Science.gov

Sample records for hydrated fluid phase

  1. Fuel cell membrane hydration and fluid metering

    DOEpatents

    Jones, Daniel O.; Walsh, Michael M.

    2003-01-01

    A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).

  2. Fuel cell membrane hydration and fluid metering

    DOEpatents

    Jones, Daniel O.; Walsh, Michael M.

    1999-01-01

    A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel in order to mix its respective portion of liquid water with the corresponding portion of the stream. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).

  3. New insight into probe-location dependent polarity and hydration at lipid/water interfaces: comparison between gel- and fluid-phases of lipid bilayers.

    PubMed

    Singh, Moirangthem Kiran; Shweta, Him; Khan, Mohammad Firoz; Sen, Sobhan

    2016-09-21

    Environment polarity and hydration at lipid/water interfaces play important roles in membrane biology, which are investigated here using a new homologous series of 4-aminophthalimide-based fluorescent molecules (4AP-Cn; n = 2-10, 12) having different lipophilicities (octanol/water partition coefficient - log P). We show that 4AP-Cn molecules probe a peculiar stepwise polarity (E) profile at the lipid/water interface of the gel-phase (Lβ') DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) bilayer at room temperature, which was not anticipated in earlier studies. However, the same molecules probe only a subtle but continuous polarity change at the interface of water and the fluid-phase (Lα) DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) bilayer at room temperature. Fluorescence quenching experiments indicate that solutes with different log P values adsorb at different depths across DPPC/water and DOPC/water interfaces, which correlate with the polarity profiles observed at the interfaces. Molecular dynamics simulations performed on eight probe-lipid systems (four in each of the DPPC and DOPC bilayers - a total run of 2.6 μs) support experimental results, providing further information on the relative position and angle distributions as well as hydration of probes at the interfaces. Simulation results indicate that besides positions, probe orientations also play an important role in defining the local dielectric environment by controlling the probes' exposure to water at the interfaces especially of the gel-phase DPPC bilayer. The results suggest that 4AP-Cn probes are well suited for studying solvation properties at lipid/water interfaces of gel- and fluid-phases simultaneously.

  4. Fluids and hydration in prolonged endurance performance.

    PubMed

    Von Duvillard, Serge P; Braun, William A; Markofski, Melissa; Beneke, Ralph; Leithäuser, Renate

    2004-01-01

    Numerous studies have confirmed that performance can be impaired when athletes are dehydrated. Endurance athletes should drink beverages containing carbohydrate and electrolyte during and after training or competition. Carbohydrates (sugars) favor consumption and Na(+) favors retention of water. Drinking during competition is desirable compared with fluid ingestion after or before training or competition only. Athletes seldom replace fluids fully due to sweat loss. Proper hydration during training or competition will enhance performance, avoid ensuing thermal stress, maintain plasma volume, delay fatigue, and prevent injuries associated with dehydration and sweat loss. In contrast, hyperhydration or overdrinking before, during, and after endurance events may cause Na(+) depletion and may lead to hyponatremia. It is imperative that endurance athletes replace sweat loss via fluid intake containing about 4% to 8% of carbohydrate solution and electrolytes during training or competition. It is recommended that athletes drink about 500 mL of fluid solution 1 to 2 h before an event and continue to consume cool or cold drinks in regular intervals to replace fluid loss due to sweat. For intense prolonged exercise lasting longer than 1 h, athletes should consume between 30 and 60 g/h and drink between 600 and 1200 mL/h of a solution containing carbohydrate and Na(+) (0.5 to 0.7 g/L of fluid). Maintaining proper hydration before, during, and after training and competition will help reduce fluid loss, maintain performance, lower submaximal exercise heart rate, maintain plasma volume, and reduce heat stress, heat exhaustion, and possibly heat stroke.

  5. Method for controlling clathrate hydrates in fluid systems

    DOEpatents

    Sloan, Jr., Earle D.

    1995-01-01

    Discussed is a process for preventing clathrate hydrate masses from impeding the flow of fluid in a fluid system. An additive is contacted with clathrate hydrate masses in the system to prevent those clathrate hydrate masses from impeding fluid flow. The process is particularly useful in the natural gas and petroleum production, transportation and processing industry where gas hydrate formation can cause serious problems. Additives preferably contain one or more five member and/or six member cyclic chemical groupings. Additives include poly(N-vinyl-2-pyrrolidone) and hydroxyethylcellulose, either in combination or alone.

  6. Hydration states of AFm cement phases

    SciTech Connect

    Baquerizo, Luis G.; Matschei, Thomas; Scrivener, Karen L.; Saeidpour, Mahsa; Wadsö, Lars

    2015-07-15

    The AFm phase, one of the main products formed during the hydration of Portland and calcium aluminate cement based systems, belongs to the layered double hydrate (LDH) family having positively charged layers and water plus charge-balancing anions in the interlayer. It is known that these phases present different hydration states (i.e. varying water content) depending on the relative humidity (RH), temperature and anion type, which might be linked to volume changes (swelling and shrinkage). Unfortunately the stability conditions of these phases are insufficiently reported. This paper presents novel experimental results on the different hydration states of the most important AFm phases: monocarboaluminate, hemicarboaluminate, strätlingite, hydroxy-AFm and monosulfoaluminate, and the thermodynamic properties associated with changes in their water content during absorption/desorption. This data opens the possibility to model the response of cementitious systems during drying and wetting and to engineer systems more resistant to harsh external conditions.

  7. Fe-containing phases in hydrated cements

    SciTech Connect

    Dilnesa, B.Z.; Wieland, E.; Lothenbach, B.; Dähn, R.; Scrivener, K.L.

    2014-04-01

    In this study synchrotron X-ray absorption spectroscopy (XAS) has been applied, an element specific technique which allows Fe-containing phases to be identified in the complex mineral mixture of hydrated cements. Several Fe species contributed to the overall Fe K-edge spectra recorded on the cement samples. In the early stage of cement hydration ferrite was the dominant Fe-containing mineral. Ferrihydrite was detected during the first hours of the hydration process. After 1 day the formation of Al- and Fe-siliceous hydrogarnet was observed, while the amount of ferrihydrite decreased. The latter finding agrees with thermodynamic modeling, which predicts the formation of Fe-siliceous hydrogarnet in Portland cement systems. The presence of Al- and Fe-containing siliceous hydrogarnet was further substantiated in the residue of hydrated cement by performing a selective dissolution procedure. - Highlights: • Fe bound to ferrihydrite at early age hydration • Fe found to be stable in siliceous hydrogarnet at longer term age hydration • Fe-containing AFt and AFm phases are less stable than siliceous hydrogarnet. • The study demonstrates EXAFS used to identify amorphous or poorly crystalline phases.

  8. Analysis of the theoretical model of drilling fluid invading into oceanic gas hydrates-bearing sediment

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Ning, F.; Jiang, G.; Wu, N.; Wu, D.

    2009-12-01

    Oceanic gas hydrate-bearing sediment is usually porous media, with the temperature and pressure closer to the curve of hydrate phase equilibrium than those in the permafrost region. In the case of near-balanced or over-balanced drilling through this sediment, the water-based drilling fluid used invades into this sediment, and hydrates decompose with heat transfer between drilling fluid and this sediment. During these processes, there are inevitably energy and mass exchanges between drilling fluid and the sediment, which will affect the logging response, borehole stability and reservoir evaluation. When drilling fluid invades into this sediment, solid and liquid phases of drilling fluid permeate into the wellbore and displace original fluids and solids, and water content of formation increases. With the temperature and pressure changing, gas hydrates in the sediment decompose into gas and water, and water content of formation further changes. When the filter cakes form, the invasion of drilling fluid is weakened. This process is accompanied by the heat and mass transfer within the range from wellbore to undisturbed area, including heat conduction of rock matrix, the convective heat transfer of fluids invaded, the heat absorbing of hydrate decomposition and the mass exchange between fluids invaded and the gas and water generated by hydrate decomposition. As a result, dynamic balance is built up and there are generally four different regions from wellbore to undisturbed area, i.e. filter cakes region, filter liquor region, water/free gas region, and water/free gas/hydrate region. According to the analysis on the invasion of drilling fuild into sediment, the whole invasion process can be described as an anisothermal and unstable displacement and diffusion process coupled with phase change. Refering to models of drilling fuilds invasion into normal oil and gas formation and natrual gas production from hydrate deposit by heating, the model of the invasion of drilling

  9. Method for controlling clathrate hydrates in fluid systems

    DOEpatents

    Sloan, E.D. Jr.

    1995-07-11

    Discussed is a process for preventing clathrate hydrate masses from impeding the flow of fluid in a fluid system. An additive is contacted with clathrate hydrate masses in the system to prevent those clathrate hydrate masses from impeding fluid flow. The process is particularly useful in the natural gas and petroleum production, transportation and processing industry where gas hydrate formation can cause serious problems. Additives preferably contain one or more five member, six member and/or seven member cyclic chemical groupings. Additives include poly(N-vinyl-2-pyrrolidone) and hydroxyethylcellulose, either in combination or alone. Additives can also contain multiple cyclic chemical groupings having different size rings. One such additive is sold under the name Gaffix VC-713.

  10. Method for controlling clathrate hydrates in fluid systems

    DOEpatents

    Sloan, Jr., Earle D.

    1995-01-01

    Discussed is a process for preventing clathrate hydrate masses from impeding the flow of fluid in a fluid system. An additive is contacted with clathrate hydrate masses in the system to prevent those clathrate hydrate masses from impeding fluid flow. The process is particularly useful in the natural gas and petroleum production, transportation and processing industry where gas hydrate formation can cause serious problems. Additives preferably contain one or more five member, six member and/or seven member cyclic chemical groupings. Additives include poly(N-vinyl-2-pyrrolidone) and hydroxyethylcellulose, either in combination or alone. Additives can also contain multiple cyclic chemical groupings having different size rings. One such additive is sold under the name Gaffix VC-713.

  11. Crystallization Experiments in the MgO-CO2-H2O system: Role of Amorphous Magnesium Carbonate Precursors in Magnesium Carbonate Hydrated Phases and Morphologies in Low Temperature Hydrothermal Fluids

    NASA Astrophysics Data System (ADS)

    Giampouras, Manolis; Garcia-Ruiz, Juan Manuel; Garrido, Carlos J.

    2017-04-01

    Numerous forms of hydrated or basic magnesium carbonates occur in the complex MgO-CO2-H2O system. Mineral saturation states from low temperature hydrothermal fluids in Semail Ophiolite (Oman), Prony Bay (New Caledonia) and Lost City hydrothermal field (mid-Atlantic ridge) strongly indicate the presence of magnesium hydroxy-carbonate hydrates (e.g. hydromagnesite) and magnesium hydroxides (brucite). Study of formation mechanisms and morphological features of minerals forming in the MgO-CO2-H2O system could give insights into serpentinization-driven, hydrothermal, alkaline environments, which are related to early Earth conditions. Temperature, hydration degree, pH and fluid composition are crucial factors regarding the formation, coexistence and transformation of such mineral phases. The rate of supersaturation, on the other hand, is a fundamental parameter to understand nucleation and crystal growth processes. All these parameters can be examined in a solution using different crystallization techniques. In the present study, we applied different crystallization techniques to synthesize and monitor the crystallization of Mg-bearing carbonates and hydroxides under abiotic conditions. Various crystallization techniques (counter-diffusion, vapor diffusion and unseeded solution mixing) were used to screen the formation conditions of each phase, transformation processes and structural development. Mineral and textural characterization of the different synthesized phases were carried out by X-ray diffraction (XRD), Raman spectroscopy and scanning electron microscopy coupled to dispersive energy spectroscopy (FE-SEM-EDS). Experimental investigation of the effect of pH level and silica content under variable reactant concentrations revealed the importance of Amorphous Magnesium Carbonate (AMC) in the formation of hydroxy-carbonate phases (hydromagnesite and dypingite). Micro-structural resemblance between AMC precursors and later stage crystalline phases highlights the

  12. Hydrated metal ions in the gas phase.

    PubMed

    Beyer, Martin K

    2007-01-01

    Studying metal ion solvation, especially hydration, in the gas phase has developed into a field that is dominated by a tight interaction between experiment and theory. Since the studied species carry charge, mass spectrometry is an indispensable tool in all experiments. Whereas gas-phase coordination chemistry and reactions of bare metal ions are reasonably well understood, systems containing a larger number of solvent molecules are still difficult to understand. This review focuses on the rich chemistry of hydrated metal ions in the gas phase, covering coordination chemistry, charge separation in multiply charged systems, as well as intracluster and ion-molecule reactions. Key ideas of metal ion solvation in the gas phase are illustrated with rare-gas solvated metal ions.

  13. Gas phase hydration of organic ions.

    PubMed

    Momoh, Paul O; El-Shall, M Samy

    2008-08-28

    In this work, we study the hydration phenomenon on a molecular level in the gas phase where a selected number of water molecules can interact with the organic ion of interest. The stepwise binding energies (DeltaH degrees (n-1,n)) of 1-7 water molecules to the phenyl acetylene cation are determined by equilibrium measurements using an ion mobility drift cell. The stepwise hydration energies DeltaH degrees (n-1,n) are nearly constant at 39.7 +/- 6.3 kJ mol(-1) from n = 1 to 7. The entropy change is larger in the n = 7 step, suggesting cyclic or cage-like water structures. No water addition is observed on the ionized phenyl acetylene trimer consistent with cyclization of the trimer ion to form triphenyl benzene cations C(24)H(18) (+) which are expected to interact weakly with the water molecules due to steric interactions and the delocalization of the charge on the large organic ion. The work demonstrates that hydration studies of organic ions can provide structural information on the organic ions.

  14. Hydration and endocrine responses to intravenous fluid and oral glycerol.

    PubMed

    van Rosendal, S P; Strobel, N A; Osborne, M A; Fassett, R G; Coombes, J S

    2015-06-01

    Athletes use intravenous (IV) saline in an attempt to maximize rehydration. The diuresis from IV rehydration may be circumvented through the concomitant use of oral glycerol. We examined the effects of rehydrating with differing regimes of oral and IV fluid, with or without oral glycerol, on hydration, urine, and endocrine indices. Nine endurance-trained men were dehydrated by 4% bodyweight, then rehydrated with 150% of the fluid lost via four protocols: (a) oral = oral fluid only; (b) oral glycerol = oral fluid with added glycerol (1.5 g/kg); (c) IV = 50% IV fluid, 50% oral fluid; and (d) IV with oral glycerol = 50% IV fluid, 50% oral fluid with added glycerol (1.5 g/kg), using a randomized, crossover design. They then completed a cycling performance test. Plasma volume restoration was highest in IV with oral glycerol > IV > oral glycerol  > oral. Urine volume was reduced in both IV trials compared with oral. IV and IV with oral glycerol resulted in lower aldosterone levels during rehydration and performance, and lower cortisol levels during rehydration. IV with oral glycerol resulted in the greatest fluid retention. In summary, the IV conditions resulted in greater fluid retention compared with oral and lower levels of fluid regulatory and stress hormones compared with both oral conditions. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Hydration Status of Patients Dialyzed with Biocompatible Peritoneal Dialysis Fluids.

    PubMed

    Lichodziejewska-Niemierko, Monika; Chmielewski, Michał; Dudziak, Maria; Ryta, Alicja; Rutkowski, Bolesław

    2016-01-01

    ♦ Biocompatible fluids for peritoneal dialysis (PD) have been introduced to improve dialysis and patient outcome in end-stage renal disease. However, their impact on hydration status (HS), residual renal function (RRF), and dialysis adequacy has been a matter of debate. The aim of the study was to evaluate the influence of a biocompatible dialysis fluid on the HS of prevalent PD patients. ♦ The study population consisted of 18 prevalent PD subjects, treated with standard dialysis fluids. At baseline, 9 patients were switched to a biocompatible solution, low in glucose degradation products (GDPs) (Balance; Fresenius Medical Care, Bad Homburg, Germany). Hydration status was assessed through clinical evaluation, laboratory parameters, echocardiography, and bioimpedance spectroscopy over a 24-month observation period. ♦ During the study period, urine volume decreased similarly in both groups. At the end of the evaluation, there were also no differences in clinical (body weight, edema, blood pressure), laboratory (N-terminal pro-brain natriuretic peptide, NTproBNP), or echocardiography determinants of HS. However, dialysis ultrafiltration decreased in the low-GDP group and, at the end of the study, equaled 929 ± 404 mL, compared with 1,317 ± 363 mL in the standard-fluid subjects (p = 0.06). Hydration status assessed by bioimpedance spectroscopy was +3.64 ± 2.08 L in the low-GDP patients and +1.47 ± 1.61 L in the controls (p = 0.03). ♦ The use of a low-GDP biocompatible dialysis fluid was associated with a tendency to overhydration, probably due to diminished ultrafiltration in prevalent PD patients. Copyright © 2016 International Society for Peritoneal Dialysis.

  16. Fatigue and fluid hydration status in multiple sclerosis: A hypothesis

    PubMed Central

    Cincotta, Molly C; Engelhard, Matthew M; Stankey, Makela; Goldman, Myla D

    2016-01-01

    Background Fatigue is a prevalent and functionally disabling symptom for individuals living with multiple sclerosis (MS) which is poorly understood and multifactorial in etiology. Bladder dysfunction is another common MS symptom which limits social engagement and quality of life. To manage bladder issues, individuals with MS tend to limit their fluid intake, which may contribute to a low-hydration (LoH) state and fatigue. Objective To evaluate the relationship between patient-reported MS fatigue, bladder dysfunction, and hydration status. Methods We performed a prospective cross-sectional study in 50 women with MS. Participants submitted a random urine sample and completed several fatigue-related surveys. Using a urine specific gravity (USG) threshold of 1.015, we classified MS subjects into two groups: high-hydration (HiH) and LoH states. Results LoH status was more common in MS subjects with bladder dysfunction. Statistically significant differences in self-reported Fatigue Performance Scale were observed between HiH and LoH subjects (p = 0.022). USG was significantly correlated with fatigue as measured by the MS Fatigue Severity Scale (FSS) score (r = 0.328, p = 0.020). Conclusion Hydration status correlates with self-reported fatigue, with lower fatigue scores found in those with HiH status (USG < 1.015). PMID:27542703

  17. Subcutaneous Infusion of Fluids for Hydration or Nutrition: A Review.

    PubMed

    Caccialanza, Riccardo; Constans, Thierry; Cotogni, Paolo; Zaloga, Gary P; Pontes-Arruda, Alessandro

    2016-11-02

    Subcutaneous infusion, or hypodermoclysis, is a technique whereby fluids are infused into the subcutaneous space via small-gauge needles that are typically inserted into the thighs, abdomen, back, or arms. In this review, we provide an overview of the technique, summarize findings from studies that have examined the use of subcutaneous infusion of fluids for hydration or nutrition, and describe the indications, advantages, and disadvantages of subcutaneous infusion. Taken together, the available evidence suggests that, when indicated, subcutaneous infusion can be effective for administering fluids for hydration or nutrition, with minimal complications, and has similar effectiveness and safety to the intravenous route. Of note, subcutaneous infusion offers several advantages over intravenous infusion, including ease of application, low cost, and the lack of potential serious complications, particularly infections. Subcutaneous infusion may be particularly suited for patients with mild to moderate dehydration or malnutrition when oral/enteral intake is insufficient; when placement of an intravenous catheter is not possible, tolerated, or desirable; at risk of dehydration when oral intake is not tolerated; as a bridging technique in case of difficult intravenous access or catheter-related bloodstream infection while infection control treatment is being attempted; and in multiple settings (eg, emergency department, hospital, outpatient clinic, nursing home, long-term care, hospice, and home). © 2016 The Author(s).

  18. Cage occupancy and structural changes during hydrate formation from initial stages to resulting hydrate phase.

    PubMed

    Schicks, Judith M; Luzi-Helbing, Manja

    2013-11-01

    Hydrate formation processes and kinetics are still not sufficiently understood on a molecular level based on experimental data. In particular, the cavity formation and occupancy during the initial formation and growth processes of mixed gas hydrates are rarely investigated. In this study, we present the results of our time-depending Raman spectroscopic measurements during the formation of hydrates from ice and gases or gas mixtures such as CH4, CH4-CO2, CH4-H2S, CH4-C3H8, CH4-iso-C4H10, and CH4-neo-C5H12 at constant pressure and temperature conditions and constant composition of the feed gas phase. All investigated systems in this study show the incorporation of CH4 into the 5(12) cavities as first step in the initial stages of hydrate formation. Furthermore, the results imply that the initial hydrate phases differ from the resulting hydrate phase having reached a steady state regarding the occupancy and ratio of the small and large cavities of the hydrate.

  19. Additives and method for controlling clathrate hydrates in fluid systems

    DOEpatents

    Sloan, Jr., Earle Dendy; Christiansen, Richard Lee; Lederhos, Joseph P.; Long, Jin Ping; Panchalingam, Vaithilingam; Du, Yahe; Sum, Amadeu Kun Wan

    1997-01-01

    Discussed is a process for preventing clathrate hydrate masses from detrimentally impeding the possible flow of a fluid susceptible to clathrate hydrate formation. The process is particularly useful in the natural gas and petroleum production, transportation and processing industry where gas hydrate formation can cause serious problems. Additives preferably contain one or more five member, six member and/or seven member cyclic chemical groupings. Additives include polymers having lactam rings. Additives can also contain polyelectrolytes that are believed to improve conformance of polymer additives through steric hinderance and/or charge repulsion. Also, polymers having an amide on which a C.sub.1 -C.sub.4 group is attached to the nitrogen and/or the carbonyl carbon of the amide may be used alone, or in combination with ring-containing polymers for enhanced effectiveness. Polymers having at least some repeating units representative of polymerizing at least one of an oxazoline, an N-substituted acrylamide and an N-vinyl alkyl amide are preferred.

  20. Additives and method for controlling clathrate hydrates in fluid systems

    DOEpatents

    Sloan, E.D. Jr.; Christiansen, R.L.; Lederhos, J.P.; Long, J.P.; Panchalingam, V.; Du, Y.; Sum, A.K.W.

    1997-06-17

    Discussed is a process for preventing clathrate hydrate masses from detrimentally impeding the possible flow of a fluid susceptible to clathrate hydrate formation. The process is particularly useful in the natural gas and petroleum production, transportation and processing industry where gas hydrate formation can cause serious problems. Additives preferably contain one or more five member, six member and/or seven member cyclic chemical groupings. Additives include polymers having lactam rings. Additives can also contain polyelectrolytes that are believed to improve conformance of polymer additives through steric hindrance and/or charge repulsion. Also, polymers having an amide on which a C{sub 1}-C{sub 4} group is attached to the nitrogen and/or the carbonyl carbon of the amide may be used alone, or in combination with ring-containing polymers for enhanced effectiveness. Polymers having at least some repeating units representative of polymerizing at least one of an oxazoline, an N-substituted acrylamide and an N-vinyl alkyl amide are preferred.

  1. The effect of polymethylsiloxanes on hydration of clinker phases

    NASA Astrophysics Data System (ADS)

    Stoch, A.; Zdaniewicz, M.; Paluszkiewicz, Cz.

    1999-11-01

    The effect of the polydimethylsiloxane (PDMS) admixture on hydration of pure clinker phases: alite, belite or tricalcium aluminate was studied by means of FTIR spectroscopy. It was shown that PDMS, introduced to a clinker phase paste during the hydration process reduces the carbonation reaction, improves the crystallization of hydrates in tricalcium aluminate and considerably increases water resistance without significantly changing the mechanical parameters. Our FTIR results were also confirmed by XRD, DTA and SEM study of the morphology of the newly formed phases. Introduction of as much as 5 wt.% of the PDMS increases the wetting angle by up to 80-120°.

  2. Gas hydrate formation rates from dissolved-phase methane in porous laboratory specimens

    USGS Publications Warehouse

    Waite, William F.; Spangenberg, E.K.

    2013-01-01

    Marine sands highly saturated with gas hydrates are potential energy resources, likely forming from methane dissolved in pore water. Laboratory fabrication of gas hydrate-bearing sands formed from dissolved-phase methane usually requires 1–2 months to attain the high hydrate saturations characteristic of naturally occurring energy resource targets. A series of gas hydrate formation tests, in which methane-supersaturated water circulates through 100, 240, and 200,000 cm3 vessels containing glass beads or unconsolidated sand, show that the rate-limiting step is dissolving gaseous-phase methane into the circulating water to form methane-supersaturated fluid. This implies that laboratory and natural hydrate formation rates are primarily limited by methane availability. Developing effective techniques for dissolving gaseous methane into water will increase formation rates above our observed (1 ± 0.5) × 10−7 mol of methane consumed for hydrate formation per minute per cubic centimeter of pore space, which corresponds to a hydrate saturation increase of 2 ± 1% per day, regardless of specimen size.

  3. Hydration of Gas-Phase Ions Formed by Electrospray Ionization

    PubMed Central

    Rodriguez-Cruz, Sandra E.; Klassen, John S.; Williams, Evan R.

    2005-01-01

    The hydration of gas-phase ions produced by electrospray ionization was investigated. Evidence that the hydrated ions are formed by two mechanisms is presented. First, solvent condensation during the expansion inside the electrospray source clearly occurs. Second, some solvent evaporation from more extensively solvated ions or droplets is apparent. To the extent that these highly solvated ions have solution-phase structures, then the final isolated gas-phase structure of the ion will be determined by the solvent evaporation process. This process was investigated for hydrated gramicidin S in a Fourier-transform mass spectrometer. Unimolecular dissociation rate constants of isolated gramicidin S ions with between 2 and 14 associated water molecules were measured. These rate constants increased from 16 to 230 s−1 with increasing hydration, with smaller values corresponding to magic numbers. PMID:10497808

  4. Calculation of liquid water-hydrate-methane vapor phase equilibria from molecular simulations.

    PubMed

    Jensen, Lars; Thomsen, Kaj; von Solms, Nicolas; Wierzchowski, Scott; Walsh, Matthew R; Koh, Carolyn A; Sloan, E Dendy; Wu, David T; Sum, Amadeu K

    2010-05-06

    Monte Carlo simulation methods for determining fluid- and crystal-phase chemical potentials are used for the first time to calculate liquid water-methane hydrate-methane vapor phase equilibria from knowledge of atomistic interaction potentials alone. The water and methane molecules are modeled using the TIP4P/ice potential and a united-atom Lennard-Jones potential, respectively. The equilibrium calculation method for this system has three components, (i) thermodynamic integration from a supercritical ideal gas to obtain the fluid-phase chemical potentials, (ii) calculation of the chemical potential of the zero-occupancy hydrate system using thermodynamic integration from an Einstein crystal reference state, and (iii) thermodynamic integration to obtain the water and guest molecules' chemical potentials as a function of the hydrate occupancy. The three-phase equilibrium curve is calculated for pressures ranging from 20 to 500 bar and is shown to follow the Clapeyron behavior, in agreement with experiment; coexistence temperatures differ from the latter by 4-16 K in the pressure range studied. The enthalpy of dissociation extracted from the calculated P-T curve is within 2% of the experimental value at corresponding conditions. While computationally intensive, simulations such as these are essential to map the thermodynamically stable conditions for hydrate systems.

  5. Identification of phase boundaries in anhydrate/hydrate systems.

    PubMed

    Krzyzaniak, Joseph F; Williams, Glenn R; Ni, Nina

    2007-05-01

    Near-infrared spectroscopy was used to monitor the phase conversion for two solvatomorphs of caffeine, an anhydrous form and a nonstoichiometric hydrate, as a function of time, temperature, and relative humidity. The transformation kinetics between these caffeine forms was determined to increase with temperature. The rate of conversion was also determined to be dependent on the difference between the observed relative humidity and the equilibrium water activity of the anhydrate/hydrate system, that is, phase boundary. Near the phase boundary, minimal conversion between the anhydrous and hydrated forms of caffeine was detected. Using this kinetic data, the phase boundary for these forms was determined to be approximately 67% RH at 10 degrees C, 74.5% RH at 25 degrees C, and 86% RH at 40 degrees C. At each specified temperature, anhydrous caffeine is the thermodynamically stable form below this relative humidity and the hydrate is stable above. The phase boundary data were then fitted using a second order polynomial to determine the stability relationship between anhydrous caffeine and its hydrate at additional temperatures. This approach can be used to rapidly determine the stability relationship for solvatomorphs as well as the relative kinetics of their interconversion. Both of these factors are critical in selecting the development form, designing appropriate stability studies, and developing robust conditions for the preparation and packaging of the API and formulated drug product.

  6. Numerical investigations of the fluid flows at deep oceanic and arctic permafrost-associated gas hydrate deposits

    NASA Astrophysics Data System (ADS)

    Frederick, Jennifer Mary

    , allows us a unique opportunity to study the response of methane hydrate deposits to warming. Gas hydrate stability in the Arctic and the permeability of the shelf sediments to gas migration is thought to be closely linked with relict submarine permafrost. Submarine permafrost extent depends on several environmental factors, such as the shelf lithology, sea level variations, mean annual air temperature, ocean bottom water temperature, geothermal heat flux, groundwater hydrology, and the salinity of the pore water. Effects of submarine groundwater discharge, which introduces fresh terrestrial groundwater off-shore, can freshen deep marine sediments and is an important control on the freezing point depression of ice and methane hydrate. While several thermal modeling studies suggest the permafrost layer should still be largely intact near-shore, many recent field studies have reported elevated methane levels in Arctic coastal waters. The permafrost layer is thought to create an impermeable barrier to fluid and gas flow, however, talik formation (unfrozen regions within otherwise continuous permafrost) below paleo-river channels can create permeable pathways for gas migration from depth. This is the first study of its kind to make predictions of the methane gas flux to the water column from the Arctic shelf sediments using a 2D multi-phase fluid flow model. Model results show that the dissociation of methane hydrate deposits through taliks can supersaturate the overlying water column at present-day relative to equilibrium with the atmosphere when taliks are large (> 1 km width) or hydrate saturation is high within hydrate layers (> 50% pore volume). Supersaturated waters likely drive a net flux of methane into the atmosphere, a potent greenhouse gas. Effects of anthropogenic global warming will certainly increase gas venting rates if ocean bottom water temperatures increase, but likely won't have immediately observable impacts due to the long response times.

  7. Venting of carbon dioxide-rich fluid and hydrate formation in mid-okinawa trough backarc basin.

    PubMed

    Sakai, H; Gamo, T; Kim, E S; Tsutsumi, M; Tanaka, T; Ishibashi, J; Wakita, H; Yamano, M; Oomori, T

    1990-06-01

    Carbon dioxide-rich fluid bubbles, containing approximately 86 percent CO(2), 3 percent H(2)S, and 11 percent residual gas (CH(4) + H(2)), were observed to emerge from the sea floor at 1335- to 1550-m depth in the JADE hydrothermal field, mid-Okinawa Trough. Upon contact with seawater at 3.8 degrees C, gas hydrate immediately formed on the surface of the bubbles and these hydrates coalesced to form pipes standing on the sediments. Chemical composition and carbon, sulfur, and helium isotopic ratios indicate that the CO(2)-rich fluid was derived from the same magmatic source as dissolved gases in 320 degrees C hydrothermal solution emitted from a nearby black smoker chimney. The CO(2)-rich fluid phase may be separated by subsurface boiling of hydrothermal solutions or by leaching of CO(2)-rich fluid inclusion during posteruption interaction between pore water and volcanogenic sediments.

  8. A Grain-Scale Coupled Model of Multiphase Fluid Flow and Sediment Mechanics: Application to Methane Hydrates in Natural Systems

    NASA Astrophysics Data System (ADS)

    Juanes, R.; Jain, A. K.

    2008-12-01

    We present a discrete element model for the simulation, at the grain scale, of gas migration in brine- saturated deformable media. We account rigorously for the presence of two fluids in the pore space by incorporating grain forces due to pore fluid pressures, and surface tension between fluids. The coupled model permits investigating an essential process that takes place at the base of the hydrate stability zone: the upward migration of methane in its own free gas phase. We elucidate the way in which gas migration may take place: (1) by capillary invasion in a rigid-like medium; and (2) by initiation and propagation of a fracture. We find that the main factor controlling the mode of gas transport in the sediment is the grain size, and show that coarse-grain sediments favor capillary invasion, whereas fracturing dominates in fine-grain media. The results have important implications for understanding hydrates in natural systems. Our results predict that, in fine sediments, hydrate will likely form in veins that follow a fracture-network pattern, and the hydrate concentration in this type of accumulations will likely be quite low. In coarse sediments, the buoyant methane gas is likely to invade the pore space more uniformly, in a process akin to invasion percolation, and the overall pore occupancy is likely to be much higher than for a fracture-dominated regime. These implications are consistent with field observations of methane hydrates in natural systems.

  9. Gas Phase Hydration of Methyl Glyoxal to Form the Gemdiol

    NASA Astrophysics Data System (ADS)

    Kroll, Jay A.; Axson, Jessica L.; Vaida, Veronica

    2016-06-01

    Methylglyoxal is a known oxidation product of volatile organic compounds (VOCs) in Earth's atmosphere. While the gas phase chemistry of methylglyoxal is fairly well understood, its modeled concentration and role in the formation of secondary organic aerosol (SOA) continues to be controversial. The gas phase hydration of methylglyoxal to form a gemdiol has not been widely considered for water-restricted environments such as the atmosphere. However, this process may have important consequences for the atmospheric processing of VOCs. We will report on spectroscopic work done in the Vaida laboratory studying the hydration of methylglyoxal and discuss the implications for understanding the atmospheric processing and fate of methylglyoxal and similar molecules.

  10. Hydration and Fluid Replacement Knowledge, Attitudes, Barriers, and Behaviors of NCAA Division 1 American Football Players.

    PubMed

    Judge, Lawrence W; Kumley, Roberta F; Bellar, David M; Pike, Kim L; Pierson, Eric E; Weidner, Thomas; Pearson, David; Friesen, Carol A

    2016-11-01

    Judge, LW, Kumley, RF, Bellar, DM, Pike, KL, Pierson, EE, Weidner, T, Pearson, D, and Friesen, CA. Hydration and fluid replacement knowledge, attitudes, barriers, and behaviors of NCAA Division 1 American football players. J Strength Cond Res 30(11): 2972-2978, 2016-Hydration is an important part of athletic performance, and understanding athletes' hydration knowledge, attitudes, barriers, and behaviors is critical for sport practitioners. The aim of this study was to assess National Collegiate Athletic Association (NCAA) Division 1 (D1) American football players, with regard to hydration and fluid intake before, during, and after exercise, and to apply this assessment to their overall hydration practice. The sample consisted of 100 student-athletes from 2 different NCAA D1 universities, who participated in voluntary summer football conditioning. Participants completed a survey to identify the fluid and hydration knowledge, attitudes and behaviors, demographic data, primary football position, previous nutrition education, and barriers to adequate fluid consumption. The average Hydration Knowledge Score (HKS) for the participants in the present study was 11.8 ± 1.9 (69.4% correct), with scores ranging from 42 to 100% correct. Four key misunderstandings regarding hydration, specifically related to intervals of hydration habits among the study subjects, were revealed. Only 24% of the players reported drinking enough fluids before, during, immediately after, and 2 hours after practice. Generalized linear model analysis predicted the outcome variable HKS (χ = 28.001, p = 0.045), with nutrition education (Wald χ = 8.250, p = 0.041) and position on the football team (χ = 9.361, p = 0.025) being significant predictors. "Backs" (e.g., quarterbacks, running backs, and defensive backs) demonstrated significantly higher hydration knowledge than "Linemen" (p = 0.014). Findings indicated that if changes are not made to increase hydration awareness levels among football teams

  11. Order Parameters and Algorithmic Approaches for Detection and Demarcation of Interfaces in Hydrate-Fluid and Ice-Fluid Systems.

    PubMed

    Sæthre, Bjørn Steen; Hoffmann, Alex C; van der Spoel, David

    2014-12-09

    Some aspects of the use of order parameter fields in molecular dynamics simulations to delimit solid phases containing water, namely ice and hydrate, in both hydrophilic and hydrophobic fluids are examined; this includes the influences of rectangular meshes and of filtering on the quality of these parameters. Three order parameters are studied: the mass density, ρ; an angular tetrahedrality measure, Sg (Chau and Hardwick, Mol. Phys. 1998, 93, 511); and the water-dimer dihedral angle, F4 (Rodger et al. Fluid Phase Equilib. 1996, 116, 326). The parameters are studied to find their ability to distinguish between bulk phases, their consistency in different environments, their noise susceptibility, and their ability to demarcate the interface region. Spatial sampling and filtering are covered in detail, and some temporal features are illustrated by using autocorrelation maps. The parameters are employed to determine the position of interfaces as functions of time and, with the capillary wave fluctuation method (Hoyt et al. Phys. Rev. Lett. 2001, 86, 5530; Math. Comput. Simul. 2010, 80, 1382), to estimate solid-fluid interfacial stiffnesses, with partial success for the hydrophilic/hydrophobic-type interfaces.

  12. Artificial Nutrition (Food) and Hydration (Fluids) at the End of Life

    MedlinePlus

    Artificial Nutrition (Food) and Hydration (Fluids) at the End of Life It is very common for doctors to provide ... or recovering from surgery. This is called “artificial nutrition and hydration” and like all medical treatments, it ...

  13. Hydration of monomeric metaphosphate anion in the gas phase

    SciTech Connect

    Keesee, R.G.; Castleman, A.W. Jr. )

    1989-12-06

    Thermochemical data for the clustering of water molecules onto the monomeric metaphosphate anion PO{sub 3}{sup {minus}} in the gas phase are derived from a study by high-pressure mass spectrometry. Experimental details are described, and the enthalpy and entropy changes for the successive addition of the first four water (D{sub 2}O) molecules are reported. The results indicate that PO{sub 3}{sup {minus}} undergoes simple adduct formation up to the second hydration step, but the third hydration step involves an isomerization of the ion-water cluster into the dihydrate of the dihydrogen orthophosphate anion.

  14. X-ray computed tomography observations of phase distribution during methane hydrate formation and dissociation process in a sediment sample

    NASA Astrophysics Data System (ADS)

    Ahn, Taewoong; Lee, Jaehyoung; Lee, Joo Yong; Kim, Se-Joon; Seo, Young-ju

    2016-04-01

    The recovery schemes for natural gas caged in the solid state have not been commercialized. Depressurization has been known as a promising method due to its economic feasibility according to previous lab-scale experiments and simulation studies. However, the results of few field tests showed that the production characteristics of real field differed from that of predicted results. To reliably predict the production performance of real fields, it is necessary to understand quantitative changes of phase distribution and fluid flow in sediments in response to hydrate dissociation by depressurization. In this study, we observed and analyzed the phase distribution and flow behavior during methane hydrate formation and dissociation using X-ray computed tomography which provides high-resolution density distribution. Artificial particles having similar grain size distribution of sandy layers found in real hydrate field were packed into X-ray transparent aluminum vessel. Information on pore distribution within a sediment sample was achieved by comparing CT images between dry condition and fully water-saturated condition. Dynamic changes of phase saturation were observed during gas flooding, through which potential flow pathway was estimated. Hydrate formation and dissociation significantly affected phase distribution and flow pathway. Hydrate distribution was extremely heterogeneous in every tests of hydrate formation repeated with same amount of water. It was inferred that water saturation prior to hydrate formation was not directly correlated to the hydrate distribution. There were definite differences of hydrate dissociation behavior between gas-saturated and water-saturated hydrate-bearing sample. The production of gas and water lasted quite a while even after the production pressure reached the target level of depressurization.

  15. Three-dimensional seismic imaging and fluid flow analysis of a gas hydrate province

    NASA Astrophysics Data System (ADS)

    Hornbach, Matthew J.

    Methane hydrate, an ice-like substance that consists of methane and water, forms at high pressures and low temperatures, and abounds below every continental margin on earth. The amount of carbon trapped in methane hydrate remains highly speculative: although Kvenvolden (1993) suggests two-thirds of all the carbon on earth may be trapped in methane hydrate, more recent estimates by Milkov et. al. (2003) conclude that hydrates make up perhaps only one-forth of the global carbon reservoir. Regardless of which is more accurate, both estimates suggest methane hydrate is the largest source of carbon on the planet, and because of this, methane hydrate reservoirs may be a future potential energy resource as well as a significant cause of past and future global warming, since methane is a potent greenhouse gas. Recent studies by Kennett et al. (2000) and Dickens et. al. (2003) suggest that methane release from methane hydrate dissociation can explain past global warming events. Nonetheless, such conclusion are only valid if (1) the statistical estimates of hydrate quantities are accurate, and (2) a well understood mechanism for hydrate dissociation and methane gas release is recognized. The goal of this work, therefore, is to create high-resolution 3D seismic images to quantify the amount of hydrate that exists in a known hydrate province, the Blake Ridge, and to determine how fluid migration, hydrate dissociation and gas escape may occur in the region. My results demonstrate that concentrated zones of methane hydrate can be directly detected within the 3D image, and that approximately two-thirds of all methane trapped below the Blake Ridge is located in concentrated zones of hydrate and free-gas. The images reveal that strata and sequence boundaries act as gas traps. Furthermore, critically thick free-gas zones exist below much of the Blake Ridge, and any changes in pressure or temperature in the region could result in significant gas escape. The analysis reveals that

  16. From Black Hole to Hydrate Hole: Gas hydrates, authigenic carbonates and vent biota as indicators of fluid migration at pockmark sites of the Northern Congo Fan

    NASA Astrophysics Data System (ADS)

    Kasten, S.; Schneider, R.; Spiess, V.; Cruise Participants Of M56b

    2003-04-01

    A recent high-resolution seismic, echosounder and video survey combined with detailed geological and geochemical sampling of pockmark sites on the Northern Congo Fan was carried out with RV Meteor in November/December 2002 in the frame of the project "CONGO" (BMBF/BEO "Geotechnologien"). These investigations revealed the extensive occurrence of surface and sub-surface gas hydrates as well as characteristic features of fluid venting such as clams (Calyptogena), tube worms (Pogonophera) and huge amounts of authigenic carbonates. In a first approach the patchyness in the occurrence of these features was mapped in relation to pockmark structure and seismic reflectors. Detailed sampling of three pockmarks by gravity corer showed that gas hydrates are present at and close to the sediment surface and often occur as several distinct layers and/or veins intercalated with hemipelagic muds. The depth of the upper boundary of these hydrate-bearing sediments increases from the center towards the edge of the pockmark structures. Pore water concentration profiles of sulfate and methane document the process of anaerobic methane oxidation above the hydrate-bearing layers. For those cores which contained several gas hydrate layers preliminary pore water profiles suggest the occurrence of more than one zone of anaerobic methane oxidation. Authigenic carbonates are found in high abundance, irregularly distributed within the pockmarks close to the sediment surface. These carbonates occur in a wide variety with respect to size, shape, structure and mineralogy. Their formation is associated with high amounts of bicarbonate released by the process of anaerobic methane oxidation. In the gravity cores authigenic carbonates are always present above hydrate-bearing sections. However, the quantities and characteristics of these authigenic minerals in relation to venting and microbial activity as well as to gas hydrate dissociation are not clear yet. Unraveling this relationship will be a major

  17. Effects of Fluid Saturation on Gas Recovery from Class-3 Hydrate Accumulations Using Depressurization: Case Study of Yuan-An Ridge Site in Southwestern Offshore Taiwan

    NASA Astrophysics Data System (ADS)

    Huang, Yi-Jyun; Wu, Cheng-Yueh; Hsieh, Bieng-Zih

    2016-04-01

    Gas hydrates are crystalline compounds in which guest gas molecules are trapped in host lattices of ice crystals. In Taiwan, the significant efforts have recently begun to evaluate the reserves of hydrate because the vast accumulations of gas hydrates had been recognized in southwestern offshore Taiwan. Class-3 type hydrate accumulations are referred to an isolated hydrate layer without an underlying zone of mobile fluids, and the entire hydrate layer may be well within the hydrate stability zone. The depressurization method is a useful dissociation method for gas production from Class-3 hydrate accumulations. The dissociation efficiency is controlled by the responses of hydrate to the propagating pressure disturbance, and the pressure propagation is relating to the amount (or saturation) of the mobile fluid in pore space of the hydrate layer. The purpose of this study is to study the effects of fluid saturation on the gas recovery from a class-3 hydrate accumulation using depressurization method. The case of a class-3 hydrate deposit of Yuan-An Ridge in southwestern offshore Taiwan is studied. The numerical method was used in this study. The reservoir simulator we used to study the dissociation of hydrate and the production of gas was the STARS simulator developed by CMG, which coupled heat transfer, geo-chemical, geo-mechanical, and multiphase fluid flow mechanisms. The study case of Yuan-An Ridge is located in southwestern offshore Taiwan. The hydrate deposit was found by the bottom simulating reflectors (BSRs). The geological structure of the studied hydrate deposit was digitized to build the geological model (grids) of the case. The formation parameters, phase behavior data, rock and fluid properties, and formation's initial conditions were assigned sequentially to grid blocks, and the completion and operation conditions were designed to wellbore blocks to finish the numerical model. The changes of reservoir pressure, temperature, saturation due to the hydrate

  18. Computational phase diagrams of noble gas hydrates under pressure

    NASA Astrophysics Data System (ADS)

    Teeratchanan, Pattanasak; Hermann, Andreas

    2015-10-01

    We present results from a first-principles study on the stability of noble gas-water compounds in the pressure range 0-100 kbar. Filled-ice structures based on the host water networks ice-Ih, ice-Ic, ice-II, and C0 interacting with guest species He, Ne, and Ar are investigated, using density functional theory (DFT) with four different exchange-correlation functionals that include dispersion effects to various degrees: the non-local density-based optPBE-van der Waals (vdW) and rPW86-vdW2 functionals, the semi-empirical D2 atom pair correction, and the semi-local PBE functional. In the He-water system, the sequence of stable phases closely matches that seen in the hydrogen hydrates, a guest species of comparable size. In the Ne-water system, we predict a novel hydrate structure based on the C0 water network to be stable or at least competitive at relatively low pressure. In the Ar-water system, as expected, no filled-ice phases are stable; however, a partially occupied Ar-C0 hydrate structure is metastable with respect to the constituents. The ability of the different DFT functionals to describe the weak host-guest interactions is analysed and compared to coupled cluster results on gas phase systems.

  19. Computational phase diagrams of noble gas hydrates under pressure

    SciTech Connect

    Teeratchanan, Pattanasak Hermann, Andreas

    2015-10-21

    We present results from a first-principles study on the stability of noble gas-water compounds in the pressure range 0-100 kbar. Filled-ice structures based on the host water networks ice-I{sub h}, ice-I{sub c}, ice-II, and C{sub 0} interacting with guest species He, Ne, and Ar are investigated, using density functional theory (DFT) with four different exchange-correlation functionals that include dispersion effects to various degrees: the non-local density-based optPBE-van der Waals (vdW) and rPW86-vdW2 functionals, the semi-empirical D2 atom pair correction, and the semi-local PBE functional. In the He-water system, the sequence of stable phases closely matches that seen in the hydrogen hydrates, a guest species of comparable size. In the Ne-water system, we predict a novel hydrate structure based on the C{sub 0} water network to be stable or at least competitive at relatively low pressure. In the Ar-water system, as expected, no filled-ice phases are stable; however, a partially occupied Ar-C{sub 0} hydrate structure is metastable with respect to the constituents. The ability of the different DFT functionals to describe the weak host-guest interactions is analysed and compared to coupled cluster results on gas phase systems.

  20. The inverse hexagonal - inverse ribbon - lamellar gel phase transition sequence in low hydration DOPC:DOPE phospholipid mixtures

    SciTech Connect

    Kent, B; Garvey, C J; Cookson, D; Bryant, G

    2009-01-05

    The inverse hexagonal to inverse ribbon phase transition in a mixed phosphatidylcholine-phosphatidylethanolamine system at low hydration is studied using small and wide angle X-ray scattering. It is found that the structural parameters of the inverse hexagonal phase are independent of temperature. By contrast the length of each ribbon of the inverse ribbon phase increases continuously with decreasing temperature over a range of 50 ºC. At low temperatures the inverse ribbon phase is observed to have a transition to a gel lamellar phase, with no intermediate fluid lamellar phase. This phase transition is confirmed by differential scanning calorimetry.

  1. CO2-rich fluid inclusions in greenschists, migmatites, granulites, and hydrated granulites

    NASA Technical Reports Server (NTRS)

    Hollister, L. S.

    1988-01-01

    Data was discussed from several different terrains in which CO2-rich fluid inclusions occur despite parageneses that predict the presence of H2O-rich fluids. CO2-rich fluid inclusions, some having densities appropriate for peak-metamorphic conditions, were found in greenschists, amphibolites, migmatites, and hydrated granulites. The author suggested that there may be a common process that leads to CO2-rich secondary inclusions in metamorphic rocks.

  2. Comparing the mechanical properties of the porcine knee meniscus when hydrated in saline versus synovial fluid.

    PubMed

    Lakes, Emily H; Kline, Courtney L; McFetridge, Peter S; Allen, Kyle D

    2015-12-16

    As research progresses to find a suitable knee meniscus replacement, accurate in vitro testing becomes critical for feasibility and comparison studies of mechanical integrity. Within the knee, the meniscus is bathed in synovial fluid, yet the most common hydration fluid in laboratory testing is phosphate buffered saline (PBS). PBS is a relatively simple salt solution, while synovial fluid is a complex non-Newtonian fluid with multiple lubricating factors. As such, PBS may interact with meniscal tissue differently than synovial fluid, and thus, the hydration fluid may be an important factor in obtaining accurate results during in vitro testing. To evaluate these effects, medial porcine menisci were used to evaluate tissue mechanics in tension (n=11) and compression (n=15). In all tests, two samples from the same meniscus were taken, where one sample was hydrated in PBS and the other was hydrated in synovial fluid. Statistical analysis revealed no significant differences between the mean mechanical properties of samples tested in PBS compared to synovial fluid; however, compressive testing revealed the variability between samples was significantly reduced if samples were tested in synovial fluid. For example, the compressive Young׳s Modulus was 12.69±7.49MPa in PBS versus 12.34±4.27MPa in synovial fluid. These results indicate testing meniscal tissue in PBS will largely not affect the mean value of the mechanical properties, but performing compression testing in synovial fluid may provide more consistent results between samples and assist in reducing sample numbers in some experiments.

  3. Study of Mix CO2/CH4 Hydrate Phase Transitions vs the Thickness of Surrounding Water Film

    NASA Astrophysics Data System (ADS)

    Kvamme, B.; Baig, K.; Kuznetsova, T.

    2014-12-01

    Conversion of reservoir CH4 hydrate into CO2 hydrate is an interesting option offering a win-win combination of energy production with safe long-term storage of CO2 to minimize the CO2 footprint. As described theoretically and verified experimentally, CO2 is capable of inducing and maintaining a solid state exchange process of conversion. This mechanism will be slow since it is kinetically controlled by solid state mass transport through the hydrate. In parallel to this, the injected CO2 will form new hydrate from free water trapped in pores. Heat released by this process will contribute to dissociation of in situ CH4 hydrate and thus provide a second conversion mechanism with its rate controlled by liquid state transport processes. Understanding the kinetics of gas hydrate formation and dissociation is crucial for the development of theoretical models describing gas exchange processes and providing a basis for efficient design of production schemes. In this work, we combine a non-equilibrium description of hydrate and fluid thermodynamics with the phase field theory (PFT) for simulation of phase transition kinetics. The phase field theory approach allows one to minimize the free energy while taking into account the implicit couplings to mass and heat transport as well as hydrodynamics. The hydrodynamic treatment is important to distinguish between situations when gas released in the course of dissociation will dissolve into surrounding water (slow dissociation), and more rapid dissociation creating dispersed gas bubbles that will affect the available dissociation interface and influence heat transport. We studied the conversion of CH4 hydrate into either CO2 hydrate or mixed CO2-CH4 hydrate to investigate the relative impact of the two mechanisms. The efficiency of mechanism based on formation of new CO2 hydrate will depend on the contact area between injected CO2 and liquid water. We have therefore investigated three CH4 hydrate systems surrounded by varying

  4. Coexistance of two Different Methane Hydrate Phases at Moderate Pressure and Temperature Conditions

    NASA Astrophysics Data System (ADS)

    Erzinger, J.

    2003-12-01

    For a better understanding of the formation and decomposition of natural gas hydrates, detailed data on their thermodynamical properties are an important prerequisite. Until now, it was generally accepted that small guest molecules such as methane and carbondioxid form structure I hydrates whereas large molecules such as propane form structure II hydrates. Expectedly, natural gas hydrates and synthesized methane hydrates grown under natural conditions, prefer structure I. The formation of structure II methane hydrates was only observed at very high pressures ( 100 MPa) by Chou et al. 1 In this contribution, results from Raman spectroscopic investigation on pure methane hydrates are presented. It will be shown, that a coexistence of structure I and structure II methane hydrates at pressures between 3.0 and 9.0 MPa and at temperatures between -15° C and +15° C is possible. However, structure II methane hydrate are present as a metastable phase in a kinetic inhibited equilibrium with the established structure I methane hydrate phase. A slight variation of the T-P-x-conditions initiates the transformation of the structure II methane hydrates into structure I hydrates. This (exothermic) process results in a re crystallization of the complete hydrate phase until a stable state is reached. It turned out, that the instability of the structure II methane hydrate phase is also the driving force for other processes, such as the exchange of CH4 with CO2: A change in the composition of the gaseous phase through the addition of CO2 induces an immediate replacement of methane with carbondioxid in the structure II hydrate. In contrast, the exchange of CH4 with CO2 in structure I hydrates is a very slow process. 1 Chou, I-M.; Sharma, A.; Burrus, R. C.; Shu, J.; Mao, H-k.; Hemley, R. J.; Goncharov, A. F.; Stern, L. A.; Kirby, S. H.; PNAS; vol. 97; no. 25;13484-13487 (2000)

  5. Temporal Variability in Pore-Fluid Chemistry at a Gulf of Mexico Gas Hydrate Site

    NASA Astrophysics Data System (ADS)

    Lapham, L.; Chanton, J.; Martens, C.; Higley, P. D.; Jannasch, H. W.; Woolsey, J. R.

    2008-12-01

    Temporal variability in dissolved ions and gases was assessed in gas hydrate bearing sediments using a specialized Pore-Fluid Array (PFA) sampler. The PFA is a seafloor probe that consists of an interchangeable instrument package that houses OsmoSamplers, long-term pore-fluid samplers; a specialized low-dead volume fluid coupler; and eight sample ports along a 10-meter sediment probe shaft. The PFA was deployed at Mississippi Canyon 118, a Gulf of Mexico hydrate site, to test the hypothesis that pore-fluid chemistry records hydrate formation or decomposition events and reflects local seismic activity. A 160 day record was acquired from the overlying water (OLW) and 1.3 meters below seafloor (mbsf). Fluids were measured for dissolved chloride, sulfate, and light hydrocarbon (C1- C4) concentrations and dissolved inorganic carbon plus methane stable carbon and hydrogen isotope ratios. The overall formation or decomposition of gas hydrates could not be determined from any significant changes in the observed chloride and sulfide concentrations, but changes in other light hydrocarbons show some interesting patterns. Methane concentrations at 1.3 mbsf averaged 4 mM over the deployment and d13C-CH4 values (-32.4±3.4) indicated a thermogenic origin. The synchronous timing of an anomalous 14 mM methane spike and a nearby earthquake (Mw=5.8) suggests a significant methane flux out of sediments due to local tectonic activity.

  6. Fluid flow, methane fluxes, carbonate precipitation and biogeochemical turnover in gas hydrate-bearing sediments at Hydrate Ridge, Cascadia Margin: numerical modeling and mass balances

    NASA Astrophysics Data System (ADS)

    Luff, Roger; Wallmann, Klaus

    2003-09-01

    A numerical model was applied to investigate and to quantify biogeochemical processes and methane turnover in gas hydrate-bearing surface sediments from a cold vent site situated at Hydrate Ridge, an accretionary structure located in the Cascadia Margin subduction zone. Steady state simulations were carried out to obtain a comprehensive overview on the activity in these sediments which are covered with bacterial mats and are affected by strong fluid flow from below. The model results underline the dominance of advective fluid flow that forces a large inflow of methane from below (869 μmol cm -2 a -1) inducing high oxidation rates in the surface layers. Anaerobic methane oxidation is the major process, proceeding at a depth-integrated rate of 870 μmol cm -2 a -1. A significant fraction (14%) of bicarbonate produced by anaerobic methane oxidation is removed from the fluids by precipitation of authigenic aragonite and calcite. The total rate of carbonate precipitation (120 μmol cm -2 a -1) allows for the build-up of a massive carbonate layer with a thickness of 1 m over a period of 20,000 years. Aragonite is the major carbonate mineral formed by anaerobic methane oxidation if the flow velocity of methane-charge fluids is high enough (≥10 cm a -1) to maintain super-saturation with respect to this highly soluble carbonate phase. It precipitates much faster within the studied surface sediments than previously observed in abiotic laboratory experiments, suggesting microbial catalysis. The investigated station is characterized by high carbon and oxygen turnover rates (≈1000 μmol cm -2 a -1) that are well beyond the rates observed at other continental slope sites not affected by fluid venting. This underlines the strong impact of fluid venting on the benthic system, even though the flow velocity of 10 cm a -1 derived by the model is relative low compared to fluid flow rates found at other cold vent sites. Non-steady state simulations using measured fluid flow

  7. Direct Visualization of the Hydration Layer on Alumina Nanoparticles with the Fluid Cell STEM in situ

    PubMed Central

    Firlar, Emre; Çınar, Simge; Kashyap, Sanjay; Akinc, Mufit; Prozorov, Tanya

    2015-01-01

    Rheological behavior of aqueous suspensions containing nanometer-sized powders is of relevance to many branches of industry. Unusually high viscosities observed for suspensions of nanoparticles compared to those of micron size powders cannot be explained by current viscosity models. Formation of so-called hydration layer on alumina nanoparticles in water was hypothesized, but never observed experimentally. We report here on the direct visualization of aqueous suspensions of alumina with the fluid cell in situ. We observe the hydration layer formed over the particle aggregates and show that such hydrated aggregates constitute new particle assemblies and affect the flow behavior of the suspensions. We discuss how these hydrated nanoclusters alter the effective solid content and the viscosity of nanostructured suspensions. Our findings elucidate the source of high viscosity observed for nanoparticle suspensions and are of direct relevance to many industrial sectors including materials, food, cosmetics, pharmaceutical among others employing colloidal slurries with nanometer-scale particles. PMID:25996055

  8. Evaluation of phase envelope on natural gas, condensate and gas hydrate

    NASA Astrophysics Data System (ADS)

    Promkotra, S.; Kangsadan, T.

    2015-03-01

    The experimentally gas hydrate are generated by condensate and natural gas. Natural gas and condensate samples are collected from a gas processing plant where is situated in the northeastern part of Thailand. Physical properties of the API gravity and density of condensate are presented in the range of 55-60° and 0.71-0.76 g/cm3. The chemical compositions of petroleum-field water are analyzed to evaluate the genesis of gas hydrate by experimental procedure. The hydrochemical compositions of petroleum-field waters are mostly the Na-Cl facies. This condition can estimate how the hydrate forms. Phase envelope of condensate is found only one phase which is liquid phase. The liquid fraction is 100% at 15°C and 101.327 kPa, with the critical pressure and temperature of 2,326 kPa and 611.5 K. However, natural gas can be separated in three phases which are vapor, liquid and solid phase with the pressure and temperature at 100 kPa and 274.2 K. The hydrate curves explicit both hydrate zone and nonhydrate zone. Phase envelope of gas hydrate from the phase diagram indicates the hydrate formation. The experimental results of hydrate form can correlate to the hydrate curve. Besides, the important factor of hydrate formation depends on impurity in the petroleum system.

  9. New gas-hydrate phase: Synthesis and stability of clay methane hydrate intercalate

    NASA Astrophysics Data System (ADS)

    Guggenheim, Stephen; Koster van Groos, August F.

    2003-07-01

    Intercalated Na-rich montmorillonite methane hydrate was synthesized for the first time. The upper limit of stability for the intercalate in pressure and temperature is parallel to that of methane hydrate but at temperatures that are ˜0.5 1 °C lower than for methane hydrate. The low-temperature stability of the intercalate is at -11.5 ± 3 °C at ˜40 bar, where methane and some H2O are expelled from the region between the silicate layers (interlayer). In contrast, methane hydrates do not dissociate at these low temperatures. We conclude that at conditions similar to where methane hydrate is stable, smectite may intercalate with methane hydrate and provide additional sinks for methane. The limitation in the stability of smectite methane hydrate intercalate at low temperatures suggests that, if present in large quantities, it may release at decreasing temperatures sufficient methane to ameliorate a planetary cooling event.

  10. Structural Phase Transitions and Water Dynamics in Uranyl Fluoride Hydrates

    SciTech Connect

    Miskowiec, Andrew J.; Kirkegaard, Marie C.; Huq, Ashfia; Mamontov, Eugene; Herwig, Kenneth W.; Trowbridge, Lee D.; Rondinone, Adam Justin; Anderson, Brian B.

    2015-11-17

    We report a novel production method for uranium oxy uoride [(UO2)7F14(H2O)7] 4H2O, referred to as structure D. Structure D is produced as a product of hydrating anhydrous uranyl uoride, UO2F2, through the gas phase at ambient temperatures fol- lowed by desiccation by equilibration with a dry environment. We follow the structure of [(UO2)7F14(H2O)7] 4H2O through an intermediate, liquid-like phase, wherein the coordination number of the uranyl ion is reduced to 5 (from 6 in the anhydrous struc- ture), and a water molecule binds as an equatorial ligand to the uranyl ion. Quasielas- tic neutron scattering results compare well with previous measurements of mineral hydrates. The two groups of structurally distinct water molecules in D perform re- stricted motion on a length scale commensurate with the O{H bond (r = 0.92 A). The more tightly bound equatorial ligand waters rotate slower (Dr = 2.2 ps-1) than their hydrogen-bonded partners (Dr = 28.7 ps-1).

  11. Structural Phase Transitions and Water Dynamics in Uranyl Fluoride Hydrates

    DOE PAGES

    Miskowiec, Andrew J.; Kirkegaard, Marie C.; Huq, Ashfia; ...

    2015-11-17

    We report a novel production method for uranium oxy uoride [(UO2)7F14(H2O)7] 4H2O, referred to as structure D. Structure D is produced as a product of hydrating anhydrous uranyl uoride, UO2F2, through the gas phase at ambient temperatures fol- lowed by desiccation by equilibration with a dry environment. We follow the structure of [(UO2)7F14(H2O)7] 4H2O through an intermediate, liquid-like phase, wherein the coordination number of the uranyl ion is reduced to 5 (from 6 in the anhydrous struc- ture), and a water molecule binds as an equatorial ligand to the uranyl ion. Quasielas- tic neutron scattering results compare well with previousmore » measurements of mineral hydrates. The two groups of structurally distinct water molecules in D perform re- stricted motion on a length scale commensurate with the O{H bond (r = 0.92 A). The more tightly bound equatorial ligand waters rotate slower (Dr = 2.2 ps-1) than their hydrogen-bonded partners (Dr = 28.7 ps-1).« less

  12. The analysis of magnesium oxide hydration in three-phase reaction system

    SciTech Connect

    Tang, Xiaojia; Guo, Lin; Chen, Chen; Liu, Quan; Li, Tie; Zhu, Yimin

    2014-05-01

    In order to investigate the magnesium oxide hydration process in gas–liquid–solid (three-phase) reaction system, magnesium hydroxide was prepared by magnesium oxide hydration in liquid–solid (two-phase) and three-phase reaction systems. A semi-empirical model and the classical shrinking core model were used to fit the experimental data. The fitting result shows that both models describe well the hydration process of three-phase system, while only the semi-empirical model right for the hydration process of two-phase system. The characterization of the hydration product using X-Ray diffraction (XRD) and scanning electron microscope (SEM) was performed. The XRD and SEM show hydration process in the two-phase system follows common dissolution/precipitation mechanism. While in the three-phase system, the hydration process undergo MgO dissolution, Mg(OH){sub 2} precipitation, Mg(OH){sub 2} peeling off from MgO particle and leaving behind fresh MgO surface. - Graphical abstract: There was existence of a peeling-off process in the gas–liquid–solid (three-phase) MgO hydration system. - Highlights: • Magnesium oxide hydration in gas–liquid–solid system was investigated. • The experimental data in three-phase system could be fitted well by two models. • The morphology analysis suggested that there was existence of a peel-off process.

  13. Fluid Flow Patterns During Production from Gas Hydrates in the Laboratory compared to Field Settings: LARS vs. Mallik

    NASA Astrophysics Data System (ADS)

    Strauch, B.; Heeschen, K. U.; Priegnitz, M.; Abendroth, S.; Spangenberg, E.; Thaler, J.; Schicks, J. M.

    2015-12-01

    The GFZ's LArge Reservoir Simulator LARS allows for the simulation of the 2008 Mallik gas hydrate production test and the comparison of fluid flow patterns and their driving forces. Do we see the gas flow pattern described for Mallik [Uddin, M. et al., J. Can. Petrol Tech, 50, 70-89, 2011] in a pilot scale test? If so, what are the driving forces? LARS has a network of temperature sensors and an electric resistivity tomography (ERT) enabling a good spatial resolution of gas hydrate occurrences, water and gas distribution, and changes in temperature in the sample. A gas flow meter and a water trap record fluid flow patterns and a backpressure valve has controlled the depressurization equivalent to the three pressure stages (7.0 - 5.0 - 4.2 MPa) applied in the Mallik field test. The environmental temperature (284 K) and confining pressure (13 MPa) have been constant. The depressurization induced immediate endothermic gas hydrate dissociation until re-establishment of the stability conditions by a consequent temperature decrease. Slight gas hydrate dissociation continued at the top and upper lateral border due to the constant heat input from the environment. Here transport pathways were short and permeability higher due to lower gas hydrate saturation. At pressures of 7.0 and 5.0 MPa the LARS tests showed high water flow rates and short irregular spikes of gas production. The gas flow patterns at 4.2 MPa and 3.0MPa resembled those of the Mallik test. In LARS the initial gas surges overlap with times of hydrate instability while water content and lengths of pathways had increased. Water production was at a minimum. A rapidly formed continuous gas phase caused the initial gas surges and only after gas hydrate dissociation decreased to a minimum the single gas bubbles get trapped before slowly coalescing again. In LARS, where pathways were short and no additional water was added, a transport of microbubbles is unlikely to cause a gas surge as suggested for Mallik.

  14. Hexosome and hexagonal phases mediated by hydration and polymeric stabilizer.

    PubMed

    Amar-Yuli, Idit; Wachtel, Ellen; Shoshan, Einav Ben; Danino, Dganit; Aserin, Abraham; Garti, Nissim

    2007-03-27

    In this research, we studied the factors that control formation of GMO/tricaprylin/water hexosomes and affect their inner structure. As a stabilizer of the soft particles dispersed in the aqueous phase, we used the hydrophilic nonionic triblock polymer Pluronic 127. We demonstrate how properties of the hexosomes, such as size, structure, and stability, can be tuned by their internal composition, polymer concentration, and processing conditions. The morphology and inner structure of the hexosomes were characterized by small-angle X-ray scattering, cryo-transmission electron microscope, and dynamic light scattering. The physical stability (to creaming, aggregation, and coalescence) of the hexosomes was further examined by the LUMiFuge technique. Two competing processes are presumed to take place during the formation of hexosomes: penetration of water from the continuous phase during dispersion, resulting in enhanced hydration of the head groups, and incorporation of the polymer chains into the hexosome structure while providing a stabilizing surface coating for the dispersed particles. Hydration is an essential stage in lyotropic liquid crystal (LLC) formation. The polymer, on the other hand, dehydrates the lipid heads, thereby introducing disorder into the LLC and reducing the domain size. Yet, a critical minimum polymer concentration is necessary in order to form stable nanosized hexosomes. These competing effects require the attention of those preparing hexosomes. The competition between these two processes can be controlled. At relatively high polymer concentrations (1-1.6 wt % of the total formulation of the soft particles), the hydration process seems to occur more rapidly than polymer adsorption. As a result, smaller and more stable soft particles with high symmetry were formed. On the other hand, when the polymer concentration is fixed at lower levels (<1.0 wt %), the homogenization process encourages only partial polymer adsorption during the dispersion

  15. The impact of fluid advection on gas hydrate stability: Investigations at sites of methane seepage offshore Costa Rica

    NASA Astrophysics Data System (ADS)

    Crutchley, G. J.; Klaeschen, D.; Planert, L.; Bialas, J.; Berndt, C.; Papenberg, C.; Hensen, C.; Hornbach, M. J.; Krastel, S.; Brueckmann, W.

    2014-09-01

    Fluid flow through marine sediments drives a wide range of processes, from gas hydrate formation and dissociation, to seafloor methane seepage including the development of chemosynthetic ecosystems, and ocean acidification. Here, we present new seismic data that reveal the 3D nature of focused fluid flow beneath two mound structures on the seafloor offshore Costa Rica. These mounds have formed as a result of ongoing seepage of methane-rich fluids. We show the spatial impact of advective heat flow on gas hydrate stability due to the channelled ascent of warm fluids towards the seafloor. The base of gas hydrate stability (BGHS) imaged in the seismic data constrains peak heat flow values to ∼60 mW m and ∼70 mW m beneath two separate seep sites known as Mound 11 and Mound 12, respectively. The initiation of pronounced fluid flow towards these structures was likely controlled by fault networks that acted as efficient pathways for warm fluids ascending from depth. Through the gas hydrate stability zone, fluid flow has been focused through vertical conduits that we suggest developed as migrating fluids generated their own secondary permeability by fracturing strata as they forced their way upwards towards the seafloor. We show that Mound 11 and Mound 12 (about 1 km apart on the seafloor) are sustained by independent fluid flow systems through the hydrate system, and that fluid flow rates across the BGHS are probably similar beneath both mounds. 2D seismic data suggest that these two flow systems might merge at approximately 1 km depth, i.e. much deeper than the BGHS. This study provides a new level of detail and understanding of how channelled, anomalously-high fluid flow towards the seafloor influences gas hydrate stability. Thus, gas hydrate systems have good potential for quantifying the upward flow of subduction system fluids to seafloor seep sites, since the fluids have to interact with and leave their mark on the hydrate system before reaching the seafloor.

  16. Pore fluid geochemistry from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    USGS Publications Warehouse

    Torres, M.E.; Collett, T.S.; Rose, K.K.; Sample, J.C.; Agena, W.F.; Rosenbaum, E.J.

    2011-01-01

    The BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well was drilled and cored from 606.5 to 760.1. m on the North Slope of Alaska, to evaluate the occurrence, distribution and formation of gas hydrate in sediments below the base of the ice-bearing permafrost. Both the dissolved chloride and the isotopic composition of the water co-vary in the gas hydrate-bearing zones, consistent with gas hydrate dissociation during core recovery, and they provide independent indicators to constrain the zone of gas hydrate occurrence. Analyses of chloride and water isotope data indicate that an observed increase in salinity towards the top of the cored section reflects the presence of residual fluids from ion exclusion during ice formation at the base of the permafrost layer. These salinity changes are the main factor controlling major and minor ion distributions in the Mount Elbert Well. The resulting background chloride can be simulated with a one-dimensional diffusion model, and the results suggest that the ion exclusion at the top of the cored section reflects deepening of the permafrost layer following the last glaciation (???100 kyr), consistent with published thermal models. Gas hydrate saturation values estimated from dissolved chloride agree with estimates based on logging data when the gas hydrate occupies more than 20% of the pore space; the correlation is less robust at lower saturation values. The highest gas hydrate concentrations at the Mount Elbert Well are clearly associated with coarse-grained sedimentary sections, as expected from theoretical calculations and field observations in marine and other arctic sediment cores. ?? 2009 Elsevier Ltd.

  17. Stratigraphic mapping of hydrated phases in Western Ius Chasma, Mars

    NASA Astrophysics Data System (ADS)

    Cull, S.; McGuire, P. C.; Gross, C.; Dumke, A.

    2013-12-01

    Recent mapping with the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) and Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité (OMEGA) has revealed a wide range of hydrated minerals throughout Valles Marineris. Noctis Labyrinthus has interbedded polyhydrated and monohydrated sulfates, with occasional beds of nontronite (Weitz et al. 2010, Thollot et al. 2012). Tithonium Chasma has interbedded poly- and monohydrated sulfates (Murchie et al. 2012); Juventae has poly- and monohydrated sulfates and an anhydrous ferric hydroxysulfate-bearing material (Bishop et al. 2009); and Melas and Eastern Candor contain layers of poly- and monohydrated sulfates (e.g., Roach et al. 2009). Though each chasm displays its own mineralogy, in general, the eastern valles tend to be dominated by layered sequences with sulfates; whereas, the far western valles (Noctis Labyrinthus) has far more mineral phases, possibly due to a wider variety of past environments or processes affecting the area. Ius Chasma, which is situated between Noctis Labyrinthus and the eastern valles and chasmata, also displays a complex mineralogy, with polyhydrated sulfates, Fe/Mg smectites, hydrated silica, and kieserite (e.g. Roach et al. 2010). Here, we present mapping of recently acquired CRISM observations over Ius Chasma, combining the recent CRISM cubes with topographic terrains produced using High Resolution Stereo Camera (HRSC) data from the Mars Express spacecraft. Stratigraphic columns are produced along the length of Ius Chasma, and compared to stratigraphic columns produced throughout the Valles Marineris

  18. Fluid intake, hydration, work physiology of wildfire fighters working in the heat over consecutive days.

    PubMed

    Raines, Jenni; Snow, Rodney; Nichols, David; Aisbett, Brad

    2015-06-01

    (i) To evaluate firefighters' pre- and post-shift hydration status across two shifts of wildfire suppression work in hot weather conditions. (ii) To document firefighters' fluid intake during and between two shifts of wildfire suppression work. (iii) To compare firefighters' heart rate, activity, rating of perceived exertion (RPE), and core temperature across the two consecutive shifts of wildfire suppression work. Across two consecutive days, 12 salaried firefighters' hydration status was measured immediately pre- and post-shift. Hydration status was also measured 2h post-shift. RPE was also measured immediately post-shift on each day. Work activity, heart rate, and core temperature were logged continuously during each shift. Ten firefighters also manually recorded their food and fluid intake before, during, and after both fireground shifts. Firefighters were not euhydrated at all measurement points on Day one (292±1 mOsm l(-1)) and euhydrated across these same time points on Day two (289±0.5 mOsm l(-1)). Fluid consumption following firefighters' shift on Day one (1792±1134ml) trended (P = 0.08) higher than Day two (1108±1142ml). Daily total fluid intake was not different (P = 0.27), averaging 6443±1941ml across both days. Core temperature and the time spent ≥ 70%HRmax were both elevated on Day one (when firefighters were not euhydrated). Firefighters' work activity profile was not different between both days of work. There was no difference in firefighters' pre- to post-shift hydration within each shift, suggesting ad libitum drinking was at least sufficient to maintain pre-shift hydration status, even in hot conditions. Firefighters' relative hypohydration on Day one (despite a slightly lower ambient temperature) may have been associated with elevations in core temperature, more time in the higher heart rate zones, and 'post-shift' RPE. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  19. Phase transitions of quadrupolar fluids

    NASA Astrophysics Data System (ADS)

    O'Shea, Seamus F.; Dubey, Girija S.; Rasaiah, Jayendran C.

    1997-07-01

    Gibbs ensemble simulations are reported for Lennard-Jones particles with embedded quadrupoles of strength Q*=Q/(ɛσ5)1/2=2.0 where ɛ and σ are the Lennard-Jones parameters. Calculations revealing the effect of the dispersive forces on the liquid-vapor coexistence were carried out by scaling the attractive r-6 term in the Lennard-Jones pair potential by a factor λ ranging from 0 to 1. Liquid-vapor coexistence is observed for all values of λ including λ=0 for Q*=2.0, unlike the corresponding dipolar fluid studied by van Leeuwen and Smit et al. [Phys. Rev. Lett. 71, 3991 (1993)] which showed no phase transition below λ=0.35 when the reduced dipole moment μ*=2.0. The simulation data are analyzed to estimate the critical properties of the quadrupolar fluid and their dependence on the strength λ of the dispersive force. The critical temperature and pressure show a clear quadratic dependence on λ, while the density is less confidently identified as being linear in λ. The compressibility is roughly linear in λ.

  20. Improved evidence for the existence of an intermediate phase during hydration of tricalcium silicate

    SciTech Connect

    Bellmann, Frank; Damidot, Denis; Moeser, Bernd; Skibsted, Jorgen

    2010-06-15

    Tricalcium silicate (Ca{sub 3}SiO{sub 5}) with a very small particle size of approximately 50 nm has been prepared and hydrated for a very short time (5 min) by two different modes in a paste experiment, using a water/solid-ratio of 1.20, and by hydration as a suspension employing a water/solid-ratio of 4000. A phase containing uncondensed silicate monomers close to hydrogen atoms (either hydroxyl groups or water molecules) was formed in both experiments. This phase is distinct from anhydrous tricalcium silicate and from the calcium-silicate-hydrate (C-S-H) phase, commonly identified as the hydration product of tricalcium silicate. In the paste experiment, approximately 79% of silicon atoms were present in the hydrated phase containing silicate monomers as determined from {sup 29}Sileft brace{sup 1}Hright brace CP/MAS NMR. This result is used to show that the hydrated silicate monomers are part of a separate phase and that they cannot be attributed to a hydroxylated surface of tricalcium silicate after contact with water. The phase containing hydrated silicate monomers is metastable with respect to the C-S-H phase since it transforms into the latter in a half saturated calcium hydroxide solution. These data is used to emphasize that the hydration of tricalcium silicate proceeds in two consecutive steps. In the first reaction, an intermediate phase containing hydrated silicate monomers is formed which is subsequently transformed into C-S-H as the final hydration product in the second step. The introduction of an intermediate phase in calculations of the early hydration of tricalcium silicate can explain the presence of the induction period. It is shown that heterogeneous nucleation on appropriate crystal surfaces is able to reduce the length of the induction period and thus to accelerate the reaction of tricalcium silicate with water.

  1. Pressure induced reactions amongst calcium aluminate hydrate phases

    SciTech Connect

    Moon, Ju-hyuk; Oh, Jae Eun; Balonis, Magdalena; Glasser, Fredrik P.; Clark, Simon M.; Monteiro, Paulo J.M.

    2011-06-15

    The compressibilities of two AFm phases (straetlingite and calcium hemicarboaluminate hydrate) and hydrogarnet were obtained up to 5 GPa by using synchrotron high-pressure X-ray powder diffraction with a diamond anvil cell. The AFm phases show abrupt volume contraction regardless of the molecular size of the pressure-transmitting media. This volume discontinuity could be associated to a structural transition or to the movement of the weakly bound interlayer water molecules in the AFm structure. The experimental results seem to indicate that the pressure-induced dehydration is the dominant mechanism especially with hygroscopic pressure medium. The Birch-Murnaghan equation of state was used to compute the bulk modulus of the minerals. Due to the discontinuity in the pressure-volume diagram, a two stage bulk modulus of each AFm phase was calculated. The abnormal volume compressibility for the AFm phases caused a significant change to their bulk modulus. The reliability of this experiment is verified by comparing the bulk modulus of hydrogarnet with previous studies.

  2. Elasticity of methane hydrate phases at high pressure.

    PubMed

    Beam, Jennifer; Yang, Jing; Liu, Jin; Liu, Chujie; Lin, Jung-Fu

    2016-04-21

    Determination of the full elastic constants (cij) of methane hydrates (MHs) at extreme pressure-temperature environments is essential to our understanding of the elastic, thermodynamic, and mechanical properties of methane in MH reservoirs on Earth and icy satellites in the solar system. Here, we have investigated the elastic properties of singe-crystal cubic MH-sI, hexagonal MH-II, and orthorhombic MH-III phases at high pressures in a diamond anvil cell. Brillouin light scattering measurements, together with complimentary equation of state (pressure-density) results from X-ray diffraction and methane site occupancies in MH from Raman spectroscopy, were used to derive elastic constants of MH-sI, MH-II, and MH-III phases at high pressures. Analysis of the elastic constants for MH-sI and MH-II showed intriguing similarities and differences between the phases' compressional wave velocity anisotropy and shear wave velocity anisotropy. Our results show that these high-pressure MH phases can exhibit distinct elastic, thermodynamic, and mechanical properties at relevant environments of their respective natural reservoirs. These results provide new insight into the determination of how much methane exists in MH reservoirs on Earth and on icy satellites elsewhere in the solar system and put constraints on the pressure and temperature conditions of their environment.

  3. Elasticity of methane hydrate phases at high pressure

    NASA Astrophysics Data System (ADS)

    Beam, Jennifer; Yang, Jing; Liu, Jin; Liu, Chujie; Lin, Jung-Fu

    2016-04-01

    Determination of the full elastic constants (cij) of methane hydrates (MHs) at extreme pressure-temperature environments is essential to our understanding of the elastic, thermodynamic, and mechanical properties of methane in MH reservoirs on Earth and icy satellites in the solar system. Here, we have investigated the elastic properties of singe-crystal cubic MH-sI, hexagonal MH-II, and orthorhombic MH-III phases at high pressures in a diamond anvil cell. Brillouin light scattering measurements, together with complimentary equation of state (pressure-density) results from X-ray diffraction and methane site occupancies in MH from Raman spectroscopy, were used to derive elastic constants of MH-sI, MH-II, and MH-III phases at high pressures. Analysis of the elastic constants for MH-sI and MH-II showed intriguing similarities and differences between the phases' compressional wave velocity anisotropy and shear wave velocity anisotropy. Our results show that these high-pressure MH phases can exhibit distinct elastic, thermodynamic, and mechanical properties at relevant environments of their respective natural reservoirs. These results provide new insight into the determination of how much methane exists in MH reservoirs on Earth and on icy satellites elsewhere in the solar system and put constraints on the pressure and temperature conditions of their environment.

  4. Computer simulation of fluid phase transitions

    NASA Astrophysics Data System (ADS)

    Wilding, Nigel B.

    2001-11-01

    The goal of accurately locating fluid phase boundaries by means of computer simulation is hampered by difficulties associated with sampling both coexisting phases in a single simulation. We explain the background to these difficulties and describe how they can be tackled using a synthesis of biased Monte Carlo sampling and histogram extrapolation methods, in conjunction with a standard fluid simulation algorithm. The combined approach provides a powerful method for tracing fluid phase boundaries.

  5. Study of phase transformations during hydration of rho alumina by combined loss on ignition and X-ray diffraction technique

    NASA Astrophysics Data System (ADS)

    Vaidya, S. D.; Thakkar, N. V.

    2001-04-01

    Composition of hydrated amorphous phase and crystalline phases developed during hydration of rho alumina were estimated by combined loss on ignition and X-ray diffraction technique. The pure boehmite phase required for calibration was generated in situ by a new method of accelerated hydrothermal ageing of rho alumina in caustic soda solution under microwave heating. Transformation of gibbsite phase to bayerite phase observed during rho alumina hydration, was evaluated. Hydration of rho alumina in compact state carried out under water vapour yielded less crystallised but more hydrated product compared to the hydration carried out by soaking in water. This phenomenon demonstrated the mode of crystal growth under space constraint.

  6. Phase I (CATTS Theory), Phase II (Milne Point), Phase III (Hydrate Ridge)

    SciTech Connect

    None, None

    2009-10-31

    This study introduces a new type of cumulative seismic attribute (CATT) which quantifies gas hydrates resources in Hydrate Ridge offshore Oregon. CATT is base on case-specific transforms that portray hydrated reservoir properties. In this study we used a theoretical rock physics model to correct measured velocity log data.

  7. Fluid and salt supplementation effect on body hydration and electrolyte homeostasis during bed rest and ambulation.

    PubMed

    Zorbas, Yan G; Kakurin, Vassily J; Kuznetsov, Nikolai A; Yarullin, Vladimir L

    2002-06-01

    Bed rest (BR) induces significant urinary and blood electrolyte changes, but little is known about the effect of fluid and salt supplements (FSS) on catabolism, hydration and electrolytes. The aim was to measure the effect of FSS on catabolism, body hydration and electrolytes during BR. Studies were done during 7 days of a pre-bed rest period and during 30 days of a rigorous bed rest period. Thirty male athletes aged, 24.6 +/- 7.6 years were chosen as subjects. They were divided into three groups: unsupplemented ambulatory control subjects (UACS), unsupplemented bed rested subjects (UBRS) and supplemented bed rested subjects (SBRS). The UBRS and SBRS groups were kept under a rigorous bed rest regime for 30 days. The SBRS daily took 30 ml water per kg body weight and 0.1 sodium chloride per kg bodyweight. Plasma sodium (Na), potassium (K), calcium (Ca) and magnesium (Mg) levels, urinary Na, K, Ca and Mg excretion, plasma osmolality, plasma protein level, whole blood hemoglobin (Hb) and hematocrit (Hct) level increased significantly (p < or = 0.05), while plasma volume (PV), body weight, body fat, peak oxygen uptake, food and fluid intake decreased significantly (p < or = 0.05) in the UBRS group when compared with the SBRS and UACS groups. In contrast, plasma and urinary electrolytes, osmolality, protein level, whole blood Hct and Hb level decreased significantly (p < or = 0.05), while PV, fluid intake, body weight and peak oxygen uptake increased significantly (p < or = 0.05) in the SBRS group when compared with the UBRS group. The measured parameters did not change significantly in the UACS group when compared with their baseline control values. The data indicate that FSS stabilizes electrolytes and body hydration during BR, while BR alone induces significant changes in electrolytes and body hydration. We conclude that FSS may be used to prevent catabolism and normalize body hydration status and electrolyte values during BR. c2002 Published by Elsevier Science Ltd.

  8. Fluid and salt supplementation effect on body hydration and electrolyte homeostasis during bed rest and ambulation

    NASA Astrophysics Data System (ADS)

    Zorbas, Yan G.; Kakurin, Vassily J.; Kuznetsov, Nikolai A.; Yarullin, Vladimir L.

    2002-06-01

    Bed rest (BR) induces significant urinary and blood electrolyte changes, but little is known about the effect of fluid and salt supplements (FSS) on catabolism, hydration and electrolytes. The aim was to measure the effect of FSS on catabolism, body hydration and electrolytes during BR. Studies were done during 7 days of a pre-bed rest period and during 30 days of a rigorous bed rest period. Thirty male athletes aged, 24.6±7.6 years were chosen as subjects. They were divided into three groups: unsupplemented ambulatory control subjects (UACS), unsupplemented bed rested subjects (UBRS) and supplemented bed rested subjects (SBRS). The UBRS and SBRS groups were kept under a rigorous bed rest regime for 30 days. The SBRS daily took 30 ml water per kg body weight and 0.1 sodium chloride per kg body weight. Plasma sodium (Na), potassium (K), calcium (Ca) and magnesium (Mg) levels, urinary Na, K, Ca and Mg excretion, plasma osmolality, plasma protein level, whole blood hemoglobin (Hb) and hematocrit (Hct) level increased significantly ( p≤0.05), while plasma volume (PV), body weight, body fat, peak oxygen uptake, food and fluid intake decreased significantly ( p≤0.05) in the UBRS group when compared with the SBRS and UACS groups. In contrast, plasma and urinary electrolytes, osmolality, protein level, whole blood Hct and Hb level decreased significantly ( p≤0.05), while PV, fluid intake, body weight and peak oxygen uptake increased significantly ( p≤0.05) in the SBRS group when compared with the UBRS group. The measured parameters did not change significantly in the UACS group when compared with their baseline control values. The data indicate that FSS stabilizes electrolytes and body hydration during BR, while BR alone induces significant changes in electrolytes and body hydration. We conclude that FSS may be used to prevent catabolism and normalize body hydration status and electrolyte values during BR.

  9. Hydrostatic pressure effects on the lamellar to gyroid cubic phase transition of monolinolein at limited hydration.

    PubMed

    Tang, T-Y Dora; Brooks, Nicholas J; Jeworrek, Christoph; Ces, Oscar; Terrill, Nick J; Winter, Roland; Templer, Richard H; Seddon, John M

    2012-09-11

    Monoacylglycerol based lipids are highly important model membrane components and attractive candidates for drug encapsulation and as delivery agents. However, optimizing the properties of these lipids for applications requires a detailed understanding of the thermodynamic factors governing the self-assembled structures that they form. Here, we report on the effects of hydrostatic pressure, temperature, and water composition on the structural behavior and stability of inverse lyotropic liquid crystalline phases adopted by monolinolein (an unsaturated monoacylglycerol having cis-double bonds at carbon positions 9 and 12) under limited hydration conditions. Six pressure-temperature phase diagrams have been determined using small-angle X-ray diffraction at water contents between 15 wt % and 27 wt % water, in the range 10-40 °C and 1-3000 bar. The gyroid bicontinuous cubic (Q(II)(G)) phase is formed at low pressure and high temperatures, transforming to a fluid lamellar (L(α)) phase at high pressures and low temperature via a region of Q(II)(G)/L(α) coexistence. Pressure stabilizes the lamellar phase over the Q(II)(G) phase; at fixed pressure, increasing the water content causes the coexistence region to move to lower temperature. These trends are consistent throughout the hydration range studied. Moreover, at fixed temperature, increasing the water composition increases the pressure at which the Q(II)(G) to L(α) transition takes place. We discuss the qualitative effect of pressure, temperature, and water content on the stability of the Q(II)(G) phase.

  10. Hydration Status and Fluid Balance of Elite European Youth Soccer Players during Consecutive Training Sessions

    PubMed Central

    Phillips, Saun M.; Sykes, Dave; Gibson, Neil

    2014-01-01

    The objective of the study was to investigate the hydration status and fluid balance of elite European youth soccer players during three consecutive training sessions. Fourteen males (age 16.9 ± 0.8 years, height 1.79 ± 0.06 m, body mass (BM) 70.6 ± 5.0 kg) had their hydration status assessed from first morning urine samples (baseline) and pre- and post-training using urine specific gravity (USG) measures, and their fluid balance calculated from pre- to post-training BM change, corrected for fluid intake and urine output. Most participants were hypohydrated upon waking (USG >1.020; 77% on days 1 and 3, and 62% on day 2). There was no significant difference between first morning and pre-training USG (p = 0.11) and no influence of training session (p = 0.34) or time (pre- vs. post-training; p = 0.16) on USG. Significant BM loss occurred in sessions 1-3 (0.69 ± 0.22, 0.42 ± 0.25, and 0.38 ± 0.30 kg respectively, p < 0.05). Mean fluid intake in sessions 1-3 was 425 ± 185, 355 ± 161, and 247 ± 157 ml, respectively (p < 0.05). Participants replaced on average 71.3 ± 64.1% (range 0-363.6%) of fluid losses across the three sessions. Body mass loss, fluid intake, and USG measures showed large inter-individual variation. Elite young European soccer players likely wake and present for training hypohydrated, when a USG threshold of 1.020 is applied. When training in a cool environment with ad libitum access to fluid, replacing ~71% of sweat losses results in minimal hypohydration (<1% BM). Consumption of fluid ad libitum throughout training appears to prevent excessive (≥2% BM) dehydration, as advised by current fluid intake guidelines. Current fluid intake guidelines appear applicable for elite European youth soccer players training in a cool environment. Key Points The paper demonstrates a notable inter-participant variation in first morning, pre- and post-training hydration status and fluid balance of elite young European soccer players. On average, elite young

  11. Hydration Status and Fluid Balance of Elite European Youth Soccer Players during Consecutive Training Sessions.

    PubMed

    Phillips, Saun M; Sykes, Dave; Gibson, Neil

    2014-12-01

    The objective of the study was to investigate the hydration status and fluid balance of elite European youth soccer players during three consecutive training sessions. Fourteen males (age 16.9 ± 0.8 years, height 1.79 ± 0.06 m, body mass (BM) 70.6 ± 5.0 kg) had their hydration status assessed from first morning urine samples (baseline) and pre- and post-training using urine specific gravity (USG) measures, and their fluid balance calculated from pre- to post-training BM change, corrected for fluid intake and urine output. Most participants were hypohydrated upon waking (USG >1.020; 77% on days 1 and 3, and 62% on day 2). There was no significant difference between first morning and pre-training USG (p = 0.11) and no influence of training session (p = 0.34) or time (pre- vs. post-training; p = 0.16) on USG. Significant BM loss occurred in sessions 1-3 (0.69 ± 0.22, 0.42 ± 0.25, and 0.38 ± 0.30 kg respectively, p < 0.05). Mean fluid intake in sessions 1-3 was 425 ± 185, 355 ± 161, and 247 ± 157 ml, respectively (p < 0.05). Participants replaced on average 71.3 ± 64.1% (range 0-363.6%) of fluid losses across the three sessions. Body mass loss, fluid intake, and USG measures showed large inter-individual variation. Elite young European soccer players likely wake and present for training hypohydrated, when a USG threshold of 1.020 is applied. When training in a cool environment with ad libitum access to fluid, replacing ~71% of sweat losses results in minimal hypohydration (<1% BM). Consumption of fluid ad libitum throughout training appears to prevent excessive (≥2% BM) dehydration, as advised by current fluid intake guidelines. Current fluid intake guidelines appear applicable for elite European youth soccer players training in a cool environment. Key PointsThe paper demonstrates a notable inter-participant variation in first morning, pre- and post-training hydration status and fluid balance of elite young European soccer players.On average, elite young

  12. Association of gas hydrate formation in fluid discharges with anomalous hydrochemical profiles

    NASA Astrophysics Data System (ADS)

    Matveeva, T.

    2009-04-01

    Numerous investigations worldwide have shown that active underwater fluid discharge produces specific structures on the seafloor such as submarine seepages, vents, pockmarks, and collapse depressions. Intensive fluxes of fluids, especially of those containing hydrocarbon gases, result in specific geochemical and physical conditions favorable for gas hydrate (GH) formation. GH accumulations associated with fluid discharge are usually controlled by fluid conduits such as mud volcanoes, diapirs or faults. During last decade, subaqueous GHs become the subject of the fuel in the nearest future. However, the expediency of their commercial development can be proved solely by revealing conditions and mechanisms of GH formation. Kinetic of GH growth (although it is incompletely understood) is one of the important parameters controlling their formation among with gas solubility, pressure, temperature, gas quantity and others. Original large dataset on hydrate-related interstitial fluids obtained from different fluid discharge areas at the Sea of Okhotsk, Black Sea, Gulf of Cadiz, Lake Baikal (Eastern Siberia) allow to suggest close relation of the subaqueous GH formation process to anomalous hydrochemical profiles. We have studied the chemical and isotopic composition of interstitial fluids from GH-bearing and GH-free sediments obtained at different GH accumulations. Most attention was paid to possible influence of the interstitial fluid chemistry on the kinetic of GH formation in a porous media. The influence of salts on methane solubility within hydrate stability zones was considered by Handa (1990), Zatsepina & Buffet (1998), and later by Davie et al. (2004) from a theoretical point of view. Our idea is based on the experimentally proved fact that fugacity coefficient of methane dissolved in saline gas-saturated water which is in equilibrium with hydrates, is higher than that in more fresh water though the solubility is lower. Therefore, if a gradient of water salinity

  13. Hydration of gas-phase ytterbium ion complexes studied by experiment and theory

    SciTech Connect

    Rutkowski, Philip X; Michelini, Maria C.; Bray, Travis H.; Russo, Nino; Marcalo, Joaquim; Gibson, John K.

    2011-02-11

    Hydration of ytterbium (III) halide/hydroxide ions produced by electrospray ionization was studied in a quadrupole ion trap mass spectrometer and by density functional theory (DFT). Gas-phase YbX{sub 2}{sup +} and YbX(OH){sup +} (X = OH, Cl, Br, or I) were found to coordinate from one to four water molecules, depending on the ion residence time in the trap. From the time dependence of the hydration steps, relative reaction rates were obtained. It was determined that the second hydration was faster than both the first and third hydrations, and the fourth hydration was the slowest; this ordering reflects a combination of insufficient degrees of freedom for cooling the hot monohydrate ion and decreasing binding energies with increasing hydration number. Hydration energetics and hydrate structures were computed using two approaches of DFT. The relativistic scalar ZORA approach was used with the PBE functional and all-electron TZ2P basis sets; the B3LYP functional was used with the Stuttgart relativistic small-core ANO/ECP basis sets. The parallel experimental and computational results illuminate fundamental aspects of hydration of f-element ion complexes. The experimental observations - kinetics and extent of hydration - are discussed in relationship to the computed structures and energetics of the hydrates. The absence of pentahydrates is in accord with the DFT results, which indicate that the lowest energy structures have the fifth water molecule in the second shell.

  14. Atmospheric Consequences of the Hydration in Gas Phase of Aldehydes and Ketones

    NASA Astrophysics Data System (ADS)

    Vaida, V.; Axson, J. L.; Maron, M. K.

    2010-12-01

    Aldehydes and ketones are known oxidation products of biogenic and anthropogenic VOCs and have been observed by field studies to be present in aerosol and cloud particles. While the gas-phase chemistry of these compounds is fairly well understood, their modeled concentration and role in SOA formation remains controversial. In aqueous solution aldehydes and ketones hydrate to form alcohols. We explore the hydration of these compounds in the gas phase and examine the water and photon mediated processes of these hydrates. The formation of hydrates can contribute to aerosol growth and formation by partitioning into clouds and aerosols because of their lower vapor pressure and tendency to form intermolecular hydrogen bonds. Hydration of aldehydes and ketones has important consequences to the atmospheric photochemistry of these organic compounds. The experimental approaches employ Fourier transform spectroscopy (FTS) and cavity ringdown spectroscopy (CRDS) to observe the formation of diols and hydrates by these molecules as a function of relative humidity.

  15. Phase Transition of a Structure II Cubic Clathrate Hydrate to a Tetragonal Form.

    PubMed

    Takeya, Satoshi; Fujihisa, Hiroshi; Yamawaki, Hiroshi; Gotoh, Yoshito; Ohmura, Ryo; Alavi, Saman; Ripmeester, John A

    2016-08-01

    The crystal structure and phase transition of cubic structure II (sII) binary clathrate hydrates of methane (CH4 ) and propanol are reported from powder X-ray diffraction measurements. The deformation of host water cages at the cubic-tetragonal phase transition of 2-propanol+CH4 hydrate, but not 1-propanol+CH4 hydrate, was observed below about 110 K. It is shown that the deformation of the host water cages of 2-propanol+CH4 hydrate can be explained by the restriction of the motion of 2-propanol within the 5(12) 6(4) host water cages. This result provides a low-temperature structure due to a temperature-induced symmetry-lowering transition of clathrate hydrate. This is the first example of a cubic structure of the common clathrate hydrate families at a fixed composition.

  16. Decreased stability of methane hydrates in marine sediments owing to phase-boundary roughness.

    PubMed

    Wood, W T; Gettrust, J F; Chapman, N R; Spence, G D; Hyndman, R D

    2002-12-12

    Below water depths of about 300 metres, pressure and temperature conditions cause methane to form ice-like crystals of methane hydrate. Marine deposits of methane hydrate are estimated to be large, amassing about 10,000 gigatonnes of carbon, and are thought to be important to global change and seafloor stability, as well as representing a potentially exploitable energy resource. The extent of these deposits can usually be inferred from seismic imaging, in which the base of the methane hydrate stability zone is frequently identifiable as a smooth reflector that runs parallel to the sea floor. Here, using high-resolution seismic sections of seafloor sediments in the Cascadia margin off the coast of Vancouver Island, Canada, we observe lateral variations in the base of the hydrate stability zone, including gas-rich vertical intrusions into the hydrate stability zone. We suggest that these vertical intrusions are associated with upward flow of warmer fluids. Therefore, where seafloor fluid expulsion and methane hydrate deposits coincide, the base of the hydrate stability zone might exhibit significant roughness and increased surface area. Increased area implies that significantly more methane hydrate lies close to being unstable and hence closer to dissociation in the event of a lowering of pressure due to sea-level fall.

  17. Capillary effects on gas hydrate three-phase stability in marine sediments

    NASA Astrophysics Data System (ADS)

    Liu, X.; Flemings, P. B.

    2013-12-01

    We study the three-phase (Liquid + Gas + Hydrate) stability of the methane hydrate system in marine sediments by considering the capillary effects on both hydrate and free gas phases. The aqueous CH4 solubilities required for forming hydrate (L+H) and free gas (L+G) in different pore sizes can be met in a three-phase zone. The top of the three-phase zone shifts upward in sediments as the water depth increases and the mean pore size decreases. The thickness of the three-phase zone increases as the pore size distribution widens. The top of the three-phase zone can either overlie the three-phase stability depth at deepwater Blake Ridge or underlie the three-phase stability depth at Hydrate Ridge in shallow water. Our model prediction is compatible with worldwide observations that the bottom-simulating reflector is systematically shifted upward relative to the bulk equilibrium depth as water depth (pressure) is increased. The gas hydrate and free gas saturations of the three-phase zone at Blake Ridge Comparison of the globally compiled BSR temperatures with the three-phase equilibrium curves for the systems of pure CH4 + 3.5 wt.% seawater (solid line) and pure CH4 + 2.0 wt.% seawater (dotted line). The discrepancies between the observed BSR temperature and the calculated three-phase temperature are systematically larger in deep water than in shallow water.

  18. Fluid Migration Patterns in Gas Hydrate System of Four-Way-Closure Ridge Offshore Southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Liwen; Chi, Wu-Cheng; Lin, Yu-Hsieh; Berndt, Christian; Lin, Saulwood

    2016-04-01

    Four-Way-Closure (4WC) Ridge shows great potential as a hydrate prospect from collected multitude of marine geophysical datasets offshore southwestern Taiwan. The aim of my study is to better understand the fluid migration patterns and the possible source locations of the methane at this site. It is a cold seep site with an elongated NW-SE trending anticlinal ridge, which is formed by fault-related folds in the frontal segment of the lower slope domain of the Taiwan accretionary prism along its convergent boundary. So I detail recognized the regional feature structures of the 4WC Ridge, including the thrust faulting and a seismic chimney beneath the seepage sites. I plan to study the temperature perturbation at the 4WC Ridge to better understand gas hydrate system there. To quantify the amount of temperature perturbation near the fault zone, we need to correct the temperature field data for other geological processes. One important correction we want to make concerns the topographic effects on the shallow crust temperature field. So we used 3D finite element method to quantify how much temperature perturbation can be attributed to the local bathymetry at the 4WC Ridge. This model will give us a temperature field based on pure thermal conduction. Then, we can compare the model temperature field with the temperature field derived from thousands of BSRs from the seismic cube, and interpret any resulting temperature discrepancy. As our previous study, we known several geological processes can cause such a discrepancy, including advective fluid migration. If the fault zone fluid migration hypothesis is correct and gas hydrate system reacts to the deep warm fluids from below it, we expect that the BSR will become shallower near the fluid pathways, and the BSR-based temperature field might be a few degrees Celsius higher than in the 3D thermal conductive temperature field. Otherwise, the two temperature fields should be similar. This study is important for hydrate

  19. Direct visualization of the hydration layer on alumina nanoparticles with the fluid cell STEM in situ

    DOE PAGES

    Firlar, Emre; Çınar, Simge; Kashyap, Sanjay; ...

    2015-05-21

    Rheological behavior of aqueous suspensions containing nanometer-sized powders is of relevance to many branches of industry. Unusually high viscosities observed for suspensions of nanoparticles compared to those of micron size powders cannot be explained by current viscosity models. Formation of so-called hydration layer on alumina nanoparticles in water was hypothesized, but never observed experimentally. We report here on the direct visualization of aqueous suspensions of alumina with the fluid cell in situ. We observe the hydration layer formed over the particle aggregates and show that such hydrated aggregates constitute new particle assemblies and affect the flow behavior of the suspensions.more » We discuss how these hydrated nanoclusters alter the effective solid content and the viscosity of nanostructured suspensions. As a result, our findings elucidate the source of high viscosity observed for nanoparticle suspensions and are of direct relevance to many industrial sectors including materials, food, cosmetics, pharmaceutical among others employing colloidal slurries with nanometer-scale particles.« less

  20. Effect of organic matter on CO(2) hydrate phase equilibrium in phyllosilicate suspensions.

    PubMed

    Park, Taehyung; Kyung, Daeseung; Lee, Woojin

    2014-06-17

    In this study, we examined various CO2 hydrate phase equilibria under diverse, heterogeneous conditions, to provide basic knowledge for successful ocean CO2 sequestration in offshore marine sediments. We investigated the effect of geochemical factors on CO2 hydrate phase equilibrium. The three-phase (liquid-hydrate-vapor) equilibrium of CO2 hydrate in the presence of (i) organic matter (glycine, glucose, and urea), (ii) phyllosilicates [illite, kaolinite, and Na-montmorillonite (Na-MMT)], and (iii) mixtures of them was measured in the ranges of 274.5-277.0 K and 14-22 bar. Organic matter inhibited the phase equilibrium of CO2 hydrate by association with water molecules. The inhibition effect decreased in the order: urea < glycine < glucose. Illite and kaolinite (unexpandable clays) barely affected the CO2 hydrate phase equilibrium, while Na-MMT (expandable clay) affected the phase equilibrium because of its interlayer cations. The CO2 hydrate equilibrium conditions, in the illite and kaolinite suspensions with organic matter, were very similar to those in the aqueous organic matter solutions. However, the equilibrium condition in the Na-MMT suspension with organic matter changed because of reduction of its inhibition effect by intercalated organic matter associated with cations in the Na-MMT interlayer.

  1. Molecular dynamics simulations of a fully hydrated dimyristoylphosphatidylcholine membrane in liquid-crystalline phase

    NASA Astrophysics Data System (ADS)

    Zubrzycki, Igor Z.; Xu, Yan; Madrid, Marcela; Tang, Pei

    2000-02-01

    Molecular dynamics (MD) simulations were performed to investigate the structure of a fully hydrated 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) bilayer in liquid-crystalline (fluid) phase at 30 °C. The bilayer consists of 200 DMPC lipid molecules with nw=27.4 water molecules per lipid. The membrane was built with reference to the coordinates of a previously published 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) membrane patch. A four-step dynamic procedure (110 ps) with Berendsen pressure rescaling (P=0 and 1 bar), applied in all three directions, was used to rapidly prepare the bilayer. This system was then subjected to two separate constant pressure and temperature simulations at 1 bar and 30 °C for ˜380 ps, using the Nosé-Hoover NPT method with periodical boundaries and Berendsen temperature and pressure rescaling method, respectively. The resultant bilayer has an area per lipid of 59.2 Å2 and a head-to-head thickness (DHH) of 36.3 Å. These values are in good agreement with the x-ray diffraction data of 59.7 Å2 and 34.4 Å, respectively, for DMPC at 30 °C with nw of 25.7 [H. I. Petrache, S. Tristram-Nagle, and J. F. Nagle, Chem. Phys. Lipids 95, 83 (1998)]. The fractions of trans and gauche bonds in the hydrocarbon chains, averaged for the last 94 ps of simulation, are 81.7% and 18.3%, respectively, suggesting a fluid phase of the membrane. The electron density profile resembles closely that measured by x-ray diffraction. Water density profile suggests a significant penetration of water molecules into the bilayer head region to as deep as the carbonyl groups, with phosphate groups being strongly hydrated.

  2. Hydration status and fluid intake of urban, underprivileged South African male adolescent soccer players during training.

    PubMed

    Gordon, Reno Eron; Kassier, Susanna Maria; Biggs, Chara

    2015-01-01

    Poor hydration compromises performance and heightens the risk of heat stress which adolescents are particularly susceptible to as they produce comparatively larger amount of metabolic heat during exercise. This study determined the hydration status and fluid intake of socio-economically disadvantaged, male adolescent soccer players during training. A pilot study was conducted among 79 soccer players (mean age 15.9 ± 0.8 years; mean BMI 20.2 ± 2.1 kg/m(2)). Hydration status was determined before and after two training sessions, using both urine specific gravity and percent loss of body weight. The type and amount of fluid consumed was assessed during training. A self-administered questionnaire was used to determine the players' knowledge regarding fluid and carbohydrate requirements for soccer training. Players were at risk of developing heat illness during six of the 14 training sessions (60 - 90 minutes in length). Although on average players were slightly dehydrated (1.023 ± 0.006 g/ml) before and after (1.024 ± 0.007 g/ml) training, some were extremely dehydrated before (24%) and after (27%) training. Conversely some were extremely hyperhydrated before (3%) and after training (6%). The mean percent loss of body weight was 0.7 ± 0.7%. The majority did not consume fluid during the first (57.0%) and second (70.9%) training sessions. An average of 216.0 ± 140.0 ml of fluid was consumed during both training sessions. The majority (41.8%) consumed water, while a few (5.1%) consumed pure fruit juice. More than 90% stated that water was the most appropriate fluid to consume before, during and after training. Very few (5.0%) correctly stated that carbohydrate should be consumed before, during and after training. Approximately a quarter were severely dehydrated. Many did not drink or drank insufficient amounts. The players' beliefs regarding the importance of fluid and carbohydrate consumption did not correspond with their practices. A

  3. Pilot scale experiments of magnesia hydration under gas-liquid-solid (three-phase) reaction system

    NASA Astrophysics Data System (ADS)

    Tang, Xiaojia; Lv, Qiwei; Yin, Lin; Nie, Yixing; Jin, Qi; Ji, Yangyuan; Zhu, Yimin

    2017-08-01

    Pilot scale experiments were conducted to prepare magnesium hydroxide by magnesia hydration under gas-liquid-solid (three-phase) reaction system. The effect of reaction pressure, reactivity and particle size of magnesia and the concentration of the pulp on the degree of hydration was investigated. The results indicated that the hydration reaction occurred at the first 30min mainly. During the set reaction condition, degree of hydration of 68% could be obtained at the reaction pressure of 0.2MPa, concentration of pulp of 5%w/w with high reactivity and fine powder. The promotion effect on the degree of hydration caused by the three-phase reaction system was mostly attributed to the exfoliation of steam.

  4. Controlled-source electromagnetic and seismic delineation of subseafloor fluid flow structures in a gas hydrate province, offshore Norway

    NASA Astrophysics Data System (ADS)

    Attias, Eric; Weitemeyer, Karen; Minshull, Tim A.; Best, Angus I.; Sinha, Martin; Jegen-Kulcsar, Marion; Hölz, Sebastian; Berndt, Christian

    2016-08-01

    Deep sea pockmarks underlain by chimney-like or pipe structures that contain methane hydrate are abundant along the Norwegian continental margin. In such hydrate provinces the interaction between hydrate formation and fluid flow has significance for benthic ecosystems and possibly climate change. The Nyegga region, situated on the western Norwegian continental slope, is characterized by an extensive pockmark field known to accommodate substantial methane gas hydrate deposits. The aim of this study is to detect and delineate both the gas hydrate and free gas reservoirs at one of Nyegga's pockmarks. In 2012, a marine controlled-source electromagnetic (CSEM) survey was performed at a pockmark in this region, where high-resolution 3-D seismic data were previously collected in 2006. 2-D CSEM inversions were computed using the data acquired by ocean bottom electrical field receivers. Our results, derived from unconstrained and seismically constrained CSEM inversions, suggest the presence of two distinctive resistivity anomalies beneath the pockmark: a shallow vertical anomaly at the underlying pipe structure, likely due to gas hydrate accumulation, and a laterally extensive anomaly attributed to a free gas zone below the base of the gas hydrate stability zone. This work contributes to a robust characterization of gas hydrate deposits within subseafloor fluid flow pipe structures.

  5. Phase behavior of patchy spheroidal fluids

    NASA Astrophysics Data System (ADS)

    Carpency, T. N.; Gunton, J. D.; Rickman, J. M.

    2016-12-01

    We employ Gibbs-ensemble Monte Carlo computer simulation to assess the impact of shape anisotropy and particle interaction anisotropy on the phase behavior of a colloidal (or, by extension, protein) fluid comprising patchy ellipsoidal particles, with an emphasis on critical behavior. More specifically, we obtain the fluid-fluid equilibrium phase diagram of hard prolate ellipsoids having Kern-Frenkel surface patches under a variety of conditions and study the critical behavior of these fluids as a function of particle shape parameters. It is found that the dependence of the critical temperature on aspect ratio for particles having the same volume can be described approximately in terms of patch solid angles. In addition, ordering in the fluid that is associated with particle elongation is also found to be an important factor in dictating phase behavior.

  6. A composite phase diagram of structure H hydrates using Schreinemakers' geometric approach

    USGS Publications Warehouse

    Mehta, A.P.; Makogon, T.Y.; Burruss, R.C.; Wendlandt, R.F.; Sloan, E.D.

    1996-01-01

    A composite phase diagram is presented for Structure H (sH) clathrate hydrates. In this work, we derived the reactions occurring among the various phases along each four-phase (Ice/Liquid water, liquid hydrocarbon, vapor, and hydrate) equilibrium line. A powerful method (though seldom used in chemical engineering) for multicomponent equilibria developed by Schreinemakers is applied to determine the relative location of all quadruple (four-phase) lines emanating from three quintuple (five-phase) points. Experimental evidence validating the approximate phase diagram is also provided. The use of Schreinemakers' rules for the development of the phase diagram is novel for hydrates, but these rules may be extended to resolve the phase space of other more complex systems commonly encountered in chemical engineering.

  7. Prediction of the phase equilibria of methane hydrates using the direct phase coexistence methodology

    NASA Astrophysics Data System (ADS)

    Michalis, Vasileios K.; Costandy, Joseph; Tsimpanogiannis, Ioannis N.; Stubos, Athanassios K.; Economou, Ioannis G.

    2015-01-01

    The direct phase coexistence method is used for the determination of the three-phase coexistence line of sI methane hydrates. Molecular dynamics (MD) simulations are carried out in the isothermal-isobaric ensemble in order to determine the coexistence temperature (T3) at four different pressures, namely, 40, 100, 400, and 600 bar. Methane bubble formation that results in supersaturation of water with methane is generally avoided. The observed stochasticity of the hydrate growth and dissociation processes, which can be misleading in the determination of T3, is treated with long simulations in the range of 1000-4000 ns and a relatively large number of independent runs. Statistical averaging of 25 runs per pressure results in T3 predictions that are found to deviate systematically by approximately 3.5 K from the experimental values. This is in good agreement with the deviation of 3.15 K between the prediction of TIP4P/Ice water force field used and the experimental melting temperature of ice Ih. The current results offer the most consistent and accurate predictions from MD simulation for the determination of T3 of methane hydrates. Methane solubility values are also calculated at the predicted equilibrium conditions and are found in good agreement with continuum-scale models.

  8. Prediction of the phase equilibria of methane hydrates using the direct phase coexistence methodology

    SciTech Connect

    Michalis, Vasileios K.; Costandy, Joseph; Economou, Ioannis G.; Tsimpanogiannis, Ioannis N.; Stubos, Athanassios K.

    2015-01-28

    The direct phase coexistence method is used for the determination of the three-phase coexistence line of sI methane hydrates. Molecular dynamics (MD) simulations are carried out in the isothermal–isobaric ensemble in order to determine the coexistence temperature (T{sub 3}) at four different pressures, namely, 40, 100, 400, and 600 bar. Methane bubble formation that results in supersaturation of water with methane is generally avoided. The observed stochasticity of the hydrate growth and dissociation processes, which can be misleading in the determination of T{sub 3}, is treated with long simulations in the range of 1000–4000 ns and a relatively large number of independent runs. Statistical averaging of 25 runs per pressure results in T{sub 3} predictions that are found to deviate systematically by approximately 3.5 K from the experimental values. This is in good agreement with the deviation of 3.15 K between the prediction of TIP4P/Ice water force field used and the experimental melting temperature of ice Ih. The current results offer the most consistent and accurate predictions from MD simulation for the determination of T{sub 3} of methane hydrates. Methane solubility values are also calculated at the predicted equilibrium conditions and are found in good agreement with continuum-scale models.

  9. Prediction of the phase equilibria of methane hydrates using the direct phase coexistence methodology.

    PubMed

    Michalis, Vasileios K; Costandy, Joseph; Tsimpanogiannis, Ioannis N; Stubos, Athanassios K; Economou, Ioannis G

    2015-01-28

    The direct phase coexistence method is used for the determination of the three-phase coexistence line of sI methane hydrates. Molecular dynamics (MD) simulations are carried out in the isothermal-isobaric ensemble in order to determine the coexistence temperature (T3) at four different pressures, namely, 40, 100, 400, and 600 bar. Methane bubble formation that results in supersaturation of water with methane is generally avoided. The observed stochasticity of the hydrate growth and dissociation processes, which can be misleading in the determination of T3, is treated with long simulations in the range of 1000-4000 ns and a relatively large number of independent runs. Statistical averaging of 25 runs per pressure results in T3 predictions that are found to deviate systematically by approximately 3.5 K from the experimental values. This is in good agreement with the deviation of 3.15 K between the prediction of TIP4P/Ice water force field used and the experimental melting temperature of ice Ih. The current results offer the most consistent and accurate predictions from MD simulation for the determination of T3 of methane hydrates. Methane solubility values are also calculated at the predicted equilibrium conditions and are found in good agreement with continuum-scale models.

  10. Effect of fluid and salt supplementation on body hydration of athletes during prolonged hypokinesia

    NASA Astrophysics Data System (ADS)

    Zorbas, Yan G.; Petrov, Kirill L.; Yarullin, Vladimir L.; Kakurin, Vassily J.; Popov, Vladimir K.; Deogeneov, Viktor A.

    Body hydration decreases significantly during hypokinesia (HK) (diminished movement), but little is known about the effect of fluid and salt supplements (FSS) on body hydration during HK. The aim of this study was to measure the effect of FSS on body hydration during HK. Studies were done during 30 days pre HK period and 364 days HK period. Thirty male athletes aged 24.5±6.6 yr were chosen as subjects. They were equally divided into three groups: unsupplemented ambulatory control subjects (UACS), unsupplemented hypokinetic subjects (UHKS) and supplemented hypokinetic subjects (SHKS). Hypokinetic subjects were limited to an average walking distance of 0.7 km day -1. The SHKS group took daily 30 ml of water/kg body weight and 0.1 g of sodium chloride (NaCl)/kg body weight. Control subjects experienced no changes in their professional training and routine daily activities. Plasma volume (PV), urinary and plasma sodium (Na) and potassium (K), plasma osmolality, plasma protein, whole blood hemoglobin (Hb) and hematocrit (Hct), plasma renin activity (PRA) plasma aldosterone (PA) levels, physical characteristics, food and fluid intakes were measured. Plasma osmolality, plasma protein, urinary and plasma Na and K, whole blood Hct and Hb, PRA and PA levels decreased significantly ( p⩽0.01), while PV and body weight increased significantly ( p⩽0.01) in the SHKS group when compared with the UHKS group and did not change when compared with the UACS group. Plasma osmolality, plasma protein, urinary and plasma Na and K, PRA and PA, whole blood Hb and Hct levels increased significantly ( p⩽0.01), while PV body weight, food and fluid intakes decreased significantly ( p⩽0.01) in UHKS group when compared with the SHKS and UACS groups. The measured parameters did not change in the UACS group when compared with their baseline control values. It was shown that during HK body hydration decreased significantly, while during HK and FSS body hydration increased significantly. It

  11. Phase equilibria and thermodynamic modeling of ethane and propane hydrates in porous silica gels.

    PubMed

    Seo, Yongwon; Lee, Seungmin; Cha, Inuk; Lee, Ju Dong; Lee, Huen

    2009-04-23

    In the present study, we examined the active role of porous silica gels when used as natural gas storage and transportation media. We adopted the dispersed water in silica gel pores to substantially enhance active surface for contacting and encaging gas molecules. We measured the three-phase hydrate (H)-water-rich liquid (L(W))-vapor (V) equilibria of C(2)H(6) and C(3)H(8) hydrates in 6.0, 15.0, 30.0, and 100.0 nm silica gel pores to investigate the effect of geometrical constraints on gas hydrate phase equilibria. At specified temperatures, the hydrate stability region is shifted to a higher pressure region depending on pore size when compared with those of bulk hydrates. Through application of the Gibbs-Thomson relationship to the experimental data, we determined the values for the C(2)H(6) hydrate-water and C(3)H(8) hydrate-water interfacial tensions to be 39 +/- 2 and 45 +/- 1 mJ/m(2), respectively. By using these values, the calculation values were in good agreement with the experimental ones. The overall results given in this study could also be quite useful in various fields, such as exploitation of natural gas hydrate in marine sediments and sequestration of carbon dioxide into the deep ocean.

  12. Methane under-saturated fluids in deep-sea sediments: Implications for gas hydrate stability and rates of dissolution

    NASA Astrophysics Data System (ADS)

    Lapham, Laura L.; Chanton, Jeffrey P.; Chapman, Ross; Martens, Christopher S.

    2010-10-01

    Deep-sea sediments contain Earth's largest reservoir of methane (CH 4, 3000 GTons C) trapped within ice-like crystals known as gas hydrates. Understanding the controls on gas hydrate stability is critical because methane released from hydrate destabilization is hypothesized to be a powerful agent of past and potentially future climate change. Hydrates are stable under high pressure, low temperature, moderate salinity, and saturated gas conditions. Yet, the degree of gas saturation is rarely known in nature because in situ dissolved pore-water CH 4 concentrations are rarely measured. Here, we report measurements of these concentrations in sediments immediately surrounding deep-sea gas hydrate deposits and show that pore-fluids are greatly under-saturated with respect to expected values for equilibrium with methane gas hydrate. This indicates that the hydrates are dissolving, even though they are found within the appropriate pressure and temperature stability field. However, dissolution rates calculated from the in situ CH 4 data are significantly less than dissolution rates predicted for methane-under-saturated pore-water in direct contact with pure methane gas hydrate if equilibrium CH 4 concentrations exist immediately adjacent to the hydrate surface. Diffusion-retarding factors found naturally in ocean sediments, such as oil coatings or biofilms, appear to enhance stability in outcropping hydrate deposits. The in situ seafloor evidence provided herein leads us to hypothesize that the stability of the worldwide hydrate deposits may be much greater than predicted from diffusion kinetics because biological (microbial excretion of slime or surfactants) and/or physical processes (oil coatings) effectively armor and stabilize exposed hydrate surfaces, substantially retarding their dissolution.

  13. Phase boundary of hot dense fluid hydrogen

    PubMed Central

    Ohta, Kenji; Ichimaru, Kota; Einaga, Mari; Kawaguchi, Sho; Shimizu, Katsuya; Matsuoka, Takahiro; Hirao, Naohisa; Ohishi, Yasuo

    2015-01-01

    We investigated the phase transformation of hot dense fluid hydrogen using static high-pressure laser-heating experiments in a laser-heated diamond anvil cell. The results show anomalies in the heating efficiency that are likely to be attributed to the phase transition from a diatomic to monoatomic fluid hydrogen (plasma phase transition) in the pressure range between 82 and 106 GPa. This study imposes tighter constraints on the location of the hydrogen plasma phase transition boundary and suggests higher critical point than that predicted by the theoretical calculations. PMID:26548442

  14. Evaluation of the phase properties of hydrating cement composite using simulated nanoindentation technique

    NASA Astrophysics Data System (ADS)

    Gautham, S.; Sindu, B. S.; Sasmal, Saptarshi

    2017-10-01

    Properties and distribution of the products formed during the hydration of cementitious composite at the microlevel are investigated using a nanoindentation technique. First, numerical nanoindentation using nonlinear contact mechanics is carried out on three different phase compositions of cement paste, viz. mono-phase Tri-calcium Silicate (C3S), Di-calcium Silicate (C2S) and Calcium-Silicate-Hydrate (CSH) individually), bi-phase (C3S-CSH, C2S-CSH) and multi-phase (more than 10 individual phases including water pores). To reflect the multi-phase characteristics of hydrating cement composite, a discretized multi-phase microstructural model of cement composite during the progression of hydration is developed. Further, a grid indentation technique for simulated nanoindentation is established, and employed to evaluate the mechanical characteristics of the hydrated multi-phase cement paste. The properties obtained from the numerical studies are compared with those obtained from experimental grid nanoindentation. The influence of composition and distribution of individual phase properties on the properties obtained from indentation are closely investigated. The study paves the way to establishing the procedure for simulated grid nanoindentation to evaluate the mechanical properties of heterogeneous composites, and facilitates the design of experimental nanoindentation.

  15. Thermodynamic calculations in the system CH4-H2O and methane hydrate phase equilibria

    USGS Publications Warehouse

    Circone, S.; Kirby, S.H.; Stern, L.A.

    2006-01-01

    Using the Gibbs function of reaction, equilibrium pressure, temperature conditions for the formation of methane clathrate hydrate have been calculated from the thermodynamic properties of phases in the system CH4-H 2O. The thermodynamic model accurately reproduces the published phase-equilibria data to within ??2 K of the observed equilibrium boundaries in the range 0.08-117 MPa and 190-307 K. The model also provides an estimate of the third-law entropy of methane hydrate at 273.15 K, 0.1 MPa of 56.2 J mol-1 K-1 for 1/n CH4??H 2O, where n is the hydrate number. Agreement between the calculated and published phase-equilibria data is optimized when the hydrate composition is fixed and independent of the pressure and temperature for the conditions modeled. ?? 2006 American Chemical Society.

  16. Thermodynamic calculations in the system CH4-H2O and methane hydrate phase equilibria.

    PubMed

    Circone, Susan; Kirby, Stephen H; Stern, Laura A

    2006-04-27

    Using the Gibbs function of reaction, equilibrium pressure, temperature conditions for the formation of methane clathrate hydrate have been calculated from the thermodynamic properties of phases in the system CH4-H2O. The thermodynamic model accurately reproduces the published phase-equilibria data to within +/-2 K of the observed equilibrium boundaries in the range 0.08-117 MPa and 190-307 K. The model also provides an estimate of the third-law entropy of methane hydrate at 273.15 K, 0.1 MPa of 56.2 J mol(-1) K(-1) for 1/nCH4.H2O, where n is the hydrate number. Agreement between the calculated and published phase-equilibria data is optimized when the hydrate composition is fixed and independent of the pressure and temperature for the conditions modeled.

  17. Gas-phase hydration thermochemistry of sodiated and potassiated nucleic acid bases.

    PubMed

    Wincel, Henryk

    2012-09-01

    Hydration reactions of sodiated and potassiated nucleic acid bases (uracil, thymine, cytosine, and adenine) produced by electrospray have been studied in a gas phase using the pulsed ion-beam high-pressure mass spectrometer. The thermochemical properties, ΔH(o)(n), ΔS(o)(n), and ΔG(o)(n), for the hydrated systems were obtained from hydration equilibrium measurement. The structural aspects of the hydrated complexes are discussed in conjunction with available literature data. The correlation between water binding energies in the hydrated complexes and the corresponding metal ion affinities of nucleobases suggests that a significant (if not dominant) amount of the canonical structure of cytosine undergoes tautomerization during electrospray ionization, and the thermochemical values for cationized cytosine probably correspond to a mixture of tautomeric complexes.

  18. Gas-Phase Hydration Thermochemistry of Sodiated and Potassiated Nucleic Acid Bases

    NASA Astrophysics Data System (ADS)

    Wincel, Henryk

    2012-09-01

    Hydration reactions of sodiated and potassiated nucleic acid bases (uracil, thymine, cytosine, and adenine) produced by electrospray have been studied in a gas phase using the pulsed ion-beam high-pressure mass spectrometer. The thermochemical properties, ΔH o n , ΔS o n , and ΔG o n , for the hydrated systems were obtained from hydration equilibrium measurement. The structural aspects of the hydrated complexes are discussed in conjunction with available literature data. The correlation between water binding energies in the hydrated complexes and the corresponding metal ion affinities of nucleobases suggests that a significant (if not dominant) amount of the canonical structure of cytosine undergoes tautomerization during electrospray ionization, and the thermochemical values for cationized cytosine probably correspond to a mixture of tautomeric complexes.

  19. Fluid Flow Patterns and 1D Gas Hydrate Saturation Profile in Yuan-An Ridge, Offshore Southwest Taiwan

    NASA Astrophysics Data System (ADS)

    Wu, S.; Chi, W.

    2011-12-01

    Investigation of gas hydrate in the area offshore southwest Taiwan has made good progress over the last decade. The observation suggests that large amount of gas hydrates may exist at this region. However, how the gas hydrates form and dissolve are still not clear. To better understand the mechanism of gas hydrate formation and dissociation, we first derived some basic physical parameters in the region, particularly the fluid flow rates and their patterns in a prospect site called Yuan-An Ridge offshore SW Taiwan. Previously we used geothermal gradient patterns to derive 1D vertical fluid flow models by analyzing the Peclet numbers. And we found active upward fluid flow with rates ranging from 14.3 cm/y to 24.78 cm/y in Yuan-An Ridge. For this study, we modeled the 2D temperature field of Yuan-An Ridge with finite element method in Matlab, which also gives similar upward fluid migration patterns even after topographic effect correction. In the near future, we will study a model of 1D hydrate saturation profile by using a one-dimentional numerical procedure developed by Gaurav Bhatnagar, Department of Chemical and Biomolecular Engineering, Rice University. This simulation delineates the accumulation of gas hydrates in marine sediments due to upward and downward fluxes of methane over time. We will apply the previous results as the input parameters for this generalization simulation of the flux in the hydrate-bearing sediments. The results might lead to better understanding of the distribution of gas hydrate in Yuan-An Ridge, which can be verify by a proposed drilling program in the future.

  20. Measuring temporal variability in pore-fluid chemistry to assess gas hydrate stability: development of a continuous pore-fluid array.

    PubMed

    Lapham, Laura L; Chanton, Jeffrey P; Martens, Christopher S; Higley, Paul D; Jannasch, Hans W; Woolsey, J Robert

    2008-10-01

    A specialized pore-fluid array (PFA) sampler was designed to collect and store pore fluids to monitor temporal changes of ions and gases in gas hydrate bearing sediments. We tested the hypothesis that pore-fluid chemistry records hydrate formation or decomposition events and reflects local seismic activity. The PFA is a seafloor probe that consists of an interchangeable instrument package that houses OsmoSamplers, long-term pore-fluid samplers, a specialized low-dead volume fluid coupler, and eight sample ports along a 10 m sediment probe shaft. The PFA was deployed at Mississippi Canyon 118, a Gulf of Mexico hydrate site. A 170 day record was acquired from the overlying water and 1.3 m below seafloor (mbsf). Fluids were measured for dissolved chloride, sulfate, and methane concentrations and dissolved inorganic carbon and methane stable carbon and deuterium isotope ratios. Chloride and sulfate did not change significantly over time, suggesting the absence of gas hydrate formation or decomposition events. Over the temporal record, methane concentrations averaged 4 mM at 1.3 mbsf, and methane was thermogenic in origin (delta13C-CH4 = -32.4 +/- 3.4 per thousand). The timing of an anomalous 14 mM methane spike coincided with a nearby earthquake (Mw = 5.8), consistent with the hypothesis that pore-fluid chemistry reflects seismic events.

  1. Influence of hydration status and fluid replacement on heat tolerance while wearing NBC protective clothing.

    PubMed

    Cheung, S S; McLellan, T M

    1998-01-01

    The purpose of the present study was to investigate the influence of hypohydration and fluid replacement on tolerance to an uncompensable heat stress. Eight healthy young males completed a matrix of six trials in an environmental chamber, set at 40 degrees C and 30% relative humidity, while wearing nuclear, biological, and chemical protective clothing. Subjects performed either light (3.5 km x h(-1), 0% grade, no wind) or heavy (4.8 km x h(-1), 4% grade, no wind) treadmill exercise combined with three hydration states [euhydration with fluid replacement (EU/F), euhydration without fluid replacement (EU/NF), and hypohydration with fluid replacement (H/F)]. Hypohydration of 2.2% body mass was achieved by exercise and fluid restriction on the day preceding the trials. No differences in the endpoint mean skin temperature (Tsk), sweat rate, or rectal temperature (Tre) were observed among the hydration conditions for either work rate. During light exercise, the change in Tre (deltaTre) was significantly higher with H/F than EU/F after 40 min, and heart rate was greater after 25 min. The heart rate was greater during EU/NF than during EU/F after 60 min. Tolerance times were significantly greater for EU/F than for either EU/NF or H/F. With heavy exercise, no differences in deltaTre were observed across hydration conditions. Compared to EU/F, heart rates were higher after 10 and 30 min for H/F and EU/NF, respectively. Tolerance times were significantly less during H/F than with either of the EU conditions. Stroke volume was significantly decreased in H/F trials compared to EU/F trials for both light and heavy work rates, but no differences in cardiac output were observed. It was concluded that even minor levels of hypohydration significantly impaired exercise tolerance in a severely uncompensable heat stress environment at both light and heavy exercise intensities.

  2. Hydration of Eclogite at the Plate Interface: How Fluids Infiltrate into a Dry Rock

    NASA Astrophysics Data System (ADS)

    John, T.; Vrijmoed, J.

    2016-12-01

    An important feature observed in subduction zones is the hydration of eclogites to form blueschists. This process occurs at the slab-wedge interface during exhumation and allows probing of the fluid that is leaving the subduction system via the subduction channel. Besides balancing subduction zone fluxes, this transformation expresses the problem of how fluids infiltrate a system that is expected to swell by fluid uptake of newly formed hydrous minerals. We found eclogitic pillow lavas that are locally retrograde transformed to blueschists. Two different fluid flow regimes developed during retrogression, one between the pillows and a second one related to fluid migration into the pillow interiors. The inward-propagating reaction front is associated with a reaction zone. Mass-balance calculations for this zone display mass and volume loss during eclogite-blueschist transformation. Thus, fluid infiltration resulted in shrinkage rather than expansion. We hypothesize that the propagation of the blueschist-front is controlled by fluid migration driven by volume loss at the reaction front, which is caused by chemical gradients and element transport in the connected fluid system. This indicates that the element flux out of the system must be high enough to keep up with the rate of mineral formation at the reaction front. To test this we developed a reactive flow model including transport of aqueous species at high pressure (P) and temperature (T) to quantify reaction rates and element fluxes during eclogite to blueschist transformation. The modelling approach is based on mass conservation and porous flow, and treats porosity evolution due to deformation and reaction. Solid reactions are computed using Gibbs free energy minimization. The local equilibrium computations are combined with diffusion and advection of chemical species, leading to changes in composition at any location in the modelled domain and results in the conversion from eclogite to blueschist.

  3. Anti-Adhesive Behaviors between Solid Hydrate and Liquid Aqueous Phase Induced by Hydrophobic Silica Nanoparticles.

    PubMed

    Min, Juwon; Baek, Seungjun; Somasundaran, P; Lee, Jae W

    2016-09-20

    This study introduces an "anti-adhesive force" at the interface of solid hydrate and liquid solution phases. The force was induced by the presence of hydrophobic silica nanoparticles or one of the common anti-agglomerants (AAs), sorbitan monolaurate (Span 20), at the interface. The anti-adhesive force, which is defined as the maximum pushing force that does not induce the formation of a capillary bridge between the cyclopentane (CP) hydrate particle and the aqueous solution, was measured using a microbalance. Both hydrophobic silica nanoparticles and Span 20 can inhibit adhesion between the CP hydrate probe and the aqueous phase because silica nanoparticles have an aggregative property at the interface, and Span 20 enables the hydrate surface to be wetted with oil. Adding water-soluble sodium dodecyl sulfate (SDS) to the nanoparticle system cannot affect the aggregative property or the distribution of silica nanoparticles at the interface and, thus, cannot change the anti-adhesive effect. However, the combined system of Span 20 and SDS dramatically reduces the interfacial tension: emulsion drops were formed at the interface without any energy input and were adsorbed on the CP hydrate surface, which can cause the growth of hydrate particles. Silica nanoparticles have a good anti-adhesive performance with a relatively smaller dosage and are less influenced by the presence of molecular surfactants; consequently, these nanoparticles may have a good potential for hydrate inhibition as AAs.

  4. Identification of the hydrate gel phases present in phosphate-modified calcium aluminate binders

    SciTech Connect

    Chavda, Mehul A.; Bernal, Susan A.; Apperley, David C.; Kinoshita, Hajime; Provis, John L.

    2015-04-15

    The conversion of hexagonal calcium aluminate hydrates to cubic phases in hydrated calcium aluminate cements (CAC) can involve undesirable porosity changes and loss of strength. Modification of CAC by phosphate addition avoids conversion, by altering the nature of the reaction products, yielding a stable amorphous gel instead of the usual crystalline hydrate products. Here, details of the environments of aluminium and phosphorus in this gel were elucidated using solid-state NMR and complementary techniques. Aluminium is identified in both octahedral and tetrahedral coordination states, and phosphorus is present in hydrous environments with varying, but mostly low, degrees of crosslinking. A {sup 31}P/{sup 27}Al rotational echo adiabatic passage double resonance (REAPDOR) experiment showed the existence of aluminium–phosphorus interactions, confirming the formation of a hydrated calcium aluminophosphate gel as a key component of the binding phase. This resolves previous disagreements in the literature regarding the nature of the disordered products forming in this system.

  5. First determination of volume changes and enthalpies of the high-pressure decomposition reaction of the structure H methane hydrate to the cubic structure I methane hydrate and fluid methane.

    PubMed

    Ogienko, Andrey G; Tkacz, Marek; Manakov, Andrey Yu; Lipkowski, Janusz

    2007-11-08

    Pressure-temperature (P-T) conditions of the decomposition reaction of the structure H high-pressure methane hydrate to the cubic structure I methane hydrate and fluid methane were studied with a piston-cylinder apparatus at room temperature. For the first time, volume changes accompanying this reaction were determined. With the use of the Clausius-Clapeyron equation the enthalpies of the decomposition reaction of the structure H high-pressure methane hydrate to the cubic structure I methane hydrate and fluid methane have been calculated.

  6. Phase equilibria of H2SO4, HNO3, and HCl hydrates and the composition of polar stratospheric clouds

    NASA Technical Reports Server (NTRS)

    Wooldridge, Paul J.; Zhang, Renyi; Molina, Mario J.

    1995-01-01

    Thermodynamic properties and phase equilibria behavior for the hydrates and coexisting pairs of hydrates of common acids which exist in the stratosphere are assembled from new laboratory measurements and standard literature data. The analysis focuses upon solid-vapor and solid-solid-vapor equilibria at temperatures around 200 K and includes new calorimetric and vapor pressure data. Calculated partial pressures versus 1/T slopes for the hydrates and coexisting hydrates agree well with experimental data where available.

  7. Phase equilibria of H2SO4, HNO3, and HCl hydrates and the composition of polar stratospheric clouds

    NASA Technical Reports Server (NTRS)

    Wooldridge, Paul J.; Zhang, Renyi; Molina, Mario J.

    1995-01-01

    Thermodynamic properties and phase equilibria behavior for the hydrates and coexisting pairs of hydrates of common acids which exist in the stratosphere are assembled from new laboratory measurements and standard literature data. The analysis focuses upon solid-vapor and solid-solid-vapor equilibria at temperatures around 200 K and includes new calorimetric and vapor pressure data. Calculated partial pressures versus 1/T slopes for the hydrates and coexisting hydrates agree well with experimental data where available.

  8. Phase Equilibria of H2SO4, HNO3, and HCl Hydrates and the Composition of Polar Stratospheric Clouds

    NASA Technical Reports Server (NTRS)

    Wooldridge, Paul J.; Zhang, Renyi; Molina, Mario J.

    1995-01-01

    Thermodynamic properties and phase equilibria behavior for the hydrates and coexisting pairs of hydrates of common acids which exist in the stratosphere are assembled from new laboratory measurements and standard literature data. The analysis focuses upon solid-vapor and solid-solid-vapor equilibria at temperatures around 200 K and includes new calorimetric and vapor pressure data. Calculated partial pressures versus 1/T slopes for the hydrates and coexisting hydrates agree well with experimental data where available.

  9. The nature of carbon-bearing phases in hydrated interplanetary dust particles. [Abstract only

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Thomas, K. L.; Mckay, D. S.

    1994-01-01

    We have been quantitatively measuring C abundances in hydrated interplanetary dust particles for the past few years, but in general, we have had to infer the distribution and nature of the C-bearing materials within these particles because of the complex microtextures of hydrated IDPs. Aside from rare carbonate grains, other C-bearing phases are difficult to distinguish from the fine-grained, poorly crystalline phyllosilicates that comprise the bulk of these particles. We know that carbonates alone cannot account for the high C abundances observed in most hydrated IDPs and that additional C-bearing phases must be present. We have recently applied the technique of electron energy-loss spectroscopy (EELS) in the transmission electron microscope (TEM) to identify and form the distribution of C-bearing phases in hydrated IDPs. These preliminary data show that several C-rich hydrated IDPs contain a mixture of two major forms of C, Mg-Fe carbonate and amorphous C. The near-edge structure in the C k-edges from these IDPs shows no evidence for the development of graphite or even poorly graphitized C. We conclude that the 'elemental' C in these IDPs is either very poorly ordered or is exceedingly fine-grained (we refer to this C as 'amorphous C'). The amorphous C is intimately intergrown with the fine-grained phyllosilicates and is evenly distributed within three of the four IDPs analyzed (only G1 contains discrete 'hot spots' of amorphous C). Not all hydrated IDPs contain carbonates.

  10. Individual fluid plans versus ad libitum on hydration status in minor professional ice hockey players.

    PubMed

    Emerson, Dawn M; Torres-McGehee, Toni M; Emerson, Charles C; LaSalle, Teri L

    2017-01-01

    Despite exercising in cool environments, ice hockey players exhibit several dehydration risk factors. Individualized fluid plans (IFPs) are designed to mitigate dehydration by matching an individual's sweat loss in order to optimize physiological systems and performance. A randomized control trial was used to examine IFP versus ad libitum fluid ingestion on hydration in 11 male minor professional ice hockey players (mean age = 24.4 ± 2.6 years, height = 183.0 ± 4.6 cm, weight = 92.9 ± 7.8 kg). Following baseline measures over 2 practices, participants were randomly assigned to either control (CON) or intervention (INT) for 10 additional practices. CON participants were provided water and/or carbohydrate electrolyte beverage to drink ad libitum. INT participants were instructed to consume water and an electrolyte-enhanced carbohydrate electrolyte beverage to match sweat and sodium losses. Urine specific gravity, urine color, and percent body mass change characterized hydration status. Total fluid consumed during practice was assessed. INT consumed significantly more fluid than CON (1180.8 ± 579.0 ml vs. 788.6 ± 399.7 ml, p = 0.002). However, CON participants replaced only 25.4 ± 12.9% of their fluid needs and INT 35.8 ± 17.5%. Mean percent body mass loss was not significantly different between groups and overall indicated minimal dehydration (<1.2% loss). Pre-practice urine specific gravity indicated CON and INT began hypohydrated (mean = 1.024 ± 0.007 and 1.024 ± 0.006, respectively) and experienced dehydration during practice (post = 1.026 ± 0.006 and 1.027 ± 0.005, respectively, p < 0.001). Urine color increased pre- to post-practice for CON (5 ± 2 to 6 ± 1, p < 0.001) and INT (5 ± 1 to 6 ± 1, p < 0.001). Participants consistently reported to practice hypohydrated. Ad libitum fluid intake was not significantly different than IFP on hydration status. Based on urine measures, both methods were

  11. Sound propagation in phase-separating fluids

    NASA Astrophysics Data System (ADS)

    Onuki, Akira

    1991-06-01

    We examine sound propagation in two-phase states of one- and two-component fluids by taking into account heat and mass transport between the two phases. For the sake of simplicity, detailed calculations are performed on near-critical fluids undergoing nucleation or spinodal decomposition, which exhibit very large acoustic anomalies at relatively low frequencies. As a universal relation the zero-frequency sound speed is reduced to 82% of the sound speed without domains in near-critical pure fluids. However, our predictions can be applied even to fluids far from criticality. One of our main findings is that, when droplets are sparsely distributed, sounds can induce latent-heat generation or absorption at the interfaces and produce long-range temperature gradients extending far from the droplets. The sounds are then anomalously attenuated at low frequencies, and the effect may be used to detect onset of nucleation. We also calculate a frequency-dependent adiabatic compressibility in two-phase states, which is valid even far from criticality and is applicable to bubbly fluids. It reproduces the effective-medium theory at relatively high frequencies and a Landau-Lifshitz result in the zero-frequency limit. The mechanism investigated is general and is not limited to fluids.

  12. A combined QXRD/TG method to quantify the phase composition of hydrated Portland cements

    SciTech Connect

    Soin, Alexander V.; Catalan, Lionel J.J.; Kinrade, Stephen D.

    2013-06-15

    A new method is reported for quantifying the mineral phases in hydrated cement pastes that is based on a combination of quantitative X-ray diffractometry (QXRD) and thermogravimetry (TG). It differs from previous methods in that it gives a precise measure of the amorphous phase content without relying on an assumed stoichiometric relationship between the principal hydration products, calcium hydroxide (CH) and calcium silicate hydrate (C–S–H). The method was successfully applied to gray and white ordinary Portland cements (GOPC and WOPC, respectively) that were cured for up to 56 days. Phase distributions determined by QXRD/TG closely matched those from gray-level analysis of backscattered scanning electron microscope (BSEM) images, whereas elemental compositions obtained for the amorphous phase by QXRD/TG agreed well with those measured by quantitative energy dispersive X-ray spectroscopy (EDS)

  13. Interfacial Properties and Mechanisms Dominating Gas Hydrate Cohesion and Adhesion in Liquid and Vapor Hydrocarbon Phases.

    PubMed

    Hu, Sijia; Koh, Carolyn A

    2017-10-03

    The interfacial properties and mechanisms of gas hydrate systems play a major role in controlling their interparticle and surface interactions, which is desirable for nearly all energy applications of clathrate hydrates. In particular, preventing gas hydrate interparticle agglomeration and/or particle-surface deposition is critical to the prevention of gas hydrate blockages during the exploration and transportation of oil and gas subsea flow lines. These agglomeration and deposition processes are dominated by particle-particle cohesive forces and particle-surface adhesive force. In this study, we present the first direct measurements on the cohesive and adhesive forces studies of the CH4/C2H6 gas hydrate in a liquid hydrocarbon-dominated system utilizing a high-pressure micromechanical force (HP-MMF) apparatus. A CH4/C2H6 gas mixture was used as the gas hydrate former in the model liquid hydrocarbon phase. For the cohesive force baseline test, it was found that the addition of liquid hydrocarbon changed the interfacial tension and contact angle of water in the liquid hydrocarbon compared to water in the gas phase, resulting in a force of 23.5 ± 2.5 mN m(-1) at 3.45 MPa and 274 K for a 2 h annealing time period in which hydrate shell growth occurs. It was observed that the cohesive force was inversely proportional to the annealing time, whereas the force increased with increasing contact time. For a longer contact time (>12 h), the force could not be measured because the two hydrate particles adhered permanently to form one large particle. The particle-surface adhesive force in the model liquid hydrocarbon was measured to be 5.3 ± 1.1 mN m(-1) under the same experimental condition. Finally, with a 1 h contact time, the hydrate particle and the carbon steel (CS) surface were sintered together and the force was higher than what could be measured by the current apparatus. A possible mechanism is presented in this article to describe the effect of contact time on the

  14. Experiments and Phase-field Modeling of Hydrate Growth at the Interface of Migrating Gas Fingers

    NASA Astrophysics Data System (ADS)

    Fu, X.; Jimenez-Martinez, J.; Porter, M. L.; Cueto-Felgueroso, L.; Juanes, R.

    2016-12-01

    The fate of methane bubbles escaping from seafloor seeps remains an important research question, as it directly concerns our understanding of the impact of seafloor methane leakage on ocean biogeochemistry. While the physics of rising bubbles in a water column has been studied extensively, the process is poorly understood when the gas bubbles form a hydrate ``crust" during their ascent. Understanding bubble rise, expansion and dissolution under these conditions is essential to determine the fate of bubble plumes of hydrate-forming gases such as methane and carbon dioxide from natural and man-made accidental releases. Here, we first present experimental observations of the dynamics of a bubble of Xenon in a water-filled and pressurized Hele-Shaw cell. The evolution is controlled by two processes: (1) the formation of a hydrate "crust" around the bubble, and (2) viscous fingering from bubble expansion (Figure 1). To reproduce the experimental observations, we propose a phase-field model that describes the nucleation and thickening of a porous solid shell on a moving gas-liquid interface. We design the free energy of the three-phase system (gas-liquid-hydrate) to rigorously account for interfacial effects, mutual solubility, and phase transformations (hydrate formation and disappearance). We introduce a pseudo-plasticity model with large viscosity variations to describe the plate-like rheology of the hydrate shell. We present high-resolution numerical simulations of the model, which illustrate the emergence of complex "crustal fingering" patterns as a result of gas fingering dynamics modulated by hydrate growth at the interface. Figure caption: Snapshot of the Hele-Shaw cell experiment. As the bubble expands from depressurization of the cell, gas fingers move through the liquid and Xe-hydrate readily forms at the gas-liquid interface, giving rise to complex "crustal fingering" patterns.

  15. Endurance Cyclist Fluid Intake, Hydration Status, Thirst, and Thermal Sensations: Gender Differences.

    PubMed

    Armstrong, Lawrence E; Johnson, Evan C; McKenzie, Amy L; Ellis, Lindsay A; Williamson, Keith H

    2016-04-01

    This field investigation assessed differences (e.g., drinking behavior, hydration status, perceptual ratings) between female and male endurance cyclists who completed a 164-km event in a hot environment (35 °C mean dry bulb) to inform rehydration recommendations for athletes. Three years of data were pooled to create 2 groups of cyclists: women (n = 15) and men (n = 88). Women were significantly smaller (p < .001) than men in height (166 ± 5 vs. 179 ± 7 cm), body mass (64.6 ± 7.3 vs. 86.4 ± 12.3 kg), and body mass index (BMI; 23.3 ± 1.8 vs. 26.9 ± 3.4) and had lower preevent urinary indices of hydration status, but were similar to men in age (43 ± 7 years vs. 44 ± 9 years) and exercise time (7.77 ± 1.24 hr vs. 7.23 ± 1.75 hr). During the 164-km ride, women lost less body mass (-0.7 ± 1.0 vs. -1.7 ± 1.5 kg; -1.1 ± 1.6% vs. -1.9 ± 1.8% of body weight; p < .005) and consumed less fluid than men (4.80 ± 1.28 L vs. 5.59 ± 2.13 L; p < .005). Women consumed a similar volume of fluid as men, relative to body mass (milliliters/kilogram). To control for performance and anthropomorphic characteristics, 15 women were pair-matched with 15 men on the basis of exercise time on the course and BMI; urine-specific gravity, urine color, and body mass change (kilograms and percentage) were different (p < .05) in 4 of 6 comparisons. No gender differences were observed for ratings of thirst, thermal sensation, or perceived exertion. In conclusion, differences in relative fluid volume consumed and hydration indices suggest that professional sports medicine organizations should consider gender and individualized drinking plans when formulating pronouncements regarding rehydration during exercise.

  16. Nitrogen-assisted Three-phase Equilibrium in Hydrate Systems Composed of Water, Methane, Carbon Dioxide, and Nitrogen

    NASA Astrophysics Data System (ADS)

    Darnell, K.; Flemings, P. B.; DiCarlo, D. A.

    2016-12-01

    Guest molecule exchange is a new and promising methane hydrate production technique in which methane gas is produced by injection of another gas without requiring depressurization or thermal stimulation. The technique is generally associated with injection of carbon dioxide, but injection of nitrogen and carbon dioxide mixtures are the most efficient and economical. However, thermodynamic behavior of injection mixtures is poorly understood, and it is unclear how nitrogen affects the exchange process. Here, we describe thermodynamic stability of hydrate systems that contain water, methane, carbon dioxide, and nitrogen. We present a series of ternary and quaternary phase diagrams and show the impact nitrogen has on hydrate stability. Our results demonstrate that nitrogen can either stabilize hydrate, de-stabilize hydrate, or produce three-phase equilibrium (gas, water, and hydrate) depending on its relative abundance. At low abundance nitrogen forms hydrate and directly contributes to the exchange process. At high abundance nitrogen de-stabilizes hydrate akin to traditional hydrate inhibitors, such as salt, alcohol, or mono-ethylene glycol. We show how the dual properties of nitrogen lead to three-phase equilibrium and how three-phase equilibrium may explain much of the behavior observed in methane production from nitrogen-rich injections. We apply our analysis to laboratory experiments and the methane hydrate field test on the northern Alaskan slope at Ignik Sikumi. These results can be extended to analyze dynamic evolution of mixed hydrate systems.

  17. Phase diagrams for clathrate hydrates of methane, ethane, and propane from first-principles thermodynamics.

    PubMed

    Cao, Xiaoxiao; Huang, Yingying; Li, Wenbo; Zheng, Zhaoyang; Jiang, Xue; Su, Yan; Zhao, Jijun; Liu, Changling

    2016-01-28

    Natural gas hydrates are inclusion compounds composed of major light hydrocarbon gaseous molecules (CH4, C2H6, and C3H8) and a water clathrate framework. Understanding the phase stability and formation conditions of natural gas hydrates is crucial for their future exploitation and applications and requires an accurate description of intermolecular interactions. Previous ab initio calculations on gas hydrates were mainly limited by the cluster models, whereas the phase diagram and equilibrium conditions of hydrate formation were usually investigated using the thermodynamic models or empirical molecular simulations. For the first time, we construct the chemical potential phase diagrams of type II clathrate hydrates encapsulated with methane/ethane/propane guest molecules using first-principles thermodynamics. We find that the partially occupied structures (136H2O·1CH4, 136H2O·16CH4, 136H2O·20CH4, 136H2O·1C2H6, and 136H2O·1C3H8) and fully occupied structures (136H2O·24CH4, 136H2O·8C2H6, and 136H2O·8C3H8) are thermodynamically favorable under given pressure-temperature (p-T) conditions. The theoretically predicted equilibrium pressures for pure CH4, C2H6 and C3H8 hydrates at the phase transition point are consistent with the experimental data. These results provide valuable guidance for establishing the relationship between the accurate description of intermolecular noncovalent interactions and the p-T equilibrium conditions of clathrate hydrates and other molecular crystals.

  18. Role of in situ organic matter degradation and fluid flow in the global gas hydrate distribution: application of general functions

    NASA Astrophysics Data System (ADS)

    Pinero, E.; Hensen, C.; Marquardt, M.; Haeckel, M.; Wallmann, K. J.

    2010-12-01

    During the last decades several estimates of the global gas hydrate budget have been published. The published results range by several orders of magnitude and thus, the total gas hydrate inventory is still poorly known. In order to elucidate the global gas hydrate amount we applied a recently published transfer function that calculates the amount of gas hydrate produced by in situ generated methane through organic matter degradation (Marquardt et al., accepted). The transfer function was derived from a large set of systematic runs of a numerical diagenetic model (Wallmann et al., 2006) covering a wide range of environmental conditions that are typical for the continental margins. The transfer function only includes two variables: the accumulation rate of particulate organic carbon and the thickness of the gas hydrate stability zone. We tested various approaches to calculate both parameters on the global scale. The global grids used include seafloor bathymetry, TOC input, organic rain rate, bottom water temperature, geothermal gradient estimated from heat flow, sediment thickness, and age of the oceanic crust. The results obtained lead to the conclusion that only minor amounts of gas hydrates (<10 Gt of C) are formed by in situ methane production. An extended function considering fluid flow was developed applying the same transport-reaction model. The resulting global distribution map gives a total inventory of gas hydrate ranging from 400 to 2500 Gt of C. So far, some of our calculations are slightly lower than previously published results (e.g. Archer et al., 2009) and suggest that only <2 % of the global gas hydrate budget forms from an autochthonous source of methane. The results presented here suggest that where gas does not migrate into the gas hydrate stability zone only minor negligible concentrations of gas hydrate accumulate. References: Wallmann, K., Aloisi, G. Haeckel, M., Obzhirov, A., Pavlova, G., Tishchenko, P.: Kinetics of organic matter degradation

  19. The effects of solutes on the freezing properties of and hydration forces in lipid lamellar phases.

    PubMed Central

    Yoon, Y H; Pope, J M; Wolfe, J

    1998-01-01

    Quantitative deuterium nuclear magnetic resonance is used to study the freezing behavior of the water in phosphatidylcholine lamellar phases, and the effect upon it of dimethylsulfoxide (DMSO), sorbitol, sucrose, and trehalose. When sufficient solute is present, an isotropic phase of concentrated aqueous solution may coexist with the lamellar phase at freezing temperatures. We determine the composition of both unfrozen phases as a function of temperature by using the intensity of the calibrated free induction decay signal (FID). The presence of DMSO or sorbitol increases the hydration of the lamellar phase at all freezing temperatures studied, and the size of the increase in hydration is comparable to that expected from their purely osmotic effect. Sucrose and trehalose increase the hydration of the lamellar phase, but, at concentrations of several molal, the increase is less than that which their purely osmotic effect would be expected to produce. A possible explanation is that very high volume fractions of sucrose and trehalose disrupt the water structure and thus reduce the repulsive hydration interaction between membranes. Because of their osmotic effect, all of the solutes studied reduced the intramembrane mechanical stresses produced in lamellar phases by freezing. Sucrose and trehalose at high concentrations produce a greater reduction than do the other solutes. PMID:9545055

  20. Dynamic fluid flow and chemical fluxes associated with a seafloor gas hydrate deposit on the northern Gulf of Mexico slope

    NASA Astrophysics Data System (ADS)

    Solomon, Evan A.; Kastner, Miriam; Jannasch, Hans; Robertson, Gretchen; Weinstein, Yishai

    2008-06-01

    Gas hydrates outcrop on the seafloor at the Bush Hill hydrocarbon seep site in the northern Gulf of Mexico. Four newly designed fluid flux meters/chemical samplers, called the MOSQUITO, were deployed for 430 days at Bush Hill to determine how dynamic subsurface fluid flow influences gas hydrate stability and to quantify the associated methane fluxes into the ocean. Three of the flux meters were deployed adjacent to an outcropping gas hydrate mound, while the fourth monitored background conditions. The flux meter measurements reveal that the subsurface hydrology in the vicinity of the mound is complex and variable with frequent changes from downward to upward flow ranging from - 161 to 273 cm/yr, and with temporal variations in the horizontal component of flow. The continuous record of fluid chemistry indicates that gas hydrate actively formed in the sediments. We propose that long periods of downward flow of seawater adjacent to gas vents (up to 4 months) are driven by local sub-pressure resulting from gas ebullition through faults and fractures due to overpressure at depth. High frequency variations in flow rates (days to weeks) are likely due to temporal changes in sediment permeability and the 3-D fluid flow field as a result of active gas hydrate and authigenic carbonate precipitation, as well as the presence of free gas. Gas hydrate formation occurred as a result of long-term emanation of CH4 at focused gas vents followed by a more diffuse intergranular methane flux. The estimated CH4 flux to the water column from focused gas vents across the Bush Hill seep is ~ 5•106 mol/yr. This significant flux suggests that Bush Hill and similar hydrocarbon seeps in the northwestern Gulf of Mexico may be important natural sources of methane to the ocean and possibly the atmosphere.

  1. Pore-Scale Controls on Permeability, Fluid Flow, and Methane Hydrate Distribution in Fine-Grained Sediments

    NASA Astrophysics Data System (ADS)

    Daigle, Hugh Callahan

    2011-12-01

    Permeability in fine-grained sediments is governed by the surface area exposed to fluid flow and tortuosity of the pore network. I modify an existing technique of computing permeability from nuclear magnetic resonance (NMR) data to extend its applicability beyond reservoir-quality rocks to the fine-grained sediments that comprise the majority of the sedimentary column. This modification involves correcting the NMR data to account for the large surface areas and disparate mineralogies typically exhibited by fine-grained sediments. Through measurements on resedimented samples composed of controlled mineralogies, I show that this modified NMR permeability algorithm accurately predicts permeability over 5 orders of magnitude. This work highlights the importance of pore system surface area and geometry in determining transport properties of porous media. I use these insights to probe the pore-scale controls on methane hydrate distribution and hydraulic fracturing behavior, both of which are controlled by flux and permeability. To do this I employ coupled poromechanical models of hydrate formation in marine sediments. Fracture-hosted methane hydrate deposits are found at many sites worldwide, and I investigate whether pore occlusion and permeability reduction due to hydrate formation can drive port fluid pressures to the point at which the sediments fracture hydraulically. I find that hydraulic fractures may form in systems with high flux and/or low permeability; that low-permeability layers can influence the location of fracture initiation if they are thicker than a critical value that is a function of flux and layer permeability; that capillary-driven depression of the triple point of methane in fine-gained sediments causes hydrate to form preferentially in coarse-grained layers; that the relative fluxes of gas and water in multiphase systems controls hydrate distribution and the location of fracture initiation; and that methane hydrate systems are dynamic systems in

  2. Synthesis of complex oxide phases by using of low hydrated niobium and tantalum hydroxides

    SciTech Connect

    Drobot, D.; Nikishina, E.; Lebedeva, E.; Novoselov, A. Yoshikawa, A.

    2008-05-06

    Promising method of complex oxide phases synthesis by using low hydrated hydroxides of niobium and tantalum (Nb,Ta)O{sub x}(OH){sub 5-x}.mH{sub 2}O precursors of high reactivity and sorption ability was developed. Precursors, intermediate products of synthesis and target materials were studied by thermogravimetric analysis, infrared spectroscopy and X-ray diffraction. Sorption process of magnesium and lead cations by niobium low hydrated hydroxide from acetic solution allows obtaining PbMg{sub 1/3}Nb{sub 2/3}O{sub 3} complex perovskite without any secondary phase.

  3. Hydration profile and influence of beverage contents on fluid intake by women during outdoor recreational walking.

    PubMed

    O'Neal, E K; Poulos, S P; Bishop, P A

    2012-12-01

    This study examined hydration status, sweat losses, and the effects of flavoring and electrolytes on fluid intake for women (n = 27, age = 24 ± 4 years) walking at a self-selected pace for ~1 h on a 1 km outdoor path during summer mornings or evenings. Over five consecutive days, participants consumed ad libitum one non-caloric beverage containing: (1) water (W), (2) acidified water (AW), (3) acidified water with electrolytes (AWE), (4) acidified water with flavor (AWF), and (5) acidified water with flavor and electrolytes (AWFE) in a counter-balanced order during walks and a 1-h recovery period. Walk Wet bulb globe temperature (26.2 ± 1.8 °C) and pace (6.0 ± 0.5 km/h) did not differ among beverages (P > 0.05). Thirty-four percent of pre-walk urine specific gravity samples exceeded 1.020. Flavoring (AWF 700 ± 393 mL; AWFE 719 ± 405 mL) did not result in greater consumption (P > 0.05) over W (560 ± 315 mL), with all three beverages exceeding grand mean sweat losses (528 ± 208 mL). Addition of electrolytes did not influence (P > 0.05) the intake between AW versus AWE or AWF versus AWFE. The results of this study indicate that the majority of women will consume fluids in excess of their sweat losses within 1 h post-walk. Over half of consumption took place during walks, highlighting the importance of fluid availability during exercise. Great among-subjects variability in sweat losses and fluid intake support the need for promoting individualized hydration strategies based on the changes in body mass for athletic populations.

  4. Ammonia clathrate hydrates as new solid phases for Titan, Enceladus, and other planetary systems.

    PubMed

    Shin, Kyuchul; Kumar, Rajnish; Udachin, Konstantin A; Alavi, Saman; Ripmeester, John A

    2012-09-11

    There is interest in the role of ammonia on Saturn's moons Titan and Enceladus as the presence of water, methane, and ammonia under temperature and pressure conditions of the surface and interior make these moons rich environments for the study of phases formed by these materials. Ammonia is known to form solid hemi-, mono-, and dihydrate crystal phases under conditions consistent with the surface of Titan and Enceladus, but has also been assigned a role as water-ice antifreeze and methane hydrate inhibitor which is thought to contribute to the outgassing of methane clathrate hydrates into these moons' atmospheres. Here we show, through direct synthesis from solution and vapor deposition experiments under conditions consistent with extraterrestrial planetary atmospheres, that ammonia forms clathrate hydrates and participates synergistically in clathrate hydrate formation in the presence of methane gas at low temperatures. The binary structure II tetrahydrofuran + ammonia, structure I ammonia, and binary structure I ammonia + methane clathrate hydrate phases synthesized have been characterized by X-ray diffraction, molecular dynamics simulation, and Raman spectroscopy methods.

  5. Ammonia clathrate hydrates as new solid phases for Titan, Enceladus, and other planetary systems

    PubMed Central

    Shin, Kyuchul; Kumar, Rajnish; Udachin, Konstantin A.; Alavi, Saman; Ripmeester, John A.

    2012-01-01

    There is interest in the role of ammonia on Saturn’s moons Titan and Enceladus as the presence of water, methane, and ammonia under temperature and pressure conditions of the surface and interior make these moons rich environments for the study of phases formed by these materials. Ammonia is known to form solid hemi-, mono-, and dihydrate crystal phases under conditions consistent with the surface of Titan and Enceladus, but has also been assigned a role as water-ice antifreeze and methane hydrate inhibitor which is thought to contribute to the outgassing of methane clathrate hydrates into these moons’ atmospheres. Here we show, through direct synthesis from solution and vapor deposition experiments under conditions consistent with extraterrestrial planetary atmospheres, that ammonia forms clathrate hydrates and participates synergistically in clathrate hydrate formation in the presence of methane gas at low temperatures. The binary structure II tetrahydrofuran + ammonia, structure I ammonia, and binary structure I ammonia + methane clathrate hydrate phases synthesized have been characterized by X-ray diffraction, molecular dynamics simulation, and Raman spectroscopy methods. PMID:22908239

  6. Molecular Modeling of Solid Fluid Phase Behavior

    SciTech Connect

    Peter A. Monson

    2007-12-20

    This report gives a summary of the achievements under DOE contract No. DOE/ER/14150 during the period September 1, 1990 to December 31, 2007. This project was concerned with the molecular modeling of solid-fluid equilibrium. The focus was on understanding how solid-fluid and solid-solid phase behavior are related to molecular structure, and the research program made a seminal contribution in this area. The project led to 34 journal articles, including a comprehensive review article published in Advances in Chemical Physics. The DOE funding supported the work of 5 Ph.D. students, 2 M.S. students and 5 postdoctoral researchers.

  7. Ad libitum vs. restricted fluid replacement on hydration and performance of military tasks.

    PubMed

    Nolte, Heinrich W; Noakes, Timothy D; Nolte, Kim

    2013-02-01

    The primary objective was to evaluate the effect of ad libitum vs. restricted fluid replacement protocol on hydration markers and performance in selected military tasks. The secondary objective was to determine if 300 ml x h(-1) could be considered a safe minimum fluid intake under the experimental conditions. Data were collected simulating a route march over 16 km. There were 57 subjects who participated in the study. The mean pre-exercise body mass of the ad libitum group was 70.4 +/- 13.3 (SD) kg compared to 69.3 +/- 8.9 kg in the restricted group. The mean total fluid intake of the ad libitum group was 2.1 +/- 0.9 L compared to 1.2 +/- 0.0 L in the restricted group. The ad libitum and restricted intake groups, respectively, lost a mean of 1.05 kg +/- 0.77 (1.5%) and 1.34 kg +/- 0.37 (1.9%). Calculated sweat rate was 608 +/- 93 ml x h(-1) compared to 762 +/- 162 ml x h(-1) in the ad libitum group. There were no significant differences for either urine specific gravity (USG) or urine osmolality (UOsm) before or after the exercise. It is not clear whether fluid intake and calculated sweat rates are causally related or explained by their codependence on a third variable; for example, the exercising metabolic rate. Thus, 300 ml x h(-1) intake could be considered a current safe minimum water intake for soldiers of similar mass under similar experimental conditions, namely similar exercise durations at equivalent exercise intensities in a moderate, dry climate.

  8. Hydration energies of deprotonated amino acids from gas phase equilibria measurements.

    PubMed

    Wincel, Henryk

    2008-08-01

    Singly hydrated clusters of deprotonated amino acids were studied using an electrospray high-pressure mass spectrometer equipped with a pulsed ion-beam reaction chamber. Thermochemical data, DeltaH(o), DeltaS(o), and DeltaG(o), for the hydration reaction [AA - H](-) + H(2)O = [AA - H](-).(H(2)O) were obtained from gas-phase equilibria determinations for AA = Gly, Ala, Val, Pro, Phe, Lys, Met, Trp, Gln, Arg, and Asp. The hydration free-energy changes are found to depend significantly on the side-chain substituents. The water binding energy in [AA - H](-).(H(2)O) increases with the gas-phase acidity of AA. The anionic hydrogen bond strengths in [AA - H](-).(H(2)O) are compared with those of the cationic bonds in the corresponding AAH(+).(H(2)O) systems.

  9. Fluid losses and hydration status of industrial workers under thermal stress working extended shifts.

    PubMed

    Brake, D J; Bates, G P

    2003-02-01

    To assess whether workers under significant thermal stress necessarily dehydrated during their exposure and whether "involuntary dehydration" was inevitable, as supported by ISO 9866 and other authorities. Other objectives were to quantify sweat rates against recommended occupational limits, to develop a dehydration protocol to assist with managing heat exposures, and to understand the role of meal breaks on extended shifts in terms of fluid replacement. A field investigation to examine the fluid consumption, sweat rates, and changes in the hydration state of industrial workers on extended (10, 12, and 12.5 hour) shifts under significant levels of thermal stress (wet bulb globe temperature (WBGT) >28 degrees C) was conducted on 39 male underground miners. Urinary specific gravity was measured before, during, and at the completion of the working shift. Environmental conditions were measured hourly during the shift. Fluid replacement was measured during the working periods and during the meal breaks. Average environmental conditions were severe (WBGT 30.9 degrees C (SD 2.0 degrees C), range 25.7-35.2 degrees C). Fluid intake averaged 0.8 l/h during exposure (SD 0.3 l/h, range 0.3-1.5 l/h). Average urinary specific gravity at start, mid, and end of shift was 1.0251, 1.0248, and 1.0254 respectively; the differences between start and mid shift, mid and end shift, and start and end shift were not significant. However, a majority of workers were coming to work in a moderately hypohydrated state (average urinary specific gravity 1.024 (SD 0.0059)). A combined dehydration and heat illness protocol was developed. Urinary specific gravity limits of 1.022 for start of shift and 1.030 for end of shift were selected; workers exceeding these values were not allowed into the workplace (if the start of shift limit was exceeded) or were retested prior to their next working shift (if the end of shift limit was exceeded). A target of 1.015 as a euhydrated state for start of shift was

  10. Fluid losses and hydration status of industrial workers under thermal stress working extended shifts

    PubMed Central

    Brake, D; Bates, G

    2003-01-01

    Aims: To assess whether workers under significant thermal stress necessarily dehydrated during their exposure and whether "involuntary dehydration" was inevitable, as supported by ISO 9866 and other authorities. Other objectives were to quantify sweat rates against recommended occupational limits, to develop a dehydration protocol to assist with managing heat exposures, and to understand the role of meal breaks on extended shifts in terms of fluid replacement. Methods: A field investigation to examine the fluid consumption, sweat rates, and changes in the hydration state of industrial workers on extended (10, 12, and 12.5 hour) shifts under significant levels of thermal stress (wet bulb globe temperature (WBGT) >28°C) was conducted on 39 male underground miners. Urinary specific gravity was measured before, during, and at the completion of the working shift. Environmental conditions were measured hourly during the shift. Fluid replacement was measured during the working periods and during the meal breaks. Results: Average environmental conditions were severe (WBGT 30.9°C (SD 2.0°C), range 25.7–35.2°C). Fluid intake averaged 0.8 l/h during exposure (SD 0.3 l/h, range 0.3–1.5 l/h). Average urinary specific gravity at start, mid, and end of shift was 1.0251, 1.0248, and 1.0254 respectively; the differences between start and mid shift, mid and end shift, and start and end shift were not significant. However, a majority of workers were coming to work in a moderately hypohydrated state (average urinary specific gravity 1.024 (SD 0.0059)). A combined dehydration and heat illness protocol was developed. Urinary specific gravity limits of 1.022 for start of shift and 1.030 for end of shift were selected; workers exceeding these values were not allowed into the workplace (if the start of shift limit was exceeded) or were retested prior to their next working shift (if the end of shift limit was exceeded). A target of 1.015 as a euhydrated state for start of shift was

  11. The void in using urine concentration to assess population fluid intake adequacy or hydration status.

    PubMed

    Cheuvront, Samuel N; Muñoz, Colleen X; Kenefick, Robert W

    2016-09-01

    Urine concentration can be used to assess fluid intake adequacy or to diagnose dehydration. However, too often urine concentration is used inappropriately to draw dubious conclusions that could have harmful health and economic consequences. Inappropriate uses of urine concentration relate primarily to convenience sampling (timing) and problems related to convenience sampling (misapplication of thresholds), but a conceptual problem also exists with using urine concentration in isolation. The purpose of this Perspective article is to briefly explain the problematic nature of current practices and to offer a possible solution to improve practice with minimal added complication. When urine is used exclusively to assess fluid intake adequacy and hydration status in adults, we propose that only when urine concentration is high (>850 mmol/kg) and urine excretion rate is low (<850 mL/24 h) should suspicion of inadequate drinking or impending dehydration be considered. Prospective tests of the 850 × 850 thresholds will provide supporting evidence and/or help refine the best thresholds for men and women, young and old. © 2016 American Society for Nutrition.

  12. Pathways through equilibrated states with coexisting phases for gas hydrate formation

    SciTech Connect

    Malolepsza, Edyta; Keyes, Tom

    2015-12-01

    Under ambient conditions, water freezes to either hexagonal ice or a hexagonal/cubic composite ice. The presence of hydrophobic guest molecules introduces a competing pathway: gas hydrate formation, with the guests in clathrate cages. Here, the pathways of the phase transitions are sought as sequences of states with coexisting phases, using a generalized replica exchange algorithm designed to sample them in equilibrium, avoiding nonequilibrium processes. For a dilute solution of methane in water under 200 atm, initializing the simulation with the full set of replicas leads to methane trapped in hexagonal/cubic ice, while gradually adding replicas with decreasing enthalpy produces the initial steps of hydrate growth. Once a small amount of hydrate is formed, water rearranges to form empty cages, eventually transforming the remainder of the system to metastable β ice, a scaffolding for hydrates. It is suggested that configurations with empty cages are reaction intermediates in hydrate formation when more guest molecules are available. Furthermore, free energy profiles show that methane acts as a catalyst reducing the barrier for β ice versus hexagonal/cubic ice formation.

  13. Pathways through equilibrated states with coexisting phases for gas hydrate formation

    DOE PAGES

    Malolepsza, Edyta; Keyes, Tom

    2015-12-01

    Under ambient conditions, water freezes to either hexagonal ice or a hexagonal/cubic composite ice. The presence of hydrophobic guest molecules introduces a competing pathway: gas hydrate formation, with the guests in clathrate cages. Here, the pathways of the phase transitions are sought as sequences of states with coexisting phases, using a generalized replica exchange algorithm designed to sample them in equilibrium, avoiding nonequilibrium processes. For a dilute solution of methane in water under 200 atm, initializing the simulation with the full set of replicas leads to methane trapped in hexagonal/cubic ice, while gradually adding replicas with decreasing enthalpy produces themore » initial steps of hydrate growth. Once a small amount of hydrate is formed, water rearranges to form empty cages, eventually transforming the remainder of the system to metastable β ice, a scaffolding for hydrates. It is suggested that configurations with empty cages are reaction intermediates in hydrate formation when more guest molecules are available. Furthermore, free energy profiles show that methane acts as a catalyst reducing the barrier for β ice versus hexagonal/cubic ice formation.« less

  14. Fundamentals and use of potassium/polymer drilling fluids to minimize drilling and completion problems associated with hydratable clays

    SciTech Connect

    Steiger, R.P.

    1982-08-01

    Water sensitive shales cause expensive problems and may defeat the purpose of drilling a well. Clay hydration can produce drilling problems such as wellbore instability, stuck pipe, bottomhole fill, torque, drag, and solids buildup in the drilling fluid. It also can produce completion problems such as formation damage in shaly sands, logging and coring failures, hole washout, and poor cement jobs. Proper application of an inhibitive drilling fluid will reduce drilling costs, rig time, formation damage, and completion costs. The potassium ion, when used at the proper concentration, is a powerful shale inhibitor. It interacts with clays, such as illite or montmorillonite, lowers the hydration energy, and reduces swelling. Relatively simple potassium/polymer drilling fluid systems, which provide excellent rheological and filtration properties, have been formulated at moderate costs. The systems, when properly used, are quite stable and easily maintained.

  15. Fluid management in the intensive care unit: bioelectrical impedance vector analysis as a tool to assess hydration status and optimal fluid balance in critically ill patients.

    PubMed

    Basso, Flavio; Berdin, Giovanna; Virzì, Grazia Maria; Mason, Giacomo; Piccinni, Pasquale; Day, Sonya; Cruz, Dinna N; Wjewodzka, Marzena; Giuliani, Anna; Brendolan, Alessandra; Ronco, Claudio

    2013-01-01

    Fluid balance disorders are a relevant risk factor for morbidity and mortality in critically ill patients. Volume assessment in the intensive care unit (ICU) is thus of great importance, but there are currently few methods to obtain an accurate and timely assessment of hydration status. Our aim was to evaluate the hydration status of ICU patients via bioelectric impedance vector analysis (BIVA) and to investigate the relationship between hydration and mortality. We evaluated 280 BIVA measurements of 64 patients performed daily in the 5 days following their ICU admission. The observation period ranged from a minimum of 72 h up to a maximum of 120 h. We observed the evolution of the hydration status during the ICU stay in this population, and analyzed the relationship between mean and maximum hydration reached and mortality--both in the ICU and at 60 days--using logistic regression. A state of overhydration was observed in the majority of patients (70%) on admission, which persisted during the ICU stay. Patients who required continuous renal replacement therapy (CRRT) were more likely to be overhydrated starting from the 2nd day of observation. Logistic regression showed a strong and significant correlation between mean/maximum hydration reached and mortality, both independently and correcting for severity of prognosis. Fluid overload measured by BIVA is a frequent condition in critically ill patients--whether or not they undergo CRRT--and a significant predictor of mortality. Hence, hydration status should be considered as an additional prognosticator in the clinical management of the critically ill patient. (i) On the day of ICU admittance, patients showed a marked tendency to overhydration (>70% of total). This tendency was more pronounced in patients on CRRT. (ii) Hyperhydration persisted during the ICU stay. Patients who underwent CRRT showed significantly higher hyperhydration from the 2nd day of hospitalization. (iii) Nonsurvivors showed worse hyperhydration

  16. Methane hydrate formation in partially water-saturated Ottawa sand

    USGS Publications Warehouse

    Waite, W.F.; Winters, W.J.; Mason, D.H.

    2004-01-01

    Bulk properties of gas hydrate-bearing sediment strongly depend on whether hydrate forms primarily in the pore fluid, becomes a load-bearing member of the sediment matrix, or cements sediment grains. Our compressional wave speed measurements through partially water-saturated, methane hydrate-bearing Ottawa sands suggest hydrate surrounds and cements sediment grains. The three Ottawa sand packs tested in the Gas Hydrate And Sediment Test Laboratory Instrument (GHASTLI) contain 38(1)% porosity, initially with distilled water saturating 58, 31, and 16% of that pore space, respectively. From the volume of methane gas produced during hydrate dissociation, we calculated the hydrate concentration in the pore space to be 70, 37, and 20% respectively. Based on these hydrate concentrations and our measured compressional wave speeds, we used a rock physics model to differentiate between potential pore-space hydrate distributions. Model results suggest methane hydrate cements unconsolidated sediment when forming in systems containing an abundant gas phase.

  17. Methane hydrate formation in partially water-saturated Ottawa sand

    USGS Publications Warehouse

    Waite, W.F.; Winters, W.J.; Mason, D.H.

    2004-01-01

    Bulk properties of gas hydrate-bearing sediment strongly depend on whether hydrate forms primarily in the pore fluid, becomes a load-bearing member of the sediment matrix, or cements sediment grains. Our compressional wave speed measurements through partially water-saturated, methane hydrate-bearing Ottawa sands suggest hydrate surrounds and cements sediment grains. The three Ottawa sand packs tested in the Gas Hydrate And Sediment Test Laboratory Instrument (GHASTLI) contain 38(1)% porosity, initially with distilled water saturating 58, 31, and 16% of that pore space, respectively. From the volume of methane gas produced during hydrate dissociation, we calculated the hydrate concentration in the pore space to be 70, 37, and 20% respectively. Based on these hydrate concentrations and our measured compressional wave speeds, we used a rock physics model to differentiate between potential pore-space hydrate distributions. Model results suggest methane hydrate cements unconsolidated sediment when forming in systems containing an abundant gas phase.

  18. Determination of Methane Hydrate Solubility in the Absence of Vapor Phase by in-situ Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Lu, W.; Chou, I.; Burruss, R.

    2006-12-01

    Prediction of the occurrence, distribution, and evolution of methane hydrate in porous marine sediments requires information on solubilities of methane hydrate in water. Solubilities of methane hydrate in the presence of a vapor phase are well established, but those in the absence of a vapor phase are not well defined with differences up to 30%. We have measured methane concentrations in pure water in equilibrium with sI methane hydrate, in the absence of vapor phase, by in-situ Raman spectroscopy at temperatures (T) from 2 to 20 (± 0.3) °C and pressures (P) at 10, 20, 30, and 40 (± 0.4%) MPa. Methane hydrate was synthesized in a high-pressure capillary optical cell (Chou et al., 2005; Advances in High-Pressure Technology for Geophysical Applications. Ed. J. Chen et al., Chapter 24, p. 475, Elsevier). A small quantity of methane was first loaded in an evacuated cell and then pressurized by water. Hydrate crystals were formed near the liquid-vapor interface near the enclosed end of the optical tube at room T, and were then placed at the center of a USGS-type heating-cooling stage. By adjusting sample P and T, the crystals went through dissolution-formation cycles three to four times in three days until the vapor phase was completely consumed and several crystals (typically 40 x 40 x 10 μm) were formed. These crystals were located at about 200 μm from the enclosed end and were about 20 to 40 μm from each other. Raman spectra were collected for the liquid phase adjacent to hydrate crystals near the enclosed end of the tube. A volumetric decrease in crystal size was observed away from the sampling spot; however, no such volumetric decrease was observed in or near the sampling spot. Therefore, equilibrium was likely established locally within the sampling area. The results are represented by the following linear isobaric equations: 10 MPa: ln [X(CH4)] = 0.06175 T - 6.79507; r2 = 0.9991 (n = 6) 20 MPa: ln [X(CH4)] = 0.06170 T - 6.82816; r2 = 0.9985 (n = 6) 30 MPa

  19. Spinodal phase decomposition with dissipative fluid dynamics

    SciTech Connect

    Randrup, J.

    2012-06-15

    The spinodal amplification of density fluctuations is treated perturbatively within dissipative fluid dynamics including not only shear and bulk viscosity but also heat conduction, as well as a gradient term in the local pressure. The degree of spinodal amplification is calculated along specific dynamical phase trajectories and the results suggest that the effect can be greatly enhanced by tuning the collision energy so that maximum compression occurs inside the region of spinodal instability.

  20. Water cavities of sH clathrate hydrate stabilized by molecular hydrogen: phase equilibrium measurements.

    PubMed

    Duarte, Ana Rita C; Shariati, Alireza; Rovetto, Laura J; Peters, Cor J

    2008-02-21

    In this experimental phase equilibrium study, we show for the first time that it is possible to stabilize structure sH of hydrogen clathrate hydrate with the help of some selected promoters. It was established that the formation pressures of these systems are significantly higher than that of structure sII of hydrogen clathrate hydrate when tetrahydrofuran (THF) is used as a promoter. Although no experimental evidence is available yet, it is estimated that the hydrogen storage capacity of structure sH can be as high as 1.4 wt % of H2, which is about 40% higher compared to the hydrogen storage capacity in structure sII.

  1. Communication: Protein dynamical transition vs. liquid-liquid phase transition in protein hydration water

    NASA Astrophysics Data System (ADS)

    Schirò, Giorgio; Fomina, Margarita; Cupane, Antonio

    2013-09-01

    In this work, we compare experimental data on myoglobin hydrated powders from elastic neutron scattering, broadband dielectric spectroscopy, and differential scanning calorimetry. Our aim is to obtain new insights on the connection between the protein dynamical transition, a fundamental phenomenon observed in proteins whose physical origin is highly debated, and the liquid-liquid phase transition (LLPT) possibly occurring in protein hydration water and related to the existence of a low temperature critical point in supercooled water. Our results provide a consistent thermodynamic/dynamic description which gives experimental support to the LLPT hypothesis and further reveals how fundamental properties of water and proteins are tightly related.

  2. Phase behavior of an amphiphilic fluid

    NASA Astrophysics Data System (ADS)

    Schoen, Martin; Giura, Stefano; Klapp, Sabine H. L.

    2014-01-01

    We invoke mean-field density functional theory (DFT) to investigate the phase behavior of an amphiphilic fluid composed of a hard-sphere core plus a superimposed anisometric Lennard-Jones perturbation. The orientation dependence of the interactions consists of a contribution analogous to the interaction potential between a pair of "spins" in the classical, three-dimensional Heisenberg fluid and another one reminiscent of the interaction between (electric or magnetic) point dipoles. At fixed orientation both contributions are short-range in nature decaying as r-6 (r being the separation between the centers of mass of a pair of amphiphiles). Based upon two mean-field-like approximations for the pair correlation function that differ in the degree of sophistication we derive expressions for the phase boundaries between various isotropic and polar phases that we solve numerically by the Newton-Raphson method. For sufficiently strong coupling between the Heisenberg "spins" both mean-field approximations generate three topologically different and generic types of phase diagrams that are observed in agreement with earlier work [see, for example, Tavares et al., Phys. Rev. E 52, 1915 (1995), 10.1103/PhysRevE.52.1915]. Whereas the dipolar contribution alone is incapable of stabilizing polar phases on account of its short-range nature it is nevertheless important for details of the phase diagram such as location of the gas-isotropic liquid critical point, triple, and tricritical points. By tuning the dipolar coupling constant suitably one may, in fact, switch between topologically different phase diagrams. Employing also Monte Carlo simulations in the isothermal-isobaric ensemble the general topology of the DFT phase diagrams is confirmed.

  3. Phase behavior of an amphiphilic fluid.

    PubMed

    Schoen, Martin; Giura, Stefano; Klapp, Sabine H L

    2014-01-01

    We invoke mean-field density functional theory (DFT) to investigate the phase behavior of an amphiphilic fluid composed of a hard-sphere core plus a superimposed anisometric Lennard-Jones perturbation. The orientation dependence of the interactions consists of a contribution analogous to the interaction potential between a pair of "spins" in the classical, three-dimensional Heisenberg fluid and another one reminiscent of the interaction between (electric or magnetic) point dipoles. At fixed orientation both contributions are short-range in nature decaying as r-6 (r being the separation between the centers of mass of a pair of amphiphiles). Based upon two mean-field-like approximations for the pair correlation function that differ in the degree of sophistication we derive expressions for the phase boundaries between various isotropic and polar phases that we solve numerically by the Newton-Raphson method. For sufficiently strong coupling between the Heisenberg "spins" both mean-field approximations generate three topologically different and generic types of phase diagrams that are observed in agreement with earlier work [see, for example, Tavares et al., Phys. Rev. E 52, 1915 (1995)]. Whereas the dipolar contribution alone is incapable of stabilizing polar phases on account of its short-range nature it is nevertheless important for details of the phase diagram such as location of the gas-isotropic liquid critical point, triple, and tricritical points. By tuning the dipolar coupling constant suitably one may, in fact, switch between topologically different phase diagrams. Employing also Monte Carlo simulations in the isothermal-isobaric ensemble the general topology of the DFT phase diagrams is confirmed.

  4. Calcium silicate hydrates: Solid and liquid phase composition

    SciTech Connect

    Lothenbach, Barbara; Nonat, André

    2015-12-15

    This paper presents a review on the relationship between the composition, the structure and the solution in which calcium silicate hydrate (C–S–H) is equilibrated. The silica chain length in C–S–H increases with the silicon concentration and the calcium content in the interlayer space with the calcium concentrations. Sodium and potassium are taken up in the interlayer space, preferentially at low calcium concentrations and thus by low Ca/Si C–S–H. Aluminium uptake in C–S–H increases strongly at higher aluminium concentrations in the solution. At low Ca/Si, aluminium substitutes silica in the bridging position, at Ca/Si > 1 aluminium is bound in TAH. Recently developed thermodynamic models are closely related to the structure of C–S–H and tobermorite, and able to model not only the solubility and the chemical composition of the C–S–H, but also to predict the mean silica chain length and the uptake of aluminium.

  5. Inhibition of hyaluronan synthesis in rats reduces renal ability to excrete fluid and electrolytes during acute hydration

    PubMed Central

    Stridh, Sara; Palm, Fredrik

    2013-01-01

    Background. Hyaluronan (HA) is the dominant glycosaminoglycan in the renomedullary interstitium. Renomedullary HA has been implicated in tubular fluid handling due to its water-attracting properties and the changes occurring in parallel to acute variations in the body hydration status. Methods. HA production was inhibited by 4-methylumbelliferone (4-MU in drinking water for 5 days, 1.45 ± 0.07 g/day/kg body weight) in rats prior to hydration. Results. Following hypotonic hydration for 135 min in control animals, diuresis and osmotic excretion increased while sodium excretion and glomerular filtration rate (GFR) remained unchanged. The medullary and cortical HA contents were 7.85 ± 1.29 ng/mg protein and 0.08 ± 0.01 ng/mg protein, respectively. Medullary HA content after 4-MU was 38% of that in controls (2.98 ± 0.95 ng/g protein, p < 0.05), while the low cortical levels were unaffected. Baseline urine flow was not different from that in controls. The diuretic response to hydration was, however, only 51% of that in controls (157 ± 36 versus 306 ± 54 µl/g kidney weight/135 min, p < 0.05) and the osmolar excretion only 47% of that in controls (174 ± 47 versus 374 ± 41 µOsm/g kidney weight/135 min, p < 0.05). Sodium excretion, GFR, and arterial blood pressure were similar to that in control rats and unaltered during hydration. Conclusions. Reduction of renomedullary interstitial HA using 4-MU reduces the ability of the kidney to respond appropriately upon acute hydration. The results strengthen the concept of renomedullary HA as a modulator of tubular fluid handling by changing the physicochemical properties of the interstitial space. PMID:24102146

  6. Sorption Mechanisms of Eu(3+) on CSH Phases of Hydrated Cements.

    PubMed

    Pointeau, Ingmar; Piriou, Bernard; Fedoroff, Michel; Barthes, Marie-Genevieve; Marmier, Nicolas; Fromage, Francine

    2001-04-15

    The sorption mechanisms of Eu(3+) on calcium silicate hydrate (CSH) phases of hydrated cement were investigated as a tool for the prediction of the behavior of trivalent radionuclides with aged/degraded cements in radioactive waste repositories. Four techniques were used: site-selective and time-resolved luminescence spectroscopy, XPS, high-resolution SEM coupled with EDX, and XRD. Results showed that europium is not precipitated in the solution despite its low solubility limit. It is strongly retained on CSH, resulting in a more than 99.8% sorption rate. Two main sorption sites were characterized by luminescence spectroscopy. One site, with a long lifetime, can be interpreted as Eu included in the framework of CSH. Another one, with a shorter lifetime, can be interpreted as a site with a hydrated environment that is high but is less than that of europium hydroxide. It corresponds to superficial complexation or precipitation. Copyright 2001 Academic Press.

  7. Ecological and climatic consequences of phase instability of gas hydrates on the ocean bed

    NASA Astrophysics Data System (ADS)

    Balanyuk, I.; Dmitrievsky, A.; Akivis, T.; Chaikina, O.

    2009-04-01

    energy and gas that leads to explosion. Methane is the main natural source for power engineering specialists. It is transported by pipelines, and gas hydrate is dangerous in this case too. It can block the gas pipeline system forming the so-called "trombus" of "thermal ice". After that the pipes have to be opened. The mess of this strange ice discovered melts immediately releasing methane and water vapor. The trombus formation can be prevented by the temperature increase or the pressure decrease. Both methods are very uncomfortable under the conditions the pipelines work. The better method is thorough drying up of the gas because gas hydrate obviously cannot be formed without water. Gas hydrates attract attention not only as a fuel and chemical stuff but in relation to a serious anxiety of strong ecological and climatic problems that can occur as a result of methane release to the atmosphere due to both gas hydrate deposits development and minor changes in thermodynamic conditions in the vicinity of a threshold of gas hydrate phase stability. One of the most probable causes is the global warming of the Earth due to the hothouse effect because the specific absorption of the Earth heat radiation by methane (radiation effectivity) is 21 times higher than its absorption by carbonic gas. Analysis of the air trapped by polar ice show that contemporary increase of methane concentration in the atmosphere is unexampled for the last 160 thousands of years. The sources of this increase are not clear. Observer and latent methane bursts during natural gas hydrates decomposition can be considered as a probable source. Amount of methane hided in natural gas hydrates is 3000 times higher its amount in the atmosphere. Release of this hothouse potential would have terrible consequences for the humanity. The warming can cause further gas hydrates decomposition and released methane will cause the following warming. Thus, self-accelerating process can start. The most vulnerable for the

  8. A New Approach to Modeling Densities and Equilibria of Ice and Gas Hydrate Phases

    NASA Astrophysics Data System (ADS)

    Zyvoloski, G.; Lucia, A.; Lewis, K. C.

    2011-12-01

    The Gibbs-Helmholtz Constrained (GHC) equation is a new cubic equation of state that was recently derived by Lucia (2010) and Lucia et al. (2011) by constraining the energy parameter in the Soave form of the Redlich-Kwong equation to satisfy the Gibbs-Helmholtz equation. The key attributes of the GHC equation are: 1) It is a multi-scale equation because it uses the internal energy of departure, UD, as a natural bridge between the molecular and bulk phase length scales. 2) It does not require acentric factors, volume translation, regression of parameters to experimental data, binary (kij) interaction parameters, or other forms of empirical correlations. 3) It is a predictive equation of state because it uses a database of values of UD determined from NTP Monte Carlo simulations. 4) It can readily account for differences in molecular size and shape. 5) It has been successfully applied to non-electrolyte mixtures as well as weak and strong aqueous electrolyte mixtures over wide ranges of temperature, pressure and composition to predict liquid density and phase equilibrium with up to four phases. 6) It has been extensively validated with experimental data. 7) The AAD% error between predicted and experimental liquid density is 1% while the AAD% error in phase equilibrium predictions is 2.5%. 8) It has been used successfully within the subsurface flow simulation program FEHM. In this work we describe recent extensions of the multi-scale predictive GHC equation to modeling the phase densities and equilibrium behavior of hexagonal ice and gas hydrates. In particular, we show that radial distribution functions, which can be determined by NTP Monte Carlo simulations, can be used to establish correct standard state fugacities of 1h ice and gas hydrates. From this, it is straightforward to determine both the phase density of ice or gas hydrates as well as any equilibrium involving ice and/or hydrate phases. A number of numerical results for mixtures of N2, O2, CH4, CO2, water

  9. Reentrant phase diagram of network fluids.

    PubMed

    Russo, J; Tavares, J M; Teixeira, P I C; Telo da Gama, M M; Sciortino, F

    2011-02-25

    We introduce a microscopic model for particles with dissimilar patches which displays an unconventional "pinched" phase diagram, similar to the one predicted by Tlusty and Safran in the context of dipolar fluids [Science 290, 1328 (2000)]. The model-based on two types of patch interactions, which account, respectively, for chaining and branching of the self-assembled networks-is studied both numerically via Monte Carlo simulations and theoretically via first-order perturbation theory. The dense phase is rich in junctions, while the less-dense phase is rich in chain ends. The model provides a reference system for a deep understanding of the competition between condensation and self-assembly into equilibrium-polymer chains.

  10. Reentrant Phase Diagram of Network Fluids

    NASA Astrophysics Data System (ADS)

    Russo, J.; Tavares, J. M.; Teixeira, P. I. C.; Telo da Gama, M. M.; Sciortino, F.

    2011-02-01

    We introduce a microscopic model for particles with dissimilar patches which displays an unconventional “pinched” phase diagram, similar to the one predicted by Tlusty and Safran in the context of dipolar fluids [Science 290, 1328 (2000)SCIEAS0036-807510.1126/science.290.5495.1328]. The model—based on two types of patch interactions, which account, respectively, for chaining and branching of the self-assembled networks—is studied both numerically via Monte Carlo simulations and theoretically via first-order perturbation theory. The dense phase is rich in junctions, while the less-dense phase is rich in chain ends. The model provides a reference system for a deep understanding of the competition between condensation and self-assembly into equilibrium-polymer chains.

  11. Non-equilibrium Simulation of CO­2-hydrate Phase Transitions from Mixtures of CO2 and N2 Gases

    NASA Astrophysics Data System (ADS)

    Qorbani Nashaqi, K.

    2015-12-01

    Storage of CO2 in aquifers is one of several options for reducing the emissions of CO2 to the atmosphere. Generally this option requires sealing integrity through layers of clay or shale. Many reservoirs have regions of temperature and pressure inside hydrate formation conditions. Whether hydrate formation can provide long term extra sealing still remains unverified in view of all co-existing phases that affect hydrate stability. Yet another storage option for CO2 is in the form of hydrate through exchange of in situ CH4 hydrate. Injection of CO2 into hydrate filled sediments is challenging due to the partial filling of pores with hydrate which results in low porosity and low permeability. Formation of new hydrate from injected CO2 will enhance these problems, Mixing N2 gas with the CO2 will increase permeability and will reduce driving forces for formation of new hydrate from pore water and injection gas. Hydrate can generally not reach thermodynamic equilibrium due to Gibbs' phase rule and the combined first and second laws of thermodynamics. These thermodynamic constraints on distribution of masses over co-existing phases are dynamically coupled to local mass- and heat-transport. Reservoir simulations are one possible method for investigation of possible scenarios related to injection of CO2 with N2 into aquifers containing CH4 hydrate. In this work we have developed prevoiusly modified RetrasoCodeBrite (RCB) simulator to handle injection of CO2/N2 gas mixtures. Hydrate formation and dissociation were determined by investigating Gibbs free energy differences between hydrate and hydrate formers. Gibbs free energy differences were calculated from changes in chemical potentials, which were obtained using non-equilibrium thermodynamic approach. Further extension of RCB has been implemented in this work through adding on-the-fly thermodynamic calculations. Correspondingly, hydrate phase transitions are calculated directly inside the code as a result of super

  12. Diamond-anvil cell observations of a new methane hydrate phase in the 100-MPa pressure range

    USGS Publications Warehouse

    Chou, I.-Ming; Sharma, A.; Burruss, R.C.; Hemley, R.J.; Goncharov, A.F.; Stern, L.A.; Kirby, S.H.

    2001-01-01

    A new high-pressure phase of methane hydrate has been identified based on its high optical relief, distinct pressure-temperature phase relations, and Raman spectra. In-situ optical observations were made in a hydrothermal diamond-anvil cell at temperatures between -40?? and 60 ??C and at pressures up to 900 MPa. Two new invariant points were located at -8.7 ??C and 99 MPa for the assemblage consisting of the new phase, structure I methane hydrate, ice Ih, and water, and at 35.3 ??C and 137 MPa for the new phase-structure I methane hydrate-water-methane vapor. Existence of the new phase is critical for understanding the phase relations among the hydrates at low to moderate pressures, and may also have important implications for understanding the hydrogen bonding in H2O and the behavior of water in the planetary bodies, such as Europa, of the outer solar system.

  13. Stable isotopic (O, H) evidence for hydration of the central Colorado Plateau lithospheric mantle by slab-derived fluids

    NASA Astrophysics Data System (ADS)

    Marshall, E. W.; Barnes, J.; Lassiter, J. C.

    2013-12-01

    The Colorado Plateau is a tectonically stable, relatively undeformed Proterozoic lithospheric province in the North America Cordillera. Although the stability of the Colorado Plateau suggests that it is rheologically strong, evidence from xenoliths show that the lithospheric mantle is extensively hydrated (e.g., presence of hydrous minerals, 'high' water contents in nominally anhydrous minerals), and therefore weakened. In addition, LREE enrichments in clinopyroxene (cpx) imply that the lithospheric mantle has been metasomatized ([1],[2]). Here we analyze mineral separates from spinel and garnet peridotite xenoliths from the Navajo Volcanic Field (NVF), located in the center of the Plateau, for their oxygen and hydrogen isotope compositions. These compositions are compared to those of xenoliths at the margins of the Plateau: spinel peridotites from the Grand Canyon Volcanic Field (GCVF) in the west and Zuni-Bandera Volcanic Field (ZBVF) in the east. NVF xenoliths are significantly more hydrous than the xenoliths on the margins of the Colorado Plateau based on modal abundances of hydrous minerals and structural water in olivine (e.g. [3]). All hydrous phases have high δD values (antigorite = -71 to -46‰ (n = 6 xenoliths); chlorite = -49 to -31‰ (n=3); amphibole = -47‰ (n=1)) compared to normal mantle (~-80‰), suggesting the addition of a fluid that is enriched in D compared to typical mantle. δ18O values for the same hydrous minerals range from 6.0 to 6.6‰ (n=6). δ18O values of olivine from NVF spinel peridotites have a narrow range, 5.0 to 5.4‰ (n = 4), near mantle olivine values (~5.2‰). Olivines from spinel peridotites from the GCVF and ZBVF also have mantle-like δ18O values (5.1 to 5.2‰ (n=3) and 5.1 to 5.4‰ (n=7), respectively). However, olivines and orthopyroxenes (opx) from NVF garnet peridotites have a slightly larger range and some record 18O enrichment (olivine = 5.1 to 5.6‰ (n = 3); opx = 5.9‰ (n=1)). The high δ18O values of

  14. Stable Gas Hydrates Beneath a BSR: Implications for Resource Inventories and Shallow Hydrocarbon Fluid Flow

    NASA Astrophysics Data System (ADS)

    Paganoni, M.; Foschi, M.; Cartwright, J. A.; Van Rensbergen, P.; Shipp, R. C.

    2015-12-01

    Bottom simulating reflectors (BSRs) are the primary indicators of the presence of gas hydrate systems and are generally considered to approximate the base of the gas hydrate stability zone. Here we use a combination of well-log, pressure-core, geochemical and high-resolution 3D seismic data, acquired in deepwater NW Borneo, to report the presence of gas hydrates both above and below a BSR at the top of a thrust-related anticline. This complex gas hydrate system overlies a conventional hydrocarbon reservoir. Hydrates beneath the BSR are interpreted to have a thermogenic origin because they contain significant quantities of C2+ hydrocarbons. The base of the hydrate stability coincides at the top of the anticline with a sudden decrease in resistivity in four adjacent wells. Away from the anticline top, in an environment dominated by mass-transport deposits, geochemical data from cores indicate a significant reduction in C2+ hydrocarbons. This change in gas composition is thought to reflect variations in hydrocarbon migration effectiveness and mechanisms. We demonstrate that, where thermogenic gases are efficiently transported to shallow parts of basins, hydrate stability zones could be much thicker than suggested by the depths of BSRs. This means that the carbon stored in thermogenic hydrate systems may be underestimated.

  15. The Behavior of Hydrated Na-Mg Sulfate Phases Under Mars-Relevant Conditions

    NASA Astrophysics Data System (ADS)

    Leftwich, K.; Bish, D. L.

    2012-12-01

    An increasing inventory of hydrous evaporite and silicate minerals has been identified from orbital and lander data on Mars. Several hydrous sulfate minerals are thought to be present on Mars, based on spectral, chemical, and geomorphic observations (e.g., CRISM, OMEGA, and Mars Exploration Rover results). We are examining the behavior of hydrous minerals on Mars and their potential participation in the H2O cycle to augment and complement these data. With limited liquid water stability on the martian surface, hydration and dehydration of hydrous minerals with changes in temperature (T) and relative humidity (RH) during a Mars day can have a significant influence on the bioavailability of water and potentially on atmospheric H2O. This research focused on the Na2MgSO4nH2O system, predicted by King et al. (2004) to occur on Mars. Phases in this system were also predicted by Clark et al. (1981), based on the concentration of Mg on Mars' surface. They proposed that Mg would be more stable in the form of a double salt, as a result of solubilities in the MgSO4nH2O system. Our experiments included blödite, konyaite, a decahydrate, and potential new phases. Blödite (Na2MgSO44H2O) was analyzed by X-ray powder diffraction (XRD) under controlled RH-T conditions to investigate its behavior and to understand mineral reactions. Crystal structures and phase abundances were determined using Rietveld methods. When blödite was allowed to deliquesce (RH>80%) and then exposed to low temperatures (T<0°C), two different results were observed. One set of experiments produced a new, likely higher hydrate Na2MgSO4 phase. This new phase was first observed at -10°C (47-78% RH), it formed within minutes, and it persisted on decreasing T to at least -30°C. In an attempt to produce only this phase, a second set of experiments was performed by storing blödite (either dry or in mush form) at -10°C for several days. These experiments produced a mixture of mirabilite (Na2SO410H2O; 56 wt% H2O

  16. Phase equilibria for complex fluid mixtures

    SciTech Connect

    Prausnitz, J.M.

    1983-04-01

    After defining complex mixtures, attention is given to the canonical procedure used for the thermodynamics of fluid mixtures: first, we establish a suitable, idealized reference system and then we establish a perturbation (or excess function) which corrects the idealized system for real behavior. For complex mixtures containing identified components (e.g. alcohols, ketones, water) discussion is directed at possible techniques for extending to complex mixtures our conventional experience with reference systems and perturbations for simple mixtures. Possible extensions include generalization of the quasi-chemical approximation (local compositions) and superposition of chemical equilibria (association and solvation) on a physical equation of state. For complex mixtures containing unidentified components (e.g. coal-derived fluids), a possible experimental method is suggested for characterization; conventional procedures can then be used to calculate phase equilibria using the concept of pseudocomponents whose properties are given by the characterization data. Finally, as an alternative to the pseudocomponent method, a brief introduction is given to phase-equilibrium calculations using continuous thermodynamics.

  17. Ultraviolet Study of the Gas Phase Hydration of Methylglyoxal to Form the Gemdiol

    NASA Astrophysics Data System (ADS)

    Kroll, Jay A.; Hansen, Anne S.; Møller, Kristian H.; Axson, Jessica L.; Kjaergaard, Henrik G.; Vaida, Veronica

    2017-06-01

    Methylglyoxal is a known oxidation product of volatile organic compounds (VOCs) in Earth's atmosphere. While the gas phase chemistry of methylglyoxal is fairly well understood, its modeled concentration and role in the formation of secondary organic aerosol (SOA) continues to be controversial. The gas phase hydration of methylglyoxal to form a gemdiol has been shown to occur in infrared studies but has not been widely considered for water-restricted environments such as the atmosphere. However, this process may have important consequences for the atmospheric processing or VOCs. We have recorded UV spectroscopic measurements following the hydration of methylglyoxal and have compared these measurements to calculated spectra of the electronic transitions of methylglyoxal and methylglyoxal diol. We will report on these measurements and discuss the implications for understanding the atmospheric processing and fate of methylglyoxal and similar molecules

  18. Molecular simulations and density functional theory calculations of bromine in clathrate hydrate phases

    SciTech Connect

    Dureckova, Hana Woo, Tom K.; Alavi, Saman

    2016-01-28

    Bromine forms a tetragonal clathrate hydrate structure (TS-I) very rarely observed in clathrate hydrates of other guest substances. The detailed structure, energetics, and dynamics of Br{sub 2} and Cl{sub 2} in TS-I and cubic structure I (CS-I) clathrate hydrates are studied in this work using molecular dynamics and quantum chemical calculations. X-ray diffraction studies show that the halogen-water–oxygen distances in the cages of these structures are shorter than the sum of the van der Waals radii of halogen and oxygen atoms. This suggests that the stabilizing effects of halogen bonding or other non-covalent interactions (NCIs) may contribute to the formation of the unique tetragonal bromine hydrate structure. We performed molecular dynamics simulations of Br{sub 2} and Cl{sub 2} clathrate hydrates using our previously developed five-site charge models for the dihalogen molecules [Dureckova et al. Can. J. Chem. 93, 864 (2015)] which reproduce the computed electrostatic potentials of the dihalogens and account for the electropositive σ-hole of the halogen bond donor (the dihalogen). Analysis of the radial distribution functions, enthalpies of encapsulation, velocity and orientation autocorrelation functions, and polar angle distributions are carried out for Br{sub 2} and Cl{sub 2} guests in various cages to contrast the properties of these guests in the TS-I and CS-I phases. Quantum chemical partial geometry optimizations of Br{sub 2} and Cl{sub 2} guests in the hydrate cages using the M06-2X functional give short halogen-water distances compatible with values observed in X-ray diffraction experiments. NCI plots of guest-cage structures are generated to qualitatively show the relative strength of the non-bonding interactions between dihalogens and water molecules. The differences between behaviors of Br{sub 2} and Cl{sub 2} guests in the hydrate cages may explain why bromine forms the unique TS-I phase.

  19. Direct visualization of the hydration layer on alumina nanoparticles with the fluid cell STEM in situ

    SciTech Connect

    Firlar, Emre; Çınar, Simge; Kashyap, Sanjay; Akinc, Mufit; Prozorov, Tanya

    2015-05-21

    Rheological behavior of aqueous suspensions containing nanometer-sized powders is of relevance to many branches of industry. Unusually high viscosities observed for suspensions of nanoparticles compared to those of micron size powders cannot be explained by current viscosity models. Formation of so-called hydration layer on alumina nanoparticles in water was hypothesized, but never observed experimentally. We report here on the direct visualization of aqueous suspensions of alumina with the fluid cell in situ. We observe the hydration layer formed over the particle aggregates and show that such hydrated aggregates constitute new particle assemblies and affect the flow behavior of the suspensions. We discuss how these hydrated nanoclusters alter the effective solid content and the viscosity of nanostructured suspensions. As a result, our findings elucidate the source of high viscosity observed for nanoparticle suspensions and are of direct relevance to many industrial sectors including materials, food, cosmetics, pharmaceutical among others employing colloidal slurries with nanometer-scale particles.

  20. Gas hydrates and fluid venting in ultradeep large scale pockmarks at the southwest african margin off Congo

    NASA Astrophysics Data System (ADS)

    Spiess, V.; Kasten, S.; Schneider, R.; Zuehlsdorff, L.; Bohrmann, G.; Sahling, H.; Breitzke, M.; Bialas, J.; Ivanov, M.; Meteor Shipboard Scientific Party, M56.

    2003-04-01

    As a project in the framework of the German gas hydrate inititiave, funded through the Geotechnologien programme of the German Minister of Education and Research (BMBF) and the German Science Foundation (DFG), investigations at the southwest african continental margin off the Congo river were planned to study the occurrence, evolution and properties of gas hydrates and fluid flow in hemipelagic sediments. R/V Meteor Cruise M56, carried out in 2 legs in November and December 2002 from Douala (Cameroon) and Libreville (Gabon) to Capetown (South Africa), combined an extended geophysical survey program, using high and very high resolution multi-channel seismics, digital sediment echosounding, swath sounding, deep tow side scan sonar, deep tow reflection seismics and tomography with ocean bottom instruments with ocean floor video surveying and sediment and water column sampling with gravity corer, tv-guided multicorer and tv grab, CTD and rosette. 3D seismic data reveal the complex nature of fluid upflow zones and gas hydrate occurrences, which produce acoustic blanking and high amplitude reflections, respectively, in the vicinity of sea floor depressions from a few to several tens of meters depth and a few tens to a few hundred meters diameter. Side Scan data reveal high backscatter patches, which are not completely correlated to the morphology, and which also show pronounced lateral variations. This is in agreement with OFOS video surveys, which confirm patchiness of vent indications as clam fields, tube worm occurrences and the distristribution and amount of carbonate precipitates at the sea floor. Furthermore, video tracks confirmed complex small scale tectonics on the inner flanks of the pockmarks, indicating the collapse of the surrounding hemipelagic sediments. Local enhancements of reflector amplitudes seem to indicate the distribution of shallow gas hydrates, allowing the reconstruction of fluid flow and methane supply as well as gas hydrate growth patterns

  1. Effect of poly(ethylene glycol) on phospholipid hydration and polarity of the external phase.

    PubMed

    Arnold, K; Pratsch, L; Gawrisch, K

    1983-02-09

    The hydration properties of phosphatidylcholine (PC)/water dispersions on the addition of poly(ethylene glycol) were studied by means of 2H-NMR. The quadrupole splittings and their temperature dependences correspond to measurements of PC/water dispersions at low water content. It is concluded that the bound water is partly extracted by poly(ethylene glycol) but the binding properties of the water in the inner hydration shell of about five water molecules are not changed. The ability of some phospholipid/water dispersions to undergo phase transitions to nonlamellar structures upon dehydration is discussed. Dipalmitoylphosphatidylcholine (DPPC) and egg phosphatidylcholine do not form nonlamellar structures on addition of purified poly(ethylene glycol), as was demonstrated by means of 31P-NMR. Poly(ethylene glycol) decreases the polarity of the aqueous phase and the partition of hydrophobic molecules between the membrane and the external phase is changed. This was demonstrated using the excimer fluorescence of pyrene in a ghost suspension. It is suggested that the changes in polarity and hydration on the addition of poly(ethylene glycol) can contribute to the alterations in the membrane surface observed under conditions of membrane contact and fusion.

  2. A comparison of hydration effect on body fluid and temperature regulation between Malaysian and Japanese males exercising at mild dehydration in humid heat.

    PubMed

    Wakabayashi, Hitoshi; Wijayanto, Titis; Lee, Joo-Young; Hashiguchi, Nobuko; Saat, Mohamed; Tochihara, Yutaka

    2014-02-04

    This study investigated the effect of hydration differences on body fluid and temperature regulation between tropical and temperate indigenes exercising in the heat. Ten Japanese and ten Malaysian males with matched physical characteristics (height, body weight, and peak oxygen consumption) participated in this study. Participants performed exercise for 60 min at 55% peak oxygen uptake followed by a 30-min recovery at 32°C and 70% relative air humidity with hydration (4 times each, 3 mL per kg body weight, 37°C) or without hydration. Rectal temperature, skin temperature, heart rate, skin blood flow, and blood pressure were measured continuously. The percentage of body weight loss and total sweat loss were calculated from body weight measurements. The percentage change in plasma volume was estimated from hemoglobin concentration and hematocrit. Malaysian participants had a significantly lower rectal temperature, a smaller reduction in plasma volume, and a lower heart rate in the hydrated condition than in the non-hydrated condition at the end of exercise (P <0.05), whereas Japanese participants showed no difference between the two hydration conditions. Hydration induced a greater total sweat loss in both groups (P <0.05), and the percentage of body weight loss in hydrated Malaysians was significantly less than in hydrated Japanese (P <0.05). A significant interaction between groups and hydration conditions was observed for the percentage of mean cutaneous vascular conductance during exercise relative to baseline (P <0.05). The smaller reduction in plasma volume and percentage body weight loss in hydrated Malaysians indicated an advantage in body fluid regulation. This may enable Malaysians to reserve more blood for circulation and heat dissipation and thereby maintain lower rectal temperatures in a hydrated condition.

  3. A comparison of hydration effect on body fluid and temperature regulation between Malaysian and Japanese males exercising at mild dehydration in humid heat

    PubMed Central

    2014-01-01

    Background This study investigated the effect of hydration differences on body fluid and temperature regulation between tropical and temperate indigenes exercising in the heat. Methods Ten Japanese and ten Malaysian males with matched physical characteristics (height, body weight, and peak oxygen consumption) participated in this study. Participants performed exercise for 60 min at 55% peak oxygen uptake followed by a 30-min recovery at 32°C and 70% relative air humidity with hydration (4 times each, 3 mL per kg body weight, 37°C) or without hydration. Rectal temperature, skin temperature, heart rate, skin blood flow, and blood pressure were measured continuously. The percentage of body weight loss and total sweat loss were calculated from body weight measurements. The percentage change in plasma volume was estimated from hemoglobin concentration and hematocrit. Results Malaysian participants had a significantly lower rectal temperature, a smaller reduction in plasma volume, and a lower heart rate in the hydrated condition than in the non-hydrated condition at the end of exercise (P <0.05), whereas Japanese participants showed no difference between the two hydration conditions. Hydration induced a greater total sweat loss in both groups (P <0.05), and the percentage of body weight loss in hydrated Malaysians was significantly less than in hydrated Japanese (P <0.05). A significant interaction between groups and hydration conditions was observed for the percentage of mean cutaneous vascular conductance during exercise relative to baseline (P <0.05). Conclusions The smaller reduction in plasma volume and percentage body weight loss in hydrated Malaysians indicated an advantage in body fluid regulation. This may enable Malaysians to reserve more blood for circulation and heat dissipation and thereby maintain lower rectal temperatures in a hydrated condition. PMID:24490869

  4. Phase changes of filled ice Ih methane hydrate under low temperature and high pressure.

    PubMed

    Tanaka, Takehiko; Hirai, Hisako; Matsuoka, Takahiro; Ohishi, Yasuo; Yagi, Takehiko; Ohtake, Michika; Yamamoto, Yoshitaka; Nakano, Satoshi; Irifune, Tetsuo

    2013-09-14

    Low-temperature and high-pressure experiments were performed with filled ice Ih structure of methane hydrate under 2.0-77.0 GPa and 30-300 K using diamond anvil cells and a helium-refrigeration cryostat. In situ X-ray diffractometry revealed distinct changes in the compressibility of the axial ratios of the host framework with pressure. Raman spectroscopy showed a split in the C-H vibration modes of the guest methane molecules, which was previously explained by the orientational ordering of the guest molecules. The pressure and temperature conditions at the split of the vibration modes agreed well with those of the compressibility change. The results indicate the following: (i) the orientational ordering of the guest methane molecules from an orientationally disordered state occurred at high pressures and low temperatures; and (ii) this guest ordering led to anisotropic contraction in the host framework. Such guest orientational ordering and subsequent anisotropic contraction of the host framework were similar to that reported previously for filled ice Ic hydrogen hydrate. Since phases with different guest-ordering manners were regarded as different phases, existing regions of the guest disordered-phase and the guest ordered-phase were roughly estimated by the X-ray study. In addition, above the pressure of the guest-ordered phase, another high-pressure phase developed in the low-temperature region. The deuterated-water host samples were also examined, and the influence of isotopic effects on guest ordering and phase transformation was observed.

  5. Phase mixing induced by granular fluid pump during mantle strain localization

    NASA Astrophysics Data System (ADS)

    Précigout, Jacques; Prigent, Cécile; Palasse, Laurie; Pochon, Anthony

    2014-05-01

    Mantle viscous strain localization is often attributed to feedbacks between grain boundary sliding (GBS) and phase mixing, as GBS could promote mixing through grain switching, and phase mixing would enhance grain-size-sensitive granular flow through grain boundary pinning. However, although GBS and phase mixing are intimately related, recent data show that GBS alone cannot end-up with randomly mixed phases. Here we show natural observations of an ultramylonitic shear zone from the Ronda peridotite (Spain) where both GBS and phase mixing occur. Microprobe analyses and coupled EDX/EBSD data first document enrichment in pyroxenes and amphibole concomitant with both phase mixing and complete randomization of the olivine fabric in fine-grained layers (5-20 microns) where strain has been localized. Both the fabric randomization and some microstructural observations indicate that these layers mostly deformed by granular flow, i.e., by GBS. Based on petrological pseudo-sections, we also show that phase enrichment does not result from metamorphic reaction, but instead from dissolution-precipitation phenomena. Finally, we document in adjacent areas a change of olivine fabric geometry that highlights syn-tectonic water draining towards fine-grained layers. While olivine fabric switches from E-type (moderately hydrated fabric) to C-type (highly hydrated fabric) towards fine-grained layers, it changes from E-type to D-type (highly hydrated fabric) in coarse-grained bands between E/C-type layers. Altogether, our findings suggest that water converges as a result of GBS-induced creep cavitation and subsequent granular fluid pump in fine-grained layers. We propose that phase mixing originates here from such a creep cavitation through dissolution-precipitation of secondary phases in newly formed cavities, giving rise to a key process for the relationships between GBS and phase mixing, and hence, for the origin of viscous strain localization in the upper mantle.

  6. Changes in hydration status of elite Olympic class sailors in different climates and the effects of different fluid replacement beverages

    PubMed Central

    2013-01-01

    Background Olympic class sailing poses physiological challenges similar to other endurance sports such as cycling or running, with sport specific challenges of limited access to nutrition and hydration during competition. As changes in hydration status can impair sports performance, examining fluid consumption patterns and fluid/electrolyte requirements of Olympic class sailors is necessary to develop specific recommendations for these elite athletes. The purpose of this study was to examine if Olympic class sailors could maintain hydration status with self-regulated fluid consumption in cold conditions and the effect of fixed fluid intake on hydration status in warm conditions. Methods In our cold condition study (CCS), 11 elite Olympic class sailors were provided ad libitum access to three different drinks. Crystal Light (control, C); Gatorade (experimental control, G); and customized sailing-specific Infinit (experimental, IN) (1.0:0.22 CHO:PRO), were provided on three separate training days in cold 7.1°C [4.2 – 11.3]. Our warm condition study (WCS) examined the effect of fixed fluid intake (11.5 mL.kg.-1.h-1) of C, G and heat-specific experimental Infinit (INW)(1.0:0.074 CHO:PRO) on the hydration status of eight elite Olympic Laser class sailors in 19.5°C [17.0 - 23.3]. Both studies used a completely random design. Results In CCS, participants consumed 802 ± 91, 924 ± 137 and 707 ± 152 mL of fluid in each group respectively. This did not change urine specific gravity, but did lead to a main effect for time for body mass (p < 0.001), blood sodium, potassium and chloride with all groups lower post-training (p < 0.05). In WCS, fixed fluid intake increased participant’s body mass post-training in all groups (p < 0.01) and decreased urine specific gravity post-training (p < 0.01). There was a main effect for time for blood sodium, potassium and chloride concentration, with lower values observed post-training (p < 0.05). C

  7. The 10Å phase: a high-pressure expandable sheet silicate stable during subduction of hydrated lithosphere

    NASA Astrophysics Data System (ADS)

    Fumagalli, Patrizia; Stixrude, Lars; Poli, Stefano; Snyder, Don

    2001-03-01

    H 2O storage and release in deep subducting lithosphere is controlled by complex reaction suites involving a variety of hydrous phases. As a result of its relatively large thermal stability and intermediate composition, the 10Å phase (Mg 3Si 4O 10(OH) 2· nH 2O) has been regarded as a relevant H 2O reservoir in a wide range of rock compositions and mineral assemblages. High-pressure syntheses of the 10Å phase were carried out at 6.7 GPa and 650°C under fluid-saturated conditions in a Walker-type multi-anvil apparatus, from 5 min to 430 h. X-ray powder diffraction of large platy hexagonal crystals of the 10Å phase (up to 100 μm) were indexed on the basis of a trioctahedral-type structure. Long-term run products (>110 h) reveal sensitivity of the 10Å phase to treatment with acetone leading to the appearance of diffractions at greater d-spacings (10.2-11.6 Å) with respect to the basal peak of the 10Å phase (9.64-10.07 Å). This swelling behavior is strongly related to synthesis run duration. The Raman spectrum of the 10Å phase at frequencies less than 800 cm -1 shows a strong similarity to talc. In the Si-O stretching region (800-1100 cm -1), the 10Å phase exhibits three modes (909, 992 and 1058 cm -1), as compared to two in talc. The bending mode of water (ν 2) is found at 1593 cm -1. In the OH stretching region, peaks at 3593, 3622 and 3668 cm -1 were observed. The acetone treated sample shows a C-H stretching mode at 2923 cm -1 while the double bond CO signal is absent. The swelling behavior of the 10Å phase is interpreted as due to intercalation of acetone with pre-existing interlayer water. The efficiency of this process is dependent on the amount of the interlayer water which in turn depends on run duration. The relation between the response to acetone treatment and run duration is therefore interpreted as a time-dependent hydration of the 10Å phase. The fractions transformed from non-expandable to expandable fractions was fitted to the Avrami

  8. The infrared spectrum of ammonia hydrate - Explanation for a reported ammonia phase

    NASA Technical Reports Server (NTRS)

    Still, G.; Fink, U.; Ferraro, J. R.

    1981-01-01

    A number of anomalous spectra of solid NH3 deposited from the vapor phase have appeared in the literature. These spectra have been ascribed to a new phase of NH3. In the experiment reported here these anomalous spectra were reproduced by depositing a thin film from a mixture of gaseous NH3 and H2O and annealing this film at a temperature of 162 K. The thin film spectra showed excellent agreement with recent data on NH3.H2O. The anomalous 'NH3' spectra are, therefore, seen to be caused by H2O contamination of solid NH3 with formation of NH3 hydrate.

  9. Phase changes of CO2 hydrate under high pressure and low temperature.

    PubMed

    Hirai, Hisako; Komatsu, Kazuki; Honda, Mizuho; Kawamura, Taro; Yamamoto, Yoshitaka; Yagi, Takehiko

    2010-09-28

    High pressure and low temperature experiments with CO(2) hydrate were performed using diamond anvil cells and a helium-refrigeration cryostat in the pressure and temperature range of 0.2-3.0 GPa and 280-80 K, respectively. In situ x-ray diffractometry revealed that the phase boundary between CO(2) hydrate and water+CO(2) extended below the 280 K reported previously, toward a higher pressure and low temperature region. The results also showed the existence of a new high pressure phase above approximately 0.6 GPa and below 1.0 GPa at which the hydrate decomposed to dry ice and ice VI. In addition, in the lower temperature region of structure I, a small and abrupt lattice expansion was observed at approximately 210 K with decreasing temperature under fixed pressures. The expansion was accompanied by a release of water content from the sI structure as ice Ih, which indicates an increased cage occupancy. A similar lattice expansion was also described in another clathrate, SiO(2) clathrate, under high pressure. Such expansion with increasing cage occupancy might be a common manner to stabilize the clathrate structures under high pressure and low temperature.

  10. Evidence of focused fluid flow associated to the gas hydrate wedge on the angolan margin

    NASA Astrophysics Data System (ADS)

    Casenave, Viviane; Imbert, Patrice; Gay, Aurélien

    2013-04-01

    , in present-day water depth ranging from 750 to 850 m. These buried depressions cover a stripe in that depth range all over the area covered by the 3D seismic data. These two observations, made both on the seafloor and on it subsurface, seem to correspond to the same phenomenon of fluid expulsion, for the views of the seismic morphology similarities, but in different periods. It is interpreted as a result of a downward migration of the BSR, because of the last sea-level rise, which would have meant an upslope migration of the intersection of the BSR with the seafloor. Based on the evidence of gas hydrate dissociation phenomenon in the Lower Congo Basin, the pinch-out of the BSR may be considered as a natural laboratory for investigating a possible massive greenhouse gas release due to global warming.

  11. Properties of nuclear waste melts and glasses: Contact-refractory corrosion and vapor phase hydration

    NASA Astrophysics Data System (ADS)

    Lu, Xiaodong

    Control of refractory corrosion in waste glass melts and meeting vapor phase hydration test (VHT) requirement for Hanford low-activity waste (LAW) glass product are two critical issues among many technical challenges of nuclear waste vitrification. In this study, refractory corrosion was treated as a complex non-equilibrium, multi-component and multi-phase reactive transport process and studied both thermodynamically and kinetically. Dissolution tests of granular refractory materials into under-saturated melts coupled with crystallization tests from supersaturated melts were used to determine the possible equilibrium points. The test results show that spinet phase is the most stable phase of K-3 refractory. Solubility of glass-refractory interface material controls the long term refractory corrosion rate and protects refractory from further corrosion. Therefore, refractory corrosion rate can be possibly adjusted by controlling the underlying solubility of the interface material. A set of monolithic refractory corrosion and dissolution tests was carried out to study the kinetic effects of refractory porosity and glass melt viscosity, the two major kinetic factors associated with reactive transport process. The test results show that temperature and glass melt viscosity have intensive effects on refractory material dissolution rate. Fast closure of channels near the glass-refractory interface during corrosion reaction by fast transformation of solid solution to spinel and spinel re-crystallization helps stop further corrosion reaction. Glass composition can be "passivated" by engineering the formulation to maximizing the beneficial alteration process. For the study of VHT kinetics, data from simulated LAW glasses studied previously at Pacific Northwest National Laboratory and Vitreous State Laboratory was modeled based on Avrami equation and its variant, the so-called generalized Avrami equation for better modeling of the VHT data. The results show that the kinetics

  12. Determination of the hydrocarbon core structure of fluid dioleoylphosphocholine (DOPC) bilayers by x-ray diffraction using specific bromination of the double-bonds: effect of hydration.

    PubMed Central

    Hristova, K; White, S H

    1998-01-01

    distinct structural change upon completion of the hydration shell. For hydrations of 12-16 waters per lipid, the bromine distribution remains constant at Z(Br) = 7.33 +/- 0.25 A and A(Br) = 5.35 +/- 0.5 A. The absolute-scale structure factors obtained in the experiments provided an opportunity to test the so-called fluid-minus method of structure-factor scaling. We found that the method is quite satisfactory for determining the phases of structure factors, but not their absolute values. PMID:9591668

  13. Determination of the hydrocarbon core structure of fluid dioleoylphosphocholine (DOPC) bilayers by x-ray diffraction using specific bromination of the double-bonds: effect of hydration.

    PubMed

    Hristova, K; White, S H

    1998-05-01

    distinct structural change upon completion of the hydration shell. For hydrations of 12-16 waters per lipid, the bromine distribution remains constant at Z(Br) = 7.33 +/- 0.25 A and A(Br) = 5.35 +/- 0.5 A. The absolute-scale structure factors obtained in the experiments provided an opportunity to test the so-called fluid-minus method of structure-factor scaling. We found that the method is quite satisfactory for determining the phases of structure factors, but not their absolute values.

  14. Prediction of phase equilibrium and hydration free energy of carboxylic acids by Monte Carlo simulations.

    PubMed

    Ferrando, Nicolas; Gedik, Ibrahim; Lachet, Véronique; Pigeon, Laurent; Lugo, Rafael

    2013-06-13

    In this work, a new transferable united-atom force field has been developed to predict phase equilibrium and hydration free energy of carboxylic acids. To take advantage of the transferability of the AUA4 force field, all Lennard-Jones parameters of groups involved in the carboxylic acid chemical function are reused from previous parametrizations of this force field. Only a unique set of partial electrostatic charges is proposed to reproduce the experimental gas phase dipole moment, saturated liquid densities and vapor pressures. Phase equilibrium properties of various pure carboxylic acids (acetic acid, propanoic acid, butanoic acid, pentanoic acid, hexanoic acid) and one diacid (1,5-pentanedioic) are studied through Monte Carlo simulations in the Gibbs ensemble. A good accuracy is obtained for pure compound saturated liquid densities and vapor pressures (average deviation of 2% and 6%, respectively), as well as for critical points. The vaporization enthalpy is, however, poorly predicted for short acids, probably due to a limitation of the force field to correctly describe the significant dimerization in the vapor phase. Pressure-composition diagrams for two binary mixtures (acetic acid + n-butane and propanoic acid + pentanoic acid) are also computed with a good accuracy, showing the transferability of the proposed force field to mixtures. Hydration free energies are calculated for three carboxylic acids using thermodynamic integration. A systematic overestimation of around 10 kJ/mol is observed compared to experimental data. This new force field parametrized only on saturated equilibrium properties appears insufficient to reach an acceptable precision for this property, and only relative hydration free energies between two carboxylic acids can be correctly predicted. This highlights the limitation of the transferability feature of force fields to properties not included in the parametrization database.

  15. Phase behavior and bilayer properties of fatty acids: hydrated 1:1 acid-soaps.

    PubMed

    Cistola, D P; Atkinson, D; Hamilton, J A; Small, D M

    1986-05-20

    The physical properties in water of a series of 1:1 acid-soap compounds formed from fatty acids and potassium soaps with saturated (10-18 carbons) and omega-9 monounsaturated (18 carbons) hydrocarbon chains have been studied by using differential scanning calorimetry (DSC), X-ray diffraction, and direct and polarized light microscopy. DSC showed three phase transitions corresponding to the melting of crystalline water, the melting of crystalline lipid hydrocarbon chains, and the decomposition of the 1:1 acid-soap compound into its parent fatty acid and soap. Low- and wide-angle X-ray diffraction patterns revealed spacings that corresponded (with increasing hydration) to acid-soap crystals, hexagonal type II liquid crystals, and lamellar liquid crystals. The lamellar phase swelled from bilayer repeat distances of 68 (at 45% H2O) to 303 A (at 90% H2O). Direct and polarized light micrographs demonstrated the formation of myelin figures as well as birefringent optical textures corresponding to hexagonal and lamellar mesophases. Assuming that 1:1 potassium hydrogen dioleate and water were two components, we constructed a temperature-composition phase diagram. Interpretation of the data using the Gibbs phase rule showed that, at greater than 30% water, hydrocarbon chain melting was accompanied by decomposition of the 1:1 acid-soap compound and the system changed from a two-component to a three-component system. Comparison of hydrated 1:1 fatty acid/soap systems with hydrated soap systems suggests that the reduced degree of charge repulsion between polar groups causes half-ionized fatty acids in excess water to form bilayers rather than micelles.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. In-focus electron microscopy of frozen-hydrated biological samples with a Boersch phase plate.

    PubMed

    Barton, B; Rhinow, D; Walter, A; Schröder, R; Benner, G; Majorovits, E; Matijevic, M; Niebel, H; Müller, H; Haider, M; Lacher, M; Schmitz, S; Holik, P; Kühlbrandt, W

    2011-12-01

    We report the implementation of an electrostatic Einzel lens (Boersch) phase plate in a prototype transmission electron microscope dedicated to aberration-corrected cryo-EM. The combination of phase plate, C(s) corrector and Diffraction Magnification Unit (DMU) as a new electron-optical element ensures minimal information loss due to obstruction by the phase plate and enables in-focus phase contrast imaging of large macromolecular assemblies. As no defocussing is necessary and the spherical aberration is corrected, maximal, non-oscillating phase contrast transfer can be achieved up to the information limit of the instrument. A microchip produced by a scalable micro-fabrication process has 10 phase plates, which are positioned in a conjugate, magnified diffraction plane generated by the DMU. Phase plates remained fully functional for weeks or months. The large distance between phase plate and the cryo sample permits the use of an effective anti-contaminator, resulting in ice contamination rates of <0.6 nm/h at the specimen. Maximal in-focus phase contrast was obtained by applying voltages between 80 and 700 mV to the phase plate electrode. The phase plate allows for in-focus imaging of biological objects with a signal-to-noise of 5-10 at a resolution of 2-3 nm, as demonstrated for frozen-hydrated virus particles and purple membrane at liquid-nitrogen temperature.

  17. Phase transitions in fluids and biological systems

    NASA Astrophysics Data System (ADS)

    Sipos, Maksim

    In this thesis, I consider systems from two seemingly different fields: fluid dynamics and microbial ecology. In these systems, the unifying features are the existences of global non-equilibrium steady states. I consider generic and statistical models for transitions between these global states, and I relate the model results with experimental data. A theme of this thesis is that these rather simple, minimal models are able to capture a lot of functional detail about complex dynamical systems. In Part I, I consider the transition between laminar and turbulent flow. I find that quantitative and qualitative features of pipe flow experiments, the superexponential lifetime and the splitting of turbulent puffs, and the growth rate of turbulent slugs, can all be explained by a coarse-grained, phenomenological model in the directed percolation universality class. To relate this critical phenomena approach closer to the fluid dynamics, I consider the transition to turbulence in the Burgers equation, a simplified model for Navier-Stokes equations. Via a transformation to a model of directed polymers in a random medium, I find that the transition to Burgers turbulence may also be in the directed percolation universality class. This evidence implies that the turbulent-to-laminar transition is statistical in nature and does not depend on details of the Navier-Stokes equations describing the fluid flow. In Part II, I consider the disparate subject of microbial ecology where the complex interactions within microbial ecosystems produce observable patterns in microbe abundance, diversity and genotype. In order to be able to study these patterns, I develop a bioinformatics pipeline to multiply align and quickly cluster large microbial metagenomics datasets. I also develop a novel metric that quantifies the degree of interactions underlying the assembly of a microbial ecosystem, particularly the transition between neutral (random) and niche (deterministic) assembly. I apply this

  18. Thermal conductivity of hydrate-bearing sediments

    NASA Astrophysics Data System (ADS)

    Cortes, Douglas D.; Martin, Ana I.; Yun, Tae Sup; Francisca, Franco M.; Santamarina, J. Carlos; Ruppel, Carolyn

    2009-11-01

    A thorough understanding of the thermal conductivity of hydrate-bearing sediments is necessary for evaluating phase transformation processes that would accompany energy production from gas hydrate deposits and for estimating regional heat flow based on the observed depth to the base of the gas hydrate stability zone. The coexistence of multiple phases (gas hydrate, liquid and gas pore fill, and solid sediment grains) and their complex spatial arrangement hinder the a priori prediction of the thermal conductivity of hydrate-bearing sediments. Previous studies have been unable to capture the full parameter space covered by variations in grain size, specific surface, degree of saturation, nature of pore filling material, and effective stress for hydrate-bearing samples. Here we report on systematic measurements of the thermal conductivity of air dry, water- and tetrohydrofuran (THF)-saturated, and THF hydrate-saturated sand and clay samples at vertical effective stress of 0.05 to 1 MPa (corresponding to depths as great as 100 m below seafloor). Results reveal that the bulk thermal conductivity of the samples in every case reflects a complex interplay among particle size, effective stress, porosity, and fluid-versus-hydrate filled pore spaces. The thermal conductivity of THF hydrate-bearing soils increases upon hydrate formation although the thermal conductivities of THF solution and THF hydrate are almost the same. Several mechanisms can contribute to this effect including cryogenic suction during hydrate crystal growth and the ensuing porosity reduction in the surrounding sediment, increased mean effective stress due to hydrate formation under zero lateral strain conditions, and decreased interface thermal impedance as grain-liquid interfaces are transformed into grain-hydrate interfaces.

  19. Oiling out or molten hydrate-liquid-liquid phase separation in the system vanillin-water.

    PubMed

    Svärd, Michael; Gracin, Sandra; Rasmuson, Ake C

    2007-09-01

    Vanillin crystals in a saturated aqueous solution disappear and a second liquid phase emerges when the temperature is raised above 51 degrees C. The phenomenon has been investigated with crystallization and equilibration experiments, using DSC, TGA, XRD and hot-stage microscopy for analysis. The new liquid solidifies on cooling, appears to melt at 51 degrees C, and has a composition corresponding to a dihydrate. However, no solid hydrate can be detected by XRD, and it is shown that the true explanation is that a liquid-liquid phase separation occurs above 51 degrees C where the vanillin-rich phase has a composition close to a dihydrate. To our knowledge, liquid-liquid phase separation has not previously been reported for the system vanillin-water, even though thousands of tonnes of vanillin are produced globally every year. (c) 2007 Wiley-Liss, Inc. and the American Pharmacists Association.

  20. Hydration, Fluid Intake, and Related Urine Biomarkers among Male College Students in Cangzhou, China: A Cross-Sectional Study—Applications for Assessing Fluid Intake and Adequate Water Intake

    PubMed Central

    Zhang, Na; Du, Songming; Tang, Zhenchuang; Zheng, Mengqi; Yan, Ruixia; Zhu, Yitang; Ma, Guansheng

    2017-01-01

    The objectives of this study were to assess the associations between fluid intake and urine biomarkers and to determine daily total fluid intake for assessing hydration status for male college students. A total of 68 male college students aged 18–25 years recruited from Cangzhou, China completed a 7-day cross-sectional study. From day 1 to day 7; all subjects were asked to complete a self-administered 7-day 24-h fluid intake record. The foods eaten by subjects were weighed and 24-h urine was collected for three consecutive days on the last three consecutive days. On the sixth day, urine osmolality, specific gravity (USG), pH, and concentrations of potassium, sodium, and chloride was determined. Subjects were divided into optimal hydration, middle hydration, and hypohydration groups according to their 24-h urine osmolality. Strong relationships were found between daily total fluid intake and 24-h urine biomarkers, especially for 24-h urine volume (r = 0.76; p < 0.0001) and osmolality (r = 0.76; p < 0.0001). The percentage of the variances in daily total fluid intake (R2) explained by PLS (partial least squares) model with seven urinary biomarkers was 68.9%; two urine biomarkers—24-h urine volume and osmolality—were identified as possible key predictors. The daily total fluid intake for assessing optimal hydration was 2582 mL, while the daily total fluid intake for assessing hypohydration was 2502 mL. Differences in fluid intake and urine biomarkers were found among male college students with different hydration status. A strong relationship existed between urine biomarkers and fluid intake. A PLS model identified that key variables for assessing daily total fluid intake were 24-h urine volume and osmolality. It was feasibility to use total fluid intake to judge hydration status. PMID:28492493

  1. Optimization of crystal nucleation close to a metastable fluid-fluid phase transition.

    PubMed

    Wedekind, Jan; Xu, Limei; Buldyrev, Sergey V; Stanley, H Eugene; Reguera, David; Franzese, Giancarlo

    2015-06-22

    The presence of a metastable fluid-fluid critical point is thought to dramatically influence the crystallization pathway, increasing the nucleation rate by many orders of magnitude over the predictions of classical nucleation theory. We use molecular dynamics simulations to study the kinetics of crystallization in the vicinity of this metastable critical point and throughout the metastable fluid-fluid phase diagram. To quantitatively understand how the fluid-fluid phase separation affects the crystal nucleation, we evaluate accurately the kinetics and reconstruct the thermodynamic free-energy landscape of crystal formation. Contrary to expectations, we find no special advantage of the proximity of the metastable critical point on the crystallization rates. However, we find that the ultrafast formation of a dense liquid phase causes the crystallization to accelerate both near the metastable critical point and almost everywhere below the fluid-fluid spinodal line. These results unveil three different scenarios for crystallization that could guide the optimization of the process in experiments.

  2. Measurement of chain tilt angle in fully hydrated bilayers of gel phase lecithins.

    PubMed Central

    Tristram-Nagle, S; Zhang, R; Suter, R M; Worthington, C R; Sun, W J; Nagle, J F

    1993-01-01

    The tilt angle theta tilt of the hydrocarbon chains has been determined for fully hydrated gel phase of a series of saturated lecithins. Oriented samples were prepared on glass substrates and hydrated with supersaturated water vapor. Evidence for full hydration was the same intensity pattern of the low angle lamellar peaks and the same lamellar repeat D as unoriented multilamellar vesicles. Tilting the sample permitted observation of all the wide angle arcs necessary to verify the theoretical diffraction pattern corresponding to tilting of the chains towards nearest neighbors. The length of the scattering unit corresponds to two hydrocarbon chains, requiring each bilayer to scatter coherently rather than each monolayer. For DPPC, theta tilt was determined to be 32.0 +/- 0.5 degrees at 19 degrees C, slightly larger than previous direct determinations and considerably smaller than the value required by recent gravimetric measurements. This new value allows more accurate determinations of a variety of structural parameters, such as area per lipid molecule, A = 47.2 +/- 0.5 A2, and number of water molecules of hydration, nw = 11.8 +/- 0.7. As the chain length n of the lipids was increased from 16 to 20 carbons, the parameters A and nw remained constant, suggesting that the headgroup packing is at its excluded volume limit for this range. However, theta tilt increased by 3 degrees and the chain area Ac decreased by 0.5 A2. This behavior is explained in terms of a competition between a bulk free energy term and a finite or end effect term. Images FIGURE 6 FIGURE 7 PMID:8494973

  3. Short periodicity phase based on ceramide [AP] in the model lipid membranes of stratum corneum does not change during hydration.

    PubMed

    Gruzinov, A Yu; Zabelin, A V; Kiselev, M A

    2017-01-01

    Small angle X-ray scattering technique was used to determine electron density profiles of short periodicity phase in the model lipid membranes of stratum corneum at different pH. Basic quaternary system was prepared as used previously in the neutron experiments at partial hydration. It was shown that electron density profiles of partially hydrated and fully hydrated model lipid membranes with four basic components were quite similar and demonstrated almost no interbilayer water. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Desalination utilizing clathrate hydrates (LDRD final report).

    SciTech Connect

    Simmons, Blake Alexander; Bradshaw, Robert W.; Dedrick, Daniel E.; Cygan, Randall Timothy; Greathouse, Jeffery A.; Majzoub, Eric H.

    2008-01-01

    Advances are reported in several aspects of clathrate hydrate desalination fundamentals necessary to develop an economical means to produce municipal quantities of potable water from seawater or brackish feedstock. These aspects include the following, (1) advances in defining the most promising systems design based on new types of hydrate guest molecules, (2) selection of optimal multi-phase reactors and separation arrangements, and, (3) applicability of an inert heat exchange fluid to moderate hydrate growth, control the morphology of the solid hydrate material formed, and facilitate separation of hydrate solids from concentrated brine. The rate of R141b hydrate formation was determined and found to depend only on the degree of supercooling. The rate of R141b hydrate formation in the presence of a heat exchange fluid depended on the degree of supercooling according to the same rate equation as pure R141b with secondary dependence on salinity. Experiments demonstrated that a perfluorocarbon heat exchange fluid assisted separation of R141b hydrates from brine. Preliminary experiments using the guest species, difluoromethane, showed that hydrate formation rates were substantial at temperatures up to at least 12 C and demonstrated partial separation of water from brine. We present a detailed molecular picture of the structure and dynamics of R141b guest molecules within water cages, obtained from ab initio calculations, molecular dynamics simulations, and Raman spectroscopy. Density functional theory calculations were used to provide an energetic and molecular orbital description of R141b stability in both large and small cages in a structure II hydrate. Additionally, the hydrate of an isomer, 1,2-dichloro-1-fluoroethane, does not form at ambient conditions because of extensive overlap of electron density between guest and host. Classical molecular dynamics simulations and laboratory trials support the results for the isomer hydrate. Molecular dynamics simulations

  5. Force of crystallisation-development during CaO hydration: theory vs. experiment and the role of fluid transport

    NASA Astrophysics Data System (ADS)

    Wolterbeek, Tim; van Noort, Reinier; Spiers, Chris

    2017-04-01

    When chemical reactions that involve an increase in solid volume proceed in a confined space, this may under certain conditions lead to the development of a so-called force of crystallisation (FoC). In other words, reaction can result in stress being exerted on the confining boundaries of the system. In principle, any thermodynamic driving force that is able to produce a supersaturation with respect to a solid product can generate a FoC, as long as precipitation can occur under confined conditions, i.e. within load-bearing grain contacts. Well-known examples of such reactions include salt damage, where supersaturation is caused by evaporation and surface curvature effects, and a wide range of mineral reactions where the solid products comprise a larger volume than the solid reactants. Frost heave, where crystallisation is driven by fluid under-cooling, i.e. temperature change, is a similar process. In a geological context, FoC-development is widely considered to play an important role in pseudomorphic replacement, vein formation, and reaction-driven fracturing. Chemical reactions capable of producing a FoC such as the hydration of CaO (lime), which is thermodynamically capable of producing stresses in the GPa range, also offer obvious engineering potential. Despite this, relatively few studies have been conducted where the magnitude of the FoC is determined directly. Indeed, the maximum stress obtainable by CaO hydration has not been validated or determined experimentally. Here we report uni-axial compaction/expansion experiments performed in an oedometer-type apparatus on pre-compacted CaO powder, at 65 °C and at atmospheric pore fluid pressure. Using this set-up, the FoC generated during CaO hydration could be measured directly. Our results show FoC-induced stresses reaching up to 153 MPa, with the hydration reaction stopping or slowing down significantly before completion. Failure to achieve the GPa stresses predicted by thermodynamic theory is attributed to

  6. A phylogenetic analysis of microbial communities associated with methane hydrate containing marine fluids and sediments in the Cascadia margin (ODP site 892B).

    PubMed

    Bidle, K A; Kastner, M; Bartlett, D H

    1999-08-01

    Methane hydrates represent an enormous carbon and energy source in many low temperature deep marine sediments. However, little information is available concerning the nature of the microbial communities associated with these structures. Here, we describe a phylogenetic analysis based on ribosomal DNA (rDNA) sequences obtained from sediment and fluid samples present in a region of gas hydrate formation in shallow sediments within the Cascadia margin in and around Ocean Drilling Program (ODP) Site 892B. Our studies detected diverse sulfur-utilizing microbes, methanogens, methanotrophs, and non-thermophilic members of the kingdom Crenarchaeota. This is the first culture-independent phylogenetic analysis of a gas hydrate habitat.

  7. Entropic Description of Gas Hydrate Ice-Liquid Equilibrium via Enhanced Sampling of Coexisting Phases.

    PubMed

    Małolepsza, Edyta; Kim, Jaegil; Keyes, Tom

    2015-05-01

    Metastable β ice holds small guest molecules in stable gas hydrates, so its solid-liquid equilibrium is of interest. However, aqueous crystal-liquid transitions are very difficult to simulate. A new molecular dynamics algorithm generates trajectories in a generalized NPT ensemble and equilibrates states of coexisting phases with a selectable enthalpy. With replicas spanning the range between β ice and liquid water, we find the statistical temperature from the enthalpy histograms and characterize the transition by the entropy, introducing a general computational procedure for first-order transitions.

  8. Entropic description of gas hydrate ice/liquid equilibrium via enhanced sampling of coexisting phases

    SciTech Connect

    Malolepsza, Edyta; Kim, Jaegil; Keyes, Tom

    2015-04-28

    Metastable β ice holds small guest molecules in stable gas hydrates, so its solid/liquid equilibrium is of interest. However, aqueous crystal/liquid transitions are very difficult to simulate. A new MD algorithm generates trajectories in a generalized NPT ensemble and equilibrates states of coexisting phases with a selectable enthalpy. Furthermore, with replicas spanning the range between β ice and liquid water we find the statistical temperature from the enthalpy histograms and characterize the transition by the entropy, introducing a general computational procedure for first-order transitions.

  9. The transport of gold and molybdenum through hydration in aqueous vapor and vapor-like fluids: Application to porphyry Au and Mo deposits

    NASA Astrophysics Data System (ADS)

    Hurtig, N. C.; Williams-Jones, A. E.

    2013-12-01

    The hypothesis that vapor is a viable medium for the transport of gold and molybdenum in ore forming magmatic-hydrothermal systems is supported by fluid inclusion data, analyses of volcanic gas condensates and the occurrence of metal-rich incrustations around fumaroles. Experiments have shown that hydration of metal species in water vapor is an essential factor in making such transport possible [1,2,3]. Indeed, hydration has been shown to increase concentrations of Au and Mo in the aqueous vapor phase by several orders of magnitude over those calculated using volatility data. Nevertheless metal concentrations determined experimentally in previous studies are substantially lower than those reported for vapor inclusions in magmatic hydrothermal systems, and are limited to one or two dominant hydrated metal species. To bridge this gap, we performed a series of new experiments extending the density-range to near critical vapor density, and intermediate-density in the case of supercritical fluids. Experiments were carried out in batch-type Ti autoclaves at temperatures between 300 and 500 °C and pressures up to 366 bar in HCl-bearing water vapor. Oxygen fugacity was buffered either by the assemblage MoO2/MoO3 or WO2/WO3 or graphite. Gold and molybdenum concentrations measured in the experimental condensates ranged from 0.9 ppb and 3 ppm in low-density vapor at 300 °C to 4.6 ppm and 481 ppm at 297 bar and 400 °C, respectively. The fugacity of both metals increased exponentially with increasing water fugacity, resulting in an increase in metal solubility between 1 and 3 orders of magnitude from the lowest pressures investigated. Curves representing the experimentally determined relationship between metal fugacity and fH2O were fitted to a step-wise hydration model to extract a set of logarithmic equilibrium constants for P and T extrapolation. We have used the above data to model Au and Mo mobilization in magmatic-hydrothermal vapor plumes. This modeling shows that the

  10. Direct phase coexistence molecular dynamics study of the phase equilibria of the ternary methane-carbon dioxide-water hydrate system.

    PubMed

    Michalis, Vasileios K; Tsimpanogiannis, Ioannis N; Stubos, Athanassios K; Economou, Ioannis G

    2016-09-14

    Molecular dynamics simulation is used to predict the phase equilibrium conditions of a ternary hydrate system. In particular, the direct phase coexistence methodology is implemented for the determination of the three-phase coexistence temperature of the methane-carbon dioxide-water hydrate system at elevated pressures. The TIP4P/ice, TraPPE-UA and OPLS-UA forcefields for water, carbon dioxide and methane respectively are used, in line with our previous studies of the phase equilibria of the corresponding binary hydrate systems. The solubility in the aqueous phase of the guest molecules of the respective binary and ternary systems is examined under hydrate-forming conditions, providing insight into the predictive capability of the methodology as well as the combination of these forcefields to accurately describe the phase behavior of the ternary system. The three-phase coexistence temperature is calculated at 400, 1000 and 2000 bar for two compositions of the methane-carbon dioxide mixture. The predicted values are compared with available calculations with satisfactory agreement. An estimation is also provided for the fraction of the guest molecules in the mixed hydrate phase under the conditions examined.

  11. Effect of hydration status and fluid availability on ad-libitum energy intake of a semi-solid breakfast.

    PubMed

    Corney, Robert A; Horina, Anja; Sunderland, Caroline; James, Lewis J

    2015-08-01

    This study investigated the effects of hydration status and fluid availability on appetite and energy intake. Sixteen males completed four 24 h trials, visiting the laboratory overnight fasted on two consecutive days. Standardised foods were provided during the 24 h and on day two an ad-libitum semi-solid porridge breakfast was provided. Water intake during the 24 h (0 or 40 mL⋅kg(-1)) and fluid provision during the ad-libitum breakfast were manipulated so subjects were euhydrated with (EU-F) and without fluid (EU-NF) available at breakfast; and hypohydrated with (HYPO-F) and without fluid (HYPO-NF) available at breakfast. Blood samples (0 and 24 h), urine samples (0-24 h) and subjective responses (0, 24 and 24.5 h) were collected. HYPO trials decreased body mass by ~1.8%. Serum and urine osmolality increased and plasma volume decreased during HYPO trials (P <0.001). Total urine output was greater during EU than HYPO trials (P <0.001). Ad-libitum energy intake was not different between trials: 2658 (938) kJ (EU-F), 2353 (643) kJ (EU-NF), 2295 (529) kJ (HYPO-F), 2414 (954) kJ (HYPO-NF), (P = 0.131). Fluid intake was ~200 mL greater during HYPO-F than EU-F (P <0.01). There was an interaction effect for thirst (P < 0.001), but not hunger or fullness. These results demonstrate that mild hypohydration produced by inadequate fluid intake and fluid availability during eating does not influence ad-libitum energy intake of a semi-solid breakfast, at least in healthy young males. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. The reaction of CF2Cl2 with gas-phase hydrated electrons.

    PubMed

    Lengyel, Jozef; van der Linde, Christian; Fárník, Michal; Beyer, Martin K

    2016-09-14

    The reaction of dichlorodifluoromethane (CF2Cl2) with hydrated electrons (H2O)n(-) (n = 30-86) in the gas phase was studied using Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. The hydrated electron reacts with CF2Cl2, forming (H2O)mCl(-) with a rate constant of (8.6 ± 2.2) × 10(-10) cm(3) s(-1), corresponding to an efficiency of 57 ± 15%. The reaction enthalpy was determined using nanocalorimetry, revealing a strongly exothermic reaction with ΔHr(CF2Cl2, 298 K) = -208 ± 41 kJ mol(-1). The combination of the measured reaction enthalpy with thermochemical data from the condensed phase yields a C-Cl bond dissociation enthalpy (BDE) ΔHC-Cl(CF2Cl2, 298 K) = 355 ± 41 kJ mol(-1) that agrees within error limits with the predicted values from quantum chemical calculations and published BDEs.

  13. Concentration selective hydration and phase states of hydroxyethyl cellulose (HEC) in aqueous solutions.

    PubMed

    Arfin, Najmul; Bohidar, H B

    2012-04-01

    Solution behaviour of hydroxyethyl cellulose (HEC) is reported in the polymer concentration range spanning over two decades (c=0.002-5% (w/v)). The results conclude the following: (i) dilute solution regime prevailed for c<0.2% (w/v), flexible HEC fibres of typical length ≈ 1 μm and persistence length ≈ 10 nm were found here, (ii) for 0.2phase comprising soluble aggregates of hydrated HEC fibrils were observed with the material exhibiting viscoelastic behaviour and (iii) when 1hydration of HEC fibres in the aforesaid concentration regimes. Cole-Cole plots revealed phase homogeneity and miscibility was limited to concentrations less than ~2% (w/v). For higher polymer concentrations, strong fibre-fibre interactions prevailed and samples became heterogeneous.

  14. Phase behavior and hydrated solid structure in lysophospholipid/long-chain alcohol/water system and effect of cholesterol addition.

    PubMed

    Konno, Yoshikazu; Naito, Noboru; Yoshimura, Akio; Aramaki, Kenji

    2010-01-01

    Phase behavior in lysophospholipid/long-chain alcohol/water system at 80°C was investigated using hexanol and oleyl alcohol as the long-chain alcohol. Similarly to hydrophilic surfactant, a micellar phase in a lysophospholipid/water system transitioned to a lamellar liquid-crystalline phase by the addition of long-chain alcohol. In the oleyl alcohol system the lamellar liquid-crystalline phase was observed in wider region compared to the hexanol system. The effect of cholesterol addition on the phase behavior was also studied. The region of liquid-crystalline phase and (reverse micellar + liquid-crystalline + water) phase shifted towards higher lysophospholipid concentrations. The structure of hydrated solid as well as the transition between lamellar liquid-crystalline phase and hydrated solid was analyzed by X-ray scattering measurement and differential scanning calorimetry measurement. It was revealed that the hydrated solid was α-type crystals with lamellar structure. The hydrated solid (gel)-liquid crystal transition temperature gradually decreased with increasing oleyl alcohol concentration and the decrement was enhanced by the addition of cholesterol.

  15. Surfactant adsorption and interfacial tension investigations on cyclopentane hydrate.

    PubMed

    Aman, Zachary M; Olcott, Kyle; Pfeiffer, Kristopher; Sloan, E Dendy; Sum, Amadeu K; Koh, Carolyn A

    2013-02-26

    Gas hydrates represent an unconventional methane resource and a production/safety risk to traditional oil and gas flowlines. In both systems, hydrate may share interfaces with both aqueous and hydrocarbon fluids. To accurately model macroscopic properties, such as relative permeability in unconventional systems or dispersion viscosity in traditional systems, knowledge of hydrate interfacial properties is required. This work presents hydrate cohesive force results measured on a micromechanical force apparatus, and complementary water-hydrocarbon interfacial tension data. By combining a revised cohesive force model with experimental data, two interfacial properties of cyclopentane hydrate were estimated: hydrate-water and hydrate-cyclopentane interfacial tension values at 0.32 ± 0.05 mN/m and 47 ± 5 mN/m, respectively. These fundamental physiochemical properties have not been estimated or measured for cyclopentane hydrate to date. The addition of surfactants in the cyclopentane phase significantly reduced the cyclopentane hydrate cohesive force; we hypothesize this behavior to be the result of surfactant adsorption on the hydrate-oil interface. Surface excess quantities were estimated for hydrate-oil and water-oil interfaces using four carboxylic and sulfonic acids. The results suggest the density of adsorbed surfactant may be 2× larger for the hydrate-oil interface than the water-oil interface. Additionally, hydrate-oil interfacial tension was observed to begin decreasing from the baseline value at significantly lower surfactant concentrations (1-3 orders of magnitude) than those for the water-oil interfacial tension.

  16. Structural determinants of hydration, mechanics and fluid flow in freeze-dried collagen scaffolds.

    PubMed

    Offeddu, G S; Ashworth, J C; Cameron, R E; Oyen, M L

    2016-09-01

    Freeze-dried scaffolds provide regeneration templates for a wide range of tissues, due to their flexibility in physical and biological properties. Control of structure is crucial for tuning such properties, and therefore scaffold functionality. However, the common approach of modeling these scaffolds as open-cell foams does not fully account for their structural complexity. Here, the validity of the open-cell model is examined across a range of physical characteristics, rigorously linking morphology to hydration and mechanical properties. Collagen scaffolds with systematic changes in relative density were characterized using Scanning Electron Microscopy, X-ray Micro-Computed Tomography and spherical indentation analyzed in a time-dependent poroelastic framework. Morphologically, all scaffolds were mid-way between the open- and closed-cell models, approaching the closed-cell model as relative density increased. Although pore size remained constant, transport pathway diameter decreased. Larger collagen fractions also produced greater volume swelling on hydration, although the change in pore diameter was constant, and relatively small at ∼6%. Mechanically, the dry and hydrated scaffold moduli varied quadratically with relative density, as expected of open-cell materials. However, the increasing pore wall closure was found to determine the time-dependent nature of the hydrated scaffold response, with a decrease in permeability producing increasingly elastic rather than viscoelastic behavior. These results demonstrate that characterizing the deviation from the open-cell model is vital to gain a full understanding of scaffold biophysical properties, and provide a template for structural studies of other freeze-dried biomaterials. Freeze-dried collagen sponges are three-dimensional microporous scaffolds that have been used for a number of exploratory tissue engineering applications. The characterization of the structure-properties relationships of these scaffolds is

  17. Thermodynamics of aqueous solutes at high temperatures and pressures: Application of the hydration theory and implications for fluid-mediated mass transfer

    NASA Astrophysics Data System (ADS)

    Sulak, M.; Dolejs, D.

    2012-04-01

    Magmatic activity and prograde devolatilization of subducting or underplating lithologies release large quantities of aqueous fluids that act as mass and heat transfer agents in the planetary interiors. Understanding of mineral-melt-fluid interactions is essential for evaluating the effects of fluid-mediated mass transport in subduction zones, collisional orogens as well as in igneous provinces. The thermodynamic properties of aqueous species were frequently described by the Helgeson-Kirkham-Flowers equation of state [1] but its utility is limited by inavailability of the solvent dielectric properties at high pressures and temperatures, and by decoupling of species-solvent mechanical and electrostatic interactions that cannot be separated within the Born theory. Systematic description of the hydration process in a Born-Haber cycle leads to the following thermochemical contributions: (i) thermodynamic properties of an unhydrated species, (ii) the pressure-volume work required to create a cavity within the solvent to accommodate the species, described by the scaled particle theory, (iii) entropic contribution related to changes in the solute's and the solvent's kinetic degrees of freedom, and (iv) contribution from the solute-solvent molecular interactions and corresponding rearrangement of the solvent molecules to form the hydration shell. Application of the spatial correlation functions [2, 3] results in apparent Gibbs energy of aqueous species, ΔaGi = a + bT + cTlnT + dP + eTlnρ + fTρlnρ, where athrough f represent constants related to standard thermodynamic properties of aqueous species (ΔfH, S, V, cP) and to solvent volumetric properties at 298.15 K and 1 bar (ρ, α, β etc.). In phase equilibrium calculations, the number of required parameters often reduces to four (c = f = 0) while noting that H2O density as the only solvent-related property is accurately known to extreme temperatures and pressures. The equation of state parameters were calibrated for 30

  18. Wettability of Freon hydrates in crude oil/brine emulsions.

    PubMed

    Høiland, S; Askvik, K M; Fotland, P; Alagic, E; Barth, T; Fadnes, F

    2005-07-01

    The surface energy of petroleum hydrates is believed to be a key parameter with regard to hydrate morphology and plugging tendency in petroleum production. As of today, the surface energy of natural gas hydrates is unknown, but will depend on the fluids in which they grow. In this work, the wettability of Freon hydrates is evaluated from their behavior in crude oil emulsions. For emulsions stabilized by colloidal particles, the particle wettability is a governing parameter for the emulsion behavior. The transition between continuous and dispersed phases as a function of brine volume in crude oil-brine emulsions containing Freon hydrates has been determined for 12 crude oils. Silica particles are used for comparison. The results show that phase inversion is highly dependent on crude oil properties. Based on the measured points of phase inversion, the wettability of the Freon hydrates generated in each system is evaluated as being oil-wet, intermediate-wet, or water-wet. Generation of oil-wet hydrates correlates with low hydrate plugging tendency. The formation of oil-wet hydrates will prevent agglomeration into large hydrate aggregates and plugs. Hence, it is believed that the method is applicable for differentiating oils with regard to hydrate morphology.

  19. Phase behaviour and thermoelastic properties of ammonia hydrate and ice polymorphs from 0 - 2 GPa

    NASA Astrophysics Data System (ADS)

    Fortes, A. D.; Wood, I. G.; Vocadlo, L.

    2008-12-01

    Ammonia remains amongst the most plausible planetary "antifreeze" agents, and its physical properties in hydrate compounds under the appropriate conditions (roughly 0 - 5 GPa, 100 - 300 K) must be known in order for it to be accommodated in planetary models. The pressure melting curve, and the expected polymorphism of the stoichiometric ammonia hydrates have implications for the internal structure of large icy moons like Titan, leading to phase layering and the possible persistence of deep subsurface oceans, the latter being sites of high astrobiological potential. Aqueous ammonia is also a candidate substance involved in cryomagmatism on Titan, and again the melting behaviour, and densities of liquids and solids, in the ammonia-water system must be known to model properly the partial melting and propagation of magma. We describe the results of a series of powder neutron diffraction experiments over the range 0 - 2.0 GPa, 150 - 280 K which were carried out with the objective of determining the phase behaviour and thermoelastic properties of ammonia dihydrate. In addition to the low-pressure cubic crystalline phase, ADH I, we have identified two closely related monoclinic polymorphs of ammonia dihydrate (ADH IIa and IIb) in the range 0.45 - 0.60 GPa (at 175 K), and have determined that this phase dissociates to a mixture of ammonia monohydrate phase II and ice II when warmed to ~190 K, which in turn melts at a binary eutectic at ~196 K; AMH II has a large (Z = 16) orthorhombic unit cell. Above 0.60 GPa, an orthorhombic polymorph of ammonia dihydrate, which we have referred to previously as ADH IV, persists to pressures > 3 GPa, and appears to be the liquidus phase over this whole pressure range. We have observed this phase co- existing with both ice II and ice VI. Here we describe the most plausible synthesis of the high-pressure phase diagram which explains our observations, and provide measurements of the densities, thermal expansion, bulk moduli, and crystal

  20. The Association of Hydration Status with Physical Signs, Symptoms and Survival in Advanced Cancer—The Use of Bioelectrical Impedance Vector Analysis (BIVA) Technology to Evaluate Fluid Volume in Palliative Care: An Observational Study

    PubMed Central

    Mayland, Catriona R.; Mason, Stephen; Cox, Trevor F.; Varro, Andrea; Ellershaw, John

    2016-01-01

    Background Hydration in advanced cancer is a controversial area; however, current hydration assessments methods are poorly developed. Bioelectrical impedance vector analysis (BIVA) is an accurate hydration tool; however its application in advanced cancer has not been explored. This study used BIVA to evaluate hydration status in advanced cancer to examine the association of fluid status with symptoms, physical signs, renal biochemical measures and survival. Materials and methods An observational study of 90 adults with advanced cancer receiving care in a UK specialist palliative care inpatient unit was conducted. Hydration status was assessed using BIVA in addition to assessments of symptoms, physical signs, performance status, renal biochemical measures, oral fluid intake and medications. The association of clinical variables with hydration was evaluated using regression analysis. A survival analysis was conducted to examine the influence of hydration status and renal failure. Results The hydration status of participants was normal in 43 (47.8%), 'more hydrated' in 37 (41.1%) and 'less hydrated' in 10 (11.1%). Lower hydration was associated with increased symptom intensity (Beta = -0.29, p = 0.04) and higher scores for physical signs associated with dehydration (Beta = 10.94, p = 0.02). Higher hydration was associated with oedema (Beta = 2.55, p<0.001). Median survival was statistically significantly shorter in 'less hydrated' patients (44 vs. 68 days; p = 0.049) and in pre-renal failure (44 vs. 100 days; p = 0.003). Conclusions In advanced cancer, hydration status was associated with clinical signs and symptoms. Hydration status and pre-renal failure were independent predictors of survival. Further studies can establish the utility of BIVA as a standardised hydration assessment tool and explore its potential research application, in order to inform the clinical management of fluid balance in patients with advanced cancer. PMID:27673684

  1. Clarification of the ripple phase of lecithin bilayers using fully hydrated, aligned samples.

    PubMed

    Katsaras, J; Tristram-Nagle, S; Liu, Y; Headrick, R L; Fontes, E; Mason, P C; Nagle, J F

    2000-05-01

    Aligned samples of lipid bilayers have been fully hydrated from water vapor in a different type of x-ray chamber. Our use of aligned samples resolves issues concerning the ripple phase that were ambiguous from previous powder studies. In particular, our x-ray diffraction data conclusively demonstrate that, on cooling from the L alpha to the P beta' phase, both chiral and racemic samples of dipalmitoyl phosphatidylcholine (DPPC) exhibit phase coexistence of long and short ripples with a ripple wavelength ratio lambda L/lambda S approximately 1.8. Moreover, the long ripple always forms an orthorhombic unit cell (gamma L = 90 degrees), strongly supporting the possibility that these ripples are symmetric. In contrast, gamma S for short ripples was consistently different from 90 degrees, implying asymmetric ripples. We continue to find no evidence that chirality affects the structure of rippled bilayers. The relative thermodynamic stability of the two types of ripples was investigated and a qualitative free energy diagram is given in which the long ripple phase is metastable. Finally, we suggest a kinetic mechanism, involving loss of water, that promotes formation of the metastable long ripple phase for special thermal protocols.

  2. Comparative Assessment of Advanced Gay Hydrate Production Methods

    SciTech Connect

    M. D. White; B. P. McGrail; S. K. Wurstner

    2009-06-30

    Displacing natural gas and petroleum with carbon dioxide is a proven technology for producing conventional geologic hydrocarbon reservoirs, and producing additional yields from abandoned or partially produced petroleum reservoirs. Extending this concept to natural gas hydrate production offers the potential to enhance gas hydrate recovery with concomitant permanent geologic sequestration. Numerical simulation was used to assess a suite of carbon dioxide injection techniques for producing gas hydrates from a variety of geologic deposit types. Secondary hydrate formation was found to inhibit contact of the injected CO{sub 2} regardless of injectate phase state, thus diminishing the exchange rate due to pore clogging and hydrate zone bypass of the injected fluids. Additional work is needed to develop methods of artificially introducing high-permeability pathways in gas hydrate zones if injection of CO{sub 2} in either gas, liquid, or micro-emulsion form is to be more effective in enhancing gas hydrate production rates.

  3. Thermal conductivity of hydrate-bearing sediments

    USGS Publications Warehouse

    Cortes, Douglas D.; Martin, Ana I.; Yun, Tae Sup; Francisca, Franco M.; Santamarina, J. Carlos; Ruppel, Carolyn

    2009-01-01

    A thorough understanding of the thermal conductivity of hydrate-bearing sediments is necessary for evaluating phase transformation processes that would accompany energy production from gas hydrate deposits and for estimating regional heat flow based on the observed depth to the base of the gas hydrate stability zone. The coexistence of multiple phases (gas hydrate, liquid and gas pore fill, and solid sediment grains) and their complex spatial arrangement hinder the a priori prediction of the thermal conductivity of hydrate-bearing sediments. Previous studies have been unable to capture the full parameter space covered by variations in grain size, specific surface, degree of saturation, nature of pore filling material, and effective stress for hydrate-bearing samples. Here we report on systematic measurements of the thermal conductivity of air dry, water- and tetrohydrofuran (THF)-saturated, and THF hydrate–saturated sand and clay samples at vertical effective stress of 0.05 to 1 MPa (corresponding to depths as great as 100 m below seafloor). Results reveal that the bulk thermal conductivity of the samples in every case reflects a complex interplay among particle size, effective stress, porosity, and fluid-versus-hydrate filled pore spaces. The thermal conductivity of THF hydrate–bearing soils increases upon hydrate formation although the thermal conductivities of THF solution and THF hydrate are almost the same. Several mechanisms can contribute to this effect including cryogenic suction during hydrate crystal growth and the ensuing porosity reduction in the surrounding sediment, increased mean effective stress due to hydrate formation under zero lateral strain conditions, and decreased interface thermal impedance as grain-liquid interfaces are transformed into grain-hydrate interfaces.

  4. Fluid Retention and Utility of Practical Hydration Markers to Detect Three Levels of Recovery Fluid Intake in Male Runners.

    PubMed

    Wilcoxson, Mary Caitlin Stevenson; Johnson, Samantha Louise; Pribyslavska, Veronika; Green, James Mathew; O'Neal, Eric Kyle

    2017-04-01

    Runners are unlikely to consume fluid during training bouts increasing the importance of recovery rehydration efforts. This study assessed urine specific gravity (USG) responses following runs in the heat with different recovery fluid intake volumes. Thirteen male runners completed 3 evening running sessions resulting in approximately 2,200 ± 300 ml of sweat loss (3.1 ± 0.4% body mass) followed by a standardized dinner and breakfast. Beverage fluid intake (pre/postbreakfast) equaled 1,565/2,093 ml (low; L), 2,065/2,593 ml (moderate; M) and 2,565/3,356 mL (high; H). Voids were collected in separate containers. Increased urine output resulted in no differences (p > .05) in absolute mean fluid retention for waking or first postbreakfast voids. Night void averages excluding the first void postrun (1.025 ± 0.008; 1.013 ± 0.008; 1.006 ± 0.003), first morning (1.024 ± 0.004; 1.015 ± 0.005; 1.014 ± 0.005), and postbreakfast (1.022 ± 0.007; 1.014 ± 0.007; 1.008 ± 0.003) USG were higher (p < .05) for L versus M and H respectively and more clearly differentiated fluid intake volume between L and M than color or thirst sensation. Waking (r = -0.66) and postbreakfast (r = -0.71) USG were both significantly correlated (p < .001) with fluid replacement percentage, but not absolute fluid retention. Fluid intake M was reported as most similar to normal consumption (5.6 ± 1.0 on 0-10 scale) after breakfast and equaled 122 ± 16% of sweat losses. Retention data suggests consumption above this level is not warranted or actually practiced by most runners drinking ad libitum, but that periodic prerun USG assessment may be useful for coaches to detect runners that habitually consume low levels of fluids between training bouts in warm seasons.

  5. Mantle hydration and Cl-rich fluids in the subduction forearc

    NASA Astrophysics Data System (ADS)

    Reynard, Bruno

    2016-12-01

    In the forearc region, aqueous fluids are released from the subducting slab at a rate depending on its thermal state. Escaping fluids tend to rise vertically unless they meet permeability barriers such as the deformed plate interface or the Moho of the overriding plate. Channeling of fluids along the plate interface and Moho may result in fluid overpressure in the oceanic crust, precipitation of quartz from fluids, and low Poisson ratio areas associated with tremors. Above the subducting plate, the forearc mantle wedge is the place of intense reactions between dehydration fluids from the subducting slab and ultramafic rocks leading to extensive serpentinization. The plate interface is mechanically decoupled, most likely in relation to serpentinization, thereby isolating the forearc mantle wedge from convection as a cold, potentially serpentinized and buoyant, body. Geophysical studies are unique probes to the interactions between fluids and rocks in the forearc mantle, and experimental constrains on rock properties allow inferring fluid migration and fluid-rock reactions from geophysical data. Seismic velocities reveal a high degree of serpentinization of the forearc mantle in hot subduction zones, and little serpentinization in the coldest subduction zones because the warmer the subduction zone, the higher the amount of water released by dehydration of hydrothermally altered oceanic lithosphere. Interpretation of seismic data from petrophysical constrain is limited by complex effects due to anisotropy that needs to be assessed both in the analysis and interpretation of seismic data. Electrical conductivity increases with increasing fluid content and temperature of the subduction. However, the forearc mantle of Northern Cascadia, the hottest subduction zone where extensive serpentinization was first demonstrated, shows only modest electrical conductivity. Electrical conductivity may vary not only with the thermal state of the subduction zone, but also with time for

  6. Transient seafloor venting from methane hydrate dissociation on continental slopes

    NASA Astrophysics Data System (ADS)

    Darnell, K.; Flemings, P. B.

    2014-12-01

    We present model results of hydrate dynamics that show the development of a gas chimney at three-phase equilibrium where gas flows through the marine hydrate stability zone and vents into the ocean during transient adjustment to imposed warming. Previous studies show venting occurs at the seaward retreating up-dip boundary of the hydrate stability zone during warming, whereas our results are the first to provide a mechanism for temporary gas venting vertically through the hydrate stability zone during warming. Transient behavior records the combined effect of hydrate dissociation from seafloor warming and secondary hydrate formation from gas produced by hydrate dissociation. We perform simulations of seafloor warming with a 1-d, unsteady, multiphase, fluid-flow model of methane hydrate dynamics. We assume an initial hydrate layer 6o meters thick with 10% pore volume saturation with seawater occupying the remaining domain above and below. We apply an instantaneous temperature increase at the seafloor. The temperature increase propagates downward through the deposit and initiates hydrate dissociation at the base of the deposit. Gas sourced from dissociation migrates upward and re-solidifies as hydrate to a maximum saturation set by a three-phase equilibrium salinity constraint. Additional gas migrates further upward to repeat the process. A chimney defined by dissociation at the bottom, secondary hydrate formation at the top, and maintained at three-phase equilibrium on the interior propagates to the seafloor in 10 kyr. Gas and salt then exit the system by venting into the ocean until dissociation stops producing new gas. Elevated salinities then diffuse to background seawater values. A shorter, shoaled hydrate deposit remains after ~100 kyr. This result shows that temporary venting can potentially occur anywhere along the hydrate stability zone during seafloor warming while retaining a hydrate deposit at steady state.

  7. Separation properties of saccharides on a hydrophilic stationary phase having hydration layer formed zwitterionic copolymer.

    PubMed

    Kamichatani, Waka; Inoue, Yoshinori; Yamamoto, Atsushi

    2015-01-01

    A novel water-holding adsorbent bonded with a zwitterionic polymer, diallylamine-maleic acid copolymer, was developed. With this adsorbent, hydrophilic solutes are partitioned by a hydration layer that forms on the zwitterions, as a main separating force. When the adsorbent was used to separate saccharides by normal-phase partition chromatography, the saccharides eluted in the order, mono-, di- and trisaccharide. The elution profile for mono- and di-saccharides was similar but not identical to that on anion exchange columns. This indicated that the adsorbent exhibited a complex retention behavior by the existence of both anion and cation exchange moieties in the functional polymer. Selecting Na(+) as a counter-ion of the maleate moiety enhanced the retention of saccharide. When used in an high performance liquid chromatography (HPLC) system with gradient elution, the adsorbent enabled the simultaneous analysis of mono-, di- and oligosaccharides.

  8. Thermodynamic and kinetic stability of zwitterionic histidine: Effects of gas phase hydration

    NASA Astrophysics Data System (ADS)

    Lee, Sung-Sik; Kim, Ju-Young; Han, Yuna; Shim, Hyun-Jin; Lee, Sungyul

    2015-09-01

    We present calculations for histidine-(H2O)n (n = 0-6) to examine the effects of micro-hydrating water molecules on the relative stability of the zwitterionic vs. canonical forms of histidine. We calculate the structures and Gibbs free energies of the conformers at wB97XD/6-311++G(d,p) level of theory. We find that six water molecules are required to produce the thermodynamically stable histidine zwitterion. By calculating the barriers of canonical ↔ zwitterionic transformation, we predict that both the most stable canonical and zwitterionic forms of histidine-(H2O)6 may be observed in low temperature gas phase environment.

  9. Clathrate hydrates in nature.

    PubMed

    Hester, Keith C; Brewer, Peter G

    2009-01-01

    Scientific knowledge of natural clathrate hydrates has grown enormously over the past decade, with spectacular new findings of large exposures of complex hydrates on the sea floor, the development of new tools for examining the solid phase in situ, significant progress in modeling natural hydrate systems, and the discovery of exotic hydrates associated with sea floor venting of liquid CO2. Major unresolved questions remain about the role of hydrates in response to climate change today, and correlations between the hydrate reservoir of Earth and the stable isotopic evidence of massive hydrate dissociation in the geologic past. The examination of hydrates as a possible energy resource is proceeding apace for the subpermafrost accumulations in the Arctic, but serious questions remain about the viability of marine hydrates as an economic resource. New and energetic explorations by nations such as India and China are quickly uncovering large hydrate findings on their continental shelves.

  10. The impact of transitions between two-fluid and three-fluid phases on fluid configuration and fluid-fluid interfacial area in porous media

    NASA Astrophysics Data System (ADS)

    Carroll, Kenneth C.; McDonald, Kieran; Marble, Justin; Russo, Ann E.; Brusseau, Mark L.

    2015-09-01

    Multiphase-fluid distribution and flow is inherent in numerous areas of hydrology. Yet pore-scale characterization of transitions between two and three immiscible fluids is limited. The objective of this study was to examine the impact of such transitions on the pore-scale configuration of organic liquid in a multifluid system comprising natural porous media. Three-dimensional images of an organic liquid (trichloroethene) in two-phase (organic-liquid/water) and three-phase (air/organic-liquid/water) systems were obtained using X-ray microtomography before and after drainage and imbibition. Upon transition from a two-phase to a three-phase system, a significant portion of the organic liquid (intermediate wetting fluid) was observed to exist as lenses and films in contact with air (nonwetting fluid). In these cases, the air was either encased by or contiguous to the organic liquid. The presence of air resulted in an increase in the surface-area-to-volume ratios for the organic-liquid blobs. Upon imbibition, the air was displaced downgradient, and concomitantly, the morphology of the organic-liquid blobs no longer in contact with air reverted to that characteristic of a two-phase distribution (i.e., more spherical blobs and ganglia). This change in morphology resulted in a reduction in the surface-area-to-volume ratio. These results illustrate the impact of transitions between two-phase and three-phase conditions on fluid configuration, and they demonstrate the malleable nature of fluid configuration under dynamic, multiphase-flow conditions. The results have implications for characterizing and modeling pore-scale flow and mass transfer processes.

  11. Hydration State and Aqueous Phase Connectivity Shape Microbial Dispersal Rates in Unsaturated Angular Pore Networks

    NASA Astrophysics Data System (ADS)

    Or, D.; Ebrahimi, A.

    2014-12-01

    The limited dispersal of self-propelled microorganisms and constrained nutrient transport in unsaturated soils are considered key factors in the promotion and maintenance of soil microbial diversity. Despite the importance of microbial dispersal to biogeochemical and ecological functioning of soil, little is known about how pore spaces and hydration conditions affect dispersal ranges and rates of motile bacteria. To address these questions quantitatively, we developed a novel 3-D pore network model (PNM) composed of triangular bonds connected to cubic (volumeless) bonds to mimic the salient geometrical and physical properties of natural pore spaces. Within this abstracted physical domain we employed individual based models for motile microorganisms that are capable of motion, nutrient consumption, growth and cell division. We focused on dispersal rates through the network as a function of hydration conditions through its impact on aqueous phase fragmentation that suppress nutrient diffusion (hence growth rates) and dispersal rates in good agreement with limited experimental data. Chemotactically-biased mean travel rates of microbial cells across the saturated PNM was ~3 mm/hr and decreased exponentially to 0.45 mm/hr for matric potential of (at dispersal practically ceases and cells are pinned by capillary forces). Individual-based results were upscaled to describe population scale dispersal rates, and PNM predictions considering different microbial cell sizes were in good agreement with experimental results for unsaturated soils. The role of convection for most unsaturated conditions was negligible relative to self-motility highlighting the need to constrain continuum models with respect to cell size and motility to imporve predictions of transport of motile microorganisms. The modeling platform confirms universal predictions based on percolation theory for the onset of aqueous phase fragmentation that limit dispersal and provide niches essential for species

  12. Absorption mechanism of DHP107, an oral paclitaxel formulation that forms a hydrated lipidic sponge phase

    PubMed Central

    Jang, Yura; Chung, Hye Jin; Hong, Jung Wan; Yun, Cheol-Won; Chung, Hesson

    2017-01-01

    Paclitaxel is a most widely used anticancer drug with low oral bioavailability, thus it is currently administered via intravenous infusion. DHP107 is a lipid-based paclitaxel formulation that can be administered as an oral solution. In this study, we investigated the mechanism of paclitaxel absorption after oral administration of DHP107 in mice and rats by changing the dosing interval, and evaluated the influence of bile excretion. DHP107 was orally administered to mice at various dosing intervals (2, 4, 8, 12, 24 h) to examine how residual DHP107 affected paclitaxel absorption during subsequent administration. Studies with small-angle X-ray diffraction (SAXS) and cryo-transmission electron microscopy (cryo-TEM) showed that DHP107 formed a lipidic sponge phase after hydration. The AUC values after the second dose were smaller than those after the first dose, which was correlated to the induction of expression of P-gp and CYP in the livers and small intestines from 2 h to 7 d after the first dose. The smaller AUC value observed after the second dose was also attributed to the intestinal adhesion of residual formulation. The adhered DHP107 may have been removed by ingested food, thus resulting in a higher AUC. In ex vivo and in vivo mucoadhesion studies, the formulation adhered to the villi for up to 24 h, and the amount of DHP107 that adhered was approximately half that of monoolein. The paclitaxel absorption after administration of DHP107 was not affected by bile in the cholecystectomy mice. The dosing interval and food intake affect the oral absorption of paclitaxel from DHP107, which forms a mucoadhesive sponge phase after hydration. Bile excretion does not affect the absorption of paclitaxel from DHP107 in vivo. PMID:27867185

  13. Absorption mechanism of DHP107, an oral paclitaxel formulation that forms a hydrated lipidic sponge phase.

    PubMed

    Jang, Yura; Chung, Hye Jin; Hong, Jung Wan; Yun, Cheol-Won; Chung, Hesson

    2017-01-01

    Paclitaxel is a most widely used anticancer drug with low oral bioavailability, thus it is currently administered via intravenous infusion. DHP107 is a lipid-based paclitaxel formulation that can be administered as an oral solution. In this study, we investigated the mechanism of paclitaxel absorption after oral administration of DHP107 in mice and rats by changing the dosing interval, and evaluated the influence of bile excretion. DHP107 was orally administered to mice at various dosing intervals (2, 4, 8, 12, 24 h) to examine how residual DHP107 affected paclitaxel absorption during subsequent administration. Studies with small-angle X-ray diffraction (SAXS) and cryo-transmission electron microscopy (cryo-TEM) showed that DHP107 formed a lipidic sponge phase after hydration. The AUC values after the second dose were smaller than those after the first dose, which was correlated to the induction of expression of P-gp and CYP in the livers and small intestines from 2 h to 7 d after the first dose. The smaller AUC value observed after the second dose was also attributed to the intestinal adhesion of residual formulation. The adhered DHP107 may have been removed by ingested food, thus resulting in a higher AUC. In ex vivo and in vivo mucoadhesion studies, the formulation adhered to the villi for up to 24 h, and the amount of DHP107 that adhered was approximately half that of monoolein. The paclitaxel absorption after administration of DHP107 was not affected by bile in the cholecystectomy mice. The dosing interval and food intake affect the oral absorption of paclitaxel from DHP107, which forms a mucoadhesive sponge phase after hydration. Bile excretion does not affect the absorption of paclitaxel from DHP107 in vivo.

  14. New type of phase transformation in gas hydrate forming system at high pressures. Some experimental and computational investigations of clathrate hydrates formed in the SF6-H2O system.

    PubMed

    Aladko, E Ya; Ancharov, A I; Goryainov, S V; Kurnosov, A V; Larionov, E G; Likhacheva, A Yu; Manakov, A Yu; Potemkin, V A; Sheromov, M A; Teplykh, A E; Voronin, V I; Zhurko, F V

    2006-10-26

    In this work, we present a new, previously unknown type of structure transformation in the high-pressure gas hydrates, which is related to the existence of two different isostructural phases of the sulfur hexafluoride clathrate hydrates. Each of these phases has its own stability field on the phase diagram. The difference between these hydrates consists of partial filling of small D cages by SF(6) molecules in the high-pressure phase; at 900 MPa, about half of small cages are occupied. Our calculations indicate that the increase of population of small cavities is improbable, therefore, at any pressure value, a part of the cavities remains vacant and the packing density is relatively low. This fact allowed us to suppose the existence of the upper pressure limit of hydrate formation in this system; the experimental results obtained confirm this assumption.

  15. Cell sorting is analogous to phase ordering in fluids

    PubMed Central

    Beysens, D. A.; Forgacs, G.; Glazier, J. A.

    2000-01-01

    Morphogenetic processes, like sorting or spreading of tissues, characterize early embryonic development. An analogy between viscoelastic fluids and certain properties of embryonic tissues helps interpret these phenomena. The values of tissue-specific surface tensions are consistent with the equilibrium configurations that the Differential Adhesion Hypothesis predicts such tissues reach after sorting and spreading. Here we extend the fluid analogy to cellular kinetics. The same formalism applies to recent experiments on the kinetics of phase ordering in two-phase fluids. Our results provide biologically relevant information on the strength of binding between cell adhesion molecules under near-physiological conditions. PMID:10944216

  16. The role of intermolecular interactions in the prediction of the phase equilibria of carbon dioxide hydrates

    NASA Astrophysics Data System (ADS)

    Costandy, Joseph; Michalis, Vasileios K.; Tsimpanogiannis, Ioannis N.; Stubos, Athanassios K.; Economou, Ioannis G.

    2015-09-01

    The direct phase coexistence methodology was used to predict the three-phase equilibrium conditions of carbon dioxide hydrates. Molecular dynamics simulations were performed in the isobaric-isothermal ensemble for the determination of the three-phase coexistence temperature (T3) of the carbon dioxide-water system, at pressures in the range of 200-5000 bar. The relative importance of the water-water and water-guest interactions in the prediction of T3 is investigated. The water-water interactions were modeled through the use of TIP4P/Ice and TIP4P/2005 force fields. The TraPPE force field was used for carbon dioxide, and the water-guest interactions were probed through the modification of the cross-interaction Lennard-Jones energy parameter between the oxygens of the unlike molecules. It was found that when using the classic Lorentz-Berthelot combining rules, both models fail to predict T3 accurately. In order to rectify this problem, the water-guest interaction parameters were optimized, based on the solubility of carbon dioxide in water. In this case, it is shown that the prediction of T3 is limited only by the accuracy of the water model in predicting the melting temperature of ice.

  17. The role of intermolecular interactions in the prediction of the phase equilibria of carbon dioxide hydrates.

    PubMed

    Costandy, Joseph; Michalis, Vasileios K; Tsimpanogiannis, Ioannis N; Stubos, Athanassios K; Economou, Ioannis G

    2015-09-07

    The direct phase coexistence methodology was used to predict the three-phase equilibrium conditions of carbon dioxide hydrates. Molecular dynamics simulations were performed in the isobaric-isothermal ensemble for the determination of the three-phase coexistence temperature (T3) of the carbon dioxide-water system, at pressures in the range of 200-5000 bar. The relative importance of the water-water and water-guest interactions in the prediction of T3 is investigated. The water-water interactions were modeled through the use of TIP4P/Ice and TIP4P/2005 force fields. The TraPPE force field was used for carbon dioxide, and the water-guest interactions were probed through the modification of the cross-interaction Lennard-Jones energy parameter between the oxygens of the unlike molecules. It was found that when using the classic Lorentz-Berthelot combining rules, both models fail to predict T3 accurately. In order to rectify this problem, the water-guest interaction parameters were optimized, based on the solubility of carbon dioxide in water. In this case, it is shown that the prediction of T3 is limited only by the accuracy of the water model in predicting the melting temperature of ice.

  18. Hydration-Induced Phase Separation in Amphiphilic Polymer Matrices and its Influence on Voclosporin Release

    PubMed Central

    Khan, I. John; Murthy, N. Sanjeeva; Kohn, Joachim

    2012-01-01

    Voclosporin is a highly potent, new cyclosporine-A derivative that is currently in Phase 3 clinical trials in the USA as a potential treatment for inflammatory diseases of the eye. Voclosporin represents a number of very sparingly soluble drugs that are difficult to administer. We therefore selected it as a model drug that is dispersed within amphiphilic polymer matrices, and investigated the changing morphology of the matrices using neutron and x-ray scattering during voclosporin release and polymer resorption. The hydrophobic segments of the amphiphilic polymer chain are comprised of desaminotyrosyl-tyrosine ethyl ester (DTE) and desaminotyrosyl-tyrosine (DT), and the hydrophilic component is poly(ethylene glycol) (PEG). Water uptake in these matrices resulted in the phase separation of hydrophobic and hydrophilic domains that are a few hundred Angstroms apart. These water-driven morphological changes influenced the release profile of voclosporin and facilitated a burst-free release from the polymer. No such morphological reorganization was observed in poly(lactide-co-glycolide) (PLGA), which exhibits an extended lag period, followed by a burst-like release of voclosporin when the polymer was degraded. An understanding of the effect of polymer composition on the hydration behavior is central to understanding and controlling the phase behavior and resorption characteristics of the matrix for achieving long-term controlled release of hydrophobic drugs such as voclosporin. PMID:24955746

  19. Hydration-Induced Phase Separation in Amphiphilic Polymer Matrices and its Influence on Voclosporin Release

    SciTech Connect

    Khan, I. John; Murthy, N. Sanjeeva; Kohn, Joachim

    2015-10-30

    Voclosporin is a highly potent, new cyclosporine -- a derivative that is currently in Phase 3 clinical trials in the USA as a potential treatment for inflammatory diseases of the eye. Voclosporin represents a number of very sparingly soluble drugs that are difficult to administer. It was selected as a model drug that is dispersed within amphiphilic polymer matrices, and investigated the changing morphology of the matrices using neutron and x-ray scattering during voclosporin release and polymer resorption. The hydrophobic segments of the amphiphilic polymer chain are comprised of desaminotyrosyl-tyrosine ethyl ester (DTE) and desaminotyrosyl-tyrosine (DT), and the hydrophilic component is poly(ethylene glycol) (PEG). Water uptake in these matrices resulted in the phase separation of hydrophobic and hydrophilic domains that are a few hundred Angstroms apart. These water-driven morphological changes influenced the release profile of voclosporin and facilitated a burst-free release from the polymer. No such morphological reorganization was observed in poly(lactide-co-glycolide) (PLGA), which exhibits an extended lag period, followed by a burst-like release of voclosporin when the polymer was degraded. An understanding of the effect of polymer composition on the hydration behavior is central to understanding and controlling the phase behavior and resorption characteristics of the matrix for achieving long-term controlled release of hydrophobic drugs such as voclosporin.

  20. The transient performance of a two-phase fluid reservoir

    NASA Technical Reports Server (NTRS)

    Chi, Joseph

    1989-01-01

    Thermal control of future large, high power spacecraft will require a two-phase fluid central bus. The two-phase fluid reservoir is a critical component in the two-phase fluid bus. It both controls the saturation temperature and provides a space for volumetric changes. A dynamic reservoir simulation model does not currently exist, but it is needed to expedite efforts and reduce risk. During 1989 an effort was made to develop a simulation model of the transient performance of a two-phase fluid reservoir. As a beginning, a preliminary model was developed. It is based upon component mathematical models in lumped parametric form and build upon five component mathematical models for calculating dynamic responses of two-phase fluid reservoirs, primary feedback elements, controller commands, heater actuators, and reservoir heaters. As much as possible, the model took advantage of the available SINDA'85/FLUINT thermal/fluid integrator. Additional calculation logic and computer subroutines were developed to complete implementation of the model. The model is capable of simulating dynamic response of an equilibrium two-phase fluid reservoir. Modification of the model to include the liquid/vapor nonequilibrium is required for applications of the model to simulate performance of reservoir in which the liquid and vapor phases of the reservoir fluid are not in equilibrium. In addition, the model in its present form, needs to be refined in several respects. More empirical data are needed to guide the model development. The model may then be used to conduct a full parametric study of two-phase fluid reservoirs. More complexities in two-phaes flow regions in laboratory and flight conditions may have to be considered eventually if empirical data cannot be simulated satisfactorily. System with other components arrangement also need to be simulated if optimization is ever to be attained. The present model does, however, preliminarily demonstrates that such analyses are quite possible

  1. Optimization of crystal nucleation close to a metastable fluid-fluid phase transition

    PubMed Central

    Wedekind, Jan; Xu, Limei; Buldyrev, Sergey V.; Stanley, H. Eugene; Reguera, David; Franzese, Giancarlo

    2015-01-01

    The presence of a metastable fluid-fluid critical point is thought to dramatically influence the crystallization pathway, increasing the nucleation rate by many orders of magnitude over the predictions of classical nucleation theory. We use molecular dynamics simulations to study the kinetics of crystallization in the vicinity of this metastable critical point and throughout the metastable fluid-fluid phase diagram. To quantitatively understand how the fluid-fluid phase separation affects the crystal nucleation, we evaluate accurately the kinetics and reconstruct the thermodynamic free-energy landscape of crystal formation. Contrary to expectations, we find no special advantage of the proximity of the metastable critical point on the crystallization rates. However, we find that the ultrafast formation of a dense liquid phase causes the crystallization to accelerate both near the metastable critical point and almost everywhere below the fluid-fluid spinodal line. These results unveil three different scenarios for crystallization that could guide the optimization of the process in experiments PMID:26095898

  2. How Hydrate Saturation Anomalies are Diffusively Constructed and Advectively Smoothed

    NASA Astrophysics Data System (ADS)

    Rempel, A. W.; Irizarry, J. T.; VanderBeek, B. P.; Handwerger, A. L.

    2015-12-01

    The physical processes that control the bulk characteristics of hydrate reservoirs are captured reasonably well by long-established model formulations that are rooted in laboratory-verified phase equilibrium parameterizations and field-based estimates of in situ conditions. More detailed assessments of hydrate distribution, especially involving the occurrence of high-saturation hydrate anomalies have been more difficult to obtain. Spatial variations in sediment properties are of central importance for modifying the phase behavior and promoting focussed fluid flow. However, quantitative predictions of hydrate anomaly development cannot be made rigorously without also addressing the changes in phase behavior and mechanical balances that accompany changes in hydrate saturation level. We demonstrate how pore-scale geometrical controls on hydrate phase stability can be parameterized for incorporation in simulations of hydrate anomaly development along dipping coarse-grained layers embedded in a more fine-grained background that is less amenable to fluid transport. Model simulations demonstrate how hydrate anomaly growth along coarse-layer boundaries is promoted by diffusive gas transport from the adjacent fine-grained matrix, while advective transport favors more distributed growth within the coarse-grained material and so effectively limits the difference between saturation peaks and background levels. Further analysis demonstrates how sediment contacts are unloaded once hydrate saturation reaches sufficient levels to form a load-bearing skeleton that can evolve to produce segregated nodules and lenses. Decomposition of such growth forms poses a significant geohazard that is expected to be particularly sensitive to perturbations induced by gas extraction. The figure illustrates the predicted evolution of hydrate saturation Sh in a coarse-grained dipping layer showing how prominent bounding hydrate anomalies (spikes) supplied by diffusive gas transport at early times

  3. A multi-phase, micro-dispersion reactor for the continuous production of methane gas hydrate

    SciTech Connect

    Taboada Serrano, Patricia L; Ulrich, Shannon M; Szymcek, Phillip; McCallum, Scott; Phelps, Tommy Joe; Palumbo, Anthony Vito; Tsouris, Costas

    2009-01-01

    A continuous-jet hydrate reactor originally developed to generate a CO2 hydrate stream has been modified to continuously produce CH4 hydrate. The reactor has been tested in the Seafloor Process Simulator (SPS), a 72-L pressure vessel available at Oak Ridge National Laboratory. During experiments, the reactor was submerged in water inside the SPS and received water from the surrounding through a submersible pump and CH4 externally through a gas booster pump. Thermodynamic conditions in the hydrate stability regime were employed in the experiments. The reactor produced a continuous stream of CH4 hydrate, and based on pressure values and amount of gas injected, the conversion of gas to hydrate was estimated. A conversion of up to 70% was achieved using this reactor.

  4. Molecular dynamics investigation of the structure of a fully hydrated gel-phase dipalmitoylphosphatidylcholine bilayer.

    PubMed Central

    Tu, K; Tobias, D J; Blasie, J K; Klein, M L

    1996-01-01

    We report the results of a constant pressure and temperature molecular dynamics simulation of a gel-phase dipalmitoylphosphatidylcholine bilayer with nw = 11.8 water molecules/lipid at 19 degrees C. The results of the simulation were compared in detail with a variety of x-ray and neutron diffraction data. The average positions of specific carbon atoms along the bilayer normal and the interlamellar spacing and electron density profile were in very good agreement with neutron and x-ray diffraction results. The area per lipid and the details of the in-plane hydrocarbon chain structure were in excellent agreement with wide-angle x-ray diffraction results. The only significant deviation is that the chains met in a pleated arrangement at the bilayer center, although they should be parallel. Novel discoveries made in the present work include the observation of a bimodal headgroup orientational distribution. Furthermore, we found that there are a significant number of gauche conformations near the ends of the hydrocarbon chains and, in addition to verifying a previous suggestion that there is partial rotational ordering in the hydrocarbon chains, that the two chains in a given molecule are inequivalent with respect to rotations. Finally, we have investigated the lipid/water interface and found that the water penetrates beneath the headgroups, but not as far as the carbonyl groups, that the phosphates are strongly hydrated almost exclusively at the nonesterified oxygen atoms, and that the hydration of the ammonium groups is more diffuse, with some water molecules concentrated in the grooves between the methyl groups. Images FIGURE 2 FIGURE 7 FIGURE 8 FIGURE 12 FIGURE 16 PMID:8789079

  5. Phase behavior of coal fluids: Data for correlation development

    SciTech Connect

    Robinson, R.L. Jr.

    1990-02-06

    The effective design and operation of processes for conversion of coal to fluid fuels requires accurate knowledge of the phase behavior of the fluid mixtures encountered in the conversion process. Multiple phases are present in essentially all stages of feed preparation, conversion reactions and product separation; thus, knowledge of the behavior of these multiple phases is important in each step. The overall objective of the author's work is to develop accurate predictive methods for representation of vapor-liquid equilibria in systems encountered in coal conversion processes. 59 refs., 6 figs., 7 tabs.

  6. Stability evaluation of hydrate-bearing sediments during thermally-driven hydrate dissociation

    NASA Astrophysics Data System (ADS)

    Kwon, T.; Cho, G.; Santamarina, J.; Kim, H.; Lee, J.

    2009-12-01

    Hydrate-bearing sediments may destabilize spontaneously as part of geological processes, unavoidably during petroleum drilling/production operations, or intentionally as part of gas extraction from the hydrate itself. In all cases, high pore fluid pressure generation is anticipated during hydrate dissociation. This study examined how thermal changes destabilize gas hydrate-bearing sediments. First, an analytical formulation was derived for predicting fluid pressure evolution in hydrate-bearing sediments subjected to thermal stimulation without mass transfer. The formulation captures the self-preservation behavior, calculates the hydrate and free gas quantities during dissociation, considering effective stress-controlled sediment compressibility and gas solubility in aqueous phase. Pore fluid pressure generation is proportional to the initial hydrate fraction and the sediment bulk stiffness; is inversely proportional to the initial gas fraction and gas solubility; and is limited by changes in effective stress that cause the failure of the sediment. Second, the analytical formulation for hydrate dissociation was incorporated as a user-defined function into a verified finite difference code (FLAC2D). The underlying physical processes of hydrate-bearing sediments, including hydrate dissociation, self-preservation, pore pressure evolution, gas dissolution, and sediment volume expansion, were coupled with the thermal conduction, pore fluid flow, and mechanical response of sediments. We conducted the simulations for a duration of 20 years, assuming a constant-temperature wellbore transferred heat to the surrounding hydrate-bearing sediments, resulting in dissociation of methane hydrate in the well vicinity. The model predicted dissociation-induced excess pore fluid pressures which resulted in a large volume expansion and plastic deformation of the sediments. Furthermore, when the critical stress was reached, localized shear failure of the sediment around the borehole was

  7. Methane formation at Costa Rica continental margin—constraints for gas hydrate inventories and cross-décollement fluid flow

    NASA Astrophysics Data System (ADS)

    Hensen, Christian; Wallmann, Klaus

    2005-07-01

    We present a numerical model study in order to quantify the effects of organic carbon (POC) degradation and fluid migration on methane and gas hydrate formation at ODP site 1040 (Costa Rica convergent margin). Various model runs show that POC-degradation in upper plate sediments yields a potential for methane hydrate formation between 0.8 and 2.5 vol.% of pore space. However, observed chlorinity anomalies cannot be explained by the amount and the distribution pattern of gas hydrates. Moreover, pore water profiles of ammonia do not match the observations. Setting up a moderate upward flow (0.03 cm yr - 1 ) of methane-enriched, low-chlorinity fluids (induced by dewatering of oceanic plate sediments) leads to a good approximation to measured pore water profiles, thus enabling a precise estimate of POC degradation kinetics. Fluid flow has a strong impact on the location of the upper limit of the modeled gas hydrate occurrence zone (GHOZ) and may increase the total amount of gas hydrate by more than 50%. Our best estimate of the amount of gas hydrate within the GHOZ is on average 1.65 vol.% of pore space, which corresponds to about 2.5 Tg of methane per km trench within the frontal prism of slope sediments. To comply with the fact that subducted pore waters are rich in sulfate and that there is striking evidence for fluid conduits at various depths we performed additional model runs, where we simulated fluid flow by using a Gauss-type rate law, allowing us to define distinct fluid sources. We can demonstrate that combined methane production in the upper plate sediments and sulfate reduction at the top of the down going slab is sufficient to prevent the upward movement of the zone of anaerobic oxidation of methane (AOM) to above the décollement at given upward advection rates. Steep pore water gradients along the plate boundary can be explained by lateral backflow within oceanic plate sediments. On a long term (in the order of at least some 100,000 years), fluid flow

  8. Stationary phases for packed-column supercritical fluid chromatography.

    PubMed

    Poole, Colin F

    2012-08-10

    The properties of silica-based, chemically bonded, packed column stationary phases used in supercritical fluid chromatography are described with a focus on column design and retention mechanisms. Supercritical fluid chromatography has benefited substantially from innovations in column design for liquid chromatography even if the separation conditions employed are generally quite different. The mobile phase composition and column operating conditions play an interactive role in modifying selectivity in supercritical fluid chromatography by altering analyte solubility in the mobile phase and through selective solvation of the stationary phase resulting in a wider range and intensity of intermolecular interactions with the analyte. The solvation parameter model is used to identify the main parameters that affect retention in supercritical fluid chromatography using carbon dioxide-methanol as a mobile phase and as a basis for column characterization to facilitate the identification of stationary phases with different separation characteristics for method development. As a caution it is pointed out that these column characterization methods are possibly a product of both the stationary phase chemistry and the column operating conditions and are suitable for use only when columns of similar design and with similar operating conditions are used.

  9. Gyroid phase of fluids with spherically symmetric competing interactions.

    PubMed

    Edelmann, Markus; Roth, Roland

    2016-06-01

    We study the phase diagram of a fluid with spherically symmetric competing pair interactions that consist of a short-ranged attraction and a longer-ranged repulsion in addition to a hard core. To this end we perform free minimizations of three-dimensional triple periodic structures within the framework of classical density functional theory. We compare our results to those from Landau theory. Our main finding is that the double gyroid phase can exist as a thermodynamically stable phase.

  10. Thermodynamics of Manganese Oxides at Bulk and Nanoscale: Phase Formation, Transformation, Oxidation-Reduction, and Hydration

    NASA Astrophysics Data System (ADS)

    Birkner, Nancy R.

    Natural manganese oxides are generally formed in surficial environments that are near ambient temperature and water-rich, and may be exposed to wet-dry cycles and a variety of adsorbate species that influence dramatically their level of hydration. Manganese oxide minerals are often poorly crystalline, nanophase, and hydrous. In the near-surface environment they are involved in processes that are important to life, such as water column oxygen cycling, biomineralization, and transport of minerals/nutrients through soils and water. These processes, often involving transformations among manganese oxide polymorphs, are governed by a complex interplay between thermodynamics and kinetics. Manganese oxides are also used in technology as catalysts, and for other applications. The major goal of this dissertation is to examine the energetics of bulk and nanophase manganese oxide phases as a function of particle size, composition, and surface hydration. Careful synthesis and characterization of manganese oxide phases with different surface areas provided samples for the study of enthalpies of formation by high temperature oxide melt solution calorimetry and of the energetics of water adsorption on their surfaces. These data provide a quantitative picture of phase stability and how it changes at the nanoscale. The surface energy of the hydrous surface of Mn3O4 is 0.96 +/- 0.08 J/m2, of Mn2O3 is 1.29 +/- 0.10 J/m2, and of MnO2 is 1.64 +/- 0.10 J/m2. The surface energy of the anhydrous surface of Mn3O4 is 1.62 +/- 0.08 J/m 2, of Mn2O3 is 1.77 +/- 0.10 J/m 2, and of MnO2 is 2.05 +/- 0.10 J/m2. Supporting preliminary findings (Navrotsky et al., 2010), the spinel phase (Mn3O4) has a lower surface energy (more stabilizing) than bixbyite, while the latter has a smaller surface energy than pyrolusite. These differences significantly change the positions in oxygen fugacity---temperature space of the redox couples Mn3O4-Mn2O 3 and Mn2O3-MnO2 favoring the lower surface enthalpy phase (the

  11. Long-Term Continuous Monitoring of Fluid Chemistry and Flux at the Bush Hill Gas Hydrate Field, Gulf of Mexico Using a New Flow Meter, The MOSQUITO

    NASA Astrophysics Data System (ADS)

    Solomon, E.; Kastner, M.; Jannasch, H.; Weinstein, Y.; Robertson, G.; Aubrey, A.

    2004-12-01

    Long-term monitoring of fluid, solute, and methane fluxes that influence marine gas hydrate formation and dissociation has important implications for the seafloor biochemical environment, ocean chemistry, and potentially the atmosphere. Four newly designed flux meters called the MOSQUITO (Multiple Orifice Sampler and Quantitative Injection Tracer Observer) and two temperature loggers were deployed adjacent to the Bush Hill hydrate mound in the northern Gulf of Mexico (GC185) in order to understand how chemistry, physics, biology, and subsurface hydrology dynamically influence the growth and dissociation of the hydrate mound. The MOSQUITO contains a network of osmotic samplers and a tracer injection device, each connected to a titanium capillary tube that penetrates the sediment. The tracer is injected as a point source, and fluid chemistry and tracer concentrations are continuously sampled simultaneously at multiple depths below the seafloor in a three dimensional array with respect to the tracer injection point. Bottom water chemistry is also sampled continuously. Vertical and horizontal flow rates as low as 1 cm/yr are determined by modeling the variability in tracer concentration at each depth over time. MOSQUITOs can be deployed at passive margins, ridge crests, ridge flanks, subduction zones, and lakes. MOSQUITOs were deployed over a period of 430 days from June 2002 to August 2003 and were sampled at weekly resolution. The temperature loggers were attached to the MOSQUITOs and recorded seafloor temperature every 40 minutes. Three MOSQUITOs were deployed within 3 m of the hydrate mound and ˜ 5 m apart, adjacent to transient methane seeps; in a mussel field, in a bacterial mat, and in a tubeworm field. The fourth MOSQUITO was placed ˜150 m southwest of the hydrate mound to monitor background fluid flow, geochemistry, and temperature. The average bottom water temperature over the 430-day deployment period was 7.94° C, with minimum temperatures occurring every

  12. NATURAL GAS HYDRATES STORAGE PROJECT PHASE II. CONCEPTUAL DESIGN AND ECONOMIC STUDY

    SciTech Connect

    R.E. Rogers

    1999-09-27

    DOE Contract DE-AC26-97FT33203 studied feasibility of utilizing the natural-gas storage property of gas hydrates, so abundantly demonstrated in nature, as an economical industrial process to allow expanded use of the clean-burning fuel in power plants. The laboratory work achieved breakthroughs: (1) Gas hydrates were found to form orders of magnitude faster in an unstirred system with surfactant-water micellar solutions. (2) Hydrate particles were found to self-pack by adsorption on cold metal surfaces from the micellar solutions. (3) Interstitial micellar-water of the packed particles were found to continue forming hydrates. (4) Aluminum surfaces were found to most actively collect the hydrate particles. These laboratory developments were the bases of a conceptual design for a large-scale process where simplification enhances economy. In the design, hydrates form, store, and decompose in the same tank in which gas is pressurized to 550 psi above unstirred micellar solution, chilled by a brine circulating through a bank of aluminum tubing in the tank employing gas-fired refrigeration. Hydrates form on aluminum plates suspended in the chilled micellar solution. A low-grade heat source, such as 110 F water of a power plant, circulates through the tubing bank to release stored gas. The design allows a formation/storage/decomposition cycle in a 24-hour period of 2,254,000 scf of natural gas; the capability of multiple cycles is an advantage of the process. The development costs and the user costs of storing natural gas in a scaled hydrate process were estimated to be competitive with conventional storage means if multiple cycles of hydrate storage were used. If more than 54 cycles/year were used, hydrate development costs per Mscf would be better than development costs of depleted reservoir storage; above 125 cycles/year, hydrate user costs would be lower than user costs of depleted reservoir storage.

  13. Dynamic changes of phase in a van der Waals fluid

    NASA Astrophysics Data System (ADS)

    Hagan, R.; Serrin, J.

    1984-03-01

    This paper gives sufficient conditions to guarantee the existence of a shock layer solution connecting two different equilibrium states in a van der Waals fluid. In particular, the equilibrium states can belong to two different phases of the fluid. The constitutive laws come from a modified Korteweg theory which is compatible with the Clausius Duhem inequality. The Clausius Duhem inequality in turn gives rise to a Liapunov function. The main mathematical tool is the LaSalle invariance principle.

  14. Phase behavior of charged colloids at a fluid interface

    NASA Astrophysics Data System (ADS)

    Kelleher, Colm P.; Guerra, Rodrigo E.; Hollingsworth, Andrew D.; Chaikin, Paul M.

    2017-02-01

    We study the phase behavior of a system of charged colloidal particles that are electrostatically bound to an almost flat interface between two fluids. We show that, despite the fact that our experimental system consists of only 103-104 particles, the phase behavior is consistent with the theory of melting due to Kosterlitz, Thouless, Halperin, Nelson, and Young. Using spatial and temporal correlations of the bond-orientational order parameter, we classify our samples into solid, isotropic fluid, and hexatic phases. We demonstrate that the topological defect structure we observe in each phase corresponds to the predictions of Kosterlitz-Thouless-Halperin-Nelson-Young theory. By measuring the dynamic Lindemann parameter γL(τ ) and the non-Gaussian parameter α2(τ ) of the displacements of the particles relative to their neighbors, we show that each of the phases displays distinctive dynamical behavior.

  15. Gas Hydrate Mounds in the Eastern Slope of the Chukchi Basin, Arctic Ocean: Indicators of Methane-rich Focused Fluid Flow

    NASA Astrophysics Data System (ADS)

    Kim*, Young-Gyun; Kim, Hyoung-Jun; Kim, Sookwan; Lee, Imgyo; Kim, Ji-Hoon; Lee, Dong-Hun; Kang, Seung-Goo; Jin, Young Keun

    2017-04-01

    While the origin and distribution vary across geological conditions, there have been numerous reports on the occurrence of natural gas hydrate in the continental margins over the world ocean. However, in situ gas hydrate in the Chukchi Basin has not yet been found despite a favorable condition for its occurrence. Here we document, for the first time, the discovery of mound morphologies containing gas hydrate as well as methane-derived authigenic carbonate (MDAC) in the Chukchi Basin obtained during the IBRV Araon Expedition ARA07C in 2016. We analyzed high-resolution multibeam and sub-bottom profiler images, and radioactive isotopes (δ13CCH4, δDCH4) of gases from both the retrieved cores and dissociated hydrate to unravel the origin of the mounds. The mounds were found solitarily along certain water depth intervals and characterized by a circular shape, sizing up to tens of meters in width and a few meters in height. Acoustic turbidity is common below thin hemipelagic sediment layer, indicative of shallow accumulation of gas. The isotopic signatures suggest that thermogenic methane may migrate to the shallow depth although its migration pathway cannot be clarified. Our findings bring new insight on the occurrence of gas hydrate mounds in the Chukchi Basin, and their development linked to methane-rich focused fluid flow from deep. We will further investigate microbial characterization from the MDAC with analyses of the lipid marker and 16s rRNA to demonstrate methane flux variation with geological time.

  16. Hydration, phase separation and nonlinear rheology of temperature-sensitive water-soluble polymers.

    PubMed

    Tanaka, Fumihiko; Koga, Tsuyoshi; Kaneda, Isamu; Winnik, Françoise M

    2011-07-20

    The collapse of a poly(N-isopropylacrylamide) (PNIPAM) chain upon heating and the phase diagrams of aqueous PNIPAM solutions with a very flat lower critical solution temperature (LCST) phase separation line are theoretically studied on the basis of cooperative dehydration (simultaneous dissociation of bound water molecules in a group of correlated sequence), and compared with the experimental observation of temperature-induced coil-globule transition by light scattering methods. The transition becomes sharper with the cooperativity parameter σ of hydration. The reentrant coil-globule-coil transition and cononsolvency in a mixed solvent of water and methanol are also studied from the viewpoint of competitive hydrogen bonds between polymer-water and polymer-methanol. The downward shift of the cloud-point curves (LCST cononsolvency) with the mol fraction of methanol due to the competition is calculated and compared with the experimental data. Aqueous solutions of hydrophobically modified PNIPAM carrying short alkyl chains at both chain ends (telechelic PNIPAM) are theoretically and experimentally studied. The LCST of these solutions is found to shift downward along the sol-gel transition curve as a result of end-chain association (association-induced phase separation), and separate from the coil-globule transition line. Associated structures in the solution, such as flower micelles, mesoglobules, and higher fractal assembly, are studied by ultra small-angle neutron scattering with theoretical modeling of the scattering function. Dynamic-mechanical modulus, nonlinear stationary viscosity, and stress build-up in start-up shear flows of the associated networks are studied on the basis of the affine and non-affine transient network theory. The molecular conditions for thickening, strain hardening, and stress overshoot are found in terms of the nonlinear amplitude A of the chain tension and the tension-dissociation coupling constant g.

  17. Microgravity experiments on phase change of self-rewetting fluids.

    PubMed

    Abe, Yoshiyuki; Iwasaki, Akira; Tanaka, Kotaro

    2004-11-01

    A series of microgravity experiments on self-rewetting fluids has been conducted at the 10-second drop shaft of the Japan Microgravity Center (JAMIC). In all the experiments, 1.5 wt% of 1-butanol aqueous solution were employed as a self-rewetting fluid. The objective of the first experiment was to observe the boiling behavior of two-dimensional adjacent dual vapor bubbles with the aid of a two-wavelength interferometer and tracer particles. A significant difference was observed between a self-rewetting fluid and a normal fluid (CFC-113 in this experiment) in bubble interaction and flow developed along vapor/bubble interface. The second experiment focused on the flow at the bubble/heater contact area and around the three-phase interline, visualized with tracer particles. Differing behavior among three fluids, 1-butanol aqueous solution, CFC-113, and ethanol aqueous solution, was observed. The last microgravity experiment was a demonstration of wickless heat pipes containing three different fluids as a working fluid, 1-butanol aqueous solution, water, and ethanol aqueous solution. The temperature variation of working fluid in the heat pipe was monitored, and the liquid flow returning from the condensation region to the evaporation region was visualized by tracer particles. In addition to microgravity experiments, the performance of conventional heat pipes with 1-butanol aqueous solution was evaluated on the ground, and compared with water heat pipes. Our preliminary results are presented.

  18. Fluid-phase endocytosis in yeasts other than Saccharomyces cerevisiae.

    PubMed

    Fernandez, N; Puente, P; Leal, F

    1990-05-01

    A FITC-dextran internalization assay with Saccharomyces cerevisiae as positive control was used to determine whether fluid-phase endocytosis is a general characteristic of yeasts. Schizosaccharomyces pombe, Pichia polymorpha, Kluyveromyces phaseolosporus, Yarrowia lipolytica and Candida albicans were clearly positive, whereas results obtained with Debaryomyces marama were inconclusive. In all cases internalized FITC-dextran was found to be localized in the vacuoles and the process was always time- and temperature-dependent. Lower eucaryotes, particularly yeasts, appear to have the ability to incorporate substances from the extracellular medium through fluid-phase endocytosis.

  19. An Update on Maternal Hydration Strategies for Amniotic Fluid Improvement in Isolated Oligohydramnios and Normohydramnios: Evidence from a Systematic Review of Literature and Meta-Analysis.

    PubMed

    Gizzo, Salvatore; Noventa, Marco; Vitagliano, Amerigo; Dall'Asta, Andrea; D'Antona, Donato; Aldrich, Clive J; Quaranta, Michela; Frusca, Tiziana; Patrelli, Tito Silvio

    2015-01-01

    Several trials aimed at evaluating the efficacy of maternal hydration (MH) in increasing amniotic-fluid-volume (AFV) in pregnancies with isolated oligohydramnios or normohydramnos have been conducted. Unfortunately, no evidences support this intervention in routine-clinical-practice. The aim of this systematic-literature-review and meta-analysis was to collect all data regarding proposed strategies and their efficacy in relation to each clinical condition for which MH-therapy was performed with the aim of increasing amniotic-fluid (AF) and improving perinatal outcomes. A systematic literature search was conducted in electronic-database MEDLINE, EMBASE, ScienceDirect and the Cochrane-Library in the time interval between 1991 and 2014. Following the identification of eligible trials, we estimated the methodological quality of each study (using QADAS-2) and clustered patients according to the following outcome measures: route of administration (oral versus intravenous versus combined), total daily dose of fluids administered (<2000 versus >2000), duration of hydration therapy: (1 day, >1 day but <1 week, >1 week), type of fluid administered (isotonic versus hypotonic versus combination). In isolated-oligohydramnios (IO), maternal oral hydration is more effective than intravenous hydration and hypotonic solutions superior to isotonic solutions. The improvement in AFV appears to be time-dependent rather than daily-dose dependent. Regarding normohydramnios pregnancies, all strategies seem equivalent though the administration of hypotonic-fluid appears to have a slightly greater effect than isotonic-fluid. Regarding perinatal outcomes, data is fragmentary and heterogeneous and does not allow us to define the real clinical utility of MH. Available data suggests that MH may be a safe, well-tolerated and useful strategy to improve AFV especially in cases of IO. In view of the numerous obstetric situations in which a reduced AFV may pose a threat, particularly to the fetus

  20. Molecular Simulation of the Phase Diagram of Methane Hydrate: Free Energy Calculations, Direct Coexistence Method, and Hyper Parallel Tempering.

    PubMed

    Jin, Dongliang; Coasne, Benoit

    2017-08-09

    Different molecular simulation strategies are used to assess the stability of methane hydrate under various temperature and pressure conditions. First, using two water molecular models, free energy calculations consisting of the Einstein molecule approach in combination with semi-grand Monte Carlo simulations are used to determine the pressure--temperature phase diagram of methane hydrate. With these calculations, we also estimate the chemical potentials of water and methane and methane occupancy at coexistence. Second, we also consider two other advanced molecular simulation techniques that allow probing the phase diagram of methane hydrate: the direct coexistence method in the Grand Canonical ensemble and the hyper parallel tempering Monte Carlo method. These two direct techniques are found to provide stability conditions that are consistent with the pressure--temperature phase diagram obtained using rigorous free energy calculations. The phase diagram obtained in this work, which is found to be consistent with previous simulation studies, is close to its experimental counterpart provided the TIP4P/Ice model is used to describe the water molecule.

  1. Oxidation of gas-phase hydrated protonated/deprotonated cysteine: how many water ligands are sufficient to approach solution-phase photooxidation chemistry?

    PubMed

    Liu, Fangwei; Emre, Rifat; Lu, Wenchao; Liu, Jianbo

    2013-12-21

    We present a study on the reactions of singlet oxygen O2[a(1)Δg] with hydrated protonated and deprotonated cysteine (Cys) in the gas phase, including measurements of the effects of collision energy (E(col)) and hydration number on reaction cross sections over a center-of-mass E(col) range from 0.05 to 1.0 eV. The aim is to probe how successive addition of water molecules changes the oxidation chemistry of Cys in the gas phase. Hydrated clusters, generated by electrospray ionization, have structures of HSCH2CH(NH3(+))CO2H(H2O)(1,2) and HSCH2CH(NH2)CO2(-)(H2O)(1,2) for protonated and deprotonated forms, respectively. In contrast to (1)O2 reactions with dehydrated protonated/deprotonated Cys of which hydroperoxide products all decomposed, reactions with hydrated protonated/deprotonated Cys yielded stable hydroperoxide products, analogous to photooxidation reaction of Cys in solution. We investigated the number of water ligands necessary to produce a stable hydroperoxide, and found that a single water molecule suffices--that is, to relax nascent, energized hydroperoxide in the hydrated cluster by elimination of water. Hydrated protonated Cys shows higher reaction efficiency than the hydrated deprotonated one, particularly with the addition of the second water ligand. Reactions of hydrated protonated/deprotonated Cys are suppressed by E(col), becoming negligible at E(col) ≥ 0.5 eV. Density functional theory calculations were used to locate reaction coordinates for these systems. Quasi-classical, direct dynamics trajectory simulations were performed for HSCH2CH(NH3(+))CO2H(H2O) + (1)O2 at the B3LYP/4-31G(d) level of theory. Analysis of trajectories highlights the importance of complex mediation in the early stages of the reaction, and illustrates that water can catalyze proton transfer within the hydrated complex.

  2. Acyl chain composition and coexisting fluid phases in lipid bilayers

    NASA Astrophysics Data System (ADS)

    Gu, Yongwen; Bradley, Miranda; Mitchell, Drake

    2011-10-01

    At room temperature phospholipid bilayers enriched in sphingolipids and cholesterol may form a solid phase as well as two coexisting fluid phases. These are the standard fluid phase, or the liquid-disordered phase, ld, and the liquid-ordered phase, lo, which is commonly associated with lipid rafts. Ternary mixtures of palmitoyl-oleoyl-phosphocholine (POPC; 16:0,18:1 PC), sphingomyelin (SPM), and cholesterol (Chol) form coexisting lo, ld and solid phases over a wide range of molar ratios. We are examining the ability of two fluorescent probes to detect these 2 phases: NBD linked to di-16:0 PE which partitions strongly into the lo phase and NBD linked to di-18:1 PE which partitions strongly into the ld phase. We are also examining the effect of the highly polyunsaturated phospholipid stearoyl-docosahexanoyl-phosphocholine (SDPC; 18:0, 22:6 PC) on the ternary phase diagram of POPC/SPM/Chol with particular focus on the functionally important lo/ld coexistence region. We report on the fluorescence lifetime and anisotropy decay dynamics of these two fluorescent probes.

  3. Hydration of gelatin molecules in glycerol-water solvent and phase diagram of gelatin organogels.

    PubMed

    Sanwlani, Shilpa; Kumar, Pradip; Bohidar, H B

    2011-06-09

    We present a systematic investigation of hydration and gelation of the polypeptide gelatin in water-glycerol mixed solvent (glycerol solutions). Raman spectroscopy results indicated enhancement in water structure in glycerol solutions and the depletion of glycerol density close to hydration sheath of the protein molecule. Gelation concentration (c(g)) was observed to decrease from 1.92 to 1.15% (w/v) while the gelation temperature (T(g)) was observed to increase from 31.4 to 40.7 °C with increase in glycerol concentration. Data on hand established the formation of organogels having interconnected networks, and the universal gelation mechanism could be described through an anomalous percolation model. The viscosity of sol diverged as η ∼ (1 - c(g)/c)(-k) as c(g) was approached from below (c < c(g)), while the elastic storage modulus grew as G' ∼ (c/c(g) - 1)(t) (for c > c(g)). It is important to note that values determined for critical exponents k and t were universal; that is, they did not depend on the microscopic details. The measured values were k = 0.38 ± 0.10 and t = 0.92 ± 0.17 whereas the percolation model predicts k = 0.7-1.3 and t = 1.9. Isothermal frequency sweep studies showed power-law dependence of gel storage modulus (G') and loss modulus (G'') on oscillation frequency ω given as G'(ω) ∼ ω(n') and G''(ω) ∼ ω(n''), and consistent with percolation model prediction it was found that n' ≈ n'' ≈ δ ≈ 0.73 close to gelation concentration. We propose a unique 3D phase diagram for the gelatin organogels. Circular dichroism data revealed that the gelatin molecules retained their biological activity in these solvents. Thus, it is shown that the thermomechanical properties of these organogels could be systematically tuned and customized as per application requirement.

  4. Ternary phase behaviour and vesicle formation of a sodium N-lauroylsarcosinate hydrate/1-decanol/water system

    NASA Astrophysics Data System (ADS)

    Akter, Nasima; Radiman, Shahidan; Mohamed, Faizal; Rahman, Irman Abdul; Reza, Mohammad Imam Hasan

    2011-08-01

    The phase behaviour of a system composed of amino acid-based surfactant (sodium N-lauroylsarcosinate hydrate), 1-decanol and deionised water was investigated for vesicle formation. Changing the molar ratio of the amphiphiles, two important aggregate structures were observed in the aqueous corner of the phase diagram. Two different sizes of microemulsions were found at two amphiphile-water boundaries. A stable single vesicle lobe was found for 1∶2 molar ratios in 92 wt% water with vesicles approximately 100 nm in size and with high zeta potential value. Structural variation arises due to the reduction of electrostatic repulsions among the ionic headgroups of the surfactants and the hydration forces due to adsorbed water onto monolayer's. The balance of these two forces determines the aggregate structures. Analysis was followed by the molecular geometrical structure. These findings may have implications for the development of drug delivery systems for cancer treatments, as well as cosmetic and food formulations.

  5. Ternary phase behaviour and vesicle formation of a sodium N-lauroylsarcosinate hydrate/1-decanol/water system.

    PubMed

    Akter, Nasima; Radiman, Shahidan; Mohamed, Faizal; Rahman, Irman Abdul; Reza, Mohammad Imam Hasan

    2011-01-01

    The phase behaviour of a system composed of amino acid-based surfactant (sodium N-lauroylsarcosinate hydrate), 1-decanol and deionised water was investigated for vesicle formation. Changing the molar ratio of the amphiphiles, two important aggregate structures were observed in the aqueous corner of the phase diagram. Two different sizes of microemulsions were found at two amphiphile-water boundaries. A stable single vesicle lobe was found for 1∶2 molar ratios in 92 wt% water with vesicles approximately 100 nm in size and with high zeta potential value. Structural variation arises due to the reduction of electrostatic repulsions among the ionic headgroups of the surfactants and the hydration forces due to adsorbed water onto monolayer's. The balance of these two forces determines the aggregate structures. Analysis was followed by the molecular geometrical structure. These findings may have implications for the development of drug delivery systems for cancer treatments, as well as cosmetic and food formulations.

  6. Low-Density Fluid Phase of Dipolar Hard Spheres

    NASA Astrophysics Data System (ADS)

    Sear, Richard P.

    1996-03-01

    Unexpectedly, recent computer simulation studies [Weis and Levesque, Phys. Rev. Lett. 71, 2729 (1993); Leeuwen and Smit, ibid. 71, 3991 (1993)] failed to find a liquid phase for dipolar hard spheres. We argue that the liquid was not observed because the dipolar spheres form long chains which interact only weakly. To support this argument we derive a simple theory for noninteracting chains of dipolar spheres and show that it provides a reasonable description of the low-density fluid phase.

  7. Standard state Gibbs energies of hydration of hydrocarbons at elevated temperatures as evaluated from experimental phase equilibria studies

    NASA Astrophysics Data System (ADS)

    Plyasunov, Andrey V.; Shock, Everett L.

    2000-08-01

    Experimental results of phase equilibria studies at elevated temperatures for more than twenty hydrocarbon-water systems were uniformly correlated within the framework of the Peng-Robinson-Stryjek-Vera equation of state in combination with simple mixing rules. This treatment allows evaluation of the Gibbs energy of hydration for many alkanes, 1-alkenes, cycloalkanes (derivatives of cyclohexane) and alkylbenzenes up to 623 K at saturated water vapor pressure and up to 573 K at 50 MPa. Results for homologous series show regular changes with increasing carbon number, and confirm the applicability of the group contribution approach to the Gibbs energy of hydration of hydrocarbons at elevated temperatures. The temperature dependence of group contributions to the Gibbs energy of hydration were determined for CH 3, CH 2, and CH in aliphatic hydrocarbons; C=C and H for alkenes; c-CH 2 and c-CH in cycloalkanes; and CH ar and C ar in alkylbenzenes (or aromatic hydrocarbons). Close agreement between calculated and experimental results suggests that this approach provides reasonable estimates of Gibbs energy of hydration for many alkanes, 1-alkenes, alkyl cyclohexanes and alkylbenzenes at temperatures up to 623 K and pressures up to 50 MPa.

  8. Critical properties and phase separation in lattice Boltzmann fluid mixtures.

    PubMed

    Martys, N S; Douglas, J F

    2001-03-01

    Basic equilibrium properties of lattice Boltzmann (LB) fluid mixtures (coexistence curve, surface tension, interfacial profile, correlation length) are calculated to characterize the critical phenomena occurring in these model liquids and to establish a reduced variable description allowing a comparison with real fluid mixtures. We observe mean-field critical exponents and amplitudes so that the LB model may be useful for modeling high molecular weight polymer blends and other fluid mixtures approximated over a wide temperature range by mean-field theory. We also briefly consider phase separation under quiescent and shearing conditions and point out the strong influence of interacting boundaries on the qualitative form of the late-stage phase-separation morphology.

  9. Modulated phases of graphene quantum Hall polariton fluids

    PubMed Central

    Pellegrino, Francesco M. D.; Giovannetti, Vittorio; MacDonald, Allan H.; Polini, Marco

    2016-01-01

    There is a growing experimental interest in coupling cavity photons to the cyclotron resonance excitations of electron liquids in high-mobility semiconductor quantum wells or graphene sheets. These media offer unique platforms to carry out fundamental studies of exciton-polariton condensation and cavity quantum electrodynamics in a regime, in which electron–electron interactions are expected to play a pivotal role. Here, focusing on graphene, we present a theoretical study of the impact of electron–electron interactions on a quantum Hall polariton fluid, that is a fluid of magneto-excitons resonantly coupled to cavity photons. We show that electron–electron interactions are responsible for an instability of graphene integer quantum Hall polariton fluids towards a modulated phase. We demonstrate that this phase can be detected by measuring the collective excitation spectra, which is often at a characteristic wave vector of the order of the inverse magnetic length. PMID:27841346

  10. Modulated phases of graphene quantum Hall polariton fluids

    NASA Astrophysics Data System (ADS)

    Pellegrino, Francesco M. D.; Giovannetti, Vittorio; MacDonald, Allan H.; Polini, Marco

    2016-11-01

    There is a growing experimental interest in coupling cavity photons to the cyclotron resonance excitations of electron liquids in high-mobility semiconductor quantum wells or graphene sheets. These media offer unique platforms to carry out fundamental studies of exciton-polariton condensation and cavity quantum electrodynamics in a regime, in which electron-electron interactions are expected to play a pivotal role. Here, focusing on graphene, we present a theoretical study of the impact of electron-electron interactions on a quantum Hall polariton fluid, that is a fluid of magneto-excitons resonantly coupled to cavity photons. We show that electron-electron interactions are responsible for an instability of graphene integer quantum Hall polariton fluids towards a modulated phase. We demonstrate that this phase can be detected by measuring the collective excitation spectra, which is often at a characteristic wave vector of the order of the inverse magnetic length.

  11. New Actuator Utilizing Phase Change of Functional Fluids

    NASA Astrophysics Data System (ADS)

    Tanaka, Chigusa; Mai, Jianqiang; Nakagawa, Masamichi; Oshima, Shuzo; Yamane, Ryuichiro; Park, Myeng-Kwan

    This paper proposes a new actuator utilizing the phase change of the ER fluid. The dielectric coolant was used for the solvent and silica gel particles for the dispersion particle. The dynamic characteristics of the actuator was determined for the several patterns of the working conditions.

  12. Synthesis of polycrystalline methane hydrate, and its phase stability and mechanical properties at elevated pressure

    USGS Publications Warehouse

    Stern, L.A.; Kirby, S.H.; Durham, W.B.

    1997-01-01

    Test specimens of methane hydrate were grown under static conditions by combining cold, pressurized CH4 gas with H2O ice grains, then warming the system to promote the reaction CH4 (g) + 6H2O (s???l) ??? CH4??6H2O. Hydrate formation evidently occurs at the nascent ice/liquid water interface, and complete reaction was achieved by warming the system above 271.5 K and up to 289 K, at 25-30 MPa, for approximately 8 hours. The resulting material is pure methane hydrate with controlled grain size and random texture. Fabrication conditions placed the H2O ice well above its melting temperature before reaction completed, yet samples and run records showed no evidence for bulk melting of the ice grains. Control experiments using Ne, a non-hydrate-forming gas, verified that under otherwise identical conditions, the pressure reduction and latent heat associated with ice melting is easily detectable in our fabrication apparatus. These results suggest that under hydrate-forming conditions, H2O ice can persist metastably at temperatures well above its melting point. Methane hydrate samples were then tested in constant-strain-rate deformation experiments at T= 140-200 K, Pc= 50-100 MPa, and ????= 10-4-10-6 s-1. Measurements in both the brittle and ductile fields showed that methane hydrate has measurably different strength than H2O ice, and work hardens to a higher degree compared to other ices as well as to most metals and ceramics at high homologous temperatures. This work hardening may be related to a changing stoichiometry under pressure during plastic deformation; x-ray analyses showed that methane hydrate undergoes a process of solid-state disproportionation or exsolution during deformation at conditions well within its conventional stability field.

  13. Hydrate Control for Gas Storage Operations

    SciTech Connect

    Jeffrey Savidge

    2008-10-31

    The overall objective of this project was to identify low cost hydrate control options to help mitigate and solve hydrate problems that occur in moderate and high pressure natural gas storage field operations. The study includes data on a number of flow configurations, fluids and control options that are common in natural gas storage field flow lines. The final phase of this work brings together data and experience from the hydrate flow test facility and multiple field and operator sources. It includes a compilation of basic information on operating conditions as well as candidate field separation options. Lastly the work is integrated with the work with the initial work to provide a comprehensive view of gas storage field hydrate control for field operations and storage field personnel.

  14. Rayleigh-Taylor instability of viscous fluids with phase change.

    PubMed

    Kim, Byoung Jae; Kim, Kyung Doo

    2016-04-01

    Film boiling on a horizontal surface is a typical example of the Rayleigh-Taylor instability. During the film boiling, phase changes take place at the interface, and thus heat and mass transfer must be taken into consideration in the stability analysis. Moreover, since the vapor layer is not quite thick, a viscous flow must be analyzed. Existing studies assumed equal kinematic viscosities of two fluids, and/or considered thin viscous fluids. The purpose of this study is to derive the analytical dispersion relation of the Rayleigh-Taylor instability for more general conditions. The two fluids have different properties. The thickness of the vapor layer is finite, but the liquid layer is thick enough to be nearly semi-infinite in view of perturbation. Initially, the vapor is in equilibrium with the liquid at the interface, and the direction of heat transfer is from the vapor side to the liquid side. In this case, the phase change has a stabilizing effect on the growth rate of the interface. When the vapor layer is thin, there is a coupled effect of the vapor viscosity, phase change, and vapor thickness on the critical wave number. For the other limit of a thick vapor, both the liquid and vapor viscosities influence the critical wave number. Finally, the most unstable wavelength is investigated. When the vapor layer is thin, the most unstable wavelength is not affected by phase change. When the vapor layer is thick, however, it increases with the increasing rate of phase change.

  15. A nonlinear dynamical 2D coupled mathematical model for phase transitions in methane gas hydrates within permafrost under climate change

    NASA Astrophysics Data System (ADS)

    Duxbury, N. S.; Romanovsky, V. E.; Romanovskii, N. N.; Garagulya, L. S.; Brouchkov, A. V.; Komarov, I. A.; Roman, L. T.; Tipenko, G. S.; Buldovich, S. N.; Maximova, L. N.

    2012-12-01

    We have developed coupled permafrost - carbon physical and numerical models, where carbon is in the form of methane clathrate hydrate ( CH4*6H2O ) in a porous subsurface environment. The driving force for the subsurface temperature field dynamics is climate variations on the Earth's surface. This is an upper boundary condition for the nonlinear evolutionary system of partial differential equations (PDEs) describing subsurface heat transfer (parabolic PDEs) in a generalized Stefan formulation. The developed numerical model is a valuable computational tool to quantitatively study nonlinear dynamical thermal processes with phase transitions in terrestrial and Martian subsurfaces. Our model is multifrontal and therefore allows one to perform computations for a problem with any number of emerging/vanishing phase transition interfaces (both in methane gas hydrate deposits and in permafrost), since the model treats these fronts implicitly in an enthalpy formulation and in corresponding finite-difference scheme. This model takes into account the pressure (and therefore the depth) dependence of the phase transition temperature for methane clathrate hydrate. We have performed model computations using the thermophysical characteristics (heat capacity, density/porosity, thermal conductivity) for the Siberian subsurface. It can be used as a terrestrial analog for the Martian subsurface (e.g., Duxbury et al., 2001). Also, thermophysical coefficients from laboratory experiments for methane clathrate hydrate were used in our model. In addition, our model takes into account the dependence of subsurface thermophysical characteristics on temperature and spatial coordinates. The results of our computations and their interpretation will be presented. References. N. S. Duxbury, I. A. Zotikov, K. H. Nealson, V. E. Romanovsky, F. D. Carsey (2001). A numerical model for an alternative origin of Lake Vostok and its exobiological implications for Mars, Journal of Geophysical Research

  16. Electrostatic interactions between particles through heterogeneous fluid phases.

    PubMed

    Kang, Dong Woo; Lee, Mina; Kim, Kyung Hak; Xia, Ming; Im, Sang Hyuk; Park, Bum Jun

    2017-09-27

    We investigated the electrostatic interactions between particles acting through heterogeneous fluid phases. An oil lens system floating on the surface of water was used to trap particles at different fluid-fluid interfaces. The inner particles are located at the centrosymmetrically curved oil-water interface inside the oil lens while satellite particles are located at the curved air-water interface, separated by a particular distance from the triple phase boundary. The satellite particles are likely to be captured in an energy minimum state due to electrostatic repulsions by the inner particles balanced with the gravity-induced potential energy. As the size of the oil lens decreases upon evaporation, the satellite particles escape from the gravitational confinement at a critical moment. The self-potential values of the inner particles and the satellite particles were calculated by employing an energy balance and the experimentally obtained geometric parameter values. It was found that the self-potential values of the inner particles decrease as oil evaporates over time and that the magnitude of the self-potential of the satellite particles is a hundred times larger than that of the inner particles. These results demonstrate significant effects of the thickness and shape of the nonpolar superphase on the electrostatic interactions between the particles trapped at different fluid-fluid interfaces.

  17. Synchrotron X-ray computed microtomography study on gas hydrate decomposition in a sedimentary matrix

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Falenty, Andrzej; Chaouachi, Marwen; Haberthür, David; Kuhs, Werner F.

    2016-09-01

    In-situ synchrotron X-ray computed microtomography with sub-micrometer voxel size was used to study the decomposition of gas hydrates in a sedimentary matrix. Xenon-hydrate was used instead of methane hydrate to enhance the absorption contrast. The microstructural features of the decomposition process were elucidated indicating that the decomposition starts at the hydrate-gas interface; it does not proceed at the contacts with quartz grains. Melt water accumulates at retreating hydrate surface. The decomposition is not homogeneous and the decomposition rates depend on the distance of the hydrate surface to the gas phase indicating a diffusion-limitation of the gas transport through the water phase. Gas is found to be metastably enriched in the water phase with a concentration decreasing away from the hydrate-water interface. The initial decomposition process facilitates redistribution of fluid phases in the pore space and local reformation of gas hydrates. The observations allow also rationalizing earlier conjectures from experiments with low spatial resolutions and suggest that the hydrate-sediment assemblies remain intact until the hydrate spacers between sediment grains finally collapse; possible effects on mechanical stability and permeability are discussed. The resulting time resolved characteristics of gas hydrate decomposition and the influence of melt water on the reaction rate are of importance for a suggested gas recovery from marine sediments by depressurization.

  18. High-resolution scanning tunneling microscopy of fully hydrated ripple-phase bilayers.

    PubMed

    Woodward, J T; Zasadzinski, J A

    1997-02-01

    A modified freeze-fracture replication technique for use with the scanning tunneling microscope (STM) has provided a quantitative, high-resolution description of the waveform and amplitude of rippled bilayers in the P beta' phase of dimyristoylphosphatidylcholine (DMPC) in excess water. The ripples are uniaxial and asymmetrical, with a temperature-dependent amplitude of 2.4 nm near the chain melting temperature that decreases to zero at the chain crystallization temperature. The wavelength of 11 nm does not change with temperature. The observed ripple shape and the temperature-induced structural changes are not predicted by any current theory. Calibration and reproducibility of the STM/replica technique were tested with replicas of well-characterized bilayers of cadmium arachidate on mica that provide regular 5.5-nm steps. STM images were analyzed using a cross-correlation averaging program to eliminate the effects of noise and the finite size and shapes of the metal grains that make up the replica. The correlation averaging allowed us to develop a composite ripple profile averaged over hundreds of individual ripples measured on different samples with different STM tips. The STM/replica technique avoids many of the previous artifacts of biological STM imaging and can be used to examine a variety of periodic hydrated lipid and protein samples at a lateral resolution of about 1 nm and a vertical resolution of about 0.3 nm. This resolution is superior to conventional and tapping mode AFM to soft biological materials; the technique is substrate-free, and the conductive and chemically uniform replicas make image interpretation simple and direct.

  19. High-Resolution Scanning Tunneling Microscopy of Fully Hydrated Ripple-Phase Bilayers

    PubMed Central

    Woodward IV, J. T.; Zasadzinski, J. A.

    1997-01-01

    A modified freeze-fracture replication technique for use with the scanning tunneling microscope (STM) has provided a quantitative, high-resolution description of the waveform and amplitude of rippled bilayers in the Pβ, phase of dimyristoylphosphatidylcholine (DMPC) in excess water. The ripples are uniaxial and asymmetrical, with a temperature-dependent amplitude of 2.4 nm near the chain melting temperature that decreases to zero at the chain crystallization temperature. The wavelength of 11 nm does not change with temperature. The observed ripple shape and the temperature-induced structural changes are not predicted by any current theory. Calibration and reproducibility of the STM/replica technique were tested with replicas of well-characterized bilayers of cadmium arachidate on mica that provide regular 5.5-nm steps. STM images were analyzed using a cross-correlation averaging program to eliminate the effects of noise and the finite size and shapes of the metal grains that make up the replica. The correlation averaging allowed us to develop a composite ripple profile averaged over hundreds of individual ripples measured on different samples with different STM tips. The STM/replica technique avoids many of the previous artifacts of biological STM imaging and can be used to examine a variety of periodic hydrated lipid and protein samples at a lateral resolution of about 1 nm and a vertical resolution of about 0.3 nm. This resolution is superior to conventional and tapping mode AFM of soft biological materials; the technique is substrate-free, and the conductive and chemically uniform replicas make image interpretation simple and direct. ImagesFIGURE 1FIGURE 2FIGURE 3FIGURE 5 PMID:9017222

  20. Is there a third order phase transition for supercritical fluids?

    PubMed

    Zhu, Jinglong; Zhang, Pingwen; Wang, Han; Site, Luigi Delle

    2014-01-07

    We prove that according to Molecular Dynamics (MD) simulations of liquid mixtures of Lennard-Jones (L-J) particles, there is no third order phase transition in the supercritical regime beyond Andrew's critical point. This result is in open contrast with recent theoretical studies and experiments which instead suggest not only its existence but also its universality regarding the chemical nature of the fluid. We argue that our results are solid enough to go beyond the limitations of MD and the generic character of L-J models, thus suggesting a rather smooth liquid-vapor thermodynamic behavior of fluids in supercritical regime.

  1. Is there a third order phase transition for supercritical fluids?

    SciTech Connect

    Zhu, Jinglong; Zhang, Pingwen; Wang, Han Site, Luigi Delle

    2014-01-07

    We prove that according to Molecular Dynamics (MD) simulations of liquid mixtures of Lennard-Jones (L-J) particles, there is no third order phase transition in the supercritical regime beyond Andrew's critical point. This result is in open contrast with recent theoretical studies and experiments which instead suggest not only its existence but also its universality regarding the chemical nature of the fluid. We argue that our results are solid enough to go beyond the limitations of MD and the generic character of L-J models, thus suggesting a rather smooth liquid-vapor thermodynamic behavior of fluids in supercritical regime.

  2. Ferroelectric poly(vinylidene fluoride) thin films on Si substrate with the β phase promoted by hydrated magnesium nitrate

    NASA Astrophysics Data System (ADS)

    Chen, Shuting; Yao, Kui; Tay, Francis Eng Hock; Liow, Chung Lee

    2007-11-01

    Solution derived poly(vinylidene fluoride) (PVDF) homopolymer thin films on silicon substrates with the addition of hydrated salt [Mg(NO3)2ṡ6H2O] were systematically investigated. β phase dominant ferroelectric PVDF thin films with a remnant polarization of 77 mC/m2 were achieved by optimizing the concentration of Mg(NO3)2ṡ6H2O and the processing condition. Our experimental results and theoretical analysis indicated that the hydrogen bonds between water in the hydrated salt and the PVDF molecules result in the interchain registration of the all-trans conformation, and the hydrated salt acts as the nucleation agent and promotes the crystallization of the β phase. The obtained effective d33 was -14.5 pm/V, tested with a laser scanning vibrometer, without taking into account the substrate clamping effect. The numerical simulation, after considering the elastic constrain of the substrate, determined that the corresponding actual d33 is -30.8 pm/V, which is comparable to that of uniaxially stretched piezoelectric PVDF films.

  3. Methane Recovery from Hydrate-bearing Sediments

    SciTech Connect

    J. Carlos Santamarina; Costas Tsouris

    2011-04-30

    Gas hydrates are crystalline compounds made of gas and water molecules. Methane hydrates are found in marine sediments and permafrost regions; extensive amounts of methane are trapped in the form of hydrates. Methane hydrate can be an energy resource, contribute to global warming, or cause seafloor instability. This study placed emphasis on gas recovery from hydrate bearing sediments and related phenomena. The unique behavior of hydrate-bearing sediments required the development of special research tools, including new numerical algorithms (tube- and pore-network models) and experimental devices (high pressure chambers and micromodels). Therefore, the research methodology combined experimental studies, particle-scale numerical simulations, and macro-scale analyses of coupled processes. Research conducted as part of this project started with hydrate formation in sediment pores and extended to production methods and emergent phenomena. In particular, the scope of the work addressed: (1) hydrate formation and growth in pores, the assessment of formation rate, tensile/adhesive strength and their impact on sediment-scale properties, including volume change during hydrate formation and dissociation; (2) the effect of physical properties such as gas solubility, salinity, pore size, and mixed gas conditions on hydrate formation and dissociation, and it implications such as oscillatory transient hydrate formation, dissolution within the hydrate stability field, initial hydrate lens formation, and phase boundary changes in real field situations; (3) fluid conductivity in relation to pore size distribution and spatial correlation and the emergence of phenomena such as flow focusing; (4) mixed fluid flow, with special emphasis on differences between invading gas and nucleating gas, implications on relative gas conductivity for reservoir simulations, and gas recovery efficiency; (5) identification of advantages and limitations in different gas production strategies with

  4. Communication: Charge transfer dominates over proton transfer in the reaction of nitric acid with gas-phase hydrated electrons

    NASA Astrophysics Data System (ADS)

    Lengyel, Jozef; Med, Jakub; Slavíček, Petr; Beyer, Martin K.

    2017-09-01

    The reaction of HNO3 with hydrated electrons (H2O)n- (n = 35-65) in the gas phase was studied using Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry and ab initio molecular dynamics simulations. Kinetic analysis of the experimental data shows that OH-(H2O)m is formed primarily via a reaction of the hydrated electron with HNO3 inside the cluster, while proton transfer is not observed and NO3-(H2O)m is just a secondary product. The reaction enthalpy was determined using nanocalorimetry, revealing a quite exothermic charge transfer with -241 ± 69 kJ mol-1. Ab initio molecular dynamics simulations indicate that proton transfer is an allowed reaction pathway, but the overall thermochemistry favors charge transfer.

  5. Communication: Charge transfer dominates over proton transfer in the reaction of nitric acid with gas-phase hydrated electrons.

    PubMed

    Lengyel, Jozef; Med, Jakub; Slavíček, Petr; Beyer, Martin K

    2017-09-14

    The reaction of HNO3 with hydrated electrons (H2O)n(-) (n = 35-65) in the gas phase was studied using Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry and ab initio molecular dynamics simulations. Kinetic analysis of the experimental data shows that OH(-)(H2O)m is formed primarily via a reaction of the hydrated electron with HNO3 inside the cluster, while proton transfer is not observed and NO3(-)(H2O)m is just a secondary product. The reaction enthalpy was determined using nanocalorimetry, revealing a quite exothermic charge transfer with -241 ± 69 kJ mol(-1). Ab initio molecular dynamics simulations indicate that proton transfer is an allowed reaction pathway, but the overall thermochemistry favors charge transfer.

  6. Rock-fluid interaction and phase properties of fluids in nano- and subnano-pores of shales: Sorption-based studies

    NASA Astrophysics Data System (ADS)

    Kumar, Sanyog

    vapors in organic-rich shale and siltstone samples suggest that hexane vapor measures pores in both clay and in organic matter (OM) while water vapor selectively probes only clay-hosted pores. Thus, OM pores, which are not accessed by water vapor adsorption, are concluded to be hydrophobic. Nitrogen adsorption underestimates porosity in the organic rich shales due to the kinetic-restriction faced by nitrogen in the cryogenic test conditions. The OM pores in the organic-rich shale samples retained their sorption capacity after water-imbibition. On the other hand, illite clay pores lost most of their supercritical CO2 sorption capacity in the presence of water. The diffusion of dissolved CO2 in water and its subsequent sorption in the OM pores suggests that dissolved gases can still be sorbed. As a consequence, rock-fluid interaction in nano- and sub-nanometer sized pores of shales may potentially alter the PVT properties of multi-component hydrocarbon liquids. The deformational and flow properties of confined undersaturated condensates (CUC) or the adsorbed phase of water and hexane in the nano- and sub-nanometer sized pores of various clay minerals were thus characterized and found to have liquid-like properties. However, the cation-hydrating CUC of water had unusual phase properties, as it was found to increase the overall p-wave stiffness of the clay aggregates. The sorption-based methods developed in the thesis for studying the rock-fluid interaction and fluid properties of shales are shown to be theoretically consistent and appear operationally more viable than the existing methods for rock-fluid interaction studies. Therefore, the proposed methods may have wider implications in the rock-physical and reservoir engineering studies of shales.

  7. Methane hydrate induced permeability modification for multiphase flow in unsaturated porous media

    NASA Astrophysics Data System (ADS)

    Seol, Yongkoo; Kneafsey, Timothy J.

    2011-08-01

    An experimental study was performed using X-ray computed tomography (CT) scanning to capture three-dimensional (3-D) methane hydrate distributions and potential discrete flow pathways in a sand pack sample. A numerical study was also performed to develop and analyze empirical relations that describe the impacts of hydrate accumulation habits within pore space (e.g., pore filling or grain cementing) on multiphase fluid migration. In the experimental study, water was injected into a hydrate-bearing sand sample that was monitored using an X-ray CT scanner. The CT images were converted into numerical grid elements, providing intrinsic sample data including porosity and phase saturations. The impacts of hydrate accumulation were examined by adapting empirical relations into the flow simulations as additional relations governing the evolution of absolute permeability of hydrate bearing sediment with hydrate deposition. The impacts of pore space hydrate accumulation habits on fluid migration were examined by comparing numerical predictions with experimentally measured water saturation distributions and breakthrough curves. A model case with 3-D heterogeneous initial conditions (hydrate saturation, porosity, and water saturation) and pore body-preferred hydrate accumulations best captured water migration behavior through the hydrate-bearing sample observed in the experiment. In the best matching model, absolute permeability in the hydrate bearing sample does not decrease significantly with increasing hydrate saturation until hydrate saturation reaches about 40%, after which it drops rapidly, and complete blockage of flow through the sample can occur as hydrate accumulations approach 70%. The result highlights the importance of permeability modification due to hydrate accumulation habits when predicting multiphase flow through high-saturation, reservoir quality hydrate-bearing sediments.

  8. TOUGH+Hydrate v1.0 User's Manual: A Code for the Simulation of System Behavior in Hydrate-Bearing Geologic Media

    SciTech Connect

    Moridis, George; Moridis, George J.; Kowalsky, Michael B.; Pruess, Karsten

    2008-03-01

    TOUGH+HYDRATE v1.0 is a new code for the simulation of the behavior of hydrate-bearing geologic systems. By solving the coupled equations of mass and heat balance, TOUGH+HYDRATE can model the non-isothermal gas release, phase behavior and flow of fluids and heat under conditions typical of common natural CH{sub 4}-hydrate deposits (i.e., in the permafrost and in deep ocean sediments) in complex geological media at any scale (from laboratory to reservoir) at which Darcy's law is valid. TOUGH+HYDRATE v1.0 includes both an equilibrium and a kinetic model of hydrate formation and dissociation. The model accounts for heat and up to four mass components, i.e., water, CH{sub 4}, hydrate, and water-soluble inhibitors such as salts or alcohols. These are partitioned among four possible phases (gas phase, liquid phase, ice phase and hydrate phase). Hydrate dissociation or formation, phase changes and the corresponding thermal effects are fully described, as are the effects of inhibitors. The model can describe all possible hydrate dissociation mechanisms, i.e., depressurization, thermal stimulation, salting-out effects and inhibitor-induced effects. TOUGH+HYDRATE is the first member of TOUGH+, the successor to the TOUGH2 [Pruess et al., 1991] family of codes for multi-component, multiphase fluid and heat flow developed at the Lawrence Berkeley National Laboratory. It is written in standard FORTRAN 95, and can be run on any computational platform (workstation, PC, Macintosh) for which such compilers are available.

  9. Elevating salinity and temperature with hydrate formation at deepwater Gulf of Mexico vents

    NASA Astrophysics Data System (ADS)

    Smith, Andrew J.; Flemings, Peter B.; Liu, Xiaoli

    2013-04-01

    We study the Ursa vent in ~1070 meters water depth at lease blocks MC852/853 in the northern Gulf of Mexico. Elevated salinities and temperatures at the vent shift the base of the hydrate stability zone (HSZ) to the seafloor (Paull et al., 2005; Ruppel et al., 2005). We model the coexistence of high salinities, high temperatures, and an uplifted hydrate phase boundary with a one-dimensional, multicomponent, multiphase, fluid- and heat-flow model of hydrate formation. In this model, free gas supplied from depth migrates vertically through a high-permeability conduit to the regional hydrate stability zone (RHSZ). Once reaching the base of the RHSZ, gas combines with water to form hydrate, salt is excluded, and heat is released. Hydrate formation continues until water is too warm and saline for further hydrate formation. This process self generates three-phase (gas, liquid, hydrate) equilibrium through the RHSZ and allows gas to vent from the base of the RHSZ to the seafloor. Once the reaction front breaches the seafloor, a pseudo steady state is reached in which a continuous salt flux diffuses from the seafloor, and further hydrate formation occurs at a rate necessary to replace the diffuse salt loss. This continued hydrate formation has the potential to produce large, steady fluxes of salt and heat from the seafloor. Such gas-hydrate and fluid-flow systems are important because they are especially sensitive to global ocean warming due to the large concentrations of hydrate that exist at three-phase equilibrium near the seafloor. References: Paull, C., Ussler, W., Lorenson, T., Winters, W., Dougherty, J., 2005. Geochemical constraints on the distribution of gas hydrates in the Gulf of Mexico. Geo-Marine Letters 25, 273-280. Ruppel, C., Dickens, G.R., Castellini, D.G., Gilhooly, W., Lizarralde, D., 2005. Heat and salt inhibition of gas hydrate formation in the northern Gulf of Mexico. Geophys. Res. Lett. 32, L04605.

  10. Water-wetting surfaces as hydrate promoters during transport of carbon dioxide with impurities.

    PubMed

    Kuznetsova, Tatiana; Jensen, Bjørnar; Kvamme, Bjørn; Sjøblom, Sara

    2015-05-21

    Water condensing as liquid drops within the fluid bulk has traditionally been the only scenario accepted in the industrial analysis of hydrate risks. We have applied a combination of absolute thermodynamics and molecular dynamics modeling to analyze the five primary routes of hydrate formation in a rusty pipeline carrying dense carbon dioxide with methane, hydrogen sulfide, argon, and nitrogen as additional impurities. We have revised the risk analysis of all possible routes in accordance with the combination of the first and the second laws of thermodynamics to determine the highest permissible content of water. It was found that at concentrations lower than five percent, hydrogen sulfide will only support the formation of carbon dioxide-dominated hydrate from adsorbed water and hydrate formers from carbon dioxide phase rather than formation in the aqueous phase. Our results indicate that hydrogen sulfide leaving carbon dioxide for the aqueous phase will be able to create an additional hydrate phase in the aqueous region adjacent to the first adsorbed water layer. The growth of hydrate from different phases will decrease the induction time by substantially reducing the kinetically limiting mass transport across the hydrate films. Hydrate formation via adsorption of water on rusty walls will play the decisive role in hydrate formation risk, with the initial concentration of hydrogen sulfide being the critical factor. We concluded that the safest way to eliminate hydrate risks is to ensure that the water content of carbon dioxide is low enough to prevent water dropout via the adsorption mechanism.

  11. Phase equilibria and plate-fluid interfacial tensions for associating hard sphere fluids confined in slit pores.

    PubMed

    Fu, Dong; Li, Xiao-Sen

    2006-08-28

    The excess Helmholtz free energy functional for associating hard sphere fluid is formulated by using a modified fundamental measure theory [Y. X. Yu and J. Z. Wu, J. Chem. Phys. 117, 10156 (2002)]. Within the framework of density functional theory, the thermodynamic properties including phase equilibria for both molecules and monomers, equilibrium plate-fluid interfacial tensions and isotherms of excess adsorption, average molecule density, average monomer density, and plate-fluid interfacial tension for four-site associating hard sphere fluids confined in slit pores are investigated. The phase equilibria inside the hard slit pores and attractive slit pores are determined according to the requirement that temperature, chemical potential, and grand potential in coexistence phases should be equal and the plate-fluid interfacial tensions at equilibrium states are predicted consequently. The influences of association energy, fluid-solid interaction, and pore width on phase equilibria and equilibrium plate-fluid interfacial tensions are discussed.

  12. ACTIVATION OF HAGEMAN FACTOR IN SOLID AND FLUID PHASES

    PubMed Central

    Cochrane, C. G.; Revak, S. D.; Wuepper, K. D.

    1973-01-01

    The activation of Hageman factor in solid and fluid phase has been analyzed. Activation of highly purified Hageman factor occurred after it interacted with and became bound to a negatively charged surface. Activation was observed in the absence of enzymes that are inhibitable with diisopropylfluorophosphate, phenyl methyl sulfonyl fluoride and ε-amino-n-caproic acid. The binding of [125I]Hageman factor to the negatively charged surface was markedly inhibited by plasma or purified plasma proteins. Activation of Hageman factor in solution (fluid phase) was obtained with kallikrein, plasmin, and Factor XI (plasma thromboplastin antecedent). Kallikrein was greater than 10 times more active in its ability to activate Hageman factor than plasmin and Factor XI. The data offer a plausible explanation for the finding that highly purified kallikrein promotes clotting of normal plasma. In addition, the combined results of this and previously reported data from this laboratory indicate that the reciprocal activation of Hageman factor by kallikrein in fluid phase is essential for normal rate of activation of the intrinsic-clotting, kinin-forming, and fibrinolytic systems. Activation of Hageman factor was associated with three different structural changes in the molecule: (a) Purified Hageman factor, activated on negatively charged surfaces retained its native mol wt of 80–90,000. Presumably a conformational change accompanied activation. (b) In fluid phase, activation with kallikrein and plasmin did not result in cleavage of large fragments of rabbit Hageman factor, although the activation required hydrolytic capacity of the enzymes. (c) Activation of human Hageman factor with kallikrein or plasmin was associated with cleavage of the molecule to 52,000, 40,000, and 28,000 mol wt fragments. Activation of rabbit Hageman factor with trypsin resulted in cleavage of the molecule into three fragments, each of 30,000 mol wt as noted previously. This major cleavage occurred

  13. Fluid hydrogen at high density - The plasma phase transition

    NASA Technical Reports Server (NTRS)

    Saumon, D.; Chabrier, G.

    1989-01-01

    A new model equation of state is applied, based on realistic interparticle potentials and a self-consistent treatment of the internal levels, to fluid hydrogen at high density. This model shows a strong connection between molecular dissociation and pressure ionization. The possibility of a first-order plasma phase transition is considered, and for which both the evolution in temperature and the critical point is given.

  14. Geometry-induced phase transition in fluids: capillary prewetting.

    PubMed

    Yatsyshin, Petr; Savva, Nikos; Kalliadasis, Serafim

    2013-02-01

    We report a new first-order phase transition preceding capillary condensation and corresponding to the discontinuous formation of a curved liquid meniscus. Using a mean-field microscopic approach based on the density functional theory we compute the complete phase diagram of a prototypical two-dimensional system exhibiting capillary condensation, namely that of a fluid with long-ranged dispersion intermolecular forces which is spatially confined by a substrate forming a semi-infinite rectangular pore exerting long-ranged dispersion forces on the fluid. In the T-μ plane the phase line of the new transition is tangential to the capillary condensation line at the capillary wetting temperature T(cw). The surface phase behavior of the system maps to planar wetting with the phase line of the new transition, termed capillary prewetting, mapping to the planar prewetting line. If capillary condensation is approached isothermally with T>T(cw), the meniscus forms at the capping wall and unbinds continuously, making capillary condensation a second-order phenomenon. We compute the corresponding critical exponent for the divergence of adsorption.

  15. Growth and Morphology of Phase Separating Supercritical Fluids

    NASA Technical Reports Server (NTRS)

    Hegseth, John; Beysens, Daniel; Perrot, Francoise; Nikolayev, Vadim; Garrabos, Yves

    1996-01-01

    The scientific objective is to study the relation between the morphology and the growth kinetics of domains during phase separation. We know from previous experiments performed near the critical point of pure fluids and binary liquids that there are two simple growth laws at late times. The 'fast' growth appears when the volumes of the phases are nearly equal and the droplet pattern is interconnected. In this case the size of the droplets grows linearly in time. The 'slow' growth appears when the pattern of droplets embedded in the majority phase is disconnected. In this case the size of the droplets increases in proportion to time to the power 1/3. The volume fraction of the minority phase is a good candidate to determine this change of behavior. All previous attempts to vary the volume fraction in a single experimental cell have failed because of the extreme experimental difficulties.

  16. Constraints of gas venting activity for the interstitial water geochemistry at the shallow gas hydrate site, eastern margin of the Japan Sea; results from high resolution time-series fluid sampling by OsmoSampler

    NASA Astrophysics Data System (ADS)

    Owari, S.; Tomaru, H.; Matsumoto, R.

    2016-12-01

    We have conducted ROV researches in the eastern margin of the Japan Sea where active gas venting and outcropping of gas hydrates were observed near the seafloor and have found the strength and location of venting had changed within a few days. These observations indicate the seafloor environments with the shallow gas hydrate system could have changed for short period compared to a geological time scale. We have applied a long-term osmotic fluid sampling system "OsmoSampler" on the active gas hydrate system for one year in order to document how the gas venting and gas hydrate activity have changed the geochemical environments near the seafloor. All the major ion concentrations in the interstitial water show synchronous increase and decrease repeatedly in three to five days, reflecting the incorporation and release of fresh water in gas hydrates in response to the gas concentration change near the sampling site. Dissolved methane concentration increases rapidly and excessively (over several mM) in the first 40 days corresponding to the active gas venting. The increases of methane concentration are often associated with high ion concentration during high water pressure period, indicating excess gas release from shallow gas pockets. Contrarily, enhanced gas hydrate growth may plug the fluid-gas paths in shallow sediment, reducing gas hydrate formation due to the decrease of methane flux. This study was conducted under the commission from AIST as a part of the methane hydrate research project funded by METI (the Ministry of Economy, Trade and Industry, Japan).

  17. Impact of Gas Hydrate and Related Fluid Seepage on Submarine Slope Failures along the Margins of the Ulleung Basin, East Sea (Japan Sea)

    NASA Astrophysics Data System (ADS)

    Horozal, S.; Bahk, J. J.; Urgeles, R.; Kim, G. Y.; Cukur, D.; Lee, G. H.; Lee, S. H.; Kim, S. P.; Ryu, B. J.; Kim, J. H.

    2016-12-01

    The Ulleung Basin is a back-arc basin that is known to retain gas hydrate reservoirs in the East (Japan) Sea. The basin contains large volumes of mass-transport deposits (MTDs) due to submarine slope failures along its margins since the Neogene. In this study, seismic indicators of gas hydrate and associated gas and fluid flow were re-compiled on a regional multi-channel seismic reflection data. The gas hydrate occurrence zone (GHOZ) is defined by the BSR (bottom-simulating reflector) distribution. It is more pronounced along the southwestern slope with a minimum depth of 100 mbsf (meters below seafloor) at 295 mbsl (meter below sea level) on the southern, while its thickness is the greatest (250 mbsf) at the southwestern margin. Flow and seepage structures reflected on the seismic data as columnar acoustic-blanking zones varying in width and height (up to hundreds of meters) were classified into: (a) buried seismic chimneys (BSC), (b) chimneys with a mound (SCM), and (c) chimneys with a depression (SCD) on the seafloor. Pockmarks which are not associated with seismic chimneys, reflection anomalies (i.e., enhanced reflections below the BSR and hyperbolic reflections), and SCD are predominant features in the western margin, while the BSR, BSC and SCM are densely distributed in the south-southwestern margin. Present-day gas hydrate stability zone (GHSZ) is calculated using in-situ bottom-water temperature and geothermal gradient measurements (ranging between 0-17.5 oC and 25-200 oC/km, respectively) and multibeam bathymetry data. The GHSZ thickness exceeds 190 m, and the upslope limit of GHSZ ranges between about 180 and 260 mbsl. This depth range is in the proximity of the uppermost depths of landslide scars ( 190 mbsl) which are common features on the slopes along with glide planes, slides/slumps and MTDs. Overall, the base of GHSZ (BGHSZ) and the BSR depths are well-correlated in the basin. However, the BSR depths are typically greater (up to 50 m) than the BGHSZ

  18. TEM and NanoSIMS Study of Hydrated/Anhydrous Phase Mixed IDPs: Cometary or Asteroidal Origin?

    NASA Technical Reports Server (NTRS)

    Nakamura, K.; Messenger, S.; Keller, L. P.

    2005-01-01

    Chondritic interplanetary dust particles (IDPs) are subdivided into (1) particles that form highly porous aggregates (chondritic porous "CP" IDPs), and (2) smooth particles ("CS" IDPs). Infrared (IR) spectroscopy has been a valuable tool for non-destructively determining the bulk mineralogy of IDPs. Most IDPs fall within three distinct IR groups: (1) olivine-rich particles, (2) pyroxene-rich particles, and (3) phyllosilicate-rich particles. From the IR studies, IDPs dominated by anhydrous minerals tend to be fine grained (CP), while phyllosilicate-rich IDPs are mostly CS. CP IDPs have been linked to cometary sources based on their compositions, spectral properties, and atmospheric entry velocities. Since no spectral signatures of hydrated minerals have been detected in comets, CS IDPs are thought to derive from primitive asteroids. Transmission electron microscopy (TEM) studies have revealed that the mineralogical distinctions between CP and CS IDPs are not always clear. Previous investigators have reported trace amounts of hydrous minerals in dominantly anhydrous particles. A better understanding of these particles will help to elucidate whether there is a genetic relationship between anhydrous and hydrated IDPs, provide insight into the earliest stages of aqueous alteration of primitive materials, and may help to determine whether comets have experienced any aqueous processing. Here we report a combined TEM and isotopic imaging study of an unusual anhydrous IDP with hydrated phases. Additional information is included in the original extended abstract.

  19. Born-Oppenheimer molecular dynamics studies of Pb(ii) micro hydrated gas phase clusters.

    PubMed

    León-Pimentel, C I; Amaro-Estrada, J I; Saint-Martin, H; Ramírez-Solís, A

    2017-02-28

    In this work, a theoretical investigation was made to assess the coordination properties of Pb(ii) in [Pb(H2O)n](2+) clusters, with n = 4, 6, 8, 12, and 29, as well as to study proton transfer events, by means of Born-Oppenheimer molecular dynamics simulations at the B3LYP/aug-cc-pVDZ-pp/6-311G level of theory, that were calibrated in comparison with B3LYP/aug-cc-pVDZ-PP/aug-cc-pVDZ calculations. Hemidirected configurations were found in all cases; the radial distribution functions (RDFs) produced well defined first hydration shells (FHSs) for n = 4,6,8, and 12, that resulted in a coordination number CN = 4, whereas a clear-cut FHS was not found for n = 29 because the RDF did not have a vacant region after the first maximum; however, three water molecules remained directly interacting with the Pb ion for the whole simulation, while six others stayed at average distances shorter than 4 Å but dynamically getting closer and farther, thus producing a CN ranging from 6 to 9, depending on the criterion used to define the first hydration shell. In agreement with experimental data and previous calculations, proton transfer events were observed for n≤8 but not for n≥12. For an event to occur, a water molecule in the second hydration shell had to make a single hydrogen bond with a water molecule in the first hydration shell.

  20. Born-Oppenheimer molecular dynamics studies of Pb(ii) micro hydrated gas phase clusters

    NASA Astrophysics Data System (ADS)

    León-Pimentel, C. I.; Amaro-Estrada, J. I.; Saint-Martin, H.; Ramírez-Solís, A.

    2017-02-01

    In this work, a theoretical investigation was made to assess the coordination properties of Pb(ii) in [Pb(H2O)n]2+ clusters, with n = 4, 6, 8, 12, and 29, as well as to study proton transfer events, by means of Born-Oppenheimer molecular dynamics simulations at the B3LYP/aug-cc-pVDZ-pp/6-311G level of theory, that were calibrated in comparison with B3LYP/aug-cc-pVDZ-PP/aug-cc-pVDZ calculations. Hemidirected configurations were found in all cases; the radial distribution functions (RDFs) produced well defined first hydration shells (FHSs) for n = 4,6,8, and 12, that resulted in a coordination number CN = 4, whereas a clear-cut FHS was not found for n = 29 because the RDF did not have a vacant region after the first maximum; however, three water molecules remained directly interacting with the Pb ion for the whole simulation, while six others stayed at average distances shorter than 4 Å but dynamically getting closer and farther, thus producing a CN ranging from 6 to 9, depending on the criterion used to define the first hydration shell. In agreement with experimental data and previous calculations, proton transfer events were observed for n ≤8 but not for n ≥12 . For an event to occur, a water molecule in the second hydration shell had to make a single hydrogen bond with a water molecule in the first hydration shell.

  1. Estimating pore-space gas hydrate saturations from well log acoustic data

    USGS Publications Warehouse

    Lee, Myung W.; Waite, William F.

    2008-01-01

    Relating pore-space gas hydrate saturation to sonic velocity data is important for remotely estimating gas hydrate concentration in sediment. In the present study, sonic velocities of gas hydrate–bearing sands are modeled using a three-phase Biot-type theory in which sand, gas hydrate, and pore fluid form three homogeneous, interwoven frameworks. This theory is developed using well log compressional and shear wave velocity data from the Mallik 5L-38 permafrost gas hydrate research well in Canada and applied to well log data from hydrate-bearing sands in the Alaskan permafrost, Gulf of Mexico, and northern Cascadia margin. Velocity-based gas hydrate saturation estimates are in good agreement with Nuclear Magneto Resonance and resistivity log estimates over the complete range of observed gas hydrate saturations.

  2. Fractionation of Cl/Br during fluid phase separation in magmatic-hydrothermal fluids

    NASA Astrophysics Data System (ADS)

    Seo, Jung Hun; Zajacz, Zoltán

    2016-06-01

    Brine and vapor inclusions were synthesized to study Cl/Br fractionation during magmatic-hydrothermal fluid phase separation at 900 °C and pressures of 90, 120, and 150 MPa in Li/Na/K halide salt-H2O systems. Laser ablation ICP-MS microanalysis of high-density brine inclusions show an elevated Cl/Br ratio compared to the coexisting low-density vapor inclusions. The degree of Cl/Br fractionation between vapor and brine is significantly dependent on the identity of the alkali metal in the system: stronger vapor partitioning of Br occurs in the Li halide-H2O system compared to the systems of K and Na halide-H2O. The effect of the identity of alkali-metals in the system is stronger compared to the effect of vapor-brine density contrast. We infer that competition between alkali-halide and alkali-OH complexes in high-temperature fluids might cause the Cl/Br fractionation, consistent with the observed molar imbalances of alkali metals compared to halides in the analyzed brine inclusions. Our experiments show that the identity of alkali metals controls the degrees of Cl/Br fractionation between the separating aqueous fluid phases at 900 °C, and suggest that a significant variability in the Cl/Br ratios of magmatic fluids can arise in Li-rich systems.

  3. Physical mechanisms for multiphase flow associated with hydrate formation

    NASA Astrophysics Data System (ADS)

    Behseresht, Javad; Bryant, Steven L.

    2017-05-01

    Many Arctic hydrate reservoirs such as those of the Prudhoe Bay and Kuparuk River area on the Alaska North Slope (ANS) are believed originally to be natural gas accumulations converted to hydrate accumulations after being placed in the gas hydrate stability zone (GHSZ) in response to ancient climate cooling. In this work, the implications of a previously described mechanistic model for the transport of gaseous and aqueous phases are studied using a transient 1-D transport model during the conversion of a gas reservoir to a hydrate reservoir. The mechanistic model predicts/explains the vertical profile of hydrate saturation in "converted free gas" hydrate reservoirs. The initial gas phase saturation with depth is estimated from the profile of capillary entry pressure, which is estimated from grain size distributions measured in cores. The gas accumulation is assumed to be disconnected from its original source so that methane transport occurs only within it. As the base of the GHSZ descends through the sediment, hydrate forms within the GHSZ. The net volume reduction associated with hydrate formation creates a "sink" which drives flow of gaseous and aqueous phases to the hydrate formation zone. Mechanisms by which this fluid movement could have occurred are analyzed. Flow driven by saturation gradients plays a key role in creating reservoirs of large hydrate saturations, as observed in Mount Elbert stratigraphic test well in the Milne Point Unit of Alaska North Slope (ANS). Viscous-dominated pressure-driven flow of gaseous and aqueous phases cannot explain large hydrate saturations originated from large-saturation gas accumulations. The mode of hydrate formation for a wide range of rate of hydrate formation, the rate of descent of the base of GHSZ, and host sediment characteristics are analyzed and characterized based on dimensionless groups. The proposed transport model is also consistent with field data from hydrate-bearing sand units in Mount Elbert well. Results

  4. An immersed boundary method for two-phase fluids and gels and the swimming of Caenorhabditis elegans through viscoelastic fluids.

    PubMed

    Lee, Pilhwa; Wolgemuth, Charles W

    2016-01-01

    The swimming of microorganisms typically involves the undulation or rotation of thin, filamentary objects in a fluid or other medium. Swimming in Newtonian fluids has been examined extensively, and only recently have investigations into microorganism swimming through non-Newtonian fluids and gels been explored. The equations that govern these more complex media are often nonlinear and require computational algorithms to study moderate to large amplitude motions of the swimmer. Here, we develop an immersed boundary method for handling fluid-structure interactions in a general two-phase medium, where one phase is a Newtonian fluid and the other phase is viscoelastic (e.g., a polymer melt or network). We use this algorithm to investigate the swimming of an undulating, filamentary swimmer in 2D (i.e., a sheet). A novel aspect of our method is that it allows one to specify how forces produced by the swimmer are distributed between the two phases of the fluid. The algorithm is validated by comparing theoretical predictions for small amplitude swimming in gels and viscoelastic fluids. We show how the swimming velocity depends on material parameters of the fluid and the interaction between the fluid and swimmer. In addition, we simulate the swimming of Caenorhabditis elegans in viscoelastic fluids and find good agreement between the swimming speeds and fluid flows in our simulations and previous experimental measurements. These results suggest that our methodology provides an accurate means for exploring the physics of swimming through non-Newtonian fluids and gels.

  5. An immersed boundary method for two-phase fluids and gels and the swimming of Caenorhabditis elegans through viscoelastic fluids

    PubMed Central

    Lee, Pilhwa; Wolgemuth, Charles W.

    2016-01-01

    The swimming of microorganisms typically involves the undulation or rotation of thin, filamentary objects in a fluid or other medium. Swimming in Newtonian fluids has been examined extensively, and only recently have investigations into microorganism swimming through non-Newtonian fluids and gels been explored. The equations that govern these more complex media are often nonlinear and require computational algorithms to study moderate to large amplitude motions of the swimmer. Here, we develop an immersed boundary method for handling fluid-structure interactions in a general two-phase medium, where one phase is a Newtonian fluid and the other phase is viscoelastic (e.g., a polymer melt or network). We use this algorithm to investigate the swimming of an undulating, filamentary swimmer in 2D (i.e., a sheet). A novel aspect of our method is that it allows one to specify how forces produced by the swimmer are distributed between the two phases of the fluid. The algorithm is validated by comparing theoretical predictions for small amplitude swimming in gels and viscoelastic fluids. We show how the swimming velocity depends on material parameters of the fluid and the interaction between the fluid and swimmer. In addition, we simulate the swimming of Caenorhabditis elegans in viscoelastic fluids and find good agreement between the swimming speeds and fluid flows in our simulations and previous experimental measurements. These results suggest that our methodology provides an accurate means for exploring the physics of swimming through non-Newtonian fluids and gels. PMID:26858520

  6. Phase behavior of coal fluids: Data for correlation development

    SciTech Connect

    Robinson, R.J. Jr.; Gasem, K.A.M.; Shaver, R.D.

    1990-01-01

    The effective design and operation of processes for conversion of coal to fluid fuels requires accurate knowledge of the phase behavior of the fluid mixtures encountered in the conversion process. The overall objective of the author's work is to develop accurate predictive methods for representation of vapor-liquid equilibria in systems encountered in coal conversion processes. The objectives of the present project include: (1) measurements of binary vapor-liquid phase behavior data for selected solute gases (e.g. CO{sub 2} and C{sub 2}H{sub 6}) in a series of heavy hydrocarbon solvents to permit evaluation of interaction parameters in models for phase behavior, (2) measurements on ternary systems in which high-melting-point solvents are dissolved in more volatile aromatics to provide mixed solvents, (3) evaluation of existing equations-of-state and other models for representation of phase behavior in systems of the type studied experimentally; development of new correlation frameworks as needed, and (4) generalization of the interaction parameters for the solutes studied to a wide spectrum of heavy solvents; presentations of final results in formats useful in the design/optimization of coal liquefaction processes. This quarter, our framework for correlating saturation properties using a scaled-variable-reduced-coordinate'' approach was further developed to provide for generalized vapor pressure predictions. 59 refs., 6 figs., 8 tabs.

  7. A phase diagram for fluid-driven sediment trasport

    NASA Astrophysics Data System (ADS)

    Clark, Abe

    When a fluid flows laterally over a granular bed, grains may be transported with the flow. This process shapes much of the natural world. The boundary between states with and without grain motion has been studied for decades. However, this boundary is not well understood, since the process whereby grains are transported involves the coupling of several complex phenomena: turbulent fluid flow near a rough boundary, Darcy flow through the pore structure of the granular bed, the yield strength of granular beds comprised of frictional grains with irregular shape, and inertial effects of grains that become entrained in the flow. In order to clarify the essential physics that governs the onset of granular motion, we study this process computationally by including only the minimal features and then adding complexities one by one. We start with a simple numerical model that includes only gravity, grain-grain interactions that are repulsive and frictionless, and a purely horizontal viscous fluid flow. By varying the fluid flow rate and the effective viscosity, we find behavior that is qualitatively consistent with a large collection of experimental data known as the Shields curve. Thus, our results suggest that the main features of this curve result from a competition between grain inertia and viscous damping. We find this phase diagram to be qualitatively insensitive to secondary effects, such as friction, irregular grain shape, and restitution losses. Funded by U.S. Army Research Office under Grant No. W911NF-14-1-0005.

  8. Study of heat transfer characteristics during dissociation of gas hydrates in porous media

    SciTech Connect

    Kamath, V.A.

    1984-01-01

    An experimental technique was developed to measure the rate of formation and dissociation of hydrates in porous media. In the first phase of the work, hydrates of propane and methane were studied. Propane hydrate cores were formed by contacting liquid propane with compacted porous ice cores at 274 K for 24 to 100 hours, whereas the formation of methane hydrates was achieved by contacting ice cores with gaseous methane at about 7000 kPa and 274 K, for 24 to 200 hours. These hydrate cores were dissociated by circulating warm water over the top of the core, under controlled temperatures and pressures. The major findings of these experiments are as follows: 1) the phenomena of dissociation of hydrates to liquid water and gas is similar to nucleate boiling of liquids; 2) the rate of dissociation of hydrates at constant ..delta..T, is directly proportional to the area of hydrates exposed to the warm fluid or the composition of hydrates in the core; and 3) the rate of heat transfer and dissociation increase with increase in pressure and the rate of circulation of the warm fluid. Unified correlations for heat transfer and dissociation rates were successfully obtained for both methane and propane hydrate dissociation. These correlations will be useful to predict the rate of dissociation and gas production in hydrate reservoirs. In the second phase of his work, in order to simulate the conditions of hydrate dissociation in the earth, methane hydrates were formed and dissociated in unconsolidated cores of sand. The results of these experiments have demonstrated that the heat transfer resistance of the media (rock) plays an important role in dissociation of hydrates in earth.

  9. Coupling fluid-structure interaction with phase-field fracture

    NASA Astrophysics Data System (ADS)

    Wick, Thomas

    2016-12-01

    In this work, a concept for coupling fluid-structure interaction with brittle fracture in elasticity is proposed. The fluid-structure interaction problem is modeled in terms of the arbitrary Lagrangian-Eulerian technique and couples the isothermal, incompressible Navier-Stokes equations with nonlinear elastodynamics using the Saint-Venant Kirchhoff solid model. The brittle fracture model is based on a phase-field approach for cracks in elasticity and pressurized elastic solids. In order to derive a common framework, the phase-field approach is re-formulated in Lagrangian coordinates to combine it with fluid-structure interaction. A crack irreversibility condition, that is mathematically characterized as an inequality constraint in time, is enforced with the help of an augmented Lagrangian iteration. The resulting problem is highly nonlinear and solved with a modified Newton method (e.g., error-oriented) that specifically allows for a temporary increase of the residuals. The proposed framework is substantiated with several numerical tests. In these examples, computational stability in space and time is shown for several goal functionals, which demonstrates reliability of numerical modeling and algorithmic techniques. But also current limitations such as the necessity of using solid damping are addressed.

  10. Gas hydrate dissociation in sediments: Pressure-temperature evolution

    NASA Astrophysics Data System (ADS)

    Kwon, Tae-Hyuk; Cho, Gye-Chun; Santamarina, J. Carlos

    2008-03-01

    Hydrate-bearing sediments may destabilize spontaneously as part of geological processes, unavoidably during petroleum drilling/production operations or intentionally as part of gas extraction from the hydrate itself. In all cases, high pore fluid pressure generation is anticipated during hydrate dissociation. A comprehensive formulation is derived for the prediction of fluid pressure evolution in hydrate-bearing sediments subjected to thermal stimulation without mass transfer. The formulation considers pressure- and temperature-dependent volume changes in all phases, effective stress-controlled sediment compressibility, capillarity, and the relative solubilities of fluids. Salient implications are explored through parametric studies. The model properly reproduces experimental data, including the PT evolution along the phase boundary during dissociation and the effect of capillarity. Pore fluid pressure generation is proportional to the initial hydrate fraction and the sediment bulk stiffness; is inversely proportional to the initial gas fraction and gas solubility; and is limited by changes in effective stress that cause the failure of the sediment. When the sediment stiffness is high, the generated pore pressure reflects thermal and pressure changes in water, hydrate, and mineral densities. Comparative analyses for CO2 and CH4 highlight the role of gas solubility in excess pore fluid pressure generation. Dissociation in small pores experiences melting point depression due to changes in water activity, and lower pore fluid pressure generation due to the higher gas pressure in small gas bubbles. Capillarity effects may be disregarded in silts and sands, when hydrates are present in nodules and lenses and when the sediment experiences hydraulic fracture.

  11. HYDRATE v1.5 OPTION OF TOUGH+ v1.5

    SciTech Connect

    Moridis, George

    2015-08-27

    HYDRATE v1.5 is a numerical code that for the simulation of the behavior of hydrate-bearing geologic systems, and represents the third update of the code since its first release [Moridis et al., 2008]. It is an option of TOUGH+ v1.5 [Moridis and Pruess, 2014], a successor to the TOUGH2 [Pruess et al., 1999, 2012] family of codes for multi-component, multiphase fluid and heat flow developed at the Lawrence Berkeley National Laboratory. HYDRATE v1.5 needs the TOUGH+ v1.5 core code in order to compile and execute. It is written in standard FORTRAN 95/2003, and can be run on any computational platform (workstation, PC, Macintosh) for which such compilers are available. By solving the coupled equations of mass and heat balance, the fully operational TOUGH+HYDRATE code can model the non-isothermal gas release, phase behavior and flow of fluids and heat under conditions typical of common natural CH4-hydrate deposits (i.e., in the permafrost and in deep ocean sediments) in complex geological media at any scale (from laboratory to reservoir) at which Darcy's law is valid. TOUGH+HYDRATE v1.5 includes both an equilibrium and a kinetic model of hydrate formation and dissociation. The model accounts for heat and up to four mass components, i.e., water, CH4, hydrate, and water-soluble inhibitors such as salts or alcohols. These are partitioned among four possible phases (gas phase, liquid phase, ice phase and hydrate phase). Hydrate dissociation or formation, phase changes and the corresponding thermal effects are fully described, as are the effects of inhibitors. The model can describe all possible hydrate dissociation mechanisms, i.e., depressurization, thermal stimulation, salting-out effects and inhibitor-induced effects.

  12. Transient thermohydraulic modeling of two-phase fluid systems

    NASA Astrophysics Data System (ADS)

    Blet, N.; Delalandre, N.; Ayel, V.; Bertin, Y.; Romestant, C.; Platel, V.

    2012-11-01

    This paper presents a transient thermohydraulic modeling, initially developed for a capillary pumped loop in gravitational applications, but also possibly suitable for all kinds of two-phase fluid systems. Using finite volumes method, it is based on Navier-Stokes equations for transcribing fluid mechanical aspects. The main feature of this 1D-model is based on a network representation by analogy with electrical. This paper also proposes a parametric study of a counterflow condenser following the sensitivity to inlet mass flow rate and cold source temperature. The comparison between modeling results and experimental data highlights a good numerical evaluation of temperatures. Furthermore, the model is able to represent a pretty good dynamic evolution of hydraulic variables.

  13. Elastic-wave velocity in marine sediments with gas hydrates: Effective medium modeling

    USGS Publications Warehouse

    Helgerud, M.B.; Dvorkin, J.; Nur, A.; Sakai, A.; Collett, T.

    1999-01-01

    We offer a first-principle-based effective medium model for elastic-wave velocity in unconsolidated, high porosity, ocean bottom sediments containing gas hydrate. The dry sediment frame elastic constants depend on porosity, elastic moduli of the solid phase, and effective pressure. Elastic moduli of saturated sediment are calculated from those of the dry frame using Gassmann's equation. To model the effect of gas hydrate on sediment elastic moduli we use two separate assumptions: (a) hydrate modifies the pore fluid elastic properties without affecting the frame; (b) hydrate becomes a component of the solid phase, modifying the elasticity of the frame. The goal of the modeling is to predict the amount of hydrate in sediments from sonic or seismic velocity data. We apply the model to sonic and VSP data from ODP Hole 995 and obtain hydrate concentration estimates from assumption (b) consistent with estimates obtained from resistivity, chlorinity and evolved gas data. Copyright 1999 by the American Geophysical Union.

  14. Effect of ammonia on the gas-phase hydration of the common atmospheric ion HSO(4)(-).

    PubMed

    Nadykto, Alexey B; Yu, Fangqun; Herb, Jason

    2008-11-01

    Hydration directly affects the mobility, thermodynamic properties, lifetime and nucleation rates of atmospheric ions. In the present study, the role of ammonia on the formation of hydrogen bonded complexes of the common atmospheric hydrogensulfate (HSO(4) (-)) ion with water has been investigated using the Density Functional Theory (DFT). Our findings rule out the stabilizing effect of ammonia on the formation of negatively charged cluster hydrates and show clearly that the conventional (classical) treatment of ionic clusters as presumably more stable compared to neutrals may not be applicable to pre-nucleation clusters. These considerations lead us to conclude that not only quantitative but also qualitative assessment of the relative thermodynamic stability of atmospheric clusters requires a quantum-chemical treatment.

  15. Microgravity fluid management in two-phase thermal systems

    NASA Technical Reports Server (NTRS)

    Parish, Richard C.

    1987-01-01

    Initial studies have indicated that in comparison to an all liquid single phase system, a two-phase liquid/vapor thermal control system requires significantly lower pumping power, demonstrates more isothermal control characteristics, and allows greater operational flexibility in heat load placement. As a function of JSC's Work Package responsibility for thermal management of space station equipment external to the pressurized modules, prototype development programs were initiated on the Two-Phase Thermal Bus System (TBS) and the Space Erectable Radiator System (SERS). JSC currently has several programs underway to enhance the understanding of two-phase fluid flow characteristics. The objective of one of these programs (sponsored by the Microgravity Science and Applications Division at NASA-Headquarters) is to design, fabricate, and fly a two-phase flow regime mapping experiment in the Shuttle vehicle mid-deck. Another program, sponsored by OAST, involves the testing of a two-phase thermal transport loop aboard the KC-135 reduced gravity aircraft to identify system implications of pressure drop variation as a function of the flow quality and flow regime present in a representative thermal system.

  16. Phase separation in fluids exposed to spatially periodic external fields.

    PubMed

    Vink, R L C; Archer, A J

    2012-03-01

    When a fluid is confined within a spatially periodic external field, the liquid-vapor transition is replaced by a different transition called laser-induced condensation (LIC) [Götze et al., Mol. Phys. 101, 1651 (2003)]. In d=3 dimensions, the periodic field induces an additional phase, characterized by large density modulations along the field direction. At the triple point, all three phases (modulated, vapor, and liquid) coexist. At temperatures slightly above the triple point and for low (high) values of the chemical potential, two-phase coexistence between the modulated phase and the vapor (liquid) is observed; by increasing the temperature further, both coexistence regions terminate in critical points. In this paper, we reconsider LIC using the Ising model to resolve a number of open issues. To be specific, we (1) determine the universality class of the LIC critical points and elucidate the nature of the correlations along the field direction, (2) present a mean-field analysis to show how the LIC phase diagram changes as a function of the field wavelength and amplitude, (3) develop a simulation method by which the extremely low tension of the interface between modulated and vapor or liquid phase can be measured, (4) present a finite-size scaling analysis to accurately extract the LIC triple point from finite-size simulation data, and (5) consider the fate of LIC in d=2 dimensions.

  17. Phase relations between the water-rich sulfuric acid hydrates, potential markers of thermal history on Jupiter’s icy moons

    NASA Astrophysics Data System (ADS)

    Maynard-Casely, H. E.; Brand, H. E. A.; Wallwork, K. S.

    2014-08-01

    Synchrotron X-ray powder diffraction has been used to explore the water-rich (<50 wt.% H2SO4) region of the sulfuric acid and water binary phase diagram at temperatures between 80 and 285 K. The phase relations that are determined demonstrate that, on laboratory timescales, sulfuric acid hydrates crystallize as mixtures of phases. Four forms of sulfuric acid hydrates were observed along with ice Ih, with their proportions dependent on temperature and sample H2SO4 wt.%. The charting of these phase relations has revealed a transformation between hydrate forms, which could be utilized as a marker for areas of higher heat flow on the surfaces of the Galilean ice moons.

  18. TOUGH+HYDRATE v1.2 User's Manual: A Code for the Simulation of System Behavior in Hydrate-Bearing Geologic Media

    SciTech Connect

    Moridis, George J.; Kowalsky, Michael B.; Pruess, Karsten

    2012-08-01

    TOUGH+HYDRATE v1.2 is a code for the simulation of the behavior of hydratebearing geologic systems, and represents the second update of the code since its first release [Moridis et al., 2008]. By solving the coupled equations of mass and heat balance, TOUGH+HYDRATE can model the non-isothermal gas release, phase behavior and flow of fluids and heat under conditions typical of common natural CH4-hydrate deposits (i.e., in the permafrost and in deep ocean sediments) in complex geological media at any scale (from laboratory to reservoir) at which Darcy’s law is valid. TOUGH+HYDRATE v1.2 includes both an equilibrium and a kinetic model of hydrate formation and dissociation. The model accounts for heat and up to four mass components, i.e., water, CH4, hydrate, and water-soluble inhibitors such as salts or alcohols. These are partitioned among four possible phases (gas phase, liquid phase, ice phase and hydrate phase). Hydrate dissociation or formation, phase changes and the corresponding thermal effects are fully described, as are the effects of inhibitors. The model can describe all possible hydrate dissociation mechanisms, i.e., depressurization, thermal stimulation, salting-out effects and inhibitor-induced effects. TOUGH+HYDRATE is a member of TOUGH+, the successor to the TOUGH2 [Pruess et al., 1991] family of codes for multi-component, multiphase fluid and heat flow developed at the Lawrence Berkeley National Laboratory. It is written in standard FORTRAN 95/2003, and can be run on any computational platform (workstation, PC, Macintosh) for which such compilers are available.

  19. On the theory of phase transitions in magnetic fluids

    SciTech Connect

    Zubarev, A. Yu. Iskakova, L. Yu.

    2007-11-15

    Particles of magnetic fluids (ferrofluids), as is known from experiments, can condense to bulk dense phases at low temperatures (that are close to room temperature) in response to an external magnetic field. It is also known that a uniform external magnetic field increases the threshold temperature of the observed condensation, thus stimulating the condensation process. Within the framework of early theories, this phenomenon is interpreted as a classical gas-liquid phase transition in a system of individual particles involved in a dipole-dipole interaction. However, subsequent investigations have revealed that, before the onset of a bulk phase transition, particles can combine to form a chain cluster or, possibly, a topologically more complex heterogeneous cluster. In an infinitely strong magnetic field, the formation of chains apparently suppresses the onset of a gas-liquid phase transition and the condensation of magnetic particles most likely proceeds according to the scenario of a gas-solid phase transition with a wide gap between spinodal branches. This paper reports on the results of investigations into the specific features of the condensation of particles in the absence of an external magnetic field. An analysis demonstrates that, despite the formation of chains, the condensation of particles in this case can proceed according to the scenario of a gas-liquid phase transition with a critical point in the continuous binodal. Consequently, a uniform magnetic field not only can stimulate the condensation phase transition in a system of magnetic particles but also can be responsible for a qualitative change in the scenario of the phase transition. This inference raises the problem regarding a threshold magnetic field in which there occurs a change in the scenario of the phase transition.

  20. Dynamic Studies of Lung Fluid Clearance with Phase Contrast Imaging

    SciTech Connect

    Kitchen, Marcus J.; Williams, Ivan; Irvine, Sarah C.; Morgan, Michael J.; Paganin, David M.; Lewis, Rob A.; Pavlov, Konstantin; Hooper, Stuart B.; Wallace, Megan J.; Siu, Karen K. W.; Yagi, Naoto; Uesugi, Kentaro

    2007-01-19

    Clearance of liquid from the airways at birth is a poorly understood process, partly due to the difficulties of observing and measuring the distribution of air within the lung. Imaging dynamic processes within the lung in vivo with high contrast and spatial resolution is therefore a major challenge. However, phase contrast X-ray imaging is able to exploit inhaled air as a contrast agent, rendering the lungs of small animals visible due to the large changes in the refractive index at air/tissue interfaces. In concert with the high spatial resolution afforded by X-ray imaging systems (<100 {mu}m), propagation-based phase contrast imaging is ideal for studying lung development. To this end we have utilized intense, monochromatic synchrotron radiation, together with a fast readout CCD camera, to study fluid clearance from the lungs of rabbit pups at birth. Local rates of fluid clearance have been measured from the dynamic sequences using a single image phase retrieval algorithm.

  1. Hydrate detection

    SciTech Connect

    Dillon, W.P.; Ahlbrandt, T.S.

    1992-06-01

    Project objectives were: (1) to create methods of analyzing gas hydrates in natural sea-floor sediments, using available data, (2) to make estimates of the amount of gas hydrates in marine sediments, (3) to map the distribution of hydrates, (4) to relate concentrations of gas hydrates to natural processes and infer the factors that control hydrate concentration or that result in loss of hydrate from the sea floor. (VC)

  2. Hydrate detection

    SciTech Connect

    Dillon, W.P.; Ahlbrandt, T.S.

    1992-01-01

    Project objectives were: (1) to create methods of analyzing gas hydrates in natural sea-floor sediments, using available data, (2) to make estimates of the amount of gas hydrates in marine sediments, (3) to map the distribution of hydrates, (4) to relate concentrations of gas hydrates to natural processes and infer the factors that control hydrate concentration or that result in loss of hydrate from the sea floor. (VC)

  3. A STUDY OF THE EFFECT OF HYPOTONIC HYPER-HYDRATION FLUIDS ON SODIUM BALANCE IN PAEDIATRIC HAEMATOLOGY/ONCOLOGY PATIENTS RECEIVING CHEMOTHERAPY.

    PubMed

    Keane, Sinead; Butler, Eileen

    2016-09-01

    To determine the effect, if any, that hyper-hydration with hypotonic fluids has on sodium balance in paediatric haematology/oncology patients receiving cytotoxic chemotherapy treatment for malignancies. A literature review was carried out and a snapshot of current practice across paediatric haematology/oncology centres in the UK was obtained. A prospective study was carried out in a tertiary paediatric haematology/oncology centre. A total of 98 patient episodes involved hyper-hydration with isotonic 0.9% NaCl, almost isotonic 0.45% NaCl+2.5% glucose with added sodium bicarbonate or hypotonic 0.45% NaCl+2.5% glucose. Serum sodium was monitored before and during hyper-hydration. Results were analysed according to whether children experienced a drop in serum sodium. Patients who were hyper-hydrated with hypotonic 0.45% NaCl & 2.5% Glucose experienced the greatest mean drop in serum sodium. The mean drop in sodium was 2.11 mmol/L in the group receiving the hypotonic 0.45% NaCl & 2.5% Glucose compared to 0.47 mmol/L in the group who received isotonic 0.9% NaCl or 0.45% NaCl & 2.5% Glucose with added sodium bicarbonate. During the course of the study five patients who received 0.45% NaCl & 2.5% Glucose dropped their sodium to 130 mmol/L or less constituting hyponatraemia. No patient dropped their serum sodium to 130 mmol/L or less in the other two groups. During the course of the study no patient experienced clinical manifestations of hyponatraemia. No child became hypernatraemic. In paediatric haematology/oncology patients receiving hyper-hydration with concurrent chemotherapy isotonic fluids are preferable. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  4. Two-fluid model for two-phase flow

    SciTech Connect

    Ishii, M.

    1987-01-01

    The two-fluid model formulation is discussed in detail. The emphasis of the paper is on the three-dimensional formulation and the closure issues. The origin of the interfacial and turbulent transfer terms in the averaged formulation is explained and their original mathematical forms are examined. The interfacial transfer of mass, momentum, and energy is proportional to the interfacial area and driving force. This is not a postulate but a result of the careful examination of the mathematical form of the exact interfacial terms. These two effects are considered separately. Since all the interfacial transfer terms involve the interfacial area concentration, the accurate modeling of the local interfacial area concentration is the first step to be taken for a development of a reliable two-fluid model closure relations. The interfacial momentum interaction has been studied in terms of the standard-drag, lift, virtual mass, and Basset forces. Available analytical and semi-empirical correlations and closure relations are reviewed and existing shortcomings are pointed out. The other major area of importance is the modeling of turbulent transfer in two-phase flow. The two-phase flow turbulence problem is coupled with the phase separation problem even in a steady-state fully developed flow. Thus the two-phase turbulence cannot be understood without understanding the interfacial drag and lift forces accurately. There are some indications that the mixing length type model may not be sufficient to describe the three-dimensional turbulent and flow structures. Although it is a very difficult challenge, the two-phase flow turbulence should be investigated both experimentally and analytically with long time-scale research. 87 refs.

  5. Thermochemistry of the Reaction of SF6 with Gas-Phase Hydrated Electrons: A Benchmark for Nanocalorimetry.

    PubMed

    Akhgarnusch, Amou; Höckendorf, Robert F; Beyer, Martin K

    2015-10-01

    The reaction of sulfur hexafluoride with gas-phase hydrated electrons (H2O)n(-), n ≈ 60-130, is investigated at temperatures T = 140-300 K by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. SF6 reacts with a temperature-independent rate of 3.0 ± 1.0 × 10(-10) cm(3) s(-1) via exclusive formation of the hydrated F(-) anion and the SF5(•) radical, which evaporates from the cluster. Nanocalorimetry yields a reaction enthalpy of ΔHR,298K = 234 ± 24 kJ mol(-1). Combined with literature thermochemical data from bulk aqueous solution, these result in an F5S-F bond dissociation enthalpy of ΔH298K = 455 ± 24 kJ mol(-1), in excellent agreement with all high-level quantum chemical calculations in the literature. A combination with gas-phase literature thermochemistry also yields an experimental value for the electron affinity of SF5(•), EA(SF5(•)) = 4.27 ± 0.25 eV.

  6. Ad libitum fluid intake does not prevent dehydration in suboptimally hydrated young soccer players during a training session of a summer camp.

    PubMed

    Arnaoutis, Giannis; Kavouras, Stavros A; Kotsis, Yiannis P; Tsekouras, Yiannis E; Makrillos, Michalis; Bardis, Costas N

    2013-06-01

    There is a lack of studies concerning hydration status of young athletes exercising in the heat. To assess preexercise hydration status in young soccer players during a summer sports camp and to evaluate body- water balance after soccer training sessions. Initial hydration status was assessed in 107 young male soccer players (age 11-16 yr) during the 2nd day of the camp. Seventy-two athletes agreed to be monitored during 2 more training sessions (3rd and 5th days of the camp) to calculate dehydration via changes in body weight, while water drinking was allowed ad libitum. Hydration status was assessed via urine specific gravity (USG), urine color, and changes in total body weight. Mean environmental temperature and humidity were 27.2 ± 2 °C and 57% ± 9%, respectively. According to USG values, 95 of 107 of the players were hypohydrated (USG ≥ 1.020) before practice. The prevalence of dehydration observed was maintained on both days, with 95.8% and 97.2% of the players being dehydrated after the training sessions on the 3rd and 5th days, respectively. Despite fluid availability, 54 of the 66 (81.8%) dehydrated players reduced their body weight (-0.35 ± 0.04 kg) as a response to training, while 74.6% (47 out of the 63) further reduced their body weight (-0.22 ± 0.03 kg) after training on the 5th day. Approximately 90% of the young soccer players who began exercising under warm weather conditions were hypohydrated, while drinking ad libitum during practice did not prevent further dehydration in already dehydrated players.

  7. An immersed boundary method for two-phase fluids and gels and the swimming of Caenorhabditis elegans through viscoelastic fluids

    NASA Astrophysics Data System (ADS)

    Lee, Pilhwa; Wolgemuth, Charles

    2016-11-01

    While swimming in Newtonian fluids has been examined extensively, only recently have investigations into microorganism swimming through non-Newtonian fluids and gels been explored. The equations that govern these more complex media are often nonlinear and require computational algorithms to study moderate to large amplitude motions of the swimmer. Here we develop an immersed boundary method for handling fluid-structure interactions in a general two-phase medium, where one phase is a Newtonian fluid and the other phase is viscoelastic. We use this algorithm to investigate the swimming of an undulating, filamentary swimmer in 2D. A novel aspect of our method is that it allows one to specify how forces produced by the swimmer are distributed between the two phases of the fluid. The algorithm is validated by comparison to theoretical predictions for small amplitude swimming in gels and viscoelastic fluids. We show how the swimming velocity depends on material parameters of the fluid and the interaction between the fluid and swimmer. In addition, we simulate the swimming of Caenorhabditis elegans in viscoelastic fluids and find good agreement between the swimming speeds and fluid flows in our simulations and previous experimental measurements. NIH R01 GM072004, NIH P50GM094503.

  8. Hydrothermodynamic mixing of fluids across phases in porous media

    NASA Astrophysics Data System (ADS)

    Amooie, Mohammad Amin; Soltanian, Mohamad Reza; Moortgat, Joachim

    2017-04-01

    We investigate the coupled dynamics of fluid mixing and viscously unstable flow under both miscible (single-phase) and partially miscible (two-phase) conditions, and in both homogeneous and heterogeneous porous media. Higher-order finite element methods and fine grids are used to resolve the small-scale onset of fingering and tip splitting. An equation of state determines the thermodynamic phase behavior and Fickian diffusion. We compute global quantitative measures of the spreading and mixing of a diluting slug to elucidate key differences between miscible and partially miscible systems. Hydrodynamic instabilities are the main driver for mixing in miscible flow. In partially miscible flow, however, we find that relative permeabilities spread the two-phase zone. Within this mixing zone dissolution and evaporation drive mixing thermodynamically while reducing mobility contrasts and thus fingering instabilities. The different mixing dynamics in systems involving multiple phases with mutual solubilities have important implications in hydrogeology and energy applications, such as geological carbon sequestration and gas transport in hydrocarbon reservoirs.

  9. Perioperative Fluid Restriction

    PubMed Central

    Bleier, Joshua I.S.; Aarons, Cary B.

    2013-01-01

    Perioperative fluid management of the colorectal surgical patient has evolved significantly over the last five decades. Older notions espousing aggressive hydration have been shown to be associated with increased complications. Newer data regarding fluid restriction has shown an association with improved outcomes. Management of perioperative fluid administration can be considered in three primary phases: In the preoperative phase, data suggests that avoidance of preoperative bowel preparation and avoidance of undue preoperative dehydration can improve outcomes. Although the type of intraoperative fluid given does not have a significant effect on outcome, data do suggest that a restrictive fluid regimen results in improved outcomes. Finally, in the postoperative phase of fluid management, a fluid-restrictive regimen, coupled with early enteral feeding also seems to result in improved outcomes. PMID:24436675

  10. Architectural remodeling of the tonoplast during fluid-phase endocytosis

    PubMed Central

    Etxeberria, Ed; Gonzalez, Pedro; Pozueta-Romero, Javier

    2013-01-01

    During fluid phase endocytosis (FPE) in plant storage cells, the vacuole receives a considerable amount of membrane and fluid contents. If allowed to accumulate over a period of time, the enlarging tonoplast and increase in fluids would invariably disrupt the structural equilibrium of the mature cells. Therefore, a membrane retrieval process must exist that will guarantee membrane homeostasis in light of tonoplast expansion by membrane addition during FPE. We examined the morphological changes to the vacuolar structure during endocytosis in red beet hypocotyl tissue using scanning laser confocal microscopy and immunohistochemistry. The heavily pigmented storage vacuole allowed us to visualize all architectural transformations during treatment. When red beet tissue was incubated in 200 mM sucrose, a portion of the sucrose accumulated entered the cell by means of FPE. The accumulation process was accompanied by the development of vacuole-derived vesicles which transiently counterbalanced the addition of surplus endocytic membrane during rapid rates of endocytosis. Topographic fluorescent confocal micrographs showed an ensuing reduction in the size of the vacuole-derived vesicles and further suggest their reincorporation into the vacuole to maintain vacuolar unity and solute concentration. PMID:23656870

  11. Density and Phase State of a Confined Nonpolar Fluid.

    PubMed

    Kienle, Daniel F; Kuhl, Tonya L

    2016-07-15

    Measurements of the mean refractive index of a spherelike nonpolar fluid, octamethytetracylclosiloxane (OMCTS), confined between mica sheets, demonstrate direct and conclusive experimental evidence of the absence of a first-order liquid-to-solid phase transition in the fluid when confined, which has been suggested to occur from previous experimental and simulation results. The results also show that the density remains constant throughout confinement, and that the fluid is incompressible. This, along with the observation of very large increases (many orders of magnitude) in viscosity during confinement from the literature, demonstrate that the molecular motion is limited by the confining wall and not the molecular packing. In addition, the recently developed refractive index profile correction method, which enables the structural perturbation inherent at a solid-liquid interface and that of a liquid in confinement to be determined independently, was used to show that there was no measurable excess or depleted mass of OMCTS near the mica surface in bulk films or confined films of only two molecular layers.

  12. Enantioselective supercritical fluid chromatography using ristocetin A chiral stationary phases.

    PubMed

    Svensson, L A; Owens, P K

    2000-06-01

    Racemic mixtures of five acidic drugs have been successfully separated by supercritical fluid chromatography (SFC) using macrocyclic antibiotic chiral stationary phases (CSPs). A ristocetin A CSP has been prepared 'in-house' and effectively applied in packed capillary SFC to separate the enantiomers of dichlorprop (R(s) = 1.4), ketoprofen (R(s) = 0.9) and warfarin (R(s) = 0.9). The commercial ristocetin A CSP (Chirobiotic R) was subsequently studied in packed column SFC with similar results where the enantiomers of warfarin (R(s) = 2.2), coumachlor (R(s) = 2.5) and thalidomide (R(s) = 0.6) were separated. Interestingly, differences were observed between the two differently immobilised CSPs where the enantiomers of dichlorprop and ketoprofen, which were separated on the 'in-house' CSP, could not be separated on the commercial phase.

  13. Phase behavior of a binary fluid mixture of quadrupolar molecules

    NASA Astrophysics Data System (ADS)

    Toda, Masatoshi; Kajimoto, Shinji; Toyouchi, Shuichi; Kawakatsu, Toshihiro; Akama, Yohji; Kotani, Motoko; Fukumura, Hiroshi

    2016-11-01

    We propose a model molecule to investigate microscopic properties of a binary mixture with a closed-loop coexistence region. The molecule is comprised of a Lennard-Jones particle and a uniaxial quadrupole. Gibbs ensemble Monte Carlo simulations demonstrate that the high-density binary fluid of the molecules with the quadrupoles of the same magnitude but of the opposite signs can show closed-loop immiscibility. We find that an increase in the magnitude of the quadrupoles causes a shrinkage of the coexistence region. Molecular dynamics simulations also reveal that aggregates with two types of molecules arranged alternatively are formed in the stable one-phase region both above and below the coexistence region. String structures are dominant below the lower critical solution temperature, while branched aggregates are observed above the upper critical solution temperature. We conclude that the anisotropic interaction between the quadrupoles of the opposite signs plays a crucial role in controlling these properties of the phase behavior.

  14. Gas Hydrate Nucleation Processes

    NASA Astrophysics Data System (ADS)

    David, R. E.; Zatsepina, O.; Phelps, T. J.

    2003-12-01

    The onset of gas hydrate nucleation is greatly affected by the thermal history of the water that forms its lattice structure. Hydrate formation experiments were performed in a 72 liter pressure vessel by bubbling carbon dioxide through a 1 liter column at hydrate formation pressures (1.4 to 3.7 MPa) and temperatures (275.0 to 278.0 K) to quantify this effect. They show that when even a fraction ( e. g. 20 %) of the water in which hydrate has formed was recently frozen and thawed, the overpressurization for nucleation was reduced by an average of 50 % versus experiments performed in distilled water. In those experiments where a lower overpressure is present when hydrate nucleated, they tended to form on the surface of bubbles, whereas when a higher amount of overpressure was necessary for hydrate to nucleate, they appeared to form abruptly on bubble surfaces as well as from the bulk liquid phase. In approximation of classical nucleation, hydrate formation could be described as occurring by the spontaneous joining together of arising components of the hydrate lattice. In water that was frozen, and kept at a low temperature (< 275 K), molecular simulation models predict the predominance of water molecules organized as penatmeters, a possible subunit of the hydrate lattice. Our results suggest that in nature, initiation of hydrate formation may be strongly influenced by temperature dependant pre-structuring of water molecules prior to their contact with gas.

  15. Efflorescence upon humidification? X-ray microspectroscopic in situ observation of changes in aerosol microstructure and phase state upon hydration

    NASA Astrophysics Data System (ADS)

    Pöhlker, Christopher; Saturno, Jorge; Krüger, Mira L.; Förster, Jan-David; Weigand, Markus; Wiedemann, Kenia T.; Bechtel, Michael; Artaxo, Paulo; Andreae, Meinrat O.

    2014-05-01

    The phase and mixing state of atmospheric aerosols is a central determinant of their properties and thus their role in atmospheric cycling and climate. Particularly, the hygroscopic response of aerosol particles to relative humidity (RH) variation is a key aspect of their atmospheric life cycle and impacts. Here we applied X-ray microspectroscopy under variable RH conditions to internally mixed aerosol particles from the Amazonian rain forest collected during periods with anthropogenic pollution. Upon hydration, we observed substantial and reproducible changes in particle microstructure, which appear as mainly driven by efflorescence and recrystallization of sulfate salts. Multiple solid and liquid phases were found to coexist, especially in intermediate humidity regimes. We show that X-ray microspectroscopy under variable RH is a valuable technique to analyze the hygroscopic response of individual ambient aerosol particles. Our initial results underline that RH changes can trigger strong particle restructuring, in agreement with previous studies on artificial aerosols.

  16. Phase segregation in a binary fluid confined inside a nanopore

    NASA Astrophysics Data System (ADS)

    Basu, Saikat; Majumder, Suman; Sutradhar, Sabyasachi; Das, Subir K.; Paul, Raja

    2016-12-01

    Using a hydrodynamics preserving thermostat, we present extensive molecular dynamics simulation results for the kinetics of phase separation in a model binary (A+B) fluid confined inside a cylindrical nanopore with neutral wall. We observe the formation of a striped pattern, where A-rich and B-rich domains appear alternately along the axis of the cylinder. For a wide range of diameters of the cylinders, the growth of the pattern freezes and does not lead to complete phase separation. Prior to freezing, the growth of these stripes passes through two power-law regimes. The early-time regime is related to the Lifshitz-Slyozov diffusive mechanism and the estimated value of the exponent for the later-time regime matches well with that for the inertial hydrodynamic growth in three-dimensional fluid systems. Appropriate arguments have been provided to justify the observations. Furthermore, our results show that the length of the cylinder does not seem to affect the average axial length of the frozen patterns. However, the latter exhibits a linear dependence on the diameter of the cylinder.

  17. Carbon dioxide hydrate phase equilibrium and cage occupancy calculations using ab initio intermolecular potentials.

    PubMed

    Velaga, Srinath C; Anderson, Brian J

    2014-01-16

    Gas hydrate deposits are receiving increased attention as potential locations for CO2 sequestration, with CO2 replacing the methane that is recovered as an energy source. In this scenario, it is very important to correctly characterize the cage occupancies of CO2 to correctly assess the sequestration potential as well as the methane recoverability. In order to predict accurate cage occupancies, the guest–host interaction potential must be represented properly. Earlier, these potential parameters were obtained by fitting to experimental equilibrium data and these fitted parameters do not match with those obtained by second virial coefficient or gas viscosity data. Ab initio quantum mechanical calculations provide an independent means to directly obtain accurate intermolecular potentials. A potential energy surface (PES) between H2O and CO2 was computed at the MP2/aug-cc-pVTZ level and corrected for basis set superposition error (BSSE), an error caused due to the lower basis set, by using the half counterpoise method. Intermolecular potentials were obtained by fitting Exponential-6 and Lennard-Jones 6-12 models to the ab initio PES, correcting for many-body interactions. We denoted this model as the “VAS” model. Reference parameters for structure I carbon dioxide hydrate were calculated using the VAS model (site–site ab initio intermolecular potentials) as Δμ(w)(0) = 1206 ± 2 J/mol and ΔH(w)(0) = 1260 ± 12 J/mol. With these reference parameters and the VAS model, pure CO2 hydrate equilibrium pressure was predicted with an average absolute deviation of less than 3.2% from the experimental data. Predictions of the small cage occupancy ranged from 32 to 51%, and the large cage is more than 98% occupied. The intermolecular potentials were also tested by calculating the pure CO2 density and diffusion of CO2 in water using molecular dynamics simulations.

  18. Structural characterization on the gel to liquid-crystal phase transition of fully hydrated DSPC and DSPE bilayers.

    PubMed

    Qin, Shan-Shan; Yu, Zhi-Wu; Yu, Yang-Xin

    2009-06-11

    The structural properties of fully hydrated distearoylphosphatidylcholine (DSPC) and distearoylphosphatidylethanolamine (DSPE) bilayers near the main phase transition were investigated using molecular dynamics simulations on the basis of a united-atom model. Although largely similar in their molecular structures, the two lipids were found with different molecular packing modes at temperatures below the phase transition. For DSPC, three packing modes, namely, cross-tilt, partially interdigitated, and "mixed" gel phases, were observed, while, for DSPE, the lipid tails were almost perpendicular to the lipid surface. Above the main transition temperature, both lipid bilayers transformed into a disordered liquid-crystal phase with marked greater area per lipid and gauche % of the acyl chains and smaller bilayer thickness and order parameter, in comparison with the gel phase. The transformation process of liquid-crystal to gel phase was proved to experience the nucleation and growth stages in a hexagonal manner. The electron density profiles of some major components of both lipid bilayers at various temperatures have been calculated, and the results reveal that both lipid bilayers have less interdigitation around the main transition temperature.

  19. Parametric study of the physical properties of hydrate-bearing sand, silt, and clay sediments: 2. Small-strain mechanical properties

    USGS Publications Warehouse

    Lee, J.Y.; Francisca, F.M.; Santamarina, J.C.; Ruppel, C.

    2010-01-01

    The small-strain mechanical properties (e.g., seismic velocities) of hydrate-bearing sediments measured under laboratory conditions provide reference values for calibration of logging and seismic exploration results acquired in hydrate-bearing formations. Instrumented cells were designed for measuring the compressional (P) and shear (S) velocities of sand, silts, and clay with and without hydrate and subject to vertical effective stresses of 0.01 to 2 MPa. Tetrahydrofuran (THF), which is fully miscible in water, was used as the hydrate former to permit close control over the hydrate saturation Shyd and to produce hydrate from dissolved phase, as methane hydrate forms in most natural marine settings. The results demonstrate that laboratory hydrate formation technique controls the pattern of P and S velocity changes with increasing Shyd and that the small-strain properties of hydrate-bearing sediments are governed by effective stress, δ'v and sediment specific surface. The S velocity increases with hydrate saturation owing to an increase in skeletal shear stiffness, particularly when hydrate saturation exceeds Shyd≈ 0.4. At very high hydrate saturations, the small strain shear stiffness is determined by the presence of hydrates and becomes insensitive to changes in effective stress. The P velocity increases with hydrate saturation due to the increases in both the shear modulus of the skeleton and the bulk modulus of pore-filling phases during fluid-to-hydrate conversion. Small-strain Poisson's ratio varies from 0.5 in soft sediments lacking hydrates to 0.25 in stiff sediments (i.e., subject to high vertical effective stress or having high Shyd). At Shyd ≥ 0.5, hydrate hinders expansion and the loss of sediment stiffness during reduction of vertical effective stress, meaning that hydrate-rich natural sediments obtained through pressure coring should retain their in situ fabric for some time after core retrieval if the cores are maintained within the hydrate

  20. Parametric study of the physical properties of hydrate-bearing sand, silt, and clay sediments: 2. Small-strain mechanical properties

    NASA Astrophysics Data System (ADS)

    Lee, J. Y.; Francisca, F. M.; Santamarina, J. C.; Ruppel, C.

    2010-11-01

    The small-strain mechanical properties (e.g., seismic velocities) of hydrate-bearing sediments measured under laboratory conditions provide reference values for calibration of logging and seismic exploration results acquired in hydrate-bearing formations. Instrumented cells were designed for measuring the compressional (P) and shear (S) velocities of sand, silts, and clay with and without hydrate and subject to vertical effective stresses of 0.01 to 2 MPa. Tetrahydrofuran (THF), which is fully miscible in water, was used as the hydrate former to permit close control over the hydrate saturation Shyd and to produce hydrate from dissolved phase, as methane hydrate forms in most natural marine settings. The results demonstrate that laboratory hydrate formation technique controls the pattern of P and S velocity changes with increasing Shyd and that the small-strain properties of hydrate-bearing sediments are governed by effective stress, σ'v and sediment specific surface. The S velocity increases with hydrate saturation owing to an increase in skeletal shear stiffness, particularly when hydrate saturation exceeds Shyd≈ 0.4. At very high hydrate saturations, the small strain shear stiffness is determined by the presence of hydrates and becomes insensitive to changes in effective stress. The P velocity increases with hydrate saturation due to the increases in both the shear modulus of the skeleton and the bulk modulus of pore-filling phases during fluid-to-hydrate conversion. Small-strain Poisson's ratio varies from 0.5 in soft sediments lacking hydrates to 0.25 in stiff sediments (i.e., subject to high vertical effective stress or having high Shyd). At Shyd ≥ 0.5, hydrate hinders expansion and the loss of sediment stiffness during reduction of vertical effective stress, meaning that hydrate-rich natural sediments obtained through pressure coring should retain their in situ fabric for some time after core retrieval if the cores are maintained within the hydrate

  1. Hydrate morphology: Physical properties of sands with patchy hydrate saturation

    USGS Publications Warehouse

    Dai, S.; Santamarina, J.C.; Waite, William F.; Kneafsey, T.J.

    2012-01-01

    The physical properties of gas hydrate-bearing sediments depend on the volume fraction and spatial distribution of the hydrate phase. The host sediment grain size and the state of effective stress determine the hydrate morphology in sediments; this information can be used to significantly constrain estimates of the physical properties of hydrate-bearing sediments, including the coarse-grained sands subjected to high effective stress that are of interest as potential energy resources. Reported data and physical analyses suggest hydrate-bearing sands contain a heterogeneous, patchy hydrate distribution, whereby zones with 100% pore-space hydrate saturation are embedded in hydrate-free sand. Accounting for patchy rather than homogeneous hydrate distribution yields more tightly constrained estimates of physical properties in hydrate-bearing sands and captures observed physical-property dependencies on hydrate saturation. For example, numerical modeling results of sands with patchy saturation agree with experimental observation, showing a transition in stiffness starting near the series bound at low hydrate saturations but moving toward the parallel bound at high hydrate saturations. The hydrate-patch size itself impacts the physical properties of hydrate-bearing sediments; for example, at constant hydrate saturation, we find that conductivity (electrical, hydraulic and thermal) increases as the number of hydrate-saturated patches increases. This increase reflects the larger number of conductive flow paths that exist in specimens with many small hydrate-saturated patches in comparison to specimens in which a few large hydrate saturated patches can block flow over a significant cross-section of the specimen.

  2. Gas Hydrate and Pore Pressure

    NASA Astrophysics Data System (ADS)

    Tinivella, Umberta; Giustiniani, Michela

    2014-05-01

    Many efforts have been devoted to quantify excess pore pressures related to gas hydrate dissociation in marine sediments below the BSR using several approaches. Dissociation of gas hydrates in proximity of the BSR, in response to a change in the physical environment (i.e., temperature and/or pressure regime), can liberate excess gas incrising the local pore fluid pressure in the sediment, so decreasing the effective normal stress. So, gas hydrate dissociation may lead to excess pore pressure resulting in sediment deformation or failure, such as submarine landslides, sediment slumping, pockmarks and mud volcanoes, soft-sediment deformation and giant hummocks. Moreover, excess pore pressure may be the result of gas hydrate dissociation due to continuous sedimentation, tectonic uplift, sea level fall, heating or inhibitor injection. In order to detect the presence of the overpressure below the BSR, we propose two approachs. The fist approach models the BSR depth versus pore pressure; in fact, if the free gas below the BSR is in overpressure condition, the base of the gas hydrate stability is deeper with respect to the hydrostatic case. This effect causes a discrepancy between seismic and theoretical BSR depths. The second approach models the velocities versus gas hydrate and free gas concentrations and pore pressure, considering the approximation of the Biot theory in case of low frequency, i.e. seismic frequency. Knowing the P and S seismic velocity from seismic data analysis, it is possibile to jointly estimate the gas hydrate and free gas concentrations and the pore pressure regime. Alternatively, if the S-wave velocity is not availbale (due to lack of OBS/OBC data), an AVO analysis can be performed in order to extract information about Poisson ratio. Our modeling suggests that the areas characterized by shallow waters (i.e., areas in which human infrastructures, such as pipelines, are present) are significantly affected by the presence of overpressure condition

  3. The impact of increased sedimentation rates associated with the decay of the Fennoscandian ice-sheet on gas hydrate stability and focused fluid flow at the Nyegga pockmark field, offshore mid-Norway

    NASA Astrophysics Data System (ADS)

    Karstens, Jens; Haflidason, Haflidi; Becker, Lukas; Petter Sejrup, Hans; Berndt, Christian; Planke, Sverre; Dahlgreen, Torbjørn

    2016-04-01

    Climatic changes since the Last Glacial Maximum (LGM) have affected the stability of gas hydrate systems on glaciated margins by sea-level changes, bottom water temperature changes, isostatic uplift or subsidence and variability in sedimentation rates. While subsidence and sea-level rise stabilize gas hydrate deposits, bottom water temperature warming, uplift and enhanced sedimentation have the opposite effect. The response of gas hydrate systems to post-glaciation warming is therefore a complex phenomenon and highly depends on the timing and magnitude of each of these processes. While the impact of bottom water warming on the dissociation of gas hydrates have been addressed in numerous studies, the potential of methane release due to basal gas hydrate dissociation during periods of warming has received less attention. Here, we present results from numerical simulations which show that rapid sedimentation associated with the decay of the Fennoscandian ice-sheet was capable of causing significant basal gas hydrate dissociation. The modeling is constrained by a high-resolution three-dimensional sedimentation rate reconstruction of the Nyegga pockmark field, offshore mid-Norway, obtained by integrating chrono-stratigraphic information derived from sediments cores and a seismo-stratigraphic framework. The model run covers the period between 28,000 and 15,000 calendar years before present and predict that the maximum sedimentation rate-related gas hydrate dissociation coincides temporally and spatially with enhanced focused fluid flow activity in the study area. Basal gas hydrate dissociation due to rapid sedimentation may have occurred as well in other glaciated continental margins after the LGM and may have caused the release of significant amounts of methane to the hydrosphere and atmosphere. The major post glaciation deposition centers are the location of some of the largest known submarine slide complexes. The release of free gas due to basal gas hydrate

  4. Exploitation of subsea gas hydrate reservoirs

    NASA Astrophysics Data System (ADS)

    Janicki, Georg; Schlüter, Stefan; Hennig, Torsten; Deerberg, Görge

    2016-04-01

    Natural gas hydrates are considered to be a potential energy resource in the future. They occur in permafrost areas as well as in subsea sediments and are stable at high pressure and low temperature conditions. According to estimations the amount of carbon bonded in natural gas hydrates worldwide is two times larger than in all known conventional fossil fuels. Besides technical challenges that have to be overcome climate and safety issues have to be considered before a commercial exploitation of such unconventional reservoirs. The potential of producing natural gas from subsea gas hydrate deposits by various means (e.g. depressurization and/or injection of carbon dioxide) is numerically studied in the frame of the German research project »SUGAR«. The basic mechanisms of gas hydrate formation/dissociation and heat and mass transport in porous media are considered and implemented into a numerical model. The physics of the process leads to strong non-linear couplings between hydraulic fluid flow, hydrate dissociation and formation, hydraulic properties of the sediment, partial pressures and seawater solution of components and the thermal budget of the system described by the heat equation. This paper is intended to provide an overview of the recent development regarding the production of natural gas from subsea gas hydrate reservoirs. It aims at giving a broad insight into natural gas hydrates and covering relevant aspects of the exploitation process. It is focused on the thermodynamic principles and technological approaches for the exploitation. The effects occurring during natural gas production within hydrate filled sediment layers are identified and discussed by means of numerical simulation results. The behaviour of relevant process parameters such as pressure, temperature and phase saturations is described and compared for different strategies. The simulations are complemented by calculations for different safety relevant problems.

  5. Novel phase behaviour of a confined fluid or Ising magnet

    NASA Astrophysics Data System (ADS)

    Parry, A. O.; Evans, R.

    1992-02-01

    The phase behaviour of a simple fluid or Ising magnet (at temperatures above its roughening transition) confined between parallel walls that exert opposing surface fields h2 = - h1 is found to be markedly different from that which arises for h2 = h1. Whereas critical wetting plays little role for confinement by identical walls, it is of crucial importance for opposing surface fields. Analysis of a Landau functional and other mean-field treatments show that if h1 is such that critical wetting occurs at a single wall ( L = ∞) at a transition temperature Tw, then phase coexistence, for finite wall separation L, is restricted to temperatures T < Tc, L, where the critical temperature Tc, L lies below Tw. In the temperature range Tc, b > T > Tw there is a single soft mode phase that is characterized, for zero bulk field and large L, by a +- interface located at the centre of the slit, a transverse correlation length ξ∼≈ eL and a solvation force that is repulsive. For large h1, Tw can lie arbitrarily far below the bulk critical temperature Tc, b. Scaling arguments, whose validity we have confirmed in two dimensions by comparison with exact solutions for interfacial Hamiltonians, predict that such behaviour persists beyond mean-field for systems with short-ranged forces. They also predict similar phase behaviour for long-ranged forces, but with ξ ξ ∼ increasing algebraically with L in the soft mode phase. The solvation force t˜f s changes from repulsive to attractive (at large L) as the temperature is reduced below Tw, i.e. the sign of t˜f s reflects wetting characteristics.

  6. High-resolution seismic attribute analysis for the detection of methane hydrate and substrate fluid migration pathways along the central U.S. Atlantic Margin

    NASA Astrophysics Data System (ADS)

    Kluesner, J.; Ruppel, C. D.; Brothers, D. S.; Danforth, W. W.; Edwards, J. H.; Hart, P. E.

    2015-12-01

    High-resolution multi-channel (72 channel) seismic (MCS) reflection profiles and coincident water column methane plume imagery were collected by the USGS on the U.S. mid-Atlantic margin aboard the R/V Endeavor in April 2015. The seismic data are analyzed using advanced attributes to detect and delineate the base of the gas hydrate stability (BGHS) and fluid-migration pathways associated with recently discovered seafloor methane seeps. The sparker was operated at 2.6 kJ, and the amplitude frequency spectrum of the resulting data ranges from ~50-700 Hz, with the dominant frequency centered at 150 Hz. Using a frequency attribute workflow, we calculate and visualize changes in dominant frequency content within the seismic profiles. Laterally-distributed and abrupt high-to-low frequency changes are observed at depth. High frequencies are attenuated below this transition, which commonly mimics the seafloor and gradually shoals towards the seafloor with decreasing water depth. The BGHS depths calculated using gas hydrate stability constraints and geothermal gradients closely coincide with these transitions, which are likely caused by free gas that scatters and attenuates higher frequencies. This approach allows for improved delineation of the BGHS on high-frequency MCS data that lack a reverse-polarity bottom-simulating reflector and on upper slopes where the BGHS is hard to discern. We also apply a neural-network seismic attribute workflow to analyze potential fluid-pathways below methane plumes imaged in the water column. The workflow uses structural steering calculations and multiple weighted attributes in a neural-network algorithm targeted for gas chimney detection. The results highlight probable fluid flow pathways in areas with and without seafloor methane seeps and delineate deep-seated features (e.g., fractures) that supply gas to some of the deepwater (> 1000 m) seep sites.

  7. Pseudo-ternary phase diagrams of aqueous mixtures of Quil A, cholesterol and phospholipid prepared by the lipid-film hydration method.

    PubMed

    Demana, Patrick H; Davies, Nigel M; Vosgerau, Uwe; Rades, Thomas

    2004-02-11

    Pseudo-ternary phase diagrams of the polar lipids Quil A, cholesterol (Chol) and phosphatidylcholine (PC) in aqueous mixtures prepared by the lipid film hydration method (where dried lipid film of phospholipids and cholesterol are hydrated by an aqueous solution of Quil A) were investigated in terms of the types of particulate structures formed therein. Negative staining transmission electron microscopy and polarized light microscopy were used to characterize the colloidal and coarse dispersed particles present in the systems. Pseudo-ternary phase diagrams were established for lipid mixtures hydrated in water and in Tris buffer (pH 7.4). The effect of equilibration time was also studied with respect to systems hydrated in water where the samples were stored for 2 months at 4 degrees C. Depending on the mass ratio of Quil A, Chol and PC in the systems, various colloidal particles including ISCOM matrices, liposomes, ring-like micelles and worm-like micelles were observed. Other colloidal particles were also observed as minor structures in the presence of these predominant colloids including helices, layered structures and lamellae (hexagonal pattern of ring-like micelles). In terms of the conditions which appeared to promote the formation of ISCOM matrices, the area of the phase diagrams associated with systems containing these structures increased in the order: hydrated in water/short equilibration period<hydrated in buffer/short equilibration period<hydrated in water/prolonged equilibration period. ISCOM matrices appeared to form over time from samples, which initially contained a high concentration of ring-like micelles suggesting that these colloidal structures may be precursors to ISCOM matrix formation. Helices were also frequently found in samples containing ISCOM matrices as a minor colloidal structure. Equilibration time and presence of buffer salts also promoted the formation of liposomes in systems not containing Quil A. These parameters however, did not

  8. Two-phase working fluids for the temperature range of 50 to 350 deg, phase 2

    NASA Technical Reports Server (NTRS)

    Saaski, E. W.; Hartl, J. H.

    1980-01-01

    Several two phase heat transfer fluids were tested in aluminum and carbon steel reflux capsules for over 25,000 hours at temperatures up to 300 C. Several fluids showed very good stability and would be useful for long duration heat transfer applications over the range 100 to 350 C. Instrumentation for the measurement of surface tension and viscosity were constructed for use with heat transfer fluids over the temperature range 0 to 300 C and with pressures from 0 to 10 atmospheres. The surface tension measuring device constructed requires less than a 1.0 cc sample and displays an accuracy of about 5 percent in preliminary tests, while the viscometer constructed for this program requires a 0.05 cc sample and shows an accuracy of about 5 percent in initial tests.

  9. [Relation between the lysozyme hydration isotherm and molecule packing in the solid phase].

    PubMed

    Gevorkian, S G; Morozov, V N

    1983-01-01

    A micromethod for measurement of mass changes of glutaraldehyde treated protein crystals is presented. The method is based on analysis of transverse resonance vibration of a cantilevered tungsten micro-needle (1,5 divided by 2 mm long, 30 divided by 40 mkm in diameter) having the specimen stuck on its free sharp end. The method is accurate to within 0.1% for specimens with masses 0.1 divided by 0.01 mg. Absorption isotherms for water uptake by triclinic (P1), monoclinic (P2(1) ) and tetragonal (P4(3)2(1)2) crystals as well as by amorphous films of hen egg-white lysozyme are obtained. Hydration of lysozyme molecule is shown to be highly dependent on molecular packing in the sample both at low and high relative humidities.

  10. Particle-fluid two-phase flow modeling

    SciTech Connect

    Mortensen, G.A.; Trapp, J.A. |

    1992-09-01

    This paper describes a numerical scheme and computer program, DISCON, for the calculation of two-phase flows that does not require the use of flow regime maps. This model is intermediate between-thermal instantaneous and the averaged two-fluid model. It solves the Eulerian continuity, momentum, and energy equations for each liquid control volume, and the Lagrangian mass, momentum, energy, and position equations for each bubble. The bubbles are modeled individually using a large representative number of bubbles thus avoiding the numerical diffusion associated with Eulerian models. DISCON has been used to calculate the bubbling of air through a column of water and the subcooled boiling of water in a flow channel. The results of these calculations are presented.

  11. Particle-fluid two-phase flow modeling

    SciTech Connect

    Mortensen, G.A. ); Trapp, J.A. Idaho National Engineering Lab., Idaho Falls, ID )

    1992-01-01

    This paper describes a numerical scheme and computer program, DISCON, for the calculation of two-phase flows that does not require the use of flow regime maps. This model is intermediate between-thermal instantaneous and the averaged two-fluid model. It solves the Eulerian continuity, momentum, and energy equations for each liquid control volume, and the Lagrangian mass, momentum, energy, and position equations for each bubble. The bubbles are modeled individually using a large representative number of bubbles thus avoiding the numerical diffusion associated with Eulerian models. DISCON has been used to calculate the bubbling of air through a column of water and the subcooled boiling of water in a flow channel. The results of these calculations are presented.

  12. The Methane Hydrate Reservoir System

    NASA Astrophysics Data System (ADS)

    Flemings, P. B.; Liu, X.

    2007-12-01

    We use multi phase flow modeling and field examples (Hydrate Ridge, offshore Oregon and Blake Ridge, offshore North Carolina) to demonstrate that the methane hydrate reservoir system links traditional and non- traditional hydrocarbon system components: free gas flow is a fundamental control on this system. As in a traditional hydrocarbon reservoir, gas migrates into the hydrate reservoir as a separate phase (secondary migration) where it is trapped in a gas column beneath the base of the hydrate layer. With sufficient gas supply, buoyancy forces exceed either the capillary entry pressure of the cap rock or the fracture strength of the cap rock, and gas leaks into the hydrate stability zone, or cap rock. When gas enters the hydrate stability zone and forms hydrate, it becomes a very non traditional reservoir. Free gas forms hydrate, depletes water, and elevates salinity until pore water is too saline for further hydrate formation: salinity and hydrate concentration increase upwards from the base of the regional hydrate stability zone (RHSZ) to the seafloor and the base of the hydrate stability zone has significant topography. Gas chimneys couple the free gas zone to the seafloor through high salinity conduits that are maintained at the three-phase boundary by gas flow. As a result, significant amounts of gaseous methane can bypass the RHSZ, which implies a significantly smaller hydrate reservoir than previously envisioned. Hydrate within gas chimneys lie at the three-phase boundary and thus small increases in temperature or decreases in pressure can immediately transport methane into the ocean. This type of hydrate deposit may be the most economical for producing energy because it has very high methane concentrations (Sh > 70%) located near the seafloor, which lie on the three-phase boundary.

  13. The 24-hour skin hydration and barrier function effects of a hyaluronic 1%, glycerin 5%, and Centella asiatica stem cells extract moisturizing fluid: an intra-subject, randomized, assessor-blinded study

    PubMed Central

    Milani, Massimo; Sparavigna, Adele

    2017-01-01

    Introduction Moisturizing products are commonly used to improve hydration in skin dryness conditions. However, some topical hydrating products could have negative effects on skin barrier function. In addition, hydrating effects of moisturizers are not commonly evaluated up to 24 hours after a single application. Hyaluronic acid (HA) and glycerin are very well-known substances able to improve skin hydration. Centella asiatica extract (CAE) could exert lenitive, anti-inflammatory and reepithelialization actions. Furthermore, CAE could inhibit hyaluronidase enzyme activity, therefore prolonging the effect of HA. A fluid containing HA 1%, glycerin 5% and stem cells CAE has been recently developed (Jaluronius CS [JCS] fluid). Study aim To evaluate and compare the 24-hour effects of JCS fluid on skin hydration and on transepidermal water loss (TEWL) in healthy subjects in comparison with the control site. Subjects and methods Twenty healthy women, mean age 40 years, were enrolled in an intra-subject (right vs left), randomized, assessor-blinded, controlled, 1-day trial. The primary end points were the skin hydration and TEWL, evaluated at the volar surface of the forearm and in standardized conditions (temperature- and humidity-controlled room: 23°C and 30% of humidity) using a corneometer and a vapometer device at baseline, 1, 8 and 24 hours after JCS fluid application. Measurements were performed by an operator blinded for the treatments. Results Skin hydration after 24 hours was significantly higher (P=0.001; Mann–Whitney U test) in the JCS-treated area in comparison with the control site. JCS induced a significant (P=0.0001) increase in skin hydration at each evaluation time (+59% after 1 hour, +48% after 8 hours and +29% after 24 hours) in comparison with both baseline (P=0.0001) and non-treated control site (P=0.001). TEWL after 24 hours was significantly lower (P=0.049; Mann–Whitney U test) in the JCS-treated area in comparison with the control site (13±4

  14. Are seafloor pockmarks on the Chatham Rise, New Zealand, linked to CO2 hydrates? Gas hydrate stability considerations.

    NASA Astrophysics Data System (ADS)

    Pecher, I. A.; Davy, B. W.; Rose, P. S.; Coffin, R. B.

    2015-12-01

    Vast areas of the Chatham Rise east of New Zealand are covered by seafloor pockmarks. Pockmark occurrence appears to be bathymetrically controlled with a band of smaller pockmarks covering areas between 500 and 700 m and large seafloor depressions beneath 800 m water depth. The current depth of the top of methane gas hydrate stability in the ocean is about 500 m and thus, we had proposed that pockmark formation may be linked to methane gas hydrate dissociation during sealevel lowering. However, while seismic profiles show strong indications of fluid flow, geochemical analyses of piston cores do not show any evidence for current or past methane flux. The discovery of Dawsonite, indicative of significant CO2 flux, in a recent petroleum exploration well, together with other circumstantial evidence, has led us to propose that instead of methane hydrate, CO2 hydrate may be linked to pockmark formation. We here present results from CO2 hydrate stability calculations. Assuming water temperature profiles remain unchanged, we predict the upper limit of pockmark occurrence to coincide with the top of CO2 gas hydrate stability during glacial-stage sealevel lowstands. CO2 hydrates may therefore have dissociated during sealevel lowering leading to gas escape and pockmark formation. In contrast to our previous model linking methane hydrate dissociation to pockmark formation, gas hydrates would dissociate beneath a shallow base of CO2 hydrate stability, rather than on the seafloor following upward "grazing" of the top of methane hydrate stability. Intriguingly, at the water depths of the larger seafloor depressions, the base of gas hydrate stability delineates the phase boundary between CO2 hydrates and super-saturated CO2. We caution that because of the high solubility of CO2, dissociation from hydrate to free gas or super-saturated CO2 would imply high concentrations of CO2 and speculate that pockmark formation may be linked to CO2 hydrate dissolution rather than dissociation

  15. Comparison of liquid and supercritical fluid chromatography mobile phases for enantioselective separations on polysaccharide stationary phases.

    PubMed

    Khater, Syame; Lozac'h, Marie-Anne; Adam, Isabelle; Francotte, Eric; West, Caroline

    2016-10-07

    Analysis and production of enantiomerically pure compounds is a major topic of interest when active pharmaceutical ingredients are concerned. Enantioselective chromatography has become a favourite both at the analytical and preparative scales. High-performance liquid chromatography (HPLC) and supercritical fluid chromatography (SFC) are dominating the scene and are often seen as complementary techniques. Nowadays, for economic and ecologic reasons, SFC may be preferred over normal-phase HPLC (NPLC) as it allows significant reductions in solvent consumption. However, the transfer of NPLC methods to SFC is not always straightforward. In this study, we compare the retention of achiral molecules and separation of enantiomers under supercritical fluid (carbon dioxide with ethanol or isopropanol) and liquid normal-phase (heptane with ethanol or isopropanol) elution modes with polysaccharide stationary phases in order to explore the differences between the retention and enantioseparation properties between the two modes. Chemometric methods (namely quantitative structure-retention relationships and discriminant analysis) are employed to compare the results obtained on a large set of analytes (171 achiral probes and 97 racemates) and gain some understanding on the retention and separation mechanisms. The results indicate that, contrary to popular belief, carbon dioxide - solvent SFC mobile phases are often weaker eluents than liquid mobile phases. It appears that SFC and NPLC elution modes provide different retention mechanisms. While some enantioseparations are unaffected, facilitating the transfer between the two elution modes, other enantioseparations may be drastically different due to different types and strength of interactions contributing to enantioselectivity.

  16. The dependence of phase change enthalpy on the pore structure and interfacial groups in hydrated salts/silica composites via sol-gel.

    PubMed

    Wu, Yuping; Wang, Tao

    2015-06-15

    It was found that the procedures for incorporating hydrated salts into silica, including mixing with sol in an instant (S1 procedure), mixing with sol via drop by drop (S2 procedure) and mixing until the sol forming the gel (S3 procedure), had pronounced effects on the phase change enthalpy of hydrated salts/silica composite via sol-gel process. The discrepancy of phase change enthalpies of the composites with the same content of hydrated salts can be as high as 40 kJ/kg. To unveil the mechanism behind, the pore structure of silica matrix and interfacial functional groups were investigated extensively. It was revealed that different incorporation procedures resulted in distinct pore structure of silica matrix and different intensities of interfacial Si-OH groups. The S3 procedure was beneficial to induce the silica matrix with bigger pore size and fewer Si-OH groups. Consequently, the phase change enthalpy of the hydrated salts/silica composite prepared by this procedure was the highest because of its lower size confinement effects and weaker adsorption by Si-OH groups. This study will provide insight into the preparation of shape-stabilized phase change materials for thermal energy storage applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Major occurrences and reservoir concepts of marine clathrate hydrates: Implications of field evidence

    USGS Publications Warehouse

    Booth, J.S.; Winters, W.J.; Dillon, William P.; Clennell, M.B.; Rowe, M.M.

    1998-01-01

    This paper is part of the special publication Gas hydrates: relevance to world margin stability and climatic change (eds J.P. Henriet and J. Mienert). Questions concerning clathrate hydrate as an energy resource, as a factor in modifying global climate and as a triggering mechanism for mass movements invite consideration of what factors promote hydrate concentration, and what the quintessential hydrate-rich sediment may be. Gas hydrate field data, although limited, provide a starting point for identifying the environments and processes that lead to more massive concentrations. Gas hydrate zones are up to 30 m thick and the vertical range of occurrence at a site may exceed 200 m. Zones typically occur more than 100m above the phase boundary. Thicker zones are overwhelmingly associated with structural features and tectonism, and often contain sand. It is unclear whether an apparent association between zone thickness and porosity represents a cause-and-effect relationship. The primary control on the thickness of a potential gas hydrate reservoir is the geological setting. Deep water and low geothermal gradients foster thick gas hydrate stability zones (GHSZs). The presence of faults, fractures, etc. can favour migration of gas-rich fluids. Geological processes, such as eustacy or subsidence, may alter the thickness of the GHSZ or affect hydrate concentratiion. Tectonic forces may promote injection of gas into the GHSZ. More porous and permeable sediment, as host sediment properties, increase storage capacity and fluid conductivity, and thus also enhance reservoir potential.

  18. Lennard-Jones fluids in two-dimensional nano-pores. Multi-phase coexistence and fluid structure

    NASA Astrophysics Data System (ADS)

    Yatsyshin, Petr; Savva, Nikos; Kalliadasis, Serafim

    2014-03-01

    We present a number of fundamental findings on the wetting behaviour of nano-pores. A popular model for fluid confinement is a one-dimensional (1D) slit pore formed by two parallel planar walls and it exhibits capillary condensation (CC): a first-order phase transition from vapour to capillary-liquid (Kelvin shift). Capping such a pore at one end by a third orthogonal wall forms a prototypical two-dimensional (2D) pore. We show that 2D pores possess a wetting temperature such that below this temperature CC remains of first order, above it becomes a continuous phase transition manifested by a slab of capillary-liquid filling the pore from the capping wall. Continuous CC exhibits hysteresis and can be preceded by a first-order capillary prewetting transition. Additionally, liquid drops can form in the corners of the 2D pore (remnant of 2D wedge prewetting). The three fluid phases, vapour, capillary-liquid slab and corner drops, can coexist at the pore triple point. Our model is based on the statistical mechanics of fluids in the density functional formulation. The fluid-fluid and fluid-substrate interactions are dispersive. We analyze in detail the microscopic fluid structure, isotherms and full phase diagrams. Our findings also suggest novel ways to control wetting of nano-pores. We are grateful to the European Research Council via Advanced Grant No. 247031 for support.

  19. Determination of methane concentrations in water in equilibrium with sI methane hydrate in the absence of a vapor phase by in situ Raman spectroscopy

    USGS Publications Warehouse

    Lu, W.; Chou, I.-Ming; Burruss, R.C.

    2008-01-01

    Most submarine gas hydrates are located within the two-phase equilibrium region of hydrate and interstitial water with pressures (P) ranging from 8 to 60 MPa and temperatures (T) from 275 to 293 K. However, current measurements of solubilities of methane in equilibrium with hydrate in the absence of a vapor phase are limited below 20 MPa and 283.15 K, and the differences among these data are up to 30%. When these data were extrapolated to other P-T conditions, it leads to large and poorly known uncertainties. In this study, in situ Raman spectroscopy was used to measure methane concentrations in pure water in equilibrium with sI (structure one) methane hydrate, in the absence of a vapor phase, at temperatures from 276.6 to 294.6 (??0.3) K and pressures at 10, 20, 30 and 40 (??0.4%) MPa. The relationship among concentration of methane in water in equilibrium with hydrate, in mole fraction [X(CH4)], the temperature in K, and pressure in MPa was derived as: X(CH4) = exp [11.0464 + 0.023267 P - (4886.0 + 8.0158 P)/T]. Both the standard enthalpy and entropy of hydrate dissolution at the studied T-P conditions increase slightly with increasing pressure, ranging from 41.29 to 43.29 kJ/mol and from 0.1272 to 0.1330 kJ/K ?? mol, respectively. When compared with traditional sampling and analytical methods, the advantages of our method include: (1) the use of in situ Raman signals for methane concentration measurements eliminates possible uncertainty caused by sampling and ex situ analysis, (2) it is simple and efficient, and (3) high-pressure data can be obtained safely. ?? 2007 Elsevier Ltd. All rights reserved.

  20. Phase equilibria in fluid mixtures at high pressures: The He-CH4 system

    NASA Technical Reports Server (NTRS)

    Streett, W. B.; Erickson, A. L.; Hill, J. L. E.

    1972-01-01

    An experimental study of phase equilibria in the He-CH4 system was carried out over the temperature range 95 to 290 K and at pressures to 10,000 atm. The experimental results consist of equilibrium phase composition for twenty-eight isotherms in the region of coexistence of two fluid phases, together with the pressure-temperature trace of the three-phase boundary at which a CH4-rich solid phase is in equilibrium with the two fluid phases. The system exhibits a fluid-fluid phase separation which persists to temperatures and pressures beyond the range of this experiment. These results, together with those recently obtained for other binary systems, provide information about the form of phase diagrams for binary gas mixtures in the region of pressure induced phase transitions at high pressures. These findings are relevant to problems of deep atmosphere and interior structures in the outer planets.

  1. Four phases of intravenous fluid therapy: a conceptual model.

    PubMed

    Hoste, E A; Maitland, K; Brudney, C S; Mehta, R; Vincent, J-L; Yates, D; Kellum, J A; Mythen, M G; Shaw, A D

    2014-11-01

    I.V. fluid therapy plays a fundamental role in the management of hospitalized patients. While the correct use of i.v. fluids can be lifesaving, recent literature demonstrates that fluid therapy is not without risks. Indeed, the use of certain types and volumes of fluid can increase the risk of harm, and even death, in some patient groups. Data from a recent audit show us that the inappropriate use of fluids may occur in up to 20% of patients receiving fluid therapy. The delegates of the 12th Acute Dialysis Quality Initiative (ADQI) Conference sought to obtain consensus on the use of i.v. fluids with the aim of producing guidance for their use. In this article, we review a recently proposed model for fluid therapy in severe sepsis and propose a framework by which it could be adopted for use in most situations where fluid management is required. Considering the dose-effect relationship and side-effects of fluids, fluid therapy should be regarded similar to other drug therapy with specific indications and tailored recommendations for the type and dose of fluid. By emphasizing the necessity to individualize fluid therapy, we hope to reduce the risk to our patients and improve their outcome. © The Author 2014. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Lyotropic model membrane structures of hydrated DPPC: DSC and small-angle X-ray scattering studies of phase transitions in the presence of membranotropic agents

    NASA Astrophysics Data System (ADS)

    Bulavin, L. A.; Soloviov, D. V.; Gordeliy, V. I.; Svechnikova, O. S.; Krasnikova, A. O.; Kasian, N. A.; Vashchenko, O. V.; Lisetski, L. N.

    2015-06-01

    Multibilayer structures of hydrated phospholipids, often considered as model biological membranes, are, from the physical viewpoint, lyotropic liquid crystalline systems undergoing temperature-induced mesomorphic phase transitions. Effects of silver nitrate and urocanic acid on lyotropic phase states of hydrated L-α-dipalmitoylphosphatidylcholine (DPPC) have been studied by small-angle X-ray scattering and differential scanning calorimetry (DSC). Both methods show increase of the main phase-transition temperature (Tm) of hydrated DPPC upon introduction of AgNO3 or urocanic acid, decrease of pre-transition temperature (Tp) in the presence of urocanic acid and its increase in the presence of AgNO3. Thus, urocanic acid widened the ripple-phase temperature region. Silver nitrate caused the appearance of an additional high-temperature peak on DSC thermograms, evidencing phase separation in the system. Both agents caused minor effects on DPPC lipid bilayer repeat distance (D) in gel phase, but resulted in noticeable increase of D in the liquid crystal phase with temperature as compared to undoped DPPC structures.

  3. Time-resolved x-ray diffraction and Raman studies of the phase transition mechanisms of methane hydrate

    SciTech Connect

    Hirai, Hisako Kadobayashi, Hirokazu; Hirao, Naohisa; Ohishi, Yasuo; Ohtake, Michika; Yamamoto, Yoshitaka; Nakano, Satoshi

    2015-01-14

    The mechanisms by which methane hydrate transforms from an sI to sH structure and from an sH to filled-ice Ih structure were examined using time-resolved X-ray diffractometry (XRD) and Raman spectroscopy in conjunction with charge-coupled device camera observation under fixed pressure conditions. The XRD data obtained for the sI–sH transition at 0.8 GPa revealed an inverse correlation between sI and sH, suggesting that the sI structure is replaced by sH. Meanwhile, the Raman analysis demonstrated that although the 12-hedra of sI are retained, the 14-hedra are replaced sequentially by additional 12-hedra, modified 12-hedra, and 20-hedra cages of sH. With the sH to filled-ice Ih transition at 1.8 GPa, both the XRD and Raman data showed that this occurs through a sudden collapse of the sH structure and subsequent release of solid and fluid methane that is gradually incorporated into the filled-ice Ih to complete its structure. This therefore represents a typical reconstructive transition mechanism.

  4. CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES: Gas-Fluid and Fluid-Solid Phase Instability for Restricted Primitive Model

    NASA Astrophysics Data System (ADS)

    Guo, Yuan-Yuan; Chen, Xiao-Song

    2009-08-01

    By considering the fluctuation of grand potential Ω around equilibrium with respect to small one-particle density fluctuations δρα(vec r), the phase instability of restricted primitive model (RPM) of ionic systems is investigated. We use the integral equation theory to calculate the direct correlation functions in the reference hypernetted chain approximation and obtain the spinodal line of RPM. Our analysis explicitly indicates that the gas-fluid phase instability is induced by k = 0 fluctuation mode, while the fluid-solid phase instability is related to k ≠ 0 fluctuation modes. The spinodal line is qualitatively consistent with the result of computer simulations by others.

  5. Particles at fluid-fluid interfaces: A new Navier-Stokes-Cahn-Hilliard surface-phase-field-crystal model

    PubMed Central

    Aland, Sebastian; Lowengrub, John; Voigt, Axel

    2013-01-01

    Colloid particles that are partially wetted by two immiscible fluids can become confined to fluid-fluid interfaces. At sufficiently high volume fractions, the colloids may jam and the interface may crystallize. The fluids together with the interfacial colloids form an emulsion with interesting material properties and offer an important route to new soft materials. A promising approach to simulate these emulsions was presented in Aland et al. [Phys. Fluids 23, 062103 (2011)], where a Navier-Stokes-Cahn-Hilliard model for the macroscopic two-phase fluid system was combined with a surface phase-field-crystal model for the microscopic colloidal particles along the interface. Unfortunately this model leads to spurious velocities which require very fine spatial and temporal resolutions to accurately and stably simulate. In this paper we develop an improved Navier-Stokes-Cahn-Hilliard-surface phase-field-crystal model based on the principles of mass conservation and thermodynamic consistency. To validate our approach, we derive a sharp interface model and show agreement with the improved diffuse interface model. Using simple flow configurations, we show that the new model has much better properties and does not lead to spurious velocities. Finally, we demonstrate the solid-like behavior of the crystallized interface by simulating the fall of a solid ball through a colloid-laden multiphase fluid. PMID:23214691

  6. Particles at fluid-fluid interfaces: A new Navier-Stokes-Cahn-Hilliard surface- phase-field-crystal model.

    PubMed

    Aland, Sebastian; Lowengrub, John; Voigt, Axel

    2012-10-01

    Colloid particles that are partially wetted by two immiscible fluids can become confined to fluid-fluid interfaces. At sufficiently high volume fractions, the colloids may jam and the interface may crystallize. The fluids together with the interfacial colloids form an emulsion with interesting material properties and offer an important route to new soft materials. A promising approach to simulate these emulsions was presented in Aland et al. [Phys. Fluids 23, 062103 (2011)], where a Navier-Stokes-Cahn-Hilliard model for the macroscopic two-phase fluid system was combined with a surface phase-field-crystal model for the microscopic colloidal particles along the interface. Unfortunately this model leads to spurious velocities which require very fine spatial and temporal resolutions to accurately and stably simulate. In this paper we develop an improved Navier-Stokes-Cahn-Hilliard-surface phase-field-crystal model based on the principles of mass conservation and thermodynamic consistency. To validate our approach, we derive a sharp interface model and show agreement with the improved diffuse interface model. Using simple flow configurations, we show that the new model has much better properties and does not lead to spurious velocities. Finally, we demonstrate the solid-like behavior of the crystallized interface by simulating the fall of a solid ball through a colloid-laden multiphase fluid.

  7. Thermodynamic Changes in the Coal Matrix - Gas - Moisture System Under Pressure Release and Phase Transformations of Gas Hydrates

    NASA Astrophysics Data System (ADS)

    Dyrdin, V. V.; Smirnov, V. G.; Kim, T. L.; Manakov, A. Yu.; Fofanov, A. A.; Kartopolova, I. S.

    2017-06-01

    The physical processes occurring in the coal - natural gas system under the gas pressure release were studied experimentally. The possibility of gas hydrates presence in the inner space of natural coal was shown, which decomposition leads to an increase in the amount of gas passing into the free state. The decomposition of gas hydrates can be caused either by the seam temperature increase or the pressure decrease to lower than the gas hydrates equilibrium curve. The contribution of methane released during gas hydrates decomposition should be taken into account in the design of safe mining technologies for coal seams prone to gas dynamic phenomena.

  8. COMPARING SIMULATED AND EXPERIMENTAL HYSTERETIC TWO- PHASE TRANSIENT FLUID FLOW PHENOMENA

    EPA Science Inventory

    A hysteretic model for two-phase permeability (k)-saturation (S)-pressure (P) relations is outlined that accounts for effects of nonwetting fluid entrapment. The model can be employed in unsaturated fluid flow computer codes to predict temporal and spatial fluid distributions. Co...

  9. COMPARING SIMULATED AND EXPERIMENTAL HYSTERETIC TWO- PHASE TRANSIENT FLUID FLOW PHENOMENA

    EPA Science Inventory

    A hysteretic model for two-phase permeability (k)-saturation (S)-pressure (P) relations is outlined that accounts for effects of nonwetting fluid entrapment. The model can be employed in unsaturated fluid flow computer codes to predict temporal and spatial fluid distributions. Co...

  10. Complex phase behavior of a fluid in slits with semipermeable walls modified with tethered chains.

    PubMed

    Borówko, M; Patrykiejew, A; Rżysko, W; Sokołowski, S; Ilnytskyi, J

    2011-01-28

    We study the phase behavior of a two-component fluid in a pore with the walls modified by tethered chains. The walls are completely permeable for one component of the fluid and completely impenetrable for the second component. The fluid is perfectly mixed in a bulk phase. We have found that depending on the details of the model the fluid undergoes capillary condensation inside the pore and wetting and layering transitions at the outer walls. Moreover, we have found transitions connected with the change of symmetry of the distribution of chains and fluid inside the pore.

  11. Phase-Controlled Bistability of a Dark Soliton Train in a Polariton Fluid

    NASA Astrophysics Data System (ADS)

    Goblot, V.; Nguyen, H. S.; Carusotto, I.; Galopin, E.; Lemaître, A.; Sagnes, I.; Amo, A.; Bloch, J.

    2016-11-01

    We use a one-dimensional polariton fluid in a semiconductor microcavity to explore the nonlinear dynamics of counterpropagating interacting Bose fluids. The intrinsically driven-dissipative nature of the polariton fluid allows us to use resonant pumping to impose a phase twist across the fluid. When the polariton-polariton interaction energy becomes comparable to the kinetic energy, linear interference fringes transform into a train of solitons. A novel type of bistable behavior controlled by the phase twist across the fluid is experimentally evidenced.

  12. Hydrate Formation in Gas-Rich Marine Sediments: A Grain-Scale Model

    NASA Astrophysics Data System (ADS)

    Holtzman, R.; Juanes, R.

    2009-12-01

    We present a grain-scale model of marine sediment, which couples solid- and multiphase fluid-mechanics together with hydrate kinetics. The model is applied to investigate the spatial distribution of the different methane phases - gas and hydrate - within the hydrate stability zone. Sediment samples are generated from three-dimensional packs of spherical grains, mapping the void space into a pore network by tessellation. Gas invasion into the water-saturated sample is simulated by invasion-percolation, coupled with a discrete element method that resolves the grain mechanics. The coupled model accounts for forces exerted by the fluids, including cohesion associated with gas-brine surface tension. Hydrate growth is represented by a hydrate film along the gas-brine interface, which increases sediment cohesion by cementing the grain contacts. Our model of hydrate growth includes the possible rupture of the hydrate layer, which leads to the creation of new gas-water interface. In previous work, we have shown that fine-grained sediments (FGS) exhibit greater tendency to fracture, whereas capillary invasion is the preferred mode of methane gas transport in coarse-grained sediments (CGS). The gas invasion pattern has profound consequences on the hydrate distribution: a larger area-to-volume ratio of the gas cluster leads to a larger drop in gas pressure inside the growing hydrate shell, causing it to rupture. Repeated cycles of imbibition and hydrate growth accompanied by trapping of gas allow us to determine the distribution of hydrate and gas within the sediment as a function of time. Our pore-scale model suggests that, even when film rupture takes place, the conversion of gas to hydrate is slow. This explains two common field observations: the coexistence of gas and hydrate within the hydrate stability zone in CGS, and the high methane fluxes through fracture conduits in FGS. These results demonstrate the importance of accounting for the strong coupling among multiphase

  13. Non-aqueous-phase fluids in heterogeneous aquifers -- experimental study

    SciTech Connect

    Illangasekare, T.H.; Yates, D.N.; Armbruster, E.J. III.

    1995-08-01

    Understanding of flow and entrapment of non-aqueous-phase liquids (NAPLs) in aquifers contaminated with organic chemicals is important in the effective design of recovery and remediation schemes. Soil heterogeneities play a significant role in the physical behavior of these chemicals. An experimental facility consisting of a large soil tank (lysimeter) and a dual-gamma spectroscopy system for fluid saturation measurements was developed to simulate and monitor plume migration in water-table aquifers after chemical spills. Experimental techniques and results form a preliminary set of experiments conducted in unsaturated and saturated soils under homogeneous and heterogeneous conditions are presented. the effects of the layered homogeneities were pronounced in modifying the migration pattern and velocity of the plume. Pockets of coarse sand placed across the path of the plume resulted in the soil acting as a light NAPL trap. A fine-sand pocket acted as a barrier. Qualitative and quantitative data generated in the type of experiments presented in this paper can be used to validate multiphase flow models.

  14. Colorado Plateau Uplift Through Deep Crustal Hydration?

    NASA Astrophysics Data System (ADS)

    Butcher, L. A.; Mahan, K. H.; Jones, C. H.; Farmer, G.

    2013-12-01

    The conventional view of plate tectonics restricts deformation to plate boundaries and does not account for regionally elevated topography in continental interiors. Thermal, mechanical or chemical alteration of ancient continental lithosphere is a mechanism sometimes invoked to explain intracratonic uplift in the western U.S. although the timing, extent and effects of this modification are poorly understood. Here we present new petrological and in situ geochronological data for a hydrated deep crustal xenolith from the Colorado Plateau and investigate the effects of deep crustal hydration on topography. Two distinct mineral assemblages recorded in a garnet biotite schist xenolith from the Navajo Volcanic Field, Four Corners region document hydration subsequent to peak metamorphism in the deep crust whereby the primary metamorphic assemblage (Gt + Bt + Ms + Pl + Kfs + Qtz) is variably replaced by a lower-density, hydrated assemblage (Ab + Ph + Cc + Rt). Results from forward petrological modeling constrain hydration at ≥ 20 km (0.65 GPa, 450 °C) prior to exhumation in the ˜20 Ma volcanic host. In situ Th/Pb dating of secondary monazite grains spatially associated with fluid-related plagioclase and allanite breakdown reveals a significant majority of Late Cretaceous dates from 91 to 58 Ma. These dates are interpreted to reflect a finite period of deep crustal hydration, possibly by fluids sourced from a shallowly subducting Farallon slab. Xenolith data additionally supports crustal hydration as a mechanism for producing regionally elevated topography. Fluid-related reactions in the deep crust may lead to a net density decrease as low-density hydrous phases (e.g. Ms + Amp + Cc) replace high-density, anhydrous minerals (e.g. Gt + Fsp + Opx + Cpx) abundant in high-pressure, high-temperature assemblages preserved in Proterozoic North American lithosphere. If these reactions are sufficiently pervasive and widespread, reductions in lower crustal density would provide a

  15. One-dimensional model of two-phase fluid displacement in a slot with permeable walls

    NASA Astrophysics Data System (ADS)

    Golovin, S. V.; Kazakova, M. Yu.

    2017-01-01

    A one-dimensional model is proposed for transportation of a two-phase fluid (sandcontaining fluid and pure fluid) in the Hele-Shaw cell with permeable walls through which the pure fluid can leak off, causing the growth of the sand concentration. The model describes the process of pure fluid displacement with the emergence of the Saffman-Taylor instability and extends Koval's model to the case of sand concentration variation owing to pure fluid outflow through the cell walls. The Riemann problem is analyzed. New flow configurations, which are not predicted by Koval's model, are discovered.

  16. The Cycle of Hydration and Fluid Release in the Costa Rican Subduction Zone imaged through electromagnetic soundings: Where has all the water gone? (Invited)

    NASA Astrophysics Data System (ADS)

    Worzewski, T. W.; Jegen, M. D.; Kopp, H.; Brasse, H.; Taylor, W.

    2010-12-01

    Fluids entering the subduction zone play an important role. They determine the onset of melting, weakening and changes in the dynamics and thermal structure of subduction zones and trigger earthquakes when being released from the subducting plate. However, the amount of water carried into the subduction zone and its distribution are not well constrained by existing data and are subject of vigorous current research in SFB574 (Volatiles and Fluids in Subduction Zones: Climate Feedback and Trigger Mechanisms for Natural Disasters). Electromagnetic methods like magnetotellurics have been used widely to recognize fluid release and melt production through enhanced electrical conductivities. Here we present an image of the hydration and dehydration cycle down to 120 km depth in one setting derived by an onshore-offshore transect of magnetotelluric soundings in Costa Rica. An electrically conductive zone in the incoming plate outer rise is associated with sea water penetrating down extensional faults and cracks into the upper mantle possibly causing serpentinization. Along the downward subducting plate distinct conductive anomalies identify fluids from dehydration of sediments, crust and mantle. A conductivity anomaly at a depth of approx. 12 km and at a distance of 65 km from the trench is associated with a first major dehydration reaction of minerally-bound water. This is of importance in the context of mid-slope fluid seeps which are thought to significantly contribute to the recycling of minerally-bound water. The position of the conductivity anomaly correlates with geochemical and seismic evidence stating that mid-slope fluids are originated at >=12 km depth before rising up through deep faults to the seeps. The conductivity anomaly is therefore associated with a fluid accumulation feeding the mid-slope seeps. Another fluid accumulation is revealed by a conductivity anomaly at 20-30 km depth and a distance of approximately 30 km seaward from the volcanic arc. This

  17. Transformations in methane hydrates

    USGS Publications Warehouse

    Chou, I.-Ming; Sharma, A.; Burruss, R.C.; Shu, J.; Mao, Ho-kwang; Hemley, R.J.; Goncharov, A.F.; Stern, L.A.; Kirby, S.H.

    2000-01-01

    Detailed study of pure methane hydrate in a diamond cell with in situ optical, Raman, and x-ray microprobe techniques reveals two previously unknown structures, structure II and structure H, at high pressures. The structure II methane hydrate at 250 MPa has a cubic unit cell of a = 17.158(2) A?? and volume V = 5051.3(13) A??3; structure H at 600 MPa has a hexagonal unit cell of a = 11.980(2) A??, c = 9.992(3) A??, and V = 1241.9(5) A??3. The compositions of these two investigated phases are still not known. With the effects of pressure and the presence of other gases in the structure, the structure II phase is likely to dominate over the known structure I methane hydrate within deep hydrate-bearing sediments underlying continental margins.

  18. Phase equilibria in fluid mixtures at high pressures - The He-CH4 system.

    NASA Technical Reports Server (NTRS)

    Streett, W. B.; Erickson, A. L.; Hill, J. L. E.

    1972-01-01

    An experimental study of phase equilibria in the He-CH4 system has been carried out over the temperature range 95 to 290 K and at pressures to 10,000 atm. The experimental results consist of equilibrium phase composition for twenty-eight isotherms in the region of coexistence of two fluid phases, together with the pressure-temperature trace of the three-phase boundary at which a CH4-rich solid phase is in equilibrium with the two fluid phases. The system exhibits a fluid-fluid phase separation which persists to temperatures and pressures beyond the range of this experiment. These findings are relevant to problems of deep atmosphere and interior structures in the outer planets.-

  19. Fluid Phase Separation (FPS) experiment for flight on a space shuttle Get Away Special (GAS) canister

    NASA Technical Reports Server (NTRS)

    Peters, Bruce; Wingo, Dennis; Bower, Mark; Amborski, Robert; Blount, Laura; Daniel, Alan; Hagood, Bob; Handley, James; Hediger, Donald; Jimmerson, Lisa

    1990-01-01

    The separation of fluid phases in microgravity environments is of importance to environmental control and life support systems (ECLSS) and materials processing in space. A successful fluid phase separation experiment will demonstrate a proof of concept for the separation technique and add to the knowledge base of material behavior. The phase separation experiment will contain a premixed fluid which will be exposed to a microgravity environment. After the phase separation of the compound has occurred, small samples of each of the species will be taken for analysis on the Earth. By correlating the time of separation and the temperature history of the fluid, it will be possible to characterize the process. The experiment has been integrated into space available on a manifested Get Away Special (GAS) experiment, CONCAP 2, part of the Consortium for Materials Complex Autonomous Payload (CAP) Program, scheduled for STS-42. The design and the production of a fluid phase separation experiment for rapid implementation at low cost is presented.

  20. Rapid gas hydrate formation process

    DOEpatents

    Brown, Thomas D.; Taylor, Charles E.; Unione, Alfred J.

    2013-01-15

    The disclosure provides a method and apparatus for forming gas hydrates from a two-phase mixture of water and a hydrate forming gas. The two-phase mixture is created in a mixing zone which may be wholly included within the body of a spray nozzle. The two-phase mixture is subsequently sprayed into a reaction zone, where the reaction zone is under pressure and temperature conditions suitable for formation of the gas hydrate. The reaction zone pressure is less than the mixing zone pressure so that expansion of the hydrate-forming gas in the mixture provides a degree of cooling by the Joule-Thompson effect and provides more intimate mixing between the water and the hydrate-forming gas. The result of the process is the formation of gas hydrates continuously and with a greatly reduced induction time. An apparatus for conduct of the method is further provided.

  1. HYDRATE CORE DRILLING TESTS

    SciTech Connect

    John H. Cohen; Thomas E. Williams; Ali G. Kadaster; Bill V. Liddell

    2002-11-01

    The ''Methane Hydrate Production from Alaskan Permafrost'' project is a three-year endeavor being conducted by Maurer Technology Inc. (MTI), Noble, and Anadarko Petroleum, in partnership with the U.S. DOE National Energy Technology Laboratory (NETL). The project's goal is to build on previous and ongoing R&D in the area of onshore hydrate deposition. The project team plans to design and implement a program to safely and economically drill, core and produce gas from arctic hydrates. The current work scope includes drilling and coring one well on Anadarko leases in FY 2003 during the winter drilling season. A specially built on-site core analysis laboratory will be used to determine some of the physical characteristics of the hydrates and surrounding rock. Prior to going to the field, the project team designed and conducted a controlled series of coring tests for simulating coring of hydrate formations. A variety of equipment and procedures were tested and modified to develop a practical solution for this special application. This Topical Report summarizes these coring tests. A special facility was designed and installed at MTI's Drilling Research Center (DRC) in Houston and used to conduct coring tests. Equipment and procedures were tested by cutting cores from frozen mixtures of sand and water supported by casing and designed to simulate hydrate formations. Tests were conducted with chilled drilling fluids. Tests showed that frozen core can be washed out and reduced in size by the action of the drilling fluid. Washing of the core by the drilling fluid caused a reduction in core diameter, making core recovery very difficult (if not impossible). One successful solution was to drill the last 6 inches of core dry (without fluid circulation). These tests demonstrated that it will be difficult to capture core when drilling in permafrost or hydrates without implementing certain safeguards. Among the coring tests was a simulated hydrate formation comprised of coarse, large

  2. X-Ray Microspectroscopic Investigations of Remote Aerosol Composition and Changes in Aerosol Microstructure and Phase State upon Hydration

    NASA Astrophysics Data System (ADS)

    Andreae, M. O.; Artaxo, P.; Bechtel, M.; Förster, J. D.; Kilcoyne, A. L. D.; Krüger, M. L.; Pöhlker, C.; Saturno, J.; Weigand, M.; Wiedemann, K. T.

    2014-12-01

    Atmospheric aerosols play a crucial role in the Earth's climate system and hydrological cycle by scattering and absorbing sunlight and affecting the formation and development of clouds and precipitation. Our research focuses on aerosols in remote regions, in order to characterize the properties and sources of natural aerosol particles and the extent of human perturbations of the aerosol burden. The phase and mixing state of atmospheric aerosols, and particularly their hygroscopic response to relative humidity (RH) variations, is a central determinant of their atmospheric life cycle and impacts. We present an investigation using X-ray microspectroscopy on submicrometer aerosols under variable RH conditions, showing in situ changes in morphology, microstructure, and phase state upon humidity cycling. We applied Scanning Transmission X-ray Microscopy with Near-Edge X-ray Absorption Fine Structure spectroscopy (STXM-NEXAFS) under variable RH conditions to standard aerosols for a validation of the experimental approach and to internally mixed aerosol particles from the Amazonian rain forest collected during periods with anthropogenic pollution. The measurements were conducted at X-ray microscopes at the synchrotron facilities Advanced Light Source (ALS) in Berkeley, USA, and BESSY II in Berlin, Germany. Upon hydration, we observed substantial and reproducible changes in microstructure of the Amazonian particles (internal mixture of secondary organic material, ammoniated sulfate, and soot), which appear as mainly driven by efflorescence and recrystallization of sulfate salts. Multiple solid and liquid phases were found to coexist, especially in intermediate humidity regimes (60-80% RH). This shows that X-ray microspectroscopy under variable RH is a valuable technique to analyze the hygroscopic response of individual ambient aerosol particles. Our initial results underline that RH changes can trigger strong particle restructuring, in agreement with previous studies on

  3. Phase transitions of adsorbed fluids computed from multiplehistogram reweighting

    NASA Astrophysics Data System (ADS)

    Shi, Wei; Zhao, Xiongce; Johnson, J. Karl

    This paper demonstrates the effectiveness of using multiple-histogram reweighting (MHR) to study phase transitions in confined fluids by examining capillary condensation, prewetting, and layering transitions for different systems. A comparison is made with previously published simulations, where available, to establish the accuracy of MHR as applied to inhomogeneous systems. Overlap between adjacent state points is assessed through single-histogram reweighting. Capillary condensation for methane adsorption in slit-like graphite pores exhibits 2D behaviour. Crossover of the effective exponent for the width of the coexistence curve from 2D Ising-like (1/8) further away from the critical point to mean-field (1/2) near the critical point is observed. The reduced critical temperature, the density and the effective value of the exponent for the model system are 0.77, 0.482, and 0.119, respectively, based on a fit to the simulation data. Prewetting transitions are observed for adsorption of Ar on solid CO 2 using model potentials. The wetting temperature is estimated based on the intersection of the prewetting and bulk vapour-liquid lines, and also by extrapolation to zero of the difference between the saturation and prewetting chemical potentials. The reduced wetting temperature is estimated to be around 0.69. The reduced prewetting critical temperature, calculated from the disappearance of the two peaks in the density probability distribution, is estimated to be 0.92. The monolayer to bilayer (1-2) transition for propane on graphite is computed over a range of temperatures. Results for the 1-2 layering transition computed from MHR from a small system are in good agreement with grand canonical Monte Carlo simulations for a much larger system.

  4. Preliminary Experimental Examination Of Controls On Methane Expulsion During Melting Of Natural Gas Hydrate Systems

    NASA Astrophysics Data System (ADS)

    Kneafsey, T. J.; Flemings, P. B.; Bryant, S. L.; You, K.; Polito, P. J.

    2013-12-01

    Global climate change will cause warming of the oceans and land. This will affect the occurrence, behavior, and location of subseafloor and subterranean methane hydrate deposits. We suggest that in many natural systems local salinity, elevated by hydrate formation or freshened by hydrate dissociation, may control gas transport through the hydrate stability zone. We are performing experiments and modeling the experiments to explore this behavior for different warming scenarios. Initially, we are exploring hydrate association/dissociation in saline systems with constant water mass. We compare experiments run with saline (3.5 wt. %) water vs. distilled water in a sand mixture at an initial water saturation of ~0.5. We increase the pore fluid (methane) pressure to 1050 psig. We then stepwise cool the sample into the hydrate stability field (~3 degrees C), allowing methane gas to enter as hydrate forms. We measure resistivity and the mass of methane consumed. We are currently running these experiments and we predict our results from equilibrium thermodynamics. In the fresh water case, the modeled final hydrate saturation is 63% and all water is consumed. In the saline case, the modeled final hydrate saturation is 47%, the salinity is 12.4 wt. %, and final water saturation is 13%. The fresh water system is water-limited: all the water is converted to hydrate. In the saline system, pore water salinity is elevated and salt is excluded from the hydrate structure during hydrate formation until the salinity drives the system to three phase equilibrium (liquid, gas, hydrate) and no further hydrate forms. In our laboratory we can impose temperature gradients within the column, and we will use this to investigate equilibrium conditions in large samples subjected to temperature gradients and changing temperature. In these tests, we will quantify the hydrate saturation and salinity over our meter-long sample using spatially distributed temperature sensors, spatially distributed

  5. Influence of phase connectivity on the relationship among capillary pressure, fluid saturation, and interfacial area in two-fluid-phase porous medium systems

    SciTech Connect

    McClure, James E.; Berrill, Mark A.; Gray, William G.; Miller, Cass T.

    2016-09-02

    Here, multiphase flow in porous medium systems is typically modeled using continuum mechanical representations at the macroscale in terms of averaged quantities. These models require closure relations to produce solvable forms. One of these required closure relations is an expression relating fluid pressures, fluid saturations, and, in some cases, the interfacial area between the fluid phases, and the Euler characteristic. An unresolved question is whether the inclusion of these additional morphological and topological measures can lead to a non-hysteretic closure relation compared to the hysteretic forms that are used in traditional models, which typically do not include interfacial areas, or the Euler characteristic. We develop a lattice-Boltzmann (LB) simulation approach to investigate the equilibrium states of a two-fluid-phase porous medium system, which include disconnected now- wetting phase features. The proposed approach is applied to a synthetic medium consisting of 1,964 spheres arranged in a random, non-overlapping, close-packed manner, yielding a total of 42,908 different equilibrium points. This information is evaluated using a generalized additive modeling approach to determine if a unique function from this family exists, which can explain the data. The variance of various model estimates is computed, and we conclude that, except for the limiting behavior close to a single fluid regime, capillary pressure can be expressed as a deterministic and non-hysteretic function of fluid saturation, interfacial area between the fluid phases, and the Euler characteristic. This work is unique in the methods employed, the size of the data set, the resolution in space and time, the true equilibrium nature of the data, the parameterizations investigated, and the broad set of functions examined. The conclusion of essentially non-hysteretic behavior provides support for an evolving class of two-fluid-phase flow in porous medium systems models.

  6. Influence of phase connectivity on the relationship among capillary pressure, fluid saturation, and interfacial area in two-fluid-phase porous medium systems

    DOE PAGES

    McClure, James E.; Berrill, Mark A.; Gray, William G.; ...

    2016-09-02

    Here, multiphase flow in porous medium systems is typically modeled using continuum mechanical representations at the macroscale in terms of averaged quantities. These models require closure relations to produce solvable forms. One of these required closure relations is an expression relating fluid pressures, fluid saturations, and, in some cases, the interfacial area between the fluid phases, and the Euler characteristic. An unresolved question is whether the inclusion of these additional morphological and topological measures can lead to a non-hysteretic closure relation compared to the hysteretic forms that are used in traditional models, which typically do not include interfacial areas, ormore » the Euler characteristic. We develop a lattice-Boltzmann (LB) simulation approach to investigate the equilibrium states of a two-fluid-phase porous medium system, which include disconnected now- wetting phase features. The proposed approach is applied to a synthetic medium consisting of 1,964 spheres arranged in a random, non-overlapping, close-packed manner, yielding a total of 42,908 different equilibrium points. This information is evaluated using a generalized additive modeling approach to determine if a unique function from this family exists, which can explain the data. The variance of various model estimates is computed, and we conclude that, except for the limiting behavior close to a single fluid regime, capillary pressure can be expressed as a deterministic and non-hysteretic function of fluid saturation, interfacial area between the fluid phases, and the Euler characteristic. This work is unique in the methods employed, the size of the data set, the resolution in space and time, the true equilibrium nature of the data, the parameterizations investigated, and the broad set of functions examined. The conclusion of essentially non-hysteretic behavior provides support for an evolving class of two-fluid-phase flow in porous medium systems models.« less

  7. Influence of phase connectivity on the relationship among capillary pressure, fluid saturation, and interfacial area in two-fluid-phase porous medium systems

    SciTech Connect

    McClure, James E.; Berrill, Mark A.; Gray, William G.; Miller, Cass T.

    2016-09-02

    Here, multiphase flow in porous medium systems is typically modeled using continuum mechanical representations at the macroscale in terms of averaged quantities. These models require closure relations to produce solvable forms. One of these required closure relations is an expression relating fluid pressures, fluid saturations, and, in some cases, the interfacial area between the fluid phases, and the Euler characteristic. An unresolved question is whether the inclusion of these additional morphological and topological measures can lead to a non-hysteretic closure relation compared to the hysteretic forms that are used in traditional models, which typically do not include interfacial areas, or the Euler characteristic. We develop a lattice-Boltzmann (LB) simulation approach to investigate the equilibrium states of a two-fluid-phase porous medium system, which include disconnected now- wetting phase features. The proposed approach is applied to a synthetic medium consisting of 1,964 spheres arranged in a random, non-overlapping, close-packed manner, yielding a total of 42,908 different equilibrium points. This information is evaluated using a generalized additive modeling approach to determine if a unique function from this family exists, which can explain the data. The variance of various model estimates is computed, and we conclude that, except for the limiting behavior close to a single fluid regime, capillary pressure can be expressed as a deterministic and non-hysteretic function of fluid saturation, interfacial area between the fluid phases, and the Euler characteristic. This work is unique in the methods employed, the size of the data set, the resolution in space and time, the true equilibrium nature of the data, the parameterizations investigated, and the broad set of functions examined. The conclusion of essentially non-hysteretic behavior provides support for an evolving class of two-fluid-phase flow in porous medium systems models.

  8. Interaction of complex fluids and solids: theory, algorithms and application to phase-change-driven implosion

    NASA Astrophysics Data System (ADS)

    Bueno, Jesus; Bona-Casas, Carles; Bazilevs, Yuri; Gomez, Hector

    2015-06-01

    There is a large body of literature dealing with the interaction of solids and classical fluids, but the mechanical coupling of solids and complex fluids remains practically unexplored, at least from the computational point of view. Yet, complex fluids produce much richer physics than classical fluids when they interact with solids, especially at small scales. Here, we couple a nonlinear hyperelastic solid with a single-component two-phase flow, where the fluid can condensate and evaporate naturally due to temperature and/or pressure changes. We propose a fully-coupled fluid-structure interaction algorithm to solve the problem. We illustrate the viability of the theoretical framework and the effectiveness of our algorithms by solving several problems of phase-change-driven implosion, a physical process in which a thin structure collapses due to the condensation of a fluid.

  9. Experimental Study of Gas Hydrate Dynamics

    NASA Astrophysics Data System (ADS)

    Fandino, O.; Ruffine, L.

    2011-12-01

    Important quantities of methane and other gases are trapped below the seafloor and in the permafrost by an ice-like solid, called gas hydrates or clathrate hydrates. The latter is formed when water is mixing with different gases at high pressures and low temperatures. Due to a their possible use as a source of energy [1] or the problematic related to flow assurance failure in pipelines [2] the understanding of their processes of formation/destabilisation of these structures becomes a goal for many laboratories research as well as industries. In this work we present an experimental study on the stochastic behaviour of hydrate formation from a bulk phase. The method used here for the experiments was to repeat several time the same hydrate formation procedure and to notice the different from one experiment to another. A variable-volume type high-pressure apparatus with two sapphire windows was used. This device, already presented by Ruffine et al.[3], allows us to perform both kinetics and phase equilibrium measurements. Three initial pressure conditions were considered here, 5.0 MPa, 7.5 MPa and 10.0 MPa. Hydrates have been formed, then allowed to dissociate by stepwise heating. The memory effect has also been investigated after complete dissociation. It turned out that, although the thermodynamics conditions of formation and/or destabilization were reproducible. An attempt to determine the influence of pressure on the nucleation induction time will be discussed. References 1. Sum, A. K.; Koh, C. A.; Sloan, E. D., Clathrate Hydrates: From Laboratory Science to Engineering Practice. Industrial & Engineering Chemistry Research 2009, 48, 7457-7465. 2. Sloan, E. D., A changing hydrate paradigm-from apprehension to avoidance to risk management. Fluid Phase Equilibria 2005, 228, 67-74. 3. Ruffine, L.; Donval, J. P.; Charlou, J. L.; Cremière, A.; Zehnder, B. H., Experimental study of gas hydrate formation and destabilisation using a novel high-pressure apparatus. Marine

  10. Hydration Leads to Efficient Reactions of the Carbonate Radical Anion with Hydrogen Chloride in the Gas Phase.

    PubMed

    Tang, Wai Kit; van der Linde, Christian; Siu, Chi-Kit; Beyer, Martin K

    2017-01-12

    The carbonate radical anion CO3(•-) is a key intermediate in tropospheric anion chemistry. Despite its radical character, only a small number of reactions have been reported in the literature. Here we investigate the gas-phase reactions of CO3(•-) and CO3(•-)(H2O) with HCl under ultrahigh vacuum conditions. Bare CO3(•-) forms OHCl(•-) with a rate constant of 4.2 × 10(-12) cm(3) s(-1), which corresponds to an efficiency of only 0.4%. Hydration accelerates the reaction, and ligand exchange of H2O against HCl proceeds with a rate of 2.7 × 10(-10) cm(3) s(-1). Quantum chemical calculations reveal that OHCl(•-) is best described as an OH(•) hydrogen bonded to Cl(-), while the ligand exchange product is Cl(-)(HCO3(•)). Under tropospheric conditions, where CO3(•-)(H2O) is the dominant species, Cl(-)(HCO3(•)) is efficiently formed. These reactions must be included in models of tropospheric anion chemistry.

  11. Nasogastric Hydration in Infants with Bronchiolitis Less Than 2 Months of Age.

    PubMed

    Oakley, Ed; Bata, Sonny; Rengasamy, Sharmila; Krieser, David; Cheek, John; Jachno, Kim; Babl, Franz E

    2016-11-01

    To determine whether nasogastric hydration can be used in infants less than 2 months of age with bronchiolitis, and characterize the adverse events profile of these infants compared with infants given intravenous (IV) fluid hydration. A descriptive retrospective cohort study of children with bronchiolitis under 2 months of age admitted for hydration at 3 centers over 3 bronchiolitis seasons was done. We determined type of hydration (nasogastric vs IV fluid hydration) and adverse events, intensive care unit admission, and respiratory support. Of 491 infants under 2 months of age admitted with bronchiolitis, 211 (43%) received nonoral hydration: 146 (69%) via nasogastric hydration and 65 (31%) via IV fluid hydration. Adverse events occurred in 27.4% (nasogastric hydration) and 23.1% (IV fluid hydration), difference of 4.3%; 95%CI (-8.2 to 16.9), P = .51. The majority of adverse events were desaturations (21.9% nasogastric hydration vs 21.5% IV fluid hydration, difference 0.4%; [-11.7 to 12.4], P = .95). There were no pulmonary aspirations in either group. Apneas and bradycardias were similar in each group. IV fluid hydration use was positively associated with intensive care unit admission (38.5% IV fluid hydration vs 19.9% nasogastric hydration; difference 18.6%, [5.1-32.1], P = .004); and use of ventilation support (27.7% IV fluid hydration vs 15.1% nasogastric hydration; difference 12.6 [0.3-23], P = .03). Fewer infants changed from nasogastric hydration to IV fluid hydration than from IV fluid hydration to nasogastric hydration (12.3% vs 47.7%; difference -35.4% [-49 to -22], P < .001). Nasogastric hydration can be used in the majority of young infants admitted with bronchiolitis. Nasogastric hydration and IV fluid hydration had similar rates of complications. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. The effect of acute fluid consumption following exercise-induced fluid loss on hydration status, percent body fat, and minimum wrestling weight in wrestlers.

    PubMed

    Cutrufello, Paul T; Dixon, Curt B

    2014-07-01

    Acute fluid consumption (approximately 1 L) has been shown to reduce urine specific gravity (Usg) among subjects after an overnight fast, yet it is unknown if Usg may be reduced among subjects who have experienced exercise-induced fluid loss. The purpose of this study was to examine the effect of acute fluid consumption on Usg, body mass, percent body fat (%BF), and minimum wrestling weight (MWW) following an exercise-induced fluid loss protocol. National Collegiate Athletic Association coaches' perceptions of the weight certification program (WCP) were also evaluated. Twelve men wrestlers (19.8 ± 1.14 years) were tested prepractice (PRE), postpractice (POST), and 1 hour after consuming 1 L of water (PFC). Percent body fat was measured by skinfolds (SF), air displacement plethysmography (ADP), and multifrequency and leg-to-leg bioelectrical impedance analysis to calculate MWW. Urine specific gravity measurements significantly increased above PRE (1.013 ± 0.006) at the POST (1.019 ± 0.007; p = 0.017) and PFC (1.022 ± 0.008; p = 0.025) assessments; however, POST and PFC were not significantly different (p = 0.978) from one another. The %BF values were similar (p > 0.05) at each assessment point when using SF and ADP. When compared with PRE, MWW significantly reduced at the POST assessment when using SF (67.2 ± 8.4 vs. 65.7 ± 8.2 kg; p < 0.001) and ADP (66.6 ± 9.1 vs. 64.8 ± 9.0 kg; p = 0.001), reflecting the reduction in body mass observed after exercise. Forty-seven National Collegiate Athletic Association coaches completed the questionnaire and 2 central themes emerged: (a) concerns with the 1.5% weight loss plan and (b) wrestlers using strategies in an attempt to circumvent the WCP. Exercise-induced fluid loss followed by acute fluid consumption equal to 1 L was ineffective in reducing Usg.

  13. Detection and Mapping of Hydrated Mineral Phases associated with Flat-Floored Noachian Impact Craters in the Southern Highlands on Mars

    NASA Astrophysics Data System (ADS)

    Sessa, A. M.; Wray, J. J.

    2016-12-01

    The oldest surfaces on Mars date to the Noachian era, defined by its comparatively high abundance of large impact craters. Within these craters is a record of the processes that have occurred since their formation, thereby resulting in them being filled in with sediment or capped by volcanic rock. By utilizing the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on the Mars Reconnaissance Orbiter (MRO), we are investigating the mineralogical composition of wind-eroded floor materials present within, and surrounding, 30 Noachian-aged impact craters, which span three geographic regions that collectively make up our study region. Here, we pay particular attention to the exposed hydrated mineral phases associated with this subset of flat-floored craters. We also focus on the presence of feldspathic material in association with the aforementioned hydrated materials within the defined region of study, specifically in the Noachis Terra region (Carter and Poulet, 2013 and Wray et al., 2013). These phases are present within layered deposits consisting of infill and observable crater wall stratigraphy, in uplifted materials associated with central peaks, in ejecta from smaller superposed craters that sample the underlying stratified infill, and in materials on the plains surrounding the craters themselves. Our approach involves comparing ratioed CRISM spectra to the USGS spectral library (Clark et al., 2007) in order to identify the hydrated minerals present within our region of study. This will help further our knowledge of the past aqueous alteration environments of the southern highlands and possibly add to the wide array of hydrated mineral phases already reported on in this region by Mustard et al. (2008), Murchie et al. (2009), Wray et al. (2009), and others. Specifically, we have observed feldspathic material intermixed with Mg-, Fe-, and Al-smectite (spectrally confirmed) along with other stand-alone hydrated materials (sans feldspathic material) that

  14. Separation of rare earths from transition metals by liquid-liquid extraction from a molten salt hydrate to an ionic liquid phase.

    PubMed

    Rout, Alok; Binnemans, Koen

    2014-02-28

    The solvent extraction of trivalent rare-earth ions and their separation from divalent transition metal ions using molten salt hydrates as the feed phase and an undiluted fluorine-free ionic liquid as the extracting phase were investigated in detail. The extractant was tricaprylmethylammonium nitrate, [A336][NO3], and the hydrated melt was calcium nitrate tetrahydrate, Ca(NO3)2·4H2O. The extraction behavior of rare-earth ions was studied for solutions of individual elements, as well as for mixtures of rare earths in the hydrated melt. The influence of different extraction parameters was investigated: the initial metal loading in the feed phase, percentage of water in the feed solution, equilibration time, and the type of hydrated melt. The extraction of rare earths from Ca(NO3)2·4H2O was compared with extraction from CaCl2·4H2O by [A336][Cl] (Aliquat 336). The nitrate system was found to be the better one. The extraction and separation of rare earths from the transition metals nickel, cobalt and zinc were also investigated. Remarkably high separation factors of rare-earth ions over transition metal ions were observed for extraction from Ca(NO3)2·4H2O by the [A336][NO3] extracting phase. Furthermore, rare-earth ions could be separated efficiently from transition metal ions, even in melts with very high concentrations of transition metal ions. Rare-earth oxides could be directly dissolved in the Ca(NO3)2·4H2O phase in the presence of small amounts of Al(NO3)3·9H2O or concentrated nitric acid. The efficiency of extraction after dissolving the rare-earth oxides in the hydrated nitrate melt was identical to extraction from solutions with rare-earth nitrates dissolved in the molten phase. The stripping of the rare-earth ions from the loaded ionic liquid phase and the reuse of the recycled ionic liquid were also investigated in detail.

  15. Working fluid selection for space-based two-phase heat transport systems

    NASA Technical Reports Server (NTRS)

    Mclinden, Mark O.

    1988-01-01

    The working fluid for externally-mounted, space-based two-phase heat transport systems is considered. A sequence of screening criteria involving freezing and critical point temperatures and latent heat of vaporization and vapor density are applied to a data base of 860 fluids. The thermal performance of the 52 fluids which pass this preliminary screening are then ranked according to their impact on the weight of a reference system. Upon considering other nonthermal criteria (flammability, toxicity, and chemical stability) a final set of 10 preferred fluids is obtained. The effects of variations in system parameters is investigated for these 10 fluids by means of a factorial design.

  16. Over-hydration detection in brain by magnetic induction spectroscopy

    NASA Astrophysics Data System (ADS)

    González, César A.; Pérez, María; Hevia, Nidiyare; Arámbula, Fernándo; Flores, Omar; Aguilar, Eliot; Hinojosa, Ivonne; Joskowicz, Leo; Rubinsky, Boris

    2010-04-01

    Detection and continuous monitoring of edema in the brain in early stages is useful for assessment of medical condition and treatment. We have proposed a solution in which the bulk measurements of the tissue electrical properties to detect edema or in general accumulation of fluids are made through measurement of the magnetic induction phase shift between applied and measured currents at different frequencies (Magnetic Induction Spectroscopy; MIS). Magnetic Resonant Imaging (MRI) has been characterized because its capability to detect different levels of brain tissue hydration by differences in diffusion-weighted (DW) sequences and it's involve apparent diffusion coefficient (ADC). The objective of this study was to explore the viability to use measurements of the bulk tissue electrical properties to detect edema or in general accumulation of fluids by MIS. We have induced a transitory and generalized tissue over-hydration condition in ten volunteers ingesting 1.5 to 2 liters of water in ten minutes. Basal and over-hydration conditions were monitored by MIS and MRI. Changes in the inductive phase shift at certain frequencies were consistent with changes in the brain tissue hydration level observed by DW-ADC. The results suggest that MIS has the potential to detect pathologies associated to changes in the content of fluids in brain tissue such as edema and hematomas.

  17. Establishment of a Cutting Fluid Control System. Phase II.

    DTIC Science & Technology

    1982-05-01

    grouped into three categories using manufacturer supplied data: heavy duty, medium duty and light duty. Also, each category was 2 subdivided into...Material Force data was collected during metal removal tests using a Honeywell 1858 Visicorder which utilizes light sensitive paper and fiber optics...ADSOL I 35 EU lIE I . . i a. light duty. Also, this table further divides the fluids into the specific types of cutting fluids: emulsions, semi

  18. Investigating the Fate of Hydraulic Fracturing Fluid in Shale Gas Formations Through Two-Phase Numerical Modelling of Fluid Injection

    NASA Astrophysics Data System (ADS)

    Edwards, R.; Doster, F.; Celia, M. A.; Bandilla, K.

    2015-12-01

    The process of hydraulic fracturing in shale gas formations typically involves the injection of large quantities of water-based fluid (2×107L typical) into the shale formations in order to fracture the rock. A large proportion of the fracturing fluids injected into shale gas wells during hydraulic fracturing does not return out of the well once production begins. The percentage of water returning varies within and between different shale plays, but is generally around 30%. The large proportion of the fluid that does not return raises the possibility that it could migrate out of the target shale formation and potentially toward aquifers and the surface through pathways such as the created hydraulic fractures, faults and adjacent wells. A leading hypothesis for the fate of the remaining fracturing fluid is that it is spontaneously imbibed from the hydraulic fractures into the shale rock matrix due to the low water saturation and very high capillary pressure in the shale. The imbibition hypothesis is assessed using numerical modeling of the two-phase flow of fracturing fluid and gas in the shale during injection. The model incorporates relevant two-phase physical phenomena such as capillarity and relative permeability, including hysteretic behavior in both. Modeling scenarios for fracturing fluid injection were assessed under varying conditions for shale reservoir parameters and spatial heterogeneities in permeability and wettability. The results showed that the unaccounted fracturing fluid may plausibly be imbibed into the shale matrix under certain conditions, and that significant small-scale spatial heterogeneity in the shale permeability likely plays an important role in imbibing the fracturing fluid.

  19. Interstitial Pressure in Pancreatic Ductal Adenocarcinoma Is Dominated by a Gel-Fluid Phase.

    PubMed

    DuFort, Christopher C; DelGiorno, Kathleen E; Carlson, Markus A; Osgood, Ryan J; Zhao, Chunmei; Huang, Zhongdong; Thompson, Curtis B; Connor, Robert J; Thanos, Christopher D; Scott Brockenbrough, J; Provenzano, Paolo P; Frost, Gregory I; Michael Shepard, H; Hingorani, Sunil R

    2016-05-10

    Elevated interstitial fluid pressure can present a substantial barrier to drug delivery in solid tumors. This is particularly true of pancreatic ductal adenocarcinoma, a highly lethal disease characterized by a robust fibroinflammatory response, widespread vascular collapse, and hypoperfusion that together serve as primary mechanisms of treatment resistance. Free-fluid pressures, however, are relatively low in pancreatic ductal adenocarcinoma and cannot account for the vascular collapse. Indeed, we have shown that the overexpression and deposition in the interstitium of high-molecular-weight hyaluronan (HA) is principally responsible for generating pressures that can reach 100 mmHg through the creation of a large gel-fluid phase. By interrogating a variety of tissues, tumor types, and experimental model systems, we show that an HA-dependent fluid phase contributes substantially to pressures in many solid tumors and has been largely unappreciated heretofore. We investigated the relative contributions of both freely mobile fluid and gel fluid to interstitial fluid pressure by performing simultaneous, real-time fluid-pressure measurements with both the classical wick-in-needle method (to estimate free-fluid pressure) and a piezoelectric pressure catheter transducer (which is capable of capturing pressures associated with either phase). We demonstrate further that systemic treatment with pegylated recombinant hyaluronidase (PEGPH20) depletes interstitial HA and eliminates the gel-fluid phase. This significantly reduces interstitial pressures and leaves primarily free fluid behind, relieving the barrier to drug delivery. These findings argue that quantifying the contributions of free- and gel-fluid phases to hydraulically transmitted pressures in a given cancer will be essential to designing the most appropriate and effective strategies to overcome this important and frequently underestimated resistance mechanism. Copyright © 2016 Biophysical Society. Published by

  20. Hydrate formation and growth in pores

    NASA Astrophysics Data System (ADS)

    Jung, Jong-Won; Santamarina, J. Carlos

    2012-04-01

    Gas hydrates consist of guest gas molecules encaged in water cages. Methane hydrate forms in marine and permafrost sediments. In this study, we use optical, mechanical and electrical measurements to monitor hydrate formation and growth in small pores to better understand the hydrate pore habit in hydrate-bearing sediments. Hydrate formation in capillary tubes exposes the complex and dynamic interactions between nucleation, gas diffusion and gas solubility. The observation of hydrate growth in a droplet between transparent plates shows that the hydrate shell does not grow homogeneously but advances in the form of lobes that invade the water phase; in fact, the hydrate shell must be discontinuous and possibly cracked to justify the relatively fast growth rates observed in these experiments. Volume expansion during hydrate formation causes water to flow out of menisci; expelled water either spreads on the surface of water-wet substrates and forms a thin hydrate sheet, or remains next to menisci when substrates are oil-wet. Hydrate formation is accompanied by ion exclusion, yet, there is an overall increase in electrical resistance during hydrate formation. Hydrate growth may become salt-limited in trapped water conditions; in this case, aqueous brine and gas CH4 may be separated by hydrate and the three-phase system remains stable within the pore space of sediments.

  1. A New n = 4 Layered Ruddlesden-Popper Phase K(2.5)Bi(2.5)Ti4O13 Showing Stoichiometric Hydration.

    PubMed

    Liu, Samuel; Avdeev, Maxim; Liu, Yun; Johnson, Mark R; Ling, Chris D

    2016-02-15

    A new bismuth-containing layered perovskite of the Ruddlesden-Popper type, K(2.5)Bi(2.5)Ti4O13, has been prepared by solid-state synthesis. It has been shown to hydrate to form stoichiometric K(2.5)Bi(2.5)Ti4O13·H2O. Diffraction data show that the structure consists of a quadruple-stacked (n = 4) perovskite layer, with potassium ions occupying the rock salt layer and its next-nearest A site. The hydrated sample was shown to remove the offset between stacked perovskite layers relative to the dehydrated sample. Computational methods show that the hydrated phase consists of intact H2O molecules in a vertical "pillared" arrangement bridging across the interlayer space. Rotations of H2O molecules about the c axis were evident in molecular dynamic calculations, which increased in rotation angle with increasing temperature. In situ diffraction data for the dehydrated phase point to a broad structural phase transition from orthorhombic to tetragonal at ∼600 °C. The relative bismuth-rich composition in the perovskite block results in a higher transition temperature compared to related perovskite structures. Water makes a significant contribution to the dielectric constant, which disappears after dehydration.

  2. Drilling Gas Hydrates on hydrate Ridge, Oregon continental margin

    NASA Astrophysics Data System (ADS)

    Trehu, A. M.; Bohrmann, G.; Leg 204 Science Party

    2002-12-01

    During Leg 204, we cored and logged 9 sites on the Oregon continental margin to determine the distribution and concentration of gas hydrates in an accretionary ridge and adjacent slope basin, investigate the mechanisms that transport methane and other gases into the gas hydrate stability zone (GHSZ), and obtain constraints on physical properties of hydrates in situ. A 3D seismic survey conducted in 2000 provided images of potential subsurface fluid conduits and indicated the position of the GHSZ throughout the survey region. After coring the first site, we acquired Logging-While-Drilling (LWD) data at all but one site to provide an overview of downhole physical properties. The LWD data confirmed the general position of key seismic stratigraphic horizons and yielded an initial estimate of hydrate concentration through the proxy of in situ electrical resistivity. These records proved to be of great value in planning subsequent coring. The second new hydrate proxy to be tested was infrared thermal imaging of cores on the catwalk as rapidly as possible after retrieval. The thermal images were used to identify hydrate samples and to estimate the distribution and texture of hydrate within the cores. Geochemical analyses of interstitial waters and of headspace and void gases provide additional information on the distribution and concentration of hydrate within the stability zone, the origin and pathway of fluids into and through the GHSZ, and the rates at which gas hydrate is forming. Bio- and lithostratigraphic description of cores, measurement of physical properties, and in situ pressure core sampling and thermal measurements complement the data set, providing ground-truth tests of inferred physical and sedimentological properties. Among the most interesting preliminary results are: 1) that gas hydrates are distributed through a broad depth range within the GHSZ and that different physical and chemical proxies for hydrate distribution and concentration give generally

  3. Parametric study of the physical properties of hydrate-bearing sand, silt, and clay sediments: 1. Electromagnetic properties

    USGS Publications Warehouse

    Lee, J.Y.; Santamarina, J.C.; Ruppel, C.

    2010-01-01

    The marked decrease in bulk electrical conductivity of sediments in the presence of gas hydrates has been used to interpret borehole electrical resistivity logs and, to a lesser extent, the results of controlled source electromagnetic surveys to constrain the spatial distribution and predicted concentration of gas hydrate in natural settings. Until now, an exhaustive laboratory data set that could be used to assess the impact of gas hydrate on the electromagnetic properties of different soils (sand, silt, and clay) at different effective stress and with different saturations of hydrate has been lacking. The laboratory results reported here are obtained using a standard geotechnical cell and the hydrate-formed tetrahydrofuran (THF), a liquid that is fully miscible in water and able to produce closely controlled saturations of hydrate from dissolved phase. Both permittivity and electrical conductivity are good indicators of the volume fraction of free water in the sediment, which is in turn dependent on hydrate saturation. Permittivity in the microwave frequency range is particularly predictive of free water content since it is barely affected by ionic concentration, pore structure, and surface conduction. Electrical conductivity (or resistivity) is less reliable for constraining water content or hydrate saturation: In addition to fluid-filled porosity, other factors, such as the ionic concentration of the pore fluid and possibly other conduction effects (e.g., surface conduction in high specific surface soils having low conductivity pore fluid), also influence electrical conductivity.

  4. Constraining the origin of the Messinian gypsum deposits using coupled measurement of δ^{18}O$/δD in gypsum hydration water and salinity of fluid inclusions

    NASA Astrophysics Data System (ADS)

    Evans, Nicholas P.; Gázquez, Fernando; McKenzie, Judith A.; Chapman, Hazel J.; Hodell, David A.

    2016-04-01

    We used oxygen and hydrogen isotopes of gypsum hydration water (GHW) coupled with salinity deduced from ice melting temperatures of primary fluid inclusions in the same samples (in tandem with 87Sr/86Sr, δ34S and other isotopic measurements) to determine the composition of the mother fluids that formed the gypsum deposits of the Messinian Salinity Crisis from shallow and intermediate-depth basins. Using this method, we constrain the origin of the Messinian Primary Lower Gypsum (PLG) of the Sorbas basin (Betic foreland) and both the Upper Gypsum (UG) and the Lower Gypsum of the Sicilian basin. We then compare these results to measurements made on UG recovered from the deep Ionian and Balearic basins drilled during DSDP Leg 42A. The evolution of GHW δ18O/δD vs. salinity is controlled by mixing processes between fresh and seawater, coupled with the degree of evaporation. Evaporation and subsequent precipitation of gypsum from fluids dominated by freshwater will result in a depressed 87Sr/86Sr values and different trajectory in δ18O/δD vs. salinity space compared to fluids dominated by seawater. The slopes of these regression equations help to define the end-members from which the fluid originated. For example, salinity estimates from PLG cycle 6 in the Sorbas basin range from 18 to 51ppt, and after correction for fractionation factors, estimated δ18O and δD values of the mother water are low (-2.6 < δ18O < 2.7‰ ; -16.2 < δD < 15.8‰). The intercepts of the regression equations (i.e. at zero salinity) are within error of the average isotope composition of the modern precipitation and groundwater in this region of SE Spain. This indicates there was a significant contribution of meteoric water during gypsum deposition, while 87Sr/86Sr (0.708942 < 87Sr/86Sr < 0.708971) indicate the ions originated from the dissolution of previously marine evaporites. Gypsum from cycle 2 displays similar mother water values (-2.4 < δ18O < 2.4‰ ; -13.2 < δD < 17.0‰) to

  5. Direct determination of hydration in the interdigitated and ripple phases of dihexadecylphosphatidylcholine: hydration of a hydrophobic cavity at the membrane/water interface.

    PubMed Central

    Channareddy, S; Janes, N

    1999-01-01

    Hydrophobic cavities at the membrane/water interface are stably expressed in interdigitated membranes. The nonsolvent water associated with 1,2-di-O-hexadecyl-sn-glycero-3-phosphocholine (Hxdc(2)GroPCho) in the interdigitated (L(beta)I) and ripple (P(beta')) states and with its ester analogue 1, 2-dipalmitoyl-sn-glycero-3-phosphocholine (Pam(2)PtdCho) in the gel (L(beta')) and P(beta') states are determined directly. In the L(beta)I state at lower temperatures (4-20 degrees C), 16-18 water molecules per phospholipid are bound, consistent with water-filled cavities and hydrated headgroups. At 28 degrees C, the nonsolvent water decreases to 12, consistent with a reduction of the cavity depth by 0.34 nm due to increased chain interpenetration. This geometric lability may be a common feature of hydrophobic cavities. Only 5.4 waters are bound in the noninterdigitated P(beta') (40 degrees C), whereas the ester bound 8.1 waters in its P(beta') (37 degrees C), a difference of about one water per ester carbonyl. The relative dehydration of the ether linkage is consistent with it promoting more densely packed structures, which in turn, accounts for its ability to interdigitate. PMID:10512824

  6. Direct determination of hydration in the interdigitated and ripple phases of dihexadecylphosphatidylcholine: hydration of a hydrophobic cavity at the membrane/water interface.

    PubMed

    Channareddy, S; Janes, N

    1999-10-01

    Hydrophobic cavities at the membrane/water interface are stably expressed in interdigitated membranes. The nonsolvent water associated with 1,2-di-O-hexadecyl-sn-glycero-3-phosphocholine (Hxdc(2)GroPCho) in the interdigitated (L(beta)I) and ripple (P(beta')) states and with its ester analogue 1, 2-dipalmitoyl-sn-glycero-3-phosphocholine (Pam(2)PtdCho) in the gel (L(beta')) and P(beta') states are determined directly. In the L(beta)I state at lower temperatures (4-20 degrees C), 16-18 water molecules per phospholipid are bound, consistent with water-filled cavities and hydrated headgroups. At 28 degrees C, the nonsolvent water decreases to 12, consistent with a reduction of the cavity depth by 0.34 nm due to increased chain interpenetration. This geometric lability may be a common feature of hydrophobic cavities. Only 5.4 waters are bound in the noninterdigitated P(beta') (40 degrees C), whereas the ester bound 8.1 waters in its P(beta') (37 degrees C), a difference of about one water per ester carbonyl. The relative dehydration of the ether linkage is consistent with it promoting more densely packed structures, which in turn, accounts for its ability to interdigitate.

  7. Solving the problem of two viscous incompressible fluid media in the case of constant phase saturations

    NASA Astrophysics Data System (ADS)

    Baishemirov, Zharasbek; Tang, Jian-Gang; Imomnazarov, Kholmatzhon; Mamatqulov, Musajon

    2016-12-01

    The solution to equations of two viscous homogeneous incompressible fluid media with the pressure phase equilibrium in the case of a constant phase is obtained. The influence of the physical phase densities, saturation, volume and viscosity of substances constituting a two-phase continuum in the flow velocity and pressure is shown. Also, the solution admitting a limiting transition to the known solution of the problem of a flow of a viscous incompressible single-phase medium is constructed.

  8. Fluid pathways in subduction zones

    NASA Astrophysics Data System (ADS)

    Spiegelman, M. W.; van Keken, P. E.; Hacker, B. R.

    2009-12-01

    A large amount of water captured in the oceanic crust and mantle is recycled in subduction zones. Upon compaction and heating most fluids are expelled, but a significant amount of water can be carried in hydrated mineral phases and point defects. While the qualitative role of volatiles and dehydration reactions is well appreciated in the mechanisms for intermediate depth seismicity, mantle wedge melting and arc volcanism, the quantitative details of the metamorphic reactions and the pathways of fluids and melts in the slab are poorly understood. We provide finite element models, combined with thermodynamic and mineralogical constraints, to estimate the water release and migration from the subducting slab to overlying arc. We use models from a selection of warm (e.g., Cascadia), cold (Central Honshu) and intermediate (Nicaragua) subduction zones, using slab geometries constrained from seismological observations. The fluid release is predicted from the breakdown of hydrated phases in sediments, oceanic crust and slab mantle. We use newly developed high resolution models for the flow of these released fluids that take into account permeability and compaction pressures. While the detailed structure depends on the chosen rheology and permeability, we find that for reasonable assumptions of permeability, a significant amount of fluids can travel through the wedge along nearly vertical pathways at rates and paths, consistent with geochronological and geochemical constraints. For models considered to date, we find that the principal source of fluids that feed the wedge come from the hydrated oceanic crust and particularly the hydrated slab mantle. Fluids released from the sediments and shallow crust, tend to travel along high permeability zones in the subducting slab before being released to hydrate the cold corner of subduction zones, suggesting that the cold and hydrated forearc region that is imaged in many subduction zones is maintained by an active hydrological cycle

  9. Self-Gravitating Relativistic Fluids: The Formation of a Free Phase Boundary in the Phase Transition from Hard to Soft

    NASA Astrophysics Data System (ADS)

    Christodoulou, Demetrios; Lisibach, André

    2016-11-01

    In the 1990s Christodoulou introduced an idealized fluid model intended to capture some of the features of the gravitational collapse of a massive star to form a neutron star or a black hole. This was the two-phase model introduced in `Self-gravitating relativistic fluids: a two phase model' (Demeterios, Arch Ration Mech Anal 130:343-400, 1995). The present work deals with the formation of a free phase boundary in the phase transition from hard to soft in this model. In this case the phase boundary has corners at the null points; the points which separate the timelike and spacelike components of the interface between the two phases. We prove the existence and uniqueness of a free phase boundary. Also the local form of the shock near the null point is established.

  10. Phase equilibria, fluid structure, and diffusivity of a discotic liquid crystal.

    PubMed

    Cienega-Cacerez, Octavio; Moreno-Razo, José Antonio; Díaz-Herrera, Enrique; Sambriski, Edward John

    2014-05-14

    Molecular Dynamics simulations were performed for the Gay-Berne discotic fluid parameterized by GB(0.345, 0.2, 1.0, 2.0). The volumetric phase diagram exhibits isotropic (IL), nematic (ND), and two columnar phases characterized by radial distribution functions: the transversal fluid structure varies between a hexagonal columnar (CD) phase (at higher temperatures and pressures) and a rectangular columnar (CO) phase (at lower temperatures and pressures). The slab-wise analysis of fluid dynamics suggests the formation of grain-boundary defects in the CO phase. Longitudinal fluid structure is highly periodic with narrow peaks for the CO phase, suggestive of a near-crystalline (yet diffusive) system, but is only short-ranged for the CD phase. The IL phase does not exhibit anisotropic diffusion. Transversal diffusion is more favorable in the ND phase at all times, but only favorable at short times for the columnar phases. In the columnar phases, a crossover occurs where longitudinal diffusion is favored over transversal diffusion at intermediate-to-long timescales. The anomalous diffusivity is pronounced in both columnar phases, with three identifiable contributions: (a) the rattling of discogens within a transient "interdigitation" cage, (b) the hopping of discogens across columns, and (c) the drifting motion of discogens along the orientation of the director.

  11. Effects of Porosity and Mixed Convection on MHD Two Phase Fluid Flow in an Inclined Channel

    PubMed Central

    Hasnain, Jafar; Abbas, Zaheer; Sajid, Muhammad

    2015-01-01

    The present study deals with the flow and heat transfer analysis of two immiscible fluids in an inclined channel embedded in a porous medium. The channel is divided in two phases such that a third grade fluid occupies the phase I and a viscous fluid occupies the phase II. Both viscous and third grade fluids are electrically conducting. A constant magnetic field is imposed perpendicular to the channel walls. The mathematical model is developed by using Darcy's and modified Darcy's laws for viscous and third grade fluids respectively. The transformed ordinary differential equations are solved numerically using a shooting method. The obtained results are presented graphically and influence of emerging parameters is discussed in detail. PMID:25803360

  12. Effects of porosity and mixed convection on MHD two phase fluid flow in an inclined channel.

    PubMed

    Hasnain, Jafar; Abbas, Zaheer; Sajid, Muhammad

    2015-01-01

    The present study deals with the flow and heat transfer analysis of two immiscible fluids in an inclined channel embedded in a porous medium. The channel is divided in two phases such that a third grade fluid occupies the phase I and a viscous fluid occupies the phase II. Both viscous and third grade fluids are electrically conducting. A constant magnetic field is imposed perpendicular to the channel walls. The mathematical model is developed by using Darcy's and modified Darcy's laws for viscous and third grade fluids respectively. The transformed ordinary differential equations are solved numerically using a shooting method. The obtained results are presented graphically and influence of emerging parameters is discussed in detail.

  13. Electrohydrodynamic method of determining the particle size of the dispersed phase in a magnetic fluid

    SciTech Connect

    Kubasov, A.A.; Shikhmurzaev, Yu.D.

    1988-03-01

    A mathematical model of the process of passing an alternating electric current through a magnetic fluid is proposed. An expression was obtained for the impedance of the part of the circuit containing the cell with the magnetic fluid in the case of high frequencies. It is shown that in the case of low volume concentration of the dispersed phase the conductivity of the magnetic fluid depends on the volume concentration of the dispersed phase and the dimensionless frequency of variation of the potential difference applied to the cell containing the magnetic fluid. A new method of determining the particle size of the dispersed phase in a magnetic fluid, based on electrodynamic behavior, is proposed.

  14. Stochastic effects on single phase fluid flow in porous media.

    PubMed

    Mansfield, P; Bencsik, M

    2001-01-01

    The flow encoded PEPI technique has been used to measure the fluid velocity distribution and fluid flow of water passing through a phantom comprising randomly distributed 10 mm glass beads. The object of these experiments is to determine the degree of causality between one steady-state flow condition and another. That is to say, knowing the mean fluid velocity and velocity distribution, can one predict what happens at a higher mean fluid velocity? In a second related experiment flow is established at a given mean fluid velocity. The velocity distribution is measured. The flow is then turned off and later re-established. In both kinds of experiment we conclude that the errors in predicting the flow velocity distribution and the errors in re-establishing a given velocity distribution lie well outside the intrinsic thermal noise associated with velocity measurement. It follows, therefore, that the causal approach to prediction of flow velocity distributions in porous media using the Navier-Stokes approach is invalid.

  15. Influence of phase connectivity on the relationship among capillary pressure, fluid saturation, and interfacial area in two-fluid-phase porous medium systems

    NASA Astrophysics Data System (ADS)

    McClure, James E.; Berrill, Mark A.; Gray, William G.; Miller, Cass T.

    2016-09-01

    Multiphase flows in porous medium systems are typically modeled at the macroscale by applying the principles of continuum mechanics to develop models that describe the behavior of averaged quantities, such as fluid pressure and saturation. These models require closure relations to produce solvable forms. One of these required closure relations is an expression relating the capillary pressure to fluid saturation and, in some cases, other topological invariants such as interfacial area and the Euler characteristic (or average Gaussian curvature). The forms that are used in traditional models, which typically consider only the relationship between capillary pressure and saturation, are hysteretic. An unresolved question is whether the inclusion of additional morphological and topological measures can lead to a nonhysteretic closure relation. Relying on the lattice Boltzmann (LB) method, we develop an approach to investigate equilibrium states for a two-fluid-phase porous medium system, which includes disconnected nonwetting phase features. A set of simulations are performed within a random close pack of 1964 spheres to produce a total of 42 908 distinct equilibrium configurations. This information is evaluated using generalized additive models to quantitatively assess the degree to which functional relationships can explain the behavior of the equilibrium data. The variance of various model estimates is computed, and we conclude that, except for the limiting behavior close to a single fluid regime, capillary pressure can be expressed as a deterministic and nonhysteretic function of fluid saturation, interfacial area between the fluid phases, and the Euler characteristic. To our knowledge, this work is unique in the methods employed, the size of the data set, the resolution in space and time, the true equilibrium nature of the data, the parametrizations investigated, and the broad set of functions examined. The conclusion of essentially nonhysteretic behavior provides

  16. Influence of phase connectivity on the relationship among capillary pressure, fluid saturation, and interfacial area in two-fluid-phase porous medium systems.

    PubMed

    McClure, James E; Berrill, Mark A; Gray, William G; Miller, Cass T

    2016-09-01

    Multiphase flows in porous medium systems are typically modeled at the macroscale by applying the principles of continuum mechanics to develop models that describe the behavior of averaged quantities, such as fluid pressure and saturation. These models require closure relations to produce solvable forms. One of these required closure relations is an expression relating the capillary pressure to fluid saturation and, in some cases, other topological invariants such as interfacial area and the Euler characteristic (or average Gaussian curvature). The forms that are used in traditional models, which typically consider only the relationship between capillary pressure and saturation, are hysteretic. An unresolved question is whether the inclusion of additional morphological and topological measures can lead to a nonhysteretic closure relation. Relying on the lattice Boltzmann (LB) method, we develop an approach to investigate equilibrium states for a two-fluid-phase porous medium system, which includes disconnected nonwetting phase features. A set of simulations are performed within a random close pack of 1964 spheres to produce a total of 42 908 distinct equilibrium configurations. This information is evaluated using generalized additive models to quantitatively assess the degree to which functional relationships can explain the behavior of the equilibrium data. The variance of various model estimates is computed, and we conclude that, except for the limiting behavior close to a single fluid regime, capillary pressure can be expressed as a deterministic and nonhysteretic function of fluid saturation, interfacial area between the fluid phases, and the Euler characteristic. To our knowledge, this work is unique in the methods employed, the size of the data set, the resolution in space and time, the true equilibrium nature of the data, the parametrizations investigated, and the broad set of functions examined. The conclusion of essentially nonhysteretic behavior provides

  17. Analytical study on two-phase MHD flow of electrically conducting magnetic fluid

    SciTech Connect

    Okubo, Masaaki; Ishimoto, Jun; Nishiyama, Hideya; Kamiyama, Shinichi

    1994-01-01

    An energy conversion system using magnetic fluids proposed by Resler and Rosensweig was based on the principle that the magnetization of magnetic fluids changes with temperature. However, significant results have not been obtained up to the present. To overcome this limit and to increase the acceleration of fluid flow the authors have contributed a new energy conversion system using two-phase flow produced by heat addition. This idea came from the two-phase liquid-metal MHD power generation system proposed by Petrick and Branover. If temperature sensitive magnetic fluids are used, such a system can produce a larger force than conventional systems because the properties of apparent magnetization change not only by temperature rise but also by gas inclusion. In the present paper, an analytical study is extended to the case of electrically conducting magnetic fluid as a basic study for demonstrating the possibility of application of electrically conducting magnetic fluid to working fluid in a liquid-metal MHD power generation system. Electrically conducting magnetic fluid is usually prepared by dispersing fine iron particles into a liquid metal such as mercury. To prevent a solidification of particles and keep a homogeneous dispersion, a thin film of tin is attached to the particle`s surface. Thus the electrically conducting liquid behaves as fluid itself having magnetization. The equations governing a one-dimensional boiling two-phase duct flow of such an electrically conducting magnetic fluid in a traverse magnetic field are numerically solved. The analytical results of the two-phase flow characteristics of the magnetic fluid are compared with ones of an electrically conducting nonmagnetic fluid.

  18. Numerical modelling of hydration reactions

    NASA Astrophysics Data System (ADS)

    Vrijmoed, Johannes C.; John, Timm

    2017-04-01

    Mineral reactions are generally accompanied by volume changes. Observations in rocks and thin section indicate that this often occurred by replacement reactions involving a fluid phase. Frequently, the volume of the original rock or mineral seems to be conserved. If the density of the solid reaction products is higher than the reactants, the associated solid volume decrease generates space for a fluid phase. In other words, porosity is created. The opposite is true for an increase in solid volume during reaction, which leads to a porosity reduction. This slows down and may even stop the reaction if it needs fluid as a reactant. Understanding the progress of reactions and their rates is important because reaction generally changes geophysical and rock mechanical properties which will therefore affect geodynamical processes and seismic properties. We studied the case of hydration of eclogite to blueschist in a subduction zone setting. Eclogitized pillow basalt structures from the Tian-Shan orogeny are transformed to blueschist on the rims of the pillow (van der Straaten et al., 2008). Fluid pathways existed between the pillow structures. The preferred hypothesis of blueschist formation is to supply the fluid for hydration from the pillow margins progressing inward. Using numerical modelling we simulate this coupled reaction-diffusion process. Porosity and fluid pressure evolution are coupled to local thermodynamic equilibrium and density changes. The first rim of blueschist that forms around the eclogite pillow increases volume to such a degree that the system is clogged and the reaction stops. Nevertheless, the field evidence suggests the blueschist formation continued. To prevent the system from clogging, a high incoming pore fluid pressure on the pillow boundaries is needed along with removal of mass from the system to accommodate the volume changes. The only other possibility is to form blueschist from any remaining fluid stored in the core of the pillow

  19. Three-phase fluid flow in porous media

    SciTech Connect

    Donaldson, E.C.; Kayser, M.B.

    1981-04-01

    In the regions of two-phase flow, with a third phase stationary, the third phase plays an important role in the resulting relative permeability relationships. Wettability has an extremely significant effect on the permeability and flow behavior of the system. This report presents a review of the literature on three-phase relative permeability, a suggested unsteady-state method for finite-difference calculation procedure.

  20. Combustion of Methane Hydrate

    NASA Astrophysics Data System (ADS)

    Roshandell, Melika

    from the experimental component of the research was that hydrates can burn completely, and that they burn most rapidly just after ignition and then burn steadily when some of the water in the dissociated zone is allowed to drain away. Excessive surfactant in the water creates a foam layer around the hydrate that acts as an insulator. The layer prevents sufficient heat flux from reaching the hydrate surface below the foam to release additional methane and the hydrate flame extinguishes. No self-healing or ice-freezing processes were observed in any of the combustion experiments. There is some variability, but a typical hydrate flame is receiving between one and two moles of water vapor from the liquid dissociated zone of the hydrate for each mole of methane it receives from the dissociating solid region. This limits the flame temperature to approximately 1800 K. In the theoretical portion of the study, a physical model using an energy balance from methane combustion was developed to understand the energy transfer between the three phases of gas, liquid and solid during the hydrate burn. Also this study provides an understanding of the different factors impacting the hydrate's continuous burn, such as the amount of water vapor in the flame. The theoretical study revealed how the water layer thickness on the hydrate surface, and its effect on the temperature gradient through the dissociated zone, plays a significant role in the hydrate dissociation rate and methane release rate. Motivated by the above mentioned observation from the theoretical analysis, a 1-D two-phase numerical simulation based on a moving front model for hydrate dissociation from a thermal source was developed. This model was focused on the dynamic growth of the dissociated zone and its effect on the dissociation rate. The model indicated that the rate of hydrate dissociation with a thermal source is a function of the dissociated zone thickness. It shows that in order for a continuous dissociation and

  1. Are Habitual Hydration Strategies of Female Rugby League Players Sufficient to Maintain Fluid Balance and Blood Sodium Concentration During Training and Match-Play? A Research Note From the Field.

    PubMed

    Jones, Ben; Till, Kevin; King, Roderick; Gray, Michael; OʼHara, John

    2016-03-01

    Limited data exist on the hydration status of female athletes, with no data available on female rugby players. The objective of this study was to investigate the habitual hydration status on arrival, sweat loss, fluid intake, sweat Na loss, and blood [Na+] during field training and match-play in 10 international female rugby league players. Urine osmolality on arrival to match-play (382 ± 302 mOsmol·kg(-1)) and training (667 ± 260 mOsmol·kg(-1)) was indicative of euhydration. Players experienced a body mass loss of 0.50 ± 0.45 and 0.56 ± 0.53% during match-play and training, respectively. During match-play, players consumed 1.21 ± 0.43 kg of fluid and had a sweat loss of 1.54 ± 0.48 kg. During training, players consumed 1.07 ± 0.90 kg of fluid, in comparison with 1.25 ± 0.83 kg of sweat loss. Blood [Na+] was well regulated (Δ-0.7 ± 3.4 and Δ-0.4 ± 2.6 mmol·L(-1)), despite sweat [Na+] of 47.8 ± 5.7 and 47.2 ± 6.3 mmol·L(-1) during match-play and training. The findings of this study show mean blood [Na+] that seems to be well regulated despite losses of Na in sweat and electrolyte-free fluid consumption. For the duration of the study, players did not experience a body mass loss (dehydration >2%) indicative of a reduction in exercise performance, thus habitual hydration strategies seem adequate. Practitioners should evaluate the habitual hydration status of athletes to determine whether interventions above habitual strategies are warranted.

  2. Safety evaluation of laninamivir octanoate hydrate through analysis of adverse events reported during early post-marketing phase vigilance.

    PubMed

    Nakano, Takashi; Okumura, Akihisa; Tanabe, Takuya; Niwa, Shimpei; Fukushima, Masato; Yonemochi, Rie; Eda, Hisano; Tsutsumi, Hiroyuki

    2013-06-01

    Abnormal behavior and delirium are common in children with influenza. While abnormal behavior and delirium are considered to be associated with influenza encephalopathy, an increased risk of such neuropsychiatric symptoms in patients receiving neuraminidase inhibitor treatment is suspected. Laninamivir octanoate hydrate, recently approved in Japan, is a long-acting neuraminidase inhibitor. It is important to establish a safety profile for laninamivir early, based on post-marketing experiences. Spontaneous safety reports collected in the early post-marketing phase vigilance were analyzed. Adverse events of interest such as abnormal behavior/delirium, dizziness/vertigo, respiratory disorders, shock/syncope, and any other serious events were intensively reviewed by the Safety Evaluation Committee. Abnormal behavior/delirium was a frequently reported event. Almost all the reported cases were considered to be due to influenza and not laninamivir. There were 32 cases of abnormal behavior/delirium that could lead to dangerous accidents, and these were observed more frequently in males and teenagers. Syncope probably related to the act of inhalation per se of laninamivir was reported during this survey. This safety review revealed that the safety profile of laninamivir for abnormal behavior/delirium and syncope was similar to that of other neuraminidase inhibitors. As stated in the labeling, teenage patients inhaling laninamivir should remain under constant parental supervision for at least 2 days and should be closely monitored for behavioral changes to prevent serious accidents associated with abnormal behavior/delirium. Furthermore, to avoid syncope because of inhalation, patients should be instructed to inhale in a relaxed sitting position.

  3. Elevated gas hydrate saturation within silt and silty clay sediments in the Shenhu area, South China Sea

    USGS Publications Warehouse

    Wang, Xiujuan; Hutchinson, Deborah R.; Wu, Shiguo; Yang, Shengxiong; Guo, Yiqun

    2011-01-01

    Gas hydrate saturations were estimated using five different methods in silt and silty clay foraminiferous sediments from drill hole SH2 in the South China Sea. Gas hydrate saturations derived from observed pore water chloride values in core samples range from 10 to 45% of the pore space at 190–221 m below seafloor (mbsf). Gas hydrate saturations estimated from resistivity (Rt) using wireline logging results are similar and range from 10 to 40.5% in the pore space. Gas hydrate saturations were also estimated by P wave velocity obtained during wireline logging by using a simplified three-phase equation (STPE) and effective medium theory (EMT) models. Gas hydrate saturations obtained from the STPE velocity model (41.0% maximum) are slightly higher than those calculated with the EMT velocity model (38.5% maximum). Methane analysis from a 69 cm long depressurized core from the hydrate-bearing sediment zone indicates that gas hydrate saturation is about 27.08% of the pore space at 197.5 mbsf. Results from the five methods show similar values and nearly identical trends in gas hydrate saturations above the base of the gas hydrate stability zone at depths of 190 to 221 mbsf. Gas hydrate occurs within units of clayey slit and silt containing abundant calcareous nannofossils and foraminifer, which increase the porosities of the fine-grained sediments and provide space for enhanced gas hydrate formation. In addition, gas chimneys, faults, and fractures identified from three-dimensional (3-D) and high-resolution two-dimensional (2-D) seismic data provide pathways for fluids migrating into the gas hydrate stability zone which transport methane for the formation of gas hydrate. Sedimentation and local canyon migration may contribute to higher gas hydrate saturations near the base of the stability zone.

  4. Elevated gas hydrate saturation within silt and silty clay sediments in the Shenhu area, South China Sea

    USGS Publications Warehouse

    Wang, X.; Hutchinson, D.R.; Wu, S.; Yang, S.; Guo, Y.

    2011-01-01

    Gas hydrate saturations were estimated using five different methods in silt and silty clay foraminiferous sediments from drill hole SH2 in the South China Sea. Gas hydrate saturations derived from observed pore water chloride values in core samples range from 10 to 45% of the pore space at 190-221 m below seafloor (mbsf). Gas hydrate saturations estimated from resistivity (Rt) using wireline logging results are similar and range from 10 to 40.5% in the pore space. Gas hydrate saturations were also estimated by P wave velocity obtained during wireline logging by using a simplified three-phase equation (STPE) and effective medium theory (EMT) models. Gas hydrate saturations obtained from the STPE velocity model (41.0% maximum) are slightly higher than those calculated with the EMT velocity model (38.5% maximum). Methane analysis from a 69 cm long depressurized core from the hydrate-bearing sediment zone indicates that gas hydrate saturation is about 27.08% of the pore space at 197.5 mbsf. Results from the five methods show similar values and nearly identical trends in gas hydrate saturations above the base of the gas hydrate stability zone at depths of 190 to 221 mbsf. Gas hydrate occurs within units of clayey slit and silt containing abundant calcareous nannofossils and foraminifer, which increase the porosities of the fine-grained sediments and provide space for enhanced gas hydrate formation. In addition, gas chimneys, faults, and fractures identified from three-dimensional (3-D) and high-resolution two-dimensional (2-D) seismic data provide pathways for fluids migrating into the gas hydrate stability zone which transport methane for the formation of gas hydrate. Sedimentation and local canyon migration may contribute to higher gas hydrate saturations near the base of the stability zone. Copyright 2011 by the American Geophysical Union.

  5. Two-phase dusty fluid flow along a cone with variable properties

    NASA Astrophysics Data System (ADS)

    Siddiqa, Sadia; Begum, Naheed; Hossain, Md. Anwar; Mustafa, Naeem; Gorla, Rama Subba Reddy

    2017-05-01

    In this paper numerical solutions of a two-phase natural convection dusty fluid flow are presented. The two-phase particulate suspension is investigated along a vertical cone by keeping variable viscosity and thermal conductivity of the carrier phase. Comprehensive flow formations of the gas and particle phases are given with the aim to predict the behavior of heat transport across the heated cone. The influence of (1) air with particles, (2) water with particles and (3) oil with particles are shown on shear stress coefficient and heat transfer coefficient. It is recorded that sufficient increment in heat transport rate can be achieved by loading the dust particles in the air. Further, distribution of velocity and temperature of both the carrier phase and the particle phase are shown graphically for the pure fluid (air, water) as well as for the fluid with particles (air-metal and water-metal particle mixture).

  6. Frequency scaling of seismic attenuation in rocks saturated with two fluid phases

    NASA Astrophysics Data System (ADS)

    Chapman, Samuel; Quintal, Beatriz; Tisato, Nicola; Holliger, Klaus

    2017-01-01

    Seismic wave attenuation is frequency dependent in rocks saturated by two fluid phases and the corresponding scaling behaviour is controlled primarily by the spatial fluid distribution. We experimentally investigate the frequency scaling of seismic attenuation in Berea sandstone saturated with two fluid phases: a liquid phase, water, and a gas phase, air, carbon dioxide or nitrogen. By changing from a heterogeneous distribution of mesoscopic gas patches to a homogeneous distribution of pore scale gas bubbles, we observe a significant steepening of the high-frequency asymptote of the attenuation. A transition from one dominant attenuation mechanism to another, from mesoscopic wave-induced fluid flow to wave-induced gas exsolution dissolution (WIGED), may explain this change in scaling. We observe that the high-frequency asymptote, for a homogenous pore scale gas bubble distribution, scales in accord with WIGED.

  7. Quantitative analysis of ripasudil hydrochloride hydrate and its impurities by reversed-phase high-performance liquid chromatography after precolumn derivatization: Identification of four impurities.

    PubMed

    Hui, Wenkai; Sun, Lili; Zhang, Hui; Zou, Liang; Zou, Qiaogen; Ouyang, Pingkai

    2016-09-01

    We report the development and validation of a stability-indicating reversed-phase high-performance liquid chromatography method with precolumn derivatization for the separation and identification of the impurities of ripasudil hydrochloride hydrate, a novel protein kinase inhibitor. 2,3,4,6-Tetra-O-acetyl-β-d-glucopyranosyl isothiocyanate was chosen as the derivatizing reagent and triethylamine was added as catalyst. 200 μL sample solution (1 mg/mL), 600 μL derivatizing reagent (1 mg/mL), and 200 μL triethylamine solution (1%, v/v) were mixed and reacted at 40°C for 30 min. The separation was achieved on an Inertsil C18 ODS-3 (250 mm × 4.6 mm, 5 μm) column using mobile phases including 10 mmol monopotassium phosphate buffer (pH 3.0) and methanol in gradient mode. The column temperature was adjusted at 25°C and the flow rate at 1 mL/min. The detection was carried out at 220 nm. Different precolumn derivatization conditions as well as the high-performance liquid chromatography conditions were optimized. Ripasudil hydrochloride hydrate and its four impurities were detected and quantitated, among which two new compounds were characterized. The proposed method was validated and proven to be selective, accurate, and precise and suitable for the quantitative analysis of ripasudil hydrochloride hydrate.

  8. Extraordinary phase separation and segregation in vent fluids from the southern East Pacific Rise

    USGS Publications Warehouse

    Von Damm, Karen L.; Lilley, M.D.; Shanks, Wayne C.; Brockington, M.; Bray, A.M.; O'Grady, K. M.; Olson, E.; Graham, A.; Proskurowski, G.

    2003-01-01

    The discovery of Brandon vent on the southern East Pacific Rise is providing new insights into the controls on midocean ridge hydrothermal vent fluid chemistry. The physical conditions at the time ofsampling (287 bar and 405??C) place the Brandon fluids very close to the critical point of seawater (298 bar and 407??C). This permits in situ study of the effects of near criticalphenomena, which are interpreted to be the primary cause of enhanced transition metal transport in these fluids. Of the five orifices on Brandon sampled, three were venting fluids with less than seawater chlorinity, and two were venting fluids with greater than seawater chlorinity. The liquid phase orifices contain 1.6-1.9 times the chloride content of the vapors. Most other elements, excluding the gases, have this same ratio demonstrating the conservative nature of phase separation and the lack of subsequent water-rock interaction. The vapor and liquid phases vent at the same time from orifices within meters of each other on the Brandon structure. Variations in fluid compositions occur on a time scale of minutes. Our interpretation is that phase separation and segregation must be occurring 'real time' within the sulfide structure itself. Fluids from Brandon therefore provide an unique opportunity to understand in situ phase separation without the overprinting of continued water-rock interaction with the oceanic crust, as well as critical phenomena. ?? 2002 Elsevier Science B.V. All rights reserved.

  9. SPAR improved structure-fluid dynamic analysis capability, phase 2

    NASA Technical Reports Server (NTRS)

    Pearson, M. L.

    1984-01-01

    An efficient and general method of analyzing a coupled dynamic system of fluid flow and elastic structures is investigated. The improvement of Structural Performance Analysis and Redesign (SPAR) code is summarized. All error codes are documented and the SPAR processor/subroutine cross reference is included.

  10. Observation of low-temperature object by phase-contrast x-ray imaging: Nondestructive imaging of air clathrate hydrates at 233 K

    SciTech Connect

    Takeya, Satoshi; Honda, Kazumasa; Yoneyama, Akio; Hirai, Yasuharu; Okuyama, Junichi; Hondoh, Takeo; Hyodo, Kazuyuki; Takeda, Tohoru

    2006-05-15

    A cryochamber and a liquid cell that are designed for nondestructive three dimensional observations and arranged in a two-crystal x-ray interferometer expand the use of phase-contrast x-ray imaging that could only be performed at room temperature in previous studies to a new temperature range of 190 K to room temperature. The methyl acetate in the liquid cell prevents undesirable sample outline contrasts and enables internal observations. Both a nondestructive observation and a highly accurate absolute density of the materials under low-temperature conditions can be obtained with a single measurement using this new technique. A three dimensional x-ray computed tomography (x-ray CT) of the air clathrate hydrate in the hexagonal ice drilled from Dome Fuji in Antarctica is shown, and the density of the air hydrate is estimated to be 0.937(3) g/cm{sup 3} at 233 K.

  11. Phase behavior of self-associating fluids with weaker dispersion interactions between bonded particles.

    PubMed

    Talanquer, V

    2005-04-15

    In this study, we explore the global phase behavior of a simple model for self-associating fluids where association reduces the strength of the dispersion interactions between bonded particles. Recent research shows that this type of behavior likely explains the thermodynamic properties of strongly polar fluids and certain micellar solutions. Based on Wertheim's theory of associating liquids [M. S. Wertheim, J. Stat. Phys. 42, 459 (1986); 42, 477 (1986)], our model takes into account the effect that dissimilar particle interactions have on the equilibrium constant for self-association in the system. We find that weaker interactions between bonded molecules tend to favor the dissociation of chains at any temperature and density. This effect stabilizes a monomeric liquid phase at high densities, enriching the global phase behavior of the system. In particular, for systems in which the energy of mixing between bonded and unbonded species is positive, we find a triple point involving a vapor, a dense phase of chain aggregates, and a monomeric liquid. Phase coexistence between the vapor and the monomeric fluid is always more stable at temperatures above the triple point, but a highly associated fluid may exist as a metastable phase under these conditions. The presence of this metastable phase may explain the characteristic nucleation behavior of the liquid phase in strongly dipolar fluids.

  12. Method and turbine for extracting kinetic energy from a stream of two-phase fluid

    NASA Technical Reports Server (NTRS)

    Elliott, D. G. (Inventor)

    1979-01-01

    An axial flow separator turbine is described which includes a number of nozzles for delivering streams of a two-phase fluid along linear paths. A phase separator which responsively separates the vapor and liquid is characterized by concentrically related annuli supported for rotation within the paths. The separator has endless channels for confining the liquid under the influence of centrifugal forces. A vapor turbine fan extracts kinetic energy from the liquid. Angular momentum of both the liquid phase and the vapor phase of the fluid is converted to torque.

  13. Mass-Conserved Phase Field Models for Binary Fluids

    DTIC Science & Technology

    2011-01-01

    substrate [27], a wide variety of diffusive and diffusion -less solid -state phase transitions [10, 39], dislo- cation modeling in microstructure...has been proven effective in the numerical solution of the incompressible field phase model [32, 33]. Scheme based on a pressure-stabilization method...of the transient solution , the next set of figures (Figures 10-13) portrait the solutions up to nearly quasi-static states. The phase behavior

  14. Predictive Mechanical Characterization of Macro-Molecular Material Chemistry Structures of Cement Paste at Nano Scale - Two-phase Macro-Molecular Structures of Calcium Silicate Hydrate, Tri-Calcium Silicate, Di-Calcium Silicate and Calcium Hydroxide

    NASA Astrophysics Data System (ADS)

    Padilla Espinosa, Ingrid Marcela

    Concrete is a hierarchical composite material with a random structure over a wide range of length scales. At submicron length scale the main component of concrete is cement paste, formed by the reaction of Portland cement clinkers and water. Cement paste acts as a binding matrix for the other components and is responsible for the strength of concrete. Cement paste microstructure contains voids, hydrated and unhydrated cement phases. The main crystalline phases of unhydrated cement are tri-calcium silicate (C3S) and di-calcium silicate (C2S), and of hydrated cement are calcium silicate hydrate (CSH) and calcium hydroxide (CH). Although efforts have been made to comprehend the chemical and physical nature of cement paste, studies at molecular level have primarily been focused on individual components. Present research focuses on the development of a method to model, at molecular level, and analysis of the two-phase combination of hydrated and unhydrated phases of cement paste as macromolecular systems. Computational molecular modeling could help in understanding the influence of the phase interactions on the material properties, and mechanical performance of cement paste. Present work also strives to create a framework for molecular level models suitable for potential better comparisons with low length scale experimental methods, in which the sizes of the samples involve the mixture of different hydrated and unhydrated crystalline phases of cement paste. Two approaches based on two-phase cement paste macromolecular structures, one involving admixed molecular phases, and the second involving cluster of two molecular phases are investigated. The mechanical properties of two-phase macromolecular systems of cement paste consisting of key hydrated phase CSH and unhydrated phases C3S or C2S, as well as CSH with the second hydrated phase CH were calculated. It was found that these cement paste two-phase macromolecular systems predicted an isotropic material behavior. Also

  15. Molecular theory for the phase equilibria and cluster distribution of associating fluids with small bond angles.

    PubMed

    Marshall, Bennett D; Chapman, Walter G

    2013-08-07

    We develop a new theory for associating fluids with multiple association sites. The theory accounts for small bond angle effects such as steric hindrance, ring formation, and double bonding. The theory is validated against Monte Carlo simulations for the case of a fluid of patchy colloid particles with three patches and is found to be very accurate. Once validated, the theory is applied to study the phase diagram of a fluid composed of three patch colloids. It is found that bond angle has a significant effect on the phase diagram and the very existence of a liquid-vapor transition.

  16. Numerical Analysis of Velocity Dispersion in Multi-Phase Fluid-Saturated Porous Rocks

    NASA Astrophysics Data System (ADS)

    Chen, Xuehua; Zhong, Wenli; Gao, Gang; Zou, Wen; He, Zhenhua

    2016-12-01

    Seismic waves are subject to velocity dispersion when they propagate in fluid-saturated porous media. In this work, we explore the velocity dispersion behavior of P- and SV-waves in multi-phase fluid-saturated porous reservoirs while taking into account the effects of multi-phase pore fluids on the effective viscosities that control the wave-induced fluid flow. The effective viscosities associated with the hydrocarbon saturation of a synthetic sandstone reservoir saturated with different pore fluid mixtures are calculated using the Refutas model. We then analyze the frequency-dependent velocity, dispersion variation rate and characteristic frequency for different fluid saturation cases by employing Chapman's dynamic equivalent-medium theory. The results demonstrate that the hydrocarbon proportions and types in multi-phase mixed pore fluids significantly affect the magnitude and characteristic frequencies of velocity dispersion features for both the P- and S-waves. The dispersion anomalies of SV-waves are in general larger than those of the P-waves. This indicates that the velocity dispersion anomalies of SV-waves are equally sensitive to fluid saturation as the P-waves and should not be neglected. The velocities at lower frequencies (e.g., 10 and 100 Hz) within the seismic frequency range show a more remarkable decrease with increasing hydrocarbon proportion than those at higher frequency (1000 Hz). The numerical examples help to improve the understanding of the frequency-dependent AVO inversion from seismic reflection data.

  17. Numerical Analysis of Velocity Dispersion in Multi-Phase Fluid-Saturated Porous Rocks

    NASA Astrophysics Data System (ADS)

    Chen, Xuehua; Zhong, Wenli; Gao, Gang; Zou, Wen; He, Zhenhua

    2017-03-01

    Seismic waves are subject to velocity dispersion when they propagate in fluid-saturated porous media. In this work, we explore the velocity dispersion behavior of P- and SV-waves in multi-phase fluid-saturated porous reservoirs while taking into account the effects of multi-phase pore fluids on the effective viscosities that control the wave-induced fluid flow. The effective viscosities associated with the hydrocarbon saturation of a synthetic sandstone reservoir saturated with different pore fluid mixtures are calculated using the Refutas model. We then analyze the frequency-dependent velocity, dispersion variation rate and characteristic frequency for different fluid saturation cases by employing Chapman's dynamic equivalent-medium theory. The results demonstrate that the hydrocarbon proportions and types in multi-phase mixed pore fluids significantly affect the magnitude and characteristic frequencies of velocity dispersion features for both the P- and S-waves. The dispersion anomalies of SV-waves are in general larger than those of the P-waves. This indicates that the velocity dispersion anomalies of SV-waves are equally sensitive to fluid saturation as the P-waves and should not be neglected. The velocities at lower frequencies (e.g., 10 and 100 Hz) within the seismic frequency range show a more remarkable decrease with increasing hydrocarbon proportion than those at higher frequency (1000 Hz). The numerical examples help to improve the understanding of the frequency-dependent AVO inversion from seismic reflection data.

  18. Computational study of trimer self-assembly and fluid phase behavior

    SciTech Connect

    Hatch, Harold W. Shen, Vincent K.; Mittal, Jeetain

    2015-04-28

    The fluid phase diagram of trimer particles composed of one central attractive bead and two repulsive beads was determined as a function of simple geometric parameters using flat-histogram Monte Carlo methods. A variety of self-assembled structures were obtained including spherical micelle-like clusters, elongated clusters, and densely packed cylinders, depending on both the state conditions and shape of the trimer. Advanced simulation techniques were employed to determine transitions between self-assembled structures and macroscopic phases using thermodynamic and structural definitions. Simple changes in particle geometry yield dramatic changes in phase behavior, ranging from macroscopic fluid phase separation to molecular-scale self-assembly. In special cases, both self-assembled, elongated clusters and bulk fluid phase separation occur simultaneously. Our work suggests that tuning particle shape and interactions can yield superstructures with controlled architecture.

  19. GH-3PAD - a new numerical solver for multiphase transport in porous media - new insights on gas hydrate and free gas co-existence

    NASA Astrophysics Data System (ADS)

    Burwicz, E.; Rupke, L.; Wallmann, K.

    2013-12-01

    Gas Hydrate-3 Phase Advanced Dynamics (GH-3PAD) code has been developed to study the geophysical and biochemical processes associated with gas hydrate as well as free methane gas formation and dissolution in marine sediments. Biochemical processes influencing in-situ organic carbon decay and, therefore, gas hydrate formation, such as Anaerobic Oxidation of Methane (AOM), sulfate reduction, and methanogenesis have been considered. The new model assumes a Lagrangian reference frame that is attached to the deposited sedimentary layers, which compact according to their individual lithological properties. Differential motion of the pore fluids and free gas is modeled as Darcy flow. Gas hydrate and free gas formation is either controlled by 1) instant gas hydrate crystallization assuming local thermodynamical equilibrium or by a 2) kinetically controlled rate of gas hydrate growth. The thermal evolution is computed from an energy equation that includes contributions from all phases present in the model (sediment grains, saline pore fluids, gas hydrate, and free gas). A first application of the GH-3PAD model has been the Blake Ridge Site, offshore South Carolina. Here seismic and well data points to the out-of-equilibrium co-existence of gas hydrate and free gas. It has been reported that these two distinct phases appear within sediment column with a gaseous phase tending to migrate upwards throughout the Gas Hydrate Stability Zone (GHSZ) until it reaches the seafloor despite relatively low gas hydrate content (4 - 7 vol. % after Paull et al., 1996). With the GH-3PAD model we quantify the complex transport- reaction processes that control three phase (gas hydrate, free gas, and dissolved CH4) out-of-equilibrium state. References: Paull C. K., Matsumoto R., Wallace P. J., 1996. 9. Site 997, Shipboard Scientific Party. Proceeding of the Ocean Drilling Program, Initial Reports, Vol. 164.

  20. Characterisation of stationary phases in subcritical fluid chromatography with the solvation parameter model. III. Polar stationary phases.

    PubMed

    West, C; Lesellier, E

    2006-03-31

    In this third paper, varied types of polar stationary phases, namely silica gel (SI), cyano (CN)- and amino-propyl (NH2)-bonded silica, propanediol-bonded silica (DIOL), poly(ethylene glycol) (PEG) and poly(vinyl alcohol) (PVA), were investigated in subcritical fluid mobile phase. This study was performed to provide a greater knowledge of the properties of these phases in SFC, and to allow a more rapid and efficient choice of polar stationary phase in regard of the chemical nature of the solutes to be separated. The effect of the nature of the stationary phase on interactions between solute and stationary phases and between solute and carbon dioxide-modifier mobile phases was studied by the use of a linear solvation energy relationship (LSER), the solvation parameter model. The retention behaviour observed with sub/supercritical fluid with carbon dioxide-methanol is close to the one reported in normal-phase liquid chromatography with hexane. The hydrogen bond acidity and basicity, and the polarity/polarizability favour the solute retention when the molar volume of the solute reduces it. As with non-polar phases, the absence of water in the subcritical fluid allows the solute/stationary phase interactions to play a greater part in the retention behaviour. As expected, the DIOL phase and the bare silica display a similar behaviour towards acidic and basic solutes, when interactions with basic compounds are lower with the NH2 phase. On the CN phase, all interactions (hydrogen bonding, dipole-dipole and charge transfer) have a nearly equivalent weight on the retention. The polymeric phases, PEG and PVA, provide the most accurate models, possibly due to their better surface homogeneity.

  1. Establishment of a Cutting Fluid Control System (Phase 1)

    DTIC Science & Technology

    1981-01-01

    cutting fluid at a specific concentration level. 33 TABLE 3 .2-1 RIA Manufacturi Operation SFM N/C Face 422 ing Data Ana lysis Sheet for Turni...resulted in reports of operator problems. The lean concentration is also somewhat inadequate to prevent rusting of machines, fixtures, and occasionally...wheel loading, but prior attempts to use this product at richer concentrations has resulted in reports of operator problems. The lean concentration

  2. Establishment of a Cutting Fluid Control System (Phase III)

    DTIC Science & Technology

    1982-09-01

    usually takes two to five days. If a crystalline or extremely gummy residue is formed, this fluid should be discarded from further testing. After...REFERENCES 1. "Fishtail Defects in Bearing Races - Their Origin and Elimination," C. F. Barth, TRW TM-4713, December 1972. 2. "Elimination of...Fishtail Defects in Bearing Races Through Optimized Grinding Procedures," C. F. Barth, TRW TM-4768, November 1974. 3. "fhe Nature of Surface Finish

  3. Two-phase fluid flow in geometric packing.

    PubMed

    Paiva, Aureliano Sancho S; Oliveira, Rafael S; Andrade, Roberto F S

    2015-12-13

    We investigate how a plug of obstacles inside a two-dimensional channel affects the drainage of high viscous fluid (oil) when the channel is invaded by a less viscous fluid (water). The plug consists of an Apollonian packing with, at most, 17 circles of different sizes, which is intended to model an inhomogeneous porous region. The work aims to quantify the amount of retained oil in the region where the flow is influenced by the packing. The investigation, carried out with the help of the computational fluid dynamics package ANSYS-FLUENT, is based on the integration of the complete set of equations of motion. The study considers the effect of both the injection speed and the number and size of obstacles, which directly affects the porosity of the system. The results indicate a complex dependence in the fraction of retained oil on the velocity and geometric parameters. The regions where the oil remains trapped is very sensitive to the number of circles and their size, which influence in different ways the porosity of the system. Nevertheless, at low values of Reynolds and capillary numbers Re<4 and n(c)≃10(-5), the overall expected result that the volume fraction of oil retained decreases with increasing porosity is recovered. A direct relationship between the injection speed and the fraction of oil is also obtained. © 2015 The Author(s).

  4. Site Selection for DOE/JIP Gas Hydrate Drilling in the Northern Gulf of Mexico

    SciTech Connect

    Hutchinson, D.R.; Shelander, D.; Dai, J.; McConnell, D.; Shedd, W.; Frye, M.; Ruppel, C.; Boswell, R.; Jones, E.; Collett, T.S.; Rose, K.; Dugan, B.; Wood, W.; Latham, T.

    2008-07-01

    In the late spring of 2008, the Chevron-led Gulf of Mexico Gas Hydrate Joint Industry Project (JIP) expects to conduct an exploratory drilling and logging campaign to better understand gas hydrate-bearing sands in the deepwater Gulf of Mexico. The JIP Site Selection team selected three areas to test alternative geological models and geophysical interpretations supporting the existence of potential high gas hydrate saturations in reservoir-quality sands. The three sites are near existing drill holes which provide geological and geophysical constraints in Alaminos Canyon (AC) lease block 818, Green Canyon (GC) 955, and Walker Ridge (WR) 313. At the AC818 site, gas hydrate is interpreted to occur within the Oligocene Frio volcaniclastic sand at the crest of a fold that is shallow enough to be in the hydrate stability zone. Drilling at GC955 will sample a faulted, buried Pleistocene channel-levee system in an area characterized by seafloor fluid expulsion features, structural closure associated with uplifted salt, and abundant seismic evidence for upward migration of fluids and gas into the sand-rich parts of the sedimentary section. Drilling at WR313 targets ponded sheet sands and associated channel/levee deposits within a minibasin, making this a non-structural play. The potential for gas hydrate occurrence at WR313 is supported by shingled phase reversals consistent with the transition from gas-charged sand to overlying gas-hydrate saturated sand. Drilling locations have been selected at each site to 1) test geological methods and models used to infer the occurrence of gas hydrate in sand reservoirs in different settings in the northern Gulf of Mexico; 2) calibrate geophysical models used to detect gas hydrate sands, map reservoir thicknesses, and estimate the degree of gas hydrate saturation; and 3) delineate potential locations for subsequent JIP drilling and coring operations that will collect samples for comprehensive physical property, geochemical and other

  5. Site selection for DOE/JIP gas hydrate drilling in the northern Gulf of Mexico

    USGS Publications Warehouse

    Hutchinson, Deborah; Shelander, Dianna; Dai, J.; McConnell, D.; Shedd, William; Frye, Matthew; Ruppel, Carolyn; Boswell, R.; Jones, Emrys; Collett, Timothy S.; Rose, Kelly K.; Dugan, Brandon; Wood, Warren T.

    2008-01-01

    n the late spring of 2008, the Chevron-led Gulf of Mexico Gas Hydrate Joint Industry Project (JIP) expects to conduct an exploratory drilling and logging campaign to better understand gas hydrate-bearing sands in the deepwater Gulf of Mexico. The JIP Site Selection team selected three areas to test alternative geological models and geophysical interpretations supporting the existence of potential high gas hydrate saturations in reservoir-quality sands. The three sites are near existing drill holes which provide geological and geophysical constraints in Alaminos Canyon (AC) lease block 818, Green Canyon (GC) 955, and Walker Ridge (WR) 313. At the AC818 site, gas hydrate is interpreted to occur within the Oligocene Frio volcaniclastic sand at the crest of a fold that is shallow enough to be in the hydrate stability zone. Drilling at GC955 will sample a faulted, buried Pleistocene channel-levee system in an area characterized by seafloor fluid expulsion features, structural closure associated with uplifted salt, and abundant seismic evidence for upward migration of fluids and gas into the sand-rich parts of the sedimentary section. Drilling at WR313 targets ponded sheet sands and associated channel/levee deposits within a minibasin, making this a non-structural play. The potential for gas hydrate occurrence at WR313 is supported by shingled phase reversals consistent with the transition from gas-charged sand to overlying gas-hydrate saturated sand. Drilling locations have been selected at each site to 1) test geological methods and models used to infer the occurrence of gas hydrate in sand reservoirs in different settings in the northern Gulf of Mexico; 2) calibrate geophysical models used to detect gas hydrate sands, map reservoir thicknesses, and estimate the degree of gas hydrate saturation; and 3) delineate potential locations for subsequent JIP drilling and coring operations that will collect samples for comprehensive physical property, geochemical and other

  6. Axi-symmetric simulation of a two phase vertical thermosyphon using Eulerian two-fluid methodology

    NASA Astrophysics Data System (ADS)

    Kafeel, Khurram; Turan, Ali

    2013-08-01

    Numerical simulation of steady state operation of a vertical two phase closed thermosyphon is performed using the two-fluid methodology within Eulerian multiphase domain. A full scale axi-symmetric model is developed for computational fluid dynamics simulation of thermosyphon using ANSYS/FLUENT 13.0. The effects of evaporation, condensation and interfacial heat and mass transfer are taken into account within the whole domain. Cooling water jacket is also modelled along with the wall of thermosyphon to simulate the effect of conjugate heat transfer between the wall and fluid phase. The results obtained are presented and compared with available experimental investigations for a similar thermosyphon. It is established that two-fluid methodology can be used effectively for the purpose of simulation of two phase system like a typical thermosyphon.

  7. Gas hydrates

    SciTech Connect

    Berecz, E.; Balla-Achs, M.

    1983-01-01

    In the presence of water, particularly at low temperatures, many industrial gas systems under pressure tend to form solid crystalline compounds. These compounds are referred to as gas hydrates, and result from the association of the gas molecules with water. This book draws attention to the theoretical, practical and technological aspects of this interesting and important class of compounds. The topics covered include the structures, properties and thermodynamic characteristics of the gas hydrates, the changes induced in the equilibrium conditions by additives, and the methods and studies relating to the prevention and elimination of hydrate plugs in technological operations with industrial gases. In the discussion of the technological aspects, special emphasis is given to the production and transportation of natural gas and to the application of freon coolants. Such questions as the possibility of the desalination of seawater and the formation of gas hydrates in interplanetary space are also dealt with.

  8. Structure of the calcium pyrophosphate monohydrate phase (Ca2P2O7·H2O): towards understanding the dehydration process in calcium pyrophosphate hydrates.

    PubMed

    Gras, Pierre; Ratel-Ramond, Nicolas; Teychéné, Sébastien; Rey, Christian; Elkaim, Erik; Biscans, Béatrice; Sarda, Stéphanie; Combes, Christèle

    2014-09-01

    Calcium pyrophosphate hydrate (CPP, Ca(2)P(2)O(7) · nH2O) and calcium orthophosphate compounds (including apatite, octacalcium phosphate etc.) are among the most prevalent pathological calcifications in joints. Even though only two dihydrated forms of CPP (CPPD) have been detected in vivo (monoclinic and triclinic CPPD), investigations of other hydrated forms such as tetrahydrated or amorphous CPP are relevant to a further understanding of the physicochemistry of those phases of biological interest. The synthesis of single crystals of calcium pyrophosphate monohydrate (CPPM; Ca(2)P(2)O(7) · H2O) by diffusion in silica gel at ambient temperature and the structural analysis of this phase are reported in this paper. Complementarily, data from synchrotron X-ray diffraction on a CPPM powder sample have been fitted to the crystal parameters. Finally, the relationship between the resolved structure for the CPPM phase and the structure of the tetrahydrated calcium pyrophosphate β phase (CPPT-β) is discussed.

  9. Two-Phase Solid/Fluid Simulation of Dense Granular Flows With Dilatancy Effects

    NASA Astrophysics Data System (ADS)

    Mangeney, A.; Bouchut, F.; Fernández-Nieto, E. D.; Kone, E. H.; Narbona-Reina, G.

    2016-12-01

    Describing grain/fluid interaction in debris flows models is still an open and challenging issue with key impact on hazard assessment [1]. We present here a two-phase two-thin-layer model for fluidized debris flows that takes into account dilatancy effects. It describes the velocity of both the solid and the fluid phases, the compression/ dilatation of the granular media and its interaction with the pore fluid pressure [2]. The model is derived from a 3D two-phase model proposed by Jackson [3] and the mixture equations are closed by a weak compressibility relation. This relation implies that the occurrence of dilation or contraction of the granular material in the model depends on whether the solid volume fraction is respectively higher or lower than a critical value. When dilation occurs, the fluid is sucked into the granular material, the pore pressure decreases and the friction force on the granular phase increases. On the contrary, in the case of contraction, the fluid is expelled from the mixture, the pore pressure increases and the friction force diminishes. To account for this transfer of fluid into and out of the mixture, a two-layer model is proposed with a fluid or a solid layer on top of the two-phase mixture layer. Mass and momentum conservation are satisfied for the two phases, and mass and momentum are transferred between the two layers. A thin-layer approximation is used to derive average equations. Special attention is paid to the drag friction terms that are responsible for the transfer of momentum between the two phases and for the appearance of an excess pore pressure with respect to the hydrostatic pressure. By comparing quantitatively the results of simulation and laboratory experiments on submerged granular flows, we show that our model contains the basic ingredients making it possible to reproduce the interaction between the granular and fluid phases through the change in pore fluid pressure. In particular, we analyse the different time

  10. Two-Phase Solid/Fluid Simulation of Dense Granular Flows With Dilatancy Effects

    NASA Astrophysics Data System (ADS)

    Mangeney, Anne; Bouchut, Francois; Fernandez-Nieto, Enrique; Narbona-Reina, Gladys; Kone, El Hadj

    2017-04-01

    Describing grain/fluid interaction in debris flows models is still an open and challenging issue with key impact on hazard assessment [1]. We present here a two-phase two-thin-layer model for fluidized debris flows that takes into account dilatancy effects. It describes the velocity of both the solid and the fluid phases, the compression/ dilatation of the granular media and its interaction with the pore fluid pressure [2]. The model is derived from a 3D two-phase model proposed by Jackson [3] and the mixture equations are closed by a weak compressibility relation. This relation implies that the occurrence of dilation or contraction of the granular material in the model depends on whether the solid volume fraction is respectively higher or lower than a critical value. When dilation occurs, the fluid is sucked into the granular material, the pore pressure decreases and the friction force on the granular phase increases. On the contrary, in the case of contraction, the fluid is expelled from the mixture, the pore pressure increases and the friction force diminishes. To account for this transfer of fluid into and out of the mixture, a two-layer model is proposed with a fluid or a solid layer on top of the two-phase mixture layer. Mass and momentum conservation are satisfied for the two phases, and mass and momentum are transferred between the two layers. A thin-layer approximation is used to derive average equations. Special attention is paid to the drag friction terms that are responsible for the transfer of momentum between the two phases and for the appearance of an excess pore pressure with respect to the hydrostatic pressure. Interestingly, when removing the role of water, our model reduces to a dry granular flow model including dilatancy. We first compare experimental and numerical results of dilatant dry granular flows. Then, by quantitatively comparing the results of simulation and laboratory experiments on submerged granular flows, we show that our model

  11. Development of a Numerical Simulator for Analyzing the Geomechanical Performance of Hydrate-Bearing Sediments

    SciTech Connect

    Rutqvist, Jonny; Rutqvist, J.; Moridis, G.J.

    2008-06-01

    In this paper, we describe the development and application of a numerical simulator that analyzes the geomechanical performance of hydrate-bearing sediments, which may become an important future energy supply. The simulator is developed by coupling a robust numerical simulator of coupled fluid flow, hydrate thermodynamics, and phase behavior in geologic media (TOUGH+HYDRATE) with an established geomechanical code (FLAC3D). We demonstrate the current simulator capabilities and applicability for two examples of geomechanical responses of hydrate bearing sediments during production-induced hydrate dissociation. In these applications, the coupled geomechanical behavior within hydrate-bearing seducements are considered through a Mohr-Coulomb constitutive model, corrected for changes in pore-filling hydrate and ice content, based on laboratory data. The results demonstrate how depressurization-based gas production from oceanic hydrate deposits may lead to severe geomechanical problems unless care is taken in designing the production scheme. We conclude that the coupled simulator can be used to design production strategies for optimizing production, while avoiding damaging geomechanical problems.

  12. Phase equilibrium data for development of correlations for coal fluids

    SciTech Connect

    Robinson, R.L. Jr.; Gasem, K.A.M.; Darwish, N.A.; Raff, A.M.

    1991-02-01

    The overall objective of the authors' work is to develop accurate predictive methods for representations of vapor-liquid equilibria in systems encountered in coal-conversion processes. The objectives pursued in the present project include: (1) Measurements of binary vapor-liquid phase behavior data for selected solute gases (e.g., C{sub 2}H{sub 6}, CH{sub 4}) in a series of paraffinic, naphthenic, and aromatic hydrocarbon solvents to permit evaluations of interaction parameters in models for phase behavior. Solubilities of the gases in the liquid phase have been determined. (2) Evaluation of existing equations of state and other models for representations of phase behavior in systems of the type studied experimentally; development of new correlation frameworks as needed. (3) Generalization of the interaction parameters for the solutes studied to a wide spectrum of heavy solvents; presentation of final results in formats useful in the design/optimization of coal liquefaction processes.

  13. Critical phenomena experiments in space. [for fluid phase-equilibrium

    NASA Technical Reports Server (NTRS)

    Sengers, J. V.; Moldover, M. R.

    1978-01-01

    The paper analyzes several types of critical phenomena in fluids, shows how they are affected by the presence of gravity, and describes how experiments conducted in an orbiting laboratory under low gravity conditions could extend the range of measurements needed to study critical phenomena. Future experiments are proposed. One would be a careful measurement of the dielectric constant in a low gravity environment. Two basic problems that can benefit especially from space experiments are the specific heat near the critical point and the shear viscosity at the gas-liquid critical point.

  14. Characterization of five chemistries and three particle sizes of stationary phases used in supercritical fluid chromatography.

    PubMed

    Khater, S; West, C; Lesellier, E

    2013-12-06

    Sub-2-microns particles employed as supporting phases are known to favor column efficiency. Recently a set of columns based on sub-2-microns particles for use with supercritical fluid mobile phases have been introduced by Waters. Five different stationary phase chemistries are available: BEH silica, BEHEthyl-pyridine, X Select CSH Fluorophenyl, HSS C18 SB and BEH Shield RP18. This paper describes the characterization of 15 stationary phases, the five different chemistries, and three particle sizes, 1.7 (or 1.8), 3.5 and 5 microns, with the same carbon dioxide–methanol mobile phase and a set of more than a hundred compounds. The interactions established in the 15 different chromatographic systems used in supercritical fluid chromatography (SFC) are assessed with linear solvation energy relationships (LSERs).The results show the good complementarity of the five column chemistries, and their comparative location inside a classification map containing today around 70 different commercial phases. Among the five different chemistries, the HSS C18 SB phase displays a rather unusual behavior in regards of classical C18 phases, as it displays significant hydrogen–bonding interactions. Besides, it appears, as expected, that the BEH Ethyl–pyridine phase has weak interactions with basic compounds. The effect of particle size was studied because smaller particles induce increased inlet and internal pressure. For compressible fluids,this pressure change modifies the fluid density, i.e. the apparent void volume and the eluting strength.These changes could modify the retention and the selectivity of compounds in the case of method trans-fer, by using different particle sizes, from 5 down to 1.7 m. A hierarchical cluster analysis shows that stationary phase clusters were based on the phase chemistry rather than on the particle size, meaning that method transfer from 5 to 1.7 microns can be achieved in the subcritical domain i.e. by using a weakly compressible fluid.

  15. Online quantitative phase imaging of vascular endothelial cells under fluid shear stress utilizing digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Odenthal-Schnittler, Maria; Schnittler, Hans Joachim; Kemper, Björn

    2016-03-01

    We have explored the utilization of quantitative phase imaging with digital holographic microscopy (DHM) as a novel tool for quantifying the dynamics of morphologic parameters (morphodynamics) of confluent endothelial cell layers under fluid shear stress conditions. Human umbilical vein endothelial cells (HUVECs) were exposed to fluid shear stress in a transparent cone/plate flow device (BioTech-Flow-System) and imaged with a modular setup for quantitative DHM phase imaging for up to 48 h. The resulting series of quantitative phase image sequences were analyzed for the average surface roughness of the cell layers and cell alignment. Our results demonstrate that quantitative phase imaging is a powerful and reliable tool to quantify the dynamics of morphological adaptation of endothelial cells to fluid shear stress.

  16. A model for wave propagation in a porous solid saturated by a three-phase fluid.

    PubMed

    Santos, Juan E; Savioli, Gabriela B

    2016-02-01

    This paper presents a model to describe the propagation of waves in a poroelastic medium saturated by a three-phase viscous, compressible fluid. Two capillary relations between the three fluid phases are included in the model by introducing Lagrange multipliers in the principle of virtual complementary work. This approach generalizes that of Biot for single-phase fluids and allows to determine the strain energy density, identify the generalized strains and stresses, and derive the constitutive relations of the system. The kinetic and dissipative energy density functions are obtained assuming that the relative flow within the pore space is of laminar type and obeys Darcy's law for three-phase flow in porous media. After deriving the equations of motion, a plane wave analysis predicts the existence of four compressional waves, denoted as type I, II, III, and IV waves, and one shear wave. Numerical examples showing the behavior of all waves as function of saturation and frequency are presented.

  17. Examination of the phase transition behavior of nano-confined fluids by statistical temperature molecular dynamics.

    PubMed

    Gai, Lili; Iacovella, Christopher R; Wan, Li; McCabe, Clare; Cummings, Peter T

    2015-08-07

    The fluid-solid phase transition behavior of nano-confined Lennard-Jones fluids as a function of temperature and degree of nanoconfinement has been studied via statistical temperature molecular dynamics (STMD). The STMD method allows the direct calculation of the density of states and thus the heat capacity with high efficiency. The fluids are simulated between parallel solid surfaces with varying pore sizes, wall-fluid interaction energies, and registry of the walls. The fluid-solid phase transition behavior has been characterized through determination of the heat capacity. The results show that for pores of ideal-spacing, the order-disorder transition temperature (T(ODT)) is reduced as the pore size increases until values consistent with that seen in a bulk system. Also, as the interaction between the wall and fluid is reduced, T(ODT) is reduced due to weak constraints from the wall. However, for non-ideal spacing pores, quite different behavior is obtained, e.g., generally T(ODT) are largely reduced, and T(ODT) is decreased as the wall constraint becomes larger. For unaligned walls (i.e., whose lattices are not in registry), the fluid-solid transition is also detected as T is reduced, indicating non-ideality in orientation of the walls does not impact the formation of a solid, but results in a slight change in T(ODT) compared to the perfectly aligned systems. The STMD method is demonstrated to be a robust way for probing the phase transitions of nanoconfined fluids systematically, enabling the future examination of the phase transition behavior of more complex fluids.

  18. Vapour-liquid phase diagram for an ionic fluid in a random porous medium

    NASA Astrophysics Data System (ADS)

    Holovko, M. F.; Patsahan, O.; Patsahan, T.

    2016-10-01

    We study the vapour-liquid phase behaviour of an ionic fluid confined in a random porous matrix formed by uncharged hard sphere particles. The ionic fluid is modelled as an equimolar binary mixture of oppositely charged equisized hard spheres, the so-called restricted primitive model (RPM). Considering the matrix-fluid system as a partly-quenched model, we develop a theoretical approach which combines the method of collective variables with the extension of the scaled-particle theory (SPT) for a hard-sphere fluid confined in a disordered hard-sphere matrix. The approach allows us to formulate the perturbation theory using the SPT for the description of the thermodynamics of the reference system. The phase diagrams of the RPM in matrices of different porosities and for different size ratios of matrix and fluid particles are calculated in the random-phase approximation and also when the effects of higher-order correlations between ions are taken into account. Both approximations correctly reproduce the basic effects of porous media on the vapour-liquid phase diagram, i.e. with a decrease of porosity the critical point shifts towards lower fluid densities and lower temperatures and the coexistence region gets narrower. For the fixed matrix porosity, both the critical temperature and the critical density increase with an increase of size of matrix particles and tend to the critical values of the bulk RPM.

  19. Vapour-liquid phase diagram for an ionic fluid in a random porous medium.

    PubMed

    Holovko, M F; Patsahan, O; Patsahan, T

    2016-10-19

    We study the vapour-liquid phase behaviour of an ionic fluid confined in a random porous matrix formed by uncharged hard sphere particles. The ionic fluid is modelled as an equimolar binary mixture of oppositely charged equisized hard spheres, the so-called restricted primitive model (RPM). Considering the matrix-fluid system as a partly-quenched model, we develop a theoretical approach which combines the method of collective variables with the extension of the scaled-particle theory (SPT) for a hard-sphere fluid confined in a disordered hard-sphere matrix. The approach allows us to formulate the perturbation theory using the SPT for the description of the thermodynamics of the reference system. The phase diagrams of the RPM in matrices of different porosities and for different size ratios of matrix and fluid particles are calculated in the random-phase approximation and also when the effects of higher-order correlations between ions are taken into account. Both approximations correctly reproduce the basic effects of porous media on the vapour-liquid phase diagram, i.e. with a decrease of porosity the critical point shifts towards lower fluid densities and lower temperatures and the coexistence region gets narrower. For the fixed matrix porosity, both the critical temperature and the critical density increase with an increase of size of matrix particles and tend to the critical values of the bulk RPM.

  20. Estimating the gas hydrate recovery prospects in the western Black Sea basin based on the 3D multiphase flow of fluid and gas components within highly permeable paleo-channel-levee systems

    NASA Astrophysics Data System (ADS)

    Burwicz, Ewa; Zander, Timo; Rottke, Wolf; Bialas, Joerg; Hensen, Christian; Atgin, Orhan; Haeckel, Matthias

    2017-04-01

    Gas hydrate deposits are abundant in the Black Sea region and confirmed by direct observations as well as geophysical evidence, such as continuous bottom simulating reflectors (BSRs). Although those gas hydrate accumulations have been well-studied for almost two decades, the migration pathways of methane that charge the gas hydrate stability zone (GHSZ) in the region are unknown. The aim of this study is to explore the most probable gas migration scenarios within a three-dimensional finite element grid based on seismic surveys and available basin cross-sections. We have used the commercial software PetroMod(TM) (Schlumberger) to perform a set of sensitivity studies that narrow the gap between the wide range of sediment properties affecting the multi-phase flow in porous media. The high-resolution model domain focuses on the Danube deep-sea fan and associated buried sandy channel-levee systems whereas the total extension of the model domain covers a larger area of the western Black Sea basin. Such a large model domain allows for investigating biogenic as well as thermogenic methane generation and a permeability driven migration of the free phase of methane on a basin scale to confirm the hypothesis of efficient methane migration into the gas hydrate reservoir layers by horizontal flow along the carrier beds.

  1. Acoustic velocities of two-phase mixtures of cryogenic fluids

    NASA Technical Reports Server (NTRS)

    Griggs, E. I.; Winter, E. R. F.; Schoenhals, R. J.; Hendricks, R. C.

    1982-01-01

    Calculated values of the acoustic velocity are presented for single-component and two-component, two-phase mixtures. Three different analytic models were employed. For purposes of comparison, all three models were used in making acoustic-velocity calculations for single-component, equivalent bubbly two-phase mixtures (with insoluble gas) of oxygen and helium and hydrogen and helium. In all cases the results are shown graphically so that the effects of variation in quality or void fraction, temperature and pressure are illustrated.

  2. Hydration for recreational sport and physical activity.

    PubMed

    Kenefick, Robert W; Cheuvront, Samuel N

    2012-11-01

    This review presents recommendations for fluid needs and hydration assessment for recreational activity. Fluid needs are based on sweat losses, dependent on intensity and duration of the activity, and will vary among individuals. Prolonged aerobic activity is adversely influenced by dehydration, and heat exposure will magnify this effect. Fluid needs predicted for running 5-42 km at recreational paces show that fluid losses are <2% body mass; thus, aggressive fluid replacement may not be necessary. Competitive paces result in greater fluid losses and greater fluid needs. Fluid needs for recreational activity may be low; however, carbohydrate consumption (sport drinks, gels, bars) can benefit high-intensity (≤ 1 h) and less-intense, long-duration activity (≥ 1 h). Spot measures of urine color or urine-specific gravity to assess hydration status have limitations. First morning urine concentration and body mass with gross thirst perception can be simple ways to assess hydration status. © 2012 International Life Sciences Institute.

  3. Evolution of oxidation dynamics of histidine: non-reactivity in the gas phase, peroxides in hydrated clusters, and pH dependence in solution.