Sample records for hydrated fluid phase

  1. Impact of Compound Hydrate Dynamics on Phase Boundary Changes

    NASA Astrophysics Data System (ADS)

    Osegovic, J. P.; Max, M. D.

    2006-12-01

    Compound hydrate reactions are affected by the local concentration of hydrate forming materials (HFM). The relationship between HFM composition and the phase boundary is as significant as temperature and pressure. Selective uptake and sequestration of preferred hydrate formers (PF) has wide ranging implications for the state and potential use of natural hydrate formation, including impact on climate. Rising mineralizing fluids of hydrate formers (such as those that occur on Earth and are postulated to exist elsewhere in the solar system) will sequester PF before methane, resulting in a positive relationship between depth and BTU content as ethane and propane are removed before methane. In industrial settings the role of preferred formers can separate gases. When depressurizing gas hydrate to release the stored gas, the hydrate initial composition will set the decomposition phase boundary because the supporting solution takes on the composition of the hydrate phase. In other settings where hydrate is formed, transported, and then dissociated, similar effects can control the process. The behavior of compound hydrate systems can primarily fit into three categories: 1) In classically closed systems, all the material that can form hydrate is isolated, such as in a sealed laboratory vessel. In such systems, formation and decomposition are reversible processes with observed hysteresis related to mass or heat transfer limitations, or the order and magnitude in which individual hydrate forming gases are taken up from the mixture and subsequently released. 2) Kinetically closed systems are exposed to a solution mass flow across a hydrate mass. These systems can have multiple P-T phase boundaries based on the local conditions at each face of the hydrate mass. A portion of hydrate that is exposed to fresh mineralizing solution will contain more preferred hydrate formers than another portion that is exposed to a partially depleted solution. Examples of kinetically closed

  2. THE EFFECT OF GAS HYDRATES DISSOCIATION AND DRILLING FLUIDS INVASION UPON BOREHOLE STABILITY IN OCEANIC GAS HYDRATES-BEARING SEDIMENT

    NASA Astrophysics Data System (ADS)

    Ning, F.; Wu, N.; Jiang, G.; Zhang, L.

    2009-12-01

    Under the condition of over-pressure drilling, the solid-phase and liquid-phase in drilling fluids immediately penetrate into the oceanic gas hydrates-bearing sediment, which causes the water content surrounding the borehole to increase largely. At the same time, the hydrates surrounding borehole maybe quickly decompose into water and gas because of the rapid change of temperature and pressure. The drilling practices prove that this two factors may change the rock characteristics of wellbore, such as rock strength, pore pressure, resistivity, etc., and then affect the logging response and evaluation, wellbore stability and well safty. The invasion of filtrate can lower the angle of friction and weaken the cohesion of hydrates-bearing sediment,which is same to the effect of invading into conventional oil and gas formation on borehole mechnical properties. The difference is that temperature isn’t considered in the invasion process of conventional formations while in hydrates-bearing sediments, it is a factor that can not be ignored. Temperature changes can result in hydrates dissociating, which has a great effect on mechanical properties of borehole. With the application of numerical simulation method, we studied the changes of pore pressure and variation of water content in the gas hydrates-bearing sediment caused by drilling fluid invasion under pressure differential and gas hydrate dissociation under temperature differential and analyzed their influence on borehole stability.The result of simulation indicated that the temperature near borehole increased quickly and changed hardly any after 6 min later. About 1m away from the borehole, the temperature of formation wasn’t affected by the temperature change of borehole. At the place near borehole, as gas hydrate dissociated dramatically and drilling fluid invaded quickly, the pore pressure increased promptly. The degree of increase depends on the permeability and speed of temperature rise of formation around

  3. Method for controlling clathrate hydrates in fluid systems

    DOEpatents

    Sloan, Jr., Earle D.

    1995-01-01

    Discussed is a process for preventing clathrate hydrate masses from impeding the flow of fluid in a fluid system. An additive is contacted with clathrate hydrate masses in the system to prevent those clathrate hydrate masses from impeding fluid flow. The process is particularly useful in the natural gas and petroleum production, transportation and processing industry where gas hydrate formation can cause serious problems. Additives preferably contain one or more five member and/or six member cyclic chemical groupings. Additives include poly(N-vinyl-2-pyrrolidone) and hydroxyethylcellulose, either in combination or alone.

  4. Method for controlling clathrate hydrates in fluid systems

    DOEpatents

    Sloan, Jr., Earle D.

    1995-01-01

    Discussed is a process for preventing clathrate hydrate masses from impeding the flow of fluid in a fluid system. An additive is contacted with clathrate hydrate masses in the system to prevent those clathrate hydrate masses from impeding fluid flow. The process is particularly useful in the natural gas and petroleum production, transportation and processing industry where gas hydrate formation can cause serious problems. Additives preferably contain one or more five member, six member and/or seven member cyclic chemical groupings. Additives include poly(N-vinyl-2-pyrrolidone) and hydroxyethylcellulose, either in combination or alone. Additives can also contain multiple cyclic chemical groupings having different size rings. One such additive is sold under the name Gaffix VC-713.

  5. Method for controlling clathrate hydrates in fluid systems

    DOEpatents

    Sloan, E.D. Jr.

    1995-07-11

    Discussed is a process for preventing clathrate hydrate masses from impeding the flow of fluid in a fluid system. An additive is contacted with clathrate hydrate masses in the system to prevent those clathrate hydrate masses from impeding fluid flow. The process is particularly useful in the natural gas and petroleum production, transportation and processing industry where gas hydrate formation can cause serious problems. Additives preferably contain one or more five member, six member and/or seven member cyclic chemical groupings. Additives include poly(N-vinyl-2-pyrrolidone) and hydroxyethylcellulose, either in combination or alone. Additives can also contain multiple cyclic chemical groupings having different size rings. One such additive is sold under the name Gaffix VC-713.

  6. Fuel cell membrane hydration and fluid metering

    DOEpatents

    Jones, Daniel O.; Walsh, Michael M.

    2003-01-01

    A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).

  7. Thermodynamic properties of hydrate phases immersed in ice phase

    NASA Astrophysics Data System (ADS)

    Belosludov, V. R.; Subbotin, O. S.; Krupskii, D. S.; Ikeshoji, T.; Belosludov, R. V.; Kawazoe, Y.; Kudoh, J.

    2006-01-01

    Thermodynamic properties and the pressure of hydrate phases immersed in the ice phase with the aim to understand the nature of self-preservation effect of methane hydrate in the framework of macroscopic and microscopic molecular models was studied. It was show that increasing of pressure is happen inside methane hydrate phases immersed in the ice phase under increasing temperature and if the ice structure does not destroy, the methane hydrate will have larger pressure than ice phase. This is because of the thermal expansion of methane hydrate in a few times larger than ice one. The thermal expansion of the hydrate is constrained by the thermal expansion of ice because it can remain in a region of stability within the methane hydrate phase diagram. The utter lack of preservation behavior in CS-II methane- ethane hydrate can be explain that the thermal expansion of ethane-methane hydrate coincide with than ice one it do not pent up by thermal expansion of ice. The pressure and density during the crossing of interface between ice and hydrate was found and dynamical and thermodynamic stability of this system are studied in accordance with relation between ice phase and hydrate phase.

  8. Fuel cell membrane hydration and fluid metering

    DOEpatents

    Jones, Daniel O.; Walsh, Michael M.

    1999-01-01

    A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel in order to mix its respective portion of liquid water with the corresponding portion of the stream. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).

  9. Phase and flow behavior of mixed gas hydrate systems during gas injection

    NASA Astrophysics Data System (ADS)

    Darnell, K.; Flemings, P. B.; DiCarlo, D. A.

    2017-12-01

    We present one-dimensional, multi-phase flow model results for injections of carbon dioxide and nitrogen mixtures, or flue gas, into methane hydrate bearing reservoirs. Our flow model is coupled to a thermodynamic simulator that predicts phase stabilities as a function of composition, so multiple phases can appear, disappear, or change composition as the injection invades the reservoir. We show that the coupling of multi-phase fluid flow with phase behavior causes preferential phase fractionation in which each component flows through the system at different speeds and in different phases. We further demonstrate that phase and flow behavior within the reservoir are driven by hydrate stability of each individual component in addition to the hydrate stability of the injection composition. For example, if carbon dioxide and nitrogen are both individually hydrate stable at the reservoir P-T conditions, then any injection composition will convert all available water into hydrate and plug the reservoir. In contrast, if only carbon dioxide is hydrate stable at the reservoir P-T conditions, then nitrogen preferentially stays in the gaseous phase, while the carbon dioxide partitions into the hydrate and liquid water phases. For all injections of this type, methane originally held in hydrate is released by dissociation into the nitrogen-rich gaseous phase. The net consequence is that a gas phase composed of nitrogen and methane propagates through the reservoir in a fast-moving front. A slower-moving front lags behind where carbon dioxide and nitrogen form a mixed hydrate, but methane is absent due to dissociation-induced methane stripping from the first, fast-moving front. The entire composition path traces through the phase space as the flow develops with each front moving at different, constant velocities. This behavior is qualitatively similar to the dynamics present in enhanced oil recovery or enhanced coalbed methane recovery. These results explain why the inclusion of

  10. Gas hydrate formation rates from dissolved-phase methane in porous laboratory specimens

    USGS Publications Warehouse

    Waite, William F.; Spangenberg, E.K.

    2013-01-01

    Marine sands highly saturated with gas hydrates are potential energy resources, likely forming from methane dissolved in pore water. Laboratory fabrication of gas hydrate-bearing sands formed from dissolved-phase methane usually requires 1–2 months to attain the high hydrate saturations characteristic of naturally occurring energy resource targets. A series of gas hydrate formation tests, in which methane-supersaturated water circulates through 100, 240, and 200,000 cm3 vessels containing glass beads or unconsolidated sand, show that the rate-limiting step is dissolving gaseous-phase methane into the circulating water to form methane-supersaturated fluid. This implies that laboratory and natural hydrate formation rates are primarily limited by methane availability. Developing effective techniques for dissolving gaseous methane into water will increase formation rates above our observed (1 ± 0.5) × 10−7 mol of methane consumed for hydrate formation per minute per cubic centimeter of pore space, which corresponds to a hydrate saturation increase of 2 ± 1% per day, regardless of specimen size.

  11. Stability of Gas Hydrates on Continental Margins: Implications of Subsurface Fluid Flow

    NASA Astrophysics Data System (ADS)

    Nunn, J. A.

    2008-12-01

    Gas hydrates are found at or just below the sediment-ocean interface in continental margins settings throughout the world. They are also found on land in high latitude regions such as the north slope of Alaska. While gas hydrate occurrence is common, gas hydrates are stable under a fairly restricted range of temperatures and pressures. In a purely conductive thermal regime, near surface temperatures depend on basal heat flow, thermal conductivity of sediments, and temperature at the sediment-water or sediment-air interface. Thermal conductivity depends on porosity and sediment composition. Gas hydrates are most stable in areas of low heat flow and high thermal conductivity which produce low temperature gradients. Older margins with thin continental crust and coarse grained sediments would tend to be colder. Another potentially important control on subsurface temperatures is advective heat transport by recharge/discharge of groundwater. Upward fluid flow depresses temperature gradients over a purely conductive regime with the same heat flow which would make gas hydrates more stable. Downward fluid flow would have the opposite effect. However, regional scale fluid flow may substantially increase heat flow in discharge areas which would destabilize gas hydrates. For example, discharge of topographically driven groundwater along the coast in the Central North Slope of Alaska has increased surface heat flow in some areas by more than 50% over a purely conductive thermal regime. Fluid flow also alters the pressure regime which can affect gas hydrate stability. Modeling results suggest a positive feedback between gas hydrate formation/disassociation and fluid flow. Disassociation of gas hydrates or permafrost due to global warming could increase permeability. This could enhance fluid flow and associated heat transport causing a more rapid and/or more spatially extensive gas hydrate disassociation than predicted solely from conductive propagation of temporal changes in

  12. Sedimentological Control on Hydrate Saturation Distribution in Arctic Gas-Hydrate-Bearing Deposits

    NASA Astrophysics Data System (ADS)

    Behseresht, J.; Peng, Y.; Bryant, S. L.

    2010-12-01

    Grain size variations along with the relative rates of fluid phases migrating into the zone of hydrate stability, plays an important role in gas-hydrate distribution and its morphologic characteristics. In the Arctic, strata several meters thick containing large saturations of gas hydrate are often separated by layers containing small but nonzero hydrate saturations. Examples are Mt. Elbert, Alaska and Mallik, NW Territories. We argue that this sandwich type hydrate saturation distribution is consistent with having a gas phase saturation within the sediment when the base of gas hydrate stability zone (BGHSZ) was located above the sediment package. The volume change during hydrate formation process derives movement of fluid phases into the GHSZ. We show that this fluid movement -which is mainly governed by characteristic relative permeability curves of the host sediment-, plays a crucial role in the amount of hydrate saturation in the zone of major hydrate saturation. We develop a mechanistic model that enables estimating the final hydrate saturation from an initial gas/water saturation in sediment with known relative permeability curves. The initial gas/water saturation is predicted using variation of capillary entry pressure with depth, which in turn depends on the variation in grain-size distribution. This model provides a mechanistic approach for explaining large hydrate saturations (60%-75%) observed in zones of major hydrate saturation considering the governing characteristic relative permeability curves of the host sediments. We applied the model on data from Mount Elbert well on the Alaskan North Slope. It is shown that, assuming a cocurrent flow of gas and water into the GHSZ, such large hydrate saturations (up to 75%) cannot result from large initial gas saturations (close to 1-Sw,irr) due to limitations on water flux imposed by typical relative permeability curves. They could however result from modest initial gas saturations (ca. 40%) at which we have

  13. Numerical investigations of the fluid flows at deep oceanic and arctic permafrost-associated gas hydrate deposits

    NASA Astrophysics Data System (ADS)

    Frederick, Jennifer Mary

    , allows us a unique opportunity to study the response of methane hydrate deposits to warming. Gas hydrate stability in the Arctic and the permeability of the shelf sediments to gas migration is thought to be closely linked with relict submarine permafrost. Submarine permafrost extent depends on several environmental factors, such as the shelf lithology, sea level variations, mean annual air temperature, ocean bottom water temperature, geothermal heat flux, groundwater hydrology, and the salinity of the pore water. Effects of submarine groundwater discharge, which introduces fresh terrestrial groundwater off-shore, can freshen deep marine sediments and is an important control on the freezing point depression of ice and methane hydrate. While several thermal modeling studies suggest the permafrost layer should still be largely intact near-shore, many recent field studies have reported elevated methane levels in Arctic coastal waters. The permafrost layer is thought to create an impermeable barrier to fluid and gas flow, however, talik formation (unfrozen regions within otherwise continuous permafrost) below paleo-river channels can create permeable pathways for gas migration from depth. This is the first study of its kind to make predictions of the methane gas flux to the water column from the Arctic shelf sediments using a 2D multi-phase fluid flow model. Model results show that the dissociation of methane hydrate deposits through taliks can supersaturate the overlying water column at present-day relative to equilibrium with the atmosphere when taliks are large (> 1 km width) or hydrate saturation is high within hydrate layers (> 50% pore volume). Supersaturated waters likely drive a net flux of methane into the atmosphere, a potent greenhouse gas. Effects of anthropogenic global warming will certainly increase gas venting rates if ocean bottom water temperatures increase, but likely won't have immediately observable impacts due to the long response times.

  14. Hydration states of AFm cement phases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baquerizo, Luis G., E-mail: luis.baquerizoibarra@holcim.com; Matschei, Thomas; Scrivener, Karen L.

    2015-07-15

    The AFm phase, one of the main products formed during the hydration of Portland and calcium aluminate cement based systems, belongs to the layered double hydrate (LDH) family having positively charged layers and water plus charge-balancing anions in the interlayer. It is known that these phases present different hydration states (i.e. varying water content) depending on the relative humidity (RH), temperature and anion type, which might be linked to volume changes (swelling and shrinkage). Unfortunately the stability conditions of these phases are insufficiently reported. This paper presents novel experimental results on the different hydration states of the most important AFmmore » phases: monocarboaluminate, hemicarboaluminate, strätlingite, hydroxy-AFm and monosulfoaluminate, and the thermodynamic properties associated with changes in their water content during absorption/desorption. This data opens the possibility to model the response of cementitious systems during drying and wetting and to engineer systems more resistant to harsh external conditions.« less

  15. Gel phase in hydrated calcium dipicolinate

    NASA Astrophysics Data System (ADS)

    Rajak, Pankaj; Mishra, Ankit; Sheng, Chunyang; Tiwari, Subodh; Krishnamoorthy, Aravind; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya

    2017-11-01

    The mineralization of dipicolinic acid (DPA) molecules in bacterial spore cores with Ca2+ ions to form Ca-DPA is critical to the wet-heat resistance of spores. This resistance to "wet-heat" also depends on the physical properties of water and DPA in the hydrated Ca-DPA-rich protoplasm. Using reactive molecular dynamics simulations, we have determined the phase diagram of hydrated Ca-DPA as a function of temperature and water concentration, which shows the existence of a gel phase along with distinct solid-gel and gel-liquid phase transitions. Simulations reveal monotonically decreasing solid-gel-liquid transition temperatures with increasing hydration, which explains the experimental trend of wet-heat resistance of bacterial spores. Our observation of different phases of water also reconciles previous conflicting experimental findings on the state of water in bacterial spores. Further comparison with an unmineralized hydrated DPA system allows us to quantify the importance of Ca mineralization in decreasing diffusivity and increasing the heat resistance of the spore.

  16. A Fluid Pulse on the Hikurangi Subduction Margin: Evidence From a Heat Flux Transect Across the Upper Limit of Gas Hydrate Stability

    NASA Astrophysics Data System (ADS)

    Pecher, I. A.; Villinger, H.; Kaul, N.; Crutchley, G. J.; Mountjoy, J. J.; Huhn, K.; Kukowski, N.; Henrys, S. A.; Rose, P. S.; Coffin, R. B.

    2017-12-01

    A transect of seafloor heat probe measurements on the Hikurangi Margin shows a significant increase of thermal gradients upslope of the updip limit of gas hydrate stability at the seafloor. We interpret these anomalously high thermal gradients as evidence for a fluid pulse leading to advective heat flux, while endothermic cooling from gas hydrate dissociation depresses temperatures in the hydrate stability field. Previous studies predict a seamount on the subducting Pacific Plate to cause significant overpressure beneath our study area, which may be the source of the fluid pulse. Double-bottom simulating reflections are present in our study area and likely caused by uplift based on gas hydrate phase boundary considerations, although we cannot exclude a thermogenic origin. We suggest that uplift may be associated with the leading edge of the subducting seamount. Our results provide further evidence for the transient nature of fluid expulsion in subduction zones.

  17. Measuring temporal variability in pore-fluid chemistry to assess gas hydrate stability: development of a continuous pore-fluid array.

    PubMed

    Lapham, Laura L; Chanton, Jeffrey P; Martens, Christopher S; Higley, Paul D; Jannasch, Hans W; Woolsey, J Robert

    2008-10-01

    A specialized pore-fluid array (PFA) sampler was designed to collect and store pore fluids to monitor temporal changes of ions and gases in gas hydrate bearing sediments. We tested the hypothesis that pore-fluid chemistry records hydrate formation or decomposition events and reflects local seismic activity. The PFA is a seafloor probe that consists of an interchangeable instrument package that houses OsmoSamplers, long-term pore-fluid samplers, a specialized low-dead volume fluid coupler, and eight sample ports along a 10 m sediment probe shaft. The PFA was deployed at Mississippi Canyon 118, a Gulf of Mexico hydrate site. A 170 day record was acquired from the overlying water and 1.3 m below seafloor (mbsf). Fluids were measured for dissolved chloride, sulfate, and methane concentrations and dissolved inorganic carbon and methane stable carbon and deuterium isotope ratios. Chloride and sulfate did not change significantly over time, suggesting the absence of gas hydrate formation or decomposition events. Over the temporal record, methane concentrations averaged 4 mM at 1.3 mbsf, and methane was thermogenic in origin (delta13C-CH4 = -32.4 +/- 3.4 per thousand). The timing of an anomalous 14 mM methane spike coincided with a nearby earthquake (Mw = 5.8), consistent with the hypothesis that pore-fluid chemistry reflects seismic events.

  18. Association of gas hydrate formation in fluid discharges with anomalous hydrochemical profiles

    NASA Astrophysics Data System (ADS)

    Matveeva, T.

    2009-04-01

    Numerous investigations worldwide have shown that active underwater fluid discharge produces specific structures on the seafloor such as submarine seepages, vents, pockmarks, and collapse depressions. Intensive fluxes of fluids, especially of those containing hydrocarbon gases, result in specific geochemical and physical conditions favorable for gas hydrate (GH) formation. GH accumulations associated with fluid discharge are usually controlled by fluid conduits such as mud volcanoes, diapirs or faults. During last decade, subaqueous GHs become the subject of the fuel in the nearest future. However, the expediency of their commercial development can be proved solely by revealing conditions and mechanisms of GH formation. Kinetic of GH growth (although it is incompletely understood) is one of the important parameters controlling their formation among with gas solubility, pressure, temperature, gas quantity and others. Original large dataset on hydrate-related interstitial fluids obtained from different fluid discharge areas at the Sea of Okhotsk, Black Sea, Gulf of Cadiz, Lake Baikal (Eastern Siberia) allow to suggest close relation of the subaqueous GH formation process to anomalous hydrochemical profiles. We have studied the chemical and isotopic composition of interstitial fluids from GH-bearing and GH-free sediments obtained at different GH accumulations. Most attention was paid to possible influence of the interstitial fluid chemistry on the kinetic of GH formation in a porous media. The influence of salts on methane solubility within hydrate stability zones was considered by Handa (1990), Zatsepina & Buffet (1998), and later by Davie et al. (2004) from a theoretical point of view. Our idea is based on the experimentally proved fact that fugacity coefficient of methane dissolved in saline gas-saturated water which is in equilibrium with hydrates, is higher than that in more fresh water though the solubility is lower. Therefore, if a gradient of water salinity

  19. TOUGH+HYDRATE v1.2 User's Manual: A Code for the Simulation of System Behavior in Hydrate-Bearing Geologic Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moridis, George J.; Kowalsky, Michael B.; Pruess, Karsten

    TOUGH+HYDRATE v1.2 is a code for the simulation of the behavior of hydratebearing geologic systems, and represents the second update of the code since its first release [Moridis et al., 2008]. By solving the coupled equations of mass and heat balance, TOUGH+HYDRATE can model the non-isothermal gas release, phase behavior and flow of fluids and heat under conditions typical of common natural CH4-hydrate deposits (i.e., in the permafrost and in deep ocean sediments) in complex geological media at any scale (from laboratory to reservoir) at which Darcy’s law is valid. TOUGH+HYDRATE v1.2 includes both an equilibrium and a kinetic modelmore » of hydrate formation and dissociation. The model accounts for heat and up to four mass components, i.e., water, CH4, hydrate, and water-soluble inhibitors such as salts or alcohols. These are partitioned among four possible phases (gas phase, liquid phase, ice phase and hydrate phase). Hydrate dissociation or formation, phase changes and the corresponding thermal effects are fully described, as are the effects of inhibitors. The model can describe all possible hydrate dissociation mechanisms, i.e., depressurization, thermal stimulation, salting-out effects and inhibitor-induced effects. TOUGH+HYDRATE is a member of TOUGH+, the successor to the TOUGH2 [Pruess et al., 1991] family of codes for multi-component, multiphase fluid and heat flow developed at the Lawrence Berkeley National Laboratory. It is written in standard FORTRAN 95/2003, and can be run on any computational platform (workstation, PC, Macintosh) for which such compilers are available.« less

  20. Measured and perceived indices of fluid balance in professional athletes. The use and impact of hydration assessment strategies.

    PubMed

    Love, T D; Baker, D F; Healey, P; Black, K E

    2018-04-01

    To determine athletes perceived and measured indices of fluid balance during training and the influence of hydration strategy use on these parameters. Thirty-three professional rugby union players completed a 120 minute training session in hot conditions (35°C, 40% relative humidity). Pre-training hydration status, sweat loss, fluid intake and changes in body mass (BM) were obtained. The use of hydration assessment techniques and players perceptions of fluid intake and sweat loss were obtained via a questionnaire. The majority of players (78%) used urine colour to determine pre-training hydration status but the use of hydration assessment techniques did not influence pre-training hydration status (1.025 ± 0.005 vs. 1.023 ± 0.013 g . ml -1 , P = .811). Players underestimated sweat loss (73 ± 17%) to a greater extent than fluid intake (37 ± 28%) which resulted in players perceiving they were in positive fluid balance (0.5 ± 0.8% BM) rather than the measured negative fluid balance (-1.0 ± 0.7% BM). Forty-eight percent of players used hydration monitoring strategies during exercise but no player used changes in BM to help guide fluid replacement. Players have difficulty perceiving fluid intake and sweat loss during training. However, the use of hydration monitoring techniques did not affect fluid balance before or during training.

  1. RH-temperature phase diagrams of hydrate forming deliquescent crystalline ingredients.

    PubMed

    Allan, Matthew; Mauer, Lisa J

    2017-12-01

    Several common deliquescent crystalline food ingredients (including glucose and citric acid) are capable of forming crystal hydrate structures. The propensity of such crystals to hydrate/dehydrate or deliquesce is dependent on the environmental temperature and relative humidity (RH). As an anhydrous crystal converts to a crystal hydrate, water molecules internalize into the crystal structure resulting in different physical properties. Deliquescence is a solid-to-solution phase transformation. RH-temperature phase diagrams of the food ingredients alpha-d-glucose and citric acid, along with sodium sulfate, were produced using established and newly developed methods. Each phase diagram included hydrate and anhydrate deliquescence boundaries, the anhydrate-hydrate phase boundary, and the peritectic temperature (above which the hydrate was no longer stable). This is the first report of RH-temperature phase diagrams of glucose and citric acid, information which is beneficial for selecting storage and processing conditions to promote or avoid hydrate formation or loss and/or deliquescence. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Hydration and Fluid Replacement Knowledge, Attitudes, Barriers, and Behaviors of NCAA Division 1 American Football Players.

    PubMed

    Judge, Lawrence W; Kumley, Roberta F; Bellar, David M; Pike, Kim L; Pierson, Eric E; Weidner, Thomas; Pearson, David; Friesen, Carol A

    2016-11-01

    Judge, LW, Kumley, RF, Bellar, DM, Pike, KL, Pierson, EE, Weidner, T, Pearson, D, and Friesen, CA. Hydration and fluid replacement knowledge, attitudes, barriers, and behaviors of NCAA Division 1 American football players. J Strength Cond Res 30(11): 2972-2978, 2016-Hydration is an important part of athletic performance, and understanding athletes' hydration knowledge, attitudes, barriers, and behaviors is critical for sport practitioners. The aim of this study was to assess National Collegiate Athletic Association (NCAA) Division 1 (D1) American football players, with regard to hydration and fluid intake before, during, and after exercise, and to apply this assessment to their overall hydration practice. The sample consisted of 100 student-athletes from 2 different NCAA D1 universities, who participated in voluntary summer football conditioning. Participants completed a survey to identify the fluid and hydration knowledge, attitudes and behaviors, demographic data, primary football position, previous nutrition education, and barriers to adequate fluid consumption. The average Hydration Knowledge Score (HKS) for the participants in the present study was 11.8 ± 1.9 (69.4% correct), with scores ranging from 42 to 100% correct. Four key misunderstandings regarding hydration, specifically related to intervals of hydration habits among the study subjects, were revealed. Only 24% of the players reported drinking enough fluids before, during, immediately after, and 2 hours after practice. Generalized linear model analysis predicted the outcome variable HKS (χ = 28.001, p = 0.045), with nutrition education (Wald χ = 8.250, p = 0.041) and position on the football team (χ = 9.361, p = 0.025) being significant predictors. "Backs" (e.g., quarterbacks, running backs, and defensive backs) demonstrated significantly higher hydration knowledge than "Linemen" (p = 0.014). Findings indicated that if changes are not made to increase hydration awareness levels among football teams

  3. Spatial resolution of gas hydrate and permeability changes from ERT data in LARS simulating the Mallik gas hydrate production test

    NASA Astrophysics Data System (ADS)

    Priegnitz, Mike; Thaler, Jan; Spangenberg, Erik; Schicks, Judith M.; Abendroth, Sven

    2014-05-01

    The German gas hydrate project SUGAR studies innovative methods and approaches to be applied in the production of methane from hydrate-bearing reservoirs. To enable laboratory studies in pilot scale, a large reservoir simulator (LARS) was realized allowing for the formation and dissociation of gas hydrates under simulated in-situ conditions. LARS is equipped with a series of sensors. This includes a cylindrical electrical resistance tomography (ERT) array composed of 25 electrode rings featuring 15 electrodes each. The high-resolution ERT array is used to monitor the spatial distribution of the electrical resistivity during hydrate formation and dissociation experiments over time. As the present phases of poorly conducting sediment, well conducting pore fluid, non-conducting hydrates, and isolating free gas cover a wide range of electrical properties, ERT measurements enable us to monitor the spatial distribution of these phases during the experiments. In order to investigate the hydrate dissociation and the resulting fluid flow, we simulated a hydrate production test in LARS that was based on the Mallik gas hydrate production test (see abstract Heeschen et al., this volume). At first, a hydrate phase was produced from methane saturated saline water. During the two months of gas hydrate production we measured the electrical properties within the sediment sample every four hours. These data were used to establish a routine estimating both the local degrees of hydrate saturation and the resulting local permeabilities in the sediment's pore space from the measured resistivity data. The final gas hydrate saturation filled 89.5% of the total pore space. During hydrate dissociation, ERT data do not allow for a quantitative determination of free gas and remaining gas hydrates since both phases are electrically isolating. However, changes are resolved in the spatial distribution of the conducting liquid and the isolating phase with gas being the only mobile isolating phase

  4. The analysis of magnesium oxide hydration in three-phase reaction system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Xiaojia; Guo, Lin; Chen, Chen

    In order to investigate the magnesium oxide hydration process in gas–liquid–solid (three-phase) reaction system, magnesium hydroxide was prepared by magnesium oxide hydration in liquid–solid (two-phase) and three-phase reaction systems. A semi-empirical model and the classical shrinking core model were used to fit the experimental data. The fitting result shows that both models describe well the hydration process of three-phase system, while only the semi-empirical model right for the hydration process of two-phase system. The characterization of the hydration product using X-Ray diffraction (XRD) and scanning electron microscope (SEM) was performed. The XRD and SEM show hydration process in the two-phasemore » system follows common dissolution/precipitation mechanism. While in the three-phase system, the hydration process undergo MgO dissolution, Mg(OH){sub 2} precipitation, Mg(OH){sub 2} peeling off from MgO particle and leaving behind fresh MgO surface. - Graphical abstract: There was existence of a peeling-off process in the gas–liquid–solid (three-phase) MgO hydration system. - Highlights: • Magnesium oxide hydration in gas–liquid–solid system was investigated. • The experimental data in three-phase system could be fitted well by two models. • The morphology analysis suggested that there was existence of a peel-off process.« less

  5. The impact of fluid advection on gas hydrate stability: Investigations at sites of methane seepage offshore Costa Rica

    NASA Astrophysics Data System (ADS)

    Crutchley, G. J.; Klaeschen, D.; Planert, L.; Bialas, J.; Berndt, C.; Papenberg, C.; Hensen, C.; Hornbach, M. J.; Krastel, S.; Brueckmann, W.

    2014-09-01

    Fluid flow through marine sediments drives a wide range of processes, from gas hydrate formation and dissociation, to seafloor methane seepage including the development of chemosynthetic ecosystems, and ocean acidification. Here, we present new seismic data that reveal the 3D nature of focused fluid flow beneath two mound structures on the seafloor offshore Costa Rica. These mounds have formed as a result of ongoing seepage of methane-rich fluids. We show the spatial impact of advective heat flow on gas hydrate stability due to the channelled ascent of warm fluids towards the seafloor. The base of gas hydrate stability (BGHS) imaged in the seismic data constrains peak heat flow values to ∼60 mW m and ∼70 mW m beneath two separate seep sites known as Mound 11 and Mound 12, respectively. The initiation of pronounced fluid flow towards these structures was likely controlled by fault networks that acted as efficient pathways for warm fluids ascending from depth. Through the gas hydrate stability zone, fluid flow has been focused through vertical conduits that we suggest developed as migrating fluids generated their own secondary permeability by fracturing strata as they forced their way upwards towards the seafloor. We show that Mound 11 and Mound 12 (about 1 km apart on the seafloor) are sustained by independent fluid flow systems through the hydrate system, and that fluid flow rates across the BGHS are probably similar beneath both mounds. 2D seismic data suggest that these two flow systems might merge at approximately 1 km depth, i.e. much deeper than the BGHS. This study provides a new level of detail and understanding of how channelled, anomalously-high fluid flow towards the seafloor influences gas hydrate stability. Thus, gas hydrate systems have good potential for quantifying the upward flow of subduction system fluids to seafloor seep sites, since the fluids have to interact with and leave their mark on the hydrate system before reaching the seafloor.

  6. Hydration Status of Patients Dialyzed with Biocompatible Peritoneal Dialysis Fluids

    PubMed Central

    Lichodziejewska-Niemierko, Monika; Chmielewski, Michał; Dudziak, Maria; Ryta, Alicja; Rutkowski, Bolesław

    2016-01-01

    ♦ Background: Biocompatible fluids for peritoneal dialysis (PD) have been introduced to improve dialysis and patient outcome in end-stage renal disease. However, their impact on hydration status (HS), residual renal function (RRF), and dialysis adequacy has been a matter of debate. The aim of the study was to evaluate the influence of a biocompatible dialysis fluid on the HS of prevalent PD patients. ♦ Methods: The study population consisted of 18 prevalent PD subjects, treated with standard dialysis fluids. At baseline, 9 patients were switched to a biocompatible solution, low in glucose degradation products (GDPs) (Balance; Fresenius Medical Care, Bad Homburg, Germany). Hydration status was assessed through clinical evaluation, laboratory parameters, echocardiography, and bioimpedance spectroscopy over a 24-month observation period. ♦ Results: During the study period, urine volume decreased similarly in both groups. At the end of the evaluation, there were also no differences in clinical (body weight, edema, blood pressure), laboratory (N-terminal pro-brain natriuretic peptide, NTproBNP), or echocardiography determinants of HS. However, dialysis ultrafiltration decreased in the low-GDP group and, at the end of the study, equaled 929 ± 404 mL, compared with 1,317 ± 363 mL in the standard-fluid subjects (p = 0.06). Hydration status assessed by bioimpedance spectroscopy was +3.64 ± 2.08 L in the low-GDP patients and +1.47 ± 1.61 L in the controls (p = 0.03). ♦ Conclusions: The use of a low-GDP biocompatible dialysis fluid was associated with a tendency to overhydration, probably due to diminished ultrafiltration in prevalent PD patients. PMID:26475845

  7. HYDRATE v1.5 OPTION OF TOUGH+ v1.5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moridis, George

    HYDRATE v1.5 is a numerical code that for the simulation of the behavior of hydrate-bearing geologic systems, and represents the third update of the code since its first release [Moridis et al., 2008]. It is an option of TOUGH+ v1.5 [Moridis and Pruess, 2014], a successor to the TOUGH2 [Pruess et al., 1999, 2012] family of codes for multi-component, multiphase fluid and heat flow developed at the Lawrence Berkeley National Laboratory. HYDRATE v1.5 needs the TOUGH+ v1.5 core code in order to compile and execute. It is written in standard FORTRAN 95/2003, and can be run on any computational platformmore » (workstation, PC, Macintosh) for which such compilers are available. By solving the coupled equations of mass and heat balance, the fully operational TOUGH+HYDRATE code can model the non-isothermal gas release, phase behavior and flow of fluids and heat under conditions typical of common natural CH 4-hydrate deposits (i.e., in the permafrost and in deep ocean sediments) in complex geological media at any scale (from laboratory to reservoir) at which Darcy's law is valid. TOUGH+HYDRATE v1.5 includes both an equilibrium and a kinetic model of hydrate formation and dissociation. The model accounts for heat and up to four mass components, i.e., water, CH 4, hydrate, and water-soluble inhibitors such as salts or alcohols. These are partitioned among four possible phases (gas phase, liquid phase, ice phase and hydrate phase). Hydrate dissociation or formation, phase changes and the corresponding thermal effects are fully described, as are the effects of inhibitors. The model can describe all possible hydrate dissociation mechanisms, i.e., depressurization, thermal stimulation, salting-out effects and inhibitor-induced effects.« less

  8. Pore Scale Mechanistic Study of the Preferential Mode of Hydrate Formation in Sediments: Fluid Flow Aspects

    NASA Astrophysics Data System (ADS)

    Behseresht, J.; Prodanović, M.; Bryant, S. L.

    2007-12-01

    A spectrum of behavior is encountered in ocean sediments bearing methane hydrates, ranging from essentially static accumulations where hydrate and brine co-exist, to active cold seeps where hydrate and a methane gas phase co-exist in the hydrate stability zone (HSZ). In this and a companion paper (Jain and Juanes) we describe methods to test the following hypothesis: the coupling between drainage and fracturing, both induced by pore pressure, determines whether methane gas entering the HSZ is converted completely to hydrate. Here we describe a novel implementation of the level set method (LSM) to determine the capillarity-controlled displacement of brine by gas from sediment and from fractures within the sediment. Predictions of fluid configurations in infinite-acting model sediments indicate that the brine in drained sediment (after invasion by methane gas) is better connected than previously believed. This increases the availability of water and the rate of counter-diffusion of salinity ions, thus relaxing the limit on hydrate build-up within gas- invaded grain matrix. Simulated drainage of a fracture in sediment shows that points of contact between fracture faces are crucial. They allow residual water saturation to remain within an otherwise gas-filled fracture. Simulations of imbibition, which can occur for example after drainage into surrounding sediment reduces gas phase pressure in the fracture, indicate that the gas/water interfaces at contact points significantly shifts the threshold pressures for withdrawal of gas. During both drainage and imbibition, the contact points greatly increase water availability for hydrate formation within the fracture. We discuss coupling this capillarity-controlled displacement model with a discrete element model for grain-scale mechanics. The coupled model provides a basis for evaluating the macroscopic conditions (thickness of gas accumulation below the hydrate stability zone; average sediment grain size; principal earth

  9. Hydration, Fluid Intake, and Related Urine Biomarkers among Male College Students in Cangzhou, China: A Cross-Sectional Study-Applications for Assessing Fluid Intake and Adequate Water Intake.

    PubMed

    Zhang, Na; Du, Songming; Tang, Zhenchuang; Zheng, Mengqi; Yan, Ruixia; Zhu, Yitang; Ma, Guansheng

    2017-05-11

    The objectives of this study were to assess the associations between fluid intake and urine biomarkers and to determine daily total fluid intake for assessing hydration status for male college students. A total of 68 male college students aged 18-25 years recruited from Cangzhou, China completed a 7-day cross-sectional study. From day 1 to day 7; all subjects were asked to complete a self-administered 7-day 24-h fluid intake record. The foods eaten by subjects were weighed and 24-h urine was collected for three consecutive days on the last three consecutive days. On the sixth day, urine osmolality, specific gravity (USG), pH, and concentrations of potassium, sodium, and chloride was determined. Subjects were divided into optimal hydration, middle hydration, and hypohydration groups according to their 24-h urine osmolality. Strong relationships were found between daily total fluid intake and 24-h urine biomarkers, especially for 24-h urine volume ( r = 0.76; p < 0.0001) and osmolality ( r = 0.76; p < 0.0001). The percentage of the variances in daily total fluid intake ( R ²) explained by PLS (partial least squares) model with seven urinary biomarkers was 68.9%; two urine biomarkers-24-h urine volume and osmolality-were identified as possible key predictors. The daily total fluid intake for assessing optimal hydration was 2582 mL, while the daily total fluid intake for assessing hypohydration was 2502 mL. Differences in fluid intake and urine biomarkers were found among male college students with different hydration status. A strong relationship existed between urine biomarkers and fluid intake. A PLS model identified that key variables for assessing daily total fluid intake were 24-h urine volume and osmolality. It was feasibility to use total fluid intake to judge hydration status.

  10. First determination of volume changes and enthalpies of the high-pressure decomposition reaction of the structure H methane hydrate to the cubic structure I methane hydrate and fluid methane.

    PubMed

    Ogienko, Andrey G; Tkacz, Marek; Manakov, Andrey Yu; Lipkowski, Janusz

    2007-11-08

    Pressure-temperature (P-T) conditions of the decomposition reaction of the structure H high-pressure methane hydrate to the cubic structure I methane hydrate and fluid methane were studied with a piston-cylinder apparatus at room temperature. For the first time, volume changes accompanying this reaction were determined. With the use of the Clausius-Clapeyron equation the enthalpies of the decomposition reaction of the structure H high-pressure methane hydrate to the cubic structure I methane hydrate and fluid methane have been calculated.

  11. BSRs Elevated by Fluid Upwelling on the Upper Amazon Fan : Bottom-up Controls on Gas Hydrate Stability

    NASA Astrophysics Data System (ADS)

    Praeg, D.; Silva, C. G.; dos Reis, A. T.; Ketzer, J. M.; Unnithan, V.; Perovano Da Silva, R. J.; Cruz, A. M.; Gorini, C.

    2017-12-01

    The stability of natural gas hydrate accumulations on continental margins has mainly been considered in terms of changes in seawater pressures and temperatures driven from above by climate. We present evidence from the Amazon deep-sea fan for stability zone changes driven from below by fluid upwelling. A grid of 2D and 3D multichannel seismic data show the upper Amazon fan in water depths of 1200-2000 m to contain a discontinuous bottom-simulating seismic reflection (BSR) that forms `patches' 10-50 km wide and up to 140 km long, over a total area of at least 5000 km2. The elongate BSR patches coincide with anticlinal thrust-folds that record on-going gravitational collapse of the fan above décollements at depths of up to 10 km. The BSR lies within 100-300 m of seafloor, in places rising beneath features that seafloor imagery show to be pockmarks and mud volcanoes, some venting gas to the water column. The BSR patches are up to 500 m shallower than predicted for methane hydrate based on geothermal gradients as low as 17˚C/km measured within the upper fan, and inversion of the BSR to obtain temperatures at the phase boundary indicates gradients 2-5 times background levels. We interpret the strongly elevated BSR patches to record upwelling of warm gas-rich fluids through thrust-fault zones 101 km wide. We infer this process to favour gas hydrate occurrences that are concentrated in proportion to flux and locally pierced by vents, and that will be sensitive to temporal variations in the upward flux of heat and gas. Thus episodes of increased flux, e.g. during thrusting, could dissociate gas hydrates to trigger slope failures and/or enhanced gas venting to the ocean. Structurally-driven fluid flow episodes could account for evidence of recurrent large-scale failures from the compressive belt on the upper fan during its Neogene collapse, and provide a long-term alternative to sea level triggering. The proposed mechanism of upward flux links the distribution and

  12. Hydration Status and Fluid Balance of Elite European Youth Soccer Players during Consecutive Training Sessions.

    PubMed

    Phillips, Saun M; Sykes, Dave; Gibson, Neil

    2014-12-01

    The objective of the study was to investigate the hydration status and fluid balance of elite European youth soccer players during three consecutive training sessions. Fourteen males (age 16.9 ± 0.8 years, height 1.79 ± 0.06 m, body mass (BM) 70.6 ± 5.0 kg) had their hydration status assessed from first morning urine samples (baseline) and pre- and post-training using urine specific gravity (USG) measures, and their fluid balance calculated from pre- to post-training BM change, corrected for fluid intake and urine output. Most participants were hypohydrated upon waking (USG >1.020; 77% on days 1 and 3, and 62% on day 2). There was no significant difference between first morning and pre-training USG (p = 0.11) and no influence of training session (p = 0.34) or time (pre- vs. post-training; p = 0.16) on USG. Significant BM loss occurred in sessions 1-3 (0.69 ± 0.22, 0.42 ± 0.25, and 0.38 ± 0.30 kg respectively, p < 0.05). Mean fluid intake in sessions 1-3 was 425 ± 185, 355 ± 161, and 247 ± 157 ml, respectively (p < 0.05). Participants replaced on average 71.3 ± 64.1% (range 0-363.6%) of fluid losses across the three sessions. Body mass loss, fluid intake, and USG measures showed large inter-individual variation. Elite young European soccer players likely wake and present for training hypohydrated, when a USG threshold of 1.020 is applied. When training in a cool environment with ad libitum access to fluid, replacing ~71% of sweat losses results in minimal hypohydration (<1% BM). Consumption of fluid ad libitum throughout training appears to prevent excessive (≥2% BM) dehydration, as advised by current fluid intake guidelines. Current fluid intake guidelines appear applicable for elite European youth soccer players training in a cool environment. Key PointsThe paper demonstrates a notable inter-participant variation in first morning, pre- and post-training hydration status and fluid balance of elite young European soccer players.On average, elite young

  13. Hydration Status and Fluid Balance of Elite European Youth Soccer Players during Consecutive Training Sessions

    PubMed Central

    Phillips, Saun M.; Sykes, Dave; Gibson, Neil

    2014-01-01

    The objective of the study was to investigate the hydration status and fluid balance of elite European youth soccer players during three consecutive training sessions. Fourteen males (age 16.9 ± 0.8 years, height 1.79 ± 0.06 m, body mass (BM) 70.6 ± 5.0 kg) had their hydration status assessed from first morning urine samples (baseline) and pre- and post-training using urine specific gravity (USG) measures, and their fluid balance calculated from pre- to post-training BM change, corrected for fluid intake and urine output. Most participants were hypohydrated upon waking (USG >1.020; 77% on days 1 and 3, and 62% on day 2). There was no significant difference between first morning and pre-training USG (p = 0.11) and no influence of training session (p = 0.34) or time (pre- vs. post-training; p = 0.16) on USG. Significant BM loss occurred in sessions 1-3 (0.69 ± 0.22, 0.42 ± 0.25, and 0.38 ± 0.30 kg respectively, p < 0.05). Mean fluid intake in sessions 1-3 was 425 ± 185, 355 ± 161, and 247 ± 157 ml, respectively (p < 0.05). Participants replaced on average 71.3 ± 64.1% (range 0-363.6%) of fluid losses across the three sessions. Body mass loss, fluid intake, and USG measures showed large inter-individual variation. Elite young European soccer players likely wake and present for training hypohydrated, when a USG threshold of 1.020 is applied. When training in a cool environment with ad libitum access to fluid, replacing ~71% of sweat losses results in minimal hypohydration (<1% BM). Consumption of fluid ad libitum throughout training appears to prevent excessive (≥2% BM) dehydration, as advised by current fluid intake guidelines. Current fluid intake guidelines appear applicable for elite European youth soccer players training in a cool environment. Key Points The paper demonstrates a notable inter-participant variation in first morning, pre- and post-training hydration status and fluid balance of elite young European soccer players. On average, elite young

  14. Phase transitions in mixed gas hydrates: experimental observations versus calculated data.

    PubMed

    Schicks, Judith M; Naumann, Rudolf; Erzinger, Jörg; Hester, Keith C; Koh, Carolyn A; Sloan, E Dendy

    2006-06-15

    This paper presents the phase behavior of multicomponent gas hydrate systems formed from primarily methane with small amounts of ethane and propane. Experimental conditions were typically in a pressure range between 1 and 6 MPa, and the temperature range was between 260 and 290 K. These multicomponent systems have been investigated using a variety of techniques including microscopic observations, Raman spectroscopy, and X-ray diffraction. These techniques, used in combination, allowed for measurement of the hydrate structure and composition, while observing the morphology of the hydrate crystals measured. The hydrate formed immediately below the three-phase line (V-L --> V-L-H) and contained crystals that were both light and dark in appearance. The light crystals, which visually were a single solid phase, showed a spectroscopic indication for the presence of occluded free gas in the hydrate. In contrast, the dark crystals were measured to be structure II (sII) without the presence of these occluded phases. Along with hydrate measurements near the decomposition line, an unexpected transformation process was visually observed at P-T-conditions in the stability field of the hydrates. Larger crystallites transformed into a foamy solid upon cooling over this transition line (between 5 and 10 K below the decomposition temperature). Below the transition line, a mixture of sI and sII was detected. This is the first time that these multicomponent systems have been investigated at these pressure and temperature conditions using both visual and spectroscopic techniques. These techniques enabled us to observe and measure the unexpected transformation process showing coexistence of different gas hydrate phases.

  15. Impacts of Hydrate Distribution on the Hydro-Thermo-Mechanical Properties of Hydrate-Bearing Sediments

    NASA Astrophysics Data System (ADS)

    Dai, S.; Seol, Y.

    2015-12-01

    In general, hydrate makes the sediments hydraulically less conductive, thermally more conductive, and mechanically stronger; yet the dependency of these physical properties on hydrate saturation varies with hydrate distribution and morphology. Hydrate distribution in sediments may cause the bulk physical properties of their host sediments varying several orders of magnitude even with the same amount of hydrate. In natural sediments, hydrate morphology is inherently governed by the burial depth and the grain size of the host sediments. Compare with patchy hydrate, uniformly distributed hydrate is more destructive to fluid flow, yet leads to higher gas and water permeability during hydrate dissociation due to the easiness of forming percolation paths. Water and hydrate have similar thermal conductivity values; the bulk thermal conductivity of hydrate-bearing sediments depends critically on gas-phase saturation. 60% of gas saturation may result in evident thermal conductivity drop and hinder further gas production. Sediments with patchy hydrate yield lower stiffness than that with cementing hydrate but higher stiffness than that with pore filling and loading bearing hydrate. Besides hydrate distribution, the stress state and loading history also play an important role in the mechanical behavior of hydrate-bearing sediments.

  16. Artificial Nutrition (Food) and Hydration (Fluids) at the End of Life

    MedlinePlus

    Artificial Nutrition (Food) and Hydration (Fluids) at the End of Life It is very common for doctors to provide ... or recovering from surgery. This is called “artificial nutrition and hydration” and like all medical treatments, it ...

  17. Mapping the Fluid Pathways and Permeability Barriers of a Large Gas Hydrate Reservoir

    NASA Astrophysics Data System (ADS)

    Campbell, A.; Zhang, Y. L.; Sun, L. F.; Saleh, R.; Pun, W.; Bellefleur, G.; Milkereit, B.

    2012-12-01

    An understanding of the relationship between the physical properties of gas hydrate saturated sedimentary basins aids in the detection, exploration and monitoring one of the world's upcoming energy resources. A large gas hydrate reservoir is located in the MacKenzie Delta of the Canadian Arctic and geophysical logs from the Mallik test site are available for the gas hydrate stability zone (GHSZ) between depths of approximately 850 m to 1100 m. The geophysical data sets from two neighboring boreholes at the Mallik test site are analyzed. Commonly used porosity logs, as well as nuclear magnetic resonance, compressional and Stoneley wave velocity dispersion logs are used to map zones of elevated and severely reduced porosity and permeability respectively. The lateral continuity of horizontal permeability barriers can be further understood with the aid of surface seismic modeling studies. In this integrated study, the behavior of compressional and Stoneley wave velocity dispersion and surface seismic modeling studies are used to identify the fluid pathways and permeability barriers of the gas hydrate reservoir. The results are compared with known nuclear magnetic resonance-derived permeability values. The aim of investigating this heterogeneous medium is to map the fluid pathways and the associated permeability barriers throughout the gas hydrate stability zone. This provides a framework for an understanding of the long-term dissociation of gas hydrates along vertical and horizontal pathways, and will improve the knowledge pertaining to the production of such a promising energy source.

  18. Aqueous phase hydration and hydrate acidity of perfluoroalkyl and n:2 fluorotelomer aldehydes.

    PubMed

    Rayne, Sierra; Forest, Kaya

    2016-01-01

    The SPARC software program and comparative density functional theory (DFT) calculations were used to investigate the aqueous phase hydration equilibrium constants (Khyd) of perfluoroalkyl aldehydes (PFAlds) and n:2 fluorotelomer aldehydes (FTAlds). Both classes are degradation products of known industrial compounds and environmental contaminants such as fluorotelomer alcohols, iodides, acrylates, phosphate esters, and other derivatives, as well as hydrofluorocarbons and hydrochlorofluorocarbons. Prior studies have generally failed to consider the hydration, and subsequent potential hydrate acidity, of these compounds, resulting in incomplete and erroneous predictions as to their environmental behavior. In the current work, DFT calculations suggest that all PFAlds will be dominantly present as the hydrated form in aqueous solution. Both SPARC and DFT calculations suggest that FTAlds will not likely be substantially hydrated in aquatic systems or in vivo. PFAld hydrates are expected to have pKa values in the range of phenols (ca. 9 to 10), whereas n:2 FTAld hydrates are expected to have pKa values ca. 2 to 3 units higher (ca. 12 to 13). In order to avoid spurious modeling predictions and a fundamental misunderstanding of their fate, the molecular and/or dissociated hydrate forms of PFAlds and FTAlds need to be explicitly considered in environmental, toxicological, and waste treatment investigations. The results of the current study will facilitate a more complete examination of the environmental fate of PFAlds and FTAlds.

  19. Crystallization Experiments in the MgO-CO2-H2O system: Role of Amorphous Magnesium Carbonate Precursors in Magnesium Carbonate Hydrated Phases and Morphologies in Low Temperature Hydrothermal Fluids

    NASA Astrophysics Data System (ADS)

    Giampouras, Manolis; Garcia-Ruiz, Juan Manuel; Garrido, Carlos J.

    2017-04-01

    Numerous forms of hydrated or basic magnesium carbonates occur in the complex MgO-CO2-H2O system. Mineral saturation states from low temperature hydrothermal fluids in Semail Ophiolite (Oman), Prony Bay (New Caledonia) and Lost City hydrothermal field (mid-Atlantic ridge) strongly indicate the presence of magnesium hydroxy-carbonate hydrates (e.g. hydromagnesite) and magnesium hydroxides (brucite). Study of formation mechanisms and morphological features of minerals forming in the MgO-CO2-H2O system could give insights into serpentinization-driven, hydrothermal, alkaline environments, which are related to early Earth conditions. Temperature, hydration degree, pH and fluid composition are crucial factors regarding the formation, coexistence and transformation of such mineral phases. The rate of supersaturation, on the other hand, is a fundamental parameter to understand nucleation and crystal growth processes. All these parameters can be examined in a solution using different crystallization techniques. In the present study, we applied different crystallization techniques to synthesize and monitor the crystallization of Mg-bearing carbonates and hydroxides under abiotic conditions. Various crystallization techniques (counter-diffusion, vapor diffusion and unseeded solution mixing) were used to screen the formation conditions of each phase, transformation processes and structural development. Mineral and textural characterization of the different synthesized phases were carried out by X-ray diffraction (XRD), Raman spectroscopy and scanning electron microscopy coupled to dispersive energy spectroscopy (FE-SEM-EDS). Experimental investigation of the effect of pH level and silica content under variable reactant concentrations revealed the importance of Amorphous Magnesium Carbonate (AMC) in the formation of hydroxy-carbonate phases (hydromagnesite and dypingite). Micro-structural resemblance between AMC precursors and later stage crystalline phases highlights the

  20. Fluid Flow Patterns During Production from Gas Hydrates in the Laboratory compared to Field Settings: LARS vs. Mallik

    NASA Astrophysics Data System (ADS)

    Strauch, B.; Heeschen, K. U.; Priegnitz, M.; Abendroth, S.; Spangenberg, E.; Thaler, J.; Schicks, J. M.

    2015-12-01

    The GFZ's LArge Reservoir Simulator LARS allows for the simulation of the 2008 Mallik gas hydrate production test and the comparison of fluid flow patterns and their driving forces. Do we see the gas flow pattern described for Mallik [Uddin, M. et al., J. Can. Petrol Tech, 50, 70-89, 2011] in a pilot scale test? If so, what are the driving forces? LARS has a network of temperature sensors and an electric resistivity tomography (ERT) enabling a good spatial resolution of gas hydrate occurrences, water and gas distribution, and changes in temperature in the sample. A gas flow meter and a water trap record fluid flow patterns and a backpressure valve has controlled the depressurization equivalent to the three pressure stages (7.0 - 5.0 - 4.2 MPa) applied in the Mallik field test. The environmental temperature (284 K) and confining pressure (13 MPa) have been constant. The depressurization induced immediate endothermic gas hydrate dissociation until re-establishment of the stability conditions by a consequent temperature decrease. Slight gas hydrate dissociation continued at the top and upper lateral border due to the constant heat input from the environment. Here transport pathways were short and permeability higher due to lower gas hydrate saturation. At pressures of 7.0 and 5.0 MPa the LARS tests showed high water flow rates and short irregular spikes of gas production. The gas flow patterns at 4.2 MPa and 3.0MPa resembled those of the Mallik test. In LARS the initial gas surges overlap with times of hydrate instability while water content and lengths of pathways had increased. Water production was at a minimum. A rapidly formed continuous gas phase caused the initial gas surges and only after gas hydrate dissociation decreased to a minimum the single gas bubbles get trapped before slowly coalescing again. In LARS, where pathways were short and no additional water was added, a transport of microbubbles is unlikely to cause a gas surge as suggested for Mallik.

  1. Effect of organic matter on CO(2) hydrate phase equilibrium in phyllosilicate suspensions.

    PubMed

    Park, Taehyung; Kyung, Daeseung; Lee, Woojin

    2014-06-17

    In this study, we examined various CO2 hydrate phase equilibria under diverse, heterogeneous conditions, to provide basic knowledge for successful ocean CO2 sequestration in offshore marine sediments. We investigated the effect of geochemical factors on CO2 hydrate phase equilibrium. The three-phase (liquid-hydrate-vapor) equilibrium of CO2 hydrate in the presence of (i) organic matter (glycine, glucose, and urea), (ii) phyllosilicates [illite, kaolinite, and Na-montmorillonite (Na-MMT)], and (iii) mixtures of them was measured in the ranges of 274.5-277.0 K and 14-22 bar. Organic matter inhibited the phase equilibrium of CO2 hydrate by association with water molecules. The inhibition effect decreased in the order: urea < glycine < glucose. Illite and kaolinite (unexpandable clays) barely affected the CO2 hydrate phase equilibrium, while Na-MMT (expandable clay) affected the phase equilibrium because of its interlayer cations. The CO2 hydrate equilibrium conditions, in the illite and kaolinite suspensions with organic matter, were very similar to those in the aqueous organic matter solutions. However, the equilibrium condition in the Na-MMT suspension with organic matter changed because of reduction of its inhibition effect by intercalated organic matter associated with cations in the Na-MMT interlayer.

  2. A composite phase diagram of structure H hydrates using Schreinemakers' geometric approach

    USGS Publications Warehouse

    Mehta, A.P.; Makogon, T.Y.; Burruss, R.C.; Wendlandt, R.F.; Sloan, E.D.

    1996-01-01

    A composite phase diagram is presented for Structure H (sH) clathrate hydrates. In this work, we derived the reactions occurring among the various phases along each four-phase (Ice/Liquid water, liquid hydrocarbon, vapor, and hydrate) equilibrium line. A powerful method (though seldom used in chemical engineering) for multicomponent equilibria developed by Schreinemakers is applied to determine the relative location of all quadruple (four-phase) lines emanating from three quintuple (five-phase) points. Experimental evidence validating the approximate phase diagram is also provided. The use of Schreinemakers' rules for the development of the phase diagram is novel for hydrates, but these rules may be extended to resolve the phase space of other more complex systems commonly encountered in chemical engineering.

  3. Additives and method for controlling clathrate hydrates in fluid systems

    DOEpatents

    Sloan, Jr., Earle Dendy; Christiansen, Richard Lee; Lederhos, Joseph P.; Long, Jin Ping; Panchalingam, Vaithilingam; Du, Yahe; Sum, Amadeu Kun Wan

    1997-01-01

    Discussed is a process for preventing clathrate hydrate masses from detrimentally impeding the possible flow of a fluid susceptible to clathrate hydrate formation. The process is particularly useful in the natural gas and petroleum production, transportation and processing industry where gas hydrate formation can cause serious problems. Additives preferably contain one or more five member, six member and/or seven member cyclic chemical groupings. Additives include polymers having lactam rings. Additives can also contain polyelectrolytes that are believed to improve conformance of polymer additives through steric hinderance and/or charge repulsion. Also, polymers having an amide on which a C.sub.1 -C.sub.4 group is attached to the nitrogen and/or the carbonyl carbon of the amide may be used alone, or in combination with ring-containing polymers for enhanced effectiveness. Polymers having at least some repeating units representative of polymerizing at least one of an oxazoline, an N-substituted acrylamide and an N-vinyl alkyl amide are preferred.

  4. Additives and method for controlling clathrate hydrates in fluid systems

    DOEpatents

    Sloan, E.D. Jr.; Christiansen, R.L.; Lederhos, J.P.; Long, J.P.; Panchalingam, V.; Du, Y.; Sum, A.K.W.

    1997-06-17

    Discussed is a process for preventing clathrate hydrate masses from detrimentally impeding the possible flow of a fluid susceptible to clathrate hydrate formation. The process is particularly useful in the natural gas and petroleum production, transportation and processing industry where gas hydrate formation can cause serious problems. Additives preferably contain one or more five member, six member and/or seven member cyclic chemical groupings. Additives include polymers having lactam rings. Additives can also contain polyelectrolytes that are believed to improve conformance of polymer additives through steric hindrance and/or charge repulsion. Also, polymers having an amide on which a C{sub 1}-C{sub 4} group is attached to the nitrogen and/or the carbonyl carbon of the amide may be used alone, or in combination with ring-containing polymers for enhanced effectiveness. Polymers having at least some repeating units representative of polymerizing at least one of an oxazoline, an N-substituted acrylamide and an N-vinyl alkyl amide are preferred.

  5. Effect of Fluid Intake on Hydration Status and Skin Barrier Characteristics in Geriatric Patients: An Explorative Study.

    PubMed

    Akdeniz, Merve; Boeing, Heiner; Müller-Werdan, Ursula; Aykac, Volkan; Steffen, Annika; Schell, Mareike; Blume-Peytavi, Ulrike; Kottner, Jan

    2018-01-01

    Inadequate fluid intake is assumed to be a trigger of water-loss dehydration, which is a major health risk in aged and geriatric populations. Thus, there is a need to search for easy to use diagnostic tests to identify dehydration. Our overall aim was to investigate whether skin barrier parameters could be used for predicting fluid intake and/or hydration status in geriatric patients. An explorative observational comparative study was conducted in a geriatric hospital including patients aged 65 years and older. We measured 3-day fluid intake, skin barrier parameters, Overall Dry Skin Score, serum osmolality, cognitive and functional health, and medications. Forty patients were included (mean age 78.45 years and 65% women) with a mean fluid intake of 1,747 mL/day. 20% of the patients were dehydrated and 22.5% had an impending dehydration according to serum osmolality. Multivariate analysis suggested that skin surface pH and epidermal hydration at the face were associated with fluid intake. Serum osmolality was associated with epidermal hydration at the leg and skin surface pH at the face. Fluid intake was not correlated with serum osmolality. Diuretics were associated with high serum osmolality. Approximately half of the patients were diagnosed as being dehydrated according to osmolality, which is the current reference standard. However, there was no association with fluid intake, questioning the clinical relevance of this measure. Results indicate that single skin barrier parameters are poor markers for fluid intake or osmolality. Epidermal hydration might play a role but most probably in combination with other tests. © 2018 S. Karger AG, Basel.

  6. Evaluation of the phase properties of hydrating cement composite using simulated nanoindentation technique

    NASA Astrophysics Data System (ADS)

    Gautham, S.; Sindu, B. S.; Sasmal, Saptarshi

    2017-10-01

    Properties and distribution of the products formed during the hydration of cementitious composite at the microlevel are investigated using a nanoindentation technique. First, numerical nanoindentation using nonlinear contact mechanics is carried out on three different phase compositions of cement paste, viz. mono-phase Tri-calcium Silicate (C3S), Di-calcium Silicate (C2S) and Calcium-Silicate-Hydrate (CSH) individually), bi-phase (C3S-CSH, C2S-CSH) and multi-phase (more than 10 individual phases including water pores). To reflect the multi-phase characteristics of hydrating cement composite, a discretized multi-phase microstructural model of cement composite during the progression of hydration is developed. Further, a grid indentation technique for simulated nanoindentation is established, and employed to evaluate the mechanical characteristics of the hydrated multi-phase cement paste. The properties obtained from the numerical studies are compared with those obtained from experimental grid nanoindentation. The influence of composition and distribution of individual phase properties on the properties obtained from indentation are closely investigated. The study paves the way to establishing the procedure for simulated grid nanoindentation to evaluate the mechanical properties of heterogeneous composites, and facilitates the design of experimental nanoindentation.

  7. Over-hydration detection in brain by magnetic induction spectroscopy

    NASA Astrophysics Data System (ADS)

    González, César A.; Pérez, María; Hevia, Nidiyare; Arámbula, Fernándo; Flores, Omar; Aguilar, Eliot; Hinojosa, Ivonne; Joskowicz, Leo; Rubinsky, Boris

    2010-04-01

    Detection and continuous monitoring of edema in the brain in early stages is useful for assessment of medical condition and treatment. We have proposed a solution in which the bulk measurements of the tissue electrical properties to detect edema or in general accumulation of fluids are made through measurement of the magnetic induction phase shift between applied and measured currents at different frequencies (Magnetic Induction Spectroscopy; MIS). Magnetic Resonant Imaging (MRI) has been characterized because its capability to detect different levels of brain tissue hydration by differences in diffusion-weighted (DW) sequences and it's involve apparent diffusion coefficient (ADC). The objective of this study was to explore the viability to use measurements of the bulk tissue electrical properties to detect edema or in general accumulation of fluids by MIS. We have induced a transitory and generalized tissue over-hydration condition in ten volunteers ingesting 1.5 to 2 liters of water in ten minutes. Basal and over-hydration conditions were monitored by MIS and MRI. Changes in the inductive phase shift at certain frequencies were consistent with changes in the brain tissue hydration level observed by DW-ADC. The results suggest that MIS has the potential to detect pathologies associated to changes in the content of fluids in brain tissue such as edema and hematomas.

  8. Hydration Phase Diagram of Clay Particles from Molecular Simulations.

    PubMed

    Honorio, Tulio; Brochard, Laurent; Vandamme, Matthieu

    2017-11-07

    Adsorption plays a fundamental role in the behavior of clays. Because of the confinement between solid clay layers on the nanoscale, adsorbed water is structured in layers, which can occupy a specific volume. The transition between these states is intimately related to key features of clay thermo-hydro-mechanical behavior. In this article, we consider the hydration states of clays as phases and the transition between these states as phase changes. The thermodynamic formulation supporting this idea is presented. Then, the results from grand canonical Monte Carlo simulations of sodium montmorillonite are used to derive hydration phase diagrams. The stability analysis presented here explains the coexistence of different hydration states at clay particle scale and improves our understanding of the irreversibilities of clay thermo-hydro-mechanical behavior. Our results provide insights into the mechanics of the elementary constituents of clays, which is crucial for a better understanding of the macroscopic behavior of clay-rich rocks and soils.

  9. Phase diagram and high-pressure boundary of hydrate formation in the ethane-water system.

    PubMed

    Kurnosov, Alexander V; Ogienko, Andrey G; Goryainov, Sergei V; Larionov, Eduard G; Manakov, Andrey Y; Lihacheva, Anna Y; Aladko, Eugeny Y; Zhurko, Fridrikh V; Voronin, Vladimir I; Berger, Ivan F; Ancharov, Aleksei I

    2006-11-02

    Dissociation temperatures of gas hydrate formed in the ethane-water system were studied at pressures up to 1500 MPa. In situ neutron diffraction analysis and X-ray diffraction analysis in a diamond anvil cell showed that the gas hydrate formed in the ethane-water system at 340, 700, and 1840 MPa and room temperature belongs to the cubic structure I (CS-I). Raman spectra of C-C vibrations of ethane molecules in the hydrate phase, as well as the spectra of solid and liquid ethane under high-pressure conditions were studied at pressures up to 6900 MPa. Within 170-3600 MPa Raman shift of the C-C vibration mode of ethane in the hydrate phase did not show any discontinuities, which could be evidence of possible phase transformations. The upper pressure boundary of high-pressure hydrate existence was discovered at the pressure of 3600 MPa. This boundary corresponds to decomposition of the hydrate to solid ethane and ice VII. The type of phase diagram of ethane-water system was proposed in the pressure range of hydrate formation (0-3600 MPa).

  10. Fluid intake, hydration, work physiology of wildfire fighters working in the heat over consecutive days.

    PubMed

    Raines, Jenni; Snow, Rodney; Nichols, David; Aisbett, Brad

    2015-06-01

    (i) To evaluate firefighters' pre- and post-shift hydration status across two shifts of wildfire suppression work in hot weather conditions. (ii) To document firefighters' fluid intake during and between two shifts of wildfire suppression work. (iii) To compare firefighters' heart rate, activity, rating of perceived exertion (RPE), and core temperature across the two consecutive shifts of wildfire suppression work. Across two consecutive days, 12 salaried firefighters' hydration status was measured immediately pre- and post-shift. Hydration status was also measured 2h post-shift. RPE was also measured immediately post-shift on each day. Work activity, heart rate, and core temperature were logged continuously during each shift. Ten firefighters also manually recorded their food and fluid intake before, during, and after both fireground shifts. Firefighters were not euhydrated at all measurement points on Day one (292±1 mOsm l(-1)) and euhydrated across these same time points on Day two (289±0.5 mOsm l(-1)). Fluid consumption following firefighters' shift on Day one (1792±1134ml) trended (P = 0.08) higher than Day two (1108±1142ml). Daily total fluid intake was not different (P = 0.27), averaging 6443±1941ml across both days. Core temperature and the time spent ≥ 70%HRmax were both elevated on Day one (when firefighters were not euhydrated). Firefighters' work activity profile was not different between both days of work. There was no difference in firefighters' pre- to post-shift hydration within each shift, suggesting ad libitum drinking was at least sufficient to maintain pre-shift hydration status, even in hot conditions. Firefighters' relative hypohydration on Day one (despite a slightly lower ambient temperature) may have been associated with elevations in core temperature, more time in the higher heart rate zones, and 'post-shift' RPE. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  11. Effect of organic matters on CO2 hydrate phase equilibrium conditions in Na-montmorillonite clay

    NASA Astrophysics Data System (ADS)

    Park, T.; Kyung, D.; Lee, W.

    2013-12-01

    Formation of gas hydrates provides an attractive idea for storing greenhouse gases in a long-term stable geological formation. Since the phase equilibrium conditions of gas hydrates indicate the stability of hydrates, estimation of the phase equilibrium conditions of gas hydrates in marine geological conditions is necessary. In this study, we have identified the effects of organic matters (glycine, glucose, and urea) and solid surface (montmorillonite (MMT)) on the three-phase (liquid-hydrate-vapor) equilibrium conditions of CO2 hydrate. CO2 phase equilibrium experiments were conducted using 0.5mol% organic matter solutions with and without 10g soil mineral were experimentally conducted. Addition of organic matters shifted the phase equilibrium conditions of CO2 hydrate to the higher pressure or lower pressure region because of higher competition of water molecules due to the dissolved organic matters. Presence of MMT also leaded to the higher equilibrium pressure due to the interaction of cations with water molecules. By addition of organic matters to the clay suspension, the hydrate phase equilibrium conditions were less inhibited compared to those of MMT and organic matters independently. The diminished magnitudes by addition of organic matters to the clay suspension (MMT > MMT+urea > MMT+glycine > MMT+glucose > DIW) were different to the order of inhibition degree without MMT (Glucose > glycine > urea > DIW). X-ray diffraction (XRD), scanning electron microscope (SEM), and ion chromatography (IC) analysis were conducted to support the hypothesis that the organic matters interact with cations in MMT interlayer space, and leads to the less inhibition of phase equilibrium conditions. The present study provides basic information for the formation and dissociation of CO2 hydrates in the geological formation when sequestering CO2 as a form of CO2 hydrate.

  12. Thermodynamic properties and interactions of salt hydrates used as phase change materials

    NASA Astrophysics Data System (ADS)

    Braunstein, J.

    1982-12-01

    The state-of-the-art of salt hydrates as phase change materials for low temperature thermal energy storage is reviewed with the objective of recommending research that would result in more practicable use of these materials. Areas for review included phase equilibria, nucleation behavior and melting kinetics of the commonly used hydrates.

  13. Thermal conductivity of hydrate-bearing sediments

    USGS Publications Warehouse

    Cortes, Douglas D.; Martin, Ana I.; Yun, Tae Sup; Francisca, Franco M.; Santamarina, J. Carlos; Ruppel, Carolyn D.

    2009-01-01

    A thorough understanding of the thermal conductivity of hydrate-bearing sediments is necessary for evaluating phase transformation processes that would accompany energy production from gas hydrate deposits and for estimating regional heat flow based on the observed depth to the base of the gas hydrate stability zone. The coexistence of multiple phases (gas hydrate, liquid and gas pore fill, and solid sediment grains) and their complex spatial arrangement hinder the a priori prediction of the thermal conductivity of hydrate-bearing sediments. Previous studies have been unable to capture the full parameter space covered by variations in grain size, specific surface, degree of saturation, nature of pore filling material, and effective stress for hydrate-bearing samples. Here we report on systematic measurements of the thermal conductivity of air dry, water- and tetrohydrofuran (THF)-saturated, and THF hydrate–saturated sand and clay samples at vertical effective stress of 0.05 to 1 MPa (corresponding to depths as great as 100 m below seafloor). Results reveal that the bulk thermal conductivity of the samples in every case reflects a complex interplay among particle size, effective stress, porosity, and fluid-versus-hydrate filled pore spaces. The thermal conductivity of THF hydrate–bearing soils increases upon hydrate formation although the thermal conductivities of THF solution and THF hydrate are almost the same. Several mechanisms can contribute to this effect including cryogenic suction during hydrate crystal growth and the ensuing porosity reduction in the surrounding sediment, increased mean effective stress due to hydrate formation under zero lateral strain conditions, and decreased interface thermal impedance as grain-liquid interfaces are transformed into grain-hydrate interfaces.

  14. Pathways through equilibrated states with coexisting phases for gas hydrate formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malolepsza, Edyta; Keyes, Tom

    Under ambient conditions, water freezes to either hexagonal ice or a hexagonal/cubic composite ice. The presence of hydrophobic guest molecules introduces a competing pathway: gas hydrate formation, with the guests in clathrate cages. Here, the pathways of the phase transitions are sought as sequences of states with coexisting phases, using a generalized replica exchange algorithm designed to sample them in equilibrium, avoiding nonequilibrium processes. For a dilute solution of methane in water under 200 atm, initializing the simulation with the full set of replicas leads to methane trapped in hexagonal/cubic ice, while gradually adding replicas with decreasing enthalpy produces themore » initial steps of hydrate growth. Once a small amount of hydrate is formed, water rearranges to form empty cages, eventually transforming the remainder of the system to metastable β ice, a scaffolding for hydrates. It is suggested that configurations with empty cages are reaction intermediates in hydrate formation when more guest molecules are available. Furthermore, free energy profiles show that methane acts as a catalyst reducing the barrier for β ice versus hexagonal/cubic ice formation.« less

  15. Pathways through equilibrated states with coexisting phases for gas hydrate formation

    DOE PAGES

    Malolepsza, Edyta; Keyes, Tom

    2015-12-01

    Under ambient conditions, water freezes to either hexagonal ice or a hexagonal/cubic composite ice. The presence of hydrophobic guest molecules introduces a competing pathway: gas hydrate formation, with the guests in clathrate cages. Here, the pathways of the phase transitions are sought as sequences of states with coexisting phases, using a generalized replica exchange algorithm designed to sample them in equilibrium, avoiding nonequilibrium processes. For a dilute solution of methane in water under 200 atm, initializing the simulation with the full set of replicas leads to methane trapped in hexagonal/cubic ice, while gradually adding replicas with decreasing enthalpy produces themore » initial steps of hydrate growth. Once a small amount of hydrate is formed, water rearranges to form empty cages, eventually transforming the remainder of the system to metastable β ice, a scaffolding for hydrates. It is suggested that configurations with empty cages are reaction intermediates in hydrate formation when more guest molecules are available. Furthermore, free energy profiles show that methane acts as a catalyst reducing the barrier for β ice versus hexagonal/cubic ice formation.« less

  16. Estimating pore-space gas hydrate saturations from well log acoustic data

    NASA Astrophysics Data System (ADS)

    Lee, Myung W.; Waite, William F.

    2008-07-01

    Relating pore-space gas hydrate saturation to sonic velocity data is important for remotely estimating gas hydrate concentration in sediment. In the present study, sonic velocities of gas hydrate-bearing sands are modeled using a three-phase Biot-type theory in which sand, gas hydrate, and pore fluid form three homogeneous, interwoven frameworks. This theory is developed using well log compressional and shear wave velocity data from the Mallik 5L-38 permafrost gas hydrate research well in Canada and applied to well log data from hydrate-bearing sands in the Alaskan permafrost, Gulf of Mexico, and northern Cascadia margin. Velocity-based gas hydrate saturation estimates are in good agreement with Nuclear Magneto Resonance and resistivity log estimates over the complete range of observed gas hydrate saturations.

  17. From Black Hole to Hydrate Hole: Gas hydrates, authigenic carbonates and vent biota as indicators of fluid migration at pockmark sites of the Northern Congo Fan

    NASA Astrophysics Data System (ADS)

    Kasten, S.; Schneider, R.; Spiess, V.; Cruise Participants Of M56b

    2003-04-01

    A recent high-resolution seismic, echosounder and video survey combined with detailed geological and geochemical sampling of pockmark sites on the Northern Congo Fan was carried out with RV Meteor in November/December 2002 in the frame of the project "CONGO" (BMBF/BEO "Geotechnologien"). These investigations revealed the extensive occurrence of surface and sub-surface gas hydrates as well as characteristic features of fluid venting such as clams (Calyptogena), tube worms (Pogonophera) and huge amounts of authigenic carbonates. In a first approach the patchyness in the occurrence of these features was mapped in relation to pockmark structure and seismic reflectors. Detailed sampling of three pockmarks by gravity corer showed that gas hydrates are present at and close to the sediment surface and often occur as several distinct layers and/or veins intercalated with hemipelagic muds. The depth of the upper boundary of these hydrate-bearing sediments increases from the center towards the edge of the pockmark structures. Pore water concentration profiles of sulfate and methane document the process of anaerobic methane oxidation above the hydrate-bearing layers. For those cores which contained several gas hydrate layers preliminary pore water profiles suggest the occurrence of more than one zone of anaerobic methane oxidation. Authigenic carbonates are found in high abundance, irregularly distributed within the pockmarks close to the sediment surface. These carbonates occur in a wide variety with respect to size, shape, structure and mineralogy. Their formation is associated with high amounts of bicarbonate released by the process of anaerobic methane oxidation. In the gravity cores authigenic carbonates are always present above hydrate-bearing sections. However, the quantities and characteristics of these authigenic minerals in relation to venting and microbial activity as well as to gas hydrate dissociation are not clear yet. Unraveling this relationship will be a major

  18. Methane hydrate formation in partially water-saturated Ottawa sand

    USGS Publications Warehouse

    Waite, W.F.; Winters, W.J.; Mason, D.H.

    2004-01-01

    Bulk properties of gas hydrate-bearing sediment strongly depend on whether hydrate forms primarily in the pore fluid, becomes a load-bearing member of the sediment matrix, or cements sediment grains. Our compressional wave speed measurements through partially water-saturated, methane hydrate-bearing Ottawa sands suggest hydrate surrounds and cements sediment grains. The three Ottawa sand packs tested in the Gas Hydrate And Sediment Test Laboratory Instrument (GHASTLI) contain 38(1)% porosity, initially with distilled water saturating 58, 31, and 16% of that pore space, respectively. From the volume of methane gas produced during hydrate dissociation, we calculated the hydrate concentration in the pore space to be 70, 37, and 20% respectively. Based on these hydrate concentrations and our measured compressional wave speeds, we used a rock physics model to differentiate between potential pore-space hydrate distributions. Model results suggest methane hydrate cements unconsolidated sediment when forming in systems containing an abundant gas phase.

  19. Phase diagram and high-pressure boundary of hydrate formation in the carbon dioxide-water system.

    PubMed

    Manakov, Andrej Yu; Dyadin, Yuriy A; Ogienko, Andrey G; Kurnosov, Alexander V; Aladko, Eugeny Ya; Larionov, Eduard G; Zhurko, Fridrih V; Voronin, Vladimir I; Berger, Ivan F; Goryainov, Sergei V; Lihacheva, Anna Yu; Ancharov, Aleksei I

    2009-05-21

    Experimental investigation of the phase diagram of the system carbon dioxide-water at pressures up to 2.7 GPa has been carried out in order to explain earlier controversial results on the decomposition curves of the hydrates formed in this system. According to X-ray diffraction data, solid and/or liquid phases of water and CO2 coexist in the system at room temperature within the pressure range from 0.8 to 2.6 GPa; no clathrate hydrates are observed. The results of neutron diffraction experiments involving the samples with different CO2/H2O molar ratios, and the data on the phase diagram of the system carbon dioxide-water show that CO2 hydrate of cubic structure I is the only clathrate phase present in this system under studied P-T conditions. We suppose that in the cubic structure I hydrate of CO2 multiple occupation of the large hydrate cavities with CO2 molecules takes place. At pressure of about 0.8 GPa this hydrate decomposes into components indicating the presence of the upper pressure boundary of the existence of clathrate hydrates in the system.

  20. Determination of pore-scale hydrate phase equilibria in sediments using lab-on-a-chip technology.

    PubMed

    Almenningen, Stian; Flatlandsmo, Josef; Kovscek, Anthony R; Ersland, Geir; Fernø, Martin A

    2017-11-21

    We present an experimental protocol for fast determination of hydrate stability in porous media for a range of pressure and temperature (P, T) conditions. Using a lab-on-a-chip approach, we gain direct optical access to dynamic pore-scale hydrate formation and dissociation events to study the hydrate phase equilibria in sediments. Optical pore-scale observations of phase behavior reproduce the theoretical hydrate stability line with methane gas and distilled water, and demonstrate the accuracy of the new method. The procedure is applicable for any kind of hydrate transitions in sediments, and may be used to map gas hydrate stability zones in nature.

  1. No Change in 24-Hour Hydration Status Following a Moderate Increase in Fluid Consumption.

    PubMed

    Tucker, Matthew A; Adams, J D; Brown, Lemuel A; Ridings, Christian B; Burchfield, Jenna M; Robinson, Forrest B; McDermott, Jamie L; Schreiber, Brett A; Moyen, Nicole E; Washington, Tyrone A; Bermudez, Andrea C; Bennett, Meredith P; Buyckx, Maxime E; Ganio, Matthew S

    2016-01-01

    To investigate changes in 24-hour hydration status when increasing fluid intake. Thirty-five healthy males (age 23.8 ± 4.7 years; mass 74.0 ± 9.4 kg) were divided into 4 treatment groups for 2 weeks of testing. Volumes of 24-hour fluid ingestion (including water from food) for weeks 1 and 2 was 35 and 40 ml/kg body mass, respectively. Each treatment group was given the same proportion of beverages in each week of testing: water only (n = 10), water + caloric cola (n = 7), water + noncaloric cola (n = 10), or water + caloric cola + noncaloric cola + orange juice (n = 8). Serum osmolality (Sosm), total body water (TBW) via bioelectrical impedance, 24-hour urine osmolality (Uosm), and volume (Uvol) were analyzed at the end of each 24-hour intervention. Independent of treatment, total beverage consumption increased 22% from week 1 to 2 (1685 ± 320 to 2054 ± 363 ml; p < 0.001). Independent of beverage assignment, the increase in fluid consumption between weeks 1 and 2 did not change TBW (43.4 ± 5.2 vs 43.0 ± 4.8 kg), Sosm (292 ± 5 vs 292 ± 5 mOsm/kg), 24-hour Uosm (600 ± 224 vs 571 ± 212 mOsm/kg), or 24-hour Uvol (1569 ± 607 vs 1580 ± 554 ml; all p > 0.05). Regardless of fluid volume or beverage type consumed, measures of 24-hour hydration status did not differ, suggesting that standard measures of hydration status are not sensitive enough to detect a 22% increase in beverage consumption.

  2. Gas-phase hydration of glyoxylic acid: Kinetics and atmospheric implications.

    PubMed

    Liu, Ling; Zhang, Xiuhui; Li, Zesheng; Zhang, Yunhong; Ge, Maofa

    2017-11-01

    Oxocarboxylic acids are one of the most important organic species found in secondary organic aerosols and can be detected in diverse environments. But the hydration of oxocarboxylic acids in the atmosphere has still not been fully understood. Neglecting the hydration of oxocarboxylic acids in atmospheric models may be one of the most important reasons for the significant discrepancies between field measurements and abundance predictions of atmospheric models for oxocarboxylic acids. In the present paper, glyoxylic acid, as the most abundant oxocarboxylic acids in the atmosphere, has been selected as an example to study whether the hydration process can occur in the atmosphere and what the kinetic process of hydration is. The gas-phase hydration of glyoxylic acid to form the corresponding geminal diol and those catalyzed by atmospheric common substances (water, sulfuric acid and ammonia) have been investigated at the CCSD(T)-F12/cc-pVDZ-F12//M06-2X/6-311++G(3df,3pd) level of theory. The contour map of electron density difference of transition states have been further analyzed. It is indicated that these atmospheric common substances can all catalyze on the hydration to some extent and sulfuric acid is the most effective reducing the Gibbs free energy of activation to 9.48 kcal/mol. The effective rate constants combining the overall rate constants and concentrations of the corresponding catalysts have shown that water and sulfuric acid are both important catalysts and the catalysis of sulfuric acid is the most effective for the gas-phase hydration of glyoxylic acid. This catalyzed processes are potentially effective in coastal regions and polluted regions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Methane Recovery from Hydrate-bearing Sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Carlos Santamarina; Costas Tsouris

    2011-04-30

    Gas hydrates are crystalline compounds made of gas and water molecules. Methane hydrates are found in marine sediments and permafrost regions; extensive amounts of methane are trapped in the form of hydrates. Methane hydrate can be an energy resource, contribute to global warming, or cause seafloor instability. This study placed emphasis on gas recovery from hydrate bearing sediments and related phenomena. The unique behavior of hydrate-bearing sediments required the development of special research tools, including new numerical algorithms (tube- and pore-network models) and experimental devices (high pressure chambers and micromodels). Therefore, the research methodology combined experimental studies, particle-scale numerical simulations,more » and macro-scale analyses of coupled processes. Research conducted as part of this project started with hydrate formation in sediment pores and extended to production methods and emergent phenomena. In particular, the scope of the work addressed: (1) hydrate formation and growth in pores, the assessment of formation rate, tensile/adhesive strength and their impact on sediment-scale properties, including volume change during hydrate formation and dissociation; (2) the effect of physical properties such as gas solubility, salinity, pore size, and mixed gas conditions on hydrate formation and dissociation, and it implications such as oscillatory transient hydrate formation, dissolution within the hydrate stability field, initial hydrate lens formation, and phase boundary changes in real field situations; (3) fluid conductivity in relation to pore size distribution and spatial correlation and the emergence of phenomena such as flow focusing; (4) mixed fluid flow, with special emphasis on differences between invading gas and nucleating gas, implications on relative gas conductivity for reservoir simulations, and gas recovery efficiency; (5) identification of advantages and limitations in different gas production strategies with

  4. Estimating pore-space gas hydrate saturations from well log acoustic data

    USGS Publications Warehouse

    Lee, Myung W.; Waite, William F.

    2008-01-01

    Relating pore-space gas hydrate saturation to sonic velocity data is important for remotely estimating gas hydrate concentration in sediment. In the present study, sonic velocities of gas hydrate–bearing sands are modeled using a three-phase Biot-type theory in which sand, gas hydrate, and pore fluid form three homogeneous, interwoven frameworks. This theory is developed using well log compressional and shear wave velocity data from the Mallik 5L-38 permafrost gas hydrate research well in Canada and applied to well log data from hydrate-bearing sands in the Alaskan permafrost, Gulf of Mexico, and northern Cascadia margin. Velocity-based gas hydrate saturation estimates are in good agreement with Nuclear Magneto Resonance and resistivity log estimates over the complete range of observed gas hydrate saturations.

  5. Nasogastric Hydration in Infants with Bronchiolitis Less Than 2 Months of Age.

    PubMed

    Oakley, Ed; Bata, Sonny; Rengasamy, Sharmila; Krieser, David; Cheek, John; Jachno, Kim; Babl, Franz E

    2016-11-01

    To determine whether nasogastric hydration can be used in infants less than 2 months of age with bronchiolitis, and characterize the adverse events profile of these infants compared with infants given intravenous (IV) fluid hydration. A descriptive retrospective cohort study of children with bronchiolitis under 2 months of age admitted for hydration at 3 centers over 3 bronchiolitis seasons was done. We determined type of hydration (nasogastric vs IV fluid hydration) and adverse events, intensive care unit admission, and respiratory support. Of 491 infants under 2 months of age admitted with bronchiolitis, 211 (43%) received nonoral hydration: 146 (69%) via nasogastric hydration and 65 (31%) via IV fluid hydration. Adverse events occurred in 27.4% (nasogastric hydration) and 23.1% (IV fluid hydration), difference of 4.3%; 95%CI (-8.2 to 16.9), P = .51. The majority of adverse events were desaturations (21.9% nasogastric hydration vs 21.5% IV fluid hydration, difference 0.4%; [-11.7 to 12.4], P = .95). There were no pulmonary aspirations in either group. Apneas and bradycardias were similar in each group. IV fluid hydration use was positively associated with intensive care unit admission (38.5% IV fluid hydration vs 19.9% nasogastric hydration; difference 18.6%, [5.1-32.1], P = .004); and use of ventilation support (27.7% IV fluid hydration vs 15.1% nasogastric hydration; difference 12.6 [0.3-23], P = .03). Fewer infants changed from nasogastric hydration to IV fluid hydration than from IV fluid hydration to nasogastric hydration (12.3% vs 47.7%; difference -35.4% [-49 to -22], P < .001). Nasogastric hydration can be used in the majority of young infants admitted with bronchiolitis. Nasogastric hydration and IV fluid hydration had similar rates of complications. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Individual fluid plans versus ad libitum on hydration status in minor professional ice hockey players.

    PubMed

    Emerson, Dawn M; Torres-McGehee, Toni M; Emerson, Charles C; LaSalle, Teri L

    2017-01-01

    Despite exercising in cool environments, ice hockey players exhibit several dehydration risk factors. Individualized fluid plans (IFPs) are designed to mitigate dehydration by matching an individual's sweat loss in order to optimize physiological systems and performance. A randomized control trial was used to examine IFP versus ad libitum fluid ingestion on hydration in 11 male minor professional ice hockey players (mean age = 24.4 ± 2.6 years, height = 183.0 ± 4.6 cm, weight = 92.9 ± 7.8 kg). Following baseline measures over 2 practices, participants were randomly assigned to either control (CON) or intervention (INT) for 10 additional practices. CON participants were provided water and/or carbohydrate electrolyte beverage to drink ad libitum. INT participants were instructed to consume water and an electrolyte-enhanced carbohydrate electrolyte beverage to match sweat and sodium losses. Urine specific gravity, urine color, and percent body mass change characterized hydration status. Total fluid consumed during practice was assessed. INT consumed significantly more fluid than CON (1180.8 ± 579.0 ml vs. 788.6 ± 399.7 ml, p  = 0.002). However, CON participants replaced only 25.4 ± 12.9% of their fluid needs and INT 35.8 ± 17.5%. Mean percent body mass loss was not significantly different between groups and overall indicated minimal dehydration (<1.2% loss). Pre-practice urine specific gravity indicated CON and INT began hypohydrated (mean = 1.024 ± 0.007 and 1.024 ± 0.006, respectively) and experienced dehydration during practice (post = 1.026 ± 0.006 and 1.027 ± 0.005, respectively, p  < 0.001). Urine color increased pre- to post-practice for CON (5 ± 2 to 6 ± 1, p  < 0.001) and INT (5 ± 1 to 6 ± 1, p <  0.001). Participants consistently reported to practice hypohydrated. Ad libitum fluid intake was not significantly different than IFP on hydration status. Based on urine measures, both methods were

  7. Computational phase diagrams of noble gas hydrates under pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teeratchanan, Pattanasak, E-mail: s1270872@sms.ed.ac.uk; Hermann, Andreas, E-mail: a.hermann@ed.ac.uk

    2015-10-21

    We present results from a first-principles study on the stability of noble gas-water compounds in the pressure range 0-100 kbar. Filled-ice structures based on the host water networks ice-I{sub h}, ice-I{sub c}, ice-II, and C{sub 0} interacting with guest species He, Ne, and Ar are investigated, using density functional theory (DFT) with four different exchange-correlation functionals that include dispersion effects to various degrees: the non-local density-based optPBE-van der Waals (vdW) and rPW86-vdW2 functionals, the semi-empirical D2 atom pair correction, and the semi-local PBE functional. In the He-water system, the sequence of stable phases closely matches that seen in the hydrogenmore » hydrates, a guest species of comparable size. In the Ne-water system, we predict a novel hydrate structure based on the C{sub 0} water network to be stable or at least competitive at relatively low pressure. In the Ar-water system, as expected, no filled-ice phases are stable; however, a partially occupied Ar-C{sub 0} hydrate structure is metastable with respect to the constituents. The ability of the different DFT functionals to describe the weak host-guest interactions is analysed and compared to coupled cluster results on gas phase systems.« less

  8. Elastic-wave velocity in marine sediments with gas hydrates: Effective medium modeling

    USGS Publications Warehouse

    Helgerud, M.B.; Dvorkin, J.; Nur, A.; Sakai, A.; Collett, T.

    1999-01-01

    We offer a first-principle-based effective medium model for elastic-wave velocity in unconsolidated, high porosity, ocean bottom sediments containing gas hydrate. The dry sediment frame elastic constants depend on porosity, elastic moduli of the solid phase, and effective pressure. Elastic moduli of saturated sediment are calculated from those of the dry frame using Gassmann's equation. To model the effect of gas hydrate on sediment elastic moduli we use two separate assumptions: (a) hydrate modifies the pore fluid elastic properties without affecting the frame; (b) hydrate becomes a component of the solid phase, modifying the elasticity of the frame. The goal of the modeling is to predict the amount of hydrate in sediments from sonic or seismic velocity data. We apply the model to sonic and VSP data from ODP Hole 995 and obtain hydrate concentration estimates from assumption (b) consistent with estimates obtained from resistivity, chlorinity and evolved gas data. Copyright 1999 by the American Geophysical Union.

  9. Ammonia clathrate hydrates as new solid phases for Titan, Enceladus, and other planetary systems.

    PubMed

    Shin, Kyuchul; Kumar, Rajnish; Udachin, Konstantin A; Alavi, Saman; Ripmeester, John A

    2012-09-11

    There is interest in the role of ammonia on Saturn's moons Titan and Enceladus as the presence of water, methane, and ammonia under temperature and pressure conditions of the surface and interior make these moons rich environments for the study of phases formed by these materials. Ammonia is known to form solid hemi-, mono-, and dihydrate crystal phases under conditions consistent with the surface of Titan and Enceladus, but has also been assigned a role as water-ice antifreeze and methane hydrate inhibitor which is thought to contribute to the outgassing of methane clathrate hydrates into these moons' atmospheres. Here we show, through direct synthesis from solution and vapor deposition experiments under conditions consistent with extraterrestrial planetary atmospheres, that ammonia forms clathrate hydrates and participates synergistically in clathrate hydrate formation in the presence of methane gas at low temperatures. The binary structure II tetrahydrofuran + ammonia, structure I ammonia, and binary structure I ammonia + methane clathrate hydrate phases synthesized have been characterized by X-ray diffraction, molecular dynamics simulation, and Raman spectroscopy methods.

  10. Ammonia clathrate hydrates as new solid phases for Titan, Enceladus, and other planetary systems

    PubMed Central

    Shin, Kyuchul; Kumar, Rajnish; Udachin, Konstantin A.; Alavi, Saman; Ripmeester, John A.

    2012-01-01

    There is interest in the role of ammonia on Saturn’s moons Titan and Enceladus as the presence of water, methane, and ammonia under temperature and pressure conditions of the surface and interior make these moons rich environments for the study of phases formed by these materials. Ammonia is known to form solid hemi-, mono-, and dihydrate crystal phases under conditions consistent with the surface of Titan and Enceladus, but has also been assigned a role as water-ice antifreeze and methane hydrate inhibitor which is thought to contribute to the outgassing of methane clathrate hydrates into these moons’ atmospheres. Here we show, through direct synthesis from solution and vapor deposition experiments under conditions consistent with extraterrestrial planetary atmospheres, that ammonia forms clathrate hydrates and participates synergistically in clathrate hydrate formation in the presence of methane gas at low temperatures. The binary structure II tetrahydrofuran + ammonia, structure I ammonia, and binary structure I ammonia + methane clathrate hydrate phases synthesized have been characterized by X-ray diffraction, molecular dynamics simulation, and Raman spectroscopy methods. PMID:22908239

  11. Diamond-anvil cell observations of a new methane hydrate phase in the 100-MPa pressure range

    USGS Publications Warehouse

    Chou, I.-Ming; Sharma, A.; Burruss, R.C.; Hemley, R.J.; Goncharov, A.F.; Stern, L.A.; Kirby, S.H.

    2001-01-01

    A new high-pressure phase of methane hydrate has been identified based on its high optical relief, distinct pressure-temperature phase relations, and Raman spectra. In-situ optical observations were made in a hydrothermal diamond-anvil cell at temperatures between -40?? and 60 ??C and at pressures up to 900 MPa. Two new invariant points were located at -8.7 ??C and 99 MPa for the assemblage consisting of the new phase, structure I methane hydrate, ice Ih, and water, and at 35.3 ??C and 137 MPa for the new phase-structure I methane hydrate-water-methane vapor. Existence of the new phase is critical for understanding the phase relations among the hydrates at low to moderate pressures, and may also have important implications for understanding the hydrogen bonding in H2O and the behavior of water in the planetary bodies, such as Europa, of the outer solar system.

  12. A New Approach to Modeling Densities and Equilibria of Ice and Gas Hydrate Phases

    NASA Astrophysics Data System (ADS)

    Zyvoloski, G.; Lucia, A.; Lewis, K. C.

    2011-12-01

    The Gibbs-Helmholtz Constrained (GHC) equation is a new cubic equation of state that was recently derived by Lucia (2010) and Lucia et al. (2011) by constraining the energy parameter in the Soave form of the Redlich-Kwong equation to satisfy the Gibbs-Helmholtz equation. The key attributes of the GHC equation are: 1) It is a multi-scale equation because it uses the internal energy of departure, UD, as a natural bridge between the molecular and bulk phase length scales. 2) It does not require acentric factors, volume translation, regression of parameters to experimental data, binary (kij) interaction parameters, or other forms of empirical correlations. 3) It is a predictive equation of state because it uses a database of values of UD determined from NTP Monte Carlo simulations. 4) It can readily account for differences in molecular size and shape. 5) It has been successfully applied to non-electrolyte mixtures as well as weak and strong aqueous electrolyte mixtures over wide ranges of temperature, pressure and composition to predict liquid density and phase equilibrium with up to four phases. 6) It has been extensively validated with experimental data. 7) The AAD% error between predicted and experimental liquid density is 1% while the AAD% error in phase equilibrium predictions is 2.5%. 8) It has been used successfully within the subsurface flow simulation program FEHM. In this work we describe recent extensions of the multi-scale predictive GHC equation to modeling the phase densities and equilibrium behavior of hexagonal ice and gas hydrates. In particular, we show that radial distribution functions, which can be determined by NTP Monte Carlo simulations, can be used to establish correct standard state fugacities of 1h ice and gas hydrates. From this, it is straightforward to determine both the phase density of ice or gas hydrates as well as any equilibrium involving ice and/or hydrate phases. A number of numerical results for mixtures of N2, O2, CH4, CO2, water

  13. Changes in hydration status of elite Olympic class sailors in different climates and the effects of different fluid replacement beverages

    PubMed Central

    2013-01-01

    Background Olympic class sailing poses physiological challenges similar to other endurance sports such as cycling or running, with sport specific challenges of limited access to nutrition and hydration during competition. As changes in hydration status can impair sports performance, examining fluid consumption patterns and fluid/electrolyte requirements of Olympic class sailors is necessary to develop specific recommendations for these elite athletes. The purpose of this study was to examine if Olympic class sailors could maintain hydration status with self-regulated fluid consumption in cold conditions and the effect of fixed fluid intake on hydration status in warm conditions. Methods In our cold condition study (CCS), 11 elite Olympic class sailors were provided ad libitum access to three different drinks. Crystal Light (control, C); Gatorade (experimental control, G); and customized sailing-specific Infinit (experimental, IN) (1.0:0.22 CHO:PRO), were provided on three separate training days in cold 7.1°C [4.2 – 11.3]. Our warm condition study (WCS) examined the effect of fixed fluid intake (11.5 mL.kg.-1.h-1) of C, G and heat-specific experimental Infinit (INW)(1.0:0.074 CHO:PRO) on the hydration status of eight elite Olympic Laser class sailors in 19.5°C [17.0 - 23.3]. Both studies used a completely random design. Results In CCS, participants consumed 802 ± 91, 924 ± 137 and 707 ± 152 mL of fluid in each group respectively. This did not change urine specific gravity, but did lead to a main effect for time for body mass (p < 0.001), blood sodium, potassium and chloride with all groups lower post-training (p < 0.05). In WCS, fixed fluid intake increased participant’s body mass post-training in all groups (p < 0.01) and decreased urine specific gravity post-training (p < 0.01). There was a main effect for time for blood sodium, potassium and chloride concentration, with lower values observed post-training (p < 0.05). C

  14. Changes in hydration status of elite Olympic class sailors in different climates and the effects of different fluid replacement beverages.

    PubMed

    Lewis, Evan Jh; Fraser, Sarah J; Thomas, Scott G; Wells, Greg D

    2013-02-21

    Olympic class sailing poses physiological challenges similar to other endurance sports such as cycling or running, with sport specific challenges of limited access to nutrition and hydration during competition. As changes in hydration status can impair sports performance, examining fluid consumption patterns and fluid/electrolyte requirements of Olympic class sailors is necessary to develop specific recommendations for these elite athletes. The purpose of this study was to examine if Olympic class sailors could maintain hydration status with self-regulated fluid consumption in cold conditions and the effect of fixed fluid intake on hydration status in warm conditions. In our cold condition study (CCS), 11 elite Olympic class sailors were provided ad libitum access to three different drinks. Crystal Light (control, C); Gatorade (experimental control, G); and customized sailing-specific Infinit (experimental, IN) (1.0:0.22 CHO:PRO), were provided on three separate training days in cold 7.1°C [4.2 - 11.3]. Our warm condition study (WCS) examined the effect of fixed fluid intake (11.5 mL.kg.-1.h-1) of C, G and heat-specific experimental Infinit (INW)(1.0:0.074 CHO:PRO) on the hydration status of eight elite Olympic Laser class sailors in 19.5°C [17.0 - 23.3]. Both studies used a completely random design. In CCS, participants consumed 802 ± 91, 924 ± 137 and 707 ± 152 mL of fluid in each group respectively. This did not change urine specific gravity, but did lead to a main effect for time for body mass (p < 0.001), blood sodium, potassium and chloride with all groups lower post-training (p < 0.05). In WCS, fixed fluid intake increased participant's body mass post-training in all groups (p < 0.01) and decreased urine specific gravity post-training (p < 0.01). There was a main effect for time for blood sodium, potassium and chloride concentration, with lower values observed post-training (p < 0.05). C blood sodium concentrations were

  15. Water-wetting surfaces as hydrate promoters during transport of carbon dioxide with impurities.

    PubMed

    Kuznetsova, Tatiana; Jensen, Bjørnar; Kvamme, Bjørn; Sjøblom, Sara

    2015-05-21

    Water condensing as liquid drops within the fluid bulk has traditionally been the only scenario accepted in the industrial analysis of hydrate risks. We have applied a combination of absolute thermodynamics and molecular dynamics modeling to analyze the five primary routes of hydrate formation in a rusty pipeline carrying dense carbon dioxide with methane, hydrogen sulfide, argon, and nitrogen as additional impurities. We have revised the risk analysis of all possible routes in accordance with the combination of the first and the second laws of thermodynamics to determine the highest permissible content of water. It was found that at concentrations lower than five percent, hydrogen sulfide will only support the formation of carbon dioxide-dominated hydrate from adsorbed water and hydrate formers from carbon dioxide phase rather than formation in the aqueous phase. Our results indicate that hydrogen sulfide leaving carbon dioxide for the aqueous phase will be able to create an additional hydrate phase in the aqueous region adjacent to the first adsorbed water layer. The growth of hydrate from different phases will decrease the induction time by substantially reducing the kinetically limiting mass transport across the hydrate films. Hydrate formation via adsorption of water on rusty walls will play the decisive role in hydrate formation risk, with the initial concentration of hydrogen sulfide being the critical factor. We concluded that the safest way to eliminate hydrate risks is to ensure that the water content of carbon dioxide is low enough to prevent water dropout via the adsorption mechanism.

  16. Application of RHIZON samplers to obtain high-resolution pore-fluid records during geochemical investigations of gas hydrate systems

    USGS Publications Warehouse

    Pohlman, John W.; Riedel, M; Waite, William F.; Rose, K.; Lapham, L.

    2008-01-01

    Obtaining accurate, high-resolution profiles of pore fluid constituents is critical for characterizing the subsurface geochemistry of hydrate-bearing sediments. Tightly-constrained downcore profiles provide clues about fluid sources, fluid flow, and the milieu of chemical and diagenetic reactions, all of which are used to interpret where and why gas and gas hydrate occur in the natural environment. Because a profile’s quality is only as good as the samples from which the data are obtained, a great deal of effort has been exerted to develop extraction systems suited to various sedimentary regimes. Pore water from deeply buried sediment recovered by scientific drilling is typically squeezed with a hydraulic press (Manheim, 1966); whereas pore water in near-surface, less consolidated sediment is more efficiently pushed from the sediment using compressed gas (Reeburgh, 1967) or centrifugation.

  17. Phase equilibria and thermodynamic modeling of ethane and propane hydrates in porous silica gels.

    PubMed

    Seo, Yongwon; Lee, Seungmin; Cha, Inuk; Lee, Ju Dong; Lee, Huen

    2009-04-23

    In the present study, we examined the active role of porous silica gels when used as natural gas storage and transportation media. We adopted the dispersed water in silica gel pores to substantially enhance active surface for contacting and encaging gas molecules. We measured the three-phase hydrate (H)-water-rich liquid (L(W))-vapor (V) equilibria of C(2)H(6) and C(3)H(8) hydrates in 6.0, 15.0, 30.0, and 100.0 nm silica gel pores to investigate the effect of geometrical constraints on gas hydrate phase equilibria. At specified temperatures, the hydrate stability region is shifted to a higher pressure region depending on pore size when compared with those of bulk hydrates. Through application of the Gibbs-Thomson relationship to the experimental data, we determined the values for the C(2)H(6) hydrate-water and C(3)H(8) hydrate-water interfacial tensions to be 39 +/- 2 and 45 +/- 1 mJ/m(2), respectively. By using these values, the calculation values were in good agreement with the experimental ones. The overall results given in this study could also be quite useful in various fields, such as exploitation of natural gas hydrate in marine sediments and sequestration of carbon dioxide into the deep ocean.

  18. Hydration status and fluid intake of urban, underprivileged South African male adolescent soccer players during training.

    PubMed

    Gordon, Reno Eron; Kassier, Susanna Maria; Biggs, Chara

    2015-01-01

    Poor hydration compromises performance and heightens the risk of heat stress which adolescents are particularly susceptible to as they produce comparatively larger amount of metabolic heat during exercise. This study determined the hydration status and fluid intake of socio-economically disadvantaged, male adolescent soccer players during training. A pilot study was conducted among 79 soccer players (mean age 15.9 ± 0.8 years; mean BMI 20.2 ± 2.1 kg/m(2)). Hydration status was determined before and after two training sessions, using both urine specific gravity and percent loss of body weight. The type and amount of fluid consumed was assessed during training. A self-administered questionnaire was used to determine the players' knowledge regarding fluid and carbohydrate requirements for soccer training. Players were at risk of developing heat illness during six of the 14 training sessions (60 - 90 minutes in length). Although on average players were slightly dehydrated (1.023 ± 0.006 g/ml) before and after (1.024 ± 0.007 g/ml) training, some were extremely dehydrated before (24%) and after (27%) training. Conversely some were extremely hyperhydrated before (3%) and after training (6%). The mean percent loss of body weight was 0.7 ± 0.7%. The majority did not consume fluid during the first (57.0%) and second (70.9%) training sessions. An average of 216.0 ± 140.0 ml of fluid was consumed during both training sessions. The majority (41.8%) consumed water, while a few (5.1%) consumed pure fruit juice. More than 90% stated that water was the most appropriate fluid to consume before, during and after training. Very few (5.0%) correctly stated that carbohydrate should be consumed before, during and after training. Approximately a quarter were severely dehydrated. Many did not drink or drank insufficient amounts. The players' beliefs regarding the importance of fluid and carbohydrate consumption did not correspond with their practices. A

  19. Thermodynamic calculations in the system CH4-H2O and methane hydrate phase equilibria

    USGS Publications Warehouse

    Circone, S.; Kirby, S.H.; Stern, L.A.

    2006-01-01

    Using the Gibbs function of reaction, equilibrium pressure, temperature conditions for the formation of methane clathrate hydrate have been calculated from the thermodynamic properties of phases in the system CH4-H 2O. The thermodynamic model accurately reproduces the published phase-equilibria data to within ??2 K of the observed equilibrium boundaries in the range 0.08-117 MPa and 190-307 K. The model also provides an estimate of the third-law entropy of methane hydrate at 273.15 K, 0.1 MPa of 56.2 J mol-1 K-1 for 1/n CH4??H 2O, where n is the hydrate number. Agreement between the calculated and published phase-equilibria data is optimized when the hydrate composition is fixed and independent of the pressure and temperature for the conditions modeled. ?? 2006 American Chemical Society.

  20. Determination of Methane Hydrate Solubility in the Absence of Vapor Phase by in-situ Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Lu, W.; Chou, I.; Burruss, R.

    2006-12-01

    Prediction of the occurrence, distribution, and evolution of methane hydrate in porous marine sediments requires information on solubilities of methane hydrate in water. Solubilities of methane hydrate in the presence of a vapor phase are well established, but those in the absence of a vapor phase are not well defined with differences up to 30%. We have measured methane concentrations in pure water in equilibrium with sI methane hydrate, in the absence of vapor phase, by in-situ Raman spectroscopy at temperatures (T) from 2 to 20 (± 0.3) °C and pressures (P) at 10, 20, 30, and 40 (± 0.4%) MPa. Methane hydrate was synthesized in a high-pressure capillary optical cell (Chou et al., 2005; Advances in High-Pressure Technology for Geophysical Applications. Ed. J. Chen et al., Chapter 24, p. 475, Elsevier). A small quantity of methane was first loaded in an evacuated cell and then pressurized by water. Hydrate crystals were formed near the liquid-vapor interface near the enclosed end of the optical tube at room T, and were then placed at the center of a USGS-type heating-cooling stage. By adjusting sample P and T, the crystals went through dissolution-formation cycles three to four times in three days until the vapor phase was completely consumed and several crystals (typically 40 x 40 x 10 μm) were formed. These crystals were located at about 200 μm from the enclosed end and were about 20 to 40 μm from each other. Raman spectra were collected for the liquid phase adjacent to hydrate crystals near the enclosed end of the tube. A volumetric decrease in crystal size was observed away from the sampling spot; however, no such volumetric decrease was observed in or near the sampling spot. Therefore, equilibrium was likely established locally within the sampling area. The results are represented by the following linear isobaric equations: 10 MPa: ln [X(CH4)] = 0.06175 T - 6.79507; r2 = 0.9991 (n = 6) 20 MPa: ln [X(CH4)] = 0.06170 T - 6.82816; r2 = 0.9985 (n = 6) 30 MPa

  1. Pore fluid geochemistry from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    USGS Publications Warehouse

    Torres, M.E.; Collett, T.S.; Rose, K.K.; Sample, J.C.; Agena, W.F.; Rosenbaum, E.J.

    2011-01-01

    The BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well was drilled and cored from 606.5 to 760.1. m on the North Slope of Alaska, to evaluate the occurrence, distribution and formation of gas hydrate in sediments below the base of the ice-bearing permafrost. Both the dissolved chloride and the isotopic composition of the water co-vary in the gas hydrate-bearing zones, consistent with gas hydrate dissociation during core recovery, and they provide independent indicators to constrain the zone of gas hydrate occurrence. Analyses of chloride and water isotope data indicate that an observed increase in salinity towards the top of the cored section reflects the presence of residual fluids from ion exclusion during ice formation at the base of the permafrost layer. These salinity changes are the main factor controlling major and minor ion distributions in the Mount Elbert Well. The resulting background chloride can be simulated with a one-dimensional diffusion model, and the results suggest that the ion exclusion at the top of the cored section reflects deepening of the permafrost layer following the last glaciation (???100 kyr), consistent with published thermal models. Gas hydrate saturation values estimated from dissolved chloride agree with estimates based on logging data when the gas hydrate occupies more than 20% of the pore space; the correlation is less robust at lower saturation values. The highest gas hydrate concentrations at the Mount Elbert Well are clearly associated with coarse-grained sedimentary sections, as expected from theoretical calculations and field observations in marine and other arctic sediment cores. ?? 2009 Elsevier Ltd.

  2. The mechanism of vapor phase hydration of calcium oxide: implications for CO2 capture.

    PubMed

    Kudłacz, Krzysztof; Rodriguez-Navarro, Carlos

    2014-10-21

    Lime-based sorbents are used for fuel- and flue-gas capture, thereby representing an economic and effective way to reduce CO2 emissions. Their use involves cyclic carbonation/calcination which results in a significant conversion reduction with increasing number of cycles. To reactivate spent CaO, vapor phase hydration is typically performed. However, little is known about the ultimate mechanism of such a hydration process. Here, we show that the vapor phase hydration of CaO formed after calcination of calcite (CaCO3) single crystals is a pseudomorphic, topotactic process, which progresses via an intermediate disordered phase prior to the final formation of oriented Ca(OH)2 nanocrystals. The strong structural control during this solid-state phase transition implies that the microstructural features of the CaO parent phase predetermine the final structural and physicochemical (reactivity and attrition) features of the product hydroxide. The higher molar volume of the product can create an impervious shell around unreacted CaO, thereby limiting the efficiency of the reactivation process. However, in the case of compact, sintered CaO structures, volume expansion cannot be accommodated in the reduced pore volume, and stress generation leads to pervasive cracking. This favors complete hydration but also detrimental attrition. Implications of these results in carbon capture and storage (CCS) are discussed.

  3. Analysis of mesoscopic attenuation in gas-hydrate bearing sediments

    NASA Astrophysics Data System (ADS)

    Rubino, J. G.; Ravazzoli, C. L.; Santos, J. E.

    2007-05-01

    Several authors have shown that seismic wave attenuation combined with seismic velocities constitute a useful geophysical tool to infer the presence and amounts of gas hydrates lying in the pore space of the sediments. However, it is still not fully understood the loss mechanism associated to the presence of the hydrates, and most of the works dealing with this problem focuse on macroscopic fluid flow, friction between hydrates and sediment matrix and squirt flow. It is well known that an important cause of the attenuation levels observed in seismic data from some sedimentary regions is the mesoscopic loss mechanism, caused by heterogeneities in the rock and fluid properties greater than the pore size but much smaller than the wavelengths. In order to analyze this effect in heterogeneous gas-hydrate bearing sediments, we developed a finite-element procedure to obtain the effective complex modulus of an heterogeneous porous material containing gas hydrates in its pore space using compressibility tests at different oscillatory frequencies in the seismic range. The complex modulus were obtained by solving Biot's equations of motion in the space-frequency domain with appropriate boundary conditions representing a gedanken laboratory experiment measuring the complex volume change of a representative sample of heterogeneous bulk material. This complex modulus in turn allowed us to obtain the corresponding effective phase velocity and quality factor for each frequency and spatial gas hydrate distribution. Physical parameters taken from the Mallik 5L-38 Gas Hydrate Research well (Mackenzie Delta, Canada) were used to analyze the mesoscopic effects in realistic hydrated sediments.

  4. Transition mechanism of sH to filled-ice Ih structure of methane hydrate under fixed pressure condition

    NASA Astrophysics Data System (ADS)

    Kadobayashi, H.; Hirai, H.; Ohfuji, H.; Kojima, Y.; Ohishi, Y.; Hirao, N.; Ohtake, M.; Yamamoto, Y.

    2017-10-01

    The phase transition mechanism of methane hydrate from sH to filled-ice Ih structure was examined using a combination of time-resolved X-ray diffractometry (XRD) and Raman spectroscopy in conjunction with charge-coupled device (CCD) camera observation under fixed pressure conditions. Prior to time-resolved Raman experiments, the typical C-H vibration modes and their pressure dependence of three methane hydrate structures, fluid methane and solid methane were measured using Raman spectroscopy to distinguish the phase transitions of methane hydrates from decomposition to solid methane and ice VI or VII. Experimental results by XRD, Raman spectroscopy and CCD camera observation revealed that the structural transition of sH to filled-ice Ih occurs through a collapse of the sH framework followed by the release of fluid methane that is then gradually incorporated into the filled-ice Ih to reconstruct its structure. These observations suggest that the phase transition of sH to filled-ice Ih takes place by a typical reconstructive mechanism.

  5. Methane hydrate induced permeability modification for multiphase flow in unsaturated porous media

    NASA Astrophysics Data System (ADS)

    Seol, Yongkoo; Kneafsey, Timothy J.

    2011-08-01

    An experimental study was performed using X-ray computed tomography (CT) scanning to capture three-dimensional (3-D) methane hydrate distributions and potential discrete flow pathways in a sand pack sample. A numerical study was also performed to develop and analyze empirical relations that describe the impacts of hydrate accumulation habits within pore space (e.g., pore filling or grain cementing) on multiphase fluid migration. In the experimental study, water was injected into a hydrate-bearing sand sample that was monitored using an X-ray CT scanner. The CT images were converted into numerical grid elements, providing intrinsic sample data including porosity and phase saturations. The impacts of hydrate accumulation were examined by adapting empirical relations into the flow simulations as additional relations governing the evolution of absolute permeability of hydrate bearing sediment with hydrate deposition. The impacts of pore space hydrate accumulation habits on fluid migration were examined by comparing numerical predictions with experimentally measured water saturation distributions and breakthrough curves. A model case with 3-D heterogeneous initial conditions (hydrate saturation, porosity, and water saturation) and pore body-preferred hydrate accumulations best captured water migration behavior through the hydrate-bearing sample observed in the experiment. In the best matching model, absolute permeability in the hydrate bearing sample does not decrease significantly with increasing hydrate saturation until hydrate saturation reaches about 40%, after which it drops rapidly, and complete blockage of flow through the sample can occur as hydrate accumulations approach 70%. The result highlights the importance of permeability modification due to hydrate accumulation habits when predicting multiphase flow through high-saturation, reservoir quality hydrate-bearing sediments.

  6. Identification of the hydrate gel phases present in phosphate-modified calcium aluminate binders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chavda, Mehul A.; Bernal, Susan A.; Apperley, David C.

    The conversion of hexagonal calcium aluminate hydrates to cubic phases in hydrated calcium aluminate cements (CAC) can involve undesirable porosity changes and loss of strength. Modification of CAC by phosphate addition avoids conversion, by altering the nature of the reaction products, yielding a stable amorphous gel instead of the usual crystalline hydrate products. Here, details of the environments of aluminium and phosphorus in this gel were elucidated using solid-state NMR and complementary techniques. Aluminium is identified in both octahedral and tetrahedral coordination states, and phosphorus is present in hydrous environments with varying, but mostly low, degrees of crosslinking. A {supmore » 31}P/{sup 27}Al rotational echo adiabatic passage double resonance (REAPDOR) experiment showed the existence of aluminium–phosphorus interactions, confirming the formation of a hydrated calcium aluminophosphate gel as a key component of the binding phase. This resolves previous disagreements in the literature regarding the nature of the disordered products forming in this system.« less

  7. Inhibition of hyaluronan synthesis in rats reduces renal ability to excrete fluid and electrolytes during acute hydration

    PubMed Central

    Stridh, Sara; Palm, Fredrik

    2013-01-01

    Background. Hyaluronan (HA) is the dominant glycosaminoglycan in the renomedullary interstitium. Renomedullary HA has been implicated in tubular fluid handling due to its water-attracting properties and the changes occurring in parallel to acute variations in the body hydration status. Methods. HA production was inhibited by 4-methylumbelliferone (4-MU in drinking water for 5 days, 1.45 ± 0.07 g/day/kg body weight) in rats prior to hydration. Results. Following hypotonic hydration for 135 min in control animals, diuresis and osmotic excretion increased while sodium excretion and glomerular filtration rate (GFR) remained unchanged. The medullary and cortical HA contents were 7.85 ± 1.29 ng/mg protein and 0.08 ± 0.01 ng/mg protein, respectively. Medullary HA content after 4-MU was 38% of that in controls (2.98 ± 0.95 ng/g protein, p < 0.05), while the low cortical levels were unaffected. Baseline urine flow was not different from that in controls. The diuretic response to hydration was, however, only 51% of that in controls (157 ± 36 versus 306 ± 54 µl/g kidney weight/135 min, p < 0.05) and the osmolar excretion only 47% of that in controls (174 ± 47 versus 374 ± 41 µOsm/g kidney weight/135 min, p < 0.05). Sodium excretion, GFR, and arterial blood pressure were similar to that in control rats and unaltered during hydration. Conclusions. Reduction of renomedullary interstitial HA using 4-MU reduces the ability of the kidney to respond appropriately upon acute hydration. The results strengthen the concept of renomedullary HA as a modulator of tubular fluid handling by changing the physicochemical properties of the interstitial space. PMID:24102146

  8. Direct Visualization of the Hydration Layer on Alumina Nanoparticles with the Fluid Cell STEM in situ

    PubMed Central

    Firlar, Emre; Çınar, Simge; Kashyap, Sanjay; Akinc, Mufit; Prozorov, Tanya

    2015-01-01

    Rheological behavior of aqueous suspensions containing nanometer-sized powders is of relevance to many branches of industry. Unusually high viscosities observed for suspensions of nanoparticles compared to those of micron size powders cannot be explained by current viscosity models. Formation of so-called hydration layer on alumina nanoparticles in water was hypothesized, but never observed experimentally. We report here on the direct visualization of aqueous suspensions of alumina with the fluid cell in situ. We observe the hydration layer formed over the particle aggregates and show that such hydrated aggregates constitute new particle assemblies and affect the flow behavior of the suspensions. We discuss how these hydrated nanoclusters alter the effective solid content and the viscosity of nanostructured suspensions. Our findings elucidate the source of high viscosity observed for nanoparticle suspensions and are of direct relevance to many industrial sectors including materials, food, cosmetics, pharmaceutical among others employing colloidal slurries with nanometer-scale particles. PMID:25996055

  9. Direct Visualization of the Hydration Layer on Alumina Nanoparticles with the Fluid Cell STEM in situ.

    PubMed

    Firlar, Emre; Çınar, Simge; Kashyap, Sanjay; Akinc, Mufit; Prozorov, Tanya

    2015-05-21

    Rheological behavior of aqueous suspensions containing nanometer-sized powders is of relevance to many branches of industry. Unusually high viscosities observed for suspensions of nanoparticles compared to those of micron size powders cannot be explained by current viscosity models. Formation of so-called hydration layer on alumina nanoparticles in water was hypothesized, but never observed experimentally. We report here on the direct visualization of aqueous suspensions of alumina with the fluid cell in situ. We observe the hydration layer formed over the particle aggregates and show that such hydrated aggregates constitute new particle assemblies and affect the flow behavior of the suspensions. We discuss how these hydrated nanoclusters alter the effective solid content and the viscosity of nanostructured suspensions. Our findings elucidate the source of high viscosity observed for nanoparticle suspensions and are of direct relevance to many industrial sectors including materials, food, cosmetics, pharmaceutical among others employing colloidal slurries with nanometer-scale particles.

  10. Direct visualization of the hydration layer on alumina nanoparticles with the fluid cell STEM in situ

    DOE PAGES

    Firlar, Emre; Çınar, Simge; Kashyap, Sanjay; ...

    2015-05-21

    Rheological behavior of aqueous suspensions containing nanometer-sized powders is of relevance to many branches of industry. Unusually high viscosities observed for suspensions of nanoparticles compared to those of micron size powders cannot be explained by current viscosity models. Formation of so-called hydration layer on alumina nanoparticles in water was hypothesized, but never observed experimentally. We report here on the direct visualization of aqueous suspensions of alumina with the fluid cell in situ. We observe the hydration layer formed over the particle aggregates and show that such hydrated aggregates constitute new particle assemblies and affect the flow behavior of the suspensions.more » We discuss how these hydrated nanoclusters alter the effective solid content and the viscosity of nanostructured suspensions. As a result, our findings elucidate the source of high viscosity observed for nanoparticle suspensions and are of direct relevance to many industrial sectors including materials, food, cosmetics, pharmaceutical among others employing colloidal slurries with nanometer-scale particles.« less

  11. Seismic evidence of gas hydrates, multiple BSRs and fluid flow offshore Tumbes Basin, Peru

    NASA Astrophysics Data System (ADS)

    Auguy, Constance; Calvès, Gérôme; Calderon, Ysabel; Brusset, Stéphane

    2017-12-01

    Identification of a previously undocumented hydrate system in the Tumbes Basin, localized off the north Peruvian margin at latitude of 3°20'—4°10'S, allows us to better understand gas hydrates of convergent margins, and complement the 36 hydrate sites already identified around the Pacific Ocean. Using a combined 2D-3D seismic dataset, we present a detailed analysis of seismic amplitude anomalies related to the presence of gas hydrates and/or free gas in sediments. Our observations identify the occurrence of a widespread bottom simulating reflector (BSR), under which we observed, at several sites, the succession of one or two BSR-type reflections of variable amplitude, and vertical acoustic discontinuities associated with fluid flow and gas chimneys. We conclude that the uppermost BSR marks the current base of the hydrate stability field, for a gas composition comprised between 96% methane and 4% of ethane, propane and pure methane. Three hypotheses are developed to explain the nature of the multiple BSRs. They may refer to the base of hydrates of different gas composition, a remnant of an older BSR in the process of dispersion/dissociation or a diagenetically induced permeability barrier formed when the active BSR existed stably at that level for an extended period. The multiple BSRs have been interpreted as three events of steady state in the pressure and temperature conditions. They might be produced by climatic episodes since the last glaciation associated with tectonic activity, essentially tectonic subsidence, one of the main parameters that control the evolution of the Tumbes Basin.

  12. Phase Behavior of Ritonavir Amorphous Solid Dispersions during Hydration and Dissolution.

    PubMed

    Purohit, Hitesh S; Taylor, Lynne S

    2017-12-01

    The aim of this research was to study the interplay of solid and solution state phase transformations during the dissolution of ritonavir (RTV) amorphous solid dispersions (ASDs). RTV ASDs with polyvinylpyrrolidone (PVP), polyvinylpyrrolidone vinyl acetate (PVPVA) and hydroxypropyl methylcellulose acetate succinate (HPMCAS) were prepared at 10-50% drug loading by solvent evaporation. The miscibility of RTV ASDs was studied before and after exposure to 97% relative humidity (RH). Non-sink dissolution studies were performed on fresh and moisture-exposed ASDs. RTV and polymer release were monitored using ultraviolet-visible spectroscopy. Techniques including fluorescence spectroscopy, confocal imaging, scanning electron microscopy (SEM), atomic force microscopy (AFM), differential scanning calorimetry (DSC) and nanoparticle tracking analysis (NTA) were utilized to monitor solid and the solution state phase transformations. All RTV-PVP and RTV-PVPVA ASDs underwent moisture-induced amorphous-amorphous phase separation (AAPS) on high RH storage whereas RTV-HPMCAS ASDs remained miscible. Non-sink dissolution of PVP- and PVPVA-based ASDs at low drug loadings led to rapid RTV and polymer release resulting in concentrations in excess of amorphous solubility, liquid-liquid phase separation (LLPS) and amorphous nanodroplet formation. High drug loading PVP- and PVPVA-based ASDs did not exhibit LLPS upon dissolution as a consequence of extensive AAPS in the hydrated ASD matrix. All RTV-HPMCAS ASDs led to LLPS upon dissolution. RTV ASD dissolution is governed by a competition between the dissolution rate and the rate of phase separation in the hydrated ASD matrix. LLPS was observed for ASDs where the drug release was polymer controlled and only ASDs that remained miscible during the initial phase of dissolution led to LLPS. Techniques such as fluorescence spectroscopy, confocal imaging and SEM were useful in understanding the phase behavior of ASDs upon hydration and dissolution

  13. Enhanced Hydrate Nucleation Near the Limit of Stability.

    PubMed

    Jimenez-Angeles, Felipe; Firoozabadi, Abbas

    2015-03-30

    Clathrate hydrates are crystalline structures composed of small guest molecules trapped into cages formed by hydrogen-bonded water molecules. In hydrate nucleation, water and the guest molecules may stay in a metastable fluid mixture for a long period. Metastability is broken if the concentration of the guest is above certain limit. We perform molecular dynamics (MD) simulations of supersaturated water-propane solutions close to the limit of stability. We show that hydrate nucleation can be very fast in a very narrow range of composition at moderate temperatures. Propane density fluctuations near the fluid-fluid demixing are coupled with crystallization producing en- hanced nucleation rates. This is the first report of propane-hydrate nucleation by MD simulations. We observe motifs of the crystalline structure II in line with experiments and new hydrate cages not reported in the literature. Our study relates nucleation to the fluid-fluid spinodal decomposition and demonstration that the enhanced nucleation phenomenon is more general than short range attractive interactions as suggested in nucleation of proteins.

  14. The conversion process of hydrocarbon hydrates into CO2 hydrates and vice versa: thermodynamic considerations.

    PubMed

    Schicks, J M; Luzi, M; Beeskow-Strauch, B

    2011-11-24

    Microscopy, confocal Raman spectroscopy and powder X-ray diffraction (PXRD) were used for in situ investigations of the CO(2)-hydrocarbon exchange process in gas hydrates and its driving forces. The study comprises the exposure of simple structure I CH(4) hydrate and mixed structure II CH(4)-C(2)H(6) and CH(4)-C(3)H(8) hydrates to gaseous CO(2) as well as the reverse reaction, i.e., the conversion of CO(2)-rich structure I hydrate into structure II mixed hydrate. In the case of CH(4)-C(3)H(8) hydrates, a conversion in the presence of gaseous CO(2) from a supposedly more stable structure II hydrate to a less stable structure I CO(2)-rich hydrate was observed. PXRD data show that the reverse process requires longer initiation times, and structural changes seem to be less complete. Generally, the exchange process can be described as a decomposition and reformation process, in terms of a rearrangement of molecules, and is primarily induced by the chemical potential gradient between hydrate phase and the provided gas phase. The results show furthermore the dependency of the conversion rate on the surface area of the hydrate phase, the thermodynamic stability of the original and resulting hydrate phase, as well as the mobility of guest molecules and formation kinetics of the resulting hydrate phase.

  15. Does dietary fluid intake affect skin hydration in healthy humans? A systematic literature review.

    PubMed

    Akdeniz, M; Tomova-Simitchieva, T; Dobos, G; Blume-Peytavi, U; Kottner, J

    2018-02-02

    Associations between daily amounts of drinking water and skin hydration and skin physiology receive increasingly attention in the daily life and in clinical practice. However, there is a lack of evidence of dermatological benefits from drinking increased amounts of water. Pubmed and Web of Science were searched without any restrictions of publication dates. References of included papers and related reviews were checked. Eligibility criteria were primary intervention and observational studies investigating the effects of fluid intake on skin properties in English, German, Spanish or Portuguese language, including subjects being healthy and 18+ years. Searches resulted in 216 records, 23 articles were read in full text, and six were included. The mean age of the samples ranged from 24 to 56 years. Overall the evidence is weak in terms of quantity and methodological quality. Disregarding the methodological limitations a slight increase in stratum corneum and "deep" skin hydration was observed after additional water intake, particularly in individuals with lower prior water consumption. Reductions of clinical signs of dryness and roughness were observed. The extensibility and elasticity of the skin increased slightly. Unclear associations were shown between water intake and transepidermal water loss, sebum content, and skin surface pH. Additional dietary water intake may increase stratum corneum hydration. The underlying biological mechanism for this possible relationship is unknown. Whether this association also exists in aged subjects is unclear. Research is needed to answer the question whether increased fluid intake decreases signs of dry skin. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Numerical analysis of wellbore instability in gas hydrate formation during deep-water drilling

    NASA Astrophysics Data System (ADS)

    Zhang, Huaiwen; Cheng, Yuanfang; Li, Qingchao; Yan, Chuanliang; Han, Xiuting

    2018-02-01

    Gas hydrate formation may be encountered during deep-water drilling because of the large amount and wide distribution of gas hydrates under the shallow seabed of the South China Sea. Hydrates are extremely sensitive to temperature and pressure changes, and drilling through gas hydrate formation may cause dissociation of hydrates, accompanied by changes in wellbore temperatures, pore pressures, and stress states, thereby leading to wellbore plastic yield and wellbore instability. Considering the coupling effect of seepage of drilling fluid into gas hydrate formation, heat conduction between drilling fluid and formation, hydrate dissociation, and transformation of the formation framework, this study established a multi-field coupling mathematical model of the wellbore in the hydrate formation. Furthermore, the influences of drilling fluid temperatures, densities, and soaking time on the instability of hydrate formation were calculated and analyzed. Results show that the greater the temperature difference between the drilling fluid and hydrate formation is, the faster the hydrate dissociates, the wider the plastic dissociation range is, and the greater the failure width becomes. When the temperature difference is greater than 7°C, the maximum rate of plastic deformation around the wellbore is more than 10%, which is along the direction of the minimum horizontal in-situ stress and associated with instability and damage on the surrounding rock. The hydrate dissociation is insensitive to the variation of drilling fluid density, thereby implying that the change of the density of drilling fluids has a minimal effect on the hydrate dissociation. Drilling fluids that are absorbed into the hydrate formation result in fast dissociation at the initial stage. As time elapses, the hydrate dissociation slows down, but the risk of wellbore instability is aggravated due to the prolonged submersion in drilling fluids. For the sake of the stability of the wellbore in deep

  17. Microstructural evolution of gas hydrates in sedimentary matrices observed with synchrotron X-ray computed tomographic microscopy

    NASA Astrophysics Data System (ADS)

    Chaouachi, Marwen; Falenty, Andrzej; Sell, Kathleen; Enzmann, Frieder; Kersten, Michael; Haberthür, David; Kuhs, Werner F.

    2015-06-01

    The formation process of gas hydrates in sedimentary matrices is of crucial importance for the physical and transport properties of the resulting aggregates. This process has never been observed in situ at submicron resolution. Here we report on synchrotron-based microtomographic studies by which the nucleation and growth processes of gas hydrate were observed at 276 K in various sedimentary matrices such as natural quartz (with and without admixtures of montmorillonite type clay) or glass beads with different surface properties, at varying water saturation. Both juvenile water and metastably gas-enriched water obtained from gas hydrate decomposition was used. Xenon gas was employed to enhance the density contrast between gas hydrate and the fluid phases involved. The nucleation sites can be easily identified and the various growth patterns are clearly established. In sediments under-saturated with juvenile water, nucleation starts at the water-gas interface resulting in an initially several micrometer thick gas hydrate film; further growth proceeds to form isometric single crystals of 10-20 µm size. The growth of gas hydrate from gas-enriched water follows a different pattern, via the nucleation in the bulk of liquid producing polyhedral single crystals. A striking feature in both cases is the systematic appearance of a fluid phase film of up to several micron thickness between gas hydrates and the surface of the quartz grains. These microstructural findings are relevant for future efforts of quantitative rock physics modeling of gas hydrates in sedimentary matrices and explain the anomalous attenuation of seismic/sonic waves.

  18. A comparison of hydration effect on body fluid and temperature regulation between Malaysian and Japanese males exercising at mild dehydration in humid heat

    PubMed Central

    2014-01-01

    Background This study investigated the effect of hydration differences on body fluid and temperature regulation between tropical and temperate indigenes exercising in the heat. Methods Ten Japanese and ten Malaysian males with matched physical characteristics (height, body weight, and peak oxygen consumption) participated in this study. Participants performed exercise for 60 min at 55% peak oxygen uptake followed by a 30-min recovery at 32°C and 70% relative air humidity with hydration (4 times each, 3 mL per kg body weight, 37°C) or without hydration. Rectal temperature, skin temperature, heart rate, skin blood flow, and blood pressure were measured continuously. The percentage of body weight loss and total sweat loss were calculated from body weight measurements. The percentage change in plasma volume was estimated from hemoglobin concentration and hematocrit. Results Malaysian participants had a significantly lower rectal temperature, a smaller reduction in plasma volume, and a lower heart rate in the hydrated condition than in the non-hydrated condition at the end of exercise (P <0.05), whereas Japanese participants showed no difference between the two hydration conditions. Hydration induced a greater total sweat loss in both groups (P <0.05), and the percentage of body weight loss in hydrated Malaysians was significantly less than in hydrated Japanese (P <0.05). A significant interaction between groups and hydration conditions was observed for the percentage of mean cutaneous vascular conductance during exercise relative to baseline (P <0.05). Conclusions The smaller reduction in plasma volume and percentage body weight loss in hydrated Malaysians indicated an advantage in body fluid regulation. This may enable Malaysians to reserve more blood for circulation and heat dissipation and thereby maintain lower rectal temperatures in a hydrated condition. PMID:24490869

  19. A comparison of hydration effect on body fluid and temperature regulation between Malaysian and Japanese males exercising at mild dehydration in humid heat.

    PubMed

    Wakabayashi, Hitoshi; Wijayanto, Titis; Lee, Joo-Young; Hashiguchi, Nobuko; Saat, Mohamed; Tochihara, Yutaka

    2014-02-04

    This study investigated the effect of hydration differences on body fluid and temperature regulation between tropical and temperate indigenes exercising in the heat. Ten Japanese and ten Malaysian males with matched physical characteristics (height, body weight, and peak oxygen consumption) participated in this study. Participants performed exercise for 60 min at 55% peak oxygen uptake followed by a 30-min recovery at 32°C and 70% relative air humidity with hydration (4 times each, 3 mL per kg body weight, 37°C) or without hydration. Rectal temperature, skin temperature, heart rate, skin blood flow, and blood pressure were measured continuously. The percentage of body weight loss and total sweat loss were calculated from body weight measurements. The percentage change in plasma volume was estimated from hemoglobin concentration and hematocrit. Malaysian participants had a significantly lower rectal temperature, a smaller reduction in plasma volume, and a lower heart rate in the hydrated condition than in the non-hydrated condition at the end of exercise (P <0.05), whereas Japanese participants showed no difference between the two hydration conditions. Hydration induced a greater total sweat loss in both groups (P <0.05), and the percentage of body weight loss in hydrated Malaysians was significantly less than in hydrated Japanese (P <0.05). A significant interaction between groups and hydration conditions was observed for the percentage of mean cutaneous vascular conductance during exercise relative to baseline (P <0.05). The smaller reduction in plasma volume and percentage body weight loss in hydrated Malaysians indicated an advantage in body fluid regulation. This may enable Malaysians to reserve more blood for circulation and heat dissipation and thereby maintain lower rectal temperatures in a hydrated condition.

  20. Major occurrences and reservoir concepts of marine clathrate hydrates: Implications of field evidence

    USGS Publications Warehouse

    Booth, J.S.; Winters, W.J.; Dillon, William P.; Clennell, M.B.; Rowe, M.M.

    1998-01-01

    This paper is part of the special publication Gas hydrates: relevance to world margin stability and climatic change (eds J.P. Henriet and J. Mienert). Questions concerning clathrate hydrate as an energy resource, as a factor in modifying global climate and as a triggering mechanism for mass movements invite consideration of what factors promote hydrate concentration, and what the quintessential hydrate-rich sediment may be. Gas hydrate field data, although limited, provide a starting point for identifying the environments and processes that lead to more massive concentrations. Gas hydrate zones are up to 30 m thick and the vertical range of occurrence at a site may exceed 200 m. Zones typically occur more than 100m above the phase boundary. Thicker zones are overwhelmingly associated with structural features and tectonism, and often contain sand. It is unclear whether an apparent association between zone thickness and porosity represents a cause-and-effect relationship. The primary control on the thickness of a potential gas hydrate reservoir is the geological setting. Deep water and low geothermal gradients foster thick gas hydrate stability zones (GHSZs). The presence of faults, fractures, etc. can favour migration of gas-rich fluids. Geological processes, such as eustacy or subsidence, may alter the thickness of the GHSZ or affect hydrate concentratiion. Tectonic forces may promote injection of gas into the GHSZ. More porous and permeable sediment, as host sediment properties, increase storage capacity and fluid conductivity, and thus also enhance reservoir potential.

  1. Fluid flow and methane occurrences in the Disko Bugt area offshore West Greenland: indications for gas hydrates?

    NASA Astrophysics Data System (ADS)

    Nielsen, Tove; Laier, Troels; Kuijpers, Antoon; Rasmussen, Tine L.; Mikkelsen, Naja E.; Nørgård-Pedersen, Niels

    2014-12-01

    The present study is the first to directly address the issue of gas hydrates offshore West Greenland, where numerous occurrences of shallow hydrocarbons have been documented in the vicinity of Disko Bugt (Bay). Furthermore, decomposing gas hydrate has been implied to explain seabed features in this climate-sensitive area. The study is based on archive data and new (2011, 2012) shallow seismic and sediment core data. Archive seismic records crossing an elongated depression (20×35 km large, 575 m deep) on the inner shelf west of Disko Bugt (Bay) show a bottom simulating reflector (BSR) within faulted Mesozoic strata, consistent with the occurrence of gas hydrates. Moreover, the more recently acquired shallow seismic data reveal gas/fluid-related features in the overlying sediments, and geochemical data point to methane migration from a deeper-lying petroleum system. By contrast, hydrocarbon signatures within faulted Mesozoic strata below the strait known as the Vaigat can be inferred on archive seismics, but no BSR was visible. New seismic data provide evidence of various gas/fluid-releasing features in the overlying sediments. Flares were detected by the echo-sounder in July 2012, and cores contained ikaite and showed gas-releasing cracks and bubbles, all pointing to ongoing methane seepage in the strait. Observed seabed mounds also sustain gas seepages. For areas where crystalline bedrock is covered only by Pleistocene-Holocene deposits, methane was found only in the Egedesminde Dyb (Trough). There was a strong increase in methane concentration with depth, but no free gas. This is likely due to the formation of gas hydrate and the limited thickness of the sediment infill. Seabed depressions off Ilulissat Isfjord (Icefjord) previously inferred to express ongoing gas release from decomposing gas hydrate show no evidence of gas seepage, and are more likely a result of neo-tectonism.

  2. Anti-Adhesive Behaviors between Solid Hydrate and Liquid Aqueous Phase Induced by Hydrophobic Silica Nanoparticles.

    PubMed

    Min, Juwon; Baek, Seungjun; Somasundaran, P; Lee, Jae W

    2016-09-20

    This study introduces an "anti-adhesive force" at the interface of solid hydrate and liquid solution phases. The force was induced by the presence of hydrophobic silica nanoparticles or one of the common anti-agglomerants (AAs), sorbitan monolaurate (Span 20), at the interface. The anti-adhesive force, which is defined as the maximum pushing force that does not induce the formation of a capillary bridge between the cyclopentane (CP) hydrate particle and the aqueous solution, was measured using a microbalance. Both hydrophobic silica nanoparticles and Span 20 can inhibit adhesion between the CP hydrate probe and the aqueous phase because silica nanoparticles have an aggregative property at the interface, and Span 20 enables the hydrate surface to be wetted with oil. Adding water-soluble sodium dodecyl sulfate (SDS) to the nanoparticle system cannot affect the aggregative property or the distribution of silica nanoparticles at the interface and, thus, cannot change the anti-adhesive effect. However, the combined system of Span 20 and SDS dramatically reduces the interfacial tension: emulsion drops were formed at the interface without any energy input and were adsorbed on the CP hydrate surface, which can cause the growth of hydrate particles. Silica nanoparticles have a good anti-adhesive performance with a relatively smaller dosage and are less influenced by the presence of molecular surfactants; consequently, these nanoparticles may have a good potential for hydrate inhibition as AAs.

  3. Coupled numerical modeling of gas hydrates bearing sediments from laboratory to field-scale conditions

    NASA Astrophysics Data System (ADS)

    Sanchez, M. J.; Santamarina, C.; Gai, X., Sr.; Teymouri, M., Sr.

    2017-12-01

    Stability and behavior of Hydrate Bearing Sediments (HBS) are characterized by the metastable character of the gas hydrate structure which strongly depends on thermo-hydro-chemo-mechanical (THCM) actions. Hydrate formation, dissociation and methane production from hydrate bearing sediments are coupled THCM processes that involve, amongst other, exothermic formation and endothermic dissociation of hydrate and ice phases, mixed fluid flow and large changes in fluid pressure. The analysis of available data from past field and laboratory experiments, and the optimization of future field production studies require a formal and robust numerical framework able to capture the very complex behavior of this type of soil. A comprehensive fully coupled THCM formulation has been developed and implemented into a finite element code to tackle problems involving gas hydrates sediments. Special attention is paid to the geomechanical behavior of HBS, and particularly to their response upon hydrate dissociation under loading. The numerical framework has been validated against recent experiments conducted under controlled conditions in the laboratory that challenge the proposed approach and highlight the complex interaction among THCM processes in HBS. The performance of the models in these case studies is highly satisfactory. Finally, the numerical code is applied to analyze the behavior of gas hydrate soils under field-scale conditions exploring different features of material behavior under possible reservoir conditions.

  4. Reversible hydration and aqueous exfoliation of the acetate-intercalated layered double hydroxide of Ni and Al: Observation of an ordered interstratified phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manohara, G.V.; Vishnu Kamath, P., E-mail: vishnukamath8@hotmail.com; Milius, Wolfgang

    2012-12-15

    Acetate-intercalated layered double hydroxides (LDHs) of Ni and Al undergo reversible hydration in the solid state in response to the ambient humidity. The LDH with a high layer charge (0.33/formula unit) undergoes facile hydration in a single step, whereas the LDH with a lower layer charge (0.24/formula unit) exhibits an ordered interstratified intermediate, comprising the hydrated and dehydrated layers stacked alternatively. This phase, also known as the staged S-2 phase, coexists with the end members suggesting the existence of a solution-type equilibrium between the S-2 phase and the end members of the hydration cycle. These LDHs also undergo facile aqueousmore » exfoliation into 2-5 nm-thick tactoids with a radial dimension of 0.2-0.5 {mu}m. - Graphical abstract: Schematic of the hydrated, dehydrated and interstratified phases observed during the hydration-dehydration of Ni/Al-CH{sub 3}COO LDH. Highlights: Black-Right-Pointing-Pointer Ni/Al-acetate LDHs were synthesized by HPFS method by hydrolysis of acetamide. Black-Right-Pointing-Pointer Intercalated acetate ion shows reversible hydration with variation in humidity. Black-Right-Pointing-Pointer An ordered interstratified phase was observed during hydration/dehydration cycle. Black-Right-Pointing-Pointer A solution type equilibrium is observed between hydration-dehydration phases. Black-Right-Pointing-Pointer These LDHs undergo facile aqueous exfoliation.« less

  5. Parametric study of the physical properties of hydrate-bearing sand, silt, and clay sediments: 1. Electromagnetic properties

    USGS Publications Warehouse

    Lee, J.Y.; Santamarina, J.C.; Ruppel, C.

    2010-01-01

    The marked decrease in bulk electrical conductivity of sediments in the presence of gas hydrates has been used to interpret borehole electrical resistivity logs and, to a lesser extent, the results of controlled source electromagnetic surveys to constrain the spatial distribution and predicted concentration of gas hydrate in natural settings. Until now, an exhaustive laboratory data set that could be used to assess the impact of gas hydrate on the electromagnetic properties of different soils (sand, silt, and clay) at different effective stress and with different saturations of hydrate has been lacking. The laboratory results reported here are obtained using a standard geotechnical cell and the hydrate-formed tetrahydrofuran (THF), a liquid that is fully miscible in water and able to produce closely controlled saturations of hydrate from dissolved phase. Both permittivity and electrical conductivity are good indicators of the volume fraction of free water in the sediment, which is in turn dependent on hydrate saturation. Permittivity in the microwave frequency range is particularly predictive of free water content since it is barely affected by ionic concentration, pore structure, and surface conduction. Electrical conductivity (or resistivity) is less reliable for constraining water content or hydrate saturation: In addition to fluid-filled porosity, other factors, such as the ionic concentration of the pore fluid and possibly other conduction effects (e.g., surface conduction in high specific surface soils having low conductivity pore fluid), also influence electrical conductivity.

  6. The 10Å phase: a high-pressure expandable sheet silicate stable during subduction of hydrated lithosphere

    NASA Astrophysics Data System (ADS)

    Fumagalli, Patrizia; Stixrude, Lars; Poli, Stefano; Snyder, Don

    2001-03-01

    H 2O storage and release in deep subducting lithosphere is controlled by complex reaction suites involving a variety of hydrous phases. As a result of its relatively large thermal stability and intermediate composition, the 10Å phase (Mg 3Si 4O 10(OH) 2· nH 2O) has been regarded as a relevant H 2O reservoir in a wide range of rock compositions and mineral assemblages. High-pressure syntheses of the 10Å phase were carried out at 6.7 GPa and 650°C under fluid-saturated conditions in a Walker-type multi-anvil apparatus, from 5 min to 430 h. X-ray powder diffraction of large platy hexagonal crystals of the 10Å phase (up to 100 μm) were indexed on the basis of a trioctahedral-type structure. Long-term run products (>110 h) reveal sensitivity of the 10Å phase to treatment with acetone leading to the appearance of diffractions at greater d-spacings (10.2-11.6 Å) with respect to the basal peak of the 10Å phase (9.64-10.07 Å). This swelling behavior is strongly related to synthesis run duration. The Raman spectrum of the 10Å phase at frequencies less than 800 cm -1 shows a strong similarity to talc. In the Si-O stretching region (800-1100 cm -1), the 10Å phase exhibits three modes (909, 992 and 1058 cm -1), as compared to two in talc. The bending mode of water (ν 2) is found at 1593 cm -1. In the OH stretching region, peaks at 3593, 3622 and 3668 cm -1 were observed. The acetone treated sample shows a C-H stretching mode at 2923 cm -1 while the double bond CO signal is absent. The swelling behavior of the 10Å phase is interpreted as due to intercalation of acetone with pre-existing interlayer water. The efficiency of this process is dependent on the amount of the interlayer water which in turn depends on run duration. The relation between the response to acetone treatment and run duration is therefore interpreted as a time-dependent hydration of the 10Å phase. The fractions transformed from non-expandable to expandable fractions was fitted to the Avrami

  7. Modeling of acoustic wave dissipation in gas hydrate-bearing sediments

    NASA Astrophysics Data System (ADS)

    Guerin, Gilles; Goldberg, David

    2005-07-01

    Recent sonic and seismic data in gas hydrate-bearing sediments have indicated strong waveform attenuation associated with a velocity increase, in apparent contradiction with conventional wave propagation theory. Understanding the reasons for such energy dissipation could help constrain the distribution and the amounts of gas hydrate worldwide from the identification of low amplitudes in seismic surveys. A review of existing models for wave propagation in frozen porous media, all based on Biot's theory, shows that previous formulations fail to predict any significant attenuation with increasing hydrate content. By adding physically based components to these models, such as cementation by elastic shear coupling, friction between the solid phases, and squirt flow, we are able to predict an attenuation increase associated with gas hydrate formation. The results of the model agree well with the sonic logging data recorded in the Mallik 5L-38 Gas Hydrate Research Well. Cementation between gas hydrate and the sediment grains is responsible for the increase in shear velocity. The primary mode of energy dissipation is found to be friction between gas hydrate and the sediment matrix, combined with an absence of inertial coupling between gas hydrate and the pore fluid. These results predict similar attenuation increase in hydrate-bearing formations over most of the sonic and seismic frequency range.

  8. Preliminary Experimental Examination Of Controls On Methane Expulsion During Melting Of Natural Gas Hydrate Systems

    NASA Astrophysics Data System (ADS)

    Kneafsey, T. J.; Flemings, P. B.; Bryant, S. L.; You, K.; Polito, P. J.

    2013-12-01

    Global climate change will cause warming of the oceans and land. This will affect the occurrence, behavior, and location of subseafloor and subterranean methane hydrate deposits. We suggest that in many natural systems local salinity, elevated by hydrate formation or freshened by hydrate dissociation, may control gas transport through the hydrate stability zone. We are performing experiments and modeling the experiments to explore this behavior for different warming scenarios. Initially, we are exploring hydrate association/dissociation in saline systems with constant water mass. We compare experiments run with saline (3.5 wt. %) water vs. distilled water in a sand mixture at an initial water saturation of ~0.5. We increase the pore fluid (methane) pressure to 1050 psig. We then stepwise cool the sample into the hydrate stability field (~3 degrees C), allowing methane gas to enter as hydrate forms. We measure resistivity and the mass of methane consumed. We are currently running these experiments and we predict our results from equilibrium thermodynamics. In the fresh water case, the modeled final hydrate saturation is 63% and all water is consumed. In the saline case, the modeled final hydrate saturation is 47%, the salinity is 12.4 wt. %, and final water saturation is 13%. The fresh water system is water-limited: all the water is converted to hydrate. In the saline system, pore water salinity is elevated and salt is excluded from the hydrate structure during hydrate formation until the salinity drives the system to three phase equilibrium (liquid, gas, hydrate) and no further hydrate forms. In our laboratory we can impose temperature gradients within the column, and we will use this to investigate equilibrium conditions in large samples subjected to temperature gradients and changing temperature. In these tests, we will quantify the hydrate saturation and salinity over our meter-long sample using spatially distributed temperature sensors, spatially distributed

  9. Hydrate Formation in Gas-Rich Marine Sediments: A Grain-Scale Model

    NASA Astrophysics Data System (ADS)

    Holtzman, R.; Juanes, R.

    2009-12-01

    We present a grain-scale model of marine sediment, which couples solid- and multiphase fluid-mechanics together with hydrate kinetics. The model is applied to investigate the spatial distribution of the different methane phases - gas and hydrate - within the hydrate stability zone. Sediment samples are generated from three-dimensional packs of spherical grains, mapping the void space into a pore network by tessellation. Gas invasion into the water-saturated sample is simulated by invasion-percolation, coupled with a discrete element method that resolves the grain mechanics. The coupled model accounts for forces exerted by the fluids, including cohesion associated with gas-brine surface tension. Hydrate growth is represented by a hydrate film along the gas-brine interface, which increases sediment cohesion by cementing the grain contacts. Our model of hydrate growth includes the possible rupture of the hydrate layer, which leads to the creation of new gas-water interface. In previous work, we have shown that fine-grained sediments (FGS) exhibit greater tendency to fracture, whereas capillary invasion is the preferred mode of methane gas transport in coarse-grained sediments (CGS). The gas invasion pattern has profound consequences on the hydrate distribution: a larger area-to-volume ratio of the gas cluster leads to a larger drop in gas pressure inside the growing hydrate shell, causing it to rupture. Repeated cycles of imbibition and hydrate growth accompanied by trapping of gas allow us to determine the distribution of hydrate and gas within the sediment as a function of time. Our pore-scale model suggests that, even when film rupture takes place, the conversion of gas to hydrate is slow. This explains two common field observations: the coexistence of gas and hydrate within the hydrate stability zone in CGS, and the high methane fluxes through fracture conduits in FGS. These results demonstrate the importance of accounting for the strong coupling among multiphase

  10. Phase transition and epitaxies between hydrated orthorhombic and anhydrous monoclinic uric acid crystals

    NASA Astrophysics Data System (ADS)

    Boistelle, R.; Rinaudo, C.

    1981-05-01

    Anhydrous monoclinic and hydrated orthorhombic uric acid crystals can be nucleated and grown from pure water solutions either separately or together with epitaxial relationships. When crystals of one modification exist in the solution they can act as nucleation substrate for the crystals of the other modification. In both cases the new phase grows epitaxially on the substrate; the mutual orientations are the same but the contact planes are different. In addition, the anhydrous modification grows into the hydrated one which undergoes a phase transition by a dissolution-recrystallization process. It is likely that the same processes occur in human stones made up of uric acids.

  11. Interfacial Properties and Mechanisms Dominating Gas Hydrate Cohesion and Adhesion in Liquid and Vapor Hydrocarbon Phases.

    PubMed

    Hu, Sijia; Koh, Carolyn A

    2017-10-24

    The interfacial properties and mechanisms of gas hydrate systems play a major role in controlling their interparticle and surface interactions, which is desirable for nearly all energy applications of clathrate hydrates. In particular, preventing gas hydrate interparticle agglomeration and/or particle-surface deposition is critical to the prevention of gas hydrate blockages during the exploration and transportation of oil and gas subsea flow lines. These agglomeration and deposition processes are dominated by particle-particle cohesive forces and particle-surface adhesive force. In this study, we present the first direct measurements on the cohesive and adhesive forces studies of the CH 4 /C 2 H 6 gas hydrate in a liquid hydrocarbon-dominated system utilizing a high-pressure micromechanical force (HP-MMF) apparatus. A CH 4 /C 2 H 6 gas mixture was used as the gas hydrate former in the model liquid hydrocarbon phase. For the cohesive force baseline test, it was found that the addition of liquid hydrocarbon changed the interfacial tension and contact angle of water in the liquid hydrocarbon compared to water in the gas phase, resulting in a force of 23.5 ± 2.5 mN m -1 at 3.45 MPa and 274 K for a 2 h annealing time period in which hydrate shell growth occurs. It was observed that the cohesive force was inversely proportional to the annealing time, whereas the force increased with increasing contact time. For a longer contact time (>12 h), the force could not be measured because the two hydrate particles adhered permanently to form one large particle. The particle-surface adhesive force in the model liquid hydrocarbon was measured to be 5.3 ± 1.1 mN m -1 under the same experimental condition. Finally, with a 1 h contact time, the hydrate particle and the carbon steel (CS) surface were sintered together and the force was higher than what could be measured by the current apparatus. A possible mechanism is presented in this article to describe the effect of contact time

  12. Analysis of three-phase equilibrium conditions for methane hydrate by isometric-isothermal molecular dynamics simulations.

    PubMed

    Yuhara, Daisuke; Brumby, Paul E; Wu, David T; Sum, Amadeu K; Yasuoka, Kenji

    2018-05-14

    To develop prediction methods of three-phase equilibrium (coexistence) conditions of methane hydrate by molecular simulations, we examined the use of NVT (isometric-isothermal) molecular dynamics (MD) simulations. NVT MD simulations of coexisting solid hydrate, liquid water, and vapor methane phases were performed at four different temperatures, namely, 285, 290, 295, and 300 K. NVT simulations do not require complex pressure control schemes in multi-phase systems, and the growth or dissociation of the hydrate phase can lead to significant pressure changes in the approach toward equilibrium conditions. We found that the calculated equilibrium pressures tended to be higher than those reported by previous NPT (isobaric-isothermal) simulation studies using the same water model. The deviations of equilibrium conditions from previous simulation studies are mainly attributable to the employed calculation methods of pressure and Lennard-Jones interactions. We monitored the pressure in the methane phase, far from the interfaces with other phases, and confirmed that it was higher than the total pressure of the system calculated by previous studies. This fact clearly highlights the difficulties associated with the pressure calculation and control for multi-phase systems. The treatment of Lennard-Jones interactions without tail corrections in MD simulations also contributes to the overestimation of equilibrium pressure. Although improvements are still required to obtain accurate equilibrium conditions, NVT MD simulations exhibit potential for the prediction of equilibrium conditions of multi-phase systems.

  13. Analysis of three-phase equilibrium conditions for methane hydrate by isometric-isothermal molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Yuhara, Daisuke; Brumby, Paul E.; Wu, David T.; Sum, Amadeu K.; Yasuoka, Kenji

    2018-05-01

    To develop prediction methods of three-phase equilibrium (coexistence) conditions of methane hydrate by molecular simulations, we examined the use of NVT (isometric-isothermal) molecular dynamics (MD) simulations. NVT MD simulations of coexisting solid hydrate, liquid water, and vapor methane phases were performed at four different temperatures, namely, 285, 290, 295, and 300 K. NVT simulations do not require complex pressure control schemes in multi-phase systems, and the growth or dissociation of the hydrate phase can lead to significant pressure changes in the approach toward equilibrium conditions. We found that the calculated equilibrium pressures tended to be higher than those reported by previous NPT (isobaric-isothermal) simulation studies using the same water model. The deviations of equilibrium conditions from previous simulation studies are mainly attributable to the employed calculation methods of pressure and Lennard-Jones interactions. We monitored the pressure in the methane phase, far from the interfaces with other phases, and confirmed that it was higher than the total pressure of the system calculated by previous studies. This fact clearly highlights the difficulties associated with the pressure calculation and control for multi-phase systems. The treatment of Lennard-Jones interactions without tail corrections in MD simulations also contributes to the overestimation of equilibrium pressure. Although improvements are still required to obtain accurate equilibrium conditions, NVT MD simulations exhibit potential for the prediction of equilibrium conditions of multi-phase systems.

  14. Molecular simulations and density functional theory calculations of bromine in clathrate hydrate phases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dureckova, Hana, E-mail: houci059@uottawa.ca; Woo, Tom K., E-mail: tom.woo@uottawa.ca; Alavi, Saman, E-mail: saman.alavi@nrc-cnrc.gc.ca

    Bromine forms a tetragonal clathrate hydrate structure (TS-I) very rarely observed in clathrate hydrates of other guest substances. The detailed structure, energetics, and dynamics of Br{sub 2} and Cl{sub 2} in TS-I and cubic structure I (CS-I) clathrate hydrates are studied in this work using molecular dynamics and quantum chemical calculations. X-ray diffraction studies show that the halogen-water–oxygen distances in the cages of these structures are shorter than the sum of the van der Waals radii of halogen and oxygen atoms. This suggests that the stabilizing effects of halogen bonding or other non-covalent interactions (NCIs) may contribute to the formationmore » of the unique tetragonal bromine hydrate structure. We performed molecular dynamics simulations of Br{sub 2} and Cl{sub 2} clathrate hydrates using our previously developed five-site charge models for the dihalogen molecules [Dureckova et al. Can. J. Chem. 93, 864 (2015)] which reproduce the computed electrostatic potentials of the dihalogens and account for the electropositive σ-hole of the halogen bond donor (the dihalogen). Analysis of the radial distribution functions, enthalpies of encapsulation, velocity and orientation autocorrelation functions, and polar angle distributions are carried out for Br{sub 2} and Cl{sub 2} guests in various cages to contrast the properties of these guests in the TS-I and CS-I phases. Quantum chemical partial geometry optimizations of Br{sub 2} and Cl{sub 2} guests in the hydrate cages using the M06-2X functional give short halogen-water distances compatible with values observed in X-ray diffraction experiments. NCI plots of guest-cage structures are generated to qualitatively show the relative strength of the non-bonding interactions between dihalogens and water molecules. The differences between behaviors of Br{sub 2} and Cl{sub 2} guests in the hydrate cages may explain why bromine forms the unique TS-I phase.« less

  15. Reconsideration on Hydration of Sodium Ion: From Micro-Hydration to Bulk Hydration

    NASA Astrophysics Data System (ADS)

    Yongquan, Zhou; Chunhui, Fang; Yan, Fang; Fayan, Zhu; Haiwen, Ge; Hongyan, Liu

    2017-12-01

    Micro hydration structures of the sodium ion, [Na(H2O) n ]+, n = 1-12, were probed by density functional theory (DFT) at B3LYP/aug-cc-pVDZ level in both gaseous and aqueous phase. The predicted equilibrium sodium-oxygen distance of 0.240 nm at the present level of theory. The four-, five- and six-coordinated cluster can transform from each other at the ambient condition. The analysis of the successive water binding energy and natural charge population (NBO) on Na+ clearly shows that the influence of Na+ on the surrounding water molecules goes beyond the first hydration shell with the hydration number of 6. The Car-Parrinello molecular dynamic simulation shows that only the first hydration sphere can be found, and the hydration number of Na+ is 5.2 and the hydration distance ( r Na-O) is 0.235 nm. All our simulations mentioned in the present paper show an excellent agreement with the diffraction result from X-ray scattering study.

  16. Inhibited phase behavior of gas hydrates in graphene oxide: influences of surface and geometric constraints.

    PubMed

    Kim, Daeok; Kim, Dae Woo; Lim, Hyung-Kyu; Jeon, Jiwon; Kim, Hyungjun; Jung, Hee-Tae; Lee, Huen

    2014-11-07

    Porous materials have provided us unprecedented opportunities to develop emerging technologies such as molecular storage systems and separation mechanisms. Pores have also been used as supports to contain gas hydrates for the application in gas treatments. Necessarily, an exact understanding of the properties of gas hydrates in confining pores is important. Here, we investigated the formation of CO2, CH4 and N2 hydrates in non-interlamellar voids in graphene oxide (GO), and their thermodynamic behaviors. For that, low temperature XRD and P-T traces were conducted to analyze the water structure and confirm hydrate formation, respectively, in GO after its exposure to gaseous molecules. Confinement and strong interaction of water with the hydrophilic surface of graphene oxide reduce water activity, which leads to the inhibited phase behavior of gas hydrates.

  17. A computational study of systemic hydration in vocal fold collision.

    PubMed

    Bhattacharya, Pinaki; Siegmund, Thomas

    2014-01-01

    Mechanical stresses develop within vocal fold (VF) soft tissues due to phonation-associated vibration and collision. These stresses in turn affect the hydration of VF tissue and thus influence voice health. In this paper, high-fidelity numerical computations are described, taking into account fully 3D geometry, realistic tissue and air properties, and high-amplitude vibration and collision. A segregated solver approach is employed, using sophisticated commercial solvers for both the VF tissue and glottal airflow domains. The tissue viscoelastic properties were derived from a biphasic formulation. Two cases were considered, whereby the tissue viscoelastic properties corresponded to two different volume fractions of the fluid phase of the VF tissue. For each case, hydrostatic stresses occurring as a result of vibration and collision were investigated. Assuming the VF tissue to be poroelastic, interstitial fluid movement within VF tissue was estimated from the hydrostatic stress gradient. Computed measures of overall VF dynamics (peak airflow velocity, magnitude of VF deformation, frequency of vibration and contact pressure) were well within the range of experimentally observed values. The VF motion leading to mechanical stresses within the VFs and their effect on the interstitial fluid flux is detailed. It is found that average deformation and vibration of VFs tend to increase the state of hydration of the VF tissue, whereas VF collision works to reduce hydration.

  18. A Computational Study of Systemic Hydration in Vocal Fold Collision

    PubMed Central

    Bhattacharya, Pinaki; Siegmund, Thomas

    2013-01-01

    Mechanical stresses develop within vocal fold (VF) soft tissues, due to phonation-associated vibration and collision. These stresses in turn affect the hydration of VF tissue and thus influence voice health. In this paper, high-fidelty numerical computations are described taking into account fully three-dimensional geometry, realistic tissue and air properties, and high-amplitude vibration and collision. A segregated solver approach is employed, using sophisticated commercial solvers for both the VF tissue and glottal airflow domains. The tissue viscoelastic properties were derived from a biphasic formulation. Two cases were considered, whereby the tissue viscoelastic properties corresponded to two different volume fractions of the fluid phase of the VF tissue. For each case, hydrostatic stresses occurring as a result of vibration and collision were investigated. Assuming the VF tissue to be poroelastic, interstitial fluid movement within VF tissue was estimated from the hydrostatic stress gradient. Computed measures of overall VF dynamics (peak air-flow velocity, magnitude of VF deformation, frequency of vibration and contact pressure) were well within the range of experimentally observed values. The VF motion leading to mechanical stresses within the VFs and their effect on the interstitial fluid flux is detailed. It is found that average deformation and vibration of VFs tends to increase the state of hydration of the VF tissue whereas VF collision works to reduce hydration. PMID:23531170

  19. Phase Behavior of Patchy Spheroidal Fluids.

    NASA Astrophysics Data System (ADS)

    Carpency, Thienbao

    We employ Gibbs-ensemble Monte Carlo computer simulation to assess the impact of shape anisotropy and particle interaction anisotropy on the phase behavior of a colloidal (or, by extension, protein) fluid comprising patchy ellipsoidal particles, with an emphasis on critical behavior. More specifically, we obtain the fluid-fluid equilibrium phase diagram of hard prolate ellipsoids having Kern-Frenkel surface patches under a variety of conditions and study the critical behavior of these fluids as a function of particle shape parameters. It is found that the dependence of the critical temperature on aspect ratio for particles having the same volume can be described approximately in terms of patch solid angles. In addition, ordering in the fluid that is associated with particle elongation is also found to be an important factor in dictating phase behavior. The G. Harold & Leila Y. Mathers Foundation.

  20. About one discrete model of splitting by the physical processes of a piezoconductive medium with gas hydrate inclusions

    NASA Astrophysics Data System (ADS)

    Poveshchenko, Yu A.; Podryga, V. O.; Rahimly, P. I.; Sharova, Yu S.

    2018-01-01

    The thermodynamically equilibrium model for splitting by the physical processes of a two-component three-phase filtration fluid dynamics with gas hydrate inclusions is considered in the paper, for which a family of two-layer completely conservative difference schemes of the support operators method with time weights profiled in space is constructed. On the irregular grids of the theory of the support-operators method applied to the specifics of the processes of transfer of saturations and internal energies of water and gas in a medium with gas hydrate inclusions, methods of directwind approximation of these processes are considered. These approximations preserve the continual properties of divergence-gradient operations in their difference form and are related to the velocity field providing saturations transfer and internal energies of fluids. Fluid dynamics with gas hydrate inclusions are also calculated on the basis of the proposed approach, in particular, in areas of severe pressure depression in the collector space.

  1. Estimating the composition of hydrates from a 3D seismic dataset near Penghu Canyon on Chinese passive margin offshore Taiwan

    NASA Astrophysics Data System (ADS)

    Chi, Wu-Cheng

    2016-04-01

    A bottom-simulating reflector (BSR), representing the base of the gas hydrate stability zone, can be used to estimate geothermal gradients under seafloor. However, to derive temperature estimates at the BSR, the correct hydrate composition is needed to calculate the phase boundary. Here we applied the method by Minshull and Keddie to constrain the hydrate composition and the pore fluid salinity. We used a 3D seismic dataset offshore SW Taiwan to test the method. Different from previous studies, we have considered the effects of 3D topographic effects using finite element modelling and also depth-dependent thermal conductivity. Using a pore water salinity of 2% at the BSR depth as found from the nearby core samples, we successfully used 99% methane and 1% ethane gas hydrate phase boundary to derive a sub-bottom depth vs. temperature plot which is consistent with the seafloor temperature from in-situ measurements. The results are also consistent with geochemical analyses of the pore fluids. The derived regional geothermal gradient is 40.1oC/km, which is similar to 40oC/km used in the 3D finite element modelling used in this study. This study is among the first documented successful use of Minshull and Keddie's method to constrain seafloor gas hydrate composition.

  2. Rapid gas hydrate formation process

    DOEpatents

    Brown, Thomas D.; Taylor, Charles E.; Unione, Alfred J.

    2013-01-15

    The disclosure provides a method and apparatus for forming gas hydrates from a two-phase mixture of water and a hydrate forming gas. The two-phase mixture is created in a mixing zone which may be wholly included within the body of a spray nozzle. The two-phase mixture is subsequently sprayed into a reaction zone, where the reaction zone is under pressure and temperature conditions suitable for formation of the gas hydrate. The reaction zone pressure is less than the mixing zone pressure so that expansion of the hydrate-forming gas in the mixture provides a degree of cooling by the Joule-Thompson effect and provides more intimate mixing between the water and the hydrate-forming gas. The result of the process is the formation of gas hydrates continuously and with a greatly reduced induction time. An apparatus for conduct of the method is further provided.

  3. Non-invasive estimation of hydration status changes through tear fluid osmolarity during exercise and post-exercise rehydration.

    PubMed

    Ungaro, Corey T; Reimel, Adam J; Nuccio, Ryan P; Barnes, Kelly A; Pahnke, Matthew D; Baker, Lindsay B

    2015-05-01

    To determine if tear fluid osmolarity (Tosm) can track changes in hydration status during exercise and post-exercise rehydration. Nineteen male athletes (18-37 years, 74.6 ± 7.9 kg) completed two randomized, counterbalanced trials; cycling (~95 min) with water intake to replace fluid losses or water restriction to progressively dehydrate to 3 % body mass loss (BML). After exercise, subjects drank water to maintain body mass (water intake trials) or progressively rehydrate to pre-exercise body mass (water restriction trials) over a 90-min recovery period. Plasma osmolality (Posm) and Tosm measurements (mean of right and left eyes) were taken pre-exercise, during rest periods between exercise bouts corresponding to 1, 2, and 3 % BML, and rehydration at 2, 1, and 0 % BML. During exercise mean (± SD) Tosm was significantly higher in water restriction vs. water intake trials at 1 % BML (299 ± 9 vs. 293 ± 9 mmol/L), 2 % BML (301 ± 9 vs. 294 ± 9 mmol/L), and 3 % BML (302 ± 9 vs. 292 ± 8 mmol/L). Mean Tosm progressively decreased during post-exercise rehydration and was not different between trials at 1 % BML (291 ± 8 vs. 290 ± 7 mmol/L) and 0 % BML (288 ± 7 vs. 289 ± 8 mmol/L). Mean Tosm tracked changes in hydration status similar to that of mean Posm; however, the individual responses in Tosm to water restriction and water intake was considerably more variable than that of Posm. Tosm is a valid indicator of changes in hydration status when looking at the group mean; however, large differences among subjects in the Tosm response to hydration changes limit its validity for individual recommendations.

  4. Crystalline phases involved in the hydration of calcium silicate-based cements: Semi-quantitative Rietveld X-ray diffraction analysis.

    PubMed

    Grazziotin-Soares, Renata; Nekoofar, Mohammad H; Davies, Thomas; Hübler, Roberto; Meraji, Naghmeh; Dummer, Paul M H

    2017-08-30

    Chemical comparisons of powder and hydrated forms of calcium silicate cements (CSCs) and calculation of alterations in tricalcium silicate (Ca 3 SiO 5 ) calcium hydroxide (Ca(OH) 2 ) are essential for understanding their hydration processes. This study aimed to evaluate and compare these changes in ProRoot MTA, Biodentine and CEM cement. Powder and hydrated forms of tooth coloured ProRoot MTA, Biodentine and CEM cement were subjected to X-ray diffraction (XRD) analysis with Rietveld refinement to semi-quantitatively identify and quantify the main phases involved in their hydration process. Data were reported descriptively. Reduction in Ca 3 SiO 5 and formation of Ca(OH) 2 were seen after the hydration of ProRoot MTA and Biodentine; however, in the case of CEM cement, no reduction of Ca 3 SiO 5 and no formation of Ca(OH) 2 were detected. The highest percentages of amorphous phases were seen in Biodentine samples. Ettringite was detected in the hydrated forms of ProRoot MTA and CEM cement but not in Biodentine. © 2017 Australian Society of Endodontology Inc.

  5. Biot-type scattering effects in gas hydrate-bearing sediments

    NASA Astrophysics Data System (ADS)

    Rubino, J. GermáN.; Ravazzoli, Claudia L.; Santos, Juan E.

    2008-06-01

    This paper studies the energy conversions that take place at discontinuities within gas hydrate-bearing sediments and their influence on the attenuation of waves traveling through these media. The analysis is based on a theory recently developed by some of the authors, to describe wave propagation in multiphasic porous media composed of two solids saturated by a single-phase fluid. Real data from the Mallik 5L-38 Gas Hydrate Research well are used to calibrate the physical model, allowing to obtain information about the characteristics of the cementation between the mineral grains and gas hydrates for this well. Numerical experiments show that, besides energy conversions to reflected and transmitted classical waves, significant fractions of the energy of propagating waves may be converted into slow-waves energy at plane heterogeneities within hydrated sediments. Moreover, numerical simulations of wave propagation show that very high levels of attenuation can take place in the presence of heterogeneous media composed of zones with low and high gas hydrate saturations with sizes smaller or on the order of the wavelengths of the fast waves at sonic frequencies. These attenuation levels are in very good agreement with those measured at the Mallik 5L-38 Gas Hydrate Research Well, suggesting that these scattering-type effects may be a key-parameter to understand the high sonic attenuation observed at gas hydrate-bearing sediments.

  6. Effect of hydration and continuous urinary drainage on urine production in children.

    PubMed

    Galetseli, Marianthi; Dimitriou, Panagiotis; Tsapra, Helen; Moustaki, Maria; Nicolaidou, Polyxeni; Fretzayas, Andrew

    2008-01-01

    Although urine production depends on numerous physiological variables there are no quantitative data regarding the effect of bladder decompression, by means of continuous catheter drainage, on urine production. The aim of this study was to investigate this effect. The study was carried out in two stages, each consisting of two phases. The effect of two distinct orally administered amounts of water was recorded in relation to continuous bladder decompression on the changes with time of urine volume and the urine production rate. In the first stage, 35 children were randomly divided into two groups and two different hydration schemes (290 and 580 ml of water/m2) were used. After the second urination of Phase 1, continuous drainage was employed in the phase that followed (Phase 2). In the second stage, a group of 10 children participated and Phase 2 was carried out 1 day after the completion of Phase 1. It was shown that the amount of urine produced increased in accordance with the degree of hydration and doubled or tripled with continual urine drainage by catheter for the same degree of hydration and within the same time interval. This was also true for Stage 2, in which Phase 2 was performed 24 h after Phase 1, indicating that diuresis during Phase 2 (as a result of Phase 1) was negligible. It was shown that during continuous drainage of urine with bladder catheterization there is an increased need for fluids, which should be administered early.

  7. Entrapment of Hydrate-coated Gas Bubbles into Oil and Separation of Gas and Hydrate-film; Seafloor Experiments with ROV

    NASA Astrophysics Data System (ADS)

    Hiruta, A.; Matsumoto, R.

    2015-12-01

    We trapped gas bubbles emitted from the seafloor into oil-containing collector and observed an unique phenomena. Gas hydrate formation needs water for the crystal lattice; however, gas hydrates in some areas are associated with hydrophobic crude oil or asphalt. In order to understand gas hydrate growth in oil-bearing sediments, an experiment with cooking oil was made at gas hydrate stability condition. We collected venting gas bubbles into a collector with canola oil during ROV survey at a gas hydrate area in the eastern margin of the Sea of Japan. When the gas bubbles were trapped into collector with oil, gas phase appeared above the oil and gas hydrates, between oil and gas phase. At this study area within gas hydrate stability condition, control experiment with oil-free collector suggested that gas bubbles emitted from the seafloor were quickly covered with gas hydrate film. Therefore it is improbable that gas bubbles entered into the oil phase before hydrate skin formation. After the gas phase formation in oil-containing collector, the ROV floated outside of hydrate stability condition for gas hydrate dissociation and re-dived to the venting site. During the re-dive within hydrate stability condition, gas hydrate was not formed. The result suggests that moisture in the oil is not enough for hydrate formation. Therefore gas hydrates that appeared at the oil/gas phase boundary were already formed before bubbles enter into the oil. Hydrate film is the only possible origin. This observation suggests that hydrate film coating gas hydrate was broken at the sea water/oil boundary or inside oil. Further experiments may contribute for revealing kinetics of hydrate film and formation. This work was a part of METI (Ministry of Economy, Trade and Industry)'s project entitled "FY2014 Promoting research and development of methane hydrate". We also appreciate support of AIST (National Institute of Advanced Industrial Science and Technology).

  8. Structural Phase Transitions and Water Dynamics in Uranyl Fluoride Hydrates

    DOE PAGES

    Miskowiec, Andrew J.; Kirkegaard, Marie C.; Huq, Ashfia; ...

    2015-11-17

    We report a novel production method for uranium oxy uoride [(UO 2) 7F 14(H 2O) 7] 4H 2O, referred to as structure D. Structure D is produced as a product of hydrating anhydrous uranyl uoride, UO 2F 2, through the gas phase at ambient temperatures fol- lowed by desiccation by equilibration with a dry environment. We follow the structure of [(UO 2) 7F 14(H 2O) 7] 4H 2O through an intermediate, liquid-like phase, wherein the coordination number of the uranyl ion is reduced to 5 (from 6 in the anhydrous struc- ture), and a water molecule binds as an equatorialmore » ligand to the uranyl ion. Quasielas- tic neutron scattering results compare well with previous measurements of mineral hydrates. The two groups of structurally distinct water molecules in D perform re- stricted motion on a length scale commensurate with the O{H bond (r = 0.92 A). The more tightly bound equatorial ligand waters rotate slower (Dr = 2.2 ps -1) than their hydrogen-bonded partners (Dr = 28.7 ps -1).« less

  9. Force of crystallisation-development during CaO hydration: theory vs. experiment and the role of fluid transport

    NASA Astrophysics Data System (ADS)

    Wolterbeek, Tim; van Noort, Reinier; Spiers, Chris

    2017-04-01

    When chemical reactions that involve an increase in solid volume proceed in a confined space, this may under certain conditions lead to the development of a so-called force of crystallisation (FoC). In other words, reaction can result in stress being exerted on the confining boundaries of the system. In principle, any thermodynamic driving force that is able to produce a supersaturation with respect to a solid product can generate a FoC, as long as precipitation can occur under confined conditions, i.e. within load-bearing grain contacts. Well-known examples of such reactions include salt damage, where supersaturation is caused by evaporation and surface curvature effects, and a wide range of mineral reactions where the solid products comprise a larger volume than the solid reactants. Frost heave, where crystallisation is driven by fluid under-cooling, i.e. temperature change, is a similar process. In a geological context, FoC-development is widely considered to play an important role in pseudomorphic replacement, vein formation, and reaction-driven fracturing. Chemical reactions capable of producing a FoC such as the hydration of CaO (lime), which is thermodynamically capable of producing stresses in the GPa range, also offer obvious engineering potential. Despite this, relatively few studies have been conducted where the magnitude of the FoC is determined directly. Indeed, the maximum stress obtainable by CaO hydration has not been validated or determined experimentally. Here we report uni-axial compaction/expansion experiments performed in an oedometer-type apparatus on pre-compacted CaO powder, at 65 °C and at atmospheric pore fluid pressure. Using this set-up, the FoC generated during CaO hydration could be measured directly. Our results show FoC-induced stresses reaching up to 153 MPa, with the hydration reaction stopping or slowing down significantly before completion. Failure to achieve the GPa stresses predicted by thermodynamic theory is attributed to

  10. Hydrate morphology: Physical properties of sands with patchy hydrate saturation

    USGS Publications Warehouse

    Dai, S.; Santamarina, J.C.; Waite, William F.; Kneafsey, T.J.

    2012-01-01

    The physical properties of gas hydrate-bearing sediments depend on the volume fraction and spatial distribution of the hydrate phase. The host sediment grain size and the state of effective stress determine the hydrate morphology in sediments; this information can be used to significantly constrain estimates of the physical properties of hydrate-bearing sediments, including the coarse-grained sands subjected to high effective stress that are of interest as potential energy resources. Reported data and physical analyses suggest hydrate-bearing sands contain a heterogeneous, patchy hydrate distribution, whereby zones with 100% pore-space hydrate saturation are embedded in hydrate-free sand. Accounting for patchy rather than homogeneous hydrate distribution yields more tightly constrained estimates of physical properties in hydrate-bearing sands and captures observed physical-property dependencies on hydrate saturation. For example, numerical modeling results of sands with patchy saturation agree with experimental observation, showing a transition in stiffness starting near the series bound at low hydrate saturations but moving toward the parallel bound at high hydrate saturations. The hydrate-patch size itself impacts the physical properties of hydrate-bearing sediments; for example, at constant hydrate saturation, we find that conductivity (electrical, hydraulic and thermal) increases as the number of hydrate-saturated patches increases. This increase reflects the larger number of conductive flow paths that exist in specimens with many small hydrate-saturated patches in comparison to specimens in which a few large hydrate saturated patches can block flow over a significant cross-section of the specimen.

  11. A Circuit Model of Real Time Human Body Hydration.

    PubMed

    Asogwa, Clement Ogugua; Teshome, Assefa K; Collins, Stephen F; Lai, Daniel T H

    2016-06-01

    Changes in human body hydration leading to excess fluid losses or overload affects the body fluid's ability to provide the necessary support for healthy living. We propose a time-dependent circuit model of real-time human body hydration, which models the human body tissue as a signal transmission medium. The circuit model predicts the attenuation of a propagating electrical signal. Hydration rates are modeled by a time constant τ, which characterizes the individual specific metabolic function of the body part measured. We define a surrogate human body anthropometric parameter θ by the muscle-fat ratio and comparing it with the body mass index (BMI), we find theoretically, the rate of hydration varying from 1.73 dB/min, for high θ and low τ to 0.05 dB/min for low θ and high τ. We compare these theoretical values with empirical measurements and show that real-time changes in human body hydration can be observed by measuring signal attenuation. We took empirical measurements using a vector network analyzer and obtained different hydration rates for various BMI, ranging from 0.6 dB/min for 22.7 [Formula: see text] down to 0.04 dB/min for 41.2 [Formula: see text]. We conclude that the galvanic coupling circuit model can predict changes in the volume of the body fluid, which are essential in diagnosing and monitoring treatment of body fluid disorder. Individuals with high BMI would have higher time-dependent biological characteristic, lower metabolic rate, and lower rate of hydration.

  12. Hydration of an apolar solute in a two-dimensional waterlike lattice fluid

    NASA Astrophysics Data System (ADS)

    Buzano, C.; de Stefanis, E.; Pretti, M.

    2005-05-01

    In a previous work, we investigated a two-dimensional lattice-fluid model, displaying some waterlike thermodynamic anomalies. The model, defined on a triangular lattice, is now extended to aqueous solutions with apolar species. Water molecules are of the “Mercedes Benz” type, i.e., they possess a D3 (equilateral triangle) symmetry, with three equivalent bonding arms. Bond formation depends both on orientation and local density. The insertion of inert molecules displays typical signatures of hydrophobic hydration: large positive transfer free energy, large negative transfer entropy (at low temperature), strong temperature dependence of the transfer enthalpy and entropy, i.e., large (positive) transfer heat capacity. Model properties are derived by a generalized first order approximation on a triangle cluster.

  13. Hydration of an apolar solute in a two-dimensional waterlike lattice fluid.

    PubMed

    Buzano, C; De Stefanis, E; Pretti, M

    2005-05-01

    In a previous work, we investigated a two-dimensional lattice-fluid model, displaying some waterlike thermodynamic anomalies. The model, defined on a triangular lattice, is now extended to aqueous solutions with apolar species. Water molecules are of the "Mercedes Benz" type, i.e., they possess a D3 (equilateral triangle) symmetry, with three equivalent bonding arms. Bond formation depends both on orientation and local density. The insertion of inert molecules displays typical signatures of hydrophobic hydration: large positive transfer free energy, large negative transfer entropy (at low temperature), strong temperature dependence of the transfer enthalpy and entropy, i.e., large (positive) transfer heat capacity. Model properties are derived by a generalized first order approximation on a triangle cluster.

  14. The 24-hour skin hydration and barrier function effects of a hyaluronic 1%, glycerin 5%, and Centella asiatica stem cells extract moisturizing fluid: an intra-subject, randomized, assessor-blinded study.

    PubMed

    Milani, Massimo; Sparavigna, Adele

    2017-01-01

    Moisturizing products are commonly used to improve hydration in skin dryness conditions. However, some topical hydrating products could have negative effects on skin barrier function. In addition, hydrating effects of moisturizers are not commonly evaluated up to 24 hours after a single application. Hyaluronic acid (HA) and glycerin are very well-known substances able to improve skin hydration. Centella asiatica extract (CAE) could exert lenitive, anti-inflammatory and reepithelialization actions. Furthermore, CAE could inhibit hyaluronidase enzyme activity, therefore prolonging the effect of HA. A fluid containing HA 1%, glycerin 5% and stem cells CAE has been recently developed (Jaluronius CS [JCS] fluid). To evaluate and compare the 24-hour effects of JCS fluid on skin hydration and on transepidermal water loss (TEWL) in healthy subjects in comparison with the control site. Twenty healthy women, mean age 40 years, were enrolled in an intra-subject (right vs left), randomized, assessor-blinded, controlled, 1-day trial. The primary end points were the skin hydration and TEWL, evaluated at the volar surface of the forearm and in standardized conditions (temperature- and humidity-controlled room: 23°C and 30% of humidity) using a corneometer and a vapometer device at baseline, 1, 8 and 24 hours after JCS fluid application. Measurements were performed by an operator blinded for the treatments. Skin hydration after 24 hours was significantly higher ( P =0.001; Mann-Whitney U test) in the JCS-treated area in comparison with the control site. JCS induced a significant ( P =0.0001) increase in skin hydration at each evaluation time (+59% after 1 hour, +48% after 8 hours and +29% after 24 hours) in comparison with both baseline ( P =0.0001) and non-treated control site ( P =0.001). TEWL after 24 hours was significantly lower ( P =0.049; Mann-Whitney U test) in the JCS-treated area in comparison with the control site (13±4 arbitrary units [AU] vs 16±6 AU). JCS fluid

  15. Phase equilibria of H2SO4, HNO3, and HCl hydrates and the composition of polar stratospheric clouds

    NASA Technical Reports Server (NTRS)

    Wooldridge, Paul J.; Zhang, Renyi; Molina, Mario J.

    1995-01-01

    Thermodynamic properties and phase equilibria behavior for the hydrates and coexisting pairs of hydrates of common acids which exist in the stratosphere are assembled from new laboratory measurements and standard literature data. The analysis focuses upon solid-vapor and solid-solid-vapor equilibria at temperatures around 200 K and includes new calorimetric and vapor pressure data. Calculated partial pressures versus 1/T slopes for the hydrates and coexisting hydrates agree well with experimental data where available.

  16. Phase Equilibria of H2SO4, HNO3, and HCl Hydrates and the Composition of Polar Stratospheric Clouds

    NASA Technical Reports Server (NTRS)

    Wooldridge, Paul J.; Zhang, Renyi; Molina, Mario J.

    1995-01-01

    Thermodynamic properties and phase equilibria behavior for the hydrates and coexisting pairs of hydrates of common acids which exist in the stratosphere are assembled from new laboratory measurements and standard literature data. The analysis focuses upon solid-vapor and solid-solid-vapor equilibria at temperatures around 200 K and includes new calorimetric and vapor pressure data. Calculated partial pressures versus 1/T slopes for the hydrates and coexisting hydrates agree well with experimental data where available.

  17. Hydration products in sulfoaluminate cements: Evaluation of amorphous phases by XRD/solid-state NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gastaldi, D., E-mail: dgastaldi@buzziunicem.it; Paul, G., E-mail: geo.paul@uniupo.it; Marchese, L.

    The hydration of four sulfoaluminate cements have been studied: three sulfoaluminate systems, having different content of sulfate and silicate, and one blend Portland-CSA-calcium sulfate binder. Hydration was followed up to 90 days by means of a combination of X-ray diffraction and solid state MAS-NMR; Differential scanning calorimetry and Scanning electron microscopy were also performed in order to help the interpretation of experimental data. High amount of amorphous phases were found in all the four systems: in low-sulfate cements, amorphous part is mainly ascribed to monosulfate and aluminium hydroxide, while strätlingite is observed if belite is present in the cement; inmore » the blend system, C-S-H contributes to the amorphous phase beyond monosulfate.« less

  18. Formation of methane nano-bubbles during hydrate decomposition and their effect on hydrate growth.

    PubMed

    Bagherzadeh, S Alireza; Alavi, Saman; Ripmeester, John; Englezos, Peter

    2015-06-07

    Molecular dynamic simulations are performed to study the conditions for methane nano-bubble formation during methane hydrate dissociation in the presence of water and a methane gas reservoir. Hydrate dissociation leads to the quick release of methane into the liquid phase which can cause methane supersaturation. If the diffusion of methane molecules out of the liquid phase is not fast enough, the methane molecules agglomerate and form bubbles. Under the conditions of our simulations, the methane-rich quasi-spherical bubbles grow to become cylindrical with a radius of ∼11 Å. The nano-bubbles remain stable for about 35 ns until they are gradually and homogeneously dispersed in the liquid phase and finally enter the gas phase reservoirs initially set up in the simulation box. We determined that the minimum mole fraction for the dissolved methane in water to form nano-bubbles is 0.044, corresponding to about 30% of hydrate phase composition (0.148). The importance of nano-bubble formation to the mechanism of methane hydrate formation, growth, and dissociation is discussed.

  19. Electrical properties of methane hydrate + sediment mixtures: The σ of CH 4 Hydrate + Sediment

    DOE PAGES

    Du Frane, Wyatt L.; Stern, Laura A.; Constable, Steven; ...

    2015-07-30

    Knowledge of the electrical properties of multicomponent systems with gas hydrate, sediments, and pore water is needed to help relate electromagnetic (EM) measurements to specific gas hydrate concentration and distribution patterns in nature. We built a pressure cell capable of measuring in situ electrical properties of multicomponent systems such that the effects of individual components and mixing relations can be assessed. We first established the temperature-dependent electrical conductivity (σ) of pure, single-phase methane hydrate to be ~5 orders of magnitude lower than seawater, a substantial contrast that can help differentiate hydrate deposits from significantly more conductive water-saturated sediments in EMmore » field surveys. We report σ measurements of two-component systems in which methane hydrate is mixed with variable amounts of quartz sand or glass beads. Sand by itself has low σ but is found to increase the overall σ of mixtures with well-connected methane hydrate. Alternatively, the overall σ decreases when sand concentrations are high enough to cause gas hydrate to be poorly connected, indicating that hydrate grains provide the primary conduction path. Our measurements suggest that impurities from sand induce chemical interactions and/or doping effects that result in higher electrical conductivity with lower temperature dependence. Finally, these results can be used in the modeling of massive or two-phase gas-hydrate-bearing systems devoid of conductive pore water. Further experiments that include a free water phase are the necessary next steps toward developing complex models relevant to most natural systems.« less

  20. Electrical properties of methane hydrate + sediment mixtures: The σ of CH 4 Hydrate + Sediment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du Frane, Wyatt L.; Stern, Laura A.; Constable, Steven

    Knowledge of the electrical properties of multicomponent systems with gas hydrate, sediments, and pore water is needed to help relate electromagnetic (EM) measurements to specific gas hydrate concentration and distribution patterns in nature. We built a pressure cell capable of measuring in situ electrical properties of multicomponent systems such that the effects of individual components and mixing relations can be assessed. We first established the temperature-dependent electrical conductivity (σ) of pure, single-phase methane hydrate to be ~5 orders of magnitude lower than seawater, a substantial contrast that can help differentiate hydrate deposits from significantly more conductive water-saturated sediments in EMmore » field surveys. We report σ measurements of two-component systems in which methane hydrate is mixed with variable amounts of quartz sand or glass beads. Sand by itself has low σ but is found to increase the overall σ of mixtures with well-connected methane hydrate. Alternatively, the overall σ decreases when sand concentrations are high enough to cause gas hydrate to be poorly connected, indicating that hydrate grains provide the primary conduction path. Our measurements suggest that impurities from sand induce chemical interactions and/or doping effects that result in higher electrical conductivity with lower temperature dependence. Finally, these results can be used in the modeling of massive or two-phase gas-hydrate-bearing systems devoid of conductive pore water. Further experiments that include a free water phase are the necessary next steps toward developing complex models relevant to most natural systems.« less

  1. Seeding hydrate formation in water-saturated sand with dissolved-phase methane obtained from hydrate dissolution: A progress report

    USGS Publications Warehouse

    Waite, William F.; Osegovic, J.P.; Winters, William J.; Max, M.D.; Mason, David H.

    2008-01-01

    An isobaric flow loop added to the Gas Hydrate And Sediment Test Laboratory Instrument (GHASTLI) is being investigated as a means of rapidly forming methane hydrate in watersaturated sand from methane dissolved in water. Water circulates through a relatively warm source chamber, dissolving granular methane hydrate that was pre-made from seed ice, then enters a colder hydrate growth chamber where hydrate can precipitate in a water-saturated sand pack. Hydrate dissolution in the source chamber imparts a known methane concentration to the circulating water, and hydrate particles from the source chamber entrained in the circulating water can become nucleation sites to hasten the onset of hydrate formation in the growth chamber. Initial results suggest hydrate grows rapidly near the growth chamber inlet. Techniques for establishing homogeneous hydrate formation throughout the sand pack are being developed.

  2. Effect of mass concentration of composite phase change material CA-DE on HCFC-141b hydrate induction time and system stability

    NASA Astrophysics Data System (ADS)

    Li, Juan; Sun, Zhigao; Liu, Chenggang; Zhu, Minggui

    2018-03-01

    HCFC-141b hydrate is a new type of environment-friendly cold storage medium which may be adopted to balance energy supply and demand, achieve peak load shifting and energy saving, wherein the hydrate induction time and system stability are key factors to promote and realize its application in industrial practice. Based on step cooling curve measurement, two kinds of aliphatic hydrocarbon organics, n-capric acid (CA) and lauryl alcohol (DE), were selected to form composite phase change material and to promote the generation of HCFC-141b hydrate. Five kinds of CA-DE mass concentration were chosen to compare the induction time and hydration system stability. In order to accelerate temperature reduction rate, the metal Cu with high heat conductivity performance was adopted to conduct out the heat generated during phase change. Instability index was introduced to appraise system stability. Experimental results show that phase change temperature and sub-cooling degree of CA-DE is 11.1°C and 3.0°C respectively, which means it is a preferable medium for HCFC-141b hydrate formation. For the experimental hydration systems, segmented emulsification is achieved by special titration manner to avoid rapid layering under static condition. Induction time can achieve up to 23.3min with the densest HCFC-141b hydrate and the lowest instability index, wherein CA-DE mass concentration is 3%.

  3. Fluid losses and hydration status of industrial workers under thermal stress working extended shifts

    PubMed Central

    Brake, D; Bates, G

    2003-01-01

    Aims: To assess whether workers under significant thermal stress necessarily dehydrated during their exposure and whether "involuntary dehydration" was inevitable, as supported by ISO 9866 and other authorities. Other objectives were to quantify sweat rates against recommended occupational limits, to develop a dehydration protocol to assist with managing heat exposures, and to understand the role of meal breaks on extended shifts in terms of fluid replacement. Methods: A field investigation to examine the fluid consumption, sweat rates, and changes in the hydration state of industrial workers on extended (10, 12, and 12.5 hour) shifts under significant levels of thermal stress (wet bulb globe temperature (WBGT) >28°C) was conducted on 39 male underground miners. Urinary specific gravity was measured before, during, and at the completion of the working shift. Environmental conditions were measured hourly during the shift. Fluid replacement was measured during the working periods and during the meal breaks. Results: Average environmental conditions were severe (WBGT 30.9°C (SD 2.0°C), range 25.7–35.2°C). Fluid intake averaged 0.8 l/h during exposure (SD 0.3 l/h, range 0.3–1.5 l/h). Average urinary specific gravity at start, mid, and end of shift was 1.0251, 1.0248, and 1.0254 respectively; the differences between start and mid shift, mid and end shift, and start and end shift were not significant. However, a majority of workers were coming to work in a moderately hypohydrated state (average urinary specific gravity 1.024 (SD 0.0059)). A combined dehydration and heat illness protocol was developed. Urinary specific gravity limits of 1.022 for start of shift and 1.030 for end of shift were selected; workers exceeding these values were not allowed into the workplace (if the start of shift limit was exceeded) or were retested prior to their next working shift (if the end of shift limit was exceeded). A target of 1.015 as a euhydrated state for start of shift was

  4. Molecular Simulation of the Phase Diagram of Methane Hydrate: Free Energy Calculations, Direct Coexistence Method, and Hyperparallel Tempering.

    PubMed

    Jin, Dongliang; Coasne, Benoit

    2017-10-24

    Different molecular simulation strategies are used to assess the stability of methane hydrate under various temperature and pressure conditions. First, using two water molecular models, free energy calculations consisting of the Einstein molecule approach in combination with semigrand Monte Carlo simulations are used to determine the pressure-temperature phase diagram of methane hydrate. With these calculations, we also estimate the chemical potentials of water and methane and methane occupancy at coexistence. Second, we also consider two other advanced molecular simulation techniques that allow probing the phase diagram of methane hydrate: the direct coexistence method in the Grand Canonical ensemble and the hyperparallel tempering Monte Carlo method. These two direct techniques are found to provide stability conditions that are consistent with the pressure-temperature phase diagram obtained using rigorous free energy calculations. The phase diagram obtained in this work, which is found to be consistent with previous simulation studies, is close to its experimental counterpart provided the TIP4P/Ice model is used to describe the water molecule.

  5. Multi-channel electrical impedance tomography for regional tissue hydration monitoring.

    PubMed

    Chen, Xiaohui; Kao, Tzu-Jen; Ashe, Jeffrey M; Boverman, Gregory; Sabatini, James E; Davenport, David M

    2014-06-01

    Poor assessment of hydration status during hemodialysis can lead to under- or over-hydration in patients with consequences of increased morbidity and mortality. In current practice, fluid management is largely based on clinical assessments to estimate dry weight (normal hydration body weight). However, hemodialysis patients usually have co-morbidities that can make the signs of fluid status ambiguous. Therefore, achieving normal hydration status remains a major challenge for hemodialysis therapy. Electrical impedance technology has emerged as a promising method for hydration monitoring due to its non-invasive nature, low cost and ease-of-use. Conventional electrical impedance-based hydration monitoring systems employ single-channel current excitation (either 2-electrode or 4-electrode methods) to perturb and extract averaged impedance from bulk tissue and use generalized models from large populations to derive hydration estimates. In the present study, a prototype, single-frequency electrical impedance tomography (EIT) system with simultaneous multi-channel current excitation was used to enable regional hydration change detection. We demonstrated the capability to detect a difference in daily impedance change between left leg and right leg in healthy human subjects, who wore a compression sock only on one leg to reduce daily gravitational fluid accumulation. The impedance difference corresponded well with the difference of lower leg volume change between left leg and right leg measured by volumetry, which on average is ~35 ml, accounting for 0.7% of the lower leg volume. We have demonstrated the feasibility of using multi-channel EIT to extract hydration information in different tissue layers with minimal skin interference. Our simultaneous, multi-channel current excitation approach provides an effective method to separate electrode contact impedance and skin condition artifacts from hydration signals. The prototype system has the potential to be used in clinical

  6. Shifting Focus: From Hydration for Performance to Hydration for Health.

    PubMed

    Perrier, Erica T

    2017-01-01

    Over the past 10 years, literature on hydration biomarkers has evolved considerably - from (de)hydration assessment towards a more global definition of biomarkers of hydration in daily life. This shift in thinking about hydration markers was largely driven by investigating the differences that existed between otherwise healthy individuals whose habitual, ad-libitum drinking habits differ, and by identifying physiological changes in low-volume drinkers who subsequently increase their water intake. Aside from obvious differences in urinary volume and concentration, a growing body of evidence is emerging that links differences in fluid intake with small, but biologically significant, differences in vasopressin (copeptin), glomerular filtration rate, and markers of metabolic dysfunction or disease. Taken together, these pieces of the puzzle begin to form a picture of how much water intake should be considered adequate for health, and represent a shifting focus from hydration for performance, toward hydration for health outcomes. This narrative review outlines the key areas of research in which the global hydration process - including water intake, urinary hydration markers, and vasopressin - has been associated with health outcomes, focusing on kidney and metabolic endpoints. It will also provide a commentary on how various hydration biomarkers may be used in hydration for health assessment. Finally, if adequate water intake can play a role in maintaining health, how might we tell if we are drinking enough? Urine output is easily measured, and can take into account differences in daily physical activity, climate, dietary solute load, and other factors that influence daily water needs. Today, targets have been proposed for urine osmolality, specific gravity, and color that may be used by researchers, clinicians, and individuals as simple indicators of optimal hydration. However, there remain a large number of incomplete or unanswered research questions regarding the

  7. Gas hydrate concentration estimated from P- and S-wave velocities

    NASA Astrophysics Data System (ADS)

    Carcione, J. M.; Gei, D.

    2003-04-01

    We estimate the concentration of gas hydrate at the Mallik 2L-38 research site, Mackenzie Delta, Canada, using P- and S-wave velocities obtained from well logging and vertical seismic profiles (VSP). The theoretical velocities are obtained from a poro-viscoelastic model based on a Biot-type approach. It considers the existence of two solids (grains and gas hydrate) and a fluid mixture and is based on the assumption that hydrate fills the pore space and shows interconnection. The moduli of the matrix formed by gas hydrate are obtained from the percolation model described by Leclaire et al., (1994). An empirical mixing law introduced by Brie et al., (1995) provides the effective bulk modulus of the fluid phase, giving Wood's modulus at low frequency and Voigt's modulus at high frequencies. The dry-rock moduli are estimated from the VSP profile where the rock is assumed to be fully saturated with water, and the quality factors are obtained from the velocity dispersion observed between the sonic and VSP velocities. Attenuation is described by using a constant-Q model for the dry rock moduli. The amount of dissipation is estimated from the difference between the seismic velocities and the sonic-log velocities. We estimate the amount of gas hydrate by fitting the sonic-log and seismic velocities to the theoretical velocities, using the concentration of gas hydrate as fitting parameter. We obtain hydrate concentrations up to 75 %, average values of 43 and 47 % from the VSP P- and S-wave velocities, respectively, and 47 and 42 % from the sonic-log P- and S-wave velocities, respectively. These averages are computed from 897 to 1110 m, excluding the zones where there is no gas hydrate. We found that modeling attenuation is important to obtain reliable results. largeReferences} begin{description} Brie, A., Pampuri, F., Marsala A.F., Meazza O., 1995, Shear Sonic Interpretation in Gas-Bearing Sands, SPE Annual Technical Conference and Exhibition, Dallas, 1995. Carcione, J

  8. An effective medium inversion algorithm for gas hydrate quantification and its application to laboratory and borehole measurements of gas hydrate-bearing sediments

    NASA Astrophysics Data System (ADS)

    Chand, Shyam; Minshull, Tim A.; Priest, Jeff A.; Best, Angus I.; Clayton, Christopher R. I.; Waite, William F.

    2006-08-01

    The presence of gas hydrate in marine sediments alters their physical properties. In some circumstances, gas hydrate may cement sediment grains together and dramatically increase the seismic P- and S-wave velocities of the composite medium. Hydrate may also form a load-bearing structure within the sediment microstructure, but with different seismic wave attenuation characteristics, changing the attenuation behaviour of the composite. Here we introduce an inversion algorithm based on effective medium modelling to infer hydrate saturations from velocity and attenuation measurements on hydrate-bearing sediments. The velocity increase is modelled as extra binding developed by gas hydrate that strengthens the sediment microstructure. The attenuation increase is modelled through a difference in fluid flow properties caused by different permeabilities in the sediment and hydrate microstructures. We relate velocity and attenuation increases in hydrate-bearing sediments to their hydrate content, using an effective medium inversion algorithm based on the self-consistent approximation (SCA), differential effective medium (DEM) theory, and Biot and squirt flow mechanisms of fluid flow. The inversion algorithm is able to convert observations in compressional and shear wave velocities and attenuations to hydrate saturation in the sediment pore space. We applied our algorithm to a data set from the Mallik 2L-38 well, Mackenzie delta, Canada, and to data from laboratory measurements on gas-rich and water-saturated sand samples. Predictions using our algorithm match the borehole data and water-saturated laboratory data if the proportion of hydrate contributing to the load-bearing structure increases with hydrate saturation. The predictions match the gas-rich laboratory data if that proportion decreases with hydrate saturation. We attribute this difference to differences in hydrate formation mechanisms between the two environments.

  9. An effective medium inversion algorithm for gas hydrate quantification and its application to laboratory and borehole measurements of gas hydrate-bearing sediments

    USGS Publications Warehouse

    Chand, S.; Minshull, T.A.; Priest, J.A.; Best, A.I.; Clayton, C.R.I.; Waite, W.F.

    2006-01-01

    The presence of gas hydrate in marine sediments alters their physical properties. In some circumstances, gas hydrate may cement sediment grains together and dramatically increase the seismic P- and S-wave velocities of the composite medium. Hydrate may also form a load-bearing structure within the sediment microstructure, but with different seismic wave attenuation characteristics, changing the attenuation behaviour of the composite. Here we introduce an inversion algorithm based on effective medium modelling to infer hydrate saturations from velocity and attenuation measurements on hydrate-bearing sediments. The velocity increase is modelled as extra binding developed by gas hydrate that strengthens the sediment microstructure. The attenuation increase is modelled through a difference in fluid flow properties caused by different permeabilities in the sediment and hydrate microstructures. We relate velocity and attenuation increases in hydrate-bearing sediments to their hydrate content, using an effective medium inversion algorithm based on the self-consistent approximation (SCA), differential effective medium (DEM) theory, and Biot and squirt flow mechanisms of fluid flow. The inversion algorithm is able to convert observations in compressional and shear wave velocities and attenuations to hydrate saturation in the sediment pore space. We applied our algorithm to a data set from the Mallik 2L–38 well, Mackenzie delta, Canada, and to data from laboratory measurements on gas-rich and water-saturated sand samples. Predictions using our algorithm match the borehole data and water-saturated laboratory data if the proportion of hydrate contributing to the load-bearing structure increases with hydrate saturation. The predictions match the gas-rich laboratory data if that proportion decreases with hydrate saturation. We attribute this difference to differences in hydrate formation mechanisms between the two environments.

  10. Hydration and temperature in tennis - a practical review.

    PubMed

    Kovacs, Mark S

    2006-03-01

    Competitive tennis is typically played in warm and hot environments. Because hypohydration will impair tennis performance and increases the risk of heat injury, consumption of appropriate fluid levels is necessary to prevent dehydration and enhance performance. The majority of research in this area has focused on continuous aerobic activity - unlike tennis, which has average points lasting less than ten seconds with rest periods dispersed between each work period. For this reason, hydration and temperature regulation methods need to be specific to the activity. Tennis players can sweat more than 2.5 L·h(-1) and replace fluids at a slower rate during matches than in practice. Latter stages of matches and tournaments are when tennis players are more susceptible to temperature and hydration related problems. Sodium (Na(+)) depletion, not potassium (K(+)), is a key electrolyte in tennis related muscle cramps. However, psychological and competitive factors also contribute. CHO drinks have been shown to promote fluid absorption to a greater degree than water alone, but no performance benefits have been shown in tennis players in short matches. It is advisable to consume a CHO beverage if practice or matches are scheduled longer than 90-120 minutes. Key PointsAlthough substantial research has been performed on temperature and hydration concerns in aerobic activities, there is little information with regard to tennis performance and safetyTennis athletes should be on an individualized hydration schedule, consuming greater than 200ml of fluid every changeover (approximately 15 minutes).Optimum hydration and temperature regulation will reduce the chance of tennis related muscle cramps and performance decrements.

  11. Newly Collected Multibeam Swath Bathymetry Data Herald a New Phase in Gas-hydrate Research on Lake Baikal

    NASA Astrophysics Data System (ADS)

    Naudts, L.; Khlystov, O.; Khabuev, A.; Seminskiy, I.; Casier, R.; Cuylaerts, M.; 'chenko, P., General; Synaeve, J.; Vlamynck, N.; de Batist, M. A.; Grachev, M. A.

    2009-12-01

    Lake Baikal is a large rift lake in Southern Siberia (Russian Federation). It occupies the three central depressions of the Baikal Rift Zone (BRZ): i.e. the Southern, Central and Northern Baikal Basins. Rifting started ca. 30 Ma ago and is still active with a present-day average extension rate of about 4 mm/yr. With a depth of 1637 m, Lake Baikal is the deepest lake in the World. It also holds 20 % of the world’s liquid surface fresh water, which makes it the largest lake in the World in terms of volume. Lake Baikal is also the only freshwater lake in the World with demonstrated occurrences of gas hydrates in its sedimentary infill. Methane hydrates are stable at water depths below 375 m. The presence of hydrates in the sedimentary infill is evidenced by a widespread BSR. Hydrates have also been encountered locally, in the near-bottom sediments of mud-volcano-like structures. In the summer of 2009, the lake floor has been mapped with multibeam swath bathymetry for the first time during a two-month-long survey with RV Titov. Swath bathymetry data were acquired with RCMG’s mobile 50 kHz SeaBeam 1050 multibeam system. In total 12600 km of echosounder tracks were sailed covering 15000 km2, including the Academician Ridge Accommodation Zone, the Central Baikal Basin, the Selenga Delta Accommodation Zone en the South Baikal Basin. In general, the lake floor was mapped starting from water depths of about -200 m to -1637 m, with an average survey depth of -1000 m. The new bathymetric data image the lake-floor morphology in unprecedented detail, revealing many small- and large-scall morphosedimentary, morphostructural and fluid-flow-related features, many of which were hitherto unknown. Known mud-volcano provinces in the Southern and Central Baikal Basins (i.e. the Posolsky Bank mud-volcano province, the Kukuy Canyon mud volcano province and the Olkhon Gate mud-volcano province) were mapped in detail, and several new, often isolated, mud-volcano-like structures were

  12. Methods to determine hydration states of minerals and cement hydrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baquerizo, Luis G., E-mail: luis.baquerizoibarra@holcim.com; Matschei, Thomas; Scrivener, Karen L.

    2014-11-15

    This paper describes a novel approach to the quantitative investigation of the impact of varying relative humidity (RH) and temperature on the structure and thermodynamic properties of salts and crystalline cement hydrates in different hydration states (i.e. varying molar water contents). The multi-method approach developed here is capable of deriving physico-chemical boundary conditions and the thermodynamic properties of hydrated phases, many of which are currently missing from or insufficiently reported in the literature. As an example the approach was applied to monosulfoaluminate, a phase typically found in hydrated cement pastes. New data on the dehydration and rehydration of monosulfoaluminate aremore » presented. Some of the methods used were validated with the system Na{sub 2}SO{sub 4}–H{sub 2}O and new data related to the absorption of water by anhydrous sodium sulfate are presented. The methodology and data reported here should permit better modeling of the volume stability of cementitious systems exposed to various different climatic conditions.« less

  13. Correlation Between Geological Stuctures and Gas Hydrate amount Offshore the South Shetland Island — Preliminary Results

    NASA Astrophysics Data System (ADS)

    Loreto, M. F.; Tinivella, U.; Accaino, F.; Giustiniani, M.

    2010-05-01

    Sediments of the accretionary prism, present along the continental margin of the Peninsula Antarctica SW of Elephant Island, are filled by gas hydrates as evidenced by a strong BSR. A multidisciplinary geophysical dataset, represented by seismic data, multibeam, chirp profiles, CTD and core samples, was acquired during three oceanographic cruises. The estimation of gas hydrate and free gas concentrations is based on the P-wave velocity analysis. In order to extract a detailed and reliable velocity field, we have developed and optimized a procedure that includes the pre-stack depth migration to determine, iteratively and with a layer stripping approach method, the velocity field and the depth-migrated seismic section. The final velocity field is then translated in terms of gas hydrate and free gas amounts by using theoretical approaches. Several seismic sections have been processed in the investigated area. The final 2D velocity sections have been translated in gas-phase concentration sections, considering the gas distribution within sediments both uniformly and patchly distributed. The free gas layer is locally present and, consequently, the base of the free gas reflector was identified only in some lines or part of them. The hydrate layer shows important lateral variations of hydrate concentration in correspondence of geological features, such as faults and folds. The intense fluid migration along faults and different fluid accumulation in correspondence of geological structures can control the gas hydrate concentration and modify the geothermal field in the surrounding area.

  14. Site selection for DOE/JIP gas hydrate drilling in the northern Gulf of Mexico

    USGS Publications Warehouse

    Hutchinson, Deborah; Shelander, Dianna; Dai, J.; McConnell, D.; Shedd, William; Frye, Matthew; Ruppel, Carolyn D.; Boswell, R.; Jones, Emrys; Collett, Timothy S.; Rose, Kelly K.; Dugan, Brandon; Wood, Warren T.

    2008-01-01

    n the late spring of 2008, the Chevron-led Gulf of Mexico Gas Hydrate Joint Industry Project (JIP) expects to conduct an exploratory drilling and logging campaign to better understand gas hydrate-bearing sands in the deepwater Gulf of Mexico. The JIP Site Selection team selected three areas to test alternative geological models and geophysical interpretations supporting the existence of potential high gas hydrate saturations in reservoir-quality sands. The three sites are near existing drill holes which provide geological and geophysical constraints in Alaminos Canyon (AC) lease block 818, Green Canyon (GC) 955, and Walker Ridge (WR) 313. At the AC818 site, gas hydrate is interpreted to occur within the Oligocene Frio volcaniclastic sand at the crest of a fold that is shallow enough to be in the hydrate stability zone. Drilling at GC955 will sample a faulted, buried Pleistocene channel-levee system in an area characterized by seafloor fluid expulsion features, structural closure associated with uplifted salt, and abundant seismic evidence for upward migration of fluids and gas into the sand-rich parts of the sedimentary section. Drilling at WR313 targets ponded sheet sands and associated channel/levee deposits within a minibasin, making this a non-structural play. The potential for gas hydrate occurrence at WR313 is supported by shingled phase reversals consistent with the transition from gas-charged sand to overlying gas-hydrate saturated sand. Drilling locations have been selected at each site to 1) test geological methods and models used to infer the occurrence of gas hydrate in sand reservoirs in different settings in the northern Gulf of Mexico; 2) calibrate geophysical models used to detect gas hydrate sands, map reservoir thicknesses, and estimate the degree of gas hydrate saturation; and 3) delineate potential locations for subsequent JIP drilling and coring operations that will collect samples for comprehensive physical property, geochemical and other

  15. Parametric study of the physical properties of hydrate-bearing sand, silt, and clay sediments: 2. Small-strain mechanical properties

    USGS Publications Warehouse

    Lee, J.Y.; Francisca, F.M.; Santamarina, J.C.; Ruppel, C.

    2010-01-01

    The small-strain mechanical properties (e.g., seismic velocities) of hydrate-bearing sediments measured under laboratory conditions provide reference values for calibration of logging and seismic exploration results acquired in hydrate-bearing formations. Instrumented cells were designed for measuring the compressional (P) and shear (S) velocities of sand, silts, and clay with and without hydrate and subject to vertical effective stresses of 0.01 to 2 MPa. Tetrahydrofuran (THF), which is fully miscible in water, was used as the hydrate former to permit close control over the hydrate saturation Shyd and to produce hydrate from dissolved phase, as methane hydrate forms in most natural marine settings. The results demonstrate that laboratory hydrate formation technique controls the pattern of P and S velocity changes with increasing Shyd and that the small-strain properties of hydrate-bearing sediments are governed by effective stress, δ'v and sediment specific surface. The S velocity increases with hydrate saturation owing to an increase in skeletal shear stiffness, particularly when hydrate saturation exceeds Shyd≈ 0.4. At very high hydrate saturations, the small strain shear stiffness is determined by the presence of hydrates and becomes insensitive to changes in effective stress. The P velocity increases with hydrate saturation due to the increases in both the shear modulus of the skeleton and the bulk modulus of pore-filling phases during fluid-to-hydrate conversion. Small-strain Poisson's ratio varies from 0.5 in soft sediments lacking hydrates to 0.25 in stiff sediments (i.e., subject to high vertical effective stress or having high Shyd). At Shyd ≥ 0.5, hydrate hinders expansion and the loss of sediment stiffness during reduction of vertical effective stress, meaning that hydrate-rich natural sediments obtained through pressure coring should retain their in situ fabric for some time after core retrieval if the cores are maintained within the hydrate

  16. Elasticity of methane hydrate phases at high pressure.

    PubMed

    Beam, Jennifer; Yang, Jing; Liu, Jin; Liu, Chujie; Lin, Jung-Fu

    2016-04-21

    Determination of the full elastic constants (cij) of methane hydrates (MHs) at extreme pressure-temperature environments is essential to our understanding of the elastic, thermodynamic, and mechanical properties of methane in MH reservoirs on Earth and icy satellites in the solar system. Here, we have investigated the elastic properties of singe-crystal cubic MH-sI, hexagonal MH-II, and orthorhombic MH-III phases at high pressures in a diamond anvil cell. Brillouin light scattering measurements, together with complimentary equation of state (pressure-density) results from X-ray diffraction and methane site occupancies in MH from Raman spectroscopy, were used to derive elastic constants of MH-sI, MH-II, and MH-III phases at high pressures. Analysis of the elastic constants for MH-sI and MH-II showed intriguing similarities and differences between the phases' compressional wave velocity anisotropy and shear wave velocity anisotropy. Our results show that these high-pressure MH phases can exhibit distinct elastic, thermodynamic, and mechanical properties at relevant environments of their respective natural reservoirs. These results provide new insight into the determination of how much methane exists in MH reservoirs on Earth and on icy satellites elsewhere in the solar system and put constraints on the pressure and temperature conditions of their environment.

  17. Phase boundary of hot dense fluid hydrogen

    PubMed Central

    Ohta, Kenji; Ichimaru, Kota; Einaga, Mari; Kawaguchi, Sho; Shimizu, Katsuya; Matsuoka, Takahiro; Hirao, Naohisa; Ohishi, Yasuo

    2015-01-01

    We investigated the phase transformation of hot dense fluid hydrogen using static high-pressure laser-heating experiments in a laser-heated diamond anvil cell. The results show anomalies in the heating efficiency that are likely to be attributed to the phase transition from a diatomic to monoatomic fluid hydrogen (plasma phase transition) in the pressure range between 82 and 106 GPa. This study imposes tighter constraints on the location of the hydrogen plasma phase transition boundary and suggests higher critical point than that predicted by the theoretical calculations. PMID:26548442

  18. Transformations in methane hydrates

    USGS Publications Warehouse

    Chou, I.-Ming; Sharma, A.; Burruss, R.C.; Shu, J.; Mao, Ho-kwang; Hemley, R.J.; Goncharov, A.F.; Stern, L.A.; Kirby, S.H.

    2000-01-01

    Detailed study of pure methane hydrate in a diamond cell with in situ optical, Raman, and x-ray microprobe techniques reveals two previously unknown structures, structure II and structure H, at high pressures. The structure II methane hydrate at 250 MPa has a cubic unit cell of a = 17.158(2) A?? and volume V = 5051.3(13) A??3; structure H at 600 MPa has a hexagonal unit cell of a = 11.980(2) A??, c = 9.992(3) A??, and V = 1241.9(5) A??3. The compositions of these two investigated phases are still not known. With the effects of pressure and the presence of other gases in the structure, the structure II phase is likely to dominate over the known structure I methane hydrate within deep hydrate-bearing sediments underlying continental margins.

  19. Novel Hydrogen Hydrate Structures under Pressure

    PubMed Central

    Qian, Guang-Rui; Lyakhov, Andriy O.; Zhu, Qiang; Oganov, Artem R.; Dong, Xiao

    2014-01-01

    Gas hydrates are systems of prime importance. In particular, hydrogen hydrates are potential materials of icy satellites and comets, and may be used for hydrogen storage. We explore the H2O–H2 system at pressures in the range 0–100 GPa with ab initio variable-composition evolutionary simulations. According to our calculation and previous experiments, the H2O–H2 system undergoes a series of transformations with pressure, and adopts the known open-network clathrate structures (sII, C0), dense “filled ice” structures (C1, C2) and two novel hydrate phases. One of these is based on the hexagonal ice framework and has the same H2O:H2 ratio (2:1) as the C0 phase at low pressures and similar enthalpy (we name this phase Ih-C0). The other newly predicted hydrate phase has a 1:2 H2O:H2 ratio and structure based on cubic ice. This phase (which we name C3) is predicted to be thermodynamically stable above 38 GPa when including van der Waals interactions and zero-point vibrational energy, and explains previously mysterious experimental X-ray diffraction and Raman measurements. This is the hydrogen-richest hydrate and this phase has a remarkable gravimetric density (18 wt.%) of easily extractable hydrogen. PMID:25001502

  20. A 2D Micromodel Study of Fines Migration and Clogging Behavior in Porous Media: Implications of Fines on Methane Extraction from Hydrate-Bearing Sediments

    NASA Astrophysics Data System (ADS)

    Cao, S. C.; Jang, J.; Waite, W. F.; Jafari, M.; Jung, J.

    2017-12-01

    Fine-grained sediment, or "fines," exist nearly ubiquitously in natural sediment, even in the predominantly coarse-grained sediments that host gas hydrates. Fines within these sandy sediments can play a crucial role during gas hydrate production activities. During methane extraction, several processes can alter the mobility and clogging potential of fines: 1) fluid flow as the formation is depressurized to release methane from hydrate; 2) pore-fluid chemistry shifts as pore-fluid brine freshens due to pure water released from dissociating hydrate; 3) the presence of a moving gas/water interface as gas evolves from dissociating hydrate and moves through the reservoir toward the production well. To evaluate fines migration and clogging behavior changes resulting from methane gas production and pore-water freshening during hydrate dissociation, 2D micromodel experiments have been conducted on a selection of pure fines, pore-fluids, and micromodel pore-throat sizes. Additionally, tests have been run with and without an invading gas phase (CO2) to test the significance of a moving meniscus on fines mobility and clogging. The endmember fine particles chosen for this research include silica silt, mica, calcium carbonate, diatoms, kaolinite, illite, and bentonite (primarily made of montmorillonite). The pore fluids include deionized water, sodium chloride brine (2M concentration), and kerosene. The microfluidic pore models, used as porous media analogs, were fabricated with pore-throat widths of 40, 60, and 100 µm. Results from this research show that in addition to the expected dependence of clogging on the ratio of particle-to-pore-throat size, pore-fluid chemistry is also a significant factor because the interaction between a particular type of fine and pore fluid influences that fine's capacity to cluster, clump together and effectively increase its particle "size" relative to the pore-throat width. The presence of a moving gas/fluid meniscus increases the clogging

  1. Nonlinear fluid dynamics of nanoscale hydration water layer

    NASA Astrophysics Data System (ADS)

    Jhe, Wonho; Kim, Bongsu; Kim, Qhwan; An, Sangmin

    In nature, the hydration water layer (HWL) ubiquitously exists in ambient conditions or aqueous solutions, where water molecules are tightly bound to ions or hydrophilic surfaces. It plays an important role in various mechanisms such as biological processes, abiotic materials, colloidal interaction, and friction. The HWL, for example, can be easily formed between biomaterials since most biomaterials are covered by hydrophilic molecules such as lipid bilayers, and this HWL is expected to be significant to biological and physiological functions. Here (1) we present the general stress tensor of the hydration water layer. The hydration stress tensor provided the platform form for holistic understanding of the dynamic behaviors of the confined HWL including tapping and shear dynamics which are until now individually studied. And, (2) through fast shear velocity ( 1mm/s) experiments, the elastic turbulence caused by elastic property of the HWL is indirectly observed. Our results may contribute to a deeper study of systems where the HWL plays an important role such as biomolecules, colloidal particles, and the MEMS. This work was supported by the National Research Foundation of Korea(NRF) Grant funded by the Korea government(MSIP) (2016R1A3B1908660).

  2. Comparison of the physical and geotechnical properties of gas-hydrate-bearing sediments from offshore India and other gas-hydrate-reservoir systems

    USGS Publications Warehouse

    Winters, William J.; Wilcox-Cline, R.W.; Long, P.; Dewri, S.K.; Kumar, P.; Stern, Laura A.; Kerr, Laura A.

    2014-01-01

    The sediment characteristics of hydrate-bearing reservoirs profoundly affect the formation, distribution, and morphology of gas hydrate. The presence and type of gas, porewater chemistry, fluid migration, and subbottom temperature may govern the hydrate formation process, but it is the host sediment that commonly dictates final hydrate habit, and whether hydrate may be economically developed.In this paper, the physical properties of hydrate-bearing regions offshore eastern India (Krishna-Godavari and Mahanadi Basins) and the Andaman Islands, determined from Expedition NGHP-01 cores, are compared to each other, well logs, and published results of other hydrate reservoirs. Properties from the hydrate-free Kerala-Konkan basin off the west coast of India are also presented. Coarser-grained reservoirs (permafrost-related and marine) may contain high gas-hydrate-pore saturations, while finer-grained reservoirs may contain low-saturation disseminated or more complex gas-hydrates, including nodules, layers, and high-angle planar and rotational veins. However, even in these fine-grained sediments, gas hydrate preferentially forms in coarser sediment or fractures, when present. The presence of hydrate in conjunction with other geologic processes may be responsible for sediment porosity being nearly uniform for almost 500 m off the Andaman Islands.Properties of individual NGHP-01 wells and regional trends are discussed in detail. However, comparison of marine and permafrost-related Arctic reservoirs provides insight into the inter-relationships and common traits between physical properties and the morphology of gas-hydrate reservoirs regardless of location. Extrapolation of properties from one location to another also enhances our understanding of gas-hydrate reservoir systems. Grain size and porosity effects on permeability are critical, both locally to trap gas and regionally to provide fluid flow to hydrate reservoirs. Index properties corroborate more advanced

  3. 3D seismic analysis of the gas hydrate system and the fluid migration paths in part of the Niger Delta Basin, Nigeria

    NASA Astrophysics Data System (ADS)

    Akinsanpe, Olumuyiwa T.; Adepelumi, Adekunle A.; Benjamin, Uzochukwu K.; Falebita, Dele E.

    2017-12-01

    Comprehensive qualitative and semi-quantitative seismic analysis was carried out on 3-dimensional seismic data acquired in the deepwater compressional and shale diapiric zone of the Niger Delta Basin using an advanced seismic imaging tool. The main aim of this work is to obtain an understanding of the forming mechanism of the gas hydrate system, and the fluid migration paths associated with this part of the basin. The results showed the presence of pockmarks on the seafloor and bottom simulating reflectors (BSRs) in the field, indicating the active fluid flux and existence of gas hydrate system in the area. In the area of approximately 195 km2 occupying nearly 24% of the entire study field, three major zones with continuous or discontinuous BSRs of 3 to 7 km in length which are in the northeastern, southern and eastern part of the field respectively were delineated. The BSR is interpreted to be the transition between the free gas zone and the gas hydrate zone. The geologic structures including faults (strike-slip and normal faults), chimneys and diapirs were deduced to be the main conduits for gas migration. It is concluded that the biogenic gases generated in the basin were possibly transported via faults and chimneys by advection processes and subsequently accumulated under low temperature and high pressure conditions in the free gas zone below the BSR forming gas hydrate. A plausible explanation for the presence of the ubiquitous pockmarks of different diameters and sizes in the area is the transportation of the excessive gas to the seafloor through these mapped geologic structures.

  4. Gas hydrate drilling transect across northern Cascadia margin - IODP Expedition 311

    USGS Publications Warehouse

    Riedel, M.; Collett, T.; Malone, M.J.; Collett, T.S.; Mitchell, M.; Guerin, G.; Akiba, F.; Blanc-Valleron, M.; Ellis, M.; Hashimoto, Y.; Heuer, V.; Higashi, Y.; Holland, M.; Jackson, P.D.; Kaneko, M.; Kastner, M.; Kim, J.-H.; Kitajima, H.; Long, P.E.; Malinverno, A.; Myers, Gwen E.; Palekar, L.D.; Pohlman, J.; Schultheiss, P.; Teichert, B.; Torres, M.E.; Trehu, A.M.; Wang, Jingyuan; Worthmann, U.G.; Yoshioka, H.

    2009-01-01

    A transect of four sites (U1325, U1326, U1327 and U1329) across the northern Cascadia margin was established during Integrated Ocean Drilling Program Expedition 311 to study the occurrence and formation of gas hydrate in accretionary complexes. In addition to the transect sites, a fifth site (U1328) was established at a cold vent with active fluid flow. The four transect sites represent different typical geological environments of gas hydrate occurrence across the northern Cascadia margin from the earliest occurrence on the westernmost first accreted ridge (Site U1326) to the eastward limit of the gas hydrate occurrence in shallower water (Site U1329). Expedition 311 complements previous gas hydrate studies along the Cascadia accretionary complex, especially ODP Leg 146 and Leg 204 by extending the aperture of the transect sampled and introducing new tools to systematically quantify the gas hydrate content of the sediments. Among the most significant findings of the expedition was the occurrence of up to 20 m thick sand-rich turbidite intervals with gas hydrate concentrations locally exceeding 50% of the pore space at Sites U1326 and U1327. Moreover, these anomalous gas hydrate intervals occur at unexpectedly shallow depths of 50-120 metres below seafloor, which is the opposite of what was expected from previous models of gas hydrate formation in accretionary complexes, where gas hydrate was predicted to be more concentrated near the base of the gas hydrate stability zone just above the bottom-simulating reflector. Gas hydrate appears to be mainly concentrated in turbidite sand layers. During Expedition 311, the visual correlation of gas hydrate with sand layers was clearly and repeatedly documented, strongly supporting the importance of grain size in controlling gas hydrate occurrence. The results from the transect sites provide evidence for a structurally complex, lithology-controlled gas hydrate environment on the northern Cascadia margin. Local shallow

  5. Variations in Gas and Water Pulses at an Arctic Seep: Fluid Sources and Methane Transport

    NASA Astrophysics Data System (ADS)

    Hong, W.-L.; Torres, M. E.; Portnov, A.; Waage, M.; Haley, B.; Lepland, A.

    2018-05-01

    Methane fluxes into the oceans are largely dependent on the methane phase as it migrates upward through the sediments. Here we document decoupled methane transport by gaseous and aqueous phases in Storfjordrenna (offshore Svalbard) and propose a three-stage evolution model for active seepage in the region where gas hydrates are present in the shallow subsurface. In a preactive seepage stage, solute diffusion is the primary transport mechanism for methane in the dissolved phase. Fluids containing dissolved methane have high 87Sr/86Sr ratios due to silicate weathering in the microbial methanogenesis zone. During the active seepage stage, migration of gaseous methane results in near-seafloor gas hydrate formation and vigorous seafloor gas discharge with a thermogenic fingerprint. In the postactive seepage stage, the high concentration of dissolved lithium points to the contribution of a deeper-sourced aqueous fluid, which we postulate advects upward following cessation of gas discharge.

  6. Ad libitum vs. restricted fluid replacement on hydration and performance of military tasks.

    PubMed

    Nolte, Heinrich W; Noakes, Timothy D; Nolte, Kim

    2013-02-01

    The primary objective was to evaluate the effect of ad libitum vs. restricted fluid replacement protocol on hydration markers and performance in selected military tasks. The secondary objective was to determine if 300 ml x h(-1) could be considered a safe minimum fluid intake under the experimental conditions. Data were collected simulating a route march over 16 km. There were 57 subjects who participated in the study. The mean pre-exercise body mass of the ad libitum group was 70.4 +/- 13.3 (SD) kg compared to 69.3 +/- 8.9 kg in the restricted group. The mean total fluid intake of the ad libitum group was 2.1 +/- 0.9 L compared to 1.2 +/- 0.0 L in the restricted group. The ad libitum and restricted intake groups, respectively, lost a mean of 1.05 kg +/- 0.77 (1.5%) and 1.34 kg +/- 0.37 (1.9%). Calculated sweat rate was 608 +/- 93 ml x h(-1) compared to 762 +/- 162 ml x h(-1) in the ad libitum group. There were no significant differences for either urine specific gravity (USG) or urine osmolality (UOsm) before or after the exercise. It is not clear whether fluid intake and calculated sweat rates are causally related or explained by their codependence on a third variable; for example, the exercising metabolic rate. Thus, 300 ml x h(-1) intake could be considered a current safe minimum water intake for soldiers of similar mass under similar experimental conditions, namely similar exercise durations at equivalent exercise intensities in a moderate, dry climate.

  7. Lennard-Jones fluids in two-dimensional nano-pores. Multi-phase coexistence and fluid structure

    NASA Astrophysics Data System (ADS)

    Yatsyshin, Petr; Savva, Nikos; Kalliadasis, Serafim

    2014-03-01

    We present a number of fundamental findings on the wetting behaviour of nano-pores. A popular model for fluid confinement is a one-dimensional (1D) slit pore formed by two parallel planar walls and it exhibits capillary condensation (CC): a first-order phase transition from vapour to capillary-liquid (Kelvin shift). Capping such a pore at one end by a third orthogonal wall forms a prototypical two-dimensional (2D) pore. We show that 2D pores possess a wetting temperature such that below this temperature CC remains of first order, above it becomes a continuous phase transition manifested by a slab of capillary-liquid filling the pore from the capping wall. Continuous CC exhibits hysteresis and can be preceded by a first-order capillary prewetting transition. Additionally, liquid drops can form in the corners of the 2D pore (remnant of 2D wedge prewetting). The three fluid phases, vapour, capillary-liquid slab and corner drops, can coexist at the pore triple point. Our model is based on the statistical mechanics of fluids in the density functional formulation. The fluid-fluid and fluid-substrate interactions are dispersive. We analyze in detail the microscopic fluid structure, isotherms and full phase diagrams. Our findings also suggest novel ways to control wetting of nano-pores. We are grateful to the European Research Council via Advanced Grant No. 247031 for support.

  8. Simulated molecular-scale interaction of supercritical fluid mobile and stationary phases.

    PubMed

    Siders, Paul D

    2017-12-08

    In supercritical fluid chromatography, molecules from the mobile phase adsorb on the stationary phase. Stationary-phase alkylsilane-terminated silica surfaces might adsorb molecules at the silica, among the silanes, on a silane layer, or in pore space between surfaces. Mobile phases of carbon dioxide, pure and modified with methanol, and stationary phases were simulated at the molecular scale. Classical atomistic force fields were used in Gibbs-ensemble hybrid Monte Carlo calculations. Excess adsorption of pure carbon dioxide mobile phase peaked at fluid densities of 0.002-0.003Å -3 . Mobile phase adsorption from 7% methanol in carbon dioxide peaked at lower fluid density. Methanol was preferentially adsorbed from the mixed fluid. Surface silanes prevented direct interaction of fluid-phase molecules with silica. Some adsorbed molecules mixed with tails of bonded silanes; some formed layers above the silanes. Much adsorption occurred by filling the space between surfaces in the stationary-phase model. The distribution in the stationary phase of methanol molecules from a modified fluid phase varied with pressure. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Research opportunities in salt hydrates for thermal energy storage

    NASA Astrophysics Data System (ADS)

    Braunstein, J.

    1983-11-01

    The state of the art of salt hydrates as phase change materials for low temperature thermal energy storage is reviewed. Phase equilibria, nucleation behavior and melting kinetics of the commonly used hydrate are summarized. The development of efficient, reliable inexpensive systems based on phase change materials, especially salt hydrates for the storage (and retrieval) of thermal energy for residential heating is outlined. The use of phase change material thermal energy storage systems is not yet widespread. Additional basic research is needed in the areas of crystallization and melting kinetics, prediction of phase behavior in ternary systems, thermal diffusion in salt hydrate systems, and in the physical properties pertinent to nonequilibrium and equilibrium transformations in these systems.

  10. Effects of hydration on mitral valve prolapse.

    PubMed

    Lax, D; Eicher, M; Goldberg, S J

    1993-08-01

    We investigated the effect of hydration on mitral valve prolapse (MVP). Ten subjects with documented diagnosis of MVP were studied before and after oral hydration with 1 L of fluid. Increased weight and cardiac output were present after hydration. Results showed that all 10 subjects with diagnosis of MVP before hydration continued to have MVP after hydration; however, subtle changes were detected, especially on auscultation. Seven of 9 subjects (with cardiac examination recorded before and after hydration) had auscultatory findings of MVP before hydration. No detectable auscultatory change after hydration was present in one subject; in six subjects a loss of either a click or a murmur was detected after hydration. All subjects had echocardiographically detected MVP before hydration; evidence of MVP on two-dimensional or M-mode examination persisted after hydration in all 10 subjects. Minor changes in the echocardiographic examination (M-mode n = 2, Doppler n = 1) were detected in three subjects. Thus we found that hydration of subjects with MVP did not alter the overall diagnosis; however, changes occurred, especially on auscultation. This suggests that alterations in hydration may affect auscultatory expression of MVP and could explain, in part, the variable auscultatory findings in patients with MVP.

  11. Hydration of dimethyldodecylamine-N-oxide: enthalpy and entropy driven processes.

    PubMed

    Kocherbitov, Vitaly; Söderman, Olle

    2006-07-13

    Dimethyldodecylamine-N-oxide (DDAO) has only one polar atom that is able to interact with water. Still, this surfactant shows very hydrophilic properties: in mixtures with water, it forms normal liquid crystalline phases and micelles. Moreover, there is data in the literature indicating that the hydration of this surfactant is driven by enthalpy while other studies show that hydration of surfactants and lipids typically is driven by entropy. Sorption calorimetry allows resolving enthalpic and entropic contributions to the free energy of hydration at constant temperature and thus directly determines the driving forces of hydration. The results of the present sorption calorimetric study show that the hydration of liquid crystalline phases of DDAO is driven by entropy, except for the hydration of the liquid crystalline lamellar phase which is co-driven by enthalpy. The exothermic heat effect of the hydration of the lamellar phase arises from formation of strong hydrogen bonds between DDAO and water. Another issue is the driving forces of the phase transitions caused by the hydration. The sorption calorimetric results show that the transitions from the lamellar to cubic and from the cubic to the hexagonal phase are driven by enthalpy. Transitions from solid phases to the liquid crystalline lamellar phase are entropically driven, while the formation of the monohydrate from the dry surfactant is driven by enthalpy. The driving forces of the transition from the hexagonal phase to the isotropic solution are close to zero. These sorption calorimetric results are in good agreement with the analysis of the binary phase diagram based on the van der Waals differential equation. The phase diagram of the DDAO-water system determined using DSC and sorption calorimetry is presented.

  12. Balancing Accuracy and Computational Efficiency for Ternary Gas Hydrate Systems

    NASA Astrophysics Data System (ADS)

    White, M. D.

    2011-12-01

    Geologic accumulations of natural gas hydrates hold vast organic carbon reserves, which have the potential of meeting global energy needs for decades. Estimates of vast amounts of global natural gas hydrate deposits make them an attractive unconventional energy resource. As with other unconventional energy resources, the challenge is to economically produce the natural gas fuel. The gas hydrate challenge is principally technical. Meeting that challenge will require innovation, but more importantly, scientific research to understand the resource and its characteristics in porous media. Producing natural gas from gas hydrate deposits requires releasing CH4 from solid gas hydrate. The conventional way to release CH4 is to dissociate the hydrate by changing the pressure and temperature conditions to those where the hydrate is unstable. The guest-molecule exchange technology releases CH4 by replacing it with a more thermodynamically stable molecule (e.g., CO2, N2). This technology has three advantageous: 1) it sequesters greenhouse gas, 2) it releases energy via an exothermic reaction, and 3) it retains the hydraulic and mechanical stability of the hydrate reservoir. Numerical simulation of the production of gas hydrates from geologic deposits requires accounting for coupled processes: multifluid flow, mobile and immobile phase appearances and disappearances, heat transfer, and multicomponent thermodynamics. The ternary gas hydrate system comprises five components (i.e., H2O, CH4, CO2, N2, and salt) and the potential for six phases (i.e., aqueous, liquid CO2, gas, hydrate, ice, and precipitated salt). The equation of state for ternary hydrate systems has three requirements: 1) phase occurrence, 2) phase composition, and 3) phase properties. Numerical simulation of the production of geologic accumulations of gas hydrates have historically suffered from relatively slow execution times, compared with other multifluid, porous media systems, due to strong nonlinearities and

  13. New ordered metastable phases between the gel and subgel phases in hydrated phospholipids.

    PubMed Central

    Tenchov, B; Koynova, R; Rapp, G

    2001-01-01

    Formation of low-temperature ordered gel phases in several fully hydrated phosphatidylethanolamines (PEs) and phosphatidylcholines (PCs) with saturated chains as well as in dipalmitoylphosphatidylglycerol (DPPG) was observed by synchrotron x-ray diffraction, microcalorimetry, and densitometry. The diffraction patterns recorded during slow cooling show that the gel-phase chain reflection cooperatively splits into two reflections, signaling a transformation of the usual gel phase into a more ordered phase, with an orthorhombic chain packing (the Y-transition). This transition is associated with a small decrease (2-4 microl/g) or inflection of the partial specific volume. It is fully reversible with the temperature and displays in heating direction as a small (0.1-0.7 kcal/mol) endothermic event. We recorded a Y-transition in distearoyl PE, dipalmitoyl PE (DPPE), mono and dimethylated DPPE, distearoyl PC, dipalmitoyl PC, diC(15)PC, and DPPG. No such transition exists in dimyristoyl PE and dilauroyl PE where the gel L(beta) phase transforms directly into subgel L(c) phase, as well as in the unsaturated dielaidoyl PE. The PE and PC low-temperature phases denoted L(R1) and SGII, respectively, have different hydrocarbon chain packing. The SGII phase is with tilted chains, arranged in an orthorhombic lattice of two-nearest-neighbor type. Except for the PCs, it was also registered in ionized DPPG. In the L(R1) phase, the chains are perpendicular to the bilayer plane and arranged in an orthorhombic lattice of four-nearest-neighbor type. It was observed in PEs and in protonated DPPG. The L(R1) and SGII phases are metastable phases, which may only be formed by cooling the respective gel L(beta) and L(beta') phases, and not by heating the subgel L(c) phase. Whenever present, they appear to represent an indispensable intermediate step in the formation of the latter phase. PMID:11259300

  14. Associations Between Hydration Status, Intravenous Fluid Administration, and Outcomes of Patients Infected With Shiga Toxin-Producing Escherichia coli: A Systematic Review and Meta-analysis.

    PubMed

    Grisaru, Silviu; Xie, Jianling; Samuel, Susan; Hartling, Lisa; Tarr, Phillip I; Schnadower, David; Freedman, Stephen B

    2017-01-01

    The associations between hydration status, intravenous fluid administration, and outcomes of patients infected with Shiga toxin-producing Escherichia coli (STEC) remain unclear. To determine the relationship between hydration status, the development and severity of hemolytic uremic syndrome (HUS), and adverse outcomes in STEC-infected individuals. MEDLINE, EMBASE, Cochrane Central Register of Controlled Trials via the OvidSP platform, PubMed via the National Library of Medicine, CINAHL Plus with full text, Scopus, Web of Science, ClinicalTrials.gov, reference lists, and gray literature were systematically searched. Two reviewers independently identified studies that included patients with hydration status documentation, proven or presumed STEC infection, and some form of HUS that developed. No language restrictions were applied. Two reviewers independently extracted individual study data, including study characteristics, population, and outcomes. Risk of bias was assessed using the Newcastle-Ottawa Scale; strength of evidence was adjudicated using the Grading of Recommendations Assessment, Development, and Evaluation method. Meta-analyses were conducted using random-effects models. Development of HUS, complications (ie, oligoanuric renal failure, involvement of the central nervous system, or death), and interventions (ie, renal replacement therapy). Eight studies comprising 1511 patients (all children) met eligibility criteria. Unpublished data were provided by the authors of 7 published reports. The median risk-of-bias score was 7.5 (range, 6-9). No studies evaluated the effect of hydration during STEC infections on the risk for HUS. A hematocrit value greater than 23% as a measure of hydration status at presentation with HUS was associated with the development of oligoanuric HUS (OR, 2.38 [95% CI, 1.30-4.35]; I2 = 2%), renal replacement therapy (OR, 1.90 [95% CI, 1.25-2.90]; I2 = 17%), and death (OR, 5.13 [95% CI, 1.50-17.57]; I2 = 55%). Compared with

  15. Theoretical modeling insights into elastic wave attenuation mechanisms in marine sediments with pore-filling methane hydrate

    NASA Astrophysics Data System (ADS)

    Marín-Moreno, H.; Sahoo, S. K.; Best, A. I.

    2017-03-01

    The majority of presently exploitable marine methane hydrate reservoirs are likely to host hydrate in disseminated form in coarse grain sediments. For hydrate concentrations below 25-40%, disseminated or pore-filling hydrate does not increase elastic frame moduli, thus making impotent traditional seismic velocity-based methods. Here, we present a theoretical model to calculate frequency-dependent P and S wave velocity and attenuation of an effective porous medium composed of solid mineral grains, methane hydrate, methane gas, and water. The model considers elastic wave energy losses caused by local viscous flow both (i) between fluid inclusions in hydrate and pores and (ii) between different aspect ratio pores (created when hydrate grows); the inertial motion of the frame with respect to the pore fluid (Biot's type fluid flow); and gas bubble damping. The sole presence of pore-filling hydrate in the sediment reduces the available porosity and intrinsic permeability of the sediment affecting Biot's type attenuation at high frequencies. Our model shows that attenuation maxima due to fluid inclusions in hydrate are possible over the entire frequency range of interest to exploration seismology (1-106 Hz), depending on the aspect ratio of the inclusions, whereas maxima due to different aspect ratio pores occur only at sonic to ultrasound frequencies (104-106 Hz). This frequency response imposes further constraints on possible hydrate saturations able to reproduce broadband elastic measurements of velocity and attenuation. Our results provide a physical basis for detecting the presence and amount of pore-filling hydrate in seafloor sediments using conventional seismic surveys.

  16. Nonequilibrium Thermodynamics of Hydrate Growth on a Gas-Liquid Interface.

    PubMed

    Fu, Xiaojing; Cueto-Felgueroso, Luis; Juanes, Ruben

    2018-04-06

    We develop a continuum-scale phase-field model to study gas-liquid-hydrate systems far from thermodynamic equilibrium. We design a Gibbs free energy functional for methane-water mixtures that recovers the isobaric temperature-composition phase diagram under thermodynamic equilibrium conditions. The proposed free energy is incorporated into a phase-field model to study the dynamics of hydrate formation on a gas-liquid interface. We elucidate the role of initial aqueous concentration in determining the direction of hydrate growth at the interface, in agreement with experimental observations. Our model also reveals two stages of hydrate growth at an interface-controlled by a crossover in how methane is supplied from the gas and liquid phases-which could explain the persistence of gas conduits in hydrate-bearing sediments and other nonequilibrium phenomena commonly observed in natural methane hydrate systems.

  17. Simulating the gas hydrate production test at Mallik using the pilot scale pressure reservoir LARS

    NASA Astrophysics Data System (ADS)

    Heeschen, Katja; Spangenberg, Erik; Schicks, Judith M.; Priegnitz, Mike; Giese, Ronny; Luzi-Helbing, Manja

    2014-05-01

    LARS, the LArge Reservoir Simulator, allows for one of the few pilot scale simulations of gas hydrate formation and dissociation under controlled conditions with a high resolution sensor network to enable the detection of spatial variations. It was designed and built within the German project SUGAR (submarine gas hydrate reservoirs) for sediment samples with a diameter of 0.45 m and a length of 1.3 m. During the project, LARS already served for a number of experiments simulating the production of gas from hydrate-bearing sediments using thermal stimulation and/or depressurization. The latest test simulated the methane production test from gas hydrate-bearing sediments at the Mallik test site, Canada, in 2008 (Uddin et al., 2011). Thus, the starting conditions of 11.5 MPa and 11°C and environmental parameters were set to fit the Mallik test site. The experimental gas hydrate saturation of 90% of the total pore volume (70 l) was slightly higher than volumes found in gas hydrate-bearing formations in the field (70 - 80%). However, the resulting permeability of a few millidarcy was comparable. The depressurization driven gas production at Mallik was conducted in three steps at 7.0 MPa - 5.0 MPa - 4.2 MPa all of which were used in the laboratory experiments. In the lab the pressure was controlled using a back pressure regulator while the confining pressure was stable. All but one of the 12 temperature sensors showed a rapid decrease in temperature throughout the sediment sample, which accompanied the pressure changes as a result of gas hydrate dissociation. During step 1 and 2 they continued up to the point where gas hydrate stability was regained. The pressure decreases and gas hydrate dissociation led to highly variable two phase fluid flow throughout the duration of the simulated production test. The flow rates were measured continuously (gas) and discontinuously (liquid), respectively. Next to being discussed here, both rates were used to verify a model of gas

  18. Separation of rare earths from transition metals by liquid-liquid extraction from a molten salt hydrate to an ionic liquid phase.

    PubMed

    Rout, Alok; Binnemans, Koen

    2014-02-28

    The solvent extraction of trivalent rare-earth ions and their separation from divalent transition metal ions using molten salt hydrates as the feed phase and an undiluted fluorine-free ionic liquid as the extracting phase were investigated in detail. The extractant was tricaprylmethylammonium nitrate, [A336][NO3], and the hydrated melt was calcium nitrate tetrahydrate, Ca(NO3)2·4H2O. The extraction behavior of rare-earth ions was studied for solutions of individual elements, as well as for mixtures of rare earths in the hydrated melt. The influence of different extraction parameters was investigated: the initial metal loading in the feed phase, percentage of water in the feed solution, equilibration time, and the type of hydrated melt. The extraction of rare earths from Ca(NO3)2·4H2O was compared with extraction from CaCl2·4H2O by [A336][Cl] (Aliquat 336). The nitrate system was found to be the better one. The extraction and separation of rare earths from the transition metals nickel, cobalt and zinc were also investigated. Remarkably high separation factors of rare-earth ions over transition metal ions were observed for extraction from Ca(NO3)2·4H2O by the [A336][NO3] extracting phase. Furthermore, rare-earth ions could be separated efficiently from transition metal ions, even in melts with very high concentrations of transition metal ions. Rare-earth oxides could be directly dissolved in the Ca(NO3)2·4H2O phase in the presence of small amounts of Al(NO3)3·9H2O or concentrated nitric acid. The efficiency of extraction after dissolving the rare-earth oxides in the hydrated nitrate melt was identical to extraction from solutions with rare-earth nitrates dissolved in the molten phase. The stripping of the rare-earth ions from the loaded ionic liquid phase and the reuse of the recycled ionic liquid were also investigated in detail.

  19. Observations related to tetrahydrofuran and methane hydrates for laboratory studies of hydrate-bearing sediments

    USGS Publications Warehouse

    Lee, J.Y.; Yun, T.S.; Santamarina, J.C.; Ruppel, C.

    2007-01-01

    The interaction among water molecules, guest gas molecules, salts, and mineral particles determines the nucleation and growth behavior of gas hydrates in natural sediments. Hydrate of tetrahydrofuran (THF) has long been used for laboratory studies of gas hydrate-bearing sediments to provide close control on hydrate concentrations and to overcome the long formation history of methane hydrate from aqueous phase methane in sediments. Yet differences in the polarizability of THF (polar molecule) compared to methane (nonpolar molecule) raise questions about the suitability of THF as a proxy for methane in the study of hydrate-bearing sediments. From existing data and simple macroscale experiments, we show that despite its polar nature, THF's large molecular size results in low permittivity, prevents it from dissolving precipitated salts, and hinders the solvation of ions on dry mineral surfaces. In addition, the interfacial tension between water and THF hydrate is similar to that between water and methane hydrate. The processes that researchers choose for forming hydrate in sediments in laboratory settings (e.g., from gas, liquid, or ice) and the pore-scale distribution of the hydrate that is produced by each of these processes likely have a more pronounced effect on the measured macroscale properties of hydrate-bearing sediments than do differences between THF and methane hydrates themselves.

  20. Experimental investigation of gas hydrate formation, plugging and transportability in partially dispersed and water continuous systems

    NASA Astrophysics Data System (ADS)

    Vijayamohan, Prithvi

    As oil/gas subsea fields mature, the amount of water produced increases significantly due to the production methods employed to enhance the recovery of oil. This is true especially in the case of oil reservoirs. This increase in the water hold up increases the risk of hydrate plug formation in the pipelines, thereby resulting in higher inhibition cost strategies. A major industry concern is to reduce the severe safety risks associated with hydrate plug formation, and significantly extending subsea tieback distances by providing a cost effective flow assurance management/safety tool for mature fields. Developing fundamental understanding of the key mechanistic steps towards hydrate plug formation for different multiphase flow conditions is a key challenge to the flow assurance community. Such understanding can ultimately provide new insight and hydrate management guidelines to diminish the safety risks due to hydrate formation and accumulation in deepwater flowlines and facilities. The transportability of hydrates in pipelines is a function of the operating parameters, such as temperature, pressure, fluid mixture velocity, liquid loading, and fluid system characteristics. Specifically, the hydrate formation rate and plugging onset characteristics can be significantly different for water continuous, oil continuous, and partially dispersed systems. The latter is defined as a system containing oil/gas/water, where the water is present both as a free phase and partially dispersed in the oil phase (i.e., entrained water in the oil). Since hydrate formation from oil dispersed in water systems and partially dispersed water systems is an area which is poorly understood, this thesis aims to address some key questions in these systems. Selected experiments have been performed at the University of Tulsa flowloop to study the hydrate formation and plugging characteristics for the partially dispersed water/oil/gas systems as well as systems where the oil is completely dispersed

  1. Influence of phase connectivity on the relationship among capillary pressure, fluid saturation, and interfacial area in two-fluid-phase porous medium systems

    DOE PAGES

    McClure, James E.; Berrill, Mark A.; Gray, William G.; ...

    2016-09-02

    Here, multiphase flow in porous medium systems is typically modeled using continuum mechanical representations at the macroscale in terms of averaged quantities. These models require closure relations to produce solvable forms. One of these required closure relations is an expression relating fluid pressures, fluid saturations, and, in some cases, the interfacial area between the fluid phases, and the Euler characteristic. An unresolved question is whether the inclusion of these additional morphological and topological measures can lead to a non-hysteretic closure relation compared to the hysteretic forms that are used in traditional models, which typically do not include interfacial areas, ormore » the Euler characteristic. We develop a lattice-Boltzmann (LB) simulation approach to investigate the equilibrium states of a two-fluid-phase porous medium system, which include disconnected now- wetting phase features. The proposed approach is applied to a synthetic medium consisting of 1,964 spheres arranged in a random, non-overlapping, close-packed manner, yielding a total of 42,908 different equilibrium points. This information is evaluated using a generalized additive modeling approach to determine if a unique function from this family exists, which can explain the data. The variance of various model estimates is computed, and we conclude that, except for the limiting behavior close to a single fluid regime, capillary pressure can be expressed as a deterministic and non-hysteretic function of fluid saturation, interfacial area between the fluid phases, and the Euler characteristic. This work is unique in the methods employed, the size of the data set, the resolution in space and time, the true equilibrium nature of the data, the parameterizations investigated, and the broad set of functions examined. The conclusion of essentially non-hysteretic behavior provides support for an evolving class of two-fluid-phase flow in porous medium systems models.« less

  2. Influence of phase connectivity on the relationship among capillary pressure, fluid saturation, and interfacial area in two-fluid-phase porous medium systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClure, James E.; Berrill, Mark A.; Gray, William G.

    Here, multiphase flow in porous medium systems is typically modeled using continuum mechanical representations at the macroscale in terms of averaged quantities. These models require closure relations to produce solvable forms. One of these required closure relations is an expression relating fluid pressures, fluid saturations, and, in some cases, the interfacial area between the fluid phases, and the Euler characteristic. An unresolved question is whether the inclusion of these additional morphological and topological measures can lead to a non-hysteretic closure relation compared to the hysteretic forms that are used in traditional models, which typically do not include interfacial areas, ormore » the Euler characteristic. We develop a lattice-Boltzmann (LB) simulation approach to investigate the equilibrium states of a two-fluid-phase porous medium system, which include disconnected now- wetting phase features. The proposed approach is applied to a synthetic medium consisting of 1,964 spheres arranged in a random, non-overlapping, close-packed manner, yielding a total of 42,908 different equilibrium points. This information is evaluated using a generalized additive modeling approach to determine if a unique function from this family exists, which can explain the data. The variance of various model estimates is computed, and we conclude that, except for the limiting behavior close to a single fluid regime, capillary pressure can be expressed as a deterministic and non-hysteretic function of fluid saturation, interfacial area between the fluid phases, and the Euler characteristic. This work is unique in the methods employed, the size of the data set, the resolution in space and time, the true equilibrium nature of the data, the parameterizations investigated, and the broad set of functions examined. The conclusion of essentially non-hysteretic behavior provides support for an evolving class of two-fluid-phase flow in porous medium systems models.« less

  3. Ductile flow of methane hydrate

    USGS Publications Warehouse

    Durham, W.B.; Stern, L.A.; Kirby, S.H.

    2003-01-01

    Compressional creep tests (i.e., constant applied stress) conducted on pure, polycrystalline methane hydrate over the temperature range 260-287 K and confining pressures of 50-100 MPa show this material to be extraordinarily strong compared to other icy compounds. The contrast with hexagonal water ice, sometimes used as a proxy for gas hydrate properties, is impressive: over the thermal range where both are solid, methane hydrate is as much as 40 times stronger than ice at a given strain rate. The specific mechanical response of naturally occurring methane hydrate in sediments to environmental changes is expected to be dependent on the distribution of the hydrate phase within the formation - whether arranged structurally between and (or) cementing sediments grains versus passively in pore space within a sediment framework. If hydrate is in the former mode, the very high strength of methane hydrate implies a significantly greater strain-energy release upon decomposition and subsequent failure of hydrate-cemented formations than previously expected.

  4. The infrared spectrum of ammonia hydrate - Explanation for a reported ammonia phase

    NASA Technical Reports Server (NTRS)

    Still, G.; Fink, U.; Ferraro, J. R.

    1981-01-01

    A number of anomalous spectra of solid NH3 deposited from the vapor phase have appeared in the literature. These spectra have been ascribed to a new phase of NH3. In the experiment reported here these anomalous spectra were reproduced by depositing a thin film from a mixture of gaseous NH3 and H2O and annealing this film at a temperature of 162 K. The thin film spectra showed excellent agreement with recent data on NH3.H2O. The anomalous 'NH3' spectra are, therefore, seen to be caused by H2O contamination of solid NH3 with formation of NH3 hydrate.

  5. Effects of hydration on cognitive function of pilots.

    PubMed

    Lindseth, Paul D; Lindseth, Glenda N; Petros, Thomas V; Jensen, Warren C; Caspers, Julie

    2013-07-01

    The objective of this study was to examine the effect of fluid intake and possible dehydration on cognitive flight performance of pilots. A repeated-measures, counterbalanced, mixed study design was used to examine differences in working memory, spatial orientation, and cognitive flight performance of 40 randomly selected healthy pilots after having high and low fluid intakes. Serial weights were also analyzed to determine differences in cognitive flight performance of the dehydrated (1-3% weight loss) and hydrated study participants. Results showed flight performance and spatial cognition test scores were significantly (p < 0.05) poorer for pilots who had low fluid intakes and experienced dehydration in comparison to the hydrated pilots. These findings indicate fluid intake differences resulting in dehydration may have safety implications because peak cognitive performance among pilots is critical for flight safety. Reprint & Copyright © 2013 Association of Military Surgeons of the U.S.

  6. Three-dimensional distribution of gas hydrate beneath southern Hydrate Ridge: Constraints from ODP Leg 204

    USGS Publications Warehouse

    Trehu, A.M.; Long, P.E.; Torres, M.E.; Bohrmann, G.; Rack, F.R.; Collett, T.S.; Goldberg, D.S.; Milkov, A.V.; Riedel, M.; Schultheiss, P.; Bangs, N.L.; Barr, S.R.; Borowski, W.S.; Claypool, G.E.; Delwiche, M.E.; Dickens, G.R.; Gracia, E.; Guerin, G.; Holland, M.; Johnson, J.E.; Lee, Y.-J.; Liu, C.-S.; Su, X.; Teichert, B.; Tomaru, H.; Vanneste, M.; Watanabe, M. E.; Weinberger, J.L.

    2004-01-01

    Large uncertainties about the energy resource potential and role in global climate change of gas hydrates result from uncertainty about how much hydrate is contained in marine sediments. During Leg 204 of the Ocean Drilling Program (ODP) to the accretionary complex of the Cascadia subduction zone, we sampled the gas hydrate stability zone (GHSZ) from the seafloor to its base in contrasting geological settings defined by a 3D seismic survey. By integrating results from different methods, including several new techniques developed for Leg 204, we overcome the problem of spatial under-sampling inherent in robust methods traditionally used for estimating the hydrate content of cores and obtain a high-resolution, quantitative estimate of the total amount and spatial variability of gas hydrate in this structural system. We conclude that high gas hydrate content (30-40% of pore space or 20-26% of total volume) is restricted to the upper tens of meters below the seafloor near the summit of the structure, where vigorous fluid venting occurs. Elsewhere, the average gas hydrate content of the sediments in the gas hydrate stability zone is generally <2% of the pore space, although this estimate may increase by a factor of 2 when patchy zones of locally higher gas hydrate content are included in the calculation. These patchy zones are structurally and stratigraphically controlled, contain up to 20% hydrate in the pore space when averaged over zones ???10 m thick, and may occur in up to ???20% of the region imaged by 3D seismic data. This heterogeneous gas hydrate distribution is an important constraint on models of gas hydrate formation in marine sediments and the response of the sediments to tectonic and environmental change. ?? 2004 Published by Elsevier B.V.

  7. Japan's Methane Hydrate R&D Program, Accomplishments and Future Challenges

    NASA Astrophysics Data System (ADS)

    Shimada, T.

    2009-12-01

    JOGMEC have been searching for methane hydrate offshore around Japan for use as a future energy resource as a member of the research consortium of methane hydrate resources in Japan (MH21 Research Consortium). The MH21 Research Consortium was established in 2002 to carry out "Japan's Methane Hydrate R&D Program" published by the Ministry of Economy, Trade and Industry (METI) in July 2001. The program has been extended over 18 years (until 2018) and is divided into three phases. During phase 1, the following key accomplishments had been achieved. Revealed and confirmed the occurrence of methane hydrate filling pore spaces of sand layers in the marine environment for the first time in the eastern Nankai Trough. Established methodology to delineate the thick methane hydrate concentrated zones composed of alternations of highly hydrate-saturated turbidite sand mainly by geophysical measures. Evaluated the amount of gas trapped in the eastern Nankai Trough, applied a probabilistic method based on the borehole data and seismic data, contained in methane hydrate-bearing layers. Tested and achieved substantial methane gas production through the wellbore from subsurface hydrate-bearing layers by dissociating hydrates in Canadian arctic area under international collaboration. Both depressurization method and hot water circulation method were successfully conducted to produce methane gas, and the depressurization method was proved to be effective as a production method that could be utilized in the future. We accumulated a significant amount of knowledge and experience during phase 1. However, many technical and economic challenges still remain for the development of methane hydrate. The research program proceeded to phase 2 in 2009. This time we would like to present summary of phase 1 and challenges during phase 2. The author would like to express sincere appreciation to MH21 Research Consortium and METI for permission for this presentation.

  8. Molecular modeling of the dissociation of methane hydrate in contact with a silica surface.

    PubMed

    Bagherzadeh, S Alireza; Englezos, Peter; Alavi, Saman; Ripmeester, John A

    2012-03-15

    We use constant energy, constant volume (NVE) molecular dynamics simulations to study the dissociation of the fully occupied structure I methane hydrate in a confined geometry between two hydroxylated silica surfaces between 36 and 41 Å apart, at initial temperatures of 283, 293, and 303 K. Simulations of the two-phase hydrate/water system are performed in the presence of silica, with and without a 3 Å thick buffering water layer between the hydrate phase and silica surfaces. Faster decomposition is observed in the presence of silica, where the hydrate phase is prone to decomposition from four surfaces, as compared to only two sides in the case of the hydrate/water simulations. The existence of the water layer between the hydrate phase and the silica surface stabilizes the hydrate phase relative to the case where the hydrate is in direct contact with silica. Hydrates bound between the silica surfaces dissociate layer-by-layer in a shrinking core manner with a curved decomposition front which extends over a 5-8 Å thickness. Labeling water molecules shows that there is exchange of water molecules between the surrounding liquid and intact cages in the methane hydrate phase. In all cases, decomposition of the methane hydrate phase led to the formation of methane nanobubbles in the liquid water phase. © 2012 American Chemical Society

  9. Apparatus investigates geological aspects of gas hydrates

    USGS Publications Warehouse

    Booth, J.S.; Winters, W.J.; Dillon, William P.

    1999-01-01

    The US Geological Survey (USGS), in response to potential geohazards, energy resource potential, and climate issues associated with marine gas hydrates, has developed a laboratory research system that permits hydrate genesis and dissociation under deep-sea conditions, employing user-selected sediment types and pore fluids.The apparatus, GHASTI (gas hydrate and sediment test laboratory instrument), provides a means to link field studies and theory and serves as a tool to improve gas hydrate recognition and assessment, using remote sensing techniques.GHASTLI's use was proven in an exploration well project led by the Geological Survey of Canada and the Japanese National Oil Corp., collaborating with Japan Petroleum Exploration Co. and the USGS. The site was in the Mackenzie Delta region of the Northwest Territories (Mallik 2L-38 drillsite).From tests on natural methane hydrate-bearing sand recovered at about 1,000 m subsurface, the in situ quantity of hydrate was estimated from acoustic properties, and a substantial increase in shear strength due to the presence of the hydrate was measured.1 2GHASTI can mimic a wide range of geologic settings and processes. Initial goals involve improved recognition and mapping of gas hydrate-bearing sediments, understanding factors that control the occurrence and concentration of gas hydrates, knowledge of hydrate's significance to slope failure and foundation problems, and analysis of gas hydrate's potential use as an energy resource.

  10. Ecological and climatic consequences of phase instability of gas hydrates on the ocean bed

    NASA Astrophysics Data System (ADS)

    Balanyuk, I.; Dmitrievsky, A.; Akivis, T.; Chaikina, O.

    2009-04-01

    energy and gas that leads to explosion. Methane is the main natural source for power engineering specialists. It is transported by pipelines, and gas hydrate is dangerous in this case too. It can block the gas pipeline system forming the so-called "trombus" of "thermal ice". After that the pipes have to be opened. The mess of this strange ice discovered melts immediately releasing methane and water vapor. The trombus formation can be prevented by the temperature increase or the pressure decrease. Both methods are very uncomfortable under the conditions the pipelines work. The better method is thorough drying up of the gas because gas hydrate obviously cannot be formed without water. Gas hydrates attract attention not only as a fuel and chemical stuff but in relation to a serious anxiety of strong ecological and climatic problems that can occur as a result of methane release to the atmosphere due to both gas hydrate deposits development and minor changes in thermodynamic conditions in the vicinity of a threshold of gas hydrate phase stability. One of the most probable causes is the global warming of the Earth due to the hothouse effect because the specific absorption of the Earth heat radiation by methane (radiation effectivity) is 21 times higher than its absorption by carbonic gas. Analysis of the air trapped by polar ice show that contemporary increase of methane concentration in the atmosphere is unexampled for the last 160 thousands of years. The sources of this increase are not clear. Observer and latent methane bursts during natural gas hydrates decomposition can be considered as a probable source. Amount of methane hided in natural gas hydrates is 3000 times higher its amount in the atmosphere. Release of this hothouse potential would have terrible consequences for the humanity. The warming can cause further gas hydrates decomposition and released methane will cause the following warming. Thus, self-accelerating process can start. The most vulnerable for the

  11. Thermodynamic properties of methane hydrate in quartz powder.

    PubMed

    Voronov, Vitaly P; Gorodetskii, Evgeny E; Safonov, Sergey S

    2007-10-04

    Using the experimental method of precision adiabatic calorimetry, the thermodynamic (equilibrium) properties of methane hydrate in quartz sand with a grain size of 90-100 microm have been studied in the temperature range of 260-290 K and at pressures up to 10 MPa. The equilibrium curves for the water-methane hydrate-gas and ice-methane hydrate-gas transitions, hydration number, latent heat of hydrate decomposition along the equilibrium three-phase curves, and the specific heat capacity of the hydrate have been obtained. It has been experimentally shown that the equilibrium three-phase curves of the methane hydrate in porous media are shifted to the lower temperature and high pressure with respect to the equilibrium curves of the bulk hydrate. In these experiments, we have found that the specific heat capacity of the hydrate, within the accuracy of our measurements, coincides with the heat capacity of ice. The latent heat of the hydrate dissociation for the ice-hydrate-gas transition is equal to 143 +/- 10 J/g, whereas, for the transition from hydrate to water and gas, the latent heat is 415 +/- 15 J/g. The hydration number has been evaluated in the different hydrate conditions and has been found to be equal to n = 6.16 +/- 0.06. In addition, the influence of the water saturation of the porous media and its distribution over the porous space on the measured parameters has been experimentally studied.

  12. Methane Hydrate Fformation in a Coarse-Grained, Brine-Saturated Sample Through the Induction of a Propagating Gas Front

    NASA Astrophysics Data System (ADS)

    Meyer, D.

    2016-12-01

    We generate methane hydrate in a coarse-grained, brine-saturated, vertically-oriented sample through gas injection. From 0 - 80 hours, we estimate a hydrate saturation of 0.56 behind the formation front, using mass balance, indicating that hydrate formation is limited by locally-elevated salinity creating three-phase equilibrium conditions. After 80 hours, the hydrate phase saturation drops to 0.50 and the magnitude of the pressure drop-rebound cycles increases, suggesting temporary reductions in permeability and the development of heterogeneous distributions of free gas in the sample. The sample consists of an industrial, fine sand mixed with a 0.5 wt% fraction of natural, smectitic clay from the Eugene Island region in the Gulf of Mexico (5.08cm diameter, 11.79cm length). The sample is initially saturated with a 7 wt% sodium chloride brine, pressurized to 12.24 MPa, and cooled to 1 degree Celsius, to bring the sample into the hydrate stability zone. Syringe pumps filled with methane gas and brine are connected to the top and bottom of the sample, respectively, to control fluid flow. We withdraw from the base of the sample at a rate of 0.0005 mL/min and inject methane to maintain a constant pressure, initiating hydrate formation. We analyze this experiment, as well as a gas flood experiment executed under the same conditions, using computed-tomography scans and an analytical solution to investigate the formation behavior and thermodynamic state of hydrate in gas-rich, coarse-grained reservoirs.

  13. Nonequilibrium Thermodynamics of Hydrate Growth on a Gas-Liquid Interface

    NASA Astrophysics Data System (ADS)

    Fu, Xiaojing; Cueto-Felgueroso, Luis; Juanes, Ruben

    2018-04-01

    We develop a continuum-scale phase-field model to study gas-liquid-hydrate systems far from thermodynamic equilibrium. We design a Gibbs free energy functional for methane-water mixtures that recovers the isobaric temperature-composition phase diagram under thermodynamic equilibrium conditions. The proposed free energy is incorporated into a phase-field model to study the dynamics of hydrate formation on a gas-liquid interface. We elucidate the role of initial aqueous concentration in determining the direction of hydrate growth at the interface, in agreement with experimental observations. Our model also reveals two stages of hydrate growth at an interface—controlled by a crossover in how methane is supplied from the gas and liquid phases—which could explain the persistence of gas conduits in hydrate-bearing sediments and other nonequilibrium phenomena commonly observed in natural methane hydrate systems.

  14. Structural changes and preferential cage occupancy of ethane hydrate and methane-ethane mixed gas hydrate under very high pressure.

    PubMed

    Hirai, Hisako; Takahara, Naoya; Kawamura, Taro; Yamamoto, Yoshitaka; Yagi, Takehiko

    2008-12-14

    High-pressure experiments of ethane hydrate and methane-ethane mixed hydrates with five compositions were performed using a diamond anvil cell in a pressure range of 0.1-2.8 GPa at room temperature. X-ray diffractometry and Raman spectroscopy showed structural changes as follows. The initial structure, structure I (sI), of ethane hydrate was retained up to 2.1 GPa without any structural change. For the mixed hydrates, sI was widely distributed throughout the region examined except for the methane-rich and lower pressure regions. For the ethane-rich and intermediate composition regions (73 mol % ethane sample and 53% sample), sI was maintained up to 2.1 GPa. With increasing methane component (34% and 30% samples), sI existed at pressures from 0.1 to about 1.0 GPa. Hexagonal structure (sH) appeared in addition to sI at 1.3 GPa for the 34% sample and at 1.1 GPa for the 30% sample. By further increasing the methane component (22% sample), structure II (sII) existed solely up to 0.3 GPa. From 0.3 to 0.6 GPa, sII and sI coexisted, and from 0.6 to 1.0 GPa only sI existed. At 1.2 GPa sH appeared, and sH and sI coexisted up to 2.1 GPa. Above 2.1 GPa, ethane hydrate and all of the mixed hydrates decomposed into ice VI and ethane fluid or methane-ethane fluid, respectively. The Raman study revealed that occupation of the small cages by ethane molecules occurred above 0.1 GPa in ethane hydrate and continued up to decomposition at 2.1 GPa, although it is thought that ethane molecules are contained only in the large cage.

  15. The void in using urine concentration to assess population fluid intake adequacy or hydration status.

    PubMed

    Cheuvront, Samuel N; Muñoz, Colleen X; Kenefick, Robert W

    2016-09-01

    Urine concentration can be used to assess fluid intake adequacy or to diagnose dehydration. However, too often urine concentration is used inappropriately to draw dubious conclusions that could have harmful health and economic consequences. Inappropriate uses of urine concentration relate primarily to convenience sampling (timing) and problems related to convenience sampling (misapplication of thresholds), but a conceptual problem also exists with using urine concentration in isolation. The purpose of this Perspective article is to briefly explain the problematic nature of current practices and to offer a possible solution to improve practice with minimal added complication. When urine is used exclusively to assess fluid intake adequacy and hydration status in adults, we propose that only when urine concentration is high (>850 mmol/kg) and urine excretion rate is low (<850 mL/24 h) should suspicion of inadequate drinking or impending dehydration be considered. Prospective tests of the 850 × 850 thresholds will provide supporting evidence and/or help refine the best thresholds for men and women, young and old. © 2016 American Society for Nutrition.

  16. Gas Migration Processes through the Gas Hydrate Stability Zone at Four-Way Closure Ridge Offshore SW Taiwan

    NASA Astrophysics Data System (ADS)

    Kunath, P.; Chi, W. C.; Berndt, C.; Liu, C. S.

    2016-12-01

    We have used 3D P-Cable seismic data from Four-Way-Closure Ridge, a NW-SE trending anticlinal ridge within the lower slope domain of accretionary wedge, to investigate the geological constraints influencing the fluid migration pattern in the shallow marine sediments. In the seismic data, fluid migration feature manifests itself as high reflection layers of dipping strata, which originate underneath a bottom simulating reflector (BSR) and extend towards the seafloor. Shoaling of the BSR near fluid migration pathways indicates a focused fluid flux, perturbing the temperature field. Furthermore, seafloor video footage confirmed the presence of recent methane seepage above seismically imaged fluid migration pathways. We plan to test two hypotheses for the occurrence of these fluid migration pathways: 1) the extensional regime under the anticlinal ridge crest caused the initiation of localized fault zones, acting as fluid conduits in the gas hydrate stability zone (GHSZ). 2) sediment deformation induced by focused fluid flow and massive growth and dissolution of gas hydrate, similar to processes controlling the evolution of pockmarks on the Nigerian continental margin. We suggest that these processes may be responsible for the formation of a massive hydrate core in the crest of the anticline, as inferred from other geophysical datasets. Triggering process for fluid migration cannot be clearly defined. However, the existence of blind thrust faults may help to advect deep-seated fluids. This may be augmented by biogenic production of shallow gas underneath the ridge, where the excess of gas enables the coexistence of gas, water, and gas hydrate within the GHSZ. Fluid migration structures may exists because of the buoyancy of gas-bearing fluids. This study shows a potential model on how gas-bearing fluids migrate upward towards structural highs, which might occur in other anticlinal structures around the world. Keywords: P-Cable, gas-hydrate, fluid flow, fault-related fold

  17. [Progress in Raman spectroscopic measurement of methane hydrate].

    PubMed

    Xu, Feng; Zhu, Li-hua; Wu, Qiang; Xu, Long-jun

    2009-09-01

    Complex thermodynamics and kinetics problems are involved in the methane hydrate formation and decomposition, and these problems are crucial to understanding the mechanisms of hydrate formation and hydrate decomposition. However, it was difficult to accurately obtain such information due to the difficulty of measurement since methane hydrate is only stable under low temperature and high pressure condition, and until recent years, methane hydrate has been measured in situ using Raman spectroscopy. Raman spectroscopy, a non-destructive and non-invasive technique, is used to study vibrational modes of molecules. Studies of methane hydrate using Raman spectroscopy have been developed over the last decade. The Raman spectra of CH4 in vapor phase and in hydrate phase are presented in this paper. The progress in the research on methane hydrate formation thermodynamics, formation kinetics, decomposition kinetics and decomposition mechanism based on Raman spectroscopic measurements in the laboratory and deep sea are reviewed. Formation thermodynamic studies, including in situ observation of formation condition of methane hydrate, analysis of structure, and determination of hydrate cage occupancy and hydration numbers by using Raman spectroscopy, are emphasized. In the aspect of formation kinetics, research on variation in hydrate cage amount and methane concentration in water during the growth of hydrate using Raman spectroscopy is also introduced. For the methane hydrate decomposition, the investigation associated with decomposition mechanism, the mutative law of cage occupancy ratio and the formulation of decomposition rate in porous media are described. The important aspects for future hydrate research based on Raman spectroscopy are discussed.

  18. Constraints of gas venting activity for the interstitial water geochemistry at the shallow gas hydrate site, eastern margin of the Japan Sea; results from high resolution time-series fluid sampling by OsmoSampler

    NASA Astrophysics Data System (ADS)

    Owari, S.; Tomaru, H.; Matsumoto, R.

    2016-12-01

    We have conducted ROV researches in the eastern margin of the Japan Sea where active gas venting and outcropping of gas hydrates were observed near the seafloor and have found the strength and location of venting had changed within a few days. These observations indicate the seafloor environments with the shallow gas hydrate system could have changed for short period compared to a geological time scale. We have applied a long-term osmotic fluid sampling system "OsmoSampler" on the active gas hydrate system for one year in order to document how the gas venting and gas hydrate activity have changed the geochemical environments near the seafloor. All the major ion concentrations in the interstitial water show synchronous increase and decrease repeatedly in three to five days, reflecting the incorporation and release of fresh water in gas hydrates in response to the gas concentration change near the sampling site. Dissolved methane concentration increases rapidly and excessively (over several mM) in the first 40 days corresponding to the active gas venting. The increases of methane concentration are often associated with high ion concentration during high water pressure period, indicating excess gas release from shallow gas pockets. Contrarily, enhanced gas hydrate growth may plug the fluid-gas paths in shallow sediment, reducing gas hydrate formation due to the decrease of methane flux. This study was conducted under the commission from AIST as a part of the methane hydrate research project funded by METI (the Ministry of Economy, Trade and Industry, Japan).

  19. Structural stability of methane hydrate at high pressures

    USGS Publications Warehouse

    Shu, J.; Chen, X.; Chou, I-Ming; Yang, W.; Hu, Jiawen; Hemley, R.J.; Mao, Ho-kwang

    2011-01-01

    The structural stability of methane hydrate under pressure at room temperature was examined by both in-situ single-crystal and powder X-ray diffraction techniques on samples with structure types I, II, and H in diamond-anvil cells. The diffraction data for types II (sII) and H (sH) were refined to the known structures with space groups Fd3m and P63/mmc, respectively. Upon compression, sI methane hydrate transforms to the sII phase at 120 MPa, and then to the sH phase at 600 MPa. The sII methane hydrate was found to coexist locally with sI phase up to 500 MPa and with sH phase up to 600 MPa. The pure sH structure was found to be stable between 600 and 900 MPa. Methane hydrate decomposes at pressures above 3 GPa to form methane with the orientationally disordered Fm3m structure and ice VII (Pn3m). The results highlight the role of guest (CH4)-host (H2O) interactions in the stabilization of the hydrate structures under pressure.

  20. Gas-hydrate concentration estimated from P- and S-wave velocities at the Mallik 2L-38 research well, Mackenzie Delta, Canada

    NASA Astrophysics Data System (ADS)

    Carcione, José M.; Gei, Davide

    2004-05-01

    We estimate the concentration of gas hydrate at the Mallik 2L-38 research site using P- and S-wave velocities obtained from well logging and vertical seismic profiles (VSP). The theoretical velocities are obtained from a generalization of Gassmann's modulus to three phases (rock frame, gas hydrate and fluid). The dry-rock moduli are estimated from the log profiles, in sections where the rock is assumed to be fully saturated with water. We obtain hydrate concentrations up to 75%, average values of 37% and 21% from the VSP P- and S-wave velocities, respectively, and 60% and 57% from the sonic-log P- and S-wave velocities, respectively. The above averages are similar to estimations obtained from hydrate dissociation modeling and Archie methods. The estimations based on the P-wave velocities are more reliable than those based on the S-wave velocities.

  1. Gender- and hydration- associated differences in the physiological response to spinning.

    PubMed

    Ramos-Jiménez, Arnulfo; Hernández-Torres, Rosa Patricia; Wall-Medrano, Abraham; Torres-Durán, Patricia Victoria; Juárez-Oropeza, Marco Antonio; Viloria, María; Villalobos-Molina, Rafael

    2014-03-01

    There is scarce and inconsistent information about gender-related differences in the hydration of sports persons, as well as about the effects of hydration on performance, especially during indoor sports. To determine the physiological differences between genders during in indoor physical exercise, with and without hydration. 21 spinning sportspeople (12 men and 9 women) participated in three controlled, randomly assigned and non-sequential hydration protocols, including no fluid intake and hydration with plain water or a sports drink (volume adjusted to each individual every 15 min), during 90 min of spinning exercise. The response variables included body mass, body temperature, heart rate and blood pressure. During exercise without hydration, men and women lost ~2% of body mass, and showed higher body temperature (~0.2°C), blood pressure (~4 mmHg) and heart rate (~7 beats/min) compared to exercises with hydration. Body temperature and blood pressure were higher for men than for women during exercise without hydration, differences not observed during exercise with hydration. Between 42-99% of variance in body temperature, blood pressure and heart rate could be explained by the physical characteristics of subjects and the work done. During exercise with hydration (either with water or sport drink), the physiological response was similar for both genders. Exercise without hydration produced physical stress, which could be prevented with either of the fluids (plain water was sufficient). Gender differences in the physiological response to spinning (body temperature, mean blood pressure and heart rate) can be explained in part by the distinct physical characteristics of each individual. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  2. Gas hydrate characterization and grain-scale imaging of recovered cores from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    USGS Publications Warehouse

    Stern, Laura A.; Lorenson, T.D.; Pinkston, John C.

    2011-01-01

    Using cryogenic scanning electron microscopy (CSEM), powder X-ray diffraction, and gas chromatography methods, we investigated the physical states, grain characteristics, gas composition, and methane isotopic composition of two gas-hydrate-bearing sections of core recovered from the BPXA–DOE–USGS Mount Elbert Gas Hydrate Stratigraphic Test Well situated on the Alaska North Slope. The well was continuously cored from 606.5 m to 760.1 m depth, and sections investigated here were retrieved from 619.9 m and 661.0 m depth. X-ray analysis and imaging of the sediment phase in both sections shows it consists of a predominantly fine-grained and well-sorted quartz sand with lesser amounts of feldspar, muscovite, and minor clays. Cryogenic SEM shows the gas-hydrate phase forming primarily as a pore-filling material between the sediment grains at approximately 70–75% saturation, and more sporadically as thin veins typically several tens of microns in diameter. Pore throat diameters vary, but commonly range 20–120 microns. Gas chromatography analyses of the hydrate-forming gas show that it is comprised of mainly methane (>99.9%), indicating that the gas hydrate is structure I. Here we report on the distribution and articulation of the gas-hydrate phase within the cores, the grain morphology of the hydrate, the composition of the sediment host, and the composition of the hydrate-forming gas.

  3. Gas hydrate characterization and grain-scale imaging of recovered cores from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    USGS Publications Warehouse

    Stern, L.A.; Lorenson, T.D.; Pinkston, J.C.

    2011-01-01

    Using cryogenic scanning electron microscopy (CSEM), powder X-ray diffraction, and gas chromatography methods, we investigated the physical states, grain characteristics, gas composition, and methane isotopic composition of two gas-hydrate-bearing sections of core recovered from the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well situated on the Alaska North Slope. The well was continuously cored from 606.5. m to 760.1. m depth, and sections investigated here were retrieved from 619.9. m and 661.0. m depth. X-ray analysis and imaging of the sediment phase in both sections shows it consists of a predominantly fine-grained and well-sorted quartz sand with lesser amounts of feldspar, muscovite, and minor clays. Cryogenic SEM shows the gas-hydrate phase forming primarily as a pore-filling material between the sediment grains at approximately 70-75% saturation, and more sporadically as thin veins typically several tens of microns in diameter. Pore throat diameters vary, but commonly range 20-120 microns. Gas chromatography analyses of the hydrate-forming gas show that it is comprised of mainly methane (>99.9%), indicating that the gas hydrate is structure I. Here we report on the distribution and articulation of the gas-hydrate phase within the cores, the grain morphology of the hydrate, the composition of the sediment host, and the composition of the hydrate-forming gas. ?? 2009.

  4. Influence of Sodium Chloride on the Formation and Dissociation Behavior of CO2 Gas Hydrates.

    PubMed

    Holzammer, Christine; Schicks, Judith M; Will, Stefan; Braeuer, Andreas S

    2017-09-07

    We present an experimental study on the formation and dissociation characteristics of carbon dioxide (CO 2 ) gas hydrates using Raman spectroscopy. The CO 2 hydrates were formed from sodium chloride/water solutions with salinities of 0-10 wt %, which were pressurized with liquid CO 2 in a stirred vessel at 6 MPa and a subcooling of 9.5 K. The formation of the CO 2 hydrate resulted in a hydrate gel where the solid hydrate can be considered as the continuous phase that includes small amounts of a dispersed liquid water-rich phase that has not been converted to hydrate. During the hydrate formation process we quantified the fraction of solid hydrate, x H , and the fraction of the dispersed liquid water-rich phase, x L , from the signature of the hydroxyl (OH)-stretching vibration of the hydrate gel. We found that the fraction of hydrate x H contained in the hydrate gel linearly depends on the salinity of the initial liquid water-rich phase. In addition, the ratio of CO 2 and water was analyzed in the liquid water-rich phase before hydrate formation, in the hydrate gel during growth and dissociation, and after its complete dissociation again in the liquid water-rich phase. We observed a supersaturation of CO 2 in the water-rich phase after complete dissociation of the hydrate gel and were able to show that the excess CO 2 exists as dispersed micro- or nanoscale liquid droplets in the liquid water-rich phase. These residual nano- and microdroplets could be a possible explanation for the so-called memory effect.

  5. Influence of Sodium Chloride on the Formation and Dissociation Behavior of CO2 Gas Hydrates

    PubMed Central

    2017-01-01

    We present an experimental study on the formation and dissociation characteristics of carbon dioxide (CO2) gas hydrates using Raman spectroscopy. The CO2 hydrates were formed from sodium chloride/water solutions with salinities of 0–10 wt %, which were pressurized with liquid CO2 in a stirred vessel at 6 MPa and a subcooling of 9.5 K. The formation of the CO2 hydrate resulted in a hydrate gel where the solid hydrate can be considered as the continuous phase that includes small amounts of a dispersed liquid water-rich phase that has not been converted to hydrate. During the hydrate formation process we quantified the fraction of solid hydrate, xH, and the fraction of the dispersed liquid water-rich phase, xL, from the signature of the hydroxyl (OH)-stretching vibration of the hydrate gel. We found that the fraction of hydrate xH contained in the hydrate gel linearly depends on the salinity of the initial liquid water-rich phase. In addition, the ratio of CO2 and water was analyzed in the liquid water-rich phase before hydrate formation, in the hydrate gel during growth and dissociation, and after its complete dissociation again in the liquid water-rich phase. We observed a supersaturation of CO2 in the water-rich phase after complete dissociation of the hydrate gel and were able to show that the excess CO2 exists as dispersed micro- or nanoscale liquid droplets in the liquid water-rich phase. These residual nano- and microdroplets could be a possible explanation for the so-called memory effect. PMID:28817275

  6. Gas hydrate saturations estimated from pore-and fracture-filling gas hydrate reservoirs in the Qilian Mountain permafrost, China.

    PubMed

    Xiao, Kun; Zou, Changchun; Lu, Zhenquan; Deng, Juzhi

    2017-11-24

    Accurate calculation of gas hydrate saturation is an important aspect of gas hydrate resource evaluation. The effective medium theory (EMT model), the velocity model based on two-phase medium theory (TPT model), and the two component laminated media model (TCLM model), are adopted to investigate the characteristics of acoustic velocity and gas hydrate saturation of pore- and fracture-filling reservoirs in the Qilian Mountain permafrost, China. The compressional wave (P-wave) velocity simulated by the EMT model is more consistent with actual log data than the TPT model in the pore-filling reservoir. The range of the gas hydrate saturation of the typical pore-filling reservoir in hole DKXX-13 is 13.0~85.0%, and the average value of the gas hydrate saturation is 61.9%, which is in accordance with the results by the standard Archie equation and actual core test. The P-wave phase velocity simulated by the TCLM model can be transformed directly into the P-wave transverse velocity in a fracture-filling reservoir. The range of the gas hydrate saturation of the typical fracture-filling reservoir in hole DKXX-19 is 14.1~89.9%, and the average value of the gas hydrate saturation is 69.4%, which is in accordance with actual core test results.

  7. Effect of Hydration and Confinement on Micro-Structure of Calcium-Silicate-Hydrate Gels

    NASA Astrophysics Data System (ADS)

    Gadde, Harish Kumar

    Calcium-silicate-hydrate(C-S-H) gel is a primary nano-crystalline phase present in hydrated Ordinary Portland Cement (OPC) responsible for its strength and creep behavior. Our reliance on cement for infrastructure is global, and there is a need to improve infrastructure life-times. A way forward is to engineer the cement with more durability and long-term strength. The main purpose of this research is to quantify the micro-structure of C-S-H to see if cement can be engineered at various length scales to improve long-term behavior by spatial arrangement. We investigate the micro-structure evolution of C-S-H in cement as a function of hydration time and confinement. Scanning electron microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS) were used to quantify the material and spatial properties of C-S-H as a function of hydration time. The data obtained from these experiments was used to identify C-S-H phases in cement sample. Pair Distribution Function (PDF) analysis of HD C-S-H phase with different hydration times was done at Advanced Photon Source, Argonne National Laboratory, beamline 11-ID-B. Only nonlinear trends in the atomic ordering of C-S-H gel as a function of hydration time were observed. Solid state 29Si Nuclear Magnetic Resonance (NMR) was used to quantify the effect of confinement on two types of C-S-H: white cement C-S-H and synthetic C-S-H. NMR spectra revealed that there is no significant difference in the structure of C-S-H due to confinement when compared with unconfined C-S-H. It is also found that there is significant difference in the Si environments of these two types of C-S-H. Though it does seem possible to engineer the cement on atomic scales, all these studies reveal that engineering cement on such a scale requires a more statistically accurate understanding of intricate structure of C-S-H than is currently available.

  8. Guest Molecule Exchange Kinetics for the 2012 Ignik Sikumi Gas Hydrate Field Trial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Mark D.; Lee, Won Suk

    A commercially viable technology for producing methane from natural gas hydrate reservoirs remains elusive. Short-term depressurization field tests have demonstrated the potential for producing natural gas via dissociation of the clathrate structure, but the long-term performance of the depressurization technology ultimately requires a heat source to sustain the dissociation. A decade of laboratory experiments and theoretical studies have demonstrated the exchange of pure CO2 and N2-CO2 mixtures with CH4 in sI gas hydrates, yielding critical information about molecular mechanisms, recoveries, and exchange kinetics. Findings indicated the potential for producing natural gas with little to no production of water and rapidmore » exchange kinetics, generating sufficient interest in the guest-molecule exchange technology for a field test. In 2012 the U.S. DOE/NETL, ConocoPhillips Company, and Japan Oil, Gas and Metals National Corporation jointly sponsored the first field trial of injecting a mixture of N2-CO2 into a CH4-hydrate bearing formation beneath the permafrost on the Alaska North Slope. Known as the Ignik Sikumi #1 Gas Hydrate Field Trial, this experiment involved three stages: 1) the injection of a N2-CO2 mixture into a targeted hydrate-bearing layer, 2) a 4-day pressurized soaking period, and 3) a sustained depressurization and fluid production period. Data collected during the three stages of the field trial were made available after an extensive quality check. These data included continuous temperature and pressure logs, injected and recovered fluid compositions and volumes. The Ignik Sikumi #1 data set is extensive, but contains no direct evidence of the guest-molecule exchange process. This investigation is directed at using numerical simulation to provide an interpretation of the collected data. A numerical simulator, STOMP-HYDT-KE, was recently completed that solves conservation equations for energy, water, mobile fluid guest molecules, and hydrate

  9. A Computationally Efficient Equation of State for Ternary Gas Hydrate Systems

    NASA Astrophysics Data System (ADS)

    White, M. D.

    2012-12-01

    The potential energy resource of natural gas hydrates held in geologic accumulations, using lower volumetric estimates, is sufficient to meet the world demand for natural gas for nearly eight decades, at current rates of increase. As with other unconventional energy resources, the challenge is to economically produce the natural gas fuel. The gas hydrate challenge is principally technical. Meeting that challenge will require innovation, but more importantly, scientific research to understand the resource and its characteristics in porous media. The thermodynamic complexity of gas hydrate systems makes numerical simulation a particularly attractive research tool for understanding production strategies and experimental observations. Simply stated, producing natural gas from gas hydrate deposits requires releasing CH4 from solid gas hydrate. The conventional way to release CH4 is to dissociate the hydrate by changing the pressure and temperature conditions to those where the hydrate is unstable. Alternatively, the guest-molecule exchange technology releases CH4 by replacing it with more thermodynamically stable molecules (e.g., CO2, N2). This technology has three advantageous: 1) it sequesters greenhouse gas, 2) it potentially releases energy via an exothermic reaction, and 3) it retains the hydraulic and mechanical stability of the hydrate reservoir. Numerical simulation of the production of gas hydrates from geologic deposits requires accounting for coupled processes: multifluid flow, mobile and immobile phase appearances and disappearances, heat transfer, and multicomponent thermodynamics. The ternary gas hydrate system comprises five components (i.e., H2O, CH4, CO2, N2, and salt) and the potential for six phases (i.e., aqueous, nonaqueous liquid, gas, hydrate, ice, and precipitated salt). The equation of state for ternary hydrate systems has three requirements: 1) phase occurrence, 2) phase composition, and 3) phase properties. Numerical simulations that predict

  10. Mechanical and electromagnetic properties of northern Gulf of Mexico sediments with and without THF hydrates

    USGS Publications Warehouse

    Lee, J.Y.; Santamarina, J.C.; Ruppel, C.

    2008-01-01

    Using an oedometer cell instrumented to measure the evolution of electromagnetic properties, small strain stiffness, and temperature, we conducted consolidation tests on sediments recovered during drilling in the northern Gulf of Mexico at the Atwater Valley and Keathley Canyon sites as part of the 2005 Chevron Joint Industry Project on Methane Hydrates. The tested specimens include both unremolded specimens (as recovered from the original core liner) and remolded sediments both without gas hydrate and with pore fluid exchanged to attain 100% synthetic (tetrahydrofuran) hydrate saturation at any stage of loading. Test results demonstrate the extent to which the electromagnetic and mechanical properties of hydrate-bearing marine sediments are governed by the vertical effective stress, stress history, porosity, hydrate saturation, fabric, ionic concentration of the pore fluid, and temperature. We also show how permittivity and electrical conductivity data can be used to estimate the evolution of hydrate volume fraction during formation. The gradual evolution of geophysical properties during hydrate formation probably reflects the slow increase in ionic concentration in the pore fluid due to ion exclusion in closed systems and the gradual decrease in average pore size in which the hydrate forms. During hydrate formation, the increase in S-wave velocity is delayed with respect to the decrease in permittivity, consistent with hydrate formation on mineral surfaces and subsequent crystal growth toward the pore space. No significant decementation/debonding occurred in 100% THF hydrate-saturated sediments during unloading, hence the probability of sampling hydrate-bearing sediments without disturbing the original sediment fabric is greatest for samples in which the gas hydrate is primarily responsible for maintaining the sediment fabric and for which the time between core retrieval and restoration of in situ effective stress in the laboratory is minimized. In evaluating the

  11. Impact of pore-water freshening on clays and the compressibility of hydrate-bearing reservoirs during production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Junbong; Cao, Shuang; Waite, William

    Gas production efficiency from natural hydrate-bearing sediments depends in part on geotechnical properties of fine-grained materials, which are ubiquitous even in sandy hydrate-bearing sediments. The responses of fine-grained material to pore fluid chemistry changes due to freshening during hydrate dissociation could alter critical sediment characteristics during gas production activities. We investigate the electrical sensitivity of fine grains to pore fluid freshening and the implications of freshening on sediment compression and recompression parameters.

  12. Feasibility of using phase change materials to control the heat of hydration in massive concrete structures.

    PubMed

    Choi, Won-Chang; Khil, Bae-Soo; Chae, Young-Seok; Liang, Qi-Bo; Yun, Hyun-Do

    2014-01-01

    This paper presents experimental results that can be applied to select a possible phase change material (PCM), such as a latent heat material (LHM), to control the hydration heat in mass concrete structures. Five experimental tests (microconduction, simplified adiabatic temperature rise, heat, and compressive strength tests) were conducted to select the most desirable LHM out of seven types of inorganic PCM used in cement mortar and to determine the most suitable mix design. The results of these experimental tests were used to assess the feasibility of using PCM to reduce hydration heat in mass concrete that was examined. The experimental results show that cement mortar containing barium- [Ba(OH)2 · 8H2O] based PCM has the lowest amount of total hydration heat of the cement pastes. The barium-based PCM provides good latent heat properties that help to prevent volume change and microcracks caused by thermal stress in mass concrete.

  13. Measurement of chain tilt angle in fully hydrated bilayers of gel phase lecithins.

    PubMed Central

    Tristram-Nagle, S; Zhang, R; Suter, R M; Worthington, C R; Sun, W J; Nagle, J F

    1993-01-01

    The tilt angle theta tilt of the hydrocarbon chains has been determined for fully hydrated gel phase of a series of saturated lecithins. Oriented samples were prepared on glass substrates and hydrated with supersaturated water vapor. Evidence for full hydration was the same intensity pattern of the low angle lamellar peaks and the same lamellar repeat D as unoriented multilamellar vesicles. Tilting the sample permitted observation of all the wide angle arcs necessary to verify the theoretical diffraction pattern corresponding to tilting of the chains towards nearest neighbors. The length of the scattering unit corresponds to two hydrocarbon chains, requiring each bilayer to scatter coherently rather than each monolayer. For DPPC, theta tilt was determined to be 32.0 +/- 0.5 degrees at 19 degrees C, slightly larger than previous direct determinations and considerably smaller than the value required by recent gravimetric measurements. This new value allows more accurate determinations of a variety of structural parameters, such as area per lipid molecule, A = 47.2 +/- 0.5 A2, and number of water molecules of hydration, nw = 11.8 +/- 0.7. As the chain length n of the lipids was increased from 16 to 20 carbons, the parameters A and nw remained constant, suggesting that the headgroup packing is at its excluded volume limit for this range. However, theta tilt increased by 3 degrees and the chain area Ac decreased by 0.5 A2. This behavior is explained in terms of a competition between a bulk free energy term and a finite or end effect term. Images FIGURE 6 FIGURE 7 PMID:8494973

  14. A laboratory study of anaerobic oxidation of methane in the presence of methane hydrate

    NASA Astrophysics Data System (ADS)

    Solem, R.; Bartlett, D.; Kastner, M.; Valentine, D.

    2003-12-01

    , the chamber methane hydrate, liquid phase, and sediment were separated. FISH analyses of the dissociated hydrate fluid indicate a significant presence of Archaea in or on the hydrate. The cell densities in the bioreactor medium liquid phase were 7.2 x 107 cells/cc, and with the methane hydrate, 2.8 x 108 cells/cc.

  15. Impact of Gas Hydrate and Related Fluid Seepage on Submarine Slope Failures along the Margins of the Ulleung Basin, East Sea (Japan Sea)

    NASA Astrophysics Data System (ADS)

    Horozal, S.; Bahk, J. J.; Urgeles, R.; Kim, G. Y.; Cukur, D.; Lee, G. H.; Lee, S. H.; Kim, S. P.; Ryu, B. J.; Kim, J. H.

    2016-12-01

    The Ulleung Basin is a back-arc basin that is known to retain gas hydrate reservoirs in the East (Japan) Sea. The basin contains large volumes of mass-transport deposits (MTDs) due to submarine slope failures along its margins since the Neogene. In this study, seismic indicators of gas hydrate and associated gas and fluid flow were re-compiled on a regional multi-channel seismic reflection data. The gas hydrate occurrence zone (GHOZ) is defined by the BSR (bottom-simulating reflector) distribution. It is more pronounced along the southwestern slope with a minimum depth of 100 mbsf (meters below seafloor) at 295 mbsl (meter below sea level) on the southern, while its thickness is the greatest (250 mbsf) at the southwestern margin. Flow and seepage structures reflected on the seismic data as columnar acoustic-blanking zones varying in width and height (up to hundreds of meters) were classified into: (a) buried seismic chimneys (BSC), (b) chimneys with a mound (SCM), and (c) chimneys with a depression (SCD) on the seafloor. Pockmarks which are not associated with seismic chimneys, reflection anomalies (i.e., enhanced reflections below the BSR and hyperbolic reflections), and SCD are predominant features in the western margin, while the BSR, BSC and SCM are densely distributed in the south-southwestern margin. Present-day gas hydrate stability zone (GHSZ) is calculated using in-situ bottom-water temperature and geothermal gradient measurements (ranging between 0-17.5 oC and 25-200 oC/km, respectively) and multibeam bathymetry data. The GHSZ thickness exceeds 190 m, and the upslope limit of GHSZ ranges between about 180 and 260 mbsl. This depth range is in the proximity of the uppermost depths of landslide scars ( 190 mbsl) which are common features on the slopes along with glide planes, slides/slumps and MTDs. Overall, the base of GHSZ (BGHSZ) and the BSR depths are well-correlated in the basin. However, the BSR depths are typically greater (up to 50 m) than the BGHSZ

  16. Particles at fluid-fluid interfaces: A new Navier-Stokes-Cahn-Hilliard surface- phase-field-crystal model.

    PubMed

    Aland, Sebastian; Lowengrub, John; Voigt, Axel

    2012-10-01

    Colloid particles that are partially wetted by two immiscible fluids can become confined to fluid-fluid interfaces. At sufficiently high volume fractions, the colloids may jam and the interface may crystallize. The fluids together with the interfacial colloids form an emulsion with interesting material properties and offer an important route to new soft materials. A promising approach to simulate these emulsions was presented in Aland et al. [Phys. Fluids 23, 062103 (2011)], where a Navier-Stokes-Cahn-Hilliard model for the macroscopic two-phase fluid system was combined with a surface phase-field-crystal model for the microscopic colloidal particles along the interface. Unfortunately this model leads to spurious velocities which require very fine spatial and temporal resolutions to accurately and stably simulate. In this paper we develop an improved Navier-Stokes-Cahn-Hilliard-surface phase-field-crystal model based on the principles of mass conservation and thermodynamic consistency. To validate our approach, we derive a sharp interface model and show agreement with the improved diffuse interface model. Using simple flow configurations, we show that the new model has much better properties and does not lead to spurious velocities. Finally, we demonstrate the solid-like behavior of the crystallized interface by simulating the fall of a solid ball through a colloid-laden multiphase fluid.

  17. CO2 Injection Into CH4 Hydrate Reservoirs: Quantifying Controls of Micro-Scale Processes

    NASA Astrophysics Data System (ADS)

    Bigalke, N. K.; Deusner, C.; Kossel, E.; Haeckel, M.

    2014-12-01

    The exchangeability of methane for carbon dioxide in gas hydrates opens the possibility of producing emission-neutral hydrocarbon energy. Recent field tests have shown that the production of natural gas from gas hydrates is feasible via injection of carbon dioxide into sandy, methane-hydrate-bearing sediment strata. Industrial-scale application of this method requires identification of thermo- and fluid-dynamic as well as kinetic controls on methane yield from and carbon dioxide retention within the reservoir. Extraction of gas via injection of carbon dioxide into the hydrate reservoir triggers a number of macroscopic effects, which are revealed for example by changes of the hydraulic conductivity and geomechanical stability. Thus far, due to analytical limitations, localized reactions and fluid-flow phenomena held responsible for these effects remain unresolved on the microscale (1 µm - 1 mm) and at near-natural reservoir conditions. We address this deficit by showing results from high-resolution, two-dimensional Raman spectroscopy mappings of an artificial hydrate reservoir during carbon dioxide injection under realistic reservoir conditions. The experiments allow us to resolve hydrate conversion rate and efficiency as well as activation of fluid pathways in space and time and their effect on methane yield, carbon-dioxide retention and hydraulic conductivity of the reservoir. We hypothesize that the conversion of single hydrate grains is a diffusion-controlled process which starts at the grain surface before continuing into the grain interior and show that the conversion can be modeled simply by using published permeation coefficients for CO2 and CH4 in hydrate and grain size as only input parameters.

  18. Detecting gas hydrate behavior in crude oil using NMR.

    PubMed

    Gao, Shuqiang; House, Waylon; Chapman, Walter G

    2006-04-06

    Because of the associated experimental difficulties, natural gas hydrate behavior in black oil is poorly understood despite its grave importance in deep-water flow assurance. Since the hydrate cannot be visually observed in black oil, traditional methods often rely on gas pressure changes to monitor hydrate formation and dissociation. Because gases have to diffuse through the liquid phase for hydrate behavior to create pressure responses, the complication of gas mass transfer is involved and hydrate behavior is only indirectly observed. This pressure monitoring technique encounters difficulties when the oil phase is too viscous, the amount of water is too small, or the gas phase is absent. In this work we employ proton nuclear magnetic resonance (NMR) spectroscopy to observe directly the liquid-to-solid conversion of the water component in black oil emulsions. The technique relies on two facts. The first, well-known, is that water becomes essentially invisible to liquid state NMR as it becomes immobile, as in hydrate or ice formation. The second, our recent finding, is that in high magnetic fields of sufficient homogeneity, it is possible to distinguish water from black oil spectrally by their chemical shifts. By following changes in the area of the water peak, the process of hydrate conversion can be measured, and, at lower temperatures, the formation of ice. Taking only seconds to accomplish, this measurement is nearly direct in contrast to conventional techniques that measure the pressure changes of the whole system and assume these changes represent formation or dissociation of hydrates - rather than simply changes in solubility. This new technique clearly can provide accurate hydrate thermodynamic data in black oils. Because the technique measures the total mobile water with rapidity, extensions should prove valuable in studying the dynamics of phase transitions in emulsions.

  19. Combustion of Methane Hydrate

    NASA Astrophysics Data System (ADS)

    Roshandell, Melika

    from the experimental component of the research was that hydrates can burn completely, and that they burn most rapidly just after ignition and then burn steadily when some of the water in the dissociated zone is allowed to drain away. Excessive surfactant in the water creates a foam layer around the hydrate that acts as an insulator. The layer prevents sufficient heat flux from reaching the hydrate surface below the foam to release additional methane and the hydrate flame extinguishes. No self-healing or ice-freezing processes were observed in any of the combustion experiments. There is some variability, but a typical hydrate flame is receiving between one and two moles of water vapor from the liquid dissociated zone of the hydrate for each mole of methane it receives from the dissociating solid region. This limits the flame temperature to approximately 1800 K. In the theoretical portion of the study, a physical model using an energy balance from methane combustion was developed to understand the energy transfer between the three phases of gas, liquid and solid during the hydrate burn. Also this study provides an understanding of the different factors impacting the hydrate's continuous burn, such as the amount of water vapor in the flame. The theoretical study revealed how the water layer thickness on the hydrate surface, and its effect on the temperature gradient through the dissociated zone, plays a significant role in the hydrate dissociation rate and methane release rate. Motivated by the above mentioned observation from the theoretical analysis, a 1-D two-phase numerical simulation based on a moving front model for hydrate dissociation from a thermal source was developed. This model was focused on the dynamic growth of the dissociated zone and its effect on the dissociation rate. The model indicated that the rate of hydrate dissociation with a thermal source is a function of the dissociated zone thickness. It shows that in order for a continuous dissociation and

  20. Geophysical signature of hydration-dehydration processes in active subduction zones

    NASA Astrophysics Data System (ADS)

    Reynard, Bruno

    2013-04-01

    Seismological and magneto-telluric tomographies are potential tools for imaging fluid circulation when combined with petrophysical models. Recent measurements of the physical properties of serpentine allow refining hydration of the mantle and fluid circulation in the mantle wedge from geophysical data. In the slab lithospheric mantle, serpentinization caused by bending at the trench is limited to a few kilometers below the oceanic crust (<5 km). Double Wadati-Benioff zones, 20-30 km below the crust, are explained by deformation of dry peridotites, not by serpentine dehydration. It reduces the required amount of water stored in solid phases in the slab (Reynard et al., 2010). In the cold (<700°C) fore-arc mantle wedge above the subducting slab, serpentinization is caused by the release of large amounts of hydrous fluids in the cold mantle above the dehydrating subducted plate. Low seismic velocities in the wedge give a time-integrated estimate of hydration and serpentinization. Serpentinization reaches 50-100% in hot subduction, while it is below 10% in cold subduction (Bezacier et al., 2010; Reynard, 2012). Electromagnetic profiles of the mantle wedge reveal high electrical-conductivity bodies. In hot areas of the mantle wedge (> 700°C), water released by dehydration of the slab induces melting of the mantle under volcanic arcs, explaining the observed high conductivities. In the cold melt-free wedge (< 700°C), high conductivities in electromagnetic profiles provide "instantaneous" images of fluid circulation because the measured electrical conductivity of serpentine is below 0.1 mS/m (Reynard et al., 2011). A small fraction (ca. 1% in volume) of connective high-salinity fluids accounts for the highest observed conductivities. Low-salinity fluids (≤ 0.1 m) released by slab dehydration evolve towards high-salinity (≥ 1 m) fluids during progressive serpentinization in the wedge. These fluids can mix with arc magmas at depths and account for high-chlorine melt

  1. Water permeability in hydrate-bearing sediments: A pore-scale study

    NASA Astrophysics Data System (ADS)

    Dai, Sheng; Seol, Yongkoo

    2014-06-01

    Permeability is a critical parameter governing methane flux and fluid flow in hydrate-bearing sediments; however, limited valid data are available due to experimental challenges. Here we investigate the relationship between apparent water permeability (k') and hydrate saturation (Sh), accounting for hydrate pore-scale growth habit and meso-scale heterogeneity. Results from capillary tube models rely on cross-sectional tube shapes and hydrate pore habits, thus are appropriate only for sediments with uniform hydrate distribution and known hydrate pore character. Given our pore network modeling results showing that accumulating hydrate in sediments decreases sediment porosity and increases hydraulic tortuosity, we propose a modified Kozeny-Carman model to characterize water permeability in hydrate-bearing sediments. This model agrees well with experimental results and can be easily implemented in reservoir simulators with no empirical variables other than Sh. Results are also relevant to flow through other natural sediments that undergo diagenesis, salt precipitation, or bio-clogging.

  2. Physicochemical Properties of α-Form Hydrated Crystalline Phase of 3-(10-Carboxydecyl)-1,1,1,3,5,5,5-heptamethyl Trisiloxane/Higher alcohol/Polyoxyethylene (5 mol) Glyceryl monostearate/Water System.

    PubMed

    Uyama, Makoto; Araki, Hidefumi; Fukuhara, Tadao; Watanabe, Kei

    2018-06-07

    The α-form hydrated crystalline phase (often called as an α-gel) is one of the hydrated crystalline phases which can be exhibited by surfactants and lipids. In this study, a novel system of an α-form hydrated crystal was developed, composed of 3-(10-carboxydecyl)-1,1,1,3,5,5,5-heptamethyl trisiloxane (CDTS), polyoxyethylene (5 mol) glyceryl monostearate (GMS-5), higher alcohol. This is the first report to indicate that a silicone surfactant can form an α-form hydrated crystal. The physicochemical properties of this system were characterized by small and wide angle X-ray scattering (SWAXS), differential scanning calorimetry (DSC), and diffusion-ordered NMR spectroscopy (DOSY) experiments. SWAXS and DSC measurements revealed that a plurality of crystalline phases coexist in the CDTS/higher alcohol/water ternary system. By adding GMS-5 to the ternary system, however, a wide region of a single α-form hydrated crystalline phase was obtained. The self-diffusion coefficients (D sel ) from the NMR measurements suggested that all of the CDTS, GMS-5, and higher alcohol molecules were incorporated into the same α-form hydrated crystals.

  3. Well log characterization of natural gas hydrates

    USGS Publications Warehouse

    Collett, Timothy S.; Lee, Myung W.

    2011-01-01

    In the last 25 years we have seen significant advancements in the use of downhole well logging tools to acquire detailed information on the occurrence of gas hydrate in nature: From an early start of using wireline electrical resistivity and acoustic logs to identify gas hydrate occurrences in wells drilled in Arctic permafrost environments to today where wireline and advanced logging-while-drilling tools are routinely used to examine the petrophysical nature of gas hydrate reservoirs and the distribution and concentration of gas hydrates within various complex reservoir systems. The most established and well known use of downhole log data in gas hydrate research is the use of electrical resistivity and acoustic velocity data (both compressional- and shear-wave data) to make estimates of gas hydrate content (i.e., reservoir saturations) in various sediment types and geologic settings. New downhole logging tools designed to make directionally oriented acoustic and propagation resistivity log measurements have provided the data needed to analyze the acoustic and electrical anisotropic properties of both highly inter-bedded and fracture dominated gas hydrate reservoirs. Advancements in nuclear-magnetic-resonance (NMR) logging and wireline formation testing have also allowed for the characterization of gas hydrate at the pore scale. Integrated NMR and formation testing studies from northern Canada and Alaska have yielded valuable insight into how gas hydrates are physically distributed in sediments and the occurrence and nature of pore fluids (i.e., free-water along with clay and capillary bound water) in gas-hydrate-bearing reservoirs. Information on the distribution of gas hydrate at the pore scale has provided invaluable insight on the mechanisms controlling the formation and occurrence of gas hydrate in nature along with data on gas hydrate reservoir properties (i.e., permeabilities) needed to accurately predict gas production rates for various gas hydrate

  4. Role of Aquaporin Water Channels in Airway Fluid Transport, Humidification, and Surface Liquid Hydration

    PubMed Central

    Song, Yuanlin; Jayaraman, Sujatha; Yang, Baoxue; Matthay, Michael A.; Verkman, A.S.

    2001-01-01

    Several aquaporin-type water channels are expressed in mammalian airways and lung: AQP1 in microvascular endothelia, AQP3 in upper airway epithelia, AQP4 in upper and lower airway epithelia, and AQP5 in alveolar epithelia. Novel quantitative methods were developed to compare airway fluid transport–related functions in wild-type mice and knockout mice deficient in these aquaporins. Lower airway humidification, measured from the moisture content of expired air during mechanical ventilation with dry air through a tracheotomy, was 54–56% efficient in wild-type mice, and reduced by only 3–4% in AQP1/AQP5 or AQP3/AQP4 double knockout mice. Upper airway humidification, measured from the moisture gained by dry air passed through the upper airways in mice breathing through a tracheotomy, decreased from 91 to 50% with increasing ventilation from 20 to 220 ml/min, and reduced by 3–5% in AQP3/AQP4 knockout mice. The depth and salt concentration of the airway surface liquid in trachea was measured in vivo using fluorescent probes and confocal and ratio imaging microscopy. Airway surface liquid depth was 45 ± 5 μm and [Na+] was 115 ± 4 mM in wild-type mice, and not significantly different in AQP3/AQP4 knockout mice. Osmotic water permeability in upper airways, measured by an in vivo instillation/sample method, was reduced by ∼40% by AQP3/AQP4 deletion. In doing these measurements, we discovered a novel amiloride-sensitive isosmolar fluid absorption process in upper airways (13% in 5 min) that was not affected by aquaporin deletion. These results establish the fluid transporting properties of mouse airways, and indicate that aquaporins play at most a minor role in airway humidification, ASL hydration, and isosmolar fluid absorption. PMID:11382807

  5. Mechanisms Leading to Co-Existence of Gas Hydrate in Ocean Sediments [Part 1 of 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryant, Steven; Juanes, Ruben

    hydrate saturations. Large volumes (of order one pore volume) of gaseous and aqueous phases must be transported into the gas hydrate stability zone. The driver for this transport is the pressure sink induced by a reduction in occupied pore volume that accompanies the formation of hydrate from gas and water. Pore-scale imbibition models and bed-scale multiphase flow models indicate that the rate-limiting step in converting gas to hydrate is the supply of water to the hydrate stability zone. Moreover, the water supply rate is controlled by capillarity-driven flux for conditions typical of the Alaska North Slope. A meter-scale laboratory experiment confirms that significant volumes of fluid phases move into the hydrate stability zone and that capillarity is essential for the water flux. The model shows that without capillarity-driven flux, large saturations of hydrate cannot form. The observations of thick zones of large saturation at Mallik and Mt Elbert thus suggest that the primary control on these systems is the rate of transport of gaseous and aqueous phases, driven by the pressure sink at the base of the gas hydrate stability zone. A key finding of our project is the elucidation of ?capillary fracturing? as a dominant gas transport mechanism in low-permeability media. We initially investigate this phenomenon by means of grain-scale simulations in which we extended a discrete element mechanics code (PFC, by Itasca) to incorporate the dynamics of first single-phase and then multiphase flow. A reductionist model on a square lattice allows us to determine some of the fundamental dependencies of the mode of gas invasion (capillary fingering, viscous fingering, and fracturing) on the parameters of the system. We then show that the morphology of the gas-invaded region exerts a fundamental control on the fabric of methane hydrate formation, and on the overpressures caused by methane hydrate dissociation. We demonstrate the existence of the different invasion regimes by means

  6. Multiscale understanding of tricalcium silicate hydration reactions.

    PubMed

    Cuesta, Ana; Zea-Garcia, Jesus D; Londono-Zuluaga, Diana; De la Torre, Angeles G; Santacruz, Isabel; Vallcorba, Oriol; Dapiaggi, Monica; Sanfélix, Susana G; Aranda, Miguel A G

    2018-06-04

    Tricalcium silicate, the main constituent of Portland cement, hydrates to produce crystalline calcium hydroxide and calcium-silicate-hydrates (C-S-H) nanocrystalline gel. This hydration reaction is poorly understood at the nanoscale. The understanding of atomic arrangement in nanocrystalline phases is intrinsically complicated and this challenge is exacerbated by the presence of additional crystalline phase(s). Here, we use calorimetry and synchrotron X-ray powder diffraction to quantitatively follow tricalcium silicate hydration process: i) its dissolution, ii) portlandite crystallization and iii) C-S-H gel precipitation. Chiefly, synchrotron pair distribution function (PDF) allows to identify a defective clinotobermorite, Ca 11 Si 9 O 28 (OH) 2 . 8.5H 2 O, as the nanocrystalline component of C-S-H. Furthermore, PDF analysis also indicates that C-S-H gel contains monolayer calcium hydroxide which is stretched as recently predicted by first principles calculations. These outcomes, plus additional laboratory characterization, yielded a multiscale picture for C-S-H nanocomposite gel which explains the observed densities and Ca/Si atomic ratios at the nano- and meso- scales.

  7. Elevated gas hydrate saturation within silt and silty clay sediments in the Shenhu area, South China Sea

    USGS Publications Warehouse

    Wang, X.; Hutchinson, D.R.; Wu, S.; Yang, S.; Guo, Y.

    2011-01-01

    Gas hydrate saturations were estimated using five different methods in silt and silty clay foraminiferous sediments from drill hole SH2 in the South China Sea. Gas hydrate saturations derived from observed pore water chloride values in core samples range from 10 to 45% of the pore space at 190-221 m below seafloor (mbsf). Gas hydrate saturations estimated from resistivity (Rt) using wireline logging results are similar and range from 10 to 40.5% in the pore space. Gas hydrate saturations were also estimated by P wave velocity obtained during wireline logging by using a simplified three-phase equation (STPE) and effective medium theory (EMT) models. Gas hydrate saturations obtained from the STPE velocity model (41.0% maximum) are slightly higher than those calculated with the EMT velocity model (38.5% maximum). Methane analysis from a 69 cm long depressurized core from the hydrate-bearing sediment zone indicates that gas hydrate saturation is about 27.08% of the pore space at 197.5 mbsf. Results from the five methods show similar values and nearly identical trends in gas hydrate saturations above the base of the gas hydrate stability zone at depths of 190 to 221 mbsf. Gas hydrate occurs within units of clayey slit and silt containing abundant calcareous nannofossils and foraminifer, which increase the porosities of the fine-grained sediments and provide space for enhanced gas hydrate formation. In addition, gas chimneys, faults, and fractures identified from three-dimensional (3-D) and high-resolution two-dimensional (2-D) seismic data provide pathways for fluids migrating into the gas hydrate stability zone which transport methane for the formation of gas hydrate. Sedimentation and local canyon migration may contribute to higher gas hydrate saturations near the base of the stability zone. Copyright 2011 by the American Geophysical Union.

  8. Elevated gas hydrate saturation within silt and silty clay sediments in the Shenhu area, South China Sea

    USGS Publications Warehouse

    Wang, Xiujuan; Hutchinson, Deborah R.; Wu, Shiguo; Yang, Shengxiong; Guo, Yiqun

    2011-01-01

    Gas hydrate saturations were estimated using five different methods in silt and silty clay foraminiferous sediments from drill hole SH2 in the South China Sea. Gas hydrate saturations derived from observed pore water chloride values in core samples range from 10 to 45% of the pore space at 190–221 m below seafloor (mbsf). Gas hydrate saturations estimated from resistivity (Rt) using wireline logging results are similar and range from 10 to 40.5% in the pore space. Gas hydrate saturations were also estimated by P wave velocity obtained during wireline logging by using a simplified three-phase equation (STPE) and effective medium theory (EMT) models. Gas hydrate saturations obtained from the STPE velocity model (41.0% maximum) are slightly higher than those calculated with the EMT velocity model (38.5% maximum). Methane analysis from a 69 cm long depressurized core from the hydrate-bearing sediment zone indicates that gas hydrate saturation is about 27.08% of the pore space at 197.5 mbsf. Results from the five methods show similar values and nearly identical trends in gas hydrate saturations above the base of the gas hydrate stability zone at depths of 190 to 221 mbsf. Gas hydrate occurs within units of clayey slit and silt containing abundant calcareous nannofossils and foraminifer, which increase the porosities of the fine-grained sediments and provide space for enhanced gas hydrate formation. In addition, gas chimneys, faults, and fractures identified from three-dimensional (3-D) and high-resolution two-dimensional (2-D) seismic data provide pathways for fluids migrating into the gas hydrate stability zone which transport methane for the formation of gas hydrate. Sedimentation and local canyon migration may contribute to higher gas hydrate saturations near the base of the stability zone.

  9. The effect of the condensed-phase environment on the vibrational frequency shift of a hydrogen molecule inside clathrate hydrates

    NASA Astrophysics Data System (ADS)

    Powers, Anna; Scribano, Yohann; Lauvergnat, David; Mebe, Elsy; Benoit, David M.; Bačić, Zlatko

    2018-04-01

    We report a theoretical study of the frequency shift (redshift) of the stretching fundamental transition of an H2 molecule confined inside the small dodecahedral cage of the structure II clathrate hydrate and its dependence on the condensed-phase environment. In order to determine how much the hydrate water molecules beyond the confining small cage contribute to the vibrational frequency shift, quantum five-dimensional (5D) calculations of the coupled translation-rotation eigenstates are performed for H2 in the v =0 and v =1 vibrational states inside spherical clathrate hydrate domains of increasing radius and a growing number of water molecules, ranging from 20 for the isolated small cage to over 1900. In these calculations, both H2 and the water domains are treated as rigid. The 5D intermolecular potential energy surface (PES) of H2 inside a hydrate domain is assumed to be pairwise additive. The H2-H2O pair interaction, represented by the 5D (rigid monomer) PES that depends on the vibrational state of H2, v =0 or v =1 , is derived from the high-quality ab initio full-dimensional (9D) PES of the H2-H2O complex [P. Valiron et al., J. Chem. Phys. 129, 134306 (2008)]. The H2 vibrational frequency shift calculated for the largest clathrate domain considered, which mimics the condensed-phase environment, is about 10% larger in magnitude than that obtained by taking into account only the small cage. The calculated splittings of the translational fundamental of H2 change very little with the domain size, unlike the H2 j = 1 rotational splittings that decrease significantly as the domain size increases. The changes in both the vibrational frequency shift and the j = 1 rotational splitting due to the condensed-phase effects arise predominantly from the H2O molecules in the first three complete hydration shells around H2.

  10. The effect of hydrate promoters on gas uptake.

    PubMed

    Xu, Chun-Gang; Yu, Yi-Song; Ding, Ya-Long; Cai, Jing; Li, Xiao-Sen

    2017-08-16

    Gas hydrate technology is considered as a promising technology in the fields of gas storage and transportation, gas separation and purification, seawater desalination, and phase-change thermal energy storage. However, to date, the technology is still not commercially used mainly due to the low gas hydrate formation rate and the low gas uptake. In this study, the effect of hydrate promoters on gas uptake was systematically studied and analyzed based on hydrate-based CH 4 storage and CO 2 capture from CO 2 /H 2 gas mixture experiments. Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR) and gas chromatography (GC) were employed to analyze the microstructures and gas compositions. The results indicate that the effect of the hydrate promoter on the gas uptake depends on the physical and chemical properties of the promoter and gas. A strong polar ionic promoter is not helpful towards obtaining the ideal gas uptake because a dense hydrate layer is easily formed at the gas-liquid interface, which hinders gas diffusion from the gas phase to the bulk solution. For a weak polar or non-polar promoter, the gas uptake depends on the dissolution characteristics among the different substances in the system. The lower the mutual solubility among the substances co-existing in the system, the higher the independence among the substances in the system; this is so that each phase has an equal chance to occupy the hydrate cages without or with small interactions, finally leading to a relatively high gas uptake.

  11. An immersed boundary method for two-phase fluids and gels and the swimming of Caenorhabditis elegans through viscoelastic fluids

    PubMed Central

    Lee, Pilhwa; Wolgemuth, Charles W.

    2016-01-01

    The swimming of microorganisms typically involves the undulation or rotation of thin, filamentary objects in a fluid or other medium. Swimming in Newtonian fluids has been examined extensively, and only recently have investigations into microorganism swimming through non-Newtonian fluids and gels been explored. The equations that govern these more complex media are often nonlinear and require computational algorithms to study moderate to large amplitude motions of the swimmer. Here, we develop an immersed boundary method for handling fluid-structure interactions in a general two-phase medium, where one phase is a Newtonian fluid and the other phase is viscoelastic (e.g., a polymer melt or network). We use this algorithm to investigate the swimming of an undulating, filamentary swimmer in 2D (i.e., a sheet). A novel aspect of our method is that it allows one to specify how forces produced by the swimmer are distributed between the two phases of the fluid. The algorithm is validated by comparing theoretical predictions for small amplitude swimming in gels and viscoelastic fluids. We show how the swimming velocity depends on material parameters of the fluid and the interaction between the fluid and swimmer. In addition, we simulate the swimming of Caenorhabditis elegans in viscoelastic fluids and find good agreement between the swimming speeds and fluid flows in our simulations and previous experimental measurements. These results suggest that our methodology provides an accurate means for exploring the physics of swimming through non-Newtonian fluids and gels. PMID:26858520

  12. Temperature and pressure correlation for volume of gas hydrates with crystal structures sI and sII

    NASA Astrophysics Data System (ADS)

    Vinš, Václav; Jäger, Andreas; Hielscher, Sebastian; Span, Roland; Hrubý, Jan; Breitkopf, Cornelia

    The temperature and pressure correlations for the volume of gas hydrates forming crystal structures sI and sII developed in previous study [Fluid Phase Equilib. 427 (2016) 268-281], focused on the modeling of pure gas hydrates relevant in CCS (carbon capture and storage), were revised and modified for the modeling of mixed hydrates in this study. A universal reference state at temperature of 273.15 K and pressure of 1 Pa is used in the new correlation. Coefficients for the thermal expansion together with the reference lattice parameter were simultaneously correlated to both the temperature data and the pressure data for the lattice parameter. A two-stage Levenberg Marquardt algorithm was employed for the parameter optimization. The pressure dependence described in terms of the bulk modulus remained unchanged compared to the original study. A constant value for the bulk modulus B0 = 10 GPa was employed for all selected hydrate formers. The new correlation is in good agreement with the experimental data over wide temperature and pressure ranges from 0 K to 293 K and from 0 to 2000 MPa, respectively. Compared to the original correlation used for the modeling of pure gas hydrates the new correlation provides significantly better agreement with the experimental data for sI hydrates. The results of the new correlation are comparable to the results of the old correlation in case of sII hydrates. In addition, the new correlation is suitable for modeling of mixed hydrates.

  13. Particles at fluid-fluid interfaces: A new Navier-Stokes-Cahn-Hilliard surface-phase-field-crystal model

    PubMed Central

    Aland, Sebastian; Lowengrub, John; Voigt, Axel

    2013-01-01

    Colloid particles that are partially wetted by two immiscible fluids can become confined to fluid-fluid interfaces. At sufficiently high volume fractions, the colloids may jam and the interface may crystallize. The fluids together with the interfacial colloids form an emulsion with interesting material properties and offer an important route to new soft materials. A promising approach to simulate these emulsions was presented in Aland et al. [Phys. Fluids 23, 062103 (2011)], where a Navier-Stokes-Cahn-Hilliard model for the macroscopic two-phase fluid system was combined with a surface phase-field-crystal model for the microscopic colloidal particles along the interface. Unfortunately this model leads to spurious velocities which require very fine spatial and temporal resolutions to accurately and stably simulate. In this paper we develop an improved Navier-Stokes-Cahn-Hilliard-surface phase-field-crystal model based on the principles of mass conservation and thermodynamic consistency. To validate our approach, we derive a sharp interface model and show agreement with the improved diffuse interface model. Using simple flow configurations, we show that the new model has much better properties and does not lead to spurious velocities. Finally, we demonstrate the solid-like behavior of the crystallized interface by simulating the fall of a solid ball through a colloid-laden multiphase fluid. PMID:23214691

  14. Glacigenic sedimentation pulses triggered post-glacial gas hydrate dissociation.

    PubMed

    Karstens, Jens; Haflidason, Haflidi; Becker, Lukas W M; Berndt, Christian; Rüpke, Lars; Planke, Sverre; Liebetrau, Volker; Schmidt, Mark; Mienert, Jürgen

    2018-02-12

    Large amounts of methane are stored in continental margins as gas hydrates. They are stable under high pressure and low, but react sensitively to environmental changes. Bottom water temperature and sea level changes were considered as main contributors to gas hydrate dynamics after the last glaciation. However, here we show with numerical simulations that pulses of increased sedimentation dominantly controlled hydrate stability during the end of the last glaciation offshore mid-Norway. Sedimentation pulses triggered widespread gas hydrate dissociation and explains the formation of ubiquitous blowout pipes in water depths of 600 to 800 m. Maximum gas hydrate dissociation correlates spatially and temporally with the formation or reactivation of pockmarks, which is constrained by radiocarbon dating of Isorropodon nyeggaensis bivalve shells. Our results highlight that rapid changes of sedimentation can have a strong impact on gas hydrate systems affecting fluid flow and gas seepage activity, slope stability and the carbon cycle.

  15. Using Temperature as a Tracer to Study Fluid Flow Patterns On and Offshore Taiwan

    NASA Astrophysics Data System (ADS)

    Chi, W. C.

    2017-12-01

    Fluid flows are a dynamic system in the crust that affect crustal deformation and formation of natural resources. It is difficult to study fluid flow velocity instrumentally, but temperature data offers a quantitative tool that can be used as a tracer to study crustal hydrogeology. Here we present numerical techniques we have applied to study the fluid migration velocity along conduits including faults in on and offshore settings. Offshore SW Taiwan, we use a bottom-simulating reflector (BSR) from seismic profiles to study the temperature field at several hundred meters subbottom depth. The BSR is interpreted as the base of a gas hydrate stability zone under the seabed. Gas hydrates are solid-state water with gas molecules enclosed, which can be found where the temperature, pressure, and salinity conditions allow hydrates to be stable. Using phase diagrams and hydro pressure information we can derive the temperature at the BSR. BSRs are widespread in the study area, providing very dense temperature field information which shows upward bending of the BSR near faults. We have quantitatively estimated the 1D and 2D fluid flow patterns required to fit the BSR-based temperature field. This shows that fault zones can act as conduits with high permeability parallel to the fault planes. On the other hand, fault zones can also act as barriers to fluid flow, as demonstrated in our onland temperature data. We have collected temperature profiles at several bore holes onland that are very close together. The preliminary results show that the fault zones separate the ground water systems, causing very different geothermal gradients. Our results show that the physical properties of fault zones can be anisotropic, as demonstrated in previous work. Future work includes estimating the regional water expulsion budget offshore SW Taiwan, in particular for several gas hydrate sites.

  16. Understanding decomposition and encapsulation energies of structure I and II clathrate hydrates

    NASA Astrophysics Data System (ADS)

    Alavi, Saman; Ohmura, Ryo

    2016-10-01

    When compressed with water or ice under high pressure and low temperature conditions, some gases form solid gas hydrate inclusion compounds which have higher melting points than ice under those pressures. In this work, we study the balance of the guest-water and water-water interaction energies that lead to the formation of the clathrate hydrate phases. In particular, molecular dynamics simulations with accurate water potentials are used to study the energetics of the formation of structure I (sI) and II (sII) clathrate hydrates of methane, ethane, and propane. The dissociation enthalpy of the clathrate hydrate phases, the encapsulation enthalpy of methane, ethane, and propane guests in the corresponding phases, and the average bonding enthalpy of water molecules are calculated and compared with accurate calorimetric measurements and previous classical and quantum mechanical calculations, when available. The encapsulation energies of methane, ethane, and propane guests stabilize the small and large sI and sII hydrate cages, with the larger molecules giving larger encapsulation energies. The average water-water interactions are weakened in the sI and sII phases compared to ice. The relative magnitudes of the van der Waals potential energy in ice and the hydrate phases are similar, but in the ice phase, the electrostatic interactions are stronger. The stabilizing guest-water "hydrophobic" interactions compensate for the weaker water-water interactions and stabilize the hydrate phases. A number of common assumptions regarding the guest-cage water interactions are used in the van der Waals-Platteeuw statistical mechanical theory to predict the clathrate hydrate phase stability under different pressure-temperature conditions. The present calculations show that some of these assumptions may not accurately reflect the physical nature of the interactions between guest molecules and the lattice waters.

  17. Understanding decomposition and encapsulation energies of structure I and II clathrate hydrates.

    PubMed

    Alavi, Saman; Ohmura, Ryo

    2016-10-21

    When compressed with water or ice under high pressure and low temperature conditions, some gases form solid gas hydrate inclusion compounds which have higher melting points than ice under those pressures. In this work, we study the balance of the guest-water and water-water interaction energies that lead to the formation of the clathrate hydrate phases. In particular, molecular dynamics simulations with accurate water potentials are used to study the energetics of the formation of structure I (sI) and II (sII) clathrate hydrates of methane, ethane, and propane. The dissociation enthalpy of the clathrate hydrate phases, the encapsulation enthalpy of methane, ethane, and propane guests in the corresponding phases, and the average bonding enthalpy of water molecules are calculated and compared with accurate calorimetric measurements and previous classical and quantum mechanical calculations, when available. The encapsulation energies of methane, ethane, and propane guests stabilize the small and large sI and sII hydrate cages, with the larger molecules giving larger encapsulation energies. The average water-water interactions are weakened in the sI and sII phases compared to ice. The relative magnitudes of the van der Waals potential energy in ice and the hydrate phases are similar, but in the ice phase, the electrostatic interactions are stronger. The stabilizing guest-water "hydrophobic" interactions compensate for the weaker water-water interactions and stabilize the hydrate phases. A number of common assumptions regarding the guest-cage water interactions are used in the van der Waals-Platteeuw statistical mechanical theory to predict the clathrate hydrate phase stability under different pressure-temperature conditions. The present calculations show that some of these assumptions may not accurately reflect the physical nature of the interactions between guest molecules and the lattice waters.

  18. Kinetics of formation and dissociation of gas hydrates

    NASA Astrophysics Data System (ADS)

    Manakov, A. Yu; Penkov, N. V.; Rodionova, T. V.; Nesterov, A. N.; Fesenko, E. E., Jr.

    2017-09-01

    The review covers a wide range of issues related to the nucleation, growth and dissociation of gas hydrates. The attention is focused on publications of the last 10-15 years. Along with the mathematical models used to describe these processes, the results of relevant experimental studies are surveyed. Particular sections are devoted to the gas hydrate self-preservation effect, the water memory effect in the hydrate formation, development of catalysts for hydrate formation and the effect of substances dissolved in the aqueous phase on the formation of hydrates. The main experimental techniques used to study gas hydrates are briefly considered. The bibliography includes 230 references.

  19. CO₂ processing and hydration of fruit and vegetable tissues by clathrate hydrate formation.

    PubMed

    Takeya, Satoshi; Nakano, Kohei; Thammawong, Manasikan; Umeda, Hiroki; Yoneyama, Akio; Takeda, Tohoru; Hyodo, Kazuyuki; Matsuo, Seiji

    2016-08-15

    CO2 hydrate can be used to preserve fresh fruits and vegetables, and its application could contribute to the processing of carbonated frozen food. We investigated water transformation in the frozen tissue of fresh grape samples upon CO2 treatment at 2-3 MPa and 3°C for up to 46 h. Frozen fresh bean, radish, eggplant and cucumber samples were also investigated for comparison. X-ray diffraction indicated that after undergoing CO2 treatment for several hours, structure I CO2 hydrate formed within the grape tissue. Phase-contrast X-ray imaging using the diffraction-enhanced imaging technique revealed the presence of CO2 hydrate within the intercellular spaces of these tissues. The carbonated produce became effervescent because of the dissociation of CO2 hydrate through the intercellular space, especially above the melting point of ice. In addition, suppressed metabolic activity resulting from CO2 hydrate formation, which inhibits water and nutrient transport through intercellular space, can be expected. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Mechanisms Leading to Co-Existence of Gas Hydrate in Ocean Sediments [Part 2 of 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryant, Steven; Juanes, Ruben

    hydrate saturations. Large volumes (of order one pore volume) of gaseous and aqueous phases must be transported into the gas hydrate stability zone. The driver for this transport is the pressure sink induced by a reduction in occupied pore volume that accompanies the formation of hydrate from gas and water. Pore-scale imbibition models and bed-scale multiphase flow models indicate that the rate-limiting step in converting gas to hydrate is the supply of water to the hydrate stability zone. Moreover, the water supply rate is controlled by capillarity-driven flux for conditions typical of the Alaska North Slope. A meter-scale laboratory experiment confirms that significant volumes of fluid phases move into the hydrate stability zone and that capillarity is essential for the water flux. The model shows that without capillarity-driven flux, large saturations of hydrate cannot form. The observations of thick zones of large saturation at Mallik and Mt Elbert thus suggest that the primary control on these systems is the rate of transport of gaseous and aqueous phases, driven by the pressure sink at the base of the gas hydrate stability zone. A key finding of our project is the elucidation of ?capillary fracturing? as a dominant gas transport mechanism in low-permeability media. We initially investigate this phenomenon by means of grain-scale simulations in which we extended a discrete element mechanics code (PFC, by Itasca) to incorporate the dynamics of first singlephase and then multiphase flow. A reductionist model on a square lattice allows us to determine some of the fundamental dependencies of the mode of gas invasion (capillary fingering, viscous fingering, and fracturing) on the parameters of the system. We then show that the morphology of the gas-invaded region exerts a fundamental control on the fabric of methane hydrate formation, and on the overpressures caused by methane hydrate dissociation. We demonstrate the existence of the different invasion regimes by means of

  1. Miscibility, chain packing, and hydration of 1-palmitoyl-2-oleoyl phosphatidylcholine and other lipids in surface phases.

    PubMed

    Smaby, J M; Brockman, H L

    1985-11-01

    The miscibility of 1-palmitoyl-2-oleoyl phosphatidylcholine with triolein, 1,2-diolein, 1,3-diolein, 1(3)-monoolein, oleyl alcohol, methyl oleate, oleic acid, and oleyl cyanide (18:1 lipids) was studied at the argon-water interface. The isothermal phase diagrams for the mixtures at 24 degrees were characterized by two compositional regions. At the limit of miscibility with lower mol fractions of 18:1 lipid, the surface pressure was composition-independent, but above a mixture-specific stoichiometry, surface pressure at the limit of miscibility was composition-dependent. From the two-dimensional phase rule, it was determined that at low mol fractions of 18:1 lipids, the surface consisted of phospholipid and a preferred packing array or complex of phospholipid and 18:1 lipid, whereas, above the stoichiometry of the complex, the surface phase consisted of complex and excess 18:1 lipids. In both regions of the phase diagram, mixing along the phase boundary was apparently ideal allowing application of an equation of state described earlier (J. M. Smaby and H. L. Brockman, 1984, Biochemistry, 23:3312-3316). From such analysis, apparent partial molecular areas and hydrations for phospholipid, complex, and 18:1 lipid were obtained. Comparison of these calculated parameters for the complexed and uncomplexed states shows that the aliphatic moieties behave independently of polar head group. The transition of each 18:1 chain to the complexed state involves the loss of about one interfacial water molecule and its corresponding area. For 18:1 lipids with more than one chain another two water molecules per additional chain are present in both states but contribute little to molecular area. In contrast to 18:1 lipids, the phospholipid area and hydration change little upon complexation. The uniformity of chain packing and hydration behavior among 18:1 lipid species contrasts with complex stoichiometries that vary from 0.04 to 0.65. This suggests that the stoichiometry of the

  2. Numerical simulations of CO2 -assisted gas production from hydrate reservoirs

    NASA Astrophysics Data System (ADS)

    Sridhara, P.; Anderson, B. J.; Myshakin, E. M.

    2015-12-01

    A series of experimental studies over the last decade have reviewed the feasibility of using CO2 or CO2+N2 gas mixtures to recover CH4 gas from hydrates deposits. That technique would serve the dual purpose of CO2 sequestration and production of CH4 while maintaining the geo-mechanical stability of the reservoir. In order to analyze CH4 production process by means of CO2 or CO2+N2 injection into gas hydrate reservoirs, a new simulation tool, Mix3HydrateResSim (Mix3HRS)[1], was previously developed to account for the complex thermodynamics of multi-component hydrate phase and to predict the process of CH4 substitution by CO2 (and N2) in the hydrate lattice. In this work, Mix3HRS is used to simulate the CO2 injection into a Class 2 hydrate accumulation characterized by a mobile aqueous phase underneath a hydrate bearing sediment. That type of hydrate reservoir is broadly confirmed in permafrost and along seashore. The production technique implies a two-stage approach using a two-well design, one for an injector and one for a producer. First, the CO2 is injected into the mobile aqueous phase to convert it into immobile CO2 hydrate and to initiate CH4 release from gas hydrate across the hydrate-water boundary (generally designating the onset of a hydrate stability zone). Second, CH4 hydrate decomposition is induced by the depressurization method at a producer to estimate gas production potential over 30 years. The conversion of the free water phase into the CO2 hydrate significantly reduces competitive water production in the second stage, thereby improving the methane gas production. A base case using only the depressurization stage is conducted to compare with enhanced gas production predicted by the CO2-assisted technique. The approach also offers a possibility to permanently store carbon dioxide in the underground formation to greater extent comparing to a direct injection of CO2 into gas hydrate sediment. Numerical models are based on the hydrate formations at the

  3. Scrutinization of thermal radiation, viscous dissipation and Joule heating effects on Marangoni convective two-phase flow of Casson fluid with fluid-particle suspension

    NASA Astrophysics Data System (ADS)

    Mahanthesh, B.; Gireesha, B. J.

    2018-03-01

    The impact of Marangoni convection on dusty Casson fluid boundary layer flow with Joule heating and viscous dissipation aspects is addressed. The surface tension is assumed to vary linearly with temperature. Physical aspects of magnetohydrodynamics and thermal radiation are also accounted. The governing problem is modelled under boundary layer approximations for fluid phase and dust particle phase and then Runge-Kutta-Fehlberg method based numeric solutions are established. The momentum and heat transport mechanisms are focused on the result of distinct governing parameters. The Nusselt number is also calculated. It is established that the rate of heat transfer can be enhanced by suspending dust particles in the base fluid. The temperature field of fluid phase and temperature of dust phase are quite reverse for thermal dust parameter. The radiative heat, viscous dissipation and Joule heating aspects are constructive for thermal fields of fluid and dust phases. The velocity of dusty Casson fluid dominates the velocity of dusty fluid while this trend is opposite in the case of temperature. Moreover qualitative behaviour of fluid phase and dust phase temperature/velocity are similar.

  4. Multi-phase-fluid discrimination with local fibre-optical probes: III. Three-phase flows

    NASA Astrophysics Data System (ADS)

    Fordham, E. J.; Ramos, R. T.; Holmes, A.; Simonian, S.; Huang, S.-M.; Lenn, C. P.

    1999-12-01

    Local fibre-optical sensors (or `local probes') for immiscible-fluid discrimination are demonstrated in three-phase (oil/water/gas) flows. The probes are made from standard silica fibres with plane oblique facets polished at the fibre tip, with surface treatment for wettability control. They use total internal reflection to distinguish among drops, bubbles and other regions of fluid in multi-phase flows, on the basis of refractive-index contrast. Dual probes, using two sensors each with a quasi-binary output, are used to determine profiles of three-phase volume fraction in a flow of kerosene, water and air in a pipe. The individual sensors used discriminate oil from `not-oil' and gas from liquid; their logical combination discriminates among the three phases. Companion papers deal with the sensor designs used and quantitative results achieved in the simpler two-phase cases of liquid/liquid flows and gas/liquid flows.

  5. Well log characterization of natural gas-hydrates

    USGS Publications Warehouse

    Collett, Timothy S.; Lee, Myung W.

    2012-01-01

    In the last 25 years there have been significant advancements in the use of well-logging tools to acquire detailed information on the occurrence of gas hydrates in nature: whereas wireline electrical resistivity and acoustic logs were formerly used to identify gas-hydrate occurrences in wells drilled in Arctic permafrost environments, more advanced wireline and logging-while-drilling (LWD) tools are now routinely used to examine the petrophysical nature of gas-hydrate reservoirs and the distribution and concentration of gas hydrates within various complex reservoir systems. Resistivity- and acoustic-logging tools are the most widely used for estimating the gas-hydrate content (i.e., reservoir saturations) in various sediment types and geologic settings. Recent integrated sediment coring and well-log studies have confirmed that electrical-resistivity and acoustic-velocity data can yield accurate gas-hydrate saturations in sediment grain-supported (isotropic) systems such as sand reservoirs, but more advanced log-analysis models are required to characterize gas hydrate in fractured (anisotropic) reservoir systems. New well-logging tools designed to make directionally oriented acoustic and propagation-resistivity log measurements provide the data needed to analyze the acoustic and electrical anisotropic properties of both highly interbedded and fracture-dominated gas-hydrate reservoirs. Advancements in nuclear magnetic resonance (NMR) logging and wireline formation testing (WFT) also allow for the characterization of gas hydrate at the pore scale. Integrated NMR and formation testing studies from northern Canada and Alaska have yielded valuable insight into how gas hydrates are physically distributed in sediments and the occurrence and nature of pore fluids(i.e., free water along with clay- and capillary-bound water) in gas-hydrate-bearing reservoirs. Information on the distribution of gas hydrate at the pore scale has provided invaluable insight on the mechanisms

  6. Finite element methods for the biomechanics of soft hydrated tissues: nonlinear analysis and adaptive control of meshes.

    PubMed

    Spilker, R L; de Almeida, E S; Donzelli, P S

    1992-01-01

    This chapter addresses computationally demanding numerical formulations in the biomechanics of soft tissues. The theory of mixtures can be used to represent soft hydrated tissues in the human musculoskeletal system as a two-phase continuum consisting of an incompressible solid phase (collagen and proteoglycan) and an incompressible fluid phase (interstitial water). We first consider the finite deformation of soft hydrated tissues in which the solid phase is represented as hyperelastic. A finite element formulation of the governing nonlinear biphasic equations is presented based on a mixed-penalty approach and derived using the weighted residual method. Fluid and solid phase deformation, velocity, and pressure are interpolated within each element, and the pressure variables within each element are eliminated at the element level. A system of nonlinear, first-order differential equations in the fluid and solid phase deformation and velocity is obtained. In order to solve these equations, the contributions of the hyperelastic solid phase are incrementally linearized, a finite difference rule is introduced for temporal discretization, and an iterative scheme is adopted to achieve equilibrium at the end of each time increment. We demonstrate the accuracy and adequacy of the procedure using a six-node, isoparametric axisymmetric element, and we present an example problem for which independent numerical solution is available. Next, we present an automated, adaptive environment for the simulation of soft tissue continua in which the finite element analysis is coupled with automatic mesh generation, error indicators, and projection methods. Mesh generation and updating, including both refinement and coarsening, for the two-dimensional examples examined in this study are performed using the finite quadtree approach. The adaptive analysis is based on an error indicator which is the L2 norm of the difference between the finite element solution and a projected finite element

  7. Anomalous phase behavior of first-order fluid-liquid phase transition in phosphorus

    NASA Astrophysics Data System (ADS)

    Zhao, G.; Wang, H.; Hu, D. M.; Ding, M. C.; Zhao, X. G.; Yan, J. L.

    2017-11-01

    Although the existence of liquid-liquid phase transition has become more and more convincing, whether it will terminate at a critical point and what is the order parameter are still open. To explore these questions, we revisit the fluid-liquid phase transition (FLPT) in phosphorus (P) and study its phase behavior by performing extensive first-principles molecular dynamics simulations. The FLPT observed in experiments is well reproduced, and a fluid-liquid critical point (FLCP) at T = 3000 ˜ 3500 K, P = 1.5-2.0 Kbar is found. With decreasing temperature from the FLCP along the transition line, the density difference (Δρ) between two coexisting phases first increases from zero and then anomalously decreases; however, the entropy difference (ΔS) continuously increases from zero. These features suggest that an order parameter containing contributions from both the density and the entropy is needed to describe the FLPT in P, and at least at low temperatures, the entropy, instead of the density, governs the FLPT.

  8. Vocal Fold Surface Hydration: A review

    PubMed Central

    Leydon, Ciara; Sivasankar, Mahalakshmi; Falciglia, Danielle Lodewyck; Atkins, Christopher; Fisher, Kimberly V.

    2009-01-01

    Vocal fold surface liquid homeostasis contributes to optimal vocal physiology. In this paper we review emerging evidence that vocal fold surface liquid is maintained in part by salt and water fluxes across the epithelium. Based on recent immunolocalization and electrophysiological findings, we describe a transcellular pathway as one mechanism for regulating superficial vocal fold hydration. We propose that the pathway includes the sodium-potassium pump, sodium-potassium-chloride cotransporter, epithelial sodium channels, cystic fibrosis transmembrane regulator chloride channels, and aquaporin water channels. By integrating knowledge of the regulating mechanisms underlying ion and fluid transport with observations from hydration challenges and treatments using in vitro and in vivo studies, we provide a theoretical basis for understanding how environmental and behavioral challenges and clinical interventions may modify vocal fold surface liquid composition. We present converging evidence that clinical protocols directed at facilitating vocal fold epithelial ion and fluid transport may benefit healthy speakers, those with voice disorders, and those at risk for voice disorders. PMID:19111440

  9. Innovations in Sampling Pore Fluids From Deep-Sea Hydrate Sites

    NASA Astrophysics Data System (ADS)

    Lapham, L. L.; Chanton, J. P.; Martens, C. S.; Schaefer, H.; Chapman, N. R.; Pohlman, J. W.

    2003-12-01

    We have developed a sea-floor probe capable of collecting and returning undecompressed pore water samples at in situ pressures for determination of dissolved gas concentrations and isotopic values in deep-sea sediments. In the summer of 2003, we tested this instrument in sediments containing gas hydrates off Vancouver Island, Cascadia Margin from ROPOS (a remotely operated vehicle) and in the Gulf of Mexico from Johnson-Sea-Link I (a manned submersible). Sediment push cores were collected alongside the probe to compare methane concentrations and stable carbon isotope compositions in decompressed samples vs. in situ samples obtained by probe. When sufficient gas was available, ethane and propane concentrations and isotopes were also compared. Preliminary data show maximum concentrations of dissolved methane to be 5mM at the Cascadia Margin Fish Boat site (850m water depth) and 12mM in the Gulf of Mexico Bush Hill hydrate site (550m water depth). Methane concentrations were, on average, five times as high in probe samples as in the cores. Carbon isotopic values show a thermogenic input and oxidative effects approaching the sediment-water interface at both sites. This novel data set will provide information that is critical to the understanding of the in situ processes and environmental conditions controlling gas hydrate occurrences in sediments.

  10. Hydration status, sweat rates, and rehydration education of youth football campers.

    PubMed

    McDermott, Brendon P; Casa, Douglas J; Yeargin, Susan W; Ganio, Matthew S; Lopez, Rebecca M; Mooradian, Elizabeth A

    2009-11-01

    Previous field research has not identified sweat rates (SR), fluid consumption (FC), or the efficacy of an educational intervention (EI) for youth during football camp. To measure hydration status and rehydration performance and examine EL using these data. Observational with EI randomized comparison. Thirty-three boys (mean +/- SD: 12 +/- 2 y, 52.9 +/- 13.6 kg, 156 +/- 12 cm) volunteered during a 5-d camp with 3 (-2-h) sessions per day (WBGT: 25.6 +/- 0.5 degrees C). Hydration status, SR, and FC. Urine osmolality averaged 796 +/- 293 mOsm/L for days 2-5. Game SR (1.30 +/- 0.57 L/h) was significantly greater than practice SR (0.65 +/- 0.35 L/h; P = .002). Subjects dehydrated during free time but matched fluid losses with FC (0.76 +/- 0.29 L/h) during football activities. Subjects arrived at camp hypohydrated and maintained this condition. They matched FC and SR during, but dehydrated when not playing, football. This may impair recovery and subsequent performance. Hydration EI seemed to have a positive influence on hydration practices.

  11. Hydration mechanisms of two polymorphs of synthetic ye'elimite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuesta, A.; Álvarez-Pinazo, G.; Sanfélix, S.G.

    2014-09-15

    Ye'elimite is the main phase in calcium sulfoaluminate cements and also a key phase in sulfobelite cements. However, its hydration mechanism is not well understood. Here we reported new data on the hydration behavior of ye'elimite using synchrotron and laboratory powder diffraction coupled to the Rietveld methodology. Both internal and external standard methodologies have been used to determine the overall amorphous contents. We have addressed the standard variables: water-to-ye'elimite ratio and additional sulfate sources of different solubilities. Moreover, we report a deep study of the role of the polymorphism of pure ye'elimites. The hydration behavior of orthorhombic stoichiometric and pseudo-cubicmore » solid-solution ye'elimites is discussed. In the absence of additional sulfate sources, stoichiometric-ye'elimite reacts slower than solid-solution-ye'elimite, and AFm-type phases are the main hydrated crystalline phases, as expected. Moreover, solid-solution-ye'elimite produces higher amounts of ettringite than stoichiometric-ye'elimite. However, in the presence of additional sulfates, stoichiometric-ye'elimite reacts faster than solid-solution-ye'elimite.« less

  12. Phase-Controlled Bistability of a Dark Soliton Train in a Polariton Fluid.

    PubMed

    Goblot, V; Nguyen, H S; Carusotto, I; Galopin, E; Lemaître, A; Sagnes, I; Amo, A; Bloch, J

    2016-11-18

    We use a one-dimensional polariton fluid in a semiconductor microcavity to explore the nonlinear dynamics of counterpropagating interacting Bose fluids. The intrinsically driven-dissipative nature of the polariton fluid allows us to use resonant pumping to impose a phase twist across the fluid. When the polariton-polariton interaction energy becomes comparable to the kinetic energy, linear interference fringes transform into a train of solitons. A novel type of bistable behavior controlled by the phase twist across the fluid is experimentally evidenced.

  13. Principles of fluid management and stewardship in septic shock: it is time to consider the four D's and the four phases of fluid therapy.

    PubMed

    Malbrain, Manu L N G; Van Regenmortel, Niels; Saugel, Bernd; De Tavernier, Brecht; Van Gaal, Pieter-Jan; Joannes-Boyau, Olivier; Teboul, Jean-Louis; Rice, Todd W; Mythen, Monty; Monnet, Xavier

    2018-05-22

    In patients with septic shock, the administration of fluids during initial hemodynamic resuscitation remains a major therapeutic challenge. We are faced with many open questions regarding the type, dose and timing of intravenous fluid administration. There are only four major indications for intravenous fluid administration: aside from resuscitation, intravenous fluids have many other uses including maintenance and replacement of total body water and electrolytes, as carriers for medications and for parenteral nutrition. In this paradigm-shifting review, we discuss different fluid management strategies including early adequate goal-directed fluid management, late conservative fluid management and late goal-directed fluid removal. In addition, we expand on the concept of the "four D's" of fluid therapy, namely drug, dosing, duration and de-escalation. During the treatment of patients with septic shock, four phases of fluid therapy should be considered in order to provide answers to four basic questions. These four phases are the resuscitation phase, the optimization phase, the stabilization phase and the evacuation phase. The four questions are "When to start intravenous fluids?", "When to stop intravenous fluids?", "When to start de-resuscitation or active fluid removal?" and finally "When to stop de-resuscitation?" In analogy to the way we handle antibiotics in critically ill patients, it is time for fluid stewardship.

  14. Synergistic hydrate inhibition of monoethylene glycol with poly(vinylcaprolactam) in thermodynamically underinhibited system.

    PubMed

    Kim, Jakyung; Shin, Kyuchul; Seo, Yutaek; Cho, Seong Jun; Lee, Ju Dong

    2014-07-31

    This study investigates the hydrate inhibition performance of monoethylene glycol (MEG) with poly(vinylcaprolactam) (PVCap) for retarding the hydrate onset as well as preventing the agglomeration of hydrate particles. A high-pressure autoclave was used to determine the hydrate onset time, subcooling temperature, hydrate fraction in the liquid phase, and torque changes during hydrate formation in pure water, 0.2 wt % PVCap solution, and 20 and 30 wt % MEG solutions. In comparison to water with no inhibitors, the addition of PVCap delays the hydrate onset time but cannot reduce the hydrate fraction, leading to a sharp increase in torque. The 20 and 30 wt % MEG solutions also delay the hydrate onset time slightly and reduce the hydrate fraction to 0.15. The addition of 0.2 wt % PVCap to the 20 wt % MEG solution, however, delays the hydrate onset time substantially, and the hydrate fraction was less than 0.19. The torque changes were negligible during the hydrate formation, suggesting the homogeneous dispersion of hydrate particles in the liquid phase. The well-dispersed hydrate particles do not agglomerate or deposit under stirring. Moreover, when 0.2 wt % PVCap was added to the 30 wt % MEG solution, no hydrate formation was observed for at least 24 h. These results suggest that mixing of MEG with a small amount of PVCap in underinhibited conditions will induce the synergistic inhibition of hydrate by delaying the hydrate onset time as well as preventing the agglomeration and deposition of hydrate particles. Decreasing the hydrate fraction in the liquid phase might be the reason for negligible torque changes during the hydrate formation in the 0.2 wt % PVCap and 20 wt % MEG solution. Simple structure II was confirmed by in situ Raman spectroscopy for the synergistic inhibition system, while coexisting structures I and II are observed in 0.2 wt % PVCap solution.

  15. Clinical Variables Associated with Hydration Status in Acute Ischemic Stroke Patients with Dysphagia.

    PubMed

    Crary, Michael A; Carnaby, Giselle D; Shabbir, Yasmeen; Miller, Leslie; Silliman, Scott

    2016-02-01

    Acute stroke patients with dysphagia are at increased risk for poor hydration. Dysphagia management practices may directly impact hydration status. This study examined clinical factors that might impact hydration status in acute ischemic stroke patients with dysphagia. A retrospective chart review was completed on 67 ischemic stroke patients who participated in a prior study of nutrition and hydration status during acute care. Prior results indicated that patients with dysphagia demonstrated elevated BUN/Cr compared to non-dysphagia cases during acute care and that BUN/Cr increased selectively in dysphagic patients. This chart review evaluated clinical variables potentially impacting hydration status: diuretics, parenteral fluids, tube feeding, oral diet, and nonoral (NPO) status. Exposure to any variable and number of days of exposure to each variable were examined. Dysphagia cases demonstrated significantly more NPO days, tube fed days, and parenteral fluid days, but not oral fed days, or days on diuretics. BUN/Cr values at discharge were not associated with NPO days, parenteral fluid days, oral fed days, or days on diuretics. Patients on modified solid diets had significantly higher mean BUN/Cr values at discharge (27.12 vs. 17.23) as did tube fed patients (28.94 vs. 18.66). No difference was noted between these subgroups at baseline (regular diet vs. modified solids diets). Any modification of solid diets (31.11 vs. 17.23) or thickened liquids (28.50 vs. 17.81) resulted in significantly elevated BUN/Cr values at discharge. Liquid or diet modifications prescribed for acute stroke patients with dysphagia may impair hydration status in these patients.

  16. Stability of CO2 hydrate under very high pressure and low temperature

    NASA Astrophysics Data System (ADS)

    Hirai, H.; Honda, M.; Kawamura, T.; Yamamoto, Y.; Yagi, T.

    2009-12-01

    CO2 hydrate is a clathrate compound and the crystal structure type is sI at low pressure. CO2-reduction in the atmosphere is one of the most urgent subjects for mankind. Some technical developments to seclude CO2 as CO2 hydrate in ocean floor have been proceeded. Looking around the solar system, existence of CO2 hydrate in and beneath Martian permafrost has been predicted from spacecraft probes and theoretical studies. Thus, its stability and properties under high pressures and low temperatures are of great interest for fundamental understanding of clathrate hydrate, for the ocean sequestration technology, and for planetary science. CO2 hydrate exhibits characteristic properties different from those of other gas hydrate such as methane hydrate. For example, phase boundary between hydrate and gas + water for many gas hydrates shows positive slope in pressure versus temperature field, and the gas hydrates are kept at pressures up to several GPa at room temperature. On the other hand, for CO2 hydrate, the phase boundary turns to negative slope from positive one at a certain critical point [Nakano et al., 1998], and it can exist only at low temperature regions. And, a theoretical study predicted that CO2 hydrate decompose at low temperature region [Longhi, 2005]. In this study, high pressure and low temperature experiments were performed to examine stability and phase changes of CO2 hydrate using diamond anvil cell in a pressure range from 0.1 to 2.5 GPa and a the temperature range from 65 to 265 K. X-ray diffractometry and Raman spectroscopy revealed that the known phase boundary was extended into lower temperature region, and that CO2 hydrate was kept at low temperature regions at least 65 K despite the theoretical prediction of decomposition. References [1] S. Nakano, M. Moritoki, K. Ohgaki, J. Chem. Eng. Data, 43, 807 (1998). [2] J. Longhi, Geochim. Cosmochim. Acta, 69, 529 (2005)

  17. The importance of hydration in wound healing: reinvigorating the clinical perspective.

    PubMed

    Ousey, K; Cutting, K F; Rogers, A A; Rippon, M G

    2016-03-01

    Balancing skin hydration levels is important as any disruption in skin integrity will result in disturbance of the dermal water balance. The discovery that a moist environment actively supports the healing response when compared with a dry environment highlights the importance of water and good hydration levels for optimal healing. The benefits of 'wet' or 'hyper-hydrated' wound healing appear similar to those offered by moist over a dry environment. This suggests that the presence of free water may not be detrimental to healing, but any adverse effects of wound fluid on tissues is more likely related to the biological components contained within chronic wound exudate, for example elevated protease levels. Appropriate dressings applied to wounds must not only be able to absorb the exudate, but also retain this excess fluid together with its protease solutes, while concurrently preventing desiccation. This is particularly important in the case of chronic wounds where peri-wound skin barrier properties are compromised and there is increased permeation across the injured skin. This review discusses the importance of appropriate levels of hydration in skin, with a particular focus on the need for optimal hydration levels for effective healing. Declaration of interest: This paper was supported by Paul Hartmann Ltd. The authors have provided consultative services to Paul Hartmann Ltd.

  18. Fractionation of Cl/Br during fluid phase separation in magmatic-hydrothermal fluids

    NASA Astrophysics Data System (ADS)

    Seo, Jung Hun; Zajacz, Zoltán

    2016-06-01

    Brine and vapor inclusions were synthesized to study Cl/Br fractionation during magmatic-hydrothermal fluid phase separation at 900 °C and pressures of 90, 120, and 150 MPa in Li/Na/K halide salt-H2O systems. Laser ablation ICP-MS microanalysis of high-density brine inclusions show an elevated Cl/Br ratio compared to the coexisting low-density vapor inclusions. The degree of Cl/Br fractionation between vapor and brine is significantly dependent on the identity of the alkali metal in the system: stronger vapor partitioning of Br occurs in the Li halide-H2O system compared to the systems of K and Na halide-H2O. The effect of the identity of alkali-metals in the system is stronger compared to the effect of vapor-brine density contrast. We infer that competition between alkali-halide and alkali-OH complexes in high-temperature fluids might cause the Cl/Br fractionation, consistent with the observed molar imbalances of alkali metals compared to halides in the analyzed brine inclusions. Our experiments show that the identity of alkali metals controls the degrees of Cl/Br fractionation between the separating aqueous fluid phases at 900 °C, and suggest that a significant variability in the Cl/Br ratios of magmatic fluids can arise in Li-rich systems.

  19. Two-Phase Solid/Fluid Simulation of Dense Granular Flows With Dilatancy Effects

    NASA Astrophysics Data System (ADS)

    Mangeney, A.; Bouchut, F.; Fernández-Nieto, E. D.; Kone, E. H.; Narbona-Reina, G.

    2016-12-01

    Describing grain/fluid interaction in debris flows models is still an open and challenging issue with key impact on hazard assessment [1]. We present here a two-phase two-thin-layer model for fluidized debris flows that takes into account dilatancy effects. It describes the velocity of both the solid and the fluid phases, the compression/ dilatation of the granular media and its interaction with the pore fluid pressure [2]. The model is derived from a 3D two-phase model proposed by Jackson [3] and the mixture equations are closed by a weak compressibility relation. This relation implies that the occurrence of dilation or contraction of the granular material in the model depends on whether the solid volume fraction is respectively higher or lower than a critical value. When dilation occurs, the fluid is sucked into the granular material, the pore pressure decreases and the friction force on the granular phase increases. On the contrary, in the case of contraction, the fluid is expelled from the mixture, the pore pressure increases and the friction force diminishes. To account for this transfer of fluid into and out of the mixture, a two-layer model is proposed with a fluid or a solid layer on top of the two-phase mixture layer. Mass and momentum conservation are satisfied for the two phases, and mass and momentum are transferred between the two layers. A thin-layer approximation is used to derive average equations. Special attention is paid to the drag friction terms that are responsible for the transfer of momentum between the two phases and for the appearance of an excess pore pressure with respect to the hydrostatic pressure. By comparing quantitatively the results of simulation and laboratory experiments on submerged granular flows, we show that our model contains the basic ingredients making it possible to reproduce the interaction between the granular and fluid phases through the change in pore fluid pressure. In particular, we analyse the different time

  20. Phase behavior of charged colloids at a fluid interface

    NASA Astrophysics Data System (ADS)

    Kelleher, Colm P.; Guerra, Rodrigo E.; Hollingsworth, Andrew D.; Chaikin, Paul M.

    2017-02-01

    We study the phase behavior of a system of charged colloidal particles that are electrostatically bound to an almost flat interface between two fluids. We show that, despite the fact that our experimental system consists of only 103-104 particles, the phase behavior is consistent with the theory of melting due to Kosterlitz, Thouless, Halperin, Nelson, and Young. Using spatial and temporal correlations of the bond-orientational order parameter, we classify our samples into solid, isotropic fluid, and hexatic phases. We demonstrate that the topological defect structure we observe in each phase corresponds to the predictions of Kosterlitz-Thouless-Halperin-Nelson-Young theory. By measuring the dynamic Lindemann parameter γL(τ ) and the non-Gaussian parameter α2(τ ) of the displacements of the particles relative to their neighbors, we show that each of the phases displays distinctive dynamical behavior.

  1. Geometry-induced phase transition in fluids: Capillary prewetting

    NASA Astrophysics Data System (ADS)

    Yatsyshin, Petr; Savva, Nikos; Kalliadasis, Serafim

    2013-02-01

    We report a new first-order phase transition preceding capillary condensation and corresponding to the discontinuous formation of a curved liquid meniscus. Using a mean-field microscopic approach based on the density functional theory we compute the complete phase diagram of a prototypical two-dimensional system exhibiting capillary condensation, namely that of a fluid with long-ranged dispersion intermolecular forces which is spatially confined by a substrate forming a semi-infinite rectangular pore exerting long-ranged dispersion forces on the fluid. In the T-μ plane the phase line of the new transition is tangential to the capillary condensation line at the capillary wetting temperature Tcw. The surface phase behavior of the system maps to planar wetting with the phase line of the new transition, termed capillary prewetting, mapping to the planar prewetting line. If capillary condensation is approached isothermally with T>Tcw, the meniscus forms at the capping wall and unbinds continuously, making capillary condensation a second-order phenomenon. We compute the corresponding critical exponent for the divergence of adsorption.

  2. Complex admixtures of clathrate hydrates in a water desalination method

    DOEpatents

    Simmons, Blake A [San Francisco, CA; Bradshaw, Robert W [Livermore, CA; Dedrick, Daniel E [Berkeley, CA; Anderson, David W [Riverbank, CA

    2009-07-14

    Disclosed is a method that achieves water desalination by utilizing and optimizing clathrate hydrate phenomena. Clathrate hydrates are crystalline compounds of gas and water that desalinate water by excluding salt molecules during crystallization. Contacting a hydrate forming gaseous species with water will spontaneously form hydrates at specific temperatures and pressures through the extraction of water molecules from the bulk phase followed by crystallite nucleation. Subsequent dissociation of pure hydrates yields fresh water and, if operated correctly, allows the hydrate-forming gas to be efficiently recycled into the process stream.

  3. Clinical assessments and care interventions to promote oral hydration amongst older patients: a narrative systematic review.

    PubMed

    Oates, Lloyd L; Price, Christopher I

    2017-01-01

    Older patients in hospital may be unable to maintain hydration by drinking, leading to intravenous fluid replacement, complications and a longer length of stay. We undertook a systematic review to describe clinical assessment tools which identify patients at risk of insufficient oral fluid intake and the impact of simple interventions to promote drinking, in hospital and care home settings. MEDLINE, CINAHL, and EMBASE databases and two internet search engines (Google and Google Scholar) were examined. Articles were included when the main focus was use of a hydration/dehydration risk assessment in an adult population with/without a care intervention to promote oral hydration in hospitals or care homes. Reviews which used findings to develop new assessments were also included. Single case reports, laboratory results only, single technology assessments or non-oral fluid replacement in patients who were already dehydrated were excluded. Interventions where nutritional intake was the primary focus with a hydration component were also excluded. Identified articles were screened for relevance and quality before a narrative synthesis. No statistical analysis was planned. From 3973 citations, 23 articles were included. Rather than prevention of poor oral intake, most focused upon identification of patients already in negative fluid balance using information from the history, patient inspection and urinalysis. Nine formal hydration assessments were identified, five of which had an accompanying intervention/ care protocol, and there were no RCT or large observational studies. Interventions to provide extra opportunities to drink such as prompts, preference elicitation and routine beverage carts appeared to support hydration maintenance, further research is required. Despite a lack of knowledge of fluid requirements and dehydration risk factors amongst staff, there was no strong evidence that increasing awareness alone would be beneficial for patients. Despite descriptions of

  4. Modulated phases of graphene quantum Hall polariton fluids

    PubMed Central

    Pellegrino, Francesco M. D.; Giovannetti, Vittorio; MacDonald, Allan H.; Polini, Marco

    2016-01-01

    There is a growing experimental interest in coupling cavity photons to the cyclotron resonance excitations of electron liquids in high-mobility semiconductor quantum wells or graphene sheets. These media offer unique platforms to carry out fundamental studies of exciton-polariton condensation and cavity quantum electrodynamics in a regime, in which electron–electron interactions are expected to play a pivotal role. Here, focusing on graphene, we present a theoretical study of the impact of electron–electron interactions on a quantum Hall polariton fluid, that is a fluid of magneto-excitons resonantly coupled to cavity photons. We show that electron–electron interactions are responsible for an instability of graphene integer quantum Hall polariton fluids towards a modulated phase. We demonstrate that this phase can be detected by measuring the collective excitation spectra, which is often at a characteristic wave vector of the order of the inverse magnetic length. PMID:27841346

  5. A mixed-penalty biphasic finite element formulation incorporating viscous fluids and material interfaces.

    PubMed

    Chan, B; Donzelli, P S; Spilker, R L

    2000-06-01

    The fluid viscosity term of the fluid phase constitutive equation and the interface boundary conditions between biphasic, solid and fluid domains have been incorporated into a mixed-penalty finite element formulation of the linear biphasic theory for hydrated soft tissue. The finite element code can now model a single-phase viscous incompressible fluid, or a single-phase elastic solid, as limiting cases of a biphasic material. Interface boundary conditions allow the solution of problems involving combinations of biphasic, fluid and solid regions. To incorporate these conditions, the volume-weighted mixture velocity is introduced as a degree of freedom at interface nodes so that the kinematic continuity conditions are satisfied by conventional finite element assembly techniques. Results comparing our numerical method with an independent, analytic solution for the problem of Couette flow over rigid and deformable porous biphasic layers show that the finite element code accurately predicts the viscous fluid flows and deformation in the porous biphasic region. Thus, the analysis can be used to model the interface between synovial fluid and articular cartilage in diarthrodial joints. This is an important step toward modeling and understanding the mechanisms of joint lubrication and another step toward fully modeling the in vivo behavior of a diarthrodial joint.

  6. The hydration status of young female elite soccer players during an official tournament.

    PubMed

    Chapelle, Laurent; Tassignon, Bruno; Aerenhouts, Dirk; Mullie, Patrick; Clarys, Peter

    2017-09-01

    The hydration status of elite female soccer players is a concern, especially during high-volume training periods or tournaments. Furthermore, scientific literature on this topic is scarce to non-existent. Therefore, the primary aim of this study was to evaluate the hydration status in elite youth female soccer players during an official tournament. The secondary aim was to identify a possible relationship between pre-training hydration status and fluid intake. Eighteen players were followed during eight consecutive days. Urine specific gravity was used to assess hydration status. Body weight was monitored before and after every training and match, whilst individual fluid intake was only registered during training. The players were informed about their hydration status on day 5. On days 1 to 4, the percentage of players who were at least minimally hypohydrated ranged between 44% and 78%. On day 5 (rest day), all the players were at least minimally hypohydrated. After the information session on day 5, the relative number of euhydrated players increased to 89% on both day 6 (training day) and day 7 (match day). On the final day (rest day), all players were either minimally hypohydrated or hypohydrated. Furthermore, a moderate and significant negative correlation (r=-0.44; N.=54; P=0.01) was found between fluid intake during and USG value before the training sessions. The data illustrates that the hydration status of this population of elite youth female soccer players may be suboptimal and is of substantial concern on rest days during this tournament under temperate conditions. Receiving personal advice about rehydration seems to have a positive effect.

  7. Use of high-frequency ultrasonography for evaluation of skin thickness in relation to hydration status and fluid distribution at various cutaneous sites in dogs.

    PubMed

    Diana, Alessia; Guglielmini, Carlo; Fracassi, Federico; Pietra, Marco; Balletti, Erika; Cipone, Mario

    2008-09-01

    To assess the usefulness of high-frequency diagnostic ultrasonography for evaluation of changes of skin thickness in relation to hydration status and fluid distribution at various cutaneous sites in dogs. 10 clinically normal adult dogs (6 males and 4 females) of various breeds. Ultrasonographic examination of the skin was performed before and after hydration via IV administration of an isotonic crystalloid solution (30 mL/kg/h for 30 minutes). A 13-MHz linear-array transducer was used to obtain series of ultrasonographic images at 4 different cutaneous sites (the frontal, sacral, flank, and metatarsal regions). Weight and various clinicopathologic variables (PCV; serum osmolality; and serum total protein, albumin, and sodium concentrations) were determined before and after the infusion. These variables and ultrasonographic measurements of skin thickness before and after hydration were compared. Among the 10 dogs, mean preinfusion skin thickness ranged from 2,211 microm (metatarsal region) to 3,249 microm (sacral region). Compared with preinfusion values, weight was significantly increased, whereas PCV; serum osmolality; and serum total protein, albumin, and sodium concentrations were significantly decreased after infusion. After infusion, dermal echogenicity decreased and skin thickness increased significantly by 21%, 14%, 15%, and 13% in the frontal, sacral, flank, and metatarsal regions, respectively. Cutaneous site and hydration were correlated with cutaneous characteristics and skin thickness determined by use of high-frequency ultrasonography in dogs. Thus, diagnostic ultrasonography may be a useful tool for the noninvasive evaluation of skin hydration in healthy dogs and in dogs with skin edema.

  8. Short-range, overpressure-driven methane migration in coarse-grained gas hydrate reservoirs

    DOE PAGES

    Nole, Michael; Daigle, Hugh; Cook, Ann E.; ...

    2016-08-31

    Two methane migration mechanisms have been proposed for coarse-grained gas hydrate reservoirs: short-range diffusive gas migration and long-range advective fluid transport from depth. Herein we demonstrate that short-range fluid flow due to overpressure in marine sediments is a significant additional methane transport mechanism that allows hydrate to precipitate in large quantities in thick, coarse-grained hydrate reservoirs. Two-dimensional simulations demonstrate that this migration mechanism, short-range advective transport, can supply significant amounts of dissolved gas and is unencumbered by limitations of the other two end-member mechanisms. Here, short-range advective migration can increase the amount of methane delivered to sands as compared tomore » the slow process of diffusion, yet it is not necessarily limited by effective porosity reduction as is typical of updip advection from a deep source.« less

  9. Short-range, overpressure-driven methane migration in coarse-grained gas hydrate reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nole, Michael; Daigle, Hugh; Cook, Ann E.

    Two methane migration mechanisms have been proposed for coarse-grained gas hydrate reservoirs: short-range diffusive gas migration and long-range advective fluid transport from depth. Herein we demonstrate that short-range fluid flow due to overpressure in marine sediments is a significant additional methane transport mechanism that allows hydrate to precipitate in large quantities in thick, coarse-grained hydrate reservoirs. Two-dimensional simulations demonstrate that this migration mechanism, short-range advective transport, can supply significant amounts of dissolved gas and is unencumbered by limitations of the other two end-member mechanisms. Here, short-range advective migration can increase the amount of methane delivered to sands as compared tomore » the slow process of diffusion, yet it is not necessarily limited by effective porosity reduction as is typical of updip advection from a deep source.« less

  10. Comparison of ultrarapid and rapid intravenous hydration in pediatric patients with dehydration.

    PubMed

    Nager, Alan L; Wang, Vincent J

    2010-02-01

    The purpose of this study is to test the efficacy of ultrarapidly infused vs rapidly infused intravenous (IV) hydration in pediatric patients with acute gastroenteritis and moderate dehydration. Patients 3 to 36 months, with vomiting and/or diarrhea and moderate dehydration, were eligible. Subjects were randomly assigned "ultra" (50 mL/kg normal saline for 1 hour) vs "standard" (50 mL/kg normal saline for 3 hours) after failing an oral fluid challenge. Subjects were weighed and had serum electrolyte testing, and urine was obtained before/after IV hydration. Input/output and vital signs were tabulated hourly during the study. Subjects were discharged after fulfilling specified criteria. A follow-up questionnaire was completed 24 hours after discharge. Comparison data included success and timing of rehydration, number of patients who returned and/or were admitted, output during the rehydration period, laboratory differences, and serious complications. Eighty-eight of 92 subjects completed the study: 45 ultra and 43 standard. Four patients failed treatment (1 ultra and 3 standard), were hospitalized, and excluded from the study. Groups were similar regarding sex, days of symptoms, episodes of vomiting/diarrhea before treatment, capillary refill time, tears, and vital signs and laboratory results. No subject had evidence of serious complications. Ninety-one percent of subjects completed the follow-up questionnaire. Seven ultra and 6 standard subjects returned. Six ultra subjects received oral fluid, one received IV fluid, and all were discharged. Five standard subjects received oral fluid, one received IV fluid, and all were discharged. Based on this pilot study, ultrarapid hydration for 1 hour preliminarily appears to be an efficacious alternative to standard rapid hydration for 3 hours and improves emergency department throughput time. Copyright 2010 Elsevier Inc. All rights reserved.

  11. Geochemical Monitoring Of The Gas Hydrate Production By CO2/CH4 Exchange In The Ignik Sikumi Gas Hydrate Production Test Well, Alaska North Slope

    NASA Astrophysics Data System (ADS)

    Lorenson, T. D.; Collett, T. S.; Ignik Sikumi, S.

    2012-12-01

    Hydrocarbon gases, nitrogen, carbon dioxide and water were collected from production streams at the Ignik Sikumi gas hydrate production test well (TD, 791.6 m), drilled on the Alaska North Slope. The well was drilled to test the feasibility of producing methane by carbon dioxide injection that replaces methane in the solid gas hydrate. The Ignik Sikumi well penetrated a stratigraphically-bounded prospect within the Eileen gas hydrate accumulation. Regionally, the Eileen gas hydrate accumulation overlies the more deeply buried Prudhoe Bay, Milne Point, and Kuparuk River oil fields and is restricted to the up-dip portion of a series of nearshore deltaic sandstone reservoirs in the Sagavanirktok Formation. Hydrate-bearing sandstones penetrated by Ignik Sikumi well occur in three primary horizons; an upper zone, ("E" sand, 579.7 - 597.4 m) containing 17.7 meters of gas hydrate-bearing sands, a middle zone ("D" sand, 628.2 - 648.6 m) with 20.4 m of gas hydrate-bearing sands and a lower zone ("C" sand, 678.8 - 710.8 m), containing 32 m of gas hydrate-bearing sands with neutron porosity log-interpreted average gas hydrate saturations of 58, 76 and 81% respectively. A known volume mixture of 77% nitrogen and 23% carbon dioxide was injected into an isolated section of the upper part of the "C" sand to start the test. Production flow-back part of the test occurred in three stages each followed by a period of shut-in: (1) unassisted flowback; (2) pumping above native methane gas hydrate stability conditions; and (3) pumping below the native methane gas hydrate stability conditions. Methane production occurred immediately after commencing unassisted flowback. Methane concentration increased from 0 to 40% while nitrogen and carbon dioxide concentrations decreased to 48 and 12% respectively. Pumping above the hydrate stability phase boundary produced gas with a methane concentration climbing above 80% while the carbon dioxide and nitrogen concentrations fell to 2 and 18

  12. Gas-hydrate occurrence on the W-Svalbard margin at the gateway to the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Bünz, Stefan; Mienert, Jürgen

    2010-05-01

    Gas hydrates contain more carbon than does any other global reservoir and are abundant on continental margins worldwide. These two facts make gas hydrates important as a possible future energy resource, in submarine landsliding and in global climate change. With the ongoing global warming, there is a need for a better understanding of the distribution of gas hydrates and their sensitivity to environmental changes. Gas hydrate systems in polar latitudes may be of particular importance due to the fact that environmental changes will be felt here first and most likely are more extreme than elsewhere. The gas-hydrate systems offshore western Svalbard are far more extensive (~4000km^2) than previously assumed and include the whole Vestnesa Ridge, an elongated sediment drift north of the Molloy Transform and just east of the Molloy Ridge, one of the shortest segments of the slow spreading North-Atlantic Ridge system. However, in this peculiar setting gas hydrates also occur within few km of a mid-oceanic ridge and transform fault, which makes this gas hydrate system unique on Earth. The close proximity to the spreading centre and its hydrothermal circulation system affects the dynamics of the gas hydrate system. A strong cross-cutting BSR is visible, especially in areas of dipping seafloor. Other places show a weak almost subtle BSR. The base of gas-hydrate stability varies with distance from the ridge system, suggesting a strong temperature-controlled subsurface depth as the underlying young oceanic crust cools off eastward. High amplitude reflections over a depth range of up to 150m underneath the BSR indicate the presence of a considerable amount of free gas. The free gas is focused laterally upwards by the less-permeable hydrated sediments as the only fluid-escape features occur at the crest of the Vestnesa Ridge. The fluid migration system and its active plumbing system at the crest provide an efficient mechanism for gas escape from the base of the hydrate stability

  13. Microcanonical molecular simulations of methane hydrate nucleation and growth: evidence that direct nucleation to sI hydrate is among the multiple nucleation pathways.

    PubMed

    Zhang, Zhengcai; Walsh, Matthew R; Guo, Guang-Jun

    2015-04-14

    The results of six high-precision constant energy molecular dynamics (MD) simulations initiated from methane-water systems equilibrated at 80 MPa and 250 K indicate that methane hydrates can nucleate via multiple pathways. Five trajectories nucleate to an amorphous solid. One trajectory nucleates to a structure-I hydrate template with long-range order which spans the simulation box across periodic boundaries despite the presence of several defects. While experimental and simulation data for hydrate nucleation with different time- and length-scales suggest that there may exist multiple pathways for nucleation, including metastable intermediates and the direct formation of the globally-stable phase, this work provides the most compelling evidence that direct formation to the globally stable crystalline phase is one of the multiple pathways available for hydrate nucleation.

  14. Electrical properties of polycrystalline methane hydrate

    USGS Publications Warehouse

    Du Frane, W. L.; Stern, L.A.; Weitemeyer, K.A.; Constable, S.; Pinkston, J.C.; Roberts, J.J.

    2011-01-01

    Electromagnetic (EM) remote-sensing techniques are demonstrated to be sensitive to gas hydrate concentration and distribution and complement other resource assessment techniques, particularly seismic methods. To fully utilize EM results requires knowledge of the electrical properties of individual phases and mixing relations, yet little is known about the electrical properties of gas hydrates. We developed a pressure cell to synthesize gas hydrate while simultaneously measuring in situ frequency-dependent electrical conductivity (σ). Synthesis of methane (CH4) hydrate was verified by thermal monitoring and by post run cryogenic scanning electron microscope imaging. Impedance spectra (20 Hz to 2 MHz) were collected before and after synthesis of polycrystalline CH4 hydrate from polycrystalline ice and used to calculate σ. We determined the σ of CH4 hydrate to be 5 × 10−5 S/m at 0°C with activation energy (Ea) of 30.6 kJ/mol (−15 to 15°C). After dissociation back into ice, σ measurements of samples increased by a factor of ~4 and Ea increased by ~50%, similar to the starting ice samples.

  15. Two-Phase Solid/Fluid Simulation of Dense Granular Flows With Dilatancy Effects

    NASA Astrophysics Data System (ADS)

    Mangeney, Anne; Bouchut, Francois; Fernandez-Nieto, Enrique; Narbona-Reina, Gladys; Kone, El Hadj

    2017-04-01

    Describing grain/fluid interaction in debris flows models is still an open and challenging issue with key impact on hazard assessment [1]. We present here a two-phase two-thin-layer model for fluidized debris flows that takes into account dilatancy effects. It describes the velocity of both the solid and the fluid phases, the compression/ dilatation of the granular media and its interaction with the pore fluid pressure [2]. The model is derived from a 3D two-phase model proposed by Jackson [3] and the mixture equations are closed by a weak compressibility relation. This relation implies that the occurrence of dilation or contraction of the granular material in the model depends on whether the solid volume fraction is respectively higher or lower than a critical value. When dilation occurs, the fluid is sucked into the granular material, the pore pressure decreases and the friction force on the granular phase increases. On the contrary, in the case of contraction, the fluid is expelled from the mixture, the pore pressure increases and the friction force diminishes. To account for this transfer of fluid into and out of the mixture, a two-layer model is proposed with a fluid or a solid layer on top of the two-phase mixture layer. Mass and momentum conservation are satisfied for the two phases, and mass and momentum are transferred between the two layers. A thin-layer approximation is used to derive average equations. Special attention is paid to the drag friction terms that are responsible for the transfer of momentum between the two phases and for the appearance of an excess pore pressure with respect to the hydrostatic pressure. Interestingly, when removing the role of water, our model reduces to a dry granular flow model including dilatancy. We first compare experimental and numerical results of dilatant dry granular flows. Then, by quantitatively comparing the results of simulation and laboratory experiments on submerged granular flows, we show that our model

  16. Predictive Mechanical Characterization of Macro-Molecular Material Chemistry Structures of Cement Paste at Nano Scale - Two-phase Macro-Molecular Structures of Calcium Silicate Hydrate, Tri-Calcium Silicate, Di-Calcium Silicate and Calcium Hydroxide

    NASA Astrophysics Data System (ADS)

    Padilla Espinosa, Ingrid Marcela

    Concrete is a hierarchical composite material with a random structure over a wide range of length scales. At submicron length scale the main component of concrete is cement paste, formed by the reaction of Portland cement clinkers and water. Cement paste acts as a binding matrix for the other components and is responsible for the strength of concrete. Cement paste microstructure contains voids, hydrated and unhydrated cement phases. The main crystalline phases of unhydrated cement are tri-calcium silicate (C3S) and di-calcium silicate (C2S), and of hydrated cement are calcium silicate hydrate (CSH) and calcium hydroxide (CH). Although efforts have been made to comprehend the chemical and physical nature of cement paste, studies at molecular level have primarily been focused on individual components. Present research focuses on the development of a method to model, at molecular level, and analysis of the two-phase combination of hydrated and unhydrated phases of cement paste as macromolecular systems. Computational molecular modeling could help in understanding the influence of the phase interactions on the material properties, and mechanical performance of cement paste. Present work also strives to create a framework for molecular level models suitable for potential better comparisons with low length scale experimental methods, in which the sizes of the samples involve the mixture of different hydrated and unhydrated crystalline phases of cement paste. Two approaches based on two-phase cement paste macromolecular structures, one involving admixed molecular phases, and the second involving cluster of two molecular phases are investigated. The mechanical properties of two-phase macromolecular systems of cement paste consisting of key hydrated phase CSH and unhydrated phases C3S or C2S, as well as CSH with the second hydrated phase CH were calculated. It was found that these cement paste two-phase macromolecular systems predicted an isotropic material behavior. Also

  17. Gas hydrates (clathrates) causing pore-water freshening and oxygen isotope fractionation in deep-water sedimentary sections of terrigenous continental margins

    USGS Publications Warehouse

    Hesse, R.; Harrison, W.E.

    1981-01-01

    The occurrence of gas hydrates in deep-water sections of the continental margins predicted from anomalous acoustic reflectors on seismic profiles has been confirmed by recent deep-sea drilling results. On the Pacific continental slope off Guatemala gas hydrates were brought up for the first time from two holes (497, 498A) drilled during Leg 67 of the DSDP in water depths of 2360 and 5500 m, respectively. The hydrates occur in organic matter-rich Pleistocene to Miocene terrigenous sediments. In the hydrate-bearing zone a marked decrease in interstitial water chlorinities was observed starting at about 10-20 m subbottom depth. Pore waters at the bottom of the holes (near 400 m subbottom) have as little as half the chlorinity of seawater (i.e. 9???). Similar, but less pronounced, trends were observed during previous legs of the DSDP in other hydrate-prone segments of the continental margins where recharge of fresh water from the continent can be excluded (e.g. Leg 11). The crystallization of hydrates, like ice, excludes salt ions from the crystal structure. During burial the dissolved salts are separated from the solids. Subsidence results in a downward motion of the solids (including hydrates) relative to the pore fluids. Thawing of hydrates during recovery releases fresh water which is remixed with the pore fluid not involved in hydrate formation. The volume of the latter decreases downhole thus causing downward decreasing salinity (chlorinity). Hydrate formation is responsible for oxygen isotope fractionation with 18O-enrichment in the hydrate explaining increasingly more positive ??18O values in the pore fluids recovered (after hydrate dissociation) with depth. ?? 1981.

  18. An effect of surface properties on detachment of adhered solid to cooling surface for formation of clathrate hydrate slurry

    NASA Astrophysics Data System (ADS)

    Daitoku, Tadafumi; Utaka, Yoshio

    In air-conditioning systems, it is desirable that the liquid-solid phase change temperature of a cool energy storage material is approximately 10 °C from the perspective of improving coefficient of performance (COP). Moreover, a thermal storage material that forms slurry can realize large heat capacity of working fluids. Since the solid that adheres to the heat transfer surface forms a thermal resistance layer and remarkably reduces the rate of cold storage, it is important to avoid the adhesion of a thick solid layer on the surface so as to realize efficient energy storage. Considering a harvest type cooling unit, the force required for removing the solid phase from the heat transfer surface was studied. Tetra-n-butylammonium Bromide (TBAB) clathrate hydrate was used as a cold storage material. The effect of the heat transfer surface properties on the scraping force for detachment of adhered solid of TBAB hydrate to the heat transfer surface was examined experimentally.

  19. Fluid and mass transfer into the cold mantle wedge of subduction zones: budgets and seismic constraints

    NASA Astrophysics Data System (ADS)

    Abers, G. A.; Hacker, B. R.; Van Keken, P. E.; Nakajima, J.; Kita, S.

    2015-12-01

    Dehydration of subducting plates should hydrate the shallow overlying mantle wedge where mantle is cold. In the shallow mantle wedge hydrous phases, notably serpentines, chlorite, brucite and talc should be stable to form a significant reservoir for H2O. Beneath this cold nose thermal models suggest only limited slab dehydration occurs at depths less than ca. 80 km except in warm subduction zones, but fluids may flow updip from deeper within the subducting plate to hydrate the shallow mantle. We estimate the total water storage capacity in cold noses, at temperatures where hydrous phases are stable, to be roughly 2-3% the mass of the global ocean. At modern subduction flux rates its full hydration could be achieved in 50-100 Ma if all subducting water devolatilized in the upper 100 km flows into the wedge; these estimates have at least a factor of two uncertainty. To investigate the extent to which wedge hydration actually occurs we compile and generate seismic images of forearc mantle regions. The compilation includes P- and S-velocity images with good sampling below the Moho and above the downgoing slab in forearcs, from active-source imaging, local earthquake tomography and receiver functions, while avoiding areas of complex tectonics. Well-resolved images exist for Cascadia, Alaska, the Andes, Central America, North Island New Zealand, and Japan. We compare the observed velocities to those predicted from thermal-petrologic models. Among these forearcs, Cascadia stands out as having upper-mantle seismic velocities lower than overriding crust, consistent with high (>50%) hydration. Most other forearcs show Vp close to 8.0 km/s and Vp/Vs of 1.73-1.80. We compare these observations to velocities predicted from thermal-mineralogical models. Velocities are slightly slower than expected for dry peridotite and allow 10-20% hydration, but also could also be explained as relict accreted rock, or delaminated, relaminated, or offscraped crustal material mixed with mantle

  20. Laboratory formation of non-cementing, methane hydrate-bearing sands

    USGS Publications Warehouse

    Waite, William F.; Bratton, Peter M.; Mason, David H.

    2011-01-01

    Naturally occurring hydrate-bearing sands often behave as though methane hydrate is acting as a load-bearing member of the sediment. Mimicking this behavior in laboratory samples with methane hydrate likely requires forming hydrate from methane dissolved in water. To hasten this formation process, we initially form hydrate in a free-gas-limited system, then form additional hydrate by circulating methane-supersaturated water through the sample. Though the dissolved-phase formation process can theoretically be enhanced by increasing the pore pressure and flow rate and lowering the sample temperature, a more fundamental concern is preventing clogs resulting from inadvertent methane bubble formation in the circulation lines. Clog prevention requires careful temperature control throughout the circulation loop.

  1. Determination of methane concentrations in water in equilibrium with sI methane hydrate in the absence of a vapor phase by in situ Raman spectroscopy

    USGS Publications Warehouse

    Lu, W.; Chou, I.-Ming; Burruss, R.C.

    2008-01-01

    Most submarine gas hydrates are located within the two-phase equilibrium region of hydrate and interstitial water with pressures (P) ranging from 8 to 60 MPa and temperatures (T) from 275 to 293 K. However, current measurements of solubilities of methane in equilibrium with hydrate in the absence of a vapor phase are limited below 20 MPa and 283.15 K, and the differences among these data are up to 30%. When these data were extrapolated to other P-T conditions, it leads to large and poorly known uncertainties. In this study, in situ Raman spectroscopy was used to measure methane concentrations in pure water in equilibrium with sI (structure one) methane hydrate, in the absence of a vapor phase, at temperatures from 276.6 to 294.6 (??0.3) K and pressures at 10, 20, 30 and 40 (??0.4%) MPa. The relationship among concentration of methane in water in equilibrium with hydrate, in mole fraction [X(CH4)], the temperature in K, and pressure in MPa was derived as: X(CH4) = exp [11.0464 + 0.023267 P - (4886.0 + 8.0158 P)/T]. Both the standard enthalpy and entropy of hydrate dissolution at the studied T-P conditions increase slightly with increasing pressure, ranging from 41.29 to 43.29 kJ/mol and from 0.1272 to 0.1330 kJ/K ?? mol, respectively. When compared with traditional sampling and analytical methods, the advantages of our method include: (1) the use of in situ Raman signals for methane concentration measurements eliminates possible uncertainty caused by sampling and ex situ analysis, (2) it is simple and efficient, and (3) high-pressure data can be obtained safely. ?? 2007 Elsevier Ltd. All rights reserved.

  2. Gas hydrate accumulation at the Hakon Mosby Mud Volcano

    USGS Publications Warehouse

    Ginsburg, G.D.; Milkov, A.V.; Soloviev, V.A.; Egorov, A.V.; Cherkashev, G.A.; Vogt, P.R.; Crane, K.; Lorenson, T.D.; Khutorskoy, M.D.

    1999-01-01

    Gas hydrate (GH) accumulation is characterized and modeled for the Hakon Mosby mud volcano, ca. 1.5 km across, located on the Norway-Barents-Svalbard margin. Pore water chemical and isotopic results based on shallow sediment cores as well as geothermal and geomorphological data suggest that the GH accumulation is of a concentric pattern controlled by and formed essentially from the ascending mud volcano fluid. The gas hydrate content of sediment peaks at 25% by volume, averaging about 1.2% throughout the accumulation. The amount of hydrate methane is estimated at ca. 108 m3 STP, which could account for about 1-10% of the gas that has escaped from the volcano since its origin.

  3. The history and future trends of ocean warming-induced gas hydrate dissociation in the SW Barents Sea

    NASA Astrophysics Data System (ADS)

    Vadakkepuliyambatta, Sunil; Chand, Shyam; Bünz, Stefan

    2017-01-01

    The Barents Sea is a major part of the Arctic where the Gulf Stream mixes with the cold Arctic waters. Late Cenozoic uplift and glacial erosion have resulted in hydrocarbon leakage from reservoirs, evolution of fluid flow systems, shallow gas accumulations, and hydrate formation throughout the Barents Sea. Here we integrate seismic data observations of gas hydrate accumulations along with gas hydrate stability modeling to analyze the impact of warming ocean waters in the recent past and future (1960-2060). Seismic observations of bottom-simulating reflectors (BSRs) indicate significant thermogenic gas input into the hydrate stability zone throughout the SW Barents Sea. The distribution of BSR is controlled primarily by fluid flow focusing features, such as gas chimneys and faults. Warming ocean bottom temperatures over the recent past and in future (1960-2060) can result in hydrate dissociation over an area covering 0.03-38% of the SW Barents Sea.

  4. [Cerebral water and electrolytes during changes in the osmolarity and volume of the extracellular fluid].

    PubMed

    Pinegin, L E; Tibekina, L M; Shakhmatova, E I; Natochin, Iu

    1979-01-01

    The increase of osmolarity in the blood serum after administration of polyethylenglycol-400 (PEG) as well as the sharp increase of the renal loss of fluid under the influence of furosemide insignificantly affected the water contents in the white and grey brain substance. A slight dehydration of the grey substance occured on combination of osmotic gradient effect and the renal loss of fluid. Preservation of initial hydration of the brain within the skull on administration of PEG and furosemide is due to redistribution of the fluid phases: dehydration of cells is followed by an increase in the volume of sodium-containing tissue fluid where upon the amount of sodium and calcium in the tissue practically does not change.

  5. COMPARING SIMULATED AND EXPERIMENTAL HYSTERETIC TWO- PHASE TRANSIENT FLUID FLOW PHENOMENA

    EPA Science Inventory

    A hysteretic model for two-phase permeability (k)-saturation (S)-pressure (P) relations is outlined that accounts for effects of nonwetting fluid entrapment. The model can be employed in unsaturated fluid flow computer codes to predict temporal and spatial fluid distributions. Co...

  6. Entropic description of gas hydrate ice/liquid equilibrium via enhanced sampling of coexisting phases

    DOE PAGES

    Malolepsza, Edyta; Kim, Jaegil; Keyes, Tom

    2015-04-28

    Metastable β ice holds small guest molecules in stable gas hydrates, so its solid/liquid equilibrium is of interest. However, aqueous crystal/liquid transitions are very difficult to simulate. A new MD algorithm generates trajectories in a generalized NPT ensemble and equilibrates states of coexisting phases with a selectable enthalpy. Furthermore, with replicas spanning the range between β ice and liquid water we find the statistical temperature from the enthalpy histograms and characterize the transition by the entropy, introducing a general computational procedure for first-order transitions.

  7. Mechanosensitive ATP Release Maintains Proper Mucus Hydration of Airways

    PubMed Central

    Button, Brian; Okada, Seiko F.; Frederick, Charles Brandon; Thelin, William R.; Boucher, Richard C.

    2013-01-01

    The clearance of mucus from the airways protects the lungs from inhaled noxious and infectious materials. Proper hydration of the mucus layer enables efficient mucus clearance through beating of cilia on airway epithelial cells, and reduced clearance of excessively concentrated mucus occurs in patients with chronic obstructive pulmonary disease and cystic fibrosis. Key steps in the mucus transport process are airway epithelia sensing and responding to changes in mucus hydration. We reported that extracellular adenosine triphosphate (ATP) and adenosine were important luminal auto-crine and paracrine signals that regulated the hydration of the surface of human airway epithelial cultures through their action on apical membrane purinoceptors. Mucus hydration in human airway epithelial cultures was sensed by an interaction between cilia and the overlying mucus layer: Changes in mechanical strain, proportional to mucus hydration, regulated ATP release rates, adjusting fluid secretion to optimize mucus layer hydration. This system provided a feedback mechanism by which airways maintained mucus hydration in an optimum range for cilia propulsion. Understanding how airway epithelia can sense and respond to changes in mucus properties helps us to understand how the mucus clearance system protects the airways in health and how it fails in lung diseases such as cystic fibrosis. PMID:23757023

  8. Consequences of CO2 solubility for hydrate formation from carbon dioxide containing water and other impurities.

    PubMed

    Kvamme, Bjørn; Kuznetsova, Tatiana; Jensen, Bjørnar; Stensholt, Sigvat; Bauman, Jordan; Sjøblom, Sara; Nes Lervik, Kim

    2014-05-14

    Deciding on the upper bound of water content permissible in a stream of dense carbon dioxide under pipeline transport conditions without facing the risks of hydrate formation is a complex issue. In this work, we outline and analyze ten primary routes of hydrate formation inside a rusty pipeline, with hydrogen sulfide, methane, argon, and nitrogen as additional impurities. A comprehensive treatment of equilibrium absolute thermodynamics as applied to multiple hydrate phase transitions is provided. We also discuss in detail the implications of the Gibbs phase rule that make it necessary to consider non-equilibrium thermodynamics. The analysis of hydrate formation risk has been revised for the dominant routes, including the one traditionally considered in industrial practice and hydrate calculators. The application of absolute thermodynamics with parameters derived from atomistic simulations leads to several important conclusions regarding the impact of hydrogen sulfide. When present at studied concentrations below 5 mol%, the presence of hydrogen sulfide will only support the carbon-dioxide-dominated hydrate formation on the phase interface between liquid water and hydrate formers entering from the carbon dioxide phase. This is in contrast to a homogeneous hydrate nucleation and growth inside the aqueous solution bulk. Our case studies indicate that hydrogen sulfide at higher than 0.1 mol% concentration in carbon dioxide can lead to growth of multiple hydrate phases immediately adjacent to the adsorbed water layers. We conclude that hydrate formation via water adsorption on rusty pipeline walls will be the dominant contributor to the hydrate formation risk, with initial concentration of hydrogen sulfide being the critical factor.

  9. A multidisciplinary approach to constrain incoming plate hydration in the Central American Margin

    NASA Astrophysics Data System (ADS)

    Hu, Y.; Guild, M. R.; Naif, S.; Eimer, M. O.; Evans, O.; Fornash, K.; Plank, T. A.; Shillington, D. J.; Vervelidou, F.; Warren, J. M.; Wiens, D.

    2017-12-01

    The oceanic crust and mantle of the incoming plate are potentially the greatest source of water to the subduction zone, but their extent of hydration is poorly constrained. Hydrothermal alteration of the oceanic crust is an important source of mineral-bound water that ultimately dehydrates during subduction. Bend faults at the trench-outer rise provide another viable mechanism to further hydrate the down-going plate. Here, we take a multidisciplinary approach to constrain the fluid budget of the subducting plate at the Northern Central American margin; this site was chosen since it has an unusually wet subducting slab at the Nicaragua segment. Abundant geophysical and geochemical datasets are available for this region and this work is an analysis of these data. Controlled-source electromagnetic (CSEM) and wide-angle seismic (WAS) observations show significant resistivity and velocity reductions in the incoming oceanic crust associated with bend faults, which suggests seawater infiltration and hydrous alteration. We used the CSEM porosity constraints to predict P-wave velocity and find that the WAS data require an additional reduction of up to 0.3 km/s in the lower crust at the trench, equivalent to 2 wt% H2O. We implemented the porosity structure together with constraints on fluid flow and reaction kinetics into two-phase flow numerical models to quantify the degree of serpentinization possible relative to WAS estimates. Thermodynamic modeling of basalt and peridotite bulk compositions were used to predict the alteration assemblages and associated water contents in the bend faulting region as well as the dehydration fluxes during subduction. In Nicaragua, the major fluid pulse at sub-arc depths results from chlorite and antigorite breakdown in the upper 10 km of the slab mantle, whereas in Costa Rica, the slab mantle is not predicted to dehydrate at sub-arc depths. In addition, comparisons between observed and predicted magnetic anomalies and geochemical variations

  10. Post-Laramide Epiorogeny through Crustal Hydration?

    NASA Astrophysics Data System (ADS)

    Jones, C. H.; Mahan, K. H.; Farmer, G.

    2011-12-01

    hydration has also been described from xenoliths in the Four Corners region of the Colorado Plateau (Broadhurst, 1986; Selverstone et al., 1999). The presence of a partially hydrated high-wavespeed layer at the base of the crust could complicate attempts to define the Moho using receiver functions, a problem encountered in several areas in Wyoming and the Colorado Plateau.The timing of the observed lower crustal hydration is unknown, but if related to Cenozoic uplift this implies that fluids were added in Late Cretaceous to Early Tertiary, potentially via dehydration of shallowly subducting oceanic lithosphere. If correct, this idea requires some means of passing significant amounts of fluid to the lower crust through the lithospheric mantle.

  11. Metasomatic hydration of the Oeyama forearc peridotites: Tectonic implications

    NASA Astrophysics Data System (ADS)

    Nozaka, Toshio

    2014-01-01

    In contrast to the widely recognized aspects of serpentinization, initial stages of hydration and tectonic processes of unserpentinized peridotites are still unclear, but have important implications for understanding the lithospheric architecture of supra-subduction zones. This study provides petrological evidence from the Oeyama ophiolite, SW Japan, of the effects of high-temperature metasomatic hydration immediately before the cooling and ductile deformation of forearc peridotites. Key findings in this study are: 1) complex association of high-temperature metasomatic minerals: tremolitic amphibole, cummingtonite, phlogopite, chlorite, olivine and orthopyroxene in veins and in mylonites; 2) the systematic variation in Si and Na + K contents of the tremolitic amphibole, corresponding to its mode of occurrence and mineral association; and 3) the presence of thin (< 0.7 mm) veins of fine-grained olivine accompanied by a narrow diffusion zone of the host primary olivine. On the basis of petrography and mineral chemistry, the temporal sequence of hydration and deformation of the Oeyama ophiolite is considered as follows: 1) infiltration of slab-derived fluids, causing decomposition of primary pyroxene and chemical modification of primary olivine, 2) metasomatic formation of variable modal amounts of amphibole, phlogopite, chlorite, vein-forming olivine and secondary orthopyroxene at 650-750 °C; 3) early-stage mylonitization of the hydrous peridotites in localized shear zones; and 4) syntectonic serpentinization at 400-600 °C to form serpentinite mylonites. Paragenesis and amphibole compositions suggest comparable temperature conditions for metasomatism and early-stage mylonitization. Mylonitization occurred exclusively in hydrous peridotites, and the peridotite mylonites were preferentially overprinted by syntectonic serpentinization. Diffusion profiles of olivine cut by a vein suggest rapid cooling immediately after the metasomatic fluid infiltration. From these

  12. Lattice Boltzmann model for three-phase viscoelastic fluid flow

    NASA Astrophysics Data System (ADS)

    Xie, Chiyu; Lei, Wenhai; Wang, Moran

    2018-02-01

    A lattice Boltzmann (LB) framework is developed for simulation of three-phase viscoelastic fluid flows in complex geometries. This model is based on a Rothman-Keller type model for immiscible multiphase flows which ensures mass conservation of each component in porous media even for a high density ratio. To account for the viscoelastic effects, the Maxwell constitutive relation is correctly introduced into the momentum equation, which leads to a modified lattice Boltzmann evolution equation for Maxwell fluids by removing the normal but excess viscous term. Our simulation tests indicate that this excess viscous term may induce significant errors. After three benchmark cases, the displacement processes of oil by dispersed polymer are studied as a typical example of three-phase viscoelastic fluid flow. The results show that increasing either the polymer intrinsic viscosity or the elastic modulus will enhance the oil recovery.

  13. Time- and Space-Resolved SAXS Experiments Inform on Phase Transition Kinetics in Hydrated, Liquid-Crystalline Films of Polyion-Surfactant Ion "Complex Salts".

    PubMed

    Li, Joaquim; Gustavsson, Charlotte; Piculell, Lennart

    2016-05-24

    Detailed time- and space-resolved SAXS experiments show the variation with hydration of liquid crystalline structures in ethanol-cast 5-80 μm thick films of polyion-surfactant ion "complex salts" (CS). The CS were dodecyl- (C12) or hexadecyl- (C16) trimethylammonium surfactants with polyacrylate (DP 25 or 6000) counter-polyions. The experiments were carried out on vertical films in humid air above a movable water bath, so that gradients of hydration were generated, which could rapidly be altered. Scans over different positions along a film, kept fixed relative to the bath, showed that the surfactant aggregates of the various liquid-crystalline CS structures grow in cross-sectional area with decreasing hydration. This behavior is attributed to the low water content. Studies of films undergoing rapid dehydration, made possible by the original experimental setup, gave strong evidence that some of the investigated systems remain kinetically trapped for minutes in a nonequilibrium Pm3n micellar cubic phase before switching to the equilibrium P6mm 2D hexagonal phase. Both the length of the polyion and the length of the surfactant hydrocarbon "tail" affect the kinetics of the phase transition. The slowness of the cubic-to-hexagonal structural transition is attributed to the fact that it requires major rearrangements of the polyions and surfactant ions relative to each other. By contrast, other structure changes, such as between the hexagonal and rectangular phases, were observed to occur much more rapidly.

  14. Uniform phases in fluids of hard isosceles triangles: One-component fluid and binary mixtures

    NASA Astrophysics Data System (ADS)

    Martínez-Ratón, Yuri; Díaz-De Armas, Ariel; Velasco, Enrique

    2018-05-01

    We formulate the scaled particle theory for a general mixture of hard isosceles triangles and calculate different phase diagrams for the one-component fluid and for certain binary mixtures. The fluid of hard triangles exhibits a complex phase behavior: (i) the presence of a triatic phase with sixfold symmetry, (ii) the isotropic-uniaxial nematic transition is of first order for certain ranges of aspect ratios, and (iii) the one-component system exhibits nematic-nematic transitions ending in critical points. We found the triatic phase to be stable not only for equilateral triangles but also for triangles of similar aspect ratios. We focus the study of binary mixtures on the case of symmetric mixtures: equal particle areas with aspect ratios (κi) symmetric with respect to the equilateral one, κ1κ2=3 . For these mixtures we found, aside from first-order isotropic-nematic and nematic-nematic transitions (the latter ending in a critical point): (i) a region of triatic phase stability even for mixtures made of particles that do not form this phase at the one-component limit, and (ii) the presence of a Landau point at which two triatic-nematic first-order transitions and a nematic-nematic demixing transition coalesce. This phase behavior is analogous to that of a symmetric three-dimensional mixture of rods and plates.

  15. Materials science of the gel to fluid phase transition in a supported phospholipid bilayer.

    PubMed

    Xie, Anne Feng; Yamada, Ryo; Gewirth, Andrew A; Granick, Steve

    2002-12-09

    We report the results of in situ AFM measurements examining the phase transition of bilayers formed from the zwitterionic phospholipid, DMPC, 1,2-dimyristoyl-sn-glycero-3-phosphocholine, supported on mica. The images show that the fluid to gel phase transition process features substantial tearing of the bilayer due to the density change between the two phases. The gel to fluid transition is strongly affected by the resultant stress introduced into the gel phase, which changes the degree of cooperativity, the shape of developing fluid phase regions, and the course of the transition.

  16. Detection and Production of Methane Hydrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Hirasaki; Walter Chapman; Gerald Dickens

    This project seeks to understand regional differences in gas hydrate systems from the perspective of as an energy resource, geohazard, and long-term climate influence. Specifically, the effort will: (1) collect data and conceptual models that targets causes of gas hydrate variance, (2) construct numerical models that explain and predict regional-scale gas hydrate differences in 2-dimensions with minimal 'free parameters', (3) simulate hydrocarbon production from various gas hydrate systems to establish promising resource characteristics, (4) perturb different gas hydrate systems to assess potential impacts of hot fluids on seafloor stability and well stability, and (5) develop geophysical approaches that enable remotemore » quantification of gas hydrate heterogeneities so that they can be characterized with minimal costly drilling. Our integrated program takes advantage of the fact that we have a close working team comprised of experts in distinct disciplines. The expected outcomes of this project are improved exploration and production technology for production of natural gas from methane hydrates and improved safety through understanding of seafloor and well bore stability in the presence of hydrates. The scope of this project was to more fully characterize, understand, and appreciate fundamental differences in the amount and distribution of gas hydrate and how this would affect the production potential of a hydrate accumulation in the marine environment. The effort combines existing information from locations in the ocean that are dominated by low permeability sediments with small amounts of high permeability sediments, one permafrost location where extensive hydrates exist in reservoir quality rocks and other locations deemed by mutual agreement of DOE and Rice to be appropriate. The initial ocean locations were Blake Ridge, Hydrate Ridge, Peru Margin and GOM. The permafrost location was Mallik. Although the ultimate goal of the project was to understand

  17. Hydration status in adolescent runners: pre and post training

    NASA Astrophysics Data System (ADS)

    Ashadi, K.; Mirza, D. N.; Siantoro, G.

    2018-01-01

    The adequacy of body fluids is important for athletes in supporting performance. The purpose of this research was to determine the hydration status of athletes before and after training. The study was a qualitative descriptive by using random sampling. All athletes were trained for approximately 60 minutes. And they were asked to analyze their body fluid pattern routinely. Data were obtained through urine color measurement. The urinary was taken at pre and post training and was immediately assessed in the afternoon. Based on pre-training urine samples, a mean of urine color scale was 3.1 point. It meant that only 31.2% of the athletes were in dehydrated condition. However, after exercising, urine color index showed scale 4.1. And 62.5% of the athletes experienced dehydration. The results showed that there was a significant change in hydration level before and after training. It can be concluded that training for a long time increases the risk of dehydration. It is important for athletes to meet the needs of body fluids in order to avoid functional impairment in the body during sports activities.

  18. Non-equilibrium simulation of CH4 production through the depressurization method from gas hydrate reservoirs

    NASA Astrophysics Data System (ADS)

    Qorbani, Khadijeh; Kvamme, Bjørn

    2016-04-01

    Natural gas hydrates (NGHs) in nature are formed from various hydrate formers (i.e. aqueous, gas, and adsorbed phases). As a result, due to Gibbs phase rule and the combined first and second laws of thermodynamics CH4-hydrate cannot reach thermodynamic equilibrium in real reservoir conditions. CH4 is the dominant component in NGH reservoirs. It is formed as a result of biogenic degradation of biological material in the upper few hundred meters of subsurface. It has been estimated that the amount of fuel-gas reserve in NGHs exceed the total amount of fossil fuel explored until today. Thus, these reservoirs have the potential to satisfy the energy requirements of the future. However, released CH4 from dissociated NGHs could find its way to the atmosphere and it is a far more aggressive greenhouse gas than CO2, even though its life-time is shorter. Lack of reliable field data makes it difficult to predict the production potential, as well as safety of CH4 production from NGHs. Computer simulations can be used as a tool to investigate CH4 production through different scenarios. Most hydrate simulators within academia and industry treat hydrate phase transitions as an equilibrium process and those which employ the kinetic approach utilize simple laboratory data in their models. Furthermore, it is typical to utilize a limited thermodynamic description where only temperature and pressure projections are considered. Another widely used simplification is to assume only a single route for the hydrate phase transitions. The non-equilibrium nature of hydrate indicates a need for proper kinetic models to describe hydrate dissociation and reformation in the reservoir with respect to thermodynamics variables, CH4 mole-fraction, pressure and temperature. The RetrasoCodeBright (RCB) hydrate simulator has previously been extended to model CH4-hydrate dissociation towards CH4 gas and water. CH4-hydrate is added to the RCB data-base as a pseudo mineral. Phase transitions are treated

  19. Visual observation of gas hydrates nucleation and growth at a water - organic liquid interface

    NASA Astrophysics Data System (ADS)

    Stoporev, Andrey S.; Semenov, Anton P.; Medvedev, Vladimir I.; Sizikov, Artem A.; Gushchin, Pavel A.; Vinokurov, Vladimir A.; Manakov, Andrey Yu.

    2018-03-01

    Visual observation of nucleation sites of methane and methane-ethane-propane hydrates and their further growth in water - organic liquid - gas systems with/without surfactants was carried out. Sapphire Rocking Cell RCS6 with transparent sapphire cells was used. The experiments were conducted at the supercooling ΔTsub = 20.2 °C. Decane, toluene and crude oils were used as organics. Gas hydrate nucleation occurred on water - metal - gas and water - sapphire - organic liquid three-phase contact lines. At the initial stage of growth hydrate crystals rapidly covered the water - gas or water - organics interfaces (depending on the nucleation site). Further hydrate phase accrete on cell walls (sapphire surface) and into the organics volume. At this stage, growth was accompanied by water «drawing out» from under initial hydrate film formed at water - organic interface. Apparently, it takes place due to water capillary inflow in the reaction zone. It was shown that the hydrate crystal morphology depends on the organic phase composition. In the case of water-in-decane emulsion relay hydrate crystallization was observed in the whole sample, originating most likely due to the hydrate crystal intergrowth through decane. Contacts of such crystals with adjacent water droplets result in rapid hydrate crystallization on this droplet.

  20. Entropic Description of Gas Hydrate Ice-Liquid Equilibrium via Enhanced Sampling of Coexisting Phases

    NASA Astrophysics Data System (ADS)

    Małolepsza, Edyta; Kim, Jaegil; Keyes, Tom

    2015-05-01

    Metastable β ice holds small guest molecules in stable gas hydrates, so its solid-liquid equilibrium is of interest. However, aqueous crystal-liquid transitions are very difficult to simulate. A new molecular dynamics algorithm generates trajectories in a generalized N P T ensemble and equilibrates states of coexisting phases with a selectable enthalpy. With replicas spanning the range between β ice and liquid water, we find the statistical temperature from the enthalpy histograms and characterize the transition by the entropy, introducing a general computational procedure for first-order transitions.

  1. High-resolution well-log derived dielectric properties of gas-hydrate-bearing sediments, Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    USGS Publications Warehouse

    Sun, Y.; Goldberg, D.; Collett, T.; Hunter, R.

    2011-01-01

    A dielectric logging tool, electromagnetic propagation tool (EPT), was deployed in 2007 in the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well (Mount Elbert Well), North Slope, Alaska. The measured dielectric properties in the Mount Elbert well, combined with density log measurements, result in a vertical high-resolution (cm-scale) estimate of gas hydrate saturation. Two hydrate-bearing sand reservoirs about 20 m thick were identified using the EPT log and exhibited gas-hydrate saturation estimates ranging from 45% to 85%. In hydrate-bearing zones where variation of hole size and oil-based mud invasion are minimal, EPT-based gas hydrate saturation estimates on average agree well with lower vertical resolution estimates from the nuclear magnetic resonance logs; however, saturation and porosity estimates based on EPT logs are not reliable in intervals with substantial variations in borehole diameter and oil-based invasion.EPT log interpretation reveals many thin-bedded layers at various depths, both above and below the thick continuous hydrate occurrences, which range from 30-cm to about 1-m thick. Such thin layers are not indicated in other well logs, or from the visual observation of core, with the exception of the image log recorded by the oil-base microimager. We also observe that EPT dielectric measurements can be used to accurately detect fine-scale changes in lithology and pore fluid properties of hydrate-bearing sediments where variation of hole size is minimal. EPT measurements may thus provide high-resolution in-situ hydrate saturation estimates for comparison and calibration with laboratory analysis. ?? 2010 Elsevier Ltd.

  2. Alcohol cosurfactants in hydrate antiagglomeration.

    PubMed

    York, J Dalton; Firoozabadi, Abbas

    2008-08-28

    Because of availability, as well as economical and environmental considerations, natural gas is projected to be the premium fuel of the 21st century. Natural gas production involves risk of the shut down of onshore and offshore operations because of blockage from hydrates formed from coproduced water and hydrate-forming species in natural gas. Industry practice has been usage of thermodynamic inhibitors such as alcohols often in significant amounts, which have undesirable environmental and safety impacts. Thermodynamic inhibitors affect bulk-phase properties and inhibit hydrate formation. An alternative is changing surface properties through usage of polymers and surfactants, effective at 0.5 to 3 weight % of coproduced water. One group of low dosage hydrate inhibitors (LDHI) are kinetic inhibitors, which affect nucleation rate and growth. A second group of LDHI are antiagglomerants, which prevent agglomeration of small hydrate crystallites. Despite great potential, work on hydrate antiagglomeration is very limited. This work centers on the effect of small amounts of alcohol cosurfactant in mixtures of two vastly different antiagglomerants. We use a model oil, water, and tetrahydrofuran as a hydrate-forming species. Results show that alcohol cosurfactants may help with antiagglomeration when traditional antiagglomerants alone are ineffective. Specifically, as low as 0.5 wt. % methanol cosurfactant used in this study is shown to be effective in antiagglomeration. Without the cosurfactant there will be agglomeration independent of the AA concentration. To our knowledge, this is the first report of alcohol cosurfactants in hydrate antiagglomerants. It is also shown that a rhamnolipid biosurfactant is effective down to only 0.5 wt. % in such mixtures, yet a quaternary ammonium chloride salt, i. e., quat, results in hydrate slurries down to 0.01 wt. %. However, biochemical surfactants are less toxic and biodegradable, and thus their use may prove beneficial even if at

  3. Shallow Methane Hydrates: Rates, Mechanisms of Formation and Environmental Significance.

    NASA Astrophysics Data System (ADS)

    Torres, M. E.; Trehu, A. M.

    2005-05-01

    Shallow gas hydrates have been identified at more than 20 locations worldwide, and are commonly associated with observations of bubble discharge at the seafloor. These deposits are host to active chemosynthetic communities and are likely to play a predominant role in energy, climate and carbon cycle issues associated with hydrate processes. Because seafloor gas hydrates are not in equilibrium with seawater, these deposits require a constant supply of methane to replace loss by continuous diffusion to bottom water. We will summarize evidence documenting that at the shallow deposits on Hydrate Ridge (OR) methane must be delivered in the free gas phase and present simple models used to infer formation rates, which are orders of magnitude higher than those for hydrates formed deeper in the sediment column (Torres et al., 2004). At Hydrate Ridge, methane gas is channeled from deep accretionary margin sequences to the gas hydrate stability zone (GHSZ) through a permeable layer that has been mapped seismically (Horizon A). High gas pressure in this horizon can drive gas through the GHSZ to the seafloor (Trehu et al., 2004). We will review current ideas that address mechanisms whereby gas migrates from Horizon A to the seafloor, including inhibition by capillary effects and the development of a high salinity front that can shift the hydrate stability field enough to allow for methane transport as a gas phase.

  4. Micromechanical cohesion force between gas hydrate particles measured under high pressure and low temperature conditions.

    PubMed

    Lee, Bo Ram; Sum, Amadeu K

    2015-04-07

    To prevent hydrate plugging conditions in the transportation of oil/gas in multiphase flowlines, one of the key processes to control is the agglomeration/deposition of hydrate particles, which are determined by the cohesive/adhesive forces. Previous studies reporting measurements of the cohesive/adhesive force between hydrate particles used cyclopentane hydrate particles in a low-pressure micromechanical force apparatus. In this study, we report the cohesive forces of particles measured in a new high-pressure micromechanical force (MMF) apparatus for ice particles, mixed (methane/ethane, 74.7:25.3) hydrate particles (Structure II), and carbon dioxide hydrate particles (Structure I). The cohesive forces are measured as a function of the contact time, contact force, temperature, and pressure, and determined from pull-off measurements. For the measurements performed of the gas hydrate particles in the gas phase, the determined cohesive force is about 30-35 mN/m, about 8 times higher than the cohesive force of CyC5 hydrates in the liquid CyC5, which is about 4.3 mN/m. We show from our results that the hydrate structure (sI with CO2 hydrates and sII with CH4/C2H6 hydrates) has no influence on the cohesive force. These results are important in the deposition of a gas-dominated system, where the hydrate particles formed in the liquid phase can then stick to the hydrate deposited in the wall exposed to the gas phase.

  5. Invasion of Hydrous Fluids Predates Kimberlite Formation

    NASA Astrophysics Data System (ADS)

    Kopylova, M. G.; Wang, Q.; Smith, E. M.

    2017-12-01

    Petrological observations on diamonds and peridotite xenoliths in kimberlites point towards an influx of hydrous metasomatic fluids shortly predating kimberlite formation. Diamonds may grow at different times within the same segment of the cratonic mantle, and diamonds that form shortly before (<5-7 My) the kimberlite entrainment host the more hydrous fluid inclusions. Younger fibrous diamonds typically contain 10-25 wt.% water in fluid inclusions, while older octahedrally-grown diamonds host "dry" N2-CO2 fluids. Our recent studies of fluids in diamond now show that many different kinds of diamonds can contain fluid inclusions. Specifically, we found a new way to observe and analyze fluids in octahedrally-grown, non-fibrous diamonds by examining healed fractures. This is a new textural context for fluid inclusions that reveals a valuable physical record of infiltrating mantle fluids, that postdate diamond growth, but equilibrate within the diamond stability field at depths beyond 150 km. Another sign of the aqueous fluids influx is the formation of distinct peridotite textures shortly predating the kimberlite. Kimberlites entrain peridotite xenoliths with several types of textures: older coarse metamorphic textures and younger, sheared textures. The preserved contrast in grain sizes between porphyroclasts and neoblasts in sheared peridotites constrain the maximum duration of annealing. Experimental estimates of the annealing time vary from 7x107 sec (2 years) to 106 years (1 My) depending on olivine hydration, strain rate, pressure, temperature and, ultimately, the annealing mechanism. Kimberlite sampling of sheared peridotites from the lithosphere- asthenosphere boundary (LAB) implies their formation no earlier than 1 My prior to the kimberlite ascent. Water contents of olivine measured by FTIR spectrometry using polarized light demonstrated contrasting hydration of coarse and sheared samples. Olivine from sheared peridotite samples has the average water content

  6. Hydration reactivity of crystalline and vitrified diopside under hydrothermal conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grzeszczyk, S.; Szuba, J.

    1990-07-01

    Hydration reactivity of diopside in both the crystalline and amorphous (glassy) phase was studied under hydrothermal conditions. Samples were treated in an autoclave at 200{degrees}C in saturated vapor for 24 and 72 h. The progress of hydration was determined by X-ray powder diffractometry and IR spectroscopy. Results indicate that crystalline diopside possessed poor hydraulic activity. However, once vitrified it proved to be much more reactive. The principal hydration products found for the glassy diopside after 24 and 72 h of treatment were calcium silicate hydrate (xonotlite) and magnesium silicate hydrates (chrysotile and tremolite).

  7. Ad libitum fluid intake does not prevent dehydration in suboptimally hydrated young soccer players during a training session of a summer camp.

    PubMed

    Arnaoutis, Giannis; Kavouras, Stavros A; Kotsis, Yiannis P; Tsekouras, Yiannis E; Makrillos, Michalis; Bardis, Costas N

    2013-06-01

    There is a lack of studies concerning hydration status of young athletes exercising in the heat. To assess preexercise hydration status in young soccer players during a summer sports camp and to evaluate body- water balance after soccer training sessions. Initial hydration status was assessed in 107 young male soccer players (age 11-16 yr) during the 2nd day of the camp. Seventy-two athletes agreed to be monitored during 2 more training sessions (3rd and 5th days of the camp) to calculate dehydration via changes in body weight, while water drinking was allowed ad libitum. Hydration status was assessed via urine specific gravity (USG), urine color, and changes in total body weight. Mean environmental temperature and humidity were 27.2 ± 2 °C and 57% ± 9%, respectively. According to USG values, 95 of 107 of the players were hypohydrated (USG ≥ 1.020) before practice. The prevalence of dehydration observed was maintained on both days, with 95.8% and 97.2% of the players being dehydrated after the training sessions on the 3rd and 5th days, respectively. Despite fluid availability, 54 of the 66 (81.8%) dehydrated players reduced their body weight (-0.35 ± 0.04 kg) as a response to training, while 74.6% (47 out of the 63) further reduced their body weight (-0.22 ± 0.03 kg) after training on the 5th day. Approximately 90% of the young soccer players who began exercising under warm weather conditions were hypohydrated, while drinking ad libitum during practice did not prevent further dehydration in already dehydrated players.

  8. Communication: Charge transfer dominates over proton transfer in the reaction of nitric acid with gas-phase hydrated electrons

    NASA Astrophysics Data System (ADS)

    Lengyel, Jozef; Med, Jakub; Slavíček, Petr; Beyer, Martin K.

    2017-09-01

    The reaction of HNO3 with hydrated electrons (H2O)n- (n = 35-65) in the gas phase was studied using Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry and ab initio molecular dynamics simulations. Kinetic analysis of the experimental data shows that OH-(H2O)m is formed primarily via a reaction of the hydrated electron with HNO3 inside the cluster, while proton transfer is not observed and NO3-(H2O)m is just a secondary product. The reaction enthalpy was determined using nanocalorimetry, revealing a quite exothermic charge transfer with -241 ± 69 kJ mol-1. Ab initio molecular dynamics simulations indicate that proton transfer is an allowed reaction pathway, but the overall thermochemistry favors charge transfer.

  9. [Hydration in clinical practice].

    PubMed

    Maristany, Cleofé Pérez-Portabella; Segurola Gurruchaga, Hegoi

    2011-01-01

    Water is an essential foundation for life, having both a regulatory and structural function. The former results from active and passive participation in all metabolic reactions, and its role in conserving and maintaining body temperature. Structurally speaking it is the major contributer to tissue mass, accounting for 60% of the basis of blood plasma, intracellular and intersticial fluid. Water is also part of the primary structures of life such as genetic material or proteins. Therefore, it is necessary that the nurse makes an early assessment of patients water needs to detect if there are signs of electrolyte imbalance. Dehydration can be a very serious problem, especially in children and the elderly. Dehydrations treatment with oral rehydration solution decreases the risk of developing hydration disorders, but even so, it is recommended to follow preventive measures to reduce the incidence and severity of dehydration. The key to having a proper hydration is prevention. Artificial nutrition encompasses the need for precise calculation of water needs in enteral nutrition as parenteral, so the nurse should be part of this process and use the tools for calculating the patient's requirements. All this helps to ensure an optimal nutritional status in patients at risk. Ethical dilemmas are becoming increasingly common in clinical practice. On the subject of artificial nutrition and hydration, there isn't yet any unanimous agreement regarding hydration as a basic care. It is necessary to take decisions in consensus with the health team, always thinking of the best interests of the patient.

  10. Nonequilibrium adiabatic molecular dynamics simulations of methane clathrate hydrate decomposition

    NASA Astrophysics Data System (ADS)

    Alavi, Saman; Ripmeester, J. A.

    2010-04-01

    Nonequilibrium, constant energy, constant volume (NVE) molecular dynamics simulations are used to study the decomposition of methane clathrate hydrate in contact with water. Under adiabatic conditions, the rate of methane clathrate decomposition is affected by heat and mass transfer arising from the breakup of the clathrate hydrate framework and release of the methane gas at the solid-liquid interface and diffusion of methane through water. We observe that temperature gradients are established between the clathrate and solution phases as a result of the endothermic clathrate decomposition process and this factor must be considered when modeling the decomposition process. Additionally we observe that clathrate decomposition does not occur gradually with breakup of individual cages, but rather in a concerted fashion with rows of structure I cages parallel to the interface decomposing simultaneously. Due to the concerted breakup of layers of the hydrate, large amounts of methane gas are released near the surface which can form bubbles that will greatly affect the rate of mass transfer near the surface of the clathrate phase. The effects of these phenomena on the rate of methane hydrate decomposition are determined and implications on hydrate dissociation in natural methane hydrate reservoirs are discussed.

  11. Nonequilibrium adiabatic molecular dynamics simulations of methane clathrate hydrate decomposition.

    PubMed

    Alavi, Saman; Ripmeester, J A

    2010-04-14

    Nonequilibrium, constant energy, constant volume (NVE) molecular dynamics simulations are used to study the decomposition of methane clathrate hydrate in contact with water. Under adiabatic conditions, the rate of methane clathrate decomposition is affected by heat and mass transfer arising from the breakup of the clathrate hydrate framework and release of the methane gas at the solid-liquid interface and diffusion of methane through water. We observe that temperature gradients are established between the clathrate and solution phases as a result of the endothermic clathrate decomposition process and this factor must be considered when modeling the decomposition process. Additionally we observe that clathrate decomposition does not occur gradually with breakup of individual cages, but rather in a concerted fashion with rows of structure I cages parallel to the interface decomposing simultaneously. Due to the concerted breakup of layers of the hydrate, large amounts of methane gas are released near the surface which can form bubbles that will greatly affect the rate of mass transfer near the surface of the clathrate phase. The effects of these phenomena on the rate of methane hydrate decomposition are determined and implications on hydrate dissociation in natural methane hydrate reservoirs are discussed.

  12. Biomechanical effects of hydration in vocal fold tissues.

    PubMed

    Chan, Roger W; Tayama, Niro

    2002-05-01

    It has often been hypothesized, with little empirical support, that vocal fold hydration affects voice production by mediating changes in vocal fold tissue rheology. To test this hypothesis, we attempted in this study to quantify the effects of hydration on the viscoelastic shear properties of vocal fold tissues in vitro. Osmotic changes in hydration (dehydration and rehydration) of 5 excised canine larynges were induced by sequential incubation of the tissues in isotonic, hypertonic, and hypotonic solutions. Elastic shear modulus (G'), dynamic viscosity eta' and the damping ratio zeta of the vocal fold mucosa (lamina propria) were measured as a function of frequency (0.01 to 15 Hz) with a torsional rheometer. Vocal fold tissue stiffness (G') and viscosity (eta) increased significantly (by 4 to 7 times) with the osmotically induced dehydration, whereas they decreased by 22% to 38% on the induced rehydration. Damping ratio (zeta) also increased with dehydration and decreased with rehydration, but the detected differences were not statistically significant at all frequencies. These findings support the long-standing hypothesis that hydration affects vocal fold vibration by altering tissue rheologic (or viscoelastic) properties. Our results demonstrated the biomechanical importance of hydration in vocal fold tissues and suggested that hydration approaches may potentially improve the biomechanics of phonation in vocal fold lesions involving disordered fluid balance.

  13. Offshore gas hydrate sample database with an overview and preliminary analysis

    USGS Publications Warehouse

    Booth, James S.; Rowe, Mary M.; Fisher, Kathleen M.

    1996-01-01

    individual hydrate grains were most often characterized in terms of millimeters or centimeters, although a pure hydrate layer discovered in the Middle America Trench off Guatemala was as much as 3-4-m-thick. The data suggest that grains, or thin veins or laminae of pure gas hydrate may be ubiquitous in many hydrate zones but that typically they may only comprise a minor component of the thicker zones. In more than 80 percent of the hydrate samples the methane was of biogenic origin. The methane in the remainder was either classified as (or may be at least part) thermogenic. Each site where thermogenic gas was identified is characterized by faults or other manifestions of a dynamic geological environment (e.g., diapirs, mud volcanoes, gas seeps). Every sample in the database came from within the zone of theoretical methane hydrate stability, as determined on the basis of assumed regional pressure and temperature gradients. Most show that they were situated --- expressed in terms of depth --- well above the phase boundary and about 70% of the samples were located more than 100 m above the assumed regional position of that boundary. The calculated subseabed positions of the phase boundaries and the BSRs (bottom simulating reflector) are essentially identical. This may be taken as general corroboration of the regional phase boundary calculations and the concept of the BSR. Three provocative aspects of marine gas hydrates have been disclosed by the database: gas hydrates are frequently situated at much shallower subseabed depths than the assumed contemporary position of the regional phase boundary hydrates are often found in areas typified by faults or other indicators of a dynamic geological environment zones of gas hydrate-bearing sediment tend to be tens of centimeters to tens of meters thick but the hydrate within the thicker zones tends to be only a minor constituent. Whether existing as dispersed particles, cements, or pure layers or vein

  14. Effect of hydration on nitrogen washout in human subjects

    NASA Technical Reports Server (NTRS)

    Waligora, J.; Horrigan, D. J., Jr.; Conkin, J.

    1983-01-01

    Five subjects were tested to assess the influence of drinking hypotonic water (distilled water) on whole body tissue nitrogen washout. During the test, the subjects breathed aviators' oxygen for three hours. Each subject performed two baseline nitrogen washouts in a two-week period. The third washout, in the third week, was done under a transient hydrated condition. This was accomplished by having the subjects drink 1.5 liters of hypotonic water 30 minutes before the washout. Five-minute plots of tissue nitrogen removal from the three separate washouts were analyzed to ascertain if the hydration technique had any effect. Our results clearly indicate that the hydration technique did not alter the tissue nitrogen washout characteristics to any degree over three hours. An increase in tissue nitrogen washout under a transient hydrated condition using hypotonic fluid was not demonstrated to be the mechanism responsible for the reported benefit of this technique in preventing Type I altitude decompression pain in man.

  15. Physical Compatibility of Micafungin With Sodium Bicarbonate Hydration Fluids Commonly Used With High-Dose Methotrexate Chemotherapy.

    PubMed

    Joiner, Logan C; Tynes, Clay; Arnold, John; Miller, Rachel R; Gorman, Greg

    2018-04-01

    Purpose: The purpose of this study was to determine the physical compatibility of micafungin with commonly used concentrations of sodium bicarbonate hydration fluids administered via a Y-site connected to a central venous catheter (Y-site/CVC). Methods: Micafungin sodium (evaluated concentration of 1.5 mg/mL) was combined in a 3:1 (vehicle:drug) ratio with the following commonly used hydration vehicles: 40 mEq/L sodium bicarbonate in 5% dextrose in water with ¼ normal saline (40SB-D5W-1/4NS), 75 mEq/L sodium bicarbonate in D5W (75SB-D5W), and 154 mEq/L sodium bicarbonate in D5W (154SB-D5W). A 3:1 ratio was used based on the flow rates (typically 125 mL/m 2 /h for bicarbonate-containing vehicles and 50 mL/h for micafungin) of the corresponding solutions in a clinical setting. Visual observations recorded to determine physical compatibility included visual inspection against different backgrounds (unaided, black, and white). Other physical observations were as follows: odor, evolution of gas, pH, and turbidity immediately recorded after mixing and at specified time points up to 2 hours. Evaluations at each time point were compared against baseline observation values at Time 0. Results: All combinations tested were found to be compatible up to 2 hours. Time points beyond 2 hours cannot be safely verified as compatible. Conclusion: Micafungin may be administered safely using a Y-site/CVC delivery system with all the vehicles tested in this study.

  16. Reflective terahertz (THz) imaging: system calibration using hydration phantoms

    NASA Astrophysics Data System (ADS)

    Bajwa, Neha; Garritano, James; Lee, Yoon Kyung; Tewari, Priyamvada; Sung, Shijun; Maccabi, Ashkan; Nowroozi, Bryan; Babakhanian, Meghedi; Sanghvi, Sajan; Singh, Rahul; Grundfest, Warren; Taylor, Zachary

    2013-02-01

    Terahertz (THz) hydration sensing continues to gain traction in the medical imaging community due to its unparalleled sensitivity to tissue water content. Rapid and accurate detection of fluid shifts following induction of thermal skin burns as well as remote corneal hydration sensing have been previously demonstrated in vivo using reflective, pulsed THz imaging. The hydration contrast sensing capabilities of this technology were recently confirmed in a parallel 7 Tesla Magnetic Resonance (MR) imaging study, in which burn areas are associated with increases in local mobile water content. Successful clinical translation of THz sensing, however, still requires quantitative assessments of system performance measurements, specifically hydration concentration sensitivity, with tissue substitutes. This research aims to calibrate the sensitivity of a novel, reflective THz system to tissue water content through the use of hydration phantoms for quantitative comparisons of THz hydration imagery.Gelatin phantoms were identified as an appropriate tissue-mimicking model for reflective THz applications, and gel composition, comprising mixtures of water and protein, was varied between 83% to 95% hydration, a physiologically relevant range. A comparison of four series of gelatin phantom studies demonstrated a positive linear relationship between THz reflectivity and water concentration, with statistically significant hydration sensitivities (p < .01) ranging between 0.0209 - 0.038% (reflectivity: %hydration). The THz-phantom interaction is simulated with a three-layer model using the Transfer Matrix Method with agreement in hydration trends. Having demonstrated the ability to accurately and noninvasively measure water content in tissue equivalent targets with high sensitivity, reflective THz imaging is explored as a potential tool for early detection and intervention of corneal pathologies.

  17. Long-wave equivalent viscoelastic solids for porous rocks saturated by two-phase fluids

    NASA Astrophysics Data System (ADS)

    Santos, J. E.; Savioli, G. B.

    2018-07-01

    Seismic waves travelling across fluid-saturated poroelastic materials with mesoscopic-scale heterogeneities induce fluid flow and Biot's slow waves generating energy loss and velocity dispersion. Using Biot's equations of motion to model these type of heterogeneities would require extremely fine meshes. We propose a numerical upscaling procedure to determine the complex and frequency-dependent Pwave and shear moduli of an effective viscoelastic medium long-wave equivalent to a poroelastic solid saturated by a two-phase fluid. The two-phase fluid is defined in terms of capillary pressure and relative permeability flow functions. The Pwave and shear effective moduli are determined using harmonic compressibility and shear experiments applied on representative samples of the bulk material. Each experiment is associated with a boundary value problem that is solved using the finite element method. Since a poroelastic solid saturated by a two-phase fluid supports the existence of two slow waves, this upscaling procedure allows to analyse their effect on the mesoscopic loss mechanism in hydrocarbon reservoir formations. Numerical results show that a two-phase Biot medium model predicts higher attenuation than classic Biot models.

  18. Evaluation of the stability of gas hydrates in Northern Alaska

    USGS Publications Warehouse

    Kamath, A.; Godbole, S.P.; Ostermann, R.D.; Collett, T.S.

    1987-01-01

    The factors which control the distribution of in situ gas hydrate deposits in colder regions such as Northern Alaska include; mean annual surface temperatures (MAST), geothermal gradients above and below the base of permafrost, subsurface pressures, gas composition, pore-fluid salinity and the soil condition. Currently existing data on the above parameters for the forty-six wells located in Northern Alaska were critically examined and used in calculations of depths and thicknesses of gas hydrate stability zones. To illustrate the effect of gas hydrate stability zones, calculations were done for a variable gas composition using the thermodynamic model of Holder and John (1982). The hydrostatic pressure gradient of 9.84 kPa/m (0.435 lbf/in2ft), the salinity of 10 parts per thousand (ppt) and the coarse-grained soil conditions were assumed. An error analysis was performed for the above parameters and the effect of these parameters on hydrate stability zone calculations were determined. After projecting the hydrate stability zones for the forty-six wells, well logs were used to identify and to obtain values for the depth and thickness of hydrate zones. Of the forty-six wells, only ten wells showed definite evidence of the presence of gas hydrates. ?? 1987.

  19. The role of water in gas hydrate dissociation

    USGS Publications Warehouse

    Circone, S.; Stern, L.A.; Kirby, S.H.

    2004-01-01

    When raised to temperatures above the ice melting point, gas hydrates release their gas in well-defined, reproducible events that occur within self-maintained temperature ranges slightly below the ice point. This behavior is observed for structure I (carbon dioxide, methane) and structure II gas hydrates (methane-ethane, and propane), including those formed with either H2O- or D2O-host frameworks, and dissociated at either ambient or elevated pressure conditions. We hypothesize that at temperatures above the H2O (or D2O) melting point: (1) hydrate dissociation produces water + gas instead of ice + gas, (2) the endothermic dissociation reaction lowers the temperature of the sample, causing the water product to freeze, (3) this phase transition buffers the sample temperatures within a narrow temperature range just below the ice point until dissociation goes to completion, and (4) the temperature depression below the pure ice melting point correlates with the average rate of dissociation and arises from solution of the hydrate-forming gas, released by dissociation, in the water phase at elevated concentrations. In addition, for hydrate that is partially dissociated to ice + gas at lower temperatures and then heated to temperatures above the ice point, all remaining hydrate dissociates to gas + liquid water as existing barriers to dissociation disappear. The enhanced dissociation rates at warmer temperatures are probably associated with faster gas transport pathways arising from the formation of water product.

  20. Estimates of in situ gas hydrate concentration from resistivity monitoring of gas hydrate bearing sediments during temperature equilibration

    USGS Publications Warehouse

    Riedel, M.; Long, P.E.; Collett, T.S.

    2006-01-01

    As part of Ocean Drilling Program Leg 204 at southern Hydrate Ridge off Oregon we have monitored changes in sediment electrical resistivity during controlled gas hydrate dissociation experiments. Two cores were used, each filled with gas hydrate bearing sediments (predominantly mud/silty mud). One core was from Site 1249 (1249F-9H3), 42.1 m below seafloor (mbsf) and the other from Site 1248 (1248C-4X1), 28.8 mbsf. At Site 1247, a third experiment was conducted on a core without gas hydrate (1247B-2H1, 3.6 mbsf). First, the cores were imaged using an infra-red (IR) camera upon recovery to map the gas hydrate occurrence through dissociation cooling. Over a period of several hours, successive runs on the multi-sensor track (includes sensors for P-wave velocity, resistivity, magnetic susceptibility and gamma-ray density) were carried out complemented by X-ray imaging on core 1249F-9H3. After complete equilibration to room temperature (17-18??C) and complete gas hydrate dissociation, the final measurement of electrical resistivity was used to calculate pore-water resistivity and salinities. The calculated pore-water freshening after dissociation is equivalent to a gas hydrate concentration in situ of 35-70% along core 1249F-9H3 and 20-35% for core 1248C-4X1 assuming seawater salinity of in situ pore fluid. Detailed analysis of the IR scan, X-ray images and split-core photographs showed the hydrate mainly occurred disseminated throughout the core. Additionally, in core 1249F-9H3, a single hydrate filled vein, approximately 10 cm long and dipping at about 65??, was identified. Analyses of the logging-while-drilling (LWD) resistivity data revealed a structural dip of 40-80?? in the interval between 40 and 44 mbsf. We further analyzed all resistivity data measured on the recovered core during Leg 204. Generally poor data quality due to gas cracks allowed analyses to be carried out only at selected intervals at Sites 1244, 1245, 1246, 1247, 1248, 1249, and 1252. With a few

  1. Hydration of calcium sulfoaluminate cements - Experimental findings and thermodynamic modelling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winnefeld, Frank, E-mail: Frank.Winnefeld@empa.c; Lothenbach, Barbara

    Calcium sulfoaluminate cements (CSA) are a promising low-CO{sub 2} alternative to ordinary Portland cements and are as well of interest concerning their use as binder for waste encapsulation. In this study, the hydration of two CSA cements has been investigated experimentally and by thermodynamic modelling between 1 h and 28 days at w/c ratios of 0.72 and 0.80, respectively. The main hydration product of CSA is ettringite, which precipitates together with amorphous Al(OH){sub 3} until the calcium sulfate is consumed after around 1-2 days of hydration. Afterwards, monosulfate is formed. In the presence of belite, straetlingite occurs as an additionalmore » hydration product. The pore solution analysis reveals that straetlingite can bind a part of the potassium ions, which are released by the clinker minerals. The microstructure of both cements is quite dense even after 16 h of hydration, with not much pore space available at a sample age of 28 days. The pore solution of both cements is dominated during the first hours of hydration by potassium, sodium, calcium, aluminium and sulfate; the pH is around 10-11. When the calcium sulfate is depleted, the sulfate concentration drops by a factor of 10. This increases pH to around 12.5-12.8. Based on the experimental data, a thermodynamic hydration model for CSA cements based on cement composition, hydration kinetics of clinker phases and calculations of thermodynamic equilibria by geochemical speciation has been established. The modelled phase development with ongoing hydration agrees well with the experimental findings.« less

  2. Evaluation of quality improvement initiative in pediatric oncology: implementation of aggressive hydration protocol.

    PubMed

    Fratino, Lisa M; Daniel, Denise A; Cohen, Kenneth J; Chen, Allen R

    2009-01-01

    Our goal was to improve the efficiency of chemotherapy administration for pediatric oncology patients. We identified prechemotherapy hydration as the process that most often delayed chemotherapy administration. An aggressive hydration protocol, supported by fluid order sets, was developed for patients receiving planned chemotherapy. The mean interval from admission to achieving adequate hydration status was reduced significantly from 4.9 to 1.4 hours with a minor reduction in the time to initiate chemotherapy from 9.6 to 8.6 hours. Chemotherapy availability became the new rate-limiting process.

  3. CO2 adhesion on hydrated mineral surfaces.

    PubMed

    Wang, Shibo; Tao, Zhiyuan; Persily, Sara M; Clarens, Andres F

    2013-10-15

    Hydrated mineral surfaces in the environment are generally hydrophilic but in certain cases can strongly adhere CO2, which is largely nonpolar. This adhesion can significantly alter the wettability characteristics of the mineral surface and consequently influence capillary/residual trapping and other multiphase flow processes in porous media. Here, the conditions influencing adhesion between CO2 and homogeneous mineral surfaces were studied using static pendant contact angle measurements and captive advancing/receding tests. The prevalence of adhesion was sensitive to both surface roughness and aqueous chemistry. Adhesion was most widely observed on phlogopite mica, silica, and calcite surfaces with roughness on the order of ~10 nm. The incidence of adhesion increased with ionic strength and CO2 partial pressure. Adhesion was very rarely observed on surfaces equilibrated with brines containing strong acid or base. In advancing/receding contact angle measurements, adhesion could increase the contact angle by a factor of 3. These results support an emerging understanding of adhesion of, nonpolar nonaqueous phase fluids on mineral surfaces influenced by the properties of the electrical double layer in the aqueous phase film and surface functional groups between the mineral and CO2.

  4. Study of the hard-disk system at high densities: the fluid-hexatic phase transition.

    PubMed

    Mier-Y-Terán, Luis; Machorro-Martínez, Brian Ignacio; Chapela, Gustavo A; Del Río, Fernando

    2018-06-21

    Integral equations of uniform fluids have been considered unable to predict any characteristic feature of the fluid-solid phase transition, including the shoulder that arises in the second peak of the fluid-phase radial distribution function, RDF, of hard-core systems obtained by computer simulations, at fluid densities very close to the structural two-step phase transition. This reasoning is based on the results of traditional integral approximations, like Percus-Yevick, PY, which does not show such a shoulder in hard-core systems, neither in two nor three dimensions. In this work, we present results of three Ansätze, based on the PY theory, that were proposed to remedy the lack of PY analytical solutions in two dimensions. This comparative study shows that one of those Ansätze does develop a shoulder in the second peak of the RDF at densities very close to the phase transition, qualitatively describing this feature. Since the shoulder grows into a peak at still higher densities, this integral equation approach predicts the appearance of an orientational order characteristic of the hexatic phase in a continuous fluid-hexatic phase transition.

  5. Depressurization-induced fines migration in hydrate-bearing clayey sands: X-ray CT imaging and quantification

    NASA Astrophysics Data System (ADS)

    Han, G.; Kwon, T. H.; Lee, J. Y.

    2016-12-01

    As gas and water flows induced by depressurization of hydrate-bearing sediments exert seepage forces on fines in sediments, such as clay particles, depressurization is reported to accompany the transport of fine particles through sediment pores, i.e., fines migration. Because such fines migration can cause pore clogging, the fines migration is considered as one of the critical phenomena contributing to the transport of fluids among various pore-scale processes associated with depressurization. However, quantification of fines migration during depressurization still remains poorly understood. This study thus investigated fines migration caused by depressurization using X-ray computerized tomography(X-ray CT) imaging. A host sediment was prepared by mixing fine sand with kaolinite clay minerals to achieve 10% mass fraction of fines (less than 75 um). Then, methane hydrate was synthesized in the host clayey sand, and thereafter water was injected to saturate the hydrate-bearing sediment sample. Step-wise depressurization was applied while the produced gas was collected through an outlet fluid port. X-ray CT imaging was conducted on the sediment sample over the courses of the experiment to monitor the sample preparation, hydrate formation, depressurization, and fines migration. Based on the calibration tests, the amount and locations of methane hydrate formed in the sample was estimated, and the gas migration path was also identified. Finally, the spatial distribution of fines after completion of depressurization was first assessed using the obtained X-ray images and then compared with the post-mortem mine-back results.Notably, we found that the middle part of the sample was clogged possibly by fines or by re-formed hydrate, leading to a big pressure difference between the inlet and outlet fluid port of the sample by 3 MPa. Owing to this clogging and the lost in pressure communication, hydrate dissociation first occurred at the bottom half and the hydrate dissociation

  6. Coupling fluid-structure interaction with phase-field fracture

    NASA Astrophysics Data System (ADS)

    Wick, Thomas

    2016-12-01

    In this work, a concept for coupling fluid-structure interaction with brittle fracture in elasticity is proposed. The fluid-structure interaction problem is modeled in terms of the arbitrary Lagrangian-Eulerian technique and couples the isothermal, incompressible Navier-Stokes equations with nonlinear elastodynamics using the Saint-Venant Kirchhoff solid model. The brittle fracture model is based on a phase-field approach for cracks in elasticity and pressurized elastic solids. In order to derive a common framework, the phase-field approach is re-formulated in Lagrangian coordinates to combine it with fluid-structure interaction. A crack irreversibility condition, that is mathematically characterized as an inequality constraint in time, is enforced with the help of an augmented Lagrangian iteration. The resulting problem is highly nonlinear and solved with a modified Newton method (e.g., error-oriented) that specifically allows for a temporary increase of the residuals. The proposed framework is substantiated with several numerical tests. In these examples, computational stability in space and time is shown for several goal functionals, which demonstrates reliability of numerical modeling and algorithmic techniques. But also current limitations such as the necessity of using solid damping are addressed.

  7. Microcrystalline dolomite within massive Japan Sea methane hydrate: origin and development ascertained by inclusions within inclusions.

    NASA Astrophysics Data System (ADS)

    Snyder, G. T.; Kakizaki, Y.; Matsumoto, R.; Suzuki, Y.; Takahata, N.; Sano, Y.; Tanaka, K.; Tomaru, H.; Imajo, T.; Iguchi, A.

    2017-12-01

    Microcrystalline dolomite grains were recently discovered as inclusions within relatively pure massive gas hydrate recovered from the Joetsu Basin area of the Japan Sea. These grains presumably formed as a consequence of the highly saline conditions in fluid inclusions which developed between coalescing grain boundaries within the growing hydrate. Stable carbon and oxygen isotopic composition of the dolomite is consistent with crystal growth occurring within such fluids. In addition to stable isotopes, we investigate trends in Mg/Ca ratios of the grains as well as the composition of inclusions which exist within the dolomites. Preliminary research shows that these inclusions retain valuable information as to the conditions which existed at the time of formation, as well as the dynamics of these extensive hydrate deposits over time. This study was conducted under the commission from AIST as a part of the methane hydrate research project funded by METI (the Ministry of Economy, Trade and Industry, Japan).

  8. Ad libitum fluid consumption via self- or external administration.

    PubMed

    Yeargin, Susan W; Finn, Megan E; Eberman, Lindsey E; Gage, Matthew J; McDermott, Brendon P; Niemann, Andrew

    2015-01-01

    During team athletic events, athletic trainers commonly provide fluids with water bottles. When a limited number of water bottles exist, various techniques are used to deliver fluids. To determine whether fluid delivered via water-bottle administration influenced fluid consumption and hydration status. Crossover study. Outdoor field (22.2°C ± 3.5°C). Nineteen participants (14 men, 5 women, age = 30 ± 10 years, height = 176 ± 8 cm, mass = 72.5 ± 10 kg) were recruited from the university and local running clubs. The independent variable was fluid delivery with 3 levels: self-administration with mouth-to-bottle direct contact (SA-DC), self-administration with no contact between mouth and bottle (SA-NC), and external administration with no contact between the mouth and the bottle (EA-NC). Participants warmed up for 10 minutes before completing 5 exercise stations, after which an ad libitum fluid break was given, for a total of 6 breaks. We measured the fluid variables of total volume consumed, total number of squirts, and average volume per squirt. Hydration status via urine osmolality and body-mass loss, and perceptual variables for thirst and fullness were recorded. We calculated repeated-measures analyses of variance to assess hydration status, fluid variables, and perceptual measures to analyze conditions across time. The total volume consumed for EA-NC was lower than for SA-DC (P = .001) and SA-NC (P = .001). The total number of squirts for SA-DC was lower than for SA-NC (P = .009). The average volume per squirt for EA-NC was lower than for SA-DC (P = .020) and SA-NC (P = .009). Participants arrived (601.0 ± 21.3 mOsm/L) and remained (622.3 ± 38.3 mOsm/L) hydrated, with no difference between conditions (P = .544); however, the EA-NC condition lost more body mass than did the SA-DC condition (P = .001). There was no main effect for condition on thirst (P = .147) or fullness (P = .475). External administration of fluid decreased total volume consumed via a

  9. Seismic imaging of gas hydrates in the northernmost South China sea

    NASA Astrophysics Data System (ADS)

    Wang, Tan K.; Yang, Ben Jhong; Deng, Jia-Ming; Lee, Chao-Shing; Liu, Char-Shine

    2010-03-01

    Horizon velocity analysis and pre-stack depth migration of seismic profiles collected by R/V Maurice Ewing in 1995 across the accretionary prism off SW Taiwan and along the continental slope of the northernmost South China Sea were implemented for identifying gas hydrates. Similarly, a survey of 32 ocean-bottom seismometers (OBS), with a spacing of about 500 m, was conducted for exploring gas hydrates on the accretionary prism off SW Taiwan in April 2006. Travel times of head wave, refraction, reflection and converted shear wave identified from the hydrophone, vertical and horizontal components of these OBS data were applied for imaging P-wave velocity and Poisson’s ratio of hydrate-bearing sediments. In the accretionary prism off SW Taiwan, we found hydrate-bearing sediment, with a thickness of about 100-200 m, a relatively high P-wave velocity of 1.87-2.04 km/s and a relatively low Poisson’s ratio of 0.445-0.455, below anticlinal ridges near imbricate emergent thrusts in the drainage system of the Penghu and Kaoping Canyons. Free-gas layer, with a thickness of about 30-120 m, a relatively low P-wave velocity of 1.4-1.8 km/s and a relatively high Poisson’s ratio (0.47-0.48), was also observed below most of the bottom-simulating reflectors (BSR). Subsequently, based on rock physics of the three-phase effective medium, we evaluated the hydrate saturation of about 12-30% and the free-gas saturation of about 1-4%. The highest saturation (30% and 4%) of gas hydrates is found below anticlines due to N-S trending thrust-bounded folds and NE-SW thrusting and strike-slip ramps in the lower slope of the accretionary prism. We suggest that fluid may have migrated through the relay-fault array due to decollement folding and gas hydrates have been trapped in anticlines formed by the basement rises along the thrust faults. In contrast, in the rifted continental margin of the northernmost South China Sea, P-wave velocities of 1.9-2.2 km/s and 1.3-1.6 km/s, and thicknesses

  10. Influence of temperature on methane hydrate formation.

    PubMed

    Zhang, Peng; Wu, Qingbai; Mu, Cuicui

    2017-08-11

    During gas hydrate formation process, a phase transition of liquid water exists naturally, implying that temperature has an important influence on hydrate formation. In this study, methane hydrate was formed within the same media. The experimental system was kept at 1.45, 6.49, and 12.91 °C respectively, and then different pressurization modes were applied in steps. We proposed a new indicator, namely the slope of the gas flow rates against time (dν g /dt), to represent the intrinsic driving force for hydrate formation. The driving force was calculated as a fixed value at the different stages of formation, including initial nucleation/growth, secondary nucleation/growth, and decay. The amounts of gas consumed at each stage were also calculated. The results show that the driving force during each stage follows an inverse relation with temperature, whereas the amount of consumed gas is proportional to temperature. This opposite trend indicates that the influences of temperature on the specific formation processes and final amounts of gas contained in hydrate should be considered separately. Our results also suggest that the specific ambient temperature under which hydrate is formed should be taken into consideration, when explaining the formation of different configurations and saturations of gas hydrates in natural reservoirs.

  11. On the abnormal "forced hydration" behavior of P(MEA-co-OEGA) aqueous solutions during phase transition from infrared spectroscopic insights.

    PubMed

    Hou, Lei; Wu, Peiyi

    2016-06-21

    Turbidity, DLS and FTIR measurements in combination with the perturbation correlation moving window (PCMW) technique and 2D correlation spectroscopy (2Dcos) analysis have been utilized to investigate the LCST-type transition of a oligo ethylene glycol acrylate-based copolymer (POEGA) in aqueous solutions in this work. As demonstrated in turbidity and DLS curves, the macroscopic phase separation was sharp and slightly concentration dependent. Moreover, individual chemical groups along polymer chains also display abrupt changes in temperature-variable IR spectra. However, according to conventional IR analysis, the C-H groups present obvious dehydration, whereas C[double bond, length as m-dash]O and C-O-C groups exhibit anomalous "forced hydration" during the steep phase transition. From these analyses together with the PCMW and 2Dcos results, it has been confirmed that the hydrophobic interaction among polymer chains drove the chain collapse and dominated the phase transition. In addition, the unexpected enhanced hydration behavior of C[double bond, length as m-dash]O and C-O-C groups was induced by forced hydrogen bonding between polar groups along polymer chains and entrapped water molecules in the aggregates, which originated from the special chemical structure of POEGA.

  12. Origins of saline fluids at convergent margins

    NASA Astrophysics Data System (ADS)

    Martin, Jonathan B.; Kastner, Miriam; Egeberg, Per Kr.

    The compositions of pore and venting fluids at convergent margins differ from seawater values, reflecting mixing and diagenesis. Most significantly, the concentration of Cl-, assumed to be a conservative ion, differs from its seawater value. Chloride concentrations could be elevated by four processes, although two, the formation of gas hydrate and ion filtration by clay membranes, are insignificant in forming saline fluids at convergent margins. During the formation of gas hydrate, the resulting Cl--rich fluids, estimated to contain an average excess of ˜140 mM Cl- over seawater value, probably would be flushed from the sediment when the pore fluids vent to seawater. Ion filtration by clay membranes requires compaction pressures typical of >2 km burial depths. Even at these depths, the efficiency of ion filtration will be negligible because (1) fluids will flow through fractures, thereby bypassing clay membranes, (2) concentrations of clay minerals are diluted by other phases, and (3) during burial, smectite converts to illite, which has little capacity for ion filtration. A third process, mixing with subaerially evaporated seawater, elevates Cl- concentrations to 1043 mM in forearc basins along the Peru margin. Evaporation of seawater, however, will be important only in limited geographic regions that are characterized by enclosed basins, arid climates, and permeable sediments. At the New Hebrides and Izu-Bonin margins, Cl- concentrations are elevated to a maximum of 1241 mM. The process responsible for this increase is the alteration of volcanic ash to hydrous clay and zeolite minerals. Mass balance calculations, based on the decrease in δ18O values to -9.5‰ (SMOW), suggest that the Cl- concentrations could increase solely from the formation of smectite in a closed system. The diagenesis of volcanic ash also alters the concentrations of most dissolved species in addition to Cl-. Depending on the volume of this altered fluid, it could influence seawater

  13. Methane gas hydrate effect on sediment acoustic and strength properties

    USGS Publications Warehouse

    Winters, W.J.; Waite, W.F.; Mason, D.H.; Gilbert, L.Y.; Pecher, I.A.

    2007-01-01

    To improve our understanding of the interaction of methane gas hydrate with host sediment, we studied: (1) the effects of gas hydrate and ice on acoustic velocity in different sediment types, (2) effect of different hydrate formation mechanisms on measured acoustic properties (3) dependence of shear strength on pore space contents, and (4) pore pressure effects during undrained shear.A wide range in acoustic p-wave velocities (Vp) were measured in coarse-grained sediment for different pore space occupants. Vp ranged from less than 1 km/s for gas-charged sediment to 1.77–1.94 km/s for water-saturated sediment, 2.91–4.00 km/s for sediment with varying degrees of hydrate saturation, and 3.88–4.33 km/s for frozen sediment. Vp measured in fine-grained sediment containing gas hydrate was substantially lower (1.97 km/s). Acoustic models based on measured Vp indicate that hydrate which formed in high gas flux environments can cement coarse-grained sediment, whereas hydrate formed from methane dissolved in the pore fluid may not.The presence of gas hydrate and other solid pore-filling material, such as ice, increased the sediment shear strength. The magnitude of that increase is related to the amount of hydrate in the pore space and cementation characteristics between the hydrate and sediment grains. We have found, that for consolidation stresses associated with the upper several hundred meters of sub-bottom depth, pore pressures decreased during shear in coarse-grained sediment containing gas hydrate, whereas pore pressure in fine-grained sediment typically increased during shear. The presence of free gas in pore spaces damped pore pressure response during shear and reduced the strengthening effect of gas hydrate in sands.

  14. The partitioning of Fe, Ni, Cu, Pt, and Au between sulfide, metal, and fluid phases: A pilot study

    NASA Astrophysics Data System (ADS)

    Ballhaus, C.; Ryan, C. G.; Mernagh, T. P.; Green, D. H.

    1994-01-01

    This paper describes new experimental and analytical techniques to study element partitioning behavior between crystalline material and a late- to post-magmatic fluid phase. Samples of the fluid phase are isolated at experimental run conditions as synthetic fluid in quartz. Individual fluid inclusions are later analyzed for dissolved metals using Proton Induced X-ray Emission (PIXE). Back reactions between fluid and solid phases during quenching are prevented because the fluid is isolated at the experimental pressure, temperature ( P, T) conditions before quenching occurs. The technique is applied to study the partitioning of chalcophile elements (Fe, Ni, Cu, Pt and Au) between sulfide phases, metal alloys and supercritical SiO 2-NaCl-saturated H2O ± CH4- CO2- H2S fluids. Synthetic Ni-Cu-rich monosulfide solid solution (mss) doped with PtS or Au is packed in a quartz capsule and, together with a hydrogen buffer capsule and compounds to generate a fluid phase, welded shut in an outer Pt or Au metal capsule. The fluid phase is generated by combustion and reaction of various C-H-O fluid components during heating. Depending on capsule material and sample composition, the run products consist of platiniferous or auriferous mss, Pt-Fe, or ( Au, Cu) alloy phases, PtS, Fe 3O 4, sometimes a Cu-rich sulfide melt, and a fluid phase. Samples of the fluid are trapped in the walls of the quartz sample capsule as polyphase fluid inclusions. All phases are now available for analysis: fluid speciation is analyzed by piercing the outer metal capsule under vacuum and feeding the released fluid into a mass spectrometer. Phases and components within fluid inclusions are identified with Raman spectroscopy. Platinum and gold in solid solution in mss are determined with a CAMECA SX50 electron microanalyser. Metal contents trapped in selected fluid inclusions are determined quantitatively by in situ analysis with a proton microprobe using PIXE and a correction procedure specifically

  15. Formation of natural gas hydrates in marine sediments. Gas hydrate growth and stability conditioned by host sediment properties

    USGS Publications Warehouse

    Clennell, M.B.; Henry, P.; Hovland, M.; Booth, J.S.; Winters, W.J.; Thomas, M.

    2000-01-01

    The stability conditions of submarine gas hydrates (methane clathrates) are largely dictated by pressure, temperature, gas composition, and pore water salinity. However, the physical properties and surface chemistry of the host sediments also affect the thermodynamic state, growth kinetics, spatial distributions, and growth forms of clathrates. Our model presumes that gas hydrate behaves in a way analogous to ice in the pores of a freezing soil, where capillary forces influence the energy balance. Hydrate growth is inhibited within fine-grained sediments because of the excess internal phase pressure of small crystals with high surface curvature that coexist with liquid water in small pores. Therefore, the base of gas hydrate stability in a sequence of fine sediments is predicted by our model to occur at a lower temperature, and so nearer to the seabed than would be calculated from bulk thermodynamic equilibrium. The growth forms commonly observed in hydrate samples recovered from marine sediments (nodules, sheets, and lenses in muds; cements in sand and ash layers) can be explained by a requirement to minimize the excess of mechanical and surface energy in the system.

  16. Development of Carbon Sequestration Options by Studying Carbon Dioxide-Methane Exchange in Hydrates

    NASA Astrophysics Data System (ADS)

    Horvat, Kristine Nicole

    injected into the system, gas chromatographic (GC) analysis of the cell indicated a pure CH4 gas phase, i.e., all injected CO2 gas entered the hydrate phase and remained trapped in hydrate cages for several hours, though over time some CO2 did enter the gas phase. Alternatively, during the CH 4-CO2 exchange study where CO2 hydrates were first formed, the injected CH4 initially entered the hydrate phase, but quickly gaseous CO2 exchanged with CH4 in hydrates to form more stable CO2 hydrates. These results are consistent with the better thermodynamic stability of CO2 hydrates, and this appears to be a promising method to sequester CO2 in natural CH4 hydrate matrices. The macroscale study described above was complemented by a microscale study to visualize hydrate growth. This first-of-its-kind in-situ study utilized the x-ray computed microtomography (CMT) technique to visualize microscale CO2, CH4, and mixed CH 4-CO2 hydrate growth phenomenon in salt solutions in the presence or absence of porous media. The data showed that under the experimental conditions used, pure CH4 formed CH4 hydrates as mostly spheres, while pure CO2 hydrates were more dendritic branches. Additionally, varying ratios of mixed CH4-CO2 hydrates were also formed that had needle-like growth. In porous media, CO2 hydrates grew, consistent with known growth models in which the solution was the sediment wetting phase. When glass beads and Ottawa sand were used as a host, the system exhibited pore-filling hydrate growth, while the presence of liquid CO2 and possible CO2 hydrates in Ottawa sand initially were pore-filling that over time transformed into a grain-displacing morphology. The data appears promising to develop a method that would supplant our energy supply by extracting CH4 from naturally occurring hydrates while CO2 is sequestered in the same formations.

  17. Long-wave equivalent viscoelastic solids for porous rocks saturated by two-phase fluids

    NASA Astrophysics Data System (ADS)

    Santos, J. E.; Savioli, G. B.

    2018-04-01

    Seismic waves traveling across fluid-saturated poroelastic materials with mesoscopic-scale heterogeneities induce fluid flow and Biot's slow waves generating energy loss and velocity dispersion. Using Biot's equations of motion to model these type of heterogeneities would require extremely fine meshes. We propose a numerical upscaling procedure to determine the complex and frequency dependent P-wave and shear moduli of an effective viscoelastic medium long-wave equivalent to a poroelastic solid saturated by a two-phase fluid. The two-phase fluid is defined in terms of capillary pressure and relative permeability flow functions. The P-wave and shear effective moduli are determined using harmonic compressibility and shear experiments applied on representative samples of the bulk material. Each experiment is associated with a boundary value problem that is solved using the finite element method. Since a poroelastic solid saturated by a two-phase fluid supports the existence of two slow waves, this upscaling procedure allows to analyze their effect on the mesoscopic-loss mechanism in hydrocarbon reservoir formations. Numerical results show that a two-phase Biot medium model predicts higher attenuation than classic Biot models.

  18. Phase separation and emergent structures in an active nematic fluid.

    PubMed

    Putzig, Elias; Baskaran, Aparna

    2014-10-01

    We consider a phenomenological continuum theory for an active nematic fluid and show that there exists a universal, model-independent instability which renders the homogeneous nematic state unstable to order fluctuations. Using numerical and analytic tools we show that, in the vicinity of a critical point, this instability leads to a phase-separated state in which the ordered regions form bands in which the direction of nematic order is perpendicular to the direction of the density gradient. We argue that the underlying mechanism that leads to this phase separation is a universal feature of active fluids of different symmetries.

  19. A poroelastic medium saturated by a two-phase capillary fluid

    NASA Astrophysics Data System (ADS)

    Shelukhin, V. V.

    2014-09-01

    By Landau's approach developed for description of superfluidity of 2He, we derive a mathematical model for a poroelastic medium saturated with a two-phase capillary fluid. The model describes a three-velocity continuum with conservation laws which obey the basic principles of thermodynamics and which are consistent with the Galilean transformations. In contrast to Biot' linear theory, the equations derived allow for finite deformations. As the acoustic analysis reveals, there is one more longitudinal wave in comparison with the poroelastic medium saturated with a one-phase fluid. We prove that such a result is due to surface tension.

  20. Gas hydrate in seafloor sediments: Impact on future resources and drilling safety

    USGS Publications Warehouse

    Dillon, William P.; Max, Michael D.

    2001-01-01

    Gas hydrate concentrates methane and sometimes other gases in its crystal lattice and this gas can be released intentionally creating a resource or escape accidentally forming a hazard. The densest accumulations of gas hydrate tend to occur at sites where the base of the gas hydrate stability zone (commonly the upper several hundred m of the sedimentary section) is configured to trap gas, often as a broad arch. The gas may rise from below or form by bacterial activity at shallow depth, but gas commonly is concentrated near the base of the gas hydrate stability zone by recycling. This gas accumulates in presumably leaky traps, then enriches the hydrate above as it migrates upward by diffusion, fluid movement through sedimentary pores, or flow along fracture channelways. Analysis of seismic reflection profiles is beginning to identify such concentrations and the circumstances that create them. The first attempt to explore for gas hydrate off Japan by the Japanese National Oil Corporation produced quite favorable results, showing high gas hydrate contents in permeable sediments. Gas hydrate dissociation can be a safety concern in drilling and production. The volume of water and gas released in dissociation is often greater than the volume of the hydrate, so overpressures can be created. Furthermore, the gas hydrate can provide shallow seals, so the possibility of high-pressure flows or generation of slides is apparent. 

  1. Modeling the hydration of mono-atomic anions from the gas phase to the bulk phase: the case of the halide ions F-, Cl-, and Br-.

    PubMed

    Trumm, Michael; Martínez, Yansel Omar Guerrero; Réal, Florent; Masella, Michel; Vallet, Valérie; Schimmelpfennig, Bernd

    2012-01-28

    In this work, we investigate the hydration of the halide ions fluoride, chloride, and bromide using classical molecular dynamics simulations at the 10 ns scale and based on a polarizable force-field approach, which treats explicitly the cooperative bond character of strong hydrogen bond networks. We have carried out a thorough analysis of the ab initio data at the MP2 or CCSD(T) level concerning anion/water clusters in gas phase to adjust the force-field parameters. In particular, we consider the anion static polarizabilities computed in gas phase using large atomic basis sets including additional diffuse functions. The information extracted from trajectories in solution shows well structured first hydration shells formed of 6.7, 7.0, and 7.6 water molecules at about 2.78 Å, 3.15 Å, and 3.36 Å for fluoride, chloride, and bromide, respectively. These results are in excellent agreement with the latest neutron- and x-ray diffraction studies. In addition, our model reproduces several other properties of halide ions in solution, such as diffusion coefficients, description of hydration processes, and exchange reactions. Moreover, it is also able to reproduce the electrostatic properties of the anions in solution (in terms of anion dipole moment) as reported by recent ab initio quantum simulations. All the results show the ability of the proposed model in predicting data, as well as the need of accounting explicitly for the cooperative character of strong hydrogen bonds to reproduce ab initio potential energy surfaces in a mean square sense and to build up a reliable force field. © 2012 American Institute of Physics

  2. Na(+) and Ca(2+) effect on the hydration and orientation of the phosphate group of DPPC at air-water and air-hydrated silica interfaces.

    PubMed

    Casillas-Ituarte, Nadia N; Chen, Xiangke; Castada, Hardy; Allen, Heather C

    2010-07-29

    Hydration and orientation of the phosphate group of dipalmitoylphosphatidylcholine (DPPC) monolayers in the liquid-expanded (LE) phase and the liquid-condensed (LC) phase in the presence of sodium ions and calcium ions was investigated with vibrational sum frequency generation (SFG) spectroscopy at the air-aqueous interface in conjunction with surface pressure measurements. In the LE phase, both sodium and calcium affect the phosphate group hydration. In the LC phase, however, sodium ions affect the phosphate hydration subtly, while calcium ions cause a marked dehydration. Silica-supported DPPC monolayers prepared by the Langmuir-Blodgett method reveal similar hydration behavior relative to that observed in the corresponding aqueous subphase for the case of water and in the presence of sodium ions. However, in the presence of calcium ions the phosphate group dehydration is greater than that from the corresponding purely aqueous CaCl(2) subphase. The average tilt angles from the surface normal of the PO(2)(-) group of DPPC monolayers on the water surface and on the silica substrate calculated from SFG data are found to be 59 degrees +/- 3 degrees and 72 degrees +/- 5 degrees , respectively. Orientation of the phosphate group is additionally affected by the presence of ions. These findings show that extrapolation of results obtained from model membranes from liquid surfaces to solid supports may not be warranted since there are differences in headgroup organization on the two subphases.

  3. Elastic velocity models for gas-hydrate-bearing sediments-a comparison

    NASA Astrophysics Data System (ADS)

    Chand, Shyam; Minshull, Tim A.; Gei, Davide; Carcione, José M.

    2004-11-01

    The presence of gas hydrate in oceanic sediments is mostly identified by bottom-simulating reflectors (BSRs), reflection events with reversed polarity following the trend of the seafloor. Attempts to quantify the amount of gas hydrate present in oceanic sediments have been based mainly on the presence or absence of a BSR and its relative amplitude. Recent studies have shown that a BSR is not a necessary criterion for the presence of gas hydrates, but rather its presence depends on the type of sediments and the in situ conditions. The influence of hydrate on the physical properties of sediments overlying the BSR is determined by the elastic properties of their constituents and on sediment microstructure. In this context several approaches have been developed to predict the physical properties of sediments, and thereby quantify the amount of gas/gas hydrate present from observed deviations of these properties from those predicted for sediments without gas hydrate. We tested four models: the empirical weighted equation (WE); the three-phase effective-medium theory (TPEM); the three-phase Biot theory (TPB) and the differential effective-medium theory (DEM). We compared these models for a range of variables (porosity and clay content) using standard values for physical parameters. The comparison shows that all the models predict sediment properties comparable to field values except for the WE model at lower porosities and the TPB model at higher porosities. The models differ in the variation of velocity with porosity and clay content. The variation of velocity with hydrate saturation is also different, although the range is similar. We have used these models to predict velocities for field data sets from sediment sections with and without gas hydrates. The first is from the Mallik 2L-38 well, Mackenzie Delta, Canada, and the second is from Ocean Drilling Program (ODP) Leg 164 on Blake Ridge. Both data sets have Vp and Vs information along with the composition and

  4. CO2 hydrate: Synthesis, composition, structure, dissociation behavior, and a comparison to structure I CH4 hydrate

    USGS Publications Warehouse

    Circone, S.; Stern, L.A.; Kirby, S.H.; Durham, W.B.; Chakoumakos, B.C.; Rawn, C.J.; Rondinone, A.J.; Ishii, Y.

    2003-01-01

    Structure I (sI) carbon dioxide (CO2) hydrate exhibits markedly different dissociation behavior from sI methane (CH4) hydrate in experiments in which equilibrated samples at 0.1 MPa are heated isobarically at 13 K/h from 210 K through the H2O melting point (273.15 K). The CO2 hydrate samples release only about 3% of their gas content up to temperatures of 240 K, which is 22 K above the hydrate phase boundary. Up to 20% is released by 270 K, and the remaining CO2 is released at 271.0 plusmn; 0.5 K, where the sample temperature is buffered until hydrate dissociation ceases. This reproducible buffering temperature for the dissociation reaction CO2??nH2O = CO2(g) + nH2O(1 to s) is measurably distinct from the pure H2O melting point at 273.15 K, which is reached as gas evolution ceases. In contrast, when si CH4 hydrate is heated at the same rate at 0.1 MPa, >95% of the gas is released within 25 K of the equilibrium temperature (193 K at 0.1 MPa). In conjunction with the dissociation study, a method for efficient and reproducible synthesis of pure polycrystalline CO2 hydrate with suitable characteristics for material properties testing was developed, and the material was characterized. CO2 hydrate was synthesized from CO2 liquid and H2O solid and liquid reactants at pressures between 5 and 25 MPa and temperatures between 250 and 281 K. Scanning electron microscopy (SEM) examination indicates that the samples consist of dense crystalline hydrate and 50-300 ??m diameter pores that are lined with euhedral cubic hydrate crystals. Deuterated hydrate samples made by this same procedure were analyzed by neutron diffraction at temperatures between 4 and 215 K; results confirm that complete conversion of water to hydrate has occurred and that the measured unit cell parameter and thermal expansion are consistent with previously reported values. On the basis of measured weight gain after synthesis and gas yields from the dissociation experiments, approximately all cages in the

  5. Extraordinary phase separation and segregation in vent fluids from the southern East Pacific Rise

    USGS Publications Warehouse

    Von Damm, Karen L.; Lilley, M.D.; Shanks, Wayne C.; Brockington, M.; Bray, A.M.; O'Grady, K. M.; Olson, E.; Graham, A.; Proskurowski, G.

    2003-01-01

    The discovery of Brandon vent on the southern East Pacific Rise is providing new insights into the controls on midocean ridge hydrothermal vent fluid chemistry. The physical conditions at the time ofsampling (287 bar and 405??C) place the Brandon fluids very close to the critical point of seawater (298 bar and 407??C). This permits in situ study of the effects of near criticalphenomena, which are interpreted to be the primary cause of enhanced transition metal transport in these fluids. Of the five orifices on Brandon sampled, three were venting fluids with less than seawater chlorinity, and two were venting fluids with greater than seawater chlorinity. The liquid phase orifices contain 1.6-1.9 times the chloride content of the vapors. Most other elements, excluding the gases, have this same ratio demonstrating the conservative nature of phase separation and the lack of subsequent water-rock interaction. The vapor and liquid phases vent at the same time from orifices within meters of each other on the Brandon structure. Variations in fluid compositions occur on a time scale of minutes. Our interpretation is that phase separation and segregation must be occurring 'real time' within the sulfide structure itself. Fluids from Brandon therefore provide an unique opportunity to understand in situ phase separation without the overprinting of continued water-rock interaction with the oceanic crust, as well as critical phenomena. ?? 2002 Elsevier Science B.V. All rights reserved.

  6. Intravenous fluid prescription practices among pediatric residents in Korea.

    PubMed

    Lee, Jiwon M; Jung, Younghwa; Lee, Se Eun; Lee, Jun Ho; Kim, Kee Hyuck; Koo, Ja Wook; Park, Young Seo; Cheong, Hae Il; Ha, Il-Soo; Choi, Yong; Kang, Hee Gyung

    2013-07-01

    Recent studies have established the association between hypotonic fluids administration and hospital-acquired hyponatremia in children. The present paper investigated the pattern of current practice in intravenous fluid prescription among Korean pediatric residents, to underscore the need for updated education. A survey-based analysis was carried out. Pediatric residents at six university hospitals in Korea completed a survey consisting of four questions. Each question proposed a unique scenario in which the respondents had to prescribe either a hypotonic or an isotonic fluid for the patient. Ninety-one responses were collected and analyzed. In three of the four scenarios, a significant majority prescribed the hypotonic fluids (98.9%, 85.7%, and 69.2%, respectively). Notably, 69.2% of the respondents selected the hypotonic fluids for postoperative management. Almost all (96.7%) selected the isotonic fluids for hydration therapy. In the given scenarios, the majority of Korean pediatric residents would prescribe a hypotonic fluid, except for initial hydration. The current state of pediatric fluid management, notably, heightens the risk of hospital-acquired hyponatremia. Updated clinical practice education on intravenous fluid prescription, therefore, is urgently required.

  7. Hydration products and thermokinetic properties of cement-bentonite and cement-chalk mortars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klyusov, A.A.

    1988-08-20

    Bentonite and chalk are the most popular auxiliary additives to portland cement for borehole cementation. The authors studied by physicochemical analysis methods (x-ray phase, derivatographic, and scanning and electron microscopy in combination with microdiffraction) the newly formed solid-phase composition of cement-bentonite and cement-chalk mortars (binder-additive ratio 9:1) prepared from portland cement for cold boreholes and 8% calcium chloride solution at a water-mixing ratio of 0.9. The mechanism of the influence of Ca-bentonite and chalk additives on the portland cement hydration rate was ascertained from the heat evolution rate curves. It was found that the phase compositions of the hydration productsmore » are represented in the studied systems by newly formed substances typical for portland cement. It has been noted that Ca-bentonite interacts with the calcium hydroxide of hydrated cement with the formation of hexagonal and cubic calcium hydroaluminates. Unlike Ca-bentonite, chalk does not react with portland cement at normal and reduced temperatures, does not block hydrated cement particles, which, in turn, ensures all other conditions remaining equal, a higher initial rate of hydration of cement-chalk mortar.« less

  8. Kinetics of methane hydrate replacement with carbon dioxide and nitrogen gas mixture using in situ NMR spectroscopy.

    PubMed

    Cha, Minjun; Shin, Kyuchul; Lee, Huen; Moudrakovski, Igor L; Ripmeester, John A; Seo, Yutaek

    2015-02-03

    In this study, the kinetics of methane replacement with carbon dioxide and nitrogen gas in methane gas hydrate prepared in porous silica gel matrices has been studied by in situ (1)H and (13)C NMR spectroscopy. The replacement process was monitored by in situ (1)H NMR spectra, where about 42 mol % of the methane in the hydrate cages was replaced in 65 h. Large amounts of free water were not observed during the replacement process, indicating a spontaneous replacement reaction upon exposing methane hydrate to carbon dioxide and nitrogen gas mixture. From in situ (13)C NMR spectra, we confirmed that the replacement ratio was slightly higher in small cages, but due to the composition of structure I hydrate, the amount of methane evolved from the large cages was larger than that of the small cages. Compositional analysis of vapor and hydrate phases was also carried out after the replacement reaction ceased. Notably, the composition changes in hydrate phases after the replacement reaction would be affected by the difference in the chemical potential between the vapor phase and hydrate surface rather than a pore size effect. These results suggest that the replacement technique provides methane recovery as well as stabilization of the resulting carbon dioxide hydrate phase without melting.

  9. Formation evaluation of gas hydrate-bearing marine sediments on the Blake Ridge with downhole geochemical log measurements

    USGS Publications Warehouse

    Collett, T.S.; Wendlandt, R.F.

    2000-01-01

    The analyses of downhole log data from Ocean Drilling Program (ODP) boreholes on the Blake Ridge at Sites 994, 995, and 997 indicate that the Schlumberger geochemical logging tool (GLT) may yield useful gas hydrate reservoir data. In neutron spectroscopy downhole logging, each element has a characteristic gamma ray that is emitted from a given neutron-element interaction. Specific elements can be identified by their characteristic gamma-ray signature, with the intensity of emission related to the atomic elemental concentration. By combining elemental yields from neutron spectroscopy logs, reservoir parameters including porosities, lithologies, formation fluid salinities, and hydrocarbon saturations (including gas hydrate) can be calculated. Carbon and oxygen elemental data from the GLT was used to determine gas hydrate saturations at all three sites (Sites 994, 995, and 997) drilled on the Blake Ridge during Leg 164. Detailed analyses of the carbon and oxygen content of various sediments and formation fluids were used to construct specialized carbon/oxygen ratio (COR) fan charts for a series of hypothetical gas hydrate accumulations. For more complex geologic systems, a modified version of the standard three-component COR hydrocarbon saturation equation was developed and used to calculate gas hydrate saturations on the Blake Ridge. The COR-calculated gas hydrate saturations (ranging from about 2% to 14% bulk volume gas hydrate) from the Blake Ridge compare favorably to the gas hydrate saturations derived from electrical resistivity log measurements.

  10. Synthesis and reversible hydration behavior of the thiosulfate intercalated layered double hydroxide of Zn and Al

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radha, S.; Milius, Wolfgang; Breu, Josef, E-mail: josef.breu@uni-bayreuth.de

    2013-08-15

    The thiosulfate-intercalated layered double hydroxide of Zn and Al undergoes reversible hydration with a variation in the relative humidity of the ambient. The hydrated and dehydrated phases, which represent the end members of the hydration cycle, both adopt the structure of the 3R{sub 1} polytype. In the intermediate range of relative humidity values (40–60%), the hydrated and dehydrated phases coexist. The end members of the hydration cycle adopt the structure of the same polytype, and vary only in their basal spacings. This points to the possibility that all the intermediate phases have a kinetic origin. - Graphical abstract: Basal spacingmore » evolution of the thiosulfate ion intercalated [Zn–Al] LDH during one complete hydration–dehydration cycle as a function of relative humidity. Display Omitted - Highlights: • Thiosulfate intercalated [Zn–Al] LDHs were synthesized by co-precipitation. • The LDH exhibits reversible hydration with variation in humidity. • Both the end members of the hydration cycle adopt the same polytype structure. • The interstratified intermediates observed are kinetic in origin.« less

  11. Local stress distribution around garnet inclusions during hydration of granulite in the Bergen Arcs, Norway

    NASA Astrophysics Data System (ADS)

    Centrella, Stephen; Vrijmoed, Johannes C.; Putnis, Andrew; Austrheim, Håkon

    2017-04-01

    The importance of heterogeneous stress and pressure distribution within a rock has been established over the last decades (see review in Tajčmanová et al., 2015). During a hydration reaction, depending on whether the system is open to mass transfer, the volume changes of the reaction may be accommodated by removing material into the fluid phase that leaves the system (Centrella et al., 2015; Centrella et al., 2016). The magnitudes and the spatial distribution of stress and pressure that evolve during such processes is largely unknown. We present here a natural example where a granulite is hydrated at amphibolite facies conditions from the Bergen Arcs in Norway. Granulitic garnet is associated with kyanite and quartz on one side, and amphibole-biotite on the other side. The first couple replaces the plagioclase of the granulite matrix whereas the second replaces the garnet. We use electron probe microanalysis (EPMA) and X-ray mapping to investigate the spatial and possible temporal relationships between these two parageneses. Gresens' analysis has been used to determine the mass balance and the local volume changes associated with the two reactions. The reaction to kyanite+quartz induces a loss in volume compared to the original plagioclase whereas the second reaction amphibole+biotite gains volume compared to the original garnet. The specific mass evolution associated with both reactions suggests a local mass balance probably associated with a single hydration event. Using the methodology of Vrijmoed & Podladchikov (2015) we test whether the microstructure may be partly related to the local stress heterogeneity around the garnet inclusion. We evaluate the phase assemblage and distribution at chemical equilibrium under a given input pressure field that can be computed with the Thermolab software. By varying the input pressure field using the Finite Element Method and comparing the resulting equilibrium assemblage to the real data an estimate of the local stress

  12. Optical-cell evidence for superheated ice under gas-hydrate-forming conditions

    USGS Publications Warehouse

    Stern, L.A.; Hogenboom, D.L.; Durham, W.B.; Kirby, S.H.; Chou, I.-Ming

    1998-01-01

    We previously reported indirect but compelling evidence that fine-grained H2O ice under elevated CH4 gas pressure can persist to temperatures well above its ordinary melting point while slowly reacting to form methane clathrate hydrate. This phenomenon has now been visually verified by duplicating these experiments in an optical cell while observing the very slow hydrate-forming process as the reactants were warmed from 250 to 290 K at methane pressures of 23 to 30 MPa. Limited hydrate growth occurred rapidly after initial exposure of the methane gas to the ice grains at temperatures well within the ice subsolidus region. No evidence for continued growth of the hydrate phase was observed until samples were warmed above the equilibrium H2O melting curve. With continued heating, no bulk melting of the ice grains or free liquid water was detected anywhere within the optical cell until hydrate dissociation conditions were reached (292 K at 30 MPa), even though full conversion of the ice grains to hydrate requires 6-8 h at temperatures approaching 290 K. In a separate experimental sequence, unreacted portions of H2O ice grains that had persisted to temperatures above their ordinary melting point were successfully induced to melt, without dissociating the coexisting hydrate in the sample tube, by reducing the pressure overstep of the equilibrium phase boundary and thereby reducing the rate of hydrate growth at the ice-hydrate interface. Results from similar tests using CO2 as the hydrate-forming species demonstrated that this superheating effect is not unique to the CH4-H2O system.

  13. Adhesion force interactions between cyclopentane hydrate and physically and chemically modified surfaces.

    PubMed

    Aman, Zachary M; Sloan, E Dendy; Sum, Amadeu K; Koh, Carolyn A

    2014-12-07

    Interfacial interactions between liquid-solid and solid-solid phases/surfaces are of fundamental importance to the formation of hydrate deposits in oil and gas pipelines. This work establishes the effect of five categories of physical and chemical modification to steel on clathrate hydrate adhesive force: oleamide, graphite, citric acid ester, nonanedithiol, and Rain-X anti-wetting agent. Hydrate adhesive forces were measured using a micromechanical force apparatus, under both dry and water-wet surface conditions. The results show that the graphite coating reduced hydrate-steel adhesion force by 79%, due to an increase in the water wetting angle from 42 ± 8° to 154 ± 7°. Two chemical surface coatings (nonanedithiol and the citric acid ester) induced rapid hydrate growth in the hydrate particles; nonanedithiol increased hydrate adhesive force by 49% from the baseline, while the citric acid ester coating reduced hydrate adhesion force by 98%. This result suggests that crystal growth may enable a strong adhesive pathway between hydrate and other crystalline structures, however this effect may be negated in cases where water-hydrocarbon interfacial tension is minimised. When a liquid water droplet was placed on the modified steel surfaces, the graphite and citric acid ester became less effective at reducing adhesive force. In pipelines containing a free water phase wetting the steel surface, chemical or physical surface modifications alone may be insufficient to eliminate hydrate deposition risk. In further tests, the citric acid ester reduced hydrate cohesive forces by 50%, suggesting mild activity as a hybrid anti-agglomerant suppressing both hydrate deposition and particle agglomeration. These results demonstrate a new capability to develop polyfunctional surfactants, which simultaneously limit the capability for hydrate particles to aggregate and deposit on the pipeline wall.

  14. Rapid variations in fluid chemistry constrain hydrothermal phase separation at the Main Endeavour Field

    NASA Astrophysics Data System (ADS)

    Love, Brooke; Lilley, Marvin; Butterfield, David; Olson, Eric; Larson, Benjamin

    2017-02-01

    Previous work at the Main Endeavour Field (MEF) has shown that chloride concentration in high-temperature vent fluids has not exceeded 510 mmol/kg (94% of seawater), which is consistent with brine condensation and loss at depth, followed by upward flow of a vapor phase toward the seafloor. Magmatic and seismic events have been shown to affect fluid temperature and composition and these effects help narrow the possibilities for sub-surface processes. However, chloride-temperature data alone are insufficient to determine details of phase separation in the upflow zone. Here we use variation in chloride and gas content in a set of fluid samples collected over several days from one sulfide chimney structure in the MEF to constrain processes of mixing and phase separation. The combination of gas (primarily magmatic CO2 and seawater-derived Ar) and chloride data, indicate that neither variation in the amount of brine lost, nor mixing of the vapor phase produced at depth with variable quantities of (i) brine or (ii) altered gas rich seawater that has not undergone phase separation, can explain the co-variation of gas and chloride content. The gas-chloride data require additional phase separation of the ascending vapor-like fluid. Mixing and gas partitioning calculations show that near-critical temperature and pressure conditions can produce the fluid compositions observed at Sully vent as a vapor-liquid conjugate pair or as vapor-liquid pair with some remixing, and that the gas partition coefficients implied agree with theoretically predicted values.Plain Language SummaryWhen the chemistry of <span class="hlt">fluids</span> from deep sea hot springs changes over a short time span, it allows us to narrow down the conditions and processes that created those <span class="hlt">fluids</span>. This gives us a better idea what is happening under the seafloor where the water is interacting with hot rocks and minerals, boiling, and taking on the character it will have when it emerges at</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28226214','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28226214"><span>Selective Encaging of N2O in N2O-N2 Binary Gas <span class="hlt">Hydrates</span> via <span class="hlt">Hydrate</span>-Based Gas Separation.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yang, Youjeong; Shin, Donghoon; Choi, Seunghyun; Woo, Yesol; Lee, Jong-Won; Kim, Dongseon; Shin, Hee-Young; Cha, Minjun; Yoon, Ji-Ho</p> <p>2017-03-21</p> <p>The crystal structure and guest inclusion behaviors of nitrous oxide-nitrogen (N 2 O-N 2 ) binary gas <span class="hlt">hydrates</span> formed from N 2 O/N 2 gas mixtures are determined through spectroscopic analysis. Powder X-ray diffraction results indicate that the crystal structure of all the N 2 O-N 2 binary gas <span class="hlt">hydrates</span> is identified as the structure I (sI) <span class="hlt">hydrate</span>. Raman spectra for the N 2 O-N 2 binary gas <span class="hlt">hydrate</span> formed from N 2 O/N 2 (80/20, 60/40, 40/60 mol %) gas mixtures reveal that N 2 O molecules occupy both large and small cages of the sI <span class="hlt">hydrate</span>. In contrast, there is a single Raman band of N 2 O molecules for the N 2 O-N 2 binary gas <span class="hlt">hydrate</span> formed from the N 2 O/N 2 (20/80 mol %) gas mixture, indicating that N 2 O molecules are trapped in only large cages of the sI <span class="hlt">hydrate</span>. From temperature-dependent Raman spectra and the Predictive Soave-Redlich-Kwong (PSRK) model calculation, we confirm the self-preservation of N 2 O-N 2 binary gas <span class="hlt">hydrates</span> in the temperature range of 210-270 K. Both the experimental measurements and the PSRK model calculations demonstrate the preferential occupation of N 2 O molecules rather than N 2 molecules in the <span class="hlt">hydrate</span> cages, leading to a possible process for separating N 2 O from gas mixtures via <span class="hlt">hydrate</span> formation. The <span class="hlt">phase</span> equilibrium conditions, pseudo-pressure-composition (P-x) diagram, and gas storage capacity of N 2 O-N 2 binary gas <span class="hlt">hydrates</span> are discussed in detail.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2908954','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2908954"><span>Water, <span class="hlt">Hydration</span> and Health</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Popkin, Barry M.; D’Anci, Kristen E.; Rosenberg, Irwin H.</p> <p>2010-01-01</p> <p>This review attempts to provide some sense of our current knowledge of water including overall patterns of intake and some factors linked with intake, the complex mechanisms behind water homeostasis, the effects of variation in water intake on health and energy intake, weight, and human performance and functioning. Water represents a critical nutrient whose absence will be lethal within days. Water’s importance for prevention of nutrition-related noncommunicable diseases has emerged more recently because of the shift toward large proportions of <span class="hlt">fluids</span> coming from caloric beverages. Nevertheless, there are major gaps in knowledge related to measurement of total <span class="hlt">fluid</span> intake, <span class="hlt">hydration</span> status at the population level, and few longer-term systematic interventions and no published random-controlled longer-term trials. We suggest some ways to examine water requirements as a means to encouraging more dialogue on this important topic. PMID:20646222</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T33F..01A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T33F..01A"><span>Imaging <span class="hlt">hydration</span> and dehydration across the Cascadia subduction zone (Invited)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abers, G. A.; Van Keken, P. E.; Hacker, B. R.; Mann, M. E.; Crosbie, K.; Creager, K.</p> <p>2017-12-01</p> <p>Arc volcanoes and exhumed forearc metamorphic rocks show clear evidence for upward transport of slab-derived <span class="hlt">fluids</span>, but geophysical measurements rarely image features that could constrain the mode of this <span class="hlt">fluid</span> transport. The hottest subduction zones such as Cascadia pose a particular challenge, as the depths where hydrous minerals are stable seaward of trenches is limited, and much of the water is expected to depart the slab before reaching sub-arc depths. Here we improve our understanding of this problem by developing a new thermal model for central Cascadia, leveraging new results several onshore and offshore geophysical investigations, notably the iMUSH project (Imaging Magma Under mount St. Helens), to evaluate constraints on the <span class="hlt">fluid</span> flux. Offshore onshore heat flow measurements require a cold forearc and preclude detectable shear heating. Several puzzles emerge. The first is that Mount St. Helens overlies a continuous subducting plate which has an upper surface only 65-70 km deep beneath the volcano, imaged by migrated scattered P coda. This location, together with heat flow observations and inferences from the strength of the upper plate Moho, place the volcano over a cold forearc mantle wedge that is substantially <span class="hlt">hydrated</span>. It is unclear how the wide range of magmas at Mount St. Helens could emerge in this setting since many have mantle origin. A second puzzle is that a large velocity step, about 10% in Vs, is seen along the slab Moho to depths exceeding 90 km where thermal models predict the subducting crust is in eclogite facies; eclogite and peridotite should have nearly indistinguishable Vs. Possibly a gabbroic oceanic crust persists metastably well below the arc, or perhaps the interface represents a deeper <span class="hlt">hydration</span> front rather than petrologic Moho. A third puzzle is the persistent indication of H2O in arc magmas here despite almost certain dehydration of subducting sediments and upper oceanic crust. This indicates substantial H2O delivered by</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70026707','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70026707"><span>Scanning electron microscopy investigations of laboratory-grown gas clathrate <span class="hlt">hydrates</span> formed from melting ice, and comparison to natural <span class="hlt">hydrates</span></span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Stern, L.A.; Kirby, S.H.; Circone, S.; Durham, W.B.</p> <p>2004-01-01</p> <p>Scanning electron microscopy (SEM) was used to investigate grain texture and pore structure development within various compositions of pure sI and sII gas <span class="hlt">hydrates</span> synthesized in the laboratory, as well as in natural samples retrieved from marine (Gulf of Mexico) and permafrost (NW Canada) settings. Several samples of methane <span class="hlt">hydrate</span> were also quenched after various extents of partial reaction for assessment of mid-synthesis textural progression. All laboratory-synthesized <span class="hlt">hydrates</span> were grown under relatively high-temperature and high-pressure conditions from rounded ice grains with geometrically simple pore shapes, yet all resulting samples displayed extensive recrystallization with complex pore geometry. Growth fronts of mesoporous methane <span class="hlt">hydrate</span> advancing into dense ice reactant were prevalent in those samples quenched after limited reaction below and at the ice point. As temperatures transgress the ice point, grain surfaces continue to develop a discrete "rind" of <span class="hlt">hydrate</span>, typically 5 to 30 ??m thick. The cores then commonly melt, with rind microfracturing allowing migration of the melt to adjacent grain boundaries where it also forms <span class="hlt">hydrate</span>. As the reaction continues under progressively warmer conditions, the <span class="hlt">hydrate</span> product anneals to form dense and relatively pore-free regions of <span class="hlt">hydrate</span> grains, in which grain size is typically several tens of micrometers. The prevalence of hollow, spheroidal shells of <span class="hlt">hydrate</span>, coupled with extensive redistribution of reactant and product <span class="hlt">phases</span> throughout reaction, implies that a diffusion-controlled shrinking-core model is an inappropriate description of sustained <span class="hlt">hydrate</span> growth from melting ice. Completion of reaction at peak synthesis conditions then produces exceptional faceting and euhedral crystal growth along exposed pore walls. Further recrystallization or regrowth can then accompany even short-term exposure of synthetic <span class="hlt">hydrates</span> to natural ocean-floor conditions, such that the final textures may closely mimic</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1302595','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1302595"><span>The impact of flow focusing on gas <span class="hlt">hydrate</span> accumulations in overpressured marine sediments</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Nole, Michael; Daigle, Hugh; Cook, Ann</p> <p></p> <p>This study demonstrates the potential for flow focusing due to overpressuring in marine sedimentary environments to act as a significant methane transport mechanism from which methane <span class="hlt">hydrate</span> can precipitate in large quantities in dipping sandstone bodies. Traditionally, gas <span class="hlt">hydrate</span> accumulations in nature are discussed as resulting from either short-range diffusive methane migration or from long-range advective <span class="hlt">fluid</span> transport sourced from depth. However, 3D simulations performed in this study demonstrate that a third migration mechanism, short-range advective transport, can provide a significant methane source that is unencumbered by limitations of the other two end-member mechanisms. Short-range advective sourcing is advantageous overmore » diffusion because it can convey greater amounts of methane to sands over shorter timespans, yet it is not necessarily limited by down-dip pore blocking in sands as is typical of updip advection from a deep source. These results are novel because they integrate pore size impacts on spatial solubility gradients, grid block properties that evolve through time, and methane sourcing through microbial methanogenesis into a holistic characterization of environments exposed to multiple methane <span class="hlt">hydrate</span> sourcing mechanisms. We show that flow focusing toward sand bodies transports large quantities of methane, the magnitude of which are determined by the sand-clay solubility contrast, and generates larger quantities of <span class="hlt">hydrate</span> in sands than a solely diffusive system; after depositing methane as <span class="hlt">hydrate</span>, <span class="hlt">fluid</span> exiting a sand body is depleted in methane and leaves a <span class="hlt">hydrate</span> free region in its wake above the sand. Additionally, we demonstrate that in overpressured environments, <span class="hlt">hydrate</span> growth is initially diffusively dominated before transitioning to an advection-dominated regime. The timescale and depth at which this transition takes place depends primarily on the rate of microbial metabolism and the sedimentation rate but only depends</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27571674','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27571674"><span>[Bad results obtained from the current public health policies and recommendations of <span class="hlt">hydration</span>].</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>San Mauro Martín, Ismael; Romo Orozco, Denisse Aracely; Mendive Dubourdieu, Paula; Garicano Vilar, Elena; Valente, Ana; Betancor, Fabiana; Morales Hurtado, Alexis Daniel; Garagarza, Cristina</p> <p>2016-07-19</p> <p>Achieving an adequate intake of water is crucial within a balanced diet. For that purpose, dietary guidelines for healthy eating and drinking are an important consideration and need to be updated and disseminated to the population. We aimed to evaluate the liquid intake habits of a Mediterranean and Latin American population (Spain-Portugal and Mexico-Uruguay) and if they support the current recommendations of <span class="hlt">hydration</span> by the EFSA. A record of <span class="hlt">fluid</span> intake was obtained from 1168 participants from 4 countries above; and then compared with current consensus about <span class="hlt">hydration</span> 1600 mL/day (female) and 2000 mL/day (male). The average <span class="hlt">fluid</span> intake slightly surpassed the recommended: mean of 2049 mL/day (2,223 mL in males, 1,938 mL in females). Portugal stood out due to its lower intake (mean of 1,365 mL/day). Water contributed the largest part to total <span class="hlt">fluid</span> intake (37%) in all countries (mean of 1365 mL/day). Hot beverages (18%) and milk and derivates (17%) follow water in highest consumption. The 20% of males and only 0.3% of females knew recommendations of <span class="hlt">hydration</span>, while 63.3% of males and 62% of females followed them. Only 8.4% of people who follow the recommendations know them. The people studied surpassed the recommendation, although majority they didn´t know it. Future research should examine actual beverage consumption patterns and evaluate if the current consensuses are correctly adapted to the population needs. <span class="hlt">Hydration</span>'s policies should be transmitted to the population for their knowledge and adequate compliance.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.5083M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.5083M"><span>A two-<span class="hlt">phase</span> solid/<span class="hlt">fluid</span> model for dense granular flows including dilatancy effects</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mangeney, Anne; Bouchut, Francois; Fernandez-Nieto, Enrique; Koné, El-Hadj; Narbona-Reina, Gladys</p> <p>2016-04-01</p> <p>Describing grain/<span class="hlt">fluid</span> interaction in debris flows models is still an open and challenging issue with key impact on hazard assessment [{Iverson et al.}, 2010]. We present here a two-<span class="hlt">phase</span> two-thin-layer model for fluidized debris flows that takes into account dilatancy effects. It describes the velocity of both the solid and the <span class="hlt">fluid</span> <span class="hlt">phases</span>, the compression/dilatation of the granular media and its interaction with the pore <span class="hlt">fluid</span> pressure [{Bouchut et al.}, 2016]. The model is derived from a 3D two-<span class="hlt">phase</span> model proposed by {Jackson} [2000] based on the 4 equations of mass and momentum conservation within the two <span class="hlt">phases</span>. This system has 5 unknowns: the solid and <span class="hlt">fluid</span> velocities, the solid and <span class="hlt">fluid</span> pressures and the solid volume fraction. As a result, an additional equation inside the mixture is necessary to close the system. Surprisingly, this issue is inadequately accounted for in the models that have been developed on the basis of Jackson's work [{Bouchut et al.}, 2015]. In particular, {Pitman and Le} [2005] replaced this closure simply by imposing an extra boundary condition at the surface of the flow. When making a shallow expansion, this condition can be considered as a closure condition. However, the corresponding model cannot account for a dissipative energy balance. We propose here an approach to correctly deal with the thermodynamics of Jackson's model by closing the mixture equations by a weak compressibility relation following {Roux and Radjai} [1998]. This relation implies that the occurrence of dilation or contraction of the granular material in the model depends on whether the solid volume fraction is respectively higher or lower than a critical value. When dilation occurs, the <span class="hlt">fluid</span> is sucked into the granular material, the pore pressure decreases and the friction force on the granular <span class="hlt">phase</span> increases. On the contrary, in the case of contraction, the <span class="hlt">fluid</span> is expelled from the mixture, the pore pressure increases and the friction force diminishes. To</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/868268','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/868268"><span>Measurement of average density and relative volumes in a dispersed two-<span class="hlt">phase</span> <span class="hlt">fluid</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Sreepada, Sastry R.; Rippel, Robert R.</p> <p>1992-01-01</p> <p>An apparatus and a method are disclosed for measuring the average density and relative volumes in an essentially transparent, dispersed two-<span class="hlt">phase</span> <span class="hlt">fluid</span>. A laser beam with a diameter no greater than 1% of the diameter of the bubbles, droplets, or particles of the dispersed <span class="hlt">phase</span> is directed onto a diffraction grating. A single-order component of the diffracted beam is directed through the two-<span class="hlt">phase</span> <span class="hlt">fluid</span> and its refraction is measured. Preferably, the refracted beam exiting the <span class="hlt">fluid</span> is incident upon a optical filter with linearly varing optical density and the intensity of the filtered beam is measured. The invention can be combined with other laser-based measurement systems, e.g., laser doppler anemometry.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDKP1044K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDKP1044K"><span>Dissolution of methane bubbles with <span class="hlt">hydrate</span> armoring in deep ocean conditions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kovalchuk, Margarita; Socolofsky, Scott</p> <p>2017-11-01</p> <p>The deep ocean is a storehouse of natural gas. Methane bubble moving upwards from marine sediments may become trapped in gas <span class="hlt">hydrates</span>. It is uncertain precisely how <span class="hlt">hydrate</span> armoring affects dissolution, or mass transfer from the bubble to the surrounding water column. The Texas A&M Oilspill Calculator was used to simulate a series of gas bubble dissolution experiments conducted in the United States Department of Energy National Energy Technology Laboratory High Pressure Water Tunnel. Several variations of the mass transfer coefficient were calculated based on gas or <span class="hlt">hydrate</span> <span class="hlt">phase</span> solubility and clean or dirty bubble correlations. Results suggest the mass transfer coefficient may be most closely modeled with gas <span class="hlt">phase</span> solubility and dirty bubble correlation equations. Further investigation of <span class="hlt">hydrate</span> bubble dissolution behavior will refine current numeric models which aid in understanding gas flux to the atmosphere and plumes such as oil spills. Research funded in part by the Texas A&M University 2017 Undergraduate Summer Research Grant and a Grant from the Methane Gas <span class="hlt">Hydrates</span> Program of the US DOE National Energy Technology Laboratory.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018HMT...tmp..121Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018HMT...tmp..121Z"><span>Thermal conductivity and thermal diffusivity of methane <span class="hlt">hydrate</span> formed from compacted granular ice</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, Jie; Sun, Shicai; Liu, Changling; Meng, Qingguo</p> <p>2018-05-01</p> <p>Thermal conductivity and thermal diffusivity of pure methane <span class="hlt">hydrate</span> samples, formed from compacted granular ice (0-75 μm), and were measured simultaneously by the transient plane source (TPS) technique. The temperature dependence was measured between 263.15 and 283.05 K, and the gas-<span class="hlt">phase</span> pressure dependence was measured between 2 and 10 MPa. It is revealed that the thermal conductivity of pure methane <span class="hlt">hydrate</span> exhibits a positive trend with temperature and increases from 0.4877 to 0.5467 W·m-1·K-1. The thermal diffusivity of methane <span class="hlt">hydrate</span> has inverse dependence on temperature and the values in the temperature range from 0.2940 to 0.3754 mm2·s-1, which is more than twice that of water. The experimental results show that the effects of gas-<span class="hlt">phase</span> pressure on the thermal conductivity and thermal diffusivity are very small. Thermal conductivity of methane <span class="hlt">hydrate</span> is found to have weakly positive gas-<span class="hlt">phase</span> pressure dependence, whereas the thermal diffusivity has slightly negative trend with gas-<span class="hlt">phase</span> pressure.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JNET...43..185A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JNET...43..185A"><span>A Thermodynamically Consistent Approach to <span class="hlt">Phase</span>-Separating Viscous <span class="hlt">Fluids</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Anders, Denis; Weinberg, Kerstin</p> <p>2018-04-01</p> <p>The de-mixing properties of heterogeneous viscous <span class="hlt">fluids</span> are determined by an interplay of diffusion, surface tension and a superposed velocity field. In this contribution a variational model of the decomposition, based on the Navier-Stokes equations for incompressible laminar flow and the extended Korteweg-Cahn-Hilliard equations, is formulated. An exemplary numerical simulation using C1-continuous finite elements demonstrates the capability of this model to compute <span class="hlt">phase</span> decomposition and coarsening of the moving <span class="hlt">fluid</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4161108','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4161108"><span>The Effects of Intravenous <span class="hlt">Hydration</span> on Amniotic <span class="hlt">Fluid</span> Index in Pregnant Women with Preterm premature Rupture of Membranes: A Randomized Clinical Trial</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Shahnazi, Mahnaz; Tagavi, Simin; Hajizadeh, Khadije; Farshbaf Khalili, Azize</p> <p>2013-01-01</p> <p>Introduction: Preterm premature rupture of membranes (PPROM) can result in fetal complications such as oligohydramnios. This study aimed to determine the effects of intravenous (IV) <span class="hlt">fluid</span> bolus on amniotic <span class="hlt">fluid</span> index (AFI) in pregnant women with PPROM. Methods: 24 women with PPROM during singleton live pregnancy of 28 to 34 weeks whose baseline AFI was ≤ 5cm were randomized into two groups. The study group received one liter intravenous <span class="hlt">fluid</span> bolus of isotonic Ringer serum during 30-minute period. Reevaluations of amniotic <span class="hlt">fluid</span> index in both groups were made 90 minutes and 48 hours after baseline measurement. Independent t-test and paired t-test were used to compare the two groups and mean amniotic <span class="hlt">fluid</span> index before and after treatment, respectively. Results: The results of this study demonstrate that AFI decreased statistically significant in both the control and study groups. AFI decreased in both groups at 48 hours later. This decrease was not statistically significant in any group. The mean change in AFI (90 minutes and baseline) and (48 hours and baseline) between the two groups were not significant. The time between mean baseline measurements and delivery were 196.41 and 140.58 hours in the study and control groups, respectively. This difference was not statistically significant. Conclusion: This study did not find significant impact of <span class="hlt">hydration</span> On AFI as a prophylactic method on oligohydramnios in pregnant women with PPROM. PMID:25276709</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890005019','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890005019"><span>Working <span class="hlt">fluid</span> selection for space-based two-<span class="hlt">phase</span> heat transport systems</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mclinden, Mark O.</p> <p>1988-01-01</p> <p>The working <span class="hlt">fluid</span> for externally-mounted, space-based two-<span class="hlt">phase</span> heat transport systems is considered. A sequence of screening criteria involving freezing and critical point temperatures and latent heat of vaporization and vapor density are applied to a data base of 860 <span class="hlt">fluids</span>. The thermal performance of the 52 <span class="hlt">fluids</span> which pass this preliminary screening are then ranked according to their impact on the weight of a reference system. Upon considering other nonthermal criteria (flammability, toxicity, and chemical stability) a final set of 10 preferred <span class="hlt">fluids</span> is obtained. The effects of variations in system parameters is investigated for these 10 <span class="hlt">fluids</span> by means of a factorial design.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27663276','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27663276"><span><span class="hlt">Hydration</span> behaviors of calcium silicate-based biomaterials.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lee, Yuan-Ling; Wang, Wen-Hsi; Lin, Feng-Huie; Lin, Chun-Pin</p> <p>2017-06-01</p> <p>Calcium silicate (CS)-based biomaterials, such as mineral trioxide aggregate (MTA), have become the most popular and convincing material used in restorative endodontic treatments. However, the commercially available CS-based biomaterials all contain different minor additives, which may affect their <span class="hlt">hydration</span> behaviors and material properties. The purpose of this study was to evaluate the <span class="hlt">hydration</span> behavior of CS-based biomaterials with/without minor additives. A novel CS-based biomaterial with a simplified composition, without mineral oxides as minor additives, was produced. The characteristics of this biomaterial during <span class="hlt">hydration</span> were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectrometry. The <span class="hlt">hydration</span> behaviors of commercially available gray and white MTAs with mineral oxide as minor additives were also evaluated for reference. For all three test materials, the XRD analysis revealed similar diffraction patterns after <span class="hlt">hydration</span>, but MTAs presented a significant decrease in the intensities of Bi 2 O 3 -related peaks. SEM results demonstrated similar porous microstructures with some hexagonal and facetted crystals on the outer surfaces. In addition, compared to CS with a simplified composition, the FTIR plot indicated that <span class="hlt">hydrated</span> MTAs with mineral oxides were better for the polymerization of calcium silicate <span class="hlt">hydrate</span> (CSH), presenting Si-O band shifting to higher wave numbers, and contained more water crystals within CSH, presenting sharper bands for O-H bending. Mineral oxides might not result in significant changes in the crystal <span class="hlt">phases</span> or microstructures during the <span class="hlt">hydration</span> of CS-based biomaterials, but these compounds affected the <span class="hlt">hydration</span> behavior at the molecular level. Copyright © 2016. Published by Elsevier B.V.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18205505','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18205505"><span><span class="hlt">Phase</span> behavior of a simple dipolar <span class="hlt">fluid</span> under shear flow in an electric field.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>McWhirter, J Liam</p> <p>2008-01-21</p> <p>Nonequilibrium molecular dynamics simulations are performed on a dense simple dipolar <span class="hlt">fluid</span> under a planar Couette shear flow. Shear generates heat, which is removed by thermostatting terms added to the equations of motion of the <span class="hlt">fluid</span> particles. The spatial structure of simple <span class="hlt">fluids</span> at high shear rates is known to depend strongly on the thermostatting mechanism chosen. Kinetic thermostats are either biased or unbiased: biased thermostats neglect the existence of secondary flows that appear at high shear rates superimposed upon the linear velocity profile of the <span class="hlt">fluid</span>. Simulations that employ a biased thermostat produce a string <span class="hlt">phase</span> where particles align in strings with hexagonal symmetry along the direction of the flow. This <span class="hlt">phase</span> is known to be a simulation artifact of biased thermostatting, and has not been observed by experiments on colloidal suspensions under shear flow. In this paper, we investigate the possibility of using a suitably directed electric field, which is coupled to the dipole moments of the <span class="hlt">fluid</span> particles, to stabilize the string <span class="hlt">phase</span>. We explore several thermostatting mechanisms where either the kinetic or configurational <span class="hlt">fluid</span> degrees of freedom are thermostated. Some of these mechanisms do not yield a string <span class="hlt">phase</span>, but rather a shear-thickening <span class="hlt">phase</span>; in this case, we find the influence of the dipolar interactions and external field on the packing structure, and in turn their influence on the shear viscosity at the onset of this shear-thickening regime.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.B12B..03D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.B12B..03D"><span>Hydro-geomechanical behaviour of gas-<span class="hlt">hydrate</span> bearing soils during gas production through depressurization and CO2 injection</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Deusner, C.; Gupta, S.; Kossel, E.; Bigalke, N.; Haeckel, M.</p> <p>2015-12-01</p> <p>Results from recent field trials suggest that natural gas could be produced from marine gas <span class="hlt">hydrate</span> reservoirs at compatible yields and rates. It appears, from a current perspective, that gas production would essentially be based on depressurization and, when facing suitable conditions, be assisted by local thermal stimulation or gas <span class="hlt">hydrate</span> conversion after injection of CO2-rich <span class="hlt">fluids</span>. Both field trials, onshore in the Alaska permafrost and in the Nankai Trough offshore Japan, were accompanied by different technical issues, the most striking problems resulting from un-predicted geomechanical behaviour, sediment destabilization and catastrophic sand production. So far, there is a lack of experimental data which could help to understand relevant mechanisms and triggers for potential soil failure in gas <span class="hlt">hydrate</span> production, to guide model development for simulation of soil behaviour in large-scale production, and to identify processes which drive or, further, mitigate sand production. We use high-pressure flow-through systems in combination with different online and in situ monitoring tools (e.g. Raman microscopy, MRI) to simulate relevant gas <span class="hlt">hydrate</span> production scenarios. Key components for soil mechanical studies are triaxial systems with ERT (Electric resistivity tomography) and high-resolution local strain analysis. Sand production control and management is studied in a novel hollow-cylinder-type triaxial setup with a miniaturized borehole which allows <span class="hlt">fluid</span> and particle transport at different <span class="hlt">fluid</span> injection and flow conditions. Further, the development of a large-scale high-pressure flow-through triaxial test system equipped with μ-CT is ongoing. We will present results from high-pressure flow-through experiments on gas production through depressurization and injection of CO2-rich <span class="hlt">fluids</span>. Experimental data are used to develop and parametrize numerical models which can simulate coupled process dynamics during gas-<span class="hlt">hydrate</span> formation and gas production.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27255358','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27255358"><span>Structural determinants of <span class="hlt">hydration</span>, mechanics and <span class="hlt">fluid</span> flow in freeze-dried collagen scaffolds.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Offeddu, G S; Ashworth, J C; Cameron, R E; Oyen, M L</p> <p>2016-09-01</p> <p>Freeze-dried scaffolds provide regeneration templates for a wide range of tissues, due to their flexibility in physical and biological properties. Control of structure is crucial for tuning such properties, and therefore scaffold functionality. However, the common approach of modeling these scaffolds as open-cell foams does not fully account for their structural complexity. Here, the validity of the open-cell model is examined across a range of physical characteristics, rigorously linking morphology to <span class="hlt">hydration</span> and mechanical properties. Collagen scaffolds with systematic changes in relative density were characterized using Scanning Electron Microscopy, X-ray Micro-Computed Tomography and spherical indentation analyzed in a time-dependent poroelastic framework. Morphologically, all scaffolds were mid-way between the open- and closed-cell models, approaching the closed-cell model as relative density increased. Although pore size remained constant, transport pathway diameter decreased. Larger collagen fractions also produced greater volume swelling on <span class="hlt">hydration</span>, although the change in pore diameter was constant, and relatively small at ∼6%. Mechanically, the dry and <span class="hlt">hydrated</span> scaffold moduli varied quadratically with relative density, as expected of open-cell materials. However, the increasing pore wall closure was found to determine the time-dependent nature of the <span class="hlt">hydrated</span> scaffold response, with a decrease in permeability producing increasingly elastic rather than viscoelastic behavior. These results demonstrate that characterizing the deviation from the open-cell model is vital to gain a full understanding of scaffold biophysical properties, and provide a template for structural studies of other freeze-dried biomaterials. Freeze-dried collagen sponges are three-dimensional microporous scaffolds that have been used for a number of exploratory tissue engineering applications. The characterization of the structure-properties relationships of these scaffolds is</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70021161','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70021161"><span>Chemistry, isotopic composition, and origin of a methane-hydrogen sulfide <span class="hlt">hydrate</span> at the Cascadia subduction zone</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kastner, M.; Kvenvolden, K.A.; Lorenson, T.D.</p> <p>1998-01-01</p> <p>Although the presence of extensive gas <span class="hlt">hydrate</span> on the Cascadia margin, offshore from the western U.S. and Canada, has been inferred from marine seismic records and pore water chemistry, solid gas <span class="hlt">hydrate</span> has only been found at one location. At Ocean Drilling Program (ODP) Site 892, offshore from central Oregon, gas <span class="hlt">hydrate</span> was recovered close to the sediment - water interface at 2-19 m below the seafloor, (mbsf) at 670 m water depth. The gas <span class="hlt">hydrate</span> occurs as elongated platy crystals or crystal aggregates, mostly disseminated irregularly, with higher concentrations occurring in discrete zones, thin layers, and/or veinlets parallel or oblique to the bedding. A 2-to 3-cm thick massive gas <span class="hlt">hydrate</span> layer, parallel to bedding, was recovered at ???17 mbsf. Gas from a sample of this layer was composed of both CH4 and H2S. This sample is the first mixed-gas <span class="hlt">hydrate</span> of CH4-H2S documented in ODP; it also contains ethane and minor amounts of CO2. Measured temperature of the recovered core ranged from 2 to - 18??C and are 6 to 8 degrees lower than in-situ temperatures. These temperature anomalies were caused by the partial dissociation of the CH4-H2S <span class="hlt">hydrate</span> during recovery without a pressure core sampler. During this dissociation, toxic levels of H2S (??34S, +27.4???) were released. The ??13C values of the CH4 in the gas <span class="hlt">hydrate</span>, -64.5 to -67.5???(PDB), together with ??D values of - 197 to - 199???(SMOW) indicate a primarily microbial source for the CH4. The ??18O value of the <span class="hlt">hydrate</span> H2O is +2.9???(SMOW), comparable with the experimental fractionation factor for sea-ice. The unusual composition (CH4-H2S) and depth distribution (2-19 mbsf) of this gas <span class="hlt">hydrate</span> indicate mixing between a methane-rich <span class="hlt">fluid</span> with a pore <span class="hlt">fluid</span> enriched in sulfide; at this site the former is advecting along an inclined fault into the active sulfate reduction zone. The facts that the CH4-H2S <span class="hlt">hydrate</span> is primarily confined to the present day active sulfate reduction zone (2-19 mbsf), and that from here</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMOS53B1187D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMOS53B1187D"><span><span class="hlt">Hydrate</span>-CASM for modeling Methane <span class="hlt">Hydrate</span>-Bearing Sediments</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>De La Fuente Ruiz, M.; Vaunat, J.; Marin Moreno, H.</p> <p>2017-12-01</p> <p>A clear understanding of the geomechanical behavior of methane <span class="hlt">hydrate</span>-bearing sediments (MHBS) is crucial to assess the stability of the seafloor and submarine infrastructures to human and natural loading changes. Here we present the <span class="hlt">Hydrate</span>-CASM, a new elastoplastic constitutive model to predict the geomechanical behavior of MHBS. Our model employs the critical state model CASM (Clay and Sand Model) because of its flexibility in describing the shape of the yield surface and its proven ability to predict the mechanical behavior of sands, the most commercially viable <span class="hlt">hydrate</span> reservoirs. The model considers MHBS as a deformable elastoplastic continuum, and <span class="hlt">hydrate</span>-related changes in the stress-strain behavior are predicted by a densification mechanism. The densification attributes the mechanical contribution of <span class="hlt">hydrate</span> to; a reduction of the available void ratio; a decrease of the swelling line slope; and an increase of the volumetric yield stress. It is described by experimentally derived physical parameters except from the swelling slope coefficient that requires empirical calibration. The <span class="hlt">Hydrate</span>-CASM is validated against published triaxial laboratory tests performed at different confinement stresses, <span class="hlt">hydrate</span> saturations, and <span class="hlt">hydrate</span> morphologies. During the validation, we focused on capturing the mechanical behavior of the host sediment and consider perturbations of the sediment's mechanical properties that could result from the sample preparation. Our model successfully captures the experimentally observed influence of <span class="hlt">hydrate</span> saturation in the magnitude and trend of the stiffness, shear strength, and dilatancy of MHBS. Hence, we propose that <span class="hlt">hydrate</span>-related densification changes might be a major factor controlling the geomechanical response of MHBS.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27498686','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27498686"><span>Charge transfer reactions between gas-<span class="hlt">phase</span> <span class="hlt">hydrated</span> electrons, molecular oxygen and carbon dioxide at temperatures of 80-300 K.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Akhgarnusch, Amou; Tang, Wai Kit; Zhang, Han; Siu, Chi-Kit; Beyer, Martin K</p> <p>2016-09-14</p> <p>The recombination reactions of gas-<span class="hlt">phase</span> <span class="hlt">hydrated</span> electrons (H2O)n˙(-) with CO2 and O2, as well as the charge exchange reaction of CO2˙(-)(H2O)n with O2, were studied by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry in the temperature range T = 80-300 K. Comparison of the rate constants with collision models shows that CO2 reacts with 50% collision efficiency, while O2 reacts considerably slower. Nanocalorimetry yields internally consistent results for the three reactions. Converted to room temperature condensed <span class="hlt">phase</span>, this yields <span class="hlt">hydration</span> enthalpies of CO2˙(-) and O2˙(-), ΔHhyd(CO2˙(-)) = -334 ± 44 kJ mol(-1) and ΔHhyd(O2˙(-)) = -404 ± 28 kJ mol(-1). Quantum chemical calculations show that the charge exchange reaction proceeds via a CO4˙(-) intermediate, which is consistent with a fully ergodic reaction and also with the small efficiency. Ab initio molecular dynamics simulations corroborate this picture and indicate that the CO4˙(-) intermediate has a lifetime significantly above the ps regime.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013GeoJI.193.1370N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013GeoJI.193.1370N"><span>Invasion of drilling mud into gas-<span class="hlt">hydrate</span>-bearing sediments. Part I: effect of drilling mud properties</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ning, Fulong; Zhang, Keni; Wu, Nengyou; Zhang, Ling; Li, Gang; Jiang, Guosheng; Yu, Yibing; Liu, Li; Qin, Yinghong</p> <p>2013-06-01</p> <p>To our knowledge, this study is the first to perform a numerical simulation and analysis of the dynamic behaviour of drilling mud invasion into oceanic gas-<span class="hlt">hydrate</span>-bearing sediment (GHBS) and to consider the effects of such an invasion on borehole stability and the reliability of well logging. As a case study, the simulation background sets up the conditions of mud temperature over <span class="hlt">hydrate</span> equilibrium temperature and overbalanced drilling, considering the first Chinese expedition to drill gas <span class="hlt">hydrate</span> (GMGS-1). The results show that dissociating gas may form secondary <span class="hlt">hydrates</span> in the sediment around borehole by the combined effects of increased pore pressure (caused by mud invasion and flow resistance), endothermic cooling that accompanies <span class="hlt">hydrate</span> dissociation compounded by the Joule-Thompson effect and the lagged effect of heat transfer in sediments. The secondary <span class="hlt">hydrate</span> ring around the borehole may be more highly saturated than the in situ sediment. Mud invasion in GHBS is a dynamic process of thermal, <span class="hlt">fluid</span> (mud invasion), chemical (<span class="hlt">hydrate</span> dissociation and reformation) and mechanical couplings. All of these factors interact and influence the pore pressure, flow ability, saturation of <span class="hlt">fluid</span> and <span class="hlt">hydrates</span>, mechanical parameters and electrical properties of sediments around the borehole, thereby having a strong effect on borehole stability and the results of well logging. The effect is particularly clear in the borehole SH7 of GMGS-1 project. The borehole collapse and resistivity distortion were observed during practical drilling and wireline logging operations in borehole SH7 of the GMGS-1.mud density (i.e. the corresponding borehole pressure), temperature and salinity have a marked influence on the dynamics of mud invasion and on <span class="hlt">hydrate</span> stability. Therefore, perhaps well-logging distortion caused by mud invasion, <span class="hlt">hydrate</span> dissociation and reformation should be considered for identifying and evaluating gas <span class="hlt">hydrate</span> reservoirs. And some suitable drilling</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16268712','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16268712"><span>Search for memory effects in methane <span class="hlt">hydrate</span>: structure of water before <span class="hlt">hydrate</span> formation and after <span class="hlt">hydrate</span> decomposition.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Buchanan, Piers; Soper, Alan K; Thompson, Helen; Westacott, Robin E; Creek, Jefferson L; Hobson, Greg; Koh, Carolyn A</p> <p>2005-10-22</p> <p>Neutron diffraction with HD isotope substitution has been used to study the formation and decomposition of the methane clathrate <span class="hlt">hydrate</span>. Using this atomistic technique coupled with simultaneous gas consumption measurements, we have successfully tracked the formation of the sI methane <span class="hlt">hydrate</span> from a water/gas mixture and then the subsequent decomposition of the <span class="hlt">hydrate</span> from initiation to completion. These studies demonstrate that the application of neutron diffraction with simultaneous gas consumption measurements provides a powerful method for studying the clathrate <span class="hlt">hydrate</span> crystal growth and decomposition. We have also used neutron diffraction to examine the water structure before the <span class="hlt">hydrate</span> growth and after the <span class="hlt">hydrate</span> decomposition. From the neutron-scattering curves and the empirical potential structure refinement analysis of the data, we find that there is no significant difference between the structure of water before the <span class="hlt">hydrate</span> formation and the structure of water after the <span class="hlt">hydrate</span> decomposition. Nor is there any significant change to the methane <span class="hlt">hydration</span> shell. These results are discussed in the context of widely held views on the existence of memory effects after the <span class="hlt">hydrate</span> decomposition.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19900016845','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19900016845"><span><span class="hlt">Fluid</span> <span class="hlt">Phase</span> Separation (FPS) experiment for flight on a space shuttle Get Away Special (GAS) canister</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Peters, Bruce; Wingo, Dennis; Bower, Mark; Amborski, Robert; Blount, Laura; Daniel, Alan; Hagood, Bob; Handley, James; Hediger, Donald; Jimmerson, Lisa</p> <p>1990-01-01</p> <p>The separation of <span class="hlt">fluid</span> <span class="hlt">phases</span> in microgravity environments is of importance to environmental control and life support systems (ECLSS) and materials processing in space. A successful <span class="hlt">fluid</span> <span class="hlt">phase</span> separation experiment will demonstrate a proof of concept for the separation technique and add to the knowledge base of material behavior. The <span class="hlt">phase</span> separation experiment will contain a premixed <span class="hlt">fluid</span> which will be exposed to a microgravity environment. After the <span class="hlt">phase</span> separation of the compound has occurred, small samples of each of the species will be taken for analysis on the Earth. By correlating the time of separation and the temperature history of the <span class="hlt">fluid</span>, it will be possible to characterize the process. The experiment has been integrated into space available on a manifested Get Away Special (GAS) experiment, CONCAP 2, part of the Consortium for Materials Complex Autonomous Payload (CAP) Program, scheduled for STS-42. The design and the production of a <span class="hlt">fluid</span> <span class="hlt">phase</span> separation experiment for rapid implementation at low cost is presented.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70027574','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70027574"><span>Geochemical constraints on the distribution of gas <span class="hlt">hydrates</span> in the Gulf of Mexico</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Paull, C.K.; Ussler, W.; Lorenson, T.; Winters, W.; Dougherty, J.</p> <p>2005-01-01</p> <p>Gas <span class="hlt">hydrates</span> are common within near-seafloor sediments immediately surrounding <span class="hlt">fluid</span> and gas venting sites on the continental slope of the northern Gulf of Mexico. However, the distribution of gas <span class="hlt">hydrates</span> within sediments away from the vents is poorly documented, yet critical for gas <span class="hlt">hydrate</span> assessments. Porewater chloride and sulfate concentrations, hydrocarbon gas compositions, and geothermal gradients obtained during a porewater geochemical survey of the northern Gulf of Mexico suggest that the lack of bottom simulating reflectors in gas-rich areas of the gulf may be the consequence of elevated porewater salinity, geothermal gradients, and microbial gas compositions in sediments away from fault conduits. </p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11.1782H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11.1782H"><span><span class="hlt">Hydrate</span> pingoes at Nyegga: some characteristic features</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hovland, M.</p> <p>2009-04-01</p> <p> from above. It is, therefore, expected that <span class="hlt">hydrate</span> pingoes continually accrete from below and ablate from above, processes which cause a continuous change of size and shape over time, as long as <span class="hlt">fluid</span> migration is active. These active (mainly inorganic) processes also stimulate organic life, by the continuous release of: a) dissolved methane and other reduced chemical species, and b) low-salinity and/or high-salinity water, released by active <span class="hlt">hydrate</span> formation and dissociation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/863551','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/863551"><span>Device for measuring the <span class="hlt">fluid</span> density of a two-<span class="hlt">phase</span> mixture</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Cole, Jack H.</p> <p>1980-01-01</p> <p>A device for measuring the <span class="hlt">fluid</span> density of a two-<span class="hlt">phase</span> mixture flowing through a tubular member. A rotor assembly is rotatively supported within the tubular member so that it can also move axially within the tubular member. The rotor assembly is balanced against a pair of springs which exert an axial force in the opposite direction upon the rotor assembly. As a two-<span class="hlt">phase</span> mixture flows through the tubular member it contacts the rotor assembly causing it to rotate about its axis. The rotor assembly is forced against and partially compresses the springs. Means are provided to measure the rotational speed of the rotor assembly and the linear displacement of the rotor assembly. From these measurements the <span class="hlt">fluid</span> density of the two-<span class="hlt">phase</span> mixture is calculated.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70159647','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70159647"><span>Methane <span class="hlt">hydrates</span> in nature - Current knowledge and challenges</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Collett, Timothy S.</p> <p>2014-01-01</p> <p>Recognizing the importance of methane <span class="hlt">hydrate</span> research and the need for a coordinated effort, the United States Congress enacted the Methane <span class="hlt">Hydrate</span> Research and Development Act of 2000. At the same time, the Ministry of International Trade and Industry in Japan launched a research program to develop plans for a methane <span class="hlt">hydrate</span> exploratory drilling project in the Nankai Trough. India, China, the Republic of Korea, and other nations also have established large methane <span class="hlt">hydrate</span> research and development programs. Government-funded scientific research drilling expeditions and production test studies have provided a wealth of information on the occurrence of methane <span class="hlt">hydrates</span> in nature. Numerous studies have shown that the amount of gas stored as methane <span class="hlt">hydrates</span> in the world may exceed the volume of known organic carbon sources. However, methane <span class="hlt">hydrates</span> represent both a scientific and technical challenge, and much remains to be learned about their characteristics and occurrence in nature. Methane <span class="hlt">hydrate</span> research in recent years has mostly focused on: (1) documenting the geologic parameters that control the occurrence and stability of methane <span class="hlt">hydrates</span> in nature, (2) assessing the volume of natural gas stored within various methane <span class="hlt">hydrate</span> accumulations, (3) analyzing the production response and characteristics of methane <span class="hlt">hydrates</span>, (4) identifying and predicting natural and induced environmental and climate impacts of natural methane <span class="hlt">hydrates</span>, (5) analyzing the methane <span class="hlt">hydrate</span> role as a geohazard, (6) establishing the means to detect and characterize methane <span class="hlt">hydrate</span> accumulations using geologic and geophysical data, and (7) establishing the thermodynamic <span class="hlt">phase</span> equilibrium properties of methane <span class="hlt">hydrates</span> as a function of temperature, pressure, and gas composition. The U.S. Department of Energy (DOE) and the Consortium for Ocean Leadership (COL) combined their efforts in 2012 to assess the contributions that scientific drilling has made and could continue to make to advance</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhDT........62B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhDT........62B"><span>Thermodynamics of Manganese Oxides at Bulk and Nanoscale: <span class="hlt">Phase</span> Formation, Transformation, Oxidation-Reduction, and <span class="hlt">Hydration</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Birkner, Nancy R.</p> <p></p> <p>Natural manganese oxides are generally formed in surficial environments that are near ambient temperature and water-rich, and may be exposed to wet-dry cycles and a variety of adsorbate species that influence dramatically their level of <span class="hlt">hydration</span>. Manganese oxide minerals are often poorly crystalline, nanophase, and hydrous. In the near-surface environment they are involved in processes that are important to life, such as water column oxygen cycling, biomineralization, and transport of minerals/nutrients through soils and water. These processes, often involving transformations among manganese oxide polymorphs, are governed by a complex interplay between thermodynamics and kinetics. Manganese oxides are also used in technology as catalysts, and for other applications. The major goal of this dissertation is to examine the energetics of bulk and nanophase manganese oxide <span class="hlt">phases</span> as a function of particle size, composition, and surface <span class="hlt">hydration</span>. Careful synthesis and characterization of manganese oxide <span class="hlt">phases</span> with different surface areas provided samples for the study of enthalpies of formation by high temperature oxide melt solution calorimetry and of the energetics of water adsorption on their surfaces. These data provide a quantitative picture of <span class="hlt">phase</span> stability and how it changes at the nanoscale. The surface energy of the hydrous surface of Mn3O4 is 0.96 +/- 0.08 J/m2, of Mn2O3 is 1.29 +/- 0.10 J/m2, and of MnO2 is 1.64 +/- 0.10 J/m2. The surface energy of the anhydrous surface of Mn3O4 is 1.62 +/- 0.08 J/m 2, of Mn2O3 is 1.77 +/- 0.10 J/m 2, and of MnO2 is 2.05 +/- 0.10 J/m2. Supporting preliminary findings (Navrotsky et al., 2010), the spinel <span class="hlt">phase</span> (Mn3O4) has a lower surface energy (more stabilizing) than bixbyite, while the latter has a smaller surface energy than pyrolusite. These differences significantly change the positions in oxygen fugacity---temperature space of the redox couples Mn3O4-Mn2O 3 and Mn2O3-MnO2 favoring the lower surface enthalpy <span class="hlt">phase</span> (the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22624890','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22624890"><span>Comparison of stromal <span class="hlt">hydration</span> techniques for clear corneal cataract incisions: conventional <span class="hlt">hydration</span> versus anterior stromal pocket <span class="hlt">hydration</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mifflin, Mark D; Kinard, Krista; Neuffer, Marcus C</p> <p>2012-06-01</p> <p>Anterior stromal pocket <span class="hlt">hydration</span> was compared with conventional <span class="hlt">hydration</span> for preventing wound leak after 2.8 mm uniplanar clear corneal incisions (CCIs) in patients having routine cataract surgery. Conventional <span class="hlt">hydration</span> involves <span class="hlt">hydration</span> of the lateral walls of the main incision with visible whitening of the stroma. The anterior stromal pocket <span class="hlt">hydration</span> technique involves creation of an additional supraincisional stromal pocket overlying the main incision, which is then <span class="hlt">hydrated</span> instead of the main incision. Sixty-six eyes of 48 patients were included in the data analysis with 33 assigned to each study group. The anterior stromal pocket <span class="hlt">hydration</span> technique was significantly better than conventional <span class="hlt">hydration</span> in preventing wound leak due to direct pressure on the posterior lip of the incision. Copyright © 2012 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120016649','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120016649"><span>Thermal Regeneration of Sulfuric Acid <span class="hlt">Hydrates</span> after Irradiation</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Loeffler, Mark J.; Hudson, Reggie L.</p> <p>2012-01-01</p> <p>In an attempt to more completely understand the surface chemistry of the jovian icy satellites, we have investigated the effect of heating on two irradiated crystalline sulfuric acid <span class="hlt">hydrates</span>, H2SO4 4H2O and H2SO4 H2O. At temperatures relevant to Europa and the warmer jovian satellites, post-irradiation heating recrystallized the amorphized samples and increased the intensities of the remaining <span class="hlt">hydrate</span>'s infrared absorptions. This thermal regeneration of the original <span class="hlt">hydrates</span> was nearly 100% efficient, indicating that over geological times, thermally-induced <span class="hlt">phase</span> transitions enhanced by temperature fluctuations will reform a large fraction of crystalline <span class="hlt">hydrated</span> sulfuric acid that is destroyed by radiation processing. The work described is the first demonstration of the competition between radiation-induced amorphization and thermally-induced recrystallization in icy ionic solids relevant to the outer Solar System.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23391708','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23391708"><span>Timing, predictors, and progress of third space <span class="hlt">fluid</span> accumulation during preliminary <span class="hlt">phase</span> <span class="hlt">fluid</span> resuscitation in adult patients with dengue.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Premaratna, R; Ragupathy, A; Miththinda, J K N D; de Silva, H J</p> <p>2013-07-01</p> <p><span class="hlt">Fluid</span> leakage remains the hallmark of dengue hemorrhagic fever (DHF). The applicability of currently recommended predictors of DHF for adults with dengue is questionable as these are based on studies conducted in children. One hundred and two adults with dengue were prospectively followed up to investigate whether home-based or hospital-based early <span class="hlt">phase</span> <span class="hlt">fluid</span> resuscitation has an impact on clinical and hematological parameters used for the diagnosis of early or critical <span class="hlt">phase</span> <span class="hlt">fluid</span> leakage. In the majority of subjects, third space <span class="hlt">fluid</span> accumulation (TSFA) was detected on the fifth and sixth days of infection. The quantity and quality of <span class="hlt">fluids</span> administered played no role in TSFA. A reduction in systolic blood pressure appeared to be more helpful than a reduction in pulse pressure in predicting <span class="hlt">fluid</span> leakage. TSFA occurred with lower percentage rises in packed cell volume (PCV) than stated in the current recommendations. A rapid reduction in platelets, progressive reduction in white blood cells, percentage rises in Haemoglobin (Hb), and PCV, and rises in aspartate aminotransferase and alanine aminotransferase were observed in patients with TSFA and therefore with the development of severe illness. Clinicians should be aware of the limitations of currently recommended predictors of DHF in adult patients who are receiving <span class="hlt">fluid</span> resuscitation. Copyright © 2013 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1859545','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1859545"><span>On the choice of <span class="hlt">fluid</span> for the <span class="hlt">hydration</span> of middle-aged marathon runners.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kavanagh, T.; Shephard, R. J.</p> <p>1977-01-01</p> <p>Nine subjects (five well-trained post-coronary patients and four other middle-aged joggers) paticipated in a 42 km "Marathon" race. The course was covered in an average of 212 minutes under pleasantly warm conditions (Maximum 21.7 degree C, 69% relative humidity). Subjects were given initial hyperhydration and repeated subsequent doses of water, "Erg" (Na+ 19mE/l K+ 10.7mE/l, glucose 5.3g/100 ml) or a "Special Solution" (during the race Na+ 21mE/1 glucose 4.1g/100 ml; after the race Na+ 20 mE/l, K+ 4.7mE/l., glucose 4.1 g/100 ml). Weight loss averaged 2.2 kg and sweat production 3.3l taking account of water liberated from the <span class="hlt">hydration</span> of glycogen and the oxidation of food stuffs, it was estimated that most subjects suffered relatively little dehydration over the race (0.4--0.8l). This was confirmed by a sustained urine production of greater than 100ml/hr. Nevertheless, rectal temperatures showed substantial elevation over the race (final readings 38.3 - 40.2 degree C). In terms of <span class="hlt">fluid</span> balance and stability of plasma mineral composition, the runners drinking water performed slightly better than those receiving the other two solutions. Nevertheless, there may be merit in giving potassium solutions during recovery from vigorous effort. PMID:861437</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.V23A2052D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.V23A2052D"><span>Experimental Work Conducted on MgO Inundated <span class="hlt">Hydration</span> in WIPP-Relevant Brines</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Deng, H.; Xiong, Y.; Nemer, M. B.; Johnsen, S.</p> <p>2009-12-01</p> <p>Magnesium oxide (MgO) is being emplaced in the Waste Isolation Pilot Plant (WIPP) as an engineered barrier to mitigate the effect of microbial CO2 generation on actinide mobility in a postclosure repository environment. MgO will sequester CO2 and consume water in brine or water vapor in the gaseous <span class="hlt">phase</span>. Martin Marietta (MM) MgO is currently being emplaced in the WIPP. A fractional-factorial experiment has been performed to study the inundated-<span class="hlt">hydration</span> of MM MgO as a function of its particle size, solid-to-liquid ratio, and brine type. MgO <span class="hlt">hydration</span> experiments have been carried out with three MgO particle sizes and two solid-to-liquid ratios in three WIPP-related brines: ERDA-6, GWB and simplified GWB. ERDA-6 is a synthetic NaCl-rich brine typical of a Castile brine reservoir below the repository. GWB is a synthetic MgCl2- and NaCl-rich brine representative of intergranular brines from the Salado Formation at or near the stratigraphic horizon of the repository. Simplified GWB contains amounts of Mg, Na, and Cl similar to those in GWB without other minor constituents. The <span class="hlt">hydration</span> products include brucite (Mg(OH)2) and <span class="hlt">phase</span> 5 (Mg3(OH)5Cl4H2O). In addition to <span class="hlt">phase</span> 5, MgO <span class="hlt">hydration</span> in GWB or simplified GWB produces brucite, whereas MgO <span class="hlt">hydrated</span> in ERDA-6 only produces brucite. The MgO particle size has had a significant effect on the formation of <span class="hlt">hydration</span> products: small MgO particles have <span class="hlt">hydrated</span> before the large particles. MgO has <span class="hlt">hydrated</span> faster in simplified GWB than in the other two brines. In ERDA-6, the solid-to-liquid ratio has affected the brine pH due to the presence of CaO (~1 wt %) as an impurity in MM MgO. GWB has sufficient dissolved Mg to buffer pH despite small amounts of CaO. Both our results and thermodynamic modeling indicate that <span class="hlt">phase</span>-5 is the stable Mg-OH-Cl <span class="hlt">phase</span> in Mg-Na-Cl-dominated brines with ionic strengths and chemical compositions similar to that of GWB. In contrast, <span class="hlt">phase</span>-3 (Mg2(OH)3Cl4H2O) is the stable <span class="hlt">phase</span> in the MgCl2</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016CNSNS..39..381A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016CNSNS..39..381A"><span>Numerical schemes for anomalous diffusion of single-<span class="hlt">phase</span> <span class="hlt">fluids</span> in porous media</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Awotunde, Abeeb A.; Ghanam, Ryad A.; Al-Homidan, Suliman S.; Tatar, Nasser-eddine</p> <p>2016-10-01</p> <p>Simulation of <span class="hlt">fluid</span> flow in porous media is an indispensable part of oil and gas reservoir management. Accurate prediction of reservoir performance and profitability of investment rely on our ability to model the flow behavior of reservoir <span class="hlt">fluids</span>. Over the years, numerical reservoir simulation models have been based mainly on solutions to the normal diffusion of <span class="hlt">fluids</span> in the porous reservoir. Recently, however, it has been documented that <span class="hlt">fluid</span> flow in porous media does not always follow strictly the normal diffusion process. Small deviations from normal diffusion, called anomalous diffusion, have been reported in some experimental studies. Such deviations can be caused by different factors such as the viscous state of the <span class="hlt">fluid</span>, the fractal nature of the porous media and the pressure pulse in the system. In this work, we present explicit and implicit numerical solutions to the anomalous diffusion of single-<span class="hlt">phase</span> <span class="hlt">fluids</span> in heterogeneous reservoirs. An analytical solution is used to validate the numerical solution to the simple homogeneous case. The conventional wellbore flow model is modified to account for anomalous behavior. Example applications are used to show the behavior of wellbore and wellblock pressures during the single-<span class="hlt">phase</span> anomalous flow of <span class="hlt">fluids</span> in the reservoirs considered.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ThCFD.tmp...18Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ThCFD.tmp...18Y"><span>On hydrodynamic <span class="hlt">phase</span> field models for binary <span class="hlt">fluid</span> mixtures</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, Xiaogang; Gong, Yuezheng; Li, Jun; Zhao, Jia; Wang, Qi</p> <p>2018-05-01</p> <p>Two classes of thermodynamically consistent hydrodynamic <span class="hlt">phase</span> field models have been developed for binary <span class="hlt">fluid</span> mixtures of incompressible viscous <span class="hlt">fluids</span> of possibly different densities and viscosities. One is quasi-incompressible, while the other is incompressible. For the same binary <span class="hlt">fluid</span> mixture of two incompressible viscous <span class="hlt">fluid</span> components, which one is more appropriate? To answer this question, we conduct a comparative study in this paper. First, we visit their derivation, conservation and energy dissipation properties and show that the quasi-incompressible model conserves both mass and linear momentum, while the incompressible one does not. We then show that the quasi-incompressible model is sensitive to the density deviation of the <span class="hlt">fluid</span> components, while the incompressible model is not in a linear stability analysis. Second, we conduct a numerical investigation on coarsening or coalescent dynamics of protuberances using the two models. We find that they can predict quite different transient dynamics depending on the initial conditions and the density difference although they predict essentially the same quasi-steady results in some cases. This study thus cast a doubt on the applicability of the incompressible model to describe dynamics of binary mixtures of two incompressible viscous <span class="hlt">fluids</span> especially when the two <span class="hlt">fluid</span> components have a large density deviation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3368141','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3368141"><span>Lipid Bilayers in the Gel <span class="hlt">Phase</span> Become Saturated by Triton X-100 at Lower Surfactant Concentrations Than Those in the <span class="hlt">Fluid</span> <span class="hlt">Phase</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ahyayauch, Hasna; Collado, M. Isabel; Alonso, Alicia; Goñi, Felix M.</p> <p>2012-01-01</p> <p>It has been repeatedly observed that lipid bilayers in the gel <span class="hlt">phase</span> are solubilized by lower concentrations of Triton X-100, at least within certain temperature ranges, or other nonionic detergents than bilayers in the <span class="hlt">fluid</span> <span class="hlt">phase</span>. In a previous study, we showed that detergent partition coefficients into the lipid bilayer were the same for the gel and the <span class="hlt">fluid</span> <span class="hlt">phases</span>. In this contribution, turbidity, calorimetry, and 31P-NMR concur in showing that bilayers in the gel state (at least down to 13–20°C below the gel-<span class="hlt">fluid</span> transition temperature) become saturated with detergent at lower detergent concentrations than those in the <span class="hlt">fluid</span> state, irrespective of temperature. The different saturation may explain the observed differences in solubilization. PMID:22713566</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4525282','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4525282"><span>Navigating the Waters of Unconventional Crystalline <span class="hlt">Hydrates</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2015-01-01</p> <p>Elucidating the crystal structures, transformations, and thermodynamics of the two zwitterionic <span class="hlt">hydrates</span> (Hy2 and HyA) of 3-(4-dibenzo[b,f][1,4]oxepin-11-yl-piperazin-1-yl)-2,2-dimethylpropanoic acid (DB7) rationalizes the complex interplay of temperature, water activity, and pH on the solid form stability and transformation pathways to three neutral anhydrate polymorphs (Forms I, II°, and III). HyA contains 1.29 to 1.95 molecules of water per DB7 zwitterion (DB7z). Removal of the essential water stabilizing HyA causes it to collapse to an amorphous <span class="hlt">phase</span>, frequently concomitantly nucleating the stable anhydrate Forms I and II°. Hy2 is a stoichiometric dihydrate and the only known precursor to Form III, a high energy disordered anhydrate, with the level of disorder depending on the drying conditions. X-ray crystallography, solid state NMR, and H/D exchange experiments on highly crystalline <span class="hlt">phase</span> pure samples obtained by exquisite control over crystallization, filtration, and drying conditions, along with computational modeling, provided a molecular level understanding of this system. The slow rates of many transformations and sensitivity of equilibria to exact conditions, arising from its varying static and dynamic disorder and water mobility in different <span class="hlt">phases</span>, meant that characterizing DB7 <span class="hlt">hydration</span> in terms of simplified <span class="hlt">hydrate</span> classifications was inappropriate for developing this pharmaceutical. PMID:26075319</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27891237','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27891237"><span>The impact of fire suppression tasks on firefighter <span class="hlt">hydration</span>: a critical review with consideration of the utility of reported <span class="hlt">hydration</span> measures.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Walker, Adam; Pope, Rodney; Orr, Robin Marc</p> <p>2016-01-01</p> <p>Firefighting is a highly stressful occupation with unique physical challenges, apparel and environments that increase the potential for dehydration. Dehydration leaves the firefighter at risk of harm to their health, safety and performance. The purpose of this review was to critically analyse the current literature investigating the impact of fighting 'live' fires on firefighter <span class="hlt">hydration</span>. A systematic search was performed of four electronic databases for relevant published studies investigating the impact of live fire suppression on firefighter <span class="hlt">hydration</span>. Study eligibility was assessed using strict inclusion and exclusion criteria. The included studies were critically appraised using the Downs and Black protocol and graded according to the Kennelly grading system. Ten studies met the eligibility criteria for this review. The average score for methodological quality was 55 %, ranging from 50 % ('fair' quality) to 61 % ('good' quality) with a 'substantial agreement' between raters ( k  = .772). Wildfire suppression was considered in five studies and structural fire suppression in five studies. Results varied across the studies, reflecting variations in outcome measures, <span class="hlt">hydration</span> protocols and interventions. Three studies reported significant indicators of dehydration resulting from structural fire suppression, while two studies found mixed results, with some measures indicating dehydration and other measures an unchanged <span class="hlt">hydration</span> status. Three studies found non-significant changes in <span class="hlt">hydration</span> resulting from wildfire firefighting and two studies found significant improvements in markers of <span class="hlt">hydration</span>. Ad libitum <span class="hlt">fluid</span> intake was a common factor across the studies finding no, or less severe, dehydration. The evidence confirms that structural and wildfire firefighting can cause dehydration. Ad libitum drinking may be sufficient to maintain <span class="hlt">hydration</span> in many wildfire environments but possibly not during intense, longer duration, hot structural fire operations</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUSMGP34A..03E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUSMGP34A..03E"><span>Magnetic Diagenesis in the Gas <span class="hlt">Hydrate</span> System</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Enkin, R. J.; Hamilton, T. S.; Esteban, L.</p> <p>2009-05-01</p> <p>Natural gas <span class="hlt">hydrate</span> is a methane-bearing form of ice which occurs in permafrost and continental slope settings. Geochemical processes associated with gas <span class="hlt">hydrate</span> formation lead to the growth of iron sulphides which have a geophysically measurable magnetic signature. Detailed magnetic investigation and complementary petrological observations were undertaken on unconsolidated sediments from three gas <span class="hlt">hydrate</span> (GH) settings: permafrost in fluvial-deltaic silts and sands in the Western Canadian Arctic (Japex et al. Mallik 5L-38 in 2002); diamictons and hemipelagics in the Cascadia accretionary wedge west of Vancouver Island (IODP Exp.311 in 2006); and marine sands and hemipelagics from the Bay of Bengal (NGHP Exp.01 in 2007). These magnetic measurements provide stratigraphic profiles which reveal fine scale variations in lithology, magnetic grain size, and paleo-pore <span class="hlt">fluid</span> geochemistry. The highest magnetic susceptibility values are observed in strata which preserve high initial concentrations of detrital magnetite, such as glacial deposits. The lowest values of magnetic susceptibility are observed where iron has been reduced to paramagnetic pyrite, formed in settings with high methane and sulphate flux such as at methane vents. Enhanced values of magnetic susceptibility characterize the introduction of the ferrimagnetic iron sulphide minerals greigite and smythite. These magnetic minerals are mostly found immediately adjacent to the sedimentary horizons which host the gas <span class="hlt">hydrate</span> and their textures and compositions indicate rapid disequilibrium crystallization. The observed diagenesis result from the unique physical and geochemical properties of the environment where gas <span class="hlt">hydrates</span> form: methane is available to fuel microbiological activity and the freezing which accompanied GH crystallization quickly removed pure water, froze the sediments into an impermeable solid and expelled more concentrated brines into the adjacent less permeable strata to the point of inducing</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27939859','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27939859"><span><span class="hlt">Fluid</span> Therapy for Pediatric Patients.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lee, Justine A; Cohn, Leah A</p> <p>2017-03-01</p> <p>Young puppies and kittens have unique physiologic needs in regards to <span class="hlt">fluid</span> therapy, which must address <span class="hlt">hydration</span>, vascular <span class="hlt">fluid</span> volume, electrolyte disturbances, or hypoglycemia. Pediatric patients have a higher <span class="hlt">fluid</span> requirement compared with adults and can rapidly progress from mild dehydration to hypovolemia. Simultaneously, their small size makes overhydration a real possibility. Patient size complicates <span class="hlt">fluid</span> administration because catheters used in larger pets may be difficult to place. Routes of <span class="hlt">fluid</span> administration used in the neonate or pediatric patient include oral, subcutaneous, intraperitoneal, intraosseous, and intravenous. Clinicians should be aware of the pros and cons of each route. Copyright © 2016 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1914593B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1914593B"><span>Estimating the gas <span class="hlt">hydrate</span> recovery prospects in the western Black Sea basin based on the 3D multiphase flow of <span class="hlt">fluid</span> and gas components within highly permeable paleo-channel-levee systems</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Burwicz, Ewa; Zander, Timo; Rottke, Wolf; Bialas, Joerg; Hensen, Christian; Atgin, Orhan; Haeckel, Matthias</p> <p>2017-04-01</p> <p>Gas <span class="hlt">hydrate</span> deposits are abundant in the Black Sea region and confirmed by direct observations as well as geophysical evidence, such as continuous bottom simulating reflectors (BSRs). Although those gas <span class="hlt">hydrate</span> accumulations have been well-studied for almost two decades, the migration pathways of methane that charge the gas <span class="hlt">hydrate</span> stability zone (GHSZ) in the region are unknown. The aim of this study is to explore the most probable gas migration scenarios within a three-dimensional finite element grid based on seismic surveys and available basin cross-sections. We have used the commercial software PetroMod(TM) (Schlumberger) to perform a set of sensitivity studies that narrow the gap between the wide range of sediment properties affecting the multi-<span class="hlt">phase</span> flow in porous media. The high-resolution model domain focuses on the Danube deep-sea fan and associated buried sandy channel-levee systems whereas the total extension of the model domain covers a larger area of the western Black Sea basin. Such a large model domain allows for investigating biogenic as well as thermogenic methane generation and a permeability driven migration of the free <span class="hlt">phase</span> of methane on a basin scale to confirm the hypothesis of efficient methane migration into the gas <span class="hlt">hydrate</span> reservoir layers by horizontal flow along the carrier beds.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.8259A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.8259A"><span>Extensive decarbonation of continuously <span class="hlt">hydrated</span> subducting slabs</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arzilli, Fabio; Burton, Mike; La Spina, Giuseppe; Macpherson, Colin G.</p> <p>2017-04-01</p> <p>CO2 release from subducting slabs is a key element of Earth's carbon cycle, consigning slab carbon either to mantle burial or recycling to the surface through arc volcanism, however, what controls subducted carbon's fate is poorly understood. <span class="hlt">Fluids</span> mobilized by devolatilization of subducting slabs play a fundamental role in the melting of mantle wedges and in global geochemical cycles [1]. The effect of such <span class="hlt">fluids</span> on decarbonation in subducting lithologies has been investigated recently [2-5], but several thermodynamic models [2-3], and experimental studies [6] suggest that carbon-bearing <span class="hlt">phases</span> are stable at sub-arc depths (80-140 km; 2.6-4.5 GPa), implying that this carbon can be carried to mantle depths of >140 km. This is inconsistent with observations of voluminous CO2 release from arc volcanoes [7-10], located above slabs that are at 2.6-4.5 GPa pressure. The aim of this study is to re-evaluate the role of metamorphic decarbonation, showing if decarbonation reactions could be feasible at sub-arc depths combined with a continuous <span class="hlt">hydration</span> scenario. We used the PerpleX software combined with a custom-designed algorithm to simulate a pervasive <span class="hlt">fluid</span> infiltration characterized by "continuous <span class="hlt">hydration</span>" combined with a distillation model, in which is possible to remove CO2 when decarbonation occurs, to obtain an open-system scenario. This is performed by repeatedly flushing the sediment with pure H2O at 0.5, 1.0 or 5 wt.% until no further decarbonation occurs. Here we show that continuous <span class="hlt">hydrated</span> of sediment veneers on subducting slabs by H2O released from oceanic crust and serpentinised mantle lithosphere [11-13], produces extensive slab decarbonation over a narrow, sub-arc pressure range, even for low temperature subduction pathways. This explains the location of CO2-rich volcanism, quantitatively links the sedimentary composition of slab material to the degree of decarbonation and greatly increases estimates for the magnitude of carbon flux through the arc</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29702347','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29702347"><span>Towards understanding the role of amines in the SO2 <span class="hlt">hydration</span> and the contribution of the <span class="hlt">hydrated</span> product to new particle formation in the Earth's atmosphere.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lv, Guochun; Nadykto, Alexey B; Sun, Xiaomin; Zhang, Chenxi; Xu, Yisheng</p> <p>2018-08-01</p> <p>By theoretical calculations, the gas-<span class="hlt">phase</span> SO 2 <span class="hlt">hydration</span> reaction assisted by methylamine (MA) and dimethylamine (DMA) was investigated, and the potential contribution of the <span class="hlt">hydrated</span> product to new particle formation (NPF) also was evaluated. The results show that the energy barrier for aliphatic amines (MA and DMA) assisted SO 2 <span class="hlt">hydration</span> reaction is lower than the corresponding that of water and ammonia assisted SO 2 <span class="hlt">hydration</span>. In these <span class="hlt">hydration</span> reactions, nearly barrierless reaction (only a barrier of 0.1 kcal mol -1 ) can be found in the case of SO 2  + 2H 2 O + DMA. These lead us to conclude that the SO 2 <span class="hlt">hydration</span> reaction assisted by MA and DMA is energetically facile. The temporal evolution for <span class="hlt">hydrated</span> products (CH 3 NH 3 + -HSO 3 - -H 2 O or (CH 3 ) 2 NH 2 + -HSO 3 - -H 2 O) in molecular dynamics simulations indicates that these complexes can self-aggregate into bigger clusters and can absorb water and amine molecules, which means that these <span class="hlt">hydrated</span> products formed by the <span class="hlt">hydration</span> reaction may serve as a condensation nucleus to initiate the NPF. Copyright © 2018 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1408239','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1408239"><span>Final Scientific/Technical Report: Characterizing the Response of the Cascadia Margin Gas <span class="hlt">Hydrate</span> Reservoir to Bottom Water Warming Along the Upper Continental Slope</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Solomon, Evan A.; Johnson, H. Paul; Salmi, Marie</p> <p></p> <p>The objective of this project is to understand the response of the WA margin gas <span class="hlt">hydrate</span> system to contemporary warming of bottom water along the upper continental slope. Through pre-cruise analysis and modeling of archive and recent geophysical and oceanographic data, we (1) inventoried bottom simulating reflectors along the WA margin and defined the upper limit of gas <span class="hlt">hydrate</span> stability, (2) refined margin-wide estimates of heat flow and geothermal gradients, (3) characterized decadal scale temporal variations of bottom water temperatures at the upper continental slope of the Washington margin, and (4) used numerical simulations to provide quantitative estimates of howmore » the shallow boundary of methane <span class="hlt">hydrate</span> stability responds to modern environmental change. These pre-cruise results provided the context for a systematic geophysical and geochemical survey of methane seepage along the upper continental slope from 48° to 46°N during a 10-day field program on the R/V Thompson from October 10-19, 2014. This systematic inventory of methane emissions along this climate-sensitive margin corridor and comprehensive sediment and water column sampling program provided data and samples for <span class="hlt">Phase</span> 3 of this project that focused on determining <span class="hlt">fluid</span> and methane sources (deep-source vs. shallow; microbial, thermogenic, gas <span class="hlt">hydrate</span> dissociation) within the sediment, and how they relate to contemporary intermediate water warming. During the 2014 research expedition, we sampled nine seep sites between ~470 and 520 m water depth, within the zone of predicted methane <span class="hlt">hydrate</span> retreat over the past 40 years. We imaged 22 bubble plumes with heights commonly rising to ~300 meters below sea level with one reaching near the sea surface. We collected 22 gravity cores and 20 CTD/hydrocasts from the 9 seeps and at background locations (no acoustic evidence of seepage) within the depth interval of predicted downslope retreat of the methane <span class="hlt">hydrate</span> stability zone. Approximately 300 pore</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70027591','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70027591"><span>Thermal regulation of methane <span class="hlt">hydrate</span> dissociation: Implications for gas production models</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Circone, S.; Kirby, S.H.; Stern, L.A.</p> <p>2005-01-01</p> <p>Thermal self-regulation of methane <span class="hlt">hydrate</span> dissociation at pressure, temperature conditions along <span class="hlt">phase</span> boundaries, illustrated by experiment in this report, is a significant effect with potential relevance to gas production from gas <span class="hlt">hydrate</span>. In surroundings maintained at temperatures above the ice melting point, the temperature in the vicinity of dissociating methane <span class="hlt">hydrate</span> will decrease because heat flow is insufficient to balance the heat absorbed by the endothermic reaction: CH4??nH2O (s) = CH4 (g) + nH2O (l). Temperature decreases until either all of the <span class="hlt">hydrate</span> dissociates or a <span class="hlt">phase</span> boundary is reached. At pressures above the quadruple point, the temperature-limiting <span class="hlt">phase</span> boundary is that of the dissociation reaction itself. At lower pressures, the minimum temperature is limited by the H2O solid/liquid boundary. This change in the temperature-limiting <span class="hlt">phase</span> boundary constrains the pressure, temperature conditions of the quadruple point for the CH4-H2O system to 2.55 ?? 0.02 MPa and 272.85 ?? 0.03 K. At pressures below the quadruple point, <span class="hlt">hydrate</span> dissociation proceeds as the liquid H2O produced by dissociation freezes. In the laboratory experiments, dissociation is not impeded by the formation of ice byproduct per se; instead rates are proportional to the heat flow from the surroundings. This is in contrast to the extremely slow dissociation rates observed when surrounding temperatures are below the H2O solid/liquid boundary, where no liquid water is present. This "anomalous" or "self" preservation behavior, most pronounced near 268 K, cannot be accessed when surrounding temperatures are above the H2O solid/liquid boundary. ?? 2005 American Chemical Society.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19790012164','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19790012164"><span>Method and turbine for extracting kinetic energy from a stream of two-<span class="hlt">phase</span> <span class="hlt">fluid</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Elliott, D. G. (Inventor)</p> <p>1979-01-01</p> <p>An axial flow separator turbine is described which includes a number of nozzles for delivering streams of a two-<span class="hlt">phase</span> <span class="hlt">fluid</span> along linear paths. A <span class="hlt">phase</span> separator which responsively separates the vapor and liquid is characterized by concentrically related annuli supported for rotation within the paths. The separator has endless channels for confining the liquid under the influence of centrifugal forces. A vapor turbine fan extracts kinetic energy from the liquid. Angular momentum of both the liquid <span class="hlt">phase</span> and the vapor <span class="hlt">phase</span> of the <span class="hlt">fluid</span> is converted to torque.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011JChPh.135e4510A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011JChPh.135e4510A"><span>Optimization of linear and branched alkane interactions with water to simulate hydrophobic <span class="hlt">hydration</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ashbaugh, Henry S.; Liu, Lixin; Surampudi, Lalitanand N.</p> <p>2011-08-01</p> <p>Previous studies of simple gas <span class="hlt">hydration</span> have demonstrated that the accuracy of molecular simulations at capturing the thermodynamic signatures of hydrophobic <span class="hlt">hydration</span> is linked both to the fidelity of the water model at replicating the experimental liquid density at ambient pressure and an accounting of polarization interactions between the solute and water. We extend those studies to examine alkane <span class="hlt">hydration</span> using the transferable potentials for <span class="hlt">phase</span> equilibria united-atom model for linear and branched alkanes, developed to reproduce alkane <span class="hlt">phase</span> behavior, and the TIP4P/2005 model for water, which provides one of the best descriptions of liquid water for the available fixed-point charge models. Alkane site/water oxygen Lennard-Jones cross interactions were optimized to reproduce the experimental alkane <span class="hlt">hydration</span> free energies over a range of temperatures. The optimized model reproduces the <span class="hlt">hydration</span> free energies of the fitted alkanes with a root mean square difference between simulation and experiment of 0.06 kcal/mol over a wide temperature range, compared to 0.44 kcal/mol for the parent model. The optimized model accurately reproduces the temperature dependence of hydrophobic <span class="hlt">hydration</span>, as characterized by the <span class="hlt">hydration</span> enthalpies, entropies, and heat capacities, as well as the pressure response, as characterized by partial molar volumes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950015397&hterms=recycling&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Drecycling','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950015397&hterms=recycling&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Drecycling"><span>Subduction of <span class="hlt">hydrated</span> basalt of the oceanic crust: Implications for recycling of water into the upper mantle and continental growth</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rapp, R. P.</p> <p>1994-01-01</p> <p>Subduction zones are presently the dominant sites on Earth for recycling and mass transfer between the crust and mantle; they feed <span class="hlt">hydrated</span> basaltic oceanic crust into the upper mantle, where dehydration reactions release aqueous <span class="hlt">fluids</span> and/or hydrous melts. The loci for <span class="hlt">fluid</span> and/or melt generation will be determined by the intersection of dehydration reaction boundaries of primary hydrous minerals within the subducted lithosphere with slab geotherms. For metabasalt of the oceanic crust, amphibole is the dominant hydrous mineral. The dehydration melting solidus, vapor-absent melting <span class="hlt">phase</span> relationships; and amphibole-out <span class="hlt">phase</span> boundary for a number of natural metabasalts have been determined experimentally, and the pressure-temperature conditions of each of these appear to be dependent on bulk composition. Whether or not the dehydration of amphibole is a <span class="hlt">fluid</span>-generating or partial melting reaction depends on a number of factors specific to a given subduction zone, such as age and thickness of the subducting oceanic lithosphere, the rate of convergence, and the maturity of the subduction zone. In general, subduction of young, hot oceanic lithosphere will result in partial melting of metabasalt of the oceanic crust within the garnet stability field; these melts are characteristically high-Al2O3 trondhjemites, tonalites and dacites. The presence of residual garnet during partial melting imparts a distinctive trace element signature (e.g., high La/Yb, high Sr/Y and Cr/Y combined with low Cr and Y contents relative to demonstrably mantle-derived arc magmas). Water in eclogitized, subducted basalt of the oceanic crust is therefore strongly partitioned into melts generated below about 3.5 GPa in 'hot' subduction zones. Although <span class="hlt">phase</span> equilibria experiments relevant to 'cold' subduction of <span class="hlt">hydrated</span> natural basalts are underway in a number of high-pressure laboratories, little is known with respect to the stability of more exotic hydrous minerals (e.g., ellenbergite) and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22395940-study-hydration-microstructure-portland-cement-containing-diethanol-isopropanolamine','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22395940-study-hydration-microstructure-portland-cement-containing-diethanol-isopropanolamine"><span>Study on the <span class="hlt">hydration</span> and microstructure of Portland cement containing diethanol-isopropanolamine</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ma, Suhua, E-mail: yc982@163.com; Li, Weifeng; Zhang, Shenbiao</p> <p>2015-01-15</p> <p>Diethanol-isopropanolamine (DEIPA) is a tertiary alkanolamine used in the formulation of cement grinding-aid additives and concrete early-strength agents. In this research, isothermal calorimetry was used to study the <span class="hlt">hydration</span> kinetics of Portland cement with DEIPA. A combination of X-ray powder diffraction (XRPD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC)–thermogravimetric (TG) analysis and micro-Raman spectroscopy was used to investigate the <span class="hlt">phase</span> development in the process of <span class="hlt">hydration</span>. Mercury intrusion porosimetry was used to study the pore size distribution and porosity. The results indicate that DEIPA promotes the formation of ettringite (AFt) and enhances the second <span class="hlt">hydration</span> rate of the aluminatemore » and ferrite <span class="hlt">phases</span>, the transformation of AFt into monosulfoaluminate (AFm) and the formation of microcrystalline portlandite (CH) at early stages. At later stages, DEIPA accelerates the <span class="hlt">hydration</span> of alite and reduces the pore size and porosity.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70030645','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70030645"><span>Scientific results from Gulf of Mexico Gas <span class="hlt">Hydrates</span> Joint Industry Project Leg 1 drilling: Introduction and overview</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ruppel, C.; Boswell, R.; Jones, E.</p> <p>2008-01-01</p> <p>The Gulf of Mexico Gas <span class="hlt">Hydrates</span> Joint Industry Project (JIP) is a consortium of production and service companies and some government agencies formed to address the challenges that gas <span class="hlt">hydrates</span> pose for deepwater exploration and production. In partnership with the U.S. Department of Energy and with scientific assistance from the U.S. Geological Survey and academic partners, the JIP has focused on studies to assess hazards associated with drilling the fine-grained, <span class="hlt">hydrate</span>-bearing sediments that dominate much of the shallow subseafloor in the deepwater (>500 m) Gulf of Mexico. In preparation for an initial drilling, logging, and coring program, the JIP sponsored a multi-year research effort that included: (a) the development of borehole stability models for <span class="hlt">hydrate</span>-bearing sediments; (b) exhaustive laboratory measurements of the physical properties of <span class="hlt">hydrate</span>-bearing sediments; (c) refinement of new techniques for processing industry-standard 3-D seismic data to constrain gas <span class="hlt">hydrate</span> saturations; and (d) construction of instrumentation to measure the physical properties of sediment cores that had never been removed from in situ hydrostatic pressure conditions. Following review of potential drilling sites, the JIP launched a 35-day expedition in Spring 2005 to acquire well logs and sediment cores at sites in Atwater Valley lease blocks 13/14 and Keathley Canyon lease block 151 in the northern Gulf of Mexico minibasin province. The Keathley Canyon site has a bottom simulating reflection at ???392 m below the seafloor, while the Atwater Valley location is characterized by seafloor mounds with an underlying upwarped seismic reflection consistent with upward <span class="hlt">fluid</span> migration and possible shoaling of the base of the gas <span class="hlt">hydrate</span> stability (BGHS). No gas <span class="hlt">hydrate</span> was recovered at the drill sites, but logging data, and to some extent cores, suggest the occurrence of gas <span class="hlt">hydrate</span> in inferred coarser-grained beds and fractures, particularly between 220 and 330 m below the seafloor</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24849698','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24849698"><span>Probing methane <span class="hlt">hydrate</span> nucleation through the forward flux sampling method.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bi, Yuanfei; Li, Tianshu</p> <p>2014-11-26</p> <p>Understanding the nucleation of <span class="hlt">hydrate</span> is the key to developing effective strategies for controlling methane <span class="hlt">hydrate</span> formation. Here we present a computational study of methane <span class="hlt">hydrate</span> nucleation, by combining the forward flux sampling (FFS) method and the coarse-grained water model mW. To facilitate the application of FFS in studying the formation of methane <span class="hlt">hydrate</span>, we developed an effective order parameter λ on the basis of the topological analysis of the tetrahedral network. The order parameter capitalizes the signature of <span class="hlt">hydrate</span> structure, i.e., polyhedral cages, and is capable of efficiently distinguishing <span class="hlt">hydrate</span> from ice and liquid water while allowing the formation of different <span class="hlt">hydrate</span> <span class="hlt">phases</span>, i.e., sI, sII, and amorphous. Integration of the order parameter λ with FFS allows explicitly computing <span class="hlt">hydrate</span> nucleation rates and obtaining an ensemble of nucleation trajectories under conditions where spontaneous <span class="hlt">hydrate</span> nucleation becomes too slow to occur in direct simulation. The convergence of the obtained <span class="hlt">hydrate</span> nucleation rate was found to depend crucially on the convergence of the spatial distribution for the spontaneously formed <span class="hlt">hydrate</span> seeds obtained from the initial sampling of FFS. The validity of the approach is also verified by the agreement between the calculated nucleation rate and that inferred from the direct simulation. Analyzing the obtained large ensemble of <span class="hlt">hydrate</span> nucleation trajectories, we show <span class="hlt">hydrate</span> formation at 220 K and 500 bar is initiated by the nucleation events occurring in the vicinity of water-methane interface, and facilitated by a gradual transition from amorphous to crystalline structure. The latter provides the direct support to the proposed two-step nucleation mechanism of methane <span class="hlt">hydrate</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70019381','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70019381"><span>Synthesis of polycrystalline methane <span class="hlt">hydrate</span>, and its <span class="hlt">phase</span> stability and mechanical properties at elevated pressure</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Stern, L.A.; Kirby, S.H.; Durham, W.B.</p> <p>1997-01-01</p> <p>Test specimens of methane <span class="hlt">hydrate</span> were grown under static conditions by combining cold, pressurized CH4 gas with H2O ice grains, then warming the system to promote the reaction CH4 (g) + 6H2O (s???l) ??? CH4??6H2O. <span class="hlt">Hydrate</span> formation evidently occurs at the nascent ice/liquid water interface, and complete reaction was achieved by warming the system above 271.5 K and up to 289 K, at 25-30 MPa, for approximately 8 hours. The resulting material is pure methane <span class="hlt">hydrate</span> with controlled grain size and random texture. Fabrication conditions placed the H2O ice well above its melting temperature before reaction completed, yet samples and run records showed no evidence for bulk melting of the ice grains. Control experiments using Ne, a non-<span class="hlt">hydrate</span>-forming gas, verified that under otherwise identical conditions, the pressure reduction and latent heat associated with ice melting is easily detectable in our fabrication apparatus. These results suggest that under <span class="hlt">hydrate</span>-forming conditions, H2O ice can persist metastably at temperatures well above its melting point. Methane <span class="hlt">hydrate</span> samples were then tested in constant-strain-rate deformation experiments at T= 140-200 K, Pc= 50-100 MPa, and ????= 10-4-10-6 s-1. Measurements in both the brittle and ductile fields showed that methane <span class="hlt">hydrate</span> has measurably different strength than H2O ice, and work hardens to a higher degree compared to other ices as well as to most metals and ceramics at high homologous temperatures. This work hardening may be related to a changing stoichiometry under pressure during plastic deformation; x-ray analyses showed that methane <span class="hlt">hydrate</span> undergoes a process of solid-state disproportionation or exsolution during deformation at conditions well within its conventional stability field.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDD15004T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDD15004T"><span>Simulating single-<span class="hlt">phase</span> and two-<span class="hlt">phase</span> non-Newtonian <span class="hlt">fluid</span> flow of a digital rock scanned at high resolution</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tembely, Moussa; Alsumaiti, Ali M.; Jouini, Mohamed S.; Rahimov, Khurshed; Dolatabadi, Ali</p> <p>2017-11-01</p> <p>Most of the digital rock physics (DRP) simulations focus on Newtonian <span class="hlt">fluids</span> and overlook the detailed description of rock-<span class="hlt">fluid</span> interaction. A better understanding of multiphase non-Newtonian <span class="hlt">fluid</span> flow at pore-scale is crucial for optimizing enhanced oil recovery (EOR). The Darcy scale properties of reservoir rocks such as the capillary pressure curves and the relative permeability are controlled by the pore-scale behavior of the multiphase flow. In the present work, a volume of <span class="hlt">fluid</span> (VOF) method coupled with an adaptive meshing technique is used to perform the pore-scale simulation on a 3D X-ray micro-tomography (CT) images of rock samples. The numerical model is based on the resolution of the Navier-Stokes equations along with a <span class="hlt">phase</span> fraction equation incorporating the dynamics contact model. The simulations of a single <span class="hlt">phase</span> flow for the absolute permeability showed a good agreement with the literature benchmark. Subsequently, the code is used to simulate a two-<span class="hlt">phase</span> flow consisting of a polymer solution, displaying a shear-thinning power law viscosity. The simulations enable to access the impact of the consistency factor (K), the behavior index (n), along with the two contact angles (advancing and receding) on the relative permeability.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.sciencemag.org/content/early/2013/12/05/science.1244734','USGSPUBS'); return false;" href="http://www.sciencemag.org/content/early/2013/12/05/science.1244734"><span>Soil diversity and <span class="hlt">hydration</span> as observed by ChemCam at Gale crater, Mars</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Meslin, P.-Y.; Gasnault, O.; Forni, O.; Schroder, S.; Cousin, A.; Berger, G.; Clegg, S.M.; Lasue, J.; Maurice, S.; Sautter, V.; Le Mouélic, S.; Wiens, R.C.; Fabre, C.; Goetz, W.; Bish, D.L.; Mangold, N.; Ehlmann, B.; Lanza, N.; Harri, A.-M.; Anderson, Ryan Bradley; Rampe, E.; McConnochie, T.H.; Pinet, P.; Blaney, D.; ,; Archer, D.; Barraclough, B.; Bender, S.; Blake, D.; Blank, J.G.; Bridges, N.; Clark, B. C.; DeFlores, L.; Delapp, D.; Dromart, G.; Dyar, M.D.; Fisk, M. R.; Gondet, B.; Grotzinger, J.; Herkenhoff, K.; Johnson, J.; Lacour, J.-L.; Langevin, Y.; Leshin, L.; Lewin, E.; Madsen, M.B.; Melikechi, N.; Mezzacappa, Alissa; Mischna, M.A.; Moores, J.E.; Newsom, H.; Ollila, A.; ,; Renno, N.; Sirven, J.B.; Tokar, R.; de la Torre, M.; d'Uston, L.; Vaniman, D.; Yingst, A.</p> <p>2013-01-01</p> <p>The ChemCam instrument, which provides insight into martian soil chemistry at the submillimeter scale, identified two principal soil types along the Curiosity rover traverse: a fine-grained mafic type and a locally derived, coarse-grained felsic type. The mafic soil component is representative of widespread martian soils and is similar in composition to the martian dust. It possesses a ubiquitous hydrogen signature in ChemCam spectra, corresponding to the <span class="hlt">hydration</span> of the amorphous <span class="hlt">phases</span> found in the soil by the CheMin instrument. This <span class="hlt">hydration</span> likely accounts for an important fraction of the global <span class="hlt">hydration</span> of the surface seen by previous orbital measurements. ChemCam analyses did not reveal any significant exchange of water vapor between the regolith and the atmosphere. These observations provide constraints on the nature of the amorphous <span class="hlt">phases</span> and their <span class="hlt">hydration</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24072924','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24072924"><span>Soil diversity and <span class="hlt">hydration</span> as observed by ChemCam at Gale crater, Mars.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Meslin, P-Y; Gasnault, O; Forni, O; Schröder, S; Cousin, A; Berger, G; Clegg, S M; Lasue, J; Maurice, S; Sautter, V; Le Mouélic, S; Wiens, R C; Fabre, C; Goetz, W; Bish, D; Mangold, N; Ehlmann, B; Lanza, N; Harri, A-M; Anderson, R; Rampe, E; McConnochie, T H; Pinet, P; Blaney, D; Léveillé, R; Archer, D; Barraclough, B; Bender, S; Blake, D; Blank, J G; Bridges, N; Clark, B C; DeFlores, L; Delapp, D; Dromart, G; Dyar, M D; Fisk, M; Gondet, B; Grotzinger, J; Herkenhoff, K; Johnson, J; Lacour, J-L; Langevin, Y; Leshin, L; Lewin, E; Madsen, M B; Melikechi, N; Mezzacappa, A; Mischna, M A; Moores, J E; Newsom, H; Ollila, A; Perez, R; Renno, N; Sirven, J-B; Tokar, R; de la Torre, M; d'Uston, L; Vaniman, D; Yingst, A</p> <p>2013-09-27</p> <p>The ChemCam instrument, which provides insight into martian soil chemistry at the submillimeter scale, identified two principal soil types along the Curiosity rover traverse: a fine-grained mafic type and a locally derived, coarse-grained felsic type. The mafic soil component is representative of widespread martian soils and is similar in composition to the martian dust. It possesses a ubiquitous hydrogen signature in ChemCam spectra, corresponding to the <span class="hlt">hydration</span> of the amorphous <span class="hlt">phases</span> found in the soil by the CheMin instrument. This <span class="hlt">hydration</span> likely accounts for an important fraction of the global <span class="hlt">hydration</span> of the surface seen by previous orbital measurements. ChemCam analyses did not reveal any significant exchange of water vapor between the regolith and the atmosphere. These observations provide constraints on the nature of the amorphous <span class="hlt">phases</span> and their <span class="hlt">hydration</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26978895','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26978895"><span>[Laser Raman Spectroscopy and Its Application in Gas <span class="hlt">Hydrate</span> Studies].</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fu, Juan; Wu, Neng-you; Lu, Hai-long; Wu, Dai-dai; Su, Qiu-cheng</p> <p>2015-11-01</p> <p>Gas <span class="hlt">hydrates</span> are important potential energy resources. Microstructural characterization of gas <span class="hlt">hydrate</span> can provide information to study the mechanism of gas <span class="hlt">hydrate</span> formation and to support the exploitation and application of gas <span class="hlt">hydrate</span> technology. This article systemly introduces the basic principle of laser Raman spectroscopy and summarizes its application in gas <span class="hlt">hydrate</span> studies. Based on Raman results, not only can the information about gas composition and structural type be deduced, but also the occupancies of large and small cages and even <span class="hlt">hydration</span> number can be calculated from the relative intensities of Raman peaks. By using the in-situ analytical technology, laser Raman specstropy can be applied to characterize the formation and decomposition processes of gas <span class="hlt">hydrate</span> at microscale, for example the enclathration and leaving of gas molecules into/from its cages, to monitor the changes in gas concentration and gas solubility during <span class="hlt">hydrate</span> formation and decomposition, and to identify <span class="hlt">phase</span> changes in the study system. Laser Raman in-situ analytical technology has also been used in determination of <span class="hlt">hydrate</span> structure and understanding its changing process under the conditions of ultra high pressure. Deep-sea in-situ Raman spectrometer can be employed for the in-situ analysis of the structures of natural gas <span class="hlt">hydrate</span> and their formation environment. Raman imaging technology can be applied to specify the characteristics of crystallization and gas distribution over <span class="hlt">hydrate</span> surface. With the development of laser Raman technology and its combination with other instruments, it will become more powerful and play a more significant role in the microscopic study of gas <span class="hlt">hydrate</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMOS54A..03G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMOS54A..03G"><span>Steps Towards Understanding Large-scale Deformation of Gas <span class="hlt">Hydrate</span>-bearing Sediments</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gupta, S.; Deusner, C.; Haeckel, M.; Kossel, E.</p> <p>2016-12-01</p> <p> test scenarios focusing on effects of dynamic changes in gas <span class="hlt">hydrate</span> saturation, highly uneven gas <span class="hlt">hydrate</span> distributions, focused <span class="hlt">fluid</span> migration and gas <span class="hlt">hydrate</span> production through depressurization and CO2 injection.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMOS21A1114Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMOS21A1114Y"><span>Dynamics of Permafrost Associated Methane <span class="hlt">Hydrate</span> in Response to Climate Change</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>You, K.; Flemings, P. B.</p> <p>2014-12-01</p> <p>The formation and melting of methane <span class="hlt">hydrate</span> and ice are intertwined in permafrost regions. A shortage of methane supply leads to formation of <span class="hlt">hydrate</span> only at depth, below the base of permafrost. We consider a system with the ground surface initially at 0 oC with neither ice nor <span class="hlt">hydrate</span> present. We abruptly decrease the temperature from 0 to -10 oC to simulate the effect of marine regression/ global cooling. A low methane supply rate of 0.005 kg m-2 yr-1 from depth leads to distinct ice and <span class="hlt">hydrate</span> layers: a 100 m continuous <span class="hlt">hydrate</span> layer is present beneath 850 m at 80 k.y.. However, a high methane supply rate of 0.1 kg m-2 yr-1 leads to 50 m ice-bonded methane <span class="hlt">hydrate</span> at the base of permafrost, and the <span class="hlt">hydrate</span> layer distributes between the depth of 350 and 700 m at 80 k.y.. We apply our model to illuminate future melting of <span class="hlt">hydrate</span> at Mallik, a known Arctic <span class="hlt">hydrate</span> accumulation. We assume a 600 m thick ice saturated (average 90%) layer extending downward from the ground surface. We increase the surface temperature linearly from -6 to 0 oC for 300 yr and then keep the surface temperature at 0 oC to reflect future climate warming caused by doubling of CO2. <span class="hlt">Hydrate</span> melting is initiated at the base of the <span class="hlt">hydrate</span> layer after 15 k.y.. Methane gas starts to vent to the atmosphere at 38 k.y. with an average flux of ~ 0.35 g m-2 yr-1. If the 600 m thick average ice saturation is decreased to half (45%) (or to zero), methane gas starts to vent to the atmosphere at 29 k.y. (or at 20 k.y.) with the same average flux. These results are found by a newly-developed fully-coupled multiphase multicomponent <span class="hlt">fluid</span> flow and heat transport model. Our thermodynamic equilibrium-based model emphasizes the role of salinity in both ice and <span class="hlt">hydrate</span> dynamics.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.V53C..07K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.V53C..07K"><span><span class="hlt">FLUID</span> EVOLUTION AND MINERAL REACTIONS DURING SHEAR ZONE FORMATION AT NUSFJORD, LOFOTEN, NORWAY (Invited)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kullerud, K.</p> <p>2009-12-01</p> <p>At Nusfjord in Lofoten, Norway, three 0.3 - 3 m thick shear zones occur in a gabbro-anorthosite. During deformation, the shear zones were infiltrated by a hydrous <span class="hlt">fluid</span> enriched in Cl. In the central parts of the shear zones, <span class="hlt">fluid</span>-rock interaction resulted in complete break-down of the primary mafic silicates. Complete <span class="hlt">hydration</span> of these minerals to Cl-free amphibole and biotite suggests that the hydrous <span class="hlt">fluid</span> was present in excess during deformation in these parts of the shear zones. Along the margins of the shear zones, however, the igneous mafic silicates (Cpx, Bt, Opx) were only partly overgrown by hydrous minerals. Here, Cl-enriched minerals (Amph, Bt, Scp, Ap) can be observed. Amphibole shows compositions covering the range 0.1 - 4.0 wt % Cl within single thin sections. Mineral textures and extreme compositional variations of the Cl-bearing minerals indicate large chemical gradients of the <span class="hlt">fluid</span> <span class="hlt">phase</span>. Relics of primary mafic silicates and compositionally zoned reaction coronas around primary mafic silicates suggest that the free <span class="hlt">fluid</span> was totally consumed before the alteration of the primary <span class="hlt">phases</span> were completed. The extreme variations in the Cl-content of amphibole are inferred to monitor a gradual desiccation of the Cl-bearing grain-boundary <span class="hlt">fluid</span> during <span class="hlt">fluid</span>-mineral reactions accordingly: 1) The first amphibole that formed during the reactions principally extracted water from the <span class="hlt">fluid</span>, resulting in a slight increase in the Cl content of the <span class="hlt">fluid</span>. 2) Continued amphibole-forming reactions resulted in gradual consumption of the free <span class="hlt">fluid</span> <span class="hlt">phase</span>, principally by extracting water from the <span class="hlt">fluid</span>, resulting in an increase in its Cl-content. Higher Cl-content of the <span class="hlt">fluid</span> resulted in higher Cl-content of the equilibrium amphibole. 3) The most Cl-enriched amphibole (4 wt % Cl) formed in equilibrium with the last volumes of the grain-boundary <span class="hlt">fluid</span>, which had evolved to a highly saline solution. Mineral reactions within a 1-2 thick zone of the host rock along</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27228750','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27228750"><span>[Raman Characterization of <span class="hlt">Hydrate</span> Crystal Structure Influenced by Mine Gas Concentration].</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Bao-yong; Zhou, Hong-ji; Wu, Qiang; Gao, Xia</p> <p>2016-01-01</p> <p>CH4 /C2H6/N2 mixed <span class="hlt">hydrate</span> formation experiments were performed at 2 degrees C and 5 MPa for three different mine gas concentrations (CH4/C2H6/N2, G1 = 54 : 36 : 10, G2 = 67.5 : 22.5 : 10, G3 = 81 : 9 : 10). Raman spectra for <span class="hlt">hydration</span> products were obtained by using Microscopic Raman Spectrometer. <span class="hlt">Hydrate</span> structure is determined by the Raman shift of symmetric C-C stretching vibration mode of C2H6 in the <span class="hlt">hydrate</span> <span class="hlt">phase</span>. This work is focused on the cage occupancies and <span class="hlt">hydration</span> numbers, calculated by the fitting methods of Raman peaks. The results show that structure I (s I) <span class="hlt">hydrate</span> forms in the G1 and G2 gas systems, while structure II (s II) <span class="hlt">hydrate</span> forms in the G3 gas system, concentration variation of C2H6 in the gas samples leads to a change in <span class="hlt">hydrate</span> structure from s I to s II; the percentages of CH4 and C2H6 in s I <span class="hlt">hydrate</span> <span class="hlt">phase</span> are less affected by the concentration of gas samples, the percentages of CH4 are respectively 34.4% and 35.7%, C2H6 are respectively 64.6% and 63.9% for gas systems of G1 and G2, the percentages of CH4 and 2 H6 are respectively 73.5% and 22.8% for gas systems of G3, the proportions of object molecules largely depend on the <span class="hlt">hydrate</span> structure; CH4 and C2H6 molecules occupy 98%, 98% and 92% of the large cages and CH4 molecules occupy 80%, 60% and 84% of the small cages for gas systems of G1, G2 and G3, respectively; additionally, N2 molecules occupy less than 5% of the small cages is due to its weak adsorption ability and the lower partial pressure.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12722421','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12722421"><span>[Correction of the human body <span class="hlt">hydration</span> in different periods of space flight].</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Noskov, V B</p> <p>2003-01-01</p> <p><span class="hlt">Hydration</span> level of the human body at the end of space flight is not same as at its beginning. This was the reason for development and testing of opposite in action methods for <span class="hlt">hydration</span> improvement: at the onset of microgravity a dehydration therapy is applied and, on the contrary, in the final period of space flight methods for retaining body <span class="hlt">fluids</span> are of preference. Consumption of a diuretic and a water-salt supplement by orbiting crews reached the required effect suggesting applicability of the pharmaceutical correction as a measure against dehydration.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMOS53D..04O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMOS53D..04O"><span>Nucleation and growth constraints and outcome in the natural gas <span class="hlt">hydrate</span> system</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Osegovic, J. P.; Max, M. D.</p> <p>2016-12-01</p> <p><span class="hlt">Hydrate</span> formation processes are functions of energy distribution constrained by physical and kinetic parameters. The generation of energy and energy derivative plots of a constrained growth crucible are used to demonstrate nucleation probability zones (<span class="hlt">phase</span> origin(s)). Nucleation sets the stage for growth by further constraining the pathways through changes in heat capacity, heat flow coefficient, and enthalpy which in turn modify the mass and energy flow into the <span class="hlt">hydrate</span> formation region. Nucleation events result from the accumulation of materials and energy relative to pressure, temperature, and composition. Nucleation induction is predictive (a frequency parameter) rather than directly dependent on time. Growth, as mass tranfer into a new <span class="hlt">phase</span>, adds time as a direct parameter. Growth has direct feedback on <span class="hlt">phase</span> transfer, energy dynamics, and mass export/import rates. Many studies have shown that <span class="hlt">hydrate</span> growth is largely an equilibrium process controlled by either mass or energy flows. Subtle changes in the overall energy distribution shift the equilibrium in a predictable fashion. We will demonstrate the localization of <span class="hlt">hydrate</span> nucleation in a reservoir followed by likely evolution of growth in a capped, sand filled environment. The gas <span class="hlt">hydrate</span> stability zone (GHSZ) can be characterized as a semi-batch crystallizer in which nucleation and growth of natural gas <span class="hlt">hydrate</span> (NGH) is a continuous process that may result in very large concentrations of NGH. Gas flux, or the relative concentration of <span class="hlt">hydrate</span>-forming gas is the critical factor in a GHSZ. In an open groundwater system in which flow rate exceeds diffusion transport rate, dissolved natural gas is transported into and through the GHSZ. In a closed system, such as a geological trap, diffusion of <span class="hlt">hydrate</span>-forming gas from a free gas zone below the GHSZ is the primary mechanism for movement of gas reactants. Because of the lower molecular weight of methane, where diffusion is the principal transport mechanism</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeCoA.209...70M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeCoA.209...70M"><span>The redox budget of crust-derived <span class="hlt">fluid</span> <span class="hlt">phases</span> at the slab-mantle interface</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Malaspina, N.; Langenhorst, F.; Tumiati, S.; Campione, M.; Frezzotti, M. L.; Poli, S.</p> <p>2017-07-01</p> <p>The redox processes taking place in the portion of the mantle on top of the subducting slab are poorly investigated and the redox potential of crust-derived <span class="hlt">fluid</span> <span class="hlt">phases</span> is still poorly constrained. A case study of supra-subduction mantle affected by metasomatism from crust-derived <span class="hlt">fluid</span> <span class="hlt">phases</span> is represented by garnet orthopyroxenites from the Maowu Ultramafic Complex (China) deriving from harzburgite precursors metasomatised at ∼4 GPa, 750-800 °C by a silica- and incompatible trace element-rich <span class="hlt">fluid</span> <span class="hlt">phase</span>. This metasomatism produced poikilitic orthopyroxene and inclusion-rich garnet porphyroblasts. Solid multiphase primary micro-inclusions in garnet display negative crystal shapes and infilling minerals (spinel, ±orthopyroxene, amphiboles, chlorite, ±talc, ±mica) occur with constant modal proportions, indicating that they derive from trapped solute-rich aqueous <span class="hlt">fluids</span>. FT-IR hyper spectral imaging analyses and Raman spectroscopy, together with X-ray microtomography performed on single inclusions indicate that liquid water is still preserved at least in some inclusions (±spinel). To investigate the redox budget of these <span class="hlt">fluid</span> <span class="hlt">phases</span>, we measured for the first time the Fe3+ concentration of the micron-sized precipitates of the multiphase inclusions using EELS on a TEM. Results indicate that spinel contains up to 12% of Fe3+ with respect to the total iron, amphibole about 30%, while the ratio in inclusion <span class="hlt">phases</span> such as chlorite and phlogopite may reach 70%. The Fe3+ fraction of the host garnet is equal to that measured in spinel as also confirmed by Flank Method EPMA measurements. Forward modelling fO2 calculations indicate that the garnet orthopyroxenites record ΔFMQ = -1.8 ÷ -1.5, therefore resulting apparently more reduced with respect to metasomatised supra-subduction garnet-peridotites. On the other hand, oxygen mass balance, performed both on the Maowu hybrid orthopyroxenite and on metasomatised supra-subduction garnet peridotites, indicate that the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMOS22B..06T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMOS22B..06T"><span>Gas in Place Resource Assessment for Concentrated <span class="hlt">Hydrate</span> Deposits in the Kumano Forearc Basin, Offshore Japan, from NanTroSEIZE and 3D Seismic Data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Taladay, K.; Boston, B.</p> <p>2015-12-01</p> <p>Natural gas <span class="hlt">hydrates</span> (NGHs) are crystalline inclusion compounds that form within the pore spaces of marine sediments along continental margins worldwide. It has been proposed that these NGH deposits are the largest dynamic reservoir of organic carbon on this planet, yet global estimates for the amount of gas in place (GIP) range across several orders of magnitude. Thus there is a tremendous need for climate scientists and countries seeking energy security to better constrain the amount of GIP locked up in NGHs through the development of rigorous exploration strategies and standardized reservoir characterization methods. This research utilizes NanTroSEIZE drilling data from International Ocean Drilling Program (IODP) Sites C0002 and C0009 to constrain 3D seismic interpretations of the gas <span class="hlt">hydrate</span> petroleum system in the Kumano Forearc Basin. We investigate the gas source, <span class="hlt">fluid</span> migration mechanisms and pathways, and the 3D distribution of prospective HCZs. There is empirical and interpretive evidence that deeply sourced <span class="hlt">fluids</span> charge concentrated NGH deposits just above the base of gas <span class="hlt">hydrate</span> stability (BGHS) appearing in the seismic data as continuous bottoms simulating reflections (BSRs). These HCZs cover an area of 11 by 18 km, range in thickness between 10 - 80 m with an average thickness of 40 m, and are analogous to the confirmed HCZs at Daini Atsumi Knoll in the eastern Nankai Trough where the first offshore NGH production trial was conducted in 2013. For consistency, we calculated a volumetric GIP estimate using the same method employed by Japan Oil, Gas and Metals National Corporation (JOGMEC) to estimate GIP in the eastern Nankai Trough. Double BSRs are also common throughout the basin, and BGHS modeling along with drilling indicators for gas <span class="hlt">hydrates</span> beneath the primary BSRs provides compelling evidence that the double BSRs reflect a BGHS for structure-II methane-ethane <span class="hlt">hydrates</span> beneath a structure-I methane <span class="hlt">hydrate</span> <span class="hlt">phase</span> boundary. Additional drilling</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24445981','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24445981"><span>Chloral <span class="hlt">hydrate</span>, chloral <span class="hlt">hydrate</span>--promethazine and chloral <span class="hlt">hydrate</span> -hydroxyzine efficacy in electroencephalography sedation.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fallah, Razieh; Alaei, Ali; Akhavan Karbasi, Sedighah; Shajari, Ahmad</p> <p>2014-06-01</p> <p>To compare efficacy and safety of chloral <span class="hlt">hydrate</span> (CH), chloral <span class="hlt">hydrate</span> and promethazine (CH + P) and chloral <span class="hlt">hydrate</span> and hydroxyzine (CH + H) in electroencephalography (EEG) sedation. In a parallel single-blinded randomized clinical trial, ninety 1-7 y-old uncooperative kids who were referred to Pediatric Neurology Clinic of Shahid Sadoughi University, Yazd, Iran from April through August 2012, were randomly assigned to receive 40 mg/kg of chloral <span class="hlt">hydrate</span> or 40 mg/kg of chloral <span class="hlt">hydrate</span> and 1 mg/kg of promethazine or 40 mg/kg of chloral <span class="hlt">hydrate</span> and 2 mg/kg of hydroxyzine. The primary endpoint was efficacy in sufficient sedation (obtaining four Ramsay sedation score) and successful completion of EEG. Secondary endpoint was clinical adverse events. Thirty nine girls (43.3 %) and 51 boys (56.7 %) with mean age of 3.34 ± 1.47 y were assessed. Sufficient sedation and completion of EEG were achieved in 70 % (N = 21) of chloral <span class="hlt">hydrate</span> group, in 83.3 % (N = 25) of CH + H group and in 96.7 % (N = 29) of CH + P group (p = 0.02). Mild clinical adverse events including vomiting [16.7 % (N = 5) in CH, 6.7 % (N = 2) in CH + P, 6.7 % (N = 2) in CH + H], agitation in 3.3 % of CH + P (N = 1) group and mild transient hypotension in 3.3 % of CH + H (N = 1) group occurred. Safety of these three sedation regimens was not statistically significant different (p = 0.14). Combination of chloral <span class="hlt">hydrate</span>-antihistamines can be used as the most effective and safe sedation regimen in drug induced sleep electroencephalography of kids.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015A%26A...578A..18F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015A%26A...578A..18F"><span>Substellar fragmentation in self-gravitating <span class="hlt">fluids</span> with a major <span class="hlt">phase</span> transition</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Füglistaler, A.; Pfenniger, D.</p> <p>2015-06-01</p> <p>Context. The observation of various ices in cold molecular clouds, the existence of ubiquitous substellar, cold H2 globules in planetary nebulae and supernova remnants, or the mere existence of comets suggest that the physics of very cold interstellar gas might be much richer than usually envisioned. At the extreme of low temperatures (≲10 K), H2 itself is subject to a <span class="hlt">phase</span> transition crossing the entire cosmic gas density scale. Aims: This well-known, laboratory-based fact motivates us to study the ideal case of a cold neutral gaseous medium in interstellar conditions for which the bulk of the mass, instead of trace elements, is subject to a gas-liquid or gas-solid <span class="hlt">phase</span> transition. Methods: On the one hand, the equilibrium of general non-ideal <span class="hlt">fluids</span> is studied using the virial theorem and linear stability analysis. On the other hand, the non-linear dynamics is studied using computer simulations to characterize the expected formation of solid bodies analogous to comets. The simulations are run with a state-of-the-art molecular dynamics code (LAMMPS) using the Lennard-Jones inter-molecular potential. The long-range gravitational forces can be taken into account together with short-range molecular forces with finite limited computational resources, using super-molecules, provided the right scaling is followed. Results: The concept of super-molecule, where the <span class="hlt">phase</span> transition conditions are preserved by the proper choice of the particle parameters, is tested with computer simulations, allowing us to correctly satisfy the Jeans instability criterion for one-<span class="hlt">phase</span> <span class="hlt">fluids</span>. The simulations show that <span class="hlt">fluids</span> presenting a <span class="hlt">phase</span> transition are gravitationally unstable as well, independent of the strength of the gravitational potential, producing two distinct kinds of substellar bodies, those dominated by gravity (planetoids) and those dominated by molecular attractive force (comets). Conclusions: Observations, formal analysis, and computer simulations suggest the</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.6229D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.6229D"><span>CO2 injection into submarine, CH4-<span class="hlt">hydrate</span> bearing sediments: Parameter studies towards the development of a <span class="hlt">hydrate</span> conversion technology</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Deusner, Christian; Bigalke, Nikolaus; Kossel, Elke; Haeckel, Matthias</p> <p>2013-04-01</p> <p>In the recent past, international research efforts towards exploitation of submarine and permafrost <span class="hlt">hydrate</span> reservoirs have increased substantially. Until now, findings indicate that a combination of different technical means such as depressurization, thermal stimulation and chemical activation is the most promising approach for producing gas from natural <span class="hlt">hydrates</span>. Moreover, emission neutral exploitation of CH4-<span class="hlt">hydrates</span> could potentially be achieved in a combined process with CO2 injection and storage as CO2-<span class="hlt">hydrate</span>. In the German gas <span class="hlt">hydrate</span> initiative SUGAR, a combination of experimental and numerical studies is used to elucidate the process mechanisms and technical parameters on different scales. Experiments were carried out in the novel high-pressure flow-through system NESSI (Natural Environment Simulator for sub-Seafloor Interactions). Recent findings suggest that the injection of heated, supercritical CO2 is beneficial for both CH4 production and CO2 retention. Among the parameters tested so far are the CO2 injection regime (alternating vs. continuous injection) and the reservoir pressure / temperature conditions. Currently, the influence of CO2 injection temperature is investigated. It was shown that CH4 production is optimal at intermediate reservoir temperatures (8 ° C) compared to lower (2 ° C) and higher temperatures (10 ° C). The reservoir pressure, however, was of minor importance for the production efficiency. At 8 ° C, where CH4- and CO2-<span class="hlt">hydrates</span> are thermodynamically stable, CO2-<span class="hlt">hydrate</span> formation appears to be slow. Eventual clogging of <span class="hlt">fluid</span> conduits due to CO2-rich <span class="hlt">hydrate</span> formation force open new conduits, thereby tapping different regions inside the CH4-<span class="hlt">hydrate</span> sample volume for CH4gas. In contrast, at 2 ° C immediate formation of CO2-<span class="hlt">hydrate</span> results in rapid and irreversible obstruction of the entire pore space. At 10 ° C pure CO2-<span class="hlt">hydrates</span> can no longer be formed. Consequently the injected CO2 flows through quickly and interaction with</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=34283','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=34283"><span>Potential effects of gas <span class="hlt">hydrate</span> on human welfare</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kvenvolden, Keith A.</p> <p>1999-01-01</p> <p>For almost 30 years. serious interest has been directed toward natural gas <span class="hlt">hydrate</span>, a crystalline solid composed of water and methane, as a potential (i) energy resource, (ii) factor in global climate change, and (iii) submarine geohazard. Although each of these issues can affect human welfare, only (iii) is considered to be of immediate importance. Assessments of gas <span class="hlt">hydrate</span> as an energy resource have often been overly optimistic, based in part on its very high methane content and on its worldwide occurrence in continental margins. Although these attributes are attractive, geologic settings, reservoir properties, and <span class="hlt">phase</span>-equilibria considerations diminish the energy resource potential of natural gas <span class="hlt">hydrate</span>. The possible role of gas <span class="hlt">hydrate</span> in global climate change has been often overstated. Although methane is a “greenhouse” gas in the atmosphere, much methane from dissociated gas <span class="hlt">hydrate</span> may never reach the atmosphere, but rather may be converted to carbon dioxide and sequestered by the hydrosphere/biosphere before reaching the atmosphere. Thus, methane from gas <span class="hlt">hydrate</span> may have little opportunity to affect global climate change. However, submarine geohazards (such as sediment instabilities and slope failures on local and regional scales, leading to debris flows, slumps, slides, and possible tsunamis) caused by gas-<span class="hlt">hydrate</span> dissociation are of immediate and increasing importance as humankind moves to exploit seabed resources in ever-deepening waters of coastal oceans. The vulnerability of gas <span class="hlt">hydrate</span> to temperature and sea level changes enhances the instability of deep-water oceanic sediments, and thus human activities and installations in this setting can be affected. PMID:10097052</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70021747','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70021747"><span>Potential effects of gas <span class="hlt">hydrate</span> on human welfare</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kvenvolden, K.A.</p> <p>1999-01-01</p> <p>For almost 30 years, serious interest has been directed toward natural gas <span class="hlt">hydrate</span>, a crystalline solid composed of water and methane, as a potential (i) energy resource, (ii) factor in global climate change, and (iii) sub-marine geohazard. Although each of these issues can affect human welfare, only (iii) is considered to be of immediate importance. Assessments of gas <span class="hlt">hydrate</span> as an energy resource have often been overly optimistic, based in part on its very high methane content and on its worldwide occurrence in continental margins. Although these attributes are attractive, geologic settings, reservoir properties, and <span class="hlt">phase</span>-equilibria considerations diminish the energy resource potential of natural gas <span class="hlt">hydrate</span>. The possible role of gas <span class="hlt">hydrate</span> in global climate change has been often overstated. Although methane is a 'greenhouse' gas in the atmosphere, much methane from dissociated gas <span class="hlt">hydrate</span> may never reach the atmosphere, but rather may be converted to carbon dioxide and sequestered by the hydrosphere/biosphere before reaching the atmosphere. Thus, methane from gas <span class="hlt">hydrate</span> may have little opportunity to affect global climate change. However, submarine geohazards (such as sediment instabilities and slope failures on local and regional scales, leading to debris flows, slumps, slides, and possible tsunamis) caused by gas-<span class="hlt">hydrate</span> dissociation are of immediate and increasing importance as humankind moves to exploit seabed resources in ever-deepening waters of coastal oceans. The vulnerability of gas <span class="hlt">hydrate</span> to temperature and sea level changes enhances the instability of deep-water oceanic sediments, and thus human activities and installations in this setting can be affected.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PhDT.......205B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PhDT.......205B"><span>Re-thinking the Laramide: Investigating the role of <span class="hlt">fluids</span> in producing surface uplift using xenolith mineralogy and geochronology</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Butcher, Lesley Ann</p> <p></p> <p>High-temperature, high-pressure mineral assemblages preserved in much of the North American lithosphere owe their origins to Archean and Proterozoic tectonic processes. Whether subsequent mechanical, thermal, or chemical modification of ancient lithosphere affects overlying crust and the extent to which such processes contribute to anomalous deformation and topography is the interior of continents is poorly understood. This study addresses the occurrence and effects of <span class="hlt">hydration</span> on continental crust in producing regionally elevated topography in the Colorado Plateau since the Late Cretaceous. Mineralogical characteristics of two deep crustal xenoliths (GR-11 and RM-21) from the Four Corners Volcanic field record varying degrees of hydrous alteration including extensive replacement of garnet by hornblende, secondary albite and phengite growth at the expense of primary plagioclase, and secondary monazite growth in association with <span class="hlt">fluid</span>-related allanite and plagioclase breakdown. Results from forward petrological modeling for both deep crustal xenoliths are consistent with <span class="hlt">hydration</span> at greater than 20 km depth prior to exhumation in the ~20 Ma volcanic host. In situ Th/Pb dating provides evidence for a finite period of <span class="hlt">fluid</span>-related monazite crystallization in xenolith RM-21 from 91 +/- 2.8 Ma to 58 +/- 4 Ma, concurrent with timing estimates of low-angle subduction of the Farallon slab. <span class="hlt">Hydration</span>-related reactions at depth lead to a net density decrease as low-density hydrous <span class="hlt">phases</span> (hbl+/-ab+/-phg) grow at the expense of high-density, anhydrous minerals (gt+/-pl) abundant in unaltered Proterozoic crust. If these reactions are sufficiently pervasive and widespread, reductions in lower crustal density would provide a significant and quantifiable source of lithospheric buoyancy. Calculations for density decreases associated with extensive <span class="hlt">hydration</span> recorded in xenolith GR-11 for an ~25 km thick crustal layer yield uplift estimates on the order of hundreds of meters</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EPJAP..7730803B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EPJAP..7730803B"><span>Negative DC corona discharge current characteristics in a flowing two-<span class="hlt">phase</span> (air + suspended smoke particles) <span class="hlt">fluid</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Berendt, Artur; Domaszka, Magdalena; Mizeraczyk, Jerzy</p> <p>2017-04-01</p> <p>The electrical characteristics of a steady-state negative DC corona discharge in a two-<span class="hlt">phase</span> <span class="hlt">fluid</span> (air with suspended cigarette smoke particles) flowing along a chamber with a needle-to-plate electrode arrangement were experimentally investigated. The two-<span class="hlt">phase</span> flow was transverse in respect to the needle-to-plate axis. The velocity of the transverse two-<span class="hlt">phase</span> flow was limited to 0.8 m/s, typical of the electrostatic precipitators. We found that three discharge current modes of the negative corona exist in the two-<span class="hlt">phase</span> (air + smoke particles) <span class="hlt">fluid</span>: the Trichel pulses mode, the "Trichel pulses superimposed on DC component" mode and the DC component mode, similarly as in the corona discharge in air (a single-<span class="hlt">phase</span> <span class="hlt">fluid</span>). The shape of Trichel pulses in the air + suspended particles <span class="hlt">fluid</span> is similar to that in air. However, the Trichel pulse amplitudes are higher than those in "pure" air while their repetition frequency is lower. As a net consequence of that the averaged corona discharge current in the two-<span class="hlt">phase</span> <span class="hlt">fluid</span> is lower than in "pure" air. It was also found that the average discharge current decreases with increasing suspended particle concentration. The calculations showed that the dependence of the average negative corona current (which is a macroscopic corona discharge parameter) on the particle concentration can be explained by the particle-concentration dependencies of the electric charge of Trichel pulse and the repetition frequency of Trichel pulses, both giving a microscopic insight into the electrical phenomena in the negative corona discharge. Our investigations showed also that the average corona discharge current in the two-<span class="hlt">phase</span> <span class="hlt">fluid</span> is almost unaffected by the transverse <span class="hlt">fluid</span> flow up to a velocity of 0.8 m/s. Contribution to the topical issue "The 15th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XV)", edited by Nicolas Gherardi and Tomáš Hoder</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24506356','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24506356"><span>Validation of beverage intake methods vs. <span class="hlt">hydration</span> biomarkers; a short review.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nissensohn, Mariela; Ruano, Cristina; Serra-Majem, Lluis</p> <p>2013-11-01</p> <p><span class="hlt">Fluid</span> intake is difficult to monitor. Biomarkers of beverage intake are able to assess dietary intake/<span class="hlt">hydration</span> status without the bias of self-reported dietary intake errors and also the intra-individual variability. Various markers have been proposed to assess <span class="hlt">hydration</span>, however, to date; there is a lack of universally accepted biomarker that reflects changes of <span class="hlt">hydration</span> status in response to changes in beverage intake. We conduct a review to find out the questionnaires of beverage intake available in the scientific literature to assess beverage intake and <span class="hlt">hydration</span> status and their validation against <span class="hlt">hydration</span> biomarkers. A scientific literature search was conducted. Only two articles were selected, in which, two different beverage intake questionnaires designed to capture the usual beverage intake were validated against Urine Specific Gravidity biomarker (Usg). Water balance questionnaire (WBQ) reported no correlations in the first study and the Beverage Intake Questionnaire (BEVQ), a quantitative Food frequency questionnaire (FFQ) in the second study, also found a negative correlation. FFQ appears to measure better beverage intake than WBQ when compared with biomarkers. However, the WBQ seems to be a more complete method to evaluate the <span class="hlt">hydration</span> balance of a given population. Further research is needed to understand the meaning of the different correlations between intake estimates and biomarkers of beverage in distinct population groups and environments. Copyright AULA MEDICA EDICIONES 2013. Published by AULA MEDICA. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19870011719','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19870011719"><span>Microgravity <span class="hlt">fluid</span> management in two-<span class="hlt">phase</span> thermal systems</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Parish, Richard C.</p> <p>1987-01-01</p> <p>Initial studies have indicated that in comparison to an all liquid single <span class="hlt">phase</span> system, a two-<span class="hlt">phase</span> liquid/vapor thermal control system requires significantly lower pumping power, demonstrates more isothermal control characteristics, and allows greater operational flexibility in heat load placement. As a function of JSC's Work Package responsibility for thermal management of space station equipment external to the pressurized modules, prototype development programs were initiated on the Two-<span class="hlt">Phase</span> Thermal Bus System (TBS) and the Space Erectable Radiator System (SERS). JSC currently has several programs underway to enhance the understanding of two-<span class="hlt">phase</span> <span class="hlt">fluid</span> flow characteristics. The objective of one of these programs (sponsored by the Microgravity Science and Applications Division at NASA-Headquarters) is to design, fabricate, and fly a two-<span class="hlt">phase</span> flow regime mapping experiment in the Shuttle vehicle mid-deck. Another program, sponsored by OAST, involves the testing of a two-<span class="hlt">phase</span> thermal transport loop aboard the KC-135 reduced gravity aircraft to identify system implications of pressure drop variation as a function of the flow quality and flow regime present in a representative thermal system.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.4045S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.4045S"><span>Serpentinites and Boron Isotope Evidence for Shallow <span class="hlt">Fluid</span> Transfer Across Subduction Zones</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Scambelluri, M.; Tonarini, S.</p> <p>2012-04-01</p> <p>In subduction zones, <span class="hlt">fluid</span>-mediated chemical exchanges between subducting plates and overlying mantle dictate volatile and incompatible element cycles in earth and influence arc magmatism. One of the outstanding issues is concerned with the sources of water for arc magmas and mechanisms for its slab-to-mantle wedge transport. Does it occur by slab dehydration at depths directly beneath arc front, or by <span class="hlt">hydration</span> of fore-arc mantle and subsequent subduction of the <span class="hlt">hydrated</span> mantle? Historically, the deep slab dehydration hypothesis had strong support, but it appears that the <span class="hlt">hydrated</span> mantle wedge hypothesis is gaining ground. At the center of this hypothesis are studies of <span class="hlt">fluid</span>-mobile element tracers in volatile-rich mantle wedge peridotites (serpentinites) and their subducted high-pressure equivalents. Serpentinites are key players in volatile and <span class="hlt">fluid</span>-mobile element cycles in subduction zones. Their dehydration represents the main event for <span class="hlt">fluid</span> and element flux from slabs to mantle, though direct evidence for this process and identification of dehydration environments have been elusive. Boron isotopes are known markers of <span class="hlt">fluid</span>-assisted element transfer during subduction and can be the tracers of these processes. Until recently, the altered oceanic crust has been considered the main 11B reservoir for arc magmas, which largely display positive delta11B. However, slab dehydration below fore-arcs transfers 11B to the overlying <span class="hlt">hydrated</span> mantle and leaves the residual mafic crust very depleted in 11B below sub-arcs. The 11B-rich composition of serpentinites candidate them as the heavy B carriers for subduction. Here we present high positive delta11B of Alpine high-pressure (HP) serpentinites recording subduction metamorphism from <span class="hlt">hydration</span> at low gades to eclogite-facies dehydration: we show a connection among serpentinite dehydration, release of 11B-rich <span class="hlt">fluids</span> and arc magmatism. In general, the delta11B of these rocks is heavy (16‰ to + 24‰ delta11B). No B</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1811684L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1811684L"><span>The impact of permafrost-associated microorganisms on <span class="hlt">hydrate</span> formation kinetics</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Luzi-Helbing, Manja; Liebner, Susanne; Spangenberg, Erik; Wagner, Dirk; Schicks, Judith M.</p> <p>2016-04-01</p> <p>The relationship between gas <span class="hlt">hydrates</span>, microorganisms and the surrounding sediment is extremely complex: On the one hand, microorganisms producing methane provide the prerequisite for gas <span class="hlt">hydrate</span> formation. As it is known most of the gas incorporated into natural gas <span class="hlt">hydrates</span> originates from biogenic sources. On the other hand, as a result of microbial activity gas <span class="hlt">hydrates</span> are surrounded by a great variety of organic compounds which are not incorporated into the <span class="hlt">hydrate</span> structure but may influence the formation or degradation process. For gas <span class="hlt">hydrate</span> samples from marine environments such as the Gulf of Mexico a direct association between microbes and gas <span class="hlt">hydrates</span> was shown by Lanoil et al. 2001. It is further assumed that microorganisms living within the gas <span class="hlt">hydrate</span> stability zone produce biosurfactants which were found to enhance the <span class="hlt">hydrate</span> formation process significantly and act as nucleation centres (Roger et al. 2007). Another source of organic compounds is sediment organic matter (SOM) originating from plant material or animal remains which may also enhance <span class="hlt">hydrate</span> growth. So far, the studies regarding this relationship were focused on a marine environment. The scope of this work is to extend the investigations to microbes originating from permafrost areas. To understand the influence of microbial activity in a permafrost environment on the methane <span class="hlt">hydrate</span> formation process and the stability conditions of the resulting <span class="hlt">hydrate</span> <span class="hlt">phase</span> we will perform laboratory studies. Thereby, we mimic gas <span class="hlt">hydrate</span> formation in the presence and absence of methanogenic archaea (e.g. Methanosarcina soligelidi) and other psychrophilic bacteria isolated from permafrost environments of the Arctic and Antarctic to investigate their impact on <span class="hlt">hydrate</span> induction time and formation rates. Our results may contribute to understand and predict the occurrences and behaviour of potential gas <span class="hlt">hydrates</span> within or adjacent to the permafrost. Lanoil BD, Sassen R, La Duc MT, Sweet ST, Nealson KH</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MTDM..tmp...20H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MTDM..tmp...20H"><span>Fractional order creep model for dam concrete considering degree of <span class="hlt">hydration</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huang, Yaoying; Xiao, Lei; Bao, Tengfei; Liu, Yu</p> <p>2018-05-01</p> <p>Concrete is a material that is an intermediate between an ideal solid and an ideal <span class="hlt">fluid</span>. The creep of concrete is related not only to the loading age and duration, but also to its temperature and temperature history. Fractional order calculus is a powerful tool for solving physical mechanics modeling problems. Using a software element based on the generalized Kelvin model, a fractional order creep model of concrete considering the loading age and duration is established. Then, the <span class="hlt">hydration</span> rate of cement is considered in terms of the degree of <span class="hlt">hydration</span>, and the fractional order creep model of concrete considering the degree of <span class="hlt">hydration</span> is established. Moreover, uniaxial tensile creep tests of dam concrete under different curing temperatures were conducted, and the results were combined with the creep test data and complex optimization method to optimize the parameters of a new creep model. The results show that the fractional tensile creep model based on <span class="hlt">hydration</span> degree can better describe the tensile creep properties of concrete, and this model involves fewer parameters than the 8-parameter model.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/871940','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/871940"><span>Device and method for measuring multi-<span class="hlt">phase</span> <span class="hlt">fluid</span> flow and density of <span class="hlt">fluid</span> in a conduit having a gradual bend</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Ortiz, Marcos German; Boucher, Timothy J.</p> <p>1998-01-01</p> <p>A system for measuring <span class="hlt">fluid</span> flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of <span class="hlt">fluid</span> in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate <span class="hlt">fluid</span> flow rate in the conduit. For multi-<span class="hlt">phase</span> <span class="hlt">fluid</span>, the density of the <span class="hlt">fluid</span> is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the <span class="hlt">fluid</span> pressure measurements, to calculate <span class="hlt">fluid</span> flow.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/675796','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/675796"><span>Device and method for measuring multi-<span class="hlt">phase</span> <span class="hlt">fluid</span> flow and density of <span class="hlt">fluid</span> in a conduit having a gradual bend</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Ortiz, M.G.; Boucher, T.J.</p> <p>1998-10-27</p> <p>A system is described for measuring <span class="hlt">fluid</span> flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of <span class="hlt">fluid</span> in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate <span class="hlt">fluid</span> flow rate in the conduit. For multi-<span class="hlt">phase</span> <span class="hlt">fluid</span>, the density of the <span class="hlt">fluid</span> is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the <span class="hlt">fluid</span> pressure measurements, to calculate <span class="hlt">fluid</span> flow. 1 fig.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970000365','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970000365"><span>Growth and Morphology of <span class="hlt">Phase</span> Separating Supercritical <span class="hlt">Fluids</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hegseth, John; Beysens, Daniel; Perrot, Francoise; Nikolayev, Vadim; Garrabos, Yves</p> <p>1996-01-01</p> <p>The scientific objective is to study the relation between the morphology and the growth kinetics of domains during <span class="hlt">phase</span> separation. We know from previous experiments performed near the critical point of pure <span class="hlt">fluids</span> and binary liquids that there are two simple growth laws at late times. The 'fast' growth appears when the volumes of the <span class="hlt">phases</span> are nearly equal and the droplet pattern is interconnected. In this case the size of the droplets grows linearly in time. The 'slow' growth appears when the pattern of droplets embedded in the majority <span class="hlt">phase</span> is disconnected. In this case the size of the droplets increases in proportion to time to the power 1/3. The volume fraction of the minority <span class="hlt">phase</span> is a good candidate to determine this change of behavior. All previous attempts to vary the volume fraction in a single experimental cell have failed because of the extreme experimental difficulties.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29580476','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29580476"><span>Correlating the properties of different carioca bean cultivars (Phaseolus vulgaris) with their <span class="hlt">hydration</span> kinetics.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Miano, Alberto Claudio; Saldaña, Erick; Campestrini, Luciano Henrique; Chiorato, Alisson Fernando; Augusto, Pedro Esteves Duarte</p> <p>2018-05-01</p> <p>This work explained how the intrinsic properties of beans affects the <span class="hlt">hydration</span> process. For that, different properties of six cultivars of carioca bean (a variety of common bean) were analyzed to verify the correlation with their <span class="hlt">hydration</span> kinetics characteristics (<span class="hlt">hydration</span> rate, lag <span class="hlt">phase</span> time and equilibrium moisture content), using a Multiple Factorial Analysis (MFA): the chemical composition (starch, protein, lipids, minerals (Mg, P, S, K, Ca, Mn, Fe, Cu, Zn), functional groups from the seed coat analyzed by FT-IR), physical properties (size, 1000 grain weight, seed coat thickness, energy to penetrate the bean) and microstructure. Only few properties correlated with the <span class="hlt">hydration</span> kinetics characteristics of the studied bean, comprising both composition and structure. The fat content, potassium content, specific surface, and the protein to lipids ratio correlated with the lag <span class="hlt">phase</span> time, which is related with the seed coat impermeability to water. The necessary energy to perforate the seed coat correlated negatively with the <span class="hlt">hydration</span> rate. It was concluded that the <span class="hlt">hydration</span> of beans process is a complex phenomenon and that despite being from the same variety of legume, any change due to agronomic enhancement may affect their <span class="hlt">hydration</span> process kinetics. Copyright © 2018 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MS%26E..357a2025Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MS%26E..357a2025Z"><span>Influence of surfactants on gas-<span class="hlt">hydrate</span> formation' kinetics in water-oil emulsion</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zemenkov, Yu D.; Shirshova, A. V.; Arinstein, E. A.; Shuvaev, A. N.</p> <p>2018-05-01</p> <p>The kinetics of gas <span class="hlt">hydrate</span> formation of propane in a water-oil emulsion is experimentally studied when three types of surfactants (SAA (surface acting agent)) - anionic type emulsifiers - are added to the aqueous <span class="hlt">phase</span>. It is shown that all three types of surfactants decelerate the growth of the gas-<span class="hlt">hydrate</span> in the emulsion and can be considered as anti-agglutinating and kinetic low-dose inhibitors. The most effective inhibitor of <span class="hlt">hydrate</span> formation in water-oil emulsion of SV-102 surfactant was revealed. For comparison, experimental studies of gas-<span class="hlt">hydrate</span> formation under the same conditions for bulk water have been carried out. It is shown that in bulk water, all the surfactants investigated act as promoters (accelerators) of <span class="hlt">hydrate</span> formation. A qualitative explanation of the action mechanisms of emulsifiers in the process of gas-<span class="hlt">hydrate</span> formation in water-oil emulsion is given.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70074658','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70074658"><span>Seabed <span class="hlt">fluid</span> expulsion along the upper slope and outer shelf of the U.S. Atlantic continental margin</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Brothers, D.S.; Ruppel, C.; Kluesner, J.W.; ten Brink, Uri S.; Chaytor, J.D.; Hill, J.C.; Andrews, B.D.; Flores, C.</p> <p>2014-01-01</p> <p>Identifying the spatial distribution of seabed <span class="hlt">fluid</span> expulsion features is crucial for understanding the substrate plumbing system of any continental margin. A 1100 km stretch of the U.S. Atlantic margin contains more than 5000 pockmarks at water depths of 120 m (shelf edge) to 700 m (upper slope), mostly updip of the contemporary gas <span class="hlt">hydrate</span> stability zone (GHSZ). Advanced attribute analyses of high-resolution multichannel seismic reflection data reveal gas-charged sediment and probable <span class="hlt">fluid</span> chimneys beneath pockmark fields. A series of enhanced reflectors, inferred to represent <span class="hlt">hydrate</span>-bearing sediments, occur within the GHSZ. Differential sediment loading at the shelf edge and warming-induced gas <span class="hlt">hydrate</span> dissociation along the upper slope are the proposed mechanisms that led to transient changes in substrate pore <span class="hlt">fluid</span> overpressure, vertical <span class="hlt">fluid</span>/gas migration, and pockmark formation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5457240','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5457240"><span>Studying the <span class="hlt">Hydration</span> of a Retarded Suspension of Ground Granulated Blast-Furnace Slag after Reactivation</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Schneider, Nick; Stephan, Dietmar</p> <p>2016-01-01</p> <p>This article presents a combined use of a retarder (d-gluconic acid) and an alkaline activator (sodium hydroxide) in a binder system based on ground granulated blast-furnace slag. The properties of the retarder are extending the dormant <span class="hlt">hydration</span> period and suppressing the generation of strength-giving <span class="hlt">phases</span>. Different retarder concentrations between 0.25 and 1.00 wt.% regulate the intensity and the period of the retardation and also the characteristics of the strength development. The activator concentration of 30 and 50 wt.% regulates the overcoming of the dormant period and thereby the solution of the slag and hence the formation of the <span class="hlt">hydration</span> products. The research objective is to produce a mineral binder system based on two separate liquid components. The highest concentration of retarder and activator generates the highest compressive strength and mass of <span class="hlt">hydration</span> products—after 90 days of <span class="hlt">hydration</span> a compressive strength of more than 50 N/mm2. The main <span class="hlt">phases</span> are calcium silicate <span class="hlt">hydrate</span> and hydrotalcite. Generally, the combination of retarder and activator shows a high potential in the performance increase of the <span class="hlt">hydration</span> process. PMID:28774054</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMOS43B..06Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMOS43B..06Y"><span>Methane Recycling During Burial of Methane <span class="hlt">Hydrate</span>-Bearing Sediments</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>You, K.; Flemings, P. B.</p> <p>2017-12-01</p> <p>We quantitatively investigate the integral processes of methane <span class="hlt">hydrate</span> formation from local microbial methane generation, burial of methane <span class="hlt">hydrate</span> with sedimentation, and methane recycling at the base of the <span class="hlt">hydrate</span> stability zone (BHSZ) with a multiphase multicomponent numerical model. Methane recycling happens in cycles, and there is not a steady state. Each cycle starts with free gas accumulation from <span class="hlt">hydrate</span> dissociation below the BHSZ. This free gas flows upward under buoyancy, elevates the <span class="hlt">hydrate</span> saturation and capillary entry pressure at the BHSZ, and this prevents more free gas flowing in. Later as this layer with elevated <span class="hlt">hydrate</span> saturation is buried and dissociated, the large amount of free gas newly released and accumulated below rapidly intrudes into the <span class="hlt">hydrate</span> stability zone, drives rapid <span class="hlt">hydrate</span> formation and creates three-<span class="hlt">phase</span> (gas, liquid and <span class="hlt">hydrate</span>) equilibrium above the BHSZ. The gas front retreats to below the BHSZ until all the free gas is depleted. The shallowest depth that the free gas reaches in one cycle moves toward seafloor as more and more methane is accumulated to the BHSZ with time. More methane is stored above the BHSZ in the form of concentrated <span class="hlt">hydrate</span> in sediments with relatively uniform pore throat, and/or with greater compressibility. It is more difficult to initiate methane recycling in passive continental margins where the sedimentation rate is low, and in sediments with low organic matter content and/or methanogenesis reaction rate. The presence of a permeable layer can store methane for significant periods of time without recycling. In a 2D system where the seafloor dips rapidly, the updip gas flow along the BHSZ transports more methane toward topographic highs where methane gas and elevated <span class="hlt">hydrate</span> saturation intrude deeper into the <span class="hlt">hydrate</span> stability zone within one cycle. This could lead to intermittent gas venting at seafloor at the topographic highs. This study provides insights on many phenomenon associated with</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28692884','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28692884"><span>Effects of <span class="hlt">hydrated</span> lime on radionuclides stabilization of Hanford tank residual waste.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Guohui; Um, Wooyong; Cantrell, Kirk J; Snyder, Michelle M V; Bowden, Mark E; Triplett, Mark B; Buck, Edgar C</p> <p>2017-10-01</p> <p>Chemical stabilization of tank residual waste is part of a Hanford Site tank closure strategy to reduce overall risk levels to human health and the environment. In this study, a set of column leaching experiments using tank C-104 residual waste were conducted to evaluate the leachability of uranium (U) and technetium (Tc) where grout and <span class="hlt">hydrated</span> lime were applied as chemical stabilizing agents. The experiments were designed to simulate future scenarios where meteoric water infiltrates through the vadose zones into the interior of the tank filled with layers of grout or <span class="hlt">hydrated</span> lime, and then contacts the residual waste. Effluent concentrations of U and Tc were monitored and compared among three different packing columns (waste only, waste + grout, and waste + grout + <span class="hlt">hydrated</span> lime). Geochemical modeling of the effluent compositions was conducted to determine saturation indices of uranium solid <span class="hlt">phases</span> that could control the solubility of uranium. The results indicate that addition of <span class="hlt">hydrated</span> lime strongly stabilized the uranium through transforming uranium to a highly insoluble calcium uranate (CaUO 4 ) or similar <span class="hlt">phase</span>, whereas no significant stabilization effect of grout or <span class="hlt">hydrated</span> lime was observed on Tc leachability. The result implies that <span class="hlt">hydrated</span> lime could be a great candidate for stabilizing Hanford tank residual wastes where uranium is one of the main concerns. Published by Elsevier Ltd.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Litho.296..245C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Litho.296..245C"><span>Textural and chemical evolution of pyroxene during <span class="hlt">hydration</span> and deformation: A consequence of retrograde metamorphism</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Centrella, Stephen; Putnis, Andrew; Lanari, Pierre; Austrheim, Håkon</p> <p>2018-01-01</p> <p>Centimetre-sized grains of Al-rich clinopyroxene within the granulitic anorthosites of the Bergen Arcs, W-Norway undergo deformation by faults and micro-shear zones (kinks) along which <span class="hlt">fluid</span> has been introduced. The clinopyroxene (11 wt% Al2O3) reacts to the deformation and <span class="hlt">hydration</span> in two different ways: reaction to garnet (Alm41Prp32Grs21) plus a less aluminous pyroxene (3 wt% Al2O3) along kinks and the replacement of the Al-rich clinopyroxene by chlorite along cleavage planes. These reactions only take place in the <span class="hlt">hydrated</span> part of a hand specimen that is separated from dry, unreacted granulite by a sharp interface that defines the limit of <span class="hlt">hydration</span>. We use electron probe microanalysis (EPMA) and X-Ray mapping together with electron backscatter diffraction (EBSD) mapping to investigate the spatial and possible temporal relationships between these two parageneses. Gresens' analysis (Gresens, 1967) has been used to determine the mass balance and the local volume changes associated with the two reactions. The reaction to garnet + low-Al clinopyroxene induces a loss in volume of the solid <span class="hlt">phases</span> whereas the chlorite formation gains volume. Strain variations result in local variation in undulose extinction in the parent clinopyroxene. EBSD results suggest that the density-increasing reaction to garnet + low-Al clinopyroxene takes place where the strain is highest whereas the density-decreasing reaction to chlorite forms away from shear zones where EBSD shows no significant strain. Modelling of <span class="hlt">phase</span> equilibria suggest that the thermodynamic pressure of the assemblage within the shear zones is > 6 kbar higher than the pressure conditions for the whole rock for the same range of temperature ( 650 °C). This result suggests that the stress redistribution within a rock may play a role in determining the reactions that take place during retrograde metamorphism.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27436688','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27436688"><span>Molecular mechanisms responsible for <span class="hlt">hydrate</span> anti-agglomerant performance.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Phan, Anh; Bui, Tai; Acosta, Erick; Krishnamurthy, Pushkala; Striolo, Alberto</p> <p>2016-09-28</p> <p>Steered and equilibrium molecular dynamics simulations were employed to study the coalescence of a sI <span class="hlt">hydrate</span> particle and a water droplet within a hydrocarbon mixture. The size of both the <span class="hlt">hydrate</span> particle and the water droplet is comparable to that of the aqueous core in reverse micelles. The simulations were repeated in the presence of various quaternary ammonium chloride surfactants. We investigated the effects due to different groups on the quaternary head group (e.g. methyl vs. butyl groups), as well as different hydrophobic tail lengths (e.g. n-hexadecyl vs. n-dodecyl tails) on the surfactants' ability to prevent coalescence. Visual inspection of sequences of simulation snapshots indicates that when the water droplet is not covered by surfactants it is more likely to approach the <span class="hlt">hydrate</span> particle, penetrate the protective surfactant film, reach the <span class="hlt">hydrate</span> surface, and coalesce with the <span class="hlt">hydrate</span> than when surfactants are present on both surfaces. Force-distance profiles obtained from steered molecular dynamics simulations and free energy profiles obtained from umbrella sampling suggest that surfactants with butyl tripods on the quaternary head group and hydrophobic tails with size similar to the solvent molecules can act as effective anti-agglomerants. These results qualitatively agree with macroscopic experimental observations. The simulation results provide additional insights, which could be useful in flow assurance applications: the butyl tripod provides adhesion between surfactants and <span class="hlt">hydrates</span>; when the length of the surfactant tail is compatible with that of the hydrocarbon in the liquid <span class="hlt">phase</span> a protective film can form on the <span class="hlt">hydrate</span>; however, once a molecularly thin chain of water molecules forms through the anti-agglomerant film, connecting the water droplet and the <span class="hlt">hydrate</span>, water flows to the <span class="hlt">hydrate</span> and coalescence is inevitable.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MRE.....5e5702Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MRE.....5e5702Y"><span>Effect of <span class="hlt">hydrated</span> salts on the microstructure and <span class="hlt">phase</span> transformation of poly(vinylidenefluoride-hexafluoropropylene) composites</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yuennan, Jureeporn; Sukwisute, Pisan; Muensit, Nantakan</p> <p>2018-05-01</p> <p>The present work has investigated a means of fabricating porous, β <span class="hlt">phase</span> P(VDF-HFP) film by adding two kinds of <span class="hlt">hydrated</span> metal salts. Without the use of mechanical stretching or electrical poling treatments, MgCl2 · 6H2O and AlCl3 · 6H2O are found to induce the formation of β <span class="hlt">phase</span> crystals in porous film derived from the solution casting method. Trivalent Al ions have been found to effectively promote the self-oriented β <span class="hlt">phase</span> of the P(VDF-HFP) film greater than divalent Mg ions. The overall β content is achieved about 38% and 42% for adding 0.25 wt% Mg- and Al-salts, respectively. The average pore sizes and surface roughness of porous P(VDF-HFP) films are increased with increasing salt concentration. The dielectric constant of about 5 for pure P(VDF-HFP) film (at 100 Hz) has been boosted up to 13–19 when adding the salts. In addition, the P(VDF-HFP) films filled with Al-salt exhibit the largest piezoelectric coefficient of 20 pC/N. Thus, the modified polymers are one of candidate materials for using in dielectric and piezoelectric applications.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28806537','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28806537"><span>Effect of Oral <span class="hlt">Hydration</span> on External Cephalic Version at Term.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zobbi, Virna Franca; Nespoli, Antonella; Spreafico, Elisa; Recalcati, Roberta; Loi, Federica; Scian, Antonietta; Galimberti, Stefania</p> <p></p> <p>To evaluate the effect of oral <span class="hlt">hydration</span> on the success rate of external cephalic version (ECV). Randomized controlled and single-blind trial. Academic tertiary hospital with approximately 3,000 births annually. One hundred sixty-four women at a gestational age of at least 37 weeks with breech-presenting fetuses and normal amniotic <span class="hlt">fluid</span> indexes (AFIs). Participants were randomly assigned to drink 2000 ml or no more than 100 ml of water in the 2 hours before undergoing ECV. The AFIs were assessed before and after treatment by the same sonographer, who was blinded to the treatment group. Data were collected on relevant maternal and fetal characteristics and ECV success. The mean AFI after <span class="hlt">hydration</span> was significantly greater than that in the control group (15.5 cm vs. 13.4 cm, p = .003). The ECV success rate was 53.7% in the <span class="hlt">hydration</span> group and 46.3% in the control group (odds ratio: 1.34, 95% confidence interval [0.69, 2.59]; p = .349). <span class="hlt">Hydration</span> was well tolerated and there were no serious adverse events. Oral <span class="hlt">hydration</span> significantly increased the AFIs but did not affect the success rate of ECVs. Copyright © 2017 AWHONN, the Association of Women's Health, Obstetric and Neonatal Nurses. Published by Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1163989','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1163989"><span>Investigating the Metastability of Clathrate <span class="hlt">Hydrates</span> for Energy Storage</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Koh, Carolyn Ann</p> <p>2014-11-18</p> <p>Important breakthrough discoveries have been achieved from the DOE award on the key processes controlling the synthesis and structure-property relations of clathrate <span class="hlt">hydrates</span>, which are critical to the development of clathrate <span class="hlt">hydrates</span> as energy storage materials. Key achievements include: (i) the discovery of key clathrate <span class="hlt">hydrate</span> building blocks (stable and metastable) leading to clathrate <span class="hlt">hydrate</span> nucleation and growth; (ii) development of a rapid clathrate <span class="hlt">hydrate</span> synthesis route via a seeding mechanism; (iii) synthesis-structure relations of H2 + CH4/CO2 binary <span class="hlt">hydrates</span> to control thermodynamic requirements for energy storage and sequestration applications; (iv) discovery of a new metastable <span class="hlt">phase</span> present during clathratemore » <span class="hlt">hydrate</span> structural transitions. The success of our research to-date is demonstrated by the significant papers we have published in high impact journals, including Science, Angewandte Chemie, J. Am. Chem. Soc. Intellectual Merits of Project Accomplishments: The intellectual merits of the project accomplishments are significant and transformative, in which the fundamental coupled computational and experimental program has provided new and critical understanding on the key processes controlling the nucleation, growth, and thermodynamics of clathrate <span class="hlt">hydrates</span> containing hydrogen, methane, carbon dioxide, and other guest molecules for energy storage. Key examples of the intellectual merits of the accomplishments include: the first discovery of the nucleation pathways and dominant stable and metastable structures leading to clathrate <span class="hlt">hydrate</span> formation; the discovery and experimental confirmation of new metastable clathrate <span class="hlt">hydrate</span> structures; the development of new synthesis methods for controlling clathrate <span class="hlt">hydrate</span> formation and enclathration of molecular hydrogen. Broader Impacts of Project Accomplishments: The molecular investigations performed in this project on the synthesis (nucleation & growth)-structure-stability relations of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMOS53B1182Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMOS53B1182Y"><span>Calibration and validation of a numerical model against experimental data of methane <span class="hlt">hydrate</span> formation and dissociation in a sandy porous medium</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yin, Z.; Moridis, G. J.; Chong, Z. R.; Linga, P.</p> <p>2017-12-01</p> <p>Methane <span class="hlt">hydrates</span> (MH) are known to trap enormous amounts of CH4 in oceanic and permafrost-associated deposits, and are being considered as a potential future energy source. Several powerful numerical simulators were developed to describe the behavior of natural <span class="hlt">hydrate</span>-bearing sediments (HBS). The complexity and strong nonlinearities in HBS do not allow analytical solutions for code validation. The only reliable method to develop confidence in these models is through comparisons to laboratory and/or field experiments. The objective of this study is to reproduce numerically the results from earlier experiments of MH formation and depressurization (and the corresponding <span class="hlt">fluid</span> production) in 1.0L reactor involving unconsolidated sand, thus validating and calibrating the TOUGH+<span class="hlt">Hydrate</span> v1.5 simulator. We faithfully describe the reactor geometry and the experimental process that involves both <span class="hlt">hydrate</span> formation and dissociation. We demonstrate that the laboratory experiments can only be captured by a kinetic <span class="hlt">hydration</span> model. There is an excellent agreement between observations and predictions (a) of the cumulative gas depletion (during formation) and production (during dissociation) and (b) of pressure over time. The temperature agreement is less satisfactory, and the deviations are attributed to the fixed locations of the limited number of sensors that cannot fully capture the <span class="hlt">hydrate</span> heterogeneity. We also predict the spatial distributions over time of the various <span class="hlt">phase</span> (gas, aqueous and <span class="hlt">hydrate</span>) saturations. Thus, <span class="hlt">hydrates</span> form preferentially along the outer boundary of the sand core, and the <span class="hlt">hydrate</span> front moves inward leaving a significant portion of the sand at the center <span class="hlt">hydrate</span>-free. During depressurization, dissociation advances again inward from the reactor boundary to the center of the reactor. As expected, methane gas accumulates initially at the locations of most intense dissociation, and then gradually migrates to the upper section of the reactor because of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16178808','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16178808"><span>In situ DMSO <span class="hlt">hydration</span> measurements of HTS compound libraries.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ellson, R; Stearns, R; Mutz, M; Brown, C; Browning, B; Harris, D; Qureshi, S; Shieh, J; Wold, D</p> <p>2005-09-01</p> <p>Compounds used in high throughput screening (HTS) are typically dissolved in DMSO. These solutions are stored automation-friendly racks of wells or tubes. DMSO is hygroscopic and quickly absorbs water from the atmosphere. When present in DMSO compound solutions, water can accelerate degradation and precipitation. Understanding DMSO <span class="hlt">hydration</span> in an HTS compound library can improve storage and screening methods by managing the impact of water on compound stability. A non-destructive, acoustic method compatible with HTS has been developed to measure water content in DMSO solutions. Performance of this acoustic method was compared with an optical technique and found to be in good agreement. The accuracy and precision of acoustic measurements was shown to be under 3% over the tested range of DMSO solutions (0% to 35% water by volume) and insensitive to the presence of HTS compounds at typical storage concentrations. Time course studies of <span class="hlt">hydration</span> for wells in 384-well and 1536-well microplates were performed. Well geometry, <span class="hlt">fluid</span> volume, well position and atmospheric conditions were all factors in <span class="hlt">hydration</span> rate. High rates of <span class="hlt">hydration</span> were seen in lower-volume fills, higher-density multi-well plates and when there was a large differential between the humidity of the lab and the water content of the DMSO. For example, a 1536-well microplate filled with 2microL of 100% DMSO exposed for one hour to a laboratory environment with approximately 40% relative humidity will absorb over 6% water by volume. Understanding DMSO <span class="hlt">hydration</span> rates as well as the ability to reverse library <span class="hlt">hydration</span> are important steps towards managing stability and availability of compound libraries.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3683740','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3683740"><span>Mantle wedge infiltrated with saline <span class="hlt">fluids</span> from dehydration and decarbonation of subducting slab</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kawamoto, Tatsuhiko; Yoshikawa, Masako; Kumagai, Yoshitaka; Mirabueno, Ma. Hannah T.; Okuno, Mitsuru; Kobayashi, Tetsuo</p> <p>2013-01-01</p> <p>Slab-derived <span class="hlt">fluids</span> play an important role in heat and material transfer in subduction zones. Dehydration and decarbonation reactions of minerals in the subducting slab have been investigated using <span class="hlt">phase</span> equilibria and modeling of <span class="hlt">fluid</span> flow. Nevertheless, direct observations of the <span class="hlt">fluid</span> chemistry and pressure–temperature conditions of <span class="hlt">fluids</span> are few. This report describes CO2-bearing saline <span class="hlt">fluid</span> inclusions in spinel-harzburgite xenoliths collected from the 1991 Pinatubo pumice deposits. The <span class="hlt">fluid</span> inclusions are filled with saline solutions with 5.1 ± 1.0% (wt) NaCl-equivalent magnesite crystals, CO2-bearing vapor bubbles, and a talc and/or chrysotile layer on the walls. The xenoliths contain tremolite amphibole, which is stable in temperatures lower than 830 °C at the uppermost mantle. The Pinatubo volcano is located at the volcanic front of the Luzon arc associated with subduction of warm oceanic plate. The present observation suggests <span class="hlt">hydration</span> of forearc mantle and the uppermost mantle by slab-derived CO2-bearing saline <span class="hlt">fluids</span>. Dehydration and decarbonation take place, and seawater-like saline <span class="hlt">fluids</span> migrate from the subducting slab to the mantle wedge. The presence of saline <span class="hlt">fluids</span> is important because they can dissolve more metals than pure H2O and affect the chemical evolution of the mantle wedge. PMID:23716664</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23716664','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23716664"><span>Mantle wedge infiltrated with saline <span class="hlt">fluids</span> from dehydration and decarbonation of subducting slab.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kawamoto, Tatsuhiko; Yoshikawa, Masako; Kumagai, Yoshitaka; Mirabueno, Ma Hannah T; Okuno, Mitsuru; Kobayashi, Tetsuo</p> <p>2013-06-11</p> <p>Slab-derived <span class="hlt">fluids</span> play an important role in heat and material transfer in subduction zones. Dehydration and decarbonation reactions of minerals in the subducting slab have been investigated using <span class="hlt">phase</span> equilibria and modeling of <span class="hlt">fluid</span> flow. Nevertheless, direct observations of the <span class="hlt">fluid</span> chemistry and pressure-temperature conditions of <span class="hlt">fluids</span> are few. This report describes CO2-bearing saline <span class="hlt">fluid</span> inclusions in spinel-harzburgite xenoliths collected from the 1991 Pinatubo pumice deposits. The <span class="hlt">fluid</span> inclusions are filled with saline solutions with 5.1 ± 1.0% (wt) NaCl-equivalent magnesite crystals, CO2-bearing vapor bubbles, and a talc and/or chrysotile layer on the walls. The xenoliths contain tremolite amphibole, which is stable in temperatures lower than 830 °C at the uppermost mantle. The Pinatubo volcano is located at the volcanic front of the Luzon arc associated with subduction of warm oceanic plate. The present observation suggests <span class="hlt">hydration</span> of forearc mantle and the uppermost mantle by slab-derived CO2-bearing saline <span class="hlt">fluids</span>. Dehydration and decarbonation take place, and seawater-like saline <span class="hlt">fluids</span> migrate from the subducting slab to the mantle wedge. The presence of saline <span class="hlt">fluids</span> is important because they can dissolve more metals than pure H2O and affect the chemical evolution of the mantle wedge.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11090591','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11090591"><span>Dual-energy X-ray absorptiometry: analysis of pediatric fat estimate errors due to tissue <span class="hlt">hydration</span> effects.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Testolin, C G; Gore, R; Rivkin, T; Horlick, M; Arbo, J; Wang, Z; Chiumello, G; Heymsfield, S B</p> <p>2000-12-01</p> <p>Dual-energy X-ray absorptiometry (DXA) percent (%) fat estimates may be inaccurate in young children, who typically have high tissue <span class="hlt">hydration</span> levels. This study was designed to provide a comprehensive analysis of pediatric tissue <span class="hlt">hydration</span> effects on DXA %fat estimates. <span class="hlt">Phase</span> 1 was experimental and included three in vitro studies to establish the physical basis of DXA %fat-estimation models. <span class="hlt">Phase</span> 2 extended <span class="hlt">phase</span> 1 models and consisted of theoretical calculations to estimate the %fat errors emanating from previously reported pediatric <span class="hlt">hydration</span> effects. <span class="hlt">Phase</span> 1 experiments supported the two-compartment DXA soft tissue model and established that pixel ratio of low to high energy (R values) are a predictable function of tissue elemental content. In <span class="hlt">phase</span> 2, modeling of reference body composition values from birth to age 120 mo revealed that %fat errors will arise if a "constant" adult lean soft tissue R value is applied to the pediatric population; the maximum %fat error, approximately 0.8%, would be present at birth. High tissue <span class="hlt">hydration</span>, as observed in infants and young children, leads to errors in DXA %fat estimates. The magnitude of these errors based on theoretical calculations is small and may not be of clinical or research significance.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29537620','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29537620"><span>Methane <span class="hlt">Hydrate</span> in Confined Spaces: An Alternative Storage System.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Borchardt, Lars; Casco, Mirian Elizabeth; Silvestre-Albero, Joaquin</p> <p>2018-06-05</p> <p>Methane <span class="hlt">hydrate</span> inheres the great potential to be a nature-inspired alternative for chemical energy storage, as it allows to store large amounts of methane in a dense solid <span class="hlt">phase</span>. The embedment of methane <span class="hlt">hydrate</span> in the confined environment of porous materials can be capitalized for potential applications as its physicochemical properties, such as the formation kinetics or pressure and temperature stability, are significantly changed compared to the bulk system. We review this topic from a materials scientific perspective by considering porous carbons, silica, clays, zeolites, and polymers as host structures for methane <span class="hlt">hydrate</span> formation. We discuss the contribution of advanced characterization techniques and theoretical simulations towards the elucidation of the methane <span class="hlt">hydrate</span> formation and dissociation process within the confined space. We outline the scientific challenges this system is currently facing and look on possible future applications for this technology. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PlST...20e4020J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PlST...20e4020J"><span>Introduction to investigations of the negative corona and EHD flow in gaseous two-<span class="hlt">phase</span> <span class="hlt">fluids</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jerzy, MIZERACZYK; Artur, BERENDT</p> <p>2018-05-01</p> <p>Research interests have recently been directed towards electrical discharges in multi-<span class="hlt">phase</span> environments. Natural electrical discharges, such as lightning and coronas, occur in the Earth’s atmosphere, which is actually a mixture of gaseous <span class="hlt">phase</span> (air) and suspended solid and liquid particulate matters (PMs). An example of an anthropogenic gaseous multi-<span class="hlt">phase</span> environment is the flow of flue gas through electrostatic precipitators (ESPs), which are generally regarded as a mixture of a post-combustion gas with solid PM and microdroplets suspended in it. Electrical discharges in multi-<span class="hlt">phase</span> environments, the knowledge of which is scarce, are becoming an attractive research subject, offering a wide variety of possible discharges and multi-<span class="hlt">phase</span> environments to be studied. This paper is an introduction to electrical discharges in multi-<span class="hlt">phase</span> environments. It is focused on DC negative coronas and accompanying electrohydrodynamic (EHD) flows in a gaseous two-<span class="hlt">phase</span> <span class="hlt">fluid</span> formed by air (a gaseous <span class="hlt">phase</span>) and solid PM (a solid <span class="hlt">phase</span>), run under laboratory conditions. The introduction is based on a review of the relevant literature. Two cases will be considered: the first case is of a gaseous two-<span class="hlt">phase</span> <span class="hlt">fluid</span>, initially motionless in a closed chamber before being subjected to a negative corona (with the needle-to-plate electrode arrangement), which afterwards induces an EHD flow in the chamber, and the second, of a gaseous two-<span class="hlt">phase</span> <span class="hlt">fluid</span> flowing transversely with respect to the needle-to-plate electrode axis along a chamber with a corona discharge running between the electrodes. This review-based introductory paper should be of interest to theoretical researchers and modellers in the field of negative corona discharges in single- or two-<span class="hlt">phase</span> <span class="hlt">fluids</span>, and for engineers who work on designing EHD devices (such as ESPs, EHD pumps, and smoke detectors).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25599049','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25599049"><span>Oral <span class="hlt">hydration</span> for prevention of contrast-induced acute kidney injury in elective radiological procedures: a systematic review and meta-analysis of randomized controlled trials.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cheungpasitporn, Wisit; Thongprayoon, Charat; Brabec, Brady A; Edmonds, Peter J; O'Corragain, Oisin A; Erickson, Stephen B</p> <p>2014-12-01</p> <p>The reports on efficacy of oral <span class="hlt">hydration</span> treatment for the prevention of contrast-induced acute kidney injury (CIAKI) in elective radiological procedures and cardiac catheterization remain controversial. The objective of this meta-analysis was to assess the use of oral <span class="hlt">hydration</span> regimen for prevention of CIAKI. Comprehensive literature searches for randomized controlled trials (RCTs) of outpatient oral <span class="hlt">hydration</span> treatment was performed using MEDLINE, EMBASE, Cochrane Database of Systematic Reviews, Cochrane Central Register of Controlled Trials Systematic Reviews, and clinicaltrials.gov from inception until July 4(th), 2014. Primary outcome was the incidence of CIAKI. Six prospective RCTs were included in our analysis. Of 513patients undergoing elective procedures with contrast exposures,45 patients (8.8%) had CIAKI. Of 241 patients with oral <span class="hlt">hydration</span> regimen, 23 (9.5%) developed CIAKI. Of 272 patients with intravenous (IV) <span class="hlt">fluid</span> regimen, 22 (8.1%) had CIAKI. Study populations in all included studies had relatively normal kidney function to chronic kidney disease (CKD) stage 3. There was no significant increased risk of CIAKI in oral <span class="hlt">fluid</span> regimen group compared toIV <span class="hlt">fluid</span> regimen group (RR = 0.94, 95% confidence interval, CI = 0.38-2.31). According to our analysis,there is no evidence that oral <span class="hlt">fluid</span> regimen is associated with more risk of CIAKI in patients undergoing elective procedures with contrast exposures compared to IV <span class="hlt">fluid</span> regimen. This finding suggests that the oral <span class="hlt">fluid</span> regimen might be considered as a possible outpatient treatment option for CIAKI prevention in patients with normal to moderately reduced kidney function.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4290050','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4290050"><span>Oral <span class="hlt">Hydration</span> for Prevention of Contrast-Induced Acute Kidney Injury in Elective Radiological Procedures: A Systematic Review and Meta-Analysis of Randomized Controlled Trials</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Cheungpasitporn, Wisit; Thongprayoon, Charat; Brabec, Brady A.; Edmonds, Peter J.; O'Corragain, Oisin A.; Erickson, Stephen B.</p> <p>2014-01-01</p> <p>Background: The reports on efficacy of oral <span class="hlt">hydration</span> treatment for the prevention of contrast-induced acute kidney injury (CIAKI) in elective radiological procedures and cardiac catheterization remain controversial. Aims: The objective of this meta-analysis was to assess the use of oral <span class="hlt">hydration</span> regimen for prevention of CIAKI. Materials and Methods: Comprehensive literature searches for randomized controlled trials (RCTs) of outpatient oral <span class="hlt">hydration</span> treatment was performed using MEDLINE, EMBASE, Cochrane Database of Systematic Reviews, Cochrane Central Register of Controlled Trials Systematic Reviews, and clinicaltrials.gov from inception until July 4th, 2014. Primary outcome was the incidence of CIAKI. Results: Six prospective RCTs were included in our analysis. Of 513patients undergoing elective procedures with contrast exposures,45 patients (8.8%) had CIAKI. Of 241 patients with oral <span class="hlt">hydration</span> regimen, 23 (9.5%) developed CIAKI. Of 272 patients with intravenous (IV) <span class="hlt">fluid</span> regimen, 22 (8.1%) had CIAKI. Study populations in all included studies had relatively normal kidney function to chronic kidney disease (CKD) stage 3. There was no significant increased risk of CIAKI in oral <span class="hlt">fluid</span> regimen group compared toIV <span class="hlt">fluid</span> regimen group (RR = 0.94, 95% confidence interval, CI = 0.38-2.31). Conclusions: According to our analysis,there is no evidence that oral <span class="hlt">fluid</span> regimen is associated with more risk of CIAKI in patients undergoing elective procedures with contrast exposures compared to IV <span class="hlt">fluid</span> regimen. This finding suggests that the oral <span class="hlt">fluid</span> regimen might be considered as a possible outpatient treatment option for CIAKI prevention in patients with normal to moderately reduced kidney function. PMID:25599049</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1223537','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1223537"><span>Permeability and porosity of <span class="hlt">hydrate</span>-bearing sediments in the northern Gulf of Mexico</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Daigle, Hugh; Cook, Ann; Malinverno, Alberto</p> <p></p> <p><span class="hlt">Hydrate</span>-bearing sands are being actively explored because they contain the highest concentrations of <span class="hlt">hydrate</span> and are the most economically recoverable <span class="hlt">hydrate</span> resource. However, relatively little is known about the mechanisms or timescales of <span class="hlt">hydrate</span> formation, which are related to methane supply, <span class="hlt">fluid</span> flux, and host sediment properties such as permeability. We used logging-while-drilling data from locations in the northern Gulf of Mexico to develop an effective medium theory-based model for predicting permeability based on clay-sized sediment fraction. The model considers permeability varying between sand and clay endpoint permeabilities that are defined from laboratory data. We verified the model using permeabilitymore » measurements on core samples from three boreholes, and then used the model to predict permeability in two wells drilled in Walker Ridge Block 313 during the Gulf of Mexico Gas <span class="hlt">Hydrate</span> Joint Industry Project Leg II expedition in 2009. We found that the cleanest sands (clay-sized fraction <0.05) had intrinsic (<span class="hlt">hydrate</span>-free) permeability contrasts of 5-6 orders of magnitude with the surrounding clays, which is sufficient to provide focused <span class="hlt">hydrate</span> formation due to advection of methane from a deep source or diffusion of microbial methane from nearby clay layers. In sands where the clay-sized fraction exceeds 0.05, the permeability reduces significantly and focused flow is less pronounced. In these cases, diffusion of dissolved microbial methane is most likely the preferred mode of methane supply for <span class="hlt">hydrate</span> formation. In conclusion, our results provide important constraints on methane supply mechanisms in the Walker Ridge area and have global implications for evaluating rates of methane migration and <span class="hlt">hydrate</span> formation in <span class="hlt">hydrate</span>-bearing sands.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1223537-permeability-porosity-hydrate-bearing-sediments-northern-gulf-mexico','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1223537-permeability-porosity-hydrate-bearing-sediments-northern-gulf-mexico"><span>Permeability and porosity of <span class="hlt">hydrate</span>-bearing sediments in the northern Gulf of Mexico</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Daigle, Hugh; Cook, Ann; Malinverno, Alberto</p> <p>2015-10-14</p> <p><span class="hlt">Hydrate</span>-bearing sands are being actively explored because they contain the highest concentrations of <span class="hlt">hydrate</span> and are the most economically recoverable <span class="hlt">hydrate</span> resource. However, relatively little is known about the mechanisms or timescales of <span class="hlt">hydrate</span> formation, which are related to methane supply, <span class="hlt">fluid</span> flux, and host sediment properties such as permeability. We used logging-while-drilling data from locations in the northern Gulf of Mexico to develop an effective medium theory-based model for predicting permeability based on clay-sized sediment fraction. The model considers permeability varying between sand and clay endpoint permeabilities that are defined from laboratory data. We verified the model using permeabilitymore » measurements on core samples from three boreholes, and then used the model to predict permeability in two wells drilled in Walker Ridge Block 313 during the Gulf of Mexico Gas <span class="hlt">Hydrate</span> Joint Industry Project Leg II expedition in 2009. We found that the cleanest sands (clay-sized fraction <0.05) had intrinsic (<span class="hlt">hydrate</span>-free) permeability contrasts of 5-6 orders of magnitude with the surrounding clays, which is sufficient to provide focused <span class="hlt">hydrate</span> formation due to advection of methane from a deep source or diffusion of microbial methane from nearby clay layers. In sands where the clay-sized fraction exceeds 0.05, the permeability reduces significantly and focused flow is less pronounced. In these cases, diffusion of dissolved microbial methane is most likely the preferred mode of methane supply for <span class="hlt">hydrate</span> formation. In conclusion, our results provide important constraints on methane supply mechanisms in the Walker Ridge area and have global implications for evaluating rates of methane migration and <span class="hlt">hydrate</span> formation in <span class="hlt">hydrate</span>-bearing sands.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H13F1469C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H13F1469C"><span>Nanopore Confinement of C-O-H <span class="hlt">Fluids</span> Relevant to Subsurface Energy Systems</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cole, D. R.</p> <p>2016-12-01</p> <p>Complex intermolecular interactions of C-O-H <span class="hlt">fluids</span> (e.g., H2O, CO2, CH4) result in their unique thermophysical properties, including large deviations in the volumetric properties from ideality, vapor-liquid equilibria, and critical phenomena as these <span class="hlt">fluids</span> encounter different pressure-temperature-pore network conditions in the crust. Development of a comprehensive understanding of the structures, dynamics, and reactivity at multiple length scales (molecular to macroscopic) over wide ranges of state conditions and composition is foundational to advances in quantifying geochemical processes involving mineral-<span class="hlt">fluid</span> interfaces. The size, distribution and connectivity of these confined geometries dictate how <span class="hlt">fluids</span> migrate into and through these micro- and nano-environments, wet and react with the solid. This presentation will provide an overview of the application of state-of-the-art experimental, analytical and computational tools to assess key features of the <span class="hlt">fluid</span>-matrix interaction. The multidisciplinary approaches highlighted will include neutron scattering and NMR experiments, thermodynamic measurements and molecular-level simulations to quantitatively assess molecular properties of different mixtures of C-O-H <span class="hlt">fluids</span> in nanpores. Key results include: (1) The addition of a second carbon-bearing <span class="hlt">phase</span> or water has a profound effect on the competition for sorption sites, <span class="hlt">phase</span> chemistry and the dynamical properties of all <span class="hlt">phases</span> present in the pore. (2) Low solubility <span class="hlt">phases</span> such as methane may exhibit profound increases in concentration in nanopores in the presence of water at elevated pressures and ambient temperature compared to bulk values. (3) Methane permeability through the <span class="hlt">hydrated</span> pores is strongly dependent on the solid substrate and local properties of confined water, including its structure and, more importantly, evolution of solvation free energy and hydrogen bond structure. (4) Under certain conditions preferential adsorption of the <span class="hlt">fluids</span> in the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H13E1425M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H13E1425M"><span>Interfacial Area Development in Two-<span class="hlt">Phase</span> <span class="hlt">Fluid</span> Flow: Transient vs. Quasi-Static Flow Conditions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meisenheimer, D. E.; Wildenschild, D.</p> <p>2017-12-01</p> <p><span class="hlt">Fluid-fluid</span> interfaces are important in multiphase flow systems in the environment (e.g. groundwater remediation, geologic CO2 sequestration) and industry (e.g. air stripping, fuel cells). Interfacial area controls mass transfer, and therefore reaction efficiency, between the different <span class="hlt">phases</span> in these systems but they also influence <span class="hlt">fluid</span> flow processes. There is a need to better understand this relationship between interfacial area and <span class="hlt">fluid</span> flow processes so that more robust theories and models can be built for engineers and policy makers to improve the efficacy of many multiphase flow systems important to society. Two-<span class="hlt">phase</span> flow experiments were performed in glass bead packs under transient and quasi-static flow conditions. Specific interfacial area was calculated from 3D images of the porous media obtained using the fast x-ray microtomography capability at the Advanced Photon Source. We present data suggesting a direct relationship between the transient nature of the <span class="hlt">fluid</span>-flow experiment (fewer equilibrium points) and increased specific interfacial area. The effect of flow condition on Euler characteristic (a representative measure of <span class="hlt">fluid</span> topology) will also be presented.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMOS43B1811S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMOS43B1811S"><span>Electrical conductivity of lab-formed methane <span class="hlt">hydrate</span> + sand mixtures; technical developments and new results</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stern, L.; Du Frane, W. L.; Weitemeyer, K. A.; Constable, S.; Roberts, J. J.</p> <p>2012-12-01</p> <p>Electromagnetic (EM) measurement techniques used in permafrost and marine wells show that electrical conductivity (σ) of gas-<span class="hlt">hydrate</span>-bearing zones is typically lower than that of surrounding sediments. However, while σ has been measured on analogue materials, it has seldom been studied on methane <span class="hlt">hydrate</span>, the most common gas <span class="hlt">hydrate</span> in the shallow geosphere. Additional petrophysical information - such as mixing relations and/or compositions of individual components - is also needed to more accurately relate σ to quantitative estimates of gas <span class="hlt">hydrate</span> in EM-surveyed regions. To help address these needs, we first quantified the electrical properties of lab-formed methane <span class="hlt">hydrate</span> at geologically relevant temperatures and pressures (Du Frane et al. GRL, 2011; also AGU 2011). A high-pressure cell was constructed to form <span class="hlt">hydrate</span> from melting granular ice (made from distilled-deionized water) in the presence of pressurized CH4 gas, while measuring frequency-dependent impedance (Z) and σ. Final samples were pure, polycrystalline methane <span class="hlt">hydrate</span> with excess CH4 gas but no excess H2O. The <span class="hlt">hydrate</span> was then either quenched for grain-scale assessment by cryogenic SEM imaging, or dissociated in situ for further Z and σ measurement. Du Frane et al. [GRL, 2011] reported σ of methane <span class="hlt">hydrate</span> to range from 10-5 to 10-4 S/m between -15 and 15°C, with activation energy (Ea) of 30.6 kJ/mol. In comparison, σ of the dissociated ice byproduct was ~400% higher with ~50% higher Ea. Measurements were then performed on methane <span class="hlt">hydrate</span> mixed with known amounts of a standard quartz sand (Oklahoma #1, ~125 μm grain size) or similarly-sized silica glass beads in proportions ranging 10 to 90 vol. % relative to the <span class="hlt">hydrate</span> <span class="hlt">phase</span>. Several samples were dissociated at temperatures below -3°C for Z and σ measurement of the resulting ice/sand mixtures, and all samples were imaged for <span class="hlt">phase</span> distribution. Adding sand complicated Z spectra for frequencies < 1 kHz and > 1MHz. However, the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27079466','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27079466"><span>Electrostatic, elastic and <span class="hlt">hydration</span>-dependent interactions in dermis influencing volume exclusion and macromolecular transport.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Øien, Alf H; Wiig, Helge</p> <p>2016-07-07</p> <p>Interstitial exclusion refers to the limitation of space available for plasma proteins and other macromolecules based on collagen and negatively charged glycosaminoglycans (GAGs) in the interstitial space. It is of particular importance to interstitial <span class="hlt">fluid</span> and plasma volume regulation. Here we present a novel mechanical and mathematical model of the dynamic interactions of structural elements within the interstitium of the dermis at the microscopic level that may explain volume exclusion of charged and neutral macroparticles. At this level, the interstitium is considered to consist of elements called extracellular matrix (ECM) cells, again containing two main interacting structural components on a <span class="hlt">fluid</span> background including anions and cations setting up osmotic forces: one smaller GAG component, having an intrinsic expansive electric force, and one bigger collagen component, having an intrinsic elastic force. Because of size differences, the GAG component interacts with a fraction of the collagen component only at normal <span class="hlt">hydration</span>. This fraction, however, increases with rising <span class="hlt">hydration</span> as a consequence of the modeled form of the interaction force between the GAGs and collagen. Collagen is locally displaced at variable degrees as <span class="hlt">hydration</span> changes. Two models of GAGs are considered, having largely different geometries which demands different, but related, forms of GAG-collagen interaction forces. The effects of variable fixed charges on GAGs and of GAG density in tissue are evaluated taking into account observed volume exclusion properties of charged macromolecules as a function of tissue <span class="hlt">hydration</span>. The presented models may improve our biophysical understanding of acting forces influencing tissue <span class="hlt">fluid</span> dynamics. Such knowledge is significant when evaluating the transport of electrically charged and neutral macromolecules into and through the interstitium, and therefore to drug uptake and the therapeutic effects of macromolecular agents. Copyright © 2016 Elsevier</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19790021297','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19790021297"><span>Two-<span class="hlt">phase</span> choked flow of cryogenic <span class="hlt">fluids</span> in converging-diverging nozzles</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Simoneau, R. J.; Hendricks, R. C.</p> <p>1979-01-01</p> <p>Data are presented for the two <span class="hlt">phase</span> choked flow of three cryogenic <span class="hlt">fluids</span> - nitrogen, methane, and hydrogen - in four converging-diverging nozzles. The data cover a range of inlet stagnation conditions, all single <span class="hlt">phase</span>, from well below to well above the thermodynamic critical conditions. In almost all cases the nozzle throat conditions were two <span class="hlt">phase</span>. The results indicate that the choked flow rates were not very sensitive to nozzle geometry. However, the axial pressure profiles, especially the throat pressure and the point of vaporization, were very sensitive to both nozzle geometry and operating conditions. A modified Henry-Fauske model correlated all the choked flow rate data to within + or - 10 percent. Neither the equilibrium model nor the Henry-Fauske model predicted throat pressures well over the whole range of data. Above the thermodynamic critical temperature the homogeneous equilibrium model was preferred for both flow rate and pressure ratio. The data of the three <span class="hlt">fluids</span> could be normalized by the principle of corresponding states.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26088039','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26088039"><span>Assessing <span class="hlt">Hydration</span> in Children: From Science to Practice.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Guelinckx, I; Frémont-Marquis, A S; Eon, E; Kavouras, S A; Armstrong, L E</p> <p>2015-01-01</p> <p>Raising children's awareness about their <span class="hlt">hydration</span> status could be done through a noninvasive biomarker. Urine color (UC) has been validated as a biomarker of <span class="hlt">hydration</span> in adults and children aged 8-14 years. The aim of this survey was to design and to evaluate the level of understanding and attractiveness of a self-assessment, UC-based <span class="hlt">hydration</span> tool for children aged 6-11 years. The first <span class="hlt">phase</span> of the survey consisted of face-to-face interviews during which 84 children identified those graphical elements necessary to understand the <span class="hlt">hydration</span> message from 6 illustration-based designs containing the UC chart. The graphic elements selected were the basis to create 3 new designs. During the 2nd <span class="hlt">phase</span>, the level of understanding and attractiveness of these 3 new designs was then evaluated via an online questionnaire by a total of 1,231 children in 3 countries. The design with the highest level of understanding was totally or partially understood by 76% of the participants, independent of age and gender. The levels of understanding, however, differed in the countries. In Indonesia, the levels of understanding of the 3 designs were comparable; whereas in both France (74%) and Mexico (78%), significantly more participants totally and partially understood one of the 3 designs. The levels of attractiveness of the 3 designs were comparable, independent of country, age, and gender. On average, 80% of all participants liked the 3 designs a bit or a lot. Only 14% did not like the designs, and 5% of participants had no opinion regarding attractiveness. These results indicated that three out of four children like and understand the correct <span class="hlt">hydration</span> message from a strictly illustration-based tool containing the eight-point UC scale. © 2015 S. Karger AG, Basel.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24429091','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24429091"><span>Nasogastric <span class="hlt">hydration</span> versus intravenous <span class="hlt">hydration</span> for infants with bronchiolitis: a randomised trial.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Oakley, Ed; Borland, Meredith; Neutze, Jocelyn; Acworth, Jason; Krieser, David; Dalziel, Stuart; Davidson, Andrew; Donath, Susan; Jachno, Kim; South, Mike; Theophilos, Theane; Babl, Franz E</p> <p>2013-04-01</p> <p>Bronchiolitis is the most common lower respiratory tract infection in infants and the leading cause of hospital admission. <span class="hlt">Hydration</span> is a mainstay of treatment, but insufficient evidence exists to guide clinical practice. We aimed to assess whether intravenous <span class="hlt">hydration</span> or nasogastric <span class="hlt">hydration</span> is better for treatment of infants. In this multicentre, open, randomised trial, we enrolled infants aged 2-12 months admitted to hospitals in Australia and New Zealand with a clinical diagnosis of bronchiolitis during three bronchiolitis seasons (April 1-Oct 31, in 2009, 2010, and 2011). We randomly allocated infants to nasogastric <span class="hlt">hydration</span> or intravenous <span class="hlt">hydration</span> by use of a computer-generated sequence and opaque sealed envelopes, with three randomly assigned block sizes and stratified by hospital site and age group (2-<6 months vs 6-12 months). The primary outcome was length of hospital stay, assessed in all randomly assigned infants. Secondary outcomes included rates of intensive-care unit admission, adverse events, and success of insertion. This trial is registered with the Australian and New Zealand clinical trials registry, ACTRN12605000033640. Mean length of stay for 381 infants assigned nasogastric <span class="hlt">hydration</span> was 86·6 h (SD 58·9) compared with 82·2 h (58·8) for 378 infants assigned intravenous <span class="hlt">hydration</span> (absolute difference 4·5 h [95% CI -3·9 to 12·9]; p=0·30). Rates of admission to intensive-care units, need for ventilatory support, and adverse events did not differ between groups. At randomisation, seven infants assigned nasogastric <span class="hlt">hydration</span> were switched to intravenous <span class="hlt">hydration</span> and 56 infants assigned intravenous <span class="hlt">hydration</span> were switched to nasogastric <span class="hlt">hydration</span> because the study-assigned method was unable to be inserted. For those infants who had data available for successful insertion, 275 (85%) of 323 infants in the nasogastric <span class="hlt">hydration</span> group and 165 (56%) of 294 infants in the intravenous <span class="hlt">hydration</span> group required only one attempt for successful</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70190376','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70190376"><span>Volume change associated with formation and dissociation of <span class="hlt">hydrate</span> in sediment</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ruppel, Carolyn D.; Lee, J.Y.; Santamarina, J. Carlos</p> <p>2017-01-01</p> <p>Gas <span class="hlt">hydrate</span> formation and dissociation in sediments are accompanied by changes in the bulk volume of the sediment and can lead to changes in sediment properties, loss of integrity for boreholes, and possibly regional subsidence of the ground surface over areas where methane might be produced from gas <span class="hlt">hydrate</span> in the future. Experiments on sand, silts, and clay subject to different effective stress and containing different saturations of <span class="hlt">hydrate</span> formed from dissolved <span class="hlt">phase</span> tetrahydrofuran are used to systematically investigate the impact of gas <span class="hlt">hydrate</span> formation and dissociation on bulk sediment volume. Volume changes in low specific surface sediments (i.e., having a rigid sediment skeleton like sand) are much lower than those measured in high specific surface sediments (e.g., clay). Early <span class="hlt">hydrate</span> formation is accompanied by contraction for all soils and most stress states in part because growing gas <span class="hlt">hydrate</span> crystals buckle skeletal force chains. Dilation can occur at high <span class="hlt">hydrate</span> saturations. <span class="hlt">Hydrate</span> dissociation under drained, zero lateral strain conditions is always associated with some contraction, regardless of soil type, effective stress level, or <span class="hlt">hydrate</span> saturation. Changes in void ratio during formation-dissociation decrease at high effective stress levels. The volumetric strain during dissociation under zero lateral strain scales with <span class="hlt">hydrate</span> saturation and sediment compressibility. The volumetric strain during dissociation under high shear is a function of the initial volume average void ratio and the stress-dependent critical state void ratio of the sediment. Other contributions to volume reduction upon <span class="hlt">hydrate</span> dissociation are related to segregated <span class="hlt">hydrate</span> in lenses and nodules. For natural gas <span class="hlt">hydrates</span>, some conditions (e.g., gas production driven by depressurization) might contribute to additional volume reduction by increasing the effective stress.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvE..97e3104B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvE..97e3104B"><span>Validation of model predictions of pore-scale <span class="hlt">fluid</span> distributions during two-<span class="hlt">phase</span> flow</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bultreys, Tom; Lin, Qingyang; Gao, Ying; Raeini, Ali Q.; AlRatrout, Ahmed; Bijeljic, Branko; Blunt, Martin J.</p> <p>2018-05-01</p> <p>Pore-scale two-<span class="hlt">phase</span> flow modeling is an important technology to study a rock's relative permeability behavior. To investigate if these models are predictive, the calculated pore-scale <span class="hlt">fluid</span> distributions which determine the relative permeability need to be validated. In this work, we introduce a methodology to quantitatively compare models to experimental <span class="hlt">fluid</span> distributions in flow experiments visualized with microcomputed tomography. First, we analyzed five repeated drainage-imbibition experiments on a single sample. In these experiments, the exact <span class="hlt">fluid</span> distributions were not fully repeatable on a pore-by-pore basis, while the global properties of the <span class="hlt">fluid</span> distribution were. Then two fractional flow experiments were used to validate a quasistatic pore network model. The model correctly predicted the <span class="hlt">fluid</span> present in more than 75% of pores and throats in drainage and imbibition. To quantify what this means for the relevant global properties of the <span class="hlt">fluid</span> distribution, we compare the main flow paths and the connectivity across the different pore sizes in the modeled and experimental <span class="hlt">fluid</span> distributions. These essential topology characteristics matched well for drainage simulations, but not for imbibition. This suggests that the pore-filling rules in the network model we used need to be improved to make reliable predictions of imbibition. The presented analysis illustrates the potential of our methodology to systematically and robustly test two-<span class="hlt">phase</span> flow models to aid in model development and calibration.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28991480','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28991480"><span>CH4 <span class="hlt">Hydrate</span> Formation between Silica and Graphite Surfaces: Insights from Microsecond Molecular Dynamics Simulations.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>He, Zhongjin; Linga, Praveen; Jiang, Jianwen</p> <p>2017-10-31</p> <p>Microsecond simulations have been performed to investigate CH 4 <span class="hlt">hydrate</span> formation from gas/water two-<span class="hlt">phase</span> systems between silica and graphite surfaces, respectively. The hydrophilic silica and hydrophobic graphite surfaces exhibit substantially different effects on CH 4 <span class="hlt">hydrate</span> formation. The graphite surface adsorbs CH 4 molecules to form a nanobubble with a flat or negative curvature, resulting in a low aqueous CH 4 concentration, and <span class="hlt">hydrate</span> nucleation does not occur during 2.5 μs simulation. Moreover, an ordered interfacial water bilayer forms between the nanobubble and graphite surface thus preventing their direct contact. In contrast, the hydroxylated-silica surface prefers to be <span class="hlt">hydrated</span> by water, with a cylindrical nanobubble formed in the solution, leading to a high aqueous CH 4 concentration and <span class="hlt">hydrate</span> nucleation in the bulk region; during <span class="hlt">hydrate</span> growth, the nanobubble is gradually covered by <span class="hlt">hydrate</span> solid and separated from the water <span class="hlt">phase</span>, hence slowing growth. The silanol groups on the silica surface can form strong hydrogen bonds with water, and <span class="hlt">hydrate</span> cages need to match the arrangements of silanols to form more hydrogen bonds. At the end of the simulation, the <span class="hlt">hydrate</span> solid is separated from the silica surface by liquid water, with only several cages forming hydrogen bonds with the silica surface, mainly due to the low CH 4 aqueous concentrations near the surface. To further explore <span class="hlt">hydrate</span> formation between graphite surfaces, CH 4 /water homogeneous solution systems are also simulated. CH 4 molecules in the solution are adsorbed onto graphite and <span class="hlt">hydrate</span> nucleation occurs in the bulk region. During <span class="hlt">hydrate</span> growth, the adsorbed CH 4 molecules are gradually converted into <span class="hlt">hydrate</span> solid. It is found that the <span class="hlt">hydrate</span>-like ordering of interfacial water induced by graphite promotes the contact between <span class="hlt">hydrate</span> solid and graphite. We reveal that the ability of silanol groups on silica to form strong hydrogen bonds to stabilize incipient <span class="hlt">hydrate</span> solid</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19800015108','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19800015108"><span>Two-<span class="hlt">phase</span> working <span class="hlt">fluids</span> for the temperature range of 50 to 350 deg, <span class="hlt">phase</span> 2</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Saaski, E. W.; Hartl, J. H.</p> <p>1980-01-01</p> <p>Several two <span class="hlt">phase</span> heat transfer <span class="hlt">fluids</span> were tested in aluminum and carbon steel reflux capsules for over 25,000 hours at temperatures up to 300 C. Several <span class="hlt">fluids</span> showed very good stability and would be useful for long duration heat transfer applications over the range 100 to 350 C. Instrumentation for the measurement of surface tension and viscosity were constructed for use with heat transfer <span class="hlt">fluids</span> over the temperature range 0 to 300 C and with pressures from 0 to 10 atmospheres. The surface tension measuring device constructed requires less than a 1.0 cc sample and displays an accuracy of about 5 percent in preliminary tests, while the viscometer constructed for this program requires a 0.05 cc sample and shows an accuracy of about 5 percent in initial tests.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.5774J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.5774J"><span>Simulation of subsea gas <span class="hlt">hydrate</span> exploitation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Janicki, Georg; Schlüter, Stefan; Hennig, Torsten; Deerberg, Görge</p> <p>2014-05-01</p> <p> a <span class="hlt">hydrate</span> deposit are identified and described for various scenarios. The behavior of relevant process parameters such as pressure, temperature and <span class="hlt">phase</span> saturations is discussed and compared for different strategies: simple depressurization, simultaneous and subsequent methane production together with CO2 injection.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11375486','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11375486"><span><span class="hlt">Hydrated</span> salt minerals on Ganymede's surface: evidence of an ocean below.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>McCord, T B; Hansen, G B; Hibbitts, C A</p> <p>2001-05-25</p> <p>Reflectance spectra from Galileo's near-infrared mapping spectrometer (NIMS) suggests that the surface of Ganymede, the largest satellite of Jupiter, contains <span class="hlt">hydrated</span> materials. These materials are interpreted to be similar to those found on Europa, that is, mostly frozen magnesium sulfate brines that are derived from a subsurface briny layer of <span class="hlt">fluid</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19800018902','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19800018902"><span>Conceptual design of two-<span class="hlt">phase</span> <span class="hlt">fluid</span> mechanics and heat transfer facility for spacelab</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>North, B. F.; Hill, M. E.</p> <p>1980-01-01</p> <p>Five specific experiments were analyzed to provide definition of experiments designed to evaluate two <span class="hlt">phase</span> <span class="hlt">fluid</span> behavior in low gravity. The conceptual design represents a <span class="hlt">fluid</span> mechanics and heat transfer facility for a double rack in Spacelab. The five experiments are two <span class="hlt">phase</span> flow patterns and pressure drop, flow boiling, liquid reorientation, and interface bubble dynamics. Hardware was sized, instrumentation and data recording requirements defined, and the five experiments were installed as an integrated experimental package. Applicable available hardware was selected in the experiment design and total experiment program costs were defined.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.B21G0494C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.B21G0494C"><span>The Comparison Study of gas source between two <span class="hlt">hydrate</span> expeditions in ShenHu area, SCS</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cong, X. R.</p> <p>2016-12-01</p> <p>Two gas <span class="hlt">hydrate</span> expeditions (GMGS 01&03) were conducted in the Pearl River Mouth Basin, SCS, which were organized by Guangzhou Marine Geological Survey in 2007 and 2015, respectively. Compared with the drilling results of "mixed bio-thermogenic gas and generally dominated by biogenic gas" in 2007, hydrocarbon component measurements revealed a higher content of ethane and propane in 2015 drilling, providing direct evidence that deep thermogenic gas was the source for shallow <span class="hlt">hydrate</span> formation. According to the geochemical analyses of the results obtained from the industrial boreholes in Baiyun sag, the deep hydrocarbon gas obviously leaked from the reservoir as escape caused by Dongsha movement in the late Miocene, as a result thermogenic gas from Wenchang, Enping and Zhuhai hydrocarbon source rocks migrated to late Miocene shallow strata through faults, diapirs and gas chimney vertically migration. In this paper we report the differences in <span class="hlt">fluid</span> migration channel types and discuss their effect in <span class="hlt">fluid</span> vertical migration efficiency in the two Shenhu <span class="hlt">hydrate</span> drilling areas. For the drilling area in 2007,when the limited deep thermogenic gas experienced long distance migration process from bottom to up along inefficient energy channel, the gas composition might have changed and the carbon isotope fractionation might have happened, which were reflected in the results of higher C1/C2 ratios and lighter carbon isotope in gas <span class="hlt">hydrate</span> bearing sediments. As a result the gas is with more "biogenic gas" features. It means thermogenic gases in the deep to contributed the formation of shallow gas <span class="hlt">hydrate</span> indirectly in 2007 Shenhu drill area. On another hand, the gases were transported to the shallow sediment layers efficiently, where gas <span class="hlt">hydrate</span> formed, through faults and fractures from deep hydrocarbon reservoirs, and as the result they experienced less changes in both components and isotopes in 2015 drilling site.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70021584','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70021584"><span>Formation of natural gas <span class="hlt">hydrates</span> in marine sediments 1. Conceptual model of gas <span class="hlt">hydrate</span> growth conditioned by host sediment properties</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Clennell, M.B.; Hovland, M.; Booth, J.S.; Henry, P.; Winters, W.J.</p> <p>1999-01-01</p> <p>The stability of submarine gas <span class="hlt">hydrates</span> is largely dictated by pressure and temperature, gas composition, and pore water salinity. However, the physical properties and surface chemistry of deep marine sediments may also affect the thermodynamic state, growth kinetics, spatial distributions, and growth forms of clathrates. Our conceptual model presumes that gas <span class="hlt">hydrate</span> behaves in a way analogous to ice in a freezing soil. <span class="hlt">Hydrate</span> growth is inhibited within fine-grained sediments by a combination of reduced pore water activity in the vicinity of hydrophilic mineral surfaces, and the excess internal energy of small crystals confined in pores. The excess energy can be thought of as a "capillary pressure" in the <span class="hlt">hydrate</span> crystal, related to the pore size distribution and the state of stress in the sediment framework. The base of gas <span class="hlt">hydrate</span> stability in a sequence of fine sediments is predicted by our model to occur at a lower temperature (nearer to the seabed) than would be calculated from bulk thermodynamic equilibrium. Capillary effects or a build up of salt in the system can expand the <span class="hlt">phase</span> boundary between <span class="hlt">hydrate</span> and free gas into a divariant field extending over a finite depth range dictated by total methane content and pore-size distribution. Hysteresis between the temperatures of crystallization and dissociation of the clathrate is also predicted. Growth forms commonly observed in <span class="hlt">hydrate</span> samples recovered from marine sediments (nodules, and lenses in muds; cements in sands) can largely be explained by capillary effects, but kinetics of nucleation and growth are also important. The formation of concentrated gas <span class="hlt">hydrates</span> in a partially closed system with respect to material transport, or where gas can flush through the system, may lead to water depletion in the host sediment. This "freeze-drying" may be detectable through physical changes to the sediment (low water content and overconsolidation) and/or chemical anomalies in the pore waters and metastable</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GeoJI.202..850J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GeoJI.202..850J"><span>Seismoelectric couplings in a poroelastic material containing two immiscible <span class="hlt">fluid</span> <span class="hlt">phases</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jardani, A.; Revil, A.</p> <p>2015-08-01</p> <p>A new approach of seismoelectric imaging has been recently proposed to detect saturation fronts in which seismic waves are focused in the subsurface to scan its heterogeneous nature and determine saturation fronts. Such type of imaging requires however a complete modelling of the seismoelectric properties of porous media saturated by two immiscible <span class="hlt">fluid</span> <span class="hlt">phases</span>, one being usually electrically insulating (for instance water and oil). We combine an extension of Biot dynamic theory, valid for porous media containing two immiscible Newtonian <span class="hlt">fluids</span>, with an extension of the electrokinetic theory based on the notion of effective volumetric charge densities dragged by the flow of each <span class="hlt">fluid</span> <span class="hlt">phase</span>. These effective charge densities can be related directly to the permeability and saturation of each <span class="hlt">fluid</span> <span class="hlt">phase</span>. The coupled partial differential equations are solved with the finite element method. We also derive analytically the transfer function connecting the macroscopic electrical field to the acceleration of the fast P wave (coseismic electrical field) and we study the influence of the water content on this coupling. We observe that the amplitude of the co-seismic electrical disturbance is very sensitive to the water content with an increase in amplitude with water saturation. We also investigate the seismoelectric conversions (interface effect) occurring at the water table. We show that the conversion response at the water table can be identifiable only when the saturation contrasts between the vadose and saturated zones are sharp enough. A relatively dry vadose zone represents the best condition to identify the water table through seismoelectric measurements. Indeed, in this case, the coseismic electrical disturbances are vanishingly small compared to the seismoelectric interface response.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70093195','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70093195"><span>Scientific results of the Second Gas <span class="hlt">Hydrate</span> Drilling Expedition in the Ulleung Basin (UBGH2)</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ryu, Byong-Jae; Collett, Timothy S.; Riedel, Michael; Kim, Gil-Young; Chun, Jong-Hwa; Bahk, Jang-Jun; Lee, Joo Yong; Kim, Ji-Hoon; Yoo, Dong-Geun</p> <p>2013-01-01</p> <p>As a part of Korean National Gas <span class="hlt">Hydrate</span> Program, the Second Ulleung Basin Gas <span class="hlt">Hydrate</span> Drilling Expedition (UBGH2) was conducted from 9 July to 30 September, 2010 in the Ulleung Basin, East Sea, offshore Korea using the D/V Fugro Synergy. The UBGH2 was performed to understand the distribution of gas <span class="hlt">hydrates</span> as required for a resource assessment and to find potential candidate sites suitable for a future offshore production test, especially targeting gas <span class="hlt">hydrate</span>-bearing sand bodies in the basin. The UBGH2 sites were distributed across most of the basin and were selected to target mainly sand-rich turbidite deposits. The 84-day long expedition consisted of two <span class="hlt">phases</span>. The first <span class="hlt">phase</span> included logging-while-drilling/measurements-while-drilling (LWD/MWD) operations at 13 sites. During the second <span class="hlt">phase</span>, sediment cores were collected from 18 holes at 10 of the 13 LWD/MWD sites. Wireline logging (WL) and vertical seismic profile (VSP) data were also acquired after coring operations at two of these 10 sites. In addition, seafloor visual observation, methane sensing, as well as push-coring and sampling using a Remotely Operated Vehicle (ROV) were conducted during both <span class="hlt">phases</span> of the expedition. Recovered gas <span class="hlt">hydrates</span> occurred either as pore-filling medium associated with discrete turbidite sand layers, or as fracture-filling veins and nodules in muddy sediments. Gas analyses indicated that the methane within the sampled gas <span class="hlt">hydrates</span> is primarily of biogenic origin. This paper provides a summary of the operational and scientific results of the UBGH2 expedition as described in 24 papers that make up this special issue of the Journal of Marine and Petroleum Geology.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDL37009G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDL37009G"><span>Controlled formation of cyclopentane <span class="hlt">hydrate</span> suspensions via capillary-driven jet break-up</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Geri, Michela; McKinley, Gareth</p> <p>2017-11-01</p> <p>Clathrate <span class="hlt">hydrates</span> are crystalline compounds that form when a lattice of hydrogen-bonded water molecules is filled by guest molecules sequestered from an adjacent gas or liquid <span class="hlt">phase</span>. Being able to rapidly produce and transport synthetic <span class="hlt">hydrates</span> is of great interest given their significant potential as a clean energy source and safe option for hydrogen storage. We propose a new method to rapidly produce cyclopentane <span class="hlt">hydrate</span> suspensions at ambient pressure with tunable particle size distribution by taking advantage of the Rayleigh-Plateau instability to form a mono-disperse stream of droplets during the controlled break-up of a water jet. The droplets are immediately frozen into ice particles through immersion in a subcooled reservoir and converted into <span class="hlt">hydrates</span> with a dramatic reduction in the nucleation induction time. By measuring the evolution of the rheological properties with time, we monitor the process of <span class="hlt">hydrates</span> formation via surface crystallization and agglomeration with different droplet size distributions. This new method enables us to gain new insights into <span class="hlt">hydrate</span> formation and transport which was previously hindered by uncontrolled droplet formation and <span class="hlt">hydrate</span> nucleation processes. MITei Chevron Fellowship.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..44.2129S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..44.2129S"><span>Temperature- and pressure-dependent structural transformation of methane <span class="hlt">hydrates</span> in salt environments</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shin, Donghoon; Cha, Minjun; Yang, Youjeong; Choi, Seunghyun; Woo, Yesol; Lee, Jong-Won; Ahn, Docheon; Im, Junhyuck; Lee, Yongjae; Han, Oc Hee; Yoon, Ji-Ho</p> <p>2017-03-01</p> <p>Understanding the stability of volatile species and their compounds under various surface and subsurface conditions is of great importance in gaining insights into the formation and evolution of planetary and satellite bodies. We report the experimental results of the temperature- and pressure-dependent structural transformation of methane <span class="hlt">hydrates</span> in salt environments using in situ synchrotron X-ray powder diffraction, solid-state nuclear magnetic resonance, and Raman spectroscopy. We find that under pressurized and concentrated brine solutions methane <span class="hlt">hydrate</span> forms a mixture of type I clathrate <span class="hlt">hydrate</span>, ice, and <span class="hlt">hydrated</span> salts. Under a low-pressure condition, however, the methane <span class="hlt">hydrates</span> are decomposed through a rapid sublimation of water molecules from the surface of <span class="hlt">hydrate</span> crystals, while NaCl · 2H2O undergoes a <span class="hlt">phase</span> transition into a crystal growth of NaCl via the migration of salt ions. In ambient pressure conditions, the methane <span class="hlt">hydrate</span> is fully decomposed in brine solutions at temperatures above 252 K, the eutectic point of NaCl · 2H2O.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3554404','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3554404"><span><span class="hlt">Hydration</span> dynamics promote bacterial coexistence on rough surfaces</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wang, Gang; Or, Dani</p> <p>2013-01-01</p> <p>Identification of mechanisms that promote and maintain the immense microbial diversity found in soil is a central challenge for contemporary microbial ecology. Quantitative tools for systematic integration of complex biophysical and trophic processes at spatial scales, relevant for individual cell interactions, are essential for making progress. We report a modeling study of competing bacterial populations cohabiting soil surfaces subjected to highly dynamic <span class="hlt">hydration</span> conditions. The model explicitly tracks growth, motion and life histories of individual bacterial cells on surfaces spanning dynamic aqueous networks that shape heterogeneous nutrient fields. The range of <span class="hlt">hydration</span> conditions that confer physical advantages for rapidly growing species and support competitive exclusion is surprisingly narrow. The rapid fragmentation of soil aqueous <span class="hlt">phase</span> under most natural conditions suppresses bacterial growth and cell dispersion, thereby balancing conditions experienced by competing populations with diverse physiological traits. In addition, <span class="hlt">hydration</span> fluctuations intensify localized interactions that promote coexistence through disproportional effects within densely populated regions during dry periods. Consequently, bacterial population dynamics is affected well beyond responses predicted from equivalent and uniform <span class="hlt">hydration</span> conditions. New insights on <span class="hlt">hydration</span> dynamics could be considered in future designs of soil bioremediation activities, affect longevity of dry food products, and advance basic understanding of bacterial diversity dynamics and its role in global biogeochemical cycles. PMID:23051694</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMMR31A2655B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMMR31A2655B"><span>Hydrogen-bond symmetrization in methane and hydrogen <span class="hlt">hydrates</span> in the Mbar range</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bove, L. E.; Ranieri, U.; Gaal, R.; Finocchi, F.; Kuhs, W. F.; Falenty, A.; Klotz, S.; Gillet, P.</p> <p>2016-12-01</p> <p>Ice-VII and ice-X <span class="hlt">phases</span> are the most stable forms of ice at high temperature and extreme pressures, typical of the interiors of satellites and planets. The <span class="hlt">phase</span> transition between them is a prototypical case of quantum-driven phenomenon, as it can be described as a quantum delocalization of protons in the middle of O-O distances. Recent studies on LiCl- and NaCl-doped ice 1-3 have shown that the presence of salt inclusions in the ice lattice suppresses the quantum behavior of protons, hindering the appearance of the symmetric <span class="hlt">phase</span>, and possibly suppressing the predicted high temperature superionic <span class="hlt">phase</span>. This finding stimulated the investigation of similar effects in other water-based compounds, which are thought to be present in icy bodies, namely hydrogen and methane high pressure <span class="hlt">hydrates</span>. Few experiments have been performed in the past to identify signatures of the hydrogen-bond symmetrization in methane and hydrogen <span class="hlt">hydrates</span> without reaching conclusive results4,5. Here we present new results on the hydrogen-bond symmetrization of methane and hydrogen <span class="hlt">hydrates</span> using Raman scattering in the Mbar range and semiclassical simulations including nuclear quantum effects. 1 Bove L. E. et al., E_ect of salt on the H-bond symmetrization in ice, Proc. Natl. Acad. Sci. USA 112, 8216, 2015 ; 2. Bronstein Y. et al., Quantum versus classical protons in pure and salty ice under pressure, Phys. Rev. B 93, 024104, 2016. 3. Klotz S. et al., Ice VII from aqueous salt solutions: From a glass to a crystal with broken H-bonds, Nature Sci. Rep. , in press. 4. Tanaka T. et al., <span class="hlt">Phase</span> changes of _lled ice Ih methane <span class="hlt">hydrate</span> under low temperature and high pressure, J. Chem. Phys. 139, 104701, 2013 5. Hirai H. et al., Structural changes of _lled ice Ic hydrogen <span class="hlt">hydrate</span> under low temperatures and high pressures from 5 to 50 GPa, J. Chem. Phys. 137, 074505, 2012</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JOUC...17...35L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JOUC...17...35L"><span>Simulating the effect of <span class="hlt">hydrate</span> dissociation on wellhead stability during oil and gas development in deepwater</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Qingchao; Cheng, Yuanfang; Zhang, Huaiwen; Yan, Chuanliang; Liu, Yuwen</p> <p>2018-02-01</p> <p>It is well known that methane <span class="hlt">hydrate</span> has been identified as an alternative resource due to its massive reserves and clean property. However, <span class="hlt">hydrate</span> dissociation during oil and gas development (OGD) process in deep water can affect the stability of subsea equipment and formation. Currently, there is a serious lack of studies over quantitative assessment on the effects of <span class="hlt">hydrate</span> dissociation on wellhead stability. In order to solve this problem, ABAQUS finite element software was used to develop a model and to evaluate the behavior of wellhead caused by <span class="hlt">hydrate</span> dissociation. The factors that affect the wellhead stability include dissociation range, depth of <span class="hlt">hydrate</span> formation and mechanical properties of dissociated <span class="hlt">hydrate</span> region. Based on these, series of simulations were carried out to determine the wellhead displacement. The results revealed that, continuous dissociation of <span class="hlt">hydrate</span> in homogeneous and isotropic formations can causes the non-linear increment in vertical displacement of wellhead. The displacement of wellhead showed good agreement with the settlement of overlying formations under the same conditions. In addition, the shallower and thicker <span class="hlt">hydrate</span> formation can aggravate the influence of <span class="hlt">hydrate</span> dissociation on the wellhead stability. Further, it was observed that with the declining elastic modulus and Poisson's ratio, the wellhead displacement increases. Hence, these findings not only confirm the effect of <span class="hlt">hydrate</span> dissociation on the wellhead stability, but also lend support to the actions, such as cooling the drilling <span class="hlt">fluid</span>, which can reduce the <span class="hlt">hydrate</span> dissociation range and further make deepwater operations safer and more efficient.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22220836-situ-early-age-hydration-study-sulfobelite-cements-synchrotron-powder-diffraction','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22220836-situ-early-age-hydration-study-sulfobelite-cements-synchrotron-powder-diffraction"><span>In-situ early-age <span class="hlt">hydration</span> study of sulfobelite cements by synchrotron powder diffraction</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Álvarez-Pinazo, G.; Cuesta, A.; García-Maté, M.</p> <p></p> <p>Eco-friendly belite calcium sulfoaluminate (BCSA) cement <span class="hlt">hydration</span> behavior is not yet well understood. Here, we report an in-situ synchrotron X-ray powder diffraction study for the first hours of <span class="hlt">hydration</span> of BCSA cements. Rietveld quantitative <span class="hlt">phase</span> analysis has been used to establish the degree of reaction (α). The <span class="hlt">hydration</span> of a mixture of ye'elimite and gypsum revealed that ettringite formation (α ∼ 70% at 50 h) is limited by ye'elimite dissolution. Two laboratory-prepared BCSA cements were also studied: non-active-BCSA and active-BCSA cements, with β- and α′{sub H}-belite as main <span class="hlt">phases</span>, respectively. Ye'elimite, in the non-active-BCSA system, dissolves at higher pace (αmore » ∼ 25% at 1 h) than in the active-BCSA one (α ∼ 10% at 1 h), with differences in the crystallization of ettringite (α ∼ 30% and α ∼ 5%, respectively). This behavior has strongly affected subsequent belite and ferrite reactivities, yielding stratlingite and other layered <span class="hlt">phases</span> in non-active-BCSA. The dissolution and crystallization processes are reported and discussed in detail. -- Highlights: •Belite calcium sulfoaluminate cements early <span class="hlt">hydration</span> mechanism has been determined. •Belite <span class="hlt">hydration</span> strongly depends on availability of aluminum hydroxide. •Orthorhombic ye’elimite dissolved at a higher pace than cubic one. •Ye’elimite larger reaction degree yields stratlingite formation by belite reaction. •Rietveld method quantified gypsum, anhydrite and bassanite dissolution rates.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27275866','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27275866"><span>Ultrasound Microbubble Treatment Enhances Clathrin-Mediated Endocytosis and <span class="hlt">Fluid-Phase</span> Uptake through Distinct Mechanisms.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fekri, Farnaz; Delos Santos, Ralph Christian; Karshafian, Raffi; Antonescu, Costin N</p> <p>2016-01-01</p> <p>Drug delivery to tumors is limited by several factors, including drug permeability of the target cell plasma membrane. Ultrasound in combination with microbubbles (USMB) is a promising strategy to overcome these limitations. USMB treatment elicits enhanced cellular uptake of materials such as drugs, in part as a result of sheer stress and formation of transient membrane pores. Pores formed upon USMB treatment are rapidly resealed, suggesting that other processes such as enhanced endocytosis may contribute to the enhanced material uptake by cells upon USMB treatment. How USMB regulates endocytic processes remains incompletely understood. Cells constitutively utilize several distinct mechanisms of endocytosis, including clathrin-mediated endocytosis (CME) for the internalization of receptor-bound macromolecules such as Transferrin Receptor (TfR), and distinct mechanism(s) that mediate the majority of <span class="hlt">fluid-phase</span> endocytosis. Tracking the abundance of TfR on the cell surface and the internalization of its ligand transferrin revealed that USMB acutely enhances the rate of CME. Total internal reflection fluorescence microscopy experiments revealed that USMB treatment altered the assembly of clathrin-coated pits, the basic structural units of CME. In addition, the rate of <span class="hlt">fluid-phase</span> endocytosis was enhanced, but with delayed onset upon USMB treatment relative to the enhancement of CME, suggesting that the two processes are distinctly regulated by USMB. Indeed, vacuolin-1 or desipramine treatment prevented the enhancement of CME but not of <span class="hlt">fluid</span> <span class="hlt">phase</span> endocytosis upon USMB, suggesting that lysosome exocytosis and acid sphingomyelinase, respectively, are required for the regulation of CME but not <span class="hlt">fluid</span> <span class="hlt">phase</span> endocytosis upon USMB treatment. These results indicate that USMB enhances both CME and <span class="hlt">fluid</span> <span class="hlt">phase</span> endocytosis through distinct signaling mechanisms, and suggest that strategies for potentiating the enhancement of endocytosis upon USMB treatment may improve targeted</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFMOS42A..08C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFMOS42A..08C"><span>Characterization of Methane <span class="hlt">Hydrate</span> Growth from Aqueous Solution by Raman Spectroscopy</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chou, I.; Lu, W.; Yuan, S.; Li, J.; Burruss, R. C.</p> <p>2009-12-01</p> <p>We observed the growth of methane <span class="hlt">hydrate</span> from aqueous solution in fused silica capillaries near room temperature (RT) in two different experiments. In the first, we sealed methane together with ~2 wt% Na2SO4 solution in a fused silica capillary (0.3x0.3 mm cross-section with 0.05x0.05 mm cavity, and ~6 cm long), using the method of Chou et al. (2008, Geochim. Cosmochim. Acta, 72, 2517). The <span class="hlt">hydrate</span>, liquid, and vapor coexist at ~23 °C and ~36.5 MPa. The behavior of two methane bubbles, one of which was enclosed by a <span class="hlt">hydrate</span> crystal and the other near a small <span class="hlt">hydrate</span> crystal, was monitored. These two bubbles are the only methane sources near the <span class="hlt">hydrate</span> crystals. The system was slowly cooled to RT (~21 °C), and images were recorded continuously for a period of ~1.5 hours, together with temperature and time information. The images show the exposed bubble decreased in size, while both of the <span class="hlt">hydrate</span> crystals increased in size, which was caused by the transfer of methane in solution. According to our previous report (Fig. 8 of Lu et al., 2008, Geochim. Cosmochim. Acta, 72, 412), the concentrations of methane in the solution near the exposed bubble are higher than those near the <span class="hlt">hydrate</span> crystals. Most of the dissolved methane, transferred down the concentration gradient, was consumed and encaged in the nearby crystal, with only a small fraction of methane being consumed by the more distant crystal. Eventually, the exposed vapor bubble was totally consumed, but the bubble shielded by the <span class="hlt">hydrate</span> crystal remained. This shows <span class="hlt">hydrate</span> can grow from dissolved methane in the solution far away from free gas. In the 2nd experiment, we sealed methane, together with pure H2O and glass beads (0.04 to 0.07 mm in dia.), in a fused silica capillary (0.3 mm OD, 0.1 mm ID, and ~6 cm long) using the method cited above. We separated the vapor <span class="hlt">phase</span> from the solution and glass beads by centrifuging the sealed capsule, then imposed a T gradient to the sample by cooling the solution end</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhRvL.117c6101K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhRvL.117c6101K"><span>Density and <span class="hlt">Phase</span> State of a Confined Nonpolar <span class="hlt">Fluid</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kienle, Daniel F.; Kuhl, Tonya L.</p> <p>2016-07-01</p> <p>Measurements of the mean refractive index of a spherelike nonpolar <span class="hlt">fluid</span>, octamethytetracylclosiloxane (OMCTS), confined between mica sheets, demonstrate direct and conclusive experimental evidence of the absence of a first-order liquid-to-solid <span class="hlt">phase</span> transition in the <span class="hlt">fluid</span> when confined, which has been suggested to occur from previous experimental and simulation results. The results also show that the density remains constant throughout confinement, and that the <span class="hlt">fluid</span> is incompressible. This, along with the observation of very large increases (many orders of magnitude) in viscosity during confinement from the literature, demonstrate that the molecular motion is limited by the confining wall and not the molecular packing. In addition, the recently developed refractive index profile correction method, which enables the structural perturbation inherent at a solid-liquid interface and that of a liquid in confinement to be determined independently, was used to show that there was no measurable excess or depleted mass of OMCTS near the mica surface in bulk films or confined films of only two molecular layers.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1054363-hydration-induced-phase-separation-amphiphilic-polymer-matrices-its-influence-voclosporin-release','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1054363-hydration-induced-phase-separation-amphiphilic-polymer-matrices-its-influence-voclosporin-release"><span><span class="hlt">Hydration</span>-Induced <span class="hlt">Phase</span> Separation in Amphiphilic Polymer Matrices and its Influence on Voclosporin Release</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Khan, I. John; Murthy, N. Sanjeeva; Kohn, Joachim</p> <p>2015-10-30</p> <p>Voclosporin is a highly potent, new cyclosporine -- a derivative that is currently in <span class="hlt">Phase</span> 3 clinical trials in the USA as a potential treatment for inflammatory diseases of the eye. Voclosporin represents a number of very sparingly soluble drugs that are difficult to administer. It was selected as a model drug that is dispersed within amphiphilic polymer matrices, and investigated the changing morphology of the matrices using neutron and x-ray scattering during voclosporin release and polymer resorption. The hydrophobic segments of the amphiphilic polymer chain are comprised of desaminotyrosyl-tyrosine ethyl ester (DTE) and desaminotyrosyl-tyrosine (DT), and the hydrophilic componentmore » is poly(ethylene glycol) (PEG). Water uptake in these matrices resulted in the <span class="hlt">phase</span> separation of hydrophobic and hydrophilic domains that are a few hundred Angstroms apart. These water-driven morphological changes influenced the release profile of voclosporin and facilitated a burst-free release from the polymer. No such morphological reorganization was observed in poly(lactide-co-glycolide) (PLGA), which exhibits an extended lag period, followed by a burst-like release of voclosporin when the polymer was degraded. An understanding of the effect of polymer composition on the <span class="hlt">hydration</span> behavior is central to understanding and controlling the <span class="hlt">phase</span> behavior and resorption characteristics of the matrix for achieving long-term controlled release of hydrophobic drugs such as voclosporin.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016IJMMM..23.1215Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016IJMMM..23.1215Z"><span><span class="hlt">Hydration</span> kinetics of cementitious materials composed of red mud and coal gangue</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Na; Li, Hong-xu; Liu, Xiao-ming</p> <p>2016-10-01</p> <p>To elucidate the intrinsic reaction mechanism of cementitious materials composed of red mud and coal gangue (RGC), the <span class="hlt">hydration</span> kinetics of these cementitious materials at 20°C was investigated on the basis of the Krstulović-Dabić model. An isothermal calorimeter was used to characterize the <span class="hlt">hydration</span> heat evolution. The results show that the <span class="hlt">hydration</span> of RGC is controlled by the processes of nucleation and crystal growth (NG), interaction at <span class="hlt">phase</span> boundaries (I), and diffusion (D) in order, and the pozzolanic reactions of slag and compound-activated red mud-coal gangue are mainly controlled by the I process. Slag accelerates the clinker <span class="hlt">hydration</span> during NG process, whereas the compound-activated red mud-coal gangue retards the <span class="hlt">hydration</span> of RGC and the time required for I process increases with increasing dosage of red mud-coal gangue in RGC.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21219024','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21219024"><span>Gas-liquid <span class="hlt">phase</span> coexistence in quasi-two-dimensional Stockmayer <span class="hlt">fluids</span>: A molecular dynamics study.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ouyang, Wen-Ze; Xu, Sheng-Hua; Sun, Zhi-Wei</p> <p>2011-01-07</p> <p>The Maxwell construction together with molecular dynamics simulation is used to study the gas-liquid <span class="hlt">phase</span> coexistence of quasi-two-dimensional Stockmayer <span class="hlt">fluids</span>. The <span class="hlt">phase</span> coexistence curves and corresponding critical points under different dipole strength are obtained, and the critical properties are calculated. We investigate the dependence of the critical point and critical properties on the dipole strength. When the dipole strength is increased, the abrupt disappearance of the gas-liquid <span class="hlt">phase</span> coexistence in quasi-two-dimensional Stockmayer <span class="hlt">fluids</span> is not found. However, if the dipole strength is large enough, it does lead to the formation of very long reversible chains which makes the relaxation of the system very slow and the observation of <span class="hlt">phase</span> coexistence rather difficult or even impossible.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFM.V43A1118Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFM.V43A1118Z"><span>Immiscibility of <span class="hlt">Fluid</span> <span class="hlt">Phases</span> at Magmatic-hydrothermal Transition: Formation of Various PGE-sulfide Mineralization for Layered Basic Intrusions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhitova, L.; Borisenko, A.; Morgunov, K.; Zhukova, I.</p> <p>2007-12-01</p> <p><span class="hlt">Fluid</span> inclusions in quartz of the Merensky Reef (Bushveld Complex, South Africa) and the Chineisky Pluton (Transbaikal Region, Russia) were studied using cryometry, microthermometry, Raman-spectroscopy, LA ICP- MS, scanning electronic microscopy, gas-chromatography and isotopic methods. This allowed us to document some examples of <span class="hlt">fluid</span> <span class="hlt">phase</span> separation resulting in formation of different types of PGE-sulfide mineralization for layered basic intrusions. The results obtained show at least three generations of <span class="hlt">fluid</span> separated from boiling residual alumosilicate intercumulus liquid of the Merensky Reef. The earliest <span class="hlt">fluid</span> <span class="hlt">phase</span> composed of homogenous high-dense methane and nitrogen gas mixture was identified in primary gas and co-existing anomalous <span class="hlt">fluid</span> inclusions from symplectitic quartz. The next generation, heterophase <span class="hlt">fluid</span>, composed of brines containing a free low-dense (mostly of carbon dioxide) gas <span class="hlt">phase</span>, was observed in primary multiphase and coexisting gas-rich inclusions of miarolitic quartz crystals. The latest generation was also a heterophase <span class="hlt">fluid</span> (low salinity water-salt solution and free low-dense methane gas <span class="hlt">phase</span>) found in primary water-salt and syngenetic gas inclusions from peripheral zones of miarolitic quartz crystals. For the Chineisky Pluton reduced endocontact magmatogene <span class="hlt">fluids</span> changed to oxidized low salinity hydrothermal <span class="hlt">fluids</span> in exocontact zone. This resulted in formation of sulfide-PGE enrichment marginal zones of intrusion. The results obtained give us a possibility to suggest that: 1) <span class="hlt">Fluid</span> <span class="hlt">phase</span> separation is a typical feature of magmatogene <span class="hlt">fluids</span> for layered basic intrusions. 2) Reduced <span class="hlt">fluids</span> can extract and transport substantial PGE and sulfide concentrations. 3) Oxidation of reduced <span class="hlt">fluids</span> is one of the most important geochemical barriers causing abundant PGE minerals and sulfides precipitation. This in turn results in both formation of PGE reefs or enriched contact zones of layered basic intrusions. This work was supported by</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18384800','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18384800"><span>A unified classification of stationary <span class="hlt">phases</span> for packed column supercritical <span class="hlt">fluid</span> chromatography.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>West, C; Lesellier, E</p> <p>2008-05-16</p> <p>The use of supercritical <span class="hlt">fluids</span> as chromatographic mobile <span class="hlt">phases</span> allows to obtain rapid separations with high efficiency on packed columns, which could favour the replacement of numerous HPLC methods by supercritical <span class="hlt">fluid</span> chromatography (SFC) ones. Moreover, despite some unexpected chromatographic behaviours, general retention rules are now well understood, and mainly depend on the nature of the stationary <span class="hlt">phase</span>. The use of polar stationary <span class="hlt">phases</span> improves the retention of polar compounds, when C18-bonded silica favours the retention of hydrocarbonaceous compounds. In this sense, reversed-<span class="hlt">phase</span> and normal-<span class="hlt">phase</span> chromatography can be achieved in SFC, as in HPLC. However, these two domains are clearly separated in HPLC due to the opposite polarity of the mobile <span class="hlt">phases</span> used for each method. In SFC, the same mobile <span class="hlt">phase</span> can be used with both polar and non-polar stationary <span class="hlt">phases</span>. Consequently, the need for a novel classification of stationary <span class="hlt">phases</span> in SFC appears, allowing a unification of the classical reversed- and normal-<span class="hlt">phase</span> domains. In this objective, the paper presents the development of a five-dimensional classification based on retention data for 94-111 solutes, using 28 commercially available columns representative of three major types of stationary <span class="hlt">phases</span>. This classification diagram is based on a linear solvation energy relationship, on the use of solvation vectors and the calculation of similarity factors between the different chromatographic systems. This classification will be of great help in the choice of the well-suited stationary <span class="hlt">phase</span>, either in regards of a particular separation or to improve the coupling of columns with complementary properties.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5220538','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5220538"><span>Absorption mechanism of DHP107, an oral paclitaxel formulation that forms a <span class="hlt">hydrated</span> lipidic sponge <span class="hlt">phase</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Jang, Yura; Chung, Hye Jin; Hong, Jung Wan; Yun, Cheol-Won; Chung, Hesson</p> <p>2017-01-01</p> <p>Paclitaxel is a most widely used anticancer drug with low oral bioavailability, thus it is currently administered via intravenous infusion. DHP107 is a lipid-based paclitaxel formulation that can be administered as an oral solution. In this study, we investigated the mechanism of paclitaxel absorption after oral administration of DHP107 in mice and rats by changing the dosing interval, and evaluated the influence of bile excretion. DHP107 was orally administered to mice at various dosing intervals (2, 4, 8, 12, 24 h) to examine how residual DHP107 affected paclitaxel absorption during subsequent administration. Studies with small-angle X-ray diffraction (SAXS) and cryo-transmission electron microscopy (cryo-TEM) showed that DHP107 formed a lipidic sponge <span class="hlt">phase</span> after <span class="hlt">hydration</span>. The AUC values after the second dose were smaller than those after the first dose, which was correlated to the induction of expression of P-gp and CYP in the livers and small intestines from 2 h to 7 d after the first dose. The smaller AUC value observed after the second dose was also attributed to the intestinal adhesion of residual formulation. The adhered DHP107 may have been removed by ingested food, thus resulting in a higher AUC. In ex vivo and in vivo mucoadhesion studies, the formulation adhered to the villi for up to 24 h, and the amount of DHP107 that adhered was approximately half that of monoolein. The paclitaxel absorption after administration of DHP107 was not affected by bile in the cholecystectomy mice. The dosing interval and food intake affect the oral absorption of paclitaxel from DHP107, which forms a mucoadhesive sponge <span class="hlt">phase</span> after <span class="hlt">hydration</span>. Bile excretion does not affect the absorption of paclitaxel from DHP107 in vivo. PMID:27867185</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27867185','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27867185"><span>Absorption mechanism of DHP107, an oral paclitaxel formulation that forms a <span class="hlt">hydrated</span> lipidic sponge <span class="hlt">phase</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jang, Yura; Chung, Hye Jin; Hong, Jung Wan; Yun, Cheol-Won; Chung, Hesson</p> <p>2017-01-01</p> <p>Paclitaxel is a most widely used anticancer drug with low oral bioavailability, thus it is currently administered via intravenous infusion. DHP107 is a lipid-based paclitaxel formulation that can be administered as an oral solution. In this study, we investigated the mechanism of paclitaxel absorption after oral administration of DHP107 in mice and rats by changing the dosing interval, and evaluated the influence of bile excretion. DHP107 was orally administered to mice at various dosing intervals (2, 4, 8, 12, 24 h) to examine how residual DHP107 affected paclitaxel absorption during subsequent administration. Studies with small-angle X-ray diffraction (SAXS) and cryo-transmission electron microscopy (cryo-TEM) showed that DHP107 formed a lipidic sponge <span class="hlt">phase</span> after <span class="hlt">hydration</span>. The AUC values after the second dose were smaller than those after the first dose, which was correlated to the induction of expression of P-gp and CYP in the livers and small intestines from 2 h to 7 d after the first dose. The smaller AUC value observed after the second dose was also attributed to the intestinal adhesion of residual formulation. The adhered DHP107 may have been removed by ingested food, thus resulting in a higher AUC. In ex vivo and in vivo mucoadhesion studies, the formulation adhered to the villi for up to 24 h, and the amount of DHP107 that adhered was approximately half that of monoolein. The paclitaxel absorption after administration of DHP107 was not affected by bile in the cholecystectomy mice. The dosing interval and food intake affect the oral absorption of paclitaxel from DHP107, which forms a mucoadhesive sponge <span class="hlt">phase</span> after <span class="hlt">hydration</span>. Bile excretion does not affect the absorption of paclitaxel from DHP107 in vivo.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018HMT...tmp...68T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018HMT...tmp...68T"><span>Prediction of induction time for methane <span class="hlt">hydrate</span> formation in the presence or absence of THF in flow loop system by Natarajan model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Talaghat, Mohammad Reza; Jokar, Seyyed Mohammad</p> <p>2018-03-01</p> <p>The induction time is a time interval to detect the initial <span class="hlt">hydrate</span> formation, which is counted from the moment when the stirrer is turned on until the first detection of <span class="hlt">hydrate</span> formation. The main objective of the present work is to predict and measure the induction time of methane <span class="hlt">hydrate</span> formation in the presence or absence of tetrahydrofuran (THF) as promoter in the flow loop system. A laboratory flow mini-loop apparatus was set up to measure the induction time of methane <span class="hlt">hydrate</span> formation. The induction time is predicted using developed Kashchiev and Firoozabadi model and modified model of Natarajan for a flow loop system. Furthermore, the effects of volumetric flow rate of the <span class="hlt">fluid</span> on the induction time were investigated. The results of the models were compared with experimental data. They show that the induction time of <span class="hlt">hydrate</span> formation in the presence of THF is very short at high pressure and high volumetric flow rate of the <span class="hlt">fluid</span>. It decreases with increasing pressure and liquid volumetric flow rate. It is also shown that the modified Natarajan model is more accurate than the Kashchiev and Firoozabadi ones in prediction of the induction time.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.V52A..06S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.V52A..06S"><span>Boron Isotope Evidence for Shallow <span class="hlt">Fluid</span> Transfer Across Subduction Zones by Serpentinized Mantle</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Scambelluri, M.; Tonarini, S.; Agostini, S.; Cannaò, E.</p> <p>2012-12-01</p> <p>Boron Isotope Evidence for Shallow <span class="hlt">Fluid</span> Transfer Across Subduction Zones by Serpentinized Mantle M. Scambelluri (1), S. Tonarini (2), S. Agostini (2), E. Cannaò (1) (1) Dipartimento di Scienze della Terra, Ambiente e vita, University of Genova, Italy (2) Istituto di Geoscienze e Georisorse-CNR, Pisa, Italy In subduction zones, <span class="hlt">fluid</span>-mediated chemical exchange between slabs and mantle dictates volatile and incompatible element cycles and influences arc magmatism. Outstanding issues concern the sources of water for arc magmas and its slab-to-mantle wedge transport. Does it occur by slab dehydration beneath arc fronts, or by <span class="hlt">hydration</span> of fore-arc mantle and subsequent subduction of the <span class="hlt">hydrated</span> mantle? So far, the deep slab dehydration hypothesis had strong support, but the <span class="hlt">hydrated</span> mantle wedge idea is advancing supported by studies of <span class="hlt">fluid</span>-mobile elements in serpentinized wedge peridotites and their subducted high-pressure (HP) equivalents. Serpentinites are volatile and <span class="hlt">fluid</span>-mobile element reservoirs for subduction: their dehydration causes large <span class="hlt">fluid</span> and element flux to the mantle.However, direct evidence for their key role in arc magmatism and identification of dehydration environments has been elusive and boron isotopes can trace the process. Until recently, the altered oceanic crust (AOC) was considered the 11B reservoir for arcs, which largely display positive δ11B. However, shallow slab dehydration transfers 11B to the fore-arc mantle and leaves the residual AOC very depleted in 11B below arcs. Here we present high positive δ11B of HP serpentinized peridotites from Erro Tobbio (Ligurian Alps), recording subduction metamorphism from <span class="hlt">hydration</span> at low-grade to eclogite-facies dehydration. We show a connection among serpentinite dehydration, release of 11B-rich <span class="hlt">fluids</span> and arc magmatism. The dataset is completed by B isotope data on other HP Alpine serpentinites from Liguria and Lanzo Massif. In general, the δ11B of these rocks is heavy (16 to + 30 permil</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3645969','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3645969"><span><span class="hlt">Hydration</span> status of underground miners in a temperate Australian region</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2013-01-01</p> <p>Background Dehydration is a health risk for miners in tropical regions of Australia. However, it is not known whether dehydration poses a health risk to miners working in temperate regions of Australia. Methods A cross-sectional study of 88 miners from two underground mines was undertaken in south-eastern New South Wales, Australia. Participants had their height, weight, waist circumference and <span class="hlt">hydration</span> status measured and completed a self-administered questionnaire on <span class="hlt">fluid</span> intake, access to water, and socio-demographic characteristics. Health and Safety managers were surveyed about guidelines relating to healthy work and lifestyle behaviours which impact/influence <span class="hlt">hydration</span>. Results <span class="hlt">Hydration</span> tests indicated that more than half of the miners (approximately 58%) were dehydrated (Urinary Specific Gravity (USG) >1.020) both before and after their shift, with three workers pre-shift and four workers post-shift displaying clinical dehydration (USG>1.030). Overall, 54.0% of participants were overweight and 36.8% were obese. Miners who commenced the shift with poor <span class="hlt">hydration</span> status were 2.6 times more likely to end the shift with poor <span class="hlt">hydration</span>, compared to those who commenced the shift with good <span class="hlt">hydration</span> (OR 2.6, 95% CI 1.06, 6.44). Miners who had a mean USG result for the entire shift indicating dehydration were more likely to be obese (42.9%) and have a waist measurement in the high risk range for metabolic complications (40.8%) than those workers that were adequately <span class="hlt">hydrated</span> for their entire shift (29.4% and 14.7% respectively). Some guidelines promoting healthy lifestyles and supportive work environments were in place, but there were limited guidelines on healthy weight and <span class="hlt">hydration</span>. Conclusions Dehydration, being overweight and obesity were linked issues in this cohort of miners. Strategies are needed to: adapt the workplace environment to increase water accessibility; encourage appropriate consumption of water both at work and at home; and to promote physical</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26936553','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26936553"><span>A model for wave propagation in a porous solid saturated by a three-<span class="hlt">phase</span> <span class="hlt">fluid</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Santos, Juan E; Savioli, Gabriela B</p> <p>2016-02-01</p> <p>This paper presents a model to describe the propagation of waves in a poroelastic medium saturated by a three-<span class="hlt">phase</span> viscous, compressible <span class="hlt">fluid</span>. Two capillary relations between the three <span class="hlt">fluid</span> <span class="hlt">phases</span> are included in the model by introducing Lagrange multipliers in the principle of virtual complementary work. This approach generalizes that of Biot for single-<span class="hlt">phase</span> <span class="hlt">fluids</span> and allows to determine the strain energy density, identify the generalized strains and stresses, and derive the constitutive relations of the system. The kinetic and dissipative energy density functions are obtained assuming that the relative flow within the pore space is of laminar type and obeys Darcy's law for three-<span class="hlt">phase</span> flow in porous media. After deriving the equations of motion, a plane wave analysis predicts the existence of four compressional waves, denoted as type I, II, III, and IV waves, and one shear wave. Numerical examples showing the behavior of all waves as function of saturation and frequency are presented.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1185840-nanoscopic-dynamics-phospholipid-unilamellar-vesicles-effect-gel-fluid-phase-transition','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1185840-nanoscopic-dynamics-phospholipid-unilamellar-vesicles-effect-gel-fluid-phase-transition"><span>Nanoscopic dynamics of phospholipid in unilamellar vesicles: Effect of gel to <span class="hlt">fluid</span> <span class="hlt">phase</span> transition</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Sharma, V. K.; Mamontov, E.; Anunciado, D. B.; ...</p> <p>2015-03-04</p> <p>Dynamics of phospholipids in unilamellar vesicles (ULV) is of interest in biology, medical, and food sciences since these molecules are widely used as biocompatible agents and a mimic of cell membrane systems. We have investigated the nanoscopic dynamics of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) phospholipid in ULV as a function of temperature using elastic and quasielastic neutron scattering (QENS). The dependence of the signal on the scattering momentum transfer, which is a critical advantage of neutron scattering techniques, allows the detailed analysis of the lipid motions that cannot be carried out by other means. In agreement with a differential scanning calorimetry measurement, amore » sharp rise in the elastic scattering intensity below ca. 296 K indicates a <span class="hlt">phase</span> transition from the high-temperature <span class="hlt">fluid</span> <span class="hlt">phase</span> to the low-temperature solid gel <span class="hlt">phase</span>. The microscopic lipid dynamics exhibits qualitative differences between the solid gel <span class="hlt">phase</span> (in a measurement at 280 K) and the <span class="hlt">fluid</span> <span class="hlt">phase</span> (in a measurement at a physiological temperature of 310 K). The data analysis invariably shows the presence of two distinct motions: the whole lipid molecule motion within a monolayer, or lateral diffusion, and the relatively faster internal motion of the DMPC molecule. The lateral diffusion of the whole lipid molecule is found to be Fickian in character, whereas the internal lipid motions are of localized character, consistent with the structure of the vesicles. The lateral motion slows down by an order of magnitude in the solid gel <span class="hlt">phase</span>, whereas for the internal motion not only the time scale, but also the character of the motion changes upon the <span class="hlt">phase</span> transition. In the solid gel <span class="hlt">phase</span>, the lipids are more ordered and undergo uniaxial rotational motion. However, in the <span class="hlt">fluid</span> <span class="hlt">phase</span>, the hydrogen atoms of the lipid tails undergo confined translation diffusion rather than uniaxial rotational diffusion. The localized translational diffusion of the hydrogen</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JChPh.138p4506P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JChPh.138p4506P"><span>Stability of <span class="hlt">phases</span> of a square-well <span class="hlt">fluid</span> within superposition approximation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Piasecki, Jarosław; Szymczak, Piotr; Kozak, John J.</p> <p>2013-04-01</p> <p>The analytic and numerical methods introduced previously to study the <span class="hlt">phase</span> behavior of hard sphere <span class="hlt">fluids</span> starting from the Yvon-Born-Green (YBG) equation under the Kirkwood superposition approximation (KSA) are adapted to the square-well <span class="hlt">fluid</span>. We are able to show conclusively that the YBG equation under the KSA closure when applied to the square-well <span class="hlt">fluid</span>: (i) predicts the existence of an absolute stability limit corresponding to freezing where undamped oscillations appear in the long-distance behavior of correlations, (ii) in accordance with earlier studies reveals the existence of a liquid-vapor transition by the appearance of a "near-critical region" where monotonically decaying correlations acquire very long range, although the system never loses stability.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA608810','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA608810"><span>Advanced Nanostructures for Two-<span class="hlt">Phase</span> <span class="hlt">Fluid</span> and Thermal Transport</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2014-08-07</p> <p>commercial applications. Pumped <span class="hlt">phase</span>-change based microfluidic systems promise compact solutions with high heat removal capability. However...materials for liquid transport in microfluidics , cell manipulation in biological systems, and light tuning in optical applications via their...and 3c) with precise control for real- time <span class="hlt">fluid</span> and optical manipulation. Inspired by hair and motile cilia on animal skin and plant leaves for</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26627777','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26627777"><span>A parametric analysis of waves propagating in a porous solid saturated by a three-<span class="hlt">phase</span> <span class="hlt">fluid</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Santos, Juan E; Savioli, Gabriela B</p> <p>2015-11-01</p> <p>This paper presents an analysis of a model for the propagation of waves in a poroelastic solid saturated by a three-<span class="hlt">phase</span> viscous, compressible <span class="hlt">fluid</span>. The constitutive relations and the equations of motion are stated first. Then a plane wave analysis determines the <span class="hlt">phase</span> velocities and attenuation coefficients of the four compressional waves and one shear wave that propagate in this type of medium. A procedure to compute the elastic constants in the constitutive relations is defined next. Assuming the knowledge of the shear modulus of the dry matrix, the other elastic constants in the stress-strain relations are determined by employing ideal gedanken experiments generalizing those of Biot's theory for single-<span class="hlt">phase</span> <span class="hlt">fluids</span>. These experiments yield expressions for the elastic constants in terms of the properties of the individual solid and <span class="hlt">fluids</span> <span class="hlt">phases</span>. Finally the <span class="hlt">phase</span> velocities and attenuation coefficients of all waves are computed for a sample of Berea sandstone saturated by oil, gas, and water.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDL35011D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDL35011D"><span>A <span class="hlt">phase</span>-field method to analyze the dynamics of immiscible <span class="hlt">fluids</span> in porous media</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>de Paoli, Marco; Roccon, Alessio; Zonta, Francesco; Soldati, Alfredo</p> <p>2017-11-01</p> <p>Liquid carbon dioxide (CO2) injected into geological formations (filled with brine) is not completely soluble in the surrounding <span class="hlt">fluid</span>. For this reason, complex transport phenomena may occur across the interface that separates the two <span class="hlt">phases</span> (CO2+brine and brine). Inspired by this geophysical instance, we used a <span class="hlt">Phase</span>-Field Method (PFM) to describe the dynamics of two immiscible <span class="hlt">fluids</span> in satured porous media. The basic idea of the PFM is to introduce an order parameter (ϕ) that varies continuously across the interfacial layer between the <span class="hlt">phases</span> and is uniform in the bulk. The equation that describes the distribution of ϕ is the Cahn-Hilliard (CH) equation, which is coupled with the Darcy equation (to evaluate <span class="hlt">fluid</span> velocity) through the buoyancy and Korteweg stress terms. The governing equations are solved through a pseudo-spectral technique (Fourier-Chebyshev). Our results show that the value of the surface tension between the two <span class="hlt">phases</span> strongly influences the initial and the long term dynamics of the system. We believe that the proposed numerical approach, which grants an accurate evaluation of the interfacial fluxes of momentum/energy/species, is attractive to describe the transfer mechanism and the overall dynamics of immiscible and partially miscible <span class="hlt">phases</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018LPICo2045.2011S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018LPICo2045.2011S"><span><span class="hlt">Phase</span> Behaviour of Methane <span class="hlt">Hydrate</span> Under Conditions Relevant to Titan's Interior</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sclater, G.; Fortes, A. D.; Crawford, I. A.</p> <p>2018-06-01</p> <p>The high-pressure behaviour Clathrate <span class="hlt">hydrates</span>, thought to be abundant in the outer solar system, underpins planetary modelling efforts of the interior of Titan, where clathrates are hypothesised to be the source of the dense N2, CH4 atmosphere.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1714629M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1714629M"><span>A Two-<span class="hlt">Phase</span> Solid/<span class="hlt">Fluid</span> Model for Dense Granular Flows Including Dilatancy Effects</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mangeney, Anne; Bouchut, Francois; Fernandez-Nieto, Enrique; Narbona-Reina, Gladys</p> <p>2015-04-01</p> <p>We propose a thin layer depth-averaged two-<span class="hlt">phase</span> model to describe solid-<span class="hlt">fluid</span> mixtures such as debris flows. It describes the velocity of the two <span class="hlt">phases</span>, the compression/dilatation of the granular media and its interaction with the pore <span class="hlt">fluid</span> pressure, that itself modifies the friction within the granular <span class="hlt">phase</span> (Iverson et al., 2010). The model is derived from a 3D two-<span class="hlt">phase</span> model proposed by Jackson (2000) based on the 4 equations of mass and momentum conservation within the two <span class="hlt">phases</span>. This system has 5 unknowns: the solid and <span class="hlt">fluid</span> velocities, the solid and <span class="hlt">fluid</span> pressures and the solid volume fraction. As a result, an additional equation inside the mixture is necessary to close the system. Surprisingly, this issue is inadequately accounted for in the models that have been developed on the basis of Jackson's work (Bouchut et al., 2014). In particular, Pitman and Le replaced this closure simply by imposing an extra boundary condition at the surface of the flow. When making a shallow expansion, this condition can be considered as a closure condition. However, the corresponding model cannot account for a dissipative energy balance. We propose here an approach to correctly deal with the thermodynamics of Jackson's equations. We close the mixture equations by a weak compressibility relation involving a critical density, or equivalently a critical pressure. Moreover, we relax one boundary condition, making it possible for the <span class="hlt">fluid</span> to escape the granular media when compression of the granular mass occurs. Furthermore, we introduce second order terms in the equations making it possible to describe the evolution of the pore <span class="hlt">fluid</span> pressure in response to the compression/dilatation of the granular mass without prescribing an extra ad-hoc equation for the pore pressure. We prove that the energy balance associated with this Jackson closure is dissipative, as well as its thin layer associated model. We present several numerical tests for the 1D case that are compared to the</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <footer><a id="backToTop" href="#top"> </a><nav><a id="backToTop" href="#top"> </a><ul class="links"><a id="backToTop" href="#top"> </a><li><a id="backToTop" href="#top"></a><a href="/sitemap.html">Site Map</a></li> <li><a href="/members/index.html">Members Only</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://doe.responsibledisclosure.com/hc/en-us" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> <div class="small">Science.gov is maintained by the U.S. Department of Energy's <a href="https://www.osti.gov/" target="_blank">Office of Scientific and Technical Information</a>, in partnership with <a href="https://www.cendi.gov/" target="_blank">CENDI</a>.</div> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>