recognized as an important source of genetic variation. Array comparative genomic hybridization (aCGH) is commonly used for CNV detection, but the microarray platform has a number of inherent limitations. Here, we describe a method to detect copy number variation using shotgun sequencing, CNV-seq. The method is based on a robust statistical model that describes the complete analysis procedure and allows the computation of essential confidence values for detection of CNV. Our results show that the number of reads, not the length of the reads is the key factor determining the resolution of detection. This favors the next-generation sequencing methods that rapidly produce large amount of short reads. Simulation of various sequencing methods with coverage between 0.1x to 8x show overall specificity between 91.7 - 99.9%, and sensitivity between 72.2 - 96.5%. We also show the results for assessment of CNV between two individual human genomes.

  13. Two Siblings with Alternate Unbalanced Recombinants Derived from a Large Cryptic Maternal Pericentric Inversion of Chromosome 20

    PubMed Central

    DeScipio, Cheryl; Morrissette, Jennifer J.D.; Conlin, Laura K.; Clark, Dinah; Kaur, Maninder; Coplan, James; Riethman, Harold; Spinner, Nancy B.; Krantz, Ian D.

    2009-01-01

    Two brothers, with dissimilar clinical features, were each found to have different abnormalities of chromosome 20 by subtelomere fluorescence in situ hybridization (FISH). The proband had deletion of 20p subtelomere and duplication of 20q subtelomere, while his brother was found to have a duplication of 20p subtelomere and deletion of 20q subtelomere. Parental cytogenetic studies were initially thought to be normal, both by G-banding and by subtelomere FISH analysis. Since chromosome 20 is a metacentric chromosome and an inversion was suspected, we used anchored FISH to assist in identifying a possible inversion. This approach employed concomitant hybridization of a FISH probe to the short (p) arm of chromosome 20 with the 20q subtelomere probe. We identified a cytogenetically non-visible, mosaic pericentric inversion of one of the maternal chromosome 20 homologues, providing a mechanistic explanation for the chromosomal abnormalities present in these brothers. Array comparative genomic hybridization (CGH) with both a custom-made BAC and cosmid-based subtelomere specific array (TEL array) and a commercially-available SNP-based array confirmed and further characterized these rearrangements, identifying this as the largest pericentric inversion of chromosome 20 described to date. TEL array data indicate that the 20p breakpoint is defined by BAC RP11-978M13, ~900 kb from the pter; SNP array data reveal this breakpoint to occur within BAC RP11-978M13. The 20q breakpoint is defined by BAC RP11-93B14, ~1.7 Mb from the qter, by TEL array; SNP array data refine this breakpoint to within a gap between BACs on the TEL array (i.e. between RP11-93B14 and proximal BAC RP11-765G16). PMID:20101690

  14. Two siblings with alternate unbalanced recombinants derived from a large cryptic maternal pericentric inversion of chromosome 20.

    PubMed

    Descipio, Cheryl; Morrissette, Jennifer D; Conlin, Laura K; Clark, Dinah; Kaur, Maninder; Coplan, James; Riethman, Harold; Spinner, Nancy B; Krantz, Ian D

    2010-02-01

    Two brothers, with dissimilar clinical features, were each found to have different abnormalities of chromosome 20 by subtelomere fluorescence in situ hybridization (FISH). The proband had deletion of 20p subtelomere and duplication of 20q subtelomere, while his brother was found to have a duplication of 20p subtelomere and deletion of 20q subtelomere. Parental cytogenetic studies were initially thought to be normal, both by G-banding and by subtelomere FISH analysis. Since chromosome 20 is a metacentric chromosome and an inversion was suspected, we used anchored FISH to assist in identifying a possible inversion. This approach employed concomitant hybridization of a FISH probe to the short (p) arm of chromosome 20 with the 20q subtelomere probe. We identified a cytogenetically non-visible, mosaic pericentric inversion of one of the maternal chromosome 20 homologs, providing a mechanistic explanation for the chromosomal abnormalities present in these brothers. Array comparative genomic hybridization (CGH) with both a custom-made BAC and cosmid-based subtelomere specific array (TEL array) and a commercially available SNP-based array confirmed and further characterized these rearrangements, identifying this as the largest pericentric inversion of chromosome 20 described to date. TEL array data indicate that the 20p breakpoint is defined by BAC RP11-978M13, approximately 900 kb from the pter; SNP array data reveal this breakpoint to occur within BAC RP11-978M13. The 20q breakpoint is defined by BAC RP11-93B14, approximately 1.7 Mb from the qter, by TEL array; SNP array data refine this breakpoint to within a gap between BACs on the TEL array (i.e., between RP11-93B14 and proximal BAC RP11-765G16). Copyright 2010 Wiley-Liss, Inc.

  15. Recurrence, submicroscopic complexity, and potential clinical relevance of copy gains detected by array CGH that are shown to be unbalanced insertions by FISH.

    PubMed

    Neill, Nicholas J; Ballif, Blake C; Lamb, Allen N; Parikh, Sumit; Ravnan, J Britt; Schultz, Roger A; Torchia, Beth S; Rosenfeld, Jill A; Shaffer, Lisa G

    2011-04-01

    Insertions occur when a segment of one chromosome is translocated and inserted into a new region of the same chromosome or a non-homologous chromosome. We report 71 cases with unbalanced insertions identified using array CGH and FISH in 4909 cases referred to our laboratory for array CGH and found to have copy-number abnormalities. Although the majority of insertions were non-recurrent, several recurrent unbalanced insertions were detected, including three der(Y)ins(Y;18)(q?11.2;p11.32p11.32)pat inherited from parents carrying an unbalanced insertion. The clinical significance of these recurrent rearrangements is unclear, although the small size, limited gene content, and inheritance pattern of each suggests that the phenotypic consequences may be benign. Cryptic, submicroscopic duplications were observed at or near the insertion sites in two patients, further confounding the clinical interpretation of these insertions. Using FISH, linear amplification, and array CGH, we identified a 126-kb duplicated region from 19p13.3 inserted into MECP2 at Xq28 in a patient with symptoms of Rett syndrome. Our results demonstrate that although the interpretation of most non-recurrent insertions is unclear without high-resolution insertion site characterization, the potential for an otherwise benign duplication to result in a clinically relevant outcome through the disruption of a gene necessitates the use of FISH to determine whether copy-number gains detected by array CGH represent tandem duplications or unbalanced insertions. Further follow-up testing using techniques such as linear amplification or sequencing should be used to determine gene involvement at the insertion site after FISH has identified the presence of an insertion.

  16. The effect of first chromosome long arm duplication on survival of endometrial carcinoma.

    PubMed

    Sever, Erman; Doğer, Emek; Çakıroğlu, Yiğit; Sünnetçi, Deniz; Çine, Naci; Savlı, Hakan; Yücesoy, İzzet

    2014-12-01

    The aim of this study is to investigate the effect of first chromosome long arm duplication (dup(1q)) in cases with endometrial carcinoma detected with array based comperative genomic hybridization (aCGH) on survival from the cancer. A total of 53 patients with the diagnosis of endometrial carcinom due to endometrial biopsy and who have been operated for this reason have been allocated in the study. Frozen section biopsy and staging surgery have been performed for all the cases. Samples obtained from the tumoral mass have been investigated for chromosomal aberrations with aCGH method. Kaplan-Meier and Cox-regression analysis have been performed for survival analysis. Among 53 cases with endometrial carcinomas, dup(1q) was diagnosed in 14 (26.4%) of the cases. For the patient group that has been followed-up for 24 months (3-33 months), dup(1q) (p=.01), optimal cytoreduction (p<.001), lymph node positivity (p=.006), tumor stage >1 (p=.006) and presence of high risk tumor were the factors that were associated with survival. Cox-regression analysis has revealed that optimal cytoreduction was the most important prognostic factor (p=.02). Presence of 1q duplication can be used as a prognostic factor in the preoperative period.

  17. Cytogenomic profiling of breast cancer brain metastases reveals potential for repurposing targeted therapeutics

    PubMed Central

    Bollig-Fischer, Aliccia; Michelhaugh, Sharon K.; Wijesinghe, Priyanga; Dyson, Greg; Kruger, Adele; Palanisamy, Nallasivam; Choi, Lydia; Alosh, Baraa; Ali-Fehmi, Rouba; Mittal, Sandeep

    2015-01-01

    Breast cancer brain metastases remain a significant clinical problem. Chemotherapy is ineffective and a lack of treatment options result in poor patient outcomes. Targeted therapeutics have proven to be highly effective in primary breast cancer, but lack of molecular genomic characterization of metastatic brain tumors is hindering the development of new treatment regimens. Here we contribute to fill this void by reporting on gene copy number variation (CNV) in 10 breast cancer metastatic brain tumors, assayed by array comparative genomic hybridization (aCGH). Results were compared to a list of cancer genes verified by others to influence cancer. Cancer gene aberrations were identified in all specimens and pathway-level analysis was applied to aggregate data, which identified stem cell pluripotency pathway enrichment and highlighted recurring, significant amplification of SOX2, PIK3CA, NTRK1, GNAS, CTNNB1, and FGFR1. For a subset of the metastatic brain tumor samples (n=4) we compared patient-matched primary breast cancer specimens. The results of our CGH analysis and validation by alternative methods indicate that oncogenic signals driving growth of metastatic tumors exist in the original cancer. This report contributes support for more rapid development of new treatments of metastatic brain tumors, the use of genomic-based diagnostic tools and repurposed drug treatments. PMID:25970776

  18. Cytogenomic profiling of breast cancer brain metastases reveals potential for repurposing targeted therapeutics.

    PubMed

    Bollig-Fischer, Aliccia; Michelhaugh, Sharon K; Wijesinghe, Priyanga; Dyson, Greg; Kruger, Adele; Palanisamy, Nallasivam; Choi, Lydia; Alosh, Baraa; Ali-Fehmi, Rouba; Mittal, Sandeep

    2015-06-10

    Breast cancer brain metastases remain a significant clinical problem. Chemotherapy is ineffective and a lack of treatment options result in poor patient outcomes. Targeted therapeutics have proven to be highly effective in primary breast cancer, but lack of molecular genomic characterization of metastatic brain tumors is hindering the development of new treatment regimens. Here we contribute to fill this void by reporting on gene copy number variation (CNV) in 10 breast cancer metastatic brain tumors, assayed by array comparative genomic hybridization (aCGH). Results were compared to a list of cancer genes verified by others to influence cancer. Cancer gene aberrations were identified in all specimens and pathway-level analysis was applied to aggregate data, which identified stem cell pluripotency pathway enrichment and highlighted recurring, significant amplification of SOX2, PIK3CA, NTRK1, GNAS, CTNNB1, and FGFR1. For a subset of the metastatic brain tumor samples (n = 4) we compared patient-matched primary breast cancer specimens. The results of our CGH analysis and validation by alternative methods indicate that oncogenic signals driving growth of metastatic tumors exist in the original cancer. This report contributes support for more rapid development of new treatments of metastatic brain tumors, the use of genomic-based diagnostic tools and repurposed drug treatments.

  19. An atypical case of SCN9A mutation presenting with global motor delay and a severe pain disorder.

    PubMed

    Meijer, Inge Anita; Vanasse, Michel; Nizard, Sonia; Robitaille, Yves; Rossignol, Elsa

    2014-01-01

    Erythromelalgia due to heterozygous gain-of-function SCN9A mutations usually presents as a pure sensory-autonomic disorder characterized by recurrent episodes of burning pain and redness of the extremities. We describe a patient with an unusual phenotypic presentation of gross motor delay, childhood-onset erythromelalgia, extreme visceral pain episodes, hypesthesia, and self-mutilation. The investigation of the patient's motor delay included various biochemical analyses, a comparative genomic hybridization array (CGH), electromyogram (EMG), and muscle biopsy. Once erythromelalgia was suspected clinically, the SCN9A gene was sequenced. The EMG, CGH, and biochemical tests were negative. The biopsy showed an axonal neuropathy and neurogenic atrophy. Sequencing of SCN9A revealed a heterozygous missense mutation in exon 7; p.I234T. This is a case of global motor delay and erythromelalgia associated with SCN9A. The motor delay may be attributed to the extreme pain episodes or to a developmental perturbation of proprioceptive inputs. Copyright © 2013 Wiley Periodicals, Inc.

  20. Whole-comparative genomic hybridization in domestic sheep (Ovis aries) breeds.

    PubMed

    Dávila-Rodríguez, M I; Cortés-Gutiérrez, E I; López-Fernández, C; Pita, M; Mezzanotte, R; Gosálvez, J

    2009-01-01

    Whole-comparative genomic hybridization (W-CGH) allows identification of chromosomal polymorphisms related to highly repetitive DNA sequences localized in constitutive heterochromatin. Such polymorphisms are detected establishing competition between genomic DNAs in an in situ hybridization environment without subtraction of highly repetitive DNA sequences, when comparing two species from closely related taxa (same species, sub-species, or breeds) or somewhat related taxa. This experimental approach was applied to investigating differences in highly repetitive sequences of three sheep breeds (Castellana, Ojalada, and Assaf). To this end, W-CGH was carried out using mouflon (sheep ancestor) chromosomes as a common target to co-hybridize equimolar quantities of two genomic DNAs obtained from either Castellana, Ojalada or Assaf sheep breeds. The results showed that the amount of constitutive heterochromatin is greater in all pericentromeric heterochromatin regions of acrocentric chromosomes than in metacentric or sex chromosomes. Additionally, when W-CGH was performed using DNAs from the Iberian breeds Castellana and Ojalada, chromosomal pericentromeric regions revealed quantitatively and qualitatively a presence of DNA families similar to that obtained from any of the above-cited breeds. On the contrary, when the DNA used in W-CGH experiments was obtained from Assaf, as compared to either Castellana or Ojalada, two different pericentromeric DNA families of highly repetitive sequences could be detected. Lastly, sex chromosomes were shown to be homogeneous among all breeds and thus revealed no detectable constitutive heterochromatin. W-CGH results were confirmed using DNA breakage detection-FISH experiments (DBD-FISH) carried out on lymphocytes. As a whole, the results showed that two different repetitive DNA families are present in the pericentromeric heterochromatin of the sheep breeds studied here. Additionally, they suggest a differential presence of these distinct repetitive DNA families in Castellana and Ojalada breeds as compared to the Assaf breed. Finally, the results of W-CGH after using mouflon as the targeted chromosomes also show that the two DNA families are present in the ancestor. Copyright 2009 S. Karger AG, Basel.

  1. Genomic Imbalances Are Confined to Non-Proliferating Cells in Paediatric Patients with Acute Myeloid Leukaemia and a Normal or Incomplete Karyotype

    PubMed Central

    Ballabio, Erica; Regan, Regina; Garimberti, Elisa; Harbott, Jochen; Bradtke, Jutta; Teigler-Schlegel, Andrea; Biondi, Andrea; Cazzaniga, Giovanni; Giudici, Giovanni; Wainscoat, James S.; Boultwood, Jacqueline; Bridger, Joanna M.; Knight, Samantha J. L.; Tosi, Sabrina

    2011-01-01

    Leukaemia is often associated with genetic alterations such as translocations, amplifications and deletions, and recurrent chromosome abnormalities are used as markers of diagnostic and prognostic relevance. However, a proportion of acute myeloid leukaemia (AML) cases have an apparently normal karyotype despite comprehensive cytogenetic analysis. Based on conventional cytogenetic analysis of banded chromosomes, we selected a series of 23 paediatric patients with acute myeloid leukaemia and performed whole genome array comparative genome hybridization (aCGH) using DNA samples derived from the same patients. Imbalances involving large chromosomal regions or entire chromosomes were detected by aCGH in seven of the patients studied. Results were validated by fluorescence in situ hybridization (FISH) to both interphase nuclei and metaphase chromosomes using appropriate bacterial artificial chromosome (BAC) probes. The majority of these copy number alterations (CNAs) were confirmed by FISH and found to localize to the interphase rather than metaphase nuclei. Furthermore, the proliferative states of the cells analyzed by FISH were tested by immunofluorescence using an antibody against the proliferation marker pKi67. Interestingly, these experiments showed that, in the vast majority of cases, the changes appeared to be confined to interphase nuclei in a non-proliferative status. PMID:21694761

  2. A 1.37-Mb 12p11.22-p11.21 deletion coincident with a 367-kb 22q11.2 duplication detected by array comparative genomic hybridization in an adolescent girl with autism and difficulty in self-care of menstruation.

    PubMed

    Chen, Chih-Ping; Lin, Shuan-Pei; Chern, Schu-Rern; Wu, Peih-Shan; Su, Jun-Wei; Lee, Chen-Chi; Wang, Wayseen

    2014-03-01

    To present an array comparative genomic hybridization (aCGH) characterization of a 12p11.22-p11.21 microdeletion and 22q11.2 microduplication in an adolescent girl with autism, mental retardation, facial dysmorphism, microcephaly, behavior problems, and an apparently balanced reciprocal translocation of t(8;12)(q24.3;p11.2). A 13-year-old girl was referred to the hospital because of autism, mental retardation, and difficulty in the self-care of her menstruation. Cytogenetic analysis revealed an apparently balanced reciprocal translocation and a karyotype of 46,XX,t(8;12) (q24.3;p11.2)dn. The girl manifested microcephaly, hypertelorism, flat facial profile, prominent forehead, thick scalp hair, upslanting palpebral fissures, broad nasal bridge, bulbous nose, right simian crease, bilateral clinodactyly of the fifth fingers, bilateral pes cavus, learning difficulties, mental retardation, emotional instability, cognitive impairment, behavior problems, jumping-like gaits, and autistic spectrum disorder. aCGH was performed to evaluate genomic imbalance in this patient. aCGH analysis revealed a 1.37-Mb 12p11.22-p11.21 microdeletion or arr [hg 19] 12p11.22-p11.21 (30,645,008-32,014,774)×1 and a 367-kb 22q11.21 microduplication or arr [hg 19] 22q11.21 (18,657,470-19,024,306)×3. The 1.37-Mb 12p11.22-p11.21 microdeletion encompassed 26 genes including IPO8, CAPRIN2, and DDX11, and the 367-kb 22q11.21 microduplication encompassed 20 genes including USP18, DGCR6, PRODH, and DGCR2. An apparently balanced translocation may be in fact affected by concurrent deletion and duplication in two different chromosomal regions. Our presentation provides information on diagnostic phenotype of 12p11.22-p11.21 microdeletion and 22q11.2 microduplication. Copyright © 2014. Published by Elsevier B.V.

  3. A comparative genomic hybridization study in a 46,XX male.

    PubMed

    Rigola, M Angels; Carrera, Marta; Ribas, Isabel; Egozcue, Josep; Miró, Rosa; Fuster, Carme

    2002-07-01

    To identify Y chromosome material in an azoospermic male with an XX karyotype. Case report. Faculty of medicine and Centro de Patologia Celular (CPC) medical center. A 33-year-old man with infertility. G-banding, fluorescence in situ hybridization (FISH), polymerase chain reaction (PCR), and comparative genomic hybridization (CGH). FISH for X and Y chromosomes, PCR for the SRYgene and amelogenin gene in the Xp (AMGX) and (AMGY), and losses or gains with CGH. FISH analysis using X and Y chromosome-specific probes showed an X chromosome containing Y chromosome sequences on the top of the short arm; this Y chromosome region was not visible by conventional cytogenetic analysis. PCR amplification of DNA showed the presence of the sex-determining region of the Y chromosome (SRY) and the amelogenin gene in the pseudoautosomal boundary of the X chromosome (AMGX). CGH confirmed the presence of the chromosome region Yp11.2-pter and detected the presence of the two otherwise normal X chromosomes. The two Xpter (XPAR1) pseudoautosomal regions present in this XX male suggest the need to reevaluate XX males using CGH and PCR to characterize the clinical variability in XX males due to genes other than those located on the Y chromosome.

  4. Autism-specific copy number variants further implicate the phosphatidylinositol signaling pathway and the glutamatergic synapse in the etiology of the disorder.

    PubMed

    Cuscó, Ivon; Medrano, Andrés; Gener, Blanca; Vilardell, Mireia; Gallastegui, Fátima; Villa, Olaya; González, Eva; Rodríguez-Santiago, Benjamín; Vilella, Elisabet; Del Campo, Miguel; Pérez-Jurado, Luis A

    2009-05-15

    Autism spectrum disorders (ASDs) constitute a group of severe neurodevelopmental conditions with complex multifactorial etiology. In order to explore the hypothesis that submicroscopic genomic rearrangements underlie some ASD cases, we have analyzed 96 Spanish patients with idiopathic ASD after extensive clinical and laboratory screening, by array comparative genomic hybridization (aCGH) using a homemade bacterial artificial chromosome (BAC) array. Only 13 of the 238 detected copy number alterations, ranging in size from 89 kb to 2.4 Mb, were present specifically in the autistic population (12 out of 96 individuals, 12.5%). Following validation by additional molecular techniques, we have characterized these novel candidate regions containing 24 different genes including alterations in two previously reported regions of chromosome 7 associated with the ASD phenotype. Some of the genes located in ASD-specific copy number variants act in common pathways, most notably the phosphatidylinositol signaling and the glutamatergic synapse, both known to be affected in several genetic syndromes related with autism and previously associated with ASD. Our work supports the idea that the functional alteration of genes in related neuronal networks is involved in the etiology of the ASD phenotype and confirms a significant diagnostic yield for aCGH, which should probably be included in the diagnostic workup of idiopathic ASD.

  5. Prenatal Diagnosis of 4p and 4q Subtelomeric Microdeletion in De Novo Ring Chromosome 4

    PubMed Central

    Cine, Naci; Erdemoglu, Mahmut; Atay, Ahmet Engin; Simsek, Selda; Turkyilmaz, Aysegul; Fidanboy, Mehmet

    2013-01-01

    Ring chromosomes are unusual abnormalities that are observed in prenatal diagnosis. A 23-year-old patient (gravida 1, para 0) referred for amniocentesis due to abnormal maternal serum screening result in the 16th week of second pregnancy. Cytogenetic analysis of cultured amniyotic fluid cells revealed out ring chromosome 4. Both maternal and paternal karyotypes were normal. Terminal deletion was observed in both 4p and 4q arms of ring chromosome 4 by fluorescence in situ hybridization (FISH). However deletion was not observed in the WHS critical region of both normal and ring chromosome 4 by an additional FISH study. These results were confirmed by means of array-CGH showing terminal deletions on 4p16.3 (130 kb) and 4q35.2 (2.449 Mb). In the 21th week of pregnancy, no gross anomalia, except two weeks symmetric growth retardation, was present in the fetal ultrasonographic examination. According to our review of literature, this is the first prenatal case with 4p and 4q subtelomeric deletion of ring chromosome 4 without the involvement of WHS critical region. Our report describes the prenatal case with a ring chromosome 4 abnormality completely characterized by array-CGH which provided complementary data for genetic counseling of prenatal diagnosis. PMID:24455347

  6. Prenatal diagnosis of 4p and 4q subtelomeric microdeletion in de novo ring chromosome 4.

    PubMed

    Akbas, Halit; Cine, Naci; Erdemoglu, Mahmut; Atay, Ahmet Engin; Simsek, Selda; Turkyilmaz, Aysegul; Fidanboy, Mehmet

    2013-01-01

    Ring chromosomes are unusual abnormalities that are observed in prenatal diagnosis. A 23-year-old patient (gravida 1, para 0) referred for amniocentesis due to abnormal maternal serum screening result in the 16th week of second pregnancy. Cytogenetic analysis of cultured amniyotic fluid cells revealed out ring chromosome 4. Both maternal and paternal karyotypes were normal. Terminal deletion was observed in both 4p and 4q arms of ring chromosome 4 by fluorescence in situ hybridization (FISH). However deletion was not observed in the WHS critical region of both normal and ring chromosome 4 by an additional FISH study. These results were confirmed by means of array-CGH showing terminal deletions on 4p16.3 (130 kb) and 4q35.2 (2.449 Mb). In the 21th week of pregnancy, no gross anomalia, except two weeks symmetric growth retardation, was present in the fetal ultrasonographic examination. According to our review of literature, this is the first prenatal case with 4p and 4q subtelomeric deletion of ring chromosome 4 without the involvement of WHS critical region. Our report describes the prenatal case with a ring chromosome 4 abnormality completely characterized by array-CGH which provided complementary data for genetic counseling of prenatal diagnosis.

  7. Primary adenocarcinoma of the thymus: an immunohistochemical and molecular study with review of the literature.

    PubMed

    Maghbool, Maryam; Ramzi, Mani; Nagel, Inga; Bejarano, Pablo; Siebert, Reiner; Saeedzadeh, Abolfazl; Daneshbod, Yahya

    2013-05-31

    Primary adenocarcinoma of thymus is extremely rare. This is a case of primary adenocarcinoma with intestinal differentiation and focal mucin production in the thymus. Thymic cyst was associated with this tumor. Intestinal differentiation was confirmed by immunohistochemical stain with positivity for CDX-2, CK20, villin, MOC31 and focal positivity of CK7. Array comperative genomic hybridization (CGH) analysis showed a complex pattern of chromosomal imbalances including homozygous deletion at the HLA locus in chromosomal region 6p21.32. This rare tumor shows a similar genetic aberration with other studied thymic epithelial tumors.

  8. Intragenic rearrangements in X-linked intellectual deficiency: results of a-CGH in a series of 54 patients and identification of TRPC5 and KLHL15 as potential XLID genes.

    PubMed

    Mignon-Ravix, Cécile; Cacciagli, Pierre; Choucair, Nancy; Popovici, Cornel; Missirian, Chantal; Milh, Mathieu; Mégarbané, André; Busa, Tiffany; Julia, Sophie; Girard, Nadine; Badens, Catherine; Sigaudy, Sabine; Philip, Nicole; Villard, Laurent

    2014-08-01

    High-resolution array comparative genomic hybridization (a-CGH) enables the detection of intragenic rearrangements, such as single exon deletion or duplication. This approach can lead to the identification of new disease genes. We report on the analysis of 54 male patients presenting with intellectual deficiency (ID) and a family history suggesting X-linked (XL) inheritance or maternal skewed X-chromosome inactivation (XCI), using a home-made X-chromosome-specific microarray covering the whole human X-chromosome at high resolution. The majority of patients had whole genome array-CGH prior to the selection and we did not include large rearrangements such as MECP2 and FMR1 duplications. We identified four rearrangements considered as causative or potentially pathogenic, corresponding to a detection rate of 8%. Two CNVs affected known XLID genes and were therefore considered as causative (IL1RAPL1 and OPHN1 intragenic deletions). Two new CNVs were considered as potentially pathogenic as they affected interesting candidates for ID. The first CNV is a deletion of the first exon of the TRPC5 gene, encoding a cation channel implicated in dendrite growth and patterning, in a child presenting with ID and an autism spectrum disorder (ASD). The second CNV is a partial deletion of KLHL15, in a patient with severe ID, epilepsy, and anomalies of cortical development. In both cases, in spite of strong arguments for clinical relevance, we were not able at this stage to confirm pathogenicity of the mutations, and the causality of the variants identified in XLID remains to be confirmed. © 2014 Wiley Periodicals, Inc.

  9. Unraveling unusual X-chromosome patterns during fragile-X syndrome genetic testing.

    PubMed

    Esposito, Gabriella; Tremolaterra, Maria Roberta; Savarese, Maria; Spiniello, Michele; Patrizio, Maria Pia; Lombardo, Barbara; Pastore, Lucio; Salvatore, Francesco; Carsana, Antonella

    2018-01-01

    Fragile X syndrome (FXS) is the most common form of inherited intellectual disability (ID). Together with fragile X-associated tremor and ataxia (FXTAS) and fragile X-associated premature ovarian failure (POF)/primary ovarian insufficiency (POI), FXS depends on dysfunctional expression of the FMR1 gene on Xq27.3. In most cases, FXS is caused by a >200 CGG repeats in FMR1 5'-untranslated region (UTR) and by promoter hypermethylation that results in gene silencing. Males and females with unmethylated premutated alleles (repeats between 55 and 200) are at risk for FXTAS and POF/POI. FXS molecular testing relied on PCR and methylation-specific Southern blot analysis of the FMR1 5'UTR. Atypical Southern blot patterns were studied by X-chromosome microsatellite analysis, copy number dosage at DMD locus, amelogenin gender-marker analysis and array-comparative genomic hybridization (array-CGH). Six men affected by ID and three women affected by ID and POF/POI underwent FXS molecular testing. They had normal FMR1 CGG repeats, but atypical X chromosome patterns. Further investigations revealed that the six males had Klinefelter syndrome (XXY), one female was a Turner mosaic (X0/XX) and two women had novel rearrangements involving X chromosome. Diagnostic investigation of atypical patterns at FMR1 locus can address patients and/or their relatives to further verify the condition by performing karyotyping and/or array-CGH. Copyright © 2017. Published by Elsevier B.V.

  10. Zoom‐in comparative genomic hybridisation arrays for the characterisation of variable breakpoint contiguous gene syndromes

    PubMed Central

    Johnston, Jennifer J; Walker, Robert L; Davis, Sean; Facio, Flavia; Turner, Joyce T; Bick, David P; Daentl, Donna L; Ellison, Jay W; Meltzer, Paul S; Biesecker, Leslie G

    2007-01-01

    Contiguous gene syndromes cause disorders via haploinsufficiency for adjacent genes. Some contiguous gene syndromes (CGS) have stereotypical breakpoints, but others have variable breakpoints. In CGS that have variable breakpoints, the extent of the deletions may be correlated with severity. The Greig cephalopolysyndactyly contiguous gene syndrome (GCPS‐CGS) is a multiple malformation syndrome caused by haploinsufficiency of GLI3 and adjacent genes. In addition, non‐CGS GCPS can be caused by deletions or duplications in GLI3. Although fluorescence in situ hybridisation (FISH) can identify large deletion mutations in patients with GCPS or GCPS‐CGS, it is not practical for identification of small intragenic deletions or insertions, and it is difficult to accurately characterise the extent of the large deletions using this technique. We have designed a custom comparative genomic hybridisation (CGH) array that allows identification of deletions and duplications at kilobase resolution in the vicinity of GLI3. The array averages one probe every 730 bp for a total of about 14 000 probes over 10 Mb. We have analysed 16 individuals with known or suspected deletions or duplications. In 15 of 16 individuals (14 deletions and 1 duplication), the array confirmed the prior results. In the remaining patient, the normal CGH array result was correct, and the prior assessment was a false positive quantitative polymerase chain reaction result. We conclude that high‐density CGH array analysis is more sensitive than FISH analysis for detecting deletions and provides clinically useful results on the extent of the deletion. We suggest that high‐density CGH array analysis should replace FISH analysis for assessment of deletions and duplications in patients with contiguous gene syndromes caused by variable deletions. PMID:17098889

  11. Mild intellectual disability associated with a progeny of father-daughter incest: genetic and environmental considerations.

    PubMed

    Ansermet, Francois; Lespinasse, James; Gimelli, Stefania; Béna, Frédérique; Paoloni-Giacobino, Ariane

    2010-05-01

    We report the case of a 34-year-old female resulting from a father-daughter sexual abuse and presenting a phenotype of mild intellectual disability with minor dysmorphic features. Karyotyping showed a normal 46, XX constitution. Array-based comparative genomic hybridization (array-CGH) revealed a heterozygote 320kb 6p22.3 microdeletion in the proband, encompassing only one known gene, and therefore unlikely to be the cause of the phenotype. However, the role of other genetic factors, such as a recessive condition, could not be ruled out as a putative cause for the phenotype. On the other hand, the role played by a heavily detrimental familial situation on the development and outcome, and possibly leading or contributing to a mild intellectual disability, should be taken into account.

  12. Array-Based Comparative Genomic Hybridization Analysis Reveals Chromosomal Copy Number Aberrations Associated with Clinical Outcome in Canine Diffuse Large B-Cell Lymphoma

    PubMed Central

    Bresolin, Silvia; Marconato, Laura; Comazzi, Stefano; Te Kronnie, Geertruy; Aresu, Luca

    2014-01-01

    Canine Diffuse Large B-cell Lymphoma (cDLBCL) is an aggressive cancer with variable clinical response. Despite recent attempts by gene expression profiling to identify the dog as a potential animal model for human DLBCL, this tumor remains biologically heterogeneous with no prognostic biomarkers to predict prognosis. The aim of this work was to identify copy number aberrations (CNAs) by high-resolution array comparative genomic hybridization (aCGH) in 12 dogs with newly diagnosed DLBCL. In a subset of these dogs, the genetic profiles at the end of therapy and at relapse were also assessed. In primary DLBCLs, 90 different genomic imbalances were counted, consisting of 46 gains and 44 losses. Two gains in chr13 were significantly correlated with clinical stage. In addition, specific regions of gains and losses were significantly associated to duration of remission. In primary DLBCLs, individual variability was found, however 14 recurrent CNAs (>30%) were identified. Losses involving IGK, IGL and IGH were always found, and gains along the length of chr13 and chr31 were often observed (>41%). In these segments, MYC, LDHB, HSF1, KIT and PDGFRα are annotated. At the end of therapy, dogs in remission showed four new CNAs, whereas three new CNAs were observed in dogs at relapse compared with the previous profiles. One ex novo CNA, involving TCR, was present in dogs in remission after therapy, possibly induced by the autologous vaccine. Overall, aCGH identified small CNAs associated with outcome, which, along with future expression studies, may reveal target genes relevant to cDLBCL. PMID:25372838

  13. Comparative studies of copy number variation detection methods for next-generation sequencing technologies.

    PubMed

    Duan, Junbo; Zhang, Ji-Gang; Deng, Hong-Wen; Wang, Yu-Ping

    2013-01-01

    Copy number variation (CNV) has played an important role in studies of susceptibility or resistance to complex diseases. Traditional methods such as fluorescence in situ hybridization (FISH) and array comparative genomic hybridization (aCGH) suffer from low resolution of genomic regions. Following the emergence of next generation sequencing (NGS) technologies, CNV detection methods based on the short read data have recently been developed. However, due to the relatively young age of the procedures, their performance is not fully understood. To help investigators choose suitable methods to detect CNVs, comparative studies are needed. We compared six publicly available CNV detection methods: CNV-seq, FREEC, readDepth, CNVnator, SegSeq and event-wise testing (EWT). They are evaluated both on simulated and real data with different experiment settings. The receiver operating characteristic (ROC) curve is employed to demonstrate the detection performance in terms of sensitivity and specificity, box plot is employed to compare their performances in terms of breakpoint and copy number estimation, Venn diagram is employed to show the consistency among these methods, and F-score is employed to show the overlapping quality of detected CNVs. The computational demands are also studied. The results of our work provide a comprehensive evaluation on the performances of the selected CNV detection methods, which will help biological investigators choose the best possible method.

  14. Optical Interconnections for VLSI Computational Systems Using Computer-Generated Holography.

    NASA Astrophysics Data System (ADS)

    Feldman, Michael Robert

    Optical interconnects for VLSI computational systems using computer generated holograms are evaluated in theory and experiment. It is shown that by replacing particular electronic connections with free-space optical communication paths, connection of devices on a single chip or wafer and between chips or modules can be improved. Optical and electrical interconnects are compared in terms of power dissipation, communication bandwidth, and connection density. Conditions are determined for which optical interconnects are advantageous. Based on this analysis, it is shown that by applying computer generated holographic optical interconnects to wafer scale fine grain parallel processing systems, dramatic increases in system performance can be expected. Some new interconnection networks, designed to take full advantage of optical interconnect technology, have been developed. Experimental Computer Generated Holograms (CGH's) have been designed, fabricated and subsequently tested in prototype optical interconnected computational systems. Several new CGH encoding methods have been developed to provide efficient high performance CGH's. One CGH was used to decrease the access time of a 1 kilobit CMOS RAM chip. Another was produced to implement the inter-processor communication paths in a shared memory SIMD parallel processor array.

  15. A Complex 6p25 Rearrangement in a Child With Multiple Epiphyseal Dysplasia

    PubMed Central

    Bedoyan, Jirair K.; Lesperance, Marci M.; Ackley, Todd; Iyer, Ramaswamy K.; Innis, Jeffrey W.; Misra, Vinod K.

    2015-01-01

    Genomic rearrangements are increasingly recognized as important contributors to human disease. Here we report on an 11½-year-old child with myopia, Duane retraction syndrome, bilateral mixed hearing loss, skeletal anomalies including multiple epiphyseal dysplasia, and global developmental delay, and a complex 6p25 genomic rearrangement. We have employed oligonucleotide-based comparative genomic hybridization arrays (aCGH) of different resolutions (44 and 244K) as well as a 1 M single nucleotide polymorphism (SNP) array to analyze this complex rearrangement. Our analyses reveal a complex rearrangement involving a ~2.21 Mb interstitial deletion, a ~240 kb terminal deletion, and a 70–80 kb region in between these two deletions that shows maintenance of genomic copy number. The interstitial deletion contains eight known genes, including three Forkhead box containing (FOX) transcription factors (FOXQ1, FOXF2, and FOXC1). The region maintaining genomic copy number partly overlaps the dual specificity protein phosphatase 22 (DUSP22) gene. Array analyses suggest a homozygous loss of genomic material at the 5′ end of DUSP22, which was corroborated using TaqMan® copy number analysis. It is possible that this homozygous genomic loss may render both copies of DUSP22 or its products non-functional. Our analysis suggests a rearrangement mechanism distinct from a previously reported replication-based error-prone mechanism without template switching for a specific 6p25 rearrangement with a 1.22 Mb interstitial deletion. Our study demonstrates the utility and limitations of using oligonucleotide-based aCGH and SNP array technologies of increasing resolutions in order to identify complex DNA rearrangements and gene disruptions. PMID:21204225

  16. Use of Array Comparative Genomic Hybridization for the Diagnosis of DiGeorge Syndrome in Saudi Arabian Population.

    PubMed

    Bahamat, Abeer A; Assidi, Mourad; Lary, Sahira A; Almughamsi, Muna M; Peer Zada, Abdul A; Chaudhary, Adeel; Abuzenadah, Adel; Abu-Elmagd, Muhammad; Al-Qahtani, Mohammed

    2018-01-01

    DiGeorge syndrome (DGS) is a genetic disorder known as a clinically variable syndrome with over 180 associated phenotypic features. It is caused by a common human deletion in the 22q11.2 chromosomal region and currently is affecting approximately 1 in 4,000 individuals. Despite the prevalence of inherited diseases mainly due to consanguineous marriages, the current diagnosis of DGS in Saudi Arabia is mainly based on conventional high-resolution chromosome banding (karyotyping) and FISH techniques. However, advanced genome-wide studies for detecting microdeletions or duplications across the whole genome are needed. The aim of this study is to implement and use aCGH technology in clinical diagnosis of the 22q11.2 deletion in Saudi Arabian DGS patients and to confirm its effectiveness compared to conventional FISH and chromosome banding techniques. Thirty suspected DGS patients were assessed for chromosome 22q11.2 deletion using high-resolution G-banding, FISH, and aCGH. The aCGH results were compared with those obtained by the other 2 cytogenetic techniques. G-banding detected the 22q11.2 deletion in only 1 patient in the cohort. Moreover, it detected additional chromosomal aberrations in 3 other patients. Using FISH, allowed for detection of the 22q11.2 deletion in 2 out of 30 patients. Interestingly, the use of aCGH technique showed deletions in the chromosome 22q11.2 region in 8 patients, indicating a 4-fold increase in diagnostic detection capacity compared to FISH. Our results show the effectiveness of aCGH to overcome the limitations of FISH and G-banding in terms of diagnostic yield and allow whole genome screening and detection of a larger number of deletions and/or duplications in Saudi Arabian DGS patients. Except for balanced translocations and inversions, our data demonstrate the suitability of aCGH in the diagnostics of submicroscopic deletion syndromes such as DGS and most chromosomal aberrations or complex abnormalities scattered throughout the human genome. Our results recommend the implementation of aCGH in clinical genomic testing in Saudi Arabia to improve the diagnostic capabilities of health services while maintaining the use of conventional cytogenetic techniques for subsequent validation or for specific and known aberrations whenever required. © 2018 S. Karger AG, Basel.

  17. Quantitative analysis of chromosomal CGH in human breast tumors associates copy number abnormalities with p53 status and patient survival

    PubMed Central

    Jain, Ajay N.; Chin, Koei; Børresen-Dale, Anne-Lise; Erikstein, Bjorn K.; Lonning, Per Eystein; Kaaresen, Rolf; Gray, Joe W.

    2001-01-01

    We present a general method for rigorously identifying correlations between variations in large-scale molecular profiles and outcomes and apply it to chromosomal comparative genomic hybridization data from a set of 52 breast tumors. We identify two loci where copy number abnormalities are correlated with poor survival outcome (gain at 8q24 and loss at 9q13). We also identify a relationship between abnormalities at two loci and the mutational status of p53. Gain at 8q24 and loss at 5q15-5q21 are linked with mutant p53. The 9q and 5q losses suggest the possibility of gene products involved in breast cancer progression. The analytical techniques are general and also are applicable to the analysis of array-based expression data. PMID:11438741

  18. Molecular characterisation of a mosaicism with a complex chromosome rearrangement: evidence for coincident chromosome healing by telomere capture and neo‐telomere formation

    PubMed Central

    Chabchoub, Elyes; Rodríguez, Laura; Galán, Enrique; Mansilla, Elena; Martínez‐Fernandez, Maria Luisa; Martínez‐Frías, Maria Luisa; Fryns, Jean‐Pierre; Vermeesch, Joris Robert

    2007-01-01

    Background Broken chromosomes must acquire new telomeric “caps” to be structurally stable. Chromosome healing can be mediated either by telomerase through neo‐telomere synthesis or by telomere capture. Aim To unravel the mechanism(s) generating complex chromosomal mosaicisms and healing broken chromosomes. Methods G banding, array comparative genomic hybridization (aCGH), fluorescence in‐situ hybridisation (FISH) and short tandem repeat analysis (STR) was performed on a girl presenting with mental retardation, facial dysmorphism, urogenital malformations and limb anomalies carrying a complex chromosomal mosaicism. Results & discussion The karyotype showed a de novo chromosome rearrangement with two cell lines: one cell line with a deletion 9pter and one cell line carrying an inverted duplication 9p and a non‐reciprocal translocation 5pter fragment. aCGH, FISH and STR analysis enabled the deduction of the most likely sequence of events generating this complex mosaic. During embryogenesis, a double‐strand break occurred on the paternal chromosome 9. Following mitotic separation of both broken sister chromatids, one acquired a telomere vianeo‐telomere formation, while the other generated a dicentric chromosome which underwent breakage during anaphase, giving rise to the del inv dup(9) that was subsequently healed by chromosome 5 telomere capture. Conclusion Broken chromosomes can coincidently be rescued by both telomere capture and neo‐telomere synthesis. PMID:17172463

  19. Primary adenocarcinoma of the thymus: an immunohistochemical and molecular study with review of the literature

    PubMed Central

    2013-01-01

    Background Primary adenocarcinoma of thymus is extremely rare. Case presentation This is a case of primary adenocarcinoma with intestinal differentiation and focal mucin production in the thymus. Thymic cyst was associated with this tumor. Intestinal differentiation was confirmed by immunohistochemical stain with positivity for CDX-2, CK20, villin, MOC31 and focal positivity of CK7. Array comperative genomic hybridization (CGH) analysis showed a complex pattern of chromosomal imbalances including homozygous deletion at the HLA locus in chromosomal region 6p21.32. Conclusion This rare tumor shows a similar genetic aberration with other studied thymic epithelial tumors. PMID:23725376

  20. Case report: cytogenetic and molecular analysis of proximal interstitial deletion of 4p, review of the literature and comparison with wolf-hirschhorn syndrome.

    PubMed

    Bailey, Nathanael G; South, Sarah T; Hummel, Marybeth; Wenger, Sharon L

    2010-01-01

    We report on a two-year-old female with a de novo proximal interstitial deletion of the short arm of chromosome 4 and a tetralogy of Fallot malformation. The patient had a karyotype of 46,XX,del(4)(p14p15.33) that was further characterized by array comparative genomic hybridization (aCGH). Phenotypic abnormalities for our patient are compared with those of previously reported patients with similar proximal 4p deletions as well as more distal deletions. The functions of genes that are deleted within this segment are reviewed.

  1. Assessment of DNA methylation profiling and copy number variation as indications of clonal relationship in ipsilateral and contralateral breast cancers to distinguish recurrent breast cancer from a second primary tumour.

    PubMed

    Huang, Katie T; Mikeska, Thomas; Li, Jason; Takano, Elena A; Millar, Ewan K A; Graham, Peter H; Boyle, Samantha E; Campbell, Ian G; Speed, Terence P; Dobrovic, Alexander; Fox, Stephen B

    2015-10-09

    Patients with breast cancer have an increased risk of developing subsequent breast cancers. It is important to distinguish whether these tumours are de novo or recurrences of the primary tumour in order to guide the appropriate therapy. Our aim was to investigate the use of DNA methylation profiling and array comparative genomic hybridization (aCGH) to determine whether the second tumour is clonally related to the first tumour. Methylation-sensitive high-resolution melting was used to screen promoter methylation in a panel of 13 genes reported as methylated in breast cancer (RASSF1A, TWIST1, APC, WIF1, MGMT, MAL, CDH13, RARβ, BRCA1, CDH1, CDKN2A, TP73, and GSTP1) in 29 tumour pairs (16 ipsilateral and 13 contralateral). Using the methylation profile of these genes, we employed a Bayesian and an empirical statistical approach to estimate clonal relationship. Copy number alterations were analysed using aCGH on the same set of tumour pairs. There is a higher probability of the second tumour being recurrent in ipsilateral tumours compared with contralateral tumours (38 % versus 8 %; p <0.05) based on the methylation profile. Using previously reported recurrence rates as Bayesian prior probabilities, we classified 69 % of ipsilateral and 15 % of contralateral tumours as recurrent. The inferred clonal relationship results of the tumour pairs were generally concordant between methylation profiling and aCGH. Our results show that DNA methylation profiling as well as aCGH have potential as diagnostic tools in improving the clinical decisions to differentiate recurrences from a second de novo tumour.

  2. Complex rearranged small supernumerary marker chromosomes (sSMC), three new cases; evidence for an underestimated entity?

    PubMed Central

    Trifonov, Vladimir; Fluri, Simon; Binkert, Franz; Nandini, Adayapalam; Anderson, Jasen; Rodriguez, Laura; Gross, Madeleine; Kosyakova, Nadezda; Mkrtchyan, Hasmik; Ewers, Elisabeth; Reich, Daniela; Weise, Anja; Liehr, Thomas

    2008-01-01

    Background Small supernumerary marker chromosomes (sSMC) are present ~2.6 × 106 human worldwide. sSMC are a heterogeneous group of derivative chromosomes concerning their clinical consequences as well as their chromosomal origin and shape. Besides the sSMC present in Emanuel syndrome, i.e. der(22)t(11;22)(q23;q11), only few so-called complex sSMC are reported. Results Here we report three new cases of unique complex sSMC. One was a de novo case with a dic(13 or 21;22) and two were maternally derived: a der(18)t(8;18) and a der(13 or 21)t(13 or 21;18). Thus, in summary, now 22 cases of unique complex sSMC are available in the literature. However, this special kind of sSMC might be under-diagnosed among sSMC-carriers. Conclusion More comprehensive characterization of sSMC and approaches like reverse fluorescence in situ hybridization (FISH) or array based comparative genomic hybridization (array-CGH) might identify them to be more frequent than only ~0.9% among all sSMC. PMID:18471318

  3. Genomic profiling using array comparative genomic hybridization define distinct subtypes of diffuse large b-cell lymphoma: a review of the literature

    PubMed Central

    2012-01-01

    Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin Lymphoma comprising of greater than 30% of adult non-Hodgkin Lymphomas. DLBCL represents a diverse set of lymphomas, defined as diffuse proliferation of large B lymphoid cells. Numerous cytogenetic studies including karyotypes and fluorescent in situ hybridization (FISH), as well as morphological, biological, clinical, microarray and sequencing technologies have attempted to categorize DLBCL into morphological variants, molecular and immunophenotypic subgroups, as well as distinct disease entities. Despite such efforts, most lymphoma remains undistinguishable and falls into DLBCL, not otherwise specified (DLBCL-NOS). The advent of microarray-based studies (chromosome, RNA, gene expression, etc) has provided a plethora of high-resolution data that could potentially facilitate the finer classification of DLBCL. This review covers the microarray data currently published for DLBCL. We will focus on these types of data; 1) array based CGH; 2) classical CGH; and 3) gene expression profiling studies. The aims of this review were three-fold: (1) to catalog chromosome loci that are present in at least 20% or more of distinct DLBCL subtypes; a detailed list of gains and losses for different subtypes was generated in a table form to illustrate specific chromosome loci affected in selected subtypes; (2) to determine common and distinct copy number alterations among the different subtypes and based on this information, characteristic and similar chromosome loci for the different subtypes were depicted in two separate chromosome ideograms; and, (3) to list re-classified subtypes and those that remained indistinguishable after review of the microarray data. To the best of our knowledge, this is the first effort to compile and review available literatures on microarray analysis data and their practical utility in classifying DLBCL subtypes. Although conventional cytogenetic methods such as Karyotypes and FISH have played a major role in classification schemes of lymphomas, better classification models are clearly needed to further understanding the biology, disease outcome and therapeutic management of DLBCL. In summary, microarray data reviewed here can provide better subtype specific classifications models for DLBCL. PMID:22967872

  4. Autism-specific copy number variants further implicate the phosphatidylinositol signaling pathway and the glutamatergic synapse in the etiology of the disorder

    PubMed Central

    Cuscó, Ivon; Medrano, Andrés; Gener, Blanca; Vilardell, Mireia; Gallastegui, Fátima; Villa, Olaya; González, Eva; Rodríguez-Santiago, Benjamín; Vilella, Elisabet; Del Campo, Miguel; Pérez-Jurado, Luis A.

    2009-01-01

    Autism spectrum disorders (ASDs) constitute a group of severe neurodevelopmental conditions with complex multifactorial etiology. In order to explore the hypothesis that submicroscopic genomic rearrangements underlie some ASD cases, we have analyzed 96 Spanish patients with idiopathic ASD after extensive clinical and laboratory screening, by array comparative genomic hybridization (aCGH) using a homemade bacterial artificial chromosome (BAC) array. Only 13 of the 238 detected copy number alterations, ranging in size from 89 kb to 2.4 Mb, were present specifically in the autistic population (12 out of 96 individuals, 12.5%). Following validation by additional molecular techniques, we have characterized these novel candidate regions containing 24 different genes including alterations in two previously reported regions of chromosome 7 associated with the ASD phenotype. Some of the genes located in ASD-specific copy number variants act in common pathways, most notably the phosphatidylinositol signaling and the glutamatergic synapse, both known to be affected in several genetic syndromes related with autism and previously associated with ASD. Our work supports the idea that the functional alteration of genes in related neuronal networks is involved in the etiology of the ASD phenotype and confirms a significant diagnostic yield for aCGH, which should probably be included in the diagnostic workup of idiopathic ASD. PMID:19246517

  5. Metabolic Capacity of Sinorhizobium (Ensifer) meliloti Strains as Determined by Phenotype MicroArray Analysis▿ †

    PubMed Central

    Biondi, Emanuele G.; Tatti, Enrico; Comparini, Diego; Giuntini, Elisa; Mocali, Stefano; Giovannetti, Luciana; Bazzicalupo, Marco; Mengoni, Alessio; Viti, Carlo

    2009-01-01

    Sinorhizobium meliloti is a soil bacterium that fixes atmospheric nitrogen in plant roots. The high genetic diversity of its natural populations has been the subject of extensive analysis. Recent genomic studies of several isolates revealed a high content of variable genes, suggesting a correspondingly large phenotypic differentiation among strains of S. meliloti. Here, using the Phenotype MicroArray (PM) system, hundreds of different growth conditions were tested in order to compare the metabolic capabilities of the laboratory reference strain Rm1021 with those of four natural S. meliloti isolates previously analyzed by comparative genomic hybridization (CGH). The results of PM analysis showed that most phenotypic differences involved carbon source utilization and tolerance to osmolytes and pH, while fewer differences were scored for nitrogen, phosphorus, and sulfur source utilization. Only the variability of the tested strain in tolerance to sodium nitrite and ammonium sulfate of pH 8 was hypothesized to be associated with the genetic polymorphisms detected by CGH analysis. Colony and cell morphologies and the ability to nodulate Medicago truncatula plants were also compared, revealing further phenotypic diversity. Overall, our results suggest that the study of functional (phenotypic) variability of S. meliloti populations is an important and complementary step in the investigation of genetic polymorphism of rhizobia and may help to elucidate rhizobial evolutionary dynamics, including adaptation to diverse environments. PMID:19561177

  6. Chromosomal imbalances are associated with outcome of Helicobacter pylori eradication in t(11;18)(q21;q21) negative gastric mucosa-associated lymphoid tissue lymphomas.

    PubMed

    Fukuhara, Noriko; Nakamura, Tsuneya; Nakagawa, Masao; Tagawa, Hiroyuki; Takeuchi, Ichiro; Yatabe, Yasushi; Morishima, Yasuo; Nakamura, Shigeo; Seto, Masao

    2007-08-01

    Approximately 70% of gastric mucosa-associated lymphoid tissue (MALT) lymphomas can be successfully treated with H. pylori eradication. The translocation t(11;18)(q21;q21) characteristic of MALT lymphoma is recognized as a marker for H. pylori independency, but this marker is found in only a half of the MALT lymphomas resistant to H. pylori eradication. Detailed analyses of the genomic features of eradication resistant as well as responsive groups are important for understanding their molecular basis. We performed array-based comparative genomic hybridization (array-CGH) for 29 gastric MALT lymphomas treated with H. pylori eradication. These comprised ten cases of t(11;18) positive MALT, nine cases of t(11;18) negative MALT with H. pylori dependency, and ten cases of t(11;18) negative MALT with H. pylori independency. Array-CGH analysis demonstrated that no significant genetic alterations were found in t(11;18) positive MALT lymphomas, but numerous genomic alterations were detected in t(11;18) negative MALT lymphomas. Many of these alterations were similar to those found in diffuse large B-cell lymphoma with trisomy 3 being the most recurrent alteration. Within the t(11;18) negative MALT lymphoma without large cell components group, genomic imbalances occurred more frequently in the H. pylori independent than in the H. pylori dependent group (P = 0.02). Genomic imbalances are associated with H. pylori independency in t(11;18) negative gastric MALT lymphomas. They may thus play an important role in the development of H. pylori independency.

  7. Prematurity, ventricular septal defect and dysmorphisms are independent predictors of pathogenic copy number variants: a retrospective study on array-CGH results and phenotypical features of 293 children with neurodevelopmental disorders and/or multiple congenital anomalies.

    PubMed

    Maini, I; Ivanovski, I; Djuric, O; Caraffi, S G; Errichiello, E; Marinelli, M; Franchi, F; Bizzarri, V; Rosato, S; Pollazzon, M; Gelmini, C; Malacarne, M; Fusco, C; Gargano, G; Bernasconi, S; Zuffardi, O; Garavelli, L

    2018-03-09

    Since 2010, array-CGH (aCGH) has been the first-tier test in the diagnostic approach of children with neurodevelopmental disorders (NDD) or multiple congenital anomalies (MCA) of unknown origin. Its broad application led to the detection of numerous variants of uncertain clinical significance (VOUS). How to appropriately interpret aCGH results represents a challenge for the clinician. We present a retrospective study on 293 patients with age range 1 month - 29 years (median 7 years) with NDD and/or MCA and/or dysmorphisms, investigated through aCGH between 2005 and 2016. The aim of the study was to analyze clinical and molecular cytogenetic data in order to identify what elements could be useful to interpret unknown or poorly described aberrations. Comparison of phenotype and cytogenetic characteristics through univariate analysis and multivariate logistic regression was performed. Copy number variations (CNVs) with a frequency < 1% were detected in 225 patients of the total sample, while 68 patients presented only variants with higher frequency (heterozygous deletions or amplification) and were considered to have negative aCGH. Proved pathogenic CNVs were detected in 70 patients (20.6%). Delayed psychomotor development, intellectual disability, intrauterine growth retardation (IUGR), prematurity, congenital heart disease, cerebral malformations and dysmorphisms correlated to reported pathogenic CNVs. Prematurity, ventricular septal defect and dysmorphisms remained significant predictors of pathogenic CNVs in the multivariate logistic model whereas abnormal EEG and limb dysmorphisms were mainly detected in the group with likely pathogenic VOUS. A flow-chart regarding the care for patients with NDD and/or MCA and/or dysmorphisms and the interpretation of aCGH has been made on the basis of the data inferred from this study and literature. Our work contributes to make the investigative process of CNVs more informative and suggests possible directions in aCGH interpretation and phenotype correlation.

  8. Copy number variations in Saudi family with intellectual disability and epilepsy.

    PubMed

    Naseer, Muhammad I; Chaudhary, Adeel G; Rasool, Mahmood; Kalamegam, Gauthaman; Ashgan, Fai T; Assidi, Mourad; Ahmed, Farid; Ansari, Shakeel A; Zaidi, Syed Kashif; Jan, Mohammed M; Al-Qahtani, Mohammad H

    2016-10-17

    Epilepsy is genetically complex but common brain disorder of the world affecting millions of people with almost of all age groups. Novel Copy number variations (CNVs) are considered as important reason for the numerous neurodevelopmental disorders along with intellectual disability and epilepsy. DNA array based studies contribute to explain a more severe clinical presentation of the disease but interoperation of many detected CNVs are still challenging. In order to study novel CNVs with epilepsy related genes in Saudi family with six affected and two normal individuals with several forms of epileptic seizures, intellectual disability (ID), and minor dysmorphism, we performed the high density whole genome Agilent sure print G3 Hmn CGH 2x 400 K array-CGH chips analysis. Our results showed de novo deletions, duplications and deletion plus duplication on differential chromosomal regions in the affected individuals that were not shown in the normal fathe and normal kids by using Agilent CytoGenomics 3.0.6.6 softwear. Copy number gain were observed in the chromosome 1, 16 and 22 with LCE3C, HPR, GSTT2, GSTTP2, DDT and DDTL genes respectively whereas the deletions observed in the chromosomal regions 8p23-p21 (4303127-4337759) and the potential gene in this region is CSMD1 (OMIM: 612279). Moreover, the array CGH results deletions and duplication were also validated by using primer design of deleted regions utilizing the flanked SNPs using simple PCR and also by using quantitative real time PCR. We found some of the de novo deletions and duplication in our study in Saudi family with intellectual disability and epilepsy. Our results suggest that array-CGH should be used as a first line of genetic test for epilepsy except there is a strong indication for a monogenic syndrome. The advanced high through put array-CGH technique used in this study aim to collect the data base and to identify new mechanisms describing epileptic disorder, may help to improve the clinical management of individual cases in decreasing the burden of epilepsy in Saudi Arabia.

  9. CNV-TV: a robust method to discover copy number variation from short sequencing reads.

    PubMed

    Duan, Junbo; Zhang, Ji-Gang; Deng, Hong-Wen; Wang, Yu-Ping

    2013-05-02

    Copy number variation (CNV) is an important structural variation (SV) in human genome. Various studies have shown that CNVs are associated with complex diseases. Traditional CNV detection methods such as fluorescence in situ hybridization (FISH) and array comparative genomic hybridization (aCGH) suffer from low resolution. The next generation sequencing (NGS) technique promises a higher resolution detection of CNVs and several methods were recently proposed for realizing such a promise. However, the performances of these methods are not robust under some conditions, e.g., some of them may fail to detect CNVs of short sizes. There has been a strong demand for reliable detection of CNVs from high resolution NGS data. A novel and robust method to detect CNV from short sequencing reads is proposed in this study. The detection of CNV is modeled as a change-point detection from the read depth (RD) signal derived from the NGS, which is fitted with a total variation (TV) penalized least squares model. The performance (e.g., sensitivity and specificity) of the proposed approach are evaluated by comparison with several recently published methods on both simulated and real data from the 1000 Genomes Project. The experimental results showed that both the true positive rate and false positive rate of the proposed detection method do not change significantly for CNVs with different copy numbers and lengthes, when compared with several existing methods. Therefore, our proposed approach results in a more reliable detection of CNVs than the existing methods.

  10. Mulibrey nanism: Two novel mutations in a child identified by Array CGH and DNA sequencing.

    PubMed

    Mozzillo, Enza; Cozzolino, Carla; Genesio, Rita; Melis, Daniela; Frisso, Giulia; Orrico, Ada; Lombardo, Barbara; Fattorusso, Valentina; Discepolo, Valentina; Della Casa, Roberto; Simonelli, Francesca; Nitsch, Lucio; Salvatore, Francesco; Franzese, Adriana

    2016-08-01

    In childhood, several rare genetic diseases have overlapping symptoms and signs, including those regarding growth alterations, thus the differential diagnosis is sometimes difficult. The proband, aged 3 years, was suspected to have Silver-Russel syndrome because of intrauterine growth retardation, postnatal growth retardation, typical facial dysmorphic features, macrocephaly, body asymmetry, and bilateral fifth finger clinodactyly. Other features were left atrial and ventricular enlargement and patent foramen ovale. Total X-ray skeleton showed hypoplasia of the twelfth rib bilaterally and of the coccyx, slender long bones with thick cortex, and narrow medullary channels. The genetic investigation did not confirm Silver-Russel syndrome. At the age of 5 the patient developed an additional sign: hepatomegaly. Array CGH revealed a 147 kb deletion (involving TRIM 37 and SKA2 genes) on one allele of chromosome 17, inherited from his mother. These results suggested Mulibrey nanism. The clinical features were found to fit this hypothesis. Sequencing of the TRIM 37 gene showed a single base change at a splicing locus, inherited from his father that provoked a truncated protein. The combined use of Array CGH and DNA sequencing confirmed diagnosis of Mulibrey nanism. The large deletion involving the SKA2 gene, along with the increased frequency of malignant tumours in mulibrey patients, suggests closed monitoring for cancer of our patient and his mother. Array CGH should be performed as first tier test in all infants with multiple anomalies. The clinician should reconsider the clinical features when the genetics suggests this. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Six consecutive false positive cases from cell-free fetal DNA testing in a single referring centre

    PubMed Central

    Dugo, Nella; Padula, Francesco; Mobili, Luisa; Brizzi, Cristiana; D’Emidio, Laura; Cignini, Pietro; Mesoraca, Alvaro; Bizzoco, Domenico; Cima, Antonella; Giorlandino, Claudio

    2014-01-01

    Introduction recent studies have proposed the introduction of cell-free fetal DNA testing (NIPT-Non Invasive Prenatal Testing) in routine clinical practice emphasizing its high sensibility and specificity. In any case, false positive and false negative findings may result from placental mosaicism, because cell-free fetal DNA originates mainly from placenta. Case we report six cases of women who underwent chorionic villus sampling (CVS) or amniocentesis to confirm the results from NIPT: two Turner syndromes, two Triple X, one Patau syndrome, one Edward syndrome. Results using classic cytogenetic analysis and, also, Array - Comparative Genomic Hybridization (Array CGH) the karyotype of all 5 fetuses was found to be normal. Conclusion results from NIPT must always be confirmed by invasive prenatal diagnosis. It is mandatory to inform the patient that the CVS and amniocentesis still represent the only form of prenatal diagnostic test available. PMID:25332757

  12. Periventricular heterotopia in a boy with interstitial deletion of chromosome 4p.

    PubMed

    Gawlik-Kuklinska, Katarzyna; Wierzba, Jolanta; Wozniak, Agnieszka; Iliszko, Mariola; Debiec-Rychter, Maria; Dubaniewicz-Wybieralska, Miroslawa; Limon, Janusz

    2008-01-01

    We report on a 4-year-old boy with a proximal interstitial deletion in the short arm of chromosome 4p with the karyotype 46,XY,del(4)(p14p15.32),inv(9)(p13q13). For a precise delineation of the deleted region, an array-based comparative genomic hybridization (a-CGH) analysis was performed. The proband's phenotype and cytogenetic findings are compared with previously reported cases with proximal 4p deletion syndrome. The syndrome is associated with normal growth, varying degrees of mental retardation, characteristic facial appearance and minor dysmorphic features. Additionally, our patient developed a seizure disorder due to abnormal neuronal migration, i.e., periventricular heterotopia.

  13. Characterization of a novel Lactobacillus species closely related to Lactobacillus johnsonii using a combination of molecular and comparative genomics methods.

    PubMed

    Sarmiento-Rubiano, Luz-Adriana; Berger, Bernard; Moine, Déborah; Zúñiga, Manuel; Pérez-Martínez, Gaspar; Yebra, María J

    2010-09-17

    Comparative genomic hybridization (CGH) constitutes a powerful tool for identification and characterization of bacterial strains. In this study we have applied this technique for the characterization of a number of Lactobacillus strains isolated from the intestinal content of rats fed with a diet supplemented with sorbitol. Phylogenetic analysis based on 16S rRNA gene, recA, pheS, pyrG and tuf sequences identified five bacterial strains isolated from the intestinal content of rats as belonging to the recently described Lactobacillus taiwanensis species. DNA-DNA hybridization experiments confirmed that these five strains are distinct but closely related to Lactobacillus johnsonii and Lactobacillus gasseri. A whole genome DNA microarray designed for the probiotic L. johnsonii strain NCC533 was used for CGH analysis of L. johnsonii ATCC 33200T, L. johnsonii BL261, L. gasseri ATCC 33323T and L. taiwanensis BL263. In these experiments, the fluorescence ratio distributions obtained with L. taiwanensis and L. gasseri showed characteristic inter-species profiles. The percentage of conserved L. johnsonii NCC533 genes was about 83% in the L. johnsonii strains comparisons and decreased to 51% and 47% for L. taiwanensis and L. gasseri, respectively. These results confirmed the separate status of L. taiwanensis from L. johnsonii at the level of species, and also that L. taiwanensis is closer to L. johnsonii than L. gasseri is to L. johnsonii. Conventional taxonomic analyses and microarray-based CGH analysis have been used for the identification and characterization of the newly species L. taiwanensis. The microarray-based CGH technology has been shown as a remarkable tool for the identification and fine discrimination between phylogenetically close species, and additionally provided insight into the adaptation of the strain L. taiwanensis BL263 to its ecological niche.

  14. Neurofibromatosis-1 gene deletions and mutations in de novo adult acute myeloid leukemia.

    PubMed

    Boudry-Labis, Elise; Roche-Lestienne, Catherine; Nibourel, Olivier; Boissel, Nicolas; Terre, Christine; Perot, Christine; Eclache, Virginie; Gachard, Nathalie; Tigaud, Isabelle; Plessis, Ghislaine; Cuccuini, Wendy; Geffroy, Sandrine; Villenet, Céline; Figeac, Martin; Leprêtre, Frederic; Renneville, Aline; Cheok, Meyling; Soulier, Jean; Dombret, Hervé; Preudhomme, Claude

    2013-04-01

    Germline heterozygous alterations of the tumor-suppressor gene neurofibromatosis-1 (NF1) lead to neurofibromatosis type 1, a genetic disorder characterized by a higher risk to develop juvenile myelomonocytic leukemia and/or acute myeloid leukemia (AML). More recently, somatic 17q11 deletions encompassing NF1 have been described in many adult myeloid malignancies. In this context, we aimed to define NF1 involvement in AML. We screened a total of 488 previously untreated de novo AML patients for the NF1 deletion using either array comparative genomic hybridization (aCGH) or real-time quantitative PCR/fluorescence in situ hybridization approaches. We also applied massively parallel sequencing for in depth mutation analysis of NF1 in 20 patients including five NF1-deleted patients. We defined a small ∼0.3 Mb minimal deleted region involving NF1 by aCGH and an overall frequency of NF1 deletion of 3.5% (17/485). NF1 deletion is significantly associated with unfavorable cytogenetics and with monosomal karyotype notably. We discovered six NF1 variants of unknown significance in 7/20 patients of which only one out of four disappeared in corresponding complete remission sample. In addition, only one out of five NF1-deleted patients has an acquired coding mutation in the remaining allele. In conclusion, direct NF1 inactivation is infrequent in de novo AML and may be a secondary event probably involved in leukemic progression. Copyright © 2013 Wiley Periodicals, Inc.

  15. A case of 3q29 microdeletion syndrome involving oral cleft inherited from a non-affected mosaic parent: molecular analysis and ethical implications

    PubMed Central

    Petrin, Aline L.; Daack-Hirsch, Sandra; L’Heureux, Jamie; Murray, Jeffrey C

    2010-01-01

    Objective The objective of this study was to use array-CGH to detect causal microdeletions in samples of subjects with cleft lip and palate. Subjects We analyzed DNA samples from a male patient and parents that was seen during surgical screening for an Operation Smile medical mission in the Philippines. Method We used Affymetrix Genome Wide Human SNP Array 6.0 followed by sequencing and quantitative PCR using SYBR Green I dye. Results We report the second case of 3q29 microdeletion syndrome including cleft lip with or without cleft palate and the first case of this microdeletion syndrome inherited from a phenotypically normal mosaic parent. Conclusions Our findings confirm the utility of aCGH to detect causal microdeletions; indicate that parental somatic mosaicism should be considered in healthy parents for genetic counseling of the families and discuss important ethical implications of sharing health impact results from research studies with the participant families. PMID:20500065

  16. X-chromosome tiling path array detection of copy number variants in patients with chromosome X-linked mental retardation

    PubMed Central

    Madrigal, I; Rodríguez-Revenga, L; Armengol, L; González, E; Rodriguez, B; Badenas, C; Sánchez, A; Martínez, F; Guitart, M; Fernández, I; Arranz, JA; Tejada, MI; Pérez-Jurado, LA; Estivill, X; Milà, M

    2007-01-01

    Background Aproximately 5–10% of cases of mental retardation in males are due to copy number variations (CNV) on the X chromosome. Novel technologies, such as array comparative genomic hybridization (aCGH), may help to uncover cryptic rearrangements in X-linked mental retardation (XLMR) patients. We have constructed an X-chromosome tiling path array using bacterial artificial chromosomes (BACs) and validated it using samples with cytogenetically defined copy number changes. We have studied 54 patients with idiopathic mental retardation and 20 controls subjects. Results Known genomic aberrations were reliably detected on the array and eight novel submicroscopic imbalances, likely causative for the mental retardation (MR) phenotype, were detected. Putatively pathogenic rearrangements included three deletions and five duplications (ranging between 82 kb to one Mb), all but two affecting genes previously known to be responsible for XLMR. Additionally, we describe different CNV regions with significant different frequencies in XLMR and control subjects (44% vs. 20%). Conclusion This tiling path array of the human X chromosome has proven successful for the detection and characterization of known rearrangements and novel CNVs in XLMR patients. PMID:18047645

  17. Global assessment of genomic variation in cattle by genome resequencing and high-throughput genotyping

    PubMed Central

    2011-01-01

    Background Integration of genomic variation with phenotypic information is an effective approach for uncovering genotype-phenotype associations. This requires an accurate identification of the different types of variation in individual genomes. Results We report the integration of the whole genome sequence of a single Holstein Friesian bull with data from single nucleotide polymorphism (SNP) and comparative genomic hybridization (CGH) array technologies to determine a comprehensive spectrum of genomic variation. The performance of resequencing SNP detection was assessed by combining SNPs that were identified to be either in identity by descent (IBD) or in copy number variation (CNV) with results from SNP array genotyping. Coding insertions and deletions (indels) were found to be enriched for size in multiples of 3 and were located near the N- and C-termini of proteins. For larger indels, a combination of split-read and read-pair approaches proved to be complementary in finding different signatures. CNVs were identified on the basis of the depth of sequenced reads, and by using SNP and CGH arrays. Conclusions Our results provide high resolution mapping of diverse classes of genomic variation in an individual bovine genome and demonstrate that structural variation surpasses sequence variation as the main component of genomic variability. Better accuracy of SNP detection was achieved with little loss of sensitivity when algorithms that implemented mapping quality were used. IBD regions were found to be instrumental for calculating resequencing SNP accuracy, while SNP detection within CNVs tended to be less reliable. CNV discovery was affected dramatically by platform resolution and coverage biases. The combined data for this study showed that at a moderate level of sequencing coverage, an ensemble of platforms and tools can be applied together to maximize the accurate detection of sequence and structural variants. PMID:22082336

  18. Comprehensive identification of mutations induced by heavy-ion beam irradiation in Arabidopsis thaliana.

    PubMed

    Hirano, Tomonari; Kazama, Yusuke; Ishii, Kotaro; Ohbu, Sumie; Shirakawa, Yuki; Abe, Tomoko

    2015-04-01

    Heavy-ion beams are widely used for mutation breeding and molecular biology. Although the mutagenic effects of heavy-ion beam irradiation have been characterized by sequence analysis of some restricted chromosomal regions or loci, there have been no evaluations at the whole-genome level or of the detailed genomic rearrangements in the mutant genomes. In this study, using array comparative genomic hybridization (array-CGH) and resequencing, we comprehensively characterized the mutations in Arabidopsis thaliana genomes irradiated with Ar or Fe ions. We subsequently used this information to investigate the mutagenic effects of the heavy-ion beams. Array-CGH demonstrated that the average number of deleted areas per genome were 1.9 and 3.7 following Ar-ion and Fe-ion irradiation, respectively, with deletion sizes ranging from 149 to 602,180 bp; 81% of the deletions were accompanied by genomic rearrangements. To provide a further detailed analysis, the genomes of the mutants induced by Ar-ion beam irradiation were resequenced, and total mutations, including base substitutions, duplications, in/dels, inversions, and translocations, were detected using three algorithms. All three resequenced mutants had genomic rearrangements. Of the 22 DNA fragments that contributed to the rearrangements, 19 fragments were responsible for the intrachromosomal rearrangements, and multiple rearrangements were formed in the localized regions of the chromosomes. The interchromosomal rearrangements were detected in the multiply rearranged regions. These results indicate that the heavy-ion beams led to clustered DNA damage in the chromosome, and that they have great potential to induce complicated intrachromosomal rearrangements. Heavy-ion beams will prove useful as unique mutagens for plant breeding and the establishment of mutant lines. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  19. Genovar: a detection and visualization tool for genomic variants.

    PubMed

    Jung, Kwang Su; Moon, Sanghoon; Kim, Young Jin; Kim, Bong-Jo; Park, Kiejung

    2012-05-08

    Along with single nucleotide polymorphisms (SNPs), copy number variation (CNV) is considered an important source of genetic variation associated with disease susceptibility. Despite the importance of CNV, the tools currently available for its analysis often produce false positive results due to limitations such as low resolution of array platforms, platform specificity, and the type of CNV. To resolve this problem, spurious signals must be separated from true signals by visual inspection. None of the previously reported CNV analysis tools support this function and the simultaneous visualization of comparative genomic hybridization arrays (aCGH) and sequence alignment. The purpose of the present study was to develop a useful program for the efficient detection and visualization of CNV regions that enables the manual exclusion of erroneous signals. A JAVA-based stand-alone program called Genovar was developed. To ascertain whether a detected CNV region is a novel variant, Genovar compares the detected CNV regions with previously reported CNV regions using the Database of Genomic Variants (DGV, http://projects.tcag.ca/variation) and the Single Nucleotide Polymorphism Database (dbSNP). The current version of Genovar is capable of visualizing genomic data from sources such as the aCGH data file and sequence alignment format files. Genovar is freely accessible and provides a user-friendly graphic user interface (GUI) to facilitate the detection of CNV regions. The program also provides comprehensive information to help in the elimination of spurious signals by visual inspection, making Genovar a valuable tool for reducing false positive CNV results. http://genovar.sourceforge.net/.

  20. De novo interstitial duplication of the 15q11.2-q14 PWS/AS region of maternal origin: Clinical description, array CGH analysis, and review of the literature.

    PubMed

    Kitsiou-Tzeli, Sophia; Tzetis, Maria; Sofocleous, Christalena; Vrettou, Christina; Xaidara, Athena; Giannikou, Krinio; Pampanos, Andreas; Mavrou, Ariadne; Kanavakis, E

    2010-08-01

    The 15q11-q13 PWS/AS critical region involves genes that are characterized by genomic imprinting. Multiple repeat elements within the region mediate rearrangements, including interstitial duplications, interstitial triplications, and supernumerary isodicentric marker chromosomes, as well as the deletions that cause Prader-Willi syndrome (PWS) and Angelman syndrome (AS). Recently, duplications of maternal origin concerning the same critical region have been implicated in autism spectrum disorders (ASD). We present a 6-month-old girl carrying a de novo duplication of maternal origin of the 15q11.2-q14 PWS/AS region (17.73 Mb in size) [46,XX,dup(15)(q11.2-q14)] detected with a high-resolution microarray-based comparative genomic hybridization (array-CGH). The patient is characterized by severe hypotonia, obesity, microstomia, long eyelashes, hirsutism, microretrognathia, short nose, severe psychomotor retardation, and multiple episodes of drug-resistant epileptic seizures, while her brain magnetic resonance imaging (MRI) documented partial corpus callosum dysplasia. In our patient the duplicated region is quite large extending beyond the Prader-Willi-Angelman critical region (PWACR), containing a number of genes that have been shown to be involved in ASD, exhibiting a severe phenotype, beyond the typical PWS/AS clinical manifestations. Reporting of similar well-characterized clinical cases with clearly delineated breakpoints of the duplicated region will clarify the contribution of specific genes to the phenotype.

  1. Assessing copy number from exome sequencing and exome array CGH based on CNV spectrum in a large clinical cohort.

    PubMed

    Retterer, Kyle; Scuffins, Julie; Schmidt, Daniel; Lewis, Rachel; Pineda-Alvarez, Daniel; Stafford, Amanda; Schmidt, Lindsay; Warren, Stephanie; Gibellini, Federica; Kondakova, Anastasia; Blair, Amanda; Bale, Sherri; Matyakhina, Ludmila; Meck, Jeanne; Aradhya, Swaroop; Haverfield, Eden

    2015-08-01

    Detection of copy-number variation (CNV) is important for investigating many genetic disorders. Testing a large clinical cohort by array comparative genomic hybridization provides a deep perspective on the spectrum of pathogenic CNV. In this context, we describe a bioinformatics approach to extract CNV information from whole-exome sequencing and demonstrate its utility in clinical testing. Exon-focused arrays and whole-genome chromosomal microarray analysis were used to test 14,228 and 14,000 individuals, respectively. Based on these results, we developed an algorithm to detect deletions/duplications in whole-exome sequencing data and a novel whole-exome array. In the exon array cohort, we observed a positive detection rate of 2.4% (25 duplications, 318 deletions), of which 39% involved one or two exons. Chromosomal microarray analysis identified 3,345 CNVs affecting single genes (18%). We demonstrate that our whole-exome sequencing algorithm resolves CNVs of three or more exons. These results demonstrate the clinical utility of single-exon resolution in CNV assays. Our whole-exome sequencing algorithm approaches this resolution but is complemented by a whole-exome array to unambiguously identify intragenic CNVs and single-exon changes. These data illustrate the next advancements in CNV analysis through whole-exome sequencing and whole-exome array.Genet Med 17 8, 623-629.

  2. Characterization of hemizygous deletions in Citrus using array-Comparative Genomic Hybridization and microsynteny comparisons with the poplar genome

    PubMed Central

    Ríos, Gabino; Naranjo, Miguel A; Iglesias, Domingo J; Ruiz-Rivero, Omar; Geraud, Marion; Usach, Antonio; Talón, Manuel

    2008-01-01

    Background Many fruit-tree species, including relevant Citrus spp varieties exhibit a reproductive biology that impairs breeding and strongly constrains genetic improvements. In citrus, juvenility increases the generation time while sexual sterility, inbreeding depression and self-incompatibility prevent the production of homozygous cultivars. Genomic technology may provide citrus researchers with a new set of tools to address these various restrictions. In this work, we report a valuable genomics-based protocol for the structural analysis of deletion mutations on an heterozygous background. Results Two independent fast neutron mutants of self-incompatible clementine (Citrus clementina Hort. Ex Tan. cv. Clemenules) were the subject of the study. Both mutants, named 39B3 and 39E7, were expected to carry DNA deletions in hemizygous dosage. Array-based Comparative Genomic Hybridization (array-CGH) using a Citrus cDNA microarray allowed the identification of underrepresented genes in these two mutants. Subsequent comparison of citrus deleted genes with annotated plant genomes, especially poplar, made possible to predict the presence of a large deletion in 39B3 of about 700 kb and at least two deletions of approximately 100 and 500 kb in 39E7. The deletion in 39B3 was further characterized by PCR on available Citrus BACs, which helped us to build a partial physical map of the deletion. Among the deleted genes, ClpC-like gene coding for a putative subunit of a multifunctional chloroplastic protease involved in the regulation of chlorophyll b synthesis was directly related to the mutated phenotype since the mutant showed a reduced chlorophyll a/b ratio in green tissues. Conclusion In this work, we report the use of array-CGH for the successful identification of genes included in a hemizygous deletion induced by fast neutron irradiation on Citrus clementina. The study of gene content and order into the 39B3 deletion also led to the unexpected conclusion that microsynteny and local gene colinearity in this species were higher with Populus trichocarpa than with the phylogenetically closer Arabidopsis thaliana. This work corroborates the potential of Citrus genomic resources to assist mutagenesis-based approaches for functional genetics, structural studies and comparative genomics, and hence to facilitate citrus variety improvement. PMID:18691431

  3. Genotype-phenotype analysis of recombinant chromosome 4 syndrome: an array-CGH study and literature review

    PubMed Central

    2013-01-01

    Background Recombinant chromosome 4, a rare constitutional rearrangement arising from pericentric inversion, comprises a duplicated segment of 4p13~p15→4pter and a deleted segment of 4q35→4qter. To date, 10 cases of recombinant chromosome 4 have been reported. Result We describe the second case in which array-CGH was used to characterize recombinant chromosome 4 syndrome. The patient was a one-year old boy with consistent clinical features. Conventional cytogenetics and FISH documented a recombinant chromosome 4, derived from a paternal pericentric inversion, leading to partial trisomy 4p and partial monosomy of 4q. Array-CGH, performed to further characterize the rearranged chromosome 4 and delineate the breakpoints, documented a small (4.36 Mb) 4q35.1 terminal deletion and a large (23.81 Mb) 4p15.1 terminal duplication. Genotype-phenotype analysis of 10 previously reported cases and the present case indicated relatively consistent clinical features and breakpoints. This consistency was more evident in our case and another characterized by array-CGH, where both showed the common breakpoints of p15.1 and q35.1. A genotype-phenotype correlation study between rec(4), dup(4p), and del(4q) syndromes revealed that urogenital and cardiac defects are probably due to the deletion of 4q whereas the other clinical features are likely due to 4p duplication. Conclusion Our findings support that the clinical features of patients with rec(4) are relatively consistent and specific to the regions of duplication or deletion. Recombinant chromosome 4 syndrome thus appears to be a discrete entity that can be suspected on the basis of clinical features or specific deleted and duplicated chromosomal regions. PMID:23639048

  4. Genotype-phenotype analysis of recombinant chromosome 4 syndrome: an array-CGH study and literature review.

    PubMed

    Hemmat, Morteza; Hemmat, Omid; Anguiano, Arturo; Boyar, Fatih Z; El Naggar, Mohammed; Wang, Jia-Chi; Wang, Borris T; Sahoo, Trilochan; Owen, Renius; Haddadin, Mary

    2013-05-02

    Recombinant chromosome 4, a rare constitutional rearrangement arising from pericentric inversion, comprises a duplicated segment of 4p13~p15→4pter and a deleted segment of 4q35→4qter. To date, 10 cases of recombinant chromosome 4 have been reported. We describe the second case in which array-CGH was used to characterize recombinant chromosome 4 syndrome. The patient was a one-year old boy with consistent clinical features. Conventional cytogenetics and FISH documented a recombinant chromosome 4, derived from a paternal pericentric inversion, leading to partial trisomy 4p and partial monosomy of 4q. Array-CGH, performed to further characterize the rearranged chromosome 4 and delineate the breakpoints, documented a small (4.36 Mb) 4q35.1 terminal deletion and a large (23.81 Mb) 4p15.1 terminal duplication. Genotype-phenotype analysis of 10 previously reported cases and the present case indicated relatively consistent clinical features and breakpoints. This consistency was more evident in our case and another characterized by array-CGH, where both showed the common breakpoints of p15.1 and q35.1. A genotype-phenotype correlation study between rec(4), dup(4p), and del(4q) syndromes revealed that urogenital and cardiac defects are probably due to the deletion of 4q whereas the other clinical features are likely due to 4p duplication. Our findings support that the clinical features of patients with rec(4) are relatively consistent and specific to the regions of duplication or deletion. Recombinant chromosome 4 syndrome thus appears to be a discrete entity that can be suspected on the basis of clinical features or specific deleted and duplicated chromosomal regions.

  5. Cryptic deletions are a common finding in “balanced” reciprocal and complex chromosome rearrangements: a study of 59 patients

    PubMed Central

    De Gregori, M; Ciccone, R; Magini, P; Pramparo, T; Gimelli, S; Messa, J; Novara, F; Vetro, A; Rossi, E; Maraschio, P; Bonaglia, M C; Anichini, C; Ferrero, G B; Silengo, M; Fazzi, E; Zatterale, A; Fischetto, R; Previderé, C; Belli, S; Turci, A; Calabrese, G; Bernardi, F; Meneghelli, E; Riegel, M; Rocchi, M; SGuerneri; Lalatta, F; Zelante, L; Romano, C; Fichera, Ma; Mattina, T; Arrigo, G; Zollino, M; Giglio, S; Lonardo, F; Bonfante, A; Ferlini, A; Cifuentes, F; Van Esch, H; Backx, L; Schinzel, A; Vermeesch, J R; Zuffardi, O

    2007-01-01

    Using array comparative genome hybridisation (CGH) 41 de novo reciprocal translocations and 18 de novo complex chromosome rearrangements (CCRs) were screened. All cases had been interpreted as “balanced” by conventional cytogenetics. In all, 27 cases of reciprocal translocations were detected in patients with an abnormal phenotype, and after array CGH analysis, 11 were found to be unbalanced. Thus 40% (11 of 27) of patients with a “chromosomal phenotype” and an apparently balanced translocation were in fact unbalanced, and 18% (5 of 27) of the reciprocal translocations were instead complex rearrangements with >3 breakpoints. Fourteen fetuses with de novo, apparently balanced translocations, all but two with normal ultrasound findings, were also analysed and all were found to be normal using array CGH. Thirteen CCRs were detected in patients with abnormal phenotypes, two in women who had experienced repeated spontaneous abortions and three in fetuses. Sixteen patients were found to have unbalanced mutations, with up to 4 deletions. These results suggest that genome‐wide array CGH may be advisable in all carriers of “balanced” CCRs. The parental origin of the deletions was investigated in 5 reciprocal translocations and 11 CCRs; all were found to be paternal. Using customised platforms in seven cases of CCRs, the deletion breakpoints were narrowed down to regions of a few hundred base pairs in length. No susceptibility motifs were associated with the imbalances. These results show that the phenotypic abnormalities of apparently balanced de novo CCRs are mainly due to cryptic deletions and that spermatogenesis is more prone to generate multiple chaotic chromosome imbalances and reciprocal translocations than oogenesis. PMID:17766364

  6. Experimental analysis of oligonucleotide microarray design criteria to detect deletions by comparative genomic hybridization.

    PubMed

    Flibotte, Stephane; Moerman, Donald G

    2008-10-21

    Microarray comparative genomic hybridization (CGH) is currently one of the most powerful techniques to measure DNA copy number in large genomes. In humans, microarray CGH is widely used to assess copy number variants in healthy individuals and copy number aberrations associated with various diseases, syndromes and disease susceptibility. In model organisms such as Caenorhabditis elegans (C. elegans) the technique has been applied to detect mutations, primarily deletions, in strains of interest. Although various constraints on oligonucleotide properties have been suggested to minimize non-specific hybridization and improve the data quality, there have been few experimental validations for CGH experiments. For genomic regions where strict design filters would limit the coverage it would also be useful to quantify the expected loss in data quality associated with relaxed design criteria. We have quantified the effects of filtering various oligonucleotide properties by measuring the resolving power for detecting deletions in the human and C. elegans genomes using NimbleGen microarrays. Approximately twice as many oligonucleotides are typically required to be affected by a deletion in human DNA samples in order to achieve the same statistical confidence as one would observe for a deletion in C. elegans. Surprisingly, the ability to detect deletions strongly depends on the oligonucleotide 15-mer count, which is defined as the sum of the genomic frequency of all the constituent 15-mers within the oligonucleotide. A similarity level above 80% to non-target sequences over the length of the probe produces significant cross-hybridization. We recommend the use of a fairly large melting temperature window of up to 10 degrees C, the elimination of repeat sequences, the elimination of homopolymers longer than 5 nucleotides, and a threshold of -1 kcal/mol on the oligonucleotide self-folding energy. We observed very little difference in data quality when varying the oligonucleotide length between 50 and 70, and even when using an isothermal design strategy. We have determined experimentally the effects of varying several key oligonucleotide microarray design criteria for detection of deletions in C. elegans and humans with NimbleGen's CGH technology. Our oligonucleotide design recommendations should be applicable for CGH analysis in most species.

  7. Blastulation rates decline in a linear fashion from euploid to aneuploid embryos with single versus multiple chromosomal errors.

    PubMed

    Vega, Mario; Breborowicz, Andrzej; Moshier, Erin L; McGovern, Peter G; Keltz, Martin D

    2014-08-01

    To test the hypothesis that the blastulation rate is higher in euploid embryos than in aneuploid embryos as assessed by cleavage-stage biopsy with array-comprehensive genomic hybridization (aCGH). Retrospective cohort study. University-affiliated institution. Forty-one patients with 48 in vitro fertilization (IVF) cycles and 385 embryos that underwent cleavage-stage preimplantation genetic screening (PGS) with aCGH at the Continuum Reproductive Center between January 2010 and September 2013. None. Probability of blastocyst and/or fully expanded or hatching blastocyst (FEHB) progression depending on number of chromosomal abnormalities. Euploid embryos are twice as likely to progress to blastocyst and three times as likely to progress to FEHB than aneuploid embryos: 76% versus 37% and 56% versus 18%, respectively. For every additional chromosomal abnormality, the likelihood of progressing to the blastocyst stage decreases by 22% and the likelihood of progressing to FEHB decreases by 33%. Euploid embryos are far more likely than aneuploid embryos to progress to the blastocyst and FEHB stages. There is a linear decrease in probability of blastulation with the increasing number of chromosomal abnormalities. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  8. Molecular profiling reveals frequent gain of MYCN and anaplasia-specific loss of 4q and 14q in Wilms tumor.

    PubMed

    Williams, Richard D; Al-Saadi, Reem; Natrajan, Rachael; Mackay, Alan; Chagtai, Tasnim; Little, Suzanne; Hing, Sandra N; Fenwick, Kerry; Ashworth, Alan; Grundy, Paul; Anderson, James R; Dome, Jeffrey S; Perlman, Elizabeth J; Jones, Chris; Pritchard-Jones, Kathy

    2011-12-01

    Anaplasia in Wilms tumor, a distinctive histology characterized by abnormal mitoses, is associated with poor patient outcome. While anaplastic tumors frequently harbour TP53 mutations, little is otherwise known about their molecular biology. We have used array comparative genomic hybridization (aCGH) and cDNA microarray expression profiling to compare anaplastic and favorable histology Wilms tumors to determine their common and differentiating features. In addition to changes on 17p, consistent with TP53 deletion, recurrent anaplasia-specific genomic loss and under-expression were noted in several other regions, most strikingly 4q and 14q. Further aberrations, including gain of 1q and loss of 16q were common to both histologies. Focal gain of MYCN, initially detected by high resolution aCGH profiling in 6/61 anaplastic samples, was confirmed in a significant proportion of both tumor types by a genomic quantitative PCR survey of over 400 tumors. Overall, these results are consistent with a model where anaplasia, rather than forming an entirely distinct molecular entity, arises from the general continuum of Wilms tumor by the acquisition of additional genomic changes at multiple loci. Copyright © 2011 Wiley Periodicals, Inc.

  9. A web server for mining Comparative Genomic Hybridization (CGH) data

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Ranka, Sanjay; Kahveci, Tamer

    2007-11-01

    Advances in cytogenetics and molecular biology has established that chromosomal alterations are critical in the pathogenesis of human cancer. Recurrent chromosomal alterations provide cytological and molecular markers for the diagnosis and prognosis of disease. They also facilitate the identification of genes that are important in carcinogenesis, which in the future may help in the development of targeted therapy. A large amount of publicly available cancer genetic data is now available and it is growing. There is a need for public domain tools that allow users to analyze their data and visualize the results. This chapter describes a web based software tool that will allow researchers to analyze and visualize Comparative Genomic Hybridization (CGH) datasets. It employs novel data mining methodologies for clustering and classification of CGH datasets as well as algorithms for identifying important markers (small set of genomic intervals with aberrations) that are potentially cancer signatures. The developed software will help in understanding the relationships between genomic aberrations and cancer types.

  10. Significance of genomic instability in breast cancer in atomic bomb survivors: analysis of microarray-comparative genomic hybridization

    PubMed Central

    2011-01-01

    Background It has been postulated that ionizing radiation induces breast cancers among atomic bomb (A-bomb) survivors. We have reported a higher incidence of HER2 and C-MYC oncogene amplification in breast cancers from A-bomb survivors. The purpose of this study was to clarify the effect of A-bomb radiation exposure on genomic instability (GIN), which is an important hallmark of carcinogenesis, in archival formalin-fixed paraffin-embedded (FFPE) tissues of breast cancer by using microarray-comparative genomic hybridization (aCGH). Methods Tumor DNA was extracted from FFPE tissues of invasive ductal cancers from 15 survivors who were exposed at 1.5 km or less from the hypocenter and 13 calendar year-matched non-exposed patients followed by aCGH analysis using a high-density oligonucleotide microarray. The total length of copy number aberrations (CNA) was used as an indicator of GIN, and correlation with clinicopathological factors were statistically tested. Results The mean of the derivative log ratio spread (DLRSpread), which estimates the noise by calculating the spread of log ratio differences between consecutive probes for all chromosomes, was 0.54 (range, 0.26 to 1.05). The concordance of results between aCGH and fluorescence in situ hybridization (FISH) for HER2 gene amplification was 88%. The incidence of HER2 amplification and histological grade was significantly higher in the A-bomb survivors than control group (P = 0.04, respectively). The total length of CNA tended to be larger in the A-bomb survivors (P = 0.15). Correlation analysis of CNA and clinicopathological factors revealed that DLRSpread was negatively correlated with that significantly (P = 0.034, r = -0.40). Multivariate analysis with covariance revealed that the exposure to A-bomb was a significant (P = 0.005) independent factor which was associated with larger total length of CNA of breast cancers. Conclusions Thus, archival FFPE tissues from A-bomb survivors are useful for genome-wide aCGH analysis. Our results suggested that A-bomb radiation may affect the increased amount of CNA as a hallmark of GIN and, subsequently, be associated with a higher histologic grade in breast cancer found in A-bomb survivors. PMID:22152285

  11. Selection of competent blastocysts for transfer by combining time-lapse monitoring and array CGH testing for patients undergoing preimplantation genetic screening: a prospective study with sibling oocytes

    PubMed Central

    2014-01-01

    Background Recent advances in time-lapse monitoring in IVF treatment have provided new morphokinetic markers for embryonic competence. However, there is still very limited information about the relationship between morphokinetic parameters, chromosomal compositions and implantation potential. Accordingly, this study aimed at investigating the effects of selecting competent blastocysts for transfer by combining time-lapse monitoring and array CGH testing on pregnancy and implantation outcomes for patients undergoing preimplantation genetic screening (PGS). Methods A total of 1163 metaphase II (MII) oocytes were retrieved from 138 PGS patients at a mean age of 36.6 ± 2.4 years. These sibling MII oocytes were then randomized into two groups after ICSI: 1) Group A, oocytes (n = 582) were cultured in the time-lapse system and 2) Group B, oocytes (n = 581) were cultured in the conventional incubator. For both groups, whole genomic amplification and array CGH testing were performed after trophectoderm biopsy on day 5. One to two euploid blastocysts within the most predictive morphokinetic parameters (Group A) or with the best morphological grade available (Group B) were selected for transfer to individual patients on day 6. Ongoing pregnancy and implantation rates were compared between the two groups. Results There were significant differences in clinical pregnancy rates between Group A and Group B (71.1% vs. 45.9%, respectively, p = 0.037). The observed implantation rate per embryo transfer significantly increased in Group A compared to Group B (66.2% vs. 42.4%, respectively, p = 0.011). Moreover, a significant increase in ongoing pregnancy rates was also observed in Group A compared to Group B (68.9% vs. 40.5%. respectively, p = 0.019). However, there was no significant difference in miscarriage rate between the time-lapse system and the conventional incubator (3.1% vs. 11.8%, respectively, p = 0.273). Conclusions This is the first prospective investigation using sibling oocytes to evaluate the efficiency of selecting competent blastocysts for transfer by combining time-lapse monitoring and array CGH testing for PGS patients. Our data clearly demonstrate that the combination of these two advanced technologies to select competent blastocysts for transfer results in improved implantation and ongoing pregnancy rates for PGS patients. PMID:24954518

  12. 45,X product of conception after preimplantation genetic diagnosis and euploid embryo transfer: evidence of a spontaneous conception confirmed by DNA fingerprinting.

    PubMed

    Bettio, Daniela; Capalbo, Antonio; Albani, Elena; Rienzi, Laura; Achille, Valentina; Venci, Anna; Ubaldi, Filippo Maria; Levi Setti, Paolo Emanuele

    2016-09-06

    Preimplantation genetic screening (PGS) provides an opportunity to eliminate a potential implantation failure due to aneuploidy in infertile couples. Some studies clearly show that twins following single embryo transfer (SET) can be the result of a concurrent natural conception and an incidence as high as 1 in 5 twins has been reported. In our case PGS was performed on trophectoderm (TE) biopsies by quantitative polymerase chain reaction (qPCR). The product of conception (POC) was cytogenetically investigated after selection of the placental villi by means of the direct method. Molecular cytogenetic characterization of the POC was performed by fluorescence in situ hybridization (FISH) and array-comparative genomic hybridization (a-CGH) analyses. To investigate the possibility of a spontaneous conception, a panel of 40 single nucleotide polymorphisms (SNPs) was used to compare genetic similarity between the DNA of the POC and the DNA leftover of the TE biopsy. We describe a 36-year old infertile woman undergoing PGS who had a spontaneous abortion after a single euploid embryo transfer on a spontaneous cycle. The POC showed a 45,X karyotype confirmed by FISH and a-CGH. DNA fingerprinting demonstrated a genetic similarity of 75 % between the DNA of the POC and TE biopsy, consistent with a sibling status. All supernumerary euploid embryos were also tested showing a non-self relationship with the POC, excluding a mix-up event at the time of fetal embryo transfer. DNA fingerprinting of the transferred blastocyst and POC, confirmed the occurrence of a spontaneous conception. This case challenges the assumption that a pregnancy after assisted reproductive technology (ART) is always a result of ART, and strengthens the importance to avoid intercourses during PGS and natural transfer cycles. Moreover, cytogenetic analysis of the POCs is strongly recommended along with fingerprinting children born after PGS to see what the concordance is between the embryo transferred and the resultant child.

  13. FISH Oracle: a web server for flexible visualization of DNA copy number data in a genomic context.

    PubMed

    Mader, Malte; Simon, Ronald; Steinbiss, Sascha; Kurtz, Stefan

    2011-07-28

    The rapidly growing amount of array CGH data requires improved visualization software supporting the process of identifying candidate cancer genes. Optimally, such software should work across multiple microarray platforms, should be able to cope with data from different sources and should be easy to operate. We have developed a web-based software FISH Oracle to visualize data from multiple array CGH experiments in a genomic context. Its fast visualization engine and advanced web and database technology supports highly interactive use. FISH Oracle comes with a convenient data import mechanism, powerful search options for genomic elements (e.g. gene names or karyobands), quick navigation and zooming into interesting regions, and mechanisms to export the visualization into different high quality formats. These features make the software especially suitable for the needs of life scientists. FISH Oracle offers a fast and easy to use visualization tool for array CGH and SNP array data. It allows for the identification of genomic regions representing minimal common changes based on data from one or more experiments. FISH Oracle will be instrumental to identify candidate onco and tumor suppressor genes based on the frequency and genomic position of DNA copy number changes. The FISH Oracle application and an installed demo web server are available at http://www.zbh.uni-hamburg.de/fishoracle.

  14. FISH Oracle: a web server for flexible visualization of DNA copy number data in a genomic context

    PubMed Central

    2011-01-01

    Background The rapidly growing amount of array CGH data requires improved visualization software supporting the process of identifying candidate cancer genes. Optimally, such software should work across multiple microarray platforms, should be able to cope with data from different sources and should be easy to operate. Results We have developed a web-based software FISH Oracle to visualize data from multiple array CGH experiments in a genomic context. Its fast visualization engine and advanced web and database technology supports highly interactive use. FISH Oracle comes with a convenient data import mechanism, powerful search options for genomic elements (e.g. gene names or karyobands), quick navigation and zooming into interesting regions, and mechanisms to export the visualization into different high quality formats. These features make the software especially suitable for the needs of life scientists. Conclusions FISH Oracle offers a fast and easy to use visualization tool for array CGH and SNP array data. It allows for the identification of genomic regions representing minimal common changes based on data from one or more experiments. FISH Oracle will be instrumental to identify candidate onco and tumor suppressor genes based on the frequency and genomic position of DNA copy number changes. The FISH Oracle application and an installed demo web server are available at http://www.zbh.uni-hamburg.de/fishoracle. PMID:21884636

  15. Establishment of a patient-derived orthotopic osteosarcoma mouse model.

    PubMed

    Blattmann, Claudia; Thiemann, Markus; Stenzinger, Albrecht; Roth, Eva K; Dittmar, Anne; Witt, Hendrik; Lehner, Burkhard; Renker, Eva; Jugold, Manfred; Eichwald, Viktoria; Weichert, Wilko; Huber, Peter E; Kulozik, Andreas E

    2015-04-30

    Osteosarcoma (OS) is the most common pediatric primary malignant bone tumor. As the prognosis for patients following standard treatment did not improve for almost three decades, functional preclinical models that closely reflect important clinical cancer characteristics are urgently needed to develop and evaluate new treatment strategies. The objective of this study was to establish an orthotopic xenotransplanted mouse model using patient-derived tumor tissue. Fresh tumor tissue from an adolescent female patient with osteosarcoma after relapse was surgically xenografted into the right tibia of 6 immunodeficient BALB/c Nu/Nu mice as well as cultured into medium. Tumor growth was serially assessed by palpation and with magnetic resonance imaging (MRI). In parallel, a primary cell line of the same tumor was established. Histology and high-resolution array-based comparative genomic hybridization (aCGH) were used to investigate both phenotypic and genotypic characteristics of different passages of human xenografts and the cell line compared to the tissue of origin. A primary OS cell line and a primary patient-derived orthotopic xenotranplanted mouse model were established. MRI analyses and histopathology demonstrated an identical architecture in the primary tumor and in the xenografts. Array-CGH analyses of the cell line and all xenografts showed highly comparable patterns of genomic progression. So far, three further primary patient-derived orthotopic xenotranplanted mouse models could be established. We report the first orthotopic OS mouse model generated by transplantation of tumor fragments directly harvested from the patient. This model represents the morphologic and genomic identity of the primary tumor and provides a preclinical platform to evaluate new treatment strategies in OS.

  16. [Comparative cost analysis of molecular biology methods in the diagnosis of sarcomas].

    PubMed

    Baffert, Sandrine; Italiano, Antoine; Pierron, Gaëlle; Traoré, Marie-Angèle; Rapp, Jocelyn; Escande, Fabienne; Ghnassia, Jean-Pierre; Terrier, Philippe; Voegeli, Anne-Claire; Ranchere-Vince, Dominique; Coindre, Jean-Michel; Pedeutour, Florence

    2013-10-01

    Sarcomas represent a complex and heterogeneous group of rare malignant tumors and their correct diagnosis is often difficult. Recent molecular biological techniques have been of great diagnostic use and there is a need to assess the cost of these procedures in routine clinical practice. Using prospective and observational data from eight molecular biology laboratories in France, we used "microcosting" method to assess the cost of molecular biological techniques in the diagnosis of five types of sarcoma. The mean cost of fluorescence in situ hybridization (FISH) was 318 € (273-393) per sample; mean reverse transcription polymerase chain reaction (RT-PCR) cost ranged from 300 € (229-481) per formalin-fixed, paraffin-embedded specimen to 258 € (213-339) per frozen specimen; mean quantitative polymerase chain reaction (Q-PCR) cost was 184 € (112-229) and mean CGH-array cost was 332 € (329-335). The cost of these recently implemented techniques varied according to the type of sarcoma; the method of tissue collection and local organizational factors including the level of local expertise and investment. The cost of molecular diagnostic techniques needs to be balanced against their respective performance.

  17. Genome-wide high-resolution aCGH analysis of gestational choriocarcinomas.

    PubMed

    Poaty, Henriette; Coullin, Philippe; Peko, Jean Félix; Dessen, Philippe; Diatta, Ange Lucien; Valent, Alexander; Leguern, Eric; Prévot, Sophie; Gombé-Mbalawa, Charles; Candelier, Jean-Jacques; Picard, Jean-Yves; Bernheim, Alain

    2012-01-01

    Eleven samples of DNA from choriocarcinomas were studied by high resolution CGH-array 244 K. They were studied after histopathological confirmation of the diagnosis, of the androgenic etiology and after a microsatellite marker analysis confirming the absence of contamination of tumor DNA from maternal DNA. Three cell lines, BeWo, JAR, JEG were also studied by this high resolution pangenomic technique. According to aCGH analysis, the de novo choriocarcinomas exhibited simple chromosomal rearrangements or normal profiles. The cell lines showed various and complex chromosomal aberrations. 23 Minimal Critical Regions were defined that allowed us to list the genes that were potentially implicated. Among them, unusually high numbers of microRNA clusters and imprinted genes were observed.

  18. Chromosomal aberrations and aneuploidy in oral potentially malignant lesions: distinctive features for tongue

    PubMed Central

    2011-01-01

    Background The mucosae of the oral cavity are different at the histological level but appear all equally exposed to common genotoxic agents. As a result of this exposure, changes in the mucosal epithelia may develop giving rise to Oral Potentially Malignant Lesions (OPMLs), which with time may in turn progress to Oral Squamous Cell Carcinomas (OSCCs). Therefore, much effort should be devoted to identify features able to predict the likeliness of progression associated with an OPML. Such features may be helpful in assisting the clinician to establish both appropriate therapies and follow-up schedules. Here, we report a pilot study that compared the occurrence of DNA aneuploidy and chromosomal copy number aberrations (CNAs) in the OPMLs from different oral anatomical subsites. Methods Samples from histologically diagnosed OPMLs were processed for high resolution DNA flow cytometry (hr DNA-FCM) in order to determine the relative DNA content expressed by the DNA index (DI). Additionally, array-Comparative Genomic Hybridization (a-CGH) analysis was performed on DNA obtained from diploid nuclei suspensions directly. When aneuploid nuclei were detected, these were physically separated from diploid nuclei on the base of their DI values by means of a DNA-FCM-Sorter in order to improve the a-CGH analysis. Results Tongue OPMLs were more frequently associated with DNA aneuploidy and CNAs than OPMLs arising from all the other mucosal subsites. Conclusions We suggest that the follow-up and the management of the patients with tongue OPMLs should receive a distinctive special attention. Clearly, this hypothesis should be validated in a prospective clinical study. PMID:21995418

  19. NF2 tumor suppressor gene: a comprehensive and efficient detection of somatic mutations by denaturing HPLC and microarray-CGH.

    PubMed

    Szijan, Irene; Rochefort, Daniel; Bruder, Carl; Surace, Ezequiel; Machiavelli, Gloria; Dalamon, Viviana; Cotignola, Javier; Ferreiro, Veronica; Campero, Alvaro; Basso, Armando; Dumanski, Jan P; Rouleau, Guy A

    2003-01-01

    The NF2 tumor suppressor gene, located in chromosome 22q12, is involved in the development of multiple tumors of the nervous system, either associated with neurofibromatosis 2 or sporadic ones, mainly schwannomas and meningiomas. In order to evaluate the role of the NF2 gene in sporadic central nervous system (CNS) tumors, we analyzed NF2 mutations in 26 specimens: 14 meningiomas, 4 schwannomas, 4 metastases, and 4 other histopathological types of neoplasms. Denaturing high performance liquid chromatography (denaturing HPLC) and comparative genomic hybridization on a DNA microarray (microarray- CGH) were used as scanning methods for small mutations and gross rearrangements respectively. Small mutations were identified in six out of seventeen meningiomas and schwannomas, one mutation was novel. Large deletions were detected in six meningiomas. All mutations were predicted to result in truncated protein or in the absence of a large protein domain. No NF2 mutations were found in other histopathological types of CNS tumors. These results provide additional evidence that mutations in the NF2 gene play an important role in the development of sporadic meningiomas and schwannomas. Denaturing HPLC analysis of small mutations and microarray-CGH of large deletions are complementary, fast, and efficient methods for the detection of mutations in tumor tissues.

  20. Clinico-radiological and molecular characterization of a child with ring chromosome 2 presenting growth failure, microcephaly, kidney and brain malformations.

    PubMed

    Severino, Mariasavina; Accogli, Andrea; Gimelli, Giorgio; Rossi, Andrea; Kotzeva, Svetlana; Di Rocco, Maja; Ronchetto, Patrizia; Cuoco, Cristina; Tassano, Elisa

    2015-01-01

    Ring chromosome 2 is a rare constitutional abnormality that generally occurs de novo. About 14 cases have been described to date, but the vast majority of papers report exclusively conventional cytogenetic investigations and only two have been characterized by array-CGH. Here we describe the clinical, neuroradiological, and molecular features of a 5-year-old boy harbouring a ring chromosome 2 presenting with severe growth failure, facial and bone dysmorphisms, microcephaly, and renal malformation. Brain MR with diffusion tensor imaging revealed simplified cortical gyration, pontine hypoplasia, and abnormally thick posterior corpus callosum, suggesting an underlying axonal guidance defect. Cytogenetic investigations showed a karyotype with a ring chromosome 2 and FISH analysis with subtelomeric probes revealed the absence of signals on both arms. These results were confirmed by array-CGH showing terminal deletions on 2p25.3 (~439 kb) and 2q37.3 (~3.4 Mb). Our report describes a new patient with a ring chromosome 2 completely characterised by array-CGH providing additional information useful not only to study genotype-phenotype correlation but also to validate the role of already reported candidate genes and to suggest novel ones which could improve our understanding of the clinical features associated with ring chromosome 2.

  1. DNA isolation protocol effects on nuclear DNA analysis by microarrays, droplet digital PCR, and whole genome sequencing, and on mitochondrial DNA copy number estimation.

    PubMed

    Nacheva, Elizabeth; Mokretar, Katya; Soenmez, Aynur; Pittman, Alan M; Grace, Colin; Valli, Roberto; Ejaz, Ayesha; Vattathil, Selina; Maserati, Emanuela; Houlden, Henry; Taanman, Jan-Willem; Schapira, Anthony H; Proukakis, Christos

    2017-01-01

    Potential bias introduced during DNA isolation is inadequately explored, although it could have significant impact on downstream analysis. To investigate this in human brain, we isolated DNA from cerebellum and frontal cortex using spin columns under different conditions, and salting-out. We first analysed DNA using array CGH, which revealed a striking wave pattern suggesting primarily GC-rich cerebellar losses, even against matched frontal cortex DNA, with a similar pattern on a SNP array. The aCGH changes varied with the isolation protocol. Droplet digital PCR of two genes also showed protocol-dependent losses. Whole genome sequencing showed GC-dependent variation in coverage with spin column isolation from cerebellum. We also extracted and sequenced DNA from substantia nigra using salting-out and phenol / chloroform. The mtDNA copy number, assessed by reads mapping to the mitochondrial genome, was higher in substantia nigra when using phenol / chloroform. We thus provide evidence for significant method-dependent bias in DNA isolation from human brain, as reported in rat tissues. This may contribute to array "waves", and could affect copy number determination, particularly if mosaicism is being sought, and sequencing coverage. Variations in isolation protocol may also affect apparent mtDNA abundance.

  2. DNA isolation protocol effects on nuclear DNA analysis by microarrays, droplet digital PCR, and whole genome sequencing, and on mitochondrial DNA copy number estimation

    PubMed Central

    Nacheva, Elizabeth; Mokretar, Katya; Soenmez, Aynur; Pittman, Alan M.; Grace, Colin; Valli, Roberto; Ejaz, Ayesha; Vattathil, Selina; Maserati, Emanuela; Houlden, Henry; Taanman, Jan-Willem; Schapira, Anthony H.

    2017-01-01

    Potential bias introduced during DNA isolation is inadequately explored, although it could have significant impact on downstream analysis. To investigate this in human brain, we isolated DNA from cerebellum and frontal cortex using spin columns under different conditions, and salting-out. We first analysed DNA using array CGH, which revealed a striking wave pattern suggesting primarily GC-rich cerebellar losses, even against matched frontal cortex DNA, with a similar pattern on a SNP array. The aCGH changes varied with the isolation protocol. Droplet digital PCR of two genes also showed protocol-dependent losses. Whole genome sequencing showed GC-dependent variation in coverage with spin column isolation from cerebellum. We also extracted and sequenced DNA from substantia nigra using salting-out and phenol / chloroform. The mtDNA copy number, assessed by reads mapping to the mitochondrial genome, was higher in substantia nigra when using phenol / chloroform. We thus provide evidence for significant method-dependent bias in DNA isolation from human brain, as reported in rat tissues. This may contribute to array “waves”, and could affect copy number determination, particularly if mosaicism is being sought, and sequencing coverage. Variations in isolation protocol may also affect apparent mtDNA abundance. PMID:28683077

  3. Characterization of a novel Lactobacillus species closely related to Lactobacillus johnsonii using a combination of molecular and comparative genomics methods

    PubMed Central

    2010-01-01

    Background Comparative genomic hybridization (CGH) constitutes a powerful tool for identification and characterization of bacterial strains. In this study we have applied this technique for the characterization of a number of Lactobacillus strains isolated from the intestinal content of rats fed with a diet supplemented with sorbitol. Results Phylogenetic analysis based on 16S rRNA gene, recA, pheS, pyrG and tuf sequences identified five bacterial strains isolated from the intestinal content of rats as belonging to the recently described Lactobacillus taiwanensis species. DNA-DNA hybridization experiments confirmed that these five strains are distinct but closely related to Lactobacillus johnsonii and Lactobacillus gasseri. A whole genome DNA microarray designed for the probiotic L. johnsonii strain NCC533 was used for CGH analysis of L. johnsonii ATCC 33200T, L. johnsonii BL261, L. gasseri ATCC 33323T and L. taiwanensis BL263. In these experiments, the fluorescence ratio distributions obtained with L. taiwanensis and L. gasseri showed characteristic inter-species profiles. The percentage of conserved L. johnsonii NCC533 genes was about 83% in the L. johnsonii strains comparisons and decreased to 51% and 47% for L. taiwanensis and L. gasseri, respectively. These results confirmed the separate status of L. taiwanensis from L. johnsonii at the level of species, and also that L. taiwanensis is closer to L. johnsonii than L. gasseri is to L. johnsonii. Conclusion Conventional taxonomic analyses and microarray-based CGH analysis have been used for the identification and characterization of the newly species L. taiwanensis. The microarray-based CGH technology has been shown as a remarkable tool for the identification and fine discrimination between phylogenetically close species, and additionally provided insight into the adaptation of the strain L. taiwanensis BL263 to its ecological niche. PMID:20849602

  4. Wolf-Hirschhorn (4p-) syndrome: prenatal diagnosis, molecular cytogenetic characterization and association with a 1.2-Mb microduplication at 8p22-p21.3 and a 1.1-Mb microduplication at 10p15.3 in a fetus with an apparently pure 4p deletion.

    PubMed

    Chen, Chih-Ping; Su, Yi-Ning; Chen, Yi-Yung; Su, Jun-Wei; Chern, Schu-Rern; Chen, Yu-Ting; Chen, Wen-Lin; Chen, Li-Feng; Wang, Wayseen

    2011-12-01

    To present prenatal diagnosis and molecular cytogenetic characterization of Wolf-Hirschhorn syndrome (WHS) associated with microduplications at 8p and 10p in a fetus with an apparently pure 4p deletion. A 35-year-old gravida 2, para 1 woman underwent amniocentesis at 18 weeks of gestation because of advanced maternal age. Her husband was 38 years of age. There was no family history of congenital malformations. Amniocentesis revealed a karyotype of 46,XY,del(4p16.1). The parental karyotypes were normal. Array comparative genomic hybridization (aCGH) analysis revealed a 6.5-Mb deletion at 4p16.3-p16.1, a 1.2-Mb microduplication at 8p22-p21.3, and a 1.1-Mb microduplication at 10p15.3, or arr cgh 4p16.3p16.1 (0-6,531,998 bp)×1, 8p22p21.3 (18,705,388-19,940,445 bp)×3, 10p15.3 (0-1,105,065 bp)×3. Polymorphic DNA marker analysis confirmed a paternal origin of 4p deletion. Prenatal ultrasound revealed facial dysmorphism and hypospadias. The aCGH analysis of the parents revealed no genomic imbalance. Fluorescence in situ hybridization study showed an unbalanced reciprocal translocation between chromosomes 4 and 10 at bands 4p16.1 and 10p15.3. The cytogenetic result, thus, was 46,XY,der(4)t(4;10)(p16.1;p15.3),dup(8)(p21.3p22). The parents elected to terminate the pregnancy, and a 470-g malformed fetus was delivered. The present case provides evidence that an apparently pure 4p deletion can be associated with subtle chromosome imbalances in other chromosomes. Copyright © 2011. Published by Elsevier B.V.

  5. [An updated review of 1p36 deletion (monosomy) syndrome].

    PubMed

    Bello, Sabina; Rodríguez-Moreno, Antonio

    The Monosomy 1p36 deletion syndrome is part of the group of diseases known as Rare Diseases. The objective of the present work is to review the characteristics of Monosomy 1p36 deletion syndrome. The monosomy 1p36 deletion syndrome phenotype includes: dysmorphic craniofacial features; large anterior fontanelle, unibrow, deep-set eyes, epicanthus, wide nasal root/bridge, mandible hypoplasia, abnormal location of the pinna, philtrum and pointed chin; neurological alterations: seizures and hydrocephalus (in some cases). Cerebral malformations: ventricular hypertrophy, increased subarachnoid space, morphological alterations of corpus callosum, cortical atrophy, delays in myelinisation, periventricular leukomalacia and periventricular heterotopia. These alterations produce intellectual disability and delays in motor growth, communication skills, language, social and adaptive behaviour. It is Hearing and vision impairments are also observed in subjects with this syndrome, as well as alterations of cardiac, endocrine and urinary systems and alterations at skin and skeletal level. Approximately 100 cases have been documented since 1981. This rare disease is the most common subtelomeric-micro-deletion syndrome. In situ hybridization with fluorescence (FISH) and array-comparative genomic hybridization (CGH-array) are at present the two best diagnostic techniques. There is currently no effective medical treatment for this disease. Copyright © 2016 Sociedad Chilena de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. Copy number alterations in small intestinal neuroendocrine tumors determined by array comparative genomic hybridization.

    PubMed

    Hashemi, Jamileh; Fotouhi, Omid; Sulaiman, Luqman; Kjellman, Magnus; Höög, Anders; Zedenius, Jan; Larsson, Catharina

    2013-10-29

    Small intestinal neuroendocrine tumors (SI-NETs) are typically slow-growing tumors that have metastasized already at the time of diagnosis. The purpose of the present study was to further refine and define regions of recurrent copy number (CN) alterations (CNA) in SI-NETs. Genome-wide CNAs was determined by applying array CGH (a-CGH) on SI-NETs including 18 primary tumors and 12 metastases. Quantitative PCR analysis (qPCR) was used to confirm CNAs detected by a-CGH as well as to detect CNAs in an extended panel of SI-NETs. Unsupervised hierarchical clustering was used to detect tumor groups with similar patterns of chromosomal alterations based on recurrent regions of CN loss or gain. The log rank test was used to calculate overall survival. Mann-Whitney U test or Fisher's exact test were used to evaluate associations between tumor groups and recurrent CNAs or clinical parameters. The most frequent abnormality was loss of chromosome 18 observed in 70% of the cases. CN losses were also frequently found of chromosomes 11 (23%), 16 (20%), and 9 (20%), with regions of recurrent CN loss identified in 11q23.1-qter, 16q12.2-qter, 9pter-p13.2 and 9p13.1-11.2. Gains were most frequently detected in chromosomes 14 (43%), 20 (37%), 4 (27%), and 5 (23%) with recurrent regions of CN gain located to 14q11.2, 14q32.2-32.31, 20pter-p11.21, 20q11.1-11.21, 20q12-qter, 4 and 5. qPCR analysis confirmed most CNAs detected by a-CGH as well as revealed CNAs in an extended panel of SI-NETs. Unsupervised hierarchical clustering of recurrent regions of CNAs revealed two separate tumor groups and 5 chromosomal clusters. Loss of chromosomes 18, 16 and 11 and gain of chromosome 20 were found in both tumor groups. Tumor group II was enriched for alterations in chromosome cluster-d, including gain of chromosomes 4, 5, 7, 14 and gain of 20 in chromosome cluster-b. Gain in 20pter-p11.21 was associated with short survival. Statistically significant differences were observed between primary tumors and metastases for loss of 16q and gain of 7. Our results revealed recurrent CNAs in several candidate regions with a potential role in SI-NET development. Distinct genetic alterations and pathways are involved in tumorigenesis of SI-NETs.

  7. Somatic Mosaicism Underlies X-linked Acrogigantism (XLAG) Syndrome in Sporadic Male Subjects

    PubMed Central

    Daly, Adrian F.; Yuan, Bo; Fina, Frederic; Caberg, Jean-Hubert; Trivellin, Giampaolo; Rostomyan, Liliya; de Herder, Wouter W.; Naves, Luciana A.; Metzger, Daniel; Cuny, Thomas; Rabl, Wolfgang; Shah, Nalini; Jaffrain-Rea, Marie-Lise; Zatelli, Maria Chiara; Faucz, Fabio R; Castermans, Emilie; Nanni-Metellus, Isabelle; Lodish, Maya; Muhammad, Ammar; Palmeira, Leonor; Potorac, Iulia; Mantovani, Giovanna; Neggers, Sebastian J.; Klein, Marc; Barlier, Anne; Liu, Pengfei; Ouafik, L'Houcine; Bours, Vincent; Lupski, James R.; Stratakis, Constantine A.; Beckers., Albert

    2016-01-01

    Somatic mosaicism has been implicated as a causative mechanism in a number of genetic and genomic disorders. X-linked acrogigantism (XLAG) syndrome is a recently characterized genomic form of pediatric gigantism due to aggressive pituitary tumors that is caused by submicroscopic chromosome Xq26.3 duplications that include GPR101. We studied XLAG syndrome patients (N=18) to determine if somatic mosaicism contributed to the genomic pathophysiology. Eighteen subjects with XLAG syndrome were identified with Xq26.3 duplications using high definition array comparative genome hybridization (HD-aCGH). We noted males with XLAG had a decreased log2 ratio compared with expected values, suggesting potential mosaicism, while females showed no such decrease. As compared with familial male XLAG cases, sporadic males had more marked evidence for mosaicism, with levels of Xq26.3 duplication between 16.1-53.8%. These characteristics were replicated using a novel, personalized breakpoint-junction specific quantification droplet digital PCR (ddPCR) technique. Using a separate ddPCR technique we studied the feasibility of identifying XLAG syndrome cases in a distinct patient population of 64 unrelated subjects with acromegaly/gigantism and identified one female gigantism patient that had increased copy number variation (CNV) threshold for GPR101 that was subsequently diagnosed as having XLAG syndrome on HD-aCGH. Employing a combination of HD-aCGH and novel ddPCR approaches, we have demonstrated, for the first time, that XLAG syndrome can be caused by variable degrees of somatic mosaicism for duplications at chromosome Xq26.3. Somatic mosaicism was shown to occur in sporadic males but not in females with XLAG syndrome, although the clinical characteristics of the disease were similarly severe in both sexes. PMID:26935837

  8. Somatic mosaicism underlies X-linked acrogigantism syndrome in sporadic male subjects.

    PubMed

    Daly, Adrian F; Yuan, Bo; Fina, Frederic; Caberg, Jean-Hubert; Trivellin, Giampaolo; Rostomyan, Liliya; de Herder, Wouter W; Naves, Luciana A; Metzger, Daniel; Cuny, Thomas; Rabl, Wolfgang; Shah, Nalini; Jaffrain-Rea, Marie-Lise; Zatelli, Maria Chiara; Faucz, Fabio R; Castermans, Emilie; Nanni-Metellus, Isabelle; Lodish, Maya; Muhammad, Ammar; Palmeira, Leonor; Potorac, Iulia; Mantovani, Giovanna; Neggers, Sebastian J; Klein, Marc; Barlier, Anne; Liu, Pengfei; Ouafik, L'Houcine; Bours, Vincent; Lupski, James R; Stratakis, Constantine A; Beckers, Albert

    2016-04-01

    Somatic mosaicism has been implicated as a causative mechanism in a number of genetic and genomic disorders. X-linked acrogigantism (XLAG) syndrome is a recently characterized genomic form of pediatric gigantism due to aggressive pituitary tumors that is caused by submicroscopic chromosome Xq26.3 duplications that include GPR101 We studied XLAG syndrome patients (n= 18) to determine if somatic mosaicism contributed to the genomic pathophysiology. Eighteen subjects with XLAG syndrome caused by Xq26.3 duplications were identified using high-definition array comparative genomic hybridization (HD-aCGH). We noted that males with XLAG had a decreased log2ratio (LR) compared with expected values, suggesting potential mosaicism, whereas females showed no such decrease. Compared with familial male XLAG cases, sporadic males had more marked evidence for mosaicism, with levels of Xq26.3 duplication between 16.1 and 53.8%. These characteristics were replicated using a novel, personalized breakpoint junction-specific quantification droplet digital polymerase chain reaction (ddPCR) technique. Using a separate ddPCR technique, we studied the feasibility of identifying XLAG syndrome cases in a distinct patient population of 64 unrelated subjects with acromegaly/gigantism, and identified one female gigantism patient who had had increased copy number variation (CNV) threshold for GPR101 that was subsequently diagnosed as having XLAG syndrome on HD-aCGH. Employing a combination of HD-aCGH and novel ddPCR approaches, we have demonstrated, for the first time, that XLAG syndrome can be caused by variable degrees of somatic mosaicism for duplications at chromosome Xq26.3. Somatic mosaicism was shown to occur in sporadic males but not in females with XLAG syndrome, although the clinical characteristics of the disease were similarly severe in both sexes. © 2016 Society for Endocrinology.

  9. Derivative chromosomes involving 5p large rearranged segments went unnoticed with the use of conventional cytogenetics.

    PubMed

    Yokoyama, Emiy; Del Castillo, Victoria; Sánchez, Silvia; Ramos, Sandra; Molina, Bertha; Torres, Leda; Navarro, María José; Avila, Silvia; Castrillo, José Luis; García-De Teresa, Benilde; Asch, Bárbara; Frías, Sara

    2018-01-01

    In countries where comparative genomic hybridization arrays (aCGH) and next generation sequencing are not widely available due to accessibility and economic constraints, conventional 400-500-band karyotyping is the first-line choice for the etiological diagnosis of patients with congenital malformations and intellectual disability. Conventional karyotype analysis can rule out chromosomal alterations greater than 10 Mb. However, some large structural abnormalities, such as derivative chromosomes, may go undetected when the analysis is performed at less than a 550-band resolution and the size and banding pattern of the interchanged segments are similar. Derivatives frequently originate from inter-chromosomal exchanges and sometimes are inherited from a parent who carries a reciprocal translocation. We present two cases with derivative chromosomes involving a 9.1 Mb 5p deletion/14.8 Mb 10p duplication in the first patient and a 19.9 Mb 5p deletion/ 18.5 Mb 9p duplication in the second patient. These long chromosomal imbalances were ascertained by aCGH but not by conventional cytogenetics. Both patients presented with a deletion of the Cri du chat syndrome region and a duplication of another genomic region. Each patient had a unique clinical picture, and although they presented some features of Cri du chat syndrome, the phenotype did not conclusively point towards this diagnosis, although a chromosomopathy was suspected. These cases highlight the fundamental role of the clinical suspicion in guiding the approach for the etiological diagnosis of patients. Molecular cytogenetics techniques, such as aCGH, should be considered when the clinician suspects the presence of a chromosomal imbalance in spite of a normal karyotype.

  10. A French multicenter study of over 700 patients with 22q11 deletions diagnosed using FISH or aCGH.

    PubMed

    Poirsier, Céline; Besseau-Ayasse, Justine; Schluth-Bolard, Caroline; Toutain, Jérôme; Missirian, Chantal; Le Caignec, Cédric; Bazin, Anne; de Blois, Marie Christine; Kuentz, Paul; Catty, Marie; Choiset, Agnès; Plessis, Ghislaine; Basinko, Audrey; Letard, Pascaline; Flori, Elisabeth; Jimenez, Mélanie; Valduga, Mylène; Landais, Emilie; Lallaoui, Hakima; Cartault, François; Lespinasse, James; Martin-Coignard, Dominique; Callier, Patrick; Pebrel-Richard, Céline; Portnoi, Marie-France; Busa, Tiffany; Receveur, Aline; Amblard, Florence; Yardin, Catherine; Harbuz, Radu; Prieur, Fabienne; Le Meur, Nathalie; Pipiras, Eva; Kleinfinger, Pascale; Vialard, François; Doco-Fenzy, Martine

    2016-06-01

    Although 22q11.2 deletion syndrome (22q11.2DS) is the most recurrent human microdeletion syndrome associated with a highly variable phenotype, little is known about the condition's true incidence and the phenotype at diagnosis. We performed a multicenter, retrospective analysis of postnatally diagnosed patients recruited by members of the Association des Cytogénéticiens de Langue Française (the French-Speaking Cytogeneticists Association). Clinical and cytogenetic data on 749 cases diagnosed between 1995 and 2013 were collected by 31 French cytogenetics laboratories. The most frequent reasons for referral of postnatally diagnosed cases were a congenital heart defect (CHD, 48.6%), facial dysmorphism (49.7%) and developmental delay (40.7%). Since 2007 (the year in which array comparative genomic hybridization (aCGH) was introduced for the routine screening of patients with intellectual disability), almost all cases have been diagnosed using FISH (96.1%). Only 15 cases (all with an atypical phenotype) were diagnosed with aCGH; the deletion size ranged from 745 to 2904 kb. The deletion was inherited in 15.0% of cases and was of maternal origin in 85.5% of the latter. This is the largest yet documented cohort of patients with 22q11.2DS (the most commonly diagnosed microdeletion) from the same population. French cytogenetics laboratories diagnosed at least 108 affected patients (including fetuses) per year from among a national population of ∼66 million. As observed for prenatal diagnoses, CHDs were the most frequently detected malformation in postnatal diagnoses. The most common CHD in postnatal diagnoses was an isolated septal defect.

  11. The role of genetic and epigenetic alterations in neuroblastoma disease pathogenesis

    PubMed Central

    Domingo-Fernandez, Raquel; Watters, Karen; Piskareva, Olga; Bray, Isabella

    2013-01-01

    Neuroblastoma is a highly heterogeneous tumor accounting for 15 % of all pediatric cancer deaths. Clinical behavior ranges from the spontaneous regression of localized, asymptomatic tumors, as well as metastasized tumors in infants, to rapid progression and resistance to therapy. Genomic amplification of the MYCN oncogene has been used to predict outcome in neuroblastoma for over 30 years, however, recent methodological advances including miR-NA and mRNA profiling, comparative genomic hybridization (array-CGH), and whole-genome sequencing have enabled the detailed analysis of the neuroblastoma genome, leading to the identification of new prognostic markers and better patient stratification. In this review, we will describe the main genetic factors responsible for these diverse clinical phenotypes in neuroblastoma, the chronology of their discovery, and the impact on patient prognosis. PMID:23274701

  12. MixHMM: Inferring Copy Number Variation and Allelic Imbalance Using SNP Arrays and Tumor Samples Mixed with Stromal Cells

    PubMed Central

    Schulz, Vincent; Chen, Min; Tuck, David

    2010-01-01

    Background Genotyping platforms such as single nucleotide polymorphism (SNP) arrays are powerful tools to study genomic aberrations in cancer samples. Allele specific information from SNP arrays provides valuable information for interpreting copy number variation (CNV) and allelic imbalance including loss-of-heterozygosity (LOH) beyond that obtained from the total DNA signal available from array comparative genomic hybridization (aCGH) platforms. Several algorithms based on hidden Markov models (HMMs) have been designed to detect copy number changes and copy-neutral LOH making use of the allele information on SNP arrays. However heterogeneity in clinical samples, due to stromal contamination and somatic alterations, complicates analysis and interpretation of these data. Methods We have developed MixHMM, a novel hidden Markov model using hidden states based on chromosomal structural aberrations. MixHMM allows CNV detection for copy numbers up to 7 and allows more complete and accurate description of other forms of allelic imbalance, such as increased copy number LOH or imbalanced amplifications. MixHMM also incorporates a novel sample mixing model that allows detection of tumor CNV events in heterogeneous tumor samples, where cancer cells are mixed with a proportion of stromal cells. Conclusions We validate MixHMM and demonstrate its advantages with simulated samples, clinical tumor samples and a dilution series of mixed samples. We have shown that the CNVs of cancer cells in a tumor sample contaminated with up to 80% of stromal cells can be detected accurately using Illumina BeadChip and MixHMM. Availability The MixHMM is available as a Python package provided with some other useful tools at http://genecube.med.yale.edu:8080/MixHMM. PMID:20532221

  13. Genome-Wide High-Resolution aCGH Analysis of Gestational Choriocarcinomas

    PubMed Central

    Poaty, Henriette; Coullin, Philippe; Peko, Jean Félix; Dessen, Philippe; Diatta, Ange Lucien; Valent, Alexander; Leguern, Eric; Prévot, Sophie; Gombé-Mbalawa, Charles; Candelier, Jean-Jacques; Picard, Jean-Yves; Bernheim, Alain

    2012-01-01

    Eleven samples of DNA from choriocarcinomas were studied by high resolution CGH-array 244 K. They were studied after histopathological confirmation of the diagnosis, of the androgenic etiology and after a microsatellite marker analysis confirming the absence of contamination of tumor DNA from maternal DNA. Three cell lines, BeWo, JAR, JEG were also studied by this high resolution pangenomic technique. According to aCGH analysis, the de novo choriocarcinomas exhibited simple chromosomal rearrangements or normal profiles. The cell lines showed various and complex chromosomal aberrations. 23 Minimal Critical Regions were defined that allowed us to list the genes that were potentially implicated. Among them, unusually high numbers of microRNA clusters and imprinted genes were observed. PMID:22253721

  14. Sparsity-based fast CGH generation using layer-based approach for 3D point cloud model

    NASA Astrophysics Data System (ADS)

    Kim, Hak Gu; Jeong, Hyunwook; Ro, Yong Man

    2017-03-01

    Computer generated hologram (CGH) is becoming increasingly important for a 3-D display in various applications including virtual reality. In the CGH, holographic fringe patterns are generated by numerically calculating them on computer simulation systems. However, a heavy computational cost is required to calculate the complex amplitude on CGH plane for all points of 3D objects. This paper proposes a new fast CGH generation based on the sparsity of CGH for 3D point cloud model. The aim of the proposed method is to significantly reduce computational complexity while maintaining the quality of the holographic fringe patterns. To that end, we present a new layer-based approach for calculating the complex amplitude distribution on the CGH plane by using sparse FFT (sFFT). We observe the CGH of a layer of 3D objects is sparse so that dominant CGH is rapidly generated from a small set of signals by sFFT. Experimental results have shown that the proposed method is one order of magnitude faster than recently reported fast CGH generation.

  15. Accuracy of CNV Detection from GWAS Data.

    PubMed

    Zhang, Dandan; Qian, Yudong; Akula, Nirmala; Alliey-Rodriguez, Ney; Tang, Jinsong; Gershon, Elliot S; Liu, Chunyu

    2011-01-13

    Several computer programs are available for detecting copy number variants (CNVs) using genome-wide SNP arrays. We evaluated the performance of four CNV detection software suites--Birdsuite, Partek, HelixTree, and PennCNV-Affy--in the identification of both rare and common CNVs. Each program's performance was assessed in two ways. The first was its recovery rate, i.e., its ability to call 893 CNVs previously identified in eight HapMap samples by paired-end sequencing of whole-genome fosmid clones, and 51,440 CNVs identified by array Comparative Genome Hybridization (aCGH) followed by validation procedures, in 90 HapMap CEU samples. The second evaluation was program performance calling rare and common CNVs in the Bipolar Genome Study (BiGS) data set (1001 bipolar cases and 1033 controls, all of European ancestry) as measured by the Affymetrix SNP 6.0 array. Accuracy in calling rare CNVs was assessed by positive predictive value, based on the proportion of rare CNVs validated by quantitative real-time PCR (qPCR), while accuracy in calling common CNVs was assessed by false positive/false negative rates based on qPCR validation results from a subset of common CNVs. Birdsuite recovered the highest percentages of known HapMap CNVs containing >20 markers in two reference CNV datasets. The recovery rate increased with decreased CNV frequency. In the tested rare CNV data, Birdsuite and Partek had higher positive predictive values than the other software suites. In a test of three common CNVs in the BiGS dataset, Birdsuite's call was 98.8% consistent with qPCR quantification in one CNV region, but the other two regions showed an unacceptable degree of accuracy. We found relatively poor consistency between the two "gold standards," the sequence data of Kidd et al., and aCGH data of Conrad et al. Algorithms for calling CNVs especially common ones need substantial improvement, and a "gold standard" for detection of CNVs remains to be established.

  16. Paternally inherited microdeletion at 15q11.2 confirms a significant role for the SNORD116 C/D box snoRNA cluster in Prader-Willi syndrome.

    PubMed

    Duker, Angela L; Ballif, Blake C; Bawle, Erawati V; Person, Richard E; Mahadevan, Sangeetha; Alliman, Sarah; Thompson, Regina; Traylor, Ryan; Bejjani, Bassem A; Shaffer, Lisa G; Rosenfeld, Jill A; Lamb, Allen N; Sahoo, Trilochan

    2010-11-01

    Prader-Willi syndrome (PWS) is a neurobehavioral disorder manifested by infantile hypotonia and feeding difficulties in infancy, followed by morbid obesity secondary to hyperphagia. It is caused by deficiency of paternally expressed transcript(s) within the human chromosome region 15q11.2. PWS patients harboring balanced chromosomal translocations with breakpoints within small nuclear ribonucleoprotein polypeptide N (SNRPN) have provided indirect evidence for a role for the imprinted C/D box containing small nucleolar RNA (snoRNA) genes encoded downstream of SNRPN. In addition, recently published data provide strong evidence in support of a role for the snoRNA SNORD116 cluster (HBII-85) in PWS etiology. In this study, we performed detailed phenotypic, cytogenetic, and molecular analyses including chromosome analysis, array comparative genomic hybridization (array CGH), expression studies, and single-nucleotide polymorphism (SNP) genotyping for parent-of-origin determination of the 15q11.2 microdeletion on an 11-year-old child expressing the major components of the PWS phenotype. This child had an ∼236.29 kb microdeletion at 15q11.2 within the larger Prader-Willi/Angelman syndrome critical region that included the SNORD116 cluster of snoRNAs. Analysis of SNP genotypes in proband and mother provided evidence in support of the deletion being on the paternal chromosome 15. This child also met most of the major PWS diagnostic criteria including infantile hypotonia, early-onset morbid obesity, and hypogonadism. Identification and characterization of this case provide unequivocal evidence for a critical role for the SNORD116 snoRNA molecules in PWS pathogenesis. Array CGH testing for genomic copy-number changes in cases with complex phenotypes is proving to be invaluable in detecting novel alterations and enabling better genotype-phenotype correlations.

  17. Precision oncology using a limited number of cells: optimization of whole genome amplification products for sequencing applications.

    PubMed

    Sho, Shonan; Court, Colin M; Winograd, Paul; Lee, Sangjun; Hou, Shuang; Graeber, Thomas G; Tseng, Hsian-Rong; Tomlinson, James S

    2017-07-01

    Sequencing analysis of circulating tumor cells (CTCs) enables "liquid biopsy" to guide precision oncology strategies. However, this requires low-template whole genome amplification (WGA) that is prone to errors and biases from uneven amplifications. Currently, quality control (QC) methods for WGA products, as well as the number of CTCs needed for reliable downstream sequencing, remain poorly defined. We sought to define strategies for selecting and generating optimal WGA products from low-template input as it relates to their potential applications in precision oncology strategies. Single pancreatic cancer cells (HPAF-II) were isolated using laser microdissection. WGA was performed using multiple displacement amplification (MDA), multiple annealing and looping based amplification (MALBAC) and PicoPLEX. Quality of amplified DNA products were assessed using a multiplex/RT-qPCR based method that evaluates for 8-cancer related genes and QC-scores were assigned. We utilized this scoring system to assess the impact of de novo modifications to the WGA protocol. WGA products were subjected to Sanger sequencing, array comparative genomic hybridization (aCGH) and next generation sequencing (NGS) to evaluate their performances in respective downstream analyses providing validation of the QC-score. Single-cell WGA products exhibited a significant sample-to-sample variability in amplified DNA quality as assessed by our 8-gene QC assay. Single-cell WGA products that passed the pre-analysis QC had lower amplification bias and improved aCGH/NGS performance metrics when compared to single-cell WGA products that failed the QC. Increasing the number of cellular input resulted in improved QC-scores overall, but a resultant WGA product that consistently passed the QC step required a starting cellular input of at least 20-cells. Our modified-WGA protocol effectively reduced this number, achieving reproducible high-quality WGA products from ≥5-cells as a starting template. A starting cellular input of 5 to 10-cells amplified using the modified-WGA achieved aCGH and NGS results that closely matched that of unamplified, batch genomic DNA. The modified-WGA protocol coupled with the 8-gene QC serve as an effective strategy to enhance the quality of low-template WGA reactions. Furthermore, a threshold number of 5-10 cells are likely needed for a reliable WGA reaction and product with high fidelity to the original starting template.

  18. Whole exome sequencing is necessary to clarify ID/DD cases with de novo copy number variants of uncertain significance: Two proof-of-concept examples.

    PubMed

    Giorgio, Elisa; Ciolfi, Andrea; Biamino, Elisa; Caputo, Viviana; Di Gregorio, Eleonora; Belligni, Elga Fabia; Calcia, Alessandro; Gaidolfi, Elena; Bruselles, Alessandro; Mancini, Cecilia; Cavalieri, Simona; Molinatto, Cristina; Cirillo Silengo, Margherita; Ferrero, Giovanni Battista; Tartaglia, Marco; Brusco, Alfredo

    2016-07-01

    Whole exome sequencing (WES) is a powerful tool to identify clinically undefined forms of intellectual disability/developmental delay (ID/DD), especially in consanguineous families. Here we report the genetic definition of two sporadic cases, with syndromic ID/DD for whom array-Comparative Genomic Hybridization (aCGH) identified a de novo copy number variant (CNV) of uncertain significance. The phenotypes included microcephaly with brachycephaly and a distinctive facies in one proband, and hypotonia in the legs and mild ataxia in the other. WES allowed identification of a functionally relevant homozygous variant affecting a known disease gene for rare syndromic ID/DD in each proband, that is, c.1423C>T (p.Arg377*) in the Trafficking Protein Particle Complex 9 (TRAPPC9), and c.154T>C (p.Cys52Arg) in the Very Low Density Lipoprotein Receptor (VLDLR). Four mutations affecting TRAPPC9 have been previously reported, and the present finding further depicts this syndromic form of ID, which includes microcephaly with brachycephaly, corpus callosum hypoplasia, facial dysmorphism, and overweight. VLDLR-associated cerebellar hypoplasia (VLDLR-CH) is characterized by non-progressive congenital ataxia and moderate-to-profound intellectual disability. The c.154T>C (p.Cys52Arg) mutation was associated with a very mild form of ataxia, mild intellectual disability, and cerebellar hypoplasia without cortical gyri simplification. In conclusion, we report two novel cases with rare causes of autosomal recessive ID, which document how interpreting de novo array-CGH variants represents a challenge in consanguineous families; as such, clinical WES should be considered in diagnostic testing. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Copy number gain at 8q12.1-q22.1 is associated with a malignant tumor phenotype in salivary gland myoepitheliomas.

    PubMed

    Vékony, Hedy; Röser, Kerstin; Löning, Thomas; Ylstra, Bauke; Meijer, Gerrit A; van Wieringen, Wessel N; van de Wiel, Mark A; Carvalho, Beatriz; Kok, Klaas; Leemans, C René; van der Waal, Isaäc; Bloemena, Elisabeth

    2009-02-01

    Salivary gland myoepithelial tumors are relatively uncommon tumors with an unpredictable clinical course. More knowledge about their genetic profiles is necessary to identify novel predictors of disease. In this study, we subjected 27 primary tumors (15 myoepitheliomas and 12 myoepithelial carcinomas) to genome-wide microarray-based comparative genomic hybridization (array CGH). We set out to delineate known chromosomal aberrations in more detail and to unravel chromosomal differences between benign myoepitheliomas and myoepithelial carcinomas. Patterns of DNA copy number aberrations were analyzed by unsupervised hierarchical cluster analysis. Both benign and malignant tumors revealed a limited amount of chromosomal alterations (median of 5 and 7.5, respectively). In both tumor groups, high frequency gains (> or =20%) were found mainly at loci of growth factors and growth factor receptors (e.g., PDGF, FGF(R)s, and EGFR). In myoepitheliomas, high frequency losses (> or =20%) were detected at regions of proto-cadherins. Cluster analysis of the array CGH data identified three clusters. Differential copy numbers on chromosome arm 8q and chromosome 17 set the clusters apart. Cluster 1 contained a mixture of the two phenotypes (n = 10), cluster 2 included mostly benign tumors (n = 10), and cluster 3 only contained carcinomas (n = 7). Supervised analysis between malignant and benign tumors revealed a 36 Mbp-region at 8q being more frequently gained in malignant tumors (P = 0.007, FDR = 0.05). This is the first study investigating genomic differences between benign and malignant myoepithelial tumors of the salivary glands at a genomic level. Both unsupervised and supervised analysis of the genomic profiles revealed chromosome arm 8q to be involved in the malignant phenotype of salivary gland myoepitheliomas.

  20. Case history and genome-wide scans for copy number variants in a family with patient having 15q11.1-q11.2 duplication and 22q11.2 deletion, and schizophrenia.

    PubMed

    Takahashi, Sakae; Suzuki, Takahiro; Nakamura-Tomizuka, Sakura; Osaki, Koichi; Sotome, Yuta; Sagawa, Tomoaki; Uchiyama, Makoto

    2015-06-01

    Many studies have indicated that chromosomes 15q11 and 22q11 may be associated with the genetic etiologies of schizophrenia. We have followed an adult schizophrenia case with 15q11.1-q11.2 duplication and 22q11.2 deletion. Here we report his clinical history, and copy number variants (CNVs) identified by microarray and real-time PCR in the patient and his parents. This is the first report describing a detailed phenotype of an adult schizophrenic case with both 15q11 and 22q11 CNVs as revealed by novel and trustworthy technologies. Subjects were a 33-year-old male patient with 15q11 and 22q11 CNVs, and his normal parents. He fulfilled the DSM-IV criteria for schizophrenia at age 18 years. He was also diagnosed with 22q11.2 deletion syndrome by fluorescence in situ hybridization (FISH) at age 18 years. To search for CNVs in more detail, whole-genome array-CGH analyses including ∼ 420,000 probes were carried out in the patient and his parents. For validations of the CNVs detected by array-CGH, real-time PCR analyses of these CNVs were performed. The patient had two disease-specific CNVs, 15q11.1-q11.2 duplication (∼ 2.7 Mb) and 22q11.21 deletion (∼ 2.9 Mb). These two regions are important for the development of schizophrenia, and this patient had shown symptoms of schizophrenia. Thus, the two areas may contain causal genes for schizophrenia. © 2015 Wiley Periodicals, Inc.

  1. High-Resolution Array CGH Profiling Identifies Na/K Transporting ATPase Interacting 2 (NKAIN2) as a Predisposing Candidate Gene in Neuroblastoma

    PubMed Central

    Romania, Paolo; Castellano, Aurora; Surace, Cecilia; Citti, Arianna; De Ioris, Maria Antonietta; Sirleto, Pietro; De Mariano, Marilena; Longo, Luca; Boldrini, Renata; Angioni, Adriano; Locatelli, Franco; Fruci, Doriana

    2013-01-01

    Neuroblastoma (NB), the most common solid cancer in early childhood, usually occurs sporadically but also its familial occurance is known in 1-2% of NB patients. Germline mutations in the ALK and PHOX2B genes have been found in a subset of familial NBs. However, because some individuals harbouring mutations in these genes do not develop this tumor, additional genetic alterations appear to be required for NB pathogenesis. Herein, we studied an Italian family with three NB patients, two siblings and a first cousin, carrying an ALK germline-activating mutation R1192P, that was inherited from their unaffected mothers and with no mutations in the PHOX2B gene. A comparison between somatic and germline DNA copy number changes in the two affected siblings by a high resolution array-based Comparative Genomic Hybridization (CGH) analysis revealed a germline gain at NKAIN2 (Na/K transporting ATPase interacting 2) locus in one of the sibling, that was inherited from the parent who does not carry the ALK mutation. Surprisingly, NKAIN2 was expressed at high levels also in the affected sibling that lacks the genomic gain at this locus, clearly suggesting the existance of other regulatory mechanisms. High levels of NKAIN2 were detected in the MYCN-amplified NB cell lines and in the most aggressive NB lesions as well as in the peripheral blood of a large cohort of NB patients. Consistent with a role of NKAIN2 in NB development, NKAIN2 was down-regulated during all-trans retinoic acid differentiation in two NB cell lines. Taken together, these data indicate a potential role of NKAIN2 gene in NB growth and differentiation. PMID:24205241

  2. High-resolution array CGH profiling identifies Na/K transporting ATPase interacting 2 (NKAIN2) as a predisposing candidate gene in neuroblastoma.

    PubMed

    Romania, Paolo; Castellano, Aurora; Surace, Cecilia; Citti, Arianna; De Ioris, Maria Antonietta; Sirleto, Pietro; De Mariano, Marilena; Longo, Luca; Boldrini, Renata; Angioni, Adriano; Locatelli, Franco; Fruci, Doriana

    2013-01-01

    Neuroblastoma (NB), the most common solid cancer in early childhood, usually occurs sporadically but also its familial occurance is known in 1-2% of NB patients. Germline mutations in the ALK and PHOX2B genes have been found in a subset of familial NBs. However, because some individuals harbouring mutations in these genes do not develop this tumor, additional genetic alterations appear to be required for NB pathogenesis. Herein, we studied an Italian family with three NB patients, two siblings and a first cousin, carrying an ALK germline-activating mutation R1192P, that was inherited from their unaffected mothers and with no mutations in the PHOX2B gene. A comparison between somatic and germline DNA copy number changes in the two affected siblings by a high resolution array-based Comparative Genomic Hybridization (CGH) analysis revealed a germline gain at NKAIN2 (Na/K transporting ATPase interacting 2) locus in one of the sibling, that was inherited from the parent who does not carry the ALK mutation. Surprisingly, NKAIN2 was expressed at high levels also in the affected sibling that lacks the genomic gain at this locus, clearly suggesting the existance of other regulatory mechanisms. High levels of NKAIN2 were detected in the MYCN-amplified NB cell lines and in the most aggressive NB lesions as well as in the peripheral blood of a large cohort of NB patients. Consistent with a role of NKAIN2 in NB development, NKAIN2 was down-regulated during all-trans retinoic acid differentiation in two NB cell lines. Taken together, these data indicate a potential role of NKAIN2 gene in NB growth and differentiation.

  3. Identification of novel deletions of 15q11q13 in Angelman syndrome by array-CGH: molecular characterization and genotype-phenotype correlations.

    PubMed

    Sahoo, Trilochan; Bacino, Carlos A; German, Jennifer R; Shaw, Chad A; Bird, Lynne M; Kimonis, Virginia; Anselm, Irinia; Waisbren, Susan; Beaudet, Arthur L; Peters, Sarika U

    2007-09-01

    Angelman syndrome (AS) is a neurodevelopmental disorder characterized by mental retardation, absent speech, ataxia, and a happy disposition. Deletions of the 15q11q13 region are found in approximately 70% of AS patients. The deletions are sub-classified into class I and class II based on their sizes of approximately 6.8 and approximately 6.0, respectively, with two different proximal breakpoints and a common distal breakpoint. Utilizing a chromosome 15-specific comparative genomic hybridization genomic microarray (array-CGH), we have identified, determined the deletion sizes, and mapped the breakpoints in a cohort of 44 cases, to relate those breakpoints to the genomic architecture and derive more precise genotype-phenotype correlations. Interestingly four patients of the 44 studied (9.1%) had novel and unusually large deletions, and are reported here. This is the first report of very large deletions of 15q11q13 resulting in AS; the largest deletion being >10.6 Mb. These novel deletions involve three different distal breakpoints, two of which have been earlier shown to be involved in the generation of isodicentric 15q chromosomes (idic15). Additionally, precise determination of the deletion breakpoints reveals the presence of directly oriented low-copy repeats (LCRs) flanking the recurrent and novel breakpoints. The LCRs are adequate in size, orientation, and homology to enable abnormal recombination events leading to deletions and duplications. This genomic organization provides evidence for a common mechanism for the generation of both common and rare deletion types. Larger deletions result in a loss of several genes outside the common Angelman syndrome-Prader-Willi syndrome (AS-PWS) critical interval, and a more severe phenotype.

  4. Identification of a deep intronic mutation in the COL6A2 gene by a novel custom oligonucleotide CGH array designed to explore allelic and genetic heterogeneity in collagen VI-related myopathies

    PubMed Central

    2010-01-01

    Background Molecular characterization of collagen-VI related myopathies currently relies on standard sequencing, which yields a detection rate approximating 75-79% in Ullrich congenital muscular dystrophy (UCMD) and 60-65% in Bethlem myopathy (BM) patients as PCR-based techniques tend to miss gross genomic rearrangements as well as copy number variations (CNVs) in both the coding sequence and intronic regions. Methods We have designed a custom oligonucleotide CGH array in order to investigate the presence of CNVs in the coding and non-coding regions of COL6A1, A2, A3, A5 and A6 genes and a group of genes functionally related to collagen VI. A cohort of 12 patients with UCMD/BM negative at sequencing analysis and 2 subjects carrying a single COL6 mutation whose clinical phenotype was not explicable by inheritance were selected and the occurrence of allelic and genetic heterogeneity explored. Results A deletion within intron 1A of the COL6A2 gene, occurring in compound heterozygosity with a small deletion in exon 28, previously detected by routine sequencing, was identified in a BM patient. RNA studies showed monoallelic transcription of the COL6A2 gene, thus elucidating the functional effect of the intronic deletion. No pathogenic mutations were identified in the remaining analyzed patients, either within COL6A genes, or in genes functionally related to collagen VI. Conclusions Our custom CGH array may represent a useful complementary diagnostic tool, especially in recessive forms of the disease, when only one mutant allele is detected by standard sequencing. The intronic deletion we identified represents the first example of a pure intronic mutation in COL6A genes. PMID:20302629

  5. Association of an α-globin gene cluster duplication and heterozygous β-thalassemia in a patient with a severe thalassemia syndrome.

    PubMed

    Jiang, Hua; Liu, Sha; Zhang, Yong-Ling; Wan, Jun-Hui; Li, Ru; Li, Dong-Zhi

    2015-01-01

    We describe a new case of a β-thalassemia (β-thal) heterozygote with the mutation IVS-II-654 (C>T) presenting with a transfusion-dependent phenotype. Multiplex ligation-dependent probe amplification (MLPA) and array comparative genomic hybridization (CGH) analyses of the α-globin gene cluster revealed a full duplication of the α-globin genes including the upstream regulatory element. The duplicated allele and the normal allele in trans resulted in a total of six active α-globin genes. The severe clinical phenotype seemed to be related to the considerable excess of the α- and β-globin deficit caused by the presence of the β-thal. α-Globin cluster duplication should be considered in patients heterozygous for β-thal who show a more severe phenotype than β-thal trait.

  6. Salivary gland carcinosarcoma: oligonucleotide array CGH reveals similar genomic profiles in epithelial and mesenchymal components.

    PubMed

    Vékony, Hedy; Leemans, C René; Ylstra, Bauke; Meijer, Gerrit A; van der Waal, Isaäc; Bloemena, Elisabeth

    2009-03-01

    In this study, we present a case of parotid gland de novo carcinosarcoma. Salivary gland carcinosarcoma (or true malignant mixed tumor) is a rare biphasic neoplasm, composed of both malignant epithelial and malignant mesenchymal components. It is yet unclear whether these two phenotypes occur by collision of two independent tumors or if they are of clonal origin. To analyze the clonality of the different morphologic tumor components, oligonucleotide microarray-based comparative genomic hybridization (oaCGH) was performed on the carcinoma and the sarcoma entity separately. This technique enables a high-resolution, genome-wide overview of the chromosomal alterations in the distinct tumor elements. Analysis of both fractions showed a high number of DNA copy number changes. Losses were more prevalent than gains (82 and 49, respectively). The carcinomatous element displayed more chromosomal aberrations than the sarcomatous component. Specific amplifications of MUC20 (in mesenchymal element) and BMI-1 (in both elements) loci were observed. Overall homology between the two genomic profiles was 75%. DNA copy number profiles of the epithelial and mesenchymal components in this salivary gland carcinosarcoma displayed extensive overlap, indicating a monoclonal origin. Since losses are shared to a larger extent than gains, they seem to be more essential for initial oncogenic events. Furthermore, specific amplifications of a mucin and a Polycomb group gene imply these proteins in the tumorigenesis of carcinosarcomas.

  7. Automated array-based genomic profiling in chronic lymphocytic leukemia: Development of a clinical tool and discovery of recurrent genomic alterations

    PubMed Central

    Schwaenen, Carsten; Nessling, Michelle; Wessendorf, Swen; Salvi, Tatjana; Wrobel, Gunnar; Radlwimmer, Bernhard; Kestler, Hans A.; Haslinger, Christian; Stilgenbauer, Stephan; Döhner, Hartmut; Bentz, Martin; Lichter, Peter

    2004-01-01

    B cell chronic lymphocytic leukemia (B-CLL) is characterized by a highly variable clinical course. Recurrent chromosomal imbalances provide significant prognostic markers. Risk-adapted therapy based on genomic alterations has become an option that is currently being tested in clinical trials. To supply a robust tool for such large scale studies, we developed a comprehensive DNA microarray dedicated to the automated analysis of recurrent genomic imbalances in B-CLL by array-based comparative genomic hybridization (matrix–CGH). Validation of this chip in a series of 106 B-CLL cases revealed a high specificity and sensitivity that fulfils the criteria for application in clinical oncology. This chip is immediately applicable within clinical B-CLL treatment trials that evaluate whether B-CLL cases with distinct chromosomal abnormalities should be treated with chemotherapy of different intensities and/or stem cell transplantation. Through the control set of DNA fragments equally distributed over the genome, recurrent genomic imbalances were discovered: trisomy of chromosome 19 and gain of the MYCN oncogene correlating with an elevation of MYCN mRNA expression. PMID:14730057

  8. Intratumoral heterogeneity in breast carcinoma revealed by laser-microdissection and comparative genomic hybridization.

    PubMed

    Aubele, M; Mattis, A; Zitzelsberger, H; Walch, A; Kremer, M; Hutzler, P; Höfler, H; Werner, M

    1999-04-15

    To evaluate the potential cytogenetic heterogeneity in breast carcinoma, several small cell groups (each consisting of 20 to 50 cells) were investigated within paraffin sections. By laser-microdissection, three to seven cell groups were taken per case. The DNA was amplified by degenerate oligonucleotide primed PCR (DOP-PCR), and the samples were analyzed by CGH for chromosomal gains and losses. Two ductal invasive breast carcinomas, one of them with two lymphnode metastases, were investigated. To compare the results from the small samples, CGH was also performed on DNA isolated from the tumorous regions of three to five serial sections (10(7) to 10(6) cells). The aberrations observed in the microdissected tumor samples were multiple and involved up to 14 different chromosomal or subchromosomal regions. The most frequent changes were gains on chromosomes 12q (14/20) and 20q (16/20), and loss on 13q (12/20). Some aberrations have rarely been detected (e.g., loss on 2p, gain on 8q). Comparing chromosomal imbalances in primary tumors and lymph node metastases, more consistent changes were found between the primary tumor and its corresponding metastases than between both primary tumors. The laser-microdissected samples in general showed more chromosomal aberrations than DNA isolated from several tumor sections. Our CGH results were confirmed by fluorescence in situ hybridization (FISH) for the chromosomal regions of centromere 1 and 20, and 20q13. In addition, microsatellite analyses on 31 samples confirmed our CGH findings for selected chromosome regions 2p and 11q. It can be concluded that there is a distinct intratumoral heterogeneity in primary breast tumors as well as in the corresponding lymph node metastases. The combination of microdissection and CGH enabled us to detect cytogenetic aberrations from important clones which are missed when analyzing DNA extracted from large cell numbers.

  9. Ecological Success of a Group of Saccharomyces cerevisiae/Saccharomyces kudriavzevii Hybrids in the Northern European Wine-Making Environment

    PubMed Central

    Erny, C.; Raoult, P.; Alais, A.; Butterlin, G.; Delobel, P.; Matei-Radoi, F.; Casaregola, S.

    2012-01-01

    The hybrid nature of lager-brewing yeast strains has been known for 25 years; however, yeast hybrids have only recently been described in cider and wine fermentations. In this study, we characterized the hybrid genomes and the relatedness of the Eg8 industrial yeast strain and of 24 Saccharomyces cerevisiae/Saccharomyces kudriavzevii hybrid yeast strains used for wine making in France (Alsace), Germany, Hungary, and the United States. An array-based comparative genome hybridization (aCGH) profile of the Eg8 genome revealed a typical chimeric profile. Measurement of hybrids DNA content per cell by flow cytometry revealed multiple ploidy levels (2n, 3n, or 4n), and restriction fragment length polymorphism analysis of 22 genes indicated variable amounts of S. kudriavzevii genetic content in three representative strains. We developed microsatellite markers for S. kudriavzevii and used them to analyze the diversity of a population isolated from oaks in Ardèche (France). This analysis revealed new insights into the diversity of this species. We then analyzed the diversity of the wine hybrids for 12 S. cerevisiae and 7 S. kudriavzevii microsatellite loci and found that these strains are the products of multiple hybridization events between several S. cerevisiae wine yeast isolates and various S. kudriavzevii strains. The Eg8 lineage appeared remarkable, since it harbors strains found over a wide geographic area, and the interstrain divergence measured with a (δμ)2 genetic distance indicates an ancient origin. These findings reflect the specific adaptations made by S. cerevisiae/S. kudriavzevii cryophilic hybrids to winery environments in cool climates. PMID:22344648

  10. Enhancing performance of LCoS-SLM as adaptive optics by using computer-generated holograms modulation software

    NASA Astrophysics Data System (ADS)

    Tsai, Chun-Wei; Lyu, Bo-Han; Wang, Chen; Hung, Cheng-Chieh

    2017-05-01

    We have already developed multi-function and easy-to-use modulation software that was based on LabVIEW system. There are mainly four functions in this modulation software, such as computer generated holograms (CGH) generation, CGH reconstruction, image trimming, and special phase distribution. Based on the above development of CGH modulation software, we could enhance the performance of liquid crystal on silicon - spatial light modulator (LCoSSLM) as similar as the diffractive optical element (DOE) and use it on various adaptive optics (AO) applications. Through the development of special phase distribution, we are going to use the LCoS-SLM with CGH modulation software into AO technology, such as optical microscope system. When the LCOS-SLM panel is integrated in an optical microscope system, it could be placed on the illumination path or on the image forming path. However, LCOS-SLM provides a program-controllable liquid crystal array for optical microscope. It dynamically changes the amplitude or phase of light and gives the obvious advantage, "Flexibility", to the system

  11. Amplification of chromosomal DNA in situ

    DOEpatents

    Christian, Allen T.; Coleman, Matthew A.; Tucker, James D.

    2002-01-01

    Amplification of chromosomal DNA in situ to increase the amount of DNA associated with a chromosome or chromosome region is described. The amplification of chromosomal DNA in situ provides for the synthesis of Fluorescence in situ Hybridization (FISH) painting probes from single dissected chromosome fragments, the production of cDNA libraries from low copy mRNAs and improved in Comparative Genomic Hybridization (CGH) procedures.

  12. Computer simulation of reconstructed image for computer-generated holograms

    NASA Astrophysics Data System (ADS)

    Yasuda, Tomoki; Kitamura, Mitsuru; Watanabe, Masachika; Tsumuta, Masato; Yamaguchi, Takeshi; Yoshikawa, Hiroshi

    2009-02-01

    This report presents the results of computer simulation images for image-type Computer-Generated Holograms (CGHs) observable under white light fabricated with an electron beam lithography system. The simulated image is obtained by calculating wavelength and intensity of diffracted light traveling toward the viewing point from the CGH. Wavelength and intensity of the diffracted light are calculated using FFT image generated from interference fringe data. Parallax image of CGH corresponding to the viewing point can be easily obtained using this simulation method. Simulated image from interference fringe data was compared with reconstructed image of real CGH with an Electron Beam (EB) lithography system. According to the result, the simulated image resembled the reconstructed image of the CGH closely in shape, parallax, coloring and shade. And, in accordance with the shape of the light sources the simulated images which were changed in chroma saturation and blur by using two kinds of simulations: the several light sources method and smoothing method. In addition, as the applications of the CGH, full-color CGH and CGH with multiple images were simulated. The result was that the simulated images of those CGHs closely resembled the reconstructed image of real CGHs.

  13. Chronic arsenic trioxide exposure leads to enhanced aggressiveness via Met oncogene addiction in cancer cells

    PubMed Central

    Kryeziu, Kushtrim; Pirker, Christine; Englinger, Bernhard; van Schoonhoven, Sushilla; Spitzwieser, Melanie; Mohr, Thomas; Körner, Wilfried; Weinmüllner, Regina; Tav, Koray; Grillari, Johannes; Cichna-Markl, Margit; Berger, Walter; Heffeter, Petra

    2016-01-01

    As an environmental poison, arsenic is responsible for many cancer deaths. Paradoxically, arsenic trioxide (ATO) presents also a powerful therapy used to treat refractory acute promyelocytic leukemia (APL) and is intensively investigated for treatment of other cancer types. Noteworthy, cancer therapy is frequently hampered by drug resistance, which is also often associated with enhancement of tumor aggressiveness. In this study, we analyzed ATO-selected cancer cells (A2780ATO) for the mechanisms underlying their enhanced tumorigenicity and aggressiveness. These cells were characterized by enhanced proliferation and spheroid growth as well as increased tumorigenicity of xenografts in SCID mice. Noteworthy, subsequent studies revealed that overexpression of Met receptor was the underlying oncogenic driver of these effects, as A2780ATO cells were characterized by collateral sensitivity against Met inhibitors. This finding was also confirmed by array comparative genomic hybridization (array CGH) and whole genome gene expression arrays, which revealed that Met overexpression by chronic ATO exposure was based on the transcriptional regulation via activation of AP-1. Finally, it was shown that treatment with the Met inhibitor crizotinib was also effective against A2780ATO cell xenografts in vivo, indicating that targeting of Met presents a promising strategy for the treatment of Met-overexpressing tumors after either arsenic exposure or failure to ATO treatment. PMID:27036042

  14. Causes of learning disability and epilepsy: a review.

    PubMed

    Prince, Elizabeth; Ring, Howard

    2011-04-01

    Although the association between learning disability and epilepsy is well known, until relatively recently specific processes underlying this association were relatively poorly understood. However, scientific advances in molecular biology are starting to guide researchers towards descriptions of genetic and pathophysiological processes that may explain why syndromes of epilepsy and learning disability often co-exist. This article will focus largely on three areas of advancing knowledge: insights gained from wider use of genome-wide array comparative genomic hybridization (aCGH), specific insights gained from detailed study of Rett syndrome and the role of abnormalities of astrocytic function in predisposing to both epilepsy and learning disability. The enormous complexity of the biological underpinnings of the co-occurrence of epilepsy and learning disability are becoming apparent. In the future it is likely that research into therapeutic approaches will include, amongst other approaches, investigations of gene structure and expression, the role of astrocytes and the stability of dendritic spines.

  15. Encephalopathy and bilateral cataract in a boy with an interstitial deletion of Xp22 comprising the CDKL5 and NHS genes.

    PubMed

    Van Esch, Hilde; Jansen, Anna; Bauters, Marijke; Froyen, Guy; Fryns, Jean-Pierre

    2007-02-15

    We describe a male patient with a deletion at Xp22, detected by high resolution X-array CGH. The clinical phenotype present in this infant boy, consists of severe encephalopathy, congenital cataracts and tetralogy of Fallot and can be attributed to the deletion of the genes within the interval. Among these deleted genes are the gene for Nance-Horan syndrome and the cyclin-dependent kinase-like 5 gene (CDKL5), responsible for the early seizure variant of Rett syndrome. This is the first description of a male patient with a deletion of these genes, showing the involvement of CDKL5 in severe epileptic encephalopathy in males. Moreover it illustrates the added value of high resolution array-CGH in molecular diagnosis of mental retardation-multiple congenital anomaly cases. (c) 2007 Wiley-Liss, Inc.

  16. Decisions on Further Research for Predictive Biomarkers of High-Dose Alkylating Chemotherapy in Triple-Negative Breast Cancer: A Value of Information Analysis.

    PubMed

    Miquel-Cases, Anna; Retèl, Valesca P; van Harten, Wim H; Steuten, Lotte M G

    2016-06-01

    To inform decisions about the design and priority of further studies of emerging predictive biomarkers of high-dose alkylating chemotherapy (HDAC) in triple-negative breast cancer (TNBC) using value-of-information analysis. A state transition model compared treating women with TNBC with current clinical practice and four biomarker strategies to personalize HDAC: 1) BRCA1-like profile by array comparative genomic hybridization (aCGH) testing; 2) BRCA1-like profile by multiplex ligation-dependent probe amplification (MLPA) testing; 3) strategy 1 followed by X-inactive specific transcript gene (XIST) and tumor suppressor p53 binding protein (53BP1) testing; and 4) strategy 2 followed by XIST and 53BP1 testing, from a Dutch societal perspective and a 20-year time horizon. Input data came from literature and expert opinions. We assessed the expected value of partial perfect information, the expected value of sample information, and the expected net benefit of sampling for potential ancillary studies of an ongoing randomized controlled trial (RCT; NCT01057069). The expected value of partial perfect information indicated that further research should be prioritized to the parameter group including "biomarkers' prevalence, positive predictive value (PPV), and treatment response rates (TRRs) in biomarker-negative patients and patients with TNBC" (€639 million), followed by utilities (€48 million), costs (€40 million), and transition probabilities (TPs) (€30 million). By setting up four ancillary studies to the ongoing RCT, data on 1) TP and MLPA prevalence, PPV, and TRR; 2) aCGH and aCGH/MLPA plus XIST and 53BP1 prevalence, PPV, and TRR; 3) utilities; and 4) costs could be simultaneously collected (optimal size = 3000). Further research on predictive biomarkers for HDAC should focus on gathering data on TPs, prevalence, PPV, TRRs, utilities, and costs from the four ancillary studies to the ongoing RCT. Copyright © 2016 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  17. GStream: Improving SNP and CNV Coverage on Genome-Wide Association Studies

    PubMed Central

    Alonso, Arnald; Marsal, Sara; Tortosa, Raül; Canela-Xandri, Oriol; Julià, Antonio

    2013-01-01

    We present GStream, a method that combines genome-wide SNP and CNV genotyping in the Illumina microarray platform with unprecedented accuracy. This new method outperforms previous well-established SNP genotyping software. More importantly, the CNV calling algorithm of GStream dramatically improves the results obtained by previous state-of-the-art methods and yields an accuracy that is close to that obtained by purely CNV-oriented technologies like Comparative Genomic Hybridization (CGH). We demonstrate the superior performance of GStream using microarray data generated from HapMap samples. Using the reference CNV calls generated by the 1000 Genomes Project (1KGP) and well-known studies on whole genome CNV characterization based either on CGH or genotyping microarray technologies, we show that GStream can increase the number of reliably detected variants up to 25% compared to previously developed methods. Furthermore, the increased genome coverage provided by GStream allows the discovery of CNVs in close linkage disequilibrium with SNPs, previously associated with disease risk in published Genome-Wide Association Studies (GWAS). These results could provide important insights into the biological mechanism underlying the detected disease risk association. With GStream, large-scale GWAS will not only benefit from the combined genotyping of SNPs and CNVs at an unprecedented accuracy, but will also take advantage of the computational efficiency of the method. PMID:23844243

  18. Current molecular genetics strategies for the diagnosis of lysosomal storage disorders.

    PubMed

    Giugliani, Roberto; Brusius-Facchin, Ana-Carolina; Pasqualim, Gabriela; Leistner-Segal, Sandra; Riegel, Mariluce; Matte, Ursula

    2016-01-01

    Lysosomal storage disorders (LSDs) are a group of almost 50 monogenic diseases characterized by mutations causing deficiency of lysosomal enzymes or non-enzyme proteins involved in transport across the lysosomal membrane, protein maturation or lysosomal biogenesis. Usually, affected patients are normal at birth and have a progressive and severe disease with high morbidity and reduced life expectancy. The overall incidence of LSDs is usually estimated as 1:5000, but newborn screening studies are indicating that it could be much higher. Specific therapies were already developed for selected LSDs, making the timely and correct diagnosis very important for successful treatment and also for genetic counseling. In most LSD cases the biochemical techniques provide a reliable diagnosis. However, the identification of pathogenic mutations by genetic analysis is being increasingly recommended to provide additional information. In this paper we discuss the conventional methods for genetic analysis used in the LSDs [restriction fragment length polymorphism (RFLP), amplification-refractory mutation system (ARMS), single strand conformation polymorphism (SSCP), denaturing high performance liquid chromatography (dHPLC), real-time polymerase chain reaction, high resolution melting (HRM), multiplex ligation-dependent probe amplification (MLPA), Sanger sequencing] and also the newer approaches [massive parallel sequencing, array comparative genomic hybridization (CGH)].

  19. Digestive tumor bank protocol: from surgical specimens to genomic studies of digestive cancers.

    PubMed

    Popescu, I; Stroescu, C; Dumitrascu, T; Herlea, V; Paslaru, Liliana; Lazar, V; Boissin, H; Taieb, J; Horeanga, Ionela

    2006-01-01

    Cancer is a complex polygenic and multifactorial disease, resulting from successive dynamic changes in the genome of somatic cells and from the accumulation of molecular alterations in both tumour cells and host cells. For the majority of cancers, including many malignancies of the gastrointestinal tract, our current means of diagnosis and treatment of the tumors are grossly insufficient. In recent years the development of several gene expression profiling methods such as comparative genomic hybridization (CGH), differential display, serial analysis of gene expression (SAGE) and DNA arrays, together with the sequencing of the human genome, has provided an opportunity to monitor and investigate the complete cascade of molecular events leading to tumor development and progression. Given the central role played by surgeons in the current management of patients with solid cancers, it is of paramount importance for them to know the principles characterizing this laboratory tools to critically assess the results originating from this biotechnology. We describe in this article the scientific partnership between Fundeni Clinical Institute Bucharest, Romania and RNtech Company, Paris, France for the development of a center of biological resources (Biobank) as well as the standardized protocol of working with the biological samples, the ongoing projects and the future perspectives.

  20. Cross-species comparison of aCGH data from mouse and human BRCA1- and BRCA2-mutated breast cancers

    PubMed Central

    2010-01-01

    Background Genomic gains and losses are a result of genomic instability in many types of cancers. BRCA1- and BRCA2-mutated breast cancers are associated with increased amounts of chromosomal aberrations, presumably due their functions in genome repair. Some of these genomic aberrations may harbor genes whose absence or overexpression may give rise to cellular growth advantage. So far, it has not been easy to identify the driver genes underlying gains and losses. A powerful approach to identify these driver genes could be a cross-species comparison of array comparative genomic hybridization (aCGH) data from cognate mouse and human tumors. Orthologous regions of mouse and human tumors that are commonly gained or lost might represent essential genomic regions selected for gain or loss during tumor development. Methods To identify genomic regions that are associated with BRCA1- and BRCA2-mutated breast cancers we compared aCGH data from 130 mouse Brca1Δ/Δ;p53Δ/Δ, Brca2Δ/Δ;p53Δ/Δ and p53Δ/Δ mammary tumor groups with 103 human BRCA1-mutated, BRCA2-mutated and non-hereditary breast cancers. Results Our genome-wide cross-species analysis yielded a complete collection of loci and genes that are commonly gained or lost in mouse and human breast cancer. Principal common CNAs were the well known MYC-associated gain and RB1/INTS6-associated loss that occurred in all mouse and human tumor groups, and the AURKA-associated gain occurred in BRCA2-related tumors from both species. However, there were also important differences between tumor profiles of both species, such as the prominent gain on chromosome 10 in mouse Brca2Δ/Δ;p53Δ/Δ tumors and the PIK3CA associated 3q gain in human BRCA1-mutated tumors, which occurred in tumors from one species but not in tumors from the other species. This disparity in recurrent aberrations in mouse and human tumors might be due to differences in tumor cell type or genomic organization between both species. Conclusions The selection of the oncogenome during mouse and human breast tumor development is markedly different, apart from the MYC gain and RB1-associated loss. These differences should be kept in mind when using mouse models for preclinical studies. PMID:20735817

  1. Influence of radiation quality on mouse chromosome 2 deletions in radiation-induced acute myeloid leukaemia.

    PubMed

    Brown, Natalie; Finnon, Rosemary; Manning, Grainne; Bouffler, Simon; Badie, Christophe

    2015-11-01

    Leukaemia is the prevailing neoplastic disorder of the hematopoietic system. Epidemiological analyses of the survivors of the Japanese atomic bombings show that exposure to ionising radiation (IR) can cause leukaemia. Although a clear association between radiation exposure and leukaemia development is acknowledged, the underlying mechanisms remain incompletely understood. A hemizygous deletion on mouse chromosome 2 (del2) is a common feature in several mouse strains susceptible to radiation-induced acute myeloid leukaemia (rAML). The deletion is an early event detectable 24h after exposure in bone marrow cells. Ultimately, 15-25% of exposed animals develop AML with 80-90% of cases carrying del2. Molecular mapping of leukaemic cell genomes identified a minimal deleted region (MDR) on chromosome 2 (chr2) in which a tumour suppressor gene, Sfpi1 is located, encoding the transcription factor PU.1, essential in haematopoiesis. The remaining copy of Sfpi1 has a point mutation in the coding sequence for the DNA-binding domain of the protein in 70% of rAML, which alters a single CpG sequence in the codon for arginine residue R235. In order to identify chr2 deletions and Sfpi.1/PU.1 loss, we performed array comparative genomic hybridization (aCGH) on a unique panel of 79rAMLs. Using a custom made CGH array specifically designed for mouse chr2, we analysed at unprecedentedly high resolution (1.4M array- 148bp resolution) the size of the MDR in low LET and high-LET induced rAMLs (32 X-ray- and 47 neutron-induced). Sequencing of Sfpi1/PU.1DNA binding domain identified the presence of R235 point mutations, showing no influence of radiation quality on R235 type or frequency. We identified for the first time rAML cases with complex del2 in a subset of neutron-induced AMLs. This study allowed us to re-define the MDR to a much smaller 5.5Mb region (still including Sfpi1/PU.1), identical regardless of radiation quality. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  2. Significance of genomic instability in breast cancer in atomic bomb survivors: analysis of microarray-comparative genomic hybridization.

    PubMed

    Oikawa, Masahiro; Yoshiura, Koh-ichiro; Kondo, Hisayoshi; Miura, Shiro; Nagayasu, Takeshi; Nakashima, Masahiro

    2011-12-07

    It has been postulated that ionizing radiation induces breast cancers among atomic bomb (A-bomb) survivors. We have reported a higher incidence of HER2 and C-MYC oncogene amplification in breast cancers from A-bomb survivors. The purpose of this study was to clarify the effect of A-bomb radiation exposure on genomic instability (GIN), which is an important hallmark of carcinogenesis, in archival formalin-fixed paraffin-embedded (FFPE) tissues of breast cancer by using microarray-comparative genomic hybridization (aCGH). Tumor DNA was extracted from FFPE tissues of invasive ductal cancers from 15 survivors who were exposed at 1.5 km or less from the hypocenter and 13 calendar year-matched non-exposed patients followed by aCGH analysis using a high-density oligonucleotide microarray. The total length of copy number aberrations (CNA) was used as an indicator of GIN, and correlation with clinicopathological factors were statistically tested. The mean of the derivative log ratio spread (DLRSpread), which estimates the noise by calculating the spread of log ratio differences between consecutive probes for all chromosomes, was 0.54 (range, 0.26 to 1.05). The concordance of results between aCGH and fluorescence in situ hybridization (FISH) for HER2 gene amplification was 88%. The incidence of HER2 amplification and histological grade was significantly higher in the A-bomb survivors than control group (P = 0.04, respectively). The total length of CNA tended to be larger in the A-bomb survivors (P = 0.15). Correlation analysis of CNA and clinicopathological factors revealed that DLRSpread was negatively correlated with that significantly (P = 0.034, r = -0.40). Multivariate analysis with covariance revealed that the exposure to A-bomb was a significant (P = 0.005) independent factor which was associated with larger total length of CNA of breast cancers. Thus, archival FFPE tissues from A-bomb survivors are useful for genome-wide aCGH analysis. Our results suggested that A-bomb radiation may affect the increased amount of CNA as a hallmark of GIN and, subsequently, be associated with a higher histologic grade in breast cancer found in A-bomb survivors.

  3. A hybrid Gerchberg-Saxton-like algorithm for DOE and CGH calculation

    NASA Astrophysics Data System (ADS)

    Wang, Haichao; Yue, Weirui; Song, Qiang; Liu, Jingdan; Situ, Guohai

    2017-02-01

    The Gerchberg-Saxton (GS) algorithm is widely used in various disciplines of modern sciences and technologies where phase retrieval is required. However, this legendary algorithm most likely stagnates after a few iterations. Many efforts have been taken to improve this situation. Here we propose to introduce the strategy of gradient descent and weighting technique to the GS algorithm, and demonstrate it using two examples: design of a diffractive optical element (DOE) to achieve off-axis illumination in lithographic tools, and design of a computer generated hologram (CGH) for holographic display. Both numerical simulation and optical experiments are carried out for demonstration.

  4. Analysis of Molecular Cytogenetic Alteration in Rhabdomyosarcoma by Array Comparative Genomic Hybridization

    PubMed Central

    Liu, Chunxia; Li, Dongliang; Jiang, Jinfang; Hu, Jianming; Zhang, Wei; Chen, Yunzhao; Cui, Xiaobin; Qi, Yan; Zou, Hong; Zhang, WenJie; Li, Feng

    2014-01-01

    Rhabdomyosarcoma (RMS) is the most common pediatric soft tissue sarcoma with poor prognosis. The genetic etiology of RMS remains largely unclear underlying its development and progression. To reveal novel genes more precisely and new therapeutic targets associated with RMS, we used high-resolution array comparative genomic hybridization (aCGH) to explore tumor-associated copy number variations (CNVs) and genes in RMS. We confirmed several important genes by quantitative real-time polymerase chain reaction (QRT-PCR). We then performed bioinformatics-based functional enrichment analysis for genes located in the genomic regions with CNVs. In addition, we identified miRNAs located in the corresponding amplification and deletion regions and performed miRNA functional enrichment analysis. aCGH analyses revealed that all RMS showed specific gains and losses. The amplification regions were 12q13.12, 12q13.3, and 12q13.3–q14.1. The deletion regions were 1p21.1, 2q14.1, 5q13.2, 9p12, and 9q12. The recurrent regions with gains were 12q13.3, 12q13.3–q14.1, 12q14.1, and 17q25.1. The recurrent regions with losses were 9p12–p11.2, 10q11.21–q11.22, 14q32.33, 16p11.2, and 22q11.1. The mean mRNA level of GLI1 in RMS was 6.61-fold higher than that in controls (p = 0.0477) by QRT-PCR. Meanwhile, the mean mRNA level of GEFT in RMS samples was 3.92-fold higher than that in controls (p = 0.0354). Bioinformatic analysis showed that genes were enriched in functions such as immunoglobulin domain, induction of apoptosis, and defensin. Proto-oncogene functions were involved in alveolar RMS. miRNAs that located in the amplified regions in RMS tend to be enriched in oncogenic activity (miR-24 and miR-27a). In conclusion, this study identified a number of CNVs in RMS and functional analyses showed enrichment for genes and miRNAs located in these CNVs regions. These findings may potentially help the identification of novel biomarkers and/or drug targets implicated in diagnosis of and targeted therapy for RMS. PMID:24743780

  5. High-resolution array comparative genomic hybridization analysis of human bronchial and salivary adenoid cystic carcinoma.

    PubMed

    Bernheim, Alain; Toujani, Saloua; Saulnier, Patrick; Robert, Thomas; Casiraghi, Odile; Validire, Pierre; Temam, Stéphane; Menard, Philippe; Dessen, Philippe; Fouret, Pierre

    2008-05-01

    Adenoid cystic carcinoma (ACC) is a rare but distinctive tumor. Oligonucleotide array comparative genomic hybridization has been applied for cataloging genomic copy number alterations (CNAs) in 17 frozen salivary or bronchial tumors. Only four whole chromosome CNAs were found, and most cases had 2-4 segmental CNAs. No high level amplification was observed. There were recurrent gains at 7p15.2, 17q21-25, and 22q11-13, and recurrent losses at 1p35, 6q22-25, 8q12-13, 9p21, 12q12-13, and 17p11-13. The minimal region of gain at 7p15.2 contained the HOXA cluster. The minimal common regions of deletions contained the CDKN2A/CDKN2B, TP53, and LIMA1 tumor suppressor genes. The recurrent deletion at 8q12.3-13.1 contained no straightforward tumor suppressor gene, but the MIRN124A2 microRNA gene, whose product regulates MMP2 and CDK6. Among unique CNAs, gains harbored CCND1, KIT/PDGFRA/KDR, MDM2, and JAK2. The CNAs involving CCND1, MDM2, KIT, CDKN2A/2B, and TP53 were validated by FISH and/or multiplex ligation-dependent probe amplification. Although most tumors overexpressed cyclin D1 compared with surrounding glands, the only case to overexpress MDM2 had the corresponding CNA. In conclusion, our report suggests that ACC is characterized by a relatively low level of structural complexity. Array CGH and immunohistochemical data implicate MDM2 as the oncogene targeted at 12q15. The gain at 4q12 warrants further exploration as it contains a cluster of receptor kinase genes (KIT/PDGFRA/KDR), whose products can be responsive to specific therapies.

  6. Array-based comparative genomic hybridization-guided identification of reference genes for normalization of real-time quantitative polymerase chain reaction assay data for lymphomas, histiocytic sarcomas, and osteosarcomas of dogs.

    PubMed

    Tsai, Pei-Chien; Breen, Matthew

    2012-09-01

    To identify suitable reference genes for normalization of real-time quantitative PCR (RT-qPCR) assay data for common tumors of dogs. Malignant lymph node (n = 8), appendicular osteosarcoma (9), and histiocytic sarcoma (12) samples and control samples of various nonneoplastic canine tissues. Array-based comparative genomic hybridization (aCGH) data were used to guide selection of 9 candidate reference genes. Expression stability of candidate reference genes and 4 commonly used reference genes was determined for tumor samples with RT-qPCR assays and 3 software programs. LOC611555 was the candidate reference gene with the highest expression stability among the 3 tumor types. Of the commonly used reference genes, expression stability of HPRT was high in histiocytic sarcoma samples, and expression stability of Ubi and RPL32 was high in osteosarcoma samples. Some of the candidate reference genes had higher expression stability than did the commonly used reference genes. Data for constitutively expressed genes with high expression stability are required for normalization of RT-qPCR assay results. Without such data, accurate quantification of gene expression in tumor tissue samples is difficult. Results of the present study indicated LOC611555 may be a useful RT-qPCR assay reference gene for multiple tissue types. Some commonly used reference genes may be suitable for normalization of gene expression data for tumors of dogs, such as lymphomas, osteosarcomas, or histiocytic sarcomas.

  7. Glossary

    MedlinePlus

    ... array, and oligo/SNP combination array. Related terms: comparative genomic hybridization ; copy number variant ; SNP array chromosome ... for example, the AB blood groups in humans comparative genomic hybridization Method in which two DNA samples ( ...

  8. Cellular intrinsic factors involved in the resistance of squamous cell carcinoma to photodynamic therapy.

    PubMed

    Gilaberte, Yolanda; Milla, Laura; Salazar, Nerea; Vera-Alvarez, Jesús; Kourani, Omar; Damian, Alejandra; Rivarola, Viviana; Roca, Maria José; Espada, Jesús; González, Salvador; Juarranz, Angeles

    2014-09-01

    Photodynamic therapy (PDT) is widely used to treat non-melanoma skin cancer. However, some patients affected with squamous cell carcinoma (SCC) do not respond adequately to PDT with methyl-δ-aminolevulinic acid (MAL-PDT) and the tumors acquire an infiltrative phenotype and became histologically more aggressive, less differentiated, and more fibroblastic. To search for potential factors implicated in SCC resistance to PDT, we have used the SCC-13 cell line (parental) and resistant SCC-13 cells obtained by repeated MAL-PDT treatments (5th and 10th PDT-resistant generations). Xenografts assays in immunodeficient mice showed that the tumors generated by resistant cells were bigger than those induced by parental cells. Comparative genomic hybridization array (aCGH) showed that the three cell types presented amplicons in 3p12.1 CADM2, 7p11.2 EFGR, and 11q13.3 CCND1 genes. The 5th and 10th PDT-resistant cells showed an amplicon in 5q11.2 MAP3K1, which was not present in parental cells. The changes detected by aCGH on CCND1, EFGR, and MAP3K1 were confirmed in extracts of SCC-13 cells by reverse-transcriptase PCR and by western blot, and by immunohistochemistry in human biopsies from persistent tumors after MAL-PDT. Our data suggest that genomic imbalances related to CCND1, EFGR, and particularly MAP3K1 seem to be involved in the development of the resistance of SCC to PDT.

  9. Familial partial trisomy 15q11-13 presenting as intractable epilepsy in the child and schizophrenia in the mother.

    PubMed

    Michelson, Marina; Eden, Avi; Vinkler, Chana; Leshinsky-Silver, Esther; Kremer, Uri; Lerman-Sagie, Tally; Lev, Dorit

    2011-05-01

    Various rearrangements involve the proximal long arm of chromosome 15, including deletions, duplications, translocations, inversions and supernumerary marker chromosome of an inverted duplication. The large marker 15, that contains the Prader-Willi syndrome (PWS)/Angelman syndrome (AS) chromosome region, is usually associated with an abnormal phenotype of moderate to severe mental retardation, seizures, poor motor coordination, early-onset central hypotonia, autism and autistic-like behavior, schizophrenia and mild dysmorphic features. We report a ten year-old girl with normal intelligence prior to the onset of seizures, who developed severe intractable epilepsy at the age of seven years. Family history was significant for a mother with recurrent episodes of acute psychosis. The patient's and mother's karyotype revealed 47,XX+m. Array comparative genomic hybridization (A-CGH) identified a gain of 13 BAC clones from 15q11.2 through 15q13.1, which was then confirmed by FISH to be part of the marker chromosome. This duplicated region contains the SNRPN/UBE3A locus. This case demonstrates that a duplication of 15q11-13 can present differently in the same family either as intractable epilepsy or as a psychiatric illness and that intelligence can be preserved. We suggest that CGH microarray should be performed in cases with intractable epilepsy or schizophrenia, with or without mental retardation. Copyright © 2010 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  10. Modified alignment CGHs for aspheric surface test

    NASA Astrophysics Data System (ADS)

    Song, Jae-Bong; Yang, Ho-Soon; Rhee, Hyug-Gyo; Lee, Yun-Woo

    2009-08-01

    Computer Generated Holograms (CGH) for optical test are commonly consisted of one main pattern for testing aspheric surface and some alignment patterns for aligning the interferometer, CGH, and the test optics. To align the CGH plate and the test optics, we designed the alignment CGHs modified from the cat's eye alignment method, which are consisted of a couple of CGH patterns. The incident beam passed through the one part of the alignment CGH pattern is focused onto the one radius position of the test aspheric surface, and is reflected to the other part, and vice versa. This method has several merits compared to the conventional cat's eye alignment method. First, this method can be used in testing optics with a center hole, and the center part of CGH plate can be assigned to the alignment pattern. Second, the alignment pattern becomes a concentric circular arc pattern. The whole CGH patterns including the main pattern and alignment patterns are consisted of only concentric circular fringes. This concentric circular pattern can be easily made by the polar coordinated writer with circular scanning. The required diffraction angle becomes relatively small, so the 1st order diffraction beams instead of the 3rd order diffraction beam can be used as alignment beams, and the visibility can be improved. This alignment method also is more sensitive to the tilt and the lateral shift of the test aspheric surface. Using this alignment pattern, a 200 mm diameter F/0.5 aspheric mirror and a 600 mm diameter F/0.9 mirror were tested.

  11. Canine urothelial carcinoma: genomically aberrant and comparatively relevant

    PubMed Central

    Shapiro, S. G.; Raghunath, S.; Williams, C.; Motsinger-Reif, A. A.; Cullen, J. M.; Liu, T.; Albertson, D.; Ruvolo, M.; Lucas, A. Bergstrom; Jin, J.; Knapp, D. W.; Schiffman, J. D.

    2015-01-01

    Urothelial carcinoma (UC), also referred to as transitional cell carcinoma (TCC), is the most common bladder malignancy in both human and canine populations. In human UC, numerous studies have demonstrated the prevalence of chromosomal imbalances. Although the histopathology of the disease is similar in both species, studies evaluating the genomic profile of canine UC are lacking, limiting the discovery of key comparative molecular markers associated with driving UC pathogenesis. In the present study, we evaluated 31 primary canine UC biopsies by oligonucleotide array comparative genomic hybridization (oaCGH). Results highlighted the presence of three highly recurrent numerical aberrations: gain of dog chromosome (CFA) 13 and 36 and loss of CFA 19. Regional gains of CFA 13 and 36 were present in 97% and 84% of cases, respectively, and losses on CFA 19 were present in 77% of cases. Fluorescence in situ hybridization (FISH), using targeted bacterial artificial chromosome (BAC) clones and custom Agilent SureFISH probes, was performed to detect and quantify these regions in paraffin-embedded biopsy sections and urine-derived urothelial cells. The data indicate that these three aberrations are potentially diagnostic of UC. Comparison of our canine oaCGH data with that of 285 human cases identified a series of shared copy number aberrations. Using an informatics approach to interrogate the frequency of copy number aberrations across both species, we identified those that had the highest joint probability of association with UC. The most significant joint region contained the gene PABPC1, which should be considered further for its role in UC progression. In addition, cross-species filtering of genome-wide copy number data highlighted several genes as high-profile candidates for further analysis, including CDKN2A, S100A8/9, and LRP1B. We propose that these common aberrations are indicative of an evolutionarily conserved mechanism of pathogenesis and harbor genes key to urothelial neoplasia, warranting investigation for diagnostic, prognostic, and therapeutic applications. PMID:25783786

  12. Large inverted repeats within Xp11.2 are present at the breakpoints of isodicentric X chromosomes in Turner syndrome.

    PubMed

    Scott, Stuart A; Cohen, Ninette; Brandt, Tracy; Warburton, Peter E; Edelmann, Lisa

    2010-09-01

    Turner syndrome (TS) results from whole or partial monosomy X and is mediated by haploinsufficiency of genes that normally escape X-inactivation. Although a 45,X karyotype is observed in half of all TS cases, the most frequent variant TS karyotype includes the isodicentric X chromosome alone [46,X,idic(X)(p11)] or as a mosaic [46,X,idic(X)(p11)/45,X]. Given the mechanism of idic(X)(p11) rearrangement is poorly understood and breakpoint sequence information is unknown, this study sought to investigate the molecular mechanism of idic(X)(p11) formation by determining their precise breakpoint intervals. Karyotype analysis and fluorescence in situ hybridization mapping of eight idic(X)(p11) cell lines and three unbalanced Xp11.2 translocation lines identified the majority of breakpoints within a 5 Mb region, from approximately 53 to 58 Mb, in Xp11.1-p11.22, clustering into four regions. To further refine the breakpoints, a high-resolution oligonucleotide microarray (average of approximately 350 bp) was designed and array-based comparative genomic hybridization (aCGH) was performed on all 11 idic(X)(p11) and Xp11.2 translocation lines. aCGH analyses identified all breakpoint regions, including an idic(X)(p11) line with two potential breakpoints, one breakpoint shared between two idic(X)(p11) lines and two Xp translocations that shared breakpoints with idic(X)(p11) lines. Four of the breakpoint regions included large inverted repeats composed of repetitive gene clusters and segmental duplications, which corresponded to regions of copy-number variation. These data indicate that the rearrangement sites on Xp11.2 that lead to isodicentric chromosome formation and translocations are probably not random and suggest that the complex repetitive architecture of this region predisposes it to rearrangements, some of which are recurrent.

  13. Canine urothelial carcinoma: genomically aberrant and comparatively relevant.

    PubMed

    Shapiro, S G; Raghunath, S; Williams, C; Motsinger-Reif, A A; Cullen, J M; Liu, T; Albertson, D; Ruvolo, M; Bergstrom Lucas, A; Jin, J; Knapp, D W; Schiffman, J D; Breen, M

    2015-06-01

    Urothelial carcinoma (UC), also referred to as transitional cell carcinoma (TCC), is the most common bladder malignancy in both human and canine populations. In human UC, numerous studies have demonstrated the prevalence of chromosomal imbalances. Although the histopathology of the disease is similar in both species, studies evaluating the genomic profile of canine UC are lacking, limiting the discovery of key comparative molecular markers associated with driving UC pathogenesis. In the present study, we evaluated 31 primary canine UC biopsies by oligonucleotide array comparative genomic hybridization (oaCGH). Results highlighted the presence of three highly recurrent numerical aberrations: gain of dog chromosome (CFA) 13 and 36 and loss of CFA 19. Regional gains of CFA 13 and 36 were present in 97 % and 84 % of cases, respectively, and losses on CFA 19 were present in 77 % of cases. Fluorescence in situ hybridization (FISH), using targeted bacterial artificial chromosome (BAC) clones and custom Agilent SureFISH probes, was performed to detect and quantify these regions in paraffin-embedded biopsy sections and urine-derived urothelial cells. The data indicate that these three aberrations are potentially diagnostic of UC. Comparison of our canine oaCGH data with that of 285 human cases identified a series of shared copy number aberrations. Using an informatics approach to interrogate the frequency of copy number aberrations across both species, we identified those that had the highest joint probability of association with UC. The most significant joint region contained the gene PABPC1, which should be considered further for its role in UC progression. In addition, cross-species filtering of genome-wide copy number data highlighted several genes as high-profile candidates for further analysis, including CDKN2A, S100A8/9, and LRP1B. We propose that these common aberrations are indicative of an evolutionarily conserved mechanism of pathogenesis and harbor genes key to urothelial neoplasia, warranting investigation for diagnostic, prognostic, and therapeutic applications.

  14. Genomic Diversity of Lactobacillus salivarius▿ †

    PubMed Central

    Raftis, Emma J.; Salvetti, Elisa; Torriani, Sandra; Felis, Giovanna E.; O'Toole, Paul W.

    2011-01-01

    Strains of Lactobacillus salivarius are increasingly employed as probiotic agents for humans or animals. Despite the diversity of environmental sources from which they have been isolated, the genomic diversity of L. salivarius has been poorly characterized, and the implications of this diversity for strain selection have not been examined. To tackle this, we applied comparative genomic hybridization (CGH) and multilocus sequence typing (MLST) to 33 strains derived from humans, animals, or food. The CGH, based on total genome content, including small plasmids, identified 18 major regions of genomic variation, or hot spots for variation. Three major divisions were thus identified, with only a subset of the human isolates constituting an ecologically discernible group. Omission of the small plasmids from the CGH or analysis by MLST provided broadly concordant fine divisions and separated human-derived and animal-derived strains more clearly. The two gene clusters for exopolysaccharide (EPS) biosynthesis corresponded to regions of significant genomic diversity. The CGH-based groupings of these regions did not correlate with levels of production of bound or released EPS. Furthermore, EPS production was significantly modulated by available carbohydrate. In addition to proving difficult to predict from the gene content, EPS production levels correlated inversely with production of biofilms, a trait considered desirable in probiotic commensals. L. salivarius displays a high level of genomic diversity, and while selection of L. salivarius strains for probiotic use can be informed by CGH or MLST, it also requires pragmatic experimental validation of desired phenotypic traits. PMID:21131523

  15. De novo duplication of 17p13.1-p13.2 in a patient with intellectual disability and obesity.

    PubMed

    Kuroda, Yukiko; Ohashi, Ikuko; Tominaga, Makiko; Saito, Toshiyuki; Nagai, Jun-Ichi; Ida, Kazumi; Naruto, Takuya; Masuno, Mitsuo; Kurosawa, Kenji

    2014-06-01

    17p13.1 Deletion encompassing TP53 has been described as a syndrome characterized by intellectual disability and dysmorphic features. Only one case with a 17p13.1 duplication encompassing TP53 has been reported in a patient with intellectual disability, seizures, obesity, and diabetes mellitus. Here, we present a patient with a 17p13.1 duplication who exhibited obesity and intellectual disability, similar to the previous report. The 9-year-old proposita was referred for the evaluation of intellectual disability and obesity. She also exhibited insulin resistance and liver dysfunction. She had wide palpebral fissures, upturned nostrils, a long mandible, short and slender fingers, and skin hyperpigmentation. Array comparative genomic hybridization (array CGH) detected a 3.2 Mb duplication of 17p13.1-p13.2 encompassing TP53, FXR2, NLGN2, and SLC2A4, which encodes the insulin-responsive glucose transporter 4 (GLUT4) associated with insulin-stimulated glucose uptake in adipocytes and muscle. We suggest that 17p13.1 duplication may represent a clinically recognizable condition characterized partially by a characteristic facial phenotype, developmental delay, and obesity. © 2014 Wiley Periodicals, Inc.

  16. Genome wide analysis in a discordant monozygotic twin with caudal appendage and multiple congenital anomalies.

    PubMed

    Cogulu, O; Pariltay, E; Koroglu, O A; Aykut, A; Ozyurek, R; Levent, E; Kultursay, N; Ozkinay, F

    2013-01-01

    Caudal appendage is a rare dysmorphic feature of which etiologic mechanisms are not well understood. Here we report monozygotic (MZ) twin brothers who are discordant for the caudal appendage and multiple congenital anomalies. Twins were the product of a 33 weeks of gestation, monochorionic-diamniotic pregnancy. On admission the proband had micrognathia, beaked nose, hypospadias, caudal appendage and juxtaductal aorta coarctation. At birth, he was small for gestational age and he had transient hypothyroidism which was detected in the newborn period. Karyotype analysis showed 46,XY. Monozygosity was shown by 15 microsatellite markers plus amelogenin (AmpFlSTR Identifiler PCR Amplification Kit, Applied Biosystems). Genome-wide copy number analysis of the twins by DNA-DNA hybridization of whole genomic DNA (NimbleGen Human CGH 385K WG-T v2.0 array) showed a significant difference at two neighboring probes with Log2 ratio: 0.72088 which are located on chromosome 3p12.3. Further analysis by high resolution of chromosome 3 array (Roche NimbleGen Human HG18 CHR3 FT Median Probe Spacing 475 bp) and quantitative PCR analysis did not confirm the deletion.

  17. VizieR Online Data Catalog: Spectroscopy of main-belt Ch/Cgh-type asteroids (Vernazza+, 2016)

    NASA Astrophysics Data System (ADS)

    Vernazza, P.; Marsset, M.; Beck, P.; Binzel, R. P.; Birlan, M.; Cloutis, E. A.; DeMeo, F. E.; Dumas, C.; Hiroi, T.

    2016-09-01

    We conducted an extensive spectroscopic survey in the near-infrared range of 70 main-belt Ch/Cgh-type asteroids and 4 Ch/Cgh-type families and combined these measurements with available visible wavelength spectra. New data presented here are near-infrared asteroid spectral measurements for Ch- and Cgh-type asteroids from 0.7-2.5μm obtained using SpeX, the low- to medium-resolution near-IR spectrograph and imager on the 3m NASA InfraRed Telescope Facility (IRTF) located on Mauna Kea, HI. Observing runs were conducted remotely primarily from the Observatory of Paris-Meudon, France between 2010 April and 2012 January. The spectrograph SpeX, combined with a 0.8*15arcsec slit, was used in the low-resolution prism mode for acquisition of the spectra in the 0.7-2.5μm wavelength range. In order to monitor the high luminosity and variability of the sky in the near-IR, the telescope was moved along the slit during the acquisition of the data so as to obtain a sequence of spectra located at two different positions (A and B) on the array. In addition, we complemented our data set with additional near-infrared spectra retrieved from the Small Main-Belt Asteroid Spectroscopic Survey (SMASS) database (http://smass.mit.edu/). Combining these near-infrared measurements with available visible wavelength spectra (Bus, 1999PhDT........50B; Lazzaro et al., 2004Icar..172..179L) allows for the first time an extensive visible and near-infrared (VNIR) spectral database of main-belt Ch and Cgh types with D>45km (78% or 49/63 of all Ch and Cgh types listed in SMASS; see Table1). (1 data file).

  18. Copy number variation and missense mutations of the agouti signaling protein (ASIP) gene in goat breeds with different coat colors.

    PubMed

    Fontanesi, L; Beretti, F; Riggio, V; Gómez González, E; Dall'Olio, S; Davoli, R; Russo, V; Portolano, B

    2009-01-01

    In goats, classical genetic studies reported a large number of alleles at the Agouti locus with effects on coat color and pattern distribution. From these early studies, the dominant A(Wt) (white/tan) allele was suggested to cause the white color of the Saanen breed. Here, we sequenced the coding region of the goat ASIP gene in 6 goat breeds (Girgentana, Maltese, Derivata di Siria, Murciano-Granadina, Camosciata delle Alpi, and Saanen), with different coat colors and patterns. Five single nucleotide polymorphisms (SNPs) were identified, 3 of which caused missense mutations in conserved positions of the cysteine-rich carboxy-terminal domain of the protein (p.Ala96Gly, p.Cys126Gly, and p.Val128Gly). Allele and genotype frequencies suggested that these mutations are not associated or not completely associated with coat color in the investigated goat breeds. Moreover, genotyping and sequencing results, deviation from Hardy-Weinberg equilibrium, as well as allele copy number evaluation from semiquantitative fluorescent multiplex PCR, indicated the presence of copy number variation (CNV) in all investigated breeds. To confirm the presence of CNV and evaluate its extension, we applied a bovine-goat cross-species array comparative genome hybridization (aCGH) experiment using a custom tiling array based on bovine chromosome 13. aCGH results obtained for 8 goat DNA samples confirmed the presence of CNV affecting a region of less that 100 kb including the ASIP and AHCY genes. In Girgentana and Saanen breeds, this CNV might cause the A(Wt) allele, as already suggested for a similar structural mutation in sheep affecting the ASIP and AHCY genes, providing evidence for a recurrent interspecies CNV. However, other mechanisms may also be involved in determining coat color in these 2 breeds. Copyright 2009 S. Karger AG, Basel.

  19. Method for performing site-specific affinity fractionation for use in DNA sequencing

    DOEpatents

    Mirzabekov, Andrei Darievich; Lysov, Yuri Petrovich; Dubley, Svetlana A.

    1999-01-01

    A method for fractionating and sequencing DNA via affinity interaction is provided comprising contacting cleaved DNA to a first array of oligonucleotide molecules to facilitate hybridization between said cleaved DNA and the molecules; extracting the hybridized DNA from the molecules; contacting said extracted hybridized DNA with a second array of oligonucleotide molecules, wherein the oligonucleotide molecules in the second array have specified base sequences that are complementary to said extracted hybridized DNA; and attaching labeled DNA to the second array of oligonucleotide molecules, wherein the labeled re-hybridized DNA have sequences that are complementary to the oligomers. The invention further provides a method for performing multi-step conversions of the chemical structure of compounds comprising supplying an array of polyacrylamide vessels separated by hydrophobic surfaces; immobilizing a plurality of reactants, such as enzymes, in the vessels so that each vessel contains one reactant; contacting the compounds to each of the vessels in a predetermined sequence and for a sufficient time to convert the compounds to a desired state; and isolating the converted compounds from said array.

  20. Miniaturized reaction vessel system, method for performing site-specific biochemical reactions and affinity fractionation for use in DNA sequencing

    DOEpatents

    Mirzabekov, Andrei Darievich; Lysov, Yuri Petrovich; Dubley, Svetlana A.

    2000-01-01

    A method for fractionating and sequencing DNA via affinity interaction is provided comprising contacting cleaved DNA to a first array of oligonucleotide molecules to facilitate hybridization between said cleaved DNA and the molecules; extracting the hybridized DNA from the molecules; contacting said extracted hybridized DNA with a second array of oligonucleotide molecules, wherein the oligonucleotide molecules in the second array have specified base sequences that are complementary to said extracted hybridized DNA; and attaching labeled DNA to the second array of oligonucleotide molecules, wherein the labeled re-hybridized DNA have sequences that are complementary to the oligomers. The invention further provides a method for performing multi-step conversions of the chemical structure of compounds comprising supplying an array of polyacrylamide vessels separated by hydrophobic surfaces; immobilizing a plurality of reactants, such as enzymes, in the vessels so that each vessel contains one reactant; contacting the compounds to each of the vessels in a predetermined sequence and for a sufficient time to convert the compounds to a desired state; and isolating the converted compounds from said array.

  1. Method for performing site-specific affinity fractionation for use in DNA sequencing

    DOEpatents

    Mirzabekov, A.D.; Lysov, Y.P.; Dubley, S.A.

    1999-05-18

    A method for fractionating and sequencing DNA via affinity interaction is provided comprising contacting cleaved DNA to a first array of oligonucleotide molecules to facilitate hybridization between the cleaved DNA and the molecules; extracting the hybridized DNA from the molecules; contacting the extracted hybridized DNA with a second array of oligonucleotide molecules, wherein the oligonucleotide molecules in the second array have specified base sequences that are complementary to the extracted hybridized DNA; and attaching labeled DNA to the second array of oligonucleotide molecules, wherein the labeled re-hybridized DNA have sequences that are complementary to the oligomers. The invention further provides a method for performing multi-step conversions of the chemical structure of compounds comprising supplying an array of polyacrylamide vessels separated by hydrophobic surfaces; immobilizing a plurality of reactants, such as enzymes, in the vessels so that each vessel contains one reactant; contacting the compounds to each of the vessels in a predetermined sequence and for a sufficient time to convert the compounds to a desired state; and isolating the converted compounds from the array. 14 figs.

  2. Xp11 translocation renal cell carcinoma in adults: a clinicopathological and comparative genomic hybridization study

    PubMed Central

    Zou, Hong; Kang, Xueling; Pang, Li-Juan; Hu, Wenhao; Zhao, Jin; Qi, Yan; Hu, Jianming; Liu, Chunxia; Li, Hongan; Liang, Weihua; Yuan, Xianglin; Li, Feng

    2014-01-01

    To study the clinicopathological and genomic characteristics of Xp11.2 translocation renal cell carcinoma (Xp11.2 RCC) in adults, we analyzed 9 Xp11.2 RCCs, confirmed by transcription factor E3 (TFE3) immunohistochemistry, in patients aged ≥20 years. TFE3 expression was also determined in 12 cases of alveolar soft part sarcoma (ASPS) served as a positive control. Comparative genomic hybridization (CGH) was used to investigate genomic imbalances in all Xp11.2 RCC cases. Most of our Xp11.2 RCC patients (5/9) presented with TNM stages 3-4, and 6 patients died 10 months to 7 years after their operation. Histologically, Xp11.2 RCC was composed of a mixed papillary nested/alveolar growth pattern (8/9). Immunostaining showed that all Xp11.2 RCC and ASPS cases had strong TFE3 expression and high positive ratios for p53 and vimentin. However, there were significant differences in the expression of AMACR (p<0.001), AE1/AE3 (p=0.002), and CD10 (p=0.024) between the 2 diseases. CGH profiles showed chromosomal imbalances in all 9 Xp11.2 RCC cases; gains were observed in chromosomes Xp11 (6/9), 7q20-25, 12q25-31 (5/9), 7p16-24 (4/9), 8p12-13, 8q20-21, 16q20-22, 17q25-26, 20q22-23 (4/9), and losses occurred frequently on chromosomes 3p12-16, 9q31-32, 14q22-24 (4/9). Our Conclusions show Xp11.2 RCC that occur in adults may be aggressive cancers, the expressions of AMACR, CD10, AE1/AE3 are helpful in the differential diagnosis between Xp11.2 RCC and ASPS, and CGH assay is a useful complementary method for confirming the diagnosis of Xp11.2 RCC. PMID:24427344

  3. Xp11 translocation renal cell carcinoma in adults: a clinicopathological and comparative genomic hybridization study.

    PubMed

    Zou, Hong; Kang, Xueling; Pang, Li-Juan; Hu, Wenhao; Zhao, Jin; Qi, Yan; Hu, Jianming; Liu, Chunxia; Li, Hongan; Liang, Weihua; Yuan, Xianglin; Li, Feng

    2014-01-01

    To study the clinicopathological and genomic characteristics of Xp11.2 translocation renal cell carcinoma (Xp11.2 RCC) in adults, we analyzed 9 Xp11.2 RCCs, confirmed by transcription factor E3 (TFE3) immunohistochemistry, in patients aged ≥20 years. TFE3 expression was also determined in 12 cases of alveolar soft part sarcoma (ASPS) served as a positive control. Comparative genomic hybridization (CGH) was used to investigate genomic imbalances in all Xp11.2 RCC cases. Most of our Xp11.2 RCC patients (5/9) presented with TNM stages 3-4, and 6 patients died 10 months to 7 years after their operation. Histologically, Xp11.2 RCC was composed of a mixed papillary nested/alveolar growth pattern (8/9). Immunostaining showed that all Xp11.2 RCC and ASPS cases had strong TFE3 expression and high positive ratios for p53 and vimentin. However, there were significant differences in the expression of AMACR (p<0.001), AE1/AE3 (p=0.002), and CD10 (p=0.024) between the 2 diseases. CGH profiles showed chromosomal imbalances in all 9 Xp11.2 RCC cases; gains were observed in chromosomes Xp11 (6/9), 7q20-25, 12q25-31 (5/9), 7p16-24 (4/9), 8p12-13, 8q20-21, 16q20-22, 17q25-26, 20q22-23 (4/9), and losses occurred frequently on chromosomes 3p12-16, 9q31-32, 14q22-24 (4/9). Our Conclusions show Xp11.2 RCC that occur in adults may be aggressive cancers, the expressions of AMACR, CD10, AE1/AE3 are helpful in the differential diagnosis between Xp11.2 RCC and ASPS, and CGH assay is a useful complementary method for confirming the diagnosis of Xp11.2 RCC.

  4. Arrays of probes for positional sequencing by hybridization

    DOEpatents

    Cantor, Charles R [Boston, MA; Prezetakiewiczr, Marek [East Boston, MA; Smith, Cassandra L [Boston, MA; Sano, Takeshi [Waltham, MA

    2008-01-15

    This invention is directed to methods and reagents useful for sequencing nucleic acid targets utilizing sequencing by hybridization technology comprising probes, arrays of probes and methods whereby sequence information is obtained rapidly and efficiently in discrete packages. That information can be used for the detection, identification, purification and complete or partial sequencing of a particular target nucleic acid. When coupled with a ligation step, these methods can be performed under a single set of hybridization conditions. The invention also relates to the replication of probe arrays and methods for making and replicating arrays of probes which are useful for the large scale manufacture of diagnostic aids used to screen biological samples for specific target sequences. Arrays created using PCR technology may comprise probes with 5'- and/or 3'-overhangs.

  5. Global genomic analysis of intraductal papillary mucinous neoplasms of the pancreas reveals significant molecular differences compared to ductal adenocarcinoma.

    PubMed

    Fritz, Stefan; Fernandez-del Castillo, Carlos; Mino-Kenudson, Mari; Crippa, Stefano; Deshpande, Vikram; Lauwers, Gregory Y; Warshaw, Andrew L; Thayer, Sarah P; Iafrate, A John

    2009-03-01

    To determine whether intraductal papillary mucinous neoplasms of the pancreas (IPMNs) have a different genetic background compared with ductal adenocarcinoma (PDAC). The biologic and clinical behavior of IPMNs and IPMN-associated adenocarcinomas is different from PDAC in having a less aggressive tumor growth and significantly improved survival. Up to date, the molecular mechanisms underlying the clinical behavior of IPMNs are incompletely understood. 128 cystic pancreatic lesions were prospectively identified during the course of 2 years. From the corresponding surgical specimens, 57 IPMNs were separated and subdivided by histologic criteria into those with low-grade dysplasia, moderate dysplasia, high-grade dysplasia, and invasive cancer. Twenty specimens were suitable for DNA isolation and subsequent performance of array CGH. While none of the IPMNs with low-grade dysplasia displayed detectable chromosomal aberrations, IPMNs with moderate and high-grade dysplasia showed frequent copy number alterations. Commonly lost regions were located on chromosome 5q, 6q, 10q, 11q, 13q, 18q, and 22q. The incidence of loss of chromosome 5q, 6q, and 11q was significantly higher in IPMNs with high-grade dysplasia or invasion compared with PDAC. Ten of 13 IPMNs with moderate dysplasia or malignancy had loss of part or all of chromosome 6q, with a minimal deleted region between linear positions 78.0 and 130.0. This study is the first to use array CGH to characterize IPMNs. Recurrent cytogenetic alterations were identified and were different than those described in PDAC. Array CGH may help distinguish between these 2 entities and give insight into the differences in their biology and prognosis.

  6. The design method of CGH for testing the Φ404, F2 primary mirror

    NASA Astrophysics Data System (ADS)

    Xie, Nian; Duan, Xueting; Li, Hua

    2014-09-01

    In order to accurately test shape quality of the large diameter aspherical mirror, a kind of binary optical element called Computer generated holograms (CGHs) are widely used .The primary role of the CGHs is to generate any desired wavefronts to realize phase compensation. In this paper, the CGH design principle and design process are reviewed at first. Then an optical testing system for testing the aspheric mirror includes a computer generated hologram (CGH) and an imaging element (IE) is disposed. And an optical testing system only concludes a CGH is proposed too. The CGH is designed for measurement of an aspheric mirror (diameter=404mm, F-number=2). Interferometric simulation test results of the aspheric mirror show that the whole test system obtains the demanded high accuracy. When combined the CGH with an imaging element in the Aspheric Compensator, the smallest feature in the CGH should be decreased. The CGH can also be used to test freeform surface with high precision, it is of great significance to the development of the freeform surface.

  7. MEF2C haploinsufficiency caused by either microdeletion of the 5q14.3 region or mutation is responsible for severe mental retardation with stereotypic movements, epilepsy and/or cerebral malformations

    PubMed Central

    Le Meur, Nathalie; Holder-Espinasse, Muriel; Jaillard, Sylvie; Goldenberg, Alice; Joriot, Sylvie; Amati-Bonneau, Patrizia; Guichet, Agnès; Barth, Magalie; Charollais, Aude; Journel, Hubert; Auvin, Stéphane; Boucher, Cécile; Kerckaert, Jean-Pierre; David, Véronique; Manouvrier-Hanu, Sylvie; Saugier-Veber, Pascale; Frébourg, Thierry; Dubourg, Christèle; Andrieux, Joris; Bonneau, Dominique

    2010-01-01

    Over the last few years, array-CGH has remarkably improved the ability to detect cryptic unbalanced rearrangements in patients presenting with syndromic mental retardation. Using whole genome oligonucleotide array-CGH, we detected 5q14.3 microdeletions ranging from 216 kb to 8.8 Mb in 5 unrelated patients showing phenotypic similarities, namely severe mental retardation with absent speech, hypotonia and stereotypic movements. Most of the patients presented also with facial dysmorphic features, epilepsy and/or cerebral malformations. The minimal common deleted region of these 5q14 microdeletions encompassed only MEF2C, known to act in brain as a neurogenesis effector which regulates excitatory synapse number. In a patient presenting a similar phenotype, we subsequently identified a MEF2C nonsense mutation. Taken together, these results strongly suggest that haploinsufficiency of MEF2C is responsible for severe mental retardation with stereotypic movements, seizures and/or cerebral malformations. PMID:19592390

  8. Chromosomal instability in women with primary ovarian insufficiency.

    PubMed

    Katari, Sunita; Aarabi, Mahmoud; Kintigh, Angela; Mann, Susan; Yatsenko, Svetlana A; Sanfilippo, Joseph S; Zeleznik, Anthony J; Rajkovic, Aleksandar

    2018-02-07

    What is the prevalence of somatic chromosomal instability among women with idiopathic primary ovarian insufficiency (POI)? A subset of women with idiopathic POI may have functional impairment in DNA repair leading to chromosomal instability in their soma. The formation and repair of DNA double-strand breaks during meiotic recombination are fundamental processes of gametogenesis. Oocytes with compromised DNA integrity are susceptible to apoptosis which could trigger premature ovarian aging and accelerated wastage of the human follicle reserve. Genomewide association studies, as well as whole exome sequencing, have implicated multiple genes involved in DNA damage repair. However, the prevalence of defective DNA damage repair in the soma of women with POI is unknown. In total, 46 women with POI and 15 family members were evaluated for excessive mitomycin-C (MMC)-induced chromosome breakage. Healthy fertile females (n = 20) and two lymphoblastoid cell lines served as negative and as positive controls, respectively. We performed a pilot functional study utilizing MMC to assess chromosomal instability in the peripheral blood of participants. A high-resolution array comparative genomic hybridization (aCGH) was performed on 16 POI patients to identify copy number variations (CNVs) for a set of 341 targeted genes implicated in DNA repair. Array CGH revealed three POI patients (3/16, 18.8%) with pathogenic CNVs. Excessive chromosomal breakage suggestive of a constitutional deficiency in DNA repair was detected in one POI patient with the 16p12.3 duplication. In two patients with negative chromosome breakage analysis, aCGH detected a Xq28 deletion comprising the Centrin EF-hand Protein 2 (CETN2) and HAUS Augmin Like Complex Subunit 7 (HAUS7) genes essential for meiotic DNA repair, and a duplication in the 3p22.2 region comprising a part of the ATPase domain of the MutL Homolog 1 (MLH1) gene. Peripheral lymphocytes, used as a surrogate tissue to quantify induced chromosome damage, may not be representative of all the affected tissues. Another limitation pertains to the MMC assay which detects homologous repair pathway defects and does not test deficiencies in other DNA repair pathways. Our results provide evidence for functional impairment of DNA repair in idiopathic POI, which may predispose the patients to other DNA repair-related conditions such as accelerated aging and/or cancer susceptibility. Funding was provided by the National Institute of Child Health and Human Development. There were no competing interests to declare. © The Author(s) 2018. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  9. Chromosomal aberrations evaluated by CGH, FISH and GTG-banding in a case of AIDS-related Burkitt's lymphoma.

    PubMed

    Zunino, A; Viaggi, S; Ottaggio, L; Fronza, G; Schenone, A; Roncella, S; Abbondandolo, A

    2000-03-01

    We have previously reported on a complex chromosome rearrangement [der(17)] in a B-cell line, BRG A, established from an AIDS patient with Burkitt's lymphoma (BL). The aim of the present study was the definition of der(17) composition and the identification of complete or partial chromosome gains and losses in two cell clones (BRG A and BRG M) derived from this patient. We applied comparative genome hybridization (CGH) to detect the DNA misrepresentations in the genome of the two cell clones. Findings from CGH and banding analysis could then direct the choice of probes for chromosome painting experiments to elucidate der(17) composition. CGH analysis identified gains of chromosomes 1q, 7q, 12q, 13q, 15q, 17p, 20p,q and losses of chromosomes 3p and 5q in BRG A and gain of chromosome 1q and loss in chromosome 6q in BRG M. Some of the detected alterations had already been described in lymphomas, while others appeared to be new. The combination of these techniques allowed a precise definition of der(17), composed by translocated regions from chromosomes 12 and 15. We demonstrated CGH to be a powerful tool in the identification of recurrent chromosome aberrations in an AIDS-related BL and in ascertaining the origin of marker chromosomes. We were also able to identify a different pattern of aberrations and assess an independent sequence of events leading to the 1p gain in the two subclones.

  10. Precision alignment and calibration of optical systems using computer generated holograms

    NASA Astrophysics Data System (ADS)

    Coyle, Laura Elizabeth

    As techniques for manufacturing and metrology advance, optical systems are being designed with more complexity than ever before. Given these prescriptions, alignment and calibration can be a limiting factor in their final performance. Computer generated holograms (CGHs) have several unique properties that make them powerful tools for meeting these demanding tolerances. This work will present three novel methods for alignment and calibration of optical systems using computer generated holograms. Alignment methods using CGHs require that the optical wavefront created by the CGH be related to a mechanical datum to locate it space. An overview of existing methods is provided as background, then two new alignment methods are discussed in detail. In the first method, the CGH contact Ball Alignment Tool (CBAT) is used to align a ball or sphere mounted retroreflector (SMR) to a Fresnel zone plate pattern with micron level accuracy. The ball is bonded directly onto the CGH substrate and provides permanent, accurate registration between the optical wavefront and a mechanical reference to locate the CGH in space. A prototype CBAT was built and used to align and bond an SMR to a CGH. In the second method, CGH references are used to align axi-symmetric optics in four degrees of freedom with low uncertainty and real time feedback. The CGHs create simultaneous 3D optical references where the zero order reflection sets tilt and the first diffracted order sets centration. The flexibility of the CGH design can be used to accommodate a wide variety of optical systems and maximize sensitivity to misalignments. A 2-CGH prototype system was aligned multiplied times and the alignment uncertainty was quantified and compared to an error model. Finally, an enhanced calibration method is presented. It uses multiple perturbed measurements of a master sphere to improve the calibration of CGH-based Fizeau interferometers ultimately measuring aspheric test surfaces. The improvement in the calibration is a function of the interferometer error and the aspheric departure of the desired test surface. This calibration is most effective at reducing coma and trefoil from figure error or misalignments of the interferometer components. The enhanced calibration can reduce overall measurement uncertainty or allow the budgeted error contribution from another source to be increased. A single set of sphere measurements can be used to calculate calibration maps for closely related aspheres, including segmented primary mirrors for telescopes. A parametric model is developed and compared to the simulated calibration of a case study interferometer.

  11. GeneBreak: detection of recurrent DNA copy number aberration-associated chromosomal breakpoints within genes.

    PubMed

    van den Broek, Evert; van Lieshout, Stef; Rausch, Christian; Ylstra, Bauke; van de Wiel, Mark A; Meijer, Gerrit A; Fijneman, Remond J A; Abeln, Sanne

    2016-01-01

    Development of cancer is driven by somatic alterations, including numerical and structural chromosomal aberrations. Currently, several computational methods are available and are widely applied to detect numerical copy number aberrations (CNAs) of chromosomal segments in tumor genomes. However, there is lack of computational methods that systematically detect structural chromosomal aberrations by virtue of the genomic location of CNA-associated chromosomal breaks and identify genes that appear non-randomly affected by chromosomal breakpoints across (large) series of tumor samples. 'GeneBreak' is developed to systematically identify genes recurrently affected by the genomic location of chromosomal CNA-associated breaks by a genome-wide approach, which can be applied to DNA copy number data obtained by array-Comparative Genomic Hybridization (CGH) or by (low-pass) whole genome sequencing (WGS). First, 'GeneBreak' collects the genomic locations of chromosomal CNA-associated breaks that were previously pinpointed by the segmentation algorithm that was applied to obtain CNA profiles. Next, a tailored annotation approach for breakpoint-to-gene mapping is implemented. Finally, dedicated cohort-based statistics is incorporated with correction for covariates that influence the probability to be a breakpoint gene. In addition, multiple testing correction is integrated to reveal recurrent breakpoint events. This easy-to-use algorithm, 'GeneBreak', is implemented in R ( www.cran.r-project.org ) and is available from Bioconductor ( www.bioconductor.org/packages/release/bioc/html/GeneBreak.html ).

  12. aCGH Local Copy Number Aberrations Associated with Overall Copy Number Genomic Instability in Colorectal Cancer: Coordinate Involvement of the Regions Including BCR and ABL

    PubMed Central

    Bartos, Jeremy D.; Gaile, Daniel P.; McQuaid, Devin E.; Conroy, Jeffrey M.; Darbary, Huferesh; Nowak, Norma J.; Block, Annemarie; Petrelli, Nicholas J.; Mittelman, Arnold; Stoler, Daniel L.; Anderson, Garth R.

    2007-01-01

    In order to identify small regions of the genome whose specific copy number alteration is associated with high genomic instability in the form of overall genome-wide copy number aberrations, we have analyzed array-based comparative genomic hybridization (aCGH) data from 33 sporadic colorectal carcinomas. Copy number changes of a small number of specific regions were significantly correlated with elevated overall amplifications and deletions scattered throughout the entire genome. One significant region at 9q34 includes the c-ABL gene Another region spanning 22q11–13 includes the breakpoint cluster region (BCR) of the Philadelphia chromosome Coordinate 22q11–13 alterations were observed in nine of eleven tumors with the 9q34 alteration Additional regions on 1q and 14q were associated with overall genome-wide copy number changes, while copy number aberrations on chromosome 7p, 7q, and 13q21.1–31.3 were found associated with this instability only in tumors from patients with a smoking history Our analysis demonstrates there are a small number of regions of the genome where gain or loss is commonly associated with a tumor’s overall level of copy number aberrations Our finding BCR and ABL located within two of the instability-associated regions, and the involvement of these two regions occurring coordinately, suggests a system akin to the BCR-ABL translocation of CML may be involved in genomic instability in about one-third of human colorectal carcinomas. PMID:17196995

  13. Testing the effect of computer-generated hologram fabrication error in a cylindrical interferometry system

    NASA Astrophysics Data System (ADS)

    Wang, Qingquan; Yu, Yingjie; Mou, Kebing

    2017-10-01

    This paper presents a method of testing the effect of computer-generated hologram (CGH) fabrication error in a cylindrical interferometry system. An experimental system is developed for calibrating the effect of this error. In the calibrating system, a mirror with high surface accuracy is placed at the focal axis of the cylindrical wave. After transmitting through the CGH, the reflected cylindrical wave can be transformed into a plane wave again, and then the plane wave interferes with the reference plane wave. Finally, the double-pass transmitted wavefront of the CGH, representing the effect of the CGH fabrication error in the experimental system, is obtained by analyzing the interferogram. The mathematical model of misalignment aberration removal in the calibration system is described, and the feasibility is demonstrated via the simulation system established in Zemax. With the mathematical polynomial, most of the possible misalignment errors can be estimated with the least-squares fitting algorithm, and then the double-pass transmitted wavefront of the CGH can be obtained by subtracting the misalignment errors from the result extracted from the real experimental system. Compared to the standard double-pass transmitted wavefront given by Diffraction International Ltd., which manufactured the CGH used in the experimental system, the result is desirable. We conclude that the proposed method is effective in calibrating the effect of the CGH error in the cylindrical interferometry system for the measurement of cylindricity error.

  14. Synthesis of porous NiO/CeO2 hybrid nanoflake arrays as a platform for electrochemical biosensing

    NASA Astrophysics Data System (ADS)

    Cui, Jiewu; Luo, Jinbao; Peng, Bangguo; Zhang, Xinyi; Zhang, Yong; Wang, Yan; Qin, Yongqiang; Zheng, Hongmei; Shu, Xia; Wu, Yucheng

    2015-12-01

    Porous NiO/CeO2 hybrid nanoflake arrays fabricated by a facile hydrothermal method were employed as substrates for electrochemical biosensors. The resulting NiO/CeO2 hybrid nanoflake arrays with a large specific surface area and good biocompatibility presented an excellent platform for electrochemical biosensing.Porous NiO/CeO2 hybrid nanoflake arrays fabricated by a facile hydrothermal method were employed as substrates for electrochemical biosensors. The resulting NiO/CeO2 hybrid nanoflake arrays with a large specific surface area and good biocompatibility presented an excellent platform for electrochemical biosensing. Electronic supplementary information (ESI) available: Optical photographs of the as-prepared samples, SEM, TEM, EDS, XRD and BET data of the samples are presented, I-t curves of glucose biosensors based on NiO and NiO/CeO2 NFAs, EIS results of different electrodes. See DOI: 10.1039/c5nr05924k

  15. Marker chromosome genomic structure and temporal origin implicate a chromoanasynthesis event in a family with pleiotropic psychiatric phenotypes.

    PubMed

    Grochowski, Christopher M; Gu, Shen; Yuan, Bo; Tcw, Julia; Brennand, Kristen J; Sebat, Jonathan; Malhotra, Dheeraj; McCarthy, Shane; Rudolph, Uwe; Lindstrand, Anna; Chong, Zechen; Levy, Deborah L; Lupski, James R; Carvalho, Claudia M B

    2018-04-25

    Small supernumerary marker chromosomes (sSMC) are chromosomal fragments difficult to characterize genomically. Here, we detail a proband with schizoaffective disorder and a mother with bipolar disorder with psychotic features who present with a marker chromosome that segregates with disease. We explored the architecture of this marker and investigated its temporal origin. Array comparative genomic hybridization (aCGH) analysis revealed three duplications and three triplications that spanned the short arm of chromosome 9, suggestive of a chromoanasynthesis-like event. Segregation of marker genotypes, phased using sSMC mosaicism in the mother, provided evidence that it was generated during a germline-level event in the proband's maternal grandmother. Whole-genome sequencing (WGS) was performed to resolve the structure and junctions of the chromosomal fragments, revealing further complexities. While structural variations have been previously associated with neuropsychiatric disorders and marker chromosomes, here we detail the precise architecture, human life-cycle genesis, and propose a DNA replicative/repair mechanism underlying formation. © 2018 Wiley Periodicals, Inc.

  16. 76 FR 80949 - Request for Nominations for Voting Members on Public Advisory Panels or Committees

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-27

    .... Molecular and Clinical 1 June 1, 2012. Genetics Devices Panel of the Medical Devices Advisory Committee..., biochemical and/or molecular genetics, population genetics, epidemiology and related statistical training, and clinical molecular genetics testing (e.g., genotyping, array CGH, etc.). Individuals with experience in...

  17. Novel deletions involving the USH2A gene in patients with Usher syndrome and retinitis pigmentosa

    PubMed Central

    García-García, Gema; Jaijo, Teresa; Aparisi, Maria J.; Larrieu, Lise; Faugère, Valérie; Blanco-Kelly, Fiona; Ayuso, Carmen; Roux, Anne-Francoise; Millán, José M.

    2014-01-01

    Purpose The aim of the present work was to identify and characterize large rearrangements involving the USH2A gene in patients with Usher syndrome and nonsyndromic retinitis pigmentosa. Methods The multiplex ligation-dependent probe amplification (MLPA) technique combined with a customized array-based comparative genomic hybridization (aCGH) analysis was applied to 40 unrelated patients previously screened for point mutations in the USH2A gene in which none or only one pathologic mutation was identified. Results We detected six large deletions involving USH2A in six out of the 40 cases studied. Three of the patients were homozygous for the deletion, and the remaining three were compound heterozygous with a previously identified USH2A point mutation. In five of these cases, the patients displayed Usher type 2, and the remaining case displayed nonsyndromic retinitis pigmentosa. The exact breakpoint junctions of the deletions found in USH2A in four of these cases were characterized. Conclusions Our study highlights the need to develop improved efficient strategies of mutation screening based upon next generation sequencing (NGS) that reduce cost, time, and complexity and allow simultaneous identification of all types of disease-causing mutations in diagnostic procedures. PMID:25352746

  18. Comprehensive performance comparison of high-resolution array platforms for genome-wide Copy Number Variation (CNV) analysis in humans.

    PubMed

    Haraksingh, Rajini R; Abyzov, Alexej; Urban, Alexander Eckehart

    2017-04-24

    High-resolution microarray technology is routinely used in basic research and clinical practice to efficiently detect copy number variants (CNVs) across the entire human genome. A new generation of arrays combining high probe densities with optimized designs will comprise essential tools for genome analysis in the coming years. We systematically compared the genome-wide CNV detection power of all 17 available array designs from the Affymetrix, Agilent, and Illumina platforms by hybridizing the well-characterized genome of 1000 Genomes Project subject NA12878 to all arrays, and performing data analysis using both manufacturer-recommended and platform-independent software. We benchmarked the resulting CNV call sets from each array using a gold standard set of CNVs for this genome derived from 1000 Genomes Project whole genome sequencing data. The arrays tested comprise both SNP and aCGH platforms with varying designs and contain between ~0.5 to ~4.6 million probes. Across the arrays CNV detection varied widely in number of CNV calls (4-489), CNV size range (~40 bp to ~8 Mbp), and percentage of non-validated CNVs (0-86%). We discovered strikingly strong effects of specific array design principles on performance. For example, some SNP array designs with the largest numbers of probes and extensive exonic coverage produced a considerable number of CNV calls that could not be validated, compared to designs with probe numbers that are sometimes an order of magnitude smaller. This effect was only partially ameliorated using different analysis software and optimizing data analysis parameters. High-resolution microarrays will continue to be used as reliable, cost- and time-efficient tools for CNV analysis. However, different applications tolerate different limitations in CNV detection. Our study quantified how these arrays differ in total number and size range of detected CNVs as well as sensitivity, and determined how each array balances these attributes. This analysis will inform appropriate array selection for future CNV studies, and allow better assessment of the CNV-analytical power of both published and ongoing array-based genomics studies. Furthermore, our findings emphasize the importance of concurrent use of multiple analysis algorithms and independent experimental validation in array-based CNV detection studies.

  19. EML4-ALK translocation in both metachronous second primary lung sarcomatoid carcinoma and lung adenocarcinoma: a case report.

    PubMed

    Alì, Greta; Proietti, Agnese; Niccoli, Cristina; Pelliccioni, Serena; Borrelli, Nicla; Giannini, Riccardo; Lupi, Cristiana; Valetto, Angelo; Bertini, Veronica; Lucchi, Marco; Mussi, Alfredo; Fontanini, Gabriella

    2013-08-01

    The EML4-ALK gene translocation was described in a non small cell lung cancer (NSCLC) subset, with a potent oncogenic activity. It represents one of the newest molecular targets in NSCLC. We report on the case of a metachronous second primary lung sarcomatoid carcinoma after resection of lung adenocarcinoma both with ALK translocation, in a non-smoking patient. EML4-ALK rearrangement was detected with immunohistochemistry and confirmed with fluorescent in situ hybridization (FISH). To assess the clonal relationship between the two tumors, both adenocarcinoma and sarcomatoid carcinoma were analyzed by array comparative genomic hybridization (aCGH). We observed different genomic profiles suggesting that the tumors arose independently and were thus multiple primaries. To the best of our knowledge, this is the first report concerning the presence of the EML4-ALK fusion gene in a sarcomatoid carcinoma of the lung. Crizotinib, the ALK tyrosine kinase inhibitor, is highly effective in ALK-rearranged NSCLC; therefore, it may be imperative to identify all NSCLC that harbor ALK translocations in the near future. Starting from our evidence, tumors with sarcomatoid histology may need to be screened for the presence of EML4-ALK rearrangement. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. [Strategies to identify supernumerary chromosomal markers in constitutional cytogenetics].

    PubMed

    Douet-Guilbert, N; Basinko, A; Le Bris, M-J; Herry, A; Morel, F; De Braekeleer, M

    2008-09-01

    Supernumerary marker chromosomes (SMCs) are defined as extrastructurally abnormal chromosomes which origin and composition cannot be determined by conventional cytogenetics. SMCs are an heterogeneous group of abnormalities concerning all chromosomes with variable structure and size and are associated with phenotypic heterogeneity. The characterisation of SMCs is of utmost importance for genetic counselling. Different molecular techniques are used to identify chromosomal material present in markers such as 24-colour FISH (MFISH, SKY), centromere specific multicolour FISH (cenMFISH) and derivatives (acroMFISH, subcenMFISH), comparative genomic hybridisation (CGH), arrayCGH, and targeted FISH techniques (banding techniques, whole chromosome painting...). Based on the morphology of SMC with conventional cytogenetic and clinical data, we tried to set up different molecular strategies with all available techniques.

  1. Graphene quantum dots-carbon nanotube hybrid arrays for supercapacitors

    NASA Astrophysics Data System (ADS)

    Hu, Yue; Zhao, Yang; Lu, Gewu; Chen, Nan; Zhang, Zhipan; Li, Hui; Shao, Huibo; Qu, Liangti

    2013-05-01

    Graphene quantum dots (GQDs) have been successfully deposited onto aligned carbon nanotubes (CNTs) by a benign electrochemical method and the capacitive properties of the as-formed GQD/CNT hybrid arrays were evaluated in symmetrical supercapacitors. It was found that supercapacitors fabricated from GQD/CNT hybrid arrays exhibited a high capacitance of 44 mF cm-2, representing a more than 200% improvement over that of bare CNT electrodes.

  2. Graphene quantum dots-carbon nanotube hybrid arrays for supercapacitors.

    PubMed

    Hu, Yue; Zhao, Yang; Lu, Gewu; Chen, Nan; Zhang, Zhipan; Li, Hui; Shao, Huibo; Qu, Liangti

    2013-05-17

    Graphene quantum dots (GQDs) have been successfully deposited onto aligned carbon nanotubes (CNTs) by a benign electrochemical method and the capacitive properties of the as-formed GQD/CNT hybrid arrays were evaluated in symmetrical supercapacitors. It was found that supercapacitors fabricated from GQD/CNT hybrid arrays exhibited a high capacitance of 44 mF cm(-2), representing a more than 200% improvement over that of bare CNT electrodes.

  3. Sub-aperture stitching test of a cylindrical mirror with large aperture

    NASA Astrophysics Data System (ADS)

    Xue, Shuai; Chen, Shanyong; Shi, Feng; Lu, Jinfeng

    2016-09-01

    Cylindrical mirrors are key optics of high-end equipment of national defense and scientific research such as high energy laser weapons, synchrotron radiation system, etc. However, its surface error test technology develops slowly. As a result, its optical processing quality can not meet the requirements, and the developing of the associated equipment is hindered. Computer Generated-Hologram (CGH) is commonly utilized as null for testing cylindrical optics. However, since the fabrication process of CGH with large aperture is not sophisticated yet, the null test of cylindrical optics with large aperture is limited by the aperture of the CGH. Hence CGH null test combined with sub-aperture stitching method is proposed to break the limit of the aperture of CGH for testing cylindrical optics, and the design of CGH for testing cylindrical surfaces is analyzed. Besides, the misalignment aberration of cylindrical surfaces is different from that of the rotational symmetric surfaces since the special shape of cylindrical surfaces, and the existing stitching algorithm of rotational symmetric surfaces can not meet the requirements of stitching cylindrical surfaces. We therefore analyze the misalignment aberrations of cylindrical surfaces, and study the stitching algorithm for measuring cylindrical optics with large aperture. Finally we test a cylindrical mirror with large aperture to verify the validity of the proposed method.

  4. Prognostic roles for fibroblast growth factor receptor family members in malignant peripheral nerve sheath tumor.

    PubMed

    Zhou, Wenya; Du, Xiaoling; Song, Fengju; Zheng, Hong; Chen, Kexin; Zhang, Wei; Yang, Jilong

    2016-04-19

    Malignant peripheral nerve sheath tumors (MPNST) are rare, highly malignant, and poorly understood sarcomas. The often poor outcome of MPNST highlights the necessity of identifying prognostic predictors for this aggressive sarcoma. Here, we investigate the role of fibroblast growth factor receptor (FGFR) family members in human MPNSTs. aCGH and bioinformatics analysis identified frequent amplification of the FGFR1 gene. FISH analysis revealed that 26.9% MPNST samples had amplification of FGFR1, with both focal and polysomy patterns observed. IHC identified that FGFR1 protein expression was positively correlated with FGFR1 gene amplification. High expression of FGFR1 protein was associated with better overall survival (OS) and was an independent prognostic predictor for OS of MPNST patients. Additionally, combined expression of FGFR1 and FGFR2 protein characterized a subtype of MPNST with better OS. FGFR4 protein was expressed 82.3% of MPNST samples, and was associated with poor disease-free survival. We performed microarray-based comparative genomic hybridization (aCGH) profiling of two cohorts of primary MPNST tissue samples including 25 patients treated at The University of Texas MD Anderson Cancer Center and 26 patients from Tianjin Medical University Cancer Institute and Hospital. Fluorescence in situ hybridization (FISH) was used to validate the gene amplification detected by aCGH analysis. Another cohort of 63 formalin-fixed paraffin-embedded MPNST samples (including 52 samples for FISH assay) was obtained to explore FGFR1, 2, 3, and 4 protein expression by immunohistochemical (IHC) analysis. Our integrated genomic and molecular studies provide evidence that FGFRs play different prognostic roles in MPNST.

  5. Sox9 duplications are a relevant cause of Sry-negative XX sex reversal dogs.

    PubMed

    Rossi, Elena; Radi, Orietta; De Lorenzi, Lisa; Vetro, Annalisa; Groppetti, Debora; Bigliardi, Enrico; Luvoni, Gaia Cecilia; Rota, Ada; Camerino, Giovanna; Zuffardi, Orsetta; Parma, Pietro

    2014-01-01

    Sexual development in mammals is based on a complicated and delicate network of genes and hormones that have to collaborate in a precise manner. The dark side of this pathway is represented by pathological conditions, wherein sexual development does not occur properly either in the XX and the XY background. Among them a conundrum is represented by the XX individuals with at least a partial testis differentiation even in absence of SRY. This particular condition is present in various mammals including the dog. Seven dogs characterized by XX karyotype, absence of SRY gene, and testicular tissue development were analysed by Array-CGH. In two cases the array-CGH analysis detected an interstitial heterozygous duplication of chromosome 9. The duplication contained the SOX9 coding region. In this work we provide for the first time a causative mutation for the XXSR condition in the dog. Moreover this report supports the idea that the dog represents a good animal model for the study of XXSR condition caused by abnormalities in the SOX9 locus.

  6. Comparative genomics of Enterococcus faecalis from healthy Norwegian infants

    PubMed Central

    Solheim, Margrete; Aakra, Ågot; Snipen, Lars G; Brede, Dag A; Nes, Ingolf F

    2009-01-01

    Background Enterococcus faecalis, traditionally considered a harmless commensal of the intestinal tract, is now ranked among the leading causes of nosocomial infections. In an attempt to gain insight into the genetic make-up of commensal E. faecalis, we have studied genomic variation in a collection of community-derived E. faecalis isolated from the feces of Norwegian infants. Results The E. faecalis isolates were first sequence typed by multilocus sequence typing (MLST) and characterized with respect to antibiotic resistance and properties associated with virulence. A subset of the isolates was compared to the vancomycin resistant strain E. faecalis V583 (V583) by whole genome microarray comparison (comparative genomic hybridization (CGH)). Several of the putative enterococcal virulence factors were found to be highly prevalent among the commensal baby isolates. The genomic variation as observed by CGH was less between isolates displaying the same MLST sequence type than between isolates belonging to different evolutionary lineages. Conclusion The variations in gene content observed among the investigated commensal E. faecalis is comparable to the genetic variation previously reported among strains of various origins thought to be representative of the major E. faecalis lineages. Previous MLST analysis of E. faecalis have identified so-called high-risk enterococcal clonal complexes (HiRECC), defined as genetically distinct subpopulations, epidemiologically associated with enterococcal infections. The observed correlation between CGH and MLST presented here, may offer a method for the identification of lineage-specific genes, and may therefore add clues on how to distinguish pathogenic from commensal E. faecalis. In this work, information on the core genome of E. faecalis is also substantially extended. PMID:19393078

  7. A de novo atypical ring sSMC(22) characterized by array CGH in a boy with cat-eye syndrome.

    PubMed

    Haltrich, Irén; Pikó, Henriett; Kiss, Eszter; Tóth, Zsuzsa; Karcagi, Veronika; Fekete, György

    2014-01-01

    Microduplications 22q11 have been characterized as a genomic duplication syndrome mediated by nonallelic homologous recombination between region-specific low-copy repeats. Here we report on a 19 years old boy with intellectual disability having an unexpected structurally complex ring small supernumerary marker chromosome (sSMC) originated from a larger trisomy and a smaller tetrasomy of proximal 22q11 harboring additional copies of cat eye syndrome critical regions genes. PRINCIPAL CLINICAL FEATURES WERE: anorectal and urogenital malformations, total anomalous pulmonary venous return with secundum ASD, hearing defect, preauricular pits, seizure and eczema. The proband also presented some rare or so far not reported clinical findings such as hyperinsulinaemia, severe immunodeficiency and grave cognitive deficits. Chromosome analysis revealed a mosaic karyotype with the presence of a small ring-like marker in 60% of cells. Array CGH detected approximately an 1,2 Mb single and a 0,2 Mb double copy gain of the proximal long arm of chromosome 22. The 1,3 Mb intervening region of chromosome 22 from centromere to the breakpoints showed no copy alteration. The karyotype of the patient was defined as 47,XY,+mar[60]/46,XY[40].ish idic r(22)(q11.1.q11.21) × 4.arr 22q11(17,435, 645-18,656,678) × 3,(17,598,642-17,799,783) × 4 dn. The present report is the first one with a detailed description of clinical presentation in a patient carrying an atypical size ring sSMC (22) analyzed by array CGH. The specialty of the finding is emphasized by the fact that although the patient had a mosaic sSMC and the amplified region was smaller than in typical cat eye syndrome cases, the clinical presentation was severe.

  8. Three-dimensional scene encryption and display based on computer-generated holograms.

    PubMed

    Kong, Dezhao; Cao, Liangcai; Jin, Guofan; Javidi, Bahram

    2016-10-10

    An optical encryption and display method for a three-dimensional (3D) scene is proposed based on computer-generated holograms (CGHs) using a single phase-only spatial light modulator. The 3D scene is encoded as one complex Fourier CGH. The Fourier CGH is then decomposed into two phase-only CGHs with random distributions by the vector stochastic decomposition algorithm. Two CGHs are interleaved as one final phase-only CGH for optical encryption and reconstruction. The proposed method can support high-level nonlinear optical 3D scene security and complex amplitude modulation of the optical field. The exclusive phase key offers strong resistances of decryption attacks. Experimental results demonstrate the validity of the novel method.

  9. Depth compensating calculation method of computer-generated holograms using symmetry and similarity of zone plates

    NASA Astrophysics Data System (ADS)

    Wei, Hui; Gong, Guanghong; Li, Ni

    2017-10-01

    Computer-generated hologram (CGH) is a promising 3D display technology while it is challenged by heavy computation load and vast memory requirement. To solve these problems, a depth compensating CGH calculation method based on symmetry and similarity of zone plates is proposed and implemented on graphics processing unit (GPU). An improved LUT method is put forward to compute the distances between object points and hologram pixels in the XY direction. The concept of depth compensating factor is defined and used for calculating the holograms of points with different depth positions instead of layer-based methods. The proposed method is suitable for arbitrary sampling objects with lower memory usage and higher computational efficiency compared to other CGH methods. The effectiveness of the proposed method is validated by numerical and optical experiments.

  10. Quantitative evaluation of 3D images produced from computer-generated holograms

    NASA Astrophysics Data System (ADS)

    Sheerin, David T.; Mason, Ian R.; Cameron, Colin D.; Payne, Douglas A.; Slinger, Christopher W.

    1999-08-01

    Advances in computing and optical modulation techniques now make it possible to anticipate the generation of near real- time, reconfigurable, high quality, three-dimensional images using holographic methods. Computer generated holography (CGH) is the only technique which holds promise of producing synthetic images having the full range of visual depth cues. These realistic images will be viewable by several users simultaneously, without the need for headtracking or special glasses. Such a data visualization tool will be key to speeding up the manufacture of new commercial and military equipment by negating the need for the production of physical 3D models in the design phase. DERA Malvern has been involved in designing and testing fixed CGH in order to understand the connection between the complexity of the CGH, the algorithms used to design them, the processes employed in their implementation and the quality of the images produced. This poster describes results from CGH containing up to 108 pixels. The methods used to evaluate the reconstructed images are discussed and quantitative measures of image fidelity made. An understanding of the effect of the various system parameters upon final image quality enables a study of the possible system trade-offs to be carried out. Such an understanding of CGH production and resulting image quality is key to effective implementation of a reconfigurable CGH system currently under development at DERA.

  11. Insertional translocation leading to a 4q13 duplication including the EPHA5 gene in two siblings with attention-deficit hyperactivity disorder.

    PubMed

    Matoso, Eunice; Melo, Joana B; Ferreira, Susana I; Jardim, Ana; Castelo, Teresa M; Weise, Anja; Carreira, Isabel M

    2013-08-01

    An insertional translocation (IT) can result in pure segmental aneusomy for the inserted genomic segment allowing to define a more accurate clinical phenotype. Here, we report on two siblings sharing an unbalanced IT inherited from the mother with a history of learning difficulty. An 8-year-old girl with developmental delay, speech disability, and attention-deficit hyperactivity disorder (ADHD), showed by GTG banding analysis a subtle interstitial alteration in 21q21. Oligonucleotide array comparative genomic hybridization (array-CGH) analysis showed a 4q13.1-q13.3 duplication spanning 8.6 Mb. Fluorescence in situ hybridization (FISH) with bacterial artificial chromosome (BAC) clones confirmed the rearrangement, a der(21)ins(21;4)(q21;q13.1q13.3). The duplication described involves 50 RefSeq genes including the EPHA5 gene that encodes for the EphA5 receptor involved in embryonic development of the brain and also in synaptic remodeling and plasticity thought to underlie learning and memory. The same rearrangement was observed in a younger brother with behavioral problems and also exhibiting ADHD. ADHD is among the most heritable of neuropsychiatric disorders. There are few reports of patients with duplications involving the proximal region of 4q and a mild phenotype. To the best of our knowledge this is the first report of a duplication restricted to band 4q13. This abnormality could be easily missed in children who have nonspecific cognitive impairment. The presence of this behavioral disorder in the two siblings reinforces the hypothesis that the region involved could include genes involved in ADHD. Copyright © 2013 Wiley Periodicals, Inc.

  12. Genome-wide patterns of copy number variation in the diversified chicken genomes using next-generation sequencing.

    PubMed

    Yi, Guoqiang; Qu, Lujiang; Liu, Jianfeng; Yan, Yiyuan; Xu, Guiyun; Yang, Ning

    2014-11-07

    Copy number variation (CNV) is important and widespread in the genome, and is a major cause of disease and phenotypic diversity. Herein, we performed a genome-wide CNV analysis in 12 diversified chicken genomes based on whole genome sequencing. A total of 8,840 CNV regions (CNVRs) covering 98.2 Mb and representing 9.4% of the chicken genome were identified, ranging in size from 1.1 to 268.8 kb with an average of 11.1 kb. Sequencing-based predictions were confirmed at a high validation rate by two independent approaches, including array comparative genomic hybridization (aCGH) and quantitative PCR (qPCR). The Pearson's correlation coefficients between sequencing and aCGH results ranged from 0.435 to 0.755, and qPCR experiments revealed a positive validation rate of 91.71% and a false negative rate of 22.43%. In total, 2,214 (25.0%) predicted CNVRs span 2,216 (36.4%) RefSeq genes associated with specific biological functions. Besides two previously reported copy number variable genes EDN3 and PRLR, we also found some promising genes with potential in phenotypic variation. Two genes, FZD6 and LIMS1, related to disease susceptibility/resistance are covered by CNVRs. The highly duplicated SOCS2 may lead to higher bone mineral density. Entire or partial duplication of some genes like POPDC3 may have great economic importance in poultry breeding. Our results based on extensive genetic diversity provide a more refined chicken CNV map and genome-wide gene copy number estimates, and warrant future CNV association studies for important traits in chickens.

  13. Copy number variation analysis implicates the cell polarity gene glypican 5 as a human spina bifida candidate gene

    PubMed Central

    Bassuk, Alexander G.; Muthuswamy, Lakshmi B.; Boland, Riley; Smith, Tiffany L.; Hulstrand, Alissa M.; Northrup, Hope; Hakeman, Matthew; Dierdorff, Jason M.; Yung, Christina K.; Long, Abby; Brouillette, Rachel B.; Au, Kit Sing; Gurnett, Christina; Houston, Douglas W.; Cornell, Robert A.; Manak, J. Robert

    2013-01-01

    Neural tube defects (NTDs) are common birth defects of complex etiology. Family and population-based studies have confirmed a genetic component to NTDs. However, despite more than three decades of research, the genes involved in human NTDs remain largely unknown. We tested the hypothesis that rare copy number variants (CNVs), especially de novo germline CNVs, are a significant risk factor for NTDs. We used array-based comparative genomic hybridization (aCGH) to identify rare CNVs in 128 Caucasian and 61 Hispanic patients with non-syndromic lumbar-sacral myelomeningocele. We also performed aCGH analysis on the parents of affected individuals with rare CNVs where parental DNA was available (42 sets). Among the eight de novo CNVs that we identified, three generated copy number changes of entire genes. One large heterozygous deletion removed 27 genes, including PAX3, a known spina bifida-associated gene. A second CNV altered genes (PGPD8, ZC3H6) for which little is known regarding function or expression. A third heterozygous deletion removed GPC5 and part of GPC6, genes encoding glypicans. Glypicans are proteoglycans that modulate the activity of morphogens such as Sonic Hedgehog (SHH) and bone morphogenetic proteins (BMPs), both of which have been implicated in NTDs. Additionally, glypicans function in the planar cell polarity (PCP) pathway, and several PCP genes have been associated with NTDs. Here, we show that GPC5 orthologs are expressed in the neural tube, and that inhibiting their expression in frog and fish embryos results in NTDs. These results implicate GPC5 as a gene required for normal neural tube development. PMID:23223018

  14. GPR101 Mutations are not a Frequent Cause of Congenital Isolated Growth Hormone Deficiency.

    PubMed

    Castinetti, F; Daly, A F; Stratakis, C A; Caberg, J-H; Castermans, E; Trivellin, G; Rostomyan, L; Saveanu, A; Jullien, N; Reynaud, R; Barlier, A; Bours, V; Brue, T; Beckers, A

    2016-06-01

    Patients with Xq26.3 microduplication present with X-linked acrogigantism (X-LAG) syndrome, an early-childhood form of gigantism due to marked growth hormone (GH) hypersecretion from mixed GH-PRL adenomas and hyperplasia. The microduplication includes GPR101, which is upregulated in patients' tumor tissue. The GPR101 gene codes for an orphan G protein coupled receptor that is normally highly expressed in the hypothalamus. Our aim was to determine whether GPR101 loss of function mutations or deletions could be involved in patients with congenital isolated GH deficiency (GHD). Taking advantage of the cohort of patients from the GENHYPOPIT network, we studied 41 patients with unexplained isolated GHD. All patients had Sanger sequencing of the GPR101 gene and array comparative genome hybridization (aCGH) to look for deletions. Functional studies (cell culture with GH secretion measurements, cAMP response) were performed. One novel GPR101 variant, c.589 G>T (p.V197L), was seen in the heterozygous state in a patient with isolated GHD. In silico analysis suggested that this variant could be deleterious. Functional studies did not show any significant difference in comparison with wild type for GH secretion and cAMP response. No truncating, frameshift, or small insertion-deletion (indel) GPR101 mutations were seen in the 41 patients. No deletion or other copy number variation at chromosome Xq26.3 was found on aCGH. We found a novel GPR101 variant of unknown significance, in a patient with isolated GH deficiency. Our study did not identify GPR101 abnormalities as a frequent cause of GH deficiency. © Georg Thieme Verlag KG Stuttgart · New York.

  15. Comparative genomics of wild type yeast strains unveils important genome diversity

    PubMed Central

    Carreto, Laura; Eiriz, Maria F; Gomes, Ana C; Pereira, Patrícia M; Schuller, Dorit; Santos, Manuel AS

    2008-01-01

    Background Genome variability generates phenotypic heterogeneity and is of relevance for adaptation to environmental change, but the extent of such variability in natural populations is still poorly understood. For example, selected Saccharomyces cerevisiae strains are variable at the ploidy level, have gene amplifications, changes in chromosome copy number, and gross chromosomal rearrangements. This suggests that genome plasticity provides important genetic diversity upon which natural selection mechanisms can operate. Results In this study, we have used wild-type S. cerevisiae (yeast) strains to investigate genome variation in natural and artificial environments. We have used comparative genome hybridization on array (aCGH) to characterize the genome variability of 16 yeast strains, of laboratory and commercial origin, isolated from vineyards and wine cellars, and from opportunistic human infections. Interestingly, sub-telomeric instability was associated with the clinical phenotype, while Ty element insertion regions determined genomic differences of natural wine fermentation strains. Copy number depletion of ASP3 and YRF1 genes was found in all wild-type strains. Other gene families involved in transmembrane transport, sugar and alcohol metabolism or drug resistance had copy number changes, which also distinguished wine from clinical isolates. Conclusion We have isolated and genotyped more than 1000 yeast strains from natural environments and carried out an aCGH analysis of 16 strains representative of distinct genotype clusters. Important genomic variability was identified between these strains, in particular in sub-telomeric regions and in Ty-element insertion sites, suggesting that this type of genome variability is the main source of genetic diversity in natural populations of yeast. The data highlights the usefulness of yeast as a model system to unravel intraspecific natural genome diversity and to elucidate how natural selection shapes the yeast genome. PMID:18983662

  16. Novel fabrication technique of hybrid structure lens array for 3D images

    NASA Astrophysics Data System (ADS)

    Lee, Junsik; Kim, Junoh; Kim, Cheoljoong; Shin, Dooseub; Koo, Gyohyun; Won, Yong Hyub

    2016-03-01

    Tunable liquid lens arrays can produce three dimensional images by using electrowetting principle that alters surface tensions by applying voltage. This method has advantages of fast response time and low power consumption. However, it is challenging to fabricate a high fill factor liquid lens array and operate three dimensional images which demand high diopter. This study describes a hybrid structure lens array which has not only a liquid lens array but a solid lens array. A concave-shape lens array is unavoidable when using only the liquid lens array and some voltages are needed to make the lens flat. By placing the solid lens array on the liquid lens array, initial diopter can be positive. To fabricate the hybrid structure lens array, a conventional lithographic process in semiconductor manufacturing is needed. A negative photoresist SU-8 was used as chamber master molds. PDMS and UV adhesive replica molding are done sequentially. Two immiscible liquids, DI water and dodecane, are injected in the fabricated chamber, followed by sealing. The fabricated structure has a 20 by 20 pattern of cylindrical shaped circle array and the aperture size of each lens is 1mm. The thickness of the overall hybrid structure is about 2.8mm. Hybrid structure lens array has many advantages. Solid lens array has almost 100% fill factor and allow high efficiency. Diopter can be increased by more than 200 and negative diopter can be shifted to the positive region. This experiment showed several properties of the hybrid structure and demonstrated its superiority.

  17. Microarray Technology for the Diagnosis of Fetal Chromosomal Aberrations: Which Platform Should We Use?

    PubMed Central

    Karampetsou, Evangelia; Morrogh, Deborah; Chitty, Lyn

    2014-01-01

    The advantage of microarray (array) over conventional karyotype for the diagnosis of fetal pathogenic chromosomal anomalies has prompted the use of microarrays in prenatal diagnostics. In this review we compare the performance of different array platforms (BAC, oligonucleotide CGH, SNP) and designs (targeted, whole genome, whole genome, and targeted, custom) and discuss their advantages and disadvantages in relation to prenatal testing. We also discuss the factors to consider when implementing a microarray testing service for the diagnosis of fetal chromosomal aberrations. PMID:26237396

  18. Design of Hybrid Nanostructural Arrays to Manipulate SERS-Active Substrates by Nanosphere Lithography.

    PubMed

    Zhao, Xiaoyu; Wen, Jiahong; Zhang, Mengning; Wang, Dunhui; Wang, Yaxin; Chen, Lei; Zhang, Yongjun; Yang, Jinghai; Du, Youwei

    2017-03-01

    An easy-handling and low-cost method is utilized to controllably fabricate nanopattern arrays as the surface-enhanced Raman scattering (SERS) active substrates with high density of SERS-active areas (hot spots). A hybrid silver array of nanocaps and nanotriangles are prepared by combining magnetron sputtering and plasma etching. By adjusting the etching time of polystyrene (PS) colloid spheres array in silver nanobowls, the morphology of the arrays can be easily manipulated to control the formation and distribution of hot spots. The experimental results show that the hybrid nanostructural arrays have large enhancement factor, which is estimated to be seven times larger than that in the array of nanocaps and three times larger than that in the array of nanorings and nanoparticles. According to the results of finite-difference time-domain simulation, the excellent SERS performance of this array is ascribed to the high density of hot spots and enhanced electromagnetic field.

  19. Expanding the phenotype of alopecia-contractures-dwarfism mental retardation syndrome (ACD syndrome): description of an additional case and review of the literature.

    PubMed

    Schell-Apacik, Chayim; Hardt, Michael; Ertl-Wagner, Birgit; Klopocki, Eva; Möhrenschlager, Matthias; Heinrich, Uwe; von Voss, Hubertus

    2008-09-01

    Alopecia-contractures-dwarfism mental retardation syndrome (ACD syndrome; OMIM 203550) is a very rare genetic disorder with distinct features. To our knowledge, there have been four cases documented to date. In addition, another three patients, previously described as having IFAP syndrome (OMIM %308205), may also have ACD syndrome. We report on one patient with short stature, total alopecia, ichthyosis, photophobia, seizures, ectrodactyly, vertebral anomalies, scoliosis, multiple contractures, mental retardation, and striking facial and other features (e.g. microdolichocephaly, missing eyebrows and eyelashes, long nose, large ears) consistent with ACD syndrome. Results of laboratory testing in the literature case reports were normal, although in none of them, array-CGH (microarray-based comparative genomic hybridization) analysis was performed. In conclusion, the combination of specific features, including total alopecia, ichthyosis, mental retardation, and skeletal anomalies are suggestive of ACD syndrome. We propose that children with this syndrome undergo a certain social pediatric protocol including EEG diagnostics, ophthalmological investigation, psychological testing, management of dermatologic and orthopedic problems, and genetic counseling.

  20. High Quality Genomic Copy Number Data from Archival Formalin-Fixed Paraffin-Embedded Leiomyosarcoma: Optimisation of Universal Linkage System Labelling

    PubMed Central

    Salawu, Abdulazeez; Ul-Hassan, Aliya; Hammond, David; Fernando, Malee; Reed, Malcolm; Sisley, Karen

    2012-01-01

    Most soft tissue sarcomas are characterized by genetic instability and frequent genomic copy number aberrations that are not subtype-specific. Oligonucleotide microarray-based Comparative Genomic Hybridisation (array CGH) is an important technique used to map genome-wide copy number aberrations, but the traditional requirement for high-quality DNA typically obtained from fresh tissue has limited its use in sarcomas. Although large archives of Formalin-fixed Paraffin-embedded (FFPE) tumour samples are available for research, the degradative effects of formalin on DNA from these tissues has made labelling and analysis by array CGH technically challenging. The Universal Linkage System (ULS) may be used for a one-step chemical labelling of such degraded DNA. We have optimised the ULS labelling protocol to perform aCGH on archived FFPE leiomyosarcoma tissues using the 180k Agilent platform. Preservation age of samples ranged from a few months to seventeen years and the DNA showed a wide range of degradation (when visualised on agarose gels). Consistently high DNA labelling efficiency and low microarray probe-to-probe variation (as measured by the derivative log ratio spread) was seen. Comparison of paired fresh and FFPE samples from identical tumours showed good correlation of CNAs detected. Furthermore, the ability to macro-dissect FFPE samples permitted the detection of CNAs that were masked in fresh tissue. Aberrations were visually confirmed using Fluorescence in situ Hybridisation. These results suggest that archival FFPE tissue, with its relative abundance and attendant clinical data may be used for effective mapping for genomic copy number aberrations in such rare tumours as leiomyosarcoma and potentially unravel clues to tumour origins, progression and ultimately, targeted treatment. PMID:23209738

  1. Copy number variants are frequent in genetic generalized epilepsy with intellectual disability

    PubMed Central

    Mullen, Saul A.; Carvill, Gemma L.; Bellows, Susannah; Bayly, Marta A.; Berkovic, Samuel F.; Dibbens, Leanne M.

    2013-01-01

    Objective: We examined whether copy number variants (CNVs) were more common in those with a combination of intellectual disability (ID) and genetic generalized epilepsy (GGE) than in those with either phenotype alone via a case-control study. Methods: CNVs contribute to the genetics of multiple neurodevelopmental disorders with complex inheritance, including GGE and ID. Three hundred fifty-nine probands with GGE and 60 probands with ID-GGE were screened for GGE-associated recurrent microdeletions at 15q13.3, 15q11.2, and 16p13.11 via quantitative PCR or loss of heterozygosity. Deletions were confirmed by comparative genomic hybridization (CGH). ID-GGE probands also had genome-wide CGH. Results: ID-GGE probands showed a significantly higher rate of CNVs compared with probands with GGE alone, with 17 of 60 (28%) ID-GGE probands having one or more potentially causative CNVs. The patients with ID-GGE had a 3-fold-higher rate of the 3 GGE-associated recurrent microdeletions than probands with GGE alone (10% vs 3%, p = 0.02). They also showed a high rate (13/60, 22%) of rare CNVs identified using genome-wide CGH. Conclusions: This study shows that CNVs are common in those with ID-GGE with recurrent deletions at 15q13.3, 15q11.2, and 16p13.11, particularly enriched compared with individuals with GGE or ID alone. Recurrent CNVs are likely to act as risk factors for multiple phenotypes not just at the population level, but also in any given individual. Testing for CNVs in ID-GGE will have a high diagnostic yield in a clinical setting and will inform genetic counseling. PMID:24068782

  2. Chromosome 6p25 deletion syndrome: report of a case with optic disc coloboma and review of published ophthalmic findings.

    PubMed

    Beby, Francis; Des Portes, Vincent; Till, Marianne; Mottolese, Carmine; Denis, Philippe

    2012-12-01

    The 6p25 deletion syndrome is a rare disorder characterized by Dandy-Walker malformation, congenital heart defects, developmental delay, dysmorphic facial features, and malformations of the anterior segment of the eye with a risk for glaucoma. Here we report a child harboring a cryptic de novo 6p25 deletion, bilateral optic disc coloboma and characteristic anterior segment anomalies. We review reported ophthalmic findings in patients with this syndrome. Retrospective case review of a 4-day-old male with Dandy-Walker malformation and cardiac defects who was referred with a suspected diagnosis of iris coloboma. The ophthalmic examination showed bilateral corectopia associated with posterior embryotoxon. Fundus examination revealed bilateral optic disc excavation, which was diagnosed as colobomatous because of its configuration and stability over time. Because of the association of posterior embryotoxon with Dandy-Walker malformation, a terminal 6p deletion syndrome was clinically suspected. Array comparative genomic hybridization (CGH) and fluorescence in situ hybridization (FISH) studies revealed a 3.2 Mb deletion at 6p25.2p25.3 including the FOXC1 gene. Neither unaffected parent carried this deletion. Optic disc colobomas may be found in patients carrying a 6p25 deletion. This has the potential to confound assessment of affected children for glaucoma and intracranial hypertension.

  3. MEF2C haploinsufficiency caused by either microdeletion of the 5q14.3 region or mutation is responsible for severe mental retardation with stereotypic movements, epilepsy and/or cerebral malformations.

    PubMed

    Le Meur, N; Holder-Espinasse, M; Jaillard, S; Goldenberg, A; Joriot, S; Amati-Bonneau, P; Guichet, A; Barth, M; Charollais, A; Journel, H; Auvin, S; Boucher, C; Kerckaert, J-P; David, V; Manouvrier-Hanu, S; Saugier-Veber, P; Frébourg, T; Dubourg, C; Andrieux, J; Bonneau, D

    2010-01-01

    Over the last few years, array-comparative genomic hybridisation (CGH) has considerably improved our ability to detect cryptic unbalanced rearrangements in patients with syndromic mental retardation. Molecular karyotyping of six patients with syndromic mental retardation was carried out using whole-genome oligonucleotide array-CGH. 5q14.3 microdeletions ranging from 216 kb to 8.8 Mb were detected in five unrelated patients with the following phenotypic similarities: severe mental retardation with absent speech, hypotonia and stereotypic movements. Facial dysmorphic features, epilepsy and/or cerebral malformations were also present in most of these patients. The minimal common deleted region of these 5q14 microdeletions encompassed only MEF2C, the gene for a protein known to act in brain as a neurogenesis effector, which regulates excitatory synapse number. In a patient with a similar phenotype, an MEF2C nonsense mutation was subsequently identified. Taken together, these results strongly suggest that haploinsufficiency of MEF2C is responsible for severe mental retardation with stereotypic movements, seizures and/or cerebral malformations.

  4. Novel partial duplication of EYA1 causes branchiootic syndrome in a large Brazilian family.

    PubMed

    Dantas, Vitor G L; Freitas, Erika L; Della-Rosa, Valter A; Lezirovitz, Karina; de Moraes, Ana Maria S M; Ramos, Silvia B; Oiticica, Jeanne; Alves, Leandro U; Pearson, Peter L; Rosenberg, Carla; Mingroni-Netto, Regina C

    2015-01-01

    To identify novel genetic causes of syndromic hearing loss in Brazil. To map a candidate chromosomal region through linkage studies in an extensive Brazilian family and identify novel pathogenic variants using sequencing and array-CGH. Brazilian pedigree with individuals affected by BO syndrome characterized by deafness and malformations of outer, middle and inner ear, auricular and cervical fistulae, but no renal abnormalities. Whole genome microarray-SNP scanning on samples of 11 affected individuals detected a multipoint Lod score of 2.6 in the EYA1 gene region (chromosome 8). Sequencing of EYA1 in affected patients did not reveal pathogenic mutations. However, oligonucleotide-array-CGH detected a duplication of 71.8Kb involving exons 4 to 10 of EYA1 (heterozygous state). Real-time-PCR confirmed the duplication in fourteen of fifteen affected individuals and absence in 13 unaffected individuals. The exception involved a consanguineous parentage and was assumed to involve a different genetic mechanism. Our findings implicate this EYA1 partial duplication segregating with BO phenotype in a Brazilian pedigree and is the first description of a large duplication leading to the BOR/BO syndrome.

  5. Whole genome comparative studies between chicken and turkey and their implications for avian genome evolution

    PubMed Central

    Griffin, Darren K; Robertson, Lindsay B; Tempest, Helen G; Vignal, Alain; Fillon, Valérie; Crooijmans, Richard PMA; Groenen, Martien AM; Deryusheva, Svetlana; Gaginskaya, Elena; Carré, Wilfrid; Waddington, David; Talbot, Richard; Völker, Martin; Masabanda, Julio S; Burt, Dave W

    2008-01-01

    Background Comparative genomics is a powerful means of establishing inter-specific relationships between gene function/location and allows insight into genomic rearrangements, conservation and evolutionary phylogeny. The availability of the complete sequence of the chicken genome has initiated the development of detailed genomic information in other birds including turkey, an agriculturally important species where mapping has hitherto focused on linkage with limited physical information. No molecular study has yet examined conservation of avian microchromosomes, nor differences in copy number variants (CNVs) between birds. Results We present a detailed comparative cytogenetic map between chicken and turkey based on reciprocal chromosome painting and mapping of 338 chicken BACs to turkey metaphases. Two inter-chromosomal changes (both involving centromeres) and three pericentric inversions have been identified between chicken and turkey; and array CGH identified 16 inter-specific CNVs. Conclusion This is the first study to combine the modalities of zoo-FISH and array CGH between different avian species. The first insight into the conservation of microchromosomes, the first comparative cytogenetic map of any bird and the first appraisal of CNVs between birds is provided. Results suggest that avian genomes have remained relatively stable during evolution compared to mammalian equivalents. PMID:18410676

  6. Analysis of mutations in oral poliovirus vaccine by hybridization with generic oligonucleotide microchips.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Proudnikov, D.; Kirillov, E.; Chumakov, K.

    2000-01-01

    This paper describes use of a new technology of hybridization with a micro-array of immobilized oligonucleotides for detection and quantification of neurovirulent mutants in Oral Poliovirus Vaccine (OPV). We used a micro-array consisting of three-dimensional gel-elements containing all possible hexamers (total of 4096 probes). Hybridization of fluorescently labelled viral cDNA samples with such microchips resulted in a pattern of spots that was registered and quantified by a computer-linked CCD camera, so that the sequence of the original cDNA could be deduced. The method could reliably identify single point mutations, since each of them affected fluorescence intensity of 12 micro-array elements.more » Micro-array hybridization of DNA mixtures with varying contents of point mutants demonstrated that the method can detect as little as 10% of revertants in a population of vaccine virus. This new technology should be useful for quality control of live viral vaccines, as well as for other applications requiring identification and quantification of point mutations.« less

  7. Primary gamma ray selection in a hybrid timing/imaging Cherenkov array

    NASA Astrophysics Data System (ADS)

    Postnikov, E. B.; Grinyuk, A. A.; Kuzmichev, L. A.; Sveshnikova, L. G.

    2017-06-01

    This work is a methodical study on hybrid reconstruction techniques for hybrid imaging/timing Cherenkov observations. This type of hybrid array is to be realized at the gamma-observatory TAIGA intended for very high energy gamma-ray astronomy (> 30 TeV). It aims at combining the cost-effective timing-array technique with imaging telescopes. Hybrid operation of both of these techniques can lead to a relatively cheap way of development of a large area array. The joint approach of gamma event selection was investigated on both types of simulated data: the image parameters from the telescopes, and the shower parameters reconstructed from the timing array. The optimal set of imaging parameters and shower parameters to be combined is revealed. The cosmic ray background suppression factor depending on distance and energy is calculated. The optimal selection technique leads to cosmic ray background suppression of about 2 orders of magnitude on distances up to 450 m for energies greater than 50 TeV.

  8. Microarray-based comparative genomic profiling of reference strains and selected Canadian field isolates of Actinobacillus pleuropneumoniae

    PubMed Central

    Gouré, Julien; Findlay, Wendy A; Deslandes, Vincent; Bouevitch, Anne; Foote, Simon J; MacInnes, Janet I; Coulton, James W; Nash, John HE; Jacques, Mario

    2009-01-01

    Background Actinobacillus pleuropneumoniae, the causative agent of porcine pleuropneumonia, is a highly contagious respiratory pathogen that causes severe losses to the swine industry worldwide. Current commercially-available vaccines are of limited value because they do not induce cross-serovar immunity and do not prevent development of the carrier state. Microarray-based comparative genomic hybridizations (M-CGH) were used to estimate whole genomic diversity of representative Actinobacillus pleuropneumoniae strains. Our goal was to identify conserved genes, especially those predicted to encode outer membrane proteins and lipoproteins because of their potential for the development of more effective vaccines. Results Using hierarchical clustering, our M-CGH results showed that the majority of the genes in the genome of the serovar 5 A. pleuropneumoniae L20 strain were conserved in the reference strains of all 15 serovars and in representative field isolates. Fifty-eight conserved genes predicted to encode for outer membrane proteins or lipoproteins were identified. As well, there were several clusters of diverged or absent genes including those associated with capsule biosynthesis, toxin production as well as genes typically associated with mobile elements. Conclusion Although A. pleuropneumoniae strains are essentially clonal, M-CGH analysis of the reference strains of the fifteen serovars and representative field isolates revealed several classes of genes that were divergent or absent. Not surprisingly, these included genes associated with capsule biosynthesis as the capsule is associated with sero-specificity. Several of the conserved genes were identified as candidates for vaccine development, and we conclude that M-CGH is a valuable tool for reverse vaccinology. PMID:19239696

  9. Recurrent reciprocal deletions and duplications of 16p13.11: the deletion is a risk factor for MR/MCA while the duplication may be a rare benign variant

    PubMed Central

    Hannes, F D; Sharp, A J; Mefford, H C; de Ravel, T; Ruivenkamp, C A; Breuning, M H; Fryns, J-P; Devriendt, K; Van Buggenhout, G; Vogels, A; Stewart, H; Hennekam, R C; Cooper, G M; Regan, R; Knight, S J L; Eichler, E E; Vermeesch, J R

    2009-01-01

    Background: Genomic disorders are often caused by non-allelic homologous recombination between segmental duplications. Chromosome 16 is especially rich in a chromosome-specific low copy repeat, termed LCR16. Methods and Results: A bacterial artificial chromosome (BAC) array comparative genome hybridisation (CGH) screen of 1027 patients with mental retardation and/or multiple congenital anomalies (MR/MCA) was performed. The BAC array CGH screen identified five patients with deletions and five with apparently reciprocal duplications of 16p13 covering 1.65 Mb, including 15 RefSeq genes. In addition, three atypical rearrangements overlapping or flanking this region were found. Fine mapping by high-resolution oligonucleotide arrays suggests that these deletions and duplications result from non-allelic homologous recombination (NAHR) between distinct LCR16 subunits with >99% sequence identity. Deletions and duplications were either de novo or inherited from unaffected parents. To determine whether these imbalances are associated with the MR/MCA phenotype or whether they might be benign variants, a population of 2014 normal controls was screened. The absence of deletions in the control population showed that 16p13.11 deletions are significantly associated with MR/MCA (p = 0.0048). Despite phenotypic variability, common features were identified: three patients with deletions presented with MR, microcephaly and epilepsy (two of these had also short stature), and two other deletion carriers ascertained prenatally presented with cleft lip and midline defects. In contrast to its previous association with autism, the duplication seems to be a common variant in the population (5/1682, 0.29%). Conclusion: These findings indicate that deletions inherited from clinically normal parents are likely to be causal for the patients’ phenotype whereas the role of duplications (de novo or inherited) in the phenotype remains uncertain. This difference in knowledge regarding the clinical relevance of the deletion and the duplication causes a paradigm shift in (cyto)genetic counselling. PMID:18550696

  10. GeneCount: genome-wide calculation of absolute tumor DNA copy numbers from array comparative genomic hybridization data

    PubMed Central

    Lyng, Heidi; Lando, Malin; Brøvig, Runar S; Svendsrud, Debbie H; Johansen, Morten; Galteland, Eivind; Brustugun, Odd T; Meza-Zepeda, Leonardo A; Myklebost, Ola; Kristensen, Gunnar B; Hovig, Eivind; Stokke, Trond

    2008-01-01

    Absolute tumor DNA copy numbers can currently be achieved only on a single gene basis by using fluorescence in situ hybridization (FISH). We present GeneCount, a method for genome-wide calculation of absolute copy numbers from clinical array comparative genomic hybridization data. The tumor cell fraction is reliably estimated in the model. Data consistent with FISH results are achieved. We demonstrate significant improvements over existing methods for exploring gene dosages and intratumor copy number heterogeneity in cancers. PMID:18500990

  11. [Comparative genomic hybridisation as a first option in genetic diagnosis: 1,000 cases and a cost-benefit analysis].

    PubMed

    Castells-Sarret, Neus; Cueto-González, Anna M; Borregan, Mar; López-Grondona, Fermina; Miró, Rosa; Tizzano, Eduardo; Plaja, Alberto

    2017-09-25

    Conventional cytogenetics diagnoses 3-5% of patients with unexplained developmental delay/intellectual disability and/or multiple congenital anomalies. The Multiplex Ligation-dependent Probe Amplification increases diagnostic rates from between 2.4 to 5.8%. Currently the comparative genomic hybridisation array or aCGH is the highest performing diagnostic tool in patients with developmental delay/intellectual disability, congenital anomalies and autism spectrum disorders. Our aim is to evaluate the efficiency of the use of aCGH as first-line test in these and other indications (epilepsy, short stature). A total of 1000 patients referred due to one or more of the abovementioned disorders were analysed by aCGH. Pathogenic genomic imbalances were detected in 14% of the cases, with a variable distribution of diagnosis according to the phenotypes: 18.9% of patients with developmental delay/intellectual disability; 13.7% of multiple congenital anomalies, 9.76% of psychiatric pathologies, 7.02% of patients with epilepsy, and 13.3% of patients with short stature. Within the multiple congenital anomalies, central nervous system abnormalities and congenital heart diseases accounted for 14.9% and 10.6% of diagnoses, respectively. Among the psychiatric disorders, patients with autism spectrum disorders accounted for 8.9% of the diagnoses. Our results demonstrate the effectiveness and efficiency of the use of aCGH as the first line test in genetic diagnosis of patients suspected of genomic imbalances, supporting its inclusion within the National Health System. Copyright © 2017. Publicado por Elsevier España, S.L.U.

  12. Prevalence of endocrine and genetic abnormalities in boys evaluated systematically for a disorder of sex development

    PubMed Central

    Nixon, R.; Cerqueira, V.; Kyriakou, A.; Lucas-Herald, A.; McNeilly, J.; McMillan, M.; Purvis, A.I.; Tobias, E.S.; McGowan, R.

    2017-01-01

    Abstract STUDY QUESTION What is the likelihood of identifying genetic or endocrine abnormalities in a group of boys with 46, XY who present to a specialist clinic with a suspected disorder of sex development (DSD)? SUMMARY ANSWER An endocrine abnormality of the gonadal axis may be present in a quarter of cases and copy number variants (CNVs) or single gene variants may be present in about half of the cases. WHAT IS KNOWN ALREADY Evaluation of 46, XY DSD requires a combination of endocrine and genetic tests but the prevalence of these abnormalities in a sufficiently large group of boys presenting to one specialist multidisciplinary service is unclear. STUDY, DESIGN, SIZE, DURATION This study was a retrospective review of investigations performed on 122 boys. PARTICIPANTS/MATERIALS, SETTING, METHODS All boys who attended the Glasgow DSD clinic, between 2010 and 2015 were included in the study. The median external masculinization score (EMS) of this group was 9 (range 1–11). Details of phenotype, endocrine and genetic investigations were obtained from case records. MAIN RESULTS AND THE ROLE OF CHANCE An endocrine abnormality of gonadal function was present in 28 (23%) with a median EMS of 8.3 (1–10.5) whilst the median EMS of boys with normal endocrine investigations was 9 (1.5–11) (P = 0.03). Endocrine abnormalities included a disorder of gonadal development in 19 (16%), LH deficiency in 5 (4%) and a disorder of androgen synthesis in 4 (3%) boys. Of 43 cases who had array-comparative genomic hybridization (array-CGH), CNVs were reported in 13 (30%) with a median EMS of 8.5 (1.5–11). Candidate gene analysis using a limited seven-gene panel in 64 boys identified variants in 9 (14%) with a median EMS of 8 (1–9). Of the 21 boys with a genetic abnormality, 11 (52%) had normal endocrine investigations. LIMITATIONS, REASONS FOR CAUTION A selection bias for performing array-CGH in cases with multiple congenital malformations may have led to a high yield of CNVs. It is also possible that the yield of single gene variants may have been higher than reported if the investigators had used a more extended gene panel. WIDER IMPLICATIONS OF THE FINDINGS The lack of a clear association between the extent of under-masculinization and presence of endocrine and genetic abnormalities suggests a role for parallel endocrine and genetic investigations in cases of suspected XY DSD. STUDY FUNDING/COMPETING INTEREST(S) RN was supported by the James Paterson Bursary and the Glasgow Children's Hospital Charity Summer Scholarship. SFA, RM and EST are supported by a Scottish Executive Health Department grant 74250/1 for the Scottish Genomes Partnership. EST is also supported by MRC/EPSRC Molecular Pathology Node and Wellcome Trust ISSF funding. There are no conflicts of interest. TRIAL REGISTRATION NUMBER None. PMID:28938747

  13. Combinatorics of the Breakage-Fusion-Bridge Mechanism

    PubMed Central

    Bafna, Vineet

    2012-01-01

    Abstract The breakage-fusion-bridge (BFB) mechanism was proposed over seven decades ago and is a source of genomic variability and gene amplification in cancer. Here we formally model and analyze the BFB mechanism, to our knowledge the first time this has been undertaken. We show that BFB can be modeled as successive inverted prefix duplications of a string. Using this model, we show that BFB can achieve a surprisingly broad range of amplification patterns. We find that a sequence of BFB operations can be found that nearly fits most patterns of copy number increases along a chromosome. We conclude that this limits the usefulness of methods like array CGH for detecting BFB. PMID:22506505

  14. Methods of DNA sequencing by hybridization based on optimizing concentration of matrix-bound oligonucleotide and device for carrying out same

    DOEpatents

    Khrapko, Konstantin R [Moscow, RU; Khorlin, Alexandr A [Moscow, RU; Ivanov, Igor B [Moskovskaya, RU; Ershov, Gennady M [Moscow, RU; Lysov, Jury P [Moscow, RU; Florentiev, Vladimir L [Moscow, RU; Mirzabekov, Andrei D [Moscow, RU

    1996-09-03

    A method for sequencing DNA by hybridization that includes the following steps: forming an array of oligonucleotides at such concentrations that either ensure the same dissociation temperature for all fully complementary duplexes or allows hybridization and washing of such duplexes to be conducted at the same temperature; hybridizing said oligonucleotide array with labeled test DNA; washing in duplex dissociation conditions; identifying single-base substitutions in the test DNA by analyzing the distribution of the dissociation temperatures and reconstructing the DNA nucleotide sequence based on the above analysis. A device for carrying out the method comprises a solid substrate and a matrix rigidly bound to the substrate. The matrix contains the oligonucleotide array and consists of a multiplicity of gel portions. Each gel portion contains one oligonucleotide of desired length. The gel portions are separated from one another by interstices and have a thickness not exceeding 30 .mu.m.

  15. Quantitative high-resolution genomic analysis of single cancer cells.

    PubMed

    Hannemann, Juliane; Meyer-Staeckling, Sönke; Kemming, Dirk; Alpers, Iris; Joosse, Simon A; Pospisil, Heike; Kurtz, Stefan; Görndt, Jennifer; Püschel, Klaus; Riethdorf, Sabine; Pantel, Klaus; Brandt, Burkhard

    2011-01-01

    During cancer progression, specific genomic aberrations arise that can determine the scope of the disease and can be used as predictive or prognostic markers. The detection of specific gene amplifications or deletions in single blood-borne or disseminated tumour cells that may give rise to the development of metastases is of great clinical interest but technically challenging. In this study, we present a method for quantitative high-resolution genomic analysis of single cells. Cells were isolated under permanent microscopic control followed by high-fidelity whole genome amplification and subsequent analyses by fine tiling array-CGH and qPCR. The assay was applied to single breast cancer cells to analyze the chromosomal region centred by the therapeutical relevant EGFR gene. This method allows precise quantitative analysis of copy number variations in single cell diagnostics.

  16. [Cytogenetics, cytogenomics and cancer].

    PubMed

    Bernheim, Alain

    2002-02-01

    Chromosomal study in malignancy has demonstrated the pivotal role of somatic chromosomal rearrangements in oncogenesis and tumoral progression. Structural or quantitative these abnormalities can now be studied in great details with the various Fish techniques, including CGH on chromosomes or in a near future on micro arrays. The multistep pattern of most solid tumors is characterized and their genomic abnormalities more and more used for the diagnosis and the prognosis.

  17. Growth retardation, intellectual disability, facial anomalies, cataract, thoracic hypoplasia and skeletal abnormalities: a novel phenotype

    PubMed Central

    Shah, Hitesh; Bens, Susanne; Caliebe, Almuth; Graham, John M.; Girisha, Katta Mohan

    2012-01-01

    We report a fourteen year old adolescent girl with growth deficiency, microcephaly, intellectual disability, distinctive dysmorphic features (bulbous nose with wide nasal base, hypotelorism, deeply set eyes, protruding cupped ears and thick lips), cataract, pigmentary retinopathy, hypoplastic thorax, kyphoscoliosis and unusual skeletal changes but without chromosomal imbalances detected by array-CGH who probably represents a novel phenotype. PMID:22987502

  18. Identification of Novel Genomic Aberrations in AML-M5 in a Level of Array CGH

    PubMed Central

    Zhang, Rui; Lee, Ji-Yun; Wang, Xianfu; Xu, Weihong; Hu, Xiaoxia; Lu, Xianglan; Niu, Yimeng; Tang, Rurong; Li, Shibo; Li, Yan

    2014-01-01

    To assess the possible existence of unbalanced chromosomal abnormalities and delineate the characterization of copy number alterations (CNAs) of acute myeloid leukemia-M5 (AML-M5), R-banding karyotype, oligonucelotide array CGH and FISH were performed in 24 patients with AML-M5. A total of 117 CNAs with size ranging from 0.004 to 146.263 Mb was recognized in 12 of 24 cases, involving all chromosomes other than chromosome 1, 4, X and Y. Cryptic CNAs with size less than 5 Mb accounted for 59.8% of all the CNAs. 12 recurrent chromosomal alterations were mapped. Seven out of them were described in the previous AML studies and five were new candidate AML-M5 associated CNAs, including gains of 3q26.2-qter and 13q31.3 as well as losses of 2q24.2, 8p12 and 14q32. Amplication of 3q26.2-qter was the sole large recurrent chromosomal anomaly and the pathogenic mechanism in AML-M5 was possibly different from the classical recurrent 3q21q26 abnormality in AML. As a tumor suppressor gene, FOXN3, was singled out from the small recurrent CNA of 14q32, however, it is proved that deletion of FOXN3 is a common marker of myeloid leukemia rather than a specific marker for AML-M5 subtype. Moreover, the concurrent amplication of MLL and deletion of CDKN2A were noted and it might be associated with AML-M5. The number of CNA did not show a significant association with clinico-biological parameters and CR number of the 22 patients received chemotherapy. This study provided the evidence that array CGH served as a complementary platform for routine cytogenetic analysis to identify those cryptic alterations in the patients with AML-M5. As a subtype of AML, AML-M5 carries both common recurrent CNAs and unique CNAs, which may harbor novel oncogenes or tumor suppressor genes. Clarifying the role of these genes will contribute to the understanding of leukemogenic network of AML-M5. PMID:24727659

  19. Familial 4.3 Mb duplication of 21q22 sheds new light on the Down syndrome critical region

    PubMed Central

    Ronan, Anne; Fagan, Kerry; Christie, Louise; Conroy, Jeffrey; Nowak, Norma J; Turner, Gillian

    2007-01-01

    A 4.3 Mb duplication of chromosome 21 bands q22.13–q22.2 was diagnosed by interphase fluorescent in‐situ hybridisation (FISH) in a 31‐week gestational age baby with cystic hygroma and hydrops; the duplication was later found in the mother and in her 8‐year‐old daughter by the same method and confirmed by array comparative genomic hybridisation (aCGH). All had the facial gestalt of Down syndrome (DS). This is the smallest accurately defined duplication of chromosome 21 reported with a DS phenotype. The duplication encompasses the gene DYRK1 but not DSCR1 or DSCAM, all of which have previously been implicated in the causation of DS. Previous karyotype analysis and telomere screening of the mother, and karyotype analysis and metaphase FISH of a chorionic villus sample, had all failed to reveal the duplication. The findings in this family add to the identification and delineation of a “critical region” for the DS phenotype on chromosome 21. Cryptic chromosomal abnormalities can be missed on a routine karyotype for investigation of abnormal prenatal ultrasound findings, lending support to the use of aCGH analysis in this setting. PMID:17237124

  20. Clinical Characteristics and Outcome of Patients with Neuroblastoma Presenting Genomic Amplification of Loci Other than MYCN

    PubMed Central

    Guimier, Anne; Ferrand, Sandrine; Pierron, Gaëlle; Couturier, Jérôme; Janoueix-Lerosey, Isabelle; Combaret, Valérie; Mosseri, Véronique; Thebaud, Estelle; Gambart, Marion; Plantaz, Dominique; Marabelle, Aurélien; Coze, Carole; Rialland, Xavier; Fasola, Sylvie; Lapouble, Eve; Fréneaux, Paul; Peuchmaur, Michel; Michon, Jean; Delattre, Olivier; Schleiermacher, Gudrun

    2014-01-01

    Background Somatically acquired genomic alterations with MYCN amplification (MNA) are key features of neuroblastoma (NB), the most common extra-cranial malignant tumour of childhood. Little is known about the frequency, clinical characteristics and outcome of NBs harbouring genomic amplification(s) distinct from MYCN. Methods Genomic profiles of 1100 NBs from French centres studied by array-CGH were re-examined specifically to identify regional amplifications. Patients were included if amplifications distinct from the MYCN locus were seen. A subset of NBs treated at Institut Curie and harbouring MNA as determined by array-CGH without other amplification was also studied. Clinical and histology data were retrospectively collected. Results In total, 56 patients were included and categorised into 3 groups. Group 1 (n = 8) presented regional amplification(s) without MNA. Locus 12q13-14 was a recurrent amplified region (4/8 cases). This group was heterogeneous in terms of INSS stages, primary localisations and histology, with atypical clinical features. Group 2 (n = 26) had MNA as well as other regional amplifications. These patients shared clinical features of those of a group of NBs MYCN amplified (Group 3, n = 22). Overall survival for group 1 was better than that of groups 2 and 3 (5 year OS: 87.5%±11% vs 34.9%±7%, log-rank p<0.05). Conclusion NBs harbouring regional amplification(s) without MNA are rare and seem to show atypical features in clinical presentation and genomic profile. Further high resolution genetic explorations are justified in this heterogeneous group, especially when considering these alterations as predictive markers for targeted therapy. PMID:25013904

  1. Genetic investigations on 8 patients affected by ring 20 chromosome syndrome

    PubMed Central

    2010-01-01

    Background Mosaic Chromosome 20 ring [r(20)] is a chromosomal disorder associated with a rare syndrome characterized by a typical seizure phenotype, a particular electroclinical pattern, cognitive impairment, behavioural problems and absence of a consistent pattern of dysmorphology. The pathogenic mechanism underlying seizures disorders in r(20) syndrome is still unknown. We performed a detailed clinical and genetic study on 8 patients with r(20) chromosome, aimed at detecting the genetic mechanism underlying r(20) syndrome. Methods We submitted 8 subjects with a previous diagnosis of ring 20 chromosome mosaicism to a clinical re-evaluation, followed by cytogenetic, FISH, array-CGH and molecular analyses. The genetic study was also extended to their available parents. Results FISH and array-CGH experiments indicate that cryptic deletions on chromosome 20 are not the cause of the r(20) chromosome associated disease. Moreover, no evidence of chromosome 20 uniparental disomy was found. Analysis of FISH signals given by variant in size alphoid tandem repeats probes on the normal chromosome 20 and the r(20) chromosome in the mosaic carriers suggests that the r(20) chromosome is the same chromosome not circularized in the "normal" cell line. Conclusions Higher percentages of r(20) chromosome cells were observed to be related with precocious age at seizure onset and with resistance to antiepileptic drug treatment. Behavioural problems also seem to be associated with higher percentages of r(20) chromosome cells. Our results suggest that an epigenetic mechanism perturbing the expression of genes close to the telomeric regions, rather than deletion of genes located at the distal 20p and/or 20q regions, may underlie the manifestation of r(20) syndrome. PMID:20939888

  2. Chromosomal Gains at 9q Characterize Enteropathy-Type T-Cell Lymphoma

    PubMed Central

    Zettl, Andreas; Ott, German; Makulik, Angela; Katzenberger, Tiemo; Starostik, Petr; Eichler, Thorsten; Puppe, Bernhard; Bentz, Martin; Müller-Hermelink, Hans Konrad; Chott, Andreas

    2002-01-01

    Genetic alterations in enteropathy-type T-cell lymphoma (ETL) are unknown so far. In this series, 38 cases of ETL were analyzed by comparative genomic hybridization (CGH). CGH revealed chromosomal imbalances in 87% of cases analyzed, with recurrent gains of genetic material involving chromosomes 9q (in 58% of cases), 7q (24%), 5q (18%), and 1q (16%). Recurrent losses of genetic material occurred on chromosomes 8p and 13q (24% each), and 9p (18%). In this first systematic genetic study on ETL, chromosomal gains on 9q (minimal overlapping region 9q33-q34) were found to be highly characteristic of ETL. Fluorescence in situ hybridization analysis on four cases of ETL, using a probe for 9q34, indicated frequent and multiple gains of chromosomal material at 9q34 (up to nine signals per case). Among 16 patients with ETL who survived initial disease presentation, patients with more than three chromosomal gains or losses (n = 11) followed a worse clinical course than those with three or less imbalances (n = 5). The observation of similar genetic alterations in ETL and in primary gastric (n = 4) and colonic (n = 1) T-cell lymphoma, not otherwise specified, is suggestive of a genetic relationship of gastrointestinal T-cell lymphomas at either localization. PMID:12414511

  3. Generation of human β-thalassemia induced pluripotent cell lines by reprogramming of bone marrow-derived mesenchymal stromal cells using modified mRNA.

    PubMed

    Varela, Ioanna; Karagiannidou, Angeliki; Oikonomakis, Vasilis; Tzetis, Maria; Tzanoudaki, Marianna; Siapati, Elena-Konstantina; Vassilopoulos, George; Graphakos, Stelios; Kanavakis, Emmanuel; Goussetis, Evgenios

    2014-12-01

    Synthetic modified mRNA molecules encoding pluripotency transcription factors have been used successfully in reprogramming human fibroblasts to induced pluripotent stem cells (iPSCs). We have applied this method on bone marrow-derived mesenchymal stromal cells (BM-MSCs) obtained from a patient with β-thalassemia (β-thal) with the aim to generate trangene-free β-thal-iPSCs. Transfection of 10(4) BM-MSCs by lipofection with mRNA encoding the reprogramming factors Oct4, Klf4, Sox2, cMyc, and Lin28 resulted in formation of five iPSC colonies, from which three were picked up and expanded in β-thal-iPSC lines. After 10 serial passages in vitro, β-thal-iPSCs maintain genetic stability as shown by array comparative genomic hybridization (aCGH) and are capable of forming embryoid bodies in vitro and teratomas in vivo. Their gene expression profile compared to human embryonic stem cells (ESCs) and BM-MSCs seems to be similar to that of ESCs, whereas it differs from the profile of the parental BM-MSCs. Differentiation cultures toward a hematopoietic lineage showed the generation of CD34(+) progenitors up to 10%, but with a decreased hematopoietic colony-forming capability. In conclusion, we report herein the generation of transgene-free β-thal-iPSCs that could be widely used for disease modeling and gene therapy applications. Moreover, it was demonstrated that the mRNA-based reprogramming method, used mainly in fibroblasts, is also suitable for reprogramming of human BM-MSCs.

  4. Novel mouse model recapitulates genome and transcriptome alterations in human colorectal carcinomas.

    PubMed

    McNeil, Nicole E; Padilla-Nash, Hesed M; Buishand, Floryne O; Hue, Yue; Ried, Thomas

    2017-03-01

    Human colorectal carcinomas are defined by a nonrandom distribution of genomic imbalances that are characteristic for this disease. Often, these imbalances affect entire chromosomes. Understanding the role of these aneuploidies for carcinogenesis is of utmost importance. Currently, established transgenic mice do not recapitulate the pathognonomic genome aberration profile of human colorectal carcinomas. We have developed a novel model based on the spontaneous transformation of murine colon epithelial cells. During this process, cells progress through stages of pre-immortalization, immortalization and, finally, transformation, and result in tumors when injected into immunocompromised mice. We analyzed our model for genome and transcriptome alterations using ArrayCGH, spectral karyotyping (SKY), and array based gene expression profiling. ArrayCGH revealed a recurrent pattern of genomic imbalances. These results were confirmed by SKY. Comparing these imbalances with orthologous maps of human chromosomes revealed a remarkable overlap. We observed focal deletions of the tumor suppressor genes Trp53 and Cdkn2a/p16. High-level focal genomic amplification included the locus harboring the oncogene Mdm2, which was confirmed by FISH in the form of double minute chromosomes. Array-based global gene expression revealed distinct differences between the sequential steps of spontaneous transformation. Gene expression changes showed significant similarities with human colorectal carcinomas. Pathways most prominently affected included genes involved in chromosomal instability and in epithelial to mesenchymal transition. Our novel mouse model therefore recapitulates the most prominent genome and transcriptome alterations in human colorectal cancer, and might serve as a valuable tool for understanding the dynamic process of tumorigenesis, and for preclinical drug testing. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Synthesis of NiMn-LDH Nanosheet@Ni3S2 Nanorod Hybrid Structures for Supercapacitor Electrode Materials with Ultrahigh Specific Capacitance.

    PubMed

    Yu, Shuai; Zhang, Yingxi; Lou, Gaobo; Wu, Yatao; Zhu, Xinqiang; Chen, Hao; Shen, Zhehong; Fu, Shenyuan; Bao, Binfu; Wu, Limin

    2018-03-27

    One of the key challenges for pseudocapacitive electrode materials with highly effective capacitance output and future practical applications is how to rationally construct hierarchical and ordered hybrid nanoarchitecture through the simple process. Herein, we design and synthesize a novel NiMn-layered double hydroxide nanosheet@Ni 3 S 2 nanorod hybrid array supported on porous nickel foam via a one-pot hydrothermal method. Benefited from the ultrathin and rough nature, the well-defined porous structure of the hybrid array, as well as the synergetic effect between NiMn-layered double hydroxide nanosheets and Ni 3 S 2 nanorods, the as-fabricated hybrid array-based electrode exhibits an ultrahigh specific capacitance of 2703 F g -1 at 3 A g -1 . Moreover, the asymmetric supercapacitor with this hybrid array as a positive electrode and wood-derived activated carbon as a negative electrode demonstrates high energy density (57 Wh Kg -1 at 738 W Kg -1 ) and very good electrochemical cycling stability.

  6. The BESCT Lung Cancer Program (Biology, Education, Screening, Chemoprevention, and Treatment)

    DTIC Science & Technology

    2009-03-01

    array CGH experiments to determine if other genomic changes have occurred. Specific Aim 3.8 To perform LOH studies at specific loci (if warranted from...strategies for lung cancer • To implement experimental molecular therapeutic approaches for lung cancer treatment Difficulties resulting from the...cancer has had an uncertain course ; however, inhibition of IGFR by either a monoclonal antibody or tyrosine kinase inhibitors (TKIs) is undergoing

  7. Genomic analysis of genetic heterogeneity and evolution in high-grade serous ovarian carcinoma

    PubMed Central

    Cooke, Susanna L; Ng, Charlotte KY; Melnyk, Nataliya; Garcia, Maria J; Hardcastle, Tom; Temple, Jillian; Langdon, Simon; Huntsman, David; Brenton, James D

    2010-01-01

    Resistance to chemotherapy in ovarian cancer is poorly understood. Evolutionary models of cancer predict that, following treatment, resistance emerges either due to outgrowth of an intrinsically resistant sub-clone, or evolves in residual disease under the selective pressure of treatment. To investigate genetic evolution in high-grade serous (HGS) ovarian cancers we first analysed cell line series derived from three cases of HGS carcinoma before and after platinum resistance had developed (PEO1, PEO4 and PEO6, PEA1 and PEA2, and PEO14 and PEO23). Analysis with 24-colour fluorescence in situ hybridisation and SNP array comparative genomic hybridisation (CGH) showed mutually exclusive endoreduplication and loss of heterozygosity events in clones present at different timepoints in the same individual. This implies that platinum sensitive and resistant disease was not linearly related but shared a common ancestor at an early stage of tumour development. Array CGH analysis of six paired pre- and post-neoadjuvant treatment HGS samples from the CTCR-OV01 clinical study did not show extensive copy number differences, suggesting that one clone was strongly dominant at presentation. These data show that cisplatin resistance in HGS carcinoma develops from pre-existing minor clones but that enrichment for these clones is not apparent during short-term chemotherapy treatment. PMID:20581869

  8. Efficient generation of holographic news ticker in holographic 3DTV

    NASA Astrophysics Data System (ADS)

    Kim, Seung-Cheol; Kim, Eun-Soo

    2009-08-01

    News ticker is used to show breaking news or news headlines in conventional 2-D broadcasting system. For the case of the breaking news, the fast creation is need, because the information should be sent quickly. In addition, if holographic 3- D broadcasting system is started in the future, news ticker will remain. On the other hands, some approaches for generation of CGH patterns have been suggested like the ray-tracing method and look-up table (LUT) method. However, these methods have some drawbacks that needs much time or needs huge memory size for look-up table. Recently, a novel LUT (N-LUT) method for fast generation of CGH patterns of 3-D objects with a dramatically reduced LUT without the loss of computational speed was proposed. Therefore, we proposed the method to efficiently generate the holographic news ticker in holographic 3DTV or 3-D movies using N-LUT method. The proposed method is largely consisted of five steps: construction of the LUT for each character, extraction of characters in news ticker, generation and shift of the CGH pattern for news ticker using the LUT for each character, composition of hologram pattern for 3-D video and hologram pattern for news ticker and reconstruct the holographic 3D video with news ticker. To confirm the proposed method, moving car in front of the castle is used as a 3D video and the words 'HOLOGRAM CAPTION GENERATOR' is used as a news ticker. From this simulation results confirmed the feasibility of the proposed method in fast generation of CGH patterns for holographic captions.

  9. Unusual 4p16.3 deletions suggest an additional chromosome region for the Wolf-Hirschhorn syndrome-associated seizures disorder.

    PubMed

    Zollino, Marcella; Orteschi, Daniela; Ruiter, Mariken; Pfundt, Rolph; Steindl, Katharina; Cafiero, Concetta; Ricciardi, Stefania; Contaldo, Ilaria; Chieffo, Daniela; Ranalli, Domiziana; Acquafondata, Celeste; Murdolo, Marina; Marangi, Giuseppe; Asaro, Alessia; Battaglia, Domenica

    2014-06-01

    Seizure disorder is one of the most relevant clinical manifestations in Wolf-Hirschhorn syndrome (WHS) and it acts as independent prognostic factor for the severity of intellectual disability (ID). LETM1, encoding a mitochondrial protein playing a role in K(+) /H(+) exchange and in Ca(2+) homeostasis, is currently considered the major candidate gene. However, whether haploinsufficiency limited to LETM1 is enough to cause epilepsy is still unclear. The main purpose of the present research is to define the 4p chromosome regions where genes for seizures reside. Comparison of our three unusual 4p16.3 deletions with 13 literature reports. Array-comparative genomic hybridization (a-CGH). Real-time polymerase chain reaction (RT-PCR) on messanger RNA (mRNA) of LETM1 and CPLX1. Direct sequencing of LETM1. Three unusual 4p16.3 deletions were detected by array-CGH in absence of a obvious clinical diagnosis of WHS. Two of these, encompassing LETM1, were found in subjects who never had seizures. The deletions were interstitial, spanning 1.1 Mb with preservation of the terminal 1.77 Mb region in one case and 0.84 Mb with preservation of the terminal 1.07 Mb region in the other. The other deletion was terminal, affecting a 0.564 Mb segment, with preservation of LETM1, and it was associated with seizures and learning difficulties. Upon evaluating our patients along with literature reports, we noted that six of eight subjects with terminal 4p deletions preserving LETM1 had seizures, whereas seven of seven with interstitial deletions including LETM1 and preserving the terminal 1 Mb region on 4p did not. An additional chromosome region for seizures is suggested, falling within the terminal 1.5 Mb on 4p, not including LETM1. We consider that haploinsufficiency not limited to LETM1 but including other genes acts as a risk factor for the WHS-associated seizure disorder, according to a comorbidity model of pathogenesis. Additional candidate genes reside in the terminal 1.5 Mb region on 4p, most likely distal to LETM1. A PowerPoint slide summarizing this article is available for download in the Supporting Information section here. Wiley Periodicals, Inc. © 2014 International League Against Epilepsy.

  10. Study of Ultra-High Energy Cosmic Ray composition using Telescope Array's Middle Drum detector and surface array in hybrid mode

    NASA Astrophysics Data System (ADS)

    Abbasi, R. U.; Abe, M.; Abu-Zayyad, T.; Allen, M.; Anderson, R.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Chae, M. J.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Cho, W. R.; Fujii, T.; Fukushima, M.; Goto, T.; Hanlon, W.; Hayashi, Y.; Hayashida, N.; Hibino, K.; Honda, K.; Ikeda, D.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kawata, K.; Kido, E.; Kim, H. B.; Kim, J. H.; Kim, J. H.; Kitamura, S.; Kitamura, Y.; Kuzmin, V.; Kwon, Y. J.; Lan, J.; Lim, S. I.; Lundquist, J. P.; Machida, K.; Martens, K.; Matsuda, T.; Matsuyama, T.; Matthews, J. N.; Minamino, M.; Mukai, Y.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, T.; Nonaka, T.; Nozato, A.; Ogio, S.; Ogura, J.; Ohnishi, M.; Ohoka, H.; Oki, K.; Okuda, T.; Ono, M.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Sakurai, N.; Sampson, A. L.; Scott, L. M.; Shah, P. D.; Shibata, F.; Shibata, T.; Shimodaira, H.; Shin, B. K.; Shin, H. S.; Smith, J. D.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Stroman, T.; Suzawa, T.; Takamura, M.; Takeda, M.; Takeishi, R.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Uchihori, Y.; Udo, S.; Urban, F.; Vasiloff, G.; Wong, T.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yashiro, K.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zollinger, R.; Zundel, Z.

    2015-04-01

    Previous measurements of the composition of Ultra-High Energy Cosmic Rays (UHECRs) made by the High Resolution Fly's Eye (HiRes) and Pierre Auger Observatory (PAO) are seemingly contradictory, but utilize different detection methods, as HiRes was a stereo detector and PAO is a hybrid detector. The five year Telescope Array (TA) Middle Drum hybrid composition measurement is similar in some, but not all, respects in methodology to PAO, and good agreement is evident between data and a light, largely protonic, composition when comparing the measurements to predictions obtained with the QGSJetII-03 and QGSJet-01c models. These models are also in agreement with previous HiRes stereo measurements, confirming the equivalence of the stereo and hybrid methods. The data is incompatible with a pure iron composition, for all models examined, over the available range of energies. The elongation rate and mean values of Xmax are in good agreement with Pierre Auger Observatory data. This analysis is presented using two methods: data cuts using simple geometrical variables and a new pattern recognition technique.

  11. Quantitative High-Resolution Genomic Analysis of Single Cancer Cells

    PubMed Central

    Hannemann, Juliane; Meyer-Staeckling, Sönke; Kemming, Dirk; Alpers, Iris; Joosse, Simon A.; Pospisil, Heike; Kurtz, Stefan; Görndt, Jennifer; Püschel, Klaus; Riethdorf, Sabine; Pantel, Klaus; Brandt, Burkhard

    2011-01-01

    During cancer progression, specific genomic aberrations arise that can determine the scope of the disease and can be used as predictive or prognostic markers. The detection of specific gene amplifications or deletions in single blood-borne or disseminated tumour cells that may give rise to the development of metastases is of great clinical interest but technically challenging. In this study, we present a method for quantitative high-resolution genomic analysis of single cells. Cells were isolated under permanent microscopic control followed by high-fidelity whole genome amplification and subsequent analyses by fine tiling array-CGH and qPCR. The assay was applied to single breast cancer cells to analyze the chromosomal region centred by the therapeutical relevant EGFR gene. This method allows precise quantitative analysis of copy number variations in single cell diagnostics. PMID:22140428

  12. Analysis of the Saccharomyces cerevisiae pan-genome reveals a pool of copy number variants distributed in diverse yeast strains from differing industrial environments.

    PubMed

    Dunn, Barbara; Richter, Chandra; Kvitek, Daniel J; Pugh, Tom; Sherlock, Gavin

    2012-05-01

    Although the budding yeast Saccharomyces cerevisiae is arguably one of the most well-studied organisms on earth, the genome-wide variation within this species--i.e., its "pan-genome"--has been less explored. We created a multispecies microarray platform containing probes covering the genomes of several Saccharomyces species: S. cerevisiae, including regions not found in the standard laboratory S288c strain, as well as the mitochondrial and 2-μm circle genomes-plus S. paradoxus, S. mikatae, S. kudriavzevii, S. uvarum, S. kluyveri, and S. castellii. We performed array-Comparative Genomic Hybridization (aCGH) on 83 different S. cerevisiae strains collected across a wide range of habitats; of these, 69 were commercial wine strains, while the remaining 14 were from a diverse set of other industrial and natural environments. We observed interspecific hybridization events, introgression events, and pervasive copy number variation (CNV) in all but a few of the strains. These CNVs were distributed throughout the strains such that they did not produce any clear phylogeny, suggesting extensive mating in both industrial and wild strains. To validate our results and to determine whether apparently similar introgressions and CNVs were identical by descent or recurrent, we also performed whole-genome sequencing on nine of these strains. These data may help pinpoint genomic regions involved in adaptation to different industrial milieus, as well as shed light on the course of domestication of S. cerevisiae.

  13. Amplicons on chromosome 3 contain oncogenes induced by recurrent exposure to 12-O-tetradecanoylphorbol-13-acetate and sodium n-butyrate and Epstein-Barr virus reactivation in a nasopharyngeal carcinoma cell line.

    PubMed

    Lee, Chia-Huei; Fang, Chih-Yeu; Sheu, Jim Jinn-Chyuan; Chang, Yao; Takada, Kenzo; Chen, Jen-Yang

    2008-08-01

    Nasopharyngeal carcinoma (NPC) is closely associated with Epstein-Barr virus (EBV) infection and exposure to environmental carcinogens. In this study, an inducible Epstein-Barr virus (EBV) reactivation NPC cell line, NA, was used to investigate the impact of recurrent 12-O-tetradecanoylphorbol-13-acetate-sodium n-butyrate (TPA/SB) treatment and EBV reactivation on chromosomal abnormalities utilizing array-based comparative genomic hybridization (CGH). It was observed that most copy-number aberrations (CNA) were progressively nonrandomly clustered on chromosomes 3, 8, and 9, as the frequency of TPA/SB treatment and EBV reactivation increased. All of the prominent amplicons detected (including 3p14.1, 3p13, 3p12.3, 3p12.2, 3q26.2, 3q26.31, and 3q26.32) were located on chromosome 3, with multiple oncogenes assigned to these sites. The amplification patterns of 3p12.3 and 3q26.2 were validated using fluorescence in situ hybridization (FISH) analysis. Subsequent quantitative real-time polymerase chain reaction detected increasing expression of ROBO1 and SKIL oncogenes in NA cells harboring higher frequency of TPA/SB treatment and EBV reactivation, consistent with copy-number amplification of these loci. These findings demonstrate that a high incidence of TPA/SB induced-EBV reactivation has a profound influence on the carcinogenesis of NPC through altered DNA copy number.

  14. Analysis of the Saccharomyces cerevisiae pan-genome reveals a pool of copy number variants distributed in diverse yeast strains from differing industrial environments

    PubMed Central

    Dunn, Barbara; Richter, Chandra; Kvitek, Daniel J.; Pugh, Tom; Sherlock, Gavin

    2012-01-01

    Although the budding yeast Saccharomyces cerevisiae is arguably one of the most well-studied organisms on earth, the genome-wide variation within this species—i.e., its “pan-genome”—has been less explored. We created a multispecies microarray platform containing probes covering the genomes of several Saccharomyces species: S. cerevisiae, including regions not found in the standard laboratory S288c strain, as well as the mitochondrial and 2-μm circle genomes–plus S. paradoxus, S. mikatae, S. kudriavzevii, S. uvarum, S. kluyveri, and S. castellii. We performed array-Comparative Genomic Hybridization (aCGH) on 83 different S. cerevisiae strains collected across a wide range of habitats; of these, 69 were commercial wine strains, while the remaining 14 were from a diverse set of other industrial and natural environments. We observed interspecific hybridization events, introgression events, and pervasive copy number variation (CNV) in all but a few of the strains. These CNVs were distributed throughout the strains such that they did not produce any clear phylogeny, suggesting extensive mating in both industrial and wild strains. To validate our results and to determine whether apparently similar introgressions and CNVs were identical by descent or recurrent, we also performed whole-genome sequencing on nine of these strains. These data may help pinpoint genomic regions involved in adaptation to different industrial milieus, as well as shed light on the course of domestication of S. cerevisiae. PMID:22369888

  15. Exploration of the Genomic Diversity and Core Genome of the Bifidobacterium adolescentis Phylogenetic Group by Means of a Polyphasic Approach

    PubMed Central

    Duranti, Sabrina; Turroni, Francesca; Milani, Christian; Foroni, Elena; Bottacini, Francesca; Dal Bello, Fabio; Ferrarini, Alberto; Delledonne, Massimo; van Sinderen, Douwe

    2013-01-01

    In the current work, we describe genome diversity and core genome sequences among representatives of three bifidobacterial species, i.e., Bifidobacterium adolescentis, Bifidobacterium catenulatum, and Bifidobacterium pseudocatenulatum, by employing a polyphasic approach involving analysis of 16S rRNA gene and 16S-23S internal transcribed spacer (ITS) sequences, pulsed-field gel electrophoresis (PFGE), and comparative genomic hybridization (CGH) assays. PMID:23064340

  16. Direct fluorescence in situ hybridization on human metaphase chromosomes using quantum dot-platinum labeled DNA probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Gyoyeon; Biological Chemistry, Korea University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Deajeon; Lee, Hansol

    The telomere shortening in chromosomes implies the senescence, apoptosis, or oncogenic transformation of cells. Since detecting telomeres in aging and diseases like cancer, is important, the direct detection of telomeres has been a very useful biomarker. We propose a telomere detection method using a newly synthesized quantum dot (QD) based probe with oligonucleotide conjugation and direct fluorescence in situ hybridization (FISH). QD-oligonucleotides were prepared with metal coordination bonding based on platinum-guanine binding reported in our previous work. The QD-oligonucleotide conjugation method has an advantage where any sequence containing guanine at the end can be easily bound to the starting QD-Ptmore » conjugate. A synthesized telomeric oligonucleotide was bound to the QD-Pt conjugate successfully and this probe hybridized specifically on the telomere of fabricated MV-4-11 and MOLT-4 chromosomes. Additionally, the QD-telomeric oligonucleotide probe successfully detected the telomeres on the CGH metaphase slide. Due to the excellent photostability and high quantum yield of QDs, the QD-oligonucleotide probe has high fluorescence intensity when compared to the organic dye-oligonucleotide probe. Our QD-oligonucleotide probe, conjugation method of this QD probe, and hybridization protocol with the chromosomes can be a useful tool for chromosome painting and FISH. - Highlights: • We prepared a probe linked between QD and telomeric oligonucleotide with platinum-guanine bonding. • Telomeres were detected by our new telomere probes successfully in three different human metaphase chromosomes. • QDPt-DNA probe has high fluorescence intensity in comparison with organic dye-DNA probe.« less

  17. Object tracking mask-based NLUT on GPUs for real-time generation of holographic videos of three-dimensional scenes.

    PubMed

    Kwon, M-W; Kim, S-C; Yoon, S-E; Ho, Y-S; Kim, E-S

    2015-02-09

    A new object tracking mask-based novel-look-up-table (OTM-NLUT) method is proposed and implemented on graphics-processing-units (GPUs) for real-time generation of holographic videos of three-dimensional (3-D) scenes. Since the proposed method is designed to be matched with software and memory structures of the GPU, the number of compute-unified-device-architecture (CUDA) kernel function calls and the computer-generated hologram (CGH) buffer size of the proposed method have been significantly reduced. It therefore results in a great increase of the computational speed of the proposed method and enables real-time generation of CGH patterns of 3-D scenes. Experimental results show that the proposed method can generate 31.1 frames of Fresnel CGH patterns with 1,920 × 1,080 pixels per second, on average, for three test 3-D video scenarios with 12,666 object points on three GPU boards of NVIDIA GTX TITAN, and confirm the feasibility of the proposed method in the practical application of electro-holographic 3-D displays.

  18. Whole exome sequencing and array-based molecular karyotyping as aids to prenatal diagnosis in fetuses with suspected Simpson-Golabi-Behmel syndrome.

    PubMed

    Kehrer, Christina; Hoischen, Alexander; Menkhaus, Ralf; Schwab, Eva; Müller, Andreas; Kim, Sarah; Kreiß, Martina; Weitensteiner, Valerie; Hilger, Alina; Berg, Christoph; Geipel, Anne; Reutter, Heiko; Gembruch, Ulrich

    2016-10-01

    Simpson-Golabi-Behmel (SGBS) syndrome type 1 and type 2 represent rare X-linked prenatal overgrowth disorders. The aim of our study is to describe the prenatal sonographic features as well as the genetic work-up. Retrospective analysis of four cases with a pre- or postnatal diagnosis of SGBS in a single tertiary referral center within a period of 4 years. In the study period, four male fetuses with SGBS were detected. The final diagnosis was made prenatally in three cases. In all cases the second trimester anomaly scan revealed left sided congenital diaphragmatic hernia (CDH) with additional anomalies; three fetuses with SGBS type 1 showed fetal overgrowth. In two of these, whole exome sequencing showed a possible frameshift mutation and a point mutation in the gene GPC3, respectively. In the third case, multiplex ligation-dependent probe amplification (MLPA) revealed a hemizygous duplication of exon 3-7 in the gene GPC3. In the fourth case, SGBS type 2 was confirmed by array comparative genomic hybridization (CGH) of amniotic fluid cells showing a deletion of the gene OFD1. We could demonstrate, that in the presence of a CDH, syndromes of the fetus can be increasingly differentiated by detailed sonography followed by a selective and graded molecular diagnostic using microarray techniques and whole exome sequencing. © 2016 John Wiley & Sons, Ltd. © 2016 John Wiley & Sons, Ltd.

  19. Effect of Refractive Index of Substrate on Fabrication and Optical Properties of Hybrid Au-Ag Triangular Nanoparticle Arrays

    PubMed Central

    Liu, Jing; Chen, Yushan; Cai, Haoyuan; Chen, Xiaoyi; Li, Changwei; Yang, Cheng-Fu

    2015-01-01

    In this study, the nanosphere lithography (NSL) method was used to fabricate hybrid Au-Ag triangular periodic nanoparticle arrays. The Au-Ag triangular periodic arrays were grown on different substrates, and the effect of the refractive index of substrates on fabrication and optical properties was systematically investigated. At first, the optical spectrum was simulated by the discrete dipole approximation (DDA) numerical method as a function of refractive indexes of substrates and mediums. Simulation results showed that as the substrates had the refractive indexes of 1.43 (quartz) and 1.68 (SF5 glass), the nanoparticle arrays would have better refractive index sensitivity (RIS) and figure of merit (FOM). Simulation results also showed that the peak wavelength of the extinction spectra had a red shift when the medium’s refractive index n increased. The experimental results also demonstrated that when refractive indexes of substrates were 1.43 and 1.68, the nanoparticle arrays and substrate had better adhesive ability. Meanwhile, we found the nanoparticles formed a large-scale monolayer array with the hexagonally close-packed structure. Finally, the hybrid Au-Ag triangular nanoparticle arrays were fabricated on quartz and SF5 glass substrates and their experiment extinction spectra were compared with the simulated results.

  20. Novel deletions involving the USH2A gene in patients with Usher syndrome and retinitis pigmentosa.

    PubMed

    García-García, Gema; Aller, Elena; Jaijo, Teresa; Aparisi, Maria J; Larrieu, Lise; Faugère, Valérie; Blanco-Kelly, Fiona; Ayuso, Carmen; Roux, Anne-Francoise; Millán, José M

    2014-01-01

    The aim of the present work was to identify and characterize large rearrangements involving the USH2A gene in patients with Usher syndrome and nonsyndromic retinitis pigmentosa. The multiplex ligation-dependent probe amplification (MLPA) technique combined with a customized array-based comparative genomic hybridization (aCGH) analysis was applied to 40 unrelated patients previously screened for point mutations in the USH2A gene in which none or only one pathologic mutation was identified. We detected six large deletions involving USH2A in six out of the 40 cases studied. Three of the patients were homozygous for the deletion, and the remaining three were compound heterozygous with a previously identified USH2A point mutation. In five of these cases, the patients displayed Usher type 2, and the remaining case displayed nonsyndromic retinitis pigmentosa. The exact breakpoint junctions of the deletions found in USH2A in four of these cases were characterized. Our study highlights the need to develop improved efficient strategies of mutation screening based upon next generation sequencing (NGS) that reduce cost, time, and complexity and allow simultaneous identification of all types of disease-causing mutations in diagnostic procedures.

  1. Chromosome fragility at FRAXA in human cleavage stage embryos at risk for fragile X syndrome.

    PubMed

    Verdyck, Pieter; Berckmoes, Veerle; De Vos, Anick; Verpoest, Willem; Liebaers, Inge; Bonduelle, Maryse; De Rycke, Martine

    2015-10-01

    Fragile X syndrome (FXS), the most common inherited intellectual disability syndrome, is caused by expansion and hypermethylation of the CGG repeat in the 5' UTR of the FMR1 gene. This expanded repeat, also known as the rare fragile site FRAXA, causes X chromosome fragility in cultured cells from patients but only when induced by perturbing pyrimidine synthesis. We performed preimplantation genetic diagnosis (PGD) on 595 blastomeres biopsied from 442 cleavage stage embryos at risk for FXS using short tandem repeat (STR) markers. In six blastomeres, from five embryos an incomplete haplotype was observed with loss of all alleles telomeric to the CGG repeat. In all five embryos, the incomplete haplotype corresponded to the haplotype carrying the CGG repeat expansion. Subsequent analysis of additional blastomeres from three embryos by array comparative genomic hybridization (aCGH) confirmed the presence of a terminal deletion with a breakpoint close to the CGG repeat in two blastomeres from one embryo. A blastomere from another embryo showed the complementary duplication. We conclude that a CGG repeat expansion at FRAXA causes X chromosome fragility in early human IVF embryos at risk for FXS. © 2015 Wiley Periodicals, Inc.

  2. Identification of 15 novel partial SHOX deletions and 13 partial duplications, and a review of the literature reveals intron 3 to be a hotspot region.

    PubMed

    Benito-Sanz, Sara; Belinchon-Martínez, Alberta; Aza-Carmona, Miriam; de la Torre, Carolina; Huber, Celine; González-Casado, Isabel; Ross, Judith L; Thomas, N Simon; Zinn, Andrew R; Cormier-Daire, Valerie; Heath, Karen E

    2017-02-01

    Short stature homeobox gene (SHOX) is located in the pseudoautosomal region 1 of the sex chromosomes. It encodes a transcription factor implicated in the skeletal growth. Point mutations, deletions or duplications of SHOX or its transcriptional regulatory elements are associated with two skeletal dysplasias, Léri-Weill dyschondrosteosis (LWD) and Langer mesomelic dysplasia (LMD), as well as in a small proportion of idiopathic short stature (ISS) individuals. We have identified a total of 15 partial SHOX deletions and 13 partial SHOX duplications in LWD, LMD and ISS patients referred for routine SHOX diagnostics during a 10 year period (2004-2014). Subsequently, we characterized these alterations using MLPA (multiplex ligation-dependent probe amplification assay), fine-tiling array CGH (comparative genomic hybridation) and breakpoint PCR. Nearly half of the alterations have a distal or proximal breakpoint in intron 3. Evaluation of our data and that in the literature reveals that although partial deletions and duplications only account for a small fraction of SHOX alterations, intron 3 appears to be a breakpoint hotspot, with alterations arising by non-allelic homologous recombination, non-homologous end joining or other complex mechanisms.

  3. Sustained endocrine profiles of a girl with WAGR syndrome.

    PubMed

    Takada, Yui; Sakai, Yasunari; Matsushita, Yuki; Ohkubo, Kazuhiro; Koga, Yuhki; Akamine, Satoshi; Torio, Michiko; Ishizaki, Yoshito; Sanefuji, Masafumi; Torisu, Hiroyuki; Shaw, Chad A; Kagami, Masayo; Hara, Toshiro; Ohga, Shouichi

    2017-10-23

    Wilms tumor, aniridia, genitourinary anomalies and mental retardation (WAGR) syndrome is a rare genetic disorder caused by heterozygous deletions of WT1 and PAX6 at chromosome 11p13. Deletion of BDNF is known eto be associated with hyperphagia and obesity in both humans and animal models; however, neuroendocrine and epigenetic profiles of individuals with WAGR syndrome remain to be determined. We report a 5-year-old girl with the typical phenotype of WAGR syndrome. She showed profound delays in physical growth, motor and cognitive development without signs of obesity. Array comparative genome hybridization (CGH) revealed that she carried a 14.4 Mb deletion at 11p14.3p12, encompassing the WT1, PAX6 and BDNF genes. She experienced recurrent hypoglycemic episodes at 5 years of age. Insulin tolerance and hormonal loading tests showed normal hypothalamic responses to the hypoglycemic condition and other stimulations. Methylation analysis for freshly prepared DNA from peripheral lymphocytes using the pyro-sequencing-based system showed normal patterns of methylation at known imprinting control regions. Children with WAGR syndrome may manifest profound delay in postnatal growth through unknown mechanisms. Epigenetic factors and growth-associated genes in WAGR syndrome remain to be characterized.

  4. aCGH Analysis to Estimate Genetic Variations among Domesticated Chickens

    PubMed Central

    Lin, Mengjie

    2016-01-01

    Chickens have been familiar to humans since ancient times and have been used not only for culinary purposes but also for cultural purposes including ritual ceremonies and traditional entertainment. The various chicken breeds developed for these purposes often display distinct morphological and/or behavioural traits. For example, the Japanese Shamo is larger and more aggressive than other domesticated chickens, reflecting its role as a fighting cock breed, whereas Japanese Naganakidori breeds, which have long-crowing behaviour, were bred instead for their entertaining and aesthetic qualities. However, the genetic backgrounds of these distinct morphological and behavioural traits remain unclear. Therefore, the question arises as to which genomic regions in these chickens were acted upon by selective pressures through breeding. We compared the entire genomes of six chicken breeds domesticated for various cultural purposes by utilizing array comparative genomic hybridization. From these analyses, we identified 782 regions that underwent insertions, deletions, or mutations, representing man-made selection pressure in these chickens. Furthermore, we found that a number of genes diversified in domesticated chickens bred for cultural or entertainment purposes were different from those diversified in chickens bred for food, such as broilers and layers. PMID:27525263

  5. Detection of a de novo Y278C mutation in FGFR3 in a pregnancy with severe fetal hypochondroplasia: prenatal diagnosis and literature review.

    PubMed

    Chen, Chih-Ping; Su, Yi-Ning; Lin, Tzu-Hung; Chang, Tung-Yao; Su, Jun-Wei; Wang, Wayseen

    2013-12-01

    We describe a prenatal molecular diagnosis of hypochondroplasia (HCH) in a pregnancy not at risk of HCH and review the literature on prenatal diagnosis of HCH. A 28-year-old primigravid woman was referred for genetic counseling at 30 weeks of gestation because of short-limbed dwarfism in the fetus. The woman had a body height of 152 cm. Her husband had a body height of 180 cm. Level II ultrasound showed a normal amount of amniotic fluid and a singleton fetus with fetal biometry equivalent to 30 weeks except for short limbs. Fetal biometry measurements were as follows: biparietal diameter = 7.38 cm (30 weeks); head circumference = 28.14 cm (30 weeks); abdominal circumference (AC) = 24.64 cm (30 weeks); femur length (FL) = 3.97 cm (<5th centile); FL/AC ratio = 0.161 (normal > 0.18); humerus = 3.64 cm (<5th centile); radius = 3.49 cm (30 weeks); ulna = 3.76 cm (<5(th) centile); tibia = 3.67 cm (<5th centile); and fibula = 3.72 cm (<5th centile). The digits and craniofacial appearance were normal. A tentative diagnosis of achondroplasia (ACH) was made. DNA testing for the FGFR3 gene and whole-genome array comparative genomic hybridization (aCGH) analysis were performed using cord blood DNA obtained by cordocentesis. FGFR3 mutation analysis revealed a de novo heterozygous c.833A > G, TAC > TGC transversion in exon 7 leading to a p.Tyr278Cys (Y278C) mutation in the FGFR3 protein. aCGH analysis revealed no genomic imbalance in cord blood. After delivery, the fetus had short limbs, a narrow thorax, brachydactyly, and relative macrocephaly. Cytogenetic analysis of cultured placental cells revealed a karyotype of 46,XX. Prenatal diagnosis of abnormal ultrasound findings suspicious of ACH should include a differential diagnosis of HCH by molecular analysis of FGFR3. Copyright © 2013. Published by Elsevier B.V.

  6. Chromosomal alterations in the clonal evolution to the metastatic stage ofquamous cell carcinomas of the lung

    PubMed Central

    Petersen, S; Aninat-Meyer, M; Schlüns, K; Gellert, K; Dietel, M; Petersen, I

    1999-01-01

    Comparative genomic hybridization (CGH) was applied to squamous cellcarcinomas (SCC) of the lung to define chromosomal imbalances that are associated with the metastatic phenotype. In total, 64 lung SCC from 50 patients were investigated, 25 each with or without evidence of metastasis formation. The chromosomal imbalances summarized by a CGH histogram of the 50 cases revealed deletions most frequently on chromosomes 1p21–p31, 2q34–q36, 3p, 4p, 4q, 5q, 6q14–q24, 8p, 9p, 10q, 11p12–p14, 13q13–qter, 18q12–qter and 21q21. DNA over-representations were most pronounced for chromosomes 1q11–q25, 1q32–q41, 3q, 5p, 8q22–qter, 11q13, 12p, 17q21–q22, 17q24–q25, 19, 20q and 22q. In ten cases, paired samples of primaries and at least one metastasis were analysed. The comparison revealed a considerable chromosomal instability and genetic heterogeneity; however, the CGH pattern indicated a clonal relationship in each case. The difference in histograms from the metastatic and non-metastatic tumour groups was most useful in pinpointing chromosomal imbalances associated with the metastatic phenotype, indicating that the deletions at 3p12–p14, 3p21, 4p15–p16, 6q24–qter, 8p22–p23, 10q21–qter and 21q22, as well as the over-representations at 1q21–q25, 8q, 9q34, 14q12 and 15q12–q15, occurred significantly more often in the metastatic tumour group. The comparison of the paired samples confirmed these findings in individual cases and suggested distinct genetic changes, in particular the extension of small interstitial deletions, during tumour progression. Importantly, metastasis-associated lesions were frequently detectable in the primary tumour providing a method of identifying patients at risk for tumour dissemination. Individual profiles and histograms are accessible at our web site http://amba.charite.de/cgh. © 2000 Cancer Research Campaign PMID:10638968

  7. Scattering and radiation analysis of three-dimensional cavity arrays via a hybrid finite element method

    NASA Technical Reports Server (NTRS)

    Jin, Jian-Ming; Volakis, John L.

    1992-01-01

    A hybrid numerical technique is presented for a characterization of the scattering and radiation properties of three-dimensional cavity arrays recessed in a ground plane. The technique combines the finite element and boundary integral methods and invokes Floquet's representation to formulate a system of equations for the fields at the apertures and those inside the cavities. The system is solved via the conjugate gradient method in conjunction with the Fast Fourier Transform (FFT) thus achieving an O(N) storage requirement. By virtue of the finite element method, the proposed technique is applicable to periodic arrays comprised of cavities having arbitrary shape and filled with inhomogeneous dielectrics. Several numerical results are presented, along with new measured data, which demonstrate the validity, efficiency, and capability of the technique.

  8. [Microarray CGH: principle and use for constitutional disorders].

    PubMed

    Sanlaville, D; Lapierre, J M; Coquin, A; Turleau, C; Vermeesch, J; Colleaux, L; Borck, G; Vekemans, M; Aurias, A; Romana, S P

    2005-10-01

    Chips technology has allowed to miniaturize process making possible to realize in one step and using the same device a lot of chemical reactions. The application of this technology to molecular cytogenetics resulted in the development of comparative genomic hybridization (CGH) on microarrays technique. Using this technique it is possible to detect very small genetic imbalances anywhere in the genome. Its usefulness has been well documented in cancer and more recently in constitutional disorders. In particular it has been used to detect interstitial and subtelomeric submicroscopic imbalances, to characterize their size at the molecular level or to define the breakpoints of translocation. The challenge today is to transfer this technology in laboratory medicine. Nevertheless this technology remains expensive and the existence of numerous sequence polymorphisms makes its interpretation difficult. Finally its is unlikely that it will make karyotyping obsolete as it does not allow to detect balanced rearrangements which after meiotic segregation might result in genome imbalance in the progeny.

  9. Incidence of chromosomal imbalances in advanced colorectal carcinomas and their metastases.

    PubMed

    Knösel, Thomas; Petersen, Simone; Schwabe, Holger; Schlüns, Karsten; Stein, Ulrike; Schlag, Peter Michael; Dietel, Manfred; Petersen, Iver

    2002-02-01

    Comparative genomic hybridization (CGH) was used to screen 54 advanced colon carcinomas. i.e., 24 primary tumors and 30 metastases, for chromosomal alterations. Using a sensitive statistical method for the determination of DNA imbalances and histograms for analysis of the incidence of changes, we identified the DNA over-representation of chromosome 20q as the most common alteration being present in 100% of cases. High incidence deletions were observed on 18q21-18q23 (96%), 4q27-4q28 (96%), 4p14 (87%), 5q21 (81%), 1p21-1p22 (72%), 21q21 (74%), 6q16 (72%), 3p12 (66%), 8p24-8p21 (66%), 9p21 (64%), 11q22 (64%), and 14q13-14q21 (64%). Further frequent over-representation was found on 7q12-7q11.2 (75%), 16p11-16p12 (70%), 19p13 (70%), 9q34 (67%), 19q13 (67%), 13q34 (64%), 13q13 (64%), 17q21 (59%), 22q11 (61%), 8q24 (57%), and 1q21 (57%). Pronounced DNA gains and losses being defined as regions in which the ratio profiles exceeded the values of 1.5 and 0.5, respectively, frequently colocalized with peaks of incidence curve. The use of difference histograms for the comparison of tumor subgroups as well as case-by-case histogram for the analysis of 15 paired tumor samples identified several of the above alterations as relevant for tumor progression and metastasis formation. The study identified additional loci and delineates more precisely those that have been previously reported. For comparative purposes, we have made our primary data (ratio profiles, clinicopathological parameters, histograms) available at the interactive web site http://amba.charite.de/cgh, where the incidence of changes can be determined at individual loci and additional parameters can be applied for the analysis of our CGH results.

  10. Molecular Cytogenetic Characterization of Tenosynovial Giant Cell Tumors

    PubMed Central

    Brandal, Petter; Bjerkehagen, Bodil; Heim, Sverre

    2004-01-01

    Abstract Tenosynovial giant cell tumor (TSGCT) is a disease of disputed etiology and pathogenesis. Some investigations indicate a neoplastic origin of the tumors; others indicate that they are polyclonal and inflammatory. The cytogenetic and molecular genetic features of TSGCTs are largely unknown, as only some 20 localized and 30 diffuse tumors with cytogenetic aberrations have been reported. The most common karyotypic aberrations have been trisomy for chromosomes 5 and 7 and translocations involving chromosomal area 1p11-13. We decided to screen the genomes of TSGCTs by comparative genomic hybridization (CGH) to perform interphase fluorescence in situ hybridization (IP-FISH), looking for numerical aberrations of chromosomes 1, 5, and 7, and to analyze the tumors for microsatellite instability. Except for two diffuse TSGCTs that came fresh to us, and which, by karyotyping, exhibited t(1;22)(p13;q12) and a t(1;1)(q21;p11) and +7, respectively, all studies had to be performed on formalin-fixed, paraffin-embedded material. DNA was extracted from 51 localized and nine diffuse TSGCTs. CGH was successful for 24 tumors, but none of them showed copy number changes. The IP-FISH studies showed trisomy 7 in 56% of the tumors (15/27), whereas chromosomes 1 and 5 seemed to be disomic in all TSGCTs. All informative tumors were wild-type by microsatellite instability analysis. PMID:15548367

  11. An application of CART algorithm in genetics: IGFs and cGH polymorphisms in Japanese quail

    NASA Astrophysics Data System (ADS)

    Kaplan, Selçuk

    2017-04-01

    The avian insulin-like growth factor-1 (IGFs) and avian growth hormone (cGH) genes are the most important genes that can affect bird performance traits because of its important function in growth and metabolism. Understanding the molecular genetic basis of variation in growth-related traits is of importance for continued improvement and increased rates of genetic gain. The objective of the present study was to identify polymorphisms of cGH and IGFs genes in Japanese quail using conventional least square method (LSM) and CART algorithm. Therefore, this study was aimed to demonstrate at determining the polymorphisms of two genes related growth characteristics via CART algorithm. A simulated data set was generated to analyze by adhering the results of some poultry genetic studies which it includes live weights at 5 weeks of age, 3 alleles and 6 genotypes of cGH and 2 alleles and 3 genotypes of IGFs. As a result, it has been determined that the CART algorithm has some advantages as for that LSM.

  12. Decomposition method for fast computation of gigapixel-sized Fresnel holograms on a graphics processing unit cluster.

    PubMed

    Jackin, Boaz Jessie; Watanabe, Shinpei; Ootsu, Kanemitsu; Ohkawa, Takeshi; Yokota, Takashi; Hayasaki, Yoshio; Yatagai, Toyohiko; Baba, Takanobu

    2018-04-20

    A parallel computation method for large-size Fresnel computer-generated hologram (CGH) is reported. The method was introduced by us in an earlier report as a technique for calculating Fourier CGH from 2D object data. In this paper we extend the method to compute Fresnel CGH from 3D object data. The scale of the computation problem is also expanded to 2 gigapixels, making it closer to real application requirements. The significant feature of the reported method is its ability to avoid communication overhead and thereby fully utilize the computing power of parallel devices. The method exhibits three layers of parallelism that favor small to large scale parallel computing machines. Simulation and optical experiments were conducted to demonstrate the workability and to evaluate the efficiency of the proposed technique. A two-times improvement in computation speed has been achieved compared to the conventional method, on a 16-node cluster (one GPU per node) utilizing only one layer of parallelism. A 20-times improvement in computation speed has been estimated utilizing two layers of parallelism on a very large-scale parallel machine with 16 nodes, where each node has 16 GPUs.

  13. 8p23.1 duplication syndrome differentiated from copy number variation of the defensin cluster at prenatal diagnosis in four new families

    PubMed Central

    2010-01-01

    Background The 8p23.1 duplication syndrome and copy number variation of the 8p23.1 defensin gene cluster are cytogenetically indistinguishable but distinct at the molecular level. To our knowledge, the 8p23.1 duplication syndrome has been described at prenatal diagnosis only once and we report our experience with four further apparent duplications ascertained at prenatal diagnosis. Methods Additional material at band 8p23.1 was detected using conventional G-banded cytogenetics in each case. Multiplex Ligation-dependent Probe Amplification (MLPA) or Fluorescence In Situ Hybridisation (FISH) were used depending on whether only DNA (Cases 1 and 4) or cytogenetic preparations (Cases 2 and 3) were available from the laboratory of origin. The extent of the duplication in Case 1 was retrospectively determined using array Comparative Genomic Hybridisation (array CGH). Results Three cases of 8p23.1 duplication syndrome were found (Cases 1 to 3). Two were de novo and continued to term and the third, a paternally transmitted duplication, was terminated because of a previous child with psychomotor delay and 8p23.1 duplication syndrome. Case 1 was ascertained with a hypoplastic left heart but the ventricular septal and interventricular defects, in Cases 2 and 3 respectively, were found after ascertainment for advanced maternal age. By contrast, case 4 was a maternally transmitted copy number variation of the defensin cluster with normal outcome. Conclusions Our data underline the need to differentiate 8p23.1 duplications from copy number variation of the defensin cluster using FISH, MLPA or array CGH. Cardiac defects were ascertained by ultrasound in only one of the three duplication 8p23.1 pregnancies but were visible in two of the three at 21 to 22 weeks gestation. Our results provide further evidence that both deletion and duplication of the GATA4 transcription factor can give rise to a variety of conotruncal heart defects with variable penetrance and expressivity. PMID:20167067

  14. Identification of Copy Number Aberrations in Breast Cancer Subtypes Using Persistence Topology

    PubMed Central

    Arsuaga, Javier; Borrman, Tyler; Cavalcante, Raymond; Gonzalez, Georgina; Park, Catherine

    2015-01-01

    DNA copy number aberrations (CNAs) are of biological and medical interest because they help identify regulatory mechanisms underlying tumor initiation and evolution. Identification of tumor-driving CNAs (driver CNAs) however remains a challenging task, because they are frequently hidden by CNAs that are the product of random events that take place during tumor evolution. Experimental detection of CNAs is commonly accomplished through array comparative genomic hybridization (aCGH) assays followed by supervised and/or unsupervised statistical methods that combine the segmented profiles of all patients to identify driver CNAs. Here, we extend a previously-presented supervised algorithm for the identification of CNAs that is based on a topological representation of the data. Our method associates a two-dimensional (2D) point cloud with each aCGH profile and generates a sequence of simplicial complexes, mathematical objects that generalize the concept of a graph. This representation of the data permits segmenting the data at different resolutions and identifying CNAs by interrogating the topological properties of these simplicial complexes. We tested our approach on a published dataset with the goal of identifying specific breast cancer CNAs associated with specific molecular subtypes. Identification of CNAs associated with each subtype was performed by analyzing each subtype separately from the others and by taking the rest of the subtypes as the control. Our results found a new amplification in 11q at the location of the progesterone receptor in the Luminal A subtype. Aberrations in the Luminal B subtype were found only upon removal of the basal-like subtype from the control set. Under those conditions, all regions found in the original publication, except for 17q, were confirmed; all aberrations, except those in chromosome arms 8q and 12q were confirmed in the basal-like subtype. These two chromosome arms, however, were detected only upon removal of three patients with exceedingly large copy number values. More importantly, we detected 10 and 21 additional regions in the Luminal B and basal-like subtypes, respectively. Most of the additional regions were either validated on an independent dataset and/or using GISTIC. Furthermore, we found three new CNAs in the basal-like subtype: a combination of gains and losses in 1p, a gain in 2p and a loss in 14q. Based on these results, we suggest that topological approaches that incorporate multiresolution analyses and that interrogate topological properties of the data can help in the identification of copy number changes in cancer. PMID:27600228

  15. Prevalence of endocrine and genetic abnormalities in boys evaluated systematically for a disorder of sex development.

    PubMed

    Nixon, R; Cerqueira, V; Kyriakou, A; Lucas-Herald, A; McNeilly, J; McMillan, M; Purvis, A I; Tobias, E S; McGowan, R; Ahmed, S F

    2017-10-01

    What is the likelihood of identifying genetic or endocrine abnormalities in a group of boys with 46, XY who present to a specialist clinic with a suspected disorder of sex development (DSD)? An endocrine abnormality of the gonadal axis may be present in a quarter of cases and copy number variants (CNVs) or single gene variants may be present in about half of the cases. Evaluation of 46, XY DSD requires a combination of endocrine and genetic tests but the prevalence of these abnormalities in a sufficiently large group of boys presenting to one specialist multidisciplinary service is unclear. This study was a retrospective review of investigations performed on 122 boys. All boys who attended the Glasgow DSD clinic, between 2010 and 2015 were included in the study. The median external masculinization score (EMS) of this group was 9 (range 1-11). Details of phenotype, endocrine and genetic investigations were obtained from case records. An endocrine abnormality of gonadal function was present in 28 (23%) with a median EMS of 8.3 (1-10.5) whilst the median EMS of boys with normal endocrine investigations was 9 (1.5-11) (P = 0.03). Endocrine abnormalities included a disorder of gonadal development in 19 (16%), LH deficiency in 5 (4%) and a disorder of androgen synthesis in 4 (3%) boys. Of 43 cases who had array-comparative genomic hybridization (array-CGH), CNVs were reported in 13 (30%) with a median EMS of 8.5 (1.5-11). Candidate gene analysis using a limited seven-gene panel in 64 boys identified variants in 9 (14%) with a median EMS of 8 (1-9). Of the 21 boys with a genetic abnormality, 11 (52%) had normal endocrine investigations. A selection bias for performing array-CGH in cases with multiple congenital malformations may have led to a high yield of CNVs. It is also possible that the yield of single gene variants may have been higher than reported if the investigators had used a more extended gene panel. The lack of a clear association between the extent of under-masculinization and presence of endocrine and genetic abnormalities suggests a role for parallel endocrine and genetic investigations in cases of suspected XY DSD. RN was supported by the James Paterson Bursary and the Glasgow Children's Hospital Charity Summer Scholarship. SFA, RM and EST are supported by a Scottish Executive Health Department grant 74250/1 for the Scottish Genomes Partnership. EST is also supported by MRC/EPSRC Molecular Pathology Node and Wellcome Trust ISSF funding. There are no conflicts of interest. None. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology.

  16. The Southern Hemisphere VLBI experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preston, R.A.; Meier, D.L.; Louie, A.P.

    1989-07-01

    Six radio telescopes were operated as the first Southern Hemisphere VLBI array in April and May 1982. Observations were made at 2.3 and 8.4 GHz. This array provided VLBI modeling and hybrid imaging of celestial radio sources in the Southern Hemisphere, high-accuracy VLBI geodesy between Southern Hemisphere sites, and subarcsecond radio astrometry of celestial sources south of declination -45 deg. The goals and implementation of the array are discussed, the methods of modeling and hybrid image production are explained, and the VLBI structure of the sources that were observed is summarized. 36 refs.

  17. Fast Bayesian Inference of Copy Number Variants using Hidden Markov Models with Wavelet Compression

    PubMed Central

    Wiedenhoeft, John; Brugel, Eric; Schliep, Alexander

    2016-01-01

    By integrating Haar wavelets with Hidden Markov Models, we achieve drastically reduced running times for Bayesian inference using Forward-Backward Gibbs sampling. We show that this improves detection of genomic copy number variants (CNV) in array CGH experiments compared to the state-of-the-art, including standard Gibbs sampling. The method concentrates computational effort on chromosomal segments which are difficult to call, by dynamically and adaptively recomputing consecutive blocks of observations likely to share a copy number. This makes routine diagnostic use and re-analysis of legacy data collections feasible; to this end, we also propose an effective automatic prior. An open source software implementation of our method is available at http://schlieplab.org/Software/HaMMLET/ (DOI: 10.5281/zenodo.46262). This paper was selected for oral presentation at RECOMB 2016, and an abstract is published in the conference proceedings. PMID:27177143

  18. A fast point-cloud computing method based on spatial symmetry of Fresnel field

    NASA Astrophysics Data System (ADS)

    Wang, Xiangxiang; Zhang, Kai; Shen, Chuan; Zhu, Wenliang; Wei, Sui

    2017-10-01

    Aiming at the great challenge for Computer Generated Hologram (CGH) duo to the production of high spatial-bandwidth product (SBP) is required in the real-time holographic video display systems. The paper is based on point-cloud method and it takes advantage of the propagating reversibility of Fresnel diffraction in the propagating direction and the fringe pattern of a point source, known as Gabor zone plate has spatial symmetry, so it can be used as a basis for fast calculation of diffraction field in CGH. A fast Fresnel CGH method based on the novel look-up table (N-LUT) method is proposed, the principle fringe patterns (PFPs) at the virtual plane is pre-calculated by the acceleration algorithm and be stored. Secondly, the Fresnel diffraction fringe pattern at dummy plane can be obtained. Finally, the Fresnel propagation from dummy plan to hologram plane. The simulation experiments and optical experiments based on Liquid Crystal On Silicon (LCOS) is setup to demonstrate the validity of the proposed method under the premise of ensuring the quality of 3D reconstruction the method proposed in the paper can be applied to shorten the computational time and improve computational efficiency.

  19. High-Resolution SNP/CGH Microarrays Reveal the Accumulation of Loss of Heterozygosity in Commonly Used Candida albicans Strains

    PubMed Central

    Abbey, Darren; Hickman, Meleah; Gresham, David; Berman, Judith

    2011-01-01

    Phenotypic diversity can arise rapidly through loss of heterozygosity (LOH) or by the acquisition of copy number variations (CNV) spanning whole chromosomes or shorter contiguous chromosome segments. In Candida albicans, a heterozygous diploid yeast pathogen with no known meiotic cycle, homozygosis and aneuploidy alter clinical characteristics, including drug resistance. Here, we developed a high-resolution microarray that simultaneously detects ∼39,000 single nucleotide polymorphism (SNP) alleles and ∼20,000 copy number variation loci across the C. albicans genome. An important feature of the array analysis is a computational pipeline that determines SNP allele ratios based upon chromosome copy number. Using the array and analysis tools, we constructed a haplotype map (hapmap) of strain SC5314 to assign SNP alleles to specific homologs, and we used it to follow the acquisition of loss of heterozygosity (LOH) and copy number changes in a series of derived laboratory strains. This high-resolution SNP/CGH microarray and the associated hapmap facilitated the phasing of alleles in lab strains and revealed detrimental genome changes that arose frequently during molecular manipulations of laboratory strains. Furthermore, it provided a useful tool for rapid, high-resolution, and cost-effective characterization of changes in allele diversity as well as changes in chromosome copy number in new C. albicans isolates. PMID:22384363

  20. Interference testing methods of large astronomical mirrors base on lenses and CGH wavefront correctors

    NASA Astrophysics Data System (ADS)

    Abdulkadyrov, Magomed A.; Belousov, Sergey P.; Patrikeev, Vladimir E.; Semenov, Alexandr P.

    2010-07-01

    Since last years and at present days LZOS, JSC has been producing a range of primary mirrors of astronomical telescopes with diameter more than 1m under contracts with foreign companies. Simultaneous testing of an aspherical surface figure by means of a lens corrector and CGH (computer generated hologram) corrector, testing of the corrector using the CGH allow challenging the task of definite testing of the mirrors surfaces figure. The results of successful figuring of the mirrors with diameter up to 4m like VISTA Project (Southern European Observatory), TNT (Thai National telescope, Australia - Thailand), LCO telescopes (Las Cumbres Observatory, USA; Russian national projects and meeting these mirrors specifications' requirements are all considered as the sufficient evidence.

  1. Localized surface plasmon resonance properties of Ag nanorod arrays on graphene-coated Au substrate

    NASA Astrophysics Data System (ADS)

    Mu, Haiwei; Lv, Jingwei; Liu, Chao; Sun, Tao; Chu, Paul K.; Zhang, Jingping

    2017-11-01

    Localized surface plasmon resonance (LSPR) on silver nanorod (SNR) arrays deposited on a graphene-coated Au substrate is investigated by the discrete dipole approximation (DDA) method. The resonance peaks in the extinction spectra of the SNR/graphene/Au structure show significantly different profiles as SNR height, and refractive index of the surrounding medium are varied gradually. Numerical simulation reveals that the shifts in the resonance peaks arise from hybridization of multiple plasmon modes as a result of coupling between the SNR arrays and graphene-coated Au substrate. Moreover, the LSPR modes blue-shifts from 800 nm to 700 nm when the thickness of the graphene layer in the metal nanoparticle (NP) - graphene hybrid nanostructure increases from 1 nm to 5 nm, which attribute to charge transfer between the graphene layer and SNR arrays. The results provide insights into metal NP-graphene hybrid nanostructures which have potential applications in plasmonics.

  2. Computer-generated hologram calculation for real scenes using a commercial portable plenoptic camera

    NASA Astrophysics Data System (ADS)

    Endo, Yutaka; Wakunami, Koki; Shimobaba, Tomoyoshi; Kakue, Takashi; Arai, Daisuke; Ichihashi, Yasuyuki; Yamamoto, Kenji; Ito, Tomoyoshi

    2015-12-01

    This paper shows the process used to calculate a computer-generated hologram (CGH) for real scenes under natural light using a commercial portable plenoptic camera. In the CGH calculation, a light field captured with the commercial plenoptic camera is converted into a complex amplitude distribution. Then the converted complex amplitude is propagated to a CGH plane. We tested both numerical and optical reconstructions of the CGH and showed that the CGH calculation from captured data with the commercial plenoptic camera was successful.

  3. Chromosomal Minimal Critical Regions in Therapy-Related Leukemia Appear Different from Those of De Novo Leukemia by High-Resolution aCGH

    PubMed Central

    Itzhar, Nathalie; Dessen, Philippe; Toujani, Saloua; Auger, Nathalie; Preudhomme, Claude; Richon, Catherine; Lazar, Vladimir; Saada, Véronique; Bennaceur, Anelyse; Bourhis, Jean Henri; de Botton, Stéphane; Bernheim, Alain

    2011-01-01

    Therapy-related acute leukemia (t-AML), is a severe complication of cytotoxic therapy used for primary cancer treatment. The outcome of these patients is poor, compared to people who develop de novo acute leukemia (p-AML). Cytogenetic abnormalities in t-AML are similar to those found in p-AML but present more frequent unfavorable karyotypes depending on the inducting agent. Losses of chromosome 5 or 7 are observed after alkylating agents while balanced translocations are found after topoisomerase II inhibitors. This study compared t-AML to p-AML using high resolution array CGH in order to find copy number abnormalities (CNA) at a higher resolution than conventional cytogenetics. More CNAs were observed in 30 t-AML than in 36 p-AML: 104 CNAs were observed with 63 losses and 41 gains (mean number 3.46 per case) in t-AML, while in p-AML, 69 CNAs were observed with 32 losses and 37 gains (mean number of 1.9 per case). In primary leukemia with a previously “normal” karyotype, 18% exhibited a previously undetected CNA, whereas in the (few) t-AML with a normal karyotype, the rate was 50%. Several minimal critical regions (MCRs) were found in t-AML and p-AML. No common MCRs were found in the two groups. In t-AML a 40kb deleted MCR pointed to RUNX1 on 21q22, a gene coding for a transcription factor implicated in frequent rearrangements in leukemia and in familial thrombocytopenia. In de novo AML, a 1Mb MCR harboring ERG and ETS2 was observed from patients with complex aCGH profiles. High resolution cytogenomics obtained by aCGH and similar techniques already published allowed us to characterize numerous non random chromosome abnormalities. This work supports the hypothesis that they can be classified into several categories: abnormalities common to all AML; those more frequently found in t-AML and those specifically found in p-AML. PMID:21339820

  4. Chromosomal minimal critical regions in therapy-related leukemia appear different from those of de novo leukemia by high-resolution aCGH.

    PubMed

    Itzhar, Nathalie; Dessen, Philippe; Toujani, Saloua; Auger, Nathalie; Preudhomme, Claude; Richon, Catherine; Lazar, Vladimir; Saada, Véronique; Bennaceur, Anelyse; Bourhis, Jean Henri; de Botton, Stéphane; Bernheim, Alain

    2011-02-14

    Therapy-related acute leukemia (t-AML), is a severe complication of cytotoxic therapy used for primary cancer treatment. The outcome of these patients is poor, compared to people who develop de novo acute leukemia (p-AML). Cytogenetic abnormalities in t-AML are similar to those found in p-AML but present more frequent unfavorable karyotypes depending on the inducting agent. Losses of chromosome 5 or 7 are observed after alkylating agents while balanced translocations are found after topoisomerase II inhibitors. This study compared t-AML to p-AML using high resolution array CGH in order to find copy number abnormalities (CNA) at a higher resolution than conventional cytogenetics. More CNAs were observed in 30 t-AML than in 36 p-AML: 104 CNAs were observed with 63 losses and 41 gains (mean number 3.46 per case) in t-AML, while in p-AML, 69 CNAs were observed with 32 losses and 37 gains (mean number of 1.9 per case). In primary leukemia with a previously "normal" karyotype, 18% exhibited a previously undetected CNA, whereas in the (few) t-AML with a normal karyotype, the rate was 50%. Several minimal critical regions (MCRs) were found in t-AML and p-AML. No common MCRs were found in the two groups. In t-AML a 40 kb deleted MCR pointed to RUNX1 on 21q22, a gene coding for a transcription factor implicated in frequent rearrangements in leukemia and in familial thrombocytopenia. In de novo AML, a 1 Mb MCR harboring ERG and ETS2 was observed from patients with complex aCGH profiles. High resolution cytogenomics obtained by aCGH and similar techniques already published allowed us to characterize numerous non random chromosome abnormalities. This work supports the hypothesis that they can be classified into several categories: abnormalities common to all AML; those more frequently found in t-AML and those specifically found in p-AML.

  5. Comparison of the Roche Cobas(®) 4800 HPV assay to Digene Hybrid Capture 2, Roche Linear Array and Roche Amplicor for Detection of High-Risk Human Papillomavirus Genotypes in Women undergoing treatment for cervical dysplasia.

    PubMed

    Phillips, Samuel; Garland, Suzanne M; Tan, Jeffery H; Quinn, Michael A; Tabrizi, Sepehr N

    2015-01-01

    The recently FDA (U.S. food and drug administration) approved Roche Cobas(®) 4800 (Cobas) human papillomavirus (HPV) has limited performance data compared to current HPV detection methods for test of cure in women undergoing treatment for high grade lesions. Evaluation of Cobas HPV assay using historical samples from women undergoing treatment for cervical dysplasia. A selection of 407 samples was tested on the Cobas assay and compared to previous results from Hybrid Capture 2, HPV Amplicor and Roche Linear Array. Overall, a correlation between high-risk HPV positivity and high grade histological diagnosis was 90.6% by the Cobas, 86.1% by Hybrid Capture 2, 92.9% by HPV Amplicor and 91.8% by Roche Linear Array. The Cobas HPV assay is comparative to both the HPV Amplicor and Roche Linear Array assays and better than Hybrid capture 2 assay in the detection of High-Risk HPV in women undergoing treatment for cervical dysplasia. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Female patient with autistic disorder, intellectual disability, and co-morbid anxiety disorder: Expanding the phenotype associated with the recurrent 3q13.2-q13.31 microdeletion.

    PubMed

    Quintela, Ines; Gomez-Guerrero, Lorena; Fernandez-Prieto, Montse; Resches, Mariela; Barros, Francisco; Carracedo, Angel

    2015-12-01

    In recent years, the advent of comparative genomic hybridization (CGH) and single nucleotide polymorphism (SNP) arrays and its use as a first genetic test for the diagnosis of patients with neurodevelopmental phenotypes has allowed the identification of novel submicroscopic chromosomal abnormalities (namely, copy number variants or CNVs), imperceptible by conventional cytogenetic techniques. The 3q13.31 microdeletion syndrome (OMIM #615433) has been defined as a genomic disorder mainly characterized by developmental delay, postnatal overgrowth, hypotonia, genital abnormalities in males, and characteristic craniofacial features. Although the 3q13.31 CNVs are variable in size, a 3.4 Mb recurrently altered region at 3q13.2-q13.31 has been recently described and non-allelic homologous recombination (NAHR) mediated by flanking human endogenous retrovirus (HERV-H) elements has been suggested as the mechanism of deletion formation. We expand the phenotypic spectrum associated with this recurrent deletion performing the clinical description of a 9-year-old female patient with autistic disorder, total absence of language, intellectual disability, anxiety disorder and disruptive, and compulsive eating behaviors. The array-based molecular karyotyping allowed the identification of a de novo recurrent 3q13.2-q13.31 deletion encompassing 25 genes. In addition, we compare her clinical phenotype with previous reports of patients with neurodevelopmental and behavioral disorders and proximal 3q microdeletions. Finally, we also review the candidate genes proposed so far for these phenotypes. © 2015 Wiley Periodicals, Inc.

  7. Homozygous 16p13.11 duplication associated with mild intellectual disability and urinary tract malformations in two siblings born from consanguineous parents.

    PubMed

    Houcinat, N; Llanas, B; Moutton, S; Toutain, J; Cailley, D; Arveiler, B; Combe, C; Lacombe, D; Rooryck, C

    2015-11-01

    The use of array-comparative genomic hybridization (array-CGH) in routine clinical work has allowed the identification of many new copy number variations (CNV). The 16p13.11 duplication has been implicated in various congenital anomalies and neurodevelopmental disorders, but it has also been identified in healthy individuals. We report a clinical observation of two brothers from related parents each carrying a homozygous 16p13.11 duplication. The propositus had mild intellectual disability and posterior urethral valves with chronic renal disease. His brother was considered a healthy child with only learning disabilities and poor academic performances. However, a routine medical examination at 25-years-old revealed a mild chronic renal disease and ureteropelvic junction obstruction. Furthermore, the father presented with a unilateral renal agenesis, thus it seemed that a "congenital anomalies of kidney and urinary tract" (CAKUT) phenotype segregated in this family. This may be related to the duplication, but we cannot exclude the involvement of additional genetic or non-genetic factors in the urological phenotype. Several cohort studies showed association between this chromosomal imbalance and different clinical manifestations, but rarely with CAKUT. The duplication reported here was similar to the larger one of 3.4 Mb previously described versus the more common of 1.6 Mb. It encompassed at least 11 known genes, including the five ohnologs previously identified. Our observation, in addition to expanding the clinical spectrum of the duplication provides further support to understanding the underlying pathogenic mechanism. © 2015 Wiley Periodicals, Inc.

  8. Real-time electroholography using a multiple-graphics processing unit cluster system with a single spatial light modulator and the InfiniBand network

    NASA Astrophysics Data System (ADS)

    Niwase, Hiroaki; Takada, Naoki; Araki, Hiromitsu; Maeda, Yuki; Fujiwara, Masato; Nakayama, Hirotaka; Kakue, Takashi; Shimobaba, Tomoyoshi; Ito, Tomoyoshi

    2016-09-01

    Parallel calculations of large-pixel-count computer-generated holograms (CGHs) are suitable for multiple-graphics processing unit (multi-GPU) cluster systems. However, it is not easy for a multi-GPU cluster system to accomplish fast CGH calculations when CGH transfers between PCs are required. In these cases, the CGH transfer between the PCs becomes a bottleneck. Usually, this problem occurs only in multi-GPU cluster systems with a single spatial light modulator. To overcome this problem, we propose a simple method using the InfiniBand network. The computational speed of the proposed method using 13 GPUs (NVIDIA GeForce GTX TITAN X) was more than 3000 times faster than that of a CPU (Intel Core i7 4770) when the number of three-dimensional (3-D) object points exceeded 20,480. In practice, we achieved ˜40 tera floating point operations per second (TFLOPS) when the number of 3-D object points exceeded 40,960. Our proposed method was able to reconstruct a real-time movie of a 3-D object comprising 95,949 points.

  9. Brucella abortus Choloylglycine Hydrolase Affects Cell Envelope Composition and Host Cell Internalization

    PubMed Central

    Marchesini, María Inés; Connolly, Joseph; Delpino, María Victoria; Baldi, Pablo C.; Mujer, Cesar V.; DelVecchio, Vito G.; Comerci, Diego J.

    2011-01-01

    Choloylglycine hydrolase (CGH, E.C. 3.5.1.24) is a conjugated bile salt hydrolase that catalyses the hydrolysis of the amide bond in conjugated bile acids. Bile salt hydrolases are expressed by gastrointestinal bacteria, and they presumably decrease the toxicity of host's conjugated bile salts. Brucella species are the causative agents of brucellosis, a disease affecting livestock and humans. CGH confers Brucella the ability to deconjugate and resist the antimicrobial action of bile salts, contributing to the establishment of a successful infection through the oral route in mice. Additionally, cgh-deletion mutant was also attenuated in intraperitoneally inoculated mice, which suggests that CGH may play a role during systemic infection other than hydrolyzing conjugated bile acids. To understand the role CGH plays in B. abortus virulence, we infected phagocytic and epithelial cells with a cgh-deletion mutant (Δcgh) and found that it is defective in the internalization process. This defect along with the increased resistance of Δcgh to the antimicrobial action of polymyxin B, prompted an analysis of the cell envelope of this mutant. Two-dimensional electrophoretic profiles of Δcgh cell envelope-associated proteins showed an altered expression of Omp2b and different members of the Omp25/31 family. These results were confirmed by Western blot analysis with monoclonal antibodies. Altogether, the results indicate that Brucella CGH not only participates in deconjugation of bile salts but also affects overall membrane composition and host cell internalization. PMID:22174816

  10. Brucella abortus choloylglycine hydrolase affects cell envelope composition and host cell internalization.

    PubMed

    Marchesini, María Inés; Connolly, Joseph; Delpino, María Victoria; Baldi, Pablo C; Mujer, Cesar V; DelVecchio, Vito G; Comerci, Diego J

    2011-01-01

    Choloylglycine hydrolase (CGH, E.C. 3.5.1.24) is a conjugated bile salt hydrolase that catalyses the hydrolysis of the amide bond in conjugated bile acids. Bile salt hydrolases are expressed by gastrointestinal bacteria, and they presumably decrease the toxicity of host's conjugated bile salts. Brucella species are the causative agents of brucellosis, a disease affecting livestock and humans. CGH confers Brucella the ability to deconjugate and resist the antimicrobial action of bile salts, contributing to the establishment of a successful infection through the oral route in mice. Additionally, cgh-deletion mutant was also attenuated in intraperitoneally inoculated mice, which suggests that CGH may play a role during systemic infection other than hydrolyzing conjugated bile acids. To understand the role CGH plays in B. abortus virulence, we infected phagocytic and epithelial cells with a cgh-deletion mutant (Δcgh) and found that it is defective in the internalization process. This defect along with the increased resistance of Δcgh to the antimicrobial action of polymyxin B, prompted an analysis of the cell envelope of this mutant. Two-dimensional electrophoretic profiles of Δcgh cell envelope-associated proteins showed an altered expression of Omp2b and different members of the Omp25/31 family. These results were confirmed by Western blot analysis with monoclonal antibodies. Altogether, the results indicate that Brucella CGH not only participates in deconjugation of bile salts but also affects overall membrane composition and host cell internalization.

  11. Comparative genomic hybridisation as a supportive tool in diagnostic pathology

    PubMed Central

    Weiss, M M; Kuipers, E J; Meuwissen, S G M; van Diest, P J; Meijer, G A

    2003-01-01

    Aims: Patients with multiple tumour localisations pose a particular problem to the pathologist when the traditional combination of clinical data, morphology, and immunohistochemistry does not provide conclusive evidence to differentiate between metastasis or second primary, or does not identify the primary location in cases of metastases and two primary tumours. Because this is crucial to decide on further treatment, molecular techniques are increasingly being used as ancillary tools. Methods: The value of comparative genomic hybridisation (CGH) to differentiate between metastasis and second primary, or to identify the primary location in cases of metastases and two primary tumours was studied in seven patients. CGH is a cytogenetic technique that allows the analysis of genome wide amplifications, gains, and losses (deletions) in a tumour within a single experiment. The patterns of these chromosomal aberrations at the different tumour localisations were compared. Results: In all seven cases, CGH patterns of gains and losses supported the differentiation between metastasis and second primary, or the identification of the primary location in cases of metastases and two primary tumours. Conclusion: The results illustrate the diagnostic value of CGH in patients with multiple tumours. PMID:12835298

  12. Multiple period s-p hybridization in nano-strip embedded photonic crystal.

    PubMed

    Han, Seunghoon; Lee, Il-Min; Kim, Hwi; Lee, Byoungho

    2005-04-04

    We report and analyze hybridization of s-state and p-state modes in photonic crystal one-dimensional defect cavity array. When embedding a nano-strip into a dielectric rod photonic crystal, an effective cavity array is made, where each cavity possesses two cavity modes: s-state and p-state. The two modes are laterally even versus the nano-strip direction, and interact with each other, producing defect bands, of which the group velocity becomes zero within the first Brillouin zone. We could model and describe the phenomena by using the tight-binding method, well agreeing with the plane-wave expansion method analysis. We note that the reported s- and p-state mode interaction corresponds to the hybridization of atomic orbital in solid-state physics. The concept of multiple period s-p hybridization and the proposed model can be useful for analyzing and developing novel photonic crystal waveguides and devices.

  13. Automated design of paralogue ratio test assays for the accurate and rapid typing of copy number variation

    PubMed Central

    Veal, Colin D.; Xu, Hang; Reekie, Katherine; Free, Robert; Hardwick, Robert J.; McVey, David; Brookes, Anthony J.; Hollox, Edward J.; Talbot, Christopher J.

    2013-01-01

    Motivation: Genomic copy number variation (CNV) can influence susceptibility to common diseases. High-throughput measurement of gene copy number on large numbers of samples is a challenging, yet critical, stage in confirming observations from sequencing or array Comparative Genome Hybridization (CGH). The paralogue ratio test (PRT) is a simple, cost-effective method of accurately determining copy number by quantifying the amplification ratio between a target and reference amplicon. PRT has been successfully applied to several studies analyzing common CNV. However, its use has not been widespread because of difficulties in assay design. Results: We present PRTPrimer (www.prtprimer.org) software for automated PRT assay design. In addition to stand-alone software, the web site includes a database of pre-designed assays for the human genome at an average spacing of 6 kb and a web interface for custom assay design. Other reference genomes can also be analyzed through local installation of the software. The usefulness of PRTPrimer was tested within known CNV, and showed reproducible quantification. This software and database provide assays that can rapidly genotype CNV, cost-effectively, on a large number of samples and will enable the widespread adoption of PRT. Availability: PRTPrimer is available in two forms: a Perl script (version 5.14 and higher) that can be run from the command line on Linux systems and as a service on the PRTPrimer web site (www.prtprimer.org). Contact: cjt14@le.ac.uk Supplementary Information: Supplementary data are available at Bioinformatics online. PMID:23742985

  14. Optical alignment using a CGH and an autostigmatic microscope

    NASA Astrophysics Data System (ADS)

    Parks, Robert E.

    2017-08-01

    We show how custom computer generated holograms (CGH) are used along with an autostigmatic microscope (ASM) to align both optical and mechanical components relative to the CGH. The patterns in the CGHs define points and lines in space when interrogated with the focus of the ASM. Once the ASM is aligned to the CGH, an optical or mechanical component such as a lens, a well-polished ball or a cylinder can be aligned to the ASM in 3 or 4 degrees of freedom and thus to the CGH. In this case we show how a CGH is used to make a fixture for cementing a doublet lens without the need for a rotary table or a precision vertical stage.

  15. Investigation of confined placental mosaicism (CPM) at multiple sites in post-delivery placentas derived through intracytoplasmic sperm injection (ICSI).

    PubMed

    Minor, Agata; Harmer, Karynn; Peters, Nicole; Yuen, Basil Ho; Ma, Sai

    2006-01-01

    Although earlier studies on pregnancies derived through intracytoplasmic sperm injection (ICSI) reported increased non-mosaic aneuploidy among ICSI children, undetected mosaicism, such as confined placental mosaicism (CPM) has not been evaluated. We investigated the incidence of CPM in post-delivery placentas derived from ICSI, evaluated whether CPM was increased and whether it was a contributing factor to negative pregnancy outcome. [Fifty-one post-delivery placentas were collected from patients who underwent ICSI with a normal or negative pregnancy outcome]. Trophoblast and chorionic stroma from three sites were analyzed by comparative genomic hybridization (CGH) and flow cytometry. Detected abnormalities were confirmed by fluorescence in situ hybridization (FISH). The incidence of CPM in the ICSI population was compared to the general population from published data. We detected three cases of CPM in our study. One abnormality was found by CGH analysis; partial trisomy 7q and a partial monosomy Xp limited to the trophoblast at two sites. The abnormality was associated with a child affected by spina bifida. Two cases of mosaic tetraploidy were observed by flow cytometry in pregnancies with a normal outcome. All three abnormalities were confirmed by FISH analysis. The incidence of CPM in the ICSI study population was 5.88% (3/51), which was not statistically different from published reports in the general population (5.88% (42/714), Chi square, P > 0.05). The post-ICSI population was not at risk for CPM in this study. (c) 2005 Wiley-Liss, Inc.

  16. Combinational chromosomal aneuploidies and HPV status for prediction of head and neck squamous cell carcinoma prognosis in biopsies and cytological preparations.

    PubMed

    Wemmert, Silke; Linxweiler, Maximilian; Lerner, Cornelia; Bochen, Florian; Kulas, Philipp; Linxweiler, Johannes; Smola, Sigrun; Urbschat, Steffi; Wagenpfeil, Stefan; Schick, Bernhard

    2018-06-01

    Head and neck squamous cell carcinoma (HNSCC) is one of the most common human cancer types with a very poor prognosis despite improvements in therapeutic modalities. The major known risk factors are tobacco use and alcohol consumption or infection with high-risk human papilloma viruses (HPV), especially in oropharyngeal tumors. The current management based on the assessment of a variety of clinical and pathological parameters does not sufficiently predict outcome. Chromosomal alterations detected in HNSCCs were characterized by metaphase comparative genomic hybridization (CGH) and correlated with clinical parameters as well as survival time. Candidate regions were validated by quantitative polymerase chain reaction, fluorescence-in situ-hybridization (FISH) on dapped tumor tissue and liquid-based cytological smear preparations. In addition, HPV status was determined by polymerase chain reaction and simultaneous immunocytochemical p16 INK4a -Ki67 staining. The most frequent DNA copy number gains were observed on chromosome arms 3q, 8q, 5p, 7q, 12p, and 12q. DNA copy number decreases occurred most frequently at 3p, 17p, 4q, and 5q. FISH analysis verified in part the observed alterations by CGH on dapped tissues and was especially able to detect the most frequent DNA copy changes in cytological specimens. The combination of HPV status and prognostic copy number alteration detected by FISH in biopsies or cytological specimens may be an applicable protocol for screening head and neck cancer patients prior to therapy.

  17. Study of the technology of heat pipe on prevention wildfire of coal gangue hill

    NASA Astrophysics Data System (ADS)

    Deng, Jun; Li, Bei; Ding, Ximei; Ma, Li

    2017-04-01

    Self-ignitable coal gangue hill (CGH) is one kind of special combustion system, which has the characteristics of low self-ignite point, large heat storage, and easy reignition. The currently industrial fire extinguishing methods, such as inhibiting tendency of coal self-ignition, loessial overburden, and cement grouting, had unsatisfied effects for dispersing the heat out in time. Correspondingly, the CGH will lead reignition more frequently with the passage of time. The high underground temperature of CGH threatens the process of ecological and vegetation construction. Therefore, the elimination of high temperature is a vital issue to be solved urgently for habitat restoration. To achieve the ultimately ecological management goal of self-ignitable CGH - extinguishing the fire completely and never reignited, it is crucial to break the heat accumulation. Heat-pipe (HP) has a character of high efficient heat transfer capacity for eliminating the continuously high temperature in CGH. An experimental system was designed to test the heat transfer performance of HP for preventing and extinguishing the spontaneous combustion of coal gangue. Based on the heat transfer theory, the resistance network of the coal-HP heat removal system was analyzed for studying the cooling effect of HP. The experimental results show that the HP can accelerate the heat release in coal gangue pile. The coal temperature could be controlled at 59.6 ˚ C with HP in 7 h and the highest cooling value is 39.4 % with HP in 150 h, which can effectively cool the temperatures of high temperature zones. As a powerful heat transfer components, as soon as HPs were inserted into the CGH with a reasonable distance, it can completely play a vital role in inhibiting the coal self-ignition process.

  18. Fast calculation method of computer-generated hologram using a depth camera with point cloud gridding

    NASA Astrophysics Data System (ADS)

    Zhao, Yu; Shi, Chen-Xiao; Kwon, Ki-Chul; Piao, Yan-Ling; Piao, Mei-Lan; Kim, Nam

    2018-03-01

    We propose a fast calculation method for a computer-generated hologram (CGH) of real objects that uses a point cloud gridding method. The depth information of the scene is acquired using a depth camera and the point cloud model is reconstructed virtually. Because each point of the point cloud is distributed precisely to the exact coordinates of each layer, each point of the point cloud can be classified into grids according to its depth. A diffraction calculation is performed on the grids using a fast Fourier transform (FFT) to obtain a CGH. The computational complexity is reduced dramatically in comparison with conventional methods. The feasibility of the proposed method was confirmed by numerical and optical experiments.

  19. Managing and treating headache of cervicogenic origin.

    PubMed

    Rana, Maunak V

    2013-03-01

    CGH is a common entity that has been assessed historically in various medical disciplines. Currently, CGH is a controversial topic whose existence has supporters and naysayers. The difficulty evaluating CGH is caused by a lack of objective findings on imaging and biologic tests. Patients present with pain but often with a lack of hard, concrete physical findings. Other clinical diagnoses may confound the clinical presentation of patients. The concomitant presence of ON and migraine headaches has been noted in the literature. Positive analgesia after interventional techniques remains the major way to consider the diagnosis in potential patients with headaches. Although the IHS has acknowledged CGH as a secondary headache in its diagnostic schema, more research, specifically randomized double-blinded evaluations of patients with CGH, are required. These data would be deemed as objective gold-standard evidence to lead us from controversy to collaborative agreement regarding the fate of CGH. What is certain regarding CGH is that a cooperative effort should be considered in the treatment of the patients between evaluating physicians, interventional pain physicians, surgeons, and physical therapy providers. This multidisciplinary effort can lead to the effective management of CGH. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Space and power efficient hybrid counters array

    DOEpatents

    Gara, Alan G [Mount Kisco, NY; Salapura, Valentina [Chappaqua, NY

    2009-05-12

    A hybrid counter array device for counting events. The hybrid counter array includes a first counter portion comprising N counter devices, each counter device for receiving signals representing occurrences of events from an event source and providing a first count value corresponding to a lower order bits of the hybrid counter array. The hybrid counter array includes a second counter portion comprising a memory array device having N addressable memory locations in correspondence with the N counter devices, each addressable memory location for storing a second count value representing higher order bits of the hybrid counter array. A control device monitors each of the N counter devices of the first counter portion and initiates updating a value of a corresponding second count value stored at the corresponding addressable memory location in the second counter portion. Thus, a combination of the first and second count values provide an instantaneous measure of number of events received.

  1. Space and power efficient hybrid counters array

    DOEpatents

    Gara, Alan G.; Salapura, Valentina

    2010-03-30

    A hybrid counter array device for counting events. The hybrid counter array includes a first counter portion comprising N counter devices, each counter device for receiving signals representing occurrences of events from an event source and providing a first count value corresponding to a lower order bits of the hybrid counter array. The hybrid counter array includes a second counter portion comprising a memory array device having N addressable memory locations in correspondence with the N counter devices, each addressable memory location for storing a second count value representing higher order bits of the hybrid counter array. A control device monitors each of the N counter devices of the first counter portion and initiates updating a value of a corresponding second count value stored at the corresponding addressable memory location in the second counter portion. Thus, a combination of the first and second count values provide an instantaneous measure of number of events received.

  2. Clinical report of a 17q12 microdeletion with additionally unreported clinical features.

    PubMed

    Roberts, Jennifer L; Gandomi, Stephanie K; Parra, Melissa; Lu, Ira; Gau, Chia-Ling; Dasouki, Majed; Butler, Merlin G

    2014-01-01

    Copy number variations involving the 17q12 region have been associated with developmental and speech delay, autism, aggression, self-injury, biting and hitting, oppositional defiance, inappropriate language, and auditory hallucinations. We present a tall-appearing 17-year-old boy with marfanoid habitus, hypermobile joints, mild scoliosis, pectus deformity, widely spaced nipples, pes cavus, autism spectrum disorder, intellectual disability, and psychiatric manifestations including physical and verbal aggression, obsessive-compulsive behaviors, and oppositional defiance. An echocardiogram showed borderline increased aortic root size. An abdominal ultrasound revealed a small pancreas, mild splenomegaly with a 1.3 cm accessory splenule, and normal kidneys and liver. A testing panel for Marfan, aneurysm, and related disorders was negative. Subsequently, a 400 K array-based comparative genomic hybridization (aCGH) + SNP analysis was performed which identified a de novo suspected pathogenic deletion on chromosome 17q12 encompassing 28 genes. Despite the limited number of cases described in the literature with 17q12 rearrangements, our proband's phenotypic features both overlap and expand on previously reported cases. Since syndrome-specific DNA sequencing studies failed to provide an explanation for this patient's unusual habitus, we postulate that this case represents an expansion of the 17q12 microdeletion phenotype. Further analysis of the deleted interval is recommended for new genotype-phenotype correlations.

  3. P53 oncosuppressor influences selection of genomic imbalances in response to ionizing radiations in human osteosarcoma cell line SAOS-2.

    PubMed

    Zuffa, Elisa; Mancini, Manuela; Brusa, Gianluca; Pagnotta, Eleonora; Hattinger, Claudia Maria; Serra, Massimo; Remondini, Daniel; Castellani, Gastone; Corrado, Patrizia; Barbieri, Enza; Santucci, Maria Alessandra

    2008-07-01

    To investigate the impact of TP53 (tumor protein 53, p53) on genomic stability of osteosarcoma (OS). In first instance, we expressed in OS cell line SAOS-2 (lacking p53) a wild type (wt) p53 construct, whose protein undergoes nuclear import and activation in response to ionizing radiations (IR). Thereafter, we investigated genomic imbalances (amplifications and deletions at genes or DNA regions most frequently altered in human cancers) associated with radio-resistance relative to p53 expression by mean of an array-based comparative genomic hybridization (aCGH) strategy. Finally we investigated a putative marker of radio-induced oxidative stress, a 4,977 bp deletion at mitochondrial (mt) DNA usually referred to as 'common' deletion, by mean of a polimerase chain reaction (PCR) strategy. In radio-resistant subclones generated from wt p53-transfected SAOS-2 cells DNA deletions were remarkably reduced and the accumulation of 'common' deletion at mtDNA (that may let the persistence of oxidative damage by precluding detoxification from reactive oxygen species [ROS]) completely abrogated. The results of our study confirm that wt p53 has a role in protection of OS cell DNA integrity. Multiple mechanisms involved in p53 safeguard of genomic integrity and prevention of deletion outcome are discussed.

  4. Contactin 4 as an Autism Susceptibility Locus

    PubMed Central

    Cottrell, Catherine E.; Bir, Natalie; Varga, Elizabeth; Alvarez, Carlos E.; Bouyain, Samuel; Zernzach, Randall; LambThrush, Devon; Evans, Johnna; Trimarchi, Michael; Butter, Eric M.; Cunningham, David; Gastier-Foster, Julie M.; McBride, Kim; Herman, Gail E.

    2011-01-01

    Scientific Abstract Structural and sequence variation have been described in several members of the contactin (CNTN) and contactin associated protein (CNTNAP) gene families in association with neurodevelopmental disorders, including autism. Using array comparative genome hybridization (CGH), we identified a maternally inherited ~535 kb deletion at 3p26.3 encompassing the 5′ end of the contactin 4 gene (CNTN4) in a patient with autism. Based on this finding and previous reports implicating genomic rearrangements of CNTN4 in autism spectrum disorders (ASDs) and 3p− microdeletion syndrome, we undertook sequencing of the coding regions of the gene in a local ASD cohort in comparison with a set of controls. Unique missense variants were identified in 4/75 unrelated individuals with an ASD, as well as in 1/107 controls. All of the amino acid substitutions were nonsynonomous, occurred at evolutionarily conserved positions, and were, thus, felt likely to be deleterious. However, these data did not reach statistical significance, nor did the variants segregate with disease within all of the ASD families. Finally, there was no detectable difference in binding of two of the variants to the interacting protein PTPRG in vitro. Thusadditional, larger studies will be necessary to determine whether CNTN4 functions as an autism susceptibility locus in combination with other genetic and/or environmental factors. PMID:21308999

  5. Aneuploidy as a mechanism for stress-induced liver adaptation

    PubMed Central

    Duncan, Andrew W.; Hanlon Newell, Amy E.; Bi, Weimin; Finegold, Milton J.; Olson, Susan B.; Beaudet, Arthur L.; Grompe, Markus

    2012-01-01

    Over half of the mature hepatocytes in mice and humans are aneuploid and yet retain full ability to undergo mitosis. This observation has raised the question of whether this unusual somatic genetic variation evolved as an adaptive mechanism in response to hepatic injury. According to this model, hepatotoxic insults select for hepatocytes with specific numerical chromosome abnormalities, rendering them differentially resistant to injury. To test this hypothesis, we utilized a strain of mice heterozygous for a mutation in the homogentisic acid dioxygenase (Hgd) gene located on chromosome 16. Loss of the remaining Hgd allele protects from fumarylacetoacetate hydrolase (Fah) deficiency, a genetic liver disease model. When adult mice heterozygous for Hgd and lacking Fah were exposed to chronic liver damage, injury-resistant nodules consisting of Hgd-null hepatocytes rapidly emerged. To determine whether aneuploidy played a role in this phenomenon, array comparative genomic hybridization (aCGH) and metaphase karyotyping were performed. Strikingly, loss of chromosome 16 was dramatically enriched in all mice that became completely resistant to tyrosinemia-induced hepatic injury. The frequency of chromosome 16–specific aneuploidy was approximately 50%. This result indicates that selection of a specific aneuploid karyotype can result in the adaptation of hepatocytes to chronic liver injury. The extent to which aneuploidy promotes hepatic adaptation in humans remains under investigation. PMID:22863619

  6. Solid phase sequencing of biopolymers

    DOEpatents

    Cantor, Charles; Koster, Hubert

    2010-09-28

    This invention relates to methods for detecting and sequencing target nucleic acid sequences, to mass modified nucleic acid probes and arrays of probes useful in these methods, and to kits and systems which contain these probes. Useful methods involve hybridizing the nucleic acids or nucleic acids which represent complementary or homologous sequences of the target to an array of nucleic acid probes. These probes comprise a single-stranded portion, an optional double-stranded portion and a variable sequence within the single-stranded portion. The molecular weights of the hybridized nucleic acids of the set can be determined by mass spectroscopy, and the sequence of the target determined from the molecular weights of the fragments. Nucleic acids whose sequences can be determined include DNA or RNA in biological samples such as patient biopsies and environmental samples. Probes may be fixed to a solid support such as a hybridization chip to facilitate automated molecular weight analysis and identification of the target sequence.

  7. Simultaneous Profiling of DNA Mutation and Methylation by Melting Analysis Using Magnetoresistive Biosensor Array.

    PubMed

    Rizzi, Giovanni; Lee, Jung-Rok; Dahl, Christina; Guldberg, Per; Dufva, Martin; Wang, Shan X; Hansen, Mikkel F

    2017-09-26

    Epigenetic modifications, in particular DNA methylation, are gaining increasing interest as complementary information to DNA mutations for cancer diagnostics and prognostics. We introduce a method to simultaneously profile DNA mutation and methylation events for an array of sites with single site specificity. Genomic (mutation) or bisulphite-treated (methylation) DNA is amplified using nondiscriminatory primers, and the amplicons are then hybridized to a giant magnetoresistive (GMR) biosensor array followed by melting curve measurements. The GMR biosensor platform offers scalable multiplexed detection of DNA hybridization, which is insensitive to temperature variation. The melting curve approach further enhances the assay specificity and tolerance to variations in probe length. We demonstrate the utility of this method by simultaneously profiling five mutation and four methylation sites in human melanoma cell lines. The method correctly identified all mutation and methylation events and further provided quantitative assessment of methylation density validated by bisulphite pyrosequencing.

  8. Next-generation sequencing reveals the mutational landscape of clinically diagnosed Usher syndrome: copy number variations, phenocopies, a predominant target for translational read-through, and PEX26 mutated in Heimler syndrome.

    PubMed

    Neuhaus, Christine; Eisenberger, Tobias; Decker, Christian; Nagl, Sandra; Blank, Cornelia; Pfister, Markus; Kennerknecht, Ingo; Müller-Hofstede, Cornelie; Charbel Issa, Peter; Heller, Raoul; Beck, Bodo; Rüther, Klaus; Mitter, Diana; Rohrschneider, Klaus; Steinhauer, Ute; Korbmacher, Heike M; Huhle, Dagmar; Elsayed, Solaf M; Taha, Hesham M; Baig, Shahid M; Stöhr, Heidi; Preising, Markus; Markus, Susanne; Moeller, Fabian; Lorenz, Birgit; Nagel-Wolfrum, Kerstin; Khan, Arif O; Bolz, Hanno J

    2017-09-01

    Combined retinal degeneration and sensorineural hearing impairment is mostly due to autosomal recessive Usher syndrome (USH1: congenital deafness, early retinitis pigmentosa (RP); USH2: progressive hearing impairment, RP). Sanger sequencing and NGS of 112 genes (Usher syndrome, nonsyndromic deafness, overlapping conditions), MLPA, and array-CGH were conducted in 138 patients clinically diagnosed with Usher syndrome. A molecular diagnosis was achieved in 97% of both USH1 and USH2 patients, with biallelic mutations in 97% (USH1) and 90% (USH2), respectively. Quantitative readout reliably detected CNVs (confirmed by MLPA or array-CGH), qualifying targeted NGS as one tool for detecting point mutations and CNVs. CNVs accounted for 10% of identified USH2A alleles, often in trans to seemingly monoallelic point mutations. We demonstrate PTC124-induced read-through of the common p.Trp3955* nonsense mutation (13% of detected USH2A alleles), a potential therapy target. Usher gene mutations were found in most patients with atypical Usher syndrome, but the diagnosis was adjusted in case of double homozygosity for mutations in OTOA and NR2E3 , genes implicated in isolated deafness and RP. Two patients with additional enamel dysplasia had biallelic PEX26 mutations, for the first time linking this gene to Heimler syndrome. Targeted NGS not restricted to Usher genes proved beneficial in uncovering conditions mimicking Usher syndrome.

  9. 12p13.33 microdeletion including ELKS/ERC1, a new locus associated with childhood apraxia of speech

    PubMed Central

    Thevenon, Julien; Callier, Patrick; Andrieux, Joris; Delobel, Bruno; David, Albert; Sukno, Sylvie; Minot, Delphine; Mosca Anne, Laure; Marle, Nathalie; Sanlaville, Damien; Bonnet, Marlène; Masurel-Paulet, Alice; Levy, Fabienne; Gaunt, Lorraine; Farrell, Sandra; Le Caignec, Cédric; Toutain, Annick; Carmignac, Virginie; Mugneret, Francine; Clayton-Smith, Jill; Thauvin-Robinet, Christel; Faivre, Laurence

    2013-01-01

    Speech sound disorders are heterogeneous conditions, and sporadic and familial cases have been described. However, monogenic inheritance explains only a small proportion of such disorders, in particular in cases with childhood apraxia of speech (CAS). Deletions of <5 Mb involving the 12p13.33 locus is one of the least commonly deleted subtelomeric regions. Only four patients have been reported with such a deletion diagnosed with fluorescence in situ hybridisation telomere analysis or array CGH. To further delineate this rare microdeletional syndrome, a French collaboration together with a search in the Decipher database allowed us to gather nine new patients with a 12p13.33 subtelomeric or interstitial rearrangement identified by array CGH. Speech delay was found in all patients, which could be defined as CAS when patients had been evaluated by a speech therapist (5/9 patients). Intellectual deficiency was found in 5/9 patients only, and often associated with psychiatric manifestations of various severity. Two such deletions were inherited from an apparently healthy parent, but reevaluation revealed abnormal speech production at least in childhood, suggesting variable expressivity. The ELKS/ERC1 gene, which encodes for a synaptic factor, is found in the smallest region of overlap. These results reinforce the hypothesis that deletions of the 12p13.33 locus may be responsible for variable phenotypes including CAS associated with neurobehavioural troubles and that the presence of CAS justifies a genetic work-up. PMID:22713806

  10. Modulated error diffusion CGHs for neural nets

    NASA Astrophysics Data System (ADS)

    Vermeulen, Pieter J. E.; Casasent, David P.

    1990-05-01

    New modulated error diffusion CGHs (computer generated holograms) for optical computing are considered. Specific attention is given to their use in optical matrix-vector, associative processor, neural net and optical interconnection architectures. We consider lensless CGH systems (many CGHs use an external Fourier transform (FT) lens), the Fresnel sampling requirements, the effects of finite CGH apertures (sample and hold inputs), dot size correction (for laser recorders), and new applications for this novel encoding method (that devotes attention to quantization noise effects).

  11. Chromosomal analysis of blastocyst derived from monopronucleated ICSI zygotes: approach by double trophectoderm biopsy.

    PubMed

    Mateo, Silvia; Vidal, Francesca; Coll, Lluc; Veiga, Anna; Boada, Montserrat

    2017-09-01

    This study aims to increase the knowledge about monopronucleated ICSI-derived blastocysts, analyzing trophectoderm biopsies by aCGH and FISH to evaluate their chromosome constitution. Fifteen monopronucleated ICSI-derived blastocysts were studied. Double trophectoderm biopsy was performed and analyzed by FISH and aCGH. The blastocysts were classified according to chromosome constitution. Disagreements between the two techniques were assessed. Results obtained after FISH and aCGH analyses showed the following: 20% (3/15) and 60% (9/15) diploid females, respectively; 26.7% (4/15) and 26.7% (4/15) diploid males, respectively; and 53.3% (8/15) and 13.3% (2/15) mosaics, respectively. No mosaic male embryos were found using FISH or aCGH. There were disagreements in 40% (6/15) of the cases due to the higher detection of mosaicism by FISH compared to aCGH. The combination of FISH and aCGH has been shown to be a suitable approach to increase the knowledge about monopronucleated ICSI-derived embryos. FISH analysis of blastocysts derived from monopronucleated ICSI zygotes enabled us to conclude that aCGH underestimates haploidy. Some diploid embryos diagnosed by aCGH are in fact mosaic. In cases where these embryos would be used for reproductive purposes, extra analysis of parental genome origin is recommended.

  12. Indium Hybridization of Large Format TES Bolometer Arrays to Readout Multiplexers for Far-Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Miller, Timothy M.; Costen, Nick; Allen, Christine

    2007-01-01

    This conference poster reviews the Indium hybridization of the large format TES bolometer arrays. We are developing a key technology to enable the next generation of detectors. That is the Hybridization of Large Format Arrays using Indium bonded detector arrays containing 32x40 elements which conforms to the NIST multiplexer readout architecture of 1135 micron pitch. We have fabricated and hybridized mechanical models with the detector chips bonded after being fully back-etched. The mechanical support consists of 30 micron walls between elements Demonstrated electrical continuity for each element. The goal is to hybridize fully functional array of TES detectors to NIST readout.

  13. Detection of pathogenic copy number variants in children with idiopathic intellectual disability using 500 K SNP array genomic hybridization

    PubMed Central

    2009-01-01

    Background Array genomic hybridization is being used clinically to detect pathogenic copy number variants in children with intellectual disability and other birth defects. However, there is no agreement regarding the kind of array, the distribution of probes across the genome, or the resolution that is most appropriate for clinical use. Results We performed 500 K Affymetrix GeneChip® array genomic hybridization in 100 idiopathic intellectual disability trios, each comprised of a child with intellectual disability of unknown cause and both unaffected parents. We found pathogenic genomic imbalance in 16 of these 100 individuals with idiopathic intellectual disability. In comparison, we had found pathogenic genomic imbalance in 11 of 100 children with idiopathic intellectual disability in a previous cohort who had been studied by 100 K GeneChip® array genomic hybridization. Among 54 intellectual disability trios selected from the previous cohort who were re-tested with 500 K GeneChip® array genomic hybridization, we identified all 10 previously-detected pathogenic genomic alterations and at least one additional pathogenic copy number variant that had not been detected with 100 K GeneChip® array genomic hybridization. Many benign copy number variants, including one that was de novo, were also detected with 500 K array genomic hybridization, but it was possible to distinguish the benign and pathogenic copy number variants with confidence in all but 3 (1.9%) of the 154 intellectual disability trios studied. Conclusion Affymetrix GeneChip® 500 K array genomic hybridization detected pathogenic genomic imbalance in 10 of 10 patients with idiopathic developmental disability in whom 100 K GeneChip® array genomic hybridization had found genomic imbalance, 1 of 44 patients in whom 100 K GeneChip® array genomic hybridization had found no abnormality, and 16 of 100 patients who had not previously been tested. Effective clinical interpretation of these studies requires considerable skill and experience. PMID:19917086

  14. Cervicogenic headache: a critical review of the current diagnostic criteria.

    PubMed

    Leone, M; D'Amico, D; Grazzi, L; Attanasio, A; Bussone, G

    1998-10-01

    Opinions are divided on the use of the term cervicogenic headache (CGH) in cases with no evidence of cervical damage. According to Sjaastad et al. (1990), CGH is diagnosed from three features: (1) unilateral headache triggered by head/neck movements or posture; (2) unilateral headache triggered by pressure on the neck; (3) unilateral headache spreading to the neck and the homolateral shoulder/arm. Other characteristics are not essential for CGH diagnosis, including pain improvement after greater occipital nerve (GON)/C2 block. However, other authors give different definitions of CGH, and this may explain why reported frequencies for this headache vary so widely. In this paper we critically review the major diagnostic criteria of Sjaastad et al. for CGH in the light of clinical studies conducted at our institute and other literature findings. In a study of 500 headaches we found only two patients with unilateral headache triggered by head/ neck movements or posture, and no cases of neck pressure-induced headache. No clear-cut criteria are given in the literature for differentiating CGH trigger points from myofascial trigger points. In another study of 440 primary headache patients we found that in the unilateral long-lasting headache group (64 migraines and 10 tension-type headaches), a pain involving the occiput/neck was present in 30 migraine and seven tension headache patients; thus, according to the CGH major criteria, 10% (30/307) of 'migraines' and 7% (7/96) of 'tension headaches' could be diagnosed as CGH. However, one cannot exclude that the association of unilateral pain with posterior irradiation is due to the high prevalence of migraine, tension-type headache and chronic neck pain. The relation between CGH and whip-lash injury has been put in doubt by a recent study which found no difference in headache frequency between trauma and control groups and reported no specific headache pattern in the trauma group. Other reports suggest that, when it occurs, CGH usually disappears within a year of whip-lash, throwing doubt on the appropriateness of surgery for post-traumatic CGH. The lack of specificity of GON/C2 block as a treatment for CGH adds further difficulties to the diagnosis of this headache. We conclude that, although neck structures play a role in the pathophysiology of some headaches, clinical patterns indicating a neck-headache relationship have still not been adequately defined. We believe that further rigorous studies are needed to definitively confirm the validity of CGH as a nosological entity.

  15. Generalized epilepsy and mild intellectual disability associated with 13q34 deletion: A potential role for SOX1 and ARHGEF7.

    PubMed

    Orsini, A; Bonuccelli, A; Striano, P; Azzara, A; Costagliola, G; Consolini, R; Peroni, D G; Valetto, A; Bertini, V

    2018-04-26

    Terminal deletions of long arm of chromosome 13 are rare and poorly characterized by cytogenetic studies, making for difficult genotype-phenotype correlations. We report two siblings presenting generalized epilepsy, intellectual disability, and genitourinary tract defects. Array CGH detected a 1.3 Mb deletion at 13q34; it contains two protein-coding genes, SOX1 and ARHGEF7, whose haploinsufficiency can contribute to the epileptic phenotype. Copyright © 2018 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  16. Simplified Microarray Technique for Identifying mRNA in Rare Samples

    NASA Technical Reports Server (NTRS)

    Almeida, Eduardo; Kadambi, Geeta

    2007-01-01

    Two simplified methods of identifying messenger ribonucleic acid (mRNA), and compact, low-power apparatuses to implement the methods, are at the proof-of-concept stage of development. These methods are related to traditional methods based on hybridization of nucleic acid, but whereas the traditional methods must be practiced in laboratory settings, these methods could be practiced in field settings. Hybridization of nucleic acid is a powerful technique for detection of specific complementary nucleic acid sequences, and is increasingly being used for detection of changes in gene expression in microarrays containing thousands of gene probes. A traditional microarray study entails at least the following six steps: 1. Purification of cellular RNA, 2. Amplification of complementary deoxyribonucleic acid [cDNA] by polymerase chain reaction (PCR), 3. Labeling of cDNA with fluorophores of Cy3 (a green cyanine dye) and Cy5 (a red cyanine dye), 4. Hybridization to a microarray chip, 5. Fluorescence scanning the array(s) with dual excitation wavelengths, and 6. Analysis of the resulting images. This six-step procedure must be performed in a laboratory because it requires bulky equipment.

  17. Vitis Phylogenomics: Hybridization Intensities from a SNP Array Outperform Genotype Calls

    PubMed Central

    Miller, Allison J.; Matasci, Naim; Schwaninger, Heidi; Aradhya, Mallikarjuna K.; Prins, Bernard; Zhong, Gan-Yuan; Simon, Charles; Buckler, Edward S.; Myles, Sean

    2013-01-01

    Understanding relationships among species is a fundamental goal of evolutionary biology. Single nucleotide polymorphisms (SNPs) identified through next generation sequencing and related technologies enable phylogeny reconstruction by providing unprecedented numbers of characters for analysis. One approach to SNP-based phylogeny reconstruction is to identify SNPs in a subset of individuals, and then to compile SNPs on an array that can be used to genotype additional samples at hundreds or thousands of sites simultaneously. Although powerful and efficient, this method is subject to ascertainment bias because applying variation discovered in a representative subset to a larger sample favors identification of SNPs with high minor allele frequencies and introduces bias against rare alleles. Here, we demonstrate that the use of hybridization intensity data, rather than genotype calls, reduces the effects of ascertainment bias. Whereas traditional SNP calls assess known variants based on diversity housed in the discovery panel, hybridization intensity data survey variation in the broader sample pool, regardless of whether those variants are present in the initial SNP discovery process. We apply SNP genotype and hybridization intensity data derived from the Vitis9kSNP array developed for grape to show the effects of ascertainment bias and to reconstruct evolutionary relationships among Vitis species. We demonstrate that phylogenies constructed using hybridization intensities suffer less from the distorting effects of ascertainment bias, and are thus more accurate than phylogenies based on genotype calls. Moreover, we reconstruct the phylogeny of the genus Vitis using hybridization data, show that North American subgenus Vitis species are monophyletic, and resolve several previously poorly known relationships among North American species. This study builds on earlier work that applied the Vitis9kSNP array to evolutionary questions within Vitis vinifera and has general implications for addressing ascertainment bias in array-enabled phylogeny reconstruction. PMID:24236035

  18. Assembly of ordered contigs of cosmids selected with YACs of human chromosome 13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, S.G.; Cayanis, E.; Boukhgalter, B.

    1994-06-01

    The authors have developed an efficient method for assembling ordered cosmid contigs aligned to mega-YACs and midi-YACs (average insert sizes of 1.0 and 0.35 Mb, respectively) and used this general method to initiate high-resolution physical mapping of human chromosome 13 (Chr 13). Chr 13-enriched midi-YAC (mYAC) and mega-YAC (MYAC) sublibraries were obtained from corresponding CEPH total human YAC libraries by selecting colonies with inter-Alu PCR probes derived from Chr 13 monochromosomal cell hybrid DNA. These sublibraries were arrayed on filters at high density. In this approach, the MYAC 13 sublibrary is screened by hybridization with cytogenetically assigned Chr 13 DNAmore » probes to select one or a small subset of MYACs. Inter-Alu PCR products from each mYAC are then hybridized to the MYAC and mYAC sublibraries to identify overlapping YACs and to an arrayed Chr 13-specific cosmid library to select corresponding cosmids. The set of selected cosmids, gridded on filters at high density, is hybridized with inter-Alu PCR products from each of the overlapping YACs to identify subsets of cosmids and also with riboprobes from each cosmid of the arrayed set ({open_quotes}cosmid matrix cross-hybridization{close_quotes}). From these data, cosmid contigs are assembled by a specifically designed computer program. Application of this method generates cosmid contigs spanning the length of a MYAC with few gaps. To provide a high-resolution map, ends of cosmids are sequenced at preselected sites to position densely spaced sequence-tagged sites. 33 refs., 7 figs., 1 tab.« less

  19. ArrayVigil: a methodology for statistical comparison of gene signatures using segregated-one-tailed (SOT) Wilcoxon's signed-rank test.

    PubMed

    Khan, Haseeb Ahmad

    2005-01-28

    Due to versatile diagnostic and prognostic fidelity molecular signatures or fingerprints are anticipated as the most powerful tools for cancer management in the near future. Notwithstanding the experimental advancements in microarray technology, methods for analyzing either whole arrays or gene signatures have not been firmly established. Recently, an algorithm, ArraySolver has been reported by Khan for two-group comparison of microarray gene expression data using two-tailed Wilcoxon signed-rank test. Most of the molecular signatures are composed of two sets of genes (hybrid signatures) wherein up-regulation of one set and down-regulation of the other set collectively define the purpose of a gene signature. Since the direction of a selected gene's expression (positive or negative) with respect to a particular disease condition is known, application of one-tailed statistics could be a more relevant choice. A novel method, ArrayVigil, is described for comparing hybrid signatures using segregated-one-tailed (SOT) Wilcoxon signed-rank test and the results compared with integrated-two-tailed (ITT) procedures (SPSS and ArraySolver). ArrayVigil resulted in lower P values than those obtained from ITT statistics while comparing real data from four signatures.

  20. Isolation of human simple repeat loci by hybridization selection.

    PubMed

    Armour, J A; Neumann, R; Gobert, S; Jeffreys, A J

    1994-04-01

    We have isolated short tandem repeat arrays from the human genome, using a rapid method involving filter hybridization to enrich for tri- or tetranucleotide tandem repeats. About 30% of clones from the enriched library cross-hybridize with probes containing trimeric or tetrameric tandem arrays, facilitating the rapid isolation of large numbers of clones. In an initial analysis of 54 clones, 46 different tandem arrays were identified. Analysis of these tandem repeat loci by PCR showed that 24 were polymorphic in length; substantially higher levels of polymorphism were displayed by the tetrameric repeat loci isolated than by the trimeric repeats. Primary mapping of these loci by linkage analysis showed that they derive from 17 chromosomes, including the X chromosome. We anticipate the use of this strategy for the efficient isolation of tandem repeats from other sources of genomic DNA, including DNA from flow-sorted chromosomes, and from other species.

  1. Real-time optical correlator using computer-generated holographic filter on a liquid crystal light valve

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin; Yu, Jeffrey

    1990-01-01

    Limitations associated with the binary phase-only filter often used in optical correlators are presently circumvented in the writing of complex-valued data on a gray-scale spatial light modulator through the use of a computer-generated hologram (CGH) algorithm. The CGH encodes complex-valued data into nonnegative real CGH data in such a way that it may be encoded in any of the available gray-scale spatial light modulators. A CdS liquid-crystal light valve is used for the complex-valued CGH encoding; computer simulations and experimental results are compared, and the use of such a CGH filter as the synapse hologram in a holographic optical neural net is discussed.

  2. Breast tumors from CHEK2 1100delC-mutation carriers: genomic landscape and clinical implications

    PubMed Central

    2011-01-01

    Introduction Checkpoint kinase 2 (CHEK2) is a moderate penetrance breast cancer risk gene, whose truncating mutation 1100delC increases the risk about twofold. We investigated gene copy-number aberrations and gene-expression profiles that are typical for breast tumors of CHEK2 1100delC-mutation carriers. Methods In total, 126 breast tumor tissue specimens including 32 samples from patients carrying CHEK2 1100delC were studied in array-comparative genomic hybridization (aCGH) and gene-expression (GEX) experiments. After dimensionality reduction with CGHregions R package, CHEK2 1100delC-associated regions in the aCGH data were detected by the Wilcoxon rank-sum test. The linear model was fitted to GEX data with R package limma. Genes whose expression levels were associated with CHEK2 1100delC mutation were detected by the bayesian method. Results We discovered four lost and three gained CHEK2 1100delC-related loci. These include losses of 1p13.3-31.3, 8p21.1-2, 8p23.1-2, and 17p12-13.1 as well as gains of 12q13.11-3, 16p13.3, and 19p13.3. Twenty-eight genes located on these regions showed differential expression between CHEK2 1100delC and other tumors, nominating them as candidates for CHEK2 1100delC-associated tumor-progression drivers. These included CLCA1 on 1p22 as well as CALCOCO1, SBEM, and LRP1 on 12q13. Altogether, 188 genes were differentially expressed between CHEK2 1100delC and other tumors. Of these, 144 had elevated and 44, reduced expression levels. Our results suggest the WNT pathway as a driver of tumorigenesis in breast tumors of CHEK2 1100delC-mutation carriers and a role for the olfactory receptor protein family in cancer progression. Differences in the expression of the 188 CHEK2 1100delC-associated genes divided breast tumor samples from three independent datasets into two groups that differed in their relapse-free survival time. Conclusions We have shown that copy-number aberrations of certain genomic regions are associated with CHEK2 mutation 1100delC. On these regions, we identified potential drivers of CHEK2 1100delC-associated tumorigenesis, whose role in cancer progression is worth investigating. Furthermore, poorer survival related to the CHEK2 1100delC gene-expression signature highlights pathways that are likely to have a role in the development of metastatic disease in carriers of the CHEK2 1100delC mutation. PMID:21542898

  3. Method for the fabrication error calibration of the CGH used in the cylindrical interferometry system

    NASA Astrophysics Data System (ADS)

    Wang, Qingquan; Yu, Yingjie; Mou, Kebing

    2016-10-01

    This paper presents a method of absolutely calibrating the fabrication error of the CGH in the cylindrical interferometry system for the measurement of cylindricity error. First, a simulated experimental system is set up in ZEMAX. On one hand, the simulated experimental system has demonstrated the feasibility of the method we proposed. On the other hand, by changing the different positions of the mirror in the simulated experimental system, a misalignment aberration map, consisting of the different interferograms in different positions, is acquired. And it can be acted as a reference for the experimental adjustment in real system. Second, the mathematical polynomial, which describes the relationship between the misalignment aberrations and the possible misalignment errors, is discussed.

  4. Optimal design of tilt carrier frequency computer-generated holograms to measure aspherics.

    PubMed

    Peng, Jiantao; Chen, Zhe; Zhang, Xingxiang; Fu, Tianjiao; Ren, Jianyue

    2015-08-20

    Computer-generated holograms (CGHs) provide an approach to high-precision metrology of aspherics. A CGH is designed under the trade-off among size, mapping distortion, and line spacing. This paper describes an optimal design method based on the parametric model for tilt carrier frequency CGHs placed outside the interferometer focus points. Under the condition of retaining an admissible size and a tolerable mapping distortion, the optimal design method has two advantages: (1) separating the parasitic diffraction orders to improve the contrast of the interferograms and (2) achieving the largest line spacing to minimize sensitivity to fabrication errors. This optimal design method is applicable to common concave aspherical surfaces and illustrated with CGH design examples.

  5. Chromosome Rearrangements in Cornelia de Lange Syndrome (CdLS): Report of a der(3)t(3;12)(p25.3;p13.3) in Two Half Sibs With Features of CdLS and Review of Reported CdLS Cases With Chromosome Rearrangements

    PubMed Central

    DeScipio, Cheryl; Kaur, Maninder; Yaeger, Dinah; Innis, Jeffrey W.; Spinner, Nancy B.; Jackson, Laird G.; Krantz, Ian D.

    2016-01-01

    Cornelia de Lange syndrome (CdLS; OMIM 122470) is a dominantly inherited disorder characterized by multisystem involvement, cognitive delay, limb defects, and characteristic facial features. Recently, mutations in NIPBL have been found in ~50% of individuals with CdLS. Numerous chromosomal rearrangements have been reported in individuals with CdLS. These rearrangements may be causative of a CdLS phenotype, result in a phenocopy, or be unrelated to the observed phenotype. We describe two half siblings with a der(3)t(3;12)(p25.3;p13.3) chromosomal rearrangement, clinical features resembling CdLS, and phenotypic overlap with the del(3)(p25) phenotype. Region-specific BAC probes were used to fine-map the breakpoint region by fluorescence in situ hybridization (FISH). FISH analysis places the chromosome 3 breakpoint distal to RP11-115G3 on 3p25.3; the chromosome 12 breakpoint is distal to BAC RP11-88D16 on 12p13.3. A review of published cases of terminal 3p deletions and terminal 12p duplications indicates that the findings in these siblings are consistent with the del(3)(p25) phenotype. Given the phenotypic overlap with CdLS, we have reviewed the reported cases of chromosomal rearrangements involved in CdLS to better elucidate other potential loci that could harbor additional CdLS genes. Additionally, to identify chromosome rearrangements, genome-wide array comparative genomic hybridization (CGH) was performed on eight individuals with typical CdLS and without identifiable deletion or mutation of NIPBL. No pathologic rearrangements were identified. PMID:16075459

  6. Congenital diaphragmatic hernia (CDH) etiology as revealed by pathway genetics.

    PubMed

    Kantarci, Sibel; Donahoe, Patricia K

    2007-05-15

    Congenital diaphragmatic hernia (CDH) is a common birth defect with high mortality and morbidity. Two hundred seventy CDH patients were ascertained, carefully phenotyped, and classified as isolated (diaphragm defects alone) or complex (with additional anomalies) cases. We established different strategies to reveal CDH-critical chromosome loci and genes in humans. Candidate genes for sequencing analyses were selected from CDH animal models, genetic intervals of recurrent chromosomal aberration in humans, such as 15q26.1-q26.2 or 1q41-q42.12, as well as genes in the retinoic acid and related pathways and those known to be involved in embryonic lung development. For instance, FOG2, GATA4, and COUP-TFII are all needed for both normal diaphragm and lung development and are likely all in the same genetic and molecular pathway. Linkage analysis was applied first in a large inbred family and then in four multiplex families with Donnai-Barrow syndrome (DBS) associated with CDH. 10K SNP chip and microsatellite markers revealed a DBS locus on chromosome 2q23.3-q31.1. We applied array-based comparative genomic hybridization (aCGH) techniques to over 30, mostly complex, CDH patients and found a de novo microdeletion in a patient with Fryns syndrome related to CDH. Fluorescence in situ hybridization (FISH) and multiplex ligation-dependent probe amplification (MLPA) techniques allowed us to further define the deletion interval. Our aim is to identify genetic intervals and, in those, to prioritize genes that might reveal molecular pathways, mutations in any step of which, might contribute to the same phenotype. More important, the elucidation of pathways may ultimately provide clues to treatment strategies. (c) 2007 Wiley-Liss, Inc.

  7. Report: Optimization study of the preparation factors for argan oil microcapsule based on hybrid-level orthogonal array design via SPSS modeling.

    PubMed

    Zhao, Xi; Wu, Xiaoli; Zhou, Hui; Jiang, Tao; Chen, Chun; Liu, Mingshi; Jin, Yuanbao; Yang, Dongsheng

    2014-11-01

    To optimize the preparation factors for argan oil microcapsule using complex coacervation of chitosan cross-linked with gelatin based on hybrid-level orthogonal array design via SPSS modeling. Eight relatively significant factors were firstly investigated and selected as calculative factors for the orthogonal array design from the total of ten factors effecting the preparation of argan oil microcapsule by utilizing the single factor variable method. The modeling of hybrid-level orthogonal array design was built in these eight factors with the relevant levels (9, 9, 9, 9, 7, 6, 2 and 2 respectively). The preparation factors for argan oil microcapsule were investigated and optimized according to the results of hybrid-level orthogonal array design. The priorities order and relevant optimum levels of preparation factors standard to base on the percentage of microcapsule with the diameter of 30~40 μm via SPSS. Experimental data showed that the optimum factors were controlling the chitosan/gelatin ratio, the systemic concentration and the core/shell ratio at 1:2, 1.5% and 1:7 respectively, presetting complex coacervation pH at 6.4, setting cross-linking time and complex coacervation at 75 min and 30 min, using the glucose-delta lactone as the type of cross-linking agent, and selecting chitosan with the molecular weight of 2000~3000.

  8. Efficient generation of 3D hologram for American Sign Language using look-up table

    NASA Astrophysics Data System (ADS)

    Park, Joo-Sup; Kim, Seung-Cheol; Kim, Eun-Soo

    2010-02-01

    American Sign Language (ASL) is one of the languages giving the greatest help for communication of the hearing impaired person. Current 2-D broadcasting, 2-D movies are used the ASL to give some information, help understand the situation of the scene and translate the foreign language. These ASL will not be disappeared in future three-dimensional (3-D) broadcasting or 3-D movies because the usefulness of the ASL. On the other hands, some approaches for generation of CGH patterns have been suggested like the ray-tracing method and look-up table (LUT) method. However, these methods have some drawbacks that needs much time or needs huge memory size for look-up table. Recently, a novel LUT (N-LUT) method for fast generation of CGH patterns of 3-D objects with a dramatically reduced LUT without the loss of computational speed was proposed. Therefore, we proposed the method to efficiently generate the holographic ASL in holographic 3DTV or 3-D movies using look-up table method. The proposed method is largely consisted of five steps: construction of the LUT for each ASL images, extraction of characters in scripts or situation, call the fringe patterns for characters in the LUT for each ASL, composition of hologram pattern for 3-D video and hologram pattern for ASL and reconstruct the holographic 3D video with ASL. Some simulation results confirmed the feasibility of the proposed method in efficient generation of CGH patterns for ASL.

  9. Primary orbital precursor T-cell lymphoblastic lymphoma: Report of a unique case

    PubMed Central

    Stenman, Lisa; Persson, Marta; Enlund, Fredrik; Clasen-Linde, Erik; Stenman, Göran; Heegaard, Steffen

    2016-01-01

    Primary T-cell lymphoblastic lymphoma (T-LBL) in the eye region is very rare. The present study described a unique case of T-LBL involving the extraocular muscles. A 22-year-old male patient presented with a 3-week history of headache, reduced visual acuity and edema of the left eye. Clinical examination revealed left-sided exophthalmus, periorbital edema, chemosis, and reduced motility of the left eye. A magnetic resonance imaging scan revealed thickening of the left orbital muscles and a positron emission tomography-computed tomography scan also demonstrated activity in a subclavicular lymph node. Histopathological analysis of both lesions revealed infiltration by medium-sized neoplastic lymphoid cells with a high nuclear-cytoplasmic ratio and a high mitotic index. Immunostaining revealed positivity for CD2, CD3, CD99, Tia-1, and GranzymB, and variable positivity for CD4. There was no involvement of the bone marrow. Based on the clinical and histopathological findings, a diagnosis of T-LBL was made. There was no evidence of NOTCH1 mutation or rearrangements of the ETV6 and MLL genes and high-resolution array-based comparative genomic hybridization (arrayCGH) analysis revealed a normal genomic profile. The patient received chemotherapy according to the high-risk NOPHO protocol, followed by myeloablative allogenic bone marrow transplantation. At 35 months after diagnosis, the patient remained in complete first remission, but without light perception on his left eye. To the best of our knowledge, this is the first report of a case of T-LBL involving the extraocular muscles. Although primary T-LBL in the eye region is very rare, our findings demonstrate that lymphoma should be considered in the differential diagnosis of patients with similar symptoms. PMID:27900092

  10. The 15q13.3 deletion syndrome: Deficient α(7)-containing nicotinic acetylcholine receptor-mediated neurotransmission in the pathogenesis of neurodevelopmental disorders.

    PubMed

    Deutsch, Stephen I; Burket, Jessica A; Benson, Andrew D; Urbano, Maria R

    2016-01-04

    Array comparative genomic hybridization (array CGH) has led to the identification of microdeletions of the proximal region of chromosome 15q between breakpoints (BP) 3 or BP4 and BP5 encompassing CHRNA7, the gene encoding the α7-nicotinic acetylcholine receptor (α7nAChR) subunit. Phenotypic manifestations of persons with these microdeletions are variable and some heterozygous carriers are seemingly unaffected, consistent with their variable expressivity and incomplete penetrance. Nonetheless, the 15q13.3 deletion syndrome is associated with several neuropsychiatric disorders, including idiopathic generalized epilepsy, intellectual disability, autism spectrum disorders (ASDs) and schizophrenia. Haploinsufficient expression of CHRNA7 in this syndrome has highlighted important roles the α7nAChR plays in the developing brain and normal processes of attention, cognition, memory and behavior throughout life. Importantly, the existence of the 15q13.3 deletion syndrome contributes to an emerging literature supporting clinical trials therapeutically targeting the α7nAChR in disorders such as ASDs and schizophrenia, including the larger population of patients with no evidence of haploinsufficient expression of CHRNA7. Translational clinical trials will be facilitated by the existence of positive allosteric modulators (PAMs) of the α7nAChR that act at sites on the receptor distinct from the orthosteric site that binds acetylcholine and choline, the receptor's endogenous ligands. PAMs lack intrinsic efficacy by themselves, but act where and when the endogenous ligands are released in response to relevant social and cognitive provocations to increase the likelihood they will result in α7nAChR ion channel activation. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Early-onset obesity and paternal 2pter deletion encompassing the ACP1, TMEM18, and MYT1L genes.

    PubMed

    Doco-Fenzy, Martine; Leroy, Camille; Schneider, Anouck; Petit, Florence; Delrue, Marie-Ange; Andrieux, Joris; Perrin-Sabourin, Laurence; Landais, Emilie; Aboura, Azzedine; Puechberty, Jacques; Girard, Manon; Tournaire, Magali; Sanchez, Elodie; Rooryck, Caroline; Ameil, Agnès; Goossens, Michel; Jonveaux, Philippe; Lefort, Geneviève; Taine, Laurence; Cailley, Dorothée; Gaillard, Dominique; Leheup, Bruno; Sarda, Pierre; Geneviève, David

    2014-04-01

    Obesity is a common but highly, clinically, and genetically heterogeneous disease. Deletion of the terminal region of the short arm of chromosome 2 is rare and has been reported in about 13 patients in the literature often associated with a Prader-Willi-like phenotype. We report on five unrelated patients with 2p25 deletion of paternal origin presenting with early-onset obesity, hyperphagia, intellectual deficiency, and behavioural difficulties. Among these patients, three had de novo pure 2pter deletions, one presented with a paternal derivative der(2)t(2;15)(p25.3;q26) with deletion in the 2pter region and the last patient presented with an interstitial 2p25 deletion. The size of the deletions was characterized by SNP array or array-CGH and was confirmed by fluorescence in situ hybridization (FISH) studies. Four patients shared a 2p25.3 deletion with a minimal critical region estimated at 1.97 Mb and encompassing seven genes, namely SH3HYL1, ACP1, TMEMI8, SNTG2, TPO, PXDN, and MYT1L genes. The fifth patient had a smaller interstitial deletion encompassing the TPO, PXDN, and MYT1L genes. Paternal origin of the deletion was determined by genotyping using microsatellite markers. Analysis of the genes encompassed in the deleted region led us to speculate that the ACP1, TMEM18, and/or MYT1L genes might be involved in early-onset obesity. In addition, intellectual deficiency and behavioural troubles can be explained by the heterozygous loss of the SNTG2 and MYT1L genes. Finally, we discuss the parent-of-origin of the deletion.

  12. Hybrid structures based on gold nanoparticles and semiconductor quantum dots for biosensor applications

    PubMed Central

    Kurochkina, Margarita; Konshina, Elena; Oseev, Aleksandr; Hirsch, Soeren

    2018-01-01

    Background The luminescence amplification of semiconductor quantum dots (QD) in the presence of self-assembled gold nanoparticles (Au NPs) is one of way for creating biosensors with highly efficient transduction. Aims The objective of this study was to fabricate the hybrid structures based on semiconductor CdSe/ZnS QDs and Au NP arrays and to use them as biosensors of protein. Methods In this paper, the hybrid structures based on CdSe/ZnS QDs and Au NP arrays were fabricated using spin coating processes. Au NP arrays deposited on a glass wafer were investigated by optical microscopy and absorption spectroscopy depending on numbers of spin coating layers and their baking temperature. Bovine serum albumin (BSA) was used as the target protein analyte in a phosphate buffer. A confocal laser scanning microscope was used to study the luminescent properties of Au NP/QD hybrid structures and to test BSA. Results The dimensions of Au NP aggregates increased and the space between them decreased with increasing processing temperature. At the same time, a blue shift of the plasmon resonance peak in the absorption spectra of Au NP arrays was observed. The deposition of CdSe/ZnS QDs with a core diameter of 5 nm on the surface of the Au NP arrays caused an increase in absorption and a red shift of the plasmon peak in the spectra. The exciton–plasmon enhancement of the QDs’ photoluminescence intensity has been obtained at room temperature for hybrid structures with Au NPs array pretreated at temperatures of 100°C and 150°C. It has been found that an increase in the weight content of BSA increases the photoluminescence intensity of such hybrid structures. Conclusion The ability of the qualitative and quantitative determination of protein content in solution using the Au NP/QD structures as an optical biosensor has been shown experimentally. PMID:29731613

  13. Fabrication of heterogeneous nanomaterial array by programmable heating and chemical supply within microfluidic platform towards multiplexed gas sensing application

    PubMed Central

    Yang, Daejong; Kang, Kyungnam; Kim, Donghwan; Li, Zhiyong; Park, Inkyu

    2015-01-01

    A facile top-down/bottom-up hybrid nanofabrication process based on programmable temperature control and parallel chemical supply within microfluidic platform has been developed for the all liquid-phase synthesis of heterogeneous nanomaterial arrays. The synthesized materials and locations can be controlled by local heating with integrated microheaters and guided liquid chemical flow within microfluidic platform. As proofs-of-concept, we have demonstrated the synthesis of two types of nanomaterial arrays: (i) parallel array of TiO2 nanotubes, CuO nanospikes and ZnO nanowires, and (ii) parallel array of ZnO nanowire/CuO nanospike hybrid nanostructures, CuO nanospikes and ZnO nanowires. The laminar flow with negligible ionic diffusion between different precursor solutions as well as localized heating was verified by numerical calculation and experimental result of nanomaterial array synthesis. The devices made of heterogeneous nanomaterial array were utilized as a multiplexed sensor for toxic gases such as NO2 and CO. This method would be very useful for the facile fabrication of functional nanodevices based on highly integrated arrays of heterogeneous nanomaterials. PMID:25634814

  14. CGH and OCC Announce a New, Two-Year Funding Opportunity for NCI-designated Cancer Centers

    Cancer.gov

    CGH and OCC announce a new funding opportunity available from CGH for cancer prevention and control (CPC) researchers at NCI-designated cancer centers: Administrative Supplements to Promote Cancer Prevention and Control Research in Low and Middle Income Countries.

  15. Nucleic Acid Detection Methods

    DOEpatents

    Smith, Cassandra L.; Yaar, Ron; Szafranski, Przemyslaw; Cantor, Charles R.

    1998-05-19

    The invention relates to methods for rapidly determining the sequence and/or length a target sequence. The target sequence may be a series of known or unknown repeat sequences which are hybridized to an array of probes. The hybridized array is digested with a single-strand nuclease and free 3'-hydroxyl groups extended with a nucleic acid polymerase. Nuclease cleaved heteroduplexes can be easily distinguish from nuclease uncleaved heteroduplexes by differential labeling. Probes and target can be differentially labeled with detectable labels. Matched target can be detected by cleaving resulting loops from the hybridized target and creating free 3-hydroxyl groups. These groups are recognized and extended by polymerases added into the reaction system which also adds or releases one label into solution. Analysis of the resulting products using either solid phase or solution. These methods can be used to detect characteristic nucleic acid sequences, to determine target sequence and to screen for genetic defects and disorders. Assays can be conducted on solid surfaces allowing for multiple reactions to be conducted in parallel and, if desired, automated.

  16. Solid phase sequencing of double-stranded nucleic acids

    DOEpatents

    Fu, Dong-Jing; Cantor, Charles R.; Koster, Hubert; Smith, Cassandra L.

    2002-01-01

    This invention relates to methods for detecting and sequencing of target double-stranded nucleic acid sequences, to nucleic acid probes and arrays of probes useful in these methods, and to kits and systems which contain these probes. Useful methods involve hybridizing the nucleic acids or nucleic acids which represent complementary or homologous sequences of the target to an array of nucleic acid probes. These probe comprise a single-stranded portion, an optional double-stranded portion and a variable sequence within the single-stranded portion. The molecular weights of the hybridized nucleic acids of the set can be determined by mass spectroscopy, and the sequence of the target determined from the molecular weights of the fragments. Nucleic acids whose sequences can be determined include nucleic acids in biological samples such as patient biopsies and environmental samples. Probes may be fixed to a solid support such as a hybridization chip to facilitate automated determination of molecular weights and identification of the target sequence.

  17. Invisible two-dimensional barcode fabrication inside a synthetic fused silica by femtosecond laser processing using a computer-generated hologram

    NASA Astrophysics Data System (ADS)

    Kawashima, Hayato; Yamaji, Masahiro; Suzuki, Jun'ichi; Tanaka, Shuhei

    2011-03-01

    We report an invisible two-dimensional (2D) barcode embedded into a synthetic fused silica by femtosecond laser processing using a computer-generated hologram (CGH) that generates a spatially extended femtosecond pulse beam in the depth direction. When we illuminate the irradiated 2D barcode pattern with a 254 nm ultraviolet (UV) light, a strong red photoluminescence (PL) is observed, and we can read it by using a complementary metal oxide semiconductor (CMOS) camera and image processing technology. This work provides a novel barcode fabrication method by femtosecond laser processing using a CGH and a barcode reading method by a red PL.

  18. Chromothripsis and ring chromosome 22: a paradigm of genomic complexity in the Phelan-McDermid syndrome (22q13 deletion syndrome)

    PubMed Central

    Kurtas, Nehir; Arrigoni, Filippo; Errichiello, Edoardo; Zucca, Claudio; Maghini, Cristina; D’Angelo, Maria Grazia; Beri, Silvana; Giorda, Roberto; Bertuzzo, Sara; Delledonne, Massimo; Xumerle, Luciano; Rossato, Marzia; Zuffardi, Orsetta; Bonaglia, Maria Clara

    2018-01-01

    Introduction Phelan-McDermid syndrome (PMS) is caused by SHANK3 haploinsufficiency. Its wide phenotypic variation is attributed partly to the type and size of 22q13 genomic lesion (deletion, unbalanced translocation, ring chromosome), partly to additional undefined factors. We investigated a child with severe global neurodevelopmental delay (NDD) compatible with her distal 22q13 deletion, complicated by bilateral perisylvian polymicrogyria (BPP) and urticarial rashes, unreported in PMS. Methods Following the cytogenetic and array-comparative genomic hybridization (CGH) detection of a r(22) with SHANK3 deletion and two upstream duplications, whole-genome sequencing (WGS) in blood and whole-exome sequencing (WES) in blood and saliva were performed to highlight potential chromothripsis/chromoanagenesis events and any possible BPP-associated variants, even in low-level mosaicism. Results WGS confirmed the deletion and highlighted inversion and displaced order of eight fragments, three of them duplicated. The microhomology-mediated insertion of partial Alu-elements at one breakpoint junction disrupted the topological associating domain joining NFAM1 to the transcriptional coregulator TCF20. WES failed to detect BPP-associated variants. Conclusions Although we were unable to highlight the molecular basis of BPP, our data suggest that SHANK3 haploinsufficiency and TCF20 misregulation, both associated with intellectual disability, contributed to the patient’s NDD, while NFAM1 interruption likely caused her skin rashes, as previously reported. We provide the first example of chromoanasynthesis in a constitutional ring chromosome and reinforce the growing evidence that chromosomal rearrangements may be more complex than estimated by conventional diagnostic approaches and affect the phenotype by global alteration of the topological chromatin organisation rather than simply by deletion or duplication of dosage-sensitive genes. PMID:29378768

  19. Complex chromosomal rearrangement-a lesson learned from PGS.

    PubMed

    Frumkin, Tsvia; Peleg, Sagit; Gold, Veronica; Reches, Adi; Asaf, Shiri; Azem, Foad; Ben-Yosef, Dalit; Malcov, Mira

    2017-08-01

    The aim of the study is to report a case of non-diagnosed complex chromosomal rearrangement (CCR) identified by preimplantation genetic screening (PGS) followed by preimplantation genetic diagnosis (PGD) which resulted in a pregnancy and delivery of healthy offspring. A 29-year-old woman and her spouse, both diagnosed previously with normal karyotypes, approached our IVF-PGD center following eight early spontaneous miscarriages. PGS using chromosomal microarray analysis (CMA) was performed on biopsied trophectoderm. Fluorescence in situ hybridization (FISH), as well as re-karyotype, were performed on metaphase derived from peripheral blood of the couple. Subsequently, in the following PGD cycle, a total of seven blastocysts underwent CMA. A gain or loss at three chromosomes (3, 7, 9) was identified in six out of seven embryos in the first PGS-CMA cycle. FISH analysis of parental peripheral blood samples demonstrated that the male is a carrier of a CCR involving those chromosomes; this was in spite of a former diagnosis of normal karyotypes for both parents. Re-karyotype verified the complex translocation of 46,XY,t (3;7;9)(q23;q22;q22). Subsequently, in the following cycle, a total of seven blastocysts underwent PGD-CMA for the identified complex translocation. Two embryos were diagnosed with balanced chromosomal constitution. A single balanced embryo was transferred and pregnancy was achieved, resulting in the birth of a healthy female baby. PGS employing CMA is an efficient method to detect unrevealed chromosomal abnormalities, including complicated cases of CCR. The combined application of array CGH and FISH technologies enables the identification of an increased number of CCR carriers for which PGD is particularly beneficial.

  20. Comparative genomics among Saccharomyces cerevisiae × Saccharomyces kudriavzevii natural hybrid strains isolated from wine and beer reveals different origins

    PubMed Central

    2012-01-01

    Background Interspecific hybrids between S. cerevisiae × S. kudriavzevii have frequently been detected in wine and beer fermentations. Significant physiological differences among parental and hybrid strains under different stress conditions have been evidenced. In this study, we used comparative genome hybridization analysis to evaluate the genome composition of different S. cerevisiae × S. kudriavzevii natural hybrids isolated from wine and beer fermentations to infer their evolutionary origins and to figure out the potential role of common S. kudriavzevii gene fraction present in these hybrids. Results Comparative genomic hybridization (CGH) and ploidy analyses carried out in this study confirmed the presence of individual and differential chromosomal composition patterns for most S. cerevisiae × S. kudriavzevii hybrids from beer and wine. All hybrids share a common set of depleted S. cerevisiae genes, which also are depleted or absent in the wine strains studied so far, and the presence a common set of S. kudriavzevii genes, which may be associated with their capability to grow at low temperatures. Finally, a maximum parsimony analysis of chromosomal rearrangement events, occurred in the hybrid genomes, indicated the presence of two main groups of wine hybrids and different divergent lineages of brewing strains. Conclusion Our data suggest that wine and beer S. cerevisiae × S. kudriavzevii hybrids have been originated by different rare-mating events involving a diploid wine S. cerevisiae and a haploid or diploid European S. kudriavzevii strains. Hybrids maintain several S. kudriavzevii genes involved in cold adaptation as well as those related to S. kudriavzevii mitochondrial functions. PMID:22906207

  1. Physical examination tests for screening and diagnosis of cervicogenic headache: A systematic review.

    PubMed

    Rubio-Ochoa, J; Benítez-Martínez, J; Lluch, E; Santacruz-Zaragozá, S; Gómez-Contreras, P; Cook, C E

    2016-02-01

    It has been suggested that differential diagnosis of headaches should consist of a robust subjective examination and a detailed physical examination of the cervical spine. Cervicogenic headache (CGH) is a form of headache that involves referred pain from the neck. To our knowledge, no studies have summarized the reliability and diagnostic accuracy of physical examination tests for CGH. The aim of this study was to summarize the reliability and diagnostic accuracy of physical examination tests used to diagnose CGH. A systematic review following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines was performed in four electronic databases (MEDLINE, Web of Science, Embase and Scopus). Full text reports concerning physical tests for the diagnosis of CGH which reported the clinometric properties for assessment of CGH, were included and screened for methodological quality. Quality Appraisal for Reliability Studies (QAREL) and Quality Assessment of Studies of Diagnostic Accuracy (QUADAS-2) scores were completed to assess article quality. Eight articles were retrieved for quality assessment and data extraction. Studies investigating diagnostic reliability of physical examination tests for CGH scored poorer on methodological quality (higher risk of bias) than those of diagnostic accuracy. There is sufficient evidence showing high levels of reliability and diagnostic accuracy of the selected physical examination tests for the diagnosis of CGH. The cervical flexion-rotation test (CFRT) exhibited both the highest reliability and the strongest diagnostic accuracy for the diagnosis of CGH. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Computer Generated Hologram System for Wavefront Measurement System Calibration

    NASA Technical Reports Server (NTRS)

    Olczak, Gene

    2011-01-01

    Computer Generated Holograms (CGHs) have been used for some time to calibrate interferometers that require nulling optics. A typical scenario is the testing of aspheric surfaces with an interferometer placed near the paraxial center of curvature. Existing CGH technology suffers from a reduced capacity to calibrate middle and high spatial frequencies. The root cause of this shortcoming is as follows: the CGH is not placed at an image conjugate of the asphere due to limitations imposed by the geometry of the test and the allowable size of the CGH. This innovation provides a calibration system where the imaging properties in calibration can be made comparable to the test configuration. Thus, if the test is designed to have good imaging properties, then middle and high spatial frequency errors in the test system can be well calibrated. The improved imaging properties are provided by a rudimentary auxiliary optic as part of the calibration system. The auxiliary optic is simple to characterize and align to the CGH. Use of the auxiliary optic also reduces the size of the CGH required for calibration and the density of the lines required for the CGH. The resulting CGH is less expensive than the existing technology and has reduced write error and alignment error sensitivities. This CGH system is suitable for any kind of calibration using an interferometer when high spatial resolution is required. It is especially well suited for tests that include segmented optical components or large apertures.

  3. Loss of function of KIAA2022 causes mild to severe intellectual disability with an autism spectrum disorder and impairs neurite outgrowth.

    PubMed

    Van Maldergem, Lionel; Hou, Qingming; Kalscheuer, Vera M; Rio, Marlène; Doco-Fenzy, Martine; Medeira, Ana; de Brouwer, Arjan P M; Cabrol, Christelle; Haas, Stefan A; Cacciagli, Pierre; Moutton, Sébastien; Landais, Emilie; Motte, Jacques; Colleaux, Laurence; Bonnet, Céline; Villard, Laurent; Dupont, Juliette; Man, Heng-Ye

    2013-08-15

    Existence of a discrete new X-linked intellectual disability (XLID) syndrome due to KIAA2022 deficiency was questioned by disruption of KIAA2022 by an X-chromosome pericentric inversion in a XLID family we reported in 2004. Three additional families with likely pathogenic KIAA2022 mutations were discovered within the frame of systematic parallel sequencing of familial cases of XLID or in the context of routine array-CGH evaluation of sporadic intellectual deficiency (ID) cases. The c.186delC and c.3597dupA KIAA2022 truncating mutations were identified by X-chromosome exome sequencing, while array CGH discovered a 70 kb microduplication encompassing KIAA2022 exon 1 in the third family. This duplication decreased KIAA2022 mRNA level in patients' lymphocytes by 60%. Detailed clinical examination of all patients, including the two initially reported, indicated moderate-to-severe ID with autistic features, strabismus in all patients, with no specific dysmorphic features other than a round face in infancy and no structural brain abnormalities on magnetic resonance imaging (MRI). Interestingly, the patient with decreased KIAA2022 expression had only mild ID with severe language delay and repetitive behaviors falling in the range of an autism spectrum disorder (ASD). Since little is known about KIAA2022 function, we conducted morphometric studies in cultured rat hippocampal neurons. We found that siRNA-mediated KIAA2022 knockdown resulted in marked impairment in neurite outgrowth including both the dendrites and the axons, suggesting a major role for KIAA2022 in neuron development and brain function.

  4. Genomic and protein expression profiling identifies CDK6 as novel independent prognostic marker in medulloblastoma.

    PubMed

    Mendrzyk, Frank; Radlwimmer, Bernhard; Joos, Stefan; Kokocinski, Felix; Benner, Axel; Stange, Daniel E; Neben, Kai; Fiegler, Heike; Carter, Nigel P; Reifenberger, Guido; Korshunov, Andrey; Lichter, Peter

    2005-12-01

    Medulloblastoma is the most common malignant brain tumor in children. Despite multimodal aggressive treatment, nearly half of the patients die as a result of this tumor. Identification of molecular markers for prognosis and development of novel pathogenesis-based therapies depends crucially on a better understanding of medulloblastoma pathomechanisms. We performed genome-wide analysis of DNA copy number imbalances in 47 medulloblastomas using comparative genomic hybridization to large insert DNA microarrays (matrix-CGH). The expression of selected candidate genes identified by matrix-CGH was analyzed immunohistochemically on tissue microarrays representing medulloblastomas from 189 clinically well-documented patients. To identify novel prognostic markers, genomic findings and protein expression data were correlated to patient survival. Matrix-CGH analysis revealed frequent DNA copy number alterations of several novel candidate regions. Among these, gains at 17q23.2-qter (P < .01) and losses at 17p13.1 to 17p13.3 (P = .04) were significantly correlated to poor prognosis. Within 17q23.2-qter and 7q21.2, two of the most frequently gained chromosomal regions, confined amplicons were identified that contained the PPM1D and CDK6 genes, respectively. Immunohistochemistry revealed strong expression of PPM1D in 148 (88%) of 168 and CDK6 in 50 (30%) of 169 medulloblastomas. Overexpression of CDK6 correlated significantly with poor prognosis (P < .01) and represented an independent prognostic marker of overall survival on multivariate analysis (P = .02). We identified CDK6 as a novel molecular marker that can be determined by immunohistochemistry on routinely processed tissue specimens and may facilitate the prognostic assessment of medulloblastoma patients. Furthermore, increased protein-levels of PPM1D and CDK6 may link the TP53 and RB1 tumor suppressor pathways to medulloblastoma pathomechanisms.

  5. CEQer: a graphical tool for copy number and allelic imbalance detection from whole-exome sequencing data.

    PubMed

    Piazza, Rocco; Magistroni, Vera; Pirola, Alessandra; Redaelli, Sara; Spinelli, Roberta; Redaelli, Serena; Galbiati, Marta; Valletta, Simona; Giudici, Giovanni; Cazzaniga, Giovanni; Gambacorti-Passerini, Carlo

    2013-01-01

    Copy number alterations (CNA) are common events occurring in leukaemias and solid tumors. Comparative Genome Hybridization (CGH) is actually the gold standard technique to analyze CNAs; however, CGH analysis requires dedicated instruments and is able to perform only low resolution Loss of Heterozygosity (LOH) analyses. Here we present CEQer (Comparative Exome Quantification analyzer), a new graphical, event-driven tool for CNA/allelic-imbalance (AI) coupled analysis of exome sequencing data. By using case-control matched exome data, CEQer performs a comparative digital exonic quantification to generate CNA data and couples this information with exome-wide LOH and allelic imbalance detection. This data is used to build mixed statistical/heuristic models allowing the identification of CNA/AI events. To test our tool, we initially used in silico generated data, then we performed whole-exome sequencing from 20 leukemic specimens and corresponding matched controls and we analyzed the results using CEQer. Taken globally, these analyses showed that the combined use of comparative digital exon quantification and LOH/AI allows generating very accurate CNA data. Therefore, we propose CEQer as an efficient, robust and user-friendly graphical tool for the identification of CNA/AI in the context of whole-exome sequencing data.

  6. Design and coverage of high throughput genotyping arrays optimized for individuals of East Asian, African American, and Latino race/ethnicity using imputation and a novel hybrid SNP selection algorithm.

    PubMed

    Hoffmann, Thomas J; Zhan, Yiping; Kvale, Mark N; Hesselson, Stephanie E; Gollub, Jeremy; Iribarren, Carlos; Lu, Yontao; Mei, Gangwu; Purdy, Matthew M; Quesenberry, Charles; Rowell, Sarah; Shapero, Michael H; Smethurst, David; Somkin, Carol P; Van den Eeden, Stephen K; Walter, Larry; Webster, Teresa; Whitmer, Rachel A; Finn, Andrea; Schaefer, Catherine; Kwok, Pui-Yan; Risch, Neil

    2011-12-01

    Four custom Axiom genotyping arrays were designed for a genome-wide association (GWA) study of 100,000 participants from the Kaiser Permanente Research Program on Genes, Environment and Health. The array optimized for individuals of European race/ethnicity was previously described. Here we detail the development of three additional microarrays optimized for individuals of East Asian, African American, and Latino race/ethnicity. For these arrays, we decreased redundancy of high-performing SNPs to increase SNP capacity. The East Asian array was designed using greedy pairwise SNP selection. However, removing SNPs from the target set based on imputation coverage is more efficient than pairwise tagging. Therefore, we developed a novel hybrid SNP selection method for the African American and Latino arrays utilizing rounds of greedy pairwise SNP selection, followed by removal from the target set of SNPs covered by imputation. The arrays provide excellent genome-wide coverage and are valuable additions for large-scale GWA studies. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Extremely high-definition full-parallax computer-generated hologram created by the polygon-based method.

    PubMed

    Matsushima, Kyoji; Nakahara, Sumio

    2009-12-01

    A large-scale full-parallax computer-generated hologram (CGH) with four billion (2(16) x 2(16)) pixels is created to reconstruct a fine true 3D image of a scene, with occlusions. The polygon-based method numerically generates the object field of a surface object, whose shape is provided by a set of vertex data of polygonal facets, while the silhouette method makes it possible to reconstruct the occluded scene. A novel technique using the segmented frame buffer is presented for handling and propagating large wave fields even in the case where the whole wave field cannot be stored in memory. We demonstrate that the full-parallax CGH, calculated by the proposed method and fabricated by a laser lithography system, reconstructs a fine 3D image accompanied by a strong sensation of depth.

  8. 454 next generation-sequencing outperforms allele-specific PCR, Sanger sequencing, and pyrosequencing for routine KRAS mutation analysis of formalin-fixed, paraffin-embedded samples

    PubMed Central

    Altimari, Annalisa; de Biase, Dario; De Maglio, Giovanna; Gruppioni, Elisa; Capizzi, Elisa; Degiovanni, Alessio; D’Errico, Antonia; Pession, Annalisa; Pizzolitto, Stefano; Fiorentino, Michelangelo; Tallini, Giovanni

    2013-01-01

    Detection of KRAS mutations in archival pathology samples is critical for therapeutic appropriateness of anti-EGFR monoclonal antibodies in colorectal cancer. We compared the sensitivity, specificity, and accuracy of Sanger sequencing, ARMS-Scorpion (TheraScreen®) real-time polymerase chain reaction (PCR), pyrosequencing, chip array hybridization, and 454 next-generation sequencing to assess KRAS codon 12 and 13 mutations in 60 nonconsecutive selected cases of colorectal cancer. Twenty of the 60 cases were detected as wild-type KRAS by all methods with 100% specificity. Among the 40 mutated cases, 13 were discrepant with at least one method. The sensitivity was 85%, 90%, 93%, and 92%, and the accuracy was 90%, 93%, 95%, and 95% for Sanger sequencing, TheraScreen real-time PCR, pyrosequencing, and chip array hybridization, respectively. The main limitation of Sanger sequencing was its low analytical sensitivity, whereas TheraScreen real-time PCR, pyrosequencing, and chip array hybridization showed higher sensitivity but suffered from the limitations of predesigned assays. Concordance between the methods was k = 0.79 for Sanger sequencing and k > 0.85 for the other techniques. Tumor cell enrichment correlated significantly with the abundance of KRAS-mutated deoxyribonucleic acid (DNA), evaluated as ΔCt for TheraScreen real-time PCR (P = 0.03), percentage of mutation for pyrosequencing (P = 0.001), ratio for chip array hybridization (P = 0.003), and percentage of mutation for 454 next-generation sequencing (P = 0.004). Also, 454 next-generation sequencing showed the best cross correlation for quantification of mutation abundance compared with all the other methods (P < 0.001). Our comparison showed the superiority of next-generation sequencing over the other techniques in terms of sensitivity and specificity. Next-generation sequencing will replace Sanger sequencing as the reference technique for diagnostic detection of KRAS mutation in archival tumor tissues. PMID:23950653

  9. Electromagnetic Scattering from Realistic Targets

    NASA Technical Reports Server (NTRS)

    Lee, Shung- Wu; Jin, Jian-Ming

    1997-01-01

    The general goal of the project is to develop computational tools for calculating radar signature of realistic targets. A hybrid technique that combines the shooting-and-bouncing-ray (SBR) method and the finite-element method (FEM) for the radiation characterization of microstrip patch antennas in a complex geometry was developed. In addition, a hybridization procedure to combine moment method (MoM) solution and the SBR method to treat the scattering of waveguide slot arrays on an aircraft was developed. A list of journal articles and conference papers is included.

  10. Interpreting aCGH-defined karyotypic changes in gliomas using copy number status, loss of heterozygosity and allelic ratios

    PubMed Central

    Cowell, John K; Lo, Ken C; Luce, Jesse; Hawthorn, Lesleyann

    2009-01-01

    We have used SNP mapping arrays to simultaneously record copy number changes, loss of heterozygosity and allele ratios (ploidy) in a series of 13 gliomas. This combined analysis has defined novel amplification events in this tumor type involving chr1:241544532-243005121 and chr18:54716681-54917277 which contain the AKT3 and ZNF532 genes respectively. The high resolution of this analysis has also identified homozygous deletions involving chr17:25600031-26490848 and Chr19:53883612-55061878. Throughout the karyotypes of these tumors, the combined analysis revealed counter intuitive relationships between copy number and LOH that requires reinterpretation of the significance of copy number gains and losses. It was not uncommon to observe copy number gains that were associated with loss of heterozygosity as well as copy number losses that were not. These events appeared to be related to ploidy status in the tumors as determined using allelic ratio calculations. Overall, this analysis of gliomas provides evidence for the need to perform more comprehensive interpretation of the CGH data beyond copy number analysis alone to evaluate the significance of individual events in the karyotypes. PMID:19818351

  11. Computer-generated holograms (CGH) realization: the integration of dedicated software tool with digital slides printer

    NASA Astrophysics Data System (ADS)

    Guarnieri, Vittorio; Francini, Franco

    1997-12-01

    Last generation of digital printer is usually characterized by a spatial resolution enough high to allow the designer to realize a binary CGH directly on a transparent film avoiding photographic reduction techniques. These devices are able to produce slides or offset prints. Furthermore, services supplied by commercial printing company provide an inexpensive method to rapidly verify the validity of the design by means of a test-and-trial process. Notably, this low-cost approach appears to be suitable for a didactical environment. On the basis of these considerations, a set of software tools able to design CGH's has been developed. The guidelines inspiring the work have been the following ones: (1) ray-tracing approach, considering the object to be reproduced as source of spherical waves; (2) Optimization and speed-up of the algorithms used, in order to produce a portable code, runnable on several hardware platforms. In this paper calculation methods to obtain some fundamental geometric functions (points, lines, curves) are described. Furthermore, by the juxtaposition of these primitives functions it is possible to produce the holograms of more complex objects. Many examples of generated CGHs are presented.

  12. The recurrent SET-NUP214 fusion as a new HOXA activation mechanism in pediatric T-cell acute lymphoblastic leukemia

    PubMed Central

    Van Vlierberghe, Pieter; van Grotel, Martine; Tchinda, Joëlle; Lee, Charles; Beverloo, H. Berna; van der Spek, Peter J.; Stubbs, Andrew; Cools, Jan; Nagata, Kyosuke; Fornerod, Maarten; Buijs-Gladdines, Jessica; Horstmann, Martin; van Wering, Elisabeth R.; Soulier, Jean; Pieters, Rob

    2008-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) is mostly characterized by specific chromosomal abnormalities, some occurring in a mutually exclusive manner that possibly delineate specific T-ALL subgroups. One subgroup, including MLL-rearranged, CALM-AF10 or inv (7)(p15q34) patients, is characterized by elevated expression of HOXA genes. Using a gene expression–based clustering analysis of 67 T-ALL cases with recurrent molecular genetic abnormalities and 25 samples lacking apparent aberrations, we identified 5 new patients with elevated HOXA levels. Using microarray-based comparative genomic hybridization (array-CGH), a cryptic and recurrent deletion, del (9)(q34.11q34.13), was exclusively identified in 3 of these 5 patients. This deletion results in a conserved SET-NUP214 fusion product, which was also identified in the T-ALL cell line LOUCY. SET-NUP214 binds in the promoter regions of specific HOXA genes, where it interacts with CRM1 and DOT1L, which may transcriptionally activate specific members of the HOXA cluster. Targeted inhibition of SET-NUP214 by siRNA abolished expression of HOXA genes, inhibited proliferation, and induced differentiation in LOUCY but not in other T-ALL lines. We conclude that SET-NUP214 may contribute to the pathogenesis of T-ALL by enforcing T-cell differentiation arrest. PMID:18299449

  13. The Landscape of Somatic Chromosomal Copy Number Aberrations in GEM Models of Prostate Carcinoma

    PubMed Central

    Bianchi-Frias, Daniella; Hernandez, Susana A.; Coleman, Roger; Wu, Hong; Nelson, Peter S.

    2015-01-01

    Human prostate cancer (PCa) is known to harbor recurrent genomic aberrations consisting of chromosomal losses, gains, rearrangements and mutations that involve oncogenes and tumor suppressors. Genetically engineered mouse (GEM) models have been constructed to assess the causal role of these putative oncogenic events and provide molecular insight into disease pathogenesis. While GEM models generally initiate neoplasia by manipulating a single gene, expression profiles of GEM tumors typically comprise hundreds of transcript alterations. It is unclear whether these transcriptional changes represent the pleiotropic effects of single oncogenes, and/or cooperating genomic or epigenomic events. Therefore, it was determined if structural chromosomal alterations occur in GEM models of PCa and whether the changes are concordant with human carcinomas. Whole genome array-based comparative genomic hybridization (CGH) was used to identify somatic chromosomal copy number aberrations (SCNAs) in the widely used TRAMP, Hi-Myc, Pten-null and LADY GEM models. Interestingly, very few SCNAs were identified and the genomic architecture of Hi-Myc, Pten-null and LADY tumors were essentially identical to the germline. TRAMP neuroendocrine carcinomas contained SCNAs, which comprised three recurrent aberrations including a single copy loss of chromosome 19 (encoding Pten). In contrast, cell lines derived from the TRAMP, Hi-Myc, and Pten-null tumors were notable for numerous SCNAs that included copy gains of chromosome 15 (encoding Myc) and losses of chromosome 11 (encoding p53). PMID:25298407

  14. Genetic studies of Prader-Willi patients provide evidence for conservation of genomic architecture in proximal chromosome 15q.

    PubMed

    Hou, Aihua; Lin, Shuan-Pei; Ho, Shi Yun; Chen, Chi-Fung Jennifer; Lin, Hsiang-Yu; Chen, Yen-Juin; Huang, Chi-Yu; Chiu, Huei-Ching; Chuang, Chih-Kuang; Chen, Ken-Shiung

    2011-03-01

    Prader-Willi syndrome (PWS) is a neurogenetic disorder associated with recurrent genomic recombination involving low copy repeats (LCRs) located in the human chromosome 15q11-q13. Previous studies of PWS patients from Asia suggested that there is a higher incidence of deletion and lower incidence of maternal uniparental disomy (mUPD) compared to that of Western populations. In this report, we present genetic etiology of 28 PWS patients from Taiwan. Consistent with the genetic etiology findings from Western populations, the type II deletion appears to be the most common deletion subtype. Furthermore, the ratio of the two most common deletion subtypes and the ratio of the maternal heterodisomy to isodisomy cases observed from this study are in agreement with previous findings from Western populations. In addition, we identified and further mapped the deletion breakpoints in two patients with atypical deletions using array CGH (comparative genomic hybridization). Despite the relatively small numbers of patients in each subgroup, our findings suggest that the genomic architecture responsible for the recurrent recombination in PWS is conserved in Taiwanese of the Han Chinese heritage and Western populations, thereby predisposing chromosome 15q11-q13 to a similar risk of rearrangements. © 2010 The Authors Annals of Human Genetics © 2010 Blackwell Publishing Ltd/University College London.

  15. Craniosynostosis in 10q26 deletion patients: A consequence of brain underdevelopment or altered suture biology?

    PubMed

    Faria, Ágatha Cristhina; Rabbi-Bortolini, Eliete; Rebouças, Maria R G O; de S Thiago Pereira, Andréia L A; Frasson, Milena G Tonini; Atique, Rodrigo; Lourenço, Naila Cristina V; Rosenberg, Carla; Kobayashi, Gerson S; Passos-Bueno, Maria Rita; Errera, Flávia Imbroisi Valle

    2016-02-01

    Approximately a hundred patients with terminal 10q deletions have been described. They present with a wide range of clinical features always accompanied by delayed development, intellectual disability and craniofacial dysmorphisms. Here, we report a girl and a boy with craniosynostosis, developmental delay and other congenital anomalies. Karyotyping and molecular analysis including Multiplex Ligation dependent probe amplification (MLPA) and Array Comparative Genomic Hybridization (aCGH) were performed in both patients. We detected a 13.1 Mb pure deletion at 10q26.12-q26.3 in the girl and a 10.9 Mb pure deletion at 10q26.13-q26.3 in the boy, both encompassing about 100 genes. The clinical and molecular findings in these patients reinforce the importance of the DOCK1 smallest region of overlap I (SRO I), previously suggested to explain the clinical signs, and together with a review of the literature suggest a second 3.5 Mb region important for the phenotype (SRO II). Genotype-phenotype correlations and literature data suggest that the craniosynostosis is not directly related to dysregulated signaling in suture development, but may be secondary to alterations in brain development instead. Further, genes at 10q26 may be involved in the molecular crosstalk between brain and cranial vault. © 2015 Wiley Periodicals, Inc.

  16. Recombinant chromosome 7 in a mosaic 45,X/47,XXX patient.

    PubMed

    Tirado, Carlos A; Gotway, Garrett; Torgbe, Emmanuel; Iyer, Santha; Dallaire, Stephanie; Appleberry, Taylor; Suterwala, Mohamed; Garcia, Rolando; Valdez, Federico; Patel, Sangeeta; Koduru, Prasad

    2012-01-01

    Individuals with pericentric inversions are at risk for producing offspring with chromosomal gains and losses, while those carrying paracentric inversions usually produce unviable gametes [Madan, 1995]. In this current study, we present a newborn with dysmorphic features and malformations, whose karyotype showed an abnormal copy of chromomosome 7 described at first as add(7)(q32) as well as mos 45,X/47,XXX. Array comparative genomic hybridization (CGH) revealed an interstitial deletion in the long arm of chromosome 7 involving bands q35 to q36.3 but retaining the 7q subtelomere. The patient's deletion is believed to be due to meiotic recombination in the inversion loop in the phenotypically normal father who seems to carry two paracentric inversions in the long arm of chromosome 7, which was described as rec(7)(7pter- > q35::q36.3- > 7qter)pat. The abnormal copy of chromosome 7 in the father has been described as: der(7)(7pter- > q22.1::q36.3- > q35::q22.1- > q35::q36.3- > 7qter). This is a unique karyotype that to our knowledge has not been previously reported in the literature and predisposes to meiotic recombination that can result in deletions or duplications of 7q35-36. Copyright © 2011 Wiley Periodicals, Inc.

  17. Homozygous and hemizygous CNV detection from exome sequencing data in a Mendelian disease cohort

    PubMed Central

    Gambin, Tomasz; Akdemir, Zeynep C.; Yuan, Bo; Gu, Shen; Chiang, Theodore; Carvalho, Claudia M.B.; Shaw, Chad; Jhangiani, Shalini; Boone, Philip M.; Eldomery, Mohammad K.; Karaca, Ender; Bayram, Yavuz; Stray-Pedersen, Asbjørg; Muzny, Donna; Charng, Wu-Lin; Bahrambeigi, Vahid; Belmont, John W.; Boerwinkle, Eric; Beaudet, Arthur L.; Gibbs, Richard A.

    2017-01-01

    Abstract We developed an algorithm, HMZDelFinder, that uses whole exome sequencing (WES) data to identify rare and intragenic homozygous and hemizygous (HMZ) deletions that may represent complete loss-of-function of the indicated gene. HMZDelFinder was applied to 4866 samples in the Baylor–Hopkins Center for Mendelian Genomics (BHCMG) cohort and detected 773 HMZ deletion calls (567 homozygous or 206 hemizygous) with an estimated sensitivity of 86.5% (82% for single-exonic and 88% for multi-exonic calls) and precision of 78% (53% single-exonic and 96% for multi-exonic calls). Out of 773 HMZDelFinder-detected deletion calls, 82 were subjected to array comparative genomic hybridization (aCGH) and/or breakpoint PCR and 64 were confirmed. These include 18 single-exon deletions out of which 8 were exclusively detected by HMZDelFinder and not by any of seven other CNV detection tools examined. Further investigation of the 64 validated deletion calls revealed at least 15 pathogenic HMZ deletions. Of those, 7 accounted for 17–50% of pathogenic CNVs in different disease cohorts where 7.1–11% of the molecular diagnosis solved rate was attributed to CNVs. In summary, we present an algorithm to detect rare, intragenic, single-exon deletion CNVs using WES data; this tool can be useful for disease gene discovery efforts and clinical WES analyses. PMID:27980096

  18. New candidate loci identified by array-CGH in a cohort of 100 children presenting with syndromic obesity.

    PubMed

    Vuillaume, Marie-Laure; Naudion, Sophie; Banneau, Guillaume; Diene, Gwenaelle; Cartault, Audrey; Cailley, Dorothée; Bouron, Julie; Toutain, Jérôme; Bourrouillou, Georges; Vigouroux, Adeline; Bouneau, Laurence; Nacka, Fabienne; Kieffer, Isabelle; Arveiler, Benoit; Knoll-Gellida, Anja; Babin, Patrick J; Bieth, Eric; Jouret, Béatrice; Julia, Sophie; Sarda, Pierre; Geneviève, David; Faivre, Laurence; Lacombe, Didier; Barat, Pascal; Tauber, Maithé; Delrue, Marie-Ange; Rooryck, Caroline

    2014-08-01

    Syndromic obesity is defined by the association of obesity with one or more feature(s) including developmental delay, dysmorphic traits, and/or congenital malformations. Over 25 syndromic forms of obesity have been identified. However, most cases remain of unknown etiology. The aim of this study was to identify new candidate loci associated with syndromic obesity to find new candidate genes and to better understand molecular mechanisms involved in this pathology. We performed oligonucleotide microarray-based comparative genomic hybridization in a cohort of 100 children presenting with syndromic obesity of unknown etiology, after exhaustive clinical, biological, and molecular studies. Chromosomal copy number variations were detected in 42% of the children in our cohort, with 23% of patients with potentially pathogenic copy number variants. Our results support that chromosomal rearrangements are frequently associated with syndromic obesity with a variety of contributory genes having relevance to either obesity or developmental delay. A list of inherited or apparently de novo duplications and deletions including their enclosed genes and not previously linked to syndromic obesity was established. Proteins encoded by several of these genes are involved in lipid metabolism (ACOXL, MSMO1, MVD, and PDZK1) linked with nervous system function (BDH1 and LINGO2), neutral lipid storage (PLIN2), energy homeostasis and metabolic processes (CDH13, CNTNAP2, CPPED1, NDUFA4, PTGS2, and SOCS6). © 2014 Wiley Periodicals, Inc.

  19. Heterogeneous patterns of amplification of the NUP214-ABL1 fusion gene in T-cell acute lymphoblastic leukemia.

    PubMed

    Graux, C; Stevens-Kroef, M; Lafage, M; Dastugue, N; Harrison, C J; Mugneret, F; Bahloula, K; Struski, S; Grégoire, M J; Nadal, N; Lippert, E; Taviaux, S; Simons, A; Kuiper, R P; Moorman, A V; Barber, K; Bosly, A; Michaux, L; Vandenberghe, P; Lahortiga, I; De Keersmaecker, K; Wlodarska, I; Cools, J; Hagemeijer, A; Poirel, H A

    2009-01-01

    Episomes with the NUP214-ABL1 fusion gene have been observed in 6% of T-ALL. In this multicentric study we collected 27 cases of NUP214-ABL1-positive T-ALL. Median age was 15 years with male predominance. Outcome was poor in 12 patients. An associated abnormality involving TLX1 or TLX3 was found in all investigated cases. Fluorescent in situ hybridization revealed a heterogeneous pattern of NUP214-ABL1 amplification. Multiple episomes carrying the fusion were detected in 24 patients. Episomes were observed in a significant number of nuclei in 18 cases, but in only 1-5% of nuclei in 6. In addition, intrachromosomal amplification (small hsr) was identified either as the only change or in association with episomes in four cases and two T-ALL cell lines (PEER and ALL-SIL). One case showed insertion of apparently non-amplified NUP214-ABL1 sequences at 14q12. The amplified sequences were analyzed using array-based CGH.These findings confirm that the NUP214-ABL1 gene requires amplification for oncogenicity; it is part of a multistep process of leukemogenesis; and it can be a late event present only in subpopulations. Data also provide in vivo evidence for a model of episome formation, amplification and optional reintegration into the genome. Implications for the use of kinase inhibitors are discussed.

  20. Genomic Hypomethylation in the Human Germline Associates with Selective Structural Mutability in the Human Genome

    PubMed Central

    Li, Jian; Harris, R. Alan; Cheung, Sau Wai; Coarfa, Cristian; Jeong, Mira; Goodell, Margaret A.; White, Lisa D.; Patel, Ankita; Kang, Sung-Hae; Shaw, Chad; Chinault, A. Craig; Gambin, Tomasz; Gambin, Anna; Lupski, James R.; Milosavljevic, Aleksandar

    2012-01-01

    The hotspots of structural polymorphisms and structural mutability in the human genome remain to be explained mechanistically. We examine associations of structural mutability with germline DNA methylation and with non-allelic homologous recombination (NAHR) mediated by low-copy repeats (LCRs). Combined evidence from four human sperm methylome maps, human genome evolution, structural polymorphisms in the human population, and previous genomic and disease studies consistently points to a strong association of germline hypomethylation and genomic instability. Specifically, methylation deserts, the ∼1% fraction of the human genome with the lowest methylation in the germline, show a tenfold enrichment for structural rearrangements that occurred in the human genome since the branching of chimpanzee and are highly enriched for fast-evolving loci that regulate tissue-specific gene expression. Analysis of copy number variants (CNVs) from 400 human samples identified using a custom-designed array comparative genomic hybridization (aCGH) chip, combined with publicly available structural variation data, indicates that association of structural mutability with germline hypomethylation is comparable in magnitude to the association of structural mutability with LCR–mediated NAHR. Moreover, rare CNVs occurring in the genomes of individuals diagnosed with schizophrenia, bipolar disorder, and developmental delay and de novo CNVs occurring in those diagnosed with autism are significantly more concentrated within hypomethylated regions. These findings suggest a new connection between the epigenome, selective mutability, evolution, and human disease. PMID:22615578

  1. An unusual clinical severity of 16p11.2 deletion syndrome caused by unmasked recessive mutation of CLN3.

    PubMed

    Pebrel-Richard, Céline; Debost-Legrand, Anne; Eymard-Pierre, Eléonore; Greze, Victoria; Kemeny, Stéphan; Gay-Bellile, Mathilde; Gouas, Laetitia; Tchirkov, Andreï; Vago, Philippe; Goumy, Carole; Francannet, Christine

    2014-03-01

    With the introduction of array comparative genomic hybridization (aCGH) techniques in the diagnostic setting of patients with developmental delay and congenital malformations, many new microdeletion syndromes have been recognized. One of these recently recognized microdeletion syndromes is the 16p11.2 deletion syndrome, associated with variable clinical outcomes including developmental delay, autism spectrum disorder, epilepsy, and obesity, but also apparently normal phenotype. We report on a 16-year-old patient with developmental delay, exhibiting retinis pigmentosa with progressive visual failure from the age of 9 years, ataxia, and peripheral neuropathy. Chromosomal microarray analysis identified a 1.7-Mb 16p11.2 deletion encompassing the 593-kb common deletion (∼29.5 to ∼30.1 Mb; Hg18) and the 220-kb distal deletion (∼28.74 to ∼28.95 Mb; Hg18) that partially included the CLN3 gene. As the patient's clinical findings were different from usual 16p11.2 microdeletion phenotypes and showed some features reminiscent of juvenile neuronal ceroid-lipofuscinosis (JNCL, Batten disease, OMIM 204200), we suspected and confirmed a mutation of the remaining CLN3 allele. This case further illustrates that unmasking of hemizygous recessive mutations by chromosomal deletion represents one explanation for the phenotypic variability observed in chromosomal deletion disorders.

  2. An unusual clinical severity of 16p11.2 deletion syndrome caused by unmasked recessive mutation of CLN3

    PubMed Central

    Pebrel-Richard, Céline; Debost-Legrand, Anne; Eymard-Pierre, Eléonore; Greze, Victoria; Kemeny, Stéphan; Gay-Bellile, Mathilde; Gouas, Laetitia; Tchirkov, Andreï; Vago, Philippe; Goumy, Carole; Francannet, Christine

    2014-01-01

    With the introduction of array comparative genomic hybridization (aCGH) techniques in the diagnostic setting of patients with developmental delay and congenital malformations, many new microdeletion syndromes have been recognized. One of these recently recognized microdeletion syndromes is the 16p11.2 deletion syndrome, associated with variable clinical outcomes including developmental delay, autism spectrum disorder, epilepsy, and obesity, but also apparently normal phenotype. We report on a 16-year-old patient with developmental delay, exhibiting retinis pigmentosa with progressive visual failure from the age of 9 years, ataxia, and peripheral neuropathy. Chromosomal microarray analysis identified a 1.7-Mb 16p11.2 deletion encompassing the 593-kb common deletion (∼29.5 to ∼30.1 Mb; Hg18) and the 220-kb distal deletion (∼28.74 to ∼28.95 Mb; Hg18) that partially included the CLN3 gene. As the patient's clinical findings were different from usual 16p11.2 microdeletion phenotypes and showed some features reminiscent of juvenile neuronal ceroid-lipofuscinosis (JNCL, Batten disease, OMIM 204200), we suspected and confirmed a mutation of the remaining CLN3 allele. This case further illustrates that unmasking of hemizygous recessive mutations by chromosomal deletion represents one explanation for the phenotypic variability observed in chromosomal deletion disorders. PMID:23860047

  3. A gold hybrid structure as optical coupler for quantum well infrared photodetector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Jiayi; Li, Qian; Jing, Youliang

    2014-08-28

    A hybrid structure consisting of a square lattice of gold disk arrays and an overlaying gold film is proposed as an optical coupler for a backside-illuminated quantum well infrared photodetector (QWIP). Finite difference time-domain method is used to numerically simulate the reflection spectra and the field distributions of the hybrid structure combined with the QWIP device. The results show that the electric field component perpendicular to the quantum well is strongly enhanced when the plasmonic resonant wavelength of the hybrid structure coincides with the response one of the quantum well infrared photodetector regardless of the polarization of the incident light.more » The effect of the diameter and thickness of an individual gold disk on the resonant wavelength is also investigated, which indicates that the localized surface plasmon also plays a role in the light coupling with the hybrid structure. The coupling efficiency can exceed 50 if the structural parameters of the gold disk arrays are well optimized.« less

  4. Computer Aided Design of Computer Generated Holograms for electron beam fabrication

    NASA Technical Reports Server (NTRS)

    Urquhart, Kristopher S.; Lee, Sing H.; Guest, Clark C.; Feldman, Michael R.; Farhoosh, Hamid

    1989-01-01

    Computer Aided Design (CAD) systems that have been developed for electrical and mechanical design tasks are also effective tools for the process of designing Computer Generated Holograms (CGHs), particularly when these holograms are to be fabricated using electron beam lithography. CAD workstations provide efficient and convenient means of computing, storing, displaying, and preparing for fabrication many of the features that are common to CGH designs. Experience gained in the process of designing CGHs with various types of encoding methods is presented. Suggestions are made so that future workstations may further accommodate the CGH design process.

  5. High-Resolution Large-Field-of-View Three-Dimensional Hologram Display System and Method Thereof

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin (Inventor); Mintz, Frederick W. (Inventor); Tsou, Peter (Inventor); Bryant, Nevin A. (Inventor)

    2001-01-01

    A real-time, dynamic, free space-virtual reality, 3-D image display system is enabled by using a unique form of Aerogel as the primary display media. A preferred embodiment of this system comprises a 3-D mosaic topographic map which is displayed by fusing four projected hologram images. In this embodiment, four holographic images are projected from four separate holograms. Each holographic image subtends a quadrant of the 4(pi) solid angle. By fusing these four holographic images, a static 3-D image such as a featured terrain map would be visible for 360 deg in the horizontal plane and 180 deg in the vertical plane. An input, either acquired by 3-D image sensor or generated by computer animation, is first converted into a 2-D computer generated hologram (CGH). This CGH is then downloaded into large liquid crystal (LC) panel. A laser projector illuminates the CGH-filled LC panel and generates and displays a real 3-D image in the Aerogel matrix.

  6. Measurement of aspheric mirror segments using Fizeau interferometry with CGH correction

    NASA Astrophysics Data System (ADS)

    Burge, James H.; Zhao, Chunyu; Dubin, Matt

    2010-07-01

    Large aspheric primary mirrors are proposed that use hundreds segments that all must be aligned and phased to approximate the desired continuous mirror. We present a method of measuring these concave segments with a Fizeau interferometer where a spherical convex reference surface is held a few millimeters from the aspheric segment. The aspheric shape is accommodated by a small computer generated hologram (CGH). Different segments are measured by replacing the CGH. As a Fizeau test, nearly all of the optical elements and air spaces are common to both the measurement and reference wavefront, so the sensitivities are not tight. Also, since the reference surface of the test plate is common to all tests, this system achieves excellent control for the radius of curvature variation from one part to another. This paper describes the test system design and analysis for such a test, and presents data from a similar 1.4-m test performed at the University of Arizona.

  7. Research on illumination uniformity of high-power LED array light source

    NASA Astrophysics Data System (ADS)

    Yu, Xiaolong; Wei, Xueye; Zhang, Ou; Zhang, Xinwei

    2018-06-01

    Uniform illumination is one of the most important problem that must be solved in the application of high-power LED array. A numerical optimization algorithm, is applied to obtain the best LED array typesetting so that the light intensity of the target surface is evenly distributed. An evaluation function is set up through the standard deviation of the illuminance function, then the particle swarm optimization algorithm is utilized to optimize different arrays. Furthermore, the light intensity distribution is obtained by optical ray tracing method. Finally, a hybrid array is designed and the optical ray tracing method is applied to simulate the array. The simulation results, which is consistent with the traditional theoretical calculation, show that the algorithm introduced in this paper is reasonable and effective.

  8. Unclassified renal cell carcinoma: a clinicopathological, comparative genomic hybridization, and whole-genome exon sequencing study.

    PubMed

    Hu, Zhen-Yan; Pang, Li-Juan; Qi, Yan; Kang, Xue-Ling; Hu, Jian-Ming; Wang, Lianghai; Liu, Kun-Peng; Ren, Yuan; Cui, Mei; Song, Li-Li; Li, Hong-An; Zou, Hong; Li, Feng

    2014-01-01

    Unclassified renal cell carcinoma (URCC) is a rare variant of RCC, accounting for only 3-5% of all cases. Studies on the molecular genetics of URCC are limited, and hence, we report on 2 cases of URCC analyzed using comparative genome hybridization (CGH) and the genome-wide human exon GeneChip technique to identify the genomic alterations of URCC. Both URCC patients (mean age, 72 years) presented at an advanced stage and died within 30 months post-surgery. Histologically, the URCCs were composed of undifferentiated, multinucleated, giant cells with eosinophilic cytoplasm. Immunostaining revealed that both URCC cases had strong p53 protein expression and partial expression of cluster of differentiation-10 and cytokeratin. The CGH profiles showed chromosomal imbalances in both URCC cases: gains were observed in chromosomes 1p11-12, 1q12-13, 2q20-23, 3q22-23, 8p12, and 16q11-15, whereas losses were detected on chromosomes 1q22-23, 3p12-22, 5p30-ter, 6p, 11q, 16q18-22, 17p12-14, and 20p. Compared with 18 normal renal tissues, 40 mutated genes were detected in the URCC tissues, including 32 missense and 8 silent mutations. Functional enrichment analysis revealed that the missense mutation genes were involved in 11 different biological processes and pathways, including cell cycle regulation, lipid localization and transport, neuropeptide signaling, organic ether metabolism, and ATP-binding cassette transporter signaling. Our findings indicate that URCC may be a highly aggressive cancer, and the genetic alterations identified herein may provide clues regarding the tumorigenesis of URCC and serve as a basis for the development of targeted therapies against URCC in the future.

  9. Unclassified renal cell carcinoma: a clinicopathological, comparative genomic hybridization, and whole-genome exon sequencing study

    PubMed Central

    Hu, Zhen-Yan; Pang, Li-Juan; Qi, Yan; Kang, Xue-Ling; Hu, Jian-Ming; Wang, Lianghai; Liu, Kun-Peng; Ren, Yuan; Cui, Mei; Song, Li-Li; Li, Hong-An; Zou, Hong; Li, Feng

    2014-01-01

    Unclassified renal cell carcinoma (URCC) is a rare variant of RCC, accounting for only 3-5% of all cases. Studies on the molecular genetics of URCC are limited, and hence, we report on 2 cases of URCC analyzed using comparative genome hybridization (CGH) and the genome-wide human exon GeneChip technique to identify the genomic alterations of URCC. Both URCC patients (mean age, 72 years) presented at an advanced stage and died within 30 months post-surgery. Histologically, the URCCs were composed of undifferentiated, multinucleated, giant cells with eosinophilic cytoplasm. Immunostaining revealed that both URCC cases had strong p53 protein expression and partial expression of cluster of differentiation-10 and cytokeratin. The CGH profiles showed chromosomal imbalances in both URCC cases: gains were observed in chromosomes 1p11-12, 1q12-13, 2q20-23, 3q22-23, 8p12, and 16q11-15, whereas losses were detected on chromosomes 1q22-23, 3p12-22, 5p30-ter, 6p, 11q, 16q18-22, 17p12-14, and 20p. Compared with 18 normal renal tissues, 40 mutated genes were detected in the URCC tissues, including 32 missense and 8 silent mutations. Functional enrichment analysis revealed that the missense mutation genes were involved in 11 different biological processes and pathways, including cell cycle regulation, lipid localization and transport, neuropeptide signaling, organic ether metabolism, and ATP-binding cassette transporter signaling. Our findings indicate that URCC may be a highly aggressive cancer, and the genetic alterations identified herein may provide clues regarding the tumorigenesis of URCC and serve as a basis for the development of targeted therapies against URCC in the future. PMID:25120763

  10. Gait training using a hybrid assistive limb (HAL) attenuates head drop: A case report.

    PubMed

    Miura, Kousei; Koda, Masao; Kadone, Hideki; Kubota, Shigeki; Shimizu, Yukiyo; Kumagai, Hiroshi; Nagashima, Katsuya; Mataki, Kentaro; Fujii, Kengo; Noguchi, Hiroshi; Funayama, Toru; Abe, Tetsuya; Sankai, Yoshiyuki; Yamazaki, Masashi

    2018-06-01

    Dropped head syndrome (DHS) is characterized by a chin-on-chest deformity, which can severely interfere with forward vision and impair activities of daily living. A standardized treatment strategy for DHS has not been established. To our knowledge, this is the first case report describing the efficacy of gait training using a hybrid assistive limb (HAL) for DHS. A 75-year-old man showed apparent head drop in a standing position, resulting in passively reducible chin-on-chest deformity. A radiograph image showed apparent cervical kyphosis. Center of gravity of the head (CGH)-C7 SVA was +115 mm, CL was -40°, and T1S 39°. The patient underwent a treatment program using HAL, in which gait training was mainly performed, 60 min a day, 5 days a week for 2 weeks (10 sessions). After 2-3 sessions, dropped head started to attenuate. At the end of 10 sessions, the patient was able to walk with normal posture and radiograph images showed cervical kyphosis dramatically decreased because of HAL training. CGH-C7 SVA was 42 mm, CL was -1.7°, and T1S was 30°. Three months' outpatient follow-up revealed a slight deterioration of cervical alignment. However, the patient was able to maintain a better cervical alignment than before HAL training and keep walking with forward vision. There were no complications in any HAL treatment session. In conclusion, gait training using HAL is an option for treatment of DHS in addition to previously reported neck extensor muscle training. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Composition Studies with the Telescope Array Surface Detector

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Mikhail; Piskunov, Maxim; Rubtsov, Grigory; Troitsky, Sergey; Zhezher, Yana

    The results on ultra-high-energy cosmic-ray chemical composition based on the data from the Telescope Array surface-detector are presented. The method is based on the multivariate boosted decision tree (BDT) analysis which uses surface-detector observables. The results on average atomic mass in the energy range 1018.0-1020.0 eV are presented. A comparison with the Telescope Array hybrid results and the Pierre Auger Observatory surface detector results is shown.

  12. Use of New Techniques in Addition to IHC Applied to the Diagnosis of Melanocytic Lesions, With Emphasis on CGH, FISH, and Mass Spectrometry.

    PubMed

    Nagarajan, P; Tetzlaff, M T; Curry, J L; Prieto, V G

    Melanoma remains one of the most aggressive forms of cutaneous malignancies. While its diagnosis based on histologic parameters is usually straight forward in most cases, distinguishing a melanoma from a melanocytic nevus can be challenging in some instances, especially when there are overlapping clinical and histopathologic features. Occasionally, melanomas can histologically mimic other tumors and even demonstration of melanocytic origin can be challenging. Thus, several ancillary tests may be employed to arrive at the correct diagnosis. The objective of this review is to summarize these tests, including the well-established and commonly used ones such as immunohistochemistry, with specific emphasis on emerging techniques such as comparative genomic hybridization, fluorescence in situ hybridization and imaging mass spectrometry. Copyright © 2016 AEDV. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. High performance hybrid magnetic structure for biotechnology applications

    DOEpatents

    Humphries, David E; Pollard, Martin J; Elkin, Christopher J

    2005-10-11

    The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides means for separation and other biotechnology applications involving holding, manipulation, or separation of magnetizable molecular structures and targets. Also disclosed are: a method of assembling the hybrid magnetic plates, a high throughput protocol featuring the hybrid magnetic structure, and other embodiments of the ferromagnetic pole shape, attachment and adapter interfaces for adapting the use of the hybrid magnetic structure for use with liquid handling and other robots for use in high throughput processes.

  14. High performance hybrid magnetic structure for biotechnology applications

    DOEpatents

    Humphries, David E.; Pollard, Martin J.; Elkin, Christopher J.

    2006-12-12

    The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides for separation and other biotechnology applications involving holding, manipulation, or separation of magnetic or magnetizable molecular structures and targets. Also disclosed are: a method of assembling the hybrid magnetic plates, a high throughput protocol featuring the hybrid magnetic structure, and other embodiments of the ferromagnetic pole shape, attachment and adapter interfaces for adapting the use of the hybrid magnetic structure for use with liquid handling and other robots for use in high throughput processes.

  15. Programmable CGH on photochromic material using DMD generated masks

    NASA Astrophysics Data System (ADS)

    Alata, Romain; Zamkotsian, Frédéric; Lanzoni, Patrick; Pariani, Giorgio; Bianco, Andrea; Bertarelli, Chiara

    2018-02-01

    Computer Generated Holograms (CGHs) are used for wavefront shaping and complex optics testing, including aspherical and free-form optics. Today, CGHs are recorded directly with a laser or intermediate masks, allowing only the realization of binary CGHs; they are efficient but can reconstruct only pixilated images. We propose a Digital Micromirror Device (DMD) as a reconfigurable mask, to record rewritable binary and grayscale CGHs on a photochromic plate. The DMD is composed of 2048x1080 individually controllable micro-mirrors, with a pitch of 13.68 μm. This is a real-time reconfigurable mask, perfect for recording CGHs. The photochromic plate is opaque at rest and becomes transparent when it is illuminated with visible light of suitable wavelength. We have successfully recorded the very first amplitude grayscale CGH, in equally spaced levels, so called stepped CGH. We recorded up to 1000x1000 pixels CGHs with a contrast greater than 50, using Fresnel as well as Fourier coding scheme. Fresnel's CGH are obtained by calculating the inverse Fresnel transform of the original image at a given focus, ranging from 50cm to 2m. The reconstruction of the recorded images with a 632.8nm He-Ne laser beam leads to images with a high fidelity in shape, intensity, size and location. These results reveal the high potential of this method for generating programmable/rewritable grayscale CGHs, which combine DMDs and photochromic substrates.

  16. Simulation and optimum design of hybrid solar-wind and solar-wind-diesel power generation systems

    NASA Astrophysics Data System (ADS)

    Zhou, Wei

    Solar and wind energy systems are considered as promising power generating sources due to its availability and topological advantages in local power generations. However, a drawback, common to solar and wind options, is their unpredictable nature and dependence on weather changes, both of these energy systems would have to be oversized to make them completely reliable. Fortunately, the problems caused by variable nature of these resources can be partially overcome by integrating these two resources in a proper combination to form a hybrid system. However, with the increased complexity in comparison with single energy systems, optimum design of hybrid system becomes more complicated. In order to efficiently and economically utilize the renewable energy resources, one optimal sizing method is necessary. This thesis developed an optimal sizing method to find the global optimum configuration of stand-alone hybrid (both solar-wind and solar-wind-diesel) power generation systems. By using Genetic Algorithm (GA), the optimal sizing method was developed to calculate the system optimum configuration which offers to guarantee the lowest investment with full use of the PV array, wind turbine and battery bank. For the hybrid solar-wind system, the optimal sizing method is developed based on the Loss of Power Supply Probability (LPSP) and the Annualized Cost of System (ACS) concepts. The optimization procedure aims to find the configuration that yields the best compromise between the two considered objectives: LPSP and ACS. The decision variables, which need to be optimized in the optimization process, are the PV module capacity, wind turbine capacity, battery capacity, PV module slope angle and wind turbine installation height. For the hybrid solar-wind-diesel system, minimization of the system cost is achieved not only by selecting an appropriate system configuration, but also by finding a suitable control strategy (starting and stopping point) of the diesel generator. The optimal sizing method was developed to find the system optimum configuration and settings that can achieve the custom-required Renewable Energy Fraction (fRE) of the system with minimum Annualized Cost of System (ACS). Du to the need for optimum design of the hybrid systems, an analysis of local weather conditions (solar radiation and wind speed) was carried out for the potential installation site, and mathematical simulation of the hybrid systems' components was also carried out including PV array, wind turbine and battery bank. By statistically analyzing the long-term hourly solar and wind speed data, Hong Kong area is found to have favorite solar and wind power resources compared with other areas, which validates the practical applications in Hong Kong and Guangdong area. Simulation of PV array performance includes three main parts: modeling of the maximum power output of the PV array, calculation of the total solar radiation on any tilted surface with any orientations, and PV module temperature predictions. Five parameters are introduced to account for the complex dependence of PV array performance upon solar radiation intensities and PV module temperatures. The developed simulation model was validated by using the field-measured data from one existing building-integrated photovoltaic system (BIPV) in Hong Kong, and good simulation performance of the model was achieved. Lead-acid batteries used in hybrid systems operate under very specific conditions, which often cause difficulties to predict when energy will be extracted from or supplied to the battery. In this thesis, the lead-acid battery performance is simulated by three different characteristics: battery state of charge (SOC), battery floating charge voltage and the expected battery lifetime. Good agreements were found between the predicted values and the field-measured data of a hybrid solar-wind project. At last, one 19.8kW hybrid solar-wind power generation project, designed by the optimal sizing method and set up to supply power for a telecommunication relay station on a remote island of Guangdong province, was studied. Simulation and experimental results about the operating performances and characteristics of the hybrid solar-wind project have demonstrated the feasibility and accuracy of the recommended optimal sizing method developed in this thesis.

  17. Nucleic acid detection methods

    DOEpatents

    Smith, C.L.; Yaar, R.; Szafranski, P.; Cantor, C.R.

    1998-05-19

    The invention relates to methods for rapidly determining the sequence and/or length a target sequence. The target sequence may be a series of known or unknown repeat sequences which are hybridized to an array of probes. The hybridized array is digested with a single-strand nuclease and free 3{prime}-hydroxyl groups extended with a nucleic acid polymerase. Nuclease cleaved heteroduplexes can be easily distinguish from nuclease uncleaved heteroduplexes by differential labeling. Probes and target can be differentially labeled with detectable labels. Matched target can be detected by cleaving resulting loops from the hybridized target and creating free 3-hydroxyl groups. These groups are recognized and extended by polymerases added into the reaction system which also adds or releases one label into solution. Analysis of the resulting products using either solid phase or solution. These methods can be used to detect characteristic nucleic acid sequences, to determine target sequence and to screen for genetic defects and disorders. Assays can be conducted on solid surfaces allowing for multiple reactions to be conducted in parallel and, if desired, automated. 18 figs.

  18. Design quadrilateral apertures in binary computer-generated holograms of large space bandwidth product.

    PubMed

    Wang, Jing; Sheng, Yunlong

    2016-09-20

    A new approach for designing the binary computer-generated hologram (CGH) of a very large number of pixels is proposed. Diffraction of the CGH apertures is computed by the analytical Abbe transform and by considering the aperture edges as the basic diffracting elements. The computation cost is independent of the CGH size. The arbitrary-shaped polygonal apertures in the CGH consist of quadrilateral apertures, which are designed by assigning the binary phases using the parallel genetic algorithm with a local search, followed by optimizing the locations of the co-vertices with a direct search. The design results in high performance with low image reconstruction error.

  19. Childhood maltreatment moderates the effect of combat exposure on cingulum structural integrity

    PubMed Central

    BANIHASHEMI, LAYLA; WALLACE, MEREDITH L.; SHEU, LEI K.; LEE, MICHAEL C.; GIANAROS, PETER J.; MACKENZIE, ROBERT P.; INSANA, SALVATORE P.; GERMAIN, ANNE; HERRINGA, RYAN J.

    2017-01-01

    Limbic white matter pathways link emotion, cognition, and behavior and are potentially malleable to the influences of traumatic events throughout development. However, the impact of interactions between childhood and later life trauma on limbic white matter pathways has yet to be examined. Here, we examined whether childhood maltreatment moderated the effect of combat exposure on diffusion tensor imaging measures within a sample of military veterans (N = 28). We examined five limbic tracts of interest: two components of the cingulum (cingulum, cingulate gyrus, and cingulum hippocampus [CGH]), the uncinate fasciculus, the fornix/stria terminalis, and the anterior limb of the internal capsule. Using effect sizes, clinically meaningful moderator effects were found only within the CGH. Greater combat exposure was associated with decreased CGH fractional anisotropy (overall structural integrity) and increased CGH radial diffusivity (perpendicular water diffusivity) among individuals with more severe childhood maltreatment. Our findings provide preliminary evidence of the moderating effect of childhood maltreatment on the relationship between combat exposure and CGH structural integrity. These differences in CGH structural integrity could have maladaptive implications for emotion and memory, as well as provide a potential mechanism by which childhood maltreatment induces vulnerability to later life trauma exposure. PMID:29162178

  20. Development of computer informational system of diagnostics integrated optical materials, elements, and devices

    NASA Astrophysics Data System (ADS)

    Volosovitch, Anatoly E.; Konopaltseva, Lyudmila I.

    1995-11-01

    Well-known methods of optical diagnostics, database for their storage, as well as expert system (ES) for their development are analyzed. A computer informational system is developed, which is based on a hybrid ES built on modern DBMS. As an example, the structural and constructive circuits of the hybrid integrated-optical devices based on laser diodes, diffusion waveguides, geodetic lenses, package-free linear photodiode arrays, etc. are presented. The features of methods and test results as well as the advanced directions of works related to the hybrid integrated-optical devices in the field of metrology are discussed.

  1. A Rapid Method of Genomic Array Analysis of Scaffold/Matrix Attachment Regions (S/MARs) Identifies a 2.5-Mb Region of Enhanced Scaffold/Matrix Attachment at a Human Neocentromere

    PubMed Central

    Sumer, Huseyin; Craig, Jeffrey M.; Sibson, Mandy; Choo, K.H. Andy

    2003-01-01

    Human neocentromeres are fully functional centromeres that arise at previously noncentromeric regions of the genome. We have tested a rapid procedure of genomic array analysis of chromosome scaffold/matrix attachment regions (S/MARs), involving the isolation of S/MAR DNA and hybridization of this DNA to a genomic BAC/PAC array. Using this procedure, we have defined a 2.5-Mb domain of S/MAR-enriched chromatin that fully encompasses a previously mapped centromere protein-A (CENP-A)-associated domain at a human neocentromere. We have independently verified this procedure using a previously established fluorescence in situ hybridization method on salt-treated metaphase chromosomes. In silico sequence analysis of the S/MAR-enriched and surrounding regions has revealed no outstanding sequence-related predisposition. This study defines the S/MAR-enriched domain of a higher eukaryotic centromere and provides a method that has broad application for the mapping of S/MAR attachment sites over large genomic regions or throughout a genome. PMID:12840048

  2. Duplications of BHLHA9 are associated with ectrodactyly and tibia hemimelia inherited in non-Mendelian fashion.

    PubMed

    Klopocki, Eva; Lohan, Silke; Doelken, Sandra C; Stricker, Sigmar; Ockeloen, Charlotte W; Soares Thiele de Aguiar, Renata; Lezirovitz, Karina; Mingroni Netto, Regina Celia; Jamsheer, Aleksander; Shah, Hitesh; Kurth, Ingo; Habenicht, Rolf; Warman, Matthew; Devriendt, Koenraad; Kordass, Ulrike; Hempel, Maja; Rajab, Anna; Mäkitie, Outi; Naveed, Mohammed; Radhakrishna, Uppala; Antonarakis, Stylianos E; Horn, Denise; Mundlos, Stefan

    2012-02-01

    Split-hand/foot malformation (SHFM)-also known as ectrodactyly-is a congenital disorder characterised by severe malformations of the distal limbs affecting the central rays of hands and/or feet. A distinct entity termed SHFLD presents with SHFM and long bone deficiency. Mouse models suggest that a defect of the central apical ectodermal ridge leads to the phenotype. Although six different loci/mutations (SHFM1-6) have been associated with SHFM, the underlying cause in a large number of cases is still unresolved. High resolution array comparative genomic hybridisation (CGH) was performed in patients with SHFLD to detect copy number changes. Candidate genes were further evaluated for expression and function during limb development by whole mount in situ hybridisation and morpholino knock-down experiments. Array CGH showed microduplications on chromosome 17p13.3, a locus previously associated with SHFLD. Detailed analysis of 17 families revealed that this copy number variation serves as a susceptibility factor for a highly variable phenotype with reduced penetrance, particularly in females. Compared to other known causes for SHFLD 17p duplications appear to be the most frequent cause of SHFLD. A ~11.8 kb minimal critical region was identified encompassing a single gene, BHLHA9, a putative basic loop helix transcription factor. Whole mount in situ hybridisation showed expression restricted to the limb bud mesenchyme underlying the apical ectodermal ridge in mouse and zebrafish embryos. Knock down of bhlha9 in zebrafish resulted in shortening of the pectoral fins. Genomic duplications encompassing BHLHA9 are associated with SHFLD and non-Mendelian inheritance characterised by a high degree of non-penetrance with sex bias. Knock-down of bhlha9 in zebrafish causes severe reduction defects of the pectoral fin, indicating a role for this gene in limb development.

  3. A heterozygous microdeletion of 20p12.2-3 encompassing PROKR2 and BMP2 in a patient with congenital hypopituitarism and growth hormone deficiency.

    PubMed

    Parsons, Samuel J H; Wright, Neville B; Burkitt-Wright, Emma; Skae, Mars S; Murray, Phillip G

    2017-08-01

    Congenital growth hormone deficiency is a rare disorder with an incidence of approximately 1 in 4,000 live births. Pituitary development is under the control of a multitude of spatiotemporally regulated signaling molecules and transcription factors. Mutations in the genes encoding these molecules can result in hypopituitarism but for the majority of children with congenital hypopituitarism, the aetiology of their disease remains unknown. The proband is a 5-year-old girl who presented with neonatal hypoglycaemia and prolonged jaundice. No definitive endocrine cause of hypoglycaemia was identified in the neonatal period. She was born of normal size at 42 weeks but demonstrated growth failure with a progressive reduction in height to -3.2 SD by age 4.5 years and failed a growth hormone stimulation test with a peak growth hormone of 4.2 mcg/L. MRI of the pituitary gland demonstrated a hypoplastic anterior lobe and ectopic posterior lobe. Array CGH demonstrated an inherited 0.2 Mb gain at 1q21.1 and a de novo 4.8 Mb heterozygous deletion at 20p12.2-3. The deletion contained 17 protein coding genes including PROKR2 and BMP2, both of which are expressed during embryological development of the pituitary gland. PROKR2 mutations have been associated with hypopituitarism but a heterozygous deletion of this gene with hypopituitarism is a novel observation. In conclusion, congenital hypopituitarism can be present in individuals with a 20p12.3 deletion, observed with incomplete penetrance. Array CGH may be a useful investigation in select cases of early onset growth hormone deficiency, and patients with deletions within this region should be evaluated for pituitary hormone deficiencies. © 2017 Wiley Periodicals, Inc.

  4. Mapping and characterization of the amplicon near APOA2 in 1q23 in human sarcomas by FISH and array CGH.

    PubMed

    Kresse, Stine H; Berner, Jeanne-Marie; Meza-Zepeda, Leonardo A; Gregory, Simon G; Kuo, Wen-Lin; Gray, Joe W; Forus, Anne; Myklebost, Ola

    2005-11-07

    Amplification of the q21-q23 region on chromosome 1 is frequently found in sarcomas and a variety of other solid tumours. Previous analyses of sarcomas have indicated the presence of at least two separate amplicons within this region, one located in 1q21 and one located near the apolipoprotein A-II (APOA2) gene in 1q23. In this study we have mapped and characterized the amplicon in 1q23 in more detail. We have used fluorescence in situ hybridisation (FISH) and microarray-based comparative genomic hybridisation (array CGH) to map and define the borders of the amplicon in 10 sarcomas. A subregion of approximately 800 kb was identified as the core of the amplicon. The amplification patterns of nine possible candidate target genes located to this subregion were determined by Southern blot analysis. The genes activating transcription factor 6 (ATF6) and dual specificity phosphatase 12 (DUSP12) showed the highest level of amplification, and they were also shown to be over-expressed by quantitative real-time reverse transcription PCR (RT-PCR). In general, the level of expression reflected the level of amplification in the different tumours. DUSP12 was expressed significantly higher than ATF6 in a subset of the tumours. In addition, two genes known to be transcriptionally activated by ATF6, glucose-regulated protein 78 kDa and -94 kDa (GRP78 and GRP94), were shown to be over-expressed in the tumours that showed over-expression of ATF6. ATF6 and DUSP12 seem to be the most likely candidate target genes for the 1q23 amplification in sarcomas. Both genes have possible roles in promoting cell growth, which makes them interesting candidate targets.

  5. In silico genomic analyses reveal three distinct lineages of Escherichia coli O157:H7, one of which is associated with hyper-virulence.

    PubMed

    Laing, Chad R; Buchanan, Cody; Taboada, Eduardo N; Zhang, Yongxiang; Karmali, Mohamed A; Thomas, James E; Gannon, Victor Pj

    2009-06-29

    Many approaches have been used to study the evolution, population structure and genetic diversity of Escherichia coli O157:H7; however, observations made with different genotyping systems are not easily relatable to each other. Three genetic lineages of E. coli O157:H7 designated I, II and I/II have been identified using octamer-based genome scanning and microarray comparative genomic hybridization (mCGH). Each lineage contains significant phenotypic differences, with lineage I strains being the most commonly associated with human infections. Similarly, a clade of hyper-virulent O157:H7 strains implicated in the 2006 spinach and lettuce outbreaks has been defined using single-nucleotide polymorphism (SNP) typing. In this study an in silico comparison of six different genotyping approaches was performed on 19 E. coli genome sequences from 17 O157:H7 strains and single O145:NM and K12 MG1655 strains to provide an overall picture of diversity of the E. coli O157:H7 population, and to compare genotyping methods for O157:H7 strains. In silico determination of lineage, Shiga-toxin bacteriophage integration site, comparative genomic fingerprint, mCGH profile, novel region distribution profile, SNP type and multi-locus variable number tandem repeat analysis type was performed and a supernetwork based on the combination of these methods was produced. This supernetwork showed three distinct clusters of strains that were O157:H7 lineage-specific, with the SNP-based hyper-virulent clade 8 synonymous with O157:H7 lineage I/II. Lineage I/II/clade 8 strains clustered closest on the supernetwork to E. coli K12 and E. coli O55:H7, O145:NM and sorbitol-fermenting O157 strains. The results of this study highlight the similarities in relationships derived from multi-locus genome sampling methods and suggest a "common genotyping language" may be devised for population genetics and epidemiological studies. Future genotyping methods should provide data that can be stored centrally and accessed locally in an easily transferable, informative and extensible format based on comparative genomic analyses.

  6. Indium Hybridization of Large Format TES Bolometer Arrays to Readout Multiplexers for Far-Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Miller, Timothy M.; Costen, Nick; Allen, Christine

    2007-01-01

    The advance of new detector technologies combined with enhanced fabrication methods has resulted in an increase in development of large format arrays. The next generation of scientific instruments will utilize detectors containing hundreds to thousands of elements providing a more efficient means to conduct large area sky surveys. Some notable detectors include a 32x32 x-ray microcalorimeter for Constellation-X, an infrared bolometer called SAFIRE to fly on the airborne observatory SOFIA, and the sub-millimeter bolometer SCUBA-2 to be deployed at the JCMT which will use more than 10,000 elements for two colors, each color using four 32x40 arrays. Of these detectors, SCUBA-2 is farthest along in development and uses indium hybridization to multiplexers for readout of the large number of elements, a technology that will be required to enable the next generation of large format arrays. Our current efforts in working toward large format arrays have produced GISMO, the Goddard IRAM Superconducting 2-Millimeter observer. GISMO is a far infrared instrument to be field tested later this year at the IRAM 30 meter telescope in Spain. GISMO utilizes transition edge sensor (TES) technology in an 8x16 filled array format that allows for typical fan-out wiring and wire-bonding to four 1x32 NIST multiplexers. GISMO'S electrical wiring is routed along the tops of 30 micron walls which also serve as the mechanical framework for the array. This architecture works well for the 128 element array, but is approaching the limit for routing the necessary wires along the surface while maintaining a high fill factor. Larger format arrays will benefit greatly from making electrical connections through the wafer to the backside, where they can be hybridized to a read-out substrate tailored to handling the wiring scheme. The next generation array we are developing is a 32x40 element array on a pitch of 1135 microns that conforms to the NIST multiplexer, already developed for the SCUBA-2 instrument This architecture will utilize electrical connections that route from the TES to the support frame and through the wafer. The detector chip will then be hybridized to the NIST multiplexer via indium bump bonding. In our development scheme we are using substrates that allow for diagnostic testing of electrical continuity across the entire array and we are testing our process to minimize or eliminate any contact resistance at metal interfaces. Our goal is hybridizing a fully functional 32x40 array of TES bolometers to a NIST multiplexer. The following work presents our current progress toward enabling this technology.

  7. An integrated analysis-synthesis array system for spatial sound fields.

    PubMed

    Bai, Mingsian R; Hua, Yi-Hsin; Kuo, Chia-Hao; Hsieh, Yu-Hao

    2015-03-01

    An integrated recording and reproduction array system for spatial audio is presented within a generic framework akin to the analysis-synthesis filterbanks in discrete time signal processing. In the analysis stage, a microphone array "encodes" the sound field by using the plane-wave decomposition. Direction of arrival of plane-wave components that comprise the sound field of interest are estimated by multiple signal classification. Next, the source signals are extracted by using a deconvolution procedure. In the synthesis stage, a loudspeaker array "decodes" the sound field by reconstructing the plane-wave components obtained in the analysis stage. This synthesis stage is carried out by pressure matching in the interior domain of the loudspeaker array. The deconvolution problem is solved by truncated singular value decomposition or convex optimization algorithms. For high-frequency reproduction that suffers from the spatial aliasing problem, vector panning is utilized. Listening tests are undertaken to evaluate the deconvolution method, vector panning, and a hybrid approach that combines both methods to cover frequency ranges below and above the spatial aliasing frequency. Localization and timbral attributes are considered in the subjective evaluation. The results show that the hybrid approach performs the best in overall preference. In addition, there is a trade-off between reproduction performance and the external radiation.

  8. A multiple-scattering polaritonic-operator method for hybrid arrays of metal nanoparticles and quantum emitters

    NASA Astrophysics Data System (ADS)

    Chatzidakis, Georgios D.; Yannopapas, Vassilios

    2018-05-01

    We present a new technique for the study of hybrid collections of quantum emitters (atoms, molecules, quantum dots) with nanoparticles. The technique is based on a multiple-scattering polaritonic-operator formalism in conjunction with an electromagnetic coupled dipole method. Apart from collections of quantum emitters and nanoparticles, the method can equally treat the interaction of a collection of quantum emitters with a single nano-object of arbitrary shape in which case the nano-object is treated as a finite three-dimensional lattice of point scatterers. We have applied our method to the case of linear array (chain) of dimers of quantum emitters and metallic nanoparticles wherein the corresponding (geometrical and physical) parameters of the dimers are chosen so as the interaction between the emitter and the nanoparticle lies in the strong-coupling regime in order to enable the formation of plexciton states in the dimer. In particular, for a linear chain of dimers, we show that the corresponding light spectra reveal a multitude of plexciton modes resulting from the hybridization of the plexciton resonances of each individual dimer in a manner similar to the tight-binding description of electrons in solids.

  9. Design, processing and testing of LSI arrays: Hybrid microelectronics task

    NASA Technical Reports Server (NTRS)

    Himmel, R. P.; Stuhlbarg, S. M.; Ravetti, R. G.; Zulueta, P. J.

    1979-01-01

    Mathematical cost factors were generated for both hybrid microcircuit and printed wiring board packaging methods. A mathematical cost model was created for analysis of microcircuit fabrication costs. The costing factors were refined and reduced to formulae for computerization. Efficient methods were investigated for low cost packaging of LSI devices as a function of density and reliability. Technical problem areas such as wafer bumping, inner/outer leading bonding, testing on tape, and tape processing, were investigated.

  10. Genetic variability in MCF-7 sublines: evidence of rapid genomic and RNA expression profile modifications

    PubMed Central

    Nugoli, Mélanie; Chuchana, Paul; Vendrell, Julie; Orsetti, Béatrice; Ursule, Lisa; Nguyen, Catherine; Birnbaum, Daniel; Douzery, Emmanuel JP; Cohen, Pascale; Theillet, Charles

    2003-01-01

    Background Both phenotypic and cytogenetic variability have been reported for clones of breast carcinoma cell lines but have not been comprehensively studied. Despite this, cell lines such as MCF-7 cells are extensively used as model systems. Methods In this work we documented, using CGH and RNA expression profiles, the genetic variability at the genomic and RNA expression levels of MCF-7 cells of different origins. Eight MCF-7 sublines collected from different sources were studied as well as 3 subclones isolated from one of the sublines by limit dilution. Results MCF-7 sublines showed important differences in copy number alteration (CNA) profiles. Overall numbers of events ranged from 28 to 41. Involved chromosomal regions varied greatly from a subline to another. A total of 62 chromosomal regions were affected by either gains or losses in the 11 sublines studied. We performed a phylogenetic analysis of CGH profiles using maximum parsimony in order to reconstruct the putative filiation of the 11 MCF-7 sublines. The phylogenetic tree obtained showed that the MCF-7 clade was characterized by a restricted set of 8 CNAs and that the most divergent subline occupied the position closest to the common ancestor. Expression profiles of 8 MCF-7 sublines were analyzed along with those of 19 unrelated breast cancer cell lines using home made cDNA arrays comprising 720 genes. Hierarchical clustering analysis of the expression data showed that 7/8 MCF-7 sublines were grouped forming a cluster while the remaining subline clustered with unrelated breast cancer cell lines. These data thus showed that MCF-7 sublines differed at both the genomic and phenotypic levels. Conclusions The analysis of CGH profiles of the parent subline and its three subclones supported the heteroclonal nature of MCF-7 cells. This strongly suggested that the genetic plasticity of MCF-7 cells was related to their intrinsic capacity to generate clonal heterogeneity. We propose that MCF-7, and possibly the breast tumor it was derived from, evolved in a node like pattern, rather than according to a linear progression model. Due to their capacity to undergo rapid genetic changes MCF-7 cells could represent an interesting model for genetic evolution of breast tumors. PMID:12713671

  11. Nucleic acid in-situ hybridization detection of infectious agents

    NASA Astrophysics Data System (ADS)

    Thompson, Curtis T.

    2000-04-01

    Limitations of traditional culture methods and newer polymerase chain reaction (PCR)-based methods for detection and speciation of infectious agents demonstrate the need for more rapid and better diagnostics. Nucleic acid hybridization is a detection technology that has gained wide acceptance in cancer and prenatal cytogenetics. Using a modification of the nucleic acid hybridization technique known as fluorescence in-situ hybridization, infectious agents can be detected in a variety of specimens with high sensitivity and specificity. The specimens derive from all types of human and animal sources including body fluids, tissue aspirates and biopsy material. Nucleic acid hybridization can be performed in less than one hour. The result can be interpreted either using traditional fluorescence microscopy or automated platforms such as micro arrays. This paper demonstrates proof of concept for nucleic acid hybridization detection of different infectious agents. Interpretation within a cytologic and histologic context is possible with fluorescence microscopic analysis, thereby providing confirmatory evidence of hybridization. With careful probe selection, nucleic acid hybridization promises to be a highly sensitive and specific practical diagnostic alternative to culture, traditional staining methods, immunohistochemistry and complicated nucleic acid amplification tests.

  12. Highly conserved Z and molecularly diverged W chromosomes in the fish genus Triportheus (Characiformes, Triportheidae).

    PubMed

    Yano, C F; Bertollo, L A C; Ezaz, T; Trifonov, V; Sember, A; Liehr, T; Cioffi, M B

    2017-03-01

    The main objectives of this study were to test: (1) whether the W-chromosome differentiation matches to species' evolutionary divergence (phylogenetic concordance) and (2) whether sex chromosomes share a common ancestor within a congeneric group. The monophyletic genus Triportheus (Characiformes, Triportheidae) was the model group for this study. All species in this genus so far analyzed have ZW sex chromosome system, where the Z is always the largest chromosome of the karyotype, whereas the W chromosome is highly variable ranging from almost homomorphic to highly heteromorphic. We applied conventional and molecular cytogenetic approaches including C-banding, ribosomal DNA mapping, comparative genomic hybridization (CGH) and cross-species whole chromosome painting (WCP) to test our questions. We developed Z- and W-chromosome paints from T. auritus for cross-species WCP and performed CGH in a representative species (T. signatus) to decipher level of homologies and rates of differentiation of W chromosomes. Our study revealed that the ZW sex chromosome system had a common origin, showing highly conserved Z chromosomes and remarkably divergent W chromosomes. Notably, the W chromosomes have evolved to different shapes and sequence contents within ~15-25 Myr of divergence time. Such differentiation highlights a dynamic process of W-chromosome evolution within congeneric species of Triportheus.

  13. Genotyping of Salmonella enterica serovar Typhi strains isolated from 1959 to 2006 in China and analysis of genetic diversity by genomic microarray.

    PubMed

    Zhang, Haifang; Zhang, Xiaolei; Yan, Meiying; Pang, Bo; Kan, Biao; Xu, Huaxi; Huang, Xinxiang

    2011-12-15

    To determine the genotype of Salmonella enterica serovar Typhi (S. Typhi) strains in China and analyze their genetic diversity. We collected S. Typhi strains from 1959 to 2006 in five highly endemic Chinese provinces and chose 40 representative strains. Multilocus sequence typing was used to determine the genotypes or sequence types (ST) and microarray-based comparative genomic hybridization (M-CGH) to investigate the differences in gene content among these strains. Forty representative S. Typhi strains belonged to 4 sequence types (ST1, ST2, ST890, and ST892). The predominant S. Typhi genotype (31/40) was ST2 and it had a diverse geographic distribution. We discovered two novel STs - ST890 and ST892. M-CGH showed that 69 genes in these two novel STs were divergent from S. Typhi Ty2, which belongs to ST1. In addition, 5 representative Typhi strains of ST2 isolated from Guizhou province showed differences in divergent genes. We determined two novel sequence types, ST890 and ST892, and found that ST2 was the most prevalent genotype of S. Typhi in China. Genetic diversity was present even within a highly clonal bacterial population.

  14. CEQer: A Graphical Tool for Copy Number and Allelic Imbalance Detection from Whole-Exome Sequencing Data

    PubMed Central

    Piazza, Rocco; Magistroni, Vera; Pirola, Alessandra; Redaelli, Sara; Spinelli, Roberta; Redaelli, Serena; Galbiati, Marta; Valletta, Simona; Giudici, Giovanni; Cazzaniga, Giovanni; Gambacorti-Passerini, Carlo

    2013-01-01

    Copy number alterations (CNA) are common events occurring in leukaemias and solid tumors. Comparative Genome Hybridization (CGH) is actually the gold standard technique to analyze CNAs; however, CGH analysis requires dedicated instruments and is able to perform only low resolution Loss of Heterozygosity (LOH) analyses. Here we present CEQer (Comparative Exome Quantification analyzer), a new graphical, event-driven tool for CNA/allelic-imbalance (AI) coupled analysis of exome sequencing data. By using case-control matched exome data, CEQer performs a comparative digital exonic quantification to generate CNA data and couples this information with exome-wide LOH and allelic imbalance detection. This data is used to build mixed statistical/heuristic models allowing the identification of CNA/AI events. To test our tool, we initially used in silico generated data, then we performed whole-exome sequencing from 20 leukemic specimens and corresponding matched controls and we analyzed the results using CEQer. Taken globally, these analyses showed that the combined use of comparative digital exon quantification and LOH/AI allows generating very accurate CNA data. Therefore, we propose CEQer as an efficient, robust and user-friendly graphical tool for the identification of CNA/AI in the context of whole-exome sequencing data. PMID:24124457

  15. Principles of gene microarray data analysis.

    PubMed

    Mocellin, Simone; Rossi, Carlo Riccardo

    2007-01-01

    The development of several gene expression profiling methods, such as comparative genomic hybridization (CGH), differential display, serial analysis of gene expression (SAGE), and gene microarray, together with the sequencing of the human genome, has provided an opportunity to monitor and investigate the complex cascade of molecular events leading to tumor development and progression. The availability of such large amounts of information has shifted the attention of scientists towards a nonreductionist approach to biological phenomena. High throughput technologies can be used to follow changing patterns of gene expression over time. Among them, gene microarray has become prominent because it is easier to use, does not require large-scale DNA sequencing, and allows for the parallel quantification of thousands of genes from multiple samples. Gene microarray technology is rapidly spreading worldwide and has the potential to drastically change the therapeutic approach to patients affected with tumor. Therefore, it is of paramount importance for both researchers and clinicians to know the principles underlying the analysis of the huge amount of data generated with microarray technology.

  16. Partial monosomy Xq(Xq23 --> qter) and trisomy 4p(4p15.33 --> pter) in a woman with intractable focal epilepsy, borderline intellectual functioning, and dysmorphic features.

    PubMed

    Bartocci, Arnaldo; Striano, Pasquale; Mancardi, Maria Margherita; Fichera, Marco; Castiglia, Lucia; Galesi, Ornella; Michelucci, Roberto; Elia, Maurizio

    2008-06-01

    Studies of epilepsy associated with chromosomal abnormalities may provide information about clinical and EEG phenotypes and possibly to identify new epilepsy genes. We describe a female patient with intractable focal epilepsy, borderline intellectual functioning, and facial dysmorphisms, in whom genetic study (i.e., karyotype and array-CGH analysis) revealed a distal trisomy 4p and distal monosomy Xq. Although any genetic hypothesis remains speculative, several genes are located in the 4p chromosome segment involved in the rearrangement, some of which may be related to epilepsy.

  17. Sparsely-Bonded CMOS Hybrid Imager

    NASA Technical Reports Server (NTRS)

    Sun, Chao (Inventor); Jones, Todd J. (Inventor); Nikzad, Shouleh (Inventor); Newton, Kenneth W. (Inventor); Cunningham, Thomas J. (Inventor); Hancock, Bruce R. (Inventor); Dickie, Matthew R. (Inventor); Hoenk, Michael E. (Inventor); Wrigley, Christopher J. (Inventor); Pain, Bedabrata (Inventor)

    2015-01-01

    A method and device for imaging or detecting electromagnetic radiation is provided. A device structure includes a first chip interconnected with a second chip. The first chip includes a detector array, wherein the detector array comprises a plurality of light sensors and one or more transistors. The second chip includes a Read Out Integrated Circuit (ROIC) that reads out, via the transistors, a signal produced by the light sensors. A number of interconnects between the ROIC and the detector array can be less than one per light sensor or pixel.

  18. Screening of copy number variants in the 22q11.2 region of congenital heart disease patients from the São Miguel Island, Azores, revealed the second patient with a triplication.

    PubMed

    Pires, Renato; Pires, Luís M; Vaz, Sara O; Maciel, Paula; Anjos, Rui; Moniz, Raquel; Branco, Claudia C; Cabral, Rita; Carreira, Isabel M; Mota-Vieira, Luisa

    2014-11-07

    The rearrangements in the 22q11.2 chromosomal region, responsible for the 22q11.2 deletion and microduplication syndromes, are frequently associated with congenital heart disease (CHD). The present work aimed to identify the genetic basis of CHD in 87 patients from the São Miguel Island, Azores, through the detection of copy number variants (CNVs) in the 22q11.2 region. These structural variants were searched using multiplex ligation-dependent probe amplification (MLPA). In patients with CNVs, we additionally performed fluorescent in situ hybridization (FISH) for the assessment of the exact number of 22q11.2 copies among each chromosome, and array comparative genomic hybridization (array-CGH) for the determination of the exact length of CNVs. We found that four patients (4.6%; A to D) carried CNVs. Patients A and D, both affected with a ventricular septal defect, carried a de novo 2.5 Mb deletion of the 22q11.2 region, which was probably originated by inter-chromosomal (inter-chromatid) non-allelic homologous recombination (NAHR) events in the regions containing low-copy repeats (LCRs). Patient C, with an atrial septal defect, carried a de novo 2.5 Mb duplication of 22q11.2 region, which could have been probably generated during gametogenesis by NAHR or by unequal crossing-over; additionally, this patient presented a benign 288 Kb duplication, which included the TOP3B gene inherited from her healthy mother. Finally, patient B showed a 3 Mb triplication associated with dysmorphic facial features, cognitive deficit and heart defects, a clinical feature not reported in the only case described so far in the literature. The evaluation of patient B's parents revealed a 2.5 Mb duplication in her father, suggesting a paternal inheritance with an extra copy. This report allowed the identification of rare deletion and microduplication syndromes in Azorean CHD patients. Moreover, we report the second patient with a 22q11.2 triplication, and we suggest that patients with triplications of chromosome 22q11.2, although they share some characteristic features with the deletion and microduplication syndromes, present a more severe phenotype probably due to the major dosage of implicated genes.

  19. Hybrid Arrays for Chemical Sensing

    NASA Astrophysics Data System (ADS)

    Kramer, Kirsten E.; Rose-Pehrsson, Susan L.; Johnson, Kevin J.; Minor, Christian P.

    In recent years, multisensory approaches to environment monitoring for chemical detection as well as other forms of situational awareness have become increasingly popular. A hybrid sensor is a multimodal system that incorporates several sensing elements and thus produces data that are multivariate in nature and may be significantly increased in complexity compared to data provided by single-sensor systems. Though a hybrid sensor is itself an array, hybrid sensors are often organized into more complex sensing systems through an assortment of network topologies. Part of the reason for the shift to hybrid sensors is due to advancements in sensor technology and computational power available for processing larger amounts of data. There is also ample evidence to support the claim that a multivariate analytical approach is generally superior to univariate measurements because it provides additional redundant and complementary information (Hall, D. L.; Linas, J., Eds., Handbook of Multisensor Data Fusion, CRC, Boca Raton, FL, 2001). However, the benefits of a multisensory approach are not automatically achieved. Interpretation of data from hybrid arrays of sensors requires the analyst to develop an application-specific methodology to optimally fuse the disparate sources of data generated by the hybrid array into useful information characterizing the sample or environment being observed. Consequently, multivariate data analysis techniques such as those employed in the field of chemometrics have become more important in analyzing sensor array data. Depending on the nature of the acquired data, a number of chemometric algorithms may prove useful in the analysis and interpretation of data from hybrid sensor arrays. It is important to note, however, that the challenges posed by the analysis of hybrid sensor array data are not unique to the field of chemical sensing. Applications in electrical and process engineering, remote sensing, medicine, and of course, artificial intelligence and robotics, all share the same essential data fusion challenges. The design of a hybrid sensor array should draw on this extended body of knowledge. In this chapter, various techniques for data preprocessing, feature extraction, feature selection, and modeling of sensor data will be introduced and illustrated with data fusion approaches that have been implemented in applications involving data from hybrid arrays. The example systems discussed in this chapter involve the development of prototype sensor networks for damage control event detection aboard US Navy vessels and the development of analysis algorithms to combine multiple sensing techniques for enhanced remote detection of unexploded ordnance (UXO) in both ground surveys and wide area assessments.

  20. Breast tumors from CHEK2 1100delC-mutation carriers: genomic landscape and clinical implications.

    PubMed

    Muranen, Taru A; Greco, Dario; Fagerholm, Rainer; Kilpivaara, Outi; Kämpjärvi, Kati; Aittomäki, Kristiina; Blomqvist, Carl; Heikkilä, Päivi; Borg, Ake; Nevanlinna, Heli

    2011-09-20

    Checkpoint kinase 2 (CHEK2) is a moderate penetrance breast cancer risk gene, whose truncating mutation 1100delC increases the risk about twofold. We investigated gene copy-number aberrations and gene-expression profiles that are typical for breast tumors of CHEK2 1100delC-mutation carriers. In total, 126 breast tumor tissue specimens including 32 samples from patients carrying CHEK2 1100delC were studied in array-comparative genomic hybridization (aCGH) and gene-expression (GEX) experiments. After dimensionality reduction with CGHregions R package, CHEK2 1100delC-associated regions in the aCGH data were detected by the Wilcoxon rank-sum test. The linear model was fitted to GEX data with R package limma. Genes whose expression levels were associated with CHEK2 1100delC mutation were detected by the bayesian method. We discovered four lost and three gained CHEK2 1100delC-related loci. These include losses of 1p13.3-31.3, 8p21.1-2, 8p23.1-2, and 17p12-13.1 as well as gains of 12q13.11-3, 16p13.3, and 19p13.3. Twenty-eight genes located on these regions showed differential expression between CHEK2 1100delC and other tumors, nominating them as candidates for CHEK2 1100delC-associated tumor-progression drivers. These included CLCA1 on 1p22 as well as CALCOCO1, SBEM, and LRP1 on 12q13. Altogether, 188 genes were differentially expressed between CHEK2 1100delC and other tumors. Of these, 144 had elevated and 44, reduced expression levels.Our results suggest the WNT pathway as a driver of tumorigenesis in breast tumors of CHEK2 1100delC-mutation carriers and a role for the olfactory receptor protein family in cancer progression. Differences in the expression of the 188 CHEK2 1100delC-associated genes divided breast tumor samples from three independent datasets into two groups that differed in their relapse-free survival time. We have shown that copy-number aberrations of certain genomic regions are associated with CHEK2 mutation 1100delC. On these regions, we identified potential drivers of CHEK2 1100delC-associated tumorigenesis, whose role in cancer progression is worth investigating. Furthermore, poorer survival related to the CHEK2 1100delC gene-expression signature highlights pathways that are likely to have a role in the development of metastatic disease in carriers of the CHEK2 1100delC mutation.

Top