Sample records for hydrates comparative analysis

  1. Gas hydrate characterization from a 3D seismic dataset in the deepwater eastern Gulf of Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McConnell, Daniel; Haneberg, William C.

    Seismic stratigraphic features are delineated using principal component analysis of the band limited data at potential gas hydrate sands, and compared and calibrated with spectral decomposition thickness to constrain thickness in the absence of well control. Layers in the abyssal fan sediments are thinner than can be resolved with 50 Hz seismic and thus comprise composite thin-bed reflections. Amplitude vs frequency analysis are used to indicate gas and gas hydrate reflections. Synthetic seismic wedge models show that with 50Hz seismic data, a 40% saturation of a Plio Pleistocene GoM sand in the hydrate stability zone with no subjacent gas canmore » produce a phase change (negative to positive) with a strong correlation between amplitude and hydrate saturation. The synthetic seismic response is more complicated if the gas hydrate filled sediments overlie gassy sediments. Hydrate (or gas) saturation in thin beds enhances the amplitude response and can be used to estimate saturation. Gas hydrate saturation from rock physics, amplitude, and frequency analysis is compared to saturation derived from inversion at several interpreted gas hydrate accumulations in the eastern Gulf of Mexico.« less

  2. Effectiveness of oral hydration in preventing contrast-induced acute kidney injury in patients undergoing coronary angiography or intervention: a pairwise and network meta-analysis.

    PubMed

    Zhang, Weidai; Zhang, Jiawei; Yang, Baojun; Wu, Kefei; Lin, Hanfei; Wang, Yanping; Zhou, Lihong; Wang, Huatao; Zeng, Chujuan; Chen, Xiao; Wang, Zhixing; Zhu, Junxing; Songming, Chen

    2018-06-01

    The effectiveness of oral hydration in preventing contrast-induced acute kidney injury (CI-AKI) in patients undergoing coronary angiography or intervention has not been well established. This study aims to evaluate the efficacy of oral hydration compared with intravenous hydration and other frequently used hydration strategies. PubMed, Embase, Web of Science, and the Cochrane central register of controlled trials were searched from inception to 8 October 2017. To be eligible for analysis, studies had to evaluate the relative efficacy of different prophylactic hydration strategies. We selected and assessed the studies that fulfilled the inclusion criteria and carried out a pairwise and network meta-analysis using RevMan5.2 and Aggregate Data Drug Information System 1.16.8 software. A total of four studies (538 participants) were included in our pairwise meta-analysis and 1754 participants from eight studies with four frequently used hydration strategies were included in a network meta-analysis. Pairwise meta-analysis indicated that oral hydration was as effective as intravenous hydration for the prevention of CI-AKI (5.88 vs. 8.43%; odds ratio: 0.73; 95% confidence interval: 0.36-1.47; P>0.05), with no significant heterogeneity between studies. Network meta-analysis showed that there was no significant difference in the prevention of CI-AKI. However, the rank probability plot suggested that oral plus intravenous hydration had a higher probability (51%) of being the best strategy, followed by diuretic plus intravenous hydration (39%) and oral hydration alone (10%). Intravenous hydration alone was the strategy with the highest probability (70%) of being the worst hydration strategy. Our study shows that oral hydration is not inferior to intravenous hydration for the prevention of CI-AKI in patients with normal or mild-to-moderate renal dysfunction undergoing coronary angiography or intervention.

  3. Non-Destructive X-ray Computed Tomography (XCT) of Gas Hydrate Bearing Fractures in Marine Sediment

    NASA Astrophysics Data System (ADS)

    Oti, E.; Buchwalter, E.; Cook, A.; Crandall, D.

    2017-12-01

    Hydrate-filled fractures are found in many environments, both related to methane vents and constrained to lithologic layers; how hydrate filled fractures form in layered environments is not well understood. We focus on understanding hydrate origins and fracture formation by examining hydrate-bearing fractures in conventional cores taken from Gulf of Mexico sites from JIP Leg 1 and UT-GOM, Keathley Canyon 151. There are two main methane sources available for hydrate formation. The first is the hydrocarbon reservoir underlying the Gulf sediments. This reservoir formed when deeply buried organic matter of high molecular weight was exposed to high temperature and pressures and degraded. A second source is the biogenesis of organic material, which occurs when microbial activity breaks down organic materials. Biogenic methane is more enriched in lighter carbon isotopes as the reduction or fermentation reactions preferentially consume lighter carbon isotopes. As a result, we hypothesize that sediment surrounding biogenically derived methane will have heavier carbon isotopes when compared to non-host sediment, due to the consumption of the lighter carbon isotopes during methanogenesis. We use non-destructive X-ray Computed Tomography (XCT) scanning to visualize and identify hydrate-bearing fractures. The presence of hydrate fractures is further confirmed with a salinity analysis, as hydrate dissociation freshens the pore water and lowers the salinity. After hydrate fracture location is inferred, carbon isotope analysis is used to identify hydrocarbon source. XCT scans of Keathley Canyon core JIP-1 17H-4 revealed 10 total fractures, five of which XCT and salinity analysis indicated as formerly containing hydrate. All ten fractures, in addition to background sediment, underwent a carbon isotope analysis in which organic isotopes were measured. In the background sediment and the non hydrate-bearing fractures, DOC values were relatively light, with dC13 percentages ranging from -27.8% to -30.8%. In the five hydrate fracture regions, DOC was comparatively heavy, with DOC dC13 values ranging from -23.2% to -30.3%. These values suggest that biogenic methane was formed adjacent to the fracture and likely migrated into the hydrate filled fracture.

  4. Comparison of stromal hydration techniques for clear corneal cataract incisions: conventional hydration versus anterior stromal pocket hydration.

    PubMed

    Mifflin, Mark D; Kinard, Krista; Neuffer, Marcus C

    2012-06-01

    Anterior stromal pocket hydration was compared with conventional hydration for preventing wound leak after 2.8 mm uniplanar clear corneal incisions (CCIs) in patients having routine cataract surgery. Conventional hydration involves hydration of the lateral walls of the main incision with visible whitening of the stroma. The anterior stromal pocket hydration technique involves creation of an additional supraincisional stromal pocket overlying the main incision, which is then hydrated instead of the main incision. Sixty-six eyes of 48 patients were included in the data analysis with 33 assigned to each study group. The anterior stromal pocket hydration technique was significantly better than conventional hydration in preventing wound leak due to direct pressure on the posterior lip of the incision. Copyright © 2012 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  5. Characterization of Microbial Community Structure in Gulf of Mexico Gas Hydrates: Comparative Analysis of DNA- and RNA-Derived Clone Libraries

    PubMed Central

    Mills, Heath J.; Martinez, Robert J.; Story, Sandra; Sobecky, Patricia A.

    2005-01-01

    The characterization of microbial assemblages within solid gas hydrate, especially those that may be physiologically active under in situ hydrate conditions, is essential to gain a better understanding of the effects and contributions of microbial activities in Gulf of Mexico (GoM) hydrate ecosystems. In this study, the composition of the Bacteria and Archaea communities was determined by 16S rRNA phylogenetic analyses of clone libraries derived from RNA and DNA extracted from sediment-entrained hydrate (SEH) and interior hydrate (IH). The hydrate was recovered from an exposed mound located in the northern GoM continental slope with a hydrate chipper designed for use on the manned-submersible Johnson Sea Link (water depth, 550 m). Previous geochemical analyses indicated that there was increased metabolic activity in the SEH compared to the IH layer (B. N. Orcutt, A. Boetius, S. K. Lugo, I. R. Macdonald, V. A. Samarkin, and S. Joye, Chem. Geol. 205:239-251). Phylogenetic analysis of RNA- and DNA-derived clones indicated that there was greater diversity in the SEH libraries than in the IH libraries. A majority of the clones obtained from the metabolically active fraction of the microbial community were most closely related to putative sulfate-reducing bacteria and anaerobic methane-oxidizing archaea. Several novel bacterial and archaeal phylotypes for which there were no previously identified closely related cultured isolates were detected in the RNA- and DNA-derived clone libraries. This study was the first phylogenetic analysis of the metabolically active fraction of the microbial community extant in the distinct SEH and IH layers of GoM gas hydrate. PMID:15933026

  6. Current role of sodium bicarbonate-based preprocedural hydration for the prevention of contrast-induced acute kidney injury: a meta-analysis.

    PubMed

    Hogan, Shea E; L'Allier, Phillipe; Chetcuti, Stanley; Grossman, P Michael; Nallamothu, Brahmajee K; Duvernoy, Claire; Bates, Eric; Moscucci, Mauro; Gurm, Hitinder S

    2008-09-01

    The optimal hydration strategy for prevention of contrast-induced acute kidney injury (AKI) remains unknown. The purpose of this meta-analysis is to compare the effectiveness of normal saline (NS) versus sodium bicarbonate hydration (NaHCO(3)) for prevention of contrast-induced AKI. We performed a meta-analysis of randomized controlled trials that compared saline-based hydration with sodium bicarbonate-based hydration regimen for prophylaxis of contrast-induced AKI. The literature search included MEDLINE, EMBASE, and Cochrane databases (2000 to October 2007); conference proceedings; and bibliographies of retrieved articles. Information was extracted on study design, sample characteristics, and interventions. Random-effects models were used to calculate summary risk ratios for contrast-induced AKI, need for hemodialysis, and death. Seven trials with 1,307 subjects were included. Preprocedural hydration with sodium bicarbonate was associated with a significant decrease in the rate of contrast-induced AKI (5.96% in the NaHCO(3) arm versus 17.23% in the NS arm, summary risk ratio 0.37, 95% CI 0.18-0.714, P = .005). There was no difference in the rates of postprocedure hemodialysis or death. Formal testing revealed moderate heterogeneity and a strong likelihood of publication bias. Although sodium bicarbonate hydration was found to be superior to NS in prevention of contrast-induced AKI, these results are in the context of study heterogeneity and, likely, publication bias. An adequately powered randomized controlled trial is warranted to define the optimal hydration strategy in patients at high risk of contrast-induced AKI who are scheduled to undergo contrast administration.

  7. Experimental Equipment Validation for Methane (CH4) and Carbon Dioxide (CO2) Hydrates

    NASA Astrophysics Data System (ADS)

    Saad Khan, Muhammad; Yaqub, Sana; Manner, Naathiya; Ani Karthwathi, Nur; Qasim, Ali; Mellon, Nurhayati Binti; Lal, Bhajan

    2018-04-01

    Clathrate hydrates are eminent structures regard as a threat to the gas and oil industry in light of their irritating propensity to subsea pipelines. For natural gas transmission and processing, the formation of gas hydrate is one of the main flow assurance delinquent has led researchers toward conducting fresh and meticulous studies on various aspects of gas hydrates. This paper highlighted the thermodynamic analysis on pure CH4 and CO2 gas hydrates on the custom fabricated equipment (Sapphire cell hydrate reactor) for experimental validation. CO2 gas hydrate formed at lower pressure (41 bar) as compared to CH4 gas hydrate (70 bar) while comparison of thermodynamic properties between CH4 and CO2 also presented in this study. This preliminary study could provide pathways for the quest of potent hydrate inhibitors.

  8. Meta-analysis of prophylactic hydration versus no hydration on contrast-induced acute kidney injury.

    PubMed

    Jiang, Yufeng; Chen, Min; Zhang, Yiqing; Zhang, Nannan; Yang, Huajia; Yao, Jialu; Zhou, Yafeng

    2017-12-01

    Guidelines recommend prophylactic hydration for all patients with compromised renal function undergoing contrast exposure. However, the AMACING study published recently showed a noninferior result of hydration compared with no prophylaxis in high-risk patients and led to a heat discussion. This study aimed to validate the effectiveness of prophylactic hydration in different subsets of patients undergoing a contrast procedure. We carried out a meta-analysis of randomized-controlled trials to assess pooled estimates of relative risk (RR) and 95% confidence intervals (CIs) for incidences of contrast-induced acute kidney injury (CI-AKI), in-hospital all-cause mortality, and need for dialysis. Compared with no prophylaxis, patients receiving prophylactic hydration had a lower risk of CI-AKI [RR: 0.66 (95% CI: 0.55-0.79); P≤0.001; Pheterogeneity=0.42] and a lower risk of deaths of all-cause [RR: 0.57 (95% CI: 0.33-0.98); P=0.04; Pheterogeneity=0.47], but did not have a decreased risk of need for dialysis [RR: 0.39 (95% CI: 0.12-1.23); P=0.11; Pheterogeneity=0.31]. In subgroup analyses on the incidence of CI-AKI by baseline estimated glomerular filtration rate (eGFR), no benefit from prophylactic hydration was indicated in patients with a baseline eGFR ranging from 30 to 60 ml/min/1.73 m [RR: 1.02 (95% CI: 0.66-1.60); Pheterogeneity=0.66; Pinteraction=0.03]. Our analysis indicated that prophylactic hydration was associated with a lower risk of CI-AKI and all-cause deaths, but not with the need for dialysis in the overall population. However, no prophylactic hydration is noninferior to intravenous hydration on the incidence of CI-AKI in patients with a baseline eGFR ranging from 30 to 60 ml/min/1.73 m.

  9. Nuclear Well Log Properties of Natural Gas Hydrate Reservoirs

    NASA Astrophysics Data System (ADS)

    Burchwell, A.; Cook, A.

    2015-12-01

    Characterizing gas hydrate in a reservoir typically involves a full suite of geophysical well logs. The most common method involves using resistivity measurements to quantify the decrease in electrically conductive water when replaced with gas hydrate. Compressional velocity measurements are also used because the gas hydrate significantly strengthens the moduli of the sediment. At many gas hydrate sites, nuclear well logs, which include the photoelectric effect, formation sigma, carbon/oxygen ratio and neutron porosity, are also collected but often not used. In fact, the nuclear response of a gas hydrate reservoir is not known. In this research we will focus on the nuclear log response in gas hydrate reservoirs at the Mallik Field at the Mackenzie Delta, Northwest Territories, Canada, and the Gas Hydrate Joint Industry Project Leg 2 sites in the northern Gulf of Mexico. Nuclear logs may add increased robustness to the investigation into the properties of gas hydrates and some types of logs may offer an opportunity to distinguish between gas hydrate and permafrost. For example, a true formation sigma log measures the thermal neutron capture cross section of a formation and pore constituents; it is especially sensitive to hydrogen and chlorine in the pore space. Chlorine has a high absorption potential, and is used to determine the amount of saline water within pore spaces. Gas hydrate offers a difference in elemental composition compared to water-saturated intervals. Thus, in permafrost areas, the carbon/oxygen ratio may vary between gas hydrate and permafrost, due to the increase of carbon in gas hydrate accumulations. At the Mallik site, we observe a hydrate-bearing sand (1085-1107 m) above a water-bearing sand (1107-1140 m), which was confirmed through core samples and mud gas analysis. We observe a decrease in the photoelectric absorption of ~0.5 barnes/e-, as well as an increase in the formation sigma readings of ~5 capture units in the water-bearing sand as compared to the hydrate sand interval. This is further correlated with the carbon/oxygen ratio showing a decrease of 20% in the water sand compared to the hydrate sand above. In future research, we will quantify the effect of gas hydrate on the nuclear logs at the Mallik well and compare it to wells in the Gulf of Mexico.

  10. Crystalline phases involved in the hydration of calcium silicate-based cements: Semi-quantitative Rietveld X-ray diffraction analysis.

    PubMed

    Grazziotin-Soares, Renata; Nekoofar, Mohammad H; Davies, Thomas; Hübler, Roberto; Meraji, Naghmeh; Dummer, Paul M H

    2017-08-30

    Chemical comparisons of powder and hydrated forms of calcium silicate cements (CSCs) and calculation of alterations in tricalcium silicate (Ca 3 SiO 5 ) calcium hydroxide (Ca(OH) 2 ) are essential for understanding their hydration processes. This study aimed to evaluate and compare these changes in ProRoot MTA, Biodentine and CEM cement. Powder and hydrated forms of tooth coloured ProRoot MTA, Biodentine and CEM cement were subjected to X-ray diffraction (XRD) analysis with Rietveld refinement to semi-quantitatively identify and quantify the main phases involved in their hydration process. Data were reported descriptively. Reduction in Ca 3 SiO 5 and formation of Ca(OH) 2 were seen after the hydration of ProRoot MTA and Biodentine; however, in the case of CEM cement, no reduction of Ca 3 SiO 5 and no formation of Ca(OH) 2 were detected. The highest percentages of amorphous phases were seen in Biodentine samples. Ettringite was detected in the hydrated forms of ProRoot MTA and CEM cement but not in Biodentine. © 2017 Australian Society of Endodontology Inc.

  11. Serum Uric Acid and Risk for Acute Kidney Injury Following Contrast.

    PubMed

    Kanbay, Mehmet; Solak, Yalcin; Afsar, Baris; Nistor, Ionut; Aslan, Gamze; Çağlayan, Ozlem Hilal; Aykanat, Asli; Donciu, Mihaela-Dora; Lanaspa, Miguel A; Ejaz, Ahsan A; Johnson, Richard J; Covic, Adrian

    2017-02-01

    Contrast-induced acute kidney injury (CI-AKI) is a common cause of hospital-acquired acute kidney injury (AKI). We evaluated the evidence that uric acid (UA) plays a pathogenic role in CI-AKI. Ten studies were eligible for inclusion for meta-analysis. Hyperuricemia predicted risk for cases with AKI in prospective cohort studies. Higher levels of serum UA (SUA), as defined by the authors, were associated with a 2-fold increased risk to develop AKI (pooled odds ratio 2.03; 95% confidence interval [CI] 1.48-2.78). Significant heterogeneity was found in cohort studies ( P = .001, I 2 = 85.7%). In 2 clinical trials, lowering of SUA with saline hydration was significantly associated with reduced risk for AKI compared with saline hydration alone or saline hydration with N-acetyl cysteine. An analysis of 2 randomized controlled trials found that allopurinol with saline hydration had a significant protective effect on renal function (assessed by serum creatinine values) compared with hydration alone (mean difference: -0.52 mg/dL; 95% CI: -0.81 to -0.22). Hyperuricemia independently predicts CI-AKI. Two clinical trials suggest lowering SUA may prevent CI-AKI. The mechanism by which UA induces CI-AKI is likely related to acute uricosuria.

  12. In Situ Raman Analyses of Natural Gas and Gas Hydrates at Hydrate Ridge, Oregon

    NASA Astrophysics Data System (ADS)

    Peltzer, E. T.; White, S. N.; Dunk, R. M.; Brewer, P. G.; Sherman, A. D.; Schmidt, K.; Hester, K. C.; Sloan, E. D.

    2004-12-01

    During a July 2004 cruise to Hydrate Ridge, Oregon, MBARI's sea-going laser Raman spectrometer was used to obtain in situ Raman spectra of natural gas hydrates and natural gas venting from the seafloor. This was the first in situ analysis of gas hydrates on the seafloor. The hydrate spectra were compared to laboratory analyses performed at the Center for Hydrate Research, Colorado School of Mines. The natural gas spectra were compared to MBARI gas chromatography (GC) analyses of gas samples collected at the same site. DORISS (Deep Ocean Raman In Situ Spectrometer) is a laboratory model laser Raman spectrometer from Kaiser Optical Systems, Inc modified at MBARI for deployment in the deep ocean. It has been successfully deployed to depths as great as 3600 m. Different sampling optics provide flexibility in adapting the instrument to a particular target of interest. An immersion optic was used to analyze natural gas venting from the seafloor at South Hydrate Ridge ( ˜780 m depth). An open-bottomed cube was placed over the vent to collect the gas. The immersion optic penetrated the side of the cube as did a small heater used to dissociate any hydrate formed during sample collection. To analyze solid hydrates at both South and North Hydrate Ridge ( ˜590 m depth), chunks of hydrate were excavated from the seafloor and collected in a glass cylinder with a mesh top. A stand-off optic was used to analyze the hydrate inside the cylinder. Due to the partial opacity of the hydrate and the small focal volume of the sampling optic, a precision underwater positioner (PUP) was used to focus the laser spot onto the hydrate. PUP is a stand-alone system with three degrees-of-freedom, capable of moving the DORISS probe head with a precision of 0.1 mm. In situ Raman analyses of the gas indicate that it is primarily methane. This is verified by GC analyses of samples collected from the same site. Other minor constituents (such as CO2 and higher hydrocarbons) are present but may be in concentrations too low to be detected by the current DORISS instrument. In situ analyses of the hydrates show them to be structure I hydrates with methane as the primary guest molecule; the data compare well to laboratory data.

  13. Grand canonical ensemble Monte Carlo simulation of the dCpG/proflavine crystal hydrate.

    PubMed

    Resat, H; Mezei, M

    1996-09-01

    The grand canonical ensemble Monte Carlo molecular simulation method is used to investigate hydration patterns in the crystal hydrate structure of the dCpG/proflavine intercalated complex. The objective of this study is to show by example that the recently advocated grand canonical ensemble simulation is a computationally efficient method for determining the positions of the hydrating water molecules in protein and nucleic acid structures. A detailed molecular simulation convergence analysis and an analogous comparison of the theoretical results with experiments clearly show that the grand ensemble simulations can be far more advantageous than the comparable canonical ensemble simulations.

  14. Oral hydration for prevention of contrast-induced acute kidney injury in elective radiological procedures: a systematic review and meta-analysis of randomized controlled trials.

    PubMed

    Cheungpasitporn, Wisit; Thongprayoon, Charat; Brabec, Brady A; Edmonds, Peter J; O'Corragain, Oisin A; Erickson, Stephen B

    2014-12-01

    The reports on efficacy of oral hydration treatment for the prevention of contrast-induced acute kidney injury (CIAKI) in elective radiological procedures and cardiac catheterization remain controversial. The objective of this meta-analysis was to assess the use of oral hydration regimen for prevention of CIAKI. Comprehensive literature searches for randomized controlled trials (RCTs) of outpatient oral hydration treatment was performed using MEDLINE, EMBASE, Cochrane Database of Systematic Reviews, Cochrane Central Register of Controlled Trials Systematic Reviews, and clinicaltrials.gov from inception until July 4(th), 2014. Primary outcome was the incidence of CIAKI. Six prospective RCTs were included in our analysis. Of 513patients undergoing elective procedures with contrast exposures,45 patients (8.8%) had CIAKI. Of 241 patients with oral hydration regimen, 23 (9.5%) developed CIAKI. Of 272 patients with intravenous (IV) fluid regimen, 22 (8.1%) had CIAKI. Study populations in all included studies had relatively normal kidney function to chronic kidney disease (CKD) stage 3. There was no significant increased risk of CIAKI in oral fluid regimen group compared toIV fluid regimen group (RR = 0.94, 95% confidence interval, CI = 0.38-2.31). According to our analysis,there is no evidence that oral fluid regimen is associated with more risk of CIAKI in patients undergoing elective procedures with contrast exposures compared to IV fluid regimen. This finding suggests that the oral fluid regimen might be considered as a possible outpatient treatment option for CIAKI prevention in patients with normal to moderately reduced kidney function.

  15. Hydration and Cooling Practices Among Farmworkers in Oregon and Washington

    PubMed Central

    Bethel, Jeffrey W.; Spector, June T.; Krenz, Jennifer

    2018-01-01

    Objectives Although recommendations for preventing occupational heat-related illness among farmworkers include hydration and cooling practices, the extent to which these recommendations are universally practiced is unknown. The objective of this analysis was to compare hydration and cooling practices between farmworkers in Oregon and Washington. Methods A survey was administered to a purposive sample of Oregon and Washington farmworkers. Data collected included demographics, work history and current work practices, hydration practices, access and use of cooling measures, and headwear and clothing worn. Results Oregon farmworkers were more likely than those in Washington to consume beverages containing sugar and/or caffeine. Workers in Oregon more frequently reported using various cooling measures compared with workers in Washington. Availability of cooling measures also varied between the two states. Conclusions These results highlight the large variability between workers in two states regarding access to and use of methods to stay cool while working in the heat. PMID:28402203

  16. Hydration and Cooling Practices Among Farmworkers in Oregon and Washington.

    PubMed

    Bethel, Jeffrey W; Spector, June T; Krenz, Jennifer

    2017-01-01

    Although recommendations for preventing occupational heat-related illness among farmworkers include hydration and cooling practices, the extent to which these recommendations are universally practiced is unknown. The objective of this analysis was to compare hydration and cooling practices between farmworkers in Oregon and Washington. A survey was administered to a purposive sample of Oregon and Washington farmworkers. Data collected included demographics, work history and current work practices, hydration practices, access and use of cooling measures, and headwear and clothing worn. Oregon farmworkers were more likely than those in Washington to consume beverages containing sugar and/or caffeine. Workers in Oregon more frequently reported using various cooling measures compared with workers in Washington. Availability of cooling measures also varied between the two states. These results highlight the large variability between workers in two states regarding access to and use of methods to stay cool while working in the heat.

  17. Analysis of protein structures and interactions in complex food by near-infrared spectroscopy. 2. Hydrated gluten.

    PubMed

    Bruun, Susanne Wrang; Søndergaard, Ib; Jacobsen, Susanne

    2007-09-05

    Hydrated gluten, treated with various salts, was analyzed by near-infrared (NIR) spectroscopy to assess the ability of this method to reveal protein structure and interaction changes in perturbed food systems. The spectra were pretreated with second-derivative transformation and extended multiplicative signal correction for improving the band resolution and removing physical and quantitative spectral variations. Principal component analysis of the preprocessed spectra showed spectral effects that depended on salt type and concentration. Although both gluten texture and the NIR spectra were little influenced by treatment with salt solutions of low concentrations (0.1-0.2 M), they were significantly and diversely affected by treatment with 1.0 M salt solutions. Compared to hydration in water, hydration in 1.0 M sulfate salts caused spectral effects similar to a drying-out effect, which could be explained by salting-out.

  18. Grand canonical ensemble Monte Carlo simulation of the dCpG/proflavine crystal hydrate.

    PubMed Central

    Resat, H; Mezei, M

    1996-01-01

    The grand canonical ensemble Monte Carlo molecular simulation method is used to investigate hydration patterns in the crystal hydrate structure of the dCpG/proflavine intercalated complex. The objective of this study is to show by example that the recently advocated grand canonical ensemble simulation is a computationally efficient method for determining the positions of the hydrating water molecules in protein and nucleic acid structures. A detailed molecular simulation convergence analysis and an analogous comparison of the theoretical results with experiments clearly show that the grand ensemble simulations can be far more advantageous than the comparable canonical ensemble simulations. Images FIGURE 5 FIGURE 7 PMID:8873992

  19. Dissolution of Hydrocarbon Gas Hydrates in Seawater at 1030-m; Effects of Porosity, Structure, and Compositional Variation as Determined by High-Definition Video and SEM Imaging.

    NASA Astrophysics Data System (ADS)

    Stern, L. A.; Peltzer, E. T.; Durham, W. B.; Kirby, S. H.; Brewer, P. G.; Circone, S.; Rehder, G.

    2002-12-01

    We compare dissolution rates of pure, porous, compacted, and oil-contaminated sI methane hydrate and sII methane-ethane hydrate to rates measured previously on pure, compacted, sI methane hydrate and sI carbon dioxide hydrate (Rehder et al., Fall AGU 2001). Laboratory-synthesized test specimens were used in both studies, allowing characterization of test materials prior to their transport and exposure to seawater at 1030-meter depth on the Monterey Canyon seafloor, off coastal Moss Landing, CA. Although pressure and temperature (P-T) conditions at this site are within the nominal P-T equilibrium fields of all gas hydrates tested here, the seawater is undersaturated with respect to the hydrate-forming gas species. Hence, samples dissolve with time, at a rate dependent on water current flow. Four samples were deployed in this second experiment: (1) pure, 30% porous methane hydrate; (2) pure, compacted methane hydrate; (3) pure methane hydrate compacted and then contaminated with a low-T mineral oil; and (4) pure, compacted sII methane-ethane hydrate with methane:ethane molar ratio 0.72. Samples were transferred by pressure vessel at 0 ° C and 15 MPa to the seafloor observatory via the MBARI remotely operated vehicle Ventana. Samples were then exposed to the deep ocean environment and monitored by HDTV camera for several hours at the beginning and end of a 25-hour period. Local current speed and direction were also measured throughout the experiment. Those samples that did not undergo complete dissolution after 25 h were successfully recovered to the laboratory for subsequent analysis by scanning electron microscopy (SEM). Previously, video analysis showed dissolution rates corresponding to 4.0 +/- 0.5 mmole CO2/m2 s for compacted CO2 hydrate samples, and 0.37 +/- 0.03 mmole CH4/m2s for compacted methane hydrate samples (Rehder et al, AGU 2001). The ratio of dissolution rates fits a simple diffusive boundary layer model that incorporates relative gas solubilities appropriate to the field site. These calculations assume that dissolution occurred only along the outer (i.e. imaged) surface of the samples. This assumption is now validated by SEM analysis of recovered samples from the second dive, showing little to no internal alteration of compacted material following their partial dissolution. Quantitative comparison of results from the two dives poses challenges due to variations in sample size and orientation. However, both compacted methane hydrate samples from the second dive in fact exhibited comparable behavior to that measured in the previous experiment; the oily sample did not dissolve at a slower rate, as might be expected if a hydrophobic contaminant inhibits seawater contact. Surprisingly, the porous methane hydrate exhibited significantly slower face retreat than its compacted counterparts. The sII methane-ethane hydrate dissolved measurably slower than all other samples, consistent with the solubility properties of its guest components. While these results represent only a first step in emulating the more complex interactions of seawater with naturally occurring hydrate-bearing sediments, such end member studies should aid preliminary modelling investigations of the chemical stability and lifetime of gas hydrates exposed at the seafloor.

  20. Comparison of sedation by intranasal dexmedetomidine and oral chloral hydrate for pediatric ophthalmic examination.

    PubMed

    Cao, Qianzhong; Lin, Yiquan; Xie, Zhubin; Shen, Weihua; Chen, Ying; Gan, Xiaoliang; Liu, Yizhi

    2017-06-01

    Pediatric ophthalmic examinations can be conducted under sedation either by chloral hydrate or by dexmedetomidine. The objective was to compare the success rates and quality of ophthalmic examination of children sedated by intranasal dexmedetomidine vs oral chloral hydrate. One hundred and forty-one children aged from 3 to 36 months (5-15 kg) scheduled to ophthalmic examinations were randomly sedated by either intranasal dexmedetomidine (2 μg·kg -1 , n = 71) or oral chloral hydrate (80 mg·kg -1 , n = 70). The primary endpoint was successful sedation to complete the examinations including slit-lamp photography, tonometry, anterior segment analysis, and refractive error inspection. The secondary endpoints included quality of eye position, intraocular pressure, onset time, duration of examination, recovery time, discharge time, any side effects during examination, and within 48 h after discharge. Sixty-one children were sedated by dexmedetomidine with a success rate of 85.9%, which is significantly higher than that by chloral hydrate (64.3%) [OR 3.39, 95% CI: 1.48-7.76, P = 0.003]. Furthermore, children in the dexmedetomidine group displayed better eye position in anterior segment analysis than in chloral hydrate group median difference. All children displayed stable hemodynamics and none suffered hypoxemia in both groups. Oral chloral hydrate induced higher percentages of vomiting and altered bowel habit after discharge than dexmedetomidine. Intranasal dexmedetomidine provides more successful sedation and better quality of ophthalmic examinations than oral chloral hydrate for small children. © 2017 John Wiley & Sons Ltd.

  1. A contribution to the characterization of the silicate-water interface - Part I: Implication of a new polished sample hydration technique.

    PubMed

    Sowoidnich, T; Gordon, L; Naber, C; Bellmann, F; Neubauer, J; Joester, D

    2018-06-11

    The analysis of the atomic composition of the interface between tricalcium silicate (C 3 S), the main compound of Ordinary Portland Cement, and surrounding solution is still a challenging task. At the same time, that knowledge is of profound importance for describing the basic processes during hydration. By means of Scanning Electron Microscopy (SEM) and Atom Probe Tomography (APT) we combine modern techniques in order to shed light on this topic in the present study. The results of these methods are compared with conduction calorimetry as a standard technique to study the hydration kinetics of cement. The tests were carried out on powders as well as on polished C 3 S samples. Results indicate that the progress of hydration is strongly increased when the C 3 S is used in the form of polished specimen. First C-S-H phases are detected in the powder 2.2 h after contact with water, on the polished section after 5 min. Besides SEM, the formation of C-S-H phases can be detected by APT, leading to an advantageous atomic resolution compared to EDX analysis. We propose that the use of APT will lead to deeper insights on the hydration progress and on the composition of the sensitive C-S-H phases based on these first results. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Oral Hydration for Prevention of Contrast-Induced Acute Kidney Injury in Elective Radiological Procedures: A Systematic Review and Meta-Analysis of Randomized Controlled Trials

    PubMed Central

    Cheungpasitporn, Wisit; Thongprayoon, Charat; Brabec, Brady A.; Edmonds, Peter J.; O'Corragain, Oisin A.; Erickson, Stephen B.

    2014-01-01

    Background: The reports on efficacy of oral hydration treatment for the prevention of contrast-induced acute kidney injury (CIAKI) in elective radiological procedures and cardiac catheterization remain controversial. Aims: The objective of this meta-analysis was to assess the use of oral hydration regimen for prevention of CIAKI. Materials and Methods: Comprehensive literature searches for randomized controlled trials (RCTs) of outpatient oral hydration treatment was performed using MEDLINE, EMBASE, Cochrane Database of Systematic Reviews, Cochrane Central Register of Controlled Trials Systematic Reviews, and clinicaltrials.gov from inception until July 4th, 2014. Primary outcome was the incidence of CIAKI. Results: Six prospective RCTs were included in our analysis. Of 513patients undergoing elective procedures with contrast exposures,45 patients (8.8%) had CIAKI. Of 241 patients with oral hydration regimen, 23 (9.5%) developed CIAKI. Of 272 patients with intravenous (IV) fluid regimen, 22 (8.1%) had CIAKI. Study populations in all included studies had relatively normal kidney function to chronic kidney disease (CKD) stage 3. There was no significant increased risk of CIAKI in oral fluid regimen group compared toIV fluid regimen group (RR = 0.94, 95% confidence interval, CI = 0.38-2.31). Conclusions: According to our analysis,there is no evidence that oral fluid regimen is associated with more risk of CIAKI in patients undergoing elective procedures with contrast exposures compared to IV fluid regimen. This finding suggests that the oral fluid regimen might be considered as a possible outpatient treatment option for CIAKI prevention in patients with normal to moderately reduced kidney function. PMID:25599049

  3. In-situ gas hydrate hydrate saturation estimated from various well logs at the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    USGS Publications Warehouse

    Lee, M.W.; Collett, T.S.

    2011-01-01

    In 2006, the U.S. Geological Survey (USGS) completed detailed analysis and interpretation of available 2-D and 3-D seismic data and proposed a viable method for identifying sub-permafrost gas hydrate prospects within the gas hydrate stability zone in the Milne Point area of northern Alaska. To validate the predictions of the USGS and to acquire critical reservoir data needed to develop a long-term production testing program, a well was drilled at the Mount Elbert prospect in February, 2007. Numerous well log data and cores were acquired to estimate in-situ gas hydrate saturations and reservoir properties.Gas hydrate saturations were estimated from various well logs such as nuclear magnetic resonance (NMR), P- and S-wave velocity, and electrical resistivity logs along with pore-water salinity. Gas hydrate saturations from the NMR log agree well with those estimated from P- and S-wave velocity data. Because of the low salinity of the connate water and the low formation temperature, the resistivity of connate water is comparable to that of shale. Therefore, the effect of clay should be accounted for to accurately estimate gas hydrate saturations from the resistivity data. Two highly gas hydrate-saturated intervals are identified - an upper ???43 ft zone with an average gas hydrate saturation of 54% and a lower ???53 ft zone with an average gas hydrate saturation of 50%; both zones reach a maximum of about 75% saturation. ?? 2009.

  4. Substituent effect on the thermodynamic solubility of structural analogs: relative contribution of crystal packing and hydration.

    PubMed

    Ozaki, Shunsuke; Nakagawa, Yoshiaki; Shirai, Osamu; Kano, Kenji

    2014-11-01

    Thermodynamic analysis of the solubility of benzoylphenylurea (BPU) derivatives was conducted to investigate the relative importance of crystal packing and hydration for improving solubility with minor structural modification. The contribution of crystal packing to solubility was evaluated from the change in Gibbs energy on the transition from the crystalline to liquid state. Hydration Gibbs energy was estimated using a linear free-energy relationship between octanol-water partition coefficients and gas-water partition coefficients. The established solubility model satisfactorily explained the relative thermodynamic solubility of the model compounds and revealed that crystal packing and hydration equally controlled solubility of the structural analogs. All hydrophobic substituents were undesirable for solubility in terms of hydration, as expected. On the other hand, some of these hydrophobic substituents destabilized crystal packing and improved the solubility of the BPU derivatives when their impact on crystal packing exceeded their negative influence on hydration. The replacement of a single substituent could cause more than a 10-fold enhancement in thermodynamic solubility; this degree of improvement was comparable to that generally achieved by amorphous formulations. Detailed analysis of thermodynamic solubility will allow us to better understand the true substituent effect and design drug-like candidates efficiently. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  5. Identifying the morphologies of gas hydrate distribution using P-wave velocity and density: a test from the GMGS2 expedition in the South China Sea

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Liu, Xuewei

    2018-06-01

    Pore-filling and fracture-filling are two basic distribution morphologies of gas hydrates in nature. A clear knowledge of gas hydrate morphology is important for better resource evaluation and exploitation. Improper exploitation may cause seafloor instability and exacerbate the greenhouse effect. To identify the gas hydrate morphologies in sediments, we made a thorough analysis of the characteristics of gas hydrate bearing sediments (GHBS) based on rock physics modeling. With the accumulation of gas hydrate in sediments, both the velocities of two types of GHBS increase, and their densities decrease. Therefore, these two morphologies cannot be differentiated only by velocity or density. After a series of tests, we found the attribute ρ {{V}{{P}}}0.5 as a function of hydrate concentration show opposite trends for these two morphologies due to their different formation mechanisms. The morphology of gas hydrate can thus be identified by comparing the measured ρ {{V}{{P}}}0.5 with its background value, which means the ρ {{V}{{P}}}0.5 of the hydrate-free sediments. In 2013, China’s second gas hydrate expedition was conducted by Guangzhou Marine Geologic Survey to explore gas hydrate resources in the northern South China Sea, and both two hydrate morphologies were recovered. We applied this method to three sites, which include two pore-filling and three fracture-filling hydrate layers. The data points, that agree with the actual situations, account for 72% and 82% of the total for the two pore-filling hydrate layers, respectively, and 86%, 74%, and 69% for the three fracture-filling hydrate layers, respectively.

  6. Lattice constants and expansivities of gas hydrates from 10 K up to the stability limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, T. C.; Falenty, A.; Kuhs, W. F.

    2016-02-07

    The lattice constants of hydrogenated and deuterated CH{sub 4}-, CO{sub 2}-, Xe- (clathrate structure type I) and N{sub 2}-hydrates (clathrate structure type II) from 10 K up to the stability limit were established in neutron- and synchrotron diffraction experiments and were used to derive the related thermal expansivities. The following results emerge from this analysis: (1) The differences of expansivities of structure type I and II hydrates are fairly small. (2) Despite the larger guest-size of CO{sub 2} as compared to methane, CO{sub 2}-hydrate has the smaller lattice constants at low temperatures, which is ascribed to the larger attractive guest-hostmore » interaction of the CO{sub 2}-water system. (3) The expansivity of CO{sub 2}-hydrate is larger than for CH{sub 4}-hydrate which leads to larger lattice constants for the former at temperatures above ∼150 K; this is likely due to the higher motional degrees of freedom of the CO{sub 2} guest molecules. (4) The cage occupancies of Xe- and CO{sub 2}-hydrates affect significantly the lattice constants. (5) Similar to ice Ih, the deuterated compounds have generally slightly larger lattice constants which can be ascribed to the somewhat weaker H-bonding. (6) Compared to ice Ih, the high temperature expansivities are about 50% larger; in contrast to ice Ih and the empty hydrate, there is no negative thermal expansion at low temperature. (7) A comparison of the experimental results with lattice dynamical work, with models based on an Einstein oscillator model, and results from inelastic neutron scattering suggest that the contribution of the guest atoms’ vibrational energy to thermal expansion is important, most prominently for CO{sub 2}- and Xe-hydrates.« less

  7. The expression of proinflammatory genes in epidermal keratinocytes is regulated by hydration status.

    PubMed

    Xu, Wei; Jia, Shengxian; Xie, Ping; Zhong, Aimei; Galiano, Robert D; Mustoe, Thomas A; Hong, Seok J

    2014-04-01

    Mucosal wounds heal more rapidly, exhibit less inflammation, and are associated with minimal scarring when compared with equivalent cutaneous wounds. We previously demonstrated that cutaneous epithelium exhibits an exaggerated response to injury compared with mucosal epithelium. We hypothesized that treatment of injured skin with a semiocclusive dressing preserves the hydration of the skin and results in a wound healing phenotype that more closely resembles that of mucosa. Here we explored whether changes in hydration status alter epidermal gene expression patterns in rabbit partial-thickness incisional wounds. Using microarray studies on injured epidermis, we showed that global gene expression patterns in highly occluded versus non-occluded wounds are distinct. Many genes including IL-1β, IL-8, TNF-α (tumor necrosis factor-α), and COX-2 (cyclooxygenase 2) are upregulated in non-occluded wounds compared with highly occluded wounds. In addition, decreased levels of hydration resulted in an increased expression of proinflammatory genes in human ex vivo skin culture (HESC) and stratified keratinocytes. Hierarchical analysis of genes using RNA interference showed that both TNF-α and IL-1β regulate the expression of IL-8 through independent pathways in response to reduced hydration. Furthermore, both gene knockdown and pharmacological inhibition studies showed that COX-2 mediates the TNF-α/IL-8 pathway by increasing the production of prostaglandin E2 (PGE2). IL-8 in turn controls the production of matrix metalloproteinase-9 in keratinocytes. Our data show that hydration status directly affects the expression of inflammatory signaling in the epidermis. The identification of genes involved in the epithelial hydration pathway provides an opportunity to develop strategies to reduce scarring and optimize wound healing.

  8. Hydration behaviors of calcium silicate-based biomaterials.

    PubMed

    Lee, Yuan-Ling; Wang, Wen-Hsi; Lin, Feng-Huie; Lin, Chun-Pin

    2017-06-01

    Calcium silicate (CS)-based biomaterials, such as mineral trioxide aggregate (MTA), have become the most popular and convincing material used in restorative endodontic treatments. However, the commercially available CS-based biomaterials all contain different minor additives, which may affect their hydration behaviors and material properties. The purpose of this study was to evaluate the hydration behavior of CS-based biomaterials with/without minor additives. A novel CS-based biomaterial with a simplified composition, without mineral oxides as minor additives, was produced. The characteristics of this biomaterial during hydration were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectrometry. The hydration behaviors of commercially available gray and white MTAs with mineral oxide as minor additives were also evaluated for reference. For all three test materials, the XRD analysis revealed similar diffraction patterns after hydration, but MTAs presented a significant decrease in the intensities of Bi 2 O 3 -related peaks. SEM results demonstrated similar porous microstructures with some hexagonal and facetted crystals on the outer surfaces. In addition, compared to CS with a simplified composition, the FTIR plot indicated that hydrated MTAs with mineral oxides were better for the polymerization of calcium silicate hydrate (CSH), presenting Si-O band shifting to higher wave numbers, and contained more water crystals within CSH, presenting sharper bands for O-H bending. Mineral oxides might not result in significant changes in the crystal phases or microstructures during the hydration of CS-based biomaterials, but these compounds affected the hydration behavior at the molecular level. Copyright © 2016. Published by Elsevier B.V.

  9. Effect of organic matters on CO2 hydrate phase equilibrium conditions in Na-montmorillonite clay

    NASA Astrophysics Data System (ADS)

    Park, T.; Kyung, D.; Lee, W.

    2013-12-01

    Formation of gas hydrates provides an attractive idea for storing greenhouse gases in a long-term stable geological formation. Since the phase equilibrium conditions of gas hydrates indicate the stability of hydrates, estimation of the phase equilibrium conditions of gas hydrates in marine geological conditions is necessary. In this study, we have identified the effects of organic matters (glycine, glucose, and urea) and solid surface (montmorillonite (MMT)) on the three-phase (liquid-hydrate-vapor) equilibrium conditions of CO2 hydrate. CO2 phase equilibrium experiments were conducted using 0.5mol% organic matter solutions with and without 10g soil mineral were experimentally conducted. Addition of organic matters shifted the phase equilibrium conditions of CO2 hydrate to the higher pressure or lower pressure region because of higher competition of water molecules due to the dissolved organic matters. Presence of MMT also leaded to the higher equilibrium pressure due to the interaction of cations with water molecules. By addition of organic matters to the clay suspension, the hydrate phase equilibrium conditions were less inhibited compared to those of MMT and organic matters independently. The diminished magnitudes by addition of organic matters to the clay suspension (MMT > MMT+urea > MMT+glycine > MMT+glucose > DIW) were different to the order of inhibition degree without MMT (Glucose > glycine > urea > DIW). X-ray diffraction (XRD), scanning electron microscope (SEM), and ion chromatography (IC) analysis were conducted to support the hypothesis that the organic matters interact with cations in MMT interlayer space, and leads to the less inhibition of phase equilibrium conditions. The present study provides basic information for the formation and dissociation of CO2 hydrates in the geological formation when sequestering CO2 as a form of CO2 hydrate.

  10. The unfolding effects on the protein hydration shell and partial molar volume: a computational study.

    PubMed

    Del Galdo, Sara; Amadei, Andrea

    2016-10-12

    In this paper we apply the computational analysis recently proposed by our group to characterize the solvation properties of a native protein in aqueous solution, and to four model aqueous solutions of globular proteins in their unfolded states thus characterizing the protein unfolded state hydration shell and quantitatively evaluating the protein unfolded state partial molar volumes. Moreover, by using both the native and unfolded protein partial molar volumes, we obtain the corresponding variations (unfolding partial molar volumes) to be compared with the available experimental estimates. We also reconstruct the temperature and pressure dependence of the unfolding partial molar volume of Myoglobin dissecting the structural and hydration effects involved in the process.

  11. Obsidian hydration dating of volcanic events

    USGS Publications Warehouse

    Friedman, I.; Obradovich, J.

    1981-01-01

    Obsidian hydration dating of volcanic events had been compared with ages of the same events determined by the 14C and KAr methods at several localities. The localities, ranging in age from 1200 to over 1 million yr, include Newberry Craters, Oregon; Coso Hot Springs, California; Salton Sea, California; Yellowstone National Park, Wyoming; and Mineral Range, Utah. In most cases the agreement is quite good. A number of factors including volcanic glass composition and exposuretemperature history must be known in order to relate hydration thickness to age. The effect of composition can be determined from chemical analysis or the refractive index of the glass. Exposure-temperature history requires a number of considerations enumerated in this paper. ?? 1981.

  12. Temperature Control and Numerical Analysis for Mass Concrete Pile Cap of Hai-huang Bridge

    NASA Astrophysics Data System (ADS)

    Shi, Han; Hao, Yang; Yong-liang, Wang

    2018-05-01

    In order to study the heat of hydration in massive concrete, this paper takes Hai-huang bridge for engineering background and uses the finite element analysis software of FEA to analyze the heat of hydration effect of the cushion cap. Comparing the measured data with the theory data, the results showed that the concrete crack was controlled effectively and ensure the construction quality by adopted reasonable temperature control measures. The results of the research prove that the measured data was consistent with calculation data, and it proves the accuracy of the finite element analysis. Finally, the study provides certain reference and guiding significance for similar project.

  13. Hydration in advanced cancer: can bioelectrical impedance analysis improve the evidence base? A systematic review of the literature.

    PubMed

    Nwosu, Amara Callistus; Mayland, Catriona R; Mason, Stephen R; Khodabukus, Andrew F; Varro, Andrea; Ellershaw, John E

    2013-09-01

    Decisions surrounding the administration of clinically assisted hydration to patients dying of cancer can be challenging because of the limited understanding of hydration in advanced cancer and a lack of evidence to guide health care professionals. Bioelectrical impedance analysis (BIA) has been used to assess hydration in various patient groupings, but evidence for its use in advanced cancer is limited. To critically appraise existing methods of hydration status assessment in advanced cancer and review the potential for BIA to assess hydration in advanced cancer. Searches were carried out in four electronic databases. A hand search of selected peer-reviewed journals and conference abstracts also was conducted. Studies reporting (de)hydration assessment (physical examination, biochemical measures, symptom assessment, and BIA) in patients with advanced cancer were included. The results highlight how clinical examination and biochemical tests are standard methods of assessing hydration, but limitations exist with these methods in advanced cancer. Furthermore, there is disagreement over the evidence for some commonly associated symptoms with dehydration in cancer. Although there are limitations with using BIA alone to assess hydration in advanced cancer, analysis of BIA raw measurements through the method of bioelectrical impedance vector analysis may have a role in this population. The benefits and burdens of providing clinically assisted hydration to patients dying of cancer are unclear. Bioelectrical impedance vector analysis shows promise as a hydration assessment tool but requires further study in advanced cancer. Innovative methodologies for research are required to add to the evidence base and ultimately improve the care for the dying. Copyright © 2013 U.S. Cancer Pain Relief Committee. Published by Elsevier Inc. All rights reserved.

  14. Effective-Medium Models for Marine Gas Hydrates, Mallik Revisited

    NASA Astrophysics Data System (ADS)

    Terry, D. A.; Knapp, C. C.; Knapp, J. H.

    2011-12-01

    Hertz-Mindlin type effective-medium dry-rock elastic models have been commonly used for more than three decades in rock physics analysis, and recently have been applied to assessment of marine gas hydrate resources. Comparisons of several effective-medium models with derivative well-log data from the Mackenzie River Valley, Northwest Territories, Canada (i.e. Mallik 2L-38 and 5L-38) were made several years ago as part of a marine gas hydrate joint industry project in the Gulf of Mexico. The matrix/grain supporting model (one of the five models compared) was clearly a better representation of the Mallik data than the other four models (2 cemented sand models; a pore-filling model; and an inclusion model). Even though the matrix/grain supporting model was clearly better, reservations were noted that the compressional velocity of the model was higher than the compressional velocity measured via the sonic logs, and that the shear velocities showed an even greater discrepancy. Over more than thirty years, variations of Hertz-Mindlin type effective medium models have evolved for unconsolidated sediments and here, we briefly review their development. In the past few years, the perfectly smooth grain version of the Hertz-Mindlin type effective-medium model has been favored over the infinitely rough grain version compared in the Gulf of Mexico study. We revisit the data from the Mallik wells to review assertions that effective-medium models with perfectly smooth grains are a better predictor than models with infinitely rough grains. We briefly review three Hertz-Mindlin type effective-medium models, and standardize nomenclature and notation. To calibrate the extended effective-medium model in gas hydrates, we use a well accepted framework for unconsolidated sediments through Hashin-Shtrikman bounds. We implement the previously discussed effective-medium models for saturated sediments with gas hydrates and compute theoretical curves of seismic velocities versus gas hydrate saturation to compare with well log data available from the Canadian gas hydrates research site. By directly comparing the infinitely rough and perfectly smooth grain versions of the Hertz-Mindlin type effective-medium model, we provide additional insight to the discrepancies noted in the Gulf of Mexico study.

  15. Characterization of un-hydrated and hydrated BioAggregate™ and MTA Angelus™.

    PubMed

    Camilleri, J; Sorrentino, F; Damidot, D

    2015-04-01

    BioAggregate™ is a novel material introduced for use as a root-end filling material. It is tricalcium silicate-based, free of aluminium and uses tantalum oxide as radiopacifier. BioAggregate contains additives to enhance the material performance. The purpose of this research was to characterize the un-hydrated and hydrated forms of BioAggregate using a combination of techniques, verify whether the additives if present affect the properties of the set material and compare these properties to those of MTA Angelus™. Un-hydrated and hydrated BioAggregate and MTA Angelus were assessed. Un-hydrated cement was tested for chemical composition, specific surface area, mineralogy and kinetics of hydration. The set material was investigated for mineralogy, microstructure and bioactivity. Scanning electron microscopy, X-ray energy dispersive spectroscopic analysis, X-ray fluorescence spectroscopy, X-ray diffraction and isothermal calorimetry were employed. The specific surface area was investigated using a gas adsorption method with nitrogen as the probe. BioAggregate was composed of tricalcium silicate, tantalum oxide, calcium phosphate and silicon dioxide and was free of aluminium. On hydration, the tricalcium silicate produced calcium silicate hydrate and calcium hydroxide. The former was deposited around the cement grains, while the latter reacted with the silicon dioxide to form additional calcium silicate hydrate. This resulted in reduction of calcium hydroxide in the aged cement. MTA Angelus reacted in a similar fashion; however, since it contained no additives, the calcium hydroxide was still present in the aged cement. Bioactivity was demonstrated by deposition of hydroxyapatite. BioAggregate exhibited a high specific surface area. Nevertheless, the reactivity determined by isothermal calorimetry appeared to be slow compared to MTA Angelus. The tantalum oxide as opposed to bismuth oxide was inert, and tantalum was not leached in solution. BioAggregate exhibited high calcium ion release early, which was maintained over the 28-day period as opposed to MTA Angelus, which demonstrated low early calcium ion release which increased as the material aged. The mineralogical composition of BioAggregate was different to MTA Angelus. As opposed to MTA Angelus, BioAggregate did not contain aluminium and contained additives such as calcium phosphate and silicon dioxide. As a consequence, BioAggregate reacted more slowly and formation of calcium hydroxide and leaching of calcium ions in solution were not evident as the material aged. The additives in BioAggregate modify the kinetics and the end products of hydration. Although newer generation tricalcium silicate-based materials contain similar constituents to MTA, they do not undergo the same setting reactions, and thus, their clinical performance will not be comparable to that of MTA.

  16. Global analysis of gully composition using manual and automated exploration of CRISM imagery

    NASA Astrophysics Data System (ADS)

    Allender, Elyse; Stepinski, Tomasz F.

    2018-03-01

    Gully formations on Mars have been the focus of many morphological and mineralogical studies aimed at inferring the mechanisms of their formation and evolution. In this paper we have analyzed 354 globally distributed gully-bearing Full Resolution Targeted (FRT) Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) images. The primary goal of the analysis was to identify all spectrally distinct deposits in these images (if any) and to classify them into hydrated and non-hydrated categories using only CRISM summary parameters (Viviano-Beck et al., 2014). Such approach makes possible to analyze a very large set of all distinct deposits in 354 images. We found that 68% of these images lack any distinct deposits, 8% of images contain non-hydrated deposits which coincide with the gullies and 24% of images contain hydrated deposits which coincide with the gullies. These results are compared with the recent analysis of 110 CRISM images by Nuñez et al. (2016) who also found that most gullies coincide with indistinct deposits, but, contrary to our findings, they found a predominance of non-hydrated minerals among distinct deposits. We attribute this discrepancy in part to their smaller and geographically biased sample of images, and in part to differing protocols of categorizing images. The discrepancy between the two surveys is further increased if we count all deposits in FRT gully-bearing images, not just deposits directly coinciding with the gullies, obtaining 44% indistinct, 15% non-hydrated, and 41% hydrated images. The secondary goal of this study was to perform the same image survey using a recently developed automated method in order to assess its accuracy and thus its feasibility for performing future surveys. We found the overall accuracy of the auto-mapper to be 76.2% but its accuracy for discovering distinct deposits, and in particular, distinct hydrated deposits was lower. We attributed the deficiencies of the auto-mapper primarily to its sensitivity to presence of noise in images and especially to presence of speckle noise. It is however worth noting that qualitatively both manual and automatic surveys arrived at the same overall conclusion.

  17. Effect of a new moisturizing lotion on immediate and cumulative skin hydration: Two randomized, intra-individual, vehicle- and comparator-controlled studies.

    PubMed

    Nogueira, Alessandra; Sidou, Farzaneh; Brocard, Sylvie

    2011-08-01

    Moisturizers increase skin hydration and can serve as adjunctive care in dermatologic conditions such as xerosis, psoriasis vulgaris, atopic dermatitis and ichthyosis, in which dry skin is implicated. A non-irritating hydrating lotion (CDA lotion) was recently developed. We assessed the effect of CDA lotion on skin hydration in two randomized, evaluator-blind and intra-individual comparison studies. After a single application, CDA lotion induced significantly greater hydration than the non-treated control for at least 24 hours (p < 0.001). After 4 days of twice-daily application, compared with the non-treated control, CDA lotion induced significantly greater skin hydration up to 3 days after treatment cessation (p < 0.05) and significant improvement in the clinical skin dryness score up to 7 days after treatment cessation (p < 0.05). The immediate and cumulative hydration effects of CDA lotion were also compared to those of several currently available moisturizing products. In summary, application of CDA lotion increases skin hydration and alleviates the condition of skin dryness.

  18. The characteristics of gas hydrates recovered from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    USGS Publications Warehouse

    Lu, H.; Lorenson, T.D.; Moudrakovski, I.L.; Ripmeester, J.A.; Collett, T.S.; Hunter, R.B.; Ratcliffe, C.I.

    2011-01-01

    Systematic analyses have been carried out on two gas hydrate-bearing sediment core samples, HYPV4, which was preserved by CH4 gas pressurization, and HYLN7, which was preserved in liquid-nitrogen, recovered from the BPXA-DOE-USGS Mount Elbert Stratigraphic Test Well. Gas hydrate in the studied core samples was found by observation to have developed in sediment pores, and the distribution of hydrate saturation in the cores imply that gas hydrate had experienced stepwise dissociation before it was stabilized by either liquid nitrogen or pressurizing gas. The gas hydrates were determined to be structure Type I hydrate with hydration numbers of approximately 6.1 by instrumentation methods such as powder X-ray diffraction, Raman spectroscopy and solid state 13C NMR. The hydrate gas composition was predominantly methane, and isotopic analysis showed that the methane was of thermogenic origin (mean ??13C=-48.6??? and ??D=-248??? for sample HYLN7). Isotopic analysis of methane from sample HYPV4 revealed secondary hydrate formation from the pressurizing methane gas during storage. ?? 2010 Elsevier Ltd.

  19. Mimicking gluten functionality with β-conglycinin concentrate: Evaluation in gluten free yeast-leavened breads.

    PubMed

    Espinosa-Ramírez, Johanan; Garzon, Raquel; Serna-Saldivar, Sergio O; Rosell, Cristina M

    2018-04-01

    Fractionation of soy proteins has proved to produce protein concentrates with viscoelastic properties. In the present study, a β-conglycinin concentrate (βCC) obtained by a pH fractionation of soy flour was tested as structuring agent in gluten-free yeast-leavened bread model. A lean formulation with βCC and corn starch was used to produce gluten-free breads with two hydration conditions and three levels of protein (5%, 10% and 15%). Vital gluten was used to compare the functionality of βCC protein and its performance for breadmaking. Breads were characterized in moisture, color, textural parameters and image analysis. βCC presented lower hydration properties and higher emulsifying activity compared to vital gluten. Blends βCC:starch had higher water binding capacity compared to vital gluten blends. The hydration conditions tested affected the moisture, color and cell density of breads. Breads produced with βCC presented higher 2D area and height and presented higher crumb softness and cohesiveness, and did not present significant differences in springiness and resilience compared to vital gluten breads. The image analysis of crumbs showed higher cell density but lower porosity and mean cell areas in βCC breads. Thus, βCC proved to have potential as a structuring agent in gluten-free breads. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. In Situ Soft X-ray Spectromicroscopy of Early Tricalcium Silicate Hydration

    DOE PAGES

    Bae, Sungchul; Kanematsu, Manabu; Hernandez-Cruz, Daniel; ...

    2016-12-01

    The understanding and control of early hydration of tricalcium silicate (C 3S) is of great importance to cement science and concrete technology. However, traditional characterization methods are incapable of providing morphological and spectroscopic information about in situ hydration at the nanoscale. Using soft X-ray spectromicroscopy, we report the changes in morphology and molecular structure of C 3S at an early stage of hydration. In situ C 3S hydration in a wet cell, beginning with induction (~1 h) and acceleration (~4 h) periods of up to ~8 h, was studied and compared with ex situ measurements in the deceleration period aftermore » 15 h of curing. Analysis of the near-edge X-ray absorption fine structure showed that the Ca binding energy and energy splitting of C 3S changed rapidly in the early age of hydration and exhibited values similar to calcium silicate hydrate (C–S–H). The formation of C–S–H nanoseeds in the C 3S solution and the development of a fibrillar C–S–H morphology on the C 3S surface were visualized. Following this, silicate polymerization accompanied by C–S–H precipitation produced chemical shifts in the peaks of the main Si K edge and in multiple scattering. However, the silicate polymerization process did not significantly affect the Ca binding energy of C–S–H.« less

  1. In Situ Soft X-ray Spectromicroscopy of Early Tricalcium Silicate Hydration

    PubMed Central

    Bae, Sungchul; Kanematsu, Manabu; Hernández-Cruz, Daniel; Moon, Juhyuk; Kilcoyne, David; Monteiro, Paulo J. M.

    2016-01-01

    The understanding and control of early hydration of tricalcium silicate (C3S) is of great importance to cement science and concrete technology. However, traditional characterization methods are incapable of providing morphological and spectroscopic information about in situ hydration at the nanoscale. Using soft X-ray spectromicroscopy, we report the changes in morphology and molecular structure of C3S at an early stage of hydration. In situ C3S hydration in a wet cell, beginning with induction (~1 h) and acceleration (~4 h) periods of up to ~8 h, was studied and compared with ex situ measurements in the deceleration period after 15 h of curing. Analysis of the near-edge X-ray absorption fine structure showed that the Ca binding energy and energy splitting of C3S changed rapidly in the early age of hydration and exhibited values similar to calcium silicate hydrate (C–S–H). The formation of C–S–H nanoseeds in the C3S solution and the development of a fibrillar C–S–H morphology on the C3S surface were visualized. Following this, silicate polymerization accompanied by C–S–H precipitation produced chemical shifts in the peaks of the main Si K edge and in multiple scattering. However, the silicate polymerization process did not significantly affect the Ca binding energy of C–S–H. PMID:28774096

  2. Evaluation of cryoanalysis as a tool for analyzing elemental distribution in "live" tardigrades using micro-PIXE

    NASA Astrophysics Data System (ADS)

    Nilsson, E. J. C.; Pallon, J.; Przybylowicz, W. J.; Wang, Y. D.; Jönsson, K. I.

    2014-08-01

    Although heavy on labor and equipment, thus not often applied, cryoanalysis of frozen hydrated biological specimens can provide information that better reflects the living state of the organism, compared with analysis in the freeze-dried state. In this paper we report a study where the cryoanalysis facility with cryosectioning capabilities at Materials Research Department, iThemba LABS, South Africa was employed to evaluate the usefulness of combining three ion beam analytical methods (μPIXE, RBS and STIM) to analyze a biological target where a better elemental compositional description is needed - the tardigrade. Imaging as well as quantification results are of interest. In a previous study, the element composition and redistribution of elements in the desiccated and active states of two tardigrade species was investigated. This study included analysis of both whole and sectioned tardigrades, and the aim was to analyze each specimen twice; first frozen hydrated and later freeze-dried. The combination of the three analytical techniques proved useful: elements from C to Rb in the tardigrades could be determined and certain differences in distribution of elements between the frozen hydrated and the freeze-dried states were observed. RBS on frozen hydrated specimens provided knowledge of matrix elements.

  3. A pressure core ultrasonic test system for on-board analysis of gas hydrate-bearing sediments under in situ pressures.

    PubMed

    Yang, Lei; Zhou, Weihua; Xue, Kaihua; Wei, Rupeng; Ling, Zheng

    2018-05-01

    The enormous potential as an alternative energy resource has made natural gas hydrates a material of intense research interest. Their exploration and sample characterization require a quick and effective analysis of the hydrate-bearing cores recovered under in situ pressures. Here a novel Pressure Core Ultrasonic Test System (PCUTS) for on-board analysis of sediment cores containing gas hydrates at in situ pressures is presented. The PCUTS is designed to be compatible with an on-board pressure core transfer device and a long gravity-piston pressure-retained corer. It provides several advantages over laboratory core analysis including quick and non-destructive detection, in situ and successive acoustic property acquisition, and remission of sample storage and transportation. The design of the unique assembly units to ensure the in situ detection is demonstrated, involving the U-type protecting jackets, transducer precession device, and pressure stabilization system. The in situ P-wave velocity measurements make the detection of gas hydrate existence in the sediments possible on-board. Performance tests have verified the feasibility and sensitivity of the ultrasonic test unit, showing the dependence of P-wave velocity on gas hydrate saturation. The PCUTS has been successfully applied for analysis of natural samples containing gas hydrates recovered from the South China Sea. It is indicated that on-board P-wave measurements could provide a quick and effective understanding of the hydrate occurrence in natural samples, which can assist further resource exploration, assessment, and subsequent detailed core analysis.

  4. A pressure core ultrasonic test system for on-board analysis of gas hydrate-bearing sediments under in situ pressures

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Zhou, Weihua; Xue, Kaihua; Wei, Rupeng; Ling, Zheng

    2018-05-01

    The enormous potential as an alternative energy resource has made natural gas hydrates a material of intense research interest. Their exploration and sample characterization require a quick and effective analysis of the hydrate-bearing cores recovered under in situ pressures. Here a novel Pressure Core Ultrasonic Test System (PCUTS) for on-board analysis of sediment cores containing gas hydrates at in situ pressures is presented. The PCUTS is designed to be compatible with an on-board pressure core transfer device and a long gravity-piston pressure-retained corer. It provides several advantages over laboratory core analysis including quick and non-destructive detection, in situ and successive acoustic property acquisition, and remission of sample storage and transportation. The design of the unique assembly units to ensure the in situ detection is demonstrated, involving the U-type protecting jackets, transducer precession device, and pressure stabilization system. The in situ P-wave velocity measurements make the detection of gas hydrate existence in the sediments possible on-board. Performance tests have verified the feasibility and sensitivity of the ultrasonic test unit, showing the dependence of P-wave velocity on gas hydrate saturation. The PCUTS has been successfully applied for analysis of natural samples containing gas hydrates recovered from the South China Sea. It is indicated that on-board P-wave measurements could provide a quick and effective understanding of the hydrate occurrence in natural samples, which can assist further resource exploration, assessment, and subsequent detailed core analysis.

  5. Simulation of subsea gas hydrate exploitation

    NASA Astrophysics Data System (ADS)

    Janicki, Georg; Schlüter, Stefan; Hennig, Torsten; Deerberg, Görge

    2014-05-01

    The recovery of methane from gas hydrate layers that have been detected in several subsea sediments and permafrost regions around the world is a promising perspective to overcome future shortages in natural gas supply. Being aware that conventional natural gas resources are limited, research is going on to develop technologies for the production of natural gas from such new sources. Thus various research programs have started since the early 1990s in Japan, USA, Canada, India, and Germany to investigate hydrate deposits and develop required technologies. In recent years, intensive research has focussed on the capture and storage of CO2 from combustion processes to reduce climate impact. While different natural or man-made reservoirs like deep aquifers, exhausted oil and gas deposits or other geological formations are considered to store gaseous or liquid CO2, the storage of CO2 as hydrate in former methane hydrate fields is another promising alternative. Due to beneficial stability conditions, methane recovery may be well combined with CO2 storage in the form of hydrates. Regarding technological implementation many problems have to be overcome. Especially mixing, heat and mass transfer in the reservoir are limiting factors causing very long process times. Within the scope of the German research project »SUGAR« different technological approaches for the optimized exploitation of gas hydrate deposits are evaluated and compared by means of dynamic system simulations and analysis. Detailed mathematical models for the most relevant chemical and physical processes are developed. The basic mechanisms of gas hydrate formation/dissociation and heat and mass transport in porous media are considered and implemented into simulation programs. Simulations based on geological field data have been carried out. The studies focus on the potential of gas production from turbidites and their fitness for CO2 storage. The effects occurring during gas production and CO2 storage within a hydrate deposit are identified and described for various scenarios. The behavior of relevant process parameters such as pressure, temperature and phase saturations is discussed and compared for different strategies: simple depressurization, simultaneous and subsequent methane production together with CO2 injection.

  6. Development and characterization of morin hydrate loaded microemulsion for the management of Alzheimer's disease.

    PubMed

    Sharma, Dheeraj; Singh, Manpreet; Kumar, Punnet; Vikram, Vir; Mishra, Neeraj

    2017-12-01

    The aim of this study is to prepare and characterize intranasal delivery of morin hydrate loaded microemulsion for the management of Alzheimer's diseases. After intranasal delivery, brain and blood drug concentrations were found to be higher for optimized morin hydrate loaded microemulsion as compared to plain morin hydrate. Significant (P < 0.05) reduction in assessed pharmacodynamic parameters was observed after intranasal administration of morin hydrate loaded microemulsion as compared to sham control group. Daily chronic treatment with morin loaded microemulsion till the 21st day significantly increased the memory in wistar rats with STZ-induced dementia.

  7. Nutrition Status Parameters and Hydration Status by Bioelectrical Impedance Vector Analysis Were Associated With Lung Function Impairment in Children and Adolescents With Cystic Fibrosis.

    PubMed

    Hauschild, Daniela Barbieri; Barbosa, Eliana; Moreira, Emilia Addison Machado; Ludwig Neto, Norberto; Platt, Vanessa Borges; Piacentini Filho, Eduardo; Wazlawik, Elisabeth; Moreno, Yara Maria Franco

    2016-06-01

    (1) To compare nutrition and hydration status between a group of children/adolescents with cystic fibrosis (CFG; n = 46; median age, 8.5 years) and a control group without cystic fibrosis (CG). (2) To examine the association of nutrition and hydration status with lung function in the CFG. A cross-sectional study. Nutrition screening, anthropometric parameters, and bioelectrical impedance analysis (BIA) were assessed. The z scores for body mass index for age, height for age, mid upper arm circumference, triceps and subscapular skinfold thickness, mid upper arm muscle area, resistance/height, and reactance/height were calculated. Bioelectrical impedance vector analysis was conducted. Forced expiratory volume in 1 second <80% was considered lung function impairment. An adjusted logistic regression was applied (P < .05). In the CFG, lung function impairment was observed in 51.1%. All anthropometric parameters were lower, and the mean z-resistance/height and z-reactance/height were higher in the CFG (P < .05) compared with the CG. In the CFG, 43% were severely/mildly dehydrated, while none were in the CG (P = .007). In the CFG, there was an association between high nutrition risk-via nutrition screening (odds ratio [OR], 22.28; P < .05), lower values of anthropometric parameters, higher z-resistance/height (OR, 2.23; P < .05) and z-reactance/height (OR, 1.81; P < .05), and dehydration (OR, 4.94; P < .05)-and lung function impairment. The CFG exhibited a compromised nutrition status assessed by anthropometric and BIA parameters. Nutrition screening, anthropometric and BIA parameters, and hydration status were associated with lung function. © 2016 American Society for Parenteral and Enteral Nutrition.

  8. Free energy landscape and molecular pathways of gas hydrate nucleation.

    PubMed

    Bi, Yuanfei; Porras, Anna; Li, Tianshu

    2016-12-07

    Despite the significance of gas hydrates in diverse areas, a quantitative knowledge of hydrate formation at a molecular level is missing. The impediment to acquiring this understanding is primarily attributed to the stochastic nature and ultra-fine scales of nucleation events, posing a great challenge for both experiment and simulation to explore hydrate nucleation. Here we employ advanced molecular simulation methods, including forward flux sampling (FFS), p B histogram analysis, and backward flux sampling, to overcome the limit of direct molecular simulation for exploring both the free energy landscape and molecular pathways of hydrate nucleation. First we test the half-cage order parameter (H-COP) which we developed for driving FFS, through conducting the p B histogram analysis. Our results indeed show that H-COP describes well the reaction coordinates of hydrate nucleation. Through the verified order parameter, we then directly compute the free energy landscape for hydrate nucleation by combining both forward and backward flux sampling. The calculated stationary distribution density, which is obtained independently of nucleation theory, is found to fit well against the classical nucleation theory (CNT). Subsequent analysis of the obtained large ensemble of hydrate nucleation trajectories show that although on average, hydrate formation is facilitated by a two-step like mechanism involving a gradual transition from an amorphous to a crystalline structure, there also exist nucleation pathways where hydrate crystallizes directly, without going through the amorphous stage. The CNT-like free energy profile and the structural diversity suggest the existence of multiple active transition pathways for hydrate nucleation, and possibly also imply the near degeneracy in their free energy profiles among different pathways. Our results thus bring a new perspective to the long standing question of how hydrates crystallize.

  9. Free energy landscape and molecular pathways of gas hydrate nucleation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bi, Yuanfei; Porras, Anna; Li, Tianshu, E-mail: tsli@gwu.edu

    Despite the significance of gas hydrates in diverse areas, a quantitative knowledge of hydrate formation at a molecular level is missing. The impediment to acquiring this understanding is primarily attributed to the stochastic nature and ultra-fine scales of nucleation events, posing a great challenge for both experiment and simulation to explore hydrate nucleation. Here we employ advanced molecular simulation methods, including forward flux sampling (FFS), p{sub B} histogram analysis, and backward flux sampling, to overcome the limit of direct molecular simulation for exploring both the free energy landscape and molecular pathways of hydrate nucleation. First we test the half-cage ordermore » parameter (H-COP) which we developed for driving FFS, through conducting the p{sub B} histogram analysis. Our results indeed show that H-COP describes well the reaction coordinates of hydrate nucleation. Through the verified order parameter, we then directly compute the free energy landscape for hydrate nucleation by combining both forward and backward flux sampling. The calculated stationary distribution density, which is obtained independently of nucleation theory, is found to fit well against the classical nucleation theory (CNT). Subsequent analysis of the obtained large ensemble of hydrate nucleation trajectories show that although on average, hydrate formation is facilitated by a two-step like mechanism involving a gradual transition from an amorphous to a crystalline structure, there also exist nucleation pathways where hydrate crystallizes directly, without going through the amorphous stage. The CNT-like free energy profile and the structural diversity suggest the existence of multiple active transition pathways for hydrate nucleation, and possibly also imply the near degeneracy in their free energy profiles among different pathways. Our results thus bring a new perspective to the long standing question of how hydrates crystallize.« less

  10. Gas adsorption on commercial magnesium stearate: Effects of degassing conditions on nitrogen BET surface area and isotherm characteristics.

    PubMed

    Lapham, Darren P; Lapham, Julie L

    2017-09-15

    Commercial grades of magnesium stearate have been analysed by nitrogen adsorption having been pre-treated at temperatures between 30°C and 110°C and in the as-received state. Characteristics of nitrogen adsorption/desorption isotherms are assessed through the linearity of low relative pressure isotherm data and the BET transform plot together with the extent of isotherm hysteresis. Comparison is made between thermal gravimetric analysis and mass loss on drying. Features of gas adsorption isotherms considered atypical are identified and possible causes presented. It is shown that atypical isotherm features and issues of applying BET theory to the calculation of S BET are linked to the presence of hydrated water and that these depend on the hydration state: being more pronounced for the di-hydrate than the mono-hydrate. Dehydration reduces the extent of atypical features. S BET of a mono-hydrate sample is 5.6m 2 g -1 and 3.2m 2 g -1 at 40°C and 100°C degassing respectively but 23.9m 2 g 1 and 5.9m 2 g -1 for di-hydrate containing samples under comparable degassing. Di-hydrated samples also show S BET >15m 2 g 1 , BET C-values <7 and BET correlation coefficients <0.98 before dehydration. Possible mechanisms for atypical isotherms are critically discussed together with the suitability of applying BET theory to nitrogen adsorption data. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. [Based on Curing Age of Calcined Coal Gangue Fine Aggregate Mortar of X-Ray Diffraction and Scanning Electron Microscopy Analysis].

    PubMed

    Dong, Zuo-chao; Xia, Jun-wu; Duan, Xiao-mu; Cao, Ji-chang

    2016-03-01

    By using X-ray diffraction (XRD) and environmental scanning electron microscope (SEM) analysis method, we stud- ied the activity of coal gangue fine aggregate under different calcination temperature. In view of the activity of the highest-700 degrees C high temperature calcined coal gangue fine aggregate mortar of hydration products, microstructure and strength were discussed in this paper, and the change laws of mortar strength with curing age (3, 7, 14, 28, 60 and 90 d) growth were analyzed. Test results showed that coal gangue fine aggregate with the increase of calcination temperature, the active gradually increases. When the calcination temperature reaches 700 degrees C, the activity of coal gangue fine aggregate is the highest. When calcining temperature continues to rise, activity falls. After 700 degrees C high temperature calcined coal gangue fine aggregate has obvious ash activity, the active components of SiO2 and Al2 O3 can be with cement hydration products in a certain degree of secondary hydration reaction. Through on the top of the activity of different curing age 700 degrees C high temperature calcined coal gangue fine aggregate mortar, XRD and SEM analysis showed that with the increase of curing age, secondary hydration reaction will be more fully, and the amount of hydration products also gradually increases. Compared with the early ages of the cement mortar, the products are more stable hydration products filling in mortar microscopic pore, which can further improve the microstructure of mortar, strengthen the interface performance of the mortar. The mortar internal structure is more uniform, calcined coal gangue fine aggregate and cement mortar are more of a strong continuous whole, which increase the later strength of hardened cement mortar, 700 degrees C high temperature calcined coal gangue fine aggregate pozzolanic effect is obvious.

  12. Structural characterization and cytotoxicity studies of different forms of a combretastatin A4 analogue

    NASA Astrophysics Data System (ADS)

    de Figueiredo, Laysa P.; Ibiapino, Amanda L.; do Amaral, Daniel N.; Ferraz, Letícia S.; Rodrigues, Tiago; Barreiro, Eliezer J.; Lima, Lídia M.; Ferreira, Fabio F.

    2017-11-01

    It is well known that combretastatin A4 (CA-4), which is a natural stilbene isolated from Combretum caffrum, is used to inhibit angiogenesis. However, depending on the dose administered to the patient, it can cause some side-effects. Herein, we present the synthesis and structural characterization of a novel N-acylhydrazone derivative - LASSBio-1735 - a CA-4 analogue. LASSBio-1735 has displayed in vitro antiproliferative activity against HL-60 (human leukemia), SF-295 (human glioblastoma), MDA-MB435 (melanoma) and HCT-8 (ileocecal adenocarcinoma) tumor cells. We found different hydration levels in two batches of the as-synthesized compound. As a consequence, we could successfully determine the crystal structures - by using X-ray powder diffraction data and a simulated annealing procedure - of the anhydrous and hydrated forms. The effects on cell viability of anhydrous and hydrated forms of LASSBio-1735 were comparatively evaluated in different tumor cell lines, and the hydrated form exhibited higher cytotoxicity in human leukemia K562 cells. These findings lead us to perform a quantitative phase analysis on one of the samples and may shed some light on the search for possible new solvates and/or hydrates.

  13. Microstructural response of variably hydrated Ca-rich montmorillonite to supercritical CO2.

    PubMed

    Lee, Mal-Soon; McGrail, B Peter; Glezakou, Vassiliki-Alexandra

    2014-01-01

    First-principles molecular dynamics simulations were carried out to explore the mechanistic and thermodynamic ramifications of the exposure of variably hydrated Ca-rich montmorillonites to supercritical CO2 and CO2-SO2 mixtures under geologic storage conditions. In sub- to single-hydrated systems (≤ 1W), CO2 intercalation causes interlamellar expansion of 8-12%, while systems transitioning to 2W may undergo contraction (∼ 7%) or remain almost unchanged. When compared to ∼2W hydration state, structural analysis of the ≤ 1W systems, reveals more Ca-CO2 contacts and partial transition to vertically confined CO2 molecules. Infrared spectra and projected vibrational frequency analysis imply that intercalated Ca-bound CO2 are vibrationally constrained and contribute to the higher frequencies of the asymmetric stretch band. Reduced diffusion coefficients of intercalated H2O and CO2 (10(-6)-10(-7) cm(2)/s) indicate that Ca-montmorillonites in ∼ 1W hydration states can be more efficient in capturing CO2. Simulations including SO2 imply that ∼ 0.66 mmol SO2/g clay can be intercalated without other significant structural changes. SO2 is likely to divert H2O away from the cations, promoting Ca-CO2 interactions and CO2 capture by further reducing CO2 diffusion (10(-8) cm(2)/s). Vibrational bands at ∼ 1267 or 1155 cm(-1) may be used to identify the chemical state (oxidation states +4 or +6, respectively) and the fate of sulfur contaminants.

  14. Mannitol to prevent cisplatin-induced nephrotoxicity in patients with squamous cell cancer of the head and neck (SCCHN) receiving concurrent therapy.

    PubMed

    McKibbin, Trevor; Cheng, Linda L; Kim, Sungjin; Steuer, Conor E; Owonikoko, Taofeek K; Khuri, Fadlo R; Shin, Dong M; Saba, Nabil F

    2016-04-01

    The purpose of this study is to compare the incidence and severity of nephrotoxicity in patients receiving cisplatin with saline hydration vs. saline hydration with mannitol. Retrospective chart review of all patients receiving a starting dose of cisplatin 100 mg/m(2) with concurrent radiation for SCCHN between January 1, 2009 and March 1, 2013. All patients received pre and post hydration each with 1 l of 0.9 % saline. The mannitol group received 12.5 g of mannitol in the prehydration fluid. The primary outcome was to compare the rate of grade 3 or greater serum creatinine (SCr) increase in patients receiving saline hydration vs. the addition of mannitol; additional parameters of interest included creatinine clearance, electrolyte disturbances, dose changes, and discontinuation of cisplatin. Data from 139 patients (80 % male) with a median age of 56 years (range 22 to 75 years) were collected; 88 received mannitol and 51 received saline alone. On multivariable analysis, the mannitol group was less likely to have grade 3 SCr increase than saline only group (OR 0.16; 95 % CI 0.04-0.65; p value = 0.01). There were no grade 4 SCr increase events. Rates of hypomagnesemia and hypokalemia were similar across groups. Grade 3 hyponatremia was more likely to occur in the mannitol group as compared to saline alone group (41 vs 22 %; p = 0.026). The addition of mannitol to saline hydration decreased the incidence of grade 3 increases in SCr in this cohort of patients and may increase rates of hyponatremia. Further investigations of methods to lessen cisplatin-induced nephrotoxicity are needed.

  15. Could Vitamin E Prevent Contrast-Induced Acute Kidney Injury? A Systematic Review and Meta-Analysis.

    PubMed

    Cho, Myung Hyun; Kim, Soo Nyung; Park, Hye Won; Chung, Sochung; Kim, Kyo Sun

    2017-09-01

    Several clinical studies have proposed a protective role for vitamin E (α-tocopherol) against contrast-induced acute kidney injury (CIAKI). The aim of study was to assess the effects of vitamin E for the prevention of CIAKI. A systematic review and meta-analysis was conducted using MEDLINE, EMBASE, and the Cochrane Central Register of Controlled Trials. Randomized controlled trials (RCTs) reporting the effects of vitamin E on CIAKI development and measurements of renal function were included. Four trials including 623 participants were analyzed in the meta-analysis. All participants received intravenous hydration in addition to vitamin E or placebo. The incidence of the vitamin E group (5.8%) was lower than that of the control group (15.4%). Compared with the control, vitamin E significantly reduced the risk ratio (RR) of CIAKI by 62% (0.38; 95% confidence interval [CI], 0.22, 0.63; P < 0.010). In addition, vitamin E reduced serum creatinine (SCr) increase after contrast administration (standardized mean difference [SMD], -0.27; 95% CI, -0.49, -0.06; P = 0.010). However, changes in glomerular filtration rate (GFR) after contrast administration were not significantly different between vitamin E and the control group (SMD, 0.21; 95% CI, -0.01, 0.43; P = 0.060). Heterogeneity within the available trials was not observed. Our meta-analysis provides evidence that vitamin E plus hydration significantly reduced the risk of CIAKI in patients with renal impairment compared with hydration alone. © 2017 The Korean Academy of Medical Sciences.

  16. Impacts of Hydrate Distribution on the Hydro-Thermo-Mechanical Properties of Hydrate-Bearing Sediments

    NASA Astrophysics Data System (ADS)

    Dai, S.; Seol, Y.

    2015-12-01

    In general, hydrate makes the sediments hydraulically less conductive, thermally more conductive, and mechanically stronger; yet the dependency of these physical properties on hydrate saturation varies with hydrate distribution and morphology. Hydrate distribution in sediments may cause the bulk physical properties of their host sediments varying several orders of magnitude even with the same amount of hydrate. In natural sediments, hydrate morphology is inherently governed by the burial depth and the grain size of the host sediments. Compare with patchy hydrate, uniformly distributed hydrate is more destructive to fluid flow, yet leads to higher gas and water permeability during hydrate dissociation due to the easiness of forming percolation paths. Water and hydrate have similar thermal conductivity values; the bulk thermal conductivity of hydrate-bearing sediments depends critically on gas-phase saturation. 60% of gas saturation may result in evident thermal conductivity drop and hinder further gas production. Sediments with patchy hydrate yield lower stiffness than that with cementing hydrate but higher stiffness than that with pore filling and loading bearing hydrate. Besides hydrate distribution, the stress state and loading history also play an important role in the mechanical behavior of hydrate-bearing sediments.

  17. Natural Gas Evolution in a Gas Hydrate Melt: Effect of Thermodynamic Hydrate Inhibitors.

    PubMed

    Sujith, K S; Ramachandran, C N

    2017-01-12

    Natural gas extraction from gas hydrate sediments by injection of hydrate inhibitors involves the decomposition of hydrates. The evolution of dissolved gas from the hydrate melt is an important step in the extraction process. Using classical molecular dynamics simulations, we study the evolution of dissolved methane from its hydrate melt in the presence of two thermodynamic hydrate inhibitors, NaCl and CH 3 OH. An increase in the concentration of hydrate inhibitors is found to promote the nucleation of methane nanobubbles in the hydrate melt. Whereas NaCl promotes bubble formation by enhancing the hydrophobic interaction between aqueous CH 4 molecules, CH 3 OH molecules assist bubble formation by stabilizing CH 4 bubble nuclei formed in the solution. The CH 3 OH molecules accumulate around the nuclei leading to a decrease in the surface tension at their interface with water. The nanobubbles formed are found to be highly dynamic with frequent exchange of CH 4 molecules between the bubble and the surrounding liquid. A quantitative analysis of the dynamic behavior of the bubble is performed by introducing a unit step function whose value depends on the location of CH 4 molecules with respect to the bubble. It is observed that an increase in the concentration of thermodynamic hydrate inhibitors reduces the exchange process, making the bubble less dynamic. It is also found that for a given concentration of the inhibitor, larger bubbles are less dynamic compared to smaller ones. The dependence of the dynamic nature of nanobubbles on bubble size and inhibitor concentration is correlated with the solubility of CH 4 and the Laplace pressure within the bubble. The effect of CO 2 on the formation of nanobubble in the CH 4 -CO 2 mixed gas hydrate melt in the presence of inhibitors is also examined. The simulations show that the presence of CO 2 molecules significantly reduces the induction time for methane nanobubble nucleation. The role of CO 2 in the early nucleation of bubble is explained based on the interaction between the bubble and the dissolved CO 2 molecules.

  18. Effect on skin hydration of using baby wipes to clean the napkin area of newborn babies: assessor-blinded randomised controlled equivalence trial.

    PubMed

    Lavender, Tina; Furber, Christine; Campbell, Malcolm; Victor, Suresh; Roberts, Ian; Bedwell, Carol; Cork, Michael J

    2012-06-01

    Some national guidelines recommend the use of water alone for napkin cleansing. Yet, there is a readiness, amongst many parents, to use baby wipes. Evidence from randomised controlled trials, of the effect of baby wipes on newborn skin integrity is lacking. We conducted a study to examine the hypothesis that the use of a specifically formulated cleansing wipe on the napkin area of newborn infants (<1 month) has an equivalent effect on skin hydration when compared with using cotton wool and water (usual care). A prospective, assessor-blinded, randomised controlled equivalence trial was conducted during 2010. Healthy, term babies (n=280), recruited within 48 hours of birth, were randomly assigned to have their napkin area cleansed with an alcohol-free baby wipe (140 babies) or cotton wool and water (140 babies). Primary outcome was change in hydration from within 48 hours of birth to 4 weeks post-birth. Secondary outcomes comprised changes in trans-epidermal water loss, skin surface pH and erythema, presence of microbial skin contaminants/irritants at 4 weeks and napkin dermatitis reported by midwife at 4 weeks and mother during the 4 weeks. Complete hydration data were obtained for 254 (90.7 %) babies. Wipes were shown to be equivalent to water and cotton wool in terms of skin hydration (intention-to-treat analysis: wipes 65.4 (SD 12.4) vs. water 63.5 (14.2), p=0.47, 95% CI -2.5 to 4.2; per protocol analysis: wipes 64.6 (12.4) vs. water 63.6 (14.3), p=0.53, 95% CI -2.4 to 4.2). No significant differences were found in the secondary outcomes, except for maternal-reported napkin dermatitis, which was higher in the water group (p=0.025 for complete responses). Baby wipes had an equivalent effect on skin hydration when compared with cotton wool and water. We found no evidence of any adverse effects of using these wipes. These findings offer reassurance to parents who choose to use baby wipes and to health professionals who support their use. Current Controlled Trials ISRCTN86207019.

  19. A meta-analysis of outcomes of hydration intervention on phonation threshold pressure.

    PubMed

    Leydon, Ciara; Wroblewski, Marcin; Eichorn, Naomi; Sivasankar, Mahalakshmi

    2010-11-01

    Vocal fold hydration is purported to promote optimal biomechanical characteristics of vocal fold mucosa, increase efficiency of vocal fold oscillation, and enhance voice quality. The purpose of this work was to determine the magnitude and consistency of the effect of vocal fold hydration on vocal fold function across published clinical studies. We completed a comprehensive meta-analysis of the effects of superficial and systemic vocal fold hydration on phonation threshold pressure (PTP), a measure of efficiency of voice production. We identified 34 studies that examined the effects of hydration on vocal function. Of these studies, 14 examined the effects of hydration on PTP. Nine of these articles met the criteria for inclusion in this analysis. We observed an average effect size of 0.33, indicating that, overall, hydration treatment demonstrated a tendency to reduce PTP. However, this decrease in phonatory effort did not reach significance at the 95% confidence level. The effects of hydration intervention varied considerably across studies (-0.19 to 3.96). We considered that two factors, pitch level of the task and vocal health of participants, may have contributed to this variability in findings. However, our analysis found that these factors could not account for differences in effect size. To understand the variability in outcomes across studies, the role of factors that may impact the effects of hydration, such as the amount, type, and duration of intervention, must be determined. Only then can we obtain data to guide best clinical practice for protecting and rehabilitating vocal function. Copyright © 2010 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  20. In situ Low-temperature Pair Distribution Function (PDF) Analysis of CH4 and CO2 Hydrates

    NASA Astrophysics Data System (ADS)

    Cladek, B.; Everett, M.; McDonnell, M.; Tucker, M.; Keffer, D.; Rawn, C.

    2017-12-01

    Gas hydrates occur in ocean floor and sub-surface permafrost deposits and are stable at moderate to high pressures and low temperatures. They are a clathrate structure composed of hydrogen bonded water cages that accommodate a wide variety of guest molecules. CO2 and CH4 hydrates both crystallize as the cubic sI hydrate and can form a solid solution. Natural gas hydrates are interesting as a potential methane source and for CO2 sequestration. Long-range diffraction studies on gas hydrates give valuable structural information but do not provide a detailed understanding of the disordered gas molecule interactions with the host lattice. In-situ low temperature total scattering experiments combined with pair distribution function (PDF) analysis are used to investigate the gas molecule motions and guest-cage interactions. CO2 and methane hydrates exhibit different decomposition behavior, and CO2 hydrate has a smaller lattice parameter despite it being a relatively larger molecule. Total scattering studies characterizing both the short- and long-range order simultaneously help to elucidate the structural source of these phenomena. Low temperature neutron total scattering data were collected using the Nanoscale Ordered MAterials Diffractometer (NOMAD) beamline at the Spallation Neutron Source (SNS) on CO2 and CH4 hydrates synthesized with D2O. Guest molecule motion within cages and interactions between gases and cages are investigated through the hydrate stability and decomposition regions. Data were collected from 2-80 K at a pressure of 55 mbar on CO2 and CH4 hydrates, and from 80-270 K at 25 bar on CH4 hydrate. The hydrate systems were modeled with classical molecular dynamic (MD) simulations to provide an analysis of the total energy into guest-guest, guest-host and host-host contributions. Combined Reitveld and Reverse Monte Carlo (RMC) structure refinement were used to fit models of the data. This combined modeling and simulation characterizes the effects of CO2 and CH4 as guest molecules on the structure and decomposition of gas hydrates. Structure and thermodynamic studies will provide a more comprehensive understanding of CO2-CH4 solid solutions, exchange kinetics, and implications on hydrate structure.

  1. Development and characterization of morin hydrate-loaded micellar nanocarriers for the effective management of Alzheimer's disease.

    PubMed

    Singh, Manpreet; Thakur, Vandana; Deshmukh, Rahul; Sharma, Amit; Rathore, M S; Kumar, Ajay; Mishra, Neeraj

    2018-03-01

    The aim of this study was to prepare and characterise oral delivery of morin hydrate-loaded micellar nanocarriers using Pluronic P127 and Pluronic F123 for the effective management of Alzheimer's disease. After administration of formulation brain and blood drug concentration were found to be highest for optimised morin hydrate-loaded micellar nanocarriers as compared to plain morin hydrate. Significant (p < 0.05) reduction in assessed pharmacodynamic parameters was observed after administration of morin hydrate-loaded micellar nanocarriers as compared to disease control group. Chronic treatment with morin-loaded micelles significantly increased the memory in AlCl 3 induced Alzheimer's disease in Wistar rats.

  2. The interplay of protein and solvent picosecond dynamics: Experimental and theoretical studies

    NASA Astrophysics Data System (ADS)

    He, Yunfen

    Terahertz gap is located between microwaves and infrared. THz-TDS is based on the generation of subpicosecond terahertz pulses using ultrashort laser pulses with pulse durations of a few femtoseconds. From the spectroscopic point of view terahertz radiation excites the low frequency vibrations of molecules. Terahertz spectroscopy provides a new way to study protein dynamics in this critical frequency range. The strong temperature dependence of molecular flexibility near 200 K for proteins and polynucleotides hydrated above 30% by weight, dynamical transition, is one of the most significant phenomena of biomolecular dynamics. Measurements of the dynamical transition were performed for native, fully denatured and unstructured polypeptides using THz-TDS. The results reveal that the dynamical transition is independent of either tertiary or secondary structure. The transition are also found for shorter chain alanine peptides down to penta-alanine, which indicates that a quantitative predictive theory for the temperature dependence lies in the understanding of the interaction of the side chains of the poly peptide or poly nucleotide with the biological water. The far infrared vibrational modes can be calculated using harmonic or anharmonic normal mode analysis, and the resulting Density of States (DOS) strongly resembles the measured absorbance. A large contrast in the terahertz dielectric response between oxidized and reduced cytochrome c has lready been observed experimentally. This large contrast has been associated with a change in the collective structural motions that related to protein flexibility. Molecular simulation results from quasiharmonic analysis and dipole-dipole correlation analysis are compared with the measurements to determine the relative contribution of correlated motions and diffusive motions to the measured dielectric response. The measured hydration dependence is reproduced by hydration dependence of quasiharmonic normal modes, but these modes calculations do not reproduce the oxidation dependence. Whereas dipole-dipole correlation analysis reproduces the oxidation dependence at the lowest hydration level, but surprisingly do not capture the hydration dependence. These results suggest that the hydration dependence in the THz response does in fact arise from changes in the vibrational modes, and the oxidation dependence arises from relaxational motions.

  3. Temperature and pressure correlation for volume of gas hydrates with crystal structures sI and sII

    NASA Astrophysics Data System (ADS)

    Vinš, Václav; Jäger, Andreas; Hielscher, Sebastian; Span, Roland; Hrubý, Jan; Breitkopf, Cornelia

    The temperature and pressure correlations for the volume of gas hydrates forming crystal structures sI and sII developed in previous study [Fluid Phase Equilib. 427 (2016) 268-281], focused on the modeling of pure gas hydrates relevant in CCS (carbon capture and storage), were revised and modified for the modeling of mixed hydrates in this study. A universal reference state at temperature of 273.15 K and pressure of 1 Pa is used in the new correlation. Coefficients for the thermal expansion together with the reference lattice parameter were simultaneously correlated to both the temperature data and the pressure data for the lattice parameter. A two-stage Levenberg Marquardt algorithm was employed for the parameter optimization. The pressure dependence described in terms of the bulk modulus remained unchanged compared to the original study. A constant value for the bulk modulus B0 = 10 GPa was employed for all selected hydrate formers. The new correlation is in good agreement with the experimental data over wide temperature and pressure ranges from 0 K to 293 K and from 0 to 2000 MPa, respectively. Compared to the original correlation used for the modeling of pure gas hydrates the new correlation provides significantly better agreement with the experimental data for sI hydrates. The results of the new correlation are comparable to the results of the old correlation in case of sII hydrates. In addition, the new correlation is suitable for modeling of mixed hydrates.

  4. The analysis of magnesium oxide hydration in three-phase reaction system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Xiaojia; Guo, Lin; Chen, Chen

    In order to investigate the magnesium oxide hydration process in gas–liquid–solid (three-phase) reaction system, magnesium hydroxide was prepared by magnesium oxide hydration in liquid–solid (two-phase) and three-phase reaction systems. A semi-empirical model and the classical shrinking core model were used to fit the experimental data. The fitting result shows that both models describe well the hydration process of three-phase system, while only the semi-empirical model right for the hydration process of two-phase system. The characterization of the hydration product using X-Ray diffraction (XRD) and scanning electron microscope (SEM) was performed. The XRD and SEM show hydration process in the two-phasemore » system follows common dissolution/precipitation mechanism. While in the three-phase system, the hydration process undergo MgO dissolution, Mg(OH){sub 2} precipitation, Mg(OH){sub 2} peeling off from MgO particle and leaving behind fresh MgO surface. - Graphical abstract: There was existence of a peeling-off process in the gas–liquid–solid (three-phase) MgO hydration system. - Highlights: • Magnesium oxide hydration in gas–liquid–solid system was investigated. • The experimental data in three-phase system could be fitted well by two models. • The morphology analysis suggested that there was existence of a peel-off process.« less

  5. Superposition of two tRNA{sup Ser} acceptor stem crystal structures: Comparison of structure, ligands and hydration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eichert, Andre; Fuerste, Jens P.; Ulrich, Alexander

    2010-05-07

    We solved the X-ray structures of two Escherichia coli tRNA{sup Ser} acceptor stem microhelices. As both tRNAs are aminoacylated by the same seryl-tRNA-synthetase, we performed a comparative structure analysis of both duplexes to investigate the helical conformation, the hydration patterns and magnesium binding sites. It is well accepted, that the hydration of RNA plays an important role in RNA-protein interactions and that the extensive solvent content of the minor groove has a special function in RNA. The detailed comparison of both tRNA{sup Ser} microhelices provides insights into the structural arrangement of the isoacceptor tRNA aminoacyl stems with respect to themore » surrounding water molecules and may eventually help us to understand their biological function at atomic resolution.« less

  6. Simulation of natural gas production from submarine gas hydrate deposits combined with carbon dioxide storage

    NASA Astrophysics Data System (ADS)

    Janicki, Georg; Schlüter, Stefan; Hennig, Torsten; Deerberg, Görge

    2013-04-01

    The recovery of methane from gas hydrate layers that have been detected in several submarine sediments and permafrost regions around the world so far is considered to be a promising measure to overcome future shortages in natural gas as fuel or raw material for chemical syntheses. Being aware that natural gas resources that can be exploited with conventional technologies are limited, research is going on to open up new sources and develop technologies to produce methane and other energy carriers. Thus various research programs have started since the early 1990s in Japan, USA, Canada, South Korea, India, China and Germany to investigate hydrate deposits and develop technologies to destabilize the hydrates and obtain the pure gas. In recent years, intensive research has focussed on the capture and storage of carbon dioxide from combustion processes to reduce climate change. While different natural or manmade reservoirs like deep aquifers, exhausted oil and gas deposits or other geological formations are considered to store gaseous or liquid carbon dioxide, the storage of carbon dioxide as hydrate in former methane hydrate fields is another promising alternative. Due to beneficial stability conditions, methane recovery may be well combined with CO2 storage in form of hydrates. This has been shown in several laboratory tests and simulations - technical field tests are still in preparation. Within the scope of the German research project »SUGAR«, different technological approaches are evaluated and compared by means of dynamic system simulations and analysis. Detailed mathematical models for the most relevant chemical and physical effects are developed. The basic mechanisms of gas hydrate formation/dissociation and heat and mass transport in porous media are considered and implemented into simulation programs like CMG STARS and COMSOL Multiphysics. New simulations based on field data have been carried out. The studies focus on the evaluation of the gas production potential from turbidites and their ability for carbon dioxide storage. The effects occurring during gas production and CO2 storage within a hydrate deposit are identified and described for various scenarios. The behaviour of relevant process parameters such as pressure, temperature and phase saturations is discussed and compared for different production strategies: depressurization, CO2 injection after depressurization and simultaneous methane production and CO2 injection.

  7. Phase diagram and high-pressure boundary of hydrate formation in the ethane-water system.

    PubMed

    Kurnosov, Alexander V; Ogienko, Andrey G; Goryainov, Sergei V; Larionov, Eduard G; Manakov, Andrey Y; Lihacheva, Anna Y; Aladko, Eugeny Y; Zhurko, Fridrikh V; Voronin, Vladimir I; Berger, Ivan F; Ancharov, Aleksei I

    2006-11-02

    Dissociation temperatures of gas hydrate formed in the ethane-water system were studied at pressures up to 1500 MPa. In situ neutron diffraction analysis and X-ray diffraction analysis in a diamond anvil cell showed that the gas hydrate formed in the ethane-water system at 340, 700, and 1840 MPa and room temperature belongs to the cubic structure I (CS-I). Raman spectra of C-C vibrations of ethane molecules in the hydrate phase, as well as the spectra of solid and liquid ethane under high-pressure conditions were studied at pressures up to 6900 MPa. Within 170-3600 MPa Raman shift of the C-C vibration mode of ethane in the hydrate phase did not show any discontinuities, which could be evidence of possible phase transformations. The upper pressure boundary of high-pressure hydrate existence was discovered at the pressure of 3600 MPa. This boundary corresponds to decomposition of the hydrate to solid ethane and ice VII. The type of phase diagram of ethane-water system was proposed in the pressure range of hydrate formation (0-3600 MPa).

  8. Magnetic Tracking of Gas Hydrate Deposits.

    NASA Astrophysics Data System (ADS)

    Lowe, C.; Enkin, R. J.; Judith, B.; Dallimore, S. R.

    2005-12-01

    Analysis of recovered core from the Mallik gas hydrate field in the Mackenzie Delta, Northwest Territories, Canada demonstrates that the magnetic properties of hydrate-bearing strata differ significantly from those strata lacking gas hydrate. The recovered core, which extends from just above (885 m) to just below (1152 m) observed gas hydrate occurrences (891-1107 m), comprises a series of six stratigraphic units that are either sand or silt dominated. Gas hydrate is preferentially concentrated in the higher porosity, sand-dominated units. Although the sediment source region for the Mackenzie Delta is sufficiently large that silts and sands have similar primary mineralogy, their magnetic properties are distinct. Magnetite, apparent in silt units with porosities too low to accommodate significant gas hydrate deposits, is reduced to iron sulphide in the gas hydrate-bearing sand horizons. The degree of the observed magnetic reduction increases with increasing gas hydrate concentration. Furthermore, silts retain their primary magnetism, whereas sands are remagnetized. Two independent investigations of marine gas hydrate occurrences (Blake Ridge, offshore eastern USA and Cascadia, offshore western Canada) demonstrate similar magnetic reduction within known gas hydrate fields, and an even larger depletion of magnetic minerals in vent zones where methane is actively fluxing to surface. Collectively, the findings from these three regions indicate that porosity and structure are fundamental controls on methane pathways. Investigations are presently underway to determine the precise triggers and chemical pathways of the observed magnetic reductions. However, findings to date indicate that magnetic studies of host sediments in gas hydrate systems provide a powerful lithologic correlation tool, a window into the processes associated with gas hydrate formation, and form the basis of quantitative analysis of magnetic surveys over gas hydrate deposits.

  9. Geological controls on the occurrence of gas hydrate from core, downhole log, and seismic data in the Shenhu area, South China Sea

    USGS Publications Warehouse

    Xiujuan Wang,; ,; Collett, Timothy S.; Lee, Myung W.; Yang, Shengxiong; Guo, Yiqun; Wu, Shiguo

    2014-01-01

    Multi-channel seismic reflection data, well logs, and recovered sediment cores have been used in this study to characterize the geologic controls on the occurrence of gas hydrate in the Shenhu area of the South China Sea. The concept of the "gas hydrate petroleum system" has allowed for the systematic analysis of the impact of gas source, geologic controls on gas migration, and the role of the host sediment in the formation and stability of gas hydrates as encountered during the 2007 Guangzhou Marine Geological Survey Gas Hydrate Expedition (GMGS-1) in the Shenhu area. Analysis of seismic and bathymetric data identified seventeen sub-linear, near-parallel submarine canyons in this area. These canyons, formed in the Miocene, migrated in a northeasterly direction, and resulted in the burial and abandonment of canyons partially filled by coarse-grained sediments. Downhole wireline log (DWL) data were acquired from eight drill sites and sediment coring was conducted at five of these sites, which revealed the presence of suitable reservoirs for the occurrence of concentrated gas hydrate accumulations. Gas hydrate-bearing sediment layers were identified from well log and core data at three sites mainly within silt and silt clay sediments. Gas hydrate was also discovered in a sand reservoir at one site as inferred from the analysis of the DWL data. Seismic anomalies attributed to the presence of gas below the base of gas hydrate stability zone, provided direct evidence for the migration of gas into the overlying gas hydrate-bearing sedimentary sections. Geochemical analyses of gas samples collected from cores confirmed that the occurrence of gas hydrate in the Shenhu area is controlled by the presence thermogenic methane gas that has migrated into the gas hydrate stability zone from a more deeply buried source.

  10. Deep-Subsurface Marine Methane Hydrate Microbial Communities: Who's There and What Are They Doing?

    NASA Astrophysics Data System (ADS)

    Colwell, F.; Reed, D.; Fujita, Y.; Delwiche, M.; Blackwelder, D.; Uchida, T.; Fujii, T.; Lu, H.

    2001-12-01

    Natural gas hydrates are crystalline deposits of freshwater and primarily methane. They are estimated to represent a potentially vast reservoir of energy. Relatively little is known regarding microbial communities surrounding deep [>100 meters below sea floor (mbsf)] hydrate-bearing sediments. Deep sediment cores were collected in zones above, within, and below the hydrate bearing strata in an accretionary prism off the coast of Japan. Microorganisms were characterized using cultivation- and non-cultivation-based microbiological techniques to better understand the role that they play in the production and distribution of methane in gas hydrates. Direct counts show cell density at 105 cells/g throughout the hydrate strata. Lipid and 16S rDNA analyses indicate that diverse bacterial and archaeal microorganisms are represented throughout the strata. Acetate and hydrogen were utilized as an energy source for methane-producing microorganisms from each sediment depth. Although the methanogenic biomarker coenzyme M was not present above the detection limit in any of the samples, cloning and characterization of amplified 16S ribosomal RNA genes indicated the presence of methanogenic microorganisms related to the Methanobacteriales and Methanococcales. In addition, archaeal clones closely related to the hyperthermophilic Pyrodictiales were detected. Analysis of eubacterial clones indicated a more diverse eubacterial community compared to the archaea, including members from the groups of cyanobacteria, proteobacteria, gram positive bacteria, and flexibacter-cytophaga-bacteriodes. This study suggests that the diversity of microbial communities associated with the presence of methane in gas hydrate-rich deep marine sediments is greater than previously estimated.

  11. Analysis of factors influencing hydration site prediction based on molecular dynamics simulations.

    PubMed

    Yang, Ying; Hu, Bingjie; Lill, Markus A

    2014-10-27

    Water contributes significantly to the binding of small molecules to proteins in biochemical systems. Molecular dynamics (MD) simulation based programs such as WaterMap and WATsite have been used to probe the locations and thermodynamic properties of hydration sites at the surface or in the binding site of proteins generating important information for structure-based drug design. However, questions associated with the influence of the simulation protocol on hydration site analysis remain. In this study, we use WATsite to investigate the influence of factors such as simulation length and variations in initial protein conformations on hydration site prediction. We find that 4 ns MD simulation is appropriate to obtain a reliable prediction of the locations and thermodynamic properties of hydration sites. In addition, hydration site prediction can be largely affected by the initial protein conformations used for MD simulations. Here, we provide a first quantification of this effect and further indicate that similar conformations of binding site residues (RMSD < 0.5 Å) are required to obtain consistent hydration site predictions.

  12. A novel approach for long-term oral drug administration in animal research.

    PubMed

    Overk, Cassia R; Borgia, Jeffrey A; Mufson, Elliott J

    2011-02-15

    In the field of pharmacological research, the oral consumption of anastrozole, an aromatase inhibitor, when added to an animal's drinking water is hindered by poor drug palatability and environmental loss of drug solution. To overcome these caveats, we developed a novel approach for the oral delivery of anastrozole mixed in a solid hydration gel matrix that functions as a replacement for water. Heated hydration gel was mixed with anastrozole and distributed into a gel delivery device consisting of a 50 mL plastic conical tube containing four stacked 200 μL pipette tips to allow for air pressure induced gel disbursement. Transgenic female 3xTgAD mice were randomized to receive either anastrozole-treated or untreated hydration gel at 3 months of age. Body weights were recorded weekly, and gel consumption was measured every 1-3 days. Six months post treatment mice were killed and serum anastrozole levels were determined using liquid chromatography-mass spectrometry (LC-MS). Anastrozole-treated mice gained significantly more weight despite consuming significantly less hydration gel compared to vehicle treated mice. LC-MS analysis, using a low serum volume (10 μL), revealed average anastrozole serum levels of 2.91 ng/mL. Anastrozole-treated ovarian tissue displayed ovarian cysts, massive edema-like stroma, and also lacked corp lutea compared to control mice. These findings demonstrate that hydration gel delivered using the newly developed oral delivery method is a viable approach for pharmacological research involving compounds with poor palatability, low water solubility, and cost prohibitive compounds where environmental loss needs to be minimized. © 2010 Elsevier B.V. All rights reserved.

  13. Direct measurements of the interactions between clathrate hydrate particles and water droplets.

    PubMed

    Liu, Chenwei; Li, Mingzhong; Zhang, Guodong; Koh, Carolyn A

    2015-08-14

    Clathrate hydrate particle agglomeration is often considered to be one of the key limiting factors in plug formation. The hydrate particle-water interaction can play a critical role in describing hydrate agglomeration, yet is severely underexplored. Therefore, this work investigates the interactions between water droplets and cyclopentane hydrate particles using a micromechanical force (MMF) apparatus. Specifically, the effect of contact time, temperature/subcooling, contact area, and the addition of Sorbitane monooleate (Span 80) surfactant on the water droplet-hydrate particle interaction behavior are studied. The measurements indicate that hydrate formation during the measurement would increase the water-hydrate interaction force significantly. The results also indicate that the contact time, subcooling and concentration of cyclopentane, which determine the hydrate formation rate and hydrate amount, will affect the hydrate-water interaction force. In addition, the interaction forces also increase with the water-hydrate contact area. The addition of Span 80 surfactant induces a change in the hydrate morphology and renders the interfaces stable versus unstable (leading to coalescence), and the contact force can affect the hydrate-water interaction behavior significantly. Compared with the hydrate-hydrate cohesion force (measured in cyclopentane), the hydrate-water adhesion force is an order of magnitude larger. These new measurements can help to provide new and critical insights into the hydrate agglomeration process and potential strategies to control this process.

  14. Kinetics of CH4 and CO2 hydrate dissociation and gas bubble evolution via MD simulation.

    PubMed

    Uddin, M; Coombe, D

    2014-03-20

    Molecular dynamics simulations of gas hydrate dissociation comparing the behavior of CH4 and CO2 hydrates are presented. These simulations were based on a structurally correct theoretical gas hydrate crystal, coexisting with water. The MD system was first initialized and stabilized via a thorough energy minimization, constant volume-temperature ensemble and constant volume-energy ensemble simulations before proceeding to constant pressure-temperature simulations for targeted dissociation pressure and temperature responses. Gas bubble evolution mechanisms are demonstrated as well as key investigative properties such as system volume, density, energy, mean square displacements of the guest molecules, radial distribution functions, H2O order parameter, and statistics of hydrogen bonds. These simulations have established the essential similarities between CH4 and CO2 hydrate dissociation. The limiting behaviors at lower temperature (no dissociation) and higher temperature (complete melting and formation of a gas bubble) have been illustrated for both hydrates. Due to the shift in the known hydrate stability curves between guest molecules caused by the choice of water model as noted by other authors, the intermediate behavior (e.g., 260 K) showed distinct differences however. Also, because of the more hydrogen-bonding capability of CO2 in water, as reflected in its molecular parameters, higher solubility of dissociated CO2 in water was observed with a consequence of a smaller size of gas bubble formation. Additionally, a novel method for analyzing hydrate dissociation based on H-bond breakage has been proposed and used to quantify the dissociation behaviors of both CH4 and CO2 hydrates. Activation energies Ea values from our MD studies were obtained and evaluated against several other published laboratory and MD values. Intrinsic rate constants were estimated and upscaled. A kinetic reaction model consistent with macroscale fitted kinetic models has been proposed to indicate the macroscopic consequences of this analysis.

  15. Faster proton transfer dynamics of water on SnO2 compared to TiO2.

    PubMed

    Kumar, Nitin; Kent, Paul R C; Bandura, Andrei V; Kubicki, James D; Wesolowski, David J; Cole, David R; Sofo, Jorge O

    2011-01-28

    Proton jump processes in the hydration layer on the iso-structural TiO(2) rutile (110) and SnO(2) cassiterite (110) surfaces were studied with density functional theory molecular dynamics. We find that the proton jump rate is more than three times faster on cassiterite compared with rutile. A local analysis based on the correlation between the stretching band of the O-H vibrations and the strength of H-bonds indicates that the faster proton jump activity on cassiterite is produced by a stronger H-bond formation between the surface and the hydration layer above the surface. The origin of the increased H-bond strength on cassiterite is a combined effect of stronger covalent bonding and stronger electrostatic interactions due to differences of its electronic structure. The bridging oxygens form the strongest H-bonds between the surface and the hydration layer. This higher proton jump rate is likely to affect reactivity and catalytic activity on the surface. A better understanding of its origins will enable methods to control these rates.

  16. Mathematical modelling of liquid transport in swelling pharmaceutical immediate release tablets.

    PubMed

    Markl, Daniel; Yassin, Samy; Wilson, D Ian; Goodwin, Daniel J; Anderson, Andrew; Zeitler, J Axel

    2017-06-30

    Oral dosage forms are an integral part of modern health care and account for the majority of drug delivery systems. Traditionally the analysis of the dissolution behaviour of a dosage form is used as the key parameter to assess the performance of a drug product. However, understanding the mechanisms of disintegration is of critical importance to improve the quality of drug delivery systems. The disintegration performance is primarily impacted by the hydration and subsequent swelling of the powder compact. Here we compare liquid ingress and swelling data obtained using terahertz pulsed imaging (TPI) to a set of mathematical models. The interlink between hydration kinetics and swelling is described by a model based on Darcy's law and a modified swelling model based on that of Schott. Our new model includes the evolution of porosity, pore size and permeability as a function of hydration time. Results obtained from two sets of samples prepared from pure micro-crystalline cellulose (MCC) indicate a clear difference in hydration and swelling for samples of different porosities and particle sizes, which are captured by the model. Coupling a novel imaging technique, such as TPI, and mathematical models allows better understanding of hydration and swelling and eventually tablet disintegration. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  17. Structure and interactions of fully hydrated dioleoylphosphatidylcholine bilayers.

    PubMed Central

    Tristram-Nagle, S; Petrache, H I; Nagle, J F

    1998-01-01

    This study focuses on dioleoylphosphatidylcholine (DOPC) bilayers near full hydration. Volumetric data and high-resolution synchrotron x-ray data are used in a method that compares DOPC with well determined gel phase dipalmitoylphosphatidylcholine (DPPC). The key structural quantity obtained is fully hydrated area/lipid A0 = 72.2 +/- 1.1 A2 at 30 degrees C, from which other quantities such as thickness of the bilayer are obtained. Data for samples over osmotic pressures from 0 to 56 atmospheres give an estimate for the area compressibility of KA = 188 dyn/cm. Obtaining the continuous scattering transform and electron density profiles requires correction for liquid crystal fluctuations. Quantitation of these fluctuations opens an experimental window on the fluctuation pressure, the primary repulsive interaction near full hydration. The fluctuation pressure decays exponentially with water spacing, in agreement with analytical results for soft confinement. However, the ratio of decay length lambda(fl) = 5.8 A to hydration pressure decay length lambda = 2.2 A is significantly larger than the value of 2 predicted by analytical theory and close to the ratio obtained in recent simulations. We also obtain the traditional osmotic pressure versus water spacing data. Our analysis of these data shows that estimates of the Hamaker parameter H and the bending modulus Kc are strongly coupled. PMID:9675192

  18. Search for memory effects in methane hydrate: structure of water before hydrate formation and after hydrate decomposition.

    PubMed

    Buchanan, Piers; Soper, Alan K; Thompson, Helen; Westacott, Robin E; Creek, Jefferson L; Hobson, Greg; Koh, Carolyn A

    2005-10-22

    Neutron diffraction with HD isotope substitution has been used to study the formation and decomposition of the methane clathrate hydrate. Using this atomistic technique coupled with simultaneous gas consumption measurements, we have successfully tracked the formation of the sI methane hydrate from a water/gas mixture and then the subsequent decomposition of the hydrate from initiation to completion. These studies demonstrate that the application of neutron diffraction with simultaneous gas consumption measurements provides a powerful method for studying the clathrate hydrate crystal growth and decomposition. We have also used neutron diffraction to examine the water structure before the hydrate growth and after the hydrate decomposition. From the neutron-scattering curves and the empirical potential structure refinement analysis of the data, we find that there is no significant difference between the structure of water before the hydrate formation and the structure of water after the hydrate decomposition. Nor is there any significant change to the methane hydration shell. These results are discussed in the context of widely held views on the existence of memory effects after the hydrate decomposition.

  19. Study on small-strain behaviours of methane hydrate sandy sediments using discrete element method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu Yanxin; Cheng Yipik; Xu Xiaomin

    Methane hydrate bearing soil has attracted increasing interest as a potential energy resource where methane gas can be extracted from dissociating hydrate-bearing sediments. Seismic testing techniques have been applied extensively and in various ways, to detect the presence of hydrates, due to the fact that hydrates increase the stiffness of hydrate-bearing sediments. With the recognition of the limitations of laboratory and field tests, wave propagation modelling using Discrete Element Method (DEM) was conducted in this study in order to provide some particle-scale insights on the hydrate-bearing sandy sediment models with pore-filling and cementation hydrate distributions. The relationship between shear wavemore » velocity and hydrate saturation was established by both DEM simulations and analytical solutions. Obvious differences were observed in the dependence of wave velocity on hydrate saturation for these two cases. From the shear wave velocity measurement and particle-scale analysis, it was found that the small-strain mechanical properties of hydrate-bearing sandy sediments are governed by both the hydrate distribution patterns and hydrate saturation.« less

  20. Supramolecular Organization of Nonstoichiometric Drug Hydrates: Dapsone

    NASA Astrophysics Data System (ADS)

    Braun, Doris E.; Griesser, Ulrich J.

    2018-02-01

    The observed moisture- and temperature dependent transformations of the dapsone (4,4'-diaminodiphenyl sulfone, DDS) 0.33-hydrate were correlated to its structure and the number and strength of the water-DDS intermolecular interactions. A combination of characterization techniques was used, including thermal analysis (hot-stage microscopy, differential scanning calorimetry and thermogravimetric analysis), gravimetric moisture sorption/desorption studies and variable humidity powder X-ray diffraction, along with computational modeling (crystal structure prediction and pair-wise intermolecular energy calculations). Depending on the relative humidity the hydrate contains between 0 and 0.33 molecules of water per molecule DDS. The crystal structure is retained upon dehydration indicating that DDS hydrate shows a non-stoichiometric (de)hydration behavior. Unexpectedly, the water molecules are not located in structural channels but at isolated-sites of the host framework, which is counterintuitively for a hydrate with non-stoichiometric behavior. The water-DDS interactions were estimated to be weaker than water-host interactions that are commonly observed in stoichiometric hydrates and the lattice energies of the isomorphic dehydration product (hydrate structure without water molecules) and a stable anhydrate at room temperature (form III) differ only by approximately 1 kJ mol–1. The computational generation of hypothetical monohydrates confirms that the hydrate with the unusual DDS:water ratio of 3:1 is more stable than a feasible monohydrate structure. Overall, this study addresses the critical class of non-stoichiometric hydrates, highlighting that only a multidisciplinary investigation can unravel hydrate formation at a molecular level, knowledge which is a requirement in modern drug development.

  1. Water-wetting surfaces as hydrate promoters during transport of carbon dioxide with impurities.

    PubMed

    Kuznetsova, Tatiana; Jensen, Bjørnar; Kvamme, Bjørn; Sjøblom, Sara

    2015-05-21

    Water condensing as liquid drops within the fluid bulk has traditionally been the only scenario accepted in the industrial analysis of hydrate risks. We have applied a combination of absolute thermodynamics and molecular dynamics modeling to analyze the five primary routes of hydrate formation in a rusty pipeline carrying dense carbon dioxide with methane, hydrogen sulfide, argon, and nitrogen as additional impurities. We have revised the risk analysis of all possible routes in accordance with the combination of the first and the second laws of thermodynamics to determine the highest permissible content of water. It was found that at concentrations lower than five percent, hydrogen sulfide will only support the formation of carbon dioxide-dominated hydrate from adsorbed water and hydrate formers from carbon dioxide phase rather than formation in the aqueous phase. Our results indicate that hydrogen sulfide leaving carbon dioxide for the aqueous phase will be able to create an additional hydrate phase in the aqueous region adjacent to the first adsorbed water layer. The growth of hydrate from different phases will decrease the induction time by substantially reducing the kinetically limiting mass transport across the hydrate films. Hydrate formation via adsorption of water on rusty walls will play the decisive role in hydrate formation risk, with the initial concentration of hydrogen sulfide being the critical factor. We concluded that the safest way to eliminate hydrate risks is to ensure that the water content of carbon dioxide is low enough to prevent water dropout via the adsorption mechanism.

  2. Pre- and post-drill comparison of the Mount Elbert gas hydrate prospect, Alaska North Slope

    USGS Publications Warehouse

    Lee, M.W.; Agena, W.F.; Collett, T.S.; Inks, T.L.

    2011-01-01

    In 2006, the United States Geological Survey (USGS) completed a detailed analysis and interpretation of available 2-D and 3-D seismic data, along with seismic modeling and correlation with specially processed downhole well log data for identifying potential gas hydrate accumulations on the North Slope of Alaska. A methodology was developed for identifying sub-permafrost gas hydrate prospects within the gas hydrate stability zone in the Milne Point area. The study revealed a total of 14 gas hydrate prospects in this area.In order to validate the gas hydrate prospecting protocol of the USGS and to acquire critical reservoir data needed to develop a longer-term production testing program, a stratigraphic test well was drilled at the Mount Elbert prospect in the Milne Point area in early 2007. The drilling confirmed the presence of two prominent gas-hydrate-bearing units in the Mount Elbert prospect, and high quality well logs and core data were acquired. The post-drill results indicate pre-drill predictions of the reservoir thickness and the gas-hydrate saturations based on seismic and existing well data were 90% accurate for the upper unit (hydrate unit D) and 70% accurate for the lower unit (hydrate unit C), confirming the validity of the USGS approach to gas hydrate prospecting. The Mount Elbert prospect is the first gas hydrate accumulation on the North Slope of Alaska identified primarily on the basis of seismic attribute analysis and specially processed downhole log data. Post-drill well log data enabled a better constraint of the elastic model and the development of an improved approach to the gas hydrate prospecting using seismic attributes. ?? 2009.

  3. Hydration and Thermal Expansion in Anatase Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, He; Li, Qiang; Ren, Yang

    A tunable thermal expansion is reported in nanosized anatase by taking advantage of surface hydration. The coefficient of thermal expansion of 4 nm TiO2 along a-axis is negative with a hydrated surface and is positive without a hydrated surface. High-energy synchrotron X-ray pair distribution function analysis combined with ab initio calculations on the specific hydrated surface are carried out to reveal the local structure distortion that is responsible for the unusual negative thermal expansion.

  4. Numerical simulations of CO2 -assisted gas production from hydrate reservoirs

    NASA Astrophysics Data System (ADS)

    Sridhara, P.; Anderson, B. J.; Myshakin, E. M.

    2015-12-01

    A series of experimental studies over the last decade have reviewed the feasibility of using CO2 or CO2+N2 gas mixtures to recover CH4 gas from hydrates deposits. That technique would serve the dual purpose of CO2 sequestration and production of CH4 while maintaining the geo-mechanical stability of the reservoir. In order to analyze CH4 production process by means of CO2 or CO2+N2 injection into gas hydrate reservoirs, a new simulation tool, Mix3HydrateResSim (Mix3HRS)[1], was previously developed to account for the complex thermodynamics of multi-component hydrate phase and to predict the process of CH4 substitution by CO2 (and N2) in the hydrate lattice. In this work, Mix3HRS is used to simulate the CO2 injection into a Class 2 hydrate accumulation characterized by a mobile aqueous phase underneath a hydrate bearing sediment. That type of hydrate reservoir is broadly confirmed in permafrost and along seashore. The production technique implies a two-stage approach using a two-well design, one for an injector and one for a producer. First, the CO2 is injected into the mobile aqueous phase to convert it into immobile CO2 hydrate and to initiate CH4 release from gas hydrate across the hydrate-water boundary (generally designating the onset of a hydrate stability zone). Second, CH4 hydrate decomposition is induced by the depressurization method at a producer to estimate gas production potential over 30 years. The conversion of the free water phase into the CO2 hydrate significantly reduces competitive water production in the second stage, thereby improving the methane gas production. A base case using only the depressurization stage is conducted to compare with enhanced gas production predicted by the CO2-assisted technique. The approach also offers a possibility to permanently store carbon dioxide in the underground formation to greater extent comparing to a direct injection of CO2 into gas hydrate sediment. Numerical models are based on the hydrate formations at the Prudhoe Bay L-Pad region on the Alaska North Slope. References [1] N.Garapati, "Reservoir Simulation for Production of CH4 from Gas Hydrate Reservoirs Using CO2/CO2+N2 by HydrateResSim", Ph.D. thesis, West Virginia University, 2013.

  5. Hydro-mechanical properties of pressure core sediments recovered from the Krishna-Godavari Basin during India's National Gas Hydrate Program Expedition NGHP-02

    NASA Astrophysics Data System (ADS)

    Yoneda, J.; Oshima, M.; Kida, M.; Kato, A.; Konno, Y.; Jin, Y.; Waite, W. F.; Jang, J.; Kumar, P.; Tenma, N.

    2017-12-01

    Pressure coring and analysis technology allows for gas hydrate to be recovered from the deep seabed, transferred to the laboratory and characterized while continuously maintaining gas hydrate stability. For this study, dozens of hydrate-bearing pressure core sediment subsections recovered from the Krishna-Godavari Basin during India's National Gas Hydrate Program Expedition NGHP-02 were tested with Pressure Core Non-destructive Analysis Tools (PNATs) through a collaboration between Japan and India. PNATs, originally developed by AIST as a part of the Japanese National hydrate research program (MH21, funded by METI) conducted permeability, compression and consolidation tests under various effective stress conditions, including the in situ stress state estimated from downhole bulk density measurements. At the in situ effective stress, gas hydrate-bearing sediments had an effective permeability range of 0.01-10mD even at pore-space hydrate saturations above 60%. Permeability increased by 10 to 100 times after hydrate dissociation at the same effective stress, but these post-dissociation gains were erased when effective stress was increased from in situ values ( 1 MPa) to 10MPa in a simulation of the depressurization method for methane extraction from hydrate. Vertical-to-horizontal permeability anisotropy was also investigated. First-ever multi-stage loading tests and strain-rate alternation compression tests were successfully conducted for evaluating sediment strengthening dependence on the rate and magnitude of effective confining stress changes. In addition, oedometer tests were performed up to 40MPa of consolidation stress to simulate the depressurization method in ultra-deep sea environments. Consolidation curves measured with and without gas hydrate were investigated over a wide range of effective confining stresses. Compression curves for gas hydrate-bearing sediments were convex downward due to high hydrate saturations. Consolidation tests show that, regardless of the consolidation history with hydrate in place, the consolidation behavior after dissociation will first return to, then follow, the original normal consolidation curve for the hydrate-free host sediment.

  6. Unraveling Mixed Hydrate Formation: Microscopic Insights into Early Stage Behavior.

    PubMed

    Hall, Kyle Wm; Zhang, Zhengcai; Kusalik, Peter G

    2016-12-29

    The molecular-level details of mixed hydrate nucleation remain unclear despite the broad implications of this process for a variety of scientific domains. Through analysis of mixed hydrate nucleation in a prototypical CH 4 /H 2 S/H 2 O system, we demonstrate that high-level kinetic similarities between mixed hydrate systems and corresponding pure hydrate systems are not a reliable basis for estimating the composition of early stage mixed hydrate nuclei. Moreover, we show that solution compositions prior to and during nucleation are not necessarily effective proxies for the composition of early stage mixed hydrate nuclei. Rather, microscopic details, (e.g., guest-host interactions and previously neglected cage types) apparently play key roles in determining early stage behavior of mixed hydrates. This work thus provides key foundational concepts and insights for understanding mixed hydrate nucleation.

  7. Comparative atomic-scale hydration of the ceramide and phosphocholine headgroup in solution and bilayer environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillams, Richard J.; McLain, Sylvia E., E-mail: sylvia.mclain@bioch.ox.ac.uk; Lorenz, Christian D., E-mail: chris.lorenz@kcl.ac.uk

    2016-06-14

    Previous studies have used neutron diffraction to elucidate the hydration of the ceramide and the phosphatidylcholine headgroup in solution. These solution studies provide bond-length resolution information on the system, but are limited to liquid samples. The work presented here investigates how the hydration of ceramide and phosphatidylcholine headgroups in a solution compares with that found in a lipid bilayer. This work shows that the hydration patterns seen in the solution samples provide valuable insight into the preferential location of hydrating water molecules in the bilayer. There are certain subtle differences in the distribution, which result from a combination of themore » lipid conformation and the lipid-lipid interactions within the bilayer environment. The lipid-lipid interactions in the bilayer will be dependent on the composition of the bilayer, whereas the restricted exploration of conformational space is likely to be applicable in all membrane environments. The generalized description of hydration gathered from the neutron diffraction studies thus provides good initial estimation for the hydration pattern, but this can be further refined for specific systems.« less

  8. Gas hydrate saturations estimated from fractured reservoir at Site NGHP-01-10, Krishna-Godavari Basin, India

    USGS Publications Warehouse

    Lee, M.W.; Collett, T.S.

    2009-01-01

    During the Indian National Gas Hydrate Program Expedition 01 (NGHP-Ol), one of the richest marine gas hydrate accumulations was discovered at Site NGHP-01-10 in the Krishna-Godavari Basin. The occurrence of concentrated gas hydrate at this site is primarily controlled by the presence of fractures. Assuming the resistivity of gas hydratebearing sediments is isotropic, th?? conventional Archie analysis using the logging while drilling resistivity log yields gas hydrate saturations greater than 50% (as high as ???80%) of the pore space for the depth interval between ???25 and ???160 m below seafloor. On the other hand, gas hydrate saturations estimated from pressure cores from nearby wells were less than ???26% of the pore space. Although intrasite variability may contribute to the difference, the primary cause of the saturation difference is attributed to the anisotropic nature of the reservoir due to gas hydrate in high-angle fractures. Archie's law can be used to estimate gas hydrate saturations in anisotropic reservoir, with additional information such as elastic velocities to constrain Archie cementation parameters m and the saturation exponent n. Theory indicates that m and n depend on the direction of the measurement relative to fracture orientation, as well as depending on gas hydrate saturation. By using higher values of m and n in the resistivity analysis for fractured reservoirs, the difference between saturation estimates is significantly reduced, although a sizable difference remains. To better understand the nature of fractured reservoirs, wireline P and S wave velocities were also incorporated into the analysis.

  9. Investigation of mechanical properties of hydrate-bearing pressure core sediments recovered from the Eastern Nankai Trough using transparent acrylic cell triaxial testing system (TACTT-system)

    NASA Astrophysics Data System (ADS)

    Yoneda, J.; Masui, A.; Konno, Y.; Jin, Y.; Kida, M.; Suzuki, K.; Nakatsuka, Y.; Tenma, N.; Nagao, J.

    2014-12-01

    Natural gas hydrate-bearing pressure core sediments have been sheared in compression using a newly developed Transparent Acrylic Cell Triaxial Testing (TACTT) system to investigate the geophysical and geomechanical behavior of sediments recovered from the deep seabed in the Eastern Nankai Trough, the first Japanese offshore production test region. The sediments were recovered by hybrid pressure core system (hybrid PCS) and pressure cores were cut by pressure core analysis tools (PCATs) on board. These pressure cores were transferred to the AIST Hokkaido centre and trimmed by pressure core non-destructive analysis tools (PNATs) for TACTT system which maintained the pressure and temperature conditions within the hydrate stability boundary, through the entire process of core handling from drilling to the end of laboratory testing. An image processing technique was used to capture the motion of sediment in a transparent acrylic cell, and digital photographs were obtained at every 0.1% of vertical strain during the test. Analysis of the optical images showed that sediments with 63% hydrate saturation exhibited brittle failure, although nonhydrate-bearing sediments exhibited ductile failure. In addition, the increase in shear strength with hydrate saturation increase of natural gas hydrate is in agreement with previous data from synthetic gas hydrate. This research was financially supported by the Research Consortium for Methane Hydrate Resources in Japan (MH21 Research Consortium) that carries out Japan's Methane Hydrate R&D Program by the Ministry of Economy, Trade and Industry (METI).

  10. Ductile flow of methane hydrate

    USGS Publications Warehouse

    Durham, W.B.; Stern, L.A.; Kirby, S.H.

    2003-01-01

    Compressional creep tests (i.e., constant applied stress) conducted on pure, polycrystalline methane hydrate over the temperature range 260-287 K and confining pressures of 50-100 MPa show this material to be extraordinarily strong compared to other icy compounds. The contrast with hexagonal water ice, sometimes used as a proxy for gas hydrate properties, is impressive: over the thermal range where both are solid, methane hydrate is as much as 40 times stronger than ice at a given strain rate. The specific mechanical response of naturally occurring methane hydrate in sediments to environmental changes is expected to be dependent on the distribution of the hydrate phase within the formation - whether arranged structurally between and (or) cementing sediments grains versus passively in pore space within a sediment framework. If hydrate is in the former mode, the very high strength of methane hydrate implies a significantly greater strain-energy release upon decomposition and subsequent failure of hydrate-cemented formations than previously expected.

  11. Direct characterization of hydrophobic hydration during cold and pressure denaturation.

    PubMed

    Das, Payel; Matysiak, Silvina

    2012-05-10

    Cold and pressure denaturation are believed to have their molecular origin in hydrophobic interactions between nonpolar groups and water. However, the direct characterization of the temperature- and pressure-dependent variations of those interactions with atomistic simulations remains challenging. We investigated the role of solvent in the cold and pressure denaturation of a model hydrophobic 32-mer polymer by performing extensive coarse-grained molecular dynamics simulations including explicit solvation. Our simulations showed that the water-excluded folded state of this polymer is marginally stable and can be unfolded by heating or cooling, as well as by applying pressure, similar to globular proteins. We further detected essential population of a hairpin-like configuration prior to the collapse, which is consistently accompanied by a vapor bubble at the elbow of the kink. Increasing pressure suppresses formation of this vapor bubble by reducing water fluctuations in the hydration shell of the polymer, thus promoting unfolding. Further analysis revealed a slight reduction of water tetrahedrality in the polymer hydration shell compared to the bulk. Cold denaturation is driven by an enhanced tetrahedral ordering of hydration shell water than bulk water. At elevated pressures, the strikingly reduced fluctuations combined with the increase in interstitial water molecules in the polymer hydration shell contribute to weakening of hydrophobic interactions, thereby promoting pressure unfolding. These findings provide critical molecular insights into the changes in hydrophobic hydration during cold and pressure unfolding of a hydrophobic polymer, which is strongly related to the cold and pressure denaturation of globular proteins.

  12. Balancing Accuracy and Computational Efficiency for Ternary Gas Hydrate Systems

    NASA Astrophysics Data System (ADS)

    White, M. D.

    2011-12-01

    Geologic accumulations of natural gas hydrates hold vast organic carbon reserves, which have the potential of meeting global energy needs for decades. Estimates of vast amounts of global natural gas hydrate deposits make them an attractive unconventional energy resource. As with other unconventional energy resources, the challenge is to economically produce the natural gas fuel. The gas hydrate challenge is principally technical. Meeting that challenge will require innovation, but more importantly, scientific research to understand the resource and its characteristics in porous media. Producing natural gas from gas hydrate deposits requires releasing CH4 from solid gas hydrate. The conventional way to release CH4 is to dissociate the hydrate by changing the pressure and temperature conditions to those where the hydrate is unstable. The guest-molecule exchange technology releases CH4 by replacing it with a more thermodynamically stable molecule (e.g., CO2, N2). This technology has three advantageous: 1) it sequesters greenhouse gas, 2) it releases energy via an exothermic reaction, and 3) it retains the hydraulic and mechanical stability of the hydrate reservoir. Numerical simulation of the production of gas hydrates from geologic deposits requires accounting for coupled processes: multifluid flow, mobile and immobile phase appearances and disappearances, heat transfer, and multicomponent thermodynamics. The ternary gas hydrate system comprises five components (i.e., H2O, CH4, CO2, N2, and salt) and the potential for six phases (i.e., aqueous, liquid CO2, gas, hydrate, ice, and precipitated salt). The equation of state for ternary hydrate systems has three requirements: 1) phase occurrence, 2) phase composition, and 3) phase properties. Numerical simulation of the production of geologic accumulations of gas hydrates have historically suffered from relatively slow execution times, compared with other multifluid, porous media systems, due to strong nonlinearities and phase transitions. This paper describes and demonstrates a numerical solution scheme for ternary hydrate systems that seeks a balance between accuracy and computational efficiency. This scheme uses a generalize cubic equation of state, functional forms for the hydrate equilibria and cage occupancies, variable switching scheme for phase transitions, and kinetic exchange of hydrate formers (i.e., CH4, CO2, and N2) between the mobile phases (i.e., aqueous, liquid CO2, and gas) and hydrate phase. Accuracy of the scheme will be evaluated by comparing property values and phase equilibria against experimental data. Computational efficiency of the scheme will be evaluated by comparing the base scheme against variants. The application of interest will the production of a natural gas hydrate deposit from a geologic formation, using the guest molecule exchange process; where, a mixture of CO2 and N2 are injected into the formation. During the guest-molecule exchange, CO2 and N2 will predominately replace CH4 in the large and small cages of the sI structure, respectively.

  13. Elastic properties of gas hydrate-bearing sediments

    USGS Publications Warehouse

    Lee, M.W.; Collett, T.S.

    2001-01-01

    Downhole-measured compressional- and shear-wave velocities acquired in the Mallik 2L-38 gas hydrate research well, northwestern Canada, reveal that the dominant effect of gas hydrate on the elastic properties of gas hydrate-bearing sediments is as a pore-filling constituent. As opposed to high elastic velocities predicted from a cementation theory, whereby a small amount of gas hydrate in the pore space significantly increases the elastic velocities, the velocity increase from gas hydrate saturation in the sediment pore space is small. Both the effective medium theory and a weighted equation predict a slight increase of velocities from gas hydrate concentration, similar to the field-observed velocities; however, the weighted equation more accurately describes the compressional- and shear-wave velocities of gas hydrate-bearing sediments. A decrease of Poisson's ratio with an increase in the gas hydrate concentration is similar to a decrease of Poisson's ratio with a decrease in the sediment porosity. Poisson's ratios greater than 0.33 for gas hydrate-bearing sediments imply the unconsolidated nature of gas hydrate-bearing sediments at this well site. The seismic characteristics of gas hydrate-bearing sediments at this site can be used to compare and evaluate other gas hydrate-bearing sediments in the Arctic.

  14. Phase equilibria of H2SO4, HNO3, and HCl hydrates and the composition of polar stratospheric clouds

    NASA Technical Reports Server (NTRS)

    Wooldridge, Paul J.; Zhang, Renyi; Molina, Mario J.

    1995-01-01

    Thermodynamic properties and phase equilibria behavior for the hydrates and coexisting pairs of hydrates of common acids which exist in the stratosphere are assembled from new laboratory measurements and standard literature data. The analysis focuses upon solid-vapor and solid-solid-vapor equilibria at temperatures around 200 K and includes new calorimetric and vapor pressure data. Calculated partial pressures versus 1/T slopes for the hydrates and coexisting hydrates agree well with experimental data where available.

  15. Phase Equilibria of H2SO4, HNO3, and HCl Hydrates and the Composition of Polar Stratospheric Clouds

    NASA Technical Reports Server (NTRS)

    Wooldridge, Paul J.; Zhang, Renyi; Molina, Mario J.

    1995-01-01

    Thermodynamic properties and phase equilibria behavior for the hydrates and coexisting pairs of hydrates of common acids which exist in the stratosphere are assembled from new laboratory measurements and standard literature data. The analysis focuses upon solid-vapor and solid-solid-vapor equilibria at temperatures around 200 K and includes new calorimetric and vapor pressure data. Calculated partial pressures versus 1/T slopes for the hydrates and coexisting hydrates agree well with experimental data where available.

  16. Along - Strike Analysis of Contemporary Ocean Temperature Change on the Cascadia Margin and Implications to Upper Slope Hydrate Instability

    NASA Astrophysics Data System (ADS)

    Phrampus, B.; Harris, R. N.; Trehu, A. M.; Embley, R. W.; Merle, S. G.

    2017-12-01

    Gas hydrates are found globally on continental margins and due to the large amount of sequestered carbon in hydrate reservoirs, whether these deposits are dynamic or stable has significant implications for slope stability, ocean/atmosphere carbon budget, and deep-water energy exploration. Recent studies indicate that upper slope hydrate degradation may be relatively widespread on passive margins due to recent ocean temperature warming between 0.012 and 0.033 °C/yr (e.g. Svalbard, North Alaska, and US Atlantic margin). However, the potential and breadth of warming induced hydrate instability remains contentious based on multiple observations including: 1) seep locations not consistent with locations of hydrate dissociation, 2) a lack of hydrate in regions of warming, and 3) evidence for long-lived seepage in regions associated with contemporary warming-induced hydrate dissociation. At the Cascadia margin, a recent study suggests that contemporary warming of intermediate water intersects the hydrate stability zone leading to hydrate dissociation that feeds upper slope seeps. Here, we provide a systematic analysis of along-strike variations in hydrate distribution along the Cascadia margin combined with a multivariable regression of ocean temperatures to characterize the potential of upper slope hydrate instability. Preliminary seep locations reveal upper slope seeps and observed regions of hydrate are correlated spatially between 42.5 and 48.0 °N, outside this region there is a dearth of identified upper slope hydrate and seeps. Between 44.5 and 48.0 °N a contemporary warming trend is as large as 0.006 °C/yr and is collocated with upper slope hydrate and gas seepage. This warming rate is relatively small, 2-5x smaller than warming trends identified in the Arctic where temperature induced hydrate instability remains uncertain. Additionally, we identify a region between 42.5 and 44.5 °N with collocated upper slope seepage and hydrate but no evidence of ocean warming, suggesting upper slope seepage is not driven by temperature induced hydrate instability, but maybe driven by tectonic uplift. These results highlight the absence of temperature driven seepage and slope instability on the Cascadia margin and deemphasize the impact of lower latitude warming on global hydrate dynamics and carbon budget.

  17. Analysis of Decomposition for Structure I Methane Hydrate by Molecular Dynamics Simulation

    NASA Astrophysics Data System (ADS)

    Wei, Na; Sun, Wan-Tong; Meng, Ying-Feng; Liu, An-Qi; Zhou, Shou-Wei; Guo, Ping; Fu, Qiang; Lv, Xin

    2018-05-01

    Under multi-nodes of temperatures and pressures, microscopic decomposition mechanisms of structure I methane hydrate in contact with bulk water molecules have been studied through LAMMPS software by molecular dynamics simulation. Simulation system consists of 482 methane molecules in hydrate and 3027 randomly distributed bulk water molecules. Through analyses of simulation results, decomposition number of hydrate cages, density of methane molecules, radial distribution function for oxygen atoms, mean square displacement and coefficient of diffusion of methane molecules have been studied. A significant result shows that structure I methane hydrate decomposes from hydrate-bulk water interface to hydrate interior. As temperature rises and pressure drops, the stabilization of hydrate will weaken, decomposition extent will go deep, and mean square displacement and coefficient of diffusion of methane molecules will increase. The studies can provide important meanings for the microscopic decomposition mechanisms analyses of methane hydrate.

  18. Observations related to tetrahydrofuran and methane hydrates for laboratory studies of hydrate-bearing sediments

    USGS Publications Warehouse

    Lee, J.Y.; Yun, T.S.; Santamarina, J.C.; Ruppel, C.

    2007-01-01

    The interaction among water molecules, guest gas molecules, salts, and mineral particles determines the nucleation and growth behavior of gas hydrates in natural sediments. Hydrate of tetrahydrofuran (THF) has long been used for laboratory studies of gas hydrate-bearing sediments to provide close control on hydrate concentrations and to overcome the long formation history of methane hydrate from aqueous phase methane in sediments. Yet differences in the polarizability of THF (polar molecule) compared to methane (nonpolar molecule) raise questions about the suitability of THF as a proxy for methane in the study of hydrate-bearing sediments. From existing data and simple macroscale experiments, we show that despite its polar nature, THF's large molecular size results in low permittivity, prevents it from dissolving precipitated salts, and hinders the solvation of ions on dry mineral surfaces. In addition, the interfacial tension between water and THF hydrate is similar to that between water and methane hydrate. The processes that researchers choose for forming hydrate in sediments in laboratory settings (e.g., from gas, liquid, or ice) and the pore-scale distribution of the hydrate that is produced by each of these processes likely have a more pronounced effect on the measured macroscale properties of hydrate-bearing sediments than do differences between THF and methane hydrates themselves.

  19. Analysis of Factors Influencing Hydration Site Prediction Based on Molecular Dynamics Simulations

    PubMed Central

    2015-01-01

    Water contributes significantly to the binding of small molecules to proteins in biochemical systems. Molecular dynamics (MD) simulation based programs such as WaterMap and WATsite have been used to probe the locations and thermodynamic properties of hydration sites at the surface or in the binding site of proteins generating important information for structure-based drug design. However, questions associated with the influence of the simulation protocol on hydration site analysis remain. In this study, we use WATsite to investigate the influence of factors such as simulation length and variations in initial protein conformations on hydration site prediction. We find that 4 ns MD simulation is appropriate to obtain a reliable prediction of the locations and thermodynamic properties of hydration sites. In addition, hydration site prediction can be largely affected by the initial protein conformations used for MD simulations. Here, we provide a first quantification of this effect and further indicate that similar conformations of binding site residues (RMSD < 0.5 Å) are required to obtain consistent hydration site predictions. PMID:25252619

  20. Intranasal Dexmedetomidine for Procedural Sedation in Children, a Suitable Alternative to Chloral Hydrate.

    PubMed

    Cozzi, Giorgio; Norbedo, Stefania; Barbi, Egidio

    2017-04-01

    Sedation is often required for children undergoing diagnostic procedures. Chloral hydrate has been one of the sedative drugs most used in children over the last 3 decades, with supporting evidence for its efficacy and safety. Recently, chloral hydrate was banned in Italy and France, in consideration of evidence of its carcinogenicity and genotoxicity. Dexmedetomidine is a sedative with unique properties that has been increasingly used for procedural sedation in children. Several studies demonstrated its efficacy and safety for sedation in non-painful diagnostic procedures. Dexmedetomidine's impact on respiratory drive and airway patency and tone is much less when compared to the majority of other sedative agents. Administration via the intranasal route allows satisfactory procedural success rates. Studies that specifically compared intranasal dexmedetomidine and chloral hydrate for children undergoing non-painful procedures showed that dexmedetomidine was as effective as and safer than chloral hydrate. For these reasons, we suggest that intranasal dexmedetomidine could be a suitable alternative to chloral hydrate.

  1. Gulf of Mexico Gas Hydrate Joint Industry Project Leg II logging-while-drilling data acquisition and analysis

    USGS Publications Warehouse

    Collett, Timothy S.; Lee, Wyung W.; Zyrianova, Margarita V.; Mrozewski, Stefan A.; Guerin, Gilles; Cook, Ann E.; Goldberg, Dave S.

    2012-01-01

    One of the objectives of the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II (GOM JIP Leg II) was the collection of a comprehensive suite of logging-while-drilling (LWD) data within gas-hydrate-bearing sand reservoirs in order to make accurate estimates of the concentration of gas hydrates under various geologic conditions and to understand the geologic controls on the occurrence of gas hydrate at each of the sites drilled during this expedition. The LWD sensors just above the drill bit provided important information on the nature of the sediments and the occurrence of gas hydrate. There has been significant advancements in the use of downhole well-logging tools to acquire detailed information on the occurrence of gas hydrate in nature: From using electrical resistivity and acoustic logs to identify gas hydrate occurrences in wells to where wireline and advanced logging-while-drilling tools are routinely used to examine the petrophysical nature of gas hydrate reservoirs and the distribution and concentration of gas hydrates within various complex reservoir systems. Recent integrated sediment coring and well-log studies have confirmed that electrical resistivity and acoustic velocity data can yield accurate gas hydrate saturations in sediment grain supported (isotropic) systems such as sand reservoirs, but more advanced log analysis models are required to characterize gas hydrate in fractured (anisotropic) reservoir systems. In support of the GOM JIP Leg II effort, well-log data montages have been compiled and presented in this report which includes downhole logs obtained from all seven wells drilled during this expedition with a focus on identifying and characterizing the potential gas-hydrate-bearing sedimentary section in each of the wells. Also presented and reviewed in this report are the gas-hydrate saturation and sediment porosity logs for each of the wells as calculated from available downhole well logs.

  2. Analysis of the detailed configuration of hydrated lanthanoid(III) ions in aqueous solution and crystalline salts by using K- and L(3)-edge XANES spectroscopy.

    PubMed

    D'Angelo, Paola; Zitolo, Andrea; Migliorati, Valentina; Persson, Ingmar

    2010-01-11

    The structural properties of the hydrated lanthanoid(III) ions in aqueous solution and in the isostructural trifluoromethanesulfonate salts have been investigated by a quantitative analysis of the X-ray absorption near-edge structure (XANES) spectra at the K- and L(3)-edges. The XANES analysis has provided a clear description of the variation of lanthanoid(III) hydration properties across the series. It was found that all of the lanthanoid(III) hydration complexes retain a tricapped trigonal prism (TTP) geometry, and along the series two of the capping water molecules become less and less strongly bound, before finally, on average, one of them leaves the hydration cluster. This gives rise to an eight-coordinated distorted bicapped trigonal prism with two different Ln--O capping distances for the smallest lanthanoid(III) ions. This systematic study has shown that for lanthanoid compounds more accurate structural information is obtained from the analysis of the L(3)-edge than from K-edge XANES data. Moreover, whereas the second hydration shells provide a detectable contribution to the L(3)-edge XANES spectra of the lighter lanthanoid ions, the K-edge spectra are insensitive to the more distant coordination spheres.

  3. Determination of methane concentrations in water in equilibrium with sI methane hydrate in the absence of a vapor phase by in situ Raman spectroscopy

    USGS Publications Warehouse

    Lu, W.; Chou, I.-Ming; Burruss, R.C.

    2008-01-01

    Most submarine gas hydrates are located within the two-phase equilibrium region of hydrate and interstitial water with pressures (P) ranging from 8 to 60 MPa and temperatures (T) from 275 to 293 K. However, current measurements of solubilities of methane in equilibrium with hydrate in the absence of a vapor phase are limited below 20 MPa and 283.15 K, and the differences among these data are up to 30%. When these data were extrapolated to other P-T conditions, it leads to large and poorly known uncertainties. In this study, in situ Raman spectroscopy was used to measure methane concentrations in pure water in equilibrium with sI (structure one) methane hydrate, in the absence of a vapor phase, at temperatures from 276.6 to 294.6 (??0.3) K and pressures at 10, 20, 30 and 40 (??0.4%) MPa. The relationship among concentration of methane in water in equilibrium with hydrate, in mole fraction [X(CH4)], the temperature in K, and pressure in MPa was derived as: X(CH4) = exp [11.0464 + 0.023267 P - (4886.0 + 8.0158 P)/T]. Both the standard enthalpy and entropy of hydrate dissolution at the studied T-P conditions increase slightly with increasing pressure, ranging from 41.29 to 43.29 kJ/mol and from 0.1272 to 0.1330 kJ/K ?? mol, respectively. When compared with traditional sampling and analytical methods, the advantages of our method include: (1) the use of in situ Raman signals for methane concentration measurements eliminates possible uncertainty caused by sampling and ex situ analysis, (2) it is simple and efficient, and (3) high-pressure data can be obtained safely. ?? 2007 Elsevier Ltd. All rights reserved.

  4. SNCR De-NOx within a moderate temperature range using urea-spiked hydrazine hydrate as reductant.

    PubMed

    Chen, H; Chen, D Z; Fan, S; Hong, L; Wang, D

    2016-10-01

    In this research, urea-spiked hydrazine hydrate solutions are used as reductants for the Selective Non-Catalytic Reduction (SNCR) De-NOx process below 650 °C. The urea concentration in the urea/hydrazine hydrate solutions is chosen through experimental and theoretical studies. To determine the mechanism of the De-NOx process, thermogravimetric analysis (TGA) of the urea/hydrazine hydrate solutions and their thermal decomposition in air and nitrogen atmospheres were studied to understand their decomposition behaviours and redox characteristics. Then a plug flow reactor (PFR) model was adopted to simulate the De-NOx processes in a pilot scale tubular reactor, and the calculated De-NOx efficiency vs. temperature profiles were compared with experimental results to support the mechanism and choose the proper reductant and its reaction temperature. Both the experimental and calculated results show that when the urea is spiked into hydrazine hydrate solution to make the urea-N content approximately 16.7%-25% of the total N content in the solution, better De-NOx efficiencies can be obtained in the temperature range of 550-650 °C, under which NH3 is inactive in reducing NOx. And it is also proved that for these urea-spiked hydrazine hydrate solutions, the hydrazine decomposition through the pathway N2H4 + M = N2H3 + H + M is enhanced to provide radical H, which is active to reduce NO. Finally, the reaction routes for SNCR De-NOx process based on urea-spiked hydrazine hydrate at the proper temperature are proposed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Comparison of rescue techniques for failed chloral hydrate sedation for magnetic resonance imaging scans--additional chloral hydrate vs intranasal dexmedetomidine.

    PubMed

    Zhang, Wenhua; Wang, Zixin; Song, Xingrong; Fan, Yanting; Tian, Hang; Li, Bilian

    2016-03-01

    Chloral hydrate, a commonly used sedative in children during noninvasive diagnostic procedures, is associated with side effects like prolonged sedation, paradoxical excitement, delirium, and unpleasant taste. Dexmedetomidine, a highly selective α-2 agonist, has better pharmacokinetic properties than chloral hydrate. We conducted this prospective, double-blind, randomized controlled trial to evaluate efficacy of intranasal dexmedetomidine with that of a second oral dose of chloral hydrate for rescue sedation during magnetic resonance imaging (MRI) studies in infants. One hundred and fifty infants (age group: 1-6 months), who were not adequately sedated after initial oral dose of 50 mg · kg(-1) chloral hydrate, were randomly divided into three groups with the following protocol for each group. Group C: second oral dose chloral hydrate 25 mg · kg(-1); Group L and Group H: intranasal dexmedetomidine in a dosage of 1 and 2 mcg · kg(-1), respectively. Status of sedation, induction time, time to wake up, vital signs, oxygen saturation, and recovery characteristics were recorded. Successful rescue sedation in Groups C, L, and H were achieved in 40 (80%), 47 (94%), and 49 (98%) of infants, respectively, on an intention to treat analysis, and the proportion of infants successfully sedated in Group H was more than that of Group L (P ˂ 0.01). There were no significant differences in sedation induction time; however, the time to wake up was significantly shorter in Group L as compared to that in Group C or H (P < 0.01). No significant adverse hemodynamic or hypoxemic effects were observed in the study. Intranasal dexmedetomidine induced satisfactory rescue sedation in 1- to 6-month-old infants during MRI study, and appears to cause sedation in a dose-dependent manner. © 2015 John Wiley & Sons Ltd.

  6. Supramolecular Organization of Nonstoichiometric Drug Hydrates: Dapsone.

    PubMed

    Braun, Doris E; Griesser, Ulrich J

    2018-01-01

    The observed moisture- and temperature dependent transformations of the dapsone (4,4'-diaminodiphenyl sulfone, DDS) 0. 33-hydrate were correlated to its structure and the number and strength of the water-DDS intermolecular interactions. A combination of characterization techniques was used, including thermal analysis (hot-stage microscopy, differential scanning calorimetry and thermogravimetric analysis), gravimetric moisture sorption/desorption studies and variable humidity powder X-ray diffraction, along with computational modeling (crystal structure prediction and pair-wise intermolecular energy calculations). Depending on the relative humidity the hydrate contains between 0 and 0.33 molecules of water per molecule DDS. The crystal structure is retained upon dehydration indicating that DDS hydrate shows a non-stoichiometric (de)hydration behavior. Unexpectedly, the water molecules are not located in structural channels but at isolated-sites of the host framework, which is counterintuitively for a hydrate with non-stoichiometric behavior. The water-DDS interactions were estimated to be weaker than water-host interactions that are commonly observed in stoichiometric hydrates and the lattice energies of the isomorphic dehydration product (hydrate structure without water molecules) and (form III ) differ only by ~1 kJ mol -1 . The computational generation of hypothetical monohydrates confirms that the hydrate with the unusual DDS:water ratio of 3:1 is more stable than a feasible monohydrate structure. Overall, this study highlights that a deeper understanding of the formation of hydrates with non-stoichiometric behavior requires a multidisciplinary approach including suitable experimental and computational methods providing a firm basis for the development and manufacturing of high quality drug products.

  7. Nano-modification to improve the ductility of cementitious composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeşilmen, Seda; Al-Najjar, Yazin; Balav, Mohammad Hatam

    2015-10-15

    Effect of nano-sized mineral additions on ductility of engineered cementitious composites (ECC) containing high volumes of fly ash was investigated at different hydration degrees. Various properties of ECC mixtures with different mineral additions were compared in terms of microstructural properties of matrix, fiber-matrix interface, and fiber surface to assess improvements in ductility. Microstructural characterization was made by measuring pore size distributions through mercury intrusion porosimetry (MIP). Hydration characteristics were assessed using thermogravimetric analysis/differential thermal analysis (TGA/DTA), and fiber-matrix interface and fiber surface characteristics were assessed using scanning electron microscopy (SEM) through a period of 90 days. Moreover, compressive and flexuralmore » strength developments were monitored for the same period. Test results confirmed that mineral additions could significantly improve both flexural strength and ductility of ECC, especially at early ages. Cheaper Nano-CaCO{sub 3} was more effective compared to nano-silica. However, the crystal structure of CaCO{sub 3} played a very important role in the range of expected improvements.« less

  8. Nasogastric Hydration in Infants with Bronchiolitis Less Than 2 Months of Age.

    PubMed

    Oakley, Ed; Bata, Sonny; Rengasamy, Sharmila; Krieser, David; Cheek, John; Jachno, Kim; Babl, Franz E

    2016-11-01

    To determine whether nasogastric hydration can be used in infants less than 2 months of age with bronchiolitis, and characterize the adverse events profile of these infants compared with infants given intravenous (IV) fluid hydration. A descriptive retrospective cohort study of children with bronchiolitis under 2 months of age admitted for hydration at 3 centers over 3 bronchiolitis seasons was done. We determined type of hydration (nasogastric vs IV fluid hydration) and adverse events, intensive care unit admission, and respiratory support. Of 491 infants under 2 months of age admitted with bronchiolitis, 211 (43%) received nonoral hydration: 146 (69%) via nasogastric hydration and 65 (31%) via IV fluid hydration. Adverse events occurred in 27.4% (nasogastric hydration) and 23.1% (IV fluid hydration), difference of 4.3%; 95%CI (-8.2 to 16.9), P = .51. The majority of adverse events were desaturations (21.9% nasogastric hydration vs 21.5% IV fluid hydration, difference 0.4%; [-11.7 to 12.4], P = .95). There were no pulmonary aspirations in either group. Apneas and bradycardias were similar in each group. IV fluid hydration use was positively associated with intensive care unit admission (38.5% IV fluid hydration vs 19.9% nasogastric hydration; difference 18.6%, [5.1-32.1], P = .004); and use of ventilation support (27.7% IV fluid hydration vs 15.1% nasogastric hydration; difference 12.6 [0.3-23], P = .03). Fewer infants changed from nasogastric hydration to IV fluid hydration than from IV fluid hydration to nasogastric hydration (12.3% vs 47.7%; difference -35.4% [-49 to -22], P < .001). Nasogastric hydration can be used in the majority of young infants admitted with bronchiolitis. Nasogastric hydration and IV fluid hydration had similar rates of complications. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Rapid hydrogen hydrate growth from non-stoichiometric tuning mixtures during liquid nitrogen quenching.

    PubMed

    Grim, R Gary; Kerkar, Prasad B; Sloan, E Dendy; Koh, Carolyn A; Sum, Amadeu K

    2012-06-21

    In this study the rapid growth of sII H(2) hydrate within 20 min of post formation quenching towards liquid nitrogen (LN(2)) temperature is presented. Initially at 72 MPa and 258 K, hydrate samples would cool to the conditions of ~60 MPa and ~90 K after quenching. Although within the stability region for H(2) hydrate, new hydrate growth only occurred under LN(2) quenching of the samples when preformed hydrate "seeds" of THF + H(2) were in the presence of unconverted ice. The characterization of hydrate seeds and the post-quenched samples was performed with confocal Raman spectroscopy. These results suggest that quenching to LN(2) temperature, a common preservation technique for ex situ hydrate analysis, can lead to rapid unintended hydrate growth. Specifically, guest such as H(2) that may otherwise need sufficiently long induction periods to nucleate, may still experience rapid growth through an increased kinetic effect from a preformed hydrate template.

  10. Nucleation Rate Analysis of Methane Hydrate from Molecular Dynamics Simulations

    DOE PAGES

    Yuhara, Daisuke; Barnes, Brian C.; Suh, Donguk; ...

    2015-01-06

    Clathrate hydrates are solid crystalline structures most commonly formed from solutions that have nucleated to form a mixed solid composed of water and gas. Understanding the mechanism of clathrate hydrate nucleation is essential to grasp the fundamental chemistry of these complex structures and their applications. Molecular dynamics (MD) simulation is an ideal method to study nucleation at the molecular level because the size of the critical nucleus and formation rate occur on the nano scale. Moreover, various analysis methods for nucleation have been developed through MD to analyze nucleation. In particular, the mean first-passage time (MFPT) and survival probability (SP)more » methods have proven to be effective in procuring the nucleation rate and critical nucleus size for monatomic systems. This study assesses the MFPT and SP methods, previously used for monatomic systems, when applied to analyzing clathrate hydrate nucleation. Because clathrate hydrate nucleation is relatively difficult to observe in MD simulations (due to its high free energy barrier), these methods have yet to be applied to clathrate hydrate systems. In this study, we have analyzed the nucleation rate and critical nucleus size of methane hydrate using MFPT and SP methods from data generated by MD simulations at 255 K and 50 MPa. MFPT was modified for clathrate hydrate from the original version by adding the maximum likelihood estimate and growth effect term. The nucleation rates were calculated by MFPT and SP methods and are within 5%; the critical nucleus size estimated by the MFPT method was 50% higher, than values obtained through other more rigorous but computationally expensive estimates. These methods can also be extended to the analysis of other clathrate hydrates.« less

  11. Nucleation Rate Analysis of Methane Hydrate from Molecular Dynamics Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuhara, Daisuke; Barnes, Brian C.; Suh, Donguk

    Clathrate hydrates are solid crystalline structures most commonly formed from solutions that have nucleated to form a mixed solid composed of water and gas. Understanding the mechanism of clathrate hydrate nucleation is essential to grasp the fundamental chemistry of these complex structures and their applications. Molecular dynamics (MD) simulation is an ideal method to study nucleation at the molecular level because the size of the critical nucleus and formation rate occur on the nano scale. Moreover, various analysis methods for nucleation have been developed through MD to analyze nucleation. In particular, the mean first-passage time (MFPT) and survival probability (SP)more » methods have proven to be effective in procuring the nucleation rate and critical nucleus size for monatomic systems. This study assesses the MFPT and SP methods, previously used for monatomic systems, when applied to analyzing clathrate hydrate nucleation. Because clathrate hydrate nucleation is relatively difficult to observe in MD simulations (due to its high free energy barrier), these methods have yet to be applied to clathrate hydrate systems. In this study, we have analyzed the nucleation rate and critical nucleus size of methane hydrate using MFPT and SP methods from data generated by MD simulations at 255 K and 50 MPa. MFPT was modified for clathrate hydrate from the original version by adding the maximum likelihood estimate and growth effect term. The nucleation rates were calculated by MFPT and SP methods and are within 5%; the critical nucleus size estimated by the MFPT method was 50% higher, than values obtained through other more rigorous but computationally expensive estimates. These methods can also be extended to the analysis of other clathrate hydrates.« less

  12. Poly(2,6-dimethyl-1,4-phenylene oxide) Blended with Poly (vinylbenzyl chloride)-b-polystyrene for the Formation of Anion Exchange Membranes

    DTIC Science & Technology

    2014-08-14

    show improved mechanical properties compared to the styrenic copolymer, particularly in a hydrated condition. The membranes were subjected to...AEMs) show improved mechanical properties compared to the styrenic copolymer, particularly in a hydrated condition. The membranes were subjected to...deionized water, and after 24 h of soaking, the fully hydrated membranes were removed from the water; any residual bulk water on the membrane surface was

  13. Assessment of hydration status using bioelectrical impedance vector analysis in critical patients with acute kidney injury.

    PubMed

    Hise, Ana Cláudia da Rosa; Gonzalez, Maria Cristina

    2018-04-01

    The state of hyperhydration in critically ill patients with acute kidney injury (AKI) is associated with increased mortality. Bioelectrical impedance vector analysis (BIVA) appears to be a viable method to access the fluid status of critical patients but has never been evaluated in critical patients with AKI. The objective of this study is to evaluate the hydration status measured using BIVA in critical patients under intensive care at the time of AKI diagnosis and to correlate this measurement with mortality. We assessed the fluid status measured using BIVA in 224 critical patients at the time of AKI diagnosis and correlated it with mortality. To interpret the results, BIVA Software 2002 was used to plot the data from the patients studied on the 95% confidence ellipses of the RX c plane for comparisons between groups (non-survivors, survivors). Variables such as mechanical ventilation, vasoactive drug, and sepsis, among others, were collected. The impedance vector analysis conducted using BIVA Software 2002 indicated changes in the body compositions of patients according to the 95% confidence ellipse between the vectors R/H and X c /H of the group of survivors and the group of deceased patients. Hotelling's test (T 2  = 21.2) and the F test (F = 10.6) revealed significant differences (p < 0.001) between the two groups. These results demonstrate that patients who died presented with a greater hydration volume at the time of AKI diagnosis compared with those who survived. In addition to the hydration status measured using BIVA, the following were also correlated with death: diagnosis at hospitalization, APACHE II score, length of hospital stay, RIFLE score, maximum organ failure, sepsis type, hemoglobin, and AF. The fluid status assessment measured using BIVA significantly demonstrated the difference in hydration between survivors and non-survivors among critically ill patients with AKI. Copyright © 2017 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  14. Controls on the physical properties of gas-hydrate-bearing sediments because of the interaction between gas hydrate and porous media

    USGS Publications Warehouse

    Lee, Myung W.; Collett, Timothy S.

    2005-01-01

    Physical properties of gas-hydrate-bearing sediments depend on the pore-scale interaction between gas hydrate and porous media as well as the amount of gas hydrate present. Well log measurements such as proton nuclear magnetic resonance (NMR) relaxation and electromagnetic propagation tool (EPT) techniques depend primarily on the bulk volume of gas hydrate in the pore space irrespective of the pore-scale interaction. However, elastic velocities or permeability depend on how gas hydrate is distributed in the pore space as well as the amount of gas hydrate. Gas-hydrate saturations estimated from NMR and EPT measurements are free of adjustable parameters; thus, the estimations are unbiased estimates of gas hydrate if the measurement is accurate. However, the amount of gas hydrate estimated from elastic velocities or electrical resistivities depends on many adjustable parameters and models related to the interaction of gas hydrate and porous media, so these estimates are model dependent and biased. NMR, EPT, elastic-wave velocity, electrical resistivity, and permeability measurements acquired in the Mallik 5L-38 well in the Mackenzie Delta, Canada, show that all of the well log evaluation techniques considered provide comparable gas-hydrate saturations in clean (low shale content) sandstone intervals with high gas-hydrate saturations. However, in shaly intervals, estimates from log measurement depending on the pore-scale interaction between gas hydrate and host sediments are higher than those estimates from measurements depending on the bulk volume of gas hydrate.

  15. Roles of Sodium Dodecyl Sulfate on Tetrahydrofuran-Assisted Methane Hydrate Formation.

    PubMed

    Siangsai, Atsadawuth; Inkong, Katipot; Kulprathipanja, Santi; Kitiyanan, Boonyarach; Rangsunvigit, Pramoch

    2018-06-01

    Sodium dodecyl sulfate (SDS) markedly improved tetrahydrofuran (THF) - assisted methane hydrate formation. Firstly, methane hydrate formation with different THF amount, 1, 3, and 5.56 mol%, was studied. SDS with 1, 4, and 8 mM was then investigated for its roles on the methane hydrate formation with and without THF. The experiments were conducted in a quiescent condition in a fixed volume crystallizer at 8 MPa and 4°C. The results showed that almost all studied THF and SDS concentrations enhanced the methane hydrate formation kinetics and methane consumption compared to that without the promoters, except 1 mol% THF. Although, with 1 mol% THF, there were no hydrates formed for 48 hours, the addition of just 1 mM SDS surprisingly promoted the hydrate formation with a significant increased in the kinetics. This prompts the use of methane hydrate technology for natural gas storage application with minimal promoters.

  16. Hydration of Portland cement with additions of calcium sulfoaluminates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Saout, Gwenn, E-mail: gwenn.le-saout@mines-ales.fr; Lothenbach, Barbara; Hori, Akihiro

    2013-01-15

    The effect of mineral additions based on calcium aluminates on the hydration mechanism of ordinary Portland cement (OPC) was investigated using isothermal calorimetry, thermal analysis, X-ray diffraction, scanning electron microscopy, solid state nuclear magnetic resonance and pore solution analysis. Results show that the addition of a calcium sulfoaluminate cement (CSA) to the OPC does not affect the hydration mechanism of alite but controls the aluminate dissolution. In the second blend investigated, a rapid setting cement, the amorphous calcium aluminate reacts very fast to ettringite. The release of aluminum ions strongly retards the hydration of alite but the C-S-H has amore » similar composition as in OPC with no additional Al to Si substitution. As in CSA-OPC, the aluminate hydration is controlled by the availability of sulfates. The coupling of thermodynamic modeling with the kinetic equations predicts the amount of hydrates and pore solution compositions as a function of time and validates the model in these systems.« less

  17. Challenges, uncertainties, and issues facing gas production from gas-hydrate deposits

    USGS Publications Warehouse

    Moridis, G.J.; Collett, T.S.; Pooladi-Darvish, M.; Hancock, S.; Santamarina, C.; Boswel, R.; Kneafsey, T.; Rutqvist, J.; Kowalsky, M.B.; Reagan, M.T.; Sloan, E.D.; Sum, A.K.; Koh, C.A.

    2011-01-01

    The current paper complements the Moridis et al. (2009) review of the status of the effort toward commercial gas production from hydrates. We aim to describe the concept of the gas-hydrate (GH) petroleum system; to discuss advances, requirements, and suggested practices in GH prospecting and GH deposit characterization; and to review the associated technical, economic, and environmental challenges and uncertainties, which include the following: accurate assessment of producible fractions of the GH resource; development of methods for identifying suitable production targets; sampling of hydrate-bearing sediments (HBS) and sample analysis; analysis and interpretation of geophysical surveys of GH reservoirs; well-testing methods; interpretation of well-testing results; geomechanical and reservoir/well stability concerns; well design, operation, and installation; field operations and extending production beyond sand-dominated GH reservoirs; monitoring production and geomechanical stability; laboratory investigations; fundamental knowledge of hydrate behavior; the economics of commercial gas production from hydrates; and associated environmental concerns. ?? 2011 Society of Petroleum Engineers.

  18. Effect of Hydration and Confinement on Micro-Structure of Calcium-Silicate-Hydrate Gels

    NASA Astrophysics Data System (ADS)

    Gadde, Harish Kumar

    Calcium-silicate-hydrate(C-S-H) gel is a primary nano-crystalline phase present in hydrated Ordinary Portland Cement (OPC) responsible for its strength and creep behavior. Our reliance on cement for infrastructure is global, and there is a need to improve infrastructure life-times. A way forward is to engineer the cement with more durability and long-term strength. The main purpose of this research is to quantify the micro-structure of C-S-H to see if cement can be engineered at various length scales to improve long-term behavior by spatial arrangement. We investigate the micro-structure evolution of C-S-H in cement as a function of hydration time and confinement. Scanning electron microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS) were used to quantify the material and spatial properties of C-S-H as a function of hydration time. The data obtained from these experiments was used to identify C-S-H phases in cement sample. Pair Distribution Function (PDF) analysis of HD C-S-H phase with different hydration times was done at Advanced Photon Source, Argonne National Laboratory, beamline 11-ID-B. Only nonlinear trends in the atomic ordering of C-S-H gel as a function of hydration time were observed. Solid state 29Si Nuclear Magnetic Resonance (NMR) was used to quantify the effect of confinement on two types of C-S-H: white cement C-S-H and synthetic C-S-H. NMR spectra revealed that there is no significant difference in the structure of C-S-H due to confinement when compared with unconfined C-S-H. It is also found that there is significant difference in the Si environments of these two types of C-S-H. Though it does seem possible to engineer the cement on atomic scales, all these studies reveal that engineering cement on such a scale requires a more statistically accurate understanding of intricate structure of C-S-H than is currently available.

  19. Skin hydration analysis by experiment and computer simulations and its implications for diapered skin.

    PubMed

    Saadatmand, M; Stone, K J; Vega, V N; Felter, S; Ventura, S; Kasting, G; Jaworska, J

    2017-11-01

    Experimental work on skin hydration is technologically challenging, and mostly limited to observations where environmental conditions are constant. In some cases, like diapered baby skin, such work is practically unfeasible, yet it is important to understand potential effects of diapering on skin condition. To overcome this challenge, in part, we developed a computer simulation model of reversible transient skin hydration effects. Skin hydration model by Li et al. (Chem Eng Sci, 138, 2015, 164) was further developed to simulate transient exposure conditions where relative humidity (RH), wind velocity, air, and skin temperature can be any function of time. Computer simulations of evaporative water loss (EWL) decay after different occlusion times were compared with experimental data to calibrate the model. Next, we used the model to investigate EWL and SC thickness in different diapering scenarios. Key results from the experimental work were: (1) For occlusions by RH=100% and free water longer than 30 minutes the absorbed amount of water is almost the same; (2) Longer occlusion times result in higher water absorption by the SC. The EWL decay and skin water content predictions were in agreement with experimental data. Simulations also revealed that skin under occlusion hydrates mainly because the outflux is blocked, not because it absorbs water from the environment. Further, simulations demonstrated that hydration level is sensitive to time, RH and/or free water on skin. In simulated diapering scenarios, skin maintained hydration content very close to the baseline conditions without a diaper for the entire duration of a 24 hours period. Different diapers/diaper technologies are known to have different profiles in terms of their ability to provide wetness protection, which can result in consumer-noticeable differences in wetness. Simulation results based on published literature using data from a number of different diapers suggest that diapered skin hydrates within ranges considered reversible. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. The effect of topical anesthetic hydration on the depth of thermal injury from the plasma skin regeneration device.

    PubMed

    Sanderson, Alicia R; Wu, Edward C; Liaw, Lih-Huei L; Garg, Rohit; Gangnes, Richard A

    2014-02-01

    The plasma skin regeneration (PSR) device delivers thermal energy to the skin by converting nitrogen gas to plasma. Prior to treatment, hydration of the skin is recommended as it is thought to limit the zone of thermal damage. However, there is limited data on optimal hydration time. This pilot study aims to determine the effect of topical anesthetic application time on the depth of thermal injury from a PSR device using histology. PSR (1.8 and 3.5 J) was performed after 0, 30, or 60 minutes of topical anesthetic application. Rhytidectomy was then performed and skin was fixed for histologic analysis. Four patients (two control and four treatment sites per patient) undergoing rhytidectomy were recruited for the study. Each patient served as his/her own control (no hydration). A scoring system for tissue injury was developed. Epidermal injury, the presence of vacuolization, blistering, damage to adnexal structures, and depth of dermal collagen changes were evaluated in over 1,400 high-power microscopy fields. There was a significant difference in the average thermal injury score, depth of thermal damage, and epidermal injury when comparing controls to 30 minutes of hydration (P = 0.012, 0.012, 0.017, respectively). There was no statistical difference between controls and 60 minutes of hydration or between 30 and 60 minutes of hydration. Epidermal vacuolization at low energy and patchy distribution of thermal injury was also observed. Topical hydration influences the amount of thermal damage when applied to skin for 30 minutes prior to treatment with the PSR device. There was a trend toward decreasing thermal damage at 60 minutes, and there was no difference between treatment for 30 or 60 minutes. The data suggest that application of topical anesthetic for a short period of time prior to treatment with the PSR device is cost-effective, safe, and may be clinically beneficial. © 2013 Wiley Periodicals, Inc.

  1. Water Dynamics in the Hydration Shells of Biomolecules

    PubMed Central

    2017-01-01

    The structure and function of biomolecules are strongly influenced by their hydration shells. Structural fluctuations and molecular excitations of hydrating water molecules cover a broad range in space and time, from individual water molecules to larger pools and from femtosecond to microsecond time scales. Recent progress in theory and molecular dynamics simulations as well as in ultrafast vibrational spectroscopy has led to new and detailed insight into fluctuations of water structure, elementary water motions, electric fields at hydrated biointerfaces, and processes of vibrational relaxation and energy dissipation. Here, we review recent advances in both theory and experiment, focusing on hydrated DNA, proteins, and phospholipids, and compare dynamics in the hydration shells to bulk water. PMID:28248491

  2. Ab initio investigation of the first hydration shell of protonated glycine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Zhichao; Chen, Dong, E-mail: dongchen@henu.edu.cn, E-mail: boliu@henu.edu.cn; Zhao, Huiling

    2014-02-28

    The first hydration shell of the protonated glycine is built up using Monte Carlo multiple minimum conformational search analysis with the MMFFs force field. The potential energy surfaces of the protonated glycine and its hydration complexes with up to eight water molecules have been scanned and the energy-minimized structures are predicted using the ab initio calculations. First, three favorable structures of protonated glycine were determined, and the micro-hydration processes showed that water can significantly stabilize the unstable conformers, and then their first hydration shells were established. Finally, we found that seven water molecules are required to fully hydrate the firstmore » hydration shell for the most stable conformer of protonated glycine. In order to analyse the hydration process, the dominant hydration sites located around the ammonium and carboxyl groups are studied carefully and systemically. The results indicate that, water molecules hydrate the protonated glycine in an alternative dynamic hydration process which is driven by the competition between different hydration sites. The first three water molecules are strongly attached by the ammonium group, while only the fourth water molecule is attached by the carboxyl group in the ultimate first hydration shell of the protonated glycine. In addition, the first hydration shell model has predicted most identical structures and a reasonable accord in hydration energy and vibrational frequencies of the most stable conformer with the conductor-like polarizable continuum model.« less

  3. Magnetic Hysteresis Parameters and Day-Plot Analysis to Delineate Diagenetic Alteration in Gas Hydrate-Bearing Sediments

    NASA Astrophysics Data System (ADS)

    Enkin, R. J.; Baker, J.; Nourgaliev, D.; Iassonov, P.

    2005-12-01

    Gas hydrates are naturally occurring cage structures of ice found in continental slope and permafrost sediments. They contain vast quantities of methane which is important both as a climate driver and an energy resource. Hydrate formation alters the redox potential of interstitial fluids which can in turn alter magnetic minerals. Thus magnetic methods can help delineate diagenetic pathways, provide a proxy method to map out past hydrate occurrences, and eventually lead to new remote sensing methods in prospecting for gas hydrates. We present data acquired using a J-Meter Coercivity Spectrometer. Induced and remanent magnetism are simultaneously measured on 1.5 cc samples as they spin on a 50 cm diameter disk, 20 times per second. The applied field ramps between ± 500 mT to produce a hysteresis loop in 7 minutes. Sub-second viscous decay is measured to provide a proxy for the amount of superparamagnetism present. The rapid and simple measurements made possible by this robust machine are ideal for core logging. Measurements made on frozen core from the Mallik permafrost gas hydrate field in Canada's Northwest Territories demonstrates that the magnetic properties are dependent on the concentration of gas hydrate present. Day-plots of magnetic hysteresis parameter ratios distinguish the magnetic carriers in gas hydrate rich sediments. The original magnetite is often reduced to sulphide when gas hydrate concentration exceeds 40%. In other high-concentration gas hydrate horizons, fine single-domain (SD) grains of magnetite apparently dissolve leaving nothing but large multi-domain (MD) magnetite grains. Independently measured superparamagnetism is shown to push hysteresis ratios off the hyperbola expected for SD-MD mixtures, as predicted by Dunlop [JGR, 10.10291/2001JB000486, 2002]. Magnetic study of host sediments in gas hydrate systems provides a powerful core-logging tool, offers a window into the processes of gas hydrate formation, and forms the basis for quantitative analysis of magnetic surveys over gas hydrate fields.

  4. Amplitude versus offset analysis to marine seismic data acquired in Nankai Trough, offshore Japan where methane hydrate exists

    NASA Astrophysics Data System (ADS)

    Hato, M.; Inamori, T.; Matsuoka, T.; Shimizu, S.

    2003-04-01

    Occurrence of methane hydrates in the Nankai Trough, located off the south-eastern coast of Japan, was confirmed by the exploratory test well drilling conducted by Japan’s Ministry of International Trade and Industry in 1999. Confirmation of methane hydrate has given so big impact to the Japan's future energy strategy and scientific and technological interest was derived from the information of the coring and logging results at the well. Following the above results, Japan National Oil Corporation (JNOC) launched the national project, named as MH21, for establishing the technology of methane hydrate exploration and related technologies such as production and development. As one of the research project for evaluating the total amount of the methane hydrate, Amplitude versus Offset (AVO) was applied to the seismic data acquired in the Nankai Trough area. The main purpose of the AVO application is to evaluate the validity of delineation of methane hydrate-bearing zones. Since methane hydrate is thought to accompany with free-gas in general just below the methane hydrate-bearing zones, the AVO has a possibility of describing the presence of free-gas. The free-gas is thought to be located just below the base of methane hydrate stability zone which is characterized by the Bottom Simulating Reflectors (BSRs) on the seismic section. In this sense, AVO technology, which was developed as gas delineation tools, can be utilized for methane hydrate exploration. The result of AVO analysis clearly shows gas-related anomaly below the BSRs. Appearance of the AVO anomaly has so wide variety. Some of the anomalies might not correspond to the free-gas existence, however, some of them may show free-gas. We are now going to develop methodology to clearly discriminate free-gas from non-gas zone by integrating various types of seismic methods such as seismic inversion and seismic attribute analysis.

  5. Evaluation of Type I cement sorbent slurries in the U.C. pilot spray dryer facility. Final report, November 1, 1994--February 28, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keener, T.C.; Khang, S.J.

    1996-07-31

    This research was focused on evaluating hydrated cement sorbents in the U. C. pilot spray dryer. The main goal of this work was to determine the hydration conditions resulting in reactive hydrated cement sorbents. Hydration of cement was achieved by stirring or by grinding in a ball mill at either room temperature or elevated temperatures. Also, the effects of several additives were studied. Additives investigated include calcium chloride, natural diatomite, calcined diatomaceous earth, and fumed silica. The performance of these sorbents was compared with conventional slaked lime. Further, the specific surface area and pore volume of the dried SDA sorbentsmore » were measured and compared to reactivity. Bench-scale tests were performed to obtain a more detailed picture of the development of the aforementioned physical properties as a function of hydration time.« less

  6. [Progress in Raman spectroscopic measurement of methane hydrate].

    PubMed

    Xu, Feng; Zhu, Li-hua; Wu, Qiang; Xu, Long-jun

    2009-09-01

    Complex thermodynamics and kinetics problems are involved in the methane hydrate formation and decomposition, and these problems are crucial to understanding the mechanisms of hydrate formation and hydrate decomposition. However, it was difficult to accurately obtain such information due to the difficulty of measurement since methane hydrate is only stable under low temperature and high pressure condition, and until recent years, methane hydrate has been measured in situ using Raman spectroscopy. Raman spectroscopy, a non-destructive and non-invasive technique, is used to study vibrational modes of molecules. Studies of methane hydrate using Raman spectroscopy have been developed over the last decade. The Raman spectra of CH4 in vapor phase and in hydrate phase are presented in this paper. The progress in the research on methane hydrate formation thermodynamics, formation kinetics, decomposition kinetics and decomposition mechanism based on Raman spectroscopic measurements in the laboratory and deep sea are reviewed. Formation thermodynamic studies, including in situ observation of formation condition of methane hydrate, analysis of structure, and determination of hydrate cage occupancy and hydration numbers by using Raman spectroscopy, are emphasized. In the aspect of formation kinetics, research on variation in hydrate cage amount and methane concentration in water during the growth of hydrate using Raman spectroscopy is also introduced. For the methane hydrate decomposition, the investigation associated with decomposition mechanism, the mutative law of cage occupancy ratio and the formulation of decomposition rate in porous media are described. The important aspects for future hydrate research based on Raman spectroscopy are discussed.

  7. Gene expression changes in diapause or quiescent potato cyst nematode, Globodera pallida, eggs after hydration or exposure to tomato root diffusate

    PubMed Central

    Hedley, Pete; Cock, Peter J.A.; Morris, Jenny A.; Jones, John T.; Blok, Vivian C.

    2016-01-01

    Plant-parasitic nematodes (PPN) need to be adapted to survive in the absence of a suitable host or in hostile environmental conditions. Various forms of developmental arrest including hatching inhibition and dauer stages are used by PPN in order to survive these conditions and spread to other areas. Potato cyst nematodes (PCN) (Globodera pallida and G. rostochiensis) are frequently in an anhydrobiotic state, with unhatched nematode persisting for extended periods of time inside the cyst in the absence of the host. This paper shows fundamental changes in the response of quiescent and diapaused eggs of G. pallida to hydration and following exposure to tomato root diffusate (RD) using microarray gene expression analysis encompassing a broad set of genes. For the quiescent eggs, 547 genes showed differential expression following hydration vs. hydratation and RD (H-RD) treatment whereas 708 genes showed differential regulation for the diapaused eggs following these treatments. The comparison between hydrated quiescent and diapaused eggs showed marked differences, with 2,380 genes that were differentially regulated compared with 987 genes following H-RD. Hydrated quiescent and diapaused eggs were markedly different indicating differences in adaptation for long-term survival. Transport activity is highly up-regulated following H-RD and few genes were coincident between both kinds of eggs. With the quiescent eggs, the majority of genes were related to ion transport (mainly sodium), while the diapaused eggs showed a major diversity of transporters (amino acid transport, ion transport, acetylcholine or other molecules). PMID:26870612

  8. Gene expression changes in diapause or quiescent potato cyst nematode, Globodera pallida, eggs after hydration or exposure to tomato root diffusate.

    PubMed

    Palomares-Rius, Juan Emilio; Hedley, Pete; Cock, Peter J A; Morris, Jenny A; Jones, John T; Blok, Vivian C

    2016-01-01

    Plant-parasitic nematodes (PPN) need to be adapted to survive in the absence of a suitable host or in hostile environmental conditions. Various forms of developmental arrest including hatching inhibition and dauer stages are used by PPN in order to survive these conditions and spread to other areas. Potato cyst nematodes (PCN) (Globodera pallida and G. rostochiensis) are frequently in an anhydrobiotic state, with unhatched nematode persisting for extended periods of time inside the cyst in the absence of the host. This paper shows fundamental changes in the response of quiescent and diapaused eggs of G. pallida to hydration and following exposure to tomato root diffusate (RD) using microarray gene expression analysis encompassing a broad set of genes. For the quiescent eggs, 547 genes showed differential expression following hydration vs. hydratation and RD (H-RD) treatment whereas 708 genes showed differential regulation for the diapaused eggs following these treatments. The comparison between hydrated quiescent and diapaused eggs showed marked differences, with 2,380 genes that were differentially regulated compared with 987 genes following H-RD. Hydrated quiescent and diapaused eggs were markedly different indicating differences in adaptation for long-term survival. Transport activity is highly up-regulated following H-RD and few genes were coincident between both kinds of eggs. With the quiescent eggs, the majority of genes were related to ion transport (mainly sodium), while the diapaused eggs showed a major diversity of transporters (amino acid transport, ion transport, acetylcholine or other molecules).

  9. Supramolecular Organization of Nonstoichiometric Drug Hydrates: Dapsone

    PubMed Central

    Braun, Doris E.; Griesser, Ulrich J.

    2018-01-01

    The observed moisture- and temperature dependent transformations of the dapsone (4,4′-diaminodiphenyl sulfone, DDS) 0. 33-hydrate were correlated to its structure and the number and strength of the water-DDS intermolecular interactions. A combination of characterization techniques was used, including thermal analysis (hot-stage microscopy, differential scanning calorimetry and thermogravimetric analysis), gravimetric moisture sorption/desorption studies and variable humidity powder X-ray diffraction, along with computational modeling (crystal structure prediction and pair-wise intermolecular energy calculations). Depending on the relative humidity the hydrate contains between 0 and 0.33 molecules of water per molecule DDS. The crystal structure is retained upon dehydration indicating that DDS hydrate shows a non-stoichiometric (de)hydration behavior. Unexpectedly, the water molecules are not located in structural channels but at isolated-sites of the host framework, which is counterintuitively for a hydrate with non-stoichiometric behavior. The water-DDS interactions were estimated to be weaker than water-host interactions that are commonly observed in stoichiometric hydrates and the lattice energies of the isomorphic dehydration product (hydrate structure without water molecules) and (form III) differ only by ~1 kJ mol−1. The computational generation of hypothetical monohydrates confirms that the hydrate with the unusual DDS:water ratio of 3:1 is more stable than a feasible monohydrate structure. Overall, this study highlights that a deeper understanding of the formation of hydrates with non-stoichiometric behavior requires a multidisciplinary approach including suitable experimental and computational methods providing a firm basis for the development and manufacturing of high quality drug products. PMID:29520359

  10. Analysis of Mineral Assemblages Containing Unstable Hydrous Phases

    NASA Astrophysics Data System (ADS)

    Vaniman, D. T.; Wilson, S. A.; Bish, D. L.; Chipera, S.

    2011-12-01

    Minerals in many environments can be treated as durable phases that preserve a record of their formation. However many minerals, especially those with hydrogen-bonded H2O molecules as part of their structure, are ephemeral and are unlikely to survive disturbance let alone removal from their environment of formation. Minerals with exceptionally limited stability such as meridianiite (Mg-sulfate 11 hydrate), ikaite (Ca-carbonate 6 hydrate), and mirabilite (Na-sulfate 10 hydrate) are very susceptible to destabilization during analysis, and even modest changes in temperature or relative humidity can lead to change in hydration state or deliquescence. The result may be not only loss of the salt hydrate but dissolution of other salts present, precipitation of new phases, and ion exchange between the concentrated solution and otherwise unaffected phases. Exchange of H2O molecules can also occur in solid-vapor systems without any liquid involvement; moreover, recent work has shown that cation exchange between smectite and sulfate hydrates can occur without any liquid phase present other than a presumed thin film at the salt-silicate interface. Among hydrous silicates, clay minerals are susceptible to cation exchange and similar alteration can be expected for zeolites, palagonite, and possibly other hydrous silicate alteration products. Environmentally sensitive phases on Mars, such as meridianiite, may occur at higher latitudes or in the subsurface where permafrost may be present. Accurate determination of the presence and paragenesis of such minerals will be important for understanding the near-surface hydrogeology of Mars, and in situ analysis may be the only way to obtain this information. Access to the subsurface may be required, yet the act of exposure by excavation or drilling can itself lead to rapid degradation as the sample is exposed or brought to the surface for analysis. Mars is not the only body with which to be concerned, for similar concerns can be raised for sampling cold-environment deposits at the lunar poles, at the poles of Mercury, on icy satellites, and on many other bodies that may host hydrous minerals. The problem of adequate in situ analysis of such mutable assemblages extends to Earth as well, for example in the need for improved understanding of polar and permafrost regions, deep sea clathrates, cave minerals, and mine dump efflorescence. Advanced methods of in situ analysis are needed, including but not limited to contact instruments and instrumentation that can be inserted by probe or operated within a borehole that could be advanced with minimal thermal disturbance. One of the lessons of robotic analysis is that field instruments, which by necessity are less capable than laboratory equivalents, provide greatly improved interpretations if data from several different instruments can be compared.

  11. Mineralogical Study of Hydrated IDPs: X-Ray Diffraction and Transmission Electron Microscopy

    NASA Technical Reports Server (NTRS)

    Nakamura, K.; Keller, L. P.; Nakamura, T.; Noguchi, T.; Zolensky, M. E.

    2004-01-01

    Chondritic hydrated interplanetary dust particles (IDPs) comprise up to 50% of all IDPs collected in the stratosphere [1]. Hydrated IDPs are generally believed to be derived from asteroidal sources that have undergone aqueous alteration. However, the high C contents of hydrated IDPs (by 2 to 6X CI levels [2,3]) indicate that they are probably not derived from the same parent bodies sampled by the known chondritic meteorites. Some hydrated IDPs exhibit large deuterium enrichments [4] similar to those observed in anhydrous IDPs. Both anhydrous and hydrated IDPs contain a variety of anhydrous minerals such as silicates, sulfides, oxides, and carbonates. Controversies on hydrated IDPs still exist regarding their formation, history, and relationship to other primitive solar system materials, because of the lack of a systematic series of analysis on individual hydrated IDPs. In this study, we combine our observations of the bulk mineralogy, mineral/ organic chemistry in order to derive a more complete picture of hydrated IDPs.

  12. Reconsideration on Hydration of Sodium Ion: From Micro-Hydration to Bulk Hydration

    NASA Astrophysics Data System (ADS)

    Yongquan, Zhou; Chunhui, Fang; Yan, Fang; Fayan, Zhu; Haiwen, Ge; Hongyan, Liu

    2017-12-01

    Micro hydration structures of the sodium ion, [Na(H2O) n ]+, n = 1-12, were probed by density functional theory (DFT) at B3LYP/aug-cc-pVDZ level in both gaseous and aqueous phase. The predicted equilibrium sodium-oxygen distance of 0.240 nm at the present level of theory. The four-, five- and six-coordinated cluster can transform from each other at the ambient condition. The analysis of the successive water binding energy and natural charge population (NBO) on Na+ clearly shows that the influence of Na+ on the surrounding water molecules goes beyond the first hydration shell with the hydration number of 6. The Car-Parrinello molecular dynamic simulation shows that only the first hydration sphere can be found, and the hydration number of Na+ is 5.2 and the hydration distance ( r Na-O) is 0.235 nm. All our simulations mentioned in the present paper show an excellent agreement with the diffraction result from X-ray scattering study.

  13. Sivelestat sodium hydrate improves post-traumatic knee osteoarthritis through nuclear factor-κB in a rat model.

    PubMed

    Yu, Xiaofeng; Zhao, Lijun; Yu, Zhiping; Yu, Changzheng; Bi, Jianfei; Sun, Binglong; Cong, Haibo

    2017-08-01

    As a specific inhibitor of neutrophil elastase, sivelestat sodium hydrate has primarily been used in the treatment of acute lung injury caused by various factors since its approval in 2002. Sivelestat sodium hydrate also improves post-traumatic knee osteoarthritis (KOA), although its underlying mechanisms of action have yet to be elucidated. The aim of the current study was to determine if sivelestat sodium hydrate improves post-traumatic KOA through nuclear factor (NF)-κB in a rat model. Treatment with sivelestat sodium hydrate significantly inhibited the induction of structural changes and significantly increased the vertical episode count and ipsilateral static weight bearing of the joint in KOA rats (all P<0.01). Sivelestat sodium hydrate significantly inhibited tumor necrosis factor-α and interleukin-6 production, serum nitrite levels, inducible nitric oxide synthase protein expression and high mobility group box 1 (HMGB1) secretion in KOA rats compared with the model group (all P<0.01). Sivelestat sodium hydrate also significantly suppressed p50/p65 DNA binding activity and NF-κB and phosphorylated inhibitor of κB protein expression in the joints of KOA rats compared with the model group (all P<0.01). These results suggest that sivelestat sodium hydrate improves post-traumatic KOA through HMGB1 and NF-κB in rats.

  14. Sivelestat sodium hydrate improves post-traumatic knee osteoarthritis through nuclear factor-κB in a rat model

    PubMed Central

    Yu, Xiaofeng; Zhao, Lijun; Yu, Zhiping; Yu, Changzheng; Bi, Jianfei; Sun, Binglong; Cong, Haibo

    2017-01-01

    As a specific inhibitor of neutrophil elastase, sivelestat sodium hydrate has primarily been used in the treatment of acute lung injury caused by various factors since its approval in 2002. Sivelestat sodium hydrate also improves post-traumatic knee osteoarthritis (KOA), although its underlying mechanisms of action have yet to be elucidated. The aim of the current study was to determine if sivelestat sodium hydrate improves post-traumatic KOA through nuclear factor (NF)-κB in a rat model. Treatment with sivelestat sodium hydrate significantly inhibited the induction of structural changes and significantly increased the vertical episode count and ipsilateral static weight bearing of the joint in KOA rats (all P<0.01). Sivelestat sodium hydrate significantly inhibited tumor necrosis factor-α and interleukin-6 production, serum nitrite levels, inducible nitric oxide synthase protein expression and high mobility group box 1 (HMGB1) secretion in KOA rats compared with the model group (all P<0.01). Sivelestat sodium hydrate also significantly suppressed p50/p65 DNA binding activity and NF-κB and phosphorylated inhibitor of κB protein expression in the joints of KOA rats compared with the model group (all P<0.01). These results suggest that sivelestat sodium hydrate improves post-traumatic KOA through HMGB1 and NF-κB in rats. PMID:28810618

  15. Hydration behaviour of food grains and modelling their moisture pick up as per Peleg's equation: Part I. Cereals.

    PubMed

    Vasudeva, Singh; Vishwanathan, K H; Aswathanarayana, K N; Indhudhara Swamy, Y M

    2010-01-01

    Cereals and millets generally hydrate at a moderate rate and their hydration behaviour differs in native and in processed state. The study was on the hydration of paddy, milled rice, parboiled rice, wheat, millets and equilibrium moisture content (EMC) on soaking at room temperature. Paddy hydrated very slowly, hydration rate was slow in brown rice but fast in milled rice and highest in waxy rice. In most of the rice varieties, maximum absorption occurred at the end of 30 min. In wheat hydration rate was slow and its EMC was highest (43%). Maize grits of big size hydrated slowly compared to small grits. In coarse cereals EMC varied from 28 to 38%. Foxtail millet hydration was slow whereas that of finger millet was fast. The data were tested on the Peleg's equation, which gave a reasonable fit to experimental data. Peleg's constants k1 and k2 were calculated for the above grains and their hydration behaviour has been predicted. The model fitted very well to milled rice hydration data where the coefficient of variance ranged from 0.9982 to 0.9995. With exception in some millet the hydration data fitted well with the Peleg's equation. Generalized equations have been formulated for prediction of moisture content of cereals and millets.

  16. Comparison of Intermolecular Forces in Anhydrous Sorbitol and Solvent Cocrystals.

    PubMed

    Dierks, Teresa M; Korter, Timothy M

    2017-08-03

    The hygroscopicity of solid sorbitol is important for its utilization as a sweetener in the pharmaceutical and food industries. The molecular foundations of sorbitol hydration characteristics are explored here using two solvated cocrystals, sorbitol-water and sorbitol-pyridine. In this work, solid-state density functional theory and terahertz time-domain spectroscopy were used to evaluate the relative stabilities of these cocrystals as compared to anhydrous sorbitol in terms of conformational and cohesive energies. The modification of the hydrogen-bonding network in crystalline sorbitol by solvent molecules gives new insight into the origins of the notable stability of sorbitol-water as compared to similar solids such as mannitol-water. In particular, the energy analysis reveals that the relative instability of the mannitol hydrate is based primarily in the lack of water-water interactions which provide considerable stabilization in the sorbitol-water crystal.

  17. Evaluation of novel reactive MgO activated slag binder for the immobilisation of lead and zinc.

    PubMed

    Jin, Fei; Al-Tabbaa, Abir

    2014-12-01

    Although Portland cement is the most widely used binder in the stabilisation/solidification (S/S) processes, slag-based binders have gained significant attention recently due to their economic and environmental merits. In the present study, a novel binder, reactive MgO activated slag, is compared with hydrated lime activated slag in the immobilisation of lead and zinc. A series of lead or zinc-doped pastes and mortars were prepared with metal to binder ratio from 0.25% to 1%. The hydration products and microstructure were studied by X-ray diffraction, thermogravimetric analysis and scanning electron microscopy. The major hydration products were calcium silicate hydrate and hydrotalcite-like phases. The unconfined compressive strength was measured up to 160 d. Findings show that lead had a slight influence on the strength of MgO-slag paste while zinc reduced the strength significantly as its concentration increased. Leachate results using the TCLP tests revealed that the immobilisation degree was dependent on the pH and reactive MgO activated slag showed an increased pH buffering capacity, and thus improved the immobilisation efficiency compared to lime activated slag. It was proposed that zinc was mainly immobilised within the structure of the hydrotalcite-like phases or in the form of calcium zincate, while lead was primarily precipitated as the hydroxide. It is concluded, therefore, that reactive MgO activated slag can serve as clinker-free alternative binder in the S/S process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Seismic- and well-log-inferred gas hydrate accumulations on Richards Island

    USGS Publications Warehouse

    Collett, T.S.

    1999-01-01

    The gas hydrate stability zone is areally extensive beneath most of the Mackenzie Delta-Beaufort Sea region, with the base of the gas hydrate stability zone more than 1000 m deep on Richards Island. In this study, gas hydrate has been inferred to occur in nine Richards Island exploratory wells on the basis of well-log responses calibrated to the response of the logs within the cored gas-hydrate-bearing intervals of the JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well. The integration of the available well-log data with more than 240 km of industry-acquired reflection seismic data have allowed us to map the occurrence of four significant gas hydrate and associated free-gas accumulations in the Ivik-Mallik-Taglu area on Richards Island. The occurrence of gas hydrate on Richards Island is mostly restricted to the crest of large anticlinal features that cut across the base of the gas hydrate stability zone. Combined seismic and well-log data analysis indicate that the known and inferred gas hydrate accumulations on Richards Island may contain as much as 187 178106 m3 of gas.

  19. A Double-Blind, Randomised Study Comparing the Skin Hydration and Acceptability of Two Emollient Products in Atopic Eczema Patients with Dry Skin.

    PubMed

    Djokic-Gallagher, Jasmina; Rosher, Phil; Oliveira, Gabriela; Walker, Jennine

    2017-09-01

    Healthcare professionals tend to recommend emollients based primarily on patient/consumer preference and cost, with cheaper options assumed to be therapeutically equivalent. The aim of this study was therefore to compare the effects on skin hydration of two emollients prescribed in the UK, Doublebase Dayleve™ gel (DELP) and a cheaper alternative, Zerobase Emollient™ cream (ZBC). This was a single-centre, randomised, double-blind, concurrent bi-lateral (within-patient) comparison in 18 females with atopic eczema and dry skin on their lower legs. DELP gel and ZBC cream were each applied to one lower leg twice daily for 4 days and on the morning only on day 5. The efficacy of both products was assessed by hydration measurements using a Corneometer CM825 probe (Courage-Khazaka Electronic). The measurements were made three times daily on days 1 to 5. The primary efficacy variable was the area under the curve (AUC) of the change from baseline corneometer readings over the 5 days. Skin hydration using DELP gel was significantly higher than using ZBC cream (p < 0.0001). The cumulative increase in skin hydration observed for DELP gel was substantial and long lasting. In contrast, for ZBC cream, there was no significant improvement of the cumulative skin hydration as measured by the AUC (p = 0.22). DELP gel achieved substantial, long-lasting and cumulative skin hydration, whilst ZBC cream achieved no measurable improvement in skin hydration compared to before treatment. Healthcare professionals should be aware that different emollients can perform differently. Dermal Laboratories Ltd. EudraCT number:2014-001026-16.

  20. Dehydration-induced amorphous phases of calcium carbonate.

    PubMed

    Saharay, Moumita; Yazaydin, A Ozgur; Kirkpatrick, R James

    2013-03-28

    Amorphous calcium carbonate (ACC) is a critical transient phase in the inorganic precipitation of CaCO3 and in biomineralization. The calcium carbonate crystallization pathway is thought to involve dehydration of more hydrated ACC to less hydrated ACC followed by the formation of anhydrous ACC. We present here computational studies of the transition of a hydrated ACC with a H2O/CaCO3 ratio of 1.0 to anhydrous ACC. During dehydration, ACC undergoes reorganization to a more ordered structure with a significant increase in density. The computed density of anhydrous ACC is similar to that of calcite, the stable crystalline phase. Compared to the crystalline CaCO3 phases, calcite, vaterite, and aragonite, the computed local structure of anhydrous ACC is most-similar to those of calcite and vaterite, but the overall structure is not well described by either. The strong hydrogen bond interaction between the carbonate ions and water molecules plays a crucial role in stabilizing the less hydrated ACC compositions compared to the more hydrated ones, leading to a progressively increasing hydration energy with decreasing water content.

  1. DSC investigation of bovine hide collagen at varying degrees of crosslinking and humidities.

    PubMed

    Schroepfer, Michaela; Meyer, Michael

    2017-10-01

    Bovine hide collagen (nonCLC; non-CrossLinked Collagen) was analysed by differential scanning calorimetry (DSC) at different hydration degrees and compared with hide collagen samples crosslinked with glutaraldehyde (CLC-GA) and chromium(III) ions (CLC-Cr), respectively. Crosslinking and drying were confirmed to increase the denaturation temperature. Different regions were assigned, that reflect the variation of the influence of water on the denaturation temperature. Furthermore, at moderate hydration degrees, the enthalpies of non-crosslinked collagen increase compared to the fully hydrated state. This reflects a glue-like action of water in the range of 25% hydration. Crosslinking of bovine hide collagen decreases the enthalpy by 25% in the fully hydrated state, even at very low levels of crosslinking This can be explained by intensive effects of the crosslinking agent on the hydration network of the collagen molecules, assuming that the enthalpies are principally a result of hydrogen bonding. At very low water contents DSC peaks of CLC-Cr completely disappear. This could be explained by competition between hydroxosulfochromate(III) complexes and collagen for water. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Final Scientific/Technical Report of Gas Hydrate Dynamics on the Alaskan Beaufort Continental Slope: Modeling and Field Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hornbach, Matthew J; Colwell, Frederick S; Harris, Robert

    Methane Hydrates, a solid form of methane and water, exist at high pressures and low temperatures, occurs on every continental margin on Earth, represents one of the largest reservoirs of carbon on the planet, and, if destabilized, may play an important role in both slope stability and climate change. For decades, researchers have studied methane hydrates with the hope of determining if methane hydrates are destabilizing, and if so, how this destabilization might impact slope stability and ocean/atmosphere carbon budgets. In the past ~5 years, it has become well established that the upper “feather-edge” of methane hydrate stability (intermediate watermore » depths of ~200-500 meters below sea level) represents an important frontier for methane hydrates stability research, as this zone is most susceptible to destabilization due to minor fluctuations in ocean temperature in space and time. The Arctic Ocean—one of the fastest warming regions on Earth—is perhaps the best place to study possible changes to methane hydrate stability due to ocean warming. To address the stability of methane hydrates at intermediate ocean depths, Southern Methodist University in partnership with Oregon State University and The United State Geological Survey at Woods Hole began investigating methane hydrate stability in intermediate water depths below both the US Beaufort Sea and the Atlantic Margin, from 2012-2017. The work was funded by the Department of Energy’s (DOE) National Energy Technology Laboratory (NETL). The key goal of the SMU component of this study was to collect the first ever heat flow data in the Beaufort Sea and compare measured shallow (probe-based1) heat flow values with deeper (BSR-derived2) heat flow values, and from this, determine whether hydrates were in thermal equilibrium. In September 2016, SMU/OSU collected the first ever heat flow measurements in the US Beaufort Sea. Despite poor weather and rough seas, the cruise was a success, with 116 heat flow measurements acquired across the margin, spanning 4 transects separated by more than 400 km. Useable heat flow data exists for 97% (113) of probe heat flow measurements, revealing a clear picture of regional heat flow across the basin. During the past 8 months since the cruise, SMU researchers have processed the heat flow and thermal conductivity measurements and compared results to deeper heat flow estimates obtained from seismic data. The analysis reveals clear, consistent trends: All probe heat flow measurements in depths greater than 800 mbsl are consistent with BSR-derived values; heat flow measurements obtained in water depths between ~250-750 mbsl are systematically lower than those estimated from BSRs; and heat flow estimates in water depths shallower than ~250 mbsl are systematically warmer than deeper estimates. The consistency between shallow (probe) and deep (BSR) heat flow measurements at depths greater than ~750 m where ocean temperature changes are minimal supports the premise that the hydrates consist primarily of methane and represent a valuable tool for estimating heat flow. The anomalous cooling trend observed in the upper 250 m is consistent with expected seasonal effects observed in shallow ocean buoy measurements in the arctic, when cold, less dense melting sea ice cools the upper 200 m of the ocean during the summer as ice melting occurs. The discrepancy in heat flow at intermediate water depths is best explained via recent intermediate ocean temperature warming, where long-term (annual or longer) warming intermediate ocean bottom waters result in an anomalously low heat flow in shallow heat flow measurements. Using the characteristic 1D time-length scale for diffusion, we estimate that ocean temperature warming began no later than ~1200 years ago but arguably much more recently as results are limited by seismic resolution. More importantly, our analysis indicates methane hydrate is destabilizing not only in the upper feather edge (200-500 mbsl) but at depths as great as 750 mbsl. The intermediate ocean warming rate supports previous studies suggesting geologically rapid warming (>0.1 deg C/decade) at intermediate ocean depths in the Beaufort Sea. Assuming no further changes or additional warming, our analysis indicates methane hydrates will destabilize at seafloor depths shallower than 750 mbsl in the Beaufort Sea within the next ~3000 years. 1 Probe outfitted with sensors inserted into the seafloor sediment 2 Bottom-simulating reflector (BSR) seismic data indicates presence of hydrate deposits« less

  3. Geometry of modified release formulations during dissolution--influence on performance of dosage forms with diclofenac sodium.

    PubMed

    Dorożyński, Przemysław; Kulinowski, Piotr; Jamróz, Witold; Juszczyk, Ewelina

    2014-12-30

    The objectives of the work included: presentation of magnetic resonance imaging (MRI) and fractal analysis based approach to comparison of dosage forms of different composition, structure, and assessment of the influence of the compositional factors i.e., matrix type, excipients etc., on properties and performance of the dosage form during drug dissolution. The work presents the first attempt to compare MRI data obtained for tablet formulations of different composition and characterized by distinct differences in hydration and drug dissolution mechanisms. The main difficulty, in such a case stems from differences in hydration behavior and tablet's geometry i.e., swelling, cracking, capping etc. A novel approach to characterization of matrix systems i.e., quantification of changes of geometrical complexity of the matrix shape during drug dissolution has been developed. Using three chosen commercial modified release tablet formulations with diclofenac sodium we present the method of parameterization of their geometrical complexity on the base of fractal analysis. The main result of the study is the correlation between the hydrating tablet behavior and drug dissolution - the increase of geometrical complexity expressed as fractal dimension relates to the increased variability of drug dissolution results. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Hydromechanics in dentine: role of dentinal tubules and hydrostatic pressure on mechanical stress-strain distribution.

    PubMed

    Kishen, A; Vedantam, S

    2007-10-01

    This investigation is to understand the role of free water in the dentinal tubules on the mechanical integrity of bulk dentine. Three different experiments were conducted in this study. In experiment 1, three-dimensional models of dentine with gradient elastic modulus, homogenous elastic modulus, and with and without hydrostatic pressure were simulated using the finite element method. Static compressive loads of 15, 50 and 100 N were applied and the distribution of the principal stresses, von Mises stresses, and strains in loading direction were determined. In experiment 2, experimental compression testing of fully hydrated and partially dehydrated dentine (21 degrees C for 72 h) was conducted using a Universal testing machine. In experiment 3, Fourier transform infrared spectroscopic analysis of hydrated and partially dehydrated dentine was carried out. The finite element analysis revealed that the dentine model with simulated hydrostatic pressure displayed residual tensile stresses and strains in the inner region adjacent to the root canal. When external compressive loads were applied to the model, the residual stresses and strains counteracted the applied loads. Similarly the hydrated specimens subjected to experimental compression loads showed greater toughness when compared to the partially dehydrated specimens. The stress at fracture was significantly higher in partially dehydrated specimens (p=0.014), while the strain at fracture was significantly higher in hydrated dentine specimens (p=0.037). These experiments highlighted the distinct role of free water in the dentinal tubules and hydrostatic pressure on the stress-strain distribution within the bulk dentine.

  5. Effect of hydration on spontaneous labor outcomes in nulliparous pregnant women: a multicenter randomized controlled trial comparing three methods.

    PubMed

    Edwards, Rodney K; Reed, Christine A; Villano, Kathryn S; Holmes, Jennifer L; Tong, Suhong; Davies, Jill K

    2014-06-01

    To evaluate the effect of mode and amount of fluid hydration during labor. The authors conducted a randomized controlled trial of uncomplicated nulliparous women in spontaneous labor at 36 weeks or more gestational age. Women were randomized to receive lactated Ringer solution with 5% dextrose at (1) 125 mL/h intravenously with limited oral intake, (2) 250 mL/h intravenously with limited oral intake, or (3) 25 mL/h intravenously with ad libitum oral intake of clear liquids. Results were analyzed by intent-to-treat analysis. A total of 311 out of 324 women were available for analysis. Groups 1 (n = 105), 2 (n = 105), and 3 (n = 101) above did not differ significantly for mean labor duration (11.6 ± 5.9, 11.4 ± 5.5, and 11.5 ± 5.9 hours, respectively; p = 0.998), proportion of women in labor > 12 hours (all groups 41%; p = 0.998), proportion receiving oxytocin augmentation (59, 60, and 57%, respectively; p = 0.923), or proportion delivered by cesarean (22, 17, and 17%, respectively; p = 0.309). Indications for cesarean were similar between groups. No cases of pulmonary edema, maternal aspiration, or perinatal mortality occurred. Although apparently safe, neither increased intravenous hydration nor oral hydration during labor improves labor performance. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  6. Comparison of skin hydration in combination and single use of common moisturizers (cream, toner, and spray water).

    PubMed

    Yuanxi, Li; Wei, Hua; Lidan, Xiiong; Li, Li

    2016-01-01

    This study aims to assess the moisturization in combination or single use (including seven general applications) of three common moisturizers: cream, toner, and spray water. Groups were set as C: cream only; T: toner only; C+T, T+C: cream or toner applied successively within a few minutes; C-T, C-S: cream applied with repeated toner or spray water every 2 h; T-T: toner applied with repeated toner every 2 h; and N: untreated group. Outcomes were the change in skin hydration from baseline at 2, 4, 6, and 8 h after applications. All treated zones displayed a significantly higher degree of hydration compared with the untreated zone ( p < 0.05). For normal skin (hydration value at baseline >35 a.u.), C-T led to greatest hydration change rate compared with others, followed by C+T, T+C, and C. Those three applications exhibited analogous hydration at each test point ( p > 0.05). The hydration rate of C-S differed slightly from T-T, followed by those four mentioned above, with T being the last. For dry skin (hydration value at baseline <35 a.u.), no statistical significance could be detected between C-T zone and C+T, T+C, and C zones ( p > 0.05), the other results were identical. When cream and toner were applied successively, the application order has little effect on skin hydration. The application of cream only was an effective and brief way to achieve favorable moisturization especially for dry skin. As a complement, repeated application of toner rather than spray water is efficacious for skin hydration.

  7. Numerical Simulations for Enhanced Methane Recovery from Gas Hydrate Accumulations by Utilizing CO2 Sequestration

    NASA Astrophysics Data System (ADS)

    Sridhara, Prathyusha

    In 2013, the International Energy Outlook (EIA, 2013) projected that global energy demand will grow by 56% between 2010 and 2040. Despite strong growth in renewable energy supplies, much of this growth is expected to be met by fossil fuels. Concerns ranging from greenhouse gas emissions and energy security are spawning new interests for other sources of energy including renewable and unconventional fossil fuel such as shale gas and oil as well as gas hydrates. The production methods as well as long-term reservoir behavior of gas hydrate deposits have been under extensive investigation. Reservoir simulators can be used to predict the production potentials of hydrate formations and to determine which technique results in enhanced gas recovery. In this work, a new simulation tool, Mix3HydrateResSim (Mix3HRS), which accounts for complex thermodynamics of multi-component hydrate phase comprised of varying hydrate solid crystal structure, is used to perform the CO2-assisted production technique simulations from CH4 hydrate accumulations. The simulator is one among very few reservoir simulators which can simulate the process of CH4 substitution by CO2 (and N2 ) in the hydrate lattice. Natural gas hydrate deposits around the globe are categorized into three different classes based on the characteristics of the geological sediments present in contact with the hydrate bearing deposits. Amongst these, the Class 2 hydrate accumulations predominantly confirmed in the permafrost and along seashore, are characterized by a mobile aqueous phase underneath a hydrate bearing sediment. The exploitation of such gas hydrate deposits results in release of large amounts of water due to the presence of permeable water-saturated sediments encompassing the hydrate deposits, thus lowering the produced gas rates. In this study, a suite of numerical simulation scenarios with varied complexity are considered which aimed at understanding the underlying changes in physical, thermodynamic and transport properties with change in pressure and temperature due to the presence of the simple CO2-hydrate and mixed hydrates (mainly CH4-CO2 hydrate and CH4 -CO2-N2 hydrate) in the porous geologic media. These simulations on CO2/ CH4-CO2 hydrate reservoirs provided a basic insight to formulate and interpret a novel technological approach. This approach aims at prediction of enhanced gas production profiles from Class 2 hydrate accumulations by utilizing CO2 sequestration. The approach also offers a possibility to permanently store CO 2 in the geologic formation to a greater extent compared to a direct injection of CO2 into gas hydrate sediments. The production technique implies a three-stage approach using one vertical well design. In Stage I, the CO2 is injected into the underlying aquifer. In Stage II, the well is shut in and injected CO2 is allowed to be converted into immobile CO2 hydrate. Finally, during Stage III, decomposition of CH4 hydrate is induced by the depressurization method. The gas production potential is estimated over 15 years. The results reveal that methane production is increased together with simultaneous reduction of concomitant water production rate comparing to a conventional Class 2 reservoir production.

  8. Evaluation of long-term gas hydrate production testing locations on the Alaska north slope

    USGS Publications Warehouse

    Collett, T.S.; Boswell, R.; Lee, M.W.; Anderson, B.J.; Rose, K.; Lewis, K.A.

    2011-01-01

    The results of short duration formation tests in northern Alaska and Canada have further documented the energy resource potential of gas hydrates and justified the need for long-term gas hydrate production testing. Additional data acquisition and long-term production testing could improve the understanding of the response of naturally-occurring gas hydrate to depressurization-induced or thermal-, chemical-, and/or mechanical-stimulated dissociation of gas hydrate into producible gas. The Eileen gas hydrate accumulation located in the Greater Prudhoe Bay area in northern Alaska has become a focal point for gas hydrate geologic and production studies. BP Exploration (Alaska) Incorporated and ConocoPhillips have each established research partnerships with U.S. Department of Energy to assess the production potential of gas hydrates in northern Alaska. A critical goal of these efforts is to identify the most suitable site for production testing. A total of seven potential locations in the Prudhoe Bay, Kuparuk, and Milne Point production units were identified and assessed relative to their suitability as a long-term gas hydrate production test site. The test site assessment criteria included the analysis of the geologic risk associated with encountering reservoirs for gas hydrate testing. The site selection process also dealt with the assessment of the operational/logistical risk associated with each of the potential test sites. From this review, a site in the Prudhoe Bay production unit was determined to be the best location for extended gas hydrate production testing. The work presented in this report identifies the key features of the potential test site in the Greater Prudhoe Bay area, and provides new information on the nature of gas hydrate occurrence and potential impact of production testing on existing infrastructure at the most favorable sites. These data were obtained from well log analysis, geological correlation and mapping, and numerical simulation. Copyright 2011, Offshore Technology Conference.

  9. Evaluation of long-term gas hydrate production testing locations on the Alaska North Slope

    USGS Publications Warehouse

    Collett, Timothy; Boswell, Ray; Lee, Myung W.; Anderson, Brian J.; Rose, Kelly K.; Lewis, Kristen A.

    2011-01-01

    The results of short duration formation tests in northern Alaska and Canada have further documented the energy resource potential of gas hydrates and justified the need for long-term gas hydrate production testing. Additional data acquisition and long-term production testing could improve the understanding of the response of naturally-occurring gas hydrate to depressurization-induced or thermal-, chemical-, and/or mechanical-stimulated dissociation of gas hydrate into producible gas. The Eileen gas hydrate accumulation located in the Greater Prudhoe Bay area in northern Alaska has become a focal point for gas hydrate geologic and production studies. BP Exploration (Alaska) Incorporated and ConocoPhillips have each established research partnerships with U.S. Department of Energy to assess the production potential of gas hydrates in northern Alaska. A critical goal of these efforts is to identify the most suitable site for production testing. A total of seven potential locations in the Prudhoe Bay, Kuparuk, and Milne Point production units were identified and assessed relative to their suitability as a long-term gas hydrate production test site. The test site assessment criteria included the analysis of the geologic risk associated with encountering reservoirs for gas hydrate testing. The site selection process also dealt with the assessment of the operational/logistical risk associated with each of the potential test sites. From this review, a site in the Prudhoe Bay production unit was determined to be the best location for extended gas hydrate production testing. The work presented in this report identifies the key features of the potential test site in the Greater Prudhoe Bay area, and provides new information on the nature of gas hydrate occurrence and potential impact of production testing on existing infrastructure at the most favorable sites. These data were obtained from well log analysis, geological correlation and mapping, and numerical simulation.

  10. Isomers and energy landscapes of micro-hydrated sulfite and chlorate clusters

    NASA Astrophysics Data System (ADS)

    Hey, John C.; Doyle, Emily J.; Chen, Yuting; Johnston, Roy L.

    2018-03-01

    We present putative global minima for the micro-hydrated sulfite SO32-(H2O)N and chlorate ClO32(H2O)N systems in the range 3≤N≤15 found using basin-hopping global structure optimization with an empirical potential. We present a structural analysis of the hydration of a large number of minimized structures for hydrated sulfite and chlorate clusters in the range 3≤N≤50. We show that sulfite is a significantly stronger net acceptor of hydrogen bonding within water clusters than chlorate, completely suppressing the appearance of hydroxyl groups pointing out from the cluster surface (dangling OH bonds), in low-energy clusters. We also present a qualitative analysis of a highly explored energy landscape in the region of the global minimum of the eight water hydrated sulfite and chlorate systems. This article is part of the theme issue `Modern theoretical chemistry'.

  11. Isomers and energy landscapes of micro-hydrated sulfite and chlorate clusters.

    PubMed

    Hey, John C; Doyle, Emily J; Chen, Yuting; Johnston, Roy L

    2018-03-13

    We present putative global minima for the micro-hydrated sulfite SO 3 2- (H 2 O) N and chlorate ClO 3 - (H 2 O) N systems in the range 3≤ N ≤15 found using basin-hopping global structure optimization with an empirical potential. We present a structural analysis of the hydration of a large number of minimized structures for hydrated sulfite and chlorate clusters in the range 3≤ N ≤50. We show that sulfite is a significantly stronger net acceptor of hydrogen bonding within water clusters than chlorate, completely suppressing the appearance of hydroxyl groups pointing out from the cluster surface (dangling OH bonds), in low-energy clusters. We also present a qualitative analysis of a highly explored energy landscape in the region of the global minimum of the eight water hydrated sulfite and chlorate systems.This article is part of the theme issue 'Modern theoretical chemistry'. © 2018 The Authors.

  12. Methane hydrate induced permeability modification for multiphase flow in unsaturated porous media

    NASA Astrophysics Data System (ADS)

    Seol, Yongkoo; Kneafsey, Timothy J.

    2011-08-01

    An experimental study was performed using X-ray computed tomography (CT) scanning to capture three-dimensional (3-D) methane hydrate distributions and potential discrete flow pathways in a sand pack sample. A numerical study was also performed to develop and analyze empirical relations that describe the impacts of hydrate accumulation habits within pore space (e.g., pore filling or grain cementing) on multiphase fluid migration. In the experimental study, water was injected into a hydrate-bearing sand sample that was monitored using an X-ray CT scanner. The CT images were converted into numerical grid elements, providing intrinsic sample data including porosity and phase saturations. The impacts of hydrate accumulation were examined by adapting empirical relations into the flow simulations as additional relations governing the evolution of absolute permeability of hydrate bearing sediment with hydrate deposition. The impacts of pore space hydrate accumulation habits on fluid migration were examined by comparing numerical predictions with experimentally measured water saturation distributions and breakthrough curves. A model case with 3-D heterogeneous initial conditions (hydrate saturation, porosity, and water saturation) and pore body-preferred hydrate accumulations best captured water migration behavior through the hydrate-bearing sample observed in the experiment. In the best matching model, absolute permeability in the hydrate bearing sample does not decrease significantly with increasing hydrate saturation until hydrate saturation reaches about 40%, after which it drops rapidly, and complete blockage of flow through the sample can occur as hydrate accumulations approach 70%. The result highlights the importance of permeability modification due to hydrate accumulation habits when predicting multiphase flow through high-saturation, reservoir quality hydrate-bearing sediments.

  13. Identifying Hydrated Salts Using Simultaneous Thermogravimetric Analysis and Differential Scanning Calorimetry

    ERIC Educational Resources Information Center

    Harris, Jerry D.; Rusch, Aaron W.

    2013-01-01

    simultaneous thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) to characterize colorless, hydrated salts with anhydrous melting points less than 1100 degrees C. The experiment could be used to supplement the lecture discussing gravimetric techniques. It is…

  14. Examination of iodine status in the German population: an example for methodological pitfalls of the current approach of iodine status assessment.

    PubMed

    Johner, S A; Thamm, M; Schmitz, R; Remer, T

    2016-04-01

    Preliminary iodine concentration (UIC) measurements in spot urines of the representative German adult study DEGS indicated a severe worsening of iodine status compared to previous results in German children (KiGGS study). Therefore, we aimed to evaluate adult iodine status in detail and to investigate the impact of hydration status on UIC. UIC and creatinine concentrations were measured in 6978 spot urines from the German nationwide DEGS study (2008-2011). Twenty-four-hour iodine excretions (24-h UIE) were estimated by relating iodine/creatinine ratios to age- and sex-specific 24-h creatinine reference values. Urine osmolality was measured in two subsamples of spot urines (n = 100 each) to determine the impact of hydration status on UIC. In DEGS, median UIC was 69 µg/L in men and 54 µg/L in women, lying clearly below the WHO cutoff for iodine sufficiency (100 µg/L). Estimated median 24-h UIE was 113 µg/day, accompanied by 32 % of DEGS adults, lying below the estimated average requirement (EAR) for iodine. Comparative analysis with the KiGGS data (>14,000 spot urines of children; median UIC 117 µg/L) revealed a comparable percentage

  15. Water cavities of sH clathrate hydrate stabilized by molecular hydrogen.

    PubMed

    Strobel, Timothy A; Koh, Carolyn A; Sloan, E Dendy

    2008-02-21

    X-ray diffraction and Raman spectroscopic measurements confirm that molecular hydrogen can be contained within the small water cavities of a binary sH clathrate hydrate using large guest molecules that stabilize the large cavity. The potential increase in hydrogen storage could be more than 40% when compared with binary sII hydrates. This work demonstrates the stabilization of hydrogen in a hydrate structure previously unknown for encapsulating molecular hydrogen, indicating the potential for other inclusion compound materials with even greater hydrogen storage capabilities.

  16. Elastic velocity models for gas-hydrate-bearing sediments-a comparison

    NASA Astrophysics Data System (ADS)

    Chand, Shyam; Minshull, Tim A.; Gei, Davide; Carcione, José M.

    2004-11-01

    The presence of gas hydrate in oceanic sediments is mostly identified by bottom-simulating reflectors (BSRs), reflection events with reversed polarity following the trend of the seafloor. Attempts to quantify the amount of gas hydrate present in oceanic sediments have been based mainly on the presence or absence of a BSR and its relative amplitude. Recent studies have shown that a BSR is not a necessary criterion for the presence of gas hydrates, but rather its presence depends on the type of sediments and the in situ conditions. The influence of hydrate on the physical properties of sediments overlying the BSR is determined by the elastic properties of their constituents and on sediment microstructure. In this context several approaches have been developed to predict the physical properties of sediments, and thereby quantify the amount of gas/gas hydrate present from observed deviations of these properties from those predicted for sediments without gas hydrate. We tested four models: the empirical weighted equation (WE); the three-phase effective-medium theory (TPEM); the three-phase Biot theory (TPB) and the differential effective-medium theory (DEM). We compared these models for a range of variables (porosity and clay content) using standard values for physical parameters. The comparison shows that all the models predict sediment properties comparable to field values except for the WE model at lower porosities and the TPB model at higher porosities. The models differ in the variation of velocity with porosity and clay content. The variation of velocity with hydrate saturation is also different, although the range is similar. We have used these models to predict velocities for field data sets from sediment sections with and without gas hydrates. The first is from the Mallik 2L-38 well, Mackenzie Delta, Canada, and the second is from Ocean Drilling Program (ODP) Leg 164 on Blake Ridge. Both data sets have Vp and Vs information along with the composition and porosity of the matrix. Models are considered successful if predictions from both Vp and Vs match hydrate saturations inferred from other data. Three of the models predict consistent hydrate saturations of 60-80 per cent from both Vp and Vs from log and vertical seismic profiling data for the Mallik 2L-38 well data set, but the TPEM model predicts 20 per cent higher saturations, as does the DEM model with a clay-water starting medium. For the clay-rich sediments of Blake Ridge, the DEM, TPEM and WE models predict 10-20 per cent hydrate saturation from Vp data, comparable to that inferred from resistivity data. The hydrate saturation predicted by the TPB model from Vp is higher. Using Vs data, the DEM and TPEM models predict very low or zero hydrate saturation while the TPB and WE models predict hydrate saturation very much higher than those predicted from Vp data. Low hydrate saturations are observed to have little effect on Vs. The hydrate phase appears to be connected within the sediment microstructure even at low saturations.

  17. New hydrate formation methods in a liquid-gas medium

    NASA Astrophysics Data System (ADS)

    Chernov, A. A.; Pil'Nik, A. A.; Elistratov, D. S.; Mezentsev, I. V.; Meleshkin, A. V.; Bartashevich, M. V.; Vlasenko, M. G.

    2017-01-01

    Conceptually new methods of hydrate formation are proposed. The first one is based on the shock wave impact on a water-bubble medium. It is shown that the hydrate formation rate in this process is typically very high. A gas hydrate of carbon dioxide was produced. The process was experimentally studied using various initial conditions, as well as different external action magnitudes. The obtained experimental data are in good agreement with the proposed model. Other methods are based on the process of boiling liquefied gas in an enclosed volume of water (explosive boiling of a hydrating agent and the organization of cyclic boiling-condensation process). The key features of the methods are the high hydrate formation rate combined with a comparatively low power consumption leading to a great expected efficiency of the technologies based on them. The set of experiments was carried out. Gas hydrates of refrigerant R134a, carbon dioxide and propane were produced. The investigation of decomposition of a generated gas hydrate sample was made. The criteria of intensification of the hydrate formation process are formulated.

  18. New hydrate formation methods in a liquid-gas medium.

    PubMed

    Chernov, A A; Pil'nik, A A; Elistratov, D S; Mezentsev, I V; Meleshkin, A V; Bartashevich, M V; Vlasenko, M G

    2017-01-18

    Conceptually new methods of hydrate formation are proposed. The first one is based on the shock wave impact on a water-bubble medium. It is shown that the hydrate formation rate in this process is typically very high. A gas hydrate of carbon dioxide was produced. The process was experimentally studied using various initial conditions, as well as different external action magnitudes. The obtained experimental data are in good agreement with the proposed model. Other methods are based on the process of boiling liquefied gas in an enclosed volume of water (explosive boiling of a hydrating agent and the organization of cyclic boiling-condensation process). The key features of the methods are the high hydrate formation rate combined with a comparatively low power consumption leading to a great expected efficiency of the technologies based on them. The set of experiments was carried out. Gas hydrates of refrigerant R134a, carbon dioxide and propane were produced. The investigation of decomposition of a generated gas hydrate sample was made. The criteria of intensification of the hydrate formation process are formulated.

  19. Models for Gas Hydrate-Bearing Sediments Inferred from Hydraulic Permeability and Elastic Velocities

    USGS Publications Warehouse

    Lee, Myung W.

    2008-01-01

    Elastic velocities and hydraulic permeability of gas hydrate-bearing sediments strongly depend on how gas hydrate accumulates in pore spaces and various gas hydrate accumulation models are proposed to predict physical property changes due to gas hydrate concentrations. Elastic velocities and permeability predicted from a cementation model differ noticeably from those from a pore-filling model. A nuclear magnetic resonance (NMR) log provides in-situ water-filled porosity and hydraulic permeability of gas hydrate-bearing sediments. To test the two competing models, the NMR log along with conventional logs such as velocity and resistivity logs acquired at the Mallik 5L-38 well, Mackenzie Delta, Canada, were analyzed. When the clay content is less than about 12 percent, the NMR porosity is 'accurate' and the gas hydrate concentrations from the NMR log are comparable to those estimated from an electrical resistivity log. The variation of elastic velocities and relative permeability with respect to the gas hydrate concentration indicates that the dominant effect of gas hydrate in the pore space is the pore-filling characteristic.

  20. New hydrate formation methods in a liquid-gas medium

    PubMed Central

    Chernov, A. A.; Pil’nik, A. A.; Elistratov, D. S.; Mezentsev, I. V.; Meleshkin, A. V.; Bartashevich, M. V.; Vlasenko, M. G.

    2017-01-01

    Conceptually new methods of hydrate formation are proposed. The first one is based on the shock wave impact on a water-bubble medium. It is shown that the hydrate formation rate in this process is typically very high. A gas hydrate of carbon dioxide was produced. The process was experimentally studied using various initial conditions, as well as different external action magnitudes. The obtained experimental data are in good agreement with the proposed model. Other methods are based on the process of boiling liquefied gas in an enclosed volume of water (explosive boiling of a hydrating agent and the organization of cyclic boiling-condensation process). The key features of the methods are the high hydrate formation rate combined with a comparatively low power consumption leading to a great expected efficiency of the technologies based on them. The set of experiments was carried out. Gas hydrates of refrigerant R134a, carbon dioxide and propane were produced. The investigation of decomposition of a generated gas hydrate sample was made. The criteria of intensification of the hydrate formation process are formulated. PMID:28098194

  1. Methane hydrate formation and decomposition: structural studies via neutron diffraction and empirical potential structure refinement.

    PubMed

    Thompson, Helen; Soper, Alan K; Buchanan, Piers; Aldiwan, Nawaf; Creek, Jefferson L; Koh, Carolyn A

    2006-04-28

    Neutron diffraction studies with hydrogen/deuterium isotope substitution measurements are performed to investigate the water structure at the early, medium, and late periods of methane clathrate hydrate formation and decomposition. These measurements are coupled with simultaneous gas consumption measurements to track the formation of methane hydrate from a gas/water mixture, and then the complete decomposition of hydrate. Empirical potential structure refinement computer simulations are used to analyze the neutron diffraction data and extract from the data the water structure in the bulk methane hydrate solution. The results highlight the significant changes in the water structure of the remaining liquid at various stages of hydrate formation and decomposition, and give further insight into the way in which hydrates form. The results also have important implications on the memory effect, suggesting that the water structure in the presence of hydrate crystallites is significantly different at equivalent stages of forming compared to decomposing. These results are in sharp contrast to the previously reported cases when all remaining hydrate crystallites are absent from the solution. For these systems there is no detectable change in the water structure or the methane hydration shell before hydrate formation and after decomposition. Based on the new results presented in this paper, it is clear that the local water structure is affected by the presence of hydrate crystallites, which may in turn be responsible for the "history" or "memory" effect where the production of hydrate from a solution of formed and then subsequently melted hydrate is reportedly much quicker than producing hydrate from a fresh water/gas mixture.

  2. Submarine slope failures in the Beaufort Sea; Influence of gas hydrate decomposition

    NASA Astrophysics Data System (ADS)

    Grozic, J. L.; Dallimore, S.

    2012-12-01

    The continental shelf of the Beaufort Sea is composed of complex of marine and non-marine sequences of clay, silt, and sand. In many areas of the shelf these sediments contain occurrences of ice-bonded permafrost and associated pressure and temperature conditions that are conducive to the occurrence of methane gas hydrates. This complex environment is undergoing dramatic warming, where changes in sea level, ocean bottom temperatures, and geothermal regimes are inducing permafrost thawing and gas hydrate decomposition. Decomposition is inferred to be occurring at the base and top of the gas hydrate stability zone, which will cause sediment weakening and the generation of excess water and free gas. In such settings, the overlying permafrost cap may act as a permeability barrier, which could result in significant excess pore pressures and reduction in sediment stability. The shelf to slope transition is thought to be an area of extensive regional instability with acoustic records indicating there is upwards of 500 km of slumps and glides extending over the entire Beaufort margin. Some of these slide regions are coincident with up-dip limit of the permafrost gas hydrate stability zone. In this paper, a two dimensional model of the Beaufort shelf was constructed to examine the influence of gas hydrate decomposition on slope stability. The model relies on available data on the Beaufort sediments generated from offshore hydrocarbon exploration in the 1980s and 90s, as well as knowledge available from multidisciplinary marine research programs conducted in the outer shelf area. The slope stability model investigates the influence of marine transgression and ocean bottom warming by coupling soil deformation with hydrate dissociation during undrained conditions. By combining mechanical and thermal loading of the sediment, a more accurate indication of slope stability was obtained. The stability analysis results indicate a relatively low factor of safety for the Beaufort sediments without the presence of permafrost and gas hydrate, owing to the relative slope steepness compared to other submarine failures. Including the effects of the permafrost and gas hydrate in the sediments can result in an increase of the factor of safety under static conditions. However, modeling of the temporal effects of transgression of the Beaufort Shelf (considering change in pressure and temperature), indicates that, for a reasonable assumption of between 5-35% hydrate content, the factor of safety reduces to below unity and failure occurs.

  3. A method to predict equilibrium conditions of gas hydrate formation in porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clarke, M.A.; Pooladi-Darvish, M.; Bishnoi, P.R.

    1999-06-01

    In the petroleum industry, it is desirable to avoid the formation of gas hydrates. When gas hydrates form, they tend to agglomerate and block pipelines and process equipment. However, naturally occurring gas hydrates that form in the permafrost region or in deep oceans represent a vast untouched natural gas reserve. Although the exact amount of gas in the hydrate form is not known, it is believed to be comparable to the known amount of gas in the free state. Numerous methods for the recovery of natural gas from hydrate fields have been proposed. These techniques include thermal decomposition, depressurization, andmore » chemical injection. To fully exploit hydrate reserves, it will be necessary to know the decomposition/formation conditions of the gas hydrate in porous media. A predictive model has been developed to determine the incipient hydrate formation conditions in porous media. The only additional information that is needed to determine the incipient hydrate formation conditions is the pore radius, surface energy per unit area, and wetting angle. It was found that the model performed well in predicting the experimental data of Handa and Stupin.« less

  4. Hydration sites of unpaired RNA bases: a statistical analysis of the PDB structures.

    PubMed

    Kirillova, Svetlana; Carugo, Oliviero

    2011-10-19

    Hydration is crucial for RNA structure and function. X-ray crystallography is the most commonly used method to determine RNA structures and hydration and, therefore, statistical surveys are based on crystallographic results, the number of which is quickly increasing. A statistical analysis of the water molecule distribution in high-resolution X-ray structures of unpaired RNA nucleotides showed that: different bases have the same penchant to be surrounded by water molecules; clusters of water molecules indicate possible hydration sites, which, in some cases, match those of the major and minor grooves of RNA and DNA double helices; complex hydrogen bond networks characterize the solvation of the nucleotides, resulting in a significant rigidity of the base and its surrounding water molecules. Interestingly, the hydration sites around unpaired RNA bases do not match, in general, the positions that are occupied by the second nucleotide when the base-pair is formed. The hydration sites around unpaired RNA bases were found. They do not replicate the atom positions of complementary bases in the Watson-Crick pairs.

  5. Hydration sites of unpaired RNA bases: a statistical analysis of the PDB structures

    PubMed Central

    2011-01-01

    Background Hydration is crucial for RNA structure and function. X-ray crystallography is the most commonly used method to determine RNA structures and hydration and, therefore, statistical surveys are based on crystallographic results, the number of which is quickly increasing. Results A statistical analysis of the water molecule distribution in high-resolution X-ray structures of unpaired RNA nucleotides showed that: different bases have the same penchant to be surrounded by water molecules; clusters of water molecules indicate possible hydration sites, which, in some cases, match those of the major and minor grooves of RNA and DNA double helices; complex hydrogen bond networks characterize the solvation of the nucleotides, resulting in a significant rigidity of the base and its surrounding water molecules. Interestingly, the hydration sites around unpaired RNA bases do not match, in general, the positions that are occupied by the second nucleotide when the base-pair is formed. Conclusions The hydration sites around unpaired RNA bases were found. They do not replicate the atom positions of complementary bases in the Watson-Crick pairs. PMID:22011380

  6. Spectral phasor analysis of LAURDAN fluorescence in live A549 lung cells to study the hydration and time evolution of intracellular lamellar body-like structures.

    PubMed

    Malacrida, Leonel; Astrada, Soledad; Briva, Arturo; Bollati-Fogolín, Mariela; Gratton, Enrico; Bagatolli, Luis A

    2016-11-01

    Using LAURDAN spectral imaging and spectral phasor analysis we concurrently studied the growth and hydration state of subcellular organelles (lamellar body-like, LB-like) from live A549 lung cancer cells at different post-confluence days. Our results reveal a time dependent two-step process governing the size and hydration of these intracellular LB-like structures. Specifically, a first step (days 1 to 7) is characterized by an increase in their size, followed by a second one (days 7 to 14) where the organelles display a decrease in their global hydration properties. Interestingly, our results also show that their hydration properties significantly differ from those observed in well-characterized artificial lamellar model membranes, challenging the notion that a pure lamellar membrane organization is present in these organelles at intracellular conditions. Finally, these LB-like structures show a significant increase in their hydration state upon secretion, suggesting a relevant role of entropy during this process. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Novel hydrated graphene ribbon unexpectedly promotes aged seed germination and root differentiation

    NASA Astrophysics Data System (ADS)

    Hu, Xiangang; Zhou, Qixing

    2014-01-01

    It is well known that graphene (G) induces nanotoxicity towards living organisms. Here, a novel and biocompatible hydrated graphene ribbon (HGR) unexpectedly promoted aged (two years) seed germination. HGR formed at the normal temperature and pressure (120 days hydration), presented 17.1% oxygen, 0.9% nitrogen groups, disorder-layer structure, with 0.38 nm thickness ribbon morphology. Interestingly, there were bulges around the edges of HGR. Compared to G and graphene oxide (GO), HGR increased seed germination by 15% root differentiation between 52 and 59% and enhanced resistance to oxidative stress. The metabonomics analysis discovered that HGR upregulated carbohydrate, amino acid, and fatty acids metabolism that determined secondary metabolism, nitrogen sequestration, cell membrane integrity, permeability, and oxidation resistance. Hexadecanoic acid as a biomarker promoted root differentiation and increased the germination rate. Our discovery is a novel HGR that promotes aged seed germination, illustrates metabolic specificity among graphene-based materials, and inspires innovative concepts in the regulation of seed development.

  8. The use of electrical impedance spectroscopy for monitoring the hydration products of Portland cement mortars with high percentage of pozzolans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cruz, J.M.; Fita, I.C., E-mail: infifer@fis.upv.es; Soriano, L.

    2013-08-15

    In this paper, mortars and pastes containing large replacement of pozzolan were studied by mechanical strength, thermogravimetric analysis (TGA), scanning electronic microscopy (SEM), mercury intrusion porosimetry (MIP) and electrical impedance spectroscopy (EIS). The effect of metakaolin (35%) and fly ash (60%) was evaluated and compared with an inert mineral addition (andalusite). The portlandite content was measured, finding that the pozzolanic reaction produced cementing systems with all portlandite fixed. The EIS measurements were analyzed by the equivalent electrical circuit (EEC) method. An EEC with three branches in parallel was applied. The dc resistance was related to the degree of hydration andmore » allowed us to characterize plain and blended mortars. A constant phase element (CPE) quantified the electrical properties of the hydration products located in the solid–solution interface and was useful to distinguish the role of inert and pozzolanic admixtures present in the cement matrix.« less

  9. Effect of hydration treatments on laryngeal nodules and polyps and related voice measures.

    PubMed

    Verdolini-Marston, K; Sandage, M; Titze, I R

    1994-03-01

    In this study, a double-blind, placebo-controlled approach was used in assessing the effectiveness of hydration treatments in the clinical management of selected voice disorders. Six adult female patients with laryngeal nodules or polyps each received 5 consecutive days of hydration treatment and 5 consecutive days of placebo/control treatment. The combined results indicated improvements in voice and in laryngeal appearance following both placebo/control and hydration treatments as compared with baseline. However, the greatest improvements were obtained following the hydration treatment. Although caution about generalization of the effects to the typical clinical situation is emphasized, the study provides preliminary evidence of a therapeutic benefit from hydration treatments in patients with nodules or polyps. Based on previous theoretical work, hydration effects may be related to reductions in the viscosity of vocal fold tissue, although other explanations are also possible.

  10. Interaction of Simple Ions with Water: Theoretical Models for the Study of Ion Hydration

    ERIC Educational Resources Information Center

    Gancheff, Jorge S.; Kremer, Carlos; Ventura, Oscar N.

    2009-01-01

    A computational experiment aimed to create and systematically analyze models of simple cation hydrates is presented. The changes in the structure (bond distances and angles) and the electronic density distribution of the solvent and the thermodynamic parameters of the hydration process are calculated and compared with the experimental data. The…

  11. Importance of tissue preparation methods in FTIR micro-spectroscopical analysis of biological tissues: 'traps for new users'.

    PubMed

    Zohdi, Vladislava; Whelan, Donna R; Wood, Bayden R; Pearson, James T; Bambery, Keith R; Black, M Jane

    2015-01-01

    Fourier Transform Infrared (FTIR) micro-spectroscopy is an emerging technique for the biochemical analysis of tissues and cellular materials. It provides objective information on the holistic biochemistry of a cell or tissue sample and has been applied in many areas of medical research. However, it has become apparent that how the tissue is handled prior to FTIR micro-spectroscopic imaging requires special consideration, particularly with regards to methods for preservation of the samples. We have performed FTIR micro-spectroscopy on rodent heart and liver tissue sections (two spectroscopically very different biological tissues) that were prepared by desiccation drying, ethanol substitution and formalin fixation and have compared the resulting spectra with that of fully hydrated freshly excised tissues. We have systematically examined the spectra for any biochemical changes to the native state of the tissue caused by the three methods of preparation and have detected changes in infrared (IR) absorption band intensities and peak positions. In particular, the position and profile of the amide I, key in assigning protein secondary structure, changes depending on preparation method and the lipid absorptions lose intensity drastically when these tissues are hydrated with ethanol. Indeed, we demonstrate that preserving samples through desiccation drying, ethanol substitution or formalin fixation significantly alters the biochemical information detected using spectroscopic methods when compared to spectra of fresh hydrated tissue. It is therefore imperative to consider tissue preparative effects when preparing, measuring, and analyzing samples using FTIR spectroscopy.

  12. Molecular Dynamics Simulation of the Crystal Nucleation and Growth Behavior of Methane Hydrate in the Presence of the Surface and Nanopores of Porous Sediment.

    PubMed

    Yan, Ke-Feng; Li, Xiao-Sen; Chen, Zhao-Yang; Xia, Zhi-Ming; Xu, Chun-Gang; Zhang, Zhiqiang

    2016-08-09

    The behavior of hydrate formation in porous sediment has been widely studied because of its importance in the investigation of reservoirs and in the drilling of natural gas hydrate. However, it is difficult to understand the hydrate nucleation and growth mechanism on the surface and in the nanopores of porous media by experimental and numerical simulation methods. In this work, molecular dynamics simulations of the nucleation and growth of CH4 hydrate in the presence of the surface and nanopores of clay are carried out. The molecular configurations and microstructure properties are analyzed for systems containing one H2O hydrate layer (System A), three H2O hydrate layers (System B), and six H2O hydrate layers (System C) in both clay and the bulk solution. It is found that hydrate formation is more complex in porous media than in the pure bulk solution and that there is cooperativity between hydrate growth and molecular diffusion in clay nanopores. The hydroxylated edge sites of the clay surface could serve as a source of CH4 molecules to facilitate hydrate nucleation. The diffusion velocity of molecules is influenced by the growth of the hydrate that forms a block in the throats of the clay nanopore. Comparing hydrate growth in different clay pore sizes reveals that the pore size plays an important role in hydrate growth and molecular diffusion in clay. This simulation study provides the microscopic mechanism of hydrate nucleation and growth in porous media, which can be favorable for the investigation of the formation of natural gas hydrate in sediments.

  13. Molecular modeling of the dissociation of methane hydrate in contact with a silica surface.

    PubMed

    Bagherzadeh, S Alireza; Englezos, Peter; Alavi, Saman; Ripmeester, John A

    2012-03-15

    We use constant energy, constant volume (NVE) molecular dynamics simulations to study the dissociation of the fully occupied structure I methane hydrate in a confined geometry between two hydroxylated silica surfaces between 36 and 41 Å apart, at initial temperatures of 283, 293, and 303 K. Simulations of the two-phase hydrate/water system are performed in the presence of silica, with and without a 3 Å thick buffering water layer between the hydrate phase and silica surfaces. Faster decomposition is observed in the presence of silica, where the hydrate phase is prone to decomposition from four surfaces, as compared to only two sides in the case of the hydrate/water simulations. The existence of the water layer between the hydrate phase and the silica surface stabilizes the hydrate phase relative to the case where the hydrate is in direct contact with silica. Hydrates bound between the silica surfaces dissociate layer-by-layer in a shrinking core manner with a curved decomposition front which extends over a 5-8 Å thickness. Labeling water molecules shows that there is exchange of water molecules between the surrounding liquid and intact cages in the methane hydrate phase. In all cases, decomposition of the methane hydrate phase led to the formation of methane nanobubbles in the liquid water phase. © 2012 American Chemical Society

  14. Characteristics and interpretation of fracture-filled gas hydrate: an example from the Ulleung Basin, East Sea of Korea

    USGS Publications Warehouse

    Lee, Myung Woong; Collett, Timothy S.

    2013-01-01

    Through the use of 2-D and 3-D seismic data, a total of thirteen sites were selected and drilled in the East Sea of Korea in 2010. A suite of logging-while-drilling (LWD) logs was acquired at each site. LWD logs from the UBGH2-3A well indicate significant gas hydrate in clay-bearing sediments including several zones with massive gas hydrate with a bulk density less than 1.0 g/m3 for depths between 5 and 103 m below the sea floor. The UBGH2-3A well was drilled on a seismically identified chimney structure with a mound feature at the sea floor. Average gas hydrate saturations estimated from the isotropic analysis of ring resistivity and P-wave velocity logs are 80 ± 13% and 47 ± 16%, respectively, whereas they are 46 ± 17% and 45 ± 16%, respectively from the anisotropic analysis. Modeling indicates that the upper part of chimney (between 5 and 45 m below sea floor [mbsf]) is characterized by gas hydrate filling near horizontal fractures (7° dip) and the lower part of chimney (between 45 and 103 mbsf) is characterized by gas hydrate filling high angle fractures on the basis of ring resistivity and P-wave velocity. The anisotropic analysis using P40H resistivity (phase shift resistivity at 32 mHz with 40 inch spacing) and the P-wave velocity yields a gas hydrate saturation of 46 ± 15% and 46 ± 15% respectively, similar to those estimated using ring resistivity and P-wave velocity, but with quite different fracture dip angles. Differences in vertical resolution, depth of investigation, and a finite fracture dimension relative to the tool separation appear to contribute to this discrepancy. Forward modeling of anisotropic resistivity and velocity are essential to identify gas hydrate in fractures and to estimate accurate gas hydrate amounts.

  15. Probing methane hydrate nucleation through the forward flux sampling method.

    PubMed

    Bi, Yuanfei; Li, Tianshu

    2014-11-26

    Understanding the nucleation of hydrate is the key to developing effective strategies for controlling methane hydrate formation. Here we present a computational study of methane hydrate nucleation, by combining the forward flux sampling (FFS) method and the coarse-grained water model mW. To facilitate the application of FFS in studying the formation of methane hydrate, we developed an effective order parameter λ on the basis of the topological analysis of the tetrahedral network. The order parameter capitalizes the signature of hydrate structure, i.e., polyhedral cages, and is capable of efficiently distinguishing hydrate from ice and liquid water while allowing the formation of different hydrate phases, i.e., sI, sII, and amorphous. Integration of the order parameter λ with FFS allows explicitly computing hydrate nucleation rates and obtaining an ensemble of nucleation trajectories under conditions where spontaneous hydrate nucleation becomes too slow to occur in direct simulation. The convergence of the obtained hydrate nucleation rate was found to depend crucially on the convergence of the spatial distribution for the spontaneously formed hydrate seeds obtained from the initial sampling of FFS. The validity of the approach is also verified by the agreement between the calculated nucleation rate and that inferred from the direct simulation. Analyzing the obtained large ensemble of hydrate nucleation trajectories, we show hydrate formation at 220 K and 500 bar is initiated by the nucleation events occurring in the vicinity of water-methane interface, and facilitated by a gradual transition from amorphous to crystalline structure. The latter provides the direct support to the proposed two-step nucleation mechanism of methane hydrate.

  16. A Circuit Model of Real Time Human Body Hydration.

    PubMed

    Asogwa, Clement Ogugua; Teshome, Assefa K; Collins, Stephen F; Lai, Daniel T H

    2016-06-01

    Changes in human body hydration leading to excess fluid losses or overload affects the body fluid's ability to provide the necessary support for healthy living. We propose a time-dependent circuit model of real-time human body hydration, which models the human body tissue as a signal transmission medium. The circuit model predicts the attenuation of a propagating electrical signal. Hydration rates are modeled by a time constant τ, which characterizes the individual specific metabolic function of the body part measured. We define a surrogate human body anthropometric parameter θ by the muscle-fat ratio and comparing it with the body mass index (BMI), we find theoretically, the rate of hydration varying from 1.73 dB/min, for high θ and low τ to 0.05 dB/min for low θ and high τ. We compare these theoretical values with empirical measurements and show that real-time changes in human body hydration can be observed by measuring signal attenuation. We took empirical measurements using a vector network analyzer and obtained different hydration rates for various BMI, ranging from 0.6 dB/min for 22.7 [Formula: see text] down to 0.04 dB/min for 41.2 [Formula: see text]. We conclude that the galvanic coupling circuit model can predict changes in the volume of the body fluid, which are essential in diagnosing and monitoring treatment of body fluid disorder. Individuals with high BMI would have higher time-dependent biological characteristic, lower metabolic rate, and lower rate of hydration.

  17. Delineating the anti-cytotoxic and anti-genotoxic potentials of catechin hydrate against cadmium toxicity in human peripheral blood lymphocytes.

    PubMed

    Alshatwi, Ali A; Hasan, Tarique N; Alqahtani, Ali M; Syed, Naveed A; Shafi, Gowhar; Al-Assaf, Abdullah H; Al-Khalifa, Abdulrahmann S

    2014-09-01

    Catechins (flavan-3-ol) are a type of natural phenol and well-studied antioxidants. Catechin hydrate, also known as taxifolin; is non-mutagenic, low in toxicity compared to other immunomodulator antioxidants. We aimed to determine the potential of catechin hydrate to prevent the cyto-genotoxic effects of cadmium in lymphocytes; demonstrate the immuno-protective activity of catechin hydrate. Our previous study indicated that cadmium is apoptogenic. Lymphocytes were treated with catechin hydrate or cadmium and catechine hydrate combinations (range 0.1-100μM) to determine their effects on cell viability. Lymphocytes treated with 100μM catechin hydrate and 100μM cadmium showed cell viability 70.65±6.92% and 5.69±2.27%, respectively. In our previous study cadmium (10 and 20μM) induced apoptosis in 31.8% and 44.4% of lymphocytes, respectively. However, the percentage of apoptotic cells after treatment with the combination of cadmium and catechin hydrate was not significantly different from that of catechin hydrate (P>0.05). Only 7.3% and 10.5% of the lymphocytes were apoptotic after treatment with 10μM cadmium+10μM catechin hydrate and 20μM cadmium+20μM catechin hydrate, respectively. The anti-geno-cytotoxic and immuno-protective potential of catechin hydrate was also demonstrated by the non-significant expression of apoptosis-related genes after treatment with catechin hydrate. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Iodine and Bromine Distributions in Pore Waters: A Comparison Between Permafrost and Marine Gas Hydrate Fields

    NASA Astrophysics Data System (ADS)

    Tomaru, H.; Fehn, U.; Lu, Z.

    2005-12-01

    Iodine and, to a lesser degree, bromine are commonly enriched in waters associated with hydrocarbons. The concentrations of these halogens and their ratios can thus be used to identify potential source formations for hydrocarbons such as gas hydrates. While the largest reservoir of gas hydrates is found in marine sediments, permafrost locations are also an important source of gas hydrates. We measured iodine and bromine concentrations in pore waters associated with gas hydrates in the Mallik exploration well, a permafrost location in the Mackenzie delta, Northwest Territory, Canada and compared them to results from gas hydrates in marine sediments. Gas hydrates are found in the Mallik site in two horizons below the permafrost layer which reaches a depth of about 600 m in this location. We measured concentrations in samples collected from depths between 850 and 1150 m. Large sections of the test well have iodine concentrations around 1 μM, but the concentrations increase to values between 10 and 20 μM at the gas hydrate horizons. Bromine concentrations show a similar pattern, with maxima reaching values between 700 and 800 μM. Although iodine concentrations are considerably higher than in seawater (0.4 μM), they are much lower than in marine gas hydrate locations such as Nankai (200 μM); Blake Ridge (2 mM) or Hydrate Ridge (2.5 mM). Bromine concentrations at Mallik do not reach the seawater value (840 μM) in contrast to marine hydrate locations where Br is enriched by factors of four or more compared to seawater. Chlorine concentrations at Mallik are close to that of seawater, in this case similar to the marine hydrate locations. The comparison between marine hydrate locations and Mallik suggests that the organic sources responsible for the methane at Mallik are considerably different from those in marine situations. Since iodine concentrations are generally higher in marine organisms than in terrestrial organisms, the relatively low concentrations of iodine and bromine at Mallik suggest that the source material there is of more terrestrial character than in the marine locations, a observation supported by the presence of several coal seams at Mallik. The large volume of methane in this region suggests that terrestrial sources may play an important role in the accumulation of gas hydrates.

  19. Direct measurement of methane hydrate composition along the hydrate equilibrium boundary

    USGS Publications Warehouse

    Circone, S.; Kirby, S.H.; Stern, L.A.

    2005-01-01

    The composition of methane hydrate, namely nW for CH 4??nWH2O, was directly measured along the hydrate equilibrium boundary under conditions of excess methane gas. Pressure and temperature conditions ranged from 1.9 to 9.7 MPa and 263 to 285 K. Within experimental error, there is no change in hydrate composition with increasing pressure along the equilibrium boundary, but nW may show a slight systematic decrease away from this boundary. A hydrate stoichiometry of n W = 5.81-6.10 H2O describes the entire range of measured values, with an average composition of CH4??5.99(??0.07) H2O along the equilibrium boundary. These results, consistent with previously measured values, are discussed with respect to the widely ranging values obtained by thermodynamic analysis. The relatively constant composition of methane hydrate over the geologically relevant pressure and temperature range investigated suggests that in situ methane hydrate compositions may be estimated with some confidence. ?? 2005 American Chemical Society.

  20. Characterization of methane hydrate host sediments using synchrotron-computed microtomography (CMT)

    USGS Publications Warehouse

    Jones, K.W.; Feng, H.; Tomov, S.; Winters, W.J.; Prodanovic, M.; Mahajan, D.

    2007-01-01

    The hydrate-sediment interaction is an important aspect of gas hydrate studies that needs further examination. We describe here the applicability of the computed microtomography (CMT) technique that utilizes an intense X-ray synchrotron source to characterize sediment samples, two at various depths from the Blake Ridge area (a well-known hydrate-prone region) and one from Georges Bank, that once contained methane trapped as hydrates. Detailed results of the tomographic analysis performed on the deepest sample (667??m) from Blake Ridge are presented as 2-D and 3-D images which show several mineral constituents, the internal grain/pore microstructure, and, following segmentation into pore and grain space, a visualization of the connecting pathways through the pore-space of the sediment. Various parameters obtained from the analysis of the CMT data are presented for all three sediment samples. The micro-scale porosity values showed decreasing trend with increasing depth for all three samples that is consistent with the previously reported bulk porosity data. The 3-D morphology, pore-space pathways, porosity, and permeability values are also reported for all three samples. The application of CMT is now being expanded to the laboratory-formed samples of hydrate in sediments as well as field samples of methane hydrate bearing sediments.

  1. Generation of hydrate forms of paroxetine HCl from the amorphous state: an evaluation of thermodynamic and experimental predictive approaches.

    PubMed

    Pina, M Fátima; Pinto, João F; Sousa, João J; Craig, Duncan Q M; Zhao, Min

    2015-03-15

    In this study, we evaluate the use of theoretical thermodynamic analysis of amorphous paroxetine hydrochloride (HCl) as well as experimental assessment in order to identify the most promising approach to stability and dissolution behaviour prediction, particularly in relation to stoichiometric and nonstoichiometric hydrate formation. Differential scanning calorimetry, thermogravimetric analysis, Fourier transform infrared and X-ray diffraction techniques were used. Parameters including heat capacity, configurational thermodynamic quantities, fragility and relaxation time classified amorphous paroxetine HCl as a moderate fragile glass with a considerable degree of molecular mobility. Solubility studies indicated little advantage of the amorphous form over the crystalline due to conversion to the hydrate Form I during equilibration, while the dissolution rate was higher for the amorphous form under sink conditions. A marked difference in the physical stability of amorphous paroxetine HCl was observed between dry and low humidity storage, with the system recrystallizing to the hydrate form. We conclude that, in this particular case (amorphous conversion to the hydrate), water may be playing a dual role in both plasticizing the amorphous form and driving the equilibrium towards the hydrate form, hence prediction of recrystallization behaviour from amorphous characteristics may be confounded by the additional process of hydrate generation. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Pore Effect on the Occurrence and Formation of Gas Hydrate in Permafrost of Qilian Mountain, Qinghai-Tibet Plateau, China

    NASA Astrophysics Data System (ADS)

    Gao, H.; Lu, H.; Lu, Z.

    2014-12-01

    Gas hydrates were found in the permafrost of Qilian Mountain, Qinghai- Tibet Plateau, China in 2008. It has been found that gas hydrates occur in Jurassic sedimentary rocks, and the hydrated gases are mainly thermogenic. Different from the gas hydrates existing in loose sands in Mallik, Mackenzie Delta, Canada and North Slope, Alaska, USA, the gas hydrates in Qilian Mountain occurred in hard rocks. For understanding the occurrence and formation mechanism of gas hydrate in hard rcok, extensive experimental investigations have been conducted to study the pore features and hydrate formation in the rocks recovered from the hydrate layers in Qilian Mountain. The structures of sedimentary rock were observed by high-resolution X-ray CT, and pore size distribution of a rock specimen was measured with the mercury-injection method. Methane hydrate was synthesized in water-saturated rocks, and the saturations of hydrate in sedimentary rocks of various types were estimated from the amount of gas released from certain volume of rock. X-ray CT observation revealed that fractures were developed in the rocks associated with faults, while those away from faults were generally with massive structure. The mercury-injection analysis of pore features found that the porosities of the hydrate-existing rocks were generally less than 3%, and the pore sizes were generally smaller than 100 nm. The synthesizing experiments found that the saturation of methane hydrate were generally lower than 6% of pore space in rocks, but up to 16% when fractures developed. The low hydrate saturation in Qilian sedimentary rocks has been found mainly due to the small pore size of rock. The low hydrate saturation in the rocks might be the reason for the failure of regional seismic and logging detections of gas hydrates in Qilian Mountain.

  3. Gas hydrate dissociation off Svalbard induced by isostatic rebound rather than global warming.

    PubMed

    Wallmann, Klaus; Riedel, M; Hong, W L; Patton, H; Hubbard, A; Pape, T; Hsu, C W; Schmidt, C; Johnson, J E; Torres, M E; Andreassen, K; Berndt, C; Bohrmann, G

    2018-01-08

    Methane seepage from the upper continental slopes of Western Svalbard has previously been attributed to gas hydrate dissociation induced by anthropogenic warming of ambient bottom waters. Here we show that sediment cores drilled off Prins Karls Foreland contain freshwater from dissociating hydrates. However, our modeling indicates that the observed pore water freshening began around 8 ka BP when the rate of isostatic uplift outpaced eustatic sea-level rise. The resultant local shallowing and lowering of hydrostatic pressure forced gas hydrate dissociation and dissolved chloride depletions consistent with our geochemical analysis. Hence, we propose that hydrate dissociation was triggered by postglacial isostatic rebound rather than anthropogenic warming. Furthermore, we show that methane fluxes from dissociating hydrates were considerably smaller than present methane seepage rates implying that gas hydrates were not a major source of methane to the oceans, but rather acted as a dynamic seal, regulating methane release from deep geological reservoirs.

  4. High-volume forced diuresis with matched hydration using the RenalGuard System to prevent contrast-induced nephropathy: A meta-analysis of randomized trials.

    PubMed

    Shah, Rahman; Wood, Sarah J; Khan, Sajjad A; Chaudhry, Amina; Rehan Khan, M; Morsy, Mohamed S

    2017-12-01

    Contrast-induced nephropathy (CIN) is a well-recognized complication of coronary angiography that is associated with poor outcomes. Several small randomized controlled trials (RCTs) have recently shown that in patients with chronic kidney disease (CKD), furosemide-induced forced diuresis with matched hydration using the RenalGuard system can prevent its occurrence. However, individual studies have been underpowered and thus cannot show significant differences in major clinical endpoints. Forced diuresis with matched hydration using the RenalGuard system improves clinical outcomes in patients undergoing coronary angiography. Scientific databases and websites were searched for relevant RCTs. The pooled risk ratios were calculated using random-effects models. The primary endpoint was CIN, and the secondary endpoints were major adverse clinical events (MACEs) and the need for renal replacement therapy. Data from 3 trials including 586 patients were analyzed. High-volume forced diuresis with matched hydration using the RenalGuard system decreased risk of CIN by 60% (risk ratio: 0.40, 95% confidence interval: 0.25 to 0.65, P < 0.001), MACE rate by 59%, and the need for renal replacement therapy by 78%, compared with the standard of care. In patients with CKD undergoing coronary angiography, high-volume forced diuresis with matched hydration using the RenalGuard system significantly reduces the risk of CIN, MACE rate, and the need for renal replacement therapy. Larger RCTs with sufficient power are needed to confirm these findings. © 2017 Wiley Periodicals, Inc.

  5. Apparatus investigates geological aspects of gas hydrates

    USGS Publications Warehouse

    Booth, J.S.; Winters, W.J.; Dillon, William P.

    1999-01-01

    The US Geological Survey (USGS), in response to potential geohazards, energy resource potential, and climate issues associated with marine gas hydrates, has developed a laboratory research system that permits hydrate genesis and dissociation under deep-sea conditions, employing user-selected sediment types and pore fluids.The apparatus, GHASTI (gas hydrate and sediment test laboratory instrument), provides a means to link field studies and theory and serves as a tool to improve gas hydrate recognition and assessment, using remote sensing techniques.GHASTLI's use was proven in an exploration well project led by the Geological Survey of Canada and the Japanese National Oil Corp., collaborating with Japan Petroleum Exploration Co. and the USGS. The site was in the Mackenzie Delta region of the Northwest Territories (Mallik 2L-38 drillsite).From tests on natural methane hydrate-bearing sand recovered at about 1,000 m subsurface, the in situ quantity of hydrate was estimated from acoustic properties, and a substantial increase in shear strength due to the presence of the hydrate was measured.1 2GHASTI can mimic a wide range of geologic settings and processes. Initial goals involve improved recognition and mapping of gas hydrate-bearing sediments, understanding factors that control the occurrence and concentration of gas hydrates, knowledge of hydrate's significance to slope failure and foundation problems, and analysis of gas hydrate's potential use as an energy resource.

  6. Three types of gas hydrate reservoirs in the Gulf of Mexico identified in LWD data

    USGS Publications Warehouse

    Lee, Myung Woong; Collett, Timothy S.

    2011-01-01

    High quality logging-while-drilling (LWD) well logs were acquired in seven wells drilled during the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II in the spring of 2009. These data help to identify three distinct types of gas hydrate reservoirs: isotropic reservoirs in sands, vertical fractured reservoirs in shale, and horizontally layered reservoirs in silty shale. In general, most gas hydratebearing sand reservoirs exhibit isotropic elastic velocities and formation resistivities, and gas hydrate saturations estimated from the P-wave velocity agree well with those from the resistivity. However, in highly gas hydrate-saturated sands, resistivity-derived gas hydrate-saturation estimates appear to be systematically higher by about 5% over those estimated by P-wave velocity, possibly because of the uncertainty associated with the consolidation state of gas hydrate-bearing sands. Small quantities of gas hydrate were observed in vertical fractures in shale. These occurrences are characterized by high formation resistivities with P-wave velocities close to those of water-saturated sediment. Because the formation factor varies significantly with respect to the gas hydrate saturation for vertical fractures at low saturations, an isotropic analysis of formation factor highly overestimates the gas hydrate saturation. Small quantities of gas hydrate in horizontal layers in shale are characterized by moderate increase in P-wave velocities and formation resistivities and either measurement can be used to estimate gas hydrate saturations.

  7. Evaluation of long-term gas hydrate production testing locations on the Alaska North Slope

    USGS Publications Warehouse

    Collett, Timothy S.; Boswell, Ray; Lee, Myung W.; Anderson, Brian J.; Rose, Kelly K.; Lewis, Kristen A.

    2012-01-01

    The results of short-duration formation tests in northern Alaska and Canada have further documented the energy-resource potential of gas hydrates and have justified the need for long-term gas-hydrate-production testing. Additional data acquisition and long-term production testing could improve the understanding of the response of naturally occurring gas hydrate to depressurization-induced or thermal-, chemical-, or mechanical-stimulated dissociation of gas hydrate into producible gas. The Eileen gashydrate accumulation located in the Greater Prudhoe Bay area in northern Alaska has become a focal point for gas-hydrate geologic and production studies. BP Exploration (Alaska) Incorporated and ConocoPhillips have each established research partnerships with the US Department of Energy to assess the production potential of gas hydrates in northern Alaska. A critical goal of these efforts is to identify the most suitable site for production testing. A total of seven potential locations in the Prudhoe Bay, Kuparuk River, and Milne Point production units were identified and assessed relative to their suitability as a long-term gas-hydrate-production test sites. The test-site-assessment criteria included the analysis of the geologic risk associated with encountering reservoirs for gas-hydrate testing. The site-selection process also dealt with the assessment of the operational/logistical risk associated with each of the potential test sites. From this review, a site in the Prudhoe Bay production unit was determined to be the best location for extended gas-hydrate-production testing. The work presented in this report identifies the key features of the potential test site in the Greater Prudhoe Bay area and provides new information on the nature of gas-hydrate occurrence and the potential impact of production testing on existing infrastructure at the most favorable sites. These data were obtained from well-log analysis, geological correlation and mapping, and numerical simulation.

  8. Development and characterization of a stable adhesive bond between a poly(dimethylsiloxane) catheter material and a bacterial biofilm resistant acrylate polymer coating

    PubMed Central

    Tyler, Bonnie J.; Hook, Andrew; Pelster, Andreas; Williams, Paul; Alexander, Morgan; Arlinghaus, Heinrich F.

    2017-01-01

    Catheter associated urinary tract infections are the most common health related infections worldwide, contributing significantly to patient morbidity and mortality and increased health care costs. To reduce the incidence of these infections, new materials that resist bacterial biofilm formation are needed. A composite catheter material, consisting of bulk poly(dimethylsiloxane) (PDMS) coated with a novel bacterial biofilm resistant polyacrylate [ethylene glycol dicyclopentenyl ether acrylate (EGDPEA)-co-di(ethyleneglycol) methyl ether methacrylate (DEGMA)], has been proposed. The coated material shows excellent bacterial resistance when compared to commercial catheter materials, but delamination of the EGDPEA-co-DEGMA coatings under mechanical stress presents a challenge. In this work, the use of oxygen plasma treatment to improve the wettability and reactivity of the PDMS catheter material and improve adhesion with the EGDPEA-co-DEGMA coating has been investigated. Argon cluster three dimensional-imaging time-of-flight secondary ion mass spectrometry (ToF-SIMS) has been used to probe the buried adhesive interface between the EGDPEA-co-DEGMA coating and the treated PDMS. ToF-SIMS analysis was performed in both dry and frozen-hydrated states, and the results were compared to mechanical tests. From the ToF-SIMS data, the authors have been able to observe the presence of PDMS, silicates, salt particles, cracks, and water at the adhesive interface. In the dry catheters, low molecular weight PDMS oligomers at the interface were associated with poor adhesion. When hydrated, the hydrophilic silicates attracted water to the interface and led to easy delamination of the coating. The best adhesion results, under hydrated conditions, were obtained using a combination of 5 min O2 plasma treatment and silane primers. Cryo-ToF-SIMS analysis of the hydrated catheter material showed that the bond between the primed PDMS catheter and the EGDPEA-co-DEGMA coating was stable in the presence of water. The resulting catheter material resisted Escherichia coli and Proteus mirabilis biofilm colonization by up to 95% compared with uncoated PDMS after 10 days of continuous bacterial exposure and had the mechanical properties necessary for use as a urinary catheter. PMID:28535686

  9. Hydrogen and oxygen stable isotope signatures of goethite hydration waters by thermogravimetry-enabled laser spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oerter, Erik; Singleton, Michael; Davisson, Lee

    The hydrogen and oxygen stable isotope composition (δ 2H and δ 18O values) of mineral hydration waters can give information on the environment of mineral formation. Here we present and validate an approach for the stable isotope analysis of mineral hydration waters based on coupling a thermogravimetric analyzer with a laser-based isotope ratio infrared spectroscopy instrument (Picarro L-2130i), which we abbreviate as TGA-IRIS. TGA-IRIS generates δ 2H and δ 18O values of liquid water samples with precision for δ 2H of ± 1.2‰, and for δ 18O of ± 0.17‰. For hydration waters in goethite, precision for δ 2H rangesmore » from ± 0.3‰ to 1.6‰, and for δ 18O ranges from ± 0.17‰ to 0.27‰. The ability of TGA-IRIS to generate detailed water yield data and δ 2H and δ 18O values of water at varying temperatures allows for the differentiation of water in varying states of binding on mineral surfaces and within the mineral matrix. TGA-IRIS analyses of hydrogen isotopes in goethite yields δ 2H values that reflect the hydrogen of the OH – phase in the mineral and are comparable to that made by IRMS and found in the literature. In contrast, δ 18O values on goethite reflect the oxygen in OH – groups bound to Fe (Fe-OH group), and not the oxygen bound only to Fe (Fe-O group) in the mineral crystal lattice, and may not be comparable to literature δ 18O values made by IRMS that reflect the total O in the mineral. TGA-IRIS presents the possibility to isotopically differentiate the various oxygen reservoirs in goethite, which may allow the mineral to be used as a single mineral geothermometer. As a result, TGA-IRIS measurements of hydration waters are likely to open new avenues and possibilities for research on hydrated minerals.« less

  10. Hydrogen and oxygen stable isotope signatures of goethite hydration waters by thermogravimetry-enabled laser spectroscopy

    DOE PAGES

    Oerter, Erik; Singleton, Michael; Davisson, Lee

    2017-10-22

    The hydrogen and oxygen stable isotope composition (δ 2H and δ 18O values) of mineral hydration waters can give information on the environment of mineral formation. Here we present and validate an approach for the stable isotope analysis of mineral hydration waters based on coupling a thermogravimetric analyzer with a laser-based isotope ratio infrared spectroscopy instrument (Picarro L-2130i), which we abbreviate as TGA-IRIS. TGA-IRIS generates δ 2H and δ 18O values of liquid water samples with precision for δ 2H of ± 1.2‰, and for δ 18O of ± 0.17‰. For hydration waters in goethite, precision for δ 2H rangesmore » from ± 0.3‰ to 1.6‰, and for δ 18O ranges from ± 0.17‰ to 0.27‰. The ability of TGA-IRIS to generate detailed water yield data and δ 2H and δ 18O values of water at varying temperatures allows for the differentiation of water in varying states of binding on mineral surfaces and within the mineral matrix. TGA-IRIS analyses of hydrogen isotopes in goethite yields δ 2H values that reflect the hydrogen of the OH – phase in the mineral and are comparable to that made by IRMS and found in the literature. In contrast, δ 18O values on goethite reflect the oxygen in OH – groups bound to Fe (Fe-OH group), and not the oxygen bound only to Fe (Fe-O group) in the mineral crystal lattice, and may not be comparable to literature δ 18O values made by IRMS that reflect the total O in the mineral. TGA-IRIS presents the possibility to isotopically differentiate the various oxygen reservoirs in goethite, which may allow the mineral to be used as a single mineral geothermometer. As a result, TGA-IRIS measurements of hydration waters are likely to open new avenues and possibilities for research on hydrated minerals.« less

  11. Thermodynamics of Small Alkali Metal Halide Cluster Ions: Comparison of Classical Molecular Simulations with Experiment and Quantum Chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlcek, Lukas; Uhlik, Filip; Moucka, Filip

    We evaluate the ability of selected classical molecular models to describe the thermodynamic and structural aspects of gas-phase hydration of alkali halide ions and the formation of small water clusters. To understand the effect of many-body interactions (polarization) and charge penetration effects on the accuracy of a force field, we perform Monte Carlo simulations with three rigid water models using different functional forms to account for these effects: (i) point charge non-polarizable SPC/E, (ii) Drude point charge polarizable SWM4- DP, and (iii) Drude Gaussian charge polarizable BK3. Model predictions are compared with experimental Gibbs free energies and enthalpies of ionmore » hydration, and with microscopic structural properties obtained from quantum DFT calculations. We find that all three models provide comparable predictions for pure water clusters and cation hydration, but differ significantly in their description of anion hydration. None of the investigated classical force fields can consistently and quantitatively reproduce the experimental gas phase hydration thermodynamics. The outcome of this study highlights the relation between the functional form that describes the effective intermolecular interactions and the accuracy of the resulting ion hydration properties.« less

  12. Dynamics of Model Hydraulic Fracturing Liquid Studied by Two-Dimensional Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Daley, Kim; Kubarych, Kevin J.

    2014-06-01

    The technique of two-dimensional infrared (2DIR) spectroscopy is used to expose the chemical dynamics of various concentrations of polymers and their monomers in heterogeneous mixtures. An environmentally relevant heterogeneous mixture, which inspires this study, is hydraulic fracturing liquid (HFL). Hydraulic fracking is a technique used to extract natural gas from shale deposits. HFL consists of mostly water, proppant (sand), an emulsifier (guar), and other chemicals specific to the drilling site. Utilizing a metal carbonyl as a probe, we observe the spectral dynamics of the polymer, guar, and its monomer, mannose, and compare the results to see how hydration dynamics change with varying concentration. Another polymer, Ficoll, and its monomer, sucrose, are also compared to see how polymer size affects hydration dynamics. The two results are as follows: (1) Guar experiences collective hydration at high concentrations, where as mannose experiences independent hydration; (2) no collective hydration is observed for Ficoll in the same concentration range as guar, possibly due to polymer shape and size. HFL experiences extremely high pressure during natural gas removal, so future studies will focus on how increased pressure affects the hydration dynamics of polymers and monomers.

  13. Morphological and functional changes in RAW264 macrophage-like cells in response to a hydrated layer of carbonate-substituted hydroxyapatite.

    PubMed

    Igeta, Kazuki; Kuwamura, Yuta; Horiuchi, Naohiro; Nozaki, Kosuke; Shiraishi, Daichi; Aizawa, Mamoru; Hashimoto, Kazuaki; Yamashita, Kimihiro; Nagai, Akiko

    2017-04-01

    Synthetic hydroxyapatite (HAp) is used clinically as a material for bone prostheses owing to its good bone-bonding ability; however, it does not contribute to bone remodeling. Carbonate-substituted hydroxyapatite (CAp) has greater bioresorption capacity than HAp while having similar bone-bonding potential, and is therefore considered as a next promising material for bone prostheses. However, the effects of the CAp instability on inflammatory and immune responses are unknown in detail. Here, we show that the surface layer of CAp is more hydrated than that of HAp and induces changes in the shape and function of macrophage-like cells. HAp and CAp were synthesized by wet method and molded into disks. The carbonate content of CAp disks was 6.2% as determined by Fourier transform (FT) infrared spectral analysis. Diffuse reflectance infrared FT analysis confirmed that physisorbed water and surface hydroxyl groups (OH - ) were increased whereas structural OH - was decreased on the CAp as compared to the HAp surface. The degree of hydroxylation in CAp was comparable to that in bone-apatite structures, and the CAp surface exhibited greater hydrophilicity and solubility than HAp. We investigated immune responses to these materials by culturing RAW264 cells (macrophage precursors) on their surfaces. Cell spreading on the CAp disk was suppressed and the secretion level of inflammatory cytokines was reduced as compared to cells grown on HAp. These results indicate that the greater surface hydration of CAp surface can attenuate adverse inflammatory responses to implanted bone prostheses composed of this material. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1063-1070, 2017. © 2017 Wiley Periodicals, Inc.

  14. Prevention of Contrast-Induced Nephropathy by Central Venous Pressure-Guided Fluid Administration in Chronic Kidney Disease and Congestive Heart Failure Patients.

    PubMed

    Qian, Geng; Fu, Zhenhong; Guo, Jun; Cao, Feng; Chen, Yundai

    2016-01-11

    This study aimed to explore the hemodynamic index-guided hydration method for patients with congestive heart failure (CHF) and chronic kidney disease (CKD) to reduce the risk of contrast-induced nephropathy (CIN) and at the same time to avoid the acute heart failure. Patients at moderate or high risk for CIN should receive sufficient hydration before contrast application. This prospective, randomized, double-blind, comparative clinical trial enrolled 264 consecutive patients with CKD and CHF undergoing coronary procedures. These patients were randomly assigned to either central venous pressure (CVP)-guided hydration group (n = 132) or the standard hydration group (n = 132). In the CVP-guided group, the hydration infusion rate was dynamically adjusted according to CVP level every hour. CIN was defined as an absolute increase in serum creatinine (SCr) >0.5 mg/dl (44.2 μmol/l) or a relative increase >25% compared with baseline SCr. Baseline characteristics were well-matched between the 2 groups. The total mean volume of isotonic saline administered in the CVP-guided hydration group was significantly higher than the control group (1,827 ± 497 ml vs. 1,202 ± 247 ml; p < 0.001). CIN occurred less frequently in CVP-guided hydration group than the control group (15.9% vs. 29.5%; p = 0.006). The incidences of acute heart failure during the hydration did not differ between the 2 groups (3.8% vs. 3.0%; p = 0.500). CVP-guided fluid administration can safely and effectively reduce the risk of CIN in patients with CKD and CHF. (Central Venous Pressure Guided Hydration Prevention for Contrast-Induced Nephropathy; NCT02405377). Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  15. Understanding decomposition and encapsulation energies of structure I and II clathrate hydrates

    NASA Astrophysics Data System (ADS)

    Alavi, Saman; Ohmura, Ryo

    2016-10-01

    When compressed with water or ice under high pressure and low temperature conditions, some gases form solid gas hydrate inclusion compounds which have higher melting points than ice under those pressures. In this work, we study the balance of the guest-water and water-water interaction energies that lead to the formation of the clathrate hydrate phases. In particular, molecular dynamics simulations with accurate water potentials are used to study the energetics of the formation of structure I (sI) and II (sII) clathrate hydrates of methane, ethane, and propane. The dissociation enthalpy of the clathrate hydrate phases, the encapsulation enthalpy of methane, ethane, and propane guests in the corresponding phases, and the average bonding enthalpy of water molecules are calculated and compared with accurate calorimetric measurements and previous classical and quantum mechanical calculations, when available. The encapsulation energies of methane, ethane, and propane guests stabilize the small and large sI and sII hydrate cages, with the larger molecules giving larger encapsulation energies. The average water-water interactions are weakened in the sI and sII phases compared to ice. The relative magnitudes of the van der Waals potential energy in ice and the hydrate phases are similar, but in the ice phase, the electrostatic interactions are stronger. The stabilizing guest-water "hydrophobic" interactions compensate for the weaker water-water interactions and stabilize the hydrate phases. A number of common assumptions regarding the guest-cage water interactions are used in the van der Waals-Platteeuw statistical mechanical theory to predict the clathrate hydrate phase stability under different pressure-temperature conditions. The present calculations show that some of these assumptions may not accurately reflect the physical nature of the interactions between guest molecules and the lattice waters.

  16. A Randomized Controlled Trial Comparing Intranasal Midazolam and Chloral Hydrate for Procedural Sedation in Children.

    PubMed

    Stephen, Marie Christy Sharafine; Mathew, John; Varghese, Ajoy Mathew; Kurien, Mary; Mathew, George Ani

    2015-12-01

    To evaluate the efficacy and safety of intranasal midazolam and chloral hydrate syrup for procedural sedation in children. Prospective randomized placebo-controlled trial (double blind, double dummy). Tertiary care hospital over 18 months. Eighty-two children, 1 to 6 years old, undergoing auditory brainstem response testing were randomized to receive either intranasal midazolam with oral placebo or chloral hydrate syrup with placebo nasal spray. Intranasal midazolam was delivered at 0.5 mg/kg (100 mcg per spray) and oral syrup at 50 mg/kg. Children not sedated at 30 minutes had a second dose at half the initial dose. The primary outcomes measured were safety and efficacy. Secondary outcomes were time to onset of sedation, parental separation, nature of parental separation, parental satisfaction, audiologist's satisfaction, time to recovery, and number of attempts. Forty-one children were in each group, and no major adverse events were noted. The chloral hydrate group showed earlier onset of sedation (66%) compared with the intranasal midazolam group (33%). Significant difference in time to recovery was noted in the chloral hydrate group (78 minutes) versus the intranasal midazolam group (108 minutes). The parents' and audiologist's satisfaction was higher for chloral hydrate (95% and 75%) than for intranasal midazolam (49% and 29%, respectively). Overall, sedation was 95% with chloral hydrate versus 51% with intranasal midazolam. Both drugs maintained sedation. Intranasal midazolam and chloral hydrate are both safe and efficacious for pediatric procedural sedation. Chloral hydrate was superior to intranasal midazolam, with an earlier time to onset of sedation, a faster recovery, better satisfaction among parents and the audiologist, and successful sedation. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2015.

  17. Understanding decomposition and encapsulation energies of structure I and II clathrate hydrates.

    PubMed

    Alavi, Saman; Ohmura, Ryo

    2016-10-21

    When compressed with water or ice under high pressure and low temperature conditions, some gases form solid gas hydrate inclusion compounds which have higher melting points than ice under those pressures. In this work, we study the balance of the guest-water and water-water interaction energies that lead to the formation of the clathrate hydrate phases. In particular, molecular dynamics simulations with accurate water potentials are used to study the energetics of the formation of structure I (sI) and II (sII) clathrate hydrates of methane, ethane, and propane. The dissociation enthalpy of the clathrate hydrate phases, the encapsulation enthalpy of methane, ethane, and propane guests in the corresponding phases, and the average bonding enthalpy of water molecules are calculated and compared with accurate calorimetric measurements and previous classical and quantum mechanical calculations, when available. The encapsulation energies of methane, ethane, and propane guests stabilize the small and large sI and sII hydrate cages, with the larger molecules giving larger encapsulation energies. The average water-water interactions are weakened in the sI and sII phases compared to ice. The relative magnitudes of the van der Waals potential energy in ice and the hydrate phases are similar, but in the ice phase, the electrostatic interactions are stronger. The stabilizing guest-water "hydrophobic" interactions compensate for the weaker water-water interactions and stabilize the hydrate phases. A number of common assumptions regarding the guest-cage water interactions are used in the van der Waals-Platteeuw statistical mechanical theory to predict the clathrate hydrate phase stability under different pressure-temperature conditions. The present calculations show that some of these assumptions may not accurately reflect the physical nature of the interactions between guest molecules and the lattice waters.

  18. Quantification of changes in skin hydration and sebum after tape stripping using infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Ezerskaia, A.; Pereira, S. F.; Urbach, H. P.; Varghese, B.

    2017-02-01

    Skin barrier function relies on well balanced water and lipid system of stratum corneum. Optimal hydration and oiliness levels are indicators of skin health and integrity. We demonstrate an accurate and sensitive depth profiling of stratum corneum sebum and hydration levels using short wave infrared spectroscopy in the spectral range around 1720 nm. We demonstrate that short wave infrared spectroscopic technique combined with tape stripping can provide morequantitative and more reliable skin barrier function information in the low hydration regime, compared to conventional biophysical methods.

  19. In Situ Characterization of Hydrated Proteins in Water by SALVI and ToF-SIMS

    PubMed Central

    Yu, Jiachao; Zhu, Zihua; Yu, Xiao-Ying

    2016-01-01

    This work demonstrates in situ characterization of protein biomolecules in the aqueous solution using the System for Analysis at the Liquid Vacuum Interface (SALVI) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The fibronectin protein film was immobilized on the silicon nitride (SiN) membrane that forms the SALVI detection area. During ToF-SIMS analysis, three modes of analysis were conducted including high spatial resolution mass spectrometry, two-dimensional (2D) imaging, and depth profiling. Mass spectra were acquired in both positive and negative modes. Deionized water was also analyzed as a reference sample. Our results show that the fibronectin film in water has more distinct and stronger water cluster peaks compared to water alone. Characteristic peaks of amino acid fragments are also observable in the hydrated protein ToF-SIMS spectra. These results illustrate that protein molecule adsorption on a surface can be studied dynamically using SALVI and ToF-SIMS in the liquid environment for the first time. PMID:26966995

  20. Carbon abundances, major element chemistry, and mineralogy of hydrated interplanetary dust particles

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Thomas, K. L.; Mckay, D. S.

    1993-01-01

    Hydrated interplanetary dust particles (IDP's) comprise a major fraction of the interplanetary dust particles collected in the stratosphere. While much is known about the mineralogy and chemistry of hydrated IDP's, little is known about the C abundance in this class of IDP's, the nature of the C-bearing phases, and how the C abundance is related to other physical properties of hydrated IDP's. Bulk compositional data (including C and O) for 11 hydrated IDP's that were subsequently examined by the transition electron microscopy (TEM) to determine their mineralogy and mineral chemistry are reported. Our analysis indicates that these hydrated IDP's are strongly enriched in C relative to the most C-rich meteorites. The average abundance of C in these hydrated IDP's is 4X CI chondrite values. The bulk compositions (including C and O) of 11 hydrated IDP's were determined by thin-window, energy-dispersive x ray (EDX) spectroscopy of the uncoated IDP's on Be substrates in the scanning electron microscopy (SEM). As a check on our C measurements, one of the IDP's (L2006H5) was embedded in glassy S, and microtome thin sections were prepared and placed onto Be substrates. Thin-film EDX analyses of multiple thin sections of L2006H5 show good agreement with the bulk value determined in the SEM. Following EDX analysis, the mineralogy and mineral chemistry of each IDP was determined by analyzing ultramicrotome thin sections in a TEM equipped with an EDX spectrometer.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hua, Xin; Yu, Xiao-Ying; Wang, Zhaoying

    The first results of using a novel single channel microfluidic reactor to enable Shewanella biofilm growth and in situ characterization using time-of-flight secondary ion mass spectrometry (ToF-SIMS) in the hydrated environment are presented. The new microfluidic interface allows direct probing of the liquid surface using ToF-SIMS, a vacuum surface technique. The detection window is an aperture of 2 m in diameter on a thin silicon nitride (SiN) membrane and it allows direct detection of the liquid surface. Surface tension of the liquid flowing inside the microchannel holds the liquid within the aperture. ToF-SIMS depth profiling was used to drill throughmore » the SiN membrane and the biofilm grown on the substrate. In situ 2D imaging of the biofilm in hydrated state was acquired, providing spatial distribution of the chemical compounds in the biofilm system. This data was compared with a medium filled microfluidic reactor devoid of biofilm and dried biofilm samples deposited on clean silicon wafers. Principle Component Analysis (PCA) was used to investigate these observations. Our results show that imaging biofilms in the hydrated environment using ToF-SIMS is possible using the unique microfluidic reactor. Moreover, characteristic biofilm fatty acids fragments were observed in the hydrated biofilm grown in the microfluidic channel, illustrating the advantage of imaging biofilm in its native environment.« less

  2. Oral nutritional support can shorten the duration of parenteral hydration in end-of-life cancer patients: a randomized controlled trial.

    PubMed

    Ishiki, Hiroto; Iwase, Satoru; Gyoda, Yasuaki; Kanai, Yoshiaki; Ariyoshi, Keisuke; Miyaji, Tempei; Tahara, Yukiko; Kawaguchi, Takashi; Chinzei, Mieko; Yamaguchi, Takuhiro

    2015-01-01

    Tube feeding or hydration is often considered for end-of-life cancer patients despite the negative effects on quality of life. The efficacy of oral nutritional support in this setting is unknown. We conducted a randomized trial to compare the efficacies of an amino acid jelly, Inner Power® (IP), and a liquid enteral product, Ensure Liquid® (EL), in terminally ill cancer patients. We randomly assigned patients to 3 arms: EL, IP, and EL+IP. The primary endpoint was drip infusion in vein (DIV)-free survival, which was defined as the duration from nutritional support initiation to administration of parenteral hydration. Twenty-seven patients were enrolled in the study, of whom 21 were included in the intention-to-treat analysis. The median age of the subjects was 69 yr. There were significant differences between the arms with regard to the median DIV-free survival (0.5, 6.0, and 4.5 days in the EL, IP, and EL + IP arms, respectively; P = 0.05). The median overall survival was 7, 9, and 8 days in the EL, IP, and EL + IP arms, respectively. IP may shorten the duration of parenteral hydration in terminally ill cancer patients and does not affect their survival.

  3. Strontium and barium in aqueous solution and a potassium channel binding site

    NASA Astrophysics Data System (ADS)

    Chaudhari, Mangesh I.; Rempe, Susan B.

    2018-06-01

    Ion hydration structure and free energy establish criteria for understanding selective ion binding in potassium (K+) ion channels and may be significant to understanding blocking mechanisms as well. Recently, we investigated the hydration properties of Ba2+, the most potent blocker of K+ channels among the simple metal ions. Here, we use a similar method of combining ab initio molecular dynamics simulations, statistical mechanical theory, and electronic structure calculations to probe the fundamental hydration properties of Sr2+, which does not block bacterial K+ channels. The radial distribution of water around Sr2+ suggests a stable 8-fold geometry in the local hydration environment, similar to Ba2+. While the predicted hydration free energy of -331.8 kcal/mol is comparable with the experimental result of -334 kcal/mol, the value is significantly more favorable than the -305 kcal/mol hydration free energy of Ba2+. When placed in the innermost K+ channel blocking site, the solvation free energies and lowest energy structures of both Sr2+ and Ba2+ are nearly unchanged compared with their respective hydration properties. This result suggests that the block is not attributable to ion trapping due to +2 charge, and differences in blocking behavior arise due to free energies associated with the exchange of water ligands for channel ligands instead of free energies of transfer from water to the binding site.

  4. Quantitative assessment of combination bathing and moisturizing regimens on skin hydration in atopic dermatitis.

    PubMed

    Chiang, Charles; Eichenfield, Lawrence F

    2009-01-01

    Standard recommendations for skin care for patients with atopic dermatitis stress the importance of skin hydration and the application of moisturizers. However, objective data to guide recommendations regarding the optimal practice methods of bathing and emollient application are scarce. This study quantified cutaneous hydration status after various combination bathing and moisturizing regimens. Four bathing/moisturizer regimens were evaluated in 10 subjects, five pediatric subjects with atopic dermatitis and five subjects with healthy skin. The regimens consisted of bathing alone without emollient application, bathing and immediate emollient application, bathing and delayed application, and emollient application alone. Each regimen was evaluated in all subjects, utilizing a crossover design. Skin hydration was assessed with standard capacitance measurements. In atopic dermatitis subjects, emollient alone yielded a significantly (p < 0.05) greater mean hydration over 90 minutes (206.2% baseline hydration) than bathing with immediate emollient (141.6%), bathing and delayed emollient (141%), and bathing alone (91.4%). The combination bathing and emollient application regimens demonstrated hydration values at 90 minutes not significantly greater than baseline. Atopic dermatitis subjects had a decreased mean hydration benefit compared with normal skin subjects. Bathing without moisturizer may compromise skin hydration. Bathing followed by moisturizer application provides modest hydration benefits, though less than that of simply applying moisturizer alone.

  5. Occurrence and structural characterization of gas hydrates associated with a cold vent field, offshore Vancouver Island

    NASA Astrophysics Data System (ADS)

    Lu, Hailong; Moudrakovski, Igor; Riedel, Michael; Spence, George; Dutrisac, Regent; Ripmeester, John; Wright, Fred; Dallimore, Scott

    2005-10-01

    Gas hydrate samples recovered from a cold vent field offshore Vancouver Island were studied in detail both by macroscopic observations and instrumental methods (powder X-ray diffraction method (PXRD), nuclear magnetic resonance (NMR), and Raman spectroscopy). It was found that gas hydrates were massive from 2.64 to 2.94 m below seafloor (mbsf), elongated, nodular and tabular from 4.60 to 4.81 mbsf, and vein-like from 5.48 to 5.68 mbsf, showing a trend of decreasing hydrate content with increasing depth. All samples were determined to be structure I hydrate from PXRD, NMR, and Raman spectroscopies. The hydration numbers were estimated to be 6.1 ± 0.2 on average as determined from the methane distribution over the cage sites from NMR and Raman analytical results. Estimates of conversion levels indicated that ˜78% of the water in the massive samples was hydrate, down to a low value of ˜0.4% for the pore hydrate samples. The results are compared with measurements on synthetic hydrates and samples recovered from below the permafrost on the Mallik site. Differences in methane content and lattice parameters for synthetic and natural samples are relatively minor. Additional work is needed to address the presence of minor gas components and the heterogeneity of natural hydrate samples.

  6. Elevated gas hydrate saturation within silt and silty clay sediments in the Shenhu area, South China Sea

    USGS Publications Warehouse

    Wang, Xiujuan; Hutchinson, Deborah R.; Wu, Shiguo; Yang, Shengxiong; Guo, Yiqun

    2011-01-01

    Gas hydrate saturations were estimated using five different methods in silt and silty clay foraminiferous sediments from drill hole SH2 in the South China Sea. Gas hydrate saturations derived from observed pore water chloride values in core samples range from 10 to 45% of the pore space at 190–221 m below seafloor (mbsf). Gas hydrate saturations estimated from resistivity (Rt) using wireline logging results are similar and range from 10 to 40.5% in the pore space. Gas hydrate saturations were also estimated by P wave velocity obtained during wireline logging by using a simplified three-phase equation (STPE) and effective medium theory (EMT) models. Gas hydrate saturations obtained from the STPE velocity model (41.0% maximum) are slightly higher than those calculated with the EMT velocity model (38.5% maximum). Methane analysis from a 69 cm long depressurized core from the hydrate-bearing sediment zone indicates that gas hydrate saturation is about 27.08% of the pore space at 197.5 mbsf. Results from the five methods show similar values and nearly identical trends in gas hydrate saturations above the base of the gas hydrate stability zone at depths of 190 to 221 mbsf. Gas hydrate occurs within units of clayey slit and silt containing abundant calcareous nannofossils and foraminifer, which increase the porosities of the fine-grained sediments and provide space for enhanced gas hydrate formation. In addition, gas chimneys, faults, and fractures identified from three-dimensional (3-D) and high-resolution two-dimensional (2-D) seismic data provide pathways for fluids migrating into the gas hydrate stability zone which transport methane for the formation of gas hydrate. Sedimentation and local canyon migration may contribute to higher gas hydrate saturations near the base of the stability zone.

  7. Does the "sleeping Dragon" Really Sleep?: the Case for Continuous Long-Term Monitoring at a Gulf of Mexico Cold Seep Site

    NASA Astrophysics Data System (ADS)

    Wilson, R. M.; Lapham, L.; Farr, N.; Lutken, C.; MacDonald, I. R.; Macelloni, L.; Riedel, M.; Sleeper, K.; Chanton, J.

    2011-12-01

    Continuous porewater monitoring indicates that the methane flux away from exposed hydrate mounds can vary considerably over time. Recently, we retrieved a Pore Fluid Array instrument pack from a hydrate outcrop adjacent to a NEPTUNE Canada observatory node. The sampler was designed to continuously collect and store sediment pore fluids over the course of 9 months. On analysis, we observed a 35mM variation in methane concentrations corresponding with an abrupt shift in current direction at the site. Video and resistivity data have led to previous speculation that hydrate growth and dissolution/dissociation may be seasonally variable. Cumulatively, these findings suggest that the persistence of hydrate outcrops may be extremely dynamic, driven by fluctuations in physical conditions on short time scales. Short-term monitoring in the Gulf of Mexico within Mississippi Canyon lease block 118 (MC118), a known hydrate-bearing site, indicates that physical conditions even at these depths (~540-890m) may be highly variable. Pressure can vary within hours, and recorded temperature changes of ~1.5°C have been associated with passing storms. Moreover, increased particle abundance was observed at the site in 2007 suggesting that organic matter flux to the sediments may vary on the scale of months to years. These inputs have the potential to alter the chemical environment surrounding the hydrate, thereby affecting dissolution rates. Continuous, long-term observations of physical conditions at MC118 could provide information about the potential for natural perturbations to impact hydrate dynamics on the scale of weeks or even days necessary for assessing the long-term persistence of hydrate outcrops. Sleeping Dragon is a massive hydrate outcrop at MC118 that has been monitored since 2006. Three years ago, researchers returning to the site found it visibly diminished relative to previous observations. This apparent shift toward net dissolution of the mound may have been precipitated by changes in physical and chemical conditions at the site. We propose that the dynamics of hydrate stability may be compared to an oscillating "see-saw" where fluctuations in physical conditions tip the balance alternately in favor of dissociation/dissolution or hydrate growth. The chemical environment at MC118 results from the interaction among physical parameters, fluid/particle flux, and biological processes occurring near the hydrate surface. Given that these parameters may be varying on the scale of days, weeks, months, and possibly even years, long-term continuous monitoring will play a key role in understanding the stability conditions at MC118 and the potential for gas release from this methane reservoir should the dragon be awakened.

  8. Sivelestat sodium hydrate attenuates acute lung injury by decreasing systemic inflammation in a rat model of severe burns.

    PubMed

    Xiao, X-G; Zu, H-G; Li, Q-G; Huang, P

    2016-01-01

    Patients with severe burns often develop acute lung injury (ALI), systemic inflammatory response syndrome (SIRS) often complicates with ALI. Sivelestat sodium hydrate is an effective drug against ALI. However, the mechanisms of this beneficial effect are still poorly understood. In the current study, we evaluate the effects of sivelestat sodium hydrate on systemic and local inflammatory parameters (neutrophil elastase [NE], interleukin [IL]-8, matrix metalloproteinase [MMP] 2 and 9) in a rat model of severe burns and ALI. And to analyze the correlations between expression of NE and IL-8 and acute lung injury. 48 Sprague-Dawley (SD) rats were divided into 3 groups: normal control group, severe burns injury group and severe burns treated with sivelestat sodium hydrate group (SSI). The lung water content and PaO2 were detected in each group. Pathological manifestations in each group were observed for pathology scoring in SD rats with acute lung injury. ELISA was used for detecting expression of NE and IL-8 in serum and BAL specimens of SD rats in each group. RT-PCR was used to detect mRNA expression of NE and IL-8 in lung tissues of each group. Western blotting was used for detecting protein expression of MMP-2 and MMP-9 in lung tissues of each group. SPSS 18.0 was used for statistical analysis. The PaO2 was significantly increased after sivelestat sodium hydrate intravenous injection. Pathological score and water content of lung tissue were significantly decreased in SSI group compared with severe burns injury group, slightly higher than that normal control group. NE and IL-8 levels significantly decreased in serum, BAL and lung tissue specimens after sivelestat sodium hydrate intravenous injection; Expression of MMP-2 and MMP-9 were significantly up-regulated in severe burns group and showed no significantly changed after sivelestat sodium hydrate intravenous injection. In a rat model of severe burns and ALI, administration of sivelestat sodium hydrate improved symptoms of ALI and significantly decreased inflammatory parameters NE and IL-8.

  9. Comparative analysis of Trichuris muris surface using conventional, low vacuum, environmental and field emission scanning electron microscopy.

    PubMed

    Lopes Torres, Eduardo José; de Souza, Wanderley; Miranda, Kildare

    2013-09-23

    The whipworm of the genus Trichuris Roederer, 1791, is a nematode of worldwide distribution and comprises species that parasitize humans and other mammals. Infections caused by Trichuris spp. in mammals can lead to various intestinal diseases of human and veterinary interest. The morphology of Trichuris spp. and other helminths has been mostly studied using conventional scanning electron microscopy of chemically fixed, dried and metal-coated specimens, although this kind of preparation has been shown to introduce a variety of artifacts such as sample shrinking, loss of secreted products and/or hiding of small structures due to sample coating. Low vacuum (LVSEM) and environmental scanning electron microscopy (ESEM) have been applied to a variety of insulator samples, also used in the visualization of hydrated and/or live specimens in their native state. In the present work, we used LVSEM and ESEM to analyze the surface of T. muris and analyze its interaction with the host tissue using freshly fixed or unfixed hydrated samples. Analysis of hydrated samples showed a set of new features on the surface of the parasite and the host tissue, including the presence of the secretory products of the bacillary glands on the surface of the parasite, and the presence of mucous material and eggs on the intestinal surface. Field emission scanning electron microscopy (FESEM) was also applied to reveal the detailed structure of the glandular chambers in fixed, dried and metal coated samples. Taken together, the results show that analysis of hydrated samples may provide new insights in the structural organization of the surface of helminth parasites and its interaction with the infected tissue, suggesting that the application of alternative SEM techniques may open new perspectives for analysis in taxonomy, morphology and host-parasite interaction fields. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Cellulose Nanofibers as a Modifier for Rheology, Curing and Mechanical Performance of Oil Well Cement.

    PubMed

    Sun, Xiuxuan; Wu, Qinglin; Lee, Sunyoung; Qing, Yan; Wu, Yiqiang

    2016-08-16

    The influence of nanocellulose on oil well cement (OWC) properties is not known in detail, despite recent advances in nanocellulose technology and its related composite materials. The effect of cellulose nanofibers (CNFs) on flow, hydration, morphology, and strength of OWC was investigated using a range of spectroscopic methods coupled with rheological modelling and strength analysis. The Vom-Berg model showed the best fitting result of the rheology data. The addition of CNFs increased the yield stress of OWC slurry and degree of hydration value of hydrated CNF-OWC composites. The flexural strength of hydrated OWC samples was increased by 20.7% at the CNF/OWC ratio of 0.04 wt%. Excessive addition of CNFs into OWC matrix had a detrimental effect on the mechanical properties of hydrated CNF-OWC composites. This phenomenon was attributed to the aggregation of CNFs as observed through coupled morphological and elemental analysis. This study demonstrates a sustainable reinforcing nano-material for use in cement-based formulations.

  11. Cellulose Nanofibers as a Modifier for Rheology, Curing and Mechanical Performance of Oil Well Cement

    NASA Astrophysics Data System (ADS)

    Sun, Xiuxuan; Wu, Qinglin; Lee, Sunyoung; Qing, Yan; Wu, Yiqiang

    2016-08-01

    The influence of nanocellulose on oil well cement (OWC) properties is not known in detail, despite recent advances in nanocellulose technology and its related composite materials. The effect of cellulose nanofibers (CNFs) on flow, hydration, morphology, and strength of OWC was investigated using a range of spectroscopic methods coupled with rheological modelling and strength analysis. The Vom-Berg model showed the best fitting result of the rheology data. The addition of CNFs increased the yield stress of OWC slurry and degree of hydration value of hydrated CNF-OWC composites. The flexural strength of hydrated OWC samples was increased by 20.7% at the CNF/OWC ratio of 0.04 wt%. Excessive addition of CNFs into OWC matrix had a detrimental effect on the mechanical properties of hydrated CNF-OWC composites. This phenomenon was attributed to the aggregation of CNFs as observed through coupled morphological and elemental analysis. This study demonstrates a sustainable reinforcing nano-material for use in cement-based formulations.

  12. Cellulose Nanofibers as a Modifier for Rheology, Curing and Mechanical Performance of Oil Well Cement

    PubMed Central

    Sun, Xiuxuan; Wu, Qinglin; Lee, Sunyoung; Qing, Yan; Wu, Yiqiang

    2016-01-01

    The influence of nanocellulose on oil well cement (OWC) properties is not known in detail, despite recent advances in nanocellulose technology and its related composite materials. The effect of cellulose nanofibers (CNFs) on flow, hydration, morphology, and strength of OWC was investigated using a range of spectroscopic methods coupled with rheological modelling and strength analysis. The Vom-Berg model showed the best fitting result of the rheology data. The addition of CNFs increased the yield stress of OWC slurry and degree of hydration value of hydrated CNF-OWC composites. The flexural strength of hydrated OWC samples was increased by 20.7% at the CNF/OWC ratio of 0.04 wt%. Excessive addition of CNFs into OWC matrix had a detrimental effect on the mechanical properties of hydrated CNF-OWC composites. This phenomenon was attributed to the aggregation of CNFs as observed through coupled morphological and elemental analysis. This study demonstrates a sustainable reinforcing nano-material for use in cement-based formulations. PMID:27526784

  13. Hydration kinetics of CA{sub 2} and CA-Investigations performed on a synthetic calcium aluminate cement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klaus, S.R., E-mail: klaus@geol.uni-erlangen.de; Neubauer, J., E-mail: juergen.neubauer@gzn.uni-erlangen.de; Goetz-Neunhoeffer, F., E-mail: friedlinde.goetz@gzn.uni-erlangen.de

    2013-01-15

    Much is already known about the hydration of monocalcium aluminate (CA) in calcium aluminate cements (CACs). CA{sub 2} is known to be weakly hydraulic. Therefore, the hydration kinetics of CA{sub 2} were not of as great interest as those of the hydration of CAC. We were able to show that the hydration of CA{sub 2} begins as soon as the hydration rate of CA has reached its maximum and the first precipitation of C{sub 2}AH{sub 8} has started. The hydration of different CA/CA{sub 2} ratios was analyzed by the G-factor quantification. The individual contributions of the phases CA and CA{submore » 2} to the heat flow were calculated based on the amounts dissolved by applying thermodynamic data. The heat flow as calculated from XRD data was then compared with the measured heat flow. It obtained a good consistency between the two. The very pronounced influence of CA{sub 2} during hydration of CAC can be clearly demonstrated.« less

  14. Physical property changes in hydrate-bearing sediment due to depressurization and subsequent repressurization

    USGS Publications Warehouse

    Waite, W.F.; Kneafsey, T.J.; Winters, W.J.; Mason, D.H.

    2008-01-01

    Physical property measurements of sediment cores containing natural gas hydrate are typically performed on material exposed, at least briefly, to non-in situ conditions during recovery. To examine the effects of a brief excursion from the gas-hydrate stability field, as can occur when pressure cores are transferred to pressurized storage vessels, we measured physical properties on laboratory-formed sand packs containing methane hydrate and methane pore gas. After depressurizing samples to atmospheric pressure, we repressurized them into the methane-hydrate stability field and remeasured their physical properties. Thermal conductivity, shear strength, acoustic compressional and shear wave amplitudes, and speeds of the original and depressurized/repressurized samples are compared. X– ray computed tomography images track how the gas-hydrate distribution changes in the hydrate-cemented sands owing to the depressurizaton/repressurization process. Because depressurization-induced property changes can be substantial and are not easily predicted, particularly in water-saturated, hydrate-bearing sediment, maintaining pressure and temperature conditions throughout the core recovery and measurement process is critical for using laboratory measurements to estimate in situ properties.

  15. Physical property changes in hydrate-bearing sediment due to depressurization and subsequent repressurization

    USGS Publications Warehouse

    Waite, W.F.; Kneafsey, T.J.; Winters, W.J.; Mason, D.H.

    2008-01-01

    Physical property measurements of sediment cores containing natural gas hydrate are typically performed on material exposed, at least briefly, to non-in situ conditions during recovery. To examine the effects of a brief excursion from the gas-hydrate stability field, as can occur when pressure cores are transferred to pressurized storage vessels, we measured physical properties on laboratory-formed sand packs containing methane hydrate and methane pore gas. After depressurizing samples to atmospheric pressure, we repressurized them into the methane-hydrate stability field and remeasured their physical properties. Thermal conductivity, shear strength, acoustic compressional and shear wave amplitudes, and speeds of the original and depressurized/repressurized samples are compared. X-ray computed tomography images track how the gas-hydrate distribution changes in the hydrate-cemented sands owing to the depressurizaton/repressurization process. Because depressurization-induced property changes can be substantial and are not easily predicted, particularly in water-saturated, hydrate-bearing sediment, maintaining pressure and temperature conditions throughout the core recovery and measurement process is critical for using laboratory measurements to estimate in situ properties.

  16. Experimental investigations about the effect of trace amount of propane on the formation of mixed hydrates of methane and propane

    NASA Astrophysics Data System (ADS)

    Cai, W.; Lu, H.; Huang, X.

    2016-12-01

    In natural gas hydrates, some heavy hydrocarbons are always detected in addition to methane. However, it is still not well understood how the trace amount of heavy gas affect the hydrate properties. Intensive studies have been carried out to study the thermodynamic properties and structure types of mixed gases hydrates, but comparatively few investigations have been carried out on the cage occupancies of guest molecules in mixed gases hydrates. For understanding how trace amount of propane affects the formation of mixed methane-propane hydrates, X-ray diffraction, Raman spectroscopy, and gas chromatography were applied to the synthesized mixed methane-propane hydrate specimens, to get their structural characteristics (structure type, structural parameters, cage occupancy, etc.) and gas compositions. The mixed methane-propane hydrates were prepared by reacting fine ice powders with various gas mixtures of methane and propane. When the propane content was below 0.4%, the hydrates synthesized were found containing both sI methane hydrate and sII methane-propane hydrate; while the hydrates were found always sII when propane was over certain content. Detail studies about the cage occupancies of propane and methane in sII hydrate revealed that: 1) with the increase in propane content of methane-propane mixture, the occupancy of propane in large cage increased as accompanied with the decrease in methane occupancy in large cage, however the occupancy of methane in small cage didn't experience significant change; 2) temperature and pressure seemed no obvious influence on cage occupancy.

  17. Factors affecting the process of CO2 replacement of CH4 from methane hydrate in sediments - Constrained from experimental results

    NASA Astrophysics Data System (ADS)

    Lu, H.; Hu, G.; Vanderveen, J.; Liu, C.; Ratcliffe, C.; Ripmeester, J.

    2011-12-01

    CO2 replacement of CH4 from methane hydrate has been proposed as a method to produce gas from natural gas hydrate by taking advantage of both the production of natural gas and the sequestration of CO2. To examine the validity of this method DOE/Conoco-Philips is considering having a field test in Alaska. The reaction of CO2 replacing CH4 from methane hydrate has been confirmed to be thermodynamically feasible, but concern is always raised about the reaction kinetics. Some kinetic studies in the system of methane hydrate and liquid or gaseous CO2 have found that the reaction proceeds at a very low rate. Natural gas hydrate occurs in sediments with multi-components and complex structure, so matters will be even more complicated. Up to now, few investigations have been carried out concerning the factors affecting the reaction process of CO2 replacing CH4 from methane hydrate. Experiments were implemented with sands, which were recovered from Mallik 5L-38 well, Mackenzie Delta, Northwest Territory, Canada, sediment that previously contained hydrate although it had been dried completely before our experiments. The water-saturated sands were tightly charged into a plastic bottle (90 mm deep and 60 mm wide), and then this test specimen was sealed in a pressure cell. After methane hydrate was synthesized in the test specimen for 108 days under a pressure of 11 to 8 MPa and a temperature of 3 degrees Celsius, liquid CO2 was introduced into the pressure cell. The conditions under which CO2 was reacted with methane hydrate were ~5.3 MPa and 5 degrees Celsius. After reacting for 15 days, the test specimen was recovered. The test specimen was cut into ~10 mm thick discs, and sub-samples were further taken from each of the discs. In addition to the determination of hydrate saturation and the gas composition, Raman spectroscopic studies were carried out for the sub-samples obtained. The results revealed: 1) less CO2 replacement in the bottom disc of the test specimen as compared with that in the top disc, implying that diffusion was a factor that controlled the movement of CO2 in the sediments, 2) an inhomogeneous replacement reaction even within the same disc, indicating that the contact area between methane hydrate and CO2 was a factor that determined the degree of replacement of CH4 from methane hydrate 3) the separate appearance of CO2 Raman intensities and CH4 Raman intensities in some portions of the test specimen, suggesting that CO2 was present in the form of CO2 hydrate in addition to being together with CH4 in other parts of the hydrate. Further analysis found that both CO2 diffusion and the contact area for reaction were associated with the pore structure of the sediments, which were heterogeneous both in pore size and in pore shape as observed with high resolution X-ray CT.

  18. Protein pharmacophore selection using hydration-site analysis

    PubMed Central

    Hu, Bingjie; Lill, Markus A.

    2012-01-01

    Virtual screening using pharmacophore models is an efficient method to identify potential lead compounds for target proteins. Pharmacophore models based on protein structures are advantageous because a priori knowledge of active ligands is not required and the models are not biased by the chemical space of previously identified actives. However, in order to capture most potential interactions between all potentially binding ligands and the protein, the size of the pharmacophore model, i.e. number of pharmacophore elements, is typically quite large and therefore reduces the efficiency of pharmacophore based screening. We have developed a new method to select important pharmacophore elements using hydration-site information. The basic premise is that ligand functional groups that replace water molecules in the apo protein contribute strongly to the overall binding affinity of the ligand, due to the additional free energy gained from releasing the water molecule into the bulk solvent. We computed the free energy of water released from the binding site for each hydration site using thermodynamic analysis of molecular dynamics (MD) simulations. Pharmacophores which are co-localized with hydration sites with estimated favorable contributions to the free energy of binding are selected to generate a reduced pharmacophore model. We constructed reduced pharmacophore models for three protein systems and demonstrated good enrichment quality combined with high efficiency. The reduction in pharmacophore model size reduces the required screening time by a factor of 200–500 compared to using all protein pharmacophore elements. We also describe a training process using a small set of known actives to reliably select the optimal set of criteria for pharmacophore selection for each protein system. PMID:22397751

  19. Constraints on oceanic methane emissions west of Svalbard from atmospheric in situ measurements and Lagrangian transport modeling

    NASA Astrophysics Data System (ADS)

    Pisso, Ignacio; Myhre, Cathrine Lund; Platt, Stephen Matthew; Eckhardt, Sabine; Hermansen, Ove; Schmidbauer, Norbert; Mienert, Jurgen; Vadakkepuliyambatta, Sunil; Bauguitte, Stephane; Pitt, Joseph; Allen, Grant; Bower, Keith; O'Shea, Sebastian; Gallagher, Martin; Percival, Carl; Pyle, John; Cain, Michelle; Stohl, Andreas

    2017-04-01

    Methane stored in seabed reservoirs such as methane hydrates can reach the atmosphere in the form of bubbles or dissolved in water. Hydrates could destabilize with rising temperature further increasing greenhouse gas emissions in a warming climate. To assess the impact of oceanic emissions from the area west of Svalbard, where methane hydrates are abundant, we used measurements collected with a research aircraft (FAAM) and a ship (Helmer Hansen) during the Summer 2014, and for Zeppelin Observatory for the full year. We present a model-supported analysis of the atmospheric CH4 mixing ratios measured by the different platforms. To address uncertainty about where CH4 emissions actually occur, we explored three scenarios: areas with known seeps, a hydrate stability model and an ocean depth criterion. We then used a budget analysis and a Lagrangian particle dispersion model to compare measurements taken upwind and downwind of the potential CH4 emission areas. We found small differences between the CH4 mixing ratios measured upwind and downwind of the potential emission areas during the campaign. By taking into account measurement and sampling uncertainties and by determining the sensitivity of the measured mixing ratios to potential oceanic emissions, we provide upper limits for the CH4 fluxes. The CH4 flux during the campaign was small, with an upper limit of 2.5 nmol / m s in the stability model scenario. The Zeppelin Observatory data for 2014 suggests CH4 fluxes from the Svalbard continental platform below 0.2 Tg/yr . All estimates are in the lower range of values previously reported.

  20. Submarine creeping landslide deformation controlled by the presence of gas hydrates: The Tuaheni Landslide Complex, New Zealand

    NASA Astrophysics Data System (ADS)

    Gross, Felix; Mountjoy, Joshu; Crutchle, Garethy; Koch, Stephanie; Bialas, Jörg; Pecher, Ingo; Woelz, Susi; Dannowski, Anke; Carey, Jon; Micallef, Aaron; Böttner, Christoph; Huhn, Katrin; Krastel, Sebastian

    2016-04-01

    Methane hydrate occurrence is bound to a finite pressure/temperature window on continental slopes, known as the gas hydrate stability zone (GHSZ). Hydrates within sediment pore spaces and fractures are recognized to act like a cement, increasing shear strength and stabilizing slopes. However, recent studies show that over longer strain periods methane hydrates can undergo ductile deformation. This combination of short term strengthening and longer term ductile behavior is implicated in the development of slow creeping submarine landforms within the GHSZ. In order to study this phenomenon, a new high-resolution seismic 3D volume was acquired at the Tuaheni Landslide Complex (TLC) at the Hikurangi margin offshore the North Island of New Zealand. Parts of TLC have been interpreted as a slow moving landslide controlled by the gas hydrate system. Two hypotheses for its slow deformation related to the presence of methane hydrates have been proposed: i) Hydrofracturing, driven by gas pressure at the base of the GHSZ, allows pressurized fluids to ascend toward the seafloor, thereby weakening the shallow debris and promoting failure. ii) The mixture of methane hydrates and sediment results in a rheology that behaves in a ductile way under sustained loading, resulting in slow deformation comparable to that of terrestrial and extra-terrestrial rock glaciers. The 3D dataset reveals the distribution of gas and the extend of gas hydrate stability within the deformed debris, as well as deformation fabrics like tectonic-style faulting and a prominent basal décollement, known to be a critical element of terrestrial earth-flows and rock glaciers. Observations from 3D data indicate that the TLC represents the type example of a new submarine landform - an active creeping submarine landslide - which is influenced by the presence of gas hydrates. The morphology, internal structure and deformation of the landslide are comparable with terrestrial- and extra-terrestrial earth flows and rock-glaciers.

  1. Fate of Methane Emitted from Dissociating Marine Hydrates: Modeling, Laboratory, and Field Constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juanes, Ruben

    The overall goals of this research are: (1) to determine the physical fate of single and multiple methane bubbles emitted to the water column by dissociating gas hydrates at seep sites deep within the hydrate stability zone or at the updip limit of gas hydrate stability, and (2) to quantitatively link theoretical and laboratory findings on methane transport to the analysis of real-world field-scale methane plume data placed within the context of the degrading methane hydrate province on the US Atlantic margin. The project is arranged to advance on three interrelated fronts (numerical modeling, laboratory experiments, and analysis of field-basedmore » plume data) simultaneously. The fundamental objectives of each component are the following: Numerical modeling: Constraining the conditions under which rising bubbles become armored with hydrate, the impact of hydrate armoring on the eventual fate of a bubble’s methane, and the role of multiple bubble interactions in survival of methane plumes to very shallow depths in the water column. Laboratory experiments: Exploring the parameter space (e.g., bubble size, gas saturation in the liquid phase, “proximity” to the stability boundary) for formation of a hydrate shell around a free bubble in water, the rise rate of such bubbles, and the bubble’s acoustic characteristics using field-scale frequencies. Field component: Extending the results of numerical modeling and laboratory experiments to the field-scale using brand new, existing, public-domain, state-of-the-art real world data on US Atlantic margin methane seeps, without acquiring new field data in the course of this particular project. This component quantitatively analyzes data on Atlantic margin methane plumes and place those new plumes and their corresponding seeps within the context of gas hydrate degradation processes on this margin.« less

  2. Influence of nanostructured lipid carriers (NLC) on the physical properties of the Cutanova Nanorepair Q10 cream and the in vivo skin hydration effect.

    PubMed

    Pardeike, Jana; Schwabe, Kay; Müller, Rainer H

    2010-08-30

    Cutanvoa Nanorepair Q10 cream, the first NLC containing cosmetical product introduced to the market in October 2005, was compared to an identical o/w cream without NLC with regards to particle size, melting behaviour, rheological properties and the in vivo effect on skin hydration. The consistency, the spreadability on the skin and the subjective feeling of increase in skin hydration were evaluated using a standardized questionnaire, and compared to hydration data measured. Furthermore, it was shown by epicutaneous patch test that Cutanova Nanorepair Q10 cream has no irritating effects on the skin. By laser diffraction (LD) and differential scanning calorimetry (DSC) measurements it could be shown that NLC are physically stable in Cutanova Nanorepair Q10 cream. After 7 days application of Cutanova Nanorepair Q10 cream and NLC negative control cream an increase in skin hydration could be objectively confirmed by measurements in vivo. From day 28 on the skin hydration measured in the test areas of Cutanova Nanorepair Q10 cream was significantly higher than the skin hydration in the test areas of the NLC negative control cream (p=0.05). The subjective feeling of increase in skin hydration was also rated from the volunteers as superior for Cutanova Nanorepair Q10 cream. The rheological properties of Cutanova Nanorepair Q10 cream contributed to a better subjective impression of consistency and spreadability on the skin than found for NLC negative control cream. Copyright 2010 Elsevier B.V. All rights reserved.

  3. Numerical analysis of wellbore instability in gas hydrate formation during deep-water drilling

    NASA Astrophysics Data System (ADS)

    Zhang, Huaiwen; Cheng, Yuanfang; Li, Qingchao; Yan, Chuanliang; Han, Xiuting

    2018-02-01

    Gas hydrate formation may be encountered during deep-water drilling because of the large amount and wide distribution of gas hydrates under the shallow seabed of the South China Sea. Hydrates are extremely sensitive to temperature and pressure changes, and drilling through gas hydrate formation may cause dissociation of hydrates, accompanied by changes in wellbore temperatures, pore pressures, and stress states, thereby leading to wellbore plastic yield and wellbore instability. Considering the coupling effect of seepage of drilling fluid into gas hydrate formation, heat conduction between drilling fluid and formation, hydrate dissociation, and transformation of the formation framework, this study established a multi-field coupling mathematical model of the wellbore in the hydrate formation. Furthermore, the influences of drilling fluid temperatures, densities, and soaking time on the instability of hydrate formation were calculated and analyzed. Results show that the greater the temperature difference between the drilling fluid and hydrate formation is, the faster the hydrate dissociates, the wider the plastic dissociation range is, and the greater the failure width becomes. When the temperature difference is greater than 7°C, the maximum rate of plastic deformation around the wellbore is more than 10%, which is along the direction of the minimum horizontal in-situ stress and associated with instability and damage on the surrounding rock. The hydrate dissociation is insensitive to the variation of drilling fluid density, thereby implying that the change of the density of drilling fluids has a minimal effect on the hydrate dissociation. Drilling fluids that are absorbed into the hydrate formation result in fast dissociation at the initial stage. As time elapses, the hydrate dissociation slows down, but the risk of wellbore instability is aggravated due to the prolonged submersion in drilling fluids. For the sake of the stability of the wellbore in deep-water drilling through hydrate formation, the drilling fluid with low temperatures should be given priority. The drilling process should be kept under balanced pressures, and the drilling time should be shortened.

  4. Gas hydrate in seafloor sediments: Impact on future resources and drilling safety

    USGS Publications Warehouse

    Dillon, William P.; Max, Michael D.

    2001-01-01

    Gas hydrate concentrates methane and sometimes other gases in its crystal lattice and this gas can be released intentionally creating a resource or escape accidentally forming a hazard. The densest accumulations of gas hydrate tend to occur at sites where the base of the gas hydrate stability zone (commonly the upper several hundred m of the sedimentary section) is configured to trap gas, often as a broad arch. The gas may rise from below or form by bacterial activity at shallow depth, but gas commonly is concentrated near the base of the gas hydrate stability zone by recycling. This gas accumulates in presumably leaky traps, then enriches the hydrate above as it migrates upward by diffusion, fluid movement through sedimentary pores, or flow along fracture channelways. Analysis of seismic reflection profiles is beginning to identify such concentrations and the circumstances that create them. The first attempt to explore for gas hydrate off Japan by the Japanese National Oil Corporation produced quite favorable results, showing high gas hydrate contents in permeable sediments. Gas hydrate dissociation can be a safety concern in drilling and production. The volume of water and gas released in dissociation is often greater than the volume of the hydrate, so overpressures can be created. Furthermore, the gas hydrate can provide shallow seals, so the possibility of high-pressure flows or generation of slides is apparent. 

  5. Water dynamics in protein hydration shells: the molecular origins of the dynamical perturbation.

    PubMed

    Fogarty, Aoife C; Laage, Damien

    2014-07-17

    Protein hydration shell dynamics play an important role in biochemical processes including protein folding, enzyme function, and molecular recognition. We present here a comparison of the reorientation dynamics of individual water molecules within the hydration shell of a series of globular proteins: acetylcholinesterase, subtilisin Carlsberg, lysozyme, and ubiquitin. Molecular dynamics simulations and analytical models are used to access site-resolved information on hydration shell dynamics and to elucidate the molecular origins of the dynamical perturbation of hydration shell water relative to bulk water. We show that all four proteins have very similar hydration shell dynamics, despite their wide range of sizes and functions, and differing secondary structures. We demonstrate that this arises from the similar local surface topology and surface chemical composition of the four proteins, and that such local factors alone are sufficient to rationalize the hydration shell dynamics. We propose that these conclusions can be generalized to a wide range of globular proteins. We also show that protein conformational fluctuations induce a dynamical heterogeneity within the hydration layer. We finally address the effect of confinement on hydration shell dynamics via a site-resolved analysis and connect our results to experiments via the calculation of two-dimensional infrared spectra.

  6. Water Dynamics in Protein Hydration Shells: The Molecular Origins of the Dynamical Perturbation

    PubMed Central

    2014-01-01

    Protein hydration shell dynamics play an important role in biochemical processes including protein folding, enzyme function, and molecular recognition. We present here a comparison of the reorientation dynamics of individual water molecules within the hydration shell of a series of globular proteins: acetylcholinesterase, subtilisin Carlsberg, lysozyme, and ubiquitin. Molecular dynamics simulations and analytical models are used to access site-resolved information on hydration shell dynamics and to elucidate the molecular origins of the dynamical perturbation of hydration shell water relative to bulk water. We show that all four proteins have very similar hydration shell dynamics, despite their wide range of sizes and functions, and differing secondary structures. We demonstrate that this arises from the similar local surface topology and surface chemical composition of the four proteins, and that such local factors alone are sufficient to rationalize the hydration shell dynamics. We propose that these conclusions can be generalized to a wide range of globular proteins. We also show that protein conformational fluctuations induce a dynamical heterogeneity within the hydration layer. We finally address the effect of confinement on hydration shell dynamics via a site-resolved analysis and connect our results to experiments via the calculation of two-dimensional infrared spectra. PMID:24479585

  7. Natural Gas Hydrates Estimation Using Seismic Inversion and Rock Physics

    NASA Astrophysics Data System (ADS)

    Dutta, N.; Dai, J.; Kleinberg, R.; Xu, H.

    2005-05-01

    Gas hydrate drilling worldwide indicates that the formation of gas hydrates in shallow sediments tends to increase P- and S-wave velocities of the hosting rocks. Rock physics models of gas hydrates provide the links between velocity anomalies and gas hydrate concentration. In this abstract, we evaluate the numerical predictions of some of the major rock physics models of gas hydrates and validate those with well log data from the Mallik and Blake Ridge wells. We find that a model in which the gas hydrate is a part of the rock framework produces results that are consistent with well log data. To enhance the accuracy of seismic estimation, we adopt a five-step, integrated workflow that enables us to identify and quantify gas hydrates in the deepwater Gulf of Mexico (GOM). It includes: 1) Reprocessing conventional 3D seismic data at high resolution using an amplitude-preserving flow with prestack time migration, 2) A detailed stratigraphic evaluation to identify potential hydrate zones, 3) Seismic attribute analysis to further delineate anomalous zones, 4) Full waveform prestack inversion to characterize acoustic properties of gas hydrates in 1D (Mallick, 1995; Mallick, 1999) and map in 3D using hybrid inversion techniques (Dutta, 2002; Mallick and Dutta, 2002), and 5) Quantitative estimation of gas hydrate saturation using rock property models. We illustrate the procedure using 3D seismic data, and estimate gas hydrate saturation in the study area in the GOM.

  8. Quantification of synthesized hydration products using synchrotron microtomography and spectral analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deboodt, Tyler; Ideker, Jason H.; Isgor, O. Burkan

    2017-12-01

    The use of x-ray computed tomography (CT) as a standalone method has primarily been used to characterize pore structure, cracking and mechanical damage in cementitious systems due to low contrast in the hydrated phases. These limitations have resulted in the inability to extract quantifiable information on such phases. The goal of this research was to address the limitations caused by low contrast and improving the ability to distinguish the four primary hydrated phases in portland cement; C-S-H, calcium hydroxide, monosulfate, and ettringite. X-ray CT on individual layers, binary mixtures of phases, and quaternary mixtures of phases to represent a hydratedmore » portland cement paste were imaged with synchrotron radiation. Known masses of each phase were converted to a volume and compared to the segmented image volumes. It was observed that adequate contrast in binary mixing of phases allowed for segmentation, and subsequent image analysis indicated quantifiable volumes could be extracted from the tomographic volume. However, low contrast was observed when C-S-H and monosulfate were paired together leading to difficulties segmenting in an unbiased manner. Quantification of phases in quaternary mixtures included larger errors than binary mixes due to histogram overlaps of monosulfate, C-S-H, and calcium hydroxide.« less

  9. Controlled source electromagnetic data analysis with seismic constraints and rigorous uncertainty estimation in the Black Sea

    NASA Astrophysics Data System (ADS)

    Gehrmann, R. A. S.; Schwalenberg, K.; Hölz, S.; Zander, T.; Dettmer, J.; Bialas, J.

    2016-12-01

    In 2014 an interdisciplinary survey was conducted as part of the German SUGAR project in the Western Black Sea targeting gas hydrate occurrences in the Danube Delta. Marine controlled source electromagnetic (CSEM) data were acquired with an inline seafloor-towed array (BGR), and a two-polarization horizontal ocean-bottom source and receiver configuration (GEOMAR). The CSEM data are co-located with high-resolution 2-D and 3-D seismic reflection data (GEOMAR). We present results from 2-D regularized inversion (MARE2DEM by Kerry Key), which provides a smooth model of the electrical resistivity distribution beneath the source and multiple receivers. The 2-D approach includes seafloor topography and structural constraints from seismic data. We estimate uncertainties from the regularized inversion and compare them to 1-D Bayesian inversion results. The probabilistic inversion for a layered subsurface treats the parameter values and the number of layers as unknown by applying reversible-jump Markov-chain Monte Carlo sampling. A non-diagonal data covariance matrix obtained from residual error analysis accounts for correlated errors. The resulting resistivity models show generally high resistivity values between 3 and 10 Ωm on average which can be partly attributed to depleted pore water salinities due to sea-level low stands in the past, and locally up to 30 Ωm which is likely caused by gas hydrates. At the base of the gas hydrate stability zone resistivities rise up to more than 100 Ωm which could be due to gas hydrate as well as a layer of free gas underneath. However, the deeper parts also show the largest model parameter uncertainties. Archie's Law is used to derive estimates of the gas hydrate saturation, which vary between 30 and 80% within the anomalous layers considering salinity and porosity profiles from a distant DSDP bore hole.

  10. Assessment of hydration status of elite young male soccer players with different methods and new approach method of substitute urine strip.

    PubMed

    Ersoy, Nesli; Ersoy, Gulgun; Kutlu, Mehmet

    2016-01-01

    The purpose of the study is to determine and compare the hydration status with different methods and determine fluid intake, dehydration percentages and sweat rate of 26 young male soccer players (15 ± 1.2 years) before an important competition. More specifically, the study aims at validating the urine strip and advising the players to use it as an easy and practical method. Measurements of urine analysis were taken from the urine sample of the participants before breakfast and conducted for 3 consecutive days before the competition. Hydration status was assessed through analysis of urine color, urine specific gravity (USG) (laboratory, strip, refractometry), and osmolality. The players' dehydration percentages and sweat ratio were calculated. The average values for all samples were 3 ± 1 for color, and 1.021 ± 4 g/cm(3) for USG (laboratory), and 1.021 ± 3 g/cm(3) for USG (strip), and 1.021 ± 4 for USG (refractometry), and 903 ± 133 mOsm/kg for osmolality. USG (strip) was highly correlated with USG (laboratory), USG (refractometry) (r = 0.8; P < 0.01) and osmolality (r = 0.7; P < 0.01), and moderately correlated with urine color (r = 0.4; P < 0.05). The mean dehydration percentage and sweat rate of the soccer players were observed as 0.5 % and 582.3 ± 232.0 mL/h, respectively. We found that youth soccer players are under a slight risk of dehydration under moderate weather conditions. As indicated by the research results, determination of hydration status of athletes must be taken into account more carefully under moderate and hot weather conditions. In addition, hydration methods were compatible with one another as measured in this study.

  11. [Laser Raman Spectroscopy and Its Application in Gas Hydrate Studies].

    PubMed

    Fu, Juan; Wu, Neng-you; Lu, Hai-long; Wu, Dai-dai; Su, Qiu-cheng

    2015-11-01

    Gas hydrates are important potential energy resources. Microstructural characterization of gas hydrate can provide information to study the mechanism of gas hydrate formation and to support the exploitation and application of gas hydrate technology. This article systemly introduces the basic principle of laser Raman spectroscopy and summarizes its application in gas hydrate studies. Based on Raman results, not only can the information about gas composition and structural type be deduced, but also the occupancies of large and small cages and even hydration number can be calculated from the relative intensities of Raman peaks. By using the in-situ analytical technology, laser Raman specstropy can be applied to characterize the formation and decomposition processes of gas hydrate at microscale, for example the enclathration and leaving of gas molecules into/from its cages, to monitor the changes in gas concentration and gas solubility during hydrate formation and decomposition, and to identify phase changes in the study system. Laser Raman in-situ analytical technology has also been used in determination of hydrate structure and understanding its changing process under the conditions of ultra high pressure. Deep-sea in-situ Raman spectrometer can be employed for the in-situ analysis of the structures of natural gas hydrate and their formation environment. Raman imaging technology can be applied to specify the characteristics of crystallization and gas distribution over hydrate surface. With the development of laser Raman technology and its combination with other instruments, it will become more powerful and play a more significant role in the microscopic study of gas hydrate.

  12. Isotropic, anisotropic, and borehole washout analyses in Gulf of Mexico Gas Hydrate Joint Industry Project Leg II, Alaminos Canyon well 21-A

    USGS Publications Warehouse

    Lee, Myung W.

    2012-01-01

    Through the use of three-dimensional seismic amplitude mapping, several gas hydrate prospects were identified in the Alaminos Canyon area of the Gulf of Mexico. Two of the prospects were drilled as part of the Gulf of Mexico Gas Hydrate Joint Industry Program Leg II in May 2009, and a suite of logging-while-drilling logs was acquired at each well site. Logging-while-drilling logs at the Alaminos Canyon 21–A site indicate that resistivities of approximately 2 ohm-meter and P-wave velocities of approximately 1.9 kilometers per second were measured in a possible gas-hydrate-bearing target sand interval between 540 and 632 feet below the sea floor. These values are slightly elevated relative to those measured in the hydrate-free sediment surrounding the sands. The initial well log analysis is inconclusive in determining the presence of gas hydrate in the logged sand interval, mainly because large washouts in the target interval degraded well log measurements. To assess gas-hydrate saturations, a method of compensating for the effect of washouts on the resistivity and acoustic velocities is required. To meet this need, a method is presented that models the washed-out portion of the borehole as a vertical layer filled with seawater (drilling fluid). Owing to the anisotropic nature of this geometry, the apparent anisotropic resistivities and velocities caused by the vertical layer are used to correct measured log values. By incorporating the conventional marine seismic data into the well log analysis of the washout-corrected well logs, the gas-hydrate saturation at well site AC21–A was estimated to be in the range of 13 percent. Because gas hydrates in the vertical fractures were observed, anisotropic rock physics models were also applied to estimate gas-hydrate saturations.

  13. Well log characterization of natural gas-hydrates

    USGS Publications Warehouse

    Collett, Timothy S.; Lee, Myung W.

    2012-01-01

    In the last 25 years there have been significant advancements in the use of well-logging tools to acquire detailed information on the occurrence of gas hydrates in nature: whereas wireline electrical resistivity and acoustic logs were formerly used to identify gas-hydrate occurrences in wells drilled in Arctic permafrost environments, more advanced wireline and logging-while-drilling (LWD) tools are now routinely used to examine the petrophysical nature of gas-hydrate reservoirs and the distribution and concentration of gas hydrates within various complex reservoir systems. Resistivity- and acoustic-logging tools are the most widely used for estimating the gas-hydrate content (i.e., reservoir saturations) in various sediment types and geologic settings. Recent integrated sediment coring and well-log studies have confirmed that electrical-resistivity and acoustic-velocity data can yield accurate gas-hydrate saturations in sediment grain-supported (isotropic) systems such as sand reservoirs, but more advanced log-analysis models are required to characterize gas hydrate in fractured (anisotropic) reservoir systems. New well-logging tools designed to make directionally oriented acoustic and propagation-resistivity log measurements provide the data needed to analyze the acoustic and electrical anisotropic properties of both highly interbedded and fracture-dominated gas-hydrate reservoirs. Advancements in nuclear magnetic resonance (NMR) logging and wireline formation testing (WFT) also allow for the characterization of gas hydrate at the pore scale. Integrated NMR and formation testing studies from northern Canada and Alaska have yielded valuable insight into how gas hydrates are physically distributed in sediments and the occurrence and nature of pore fluids(i.e., free water along with clay- and capillary-bound water) in gas-hydrate-bearing reservoirs. Information on the distribution of gas hydrate at the pore scale has provided invaluable insight on the mechanisms controlling the formation and occurrence of gas hydrate in nature along with data on gas-hydrate reservoir properties (i.e., porosities and permeabilities) needed to accurately predict gas production rates for various gas-hydrate production schemes.

  14. Chloral hydrate as a sedating agent for neurodiagnostic procedures in children.

    PubMed

    Fong, Choong Yi; Tay, Chee Geap; Ong, Lai Choo; Lai, Nai Ming

    2017-11-03

    Paediatric neurodiagnostic investigations, including brain neuroimaging and electroencephalography (EEG), play an important role in the assessment of neurodevelopmental disorders. The use of an appropriate sedative agent is important to ensure the successful completion of the neurodiagnostic procedures, particularly in children, who are usually unable to remain still throughout the procedure. To assess the effectiveness and adverse effects of chloral hydrate as a sedative agent for non-invasive neurodiagnostic procedures in children. We used the standard search strategy of the Cochrane Epilepsy Group. We searched MEDLINE (OVID SP) (1950 to July 2017), the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library, Issue 7, 2017), Embase (1980 to July 2017), and the Cochrane Epilepsy Group Specialized Register (via CENTRAL) using a combination of keywords and MeSH headings. We included randomised controlled trials that assessed chloral hydrate agent against other sedative agent(s), non-drug agent(s), or placebo for children undergoing non-invasive neurodiagnostic procedures. Two review authors independently assessed the studies for their eligibility, extracted data, and assessed risk of bias. Results were expressed in terms of risk ratio (RR) for dichotomous data, mean difference (MD) for continuous data, with 95% confidence intervals (CIs). We included 13 studies with a total of 2390 children. The studies were all conducted in hospitals that provided neurodiagnostic services. Most studies assessed the proportion of sedation failure during the neurodiagnostic procedure, time for adequate sedation, and potential adverse effects associated with the sedative agent.The methodological quality of the included studies was mixed, as reflected by a wide variation in their 'Risk of bias' profiles. Blinding of the participants and personnel was not achieved in most of the included studies, and three of the 13 studies had high risk of bias for selective reporting. Evaluation of the efficacy of the sedative agents was also underpowered, with all the comparisons performed in single small studies.Children who received oral chloral hydrate had lower sedation failure when compared with oral promethazine (RR 0.11, 95% CI 0.01 to 0.82; 1 study, moderate-quality evidence). Children who received oral chloral hydrate had a higher risk of sedation failure after one dose compared to those who received intravenous pentobarbital (RR 4.33, 95% CI 1.35 to 13.89; 1 study, low-quality evidence), but after two doses there was no evidence of a significant difference between the two groups (RR 3.00, 95% CI 0.33 to 27.46; 1 study, very low-quality evidence). Children who received oral chloral hydrate appeared to have more sedation failure when compared with music therapy, but the quality of evidence was very low for this outcome (RR 17.00, 95% CI 2.37 to 122.14; 1 study). Sedation failure rates were similar between oral chloral hydrate, oral dexmedetomidine, oral hydroxyzine hydrochloride, and oral midazolam.Children who received oral chloral hydrate had a shorter time to achieve adequate sedation when compared with those who received oral dexmedetomidine (MD -3.86, 95% CI -5.12 to -2.6; 1 study, moderate-quality evidence), oral hydroxyzine hydrochloride (MD -7.5, 95% CI -7.85 to -7.15; 1 study, moderate-quality evidence), oral promethazine (MD -12.11, 95% CI -18.48 to -5.74; 1 study, moderate-quality evidence), and rectal midazolam (MD -95.70, 95% CI -114.51 to -76.89; 1 study). However, children with oral chloral hydrate took longer to achieve adequate sedation when compared with intravenous pentobarbital (MD 19, 95% CI 16.61 to 21.39; 1 study, low-quality evidence) and intranasal midazolam (MD 12.83, 95% CI 7.22 to 18.44; 1 study, moderate-quality evidence).No data were available to assess the proportion of children with successful completion of neurodiagnostic procedure without interruption by the child awakening. Most trials did not assess adequate sedation as measured by specific validated scales, except in the comparison of chloral hydrate versus intranasal midazolam and oral promethazine.Compared to dexmedetomidine, chloral hydrate was associated with a higher risk of nausea and vomiting (RR 12.04 95% CI 1.58 to 91.96). No other adverse events were significantly associated with chloral hydrate (including behavioural change, oxygen desaturation) although there was an increased risk of adverse events overall (RR 7.66, 95% CI 1.78 to 32.91; 1 study, low-quality evidence). The quality of evidence for the comparisons of oral chloral hydrate against several other methods of sedation was very variable. Oral chloral hydrate appears to have a lower sedation failure rate when compared with oral promethazine for children undergoing paediatric neurodiagnostic procedures. The sedation failure was similar for other comparisons such as oral dexmedetomidine, oral hydroxyzine hydrochloride, and oral midazolam. When compared with intravenous pentobarbital and music therapy, oral chloral hydrate had a higher sedation failure rate. However, it must be noted that the evidence for the outcomes for the comparisons of oral chloral hydrate against intravenous pentobarbital and music therapy was of very low to low quality, therefore the corresponding findings should be interpreted with caution.Further research should determine the effects of oral chloral hydrate on major clinical outcomes such as successful completion of procedures, requirements for additional sedative agent, and degree of sedation measured using validated scales, which were rarely assessed in the studies included in this review. The safety profile of chloral hydrate should be studied further, especially the risk of major adverse effects such as bradycardia, hypotension, and oxygen desaturation.

  15. Evaluation of gas production potential from gas hydrate deposits in National Petroleum Reserve Alaska using numerical simulations

    USGS Publications Warehouse

    Nandanwar, Manish S.; Anderson, Brian J.; Ajayi, Taiwo; Collett, Timothy S.; Zyrianova, Margarita V.

    2016-01-01

    An evaluation of the gas production potential of Sunlight Peak gas hydrate accumulation in the eastern portion of the National Petroleum Reserve Alaska (NPRA) of Alaska North Slope (ANS) is conducted using numerical simulations, as part of the U.S. Geological Survey (USGS) gas hydrate Life Cycle Assessment program. A field scale reservoir model for Sunlight Peak is developed using Advanced Processes & Thermal Reservoir Simulator (STARS) that approximates the production design and response of this gas hydrate field. The reservoir characterization is based on available structural maps and the seismic-derived hydrate saturation map of the study region. A 3D reservoir model, with heterogeneous distribution of the reservoir properties (such as porosity, permeability and vertical hydrate saturation), is developed by correlating the data from the Mount Elbert well logs. Production simulations showed that the Sunlight Peak prospect has the potential of producing 1.53 × 109 ST m3 of gas in 30 years by depressurization with a peak production rate of around 19.4 × 104 ST m3/day through a single horizontal well. To determine the effect of uncertainty in reservoir properties on the gas production, an uncertainty analysis is carried out. It is observed that for the range of data considered, the overall cumulative production from the Sunlight Peak will always be within the range of ±4.6% error from the overall mean value of 1.43 × 109 ST m3. A sensitivity analysis study showed that the proximity of the reservoir from the base of permafrost and the base of hydrate stability zone (BHSZ) has significant effect on gas production rates. The gas production rates decrease with the increase in the depth of the permafrost and the depth of BHSZ. From the overall analysis of the results it is concluded that Sunlight Peak gas hydrate accumulation behaves differently than other Class III reservoirs (Class III reservoirs are composed of a single layer of hydrate with no underlying zone of mobile fluids) due to its smaller thickness and high angle of dip.

  16. Atypical Antipsychotics and the Risk of Hyperlipidemia: A Sequence Symmetry Analysis.

    PubMed

    Takeuchi, Yoshinori; Kajiyama, Kazuhiro; Ishiguro, Chieko; Uyama, Yoshiaki

    2015-07-01

    Although hyperlipidemia is a well known adverse event of atypical antipsychotic (AAP) medication, there are few studies that have quantitatively compared the risks of various AAPs. Our aim was to comparatively evaluate the risk of hyperlipidemia associated with the use of AAPs approved in Japan through a consecutive epidemiological study. We conducted a sequence symmetry analysis (SSA) using health insurance claims data to analyze the following nine AAPs approved for use in Japan: risperidone, paliperidone, perospirone hydrochloride hydrate, blonanserin, clozapine, olanzapine, quetiapine fumarate, aripiprazole, and zotepine. Exposed cases were identified from drug dispensing records as those who had been administered both AAPs and antihyperlipidemic drugs. The adjusted sequence ratio (ASR) and 95 % confidence interval (CI) for each individual AAP and for all AAPs were calculated while controlling for time trends in dispensing patterns. Olanzapine was significantly associated with increased hyperlipidemia occurrence (ASR 1.56; 95 % CI 1.25-1.95). The ASRs obtained for risperidone (1.01; 95 % CI 0.80-1.27), perospirone hydrochloride hydrate (0.93; 95 % CI 0.63-1.39), blonanserin (0.83; 95 % CI 0.52-1.33), quetiapine fumarate (0.93; 95 % CI 0.73-1.18), and aripiprazole (1.02; 95 % CI 0.82-1.26) were approximately 1.0. Unstable estimates (wide CIs) were obtained for paliperidone and zotepine due to the small sample sizes. Among the AAPs used in Japan, only olanzapine was found to have an elevated risk of hyperlipidemia. In contrast, risperidone, perospirone hydrochloride hydrate, blonanserin, quetiapine fumarate, and aripiprazole had relatively low risks.

  17. Gas hydrate saturation from acoustic impedance and resistivity logs in the shenhu area, south china sea

    USGS Publications Warehouse

    Wang, X.; Wu, S.; Lee, M.; Guo, Y.; Yang, S.; Liang, J.

    2011-01-01

    During the China's first gas hydrate drilling expedition -1 (GMGS-1), gas hydrate was discovered in layers ranging from 10 to 25 m above the base of gas hydrate stability zone in the Shenhu area, South China Sea. Water chemistry, electrical resistivity logs, and acoustic impedance were used to estimate gas hydrate saturations. Gas hydrate saturations estimated from the chloride concentrations range from 0 to 43% of the pore space. The higher gas hydrate saturations were present in the depth from 152 to 177 m at site SH7 and from 190 to 225 m at site SH2, respectively. Gas hydrate saturations estimated from the resistivity using Archie equation have similar trends to those from chloride concentrations. To examine the variability of gas hydrate saturations away from the wells, acoustic impedances calculated from the 3 D seismic data using constrained sparse inversion method were used. Well logs acquired at site SH7 were incorporated into the inversion by establishing a relation between the water-filled porosity, calculated using gas hydrate saturations estimated from the resistivity logs, and the acoustic impedance, calculated from density and velocity logs. Gas hydrate saturations estimated from acoustic impedance of seismic data are ???10-23% of the pore space and are comparable to those estimated from the well logs. The uncertainties in estimated gas hydrate saturations from seismic acoustic impedances were mainly from uncertainties associated with inverted acoustic impedance, the empirical relation between the water-filled porosities and acoustic impedances, and assumed background resistivity. ?? 2011 Elsevier Ltd.

  18. Aqueous phase hydration and hydrate acidity of perfluoroalkyl and n:2 fluorotelomer aldehydes.

    PubMed

    Rayne, Sierra; Forest, Kaya

    2016-01-01

    The SPARC software program and comparative density functional theory (DFT) calculations were used to investigate the aqueous phase hydration equilibrium constants (Khyd) of perfluoroalkyl aldehydes (PFAlds) and n:2 fluorotelomer aldehydes (FTAlds). Both classes are degradation products of known industrial compounds and environmental contaminants such as fluorotelomer alcohols, iodides, acrylates, phosphate esters, and other derivatives, as well as hydrofluorocarbons and hydrochlorofluorocarbons. Prior studies have generally failed to consider the hydration, and subsequent potential hydrate acidity, of these compounds, resulting in incomplete and erroneous predictions as to their environmental behavior. In the current work, DFT calculations suggest that all PFAlds will be dominantly present as the hydrated form in aqueous solution. Both SPARC and DFT calculations suggest that FTAlds will not likely be substantially hydrated in aquatic systems or in vivo. PFAld hydrates are expected to have pKa values in the range of phenols (ca. 9 to 10), whereas n:2 FTAld hydrates are expected to have pKa values ca. 2 to 3 units higher (ca. 12 to 13). In order to avoid spurious modeling predictions and a fundamental misunderstanding of their fate, the molecular and/or dissociated hydrate forms of PFAlds and FTAlds need to be explicitly considered in environmental, toxicological, and waste treatment investigations. The results of the current study will facilitate a more complete examination of the environmental fate of PFAlds and FTAlds.

  19. Effects of hydration in contrast-induced acute kidney injury after primary angioplasty: a randomized, controlled trial.

    PubMed

    Maioli, Mauro; Toso, Anna; Leoncini, Mario; Micheletti, Carlo; Bellandi, Francesco

    2011-10-01

    Intravascular volume expansion represents a beneficial measure against contrast-induced acute kidney injury (CI-AKI) in patients undergoing elective angiographic procedures. However, the efficacy of this preventive strategy has not yet been established for patients with ST-elevation-myocardial infarction (STEMI), who are at higher risk of this complication after primary percutaneous coronary intervention (PCI). In this randomized study we investigated the possible beneficial role of periprocedural intravenous volume expansion and we compared the efficacy of 2 different hydration strategies in patients with STEMI undergoing primary PCI. We randomly assigned 450 STEMI patients to receive (1) preprocedure and postprocedure hydration of sodium bicarbonate (early hydration group), (2) postprocedure hydration of isotonic saline (late hydration group), or (3) no hydration (control group). The primary end point was the development of CI-AKI, defined as an increase in serum creatinine of ≥25% or 0.5 mg/dL over the baseline value within 3 days after administration of the contrast medium. Moreover, we evaluated a possible relationship between the occurrence of CI-AKI and total hydration volume administered. There were no significant differences in baseline clinical, biochemical, and procedural characteristics in the 3 groups. Overall, CI-AKI occurred in 93 patients (20.6%): the incidence was significantly lower in the early hydration group (12%) with respect to both the late hydration group (22.7%) and the control group (27.3%) (P for trend=0.001). In hydrated patients (early and late hydration groups), lower infused volumes were associated with a significant increase in CI-AKI incidence, and the optimal cutoff point of hydration volume that best discriminates patients at higher risk was ≤960 mL. Adequate intravenous volume expansion may prevent CI-AKI in patients undergoing primary PCI. A regimen of preprocedure and postprocedure hydration therapy with sodium bicarbonate appears to be more efficacious than postprocedure hydration only with isotonic saline.

  20. Estimation of potential distribution of gas hydrate in the northern South China Sea

    NASA Astrophysics Data System (ADS)

    Wang, Chunjuan; Du, Dewen; Zhu, Zhiwei; Liu, Yonggang; Yan, Shijuan; Yang, Gang

    2010-05-01

    Gas hydrate research has significant importance for securing world energy resources, and has the potential to produce considerable economic benefits. Previous studies have shown that the South China Sea is an area that harbors gas hydrates. However, there is a lack of systematic investigations and understanding on the distribution of gas hydrate throughout the region. In this paper, we applied mineral resource quantitative assessment techniques to forecast and estimate the potential distribution of gas hydrate resources in the northern South China Sea. However, current hydrate samples from the South China Sea are too few to produce models of occurrences. Thus, according to similarity and contrast principles of mineral outputs, we can use a similar hydrate-mining environment with sufficient gas hydrate data as a testing ground for modeling northern South China Sea gas hydrate conditions. We selected the Gulf of Mexico, which has extensively studied gas hydrates, to develop predictive models of gas hydrate distributions, and to test errors in the model. Then, we compared the existing northern South China Sea hydrate-mining data with the Gulf of Mexico characteristics, and collated the relevant data into the model. Subsequently, we applied the model to the northern South China Sea to obtain the potential gas hydrate distribution of the area, and to identify significant exploration targets. Finally, we evaluated the reliability of the predicted results. The south seabed area of Taiwan Bank is recommended as a priority exploration target. The Zhujiang Mouth, Southeast Hainan, and Southwest Taiwan Basins, including the South Bijia Basin, also are recommended as exploration target areas. In addition, the method in this paper can provide a useful predictive approach for gas hydrate resource assessment, which gives a scientific basis for construction and implementation of long-term planning for gas hydrate exploration and general exploitation of the seabed of China.

  1. Phase equilibria and thermodynamic modeling of ethane and propane hydrates in porous silica gels.

    PubMed

    Seo, Yongwon; Lee, Seungmin; Cha, Inuk; Lee, Ju Dong; Lee, Huen

    2009-04-23

    In the present study, we examined the active role of porous silica gels when used as natural gas storage and transportation media. We adopted the dispersed water in silica gel pores to substantially enhance active surface for contacting and encaging gas molecules. We measured the three-phase hydrate (H)-water-rich liquid (L(W))-vapor (V) equilibria of C(2)H(6) and C(3)H(8) hydrates in 6.0, 15.0, 30.0, and 100.0 nm silica gel pores to investigate the effect of geometrical constraints on gas hydrate phase equilibria. At specified temperatures, the hydrate stability region is shifted to a higher pressure region depending on pore size when compared with those of bulk hydrates. Through application of the Gibbs-Thomson relationship to the experimental data, we determined the values for the C(2)H(6) hydrate-water and C(3)H(8) hydrate-water interfacial tensions to be 39 +/- 2 and 45 +/- 1 mJ/m(2), respectively. By using these values, the calculation values were in good agreement with the experimental ones. The overall results given in this study could also be quite useful in various fields, such as exploitation of natural gas hydrate in marine sediments and sequestration of carbon dioxide into the deep ocean.

  2. Sun-induced changes of stratum corneum hydration vary with age and gender in a normal Chinese population.

    PubMed

    Liu, Zhili; Song, Shunpeng; Luo, Wenhai; Elias, Peter M; Man, Mao-Qiang

    2012-02-01

    Previous studies have demonstrated that sun-induced alteration of epidermal permeability barrier function varies with gender and age. In the present study, we assess the stratum corneum (SC) hydration in sun-exposed males and females. A total of 168 subjects (84 males and 84 females) aged 19-75 years were enrolled. A multifunctional skin physiology monitor was used to measure SC hydration. In comparison with non-sun exposure, sun exposure does not cause a significant change in SC hydration in either young males or young females, whereas in aged females, a significant reduction of SC hydration is seen on the forehead and the dorsal hand of sun-exposed subjects. SC hydration on the canthus of both aged males and aged females is significantly lower than that of young subjects. Additionally, SC hydration on the dorsal hand of aged females is also significantly lower as compared with young females. Sun-induced reduction of SC hydration is more evident on the dorsal hand of aged females than that of males (P<0.001). Moreover, the SC rehydration capacity is significantly lower in sun-exposed aged females than in age-matched males. These results demonstrated that sun-induced changes of the SC hydration property vary with age and gender. © 2011 John Wiley & Sons A/S.

  3. Mobile Technology Application for Improved Urine Concentration Measurement Pilot Study.

    PubMed

    Walawender, Laura; Patterson, Jeremy; Strouse, Robert; Ketz, John; Saxena, Vijay; Alexy, Emily; Schwaderer, Andrew

    2018-01-01

    Objectives: Low hydration has a deleterious effect on many conditions. In the absence of a urine concentrating defect, urine concentration is a marker of hydration status. However, markers to evaluate hydration status have not been well studied in children. The objectives of this paper are to compare measures of thirst and urine concentration in children and to develop a novel mobile technology application to measure urine concentration. Study Design: Children age 12-17 years were selected ( n = 21) for this pilot study. Thirst perception, specific gravity (automated dipstick analysis and refractometer), and urine color scale results were correlated to urine osmolality. The technology department developed a mobile technology camera application to measure light penetrance into urine which was tested on 25 random anonymized urine samples. Results: The patients' thirst perception and color scale as well as two researchers color scale did not significantly correlate with osmolality. Correlation between osmolality and hydration markers resulted in the following Pearson coefficients: SG automated dipstick, 0.61 ( P 0.003); SG refractometer, 0.98 ( P < 0.0001); urine color scale (patient), 0.37 ( P 0.10), and light penetrance, -0.77 ( P < 0.0001). The correlation of light penetrance with osmolality was stronger than all measures except SG by refractometer and osmolality. Conclusion: The mobile technology application may be a more accurate tool for urine concentration measurement than specific gravity by automated dipstick, subjective thirst, and urine color scale, but lags behind specific gravity measured by refractometer. The mobile technology application is a step toward patient oriented hydration strategies.

  4. Gas hydrate identified in sand-rich inferred sedimentary section using downhole logging and seismic data in Shenhu area, South China Sea

    USGS Publications Warehouse

    Wang, Xiujuan; Lee, Myung W.; Collett, Timothy S.; Yang, Shengxiong; Guo, Yiqun; Wu, Shiguo

    2014-01-01

    Downhole wireline log (DWL) data was acquired from eight drill sites during China's first gas hydrate drilling expedition (GMGS-1) in 2007. Initial analyses of the acquired well log data suggested that there were no significant gas hydrate occurrences at Site SH4. However, the re-examination of the DWL data from Site SH4 indicated that there are two intervals of high resistivity, which could be indicative of gas hydrate. One interval of high resistivity at depth of 171–175 m below seafloor (mbsf) is associated with a high compressional- wave (P-wave) velocities and low gamma ray log values, which suggests the presence of gas hydrate in a potentially sand-rich (low clay content) sedimentary section. The second high resistivity interval at depth of 175–180 mbsf is associated with low P-wave velocities and low gamma values, which suggests the presence of free gas in a potentially sand-rich (low clay content) sedimentary section. Because the occurrence of free gas is much shallower than the expected from the regional depth of the bottom simulating reflector (BSR), the free gas could be from the dissociation of gas hydrate during drilling or there may be a local anomaly in the depth to the base of the gas hydrate stability zone. In order to determine whether the low P-wave velocity with high resistivity is caused by in-situ free gas or dissociated free gas from the gas hydrate, the surface seismic data were also used in this analysis. The log analysis incorporating the surface seismic data through the construction of synthetic seismograms using various models indicated the presence of free gas directly in contact with an overlying gas hydrate-bearing section. The occurrence of the anomalous base of gas hydrate stability at Site SH4 could be caused by a local heat flow conditions. This paper documents the first observation of gas hydrate in what is believed to be a sand-rich sediment in Shenhu area of the South China Sea.

  5. Hydration of sulfonated polyimide membranes. I. Na + and NH +(C 2H 5) 3 homopolymers

    NASA Astrophysics Data System (ADS)

    Jamróz, Dorota; Maréchal, Yves

    2004-05-01

    Hydration of Na + and HN +(C 2H 5) 3 sulfonated polyimide membranes is probed by infrared spectrometry using a recently described method. These membranes consist of identical sulfonated repeat unit (homopolymers) and form a good starting point to study more elaborated membranes, composed of these units plus similar ones with no sulfonic groups (block copolymers). These latter membranes may be used in fuel cells and will be described in a forthcoming article. We first identify the bands of hydrophilic groups, which will be anchor points for hydration. We then define three 'elementary hydration spectra' onto which all hydration spectra can be decomposed. Their analysis allows us to measure the water uptake of these membranes as a function of the hygrometry of the ambient atmosphere and to determine the structures of the dried membranes and their hydration mechanisms in terms of chemical reactions.

  6. Comparison of the physical and geotechnical properties of gas-hydrate-bearing sediments from offshore India and other gas-hydrate-reservoir systems

    USGS Publications Warehouse

    Winters, William J.; Wilcox-Cline, R.W.; Long, P.; Dewri, S.K.; Kumar, P.; Stern, Laura A.; Kerr, Laura A.

    2014-01-01

    The sediment characteristics of hydrate-bearing reservoirs profoundly affect the formation, distribution, and morphology of gas hydrate. The presence and type of gas, porewater chemistry, fluid migration, and subbottom temperature may govern the hydrate formation process, but it is the host sediment that commonly dictates final hydrate habit, and whether hydrate may be economically developed.In this paper, the physical properties of hydrate-bearing regions offshore eastern India (Krishna-Godavari and Mahanadi Basins) and the Andaman Islands, determined from Expedition NGHP-01 cores, are compared to each other, well logs, and published results of other hydrate reservoirs. Properties from the hydrate-free Kerala-Konkan basin off the west coast of India are also presented. Coarser-grained reservoirs (permafrost-related and marine) may contain high gas-hydrate-pore saturations, while finer-grained reservoirs may contain low-saturation disseminated or more complex gas-hydrates, including nodules, layers, and high-angle planar and rotational veins. However, even in these fine-grained sediments, gas hydrate preferentially forms in coarser sediment or fractures, when present. The presence of hydrate in conjunction with other geologic processes may be responsible for sediment porosity being nearly uniform for almost 500 m off the Andaman Islands.Properties of individual NGHP-01 wells and regional trends are discussed in detail. However, comparison of marine and permafrost-related Arctic reservoirs provides insight into the inter-relationships and common traits between physical properties and the morphology of gas-hydrate reservoirs regardless of location. Extrapolation of properties from one location to another also enhances our understanding of gas-hydrate reservoir systems. Grain size and porosity effects on permeability are critical, both locally to trap gas and regionally to provide fluid flow to hydrate reservoirs. Index properties corroborate more advanced consolidation and triaxial strength test results and can be used for predicting behavior in other NGHP-01 regions. Pseudo-overconsolidation is present near the seafloor and is underlain by underconsolidation at depth at some NGHP-01 locations.

  7. Water dynamics on ice and hydrate lattices studied by second-order central-line stimulated-echo oxygen-17 nuclear magnetic resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adjei-Acheamfour, Mischa; Tilly, Julius F.; Beerwerth, Joachim

    Oxygen-17 stimulated-echo spectroscopy is a novel nuclear magnetic resonance (NMR) technique that allows one to investigate the time scale and geometry of ultraslow molecular motions in materials containing oxygen. The method is based on detecting orientationally encoded frequency changes within oxygen’s central-transition NMR line that are caused by second-order quadrupolar interactions. In addition to the latter, the present theoretical analysis of various two-pulse echo and stimulated-echo pulse sequences takes also heteronuclear dipolar interactions into account. As an experimental example, the ultraslow water motion in polycrystals of tetrahydrofuran clathrate hydrate is studied via two-time oxygen-17 stimulated-echo correlation functions. The resulting correlationmore » times and those of hexagonal ice are similar to those from previous deuteron NMR measurements. Calculations of the echo functions’ final-state correlations for various motional models are compared with the experimental data of the clathrate hydrate. It is found that a six-site model including the oxygen-proton dipolar interaction describes the present results.« less

  8. Elastic wave speeds and moduli in polycrystalline ice Ih, si methane hydrate, and sll methane-ethane hydrate

    USGS Publications Warehouse

    Helgerud, M.B.; Waite, W.F.; Kirby, S.H.; Nur, A.

    2009-01-01

    We used ultrasonic pulse transmission to measure compressional, P, and shear, S, wave speeds in laboratory-formed polycrystalline ice Ih, si methane hydrate, and sll methane-ethane hydrate. From the wave speed's linear dependence on temperature and pressure and from the sample's calculated density, we derived expressions for bulk, shear, and compressional wave moduli and Poisson's ratio from -20 to 15??C and 22.4 to 32.8 MPa for ice Ih, -20 to 15??C and 30.5 to 97.7 MPa for si methane hydrate, and -20 to 10??C and 30.5 to 91.6 MPa for sll methane-ethane hydrate. All three materials had comparable P and S wave speeds and decreasing shear wave speeds with increasing applied pressure. Each material also showed evidence of rapid intergranular bonding, with a corresponding increase in wave speed, in response to pauses in sample deformation. There were also key differences. Resistance to uniaxial compaction, indicated by the pressure required to compact initially porous samples, was significantly lower for ice Ih than for either hydrate. The ice Ih shear modulus decreased with increasing pressure, in contrast to the increase measured in both hydrates ?? 2009.

  9. Experimental and modeling study on decomposition kinetics of methane hydrates in different media.

    PubMed

    Liang, Minyan; Chen, Guangjin; Sun, Changyu; Yan, Lijun; Liu, Jiang; Ma, Qinglan

    2005-10-13

    The decomposition kinetic behaviors of methane hydrates formed in 5 cm3 porous wet activated carbon were studied experimentally in a closed system in the temperature range of 275.8-264.4 K. The decomposition rates of methane hydrates formed from 5 cm3 of pure free water and an aqueous solution of 650 g x m(-3) sodium dodecyl sulfate (SDS) were also measured for comparison. The decomposition rates of methane hydrates in seven different cases were compared. The results showed that the methane hydrates dissociate more rapidly in porous activated carbon than in free systems. A mathematical model was developed for describing the decomposition kinetic behavior of methane hydrates below ice point based on an ice-shielding mechanism in which a porous ice layer was assumed to be formed during the decomposition of hydrate, and the diffusion of methane molecules through it was assumed to be one of the control steps. The parameters of the model were determined by correlating the decomposition rate data, and the activation energies were further determined with respect to three different media. The model was found to well describe the decomposition kinetic behavior of methane hydrate in different media.

  10. Consequences of CO2 solubility for hydrate formation from carbon dioxide containing water and other impurities.

    PubMed

    Kvamme, Bjørn; Kuznetsova, Tatiana; Jensen, Bjørnar; Stensholt, Sigvat; Bauman, Jordan; Sjøblom, Sara; Nes Lervik, Kim

    2014-05-14

    Deciding on the upper bound of water content permissible in a stream of dense carbon dioxide under pipeline transport conditions without facing the risks of hydrate formation is a complex issue. In this work, we outline and analyze ten primary routes of hydrate formation inside a rusty pipeline, with hydrogen sulfide, methane, argon, and nitrogen as additional impurities. A comprehensive treatment of equilibrium absolute thermodynamics as applied to multiple hydrate phase transitions is provided. We also discuss in detail the implications of the Gibbs phase rule that make it necessary to consider non-equilibrium thermodynamics. The analysis of hydrate formation risk has been revised for the dominant routes, including the one traditionally considered in industrial practice and hydrate calculators. The application of absolute thermodynamics with parameters derived from atomistic simulations leads to several important conclusions regarding the impact of hydrogen sulfide. When present at studied concentrations below 5 mol%, the presence of hydrogen sulfide will only support the carbon-dioxide-dominated hydrate formation on the phase interface between liquid water and hydrate formers entering from the carbon dioxide phase. This is in contrast to a homogeneous hydrate nucleation and growth inside the aqueous solution bulk. Our case studies indicate that hydrogen sulfide at higher than 0.1 mol% concentration in carbon dioxide can lead to growth of multiple hydrate phases immediately adjacent to the adsorbed water layers. We conclude that hydrate formation via water adsorption on rusty pipeline walls will be the dominant contributor to the hydrate formation risk, with initial concentration of hydrogen sulfide being the critical factor.

  11. Selective Encaging of N2O in N2O-N2 Binary Gas Hydrates via Hydrate-Based Gas Separation.

    PubMed

    Yang, Youjeong; Shin, Donghoon; Choi, Seunghyun; Woo, Yesol; Lee, Jong-Won; Kim, Dongseon; Shin, Hee-Young; Cha, Minjun; Yoon, Ji-Ho

    2017-03-21

    The crystal structure and guest inclusion behaviors of nitrous oxide-nitrogen (N 2 O-N 2 ) binary gas hydrates formed from N 2 O/N 2 gas mixtures are determined through spectroscopic analysis. Powder X-ray diffraction results indicate that the crystal structure of all the N 2 O-N 2 binary gas hydrates is identified as the structure I (sI) hydrate. Raman spectra for the N 2 O-N 2 binary gas hydrate formed from N 2 O/N 2 (80/20, 60/40, 40/60 mol %) gas mixtures reveal that N 2 O molecules occupy both large and small cages of the sI hydrate. In contrast, there is a single Raman band of N 2 O molecules for the N 2 O-N 2 binary gas hydrate formed from the N 2 O/N 2 (20/80 mol %) gas mixture, indicating that N 2 O molecules are trapped in only large cages of the sI hydrate. From temperature-dependent Raman spectra and the Predictive Soave-Redlich-Kwong (PSRK) model calculation, we confirm the self-preservation of N 2 O-N 2 binary gas hydrates in the temperature range of 210-270 K. Both the experimental measurements and the PSRK model calculations demonstrate the preferential occupation of N 2 O molecules rather than N 2 molecules in the hydrate cages, leading to a possible process for separating N 2 O from gas mixtures via hydrate formation. The phase equilibrium conditions, pseudo-pressure-composition (P-x) diagram, and gas storage capacity of N 2 O-N 2 binary gas hydrates are discussed in detail.

  12. Elevated gas hydrate saturation within silt and silty clay sediments in the Shenhu area, South China Sea

    USGS Publications Warehouse

    Wang, X.; Hutchinson, D.R.; Wu, S.; Yang, S.; Guo, Y.

    2011-01-01

    Gas hydrate saturations were estimated using five different methods in silt and silty clay foraminiferous sediments from drill hole SH2 in the South China Sea. Gas hydrate saturations derived from observed pore water chloride values in core samples range from 10 to 45% of the pore space at 190-221 m below seafloor (mbsf). Gas hydrate saturations estimated from resistivity (Rt) using wireline logging results are similar and range from 10 to 40.5% in the pore space. Gas hydrate saturations were also estimated by P wave velocity obtained during wireline logging by using a simplified three-phase equation (STPE) and effective medium theory (EMT) models. Gas hydrate saturations obtained from the STPE velocity model (41.0% maximum) are slightly higher than those calculated with the EMT velocity model (38.5% maximum). Methane analysis from a 69 cm long depressurized core from the hydrate-bearing sediment zone indicates that gas hydrate saturation is about 27.08% of the pore space at 197.5 mbsf. Results from the five methods show similar values and nearly identical trends in gas hydrate saturations above the base of the gas hydrate stability zone at depths of 190 to 221 mbsf. Gas hydrate occurs within units of clayey slit and silt containing abundant calcareous nannofossils and foraminifer, which increase the porosities of the fine-grained sediments and provide space for enhanced gas hydrate formation. In addition, gas chimneys, faults, and fractures identified from three-dimensional (3-D) and high-resolution two-dimensional (2-D) seismic data provide pathways for fluids migrating into the gas hydrate stability zone which transport methane for the formation of gas hydrate. Sedimentation and local canyon migration may contribute to higher gas hydrate saturations near the base of the stability zone. Copyright 2011 by the American Geophysical Union.

  13. Nasogastric hydration versus intravenous hydration for infants with bronchiolitis: a randomised trial.

    PubMed

    Oakley, Ed; Borland, Meredith; Neutze, Jocelyn; Acworth, Jason; Krieser, David; Dalziel, Stuart; Davidson, Andrew; Donath, Susan; Jachno, Kim; South, Mike; Theophilos, Theane; Babl, Franz E

    2013-04-01

    Bronchiolitis is the most common lower respiratory tract infection in infants and the leading cause of hospital admission. Hydration is a mainstay of treatment, but insufficient evidence exists to guide clinical practice. We aimed to assess whether intravenous hydration or nasogastric hydration is better for treatment of infants. In this multicentre, open, randomised trial, we enrolled infants aged 2-12 months admitted to hospitals in Australia and New Zealand with a clinical diagnosis of bronchiolitis during three bronchiolitis seasons (April 1-Oct 31, in 2009, 2010, and 2011). We randomly allocated infants to nasogastric hydration or intravenous hydration by use of a computer-generated sequence and opaque sealed envelopes, with three randomly assigned block sizes and stratified by hospital site and age group (2-<6 months vs 6-12 months). The primary outcome was length of hospital stay, assessed in all randomly assigned infants. Secondary outcomes included rates of intensive-care unit admission, adverse events, and success of insertion. This trial is registered with the Australian and New Zealand clinical trials registry, ACTRN12605000033640. Mean length of stay for 381 infants assigned nasogastric hydration was 86·6 h (SD 58·9) compared with 82·2 h (58·8) for 378 infants assigned intravenous hydration (absolute difference 4·5 h [95% CI -3·9 to 12·9]; p=0·30). Rates of admission to intensive-care units, need for ventilatory support, and adverse events did not differ between groups. At randomisation, seven infants assigned nasogastric hydration were switched to intravenous hydration and 56 infants assigned intravenous hydration were switched to nasogastric hydration because the study-assigned method was unable to be inserted. For those infants who had data available for successful insertion, 275 (85%) of 323 infants in the nasogastric hydration group and 165 (56%) of 294 infants in the intravenous hydration group required only one attempt for successful insertion. Intravenous hydration and nasogastric hydration are appropriate means to hydrate infants with bronchiolitis. Nasogastric insertion might require fewer attempts and have a higher success rate of insertion than intravenous hydration. Australian National Health and Medical Research Council, Samuel Nissen Charitable Foundation (Perpetual), Murdoch Children's Research Institute, Victorian Government. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Kinetics of methane hydrate replacement with carbon dioxide and nitrogen gas mixture using in situ NMR spectroscopy.

    PubMed

    Cha, Minjun; Shin, Kyuchul; Lee, Huen; Moudrakovski, Igor L; Ripmeester, John A; Seo, Yutaek

    2015-02-03

    In this study, the kinetics of methane replacement with carbon dioxide and nitrogen gas in methane gas hydrate prepared in porous silica gel matrices has been studied by in situ (1)H and (13)C NMR spectroscopy. The replacement process was monitored by in situ (1)H NMR spectra, where about 42 mol % of the methane in the hydrate cages was replaced in 65 h. Large amounts of free water were not observed during the replacement process, indicating a spontaneous replacement reaction upon exposing methane hydrate to carbon dioxide and nitrogen gas mixture. From in situ (13)C NMR spectra, we confirmed that the replacement ratio was slightly higher in small cages, but due to the composition of structure I hydrate, the amount of methane evolved from the large cages was larger than that of the small cages. Compositional analysis of vapor and hydrate phases was also carried out after the replacement reaction ceased. Notably, the composition changes in hydrate phases after the replacement reaction would be affected by the difference in the chemical potential between the vapor phase and hydrate surface rather than a pore size effect. These results suggest that the replacement technique provides methane recovery as well as stabilization of the resulting carbon dioxide hydrate phase without melting.

  15. Well log analysis to assist the interpretation of 3-D seismic data at Milne Point, north slope of Alaska

    USGS Publications Warehouse

    Lee, Myung W.

    2005-01-01

    In order to assess the resource potential of gas hydrate deposits in the North Slope of Alaska, 3-D seismic and well data at Milne Point were obtained from BP Exploration (Alaska), Inc. The well-log analysis has three primary purposes: (1) Estimate gas hydrate or gas saturations from the well logs; (2) predict P-wave velocity where there is no measured P-wave velocity in order to generate synthetic seismograms; and (3) edit P-wave velocities where degraded borehole conditions, such as washouts, affected the P-wave measurement significantly. Edited/predicted P-wave velocities were needed to map the gas-hydrate-bearing horizons in the complexly faulted upper part of 3-D seismic volume. The estimated gas-hydrate/gas saturations from the well logs were used to relate to seismic attributes in order to map regional distribution of gas hydrate inside the 3-D seismic grid. The P-wave velocities were predicted using the modified Biot-Gassmann theory, herein referred to as BGTL, with gas-hydrate saturations estimated from the resistivity logs, porosity, and clay volume content. The effect of gas on velocities was modeled using the classical Biot-Gassman theory (BGT) with parameters estimated from BGTL.

  16. Application of conditional simulation of heterogeneous rock properties to seismic scattering and attenuation analysis in gas hydrate reservoirs

    NASA Astrophysics Data System (ADS)

    Huang, Jun-Wei; Bellefleur, Gilles; Milkereit, Bernd

    2012-02-01

    We present a conditional simulation algorithm to parameterize three-dimensional heterogeneities and construct heterogeneous petrophysical reservoir models. The models match the data at borehole locations, simulate heterogeneities at the same resolution as borehole logging data elsewhere in the model space, and simultaneously honor the correlations among multiple rock properties. The model provides a heterogeneous environment in which a variety of geophysical experiments can be simulated. This includes the estimation of petrophysical properties and the study of geophysical response to the heterogeneities. As an example, we model the elastic properties of a gas hydrate accumulation located at Mallik, Northwest Territories, Canada. The modeled properties include compressional and shear-wave velocities that primarily depend on the saturation of hydrate in the pore space of the subsurface lithologies. We introduce the conditional heterogeneous petrophysical models into a finite difference modeling program to study seismic scattering and attenuation due to multi-scale heterogeneity. Similarities between resonance scattering analysis of synthetic and field Vertical Seismic Profile data reveal heterogeneity with a horizontal-scale of approximately 50 m in the shallow part of the gas hydrate interval. A cross-borehole numerical experiment demonstrates that apparent seismic energy loss can occur in a pure elastic medium without any intrinsic attenuation of hydrate-bearing sediments. This apparent attenuation is largely attributed to attenuative leaky mode propagation of seismic waves through large-scale gas hydrate occurrence as well as scattering from patchy distribution of gas hydrate.

  17. Biosurfactant as a Promoter of Methane Hydrate Formation: Thermodynamic and Kinetic Studies

    PubMed Central

    Arora, Amit; Cameotra, Swaranjit Singh; Kumar, Rajnish; Balomajumder, Chandrajit; Singh, Anil Kumar; Santhakumari, B.; Kumar, Pushpendra; Laik, Sukumar

    2016-01-01

    Natural gas hydrates (NGHs) are solid non-stoichiometric compounds often regarded as a next generation energy source. Successful commercialization of NGH is curtailed by lack of efficient and safe technology for generation, dissociation, storage and transportation. The present work studied the influence of environment compatible biosurfactant on gas hydrate formation. Biosurfactant was produced by Pseudomonas aeruginosa strain A11 and was characterized as rhamnolipids. Purified rhamnolipids reduced the surface tension of water from 72 mN/m to 36 mN/m with Critical Micelle Concentration (CMC) of 70 mg/l. Use of 1000 ppm rhamnolipids solution in C type silica gel bed system increased methane hydrate formation rate by 42.97% and reduced the induction time of hydrate formation by 22.63% as compared to water saturated C type silica gel. Presence of rhamnolipids also shifted methane hydrate formation temperature to higher values relative to the system without biosurfactant. Results from thermodynamic and kinetic studies suggest that rhamnolipids can be applied as environment friendly methane hydrate promoter. PMID:26869357

  18. Evaluation of the stability of gas hydrates in Northern Alaska

    USGS Publications Warehouse

    Kamath, A.; Godbole, S.P.; Ostermann, R.D.; Collett, T.S.

    1987-01-01

    The factors which control the distribution of in situ gas hydrate deposits in colder regions such as Northern Alaska include; mean annual surface temperatures (MAST), geothermal gradients above and below the base of permafrost, subsurface pressures, gas composition, pore-fluid salinity and the soil condition. Currently existing data on the above parameters for the forty-six wells located in Northern Alaska were critically examined and used in calculations of depths and thicknesses of gas hydrate stability zones. To illustrate the effect of gas hydrate stability zones, calculations were done for a variable gas composition using the thermodynamic model of Holder and John (1982). The hydrostatic pressure gradient of 9.84 kPa/m (0.435 lbf/in2ft), the salinity of 10 parts per thousand (ppt) and the coarse-grained soil conditions were assumed. An error analysis was performed for the above parameters and the effect of these parameters on hydrate stability zone calculations were determined. After projecting the hydrate stability zones for the forty-six wells, well logs were used to identify and to obtain values for the depth and thickness of hydrate zones. Of the forty-six wells, only ten wells showed definite evidence of the presence of gas hydrates. ?? 1987.

  19. Atomistic details of protein dynamics and the role of hydration water

    DOE PAGES

    Khodadadi, Sheila; Sokolov, Alexei P.

    2016-05-04

    The importance of protein dynamics for their biological activity is nowwell recognized. Different experimental and computational techniques have been employed to study protein dynamics, hierarchy of different processes and the coupling between protein and hydration water dynamics. But, understanding the atomistic details of protein dynamics and the role of hydration water remains rather limited. Based on overview of neutron scattering, molecular dynamic simulations, NMR and dielectric spectroscopy results we present a general picture of protein dynamics covering time scales from faster than ps to microseconds and the influence of hydration water on different relaxation processes. Internal protein dynamics spread overmore » a wide time range fromfaster than picosecond to longer than microseconds. We suggest that the structural relaxation in hydrated proteins appears on the microsecond time scale, while faster processes present mostly motion of side groups and some domains. Hydration water plays a crucial role in protein dynamics on all time scales. It controls the coupled protein-hydration water relaxation on 10 100 ps time scale. Our process defines the friction for slower protein dynamics. Analysis suggests that changes in amount of hydration water affect not only general friction, but also influence significantly the protein's energy landscape.« less

  20. Correlating the properties of different carioca bean cultivars (Phaseolus vulgaris) with their hydration kinetics.

    PubMed

    Miano, Alberto Claudio; Saldaña, Erick; Campestrini, Luciano Henrique; Chiorato, Alisson Fernando; Augusto, Pedro Esteves Duarte

    2018-05-01

    This work explained how the intrinsic properties of beans affects the hydration process. For that, different properties of six cultivars of carioca bean (a variety of common bean) were analyzed to verify the correlation with their hydration kinetics characteristics (hydration rate, lag phase time and equilibrium moisture content), using a Multiple Factorial Analysis (MFA): the chemical composition (starch, protein, lipids, minerals (Mg, P, S, K, Ca, Mn, Fe, Cu, Zn), functional groups from the seed coat analyzed by FT-IR), physical properties (size, 1000 grain weight, seed coat thickness, energy to penetrate the bean) and microstructure. Only few properties correlated with the hydration kinetics characteristics of the studied bean, comprising both composition and structure. The fat content, potassium content, specific surface, and the protein to lipids ratio correlated with the lag phase time, which is related with the seed coat impermeability to water. The necessary energy to perforate the seed coat correlated negatively with the hydration rate. It was concluded that the hydration of beans process is a complex phenomenon and that despite being from the same variety of legume, any change due to agronomic enhancement may affect their hydration process kinetics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Effects of ensembles on methane hydrate nucleation kinetics.

    PubMed

    Zhang, Zhengcai; Liu, Chan-Juan; Walsh, Matthew R; Guo, Guang-Jun

    2016-06-21

    By performing molecular dynamics simulations to form a hydrate with a methane nano-bubble in liquid water at 250 K and 50 MPa, we report how different ensembles, such as the NPT, NVT, and NVE ensembles, affect the nucleation kinetics of the methane hydrate. The nucleation trajectories are monitored using the face-saturated incomplete cage analysis (FSICA) and the mutually coordinated guest (MCG) order parameter (OP). The nucleation rate and the critical nucleus are obtained using the mean first-passage time (MFPT) method based on the FS cages and the MCG-1 OPs, respectively. The fitting results of MFPT show that hydrate nucleation and growth are coupled together, consistent with the cage adsorption hypothesis which emphasizes that the cage adsorption of methane is a mechanism for both hydrate nucleation and growth. For the three different ensembles, the hydrate nucleation rate is quantitatively ordered as follows: NPT > NVT > NVE, while the sequence of hydrate crystallinity is exactly reversed. However, the largest size of the critical nucleus appears in the NVT ensemble, rather than in the NVE ensemble. These results are helpful for choosing a suitable ensemble when to study hydrate formation via computer simulations, and emphasize the importance of the order degree of the critical nucleus.

  2. Relationship of gas hydrate concentration to porosity and reflection amplitude in a research well, Mackenzie Delta, Canada

    USGS Publications Warehouse

    Jin, Y.K.; Lee, M.W.; Collett, T.S.

    2002-01-01

    Well logs acquired at the Mallik 2L-38 gas hydrate research well. Mackenzie Delta, Canada, reveal a distinct trend showing that the resistivity of gas-hydrate-bearing sediments increases with increases in density porosities. This trend, opposite to the general trend of decrease in resistivity with porosity, implies that gas hydrates are more concentrated in the higher porosity. Using the Mallik 2L-38 well data, a proportional gas hydrate concentration (PGHC) model, which states that the gas hydrate concentration in the sediment's pore space is linearly proportional to porosity, is proposed for the general habitat of gas hydrate in sediments. Anomalous data (less than 6% of the total data) outside the dominant observed trend can be explained by local geological characteristics. The anomalous data analysis indicates that highly concentrated gas-hydrate-bearing layers would be expected where sediments have high proportions of gravel and coarse sand. Using the parameters in the PGHC model determined from resistivity-porosity logs, it is possible to qualitatively predict the degree of reflection amplitude variations in seismic profiles. Moderate-to-strong reflections are expected for the Mallik 2L-38 well. ?? 2002 Elsevier Science Ltd. All rights reserved.

  3. Atomistic details of protein dynamics and the role of hydration water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khodadadi, Sheila; Sokolov, Alexei P.

    The importance of protein dynamics for their biological activity is nowwell recognized. Different experimental and computational techniques have been employed to study protein dynamics, hierarchy of different processes and the coupling between protein and hydration water dynamics. But, understanding the atomistic details of protein dynamics and the role of hydration water remains rather limited. Based on overview of neutron scattering, molecular dynamic simulations, NMR and dielectric spectroscopy results we present a general picture of protein dynamics covering time scales from faster than ps to microseconds and the influence of hydration water on different relaxation processes. Internal protein dynamics spread overmore » a wide time range fromfaster than picosecond to longer than microseconds. We suggest that the structural relaxation in hydrated proteins appears on the microsecond time scale, while faster processes present mostly motion of side groups and some domains. Hydration water plays a crucial role in protein dynamics on all time scales. It controls the coupled protein-hydration water relaxation on 10 100 ps time scale. Our process defines the friction for slower protein dynamics. Analysis suggests that changes in amount of hydration water affect not only general friction, but also influence significantly the protein's energy landscape.« less

  4. Dynamics of Hydration Water in Sugars and Peptides Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perticaroli, Stefania; Nakanishi, Masahiro; Pashkovski, Eugene

    2013-01-01

    We analyzed solute and solvent dynamics of sugars and peptides aqueous solutions using extended epolarized light scattering (EDLS) and broadband dielectric spectroscopies (BDS). Spectra measured with both techniques reveal the same mechanism of rotational diffusion of peptides molecules. In the case of sugars, this solute reorientational relaxation can be isolated by EDLS measurements, whereas its ontribution to the dielectric spectra is almost negligible. In the presented analysis, we characterize the hydration water in terms of hydration number and retardation ratio between relaxation times of hydration and bulk water. Both techniques provide similar estimates of . The retardation imposed on themore » hydration water by sugars is 3.3 1.3 and involves only water molecules hydrogen-bonded (HB) to solutes ( 3 water molecules per sugar OH-group). In contrast, polar peptides cause longer range erturbations beyond the first hydration shell, and between 2.8 and 8, increasing with the number of chemical groups engaged in HB formation. We demonstrate that chemical heterogeneity and specific HB interactions play a crucial role in hydration dynamics around polar solutes. The obtained results help to disentangle the role of excluded volume and enthalpic contributions in dynamics of hydration water at the interface with biological molecules.« less

  5. Basin-Wide Temperature Constraints On Gas Hydrate Stability In The Gulf Of Mexico

    NASA Astrophysics Data System (ADS)

    MacDonald, I. R.; Reagan, M. T.; Guinasso, N. L.; Garcia-Pineda, O. G.

    2012-12-01

    Gas hydrate deposits commonly occur at the seafloor-water interface on marine margins. They are especially prevalent in the Gulf of Mexico where they are associated with natural oil seeps. The stability of these deposits is potentially challenged by fluctuations in bottom water temperature, on an annual time-scale, and under the long-term influence of climate change. We mapped the locations of natural oil seeps where shallow gas hydrate deposits are known to occur across the entire Gulf of Mexico basin based on a comprehensive review of synthetic aperture radar (SAR) data (~200 images). We prepared a bottom water temperature map based on the archive of CTD casts from the Gulf (~6000 records). Comparing the distribution of gas hydrate deposits with predicted bottom water temperature, we find that a broad area of the upper slope lies above the theoretical stability horizon for structure 1 gas hydrate, while all sites where gas hydrate deposits occur are within the stability horizon for structure 2 gas hydrate. This is consistent with analytical results that structure 2 gas hydrates predominate on the upper slope (Klapp et al., 2010), where bottom water temperatures fluctuate over a 7 to 10 C range (approx. 600 m depth), while pure structure 1 hydrates are found at greater depths (approx. 3000 m). Where higher hydrocarbon gases are available, formation of structure 2 gas hydrate should significantly increase the resistance of shallow gas hydrate deposits to destabilizing effects variable or increasing bottom water temperature. Klapp, S.A., Bohrmann, G., Kuhs, W.F., Murshed, M.M., Pape, T., Klein, H., Techmer, K.S., Heeschen, K.U., and Abegg, F., 2010, Microstructures of structure I and II gas hydrates from the Gulf of Mexico: Marine and Petroleum Geology, v. 27, p. 116-125.Bottom temperature and pressure for Gulf of Mexico gas hydrate outcrops and stability horizons for sI and sII hydrate.

  6. Gender- and hydration- associated differences in the physiological response to spinning.

    PubMed

    Ramos-Jiménez, Arnulfo; Hernández-Torres, Rosa Patricia; Wall-Medrano, Abraham; Torres-Durán, Patricia Victoria; Juárez-Oropeza, Marco Antonio; Viloria, María; Villalobos-Molina, Rafael

    2014-03-01

    There is scarce and inconsistent information about gender-related differences in the hydration of sports persons, as well as about the effects of hydration on performance, especially during indoor sports. To determine the physiological differences between genders during in indoor physical exercise, with and without hydration. 21 spinning sportspeople (12 men and 9 women) participated in three controlled, randomly assigned and non-sequential hydration protocols, including no fluid intake and hydration with plain water or a sports drink (volume adjusted to each individual every 15 min), during 90 min of spinning exercise. The response variables included body mass, body temperature, heart rate and blood pressure. During exercise without hydration, men and women lost ~2% of body mass, and showed higher body temperature (~0.2°C), blood pressure (~4 mmHg) and heart rate (~7 beats/min) compared to exercises with hydration. Body temperature and blood pressure were higher for men than for women during exercise without hydration, differences not observed during exercise with hydration. Between 42-99% of variance in body temperature, blood pressure and heart rate could be explained by the physical characteristics of subjects and the work done. During exercise with hydration (either with water or sport drink), the physiological response was similar for both genders. Exercise without hydration produced physical stress, which could be prevented with either of the fluids (plain water was sufficient). Gender differences in the physiological response to spinning (body temperature, mean blood pressure and heart rate) can be explained in part by the distinct physical characteristics of each individual. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  7. In vivo study of dermal collagen of striae distensae by confocal Raman spectroscopy.

    PubMed

    Lung, Pam Wen; Tippavajhala, Vamshi Krishna; de Oliveira Mendes, Thiago; Téllez-Soto, Claudio A; Schuck, Desirée Cigaran; Brohem, Carla Abdo; Lorencini, Marcio; Martin, Airton Abrahão

    2018-04-01

    This research work mainly deals with studying qualitatively the changes in the dermal collagen of two forms of striae distensae (SD) namely striae rubrae (SR) and striae albae (SA) when compared to normal skin (NS) using confocal Raman spectroscopy. The methodology includes an in vivo human skin study for the comparison of confocal Raman spectra of dermis region of SR, SA, and NS by supervised multivariate analysis using partial least squares discriminant analysis (PLS-DA) to determine qualitatively the changes in dermal collagen. These groups are further analyzed for the extent of hydration of dermal collagen by studying the changes in the water content bound to it. PLS-DA score plot showed good separation of the confocal Raman spectra of dermis region into SR, SA, and NS data groups. Further analysis using loading plot and S-plot indicated the participation of various components of dermal collagen in the separation of these groups. Bound water content analysis showed that the extent of hydration of collagen is more in SD when compared to NS. Based on the results obtained, this study confirms the active involvement of dermal collagen in the formation of SD. It also emphasizes the need to study quantitatively the role of these various biochemical changes in the dermal collagen responsible for the variance between SR, SA, and NS.

  8. [Cevimeline hydrochloride hydrate (Saligren capsule 30 mg): a review of its pharmacological profiles and clinical potential in xerostomia].

    PubMed

    Shiozawa, Akira

    2002-10-01

    Cevimeline hydrochloride hydrate is a muscarinic receptor agonist with a chemical structure of a quinuclidine. Intraduodenal administration of cevimeline hydrochloride hydrate dose-dependently increased salivary secretion in normal mice and rats, two strains of autoimmune disease mice, and X-irradiated rats. The clinical efficacy of the cevimeline hydrochlide hydrate at 30 mg t.i.d. during 4 weeks has been demonstrated in double blind comparative study with placebo. In addition, its treatments in 52 weeks have increased salivary flow and improved subjective and objective symptoms of patients with xerostomia in Sjögren's syndrome.

  9. Constraints on oceanic methane emissions west of Svalbard from atmospheric in situ measurements and Lagrangian transport modeling.

    PubMed

    Pisso, I; Myhre, C Lund; Platt, S M; Eckhardt, S; Hermansen, O; Schmidbauer, N; Mienert, J; Vadakkepuliyambatta, S; Bauguitte, S; Pitt, J; Allen, G; Bower, K N; O'Shea, S; Gallagher, M W; Percival, C J; Pyle, J; Cain, M; Stohl, A

    2016-12-16

    Methane stored in seabed reservoirs such as methane hydrates can reach the atmosphere in the form of bubbles or dissolved in water. Hydrates could destabilize with rising temperature further increasing greenhouse gas emissions in a warming climate. To assess the impact of oceanic emissions from the area west of Svalbard, where methane hydrates are abundant, we used measurements collected with a research aircraft (Facility for Airborne Atmospheric Measurements) and a ship (Helmer Hansen) during the Summer 2014 and for Zeppelin Observatory for the full year. We present a model-supported analysis of the atmospheric CH 4 mixing ratios measured by the different platforms. To address uncertainty about where CH 4 emissions actually occur, we explored three scenarios: areas with known seeps, a hydrate stability model, and an ocean depth criterion. We then used a budget analysis and a Lagrangian particle dispersion model to compare measurements taken upwind and downwind of the potential CH 4 emission areas. We found small differences between the CH 4 mixing ratios measured upwind and downwind of the potential emission areas during the campaign. By taking into account measurement and sampling uncertainties and by determining the sensitivity of the measured mixing ratios to potential oceanic emissions, we provide upper limits for the CH 4 fluxes. The CH 4 flux during the campaign was small, with an upper limit of 2.5 nmol m -2  s -1 in the stability model scenario. The Zeppelin Observatory data for 2014 suggest CH 4 fluxes from the Svalbard continental platform below 0.2 Tg yr -1 . All estimates are in the lower range of values previously reported.

  10. Constraints on oceanic methane emissions west of Svalbard from atmospheric in situ measurements and Lagrangian transport modeling

    PubMed Central

    Myhre, C. Lund; Platt, S. M.; Eckhardt, S.; Hermansen, O.; Schmidbauer, N.; Mienert, J.; Vadakkepuliyambatta, S.; Bauguitte, S.; Pitt, J.; Allen, G.; Bower, K. N.; O'Shea, S.; Gallagher, M. W.; Percival, C. J.; Pyle, J.; Cain, M.; Stohl, A.

    2016-01-01

    Abstract Methane stored in seabed reservoirs such as methane hydrates can reach the atmosphere in the form of bubbles or dissolved in water. Hydrates could destabilize with rising temperature further increasing greenhouse gas emissions in a warming climate. To assess the impact of oceanic emissions from the area west of Svalbard, where methane hydrates are abundant, we used measurements collected with a research aircraft (Facility for Airborne Atmospheric Measurements) and a ship (Helmer Hansen) during the Summer 2014 and for Zeppelin Observatory for the full year. We present a model‐supported analysis of the atmospheric CH4 mixing ratios measured by the different platforms. To address uncertainty about where CH4 emissions actually occur, we explored three scenarios: areas with known seeps, a hydrate stability model, and an ocean depth criterion. We then used a budget analysis and a Lagrangian particle dispersion model to compare measurements taken upwind and downwind of the potential CH4 emission areas. We found small differences between the CH4 mixing ratios measured upwind and downwind of the potential emission areas during the campaign. By taking into account measurement and sampling uncertainties and by determining the sensitivity of the measured mixing ratios to potential oceanic emissions, we provide upper limits for the CH4 fluxes. The CH4 flux during the campaign was small, with an upper limit of 2.5 nmol m−2 s−1 in the stability model scenario. The Zeppelin Observatory data for 2014 suggest CH4 fluxes from the Svalbard continental platform below 0.2 Tg yr−1. All estimates are in the lower range of values previously reported. PMID:28261536

  11. Constraints on oceanic methane emissions west of Svalbard from atmospheric in situ measurements and Lagrangian transport modeling

    NASA Astrophysics Data System (ADS)

    Pisso, I.; Myhre, C. Lund; Platt, S. M.; Eckhardt, S.; Hermansen, O.; Schmidbauer, N.; Mienert, J.; Vadakkepuliyambatta, S.; Bauguitte, S.; Pitt, J.; Allen, G.; Bower, K. N.; O'Shea, S.; Gallagher, M. W.; Percival, C. J.; Pyle, J.; Cain, M.; Stohl, A.

    2016-12-01

    Methane stored in seabed reservoirs such as methane hydrates can reach the atmosphere in the form of bubbles or dissolved in water. Hydrates could destabilize with rising temperature further increasing greenhouse gas emissions in a warming climate. To assess the impact of oceanic emissions from the area west of Svalbard, where methane hydrates are abundant, we used measurements collected with a research aircraft (Facility for Airborne Atmospheric Measurements) and a ship (Helmer Hansen) during the Summer 2014 and for Zeppelin Observatory for the full year. We present a model-supported analysis of the atmospheric CH4 mixing ratios measured by the different platforms. To address uncertainty about where CH4 emissions actually occur, we explored three scenarios: areas with known seeps, a hydrate stability model, and an ocean depth criterion. We then used a budget analysis and a Lagrangian particle dispersion model to compare measurements taken upwind and downwind of the potential CH4 emission areas. We found small differences between the CH4 mixing ratios measured upwind and downwind of the potential emission areas during the campaign. By taking into account measurement and sampling uncertainties and by determining the sensitivity of the measured mixing ratios to potential oceanic emissions, we provide upper limits for the CH4 fluxes. The CH4 flux during the campaign was small, with an upper limit of 2.5 nmol m-2 s-1 in the stability model scenario. The Zeppelin Observatory data for 2014 suggest CH4 fluxes from the Svalbard continental platform below 0.2 Tg yr-1. All estimates are in the lower range of values previously reported.

  12. Experimental investigation of gas hydrate formation, plugging and transportability in partially dispersed and water continuous systems

    NASA Astrophysics Data System (ADS)

    Vijayamohan, Prithvi

    As oil/gas subsea fields mature, the amount of water produced increases significantly due to the production methods employed to enhance the recovery of oil. This is true especially in the case of oil reservoirs. This increase in the water hold up increases the risk of hydrate plug formation in the pipelines, thereby resulting in higher inhibition cost strategies. A major industry concern is to reduce the severe safety risks associated with hydrate plug formation, and significantly extending subsea tieback distances by providing a cost effective flow assurance management/safety tool for mature fields. Developing fundamental understanding of the key mechanistic steps towards hydrate plug formation for different multiphase flow conditions is a key challenge to the flow assurance community. Such understanding can ultimately provide new insight and hydrate management guidelines to diminish the safety risks due to hydrate formation and accumulation in deepwater flowlines and facilities. The transportability of hydrates in pipelines is a function of the operating parameters, such as temperature, pressure, fluid mixture velocity, liquid loading, and fluid system characteristics. Specifically, the hydrate formation rate and plugging onset characteristics can be significantly different for water continuous, oil continuous, and partially dispersed systems. The latter is defined as a system containing oil/gas/water, where the water is present both as a free phase and partially dispersed in the oil phase (i.e., entrained water in the oil). Since hydrate formation from oil dispersed in water systems and partially dispersed water systems is an area which is poorly understood, this thesis aims to address some key questions in these systems. Selected experiments have been performed at the University of Tulsa flowloop to study the hydrate formation and plugging characteristics for the partially dispersed water/oil/gas systems as well as systems where the oil is completely dispersed in water. These experiments indicate that the partially dispersed systems tend to be problematic and are more severe cases with respect to flow assurance when compared to systems where the water is completely dispersed in oil. We have found that the partially dispersed systems are distinct, and are not an intermediate case between water dominated, and water-in-oil emulsified systems. Instead the experiments indicate that the hydrate formation and plugging mechanism for these systems are very complex. Hydrate growth is very rapid for such systems when compared to 100% water cut systems. The plugging mechanism for these systems is a combination of various phenomena (wall growth, agglomeration, bedding/settling, etc). Three different oils with different viscosities have been used to investigate the transportability of hydrates with respect to oil properties. The experiments indicate that the transportability of hydrates increases with increase in oil viscosity. The data from the tests performed provide the basis for a mechanistic model for hydrate formation and plugging in partially dispersed systems. It is found that in systems that were in stratified flow regime before hydrate onset, the hydrates eventually settled on the pipe walls thereby decreasing the flow area for the flow of fluids. In systems that were in the slug flow regime before hydrate formation, moving beds of hydrates were the main cause for plugging. In both the flow regimes, the systems studied entered a plugging regime beyond a certain hydrate concentration. This is termed as φplugging onset and can be used as an indicator to calculate the amount of hydrates that can be transported safely without requiring any additional treatment for a given set of flow characteristics. A correlation to calculate this hydrate concentration based on easily accessible parameters is developed in terms of flow characteristics and oil properties. The work performed in this thesis has enhanced the understanding of the hydrate plug mechanism in pipelines having high amounts of water. This work has also shown the effect of hydrate formation in different flow regimes thereby shedding light on the effects of hydrates on multiphase flow and vice versa. Lessons resulting from this work could be incorporated into flow assurance models, as well as operating company production strategies to reduce or mitigate hydrate plugging risks in complex multiphase systems.

  13. Prestack Waveform Inversion and Well Log Examination at GC955 and WR313 in the Gulf of Mexico for Estimation of Methane Hydrate Concentrations

    NASA Astrophysics Data System (ADS)

    Fortin, W.; Goldberg, D.; Kucuk, H. M.

    2017-12-01

    Gas hydrates are naturally occurring compounds, which, at a molecular scale, are lattice structures of ice embedded with various gas molecules in the lattice voids. Volumetric estimates of associated hydrocarbons vary greatly due to the difficulty in remotely estimating hydrate concentrations in marine sediments but embedded hydrocarbon stores are thought to represent a significant portion of global deposits. Inherent hydrate instabilities obscure our understanding of and complicates processes related to resource extraction and hydrate response to disturbances in the local environment. Understanding the spatial extent and variability of hydrate deposits have important implications for potential economic production, climate change, and assessing natural hazards risks. Seismic reflection techniques are capable of determining the extent of gas hydrate deposits, often through the observation of bottom simulating reflectors (BSRs). However, BSRs are not present everywhere gas hydrates exist. Using high resolution prestack time migrated seismic data and prestack waveform inversion (PWI) we produce highly resolved velocity models and compare them to co-located well logs. Coupling our PWI results with velocity-porosity relationships and nearby well control, we map hydrate properties at GC955 and WR313. Integrating small scale heterogeneities and variations along the velocity model with in-situ measurements, we develop a workflow aimed to quantify hydrate concentrations observed in seismic data over large areas in great detail regardless of the existence of a BSR.

  14. Gas hydrate characterization from a 3D seismic dataset in the deepwater eastern Gulf of Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McConnell, Daniel; Haneberg, William C.

    Principal component analysis of spectral decomposition results combined with amplitude and frequency seismic attributes derived from 3D seismic data are used for the identification and characterization of gas hydrate deposits in the deepwater eastern Gulf of Mexico. In the central deepwater Gulf of Mexico (GoM), logging while drilling LWD data provided insight to the amplitude response of gas hydrate saturation in sands, which could be used to characterize complex gas hydrate deposits in other sandy deposits. In this study, a large 3D seismic data set from equivalent and distal Plio Pleistocene sandy channel deposits in the deepwater eastern Gulf ofmore » Mexico is screened for direct hydrocarbon indicators for gas hydrate saturated sands.« less

  15. Geological and geochemical implications of gas hydrates in the Gulf of Mexico. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooks, J.M.; Bryant, W.R.

    1985-09-01

    This document presents the results of a study of the geological and geochemical implications of gas hydrates in the Gulf of Mexico. The report is based primarily on data obtained from available seismic surveys of the Green Canyon, Garden Banks, Mississippi Canyon, and Orca Basins areas of the northern continental margin of the Gulf of Mexico. The study also includes the data and analysis obtained from several gas hydrate cores recovered in these areas. The report provides new data relevant to gas hydrate research for more in-depth research of the Gulf of Mexico gas hydrates and provides significant information whichmore » advances the knowledge and understanding of gas hydrate formations in the natural environment. The report contains several high resolution seismic surveys. In the four hydrate sites studied in detail, the seismic ''wipeout'' zones were all associated with collapsed structures, fault scarps, and/or salt piercement structures. These features provide conduits for the upward migration of either biogenic or thermogenic gas from depth. 35 refs., 47 figs., 9 tabs.« less

  16. Preliminary report on the commercial viability of gas production from natural gas hydrates

    USGS Publications Warehouse

    Walsh, M.R.; Hancock, S.H.; Wilson, S.J.; Patil, S.L.; Moridis, G.J.; Boswell, R.; Collett, T.S.; Koh, C.A.; Sloan, E.D.

    2009-01-01

    Economic studies on simulated gas hydrate reservoirs have been compiled to estimate the price of natural gas that may lead to economically viable production from the most promising gas hydrate accumulations. As a first estimate, $CDN2005 12/Mscf is the lowest gas price that would allow economically viable production from gas hydrates in the absence of associated free gas, while an underlying gas deposit will reduce the viability price estimate to $CDN2005 7.50/Mscf. Results from a recent analysis of the simulated production of natural gas from marine hydrate deposits are also considered in this report; on an IROR basis, it is $US2008 3.50-4.00/Mscf more expensive to produce marine hydrates than conventional marine gas assuming the existence of sufficiently large marine hydrate accumulations. While these prices represent the best available estimates, the economic evaluation of a specific project is highly dependent on the producibility of the target zone, the amount of gas in place, the associated geologic and depositional environment, existing pipeline infrastructure, and local tariffs and taxes. ?? 2009 Elsevier B.V.

  17. Investigation of hydrate formation in the system H2-CH4-H2O at a pressure up to 250 MPa.

    PubMed

    Skiba, Sergei S; Larionov, Eduard G; Manakov, Andrey Y; Kolesov, Boris A; Kosyakov, Viktor I

    2007-09-27

    Phase equilibria in the system H2-CH4-H2O are investigated by means of differential thermal analysis within hydrogen concentration range 0-70 mol % and at a pressure up to 250 MPa. All the experiments were carried out under the conditions of gas excess. With an increase in hydrogen concentration in the initial gas mixture, decomposition temperature of the formed hydrates decreased. X-ray diffraction patterns and Raman spectra of the quenched hydrate samples obtained at a pressure of 20 MPA from a gas mixture containing 40 mol % hydrogen were recorded. It turned out that the hydrate has cubic structure I under these conditions. The Raman spectra showed that hydrogen molecules are not detected in the hydrate within the sensitivity of the method, that is, almost pure methane hydrate is formed. The general view of the phase diagram of the investigated system is proposed. A thermodynamic model was proposed to explain a decrease in hydrate decomposition temperature in the system with an increase in the concentration of hydrogen in the initial mixture.

  18. Sensitivity Studies on Productivity Performance from 3D Heterogeneous Reservoir Model Based on the L-Pad Gas Hydrate Accumulation in Prudhoe Bay Unit, North Slope Alaska

    NASA Astrophysics Data System (ADS)

    Myshakin, E. M.; Ajayi, T.; Seol, Y.; Boswell, R.

    2016-12-01

    Three-dimensional reservoir model of the "L-Pad" hydrate deposit located in the Prudhoe Bay region of the Alaska's North Slope was created including four stratigraphic units; silty shale overburden, hydrate-bearing D sand, inter-reservoir silty shale, hydrate-bearing C sand, and silty shale underburden. The model incorporates the actual geological settings, accounts for the presence of faults, reservoir dip, the hydrate-water contact in the C sand. Geostatistical porosity distributions in D and C sands conditioned to log data from 78 wells drilled in the vicinity of the Prudhoe Bay "L-pad" were developed providing vertical and lateral 3D heterogeneity in porosity and porosity-dependent hydrate saturation and intrinsic permeability. Gas production potential was estimated using a conventional vertical wellbore completion and a deviated toe-down wellbore perforated through both sand units to induce hydrate depressurization at a constant bottom-hole pressure. The results have shown the greater performance of the deviated well design over the vertical one. The scenarios involving simultaneous and sequential hydrate dissociation in sand units were explored and the effect of the underlying aquifer in the C sand was estimated. Sensitivity analysis has demonstrated that hydraulic communication with over- and underlying shale units affects production in the beginning of depressurization due to competitive water influx into producing mobile flow and could suppress efficient hydrate decomposition resulting in production lag. Another important factor greatly influencing the productivity performance is the effective permeability of hydrate-bearing sediment controlled by the relative permeability function. The results call for the necessity of thorough fundamental studies to understand multi-phase flow in hydrate-bearing sediments with different hydrate precipitation habits.

  19. Dissolution rates of pure methane hydrate and carbon-dioxide hydrate in undersaturated seawater at 1000-m depth

    USGS Publications Warehouse

    Rehder, G.; Kirby, S.H.; Durham, W.B.; Stern, L.A.; Peltzer, E.T.; Pinkston, J.; Brewer, P.G.

    2004-01-01

    To help constrain models involving the chemical stability and lifetime of gas clathrate hydrates exposed at the seafloor, dissolution rates of pure methane and carbon-dioxide hydrates were measured directly on the seafloor within the nominal pressure-temperature (P/T) range of the gas hydrate stability zone. Other natural boundary conditions included variable flow velocity and undersaturation of seawater with respect to the hydrate-forming species. Four cylindrical test specimens of pure, polycrystalline CH4 and CO2 hydrate were grown and fully compacted in the laboratory, then transferred by pressure vessel to the seafloor (1028 m depth), exposed to the deep ocean environment, and monitored for 27 hours using time-lapse and HDTV cameras. Video analysis showed diameter reductions at rates between 0.94 and 1.20 ??m/s and between 9.0 and 10.6 ?? 10-2 ??m/s for the CO2 and CH4 hydrates, respectively, corresponding to dissolution rates of 4.15 ?? 0.5 mmol CO2/m2s and 0.37 ?? 0.03 mmol CH4/m2s. The ratio of the dissolution rates fits a diffusive boundary layer model that incorporates relative gas solubilities appropriate to the field site, which implies that the kinetics of the dissolution of both hydrates is diffusion-controlled. The observed dissolution of several mm (CH4) or tens of mm (CO2) of hydrate from the sample surfaces per day has major implications for estimating the longevity of natural gas hydrate outcrops as well as for the possible roles of CO2 hydrates in marine carbon sequestration strategies. ?? 2003 Elsevier Ltd.

  20. Numerical studies of gas production from several CH4 hydrate zones at the Mallik site, Mackenzie Delta, Canada

    USGS Publications Warehouse

    Moridis, G.J.; Collett, T.S.; Dallimore, S.R.; Satoh, T.; Hancock, S.; Weatherill, B.

    2004-01-01

    The Mallik site represents an onshore permafrost-associated gas hydrate accumulation in the Mackenzie Delta, Northwest Territories, Canada. A gas hydrate research well was drilled at the site in 1998. The objective of this study is the analysis of various gas production scenarios from five methane hydrate-bearing zones at the Mallik site. In Zone #1, numerical simulations using the EOSHYDR2 model indicated that gas production from hydrates at the Mallik site was possible by depressurizing a thin free gas zone at the base of the hydrate stability field. Horizontal wells appeared to have a slight advantage over vertical wells, while multiwell systems involving a combination of depressurization and thermal stimulation offered superior performance, especially when a hot noncondensible gas was injected. Zone #2, which involved a gas hydrate layer with an underlying aquifer, could yield significant amounts of gas originating entirely from gas hydrates, the volumes of which increased with the production rate. However, large amounts of water were also produced. Zones #3, #4 and #5 were lithologically isolated gas hydrate-bearing deposits with no underlying zones of mobile gas or water. In these zones, thermal stimulation by circulating hot water in the well was used to induce dissociation. Sensitivity studies indicated that the methane release from the hydrate accumulations increased with the gas hydrate saturation, the initial formation temperature, the temperature of the circulating water in the well, and the formation thermal conductivity. Methane production appears to be less sensitive to the specific heat of the rock and of the hydrate, and to the permeability of the formation. ?? 2004 Published by Elsevier B.V.

  1. Physical property studies in the USGS GHASTLI Laboratory

    USGS Publications Warehouse

    Winters, William J.; Waite, William F.; Hutchinson, Deborah R.; Mason, David H.

    2008-01-01

    One of the many challenges in studying methane hydrate is that it is unstable at typical surface pressure and temperature conditions. To enable methane hydrates and hydrate-bearing sediments to be formed, analyzed, and experimented with, the National Energy Technology Laboratory (NETL), and the U.S. Geological Survey (USGS) in Woods Hole, MA collaborated in the development of the Gas Hydrate And Sediment Test Laboratory Instrument (GHASTLI). Over the past decade, the USGS has been operating GHASTLI and collaborating in the development of new sample handling tools and procedures, in an effort to improve our ability to analyze methane hydrate in the lab. These tools will enable hydrate researchers to more confidently link field studies (for example geophysics or drilling) with theoretical and predictive studies, leading to a better understanding of the geological conditions and processes that control the growth and concentration of natural gas hydrates, how hydrates affect the properties of the host sediments, and how the hydrate-sediment system changes when hydrate dissociates and releases the previously bound gas. To date, GHASTLI has been used to measure natural samples from ODP Leg 164 (Blake Ridge off the U.S. southeast Atlantic margin), Leg 204 (Hydrate Ridge off the Pacific Northwest margin) and the Mallik well (Mackenzie Delta in northwestern Canada). Additional samples in the queue for analysis are from the Chevron Joint Industry Project Experiment in the Gulf of Mexico and most recently, from IODP Leg 311 off Vancouver Island. Several foreign nations have asked whether GHASTLI will be available to analyze samples that might be recovered during national drilling programs. The ability to perform lab testing of hydrates within sediments is one of the unique capabilities of GHASTLI that separates it from other simulators at NETL and elsewhere.

  2. The Dependence of Water Permeability in Quartz Sand on Gas Hydrate Saturation in the Pore Space

    NASA Astrophysics Data System (ADS)

    Kossel, E.; Deusner, C.; Bigalke, N.; Haeckel, M.

    2018-02-01

    Transport of fluids in gas hydrate bearing sediments is largely defined by the reduction of the permeability due to gas hydrate crystals in the pore space. Although the exact knowledge of the permeability behavior as a function of gas hydrate saturation is of crucial importance, state-of-the-art simulation codes for gas production scenarios use theoretically derived permeability equations that are hardly backed by experimental data. The reason for the insufficient validation of the model equations is the difficulty to create gas hydrate bearing sediments that have undergone formation mechanisms equivalent to the natural process and that have well-defined gas hydrate saturations. We formed methane hydrates in quartz sand from a methane-saturated aqueous solution and used magnetic resonance imaging to obtain time-resolved, three-dimensional maps of the gas hydrate saturation distribution. These maps were fed into 3-D finite element method simulations of the water flow. In our simulations, we tested the five most well-known permeability equations. All of the suitable permeability equations include the term (1-SH)n, where SH is the gas hydrate saturation and n is a parameter that needs to be constrained. The most basic equation describing the permeability behavior of water flow through gas hydrate bearing sand is k = k0 (1-SH)n. In our experiments, n was determined to be 11.4 (±0.3). Results from this study can be directly applied to bulk flow analysis under the assumption of homogeneous gas hydrate saturation and can be further used to derive effective permeability models for heterogeneous gas hydrate distributions at different scales.

  3. Influence of stromal refractive index and hydration on corneal laser refractive surgery.

    PubMed

    de Ortueta, Diego; von Rüden, Dennis; Magnago, Thomas; Arba Mosquera, Samuel

    2014-06-01

    To evaluate the influence of the stromal refractive index and hydration on postoperative outcomes in eyes that had corneal laser refractive surgery using the Amaris laser system. Augenzentrum Recklinghausen, Recklinghausen, Germany. Comparative case series. At the 6-month follow-up, right eyes were retrospectively analyzed. The effect of the stromal refractive index and hydration on refractive outcomes was assessed using univariate linear and multilinear correlations. Sixty eyes were analyzed. Univariate linear analyses showed that the stromal refractive index and hydration were correlated with the thickness of the preoperative exposed stroma and was statistically different for laser in situ keratomileusis and laser-assisted subepithelial keratectomy treatments. Univariate multilinear analyses showed that the spherical equivalent (SE) was correlated with the attempted SE and stromal refractive index (or hydration). Analyses suggest overcorrections for higher stromal refractive index values and for lower hydration values. The stromal refractive index and hydration affected postoperative outcomes in a subtle, yet significant manner. An adjustment toward greater attempted correction in highly hydrated corneas and less intended correction in low hydrated corneas might help optimize refractive outcomes. Mr. Magnago and Dr. Arba-Mosquera are employees of and Dr. Diego de Ortueta is a consultant to Schwind eye-tech-solutions GmbH & Co. KG. Mr. Rüden has no financial or proprietary interest in any material or method mentioned. Copyright © 2014 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  4. Dynamics of meso and thermo citrate synthases with implicit solvation

    NASA Astrophysics Data System (ADS)

    Cordeiro, J. M. M.

    The dynamics of hydration of meso and thermo citrate synthases has been investigated using the EEF1 methodology implemented with the CHARMM program. The native enzymes are composed of two identical subunits, each divided into a small and large domain. The dynamics behavior of both enzymes at 30°C and 60°C has been compared. The results of simulations show that during the hydration process, each subunit follows a different pathway of hydration, in spite of the identical sequence. The hydrated structures were compared with the crystalline structure, and the root mean square deviation (RMSD) of each residue along the trajectory was calculated. The regions with larger and smaller mobility were identified. In particular, helices belonging to the small domain are more mobile than those of the large domain. In contrast, the residues that constitute the active site show a much lower displacement compared with the crystalline structure. Hydration free energy calculations point out that Thermoplasma acidophilum citrate synthase (TCS) is more stable than chicken citrate synthase (CCS), at high temperatures. Such result has been ascribed to the higher number of superficial charges in the thermophilic homologue, which stabilizes the enzyme, while the mesophilic homologue denatures. These results are in accord with the experimental found that TCS keeps activity at temperatures farther apart from the catalysis regular temperature than the CCS.

  5. Theory of gas hydrates: effect of the approximation of rigid water lattice.

    PubMed

    Pimpalgaonkar, Hrushikesh; Veesam, Shivanand K; Punnathanam, Sudeep N

    2011-08-25

    One of the assumptions of the van der Waals and Platteeuw theory for gas hydrates is that the host water lattice is rigid and not distorted by the presence of guest molecules. In this work, we study the effect of this approximation on the triple-point lines of the gas hydrates. We calculate the triple-point lines of methane and ethane hydrates via Monte Carlo molecular simulations and compare the simulation results with the predictions of van der Waals and Platteeuw theory. Our study shows that even if the exact intermolecular potential between the guest molecules and water is known, the dissociation temperatures predicted by the theory are significantly higher. This has serious implications to the modeling of gas hydrate thermodynamics, and in spite of the several impressive efforts made toward obtaining an accurate description of intermolecular interactions in gas hydrates, the theory will suffer from the problem of robustness if the issue of movement of water molecules is not adequately addressed. © 2011 American Chemical Society

  6. Geomechanical Behaviors of Laboratory-Formed Non-Cementing Hydrate-Bearing Sediments

    NASA Astrophysics Data System (ADS)

    Seol, Y.

    2015-12-01

    Natural hydrate-bearing sediments (HBS) have been known to exist with non-cementing pore habits, i.e., pore-filling, load-bearing, or patchy type. However, few laboratory studies have been conducted to characterize geomechanical behaviors of non-cementing CH4-HBS, which are of great importance in engineering the process of drilling and gas production in natural hydrate reservoir. In this study, we conducted multi-stage drained triaxial tests on laboratory synthesized CH4-HBS samples, which were formed in sand-clay mixtures (5%wt kaolinite) to have non-cementing habits. Three different effective confining stresses, σ3' = 0.69, 1.38, and 2.76 MPa, were applied on the HBS with the hydrate saturation, Sh, in the range of 0 to ~ 40%. The result confirms that the strength and stiffness of HBS increases with effective confining stress and hydrate saturation. It is also demonstrated that when compared to the cementing HBS, the non-cementing HBS has lower strength and cohesion, owing to less inter-particle adhesion effects from non-cementing hydrate.

  7. Halobetasol Propionate Lotion, 0.05% Provides Superior Hydration Compared to Halobetasol Propionate Cream, 0.05% in a Double-Blinded Study of Occlusivity and Hydration.

    PubMed

    Grove, Gary; Zerweck, Charles; Houser, Tim; Andrasfay, Anthony; Gauthier, Bob; Holland, Charles; Piacquadio, Daniel

    2017-02-01

    This study measured skin hydration and occlusivity of two test products [halobetasol propionate lotion, 0.05% (HBP Lotion) and Ultravate® (halobetasol propionate) cream, 0.05% (HBP Cream)] at 2, 4, and 6 hours after application to skin test sites previously challenged by dry shaving, which was performed to compromise the integrity of the stratum corneum barrier. Trans-epidermal water loss (TEWL), an indicator of skin barrier function, was measured using cyberDERM, inc. RG-1 evaporimeter. Skin hydration was evaluated using IBS SkiCon-200 conductance meter. Test products were applied bilaterally on dry-shaved sites on the volar forearm sites, according to a randomization scheme, with two test sites untreated to serve as "dry-shaved" controls. TEWL and conductance were measured at 2, 4, and 6 hours post-treatment. HBP Lotion displayed a significant increase in skin hydration at 2, 4, and 6 hours post-treatment compared to the baseline values and dry-shaved controls (each, P less than 0.001). However, HBP Cream produced statistically significant increased skin hydration only after 6 hours (P less than 0.05). HBP Lotion was significantly more effective than HBP Cream in increasing skin hydration at 2 and 4 hours post-treatment (each, P less than 0.001), and had a directional advantage (not statistically significant) at 6 hours. Neither test product had a significant occlusive effect as measured by TEWL at 2, 4, and 6 hours post-application. Both formulations of HBP (Lotion and Cream) contributed to skin moisturization, as measured by skin conductance. HBP Lotion produced a significantly more rapid onset and higher level of moisturization at 2 and 4 hours post-application compared to HBP Cream. The TEWL results indicate that neither HBP Lotion nor HBP Cream provided any significant occlusivity to the skin.

    J Drugs Dermatol. 2017;16(2):140-144.

    .

  8. Impact of welan gum on tricalcium aluminate-gypsum hydration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma Lei, E-mail: malei198713@163.com; Zhao Qinglin, E-mail: zhaoqinglin@whut.edu.cn; Yao Chukang

    The retarding effect of welan gum on tricalcium aluminate-gypsum hydration, as a partial system of ordinary Portland cement (OPC) hydration, was investigated with several methods. The tricalcium aluminate-gypsum hydration behavior in the presence or absence of welan gum was researched by field emission gun scanning electron microscopy, X-ray diffraction and zeta potential analysis. Meanwhile, we studied the surface electrochemical properties and adsorption characteristics of welan gum by utilizing a zeta potential analyzer and UV-VIS absorption spectrophotometer. By adding welan gum, the morphology change of ettringite and retardation of hydration stages in tricalcium aluminate-gypsum system was observed. Moreover, we detected themore » adsorption behavior and zeta potential inversion of tricalcium aluminate and ettringite, as well as a rapid decrease in the zeta potential of tricalcium aluminate-gypsum system. The reduction on nucleation rate of ettringite and hydration activity of C{sub 3}A was also demonstrated. Thus, through the adsorption effect, welan gum induces a retarding behavior in tricalcium aluminate-gypsum hydration. Highlights: Black-Right-Pointing-Pointer Adsorption characteristics of welan gum on C{sub 3}A and ettringite have been studied. Black-Right-Pointing-Pointer C{sub 3}A-gypsum hydration behavior and the hydration products are examined in L/S = 3. Black-Right-Pointing-Pointer Welan gum retards the process of C{sub 3}A-gypsum hydration. Black-Right-Pointing-Pointer The addition of welan gum changes the nucleation growth of ettringite.« less

  9. Gas hydrate characterization and grain-scale imaging of recovered cores from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    USGS Publications Warehouse

    Stern, Laura A.; Lorenson, T.D.; Pinkston, John C.

    2011-01-01

    Using cryogenic scanning electron microscopy (CSEM), powder X-ray diffraction, and gas chromatography methods, we investigated the physical states, grain characteristics, gas composition, and methane isotopic composition of two gas-hydrate-bearing sections of core recovered from the BPXA–DOE–USGS Mount Elbert Gas Hydrate Stratigraphic Test Well situated on the Alaska North Slope. The well was continuously cored from 606.5 m to 760.1 m depth, and sections investigated here were retrieved from 619.9 m and 661.0 m depth. X-ray analysis and imaging of the sediment phase in both sections shows it consists of a predominantly fine-grained and well-sorted quartz sand with lesser amounts of feldspar, muscovite, and minor clays. Cryogenic SEM shows the gas-hydrate phase forming primarily as a pore-filling material between the sediment grains at approximately 70–75% saturation, and more sporadically as thin veins typically several tens of microns in diameter. Pore throat diameters vary, but commonly range 20–120 microns. Gas chromatography analyses of the hydrate-forming gas show that it is comprised of mainly methane (>99.9%), indicating that the gas hydrate is structure I. Here we report on the distribution and articulation of the gas-hydrate phase within the cores, the grain morphology of the hydrate, the composition of the sediment host, and the composition of the hydrate-forming gas.

  10. Gas hydrate characterization and grain-scale imaging of recovered cores from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    USGS Publications Warehouse

    Stern, L.A.; Lorenson, T.D.; Pinkston, J.C.

    2011-01-01

    Using cryogenic scanning electron microscopy (CSEM), powder X-ray diffraction, and gas chromatography methods, we investigated the physical states, grain characteristics, gas composition, and methane isotopic composition of two gas-hydrate-bearing sections of core recovered from the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well situated on the Alaska North Slope. The well was continuously cored from 606.5. m to 760.1. m depth, and sections investigated here were retrieved from 619.9. m and 661.0. m depth. X-ray analysis and imaging of the sediment phase in both sections shows it consists of a predominantly fine-grained and well-sorted quartz sand with lesser amounts of feldspar, muscovite, and minor clays. Cryogenic SEM shows the gas-hydrate phase forming primarily as a pore-filling material between the sediment grains at approximately 70-75% saturation, and more sporadically as thin veins typically several tens of microns in diameter. Pore throat diameters vary, but commonly range 20-120 microns. Gas chromatography analyses of the hydrate-forming gas show that it is comprised of mainly methane (>99.9%), indicating that the gas hydrate is structure I. Here we report on the distribution and articulation of the gas-hydrate phase within the cores, the grain morphology of the hydrate, the composition of the sediment host, and the composition of the hydrate-forming gas. ?? 2009.

  11. Tolerance of anhydrobiotic eggs of the Tardigrade Ramazzottius varieornatus to extreme environments.

    PubMed

    Horikawa, Daiki D; Yamaguchi, Ayami; Sakashita, Tetsuya; Tanaka, Daisuke; Hamada, Nobuyuki; Yukuhiro, Fumiko; Kuwahara, Hirokazu; Kunieda, Takekazu; Watanabe, Masahiko; Nakahara, Yuichi; Wada, Seiichi; Funayama, Tomoo; Katagiri, Chihiro; Higashi, Seigo; Yokobori, Shin-Ichi; Kuwabara, Mikinori; Rothschild, Lynn J; Okuda, Takashi; Hashimoto, Hirofumi; Kobayashi, Yasuhiko

    2012-04-01

    Tardigrades are tiny (less than 1 mm in length) invertebrate animals that have the potential to survive travel to other planets because of their tolerance to extreme environmental conditions by means of a dry ametabolic state called anhydrobiosis. While the tolerance of adult tardigrades to extreme environments has been reported, there are few reports on the tolerance of their eggs. We examined the ability of hydrated and anhydrobiotic eggs of the tardigrade Ramazzottius varieornatus to hatch after exposure to ionizing irradiation (helium ions), extremely low and high temperatures, and high vacuum. We previously reported that there was a similar pattern of tolerance against ionizing radiation between hydrated and anhydrobiotic adults. In contrast, anhydrobiotic eggs (50% lethal dose; 1690 Gy) were substantially more radioresistant than hydrated ones (50% lethal dose; 509 Gy). Anhydrobiotic eggs also have a broader temperature resistance compared with hydrated ones. Over 70% of the anhydrobiotic eggs treated at either -196°C or +50°C hatched successfully, but all the hydrated eggs failed to hatch. After exposure to high-vacuum conditions (5.3×10(-4) Pa to 6.2×10(-5) Pa), the hatchability of the anhydrobiotic eggs was comparable to that of untreated control eggs.

  12. Comparative Effectiveness of 12 Treatment Strategies for Preventing Contrast-Induced Acute Kidney Injury: A Systematic Review and Bayesian Network Meta-analysis.

    PubMed

    Su, Xiaole; Xie, Xinfang; Liu, Lijun; Lv, Jicheng; Song, Fujian; Perkovic, Vlado; Zhang, Hong

    2017-01-01

    To simultaneously evaluate the relative efficacy of multiple pharmacologic strategies for preventing contrast-induced acute kidney injury (AKI). Systematic review containing a Bayesian network meta-analysis of randomized controlled trials. Participants undergoing diagnostic and/or interventional procedures with contrast media. Randomized controlled trials comparing the active drug treatments with each other or with hydration alone. Any of the following drugs in combination with hydration: N-acetylcysteine (NAC), theophylline (aminophylline), fenoldopam, iloprost, alprostadil, prostaglandin E 1 , statins, statins plus NAC, bicarbonate sodium, bicarbonate sodium plus NAC, ascorbic acid (vitamin C), tocopherol (vitamin E), α-lipoic acid, atrial natriuretic peptide, B-type natriuretic peptide, and carperitide. The occurrence of contrast-induced AKI. The trial network included 150 trials with 31,631 participants and 4,182 contrast-induced AKI events assessing 12 different interventions. Compared to hydration, ORs (95% credible intervals) for contrast-induced AKI were 0.31 (0.14-0.60) for high-dose statin plus NAC, 0.37 (0.19-0.64) for high-dose statin alone, 0.37 (0.17-0.72) for prostaglandins, 0.48 (0.26-0.82) for theophylline, 0.62 (0.40-0.88) for bicarbonate sodium plus NAC, 0.67 (0.54-0.81) for NAC alone, 0.64 (0.41-0.95) for vitamins and analogues, 0.70 (0.29-1.37) for natriuretic peptides, 0.69 (0.31-1.37) for fenoldopam, 0.78 (0.59-1.01) for bicarbonate sodium, and 0.98 (0.41-2.07) for low-dose statin. High-dose statin plus NAC or high-dose statin alone were likely to be ranked the best or the second best for preventing contrast-induced AKI. The overall results were not materially changed in metaregressions or subgroup and sensitivity analyses. Patient-level data were unavailable; unable to include some treatment agents; low event rates; imbalanced distribution of participants among treatment strategies. High-dose statins plus hydration with or without NAC might be the preferred treatment strategy to prevent contrast-induced AKI in patients undergoing diagnostic and/or interventional procedures requiring contrast media. Copyright © 2016 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  13. Optimization of linear and branched alkane interactions with water to simulate hydrophobic hydration

    NASA Astrophysics Data System (ADS)

    Ashbaugh, Henry S.; Liu, Lixin; Surampudi, Lalitanand N.

    2011-08-01

    Previous studies of simple gas hydration have demonstrated that the accuracy of molecular simulations at capturing the thermodynamic signatures of hydrophobic hydration is linked both to the fidelity of the water model at replicating the experimental liquid density at ambient pressure and an accounting of polarization interactions between the solute and water. We extend those studies to examine alkane hydration using the transferable potentials for phase equilibria united-atom model for linear and branched alkanes, developed to reproduce alkane phase behavior, and the TIP4P/2005 model for water, which provides one of the best descriptions of liquid water for the available fixed-point charge models. Alkane site/water oxygen Lennard-Jones cross interactions were optimized to reproduce the experimental alkane hydration free energies over a range of temperatures. The optimized model reproduces the hydration free energies of the fitted alkanes with a root mean square difference between simulation and experiment of 0.06 kcal/mol over a wide temperature range, compared to 0.44 kcal/mol for the parent model. The optimized model accurately reproduces the temperature dependence of hydrophobic hydration, as characterized by the hydration enthalpies, entropies, and heat capacities, as well as the pressure response, as characterized by partial molar volumes.

  14. Preliminary Experimental Examination Of Controls On Methane Expulsion During Melting Of Natural Gas Hydrate Systems

    NASA Astrophysics Data System (ADS)

    Kneafsey, T. J.; Flemings, P. B.; Bryant, S. L.; You, K.; Polito, P. J.

    2013-12-01

    Global climate change will cause warming of the oceans and land. This will affect the occurrence, behavior, and location of subseafloor and subterranean methane hydrate deposits. We suggest that in many natural systems local salinity, elevated by hydrate formation or freshened by hydrate dissociation, may control gas transport through the hydrate stability zone. We are performing experiments and modeling the experiments to explore this behavior for different warming scenarios. Initially, we are exploring hydrate association/dissociation in saline systems with constant water mass. We compare experiments run with saline (3.5 wt. %) water vs. distilled water in a sand mixture at an initial water saturation of ~0.5. We increase the pore fluid (methane) pressure to 1050 psig. We then stepwise cool the sample into the hydrate stability field (~3 degrees C), allowing methane gas to enter as hydrate forms. We measure resistivity and the mass of methane consumed. We are currently running these experiments and we predict our results from equilibrium thermodynamics. In the fresh water case, the modeled final hydrate saturation is 63% and all water is consumed. In the saline case, the modeled final hydrate saturation is 47%, the salinity is 12.4 wt. %, and final water saturation is 13%. The fresh water system is water-limited: all the water is converted to hydrate. In the saline system, pore water salinity is elevated and salt is excluded from the hydrate structure during hydrate formation until the salinity drives the system to three phase equilibrium (liquid, gas, hydrate) and no further hydrate forms. In our laboratory we can impose temperature gradients within the column, and we will use this to investigate equilibrium conditions in large samples subjected to temperature gradients and changing temperature. In these tests, we will quantify the hydrate saturation and salinity over our meter-long sample using spatially distributed temperature sensors, spatially distributed resistivity probes, compressional wave velocities, and X-ray computed tomography scanning. Modeling of hydrate formation and dissociation for these conditions indicates that the transport of bulk fluid phases (gas and water) plays a crucial role in the overall behavior, and we will explore open-system boundary conditions in the experiments to test this prediction.

  15. Coupled numerical modeling of gas hydrates bearing sediments from laboratory to field-scale conditions

    NASA Astrophysics Data System (ADS)

    Sanchez, M. J.; Santamarina, C.; Gai, X., Sr.; Teymouri, M., Sr.

    2017-12-01

    Stability and behavior of Hydrate Bearing Sediments (HBS) are characterized by the metastable character of the gas hydrate structure which strongly depends on thermo-hydro-chemo-mechanical (THCM) actions. Hydrate formation, dissociation and methane production from hydrate bearing sediments are coupled THCM processes that involve, amongst other, exothermic formation and endothermic dissociation of hydrate and ice phases, mixed fluid flow and large changes in fluid pressure. The analysis of available data from past field and laboratory experiments, and the optimization of future field production studies require a formal and robust numerical framework able to capture the very complex behavior of this type of soil. A comprehensive fully coupled THCM formulation has been developed and implemented into a finite element code to tackle problems involving gas hydrates sediments. Special attention is paid to the geomechanical behavior of HBS, and particularly to their response upon hydrate dissociation under loading. The numerical framework has been validated against recent experiments conducted under controlled conditions in the laboratory that challenge the proposed approach and highlight the complex interaction among THCM processes in HBS. The performance of the models in these case studies is highly satisfactory. Finally, the numerical code is applied to analyze the behavior of gas hydrate soils under field-scale conditions exploring different features of material behavior under possible reservoir conditions.

  16. Molecular and isotopic analyses of the hydrocarbon gases within gas hydrate-bearing rock units of the Prudhoe Bay-Kuparuk River area in northern Alaska

    USGS Publications Warehouse

    Valin, Zenon C.; Collett, Timothy S.

    1992-01-01

    Gas hydrates, which are crystalline substances of water molecules that encase gas molecules, have the potential for being a significant source of natural gas. World-wide estimates for the amount of gas contained in hydrates range from 1.1 x 105 to 2.7 x 108 trillion cubic feet. Gas hydrates exist in many Arctic regions, including the North Slope of Alaska. The two primary objectives of the U.S. Geological Survey Gas Hydrate Research Project are (1) to map the distribution of in-situ gas hydrates on the North Slope of Alaska, and (2) to evaluate the geologic parameters that control the distribution of these gas hydrates. To aid in this study, British Petroleum Exploration, ARCO Alaska, Exxon Company USA, and the Continental Oil Company allowed the U.S. Geological Survey to collect geochemical samples from drilling North Slope production wells. Molecular analysis of gaseous drill cutting and free-flowing gas samples from 10 production wells drilled in the Prudhoe Bay, Kuparuk River, and Milne Point oil fields indicates that methane is the primary hydrocarbon gas in the gas hydrate-bearing stratigraphic units. Isotopic data for several of these rock units indicate that the methane within the inferred gas hydrate occurences originated from both microbial and thermogenic processes.

  17. Interfacial Properties and Mechanisms Dominating Gas Hydrate Cohesion and Adhesion in Liquid and Vapor Hydrocarbon Phases.

    PubMed

    Hu, Sijia; Koh, Carolyn A

    2017-10-24

    The interfacial properties and mechanisms of gas hydrate systems play a major role in controlling their interparticle and surface interactions, which is desirable for nearly all energy applications of clathrate hydrates. In particular, preventing gas hydrate interparticle agglomeration and/or particle-surface deposition is critical to the prevention of gas hydrate blockages during the exploration and transportation of oil and gas subsea flow lines. These agglomeration and deposition processes are dominated by particle-particle cohesive forces and particle-surface adhesive force. In this study, we present the first direct measurements on the cohesive and adhesive forces studies of the CH 4 /C 2 H 6 gas hydrate in a liquid hydrocarbon-dominated system utilizing a high-pressure micromechanical force (HP-MMF) apparatus. A CH 4 /C 2 H 6 gas mixture was used as the gas hydrate former in the model liquid hydrocarbon phase. For the cohesive force baseline test, it was found that the addition of liquid hydrocarbon changed the interfacial tension and contact angle of water in the liquid hydrocarbon compared to water in the gas phase, resulting in a force of 23.5 ± 2.5 mN m -1 at 3.45 MPa and 274 K for a 2 h annealing time period in which hydrate shell growth occurs. It was observed that the cohesive force was inversely proportional to the annealing time, whereas the force increased with increasing contact time. For a longer contact time (>12 h), the force could not be measured because the two hydrate particles adhered permanently to form one large particle. The particle-surface adhesive force in the model liquid hydrocarbon was measured to be 5.3 ± 1.1 mN m -1 under the same experimental condition. Finally, with a 1 h contact time, the hydrate particle and the carbon steel (CS) surface were sintered together and the force was higher than what could be measured by the current apparatus. A possible mechanism is presented in this article to describe the effect of contact time on the particle-particle cohesive force based on the capillary liquid bridge model. A model adapted from the capillary liquid bridge equation has been used to predict the particle-particle cohesive force as a function of contact time, showing close agreement with the experimental data. By comparing the cohesive forces results from gas hydrates for both gas and liquid bulk phases, the surface free energy of a hydrate particle was calculated and found to dominate the changes in the interaction forces with different continuous bulk phases.

  18. Effect of Fluid Intake on Hydration Status and Skin Barrier Characteristics in Geriatric Patients: An Explorative Study.

    PubMed

    Akdeniz, Merve; Boeing, Heiner; Müller-Werdan, Ursula; Aykac, Volkan; Steffen, Annika; Schell, Mareike; Blume-Peytavi, Ulrike; Kottner, Jan

    2018-01-01

    Inadequate fluid intake is assumed to be a trigger of water-loss dehydration, which is a major health risk in aged and geriatric populations. Thus, there is a need to search for easy to use diagnostic tests to identify dehydration. Our overall aim was to investigate whether skin barrier parameters could be used for predicting fluid intake and/or hydration status in geriatric patients. An explorative observational comparative study was conducted in a geriatric hospital including patients aged 65 years and older. We measured 3-day fluid intake, skin barrier parameters, Overall Dry Skin Score, serum osmolality, cognitive and functional health, and medications. Forty patients were included (mean age 78.45 years and 65% women) with a mean fluid intake of 1,747 mL/day. 20% of the patients were dehydrated and 22.5% had an impending dehydration according to serum osmolality. Multivariate analysis suggested that skin surface pH and epidermal hydration at the face were associated with fluid intake. Serum osmolality was associated with epidermal hydration at the leg and skin surface pH at the face. Fluid intake was not correlated with serum osmolality. Diuretics were associated with high serum osmolality. Approximately half of the patients were diagnosed as being dehydrated according to osmolality, which is the current reference standard. However, there was no association with fluid intake, questioning the clinical relevance of this measure. Results indicate that single skin barrier parameters are poor markers for fluid intake or osmolality. Epidermal hydration might play a role but most probably in combination with other tests. © 2018 S. Karger AG, Basel.

  19. The Arabidopsis KINβγ Subunit of the SnRK1 Complex Regulates Pollen Hydration on the Stigma by Mediating the Level of Reactive Oxygen Species in Pollen

    PubMed Central

    Zhao, Ting Ting; Li, Fei; Jia, Xiao Na; Zhao, Xin-Ying; Zhang, Xian Sheng

    2016-01-01

    Pollen–stigma interactions are essential for pollen germination. The highly regulated process of pollen germination includes pollen adhesion, hydration, and germination on the stigma. However, the internal signaling of pollen that regulates pollen–stigma interactions is poorly understood. KINβγ is a plant-specific subunit of the SNF1-related protein kinase 1 complex which plays important roles in the regulation of plant development. Here, we showed that KINβγ was a cytoplasm- and nucleus-localized protein in the vegetative cells of pollen grains in Arabidopsis. The pollen of the Arabidopsis kinβγ mutant could not germinate on stigma, although it germinated normally in vitro. Further analysis revealed the hydration of kinβγ mutant pollen on the stigma was compromised. However, adding water to the stigma promoted the germination of the mutant pollen in vivo, suggesting that the compromised hydration of the mutant pollen led to its defective germination. In kinβγ mutant pollen, the structure of the mitochondria and peroxisomes was destroyed, and their numbers were significantly reduced compared with those in the wild type. Furthermore, we found that the kinβγ mutant exhibited reduced levels of reactive oxygen species (ROS) in pollen. The addition of H2O2 in vitro partially compensated for the reduced water absorption of the mutant pollen, and reducing ROS levels in pollen by overexpressing Arabidopsis CATALASE 3 resulted in compromised hydration of pollen on the stigma. These results indicate that Arabidopsis KINβγ is critical for the regulation of ROS levels by mediating the biogenesis of mitochondria and peroxisomes in pollen, which is required for pollen–stigma interactions during pollination. PMID:27472382

  20. Modeling the Formation of Hydrate-Filled Veins in Fine-Grained Sediments from in Situ Microbial Methane

    NASA Astrophysics Data System (ADS)

    Malinverno, A.; Cook, A.; Daigle, H.

    2016-12-01

    Continental margin sediments are dominantly fine-grained silt and clay, and methane hydrates in these sediments are often found in semi-vertical veins and fractures. In several instances, these hydrate veins occupy discrete depth intervals that are a few tens of meters thick and are surrounded by hydrate-free sediments. As they are not connected with gas sources beneath the base of the gas hydrate stability zone (GHSZ), these isolated hydrate-bearing intervals have been interpreted as formed by in situ microbial methane. To investigate the formation of these hydrate deposits, we applied a time-dependent advection-diffusion-reaction model that includes the effects of sedimentation, compaction, solute diffusion, and microbial methane generation. Microbial methane generation depends on the amount of metabolizable organic carbon deposited at the seafloor, whose progressive degradation produces methane beneath the sulfate reduction zone. If the amount of organic carbon entering the methanogenic zone is kept constant in time, we found that the computed amounts of hydrate formed in discrete intervals within the GHSZ are well below those estimated from observations. On the other hand, if the deposition of organic carbon is higher in a given time interval, methane generation during burial is more intense in the corresponding sediment interval, resulting in enhanced hydrate formation. With variations in organic carbon deposition comparable to those generally observed in continental margins, our model was able to reproduce the methane hydrate contents that were estimated from drilling. These results support the suggestion that in situ microbial generation associated with transient organic carbon deposition is the source of methane that forms isolated intervals of hydrate-filled veins in fine-grained sediments.

  1. Skin Membrane Electrical Impedance Properties under the Influence of a Varying Water Gradient

    PubMed Central

    Björklund, Sebastian; Ruzgas, Tautgirdas; Nowacka, Agnieszka; Dahi, Ihab; Topgaard, Daniel; Sparr, Emma; Engblom, Johan

    2013-01-01

    The stratum corneum (SC) is an effective permeability barrier. One strategy to increase drug delivery across skin is to increase the hydration. A detailed description of how hydration affects skin permeability requires characterization of both macroscopic and molecular properties and how they respond to hydration. We explore this issue by performing impedance experiments on excised skin membranes in the frequency range 1 Hz to 0.2 MHz under the influence of a varying gradient in water activity (aw). Hydration/dehydration induces reversible changes of membrane resistance and effective capacitance. On average, the membrane resistance is 14 times lower and the effective capacitance is 1.5 times higher when the outermost SC membrane is exposed to hydrating conditions (aw = 0.992), as compared to the case of more dehydrating conditions (aw = 0.826). Molecular insight into the hydration effects on the SC components is provided by natural-abundance 13C polarization transfer solid-state NMR and x-ray diffraction under similar hydration conditions. Hydration has a significant effect on the dynamics of the keratin filament terminals and increases the interchain spacing of the filaments. The SC lipids are organized into lamellar structures with ∼ 12.6 nm spacing and hexagonal hydrocarbon chain packing with mainly all-trans configuration of the acyl chains, irrespective of hydration state. Subtle changes in the dynamics of the lipids due to mobilization and incorporation of cholesterol and long-chain lipid species into the fluid lipid fraction is suggested to occur upon hydration, which can explain the changes of the impedance response. The results presented here provide information that is useful in explaining the effect of hydration on skin permeability. PMID:23790372

  2. Chloral hydrate, chloral hydrate--promethazine and chloral hydrate -hydroxyzine efficacy in electroencephalography sedation.

    PubMed

    Fallah, Razieh; Alaei, Ali; Akhavan Karbasi, Sedighah; Shajari, Ahmad

    2014-06-01

    To compare efficacy and safety of chloral hydrate (CH), chloral hydrate and promethazine (CH + P) and chloral hydrate and hydroxyzine (CH + H) in electroencephalography (EEG) sedation. In a parallel single-blinded randomized clinical trial, ninety 1-7 y-old uncooperative kids who were referred to Pediatric Neurology Clinic of Shahid Sadoughi University, Yazd, Iran from April through August 2012, were randomly assigned to receive 40 mg/kg of chloral hydrate or 40 mg/kg of chloral hydrate and 1 mg/kg of promethazine or 40 mg/kg of chloral hydrate and 2 mg/kg of hydroxyzine. The primary endpoint was efficacy in sufficient sedation (obtaining four Ramsay sedation score) and successful completion of EEG. Secondary endpoint was clinical adverse events. Thirty nine girls (43.3 %) and 51 boys (56.7 %) with mean age of 3.34 ± 1.47 y were assessed. Sufficient sedation and completion of EEG were achieved in 70 % (N = 21) of chloral hydrate group, in 83.3 % (N = 25) of CH + H group and in 96.7 % (N = 29) of CH + P group (p = 0.02). Mild clinical adverse events including vomiting [16.7 % (N = 5) in CH, 6.7 % (N = 2) in CH + P, 6.7 % (N = 2) in CH + H], agitation in 3.3 % of CH + P (N = 1) group and mild transient hypotension in 3.3 % of CH + H (N = 1) group occurred. Safety of these three sedation regimens was not statistically significant different (p = 0.14). Combination of chloral hydrate-antihistamines can be used as the most effective and safe sedation regimen in drug induced sleep electroencephalography of kids.

  3. Modeling the Formation of Hydrate-Filled Veins in Fine-Grained Sediments from in Situ Microbial Methane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malinverno, Alberto; Cook, Ann; Daigle, Hugh

    Continental margin sediments are dominantly fine-grained silt and clay, and methane hydrates in these sediments are often found in semi-vertical veins and fractures. In several instances, these hydrate veins occupy discrete depth intervals that are a few tens of meters thick and are surrounded by hydrate-free sediments. As they are not connected with gas sources beneath the base of the gas hydrate stability zone (GHSZ), these isolated hydrate-bearing intervals have been interpreted as formed by in situ microbial methane. To investigate the formation of these hydrate deposits, we applied a time-dependent advection-diffusion-reaction model that includes the effects of sedimentation, compaction,more » solute diffusion, and microbial methane generation. Microbial methane generation depends on the amount of metabolizable organic carbon deposited at the seafloor, whose progressive degradation produces methane beneath the sulfate reduction zone. If the amount of organic carbon entering the methanogenic zone is kept constant in time, we found that the computed amounts of hydrate formed in discrete intervals within the GHSZ are well below those estimated from observations. On the other hand, if the deposition of organic carbon is higher in a given time interval, methane generation during burial is more intense in the corresponding sediment interval, resulting in enhanced hydrate formation. With variations in organic carbon deposition comparable to those generally observed in continental margins, our model was able to reproduce the methane hydrate contents that were estimated from drilling. These results support the suggestion that in situ microbial generation associated with transient organic carbon deposition is the source of methane that forms isolated intervals of hydrate-filled veins in fine-grained sediments.« less

  4. Efficacy of Reconstituted Oral Chloral Hydrate from Crystals for Echocardiography Sedation.

    PubMed

    Hill, Garick D; Walbergh, Deborah B; Frommelt, Peter C

    2016-04-01

    Chloral hydrate has been the drug of choice for uncooperative infants and children requiring sedation for echocardiography. Recently, the commercially available liquid formulation was discontinued by the manufacturer, and the only oral form of chloral hydrate available was made using reconstituted crystals. The aim of this study was to compare sedation efficacy before and after this change in chloral hydrate formulas. Consecutive patients presenting for echocardiography sedation during the transition from the manufacturer-derived old formulation to the locally reconstituted new formulation were retrospectively reviewed for time to onset of level 3 sedation, duration of level ≤3 sedation, requirement for additional sedative medications, sedation failure, ability to complete the echocardiographic examination, and adverse events related to the sedatives. The cohort included 124 patients (63 old, 61 new). Although the mean age at sedation was younger for the new group, the weight and average dose of chloral hydrate used were not significantly different. There were no adverse events in either group. Time to onset of sedation was the same between the two formulations, but the duration of sedation was significantly shorter for the new group (42.4 ± 24.5 vs 55.3 ± 26.2 min, P = .01). In addition, the need for secondary sedating agents because of inadequate sedation and sedation failure were significantly greater using the new compared with the old formulation. Chloral hydrate reformulation using reconstituted crystals results in a shorter duration of sedation, more frequent requirement for a secondary sedative agent, more frequent sedation failure, and occasional inability to complete the echocardiographic examination compared with the manufacturer's formulation. Copyright © 2016 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.

  5. Isoflurane: An Ideal Anesthetic for Rodent Orthotopic Liver Transplantation Surgery?

    PubMed

    Cao, D; Liu, Y; Li, J; Gong, J

    2016-10-01

    Because the choice of anesthetic affects the rodent orthotopic liver transplantation (OLT) model, we compared the effects of isoflurane, ketamine, chloral hydrate, and pentobarbital on the OLT model. OLT was performed using the two-cuff technique. Two hundred male rats were randomly divided into five groups: control, isoflurane, ketamine, chloral hydrate, and pentobarbital groups. Rectal temperatures, respiratory rates, arterial blood values (pH, PaCO 2 , PaO 2 , and SatO 2 ), liver function tests and histopathology, recovery times, and anhepatic stage mortality rates were assessed. Compared with controls, respiratory rates decreased by 20% in the isoflurane group, and decreased by 40%-50% in the ketamine, chloral hydrate, and pentobarbital groups. The PaO 2 , SatO 2 , and pH levels in the ketamine, chloral hydrate, and pentobarbital groups were significantly lower than those in the isoflurane and control groups (P < .05). Only the pentobarbital group displayed significant liver histopathologic changes along with significantly higher levels of serum alanine aminotransferase and total bilirubin, but a significantly lower level of serum albumin, compared with the control group (P < .05). The isoflurane group had a 0% anhepatic stage mortality rate compared with rates of 30%-40% in the other anesthetic groups. Isoflurane should be the preferred anesthetic for rodent OLT surgery due to its minimal respiratory and hepatic physiological effects as well as its low anhepatic phase mortality rate. Secondary to isoflurane, ketamine and chloral hydrate may be administered as donor anesthetics. Pentobarbital use should be avoided entirely in rodent OLT surgery due to its significant hepatotoxic effects. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Effect of Fly Ash and Silica Fume on the Mechanical Properties of Cement Paste at Different Stages of Hydration

    DTIC Science & Technology

    2015-08-10

    All materials were placed in a clean, labeled stainless steel mixing bowl and weighed to the nearest ten thousandth of a pound. The cement and fly...on the Mechanical Properties of Cement Paste at Different Stages of Hydration This thesis investigates the effect of fly ash and silica fume on... cement paste hydration. Percentages of each additive will replace the cement by volume to be studied at five ages. These percentages will be compared

  7. Steps Towards Understanding Large-scale Deformation of Gas Hydrate-bearing Sediments

    NASA Astrophysics Data System (ADS)

    Gupta, S.; Deusner, C.; Haeckel, M.; Kossel, E.

    2016-12-01

    Marine sediments bearing gas hydrates are typically characterized by heterogeneity in the gas hydrate distribution and anisotropy in the sediment-gas hydrate fabric properties. Gas hydrates also contribute to the strength and stiffness of the marine sediment, and any disturbance in the thermodynamic stability of the gas hydrates is likely to affect the geomechanical stability of the sediment. Understanding mechanisms and triggers of large-strain deformation and failure of marine gas hydrate-bearing sediments is an area of extensive research, particularly in the context of marine slope-stability and industrial gas production. The ultimate objective is to predict severe deformation events such as regional-scale slope failure or excessive sand production by using numerical simulation tools. The development of such tools essentially requires a careful analysis of thermo-hydro-chemo-mechanical behavior of gas hydrate-bearing sediments at lab-scale, and its stepwise integration into reservoir-scale simulators through definition of effective variables, use of suitable constitutive relations, and application of scaling laws. One of the focus areas of our research is to understand the bulk coupled behavior of marine gas hydrate systems with contributions from micro-scale characteristics, transport-reaction dynamics, and structural heterogeneity through experimental flow-through studies using high-pressure triaxial test systems and advanced tomographical tools (CT, ERT, MRI). We combine these studies to develop mathematical model and numerical simulation tools which could be used to predict the coupled hydro-geomechanical behavior of marine gas hydrate reservoirs in a large-strain framework. Here we will present some of our recent results from closely co-ordinated experimental and numerical simulation studies with an objective to capture the large-deformation behavior relevant to different gas production scenarios. We will also report on a variety of mechanically relevant test scenarios focusing on effects of dynamic changes in gas hydrate saturation, highly uneven gas hydrate distributions, focused fluid migration and gas hydrate production through depressurization and CO2 injection.

  8. Determining gas hydrate distribution in sands using integrated analysis of well log and seismic data in the Terrebonne Basin, Gulf of Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hillman, Jess; Cook, Ann; Daigle, Hugh

    The Terrebonne Basin is a salt bounded mini-basin in the northeast section of the Walker Ridge protraction area in the Gulf of Mexico, and the main site for an upcoming gas-hydrate focused International Ocean Discovery Program (IODP) cruise. The basin is infilled by an increasingly mud rich sedimentary sequence with several 5-15 meter gas-hydrate filled sand units of Miocene to Pliocene age overlying the up-domed salt. These gas-hydrate filled sand units can be identified in logging while drilling data from two existing wells in the Terrebonne Basin, drilled in 2009 by the Gas Hydrate Joint Industry Project (JIP) Leg 2.more » The sand units are cross cut by a distinct bottom-simulating reflector (BSR), and are clearly characterized by a polarity reversal in the sand units. The polarity reversal is caused by a positive gas-hydrate filled sand within the stability zone changing to negative gas-bearing sand. Using well data and calculated synthetic seismogram well ties we are able to identify several additional 1-4 meter gas-hydrate and water-saturated sand units associated with thick (100-200 m-thick), fine grained, hydrate bearing fractured units in the upper sedimentary sequence on the seismic data. Following on previous work, we propose that microbial generation of methane occurring within the fine-grained, fractured units acts as a source for gas hydrate formation in the thin sands. In contrast, it has been proposed that the gas hydrate in the 5-15 m-thick sands first discovered by the JIP was originates from a deeper thermogenic source. Through correlating hydrate occurrence in sands from well data, to amplitudes derived from the seismic data, we can estimate possible distribution of hydrate across the basin. Overall, we find the Terrebonne basin to be a complex gas hydrate system with multiple mechanisms of methane generation and migration.« less

  9. Delineation, Characterization and Assessment of Gas-hydrates: Examples from Indian Offshore

    NASA Astrophysics Data System (ADS)

    Sain, K.

    2017-12-01

    Successful test productions in McKenzie delta, Alaska, Nankai Trough and more recently in South China Sea have provided great hopes for production of gas-hydrates in near future, and boosted national programs of many countries including India. It has been imperative to map the prospective zones of gas-hydrates and evaluate their resource potential. Hence, we have adopted a systematic strategy for the delineation, characterization and quantification of gas-hydrates based on seismic traveltime tomography, full-waveform inversion, impedance inversion, attributes computation and rock-physical modeling. The bathymetry, seafloor temperature, total organic carbon content, sediment-thickness, rate of sedimentation, geothermal gradient imply that shallow sediments of Indian deep water are good hosts for occurrences of gas-hydrates. From the analysis of multi-channel seismic (MCS) data, we have identified the Krishna-Godavari (KG), Mahanadi and Andaman basins as prospective for gas-hydrates, and their presence has been validated by drilling and coring of Indian Expeditions-01 and -02. The MCS data also shows BSR-like features in the Cauvery, Kerala-Konkan and Saurashtra basins indicating that gas-hydrates cannot be ruled out from these basins also. We shall present several approaches that have been applied to field seismic and well-log data for the detection, characterization and quantification of gas-hydrates along the Indian margin.

  10. Heterogeneity of Chlorinity distribution within gas hydrate reservoir at Daini-Atsumi knoll, based on logging data analysis

    NASA Astrophysics Data System (ADS)

    Suzuki, K.; Takayama, T.; Fujii, T.

    2016-12-01

    We will present possible heterogeneity of pore-water salinity within methane hydrate reservoir of Daini-Atsumi knoll, on the basis of Logging-while-drilling (LWD) data and several kind of wire-line logging dataset. The LWD and the wire-line logging had been carried out during 2012 to 2013, before/after the first offshore gas-production-test from marine-methane-hydrate reservoir at Daini-Atsumi Knoll along the northeast Nankai trough. Several data from the logging, especially data from the reservoir saturation tool; RST, gave us some possible interpretation for heterogeneity distribution of chlorinity within the methane-hydrate reservoir. The computed pore-water chlorinity could be interpreted as condense of chlorinity at gas-hydrate formation. This year, we drilled several number of wells at Daini-Atsumi Knoll, again for next gas production test, and we have also found out possibility of chlorinity heterogeneity from LWD data of Neutron-capture cross section; i.e. Sigma. The distribution of chlorinity within gas-hydrate reservoir may help our understanding of gas hydrate-crystallization and/or dissociation in turbidite reservoir at Daini-Atsumi Knoll. This research is conducted as a part of the Research Consortium for Methane Hydrate Resource in Japan (MH21 Research consortium).

  11. Reflectance properties and hydrated material distribution on Vesta: Global investigation of variations and their relationship using improved calibration of Dawn VIR mapping spectrometer

    NASA Astrophysics Data System (ADS)

    Combe, Jean-Philippe; Ammannito, Eleonora; Tosi, Federico; De Sanctis, Maria Cristina; McCord, Thomas B.; Raymond, Carol A.; Russell, Christopher T.

    2015-10-01

    Vesta's surface albedo variations and hydrated material content share similar spatial distribution. This observation is consistent with carbonaceous chondrite meteorites as a likely source material for dark surface units observed by the Dawn spacecraft, as presented by numerous publications. While these deposits have been studied extensively by analysis of data from the Framing Camera (FC) and the Visible and Infrared Spectrometer (VIR), we performed a new analysis based on an improved calibration of VIR. First we identified instrument and calibration artifacts, and we therefore developed corrections of the VIR flat field and response function. Then we developed a photometric correction for Vesta based on the lunar model by Shkuratov et al. (Shkuratov, Yu.G. et al. [1999]. Icarus 141, 132-155. http://dx.doi.org/10.1006/icar.1999.6154), and a semi-analytical inversion of the photometric parameters. This photometric model combines minimization of the scattering effects due to the topography (a disk function) and variations of multiple-scattering with phase angle (the phase function) caused by microscopic physical properties of the regolith. The improved calibration and photometric correction enable more accurate analysis of the spectral properties of Vesta's surface material, especially the reflectance at 1.4 μm and the 2.8 μm hydroxyl absorption band depth. We produced global and quadrangle maps that are used as a common dataset for this Icarus special issue on Vesta's surface composition. The joint interpretation of both the 1.4 μm reflectance and the 2.8 μm absorption band depth reveals unusual spectral properties for a number of impact craters and ejecta compared to the rest of Vesta. An area including the Bellicia, Arruntia and Pomponia craters, where olivine might be present, has relatively high reflectance and a strong hydroxyl absorption band. Another area in the vicinity of Capparonia crater has a high content of hydrated materials, although with moderate reflectance and typical pyroxene-rich composition. Ejecta blankets west of Oppia crater have a spectral behavior similar to Capparonia, except for the wider and more complex shape of the hydroxyl absorption band. On the other hand, some low-hydrated areas associated to crater floors and ejecta have higher reflectance and steeper spectral slope than most low-hydrated terrains Vesta. A broad lane that extends from Rheasilvia rim at Matronalia Rupes to the northern regions hosts little to no hydrated materials and exhibits a moderate spectral slope, similar to Rheasilvia's basin floor. These properties reinforce the hypothesis that the lane is composed of ejecta from Rheasilvia, as indicated by the distribution of pyroxene compositions by previous results from Dawn. A few small and fresh craters exhibit an association between low-reflectance, little to no hydrated materials and a strong positive spectral slope, suggesting optical effects by opaque coatings, as opposed to carbonaceous chondrite deposits, and possible coarser grains.

  12. Hydration status of Air Force military basic trainees after implementation of the back-mounted hydration system.

    PubMed

    Fogt, Donovan L; Brosch, Lorie C; Dacey, Danny C; Kalns, John E; Ketchum, Norma S; Rohrbeck, Patricia; Venuto, Margaret M; Tchandja, Juste B; Bunning, Mike L

    2009-08-01

    The Air Force makes an extraordinary effort to prevent heat-related illnesses associated with basic military training (BMT) in south Texas. However, inadequate hydration can still contribute to lost training time and qualified trainees leaving military service without completing BMT. The purpose of the present study was to determine whether equipping BMTs with back-mounted hydration systems (BM) is better than the standard-issue (SI) canteens with respect to hydration status. Male BMTs were randomly assigned to either BM (n = 40) or SI (n = 38) groups. Baseline values were assessed at week 0 before any physical readiness training (PRT). Subsequent data collection took place in the a.m. before PRT and in the p.m. before dinner the first 3 weeks, and during the 5 weeks of training. BMT total body water (TBW) and body composition were assessed by bioelectrical impedance. Saliva osmolality and total protein concentration were also determined. Hydration status increased daily in BM and SI and was well maintained over the duration of BMT. A significant hydration effect (p < 0.05) was observed for average daily increases in TBW and body weight with BM gaining more compared to SI. Average a.m. TBW was 0.3-0.8 L greater in SI versus BM (p < 0.05). Our findings demonstrate that adequate hydration status is maintained during Air Force BMT in a hot environment using either hydration mode and therefore do not support widespread issuance of the BM system on the premise of improved hydration during USAF BMT military training.

  13. Relative permeability of hydrate-bearing sediments from percolation theory and critical path analysis: theoretical and experimental results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daigle, Hugh; Rice, Mary Anna; Daigle, Hugh

    Relative permeabilities to water and gas are important parameters for accurate modeling of the formation of methane hydrate deposits and production of methane from hydrate reservoirs. Experimental measurements of gas and water permeability in the presence of hydrate are difficult to obtain. The few datasets that do exist suggest that relative permeability obeys a power law relationship with water or gas saturation with exponents ranging from around 2 to greater than 10. Critical path analysis and percolation theory provide a framework for interpreting the saturation-dependence of relative permeability based on percolation thresholds and the breadth of pore size distributions, whichmore » may be determined easily from 3-D images or gas adsorption-desorption hysteresis. We show that the exponent of the permeability-saturation relationship for relative permeability to water is related to the breadth of the pore size distribution, with broader pore size distributions corresponding to larger exponents. Relative permeability to water in well-sorted sediments with narrow pore size distributions, such as Berea sandstone or Toyoura sand, follows percolation scaling with an exponent of 2. On the other hand, pore-size distributions determined from argon adsorption measurements we performed on clays from the Nankai Trough suggest that relative permeability to water in fine-grained intervals may be characterized by exponents as large as 10 as determined from critical path analysis. We also show that relative permeability to the gas phase follows percolation scaling with a quadratic dependence on gas saturation, but the threshold gas saturation for percolation changes with hydrate saturation, which is an important consideration in systems in which both hydrate and gas are present, such as during production from a hydrate reservoir. Our work shows how measurements of pore size distributions from 3-D imaging or gas adsorption may be used to determine relative permeabilities.« less

  14. Investigation of the effect of hydration on dermal collagen in ex vivo human skin tissue using second harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Samatham, Ravikant; Wang, Nicholas K.; Jacques, Steven L.

    2016-02-01

    Effect of hydration on the dermal collagen structure in human skin was investigated using second harmonic generation microscopy. Dog ears from the Mohs micrographic surgery department were procured for the study. Skin samples with subject aged between 58-90 years old were used in the study. Three dimensional Multiphoton (Two-photon and backward SHG) control data was acquired from the skin samples. After the control measurement, the skin tissue was either soaked in deionized water for 2 hours (Hydration) or kept at room temperature for 2 hours (Desiccation), and SHG data was acquired. The data was normalized for changes in laser power and detector gain. The collagen signal per unit volume from the dermis was calculated. The desiccated skin tissue gave higher backward SHG compared to respective control tissue, while hydration sample gave a lower backward SHG. The collagen signal decreased with increase in hydration of the dermal collagen. Hydration affected the packing of the collagen fibrils causing a change in the backward SHG signal. In this study, the use of multiphoton microscopy to study the effect of hydration on dermal structure was demonstrated in ex vivo tissue.

  15. Histological Analysis of the Arabidopsis Gynoecium and Ovules Using Chloral Hydrate Clearing and Differential Interference Contrast Light Microscopy.

    PubMed

    Franks, Robert G

    2016-01-01

    The use of chloral hydrate optical clearing paired with differential interference contrast microscopy allows the analysis of internal structures of developing plant organs without the need for paraffin embedding and sectioning. This approach is appropriate for the analysis of the developing gynoecium or seedpod of the flowering plant Arabidopsis thaliana and many other types of fixed plant material. Early stages of ovule development are observable with this approach.

  16. Dual-energy X-ray absorptiometry: analysis of pediatric fat estimate errors due to tissue hydration effects.

    PubMed

    Testolin, C G; Gore, R; Rivkin, T; Horlick, M; Arbo, J; Wang, Z; Chiumello, G; Heymsfield, S B

    2000-12-01

    Dual-energy X-ray absorptiometry (DXA) percent (%) fat estimates may be inaccurate in young children, who typically have high tissue hydration levels. This study was designed to provide a comprehensive analysis of pediatric tissue hydration effects on DXA %fat estimates. Phase 1 was experimental and included three in vitro studies to establish the physical basis of DXA %fat-estimation models. Phase 2 extended phase 1 models and consisted of theoretical calculations to estimate the %fat errors emanating from previously reported pediatric hydration effects. Phase 1 experiments supported the two-compartment DXA soft tissue model and established that pixel ratio of low to high energy (R values) are a predictable function of tissue elemental content. In phase 2, modeling of reference body composition values from birth to age 120 mo revealed that %fat errors will arise if a "constant" adult lean soft tissue R value is applied to the pediatric population; the maximum %fat error, approximately 0.8%, would be present at birth. High tissue hydration, as observed in infants and young children, leads to errors in DXA %fat estimates. The magnitude of these errors based on theoretical calculations is small and may not be of clinical or research significance.

  17. Electrostatic energy of transfer and macrobond analyses of intermolecular interactions and hydration effects in protein crystals in a low ionic environment

    NASA Astrophysics Data System (ADS)

    Sugawara, Yoko; Hirano, Yuji; Yamamura, Shigefumi; Endo, Shigeru; Ootaki, Masanori; Matsumoto, Naoki; Takahashi, Takuya

    2017-06-01

    We developed an electrostatic energy of transfer (EET) analysis applicable to periodic boundary condition, including a nonrectangular unit cell. It was applied to monoclinic ribonuclease A crystallized with ethanol as a precipitant. Macrobond analysis was also carried out. Owing to the low ionic strength of the solvent region, atomic EET values were non-negligible even at long-distance points. Most of the molecular EET values-defined as the individual contribution of each surrounding molecule-were positive. The inclusion of the molecular EET values of hydration water molecules reduced the repulsive force, and the evaluation of hydration effects in protein crystals was found to be imperative.

  18. Mg-Sulfate Salts as Possible Water Reservoirs in Martian Regolith

    NASA Astrophysics Data System (ADS)

    Vaniman, D. T.; Bish, D. L.; Chipera, S. J.; Carey, J. W.; Feldman, W. C.

    2003-12-01

    Neutron spectrometer data from the Mars Odyssey orbiter provide evidence of high water-equivalent hydrogen abundance in some near-equatorial locations on Mars. In broad regions shallow (<1 m) regolith appears to have water abundances of up to ˜13 wt%. Water ice is predicted to be unstable at the present time at all depths below the surface in these equatorial regions. If present in hydrous silicate minerals such as clays or zeolites, which may contain water in abundances of ˜10-20% at Martian surface conditions, the Odyssey data require a regolith very enriched in hydrous silicates - an unlikely proposition. Viking X-ray fluorescence data and alteration assemblages in martian meteorites suggest the presence of sulfate salts in martian regolith. Viking data from excavated duricrust indicate that Mg and S are correlated and that ˜10% of an Mg-sulfate salt is a likely cementing agent. However, the range of possible Mg sulfates is large. Epsomite (7-hydrate, 51% water) and hexahydrite (6-hydrate, 47% water) are the most hydrated; both form structures of isolated SO4 tetrahedra with isolated octahedral sites consisting of Mg coordinated by six H2O molecules (epsomite has an extra H2O in addition to the six required to coordinate with Mg). Pentahydrite (5-hydrate, 43% water) has infinite chains of alternating SO4 tetrahedra and Mg octahedra, with 4/5 of the water forming apices in octahedral sites. Starkeyite (4-hydrate, 37% water) has clusters of two SO4 tetrahedra and two Mg octahedra, linked only by hydrogen bonds. The Mg-sulfate sanderite (2-hydrate, 23% water) is rare and has poorly known structure. Kieserite (1-hydrate, 13% water) is relatively common in evaporite deposits and has a framework structure of infinite tetrahedral-octahedral chains cross-linked by hydrogen bonds. The stability of Mg-sulfate hydrates under martian near-surface conditions depends on their structures; those with excess water beyond that required to form the octahedral Mg site (e.g., epsomite, pentahydrite) lose that excess readily. Experiments with epsomite and hexahydrite indicate great sensitivity to environmental conditions; epsomite is not stable at 295 K at relative humidity (RH) values less than about 55%, below which hexahydrite is the observed phase. More importantly, hexahydrite - with all water coordinated to Mg in octahedral sites - is unstable at pressures less than ˜20 mtorr. X-ray diffraction analysis of hexahydrite held at 20 mtorr for six hours shows that structural degradation is slow at 100 K but becomes obvious in 1 hour at 273 K. Thermogravimetric analysis of this amorphous solid shows that it contains ˜26% H2O (compared with 47% in crystalline hexahydrite), and its observed macroscopic expansion behavior suggests that it can reversibly hydrate and dehydrate. Although neither epsomite nor hexahydrite is likely to be stable near the surface of Mars, their amorphous derivatives or crystalline forms of the lower hydrates might be present (preliminary thermogravimetric data indicate that kieserite is likely to be stable). However, the limited rehydration of structurally degraded hexahydrite indicates that unrealistically large amounts ( ˜50%) would be required in the upper meter of regolith to account for the higher water contents ( ˜13%) suggested for some martian equatorial regions; even larger amounts of kieserite ( ˜100%) would be required. A more important role for sulfates may be in the formation of a low-permeability salt crust that could restrict dewatering of underlying soil horizons.

  19. Lithological controls on gas hydrate saturation: Insights from signal classification of NMR downhole data

    NASA Astrophysics Data System (ADS)

    Bauer, Klaus; Kulenkampff, Johannes; Henninges, Jan; Spangenberg, Erik

    2016-04-01

    Nuclear magnetic resonance (NMR) downhole data are analyzed with a new strategy to study gas hydrate-bearing sediments in the Mackenzie Delta (NW Canada). NMR logging is a powerful tool to study geological reservoir formations. The measurements are based on interactions between the magnetic moments of protons in geological formation water and an external magnetic field. Inversion of the measured raw data provides so-called transverse relaxation time (T2) distribution curves or spectra. Different parts of the T2 curve are related with distinct pore radii and corresponding fluid components. A common practice in the analysis of T2 distribution curves is to extract single-valued parameters such as apparent total porosity. Moreover, the derived total NMR apparent porosity and the gamma-gamma density log apparent porosity can be combined to estimate gas hydrate saturation in hydrate-bearing sediments. To avoid potential loss of information, in our new approach we analyze the entire T2 distribution curves as quasi-continuous signals to characterize the rock formation. The approach is applied to NMR data measured in gas hydrate research well Mallik 5L-38. We use self-organizing maps, a neural network clustering technique, to subdivide the data set of NMR T2 distribution curves into classes with a similar and distinctive signal shape. The method includes (1) preparation of data vectors, (2) unsupervised learning, (3) cluster definition, and (4) classification and depth mapping of all NMR signals. Each signal class thus represents a specific pore size distribution which can be interpreted in terms of distinct lithologies and reservoir types. A key step in the interpretation strategy is to reconcile the NMR classes with other log data not considered in the clustering analysis, such as gamma ray, photo-electric factor, hydrate saturation, and other logs. Our results defined six main lithologies within the target zone. Gas hydrate layers were recognized by their low signal amplitudes for all relaxation times. Highly concentrated methane hydrates occur in sand and shaly sand. Most importantly, two subtypes of hydrate-bearing sands and shaly sands were identified. They show distinct NMR signals and differ in hydrate saturation and gamma ray values. An inverse linear relationship between hydrate saturation and clay content was concluded. Finally, we infer that the gas hydrate is not grain coating, but rather, pore filling with matrix support is the preferred growth habit model for the studied formation.

  20. Seismic character of gas hydrates on the Southeastern U.S. continental margin

    USGS Publications Warehouse

    Lee, M.W.; Hutchinson, D.R.; Agena, W.F.; Dillon, William P.; Miller, J.J.; Swift, B.A.

    1994-01-01

    Gas hydrates are stable at relatively low temperature and high pressure conditions; thus large amounts of hydrates can exist in sediments within the upper several hundred meters below the sea floor. The existence of gas hydrates has been recognized and mapped mostly on the basis of high amplitude Bottom Simulating Reflections (BSRs) which indicate only that an acoustic contrast exists at the lower boundary of the region of gas hydrate stability. Other factors such as amplitude blanking and change in reflection characteristics in sediments where a BSR would be expected, which have not been investigated in detail, are also associated with hydrated sediments and potentially disclose more information about the nature of hydratecemented sediments and the amount of hydrate present. Our research effort has focused on a detailed analysis of multichannel seismic profiles in terms of reflection character, inferred distribution of free gas underneath the BSR, estimation of elastic parameters, and spatial variation of blanking. This study indicates that continuous-looking BSRs in seismic profiles are highly segmented in detail and that the free gas underneath the hydrated sediment probably occurs as patches of gas-filled sediment having variable thickness. We also present an elastic model for various types of sediments based on seismic inversion results. The BSR from sediments of high ratio of shear to compressional velocity, estimated as about 0.52, encased in sediments whose ratios are less than 0.35 is consistent with the interpretation of gasfilled sediments underneath hydrated sediments. This model contrasts with recent results in which the BSR is explained by increased concentrations of hydrate near the base of the hydrate stability field and no underlying free gas is required. 

  1. Seismic Characterization of a Gas Hydrate Chimney Associated with Acoustic Blanking: Pegasus Basin, New Zealand

    NASA Astrophysics Data System (ADS)

    Henrys, S. A.; Fraser, D. R. A.; Gorman, A. R.; Pecher, I. A.; Crutchley, G. J.

    2016-12-01

    The Pegasus Basin on the east coast of New Zealand's North Island in the southern part of the Hikurangi Margin is a frontier petroleum basin that is also expected to contain significant gas hydrate deposits. Extensive faulting in the basin has lead to the development of many interesting and unique focused accumulations of gas hydrates. A 2D seismic dataset acquired in 2009/2010 was reprocessed to examine the gas hydrate systems within the basin. Here, we present one of the more interesting hydrate features in the dataset: a presumed gas chimney within the regional gas hydrate stability zone at the centre of a roughly triangular (in 2D) region of low reflectivity, approximately 8 km wide, that is interpreted to be the result of acoustic blanking. Using automated high density velocity picking, the chimney structure is interpreted to be cored by a 200 m wide low-velocity zone which contains free gas and is flanked by high-velocity bands that are 200-400 m wide. The high-velocity zone is interpreted to correspond to concentrated hydrate deposits within the sedimentary pore spaces. Amplitude vs offset (AVO) and inversion techniques have been applied and the results of this work correspond well to the high-density velocity analyses. The analysis methods all indicate zones of free gas below the Bottom Simulating Reflection (BSR) and within the chimney. Areas of increased hydrate concentrations, including at the base of the gas hydrate stability zone, were also identified. A model for fluid flow and how free gas within the chimney at the centre of the blanking zone is converted to hydrate is discussed. The potential size of the gas hydrate resource present in this feature can be estimated based on the seismic velocities and physical properties determined by inversion.

  2. Determining the mechanism and parameters of hydrate formation and loss in glucose.

    PubMed

    Scholl, Sarah K; Schmidt, Shelly J

    2014-11-01

    Water-solid interactions are known to play a major role in the chemical and physical stability of food materials. Despite its extensive use throughout the food industry, the mechanism and parameters of hydrate formation and loss in glucose are not well characterized. Hydrate formation in alpha-anhydrous glucose (α-AG) and hydrate loss in glucose monohydrate (GM) were studied under equilibrium conditions at various relative humidity (RH) values using saturated salt slurries for 1 y. The mechanism of hydrate formation and hydrate loss were determined through mathematical modeling of Dynamic Vapor Sorption data and Raman spectroscopy was used to confirm the mechanisms. The critical temperature for hydrate loss in GM was determined using thermogravimetric analysis (TGA). The moisture sorption profiles of α-AG and GM were also studied under dynamic conditions using an AquaSorp Isotherm Generator. Hydrate formation was observed at and above 68% RH at 25 °C and the conversion of α-AG to GM can best be described as following a nucleation mechanism, however, diffusion and/or geometric contraction mechanisms were also observed by Raman spectroscopy subsequent to the coalescence of initial nucleation sites. Hydrate loss was observed to occur at and below 11% RH at 25 °C during RH storage and at 70 °C during TGA. The conversion of GM to α-AG follows nucleation and diffusion mechanisms. Hydrate formation was evident under dynamic conditions in α-AG and GM prior to deliquescence. This research is the first to report hydrate formation and loss parameters for crystalline α-AG and GM during extended storage at 25 ˚C. © 2014 Institute of Food Technologists®

  3. THCM Coupled Model for Hydrate-Bearing Sediments: Data Analysis and Design of New Field Experiments (Marine and Permafrost Settings)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez, Marcelo J.; Santamarina, J. Carlos

    Gas hydrates are solid compounds made of water molecules clustered around low molecular weight gas molecules such as methane, hydrogen, and carbon dioxide. Methane hydrates form under pressure (P) and temperature (T) conditions that are common in sub-permafrost layers and in deep marine sediments. Stability conditions constrain the occurrence of gas hydrates to submarine sediments and permafrost regions. The amount of technically recoverable methane trapped in gas hydrate may exceed 104tcf. Gas hydrates are a potential energy resource, can contribute to climate change, and can cause large-scale seafloor instabilities. In addition, hydrate formation can be used for CO2 sequestration (alsomore » through CO2-CH4 replacement), and efficient geological storage seals. The experimental study of hydrate bearing sediments has been hindered by the very low solubility of methane in water (lab testing), and inherent sampling difficulties associated with depressurization and thermal changes during core extraction. This situation has prompted more decisive developments in numerical modeling in order to advance the current understanding of hydrate bearing sediments, and to investigate/optimize production strategies and implications. The goals of this research has been to addresses the complex thermo-hydro-chemo-mechanical THCM coupled phenomena in hydrate-bearing sediments, using a truly coupled numerical model that incorporates sound and proven constitutive relations, satisfies fundamental conservation principles. Analytical solutions aimed at verifying the proposed code have been proposed as well. These tools will allow to better analyze available data and to further enhance the current understanding of hydrate bearing sediments in view of future field experiments and the development of production technology.« less

  4. High-resolution well-log derived dielectric properties of gas-hydrate-bearing sediments, Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    USGS Publications Warehouse

    Sun, Y.; Goldberg, D.; Collett, T.; Hunter, R.

    2011-01-01

    A dielectric logging tool, electromagnetic propagation tool (EPT), was deployed in 2007 in the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well (Mount Elbert Well), North Slope, Alaska. The measured dielectric properties in the Mount Elbert well, combined with density log measurements, result in a vertical high-resolution (cm-scale) estimate of gas hydrate saturation. Two hydrate-bearing sand reservoirs about 20 m thick were identified using the EPT log and exhibited gas-hydrate saturation estimates ranging from 45% to 85%. In hydrate-bearing zones where variation of hole size and oil-based mud invasion are minimal, EPT-based gas hydrate saturation estimates on average agree well with lower vertical resolution estimates from the nuclear magnetic resonance logs; however, saturation and porosity estimates based on EPT logs are not reliable in intervals with substantial variations in borehole diameter and oil-based invasion.EPT log interpretation reveals many thin-bedded layers at various depths, both above and below the thick continuous hydrate occurrences, which range from 30-cm to about 1-m thick. Such thin layers are not indicated in other well logs, or from the visual observation of core, with the exception of the image log recorded by the oil-base microimager. We also observe that EPT dielectric measurements can be used to accurately detect fine-scale changes in lithology and pore fluid properties of hydrate-bearing sediments where variation of hole size is minimal. EPT measurements may thus provide high-resolution in-situ hydrate saturation estimates for comparison and calibration with laboratory analysis. ?? 2010 Elsevier Ltd.

  5. Natural gas hydrate in sediments imaged by cryogenic SEM: Insights from lab experiments on synthetic hydrates as interpretive guides.

    NASA Astrophysics Data System (ADS)

    Stern, L. A.; Kirby, S. H.

    2006-12-01

    In the investigation of natural gas hydrates, distinguishing in situ grain textures and microstructures from artifacts produced during retrieval, storage, and examination can be quite challenging. Using cryogenic scanning electron microscopy, we investigated the physical states of gas hydrates produced in our lab as well as of those in drill core of hydrate-bearing sediment from marine and Arctic permafrost environments. Here, we compare grain and pore structures observed in samples from the Cascadia margin (courtesy IODP Expedition 311), McKenzie River Delta (Mallik Well 5L-38), and Gulf of Mexico (RSV Marion Dufresne 2002), with those present in hydrocarbon hydrates grown in our laboratory and subjected to controlled P-T conditions. The following trends are apparent for the natural gas hydrates imaged to-date: (1) Samples typically contain massive domains of polycrystalline gas hydrate that in turn contain isolated gas-filled pores that are sometimes lined with euhedral hydrate crystals. Pores are typically 5 50 microns in diameter and occupy roughly 10-30 percent of the domain. Grain sizes, where visible, are commonly 20 to 50 microns. (2) Hydrate grain boundaries, particularly near the exposed sample surface, are often replaced by a nanoporous material. Based on its location and behavior, this material is presumed to be gas-charged porous ice produced by hydrate decomposition along grain surfaces. In some samples, grains are instead bounded by a framework of dense, tabular material embedded within the sample, best revealed upon sublimation of the hydrate. Their composition is yet unknown but may be salt or carbonate-bearing minerals. (3) Where hydrate grows into clayey sediments, the clays typically arrange with platelets subparallel around the pods or veins of hydrate. (4) Domains of nano-to-micro- porous water ice are also seen in all recovered natural samples, presumed to be hydrate decomposition product produced during drill-core retrieval and handling. Based on lab experiments, we believe the initial liquid product is frozen as a result of the local temperature reduction accompanying the endothermic dissociation reaction. The porous texture is then preserved by liquid nitrogen quenching. (5) Samples from both marine and permafrost environments also display closely juxtaposed regions of dense and porous hydrate and ice. Although the close association of these regions remains puzzling, lab tests verify that dense hydrate can exhibit such porous appearance along it's surface after even minor decomposition at cold conditions (below 273 K). In turn, companion experiments show that nanoporous hydrate anneals to a densely crystalline habit at conditions within the hydrate stability region above 273 K, suggesting that nanoporous gas hydrate is not stable at most in situ natural conditions.

  6. Preservation of carbon dioxide clathrate hydrate in the presence of trehalose under freezer conditions

    NASA Astrophysics Data System (ADS)

    Nagashima, Hironori D.; Takeya, Satoshi; Uchida, Tsutomu; Ohmura, Ryo

    2016-01-01

    To investigate the preservation of CO2 clathrate hydrate in the presence of sugar for the novel frozen dessert, mass fractions of CO2 clathrate hydrate in CO2 clathrate hydrate samples coexisting with trehalose were intermittently measured. The samples were prepared from trehalose aqueous solution with trehalose mass fractions of 0.05 and 0.10 at 3.0 MPa and 276.2 K. The samples having particle sizes of 1.0 mm and 5.6-8.0 mm were stored at 243.2 K and 253.2 K for three weeks under atmospheric pressure. The mass fractions of CO2 clathrate hydrate in the samples were 0.87-0.97 before the preservation, and CO2 clathrate hydrate still remained 0.56-0.76 in the mass fractions for 5.6-8.0 mm samples and 0.37-0.55 for 1.0 mm samples after the preservation. The preservation in the trehalose system was better than in the sucrose system and comparable to that in the pure CO2 clathrate hydrate system. This comparison indicates that trehalose is a more suitable sugar for the novel frozen carbonated dessert using CO2 clathrate hydrate than sucrose in terms of CO2 concentration in the dessert. It is inferred that existence of aqueous solution in the samples is a significant factor of the preservation of CO2 clathrate hydrate in the presence of sugar.

  7. Formation evaluation of gas hydrate-bearing marine sediments on the Blake Ridge with downhole geochemical log measurements

    USGS Publications Warehouse

    Collett, T.S.; Wendlandt, R.F.

    2000-01-01

    The analyses of downhole log data from Ocean Drilling Program (ODP) boreholes on the Blake Ridge at Sites 994, 995, and 997 indicate that the Schlumberger geochemical logging tool (GLT) may yield useful gas hydrate reservoir data. In neutron spectroscopy downhole logging, each element has a characteristic gamma ray that is emitted from a given neutron-element interaction. Specific elements can be identified by their characteristic gamma-ray signature, with the intensity of emission related to the atomic elemental concentration. By combining elemental yields from neutron spectroscopy logs, reservoir parameters including porosities, lithologies, formation fluid salinities, and hydrocarbon saturations (including gas hydrate) can be calculated. Carbon and oxygen elemental data from the GLT was used to determine gas hydrate saturations at all three sites (Sites 994, 995, and 997) drilled on the Blake Ridge during Leg 164. Detailed analyses of the carbon and oxygen content of various sediments and formation fluids were used to construct specialized carbon/oxygen ratio (COR) fan charts for a series of hypothetical gas hydrate accumulations. For more complex geologic systems, a modified version of the standard three-component COR hydrocarbon saturation equation was developed and used to calculate gas hydrate saturations on the Blake Ridge. The COR-calculated gas hydrate saturations (ranging from about 2% to 14% bulk volume gas hydrate) from the Blake Ridge compare favorably to the gas hydrate saturations derived from electrical resistivity log measurements.

  8. Preservation of carbon dioxide clathrate hydrate in the presence of trehalose under freezer conditions

    PubMed Central

    Nagashima, Hironori D.; Takeya, Satoshi; Uchida, Tsutomu; Ohmura, Ryo

    2016-01-01

    To investigate the preservation of CO2 clathrate hydrate in the presence of sugar for the novel frozen dessert, mass fractions of CO2 clathrate hydrate in CO2 clathrate hydrate samples coexisting with trehalose were intermittently measured. The samples were prepared from trehalose aqueous solution with trehalose mass fractions of 0.05 and 0.10 at 3.0 MPa and 276.2 K. The samples having particle sizes of 1.0 mm and 5.6–8.0 mm were stored at 243.2 K and 253.2 K for three weeks under atmospheric pressure. The mass fractions of CO2 clathrate hydrate in the samples were 0.87–0.97 before the preservation, and CO2 clathrate hydrate still remained 0.56–0.76 in the mass fractions for 5.6–8.0 mm samples and 0.37–0.55 for 1.0 mm samples after the preservation. The preservation in the trehalose system was better than in the sucrose system and comparable to that in the pure CO2 clathrate hydrate system. This comparison indicates that trehalose is a more suitable sugar for the novel frozen carbonated dessert using CO2 clathrate hydrate than sucrose in terms of CO2 concentration in the dessert. It is inferred that existence of aqueous solution in the samples is a significant factor of the preservation of CO2 clathrate hydrate in the presence of sugar. PMID:26780867

  9. Preservation of carbon dioxide clathrate hydrate in the presence of trehalose under freezer conditions.

    PubMed

    Nagashima, Hironori D; Takeya, Satoshi; Uchida, Tsutomu; Ohmura, Ryo

    2016-01-19

    To investigate the preservation of CO2 clathrate hydrate in the presence of sugar for the novel frozen dessert, mass fractions of CO2 clathrate hydrate in CO2 clathrate hydrate samples coexisting with trehalose were intermittently measured. The samples were prepared from trehalose aqueous solution with trehalose mass fractions of 0.05 and 0.10 at 3.0 MPa and 276.2 K. The samples having particle sizes of 1.0 mm and 5.6-8.0 mm were stored at 243.2 K and 253.2 K for three weeks under atmospheric pressure. The mass fractions of CO2 clathrate hydrate in the samples were 0.87-0.97 before the preservation, and CO2 clathrate hydrate still remained 0.56-0.76 in the mass fractions for 5.6-8.0 mm samples and 0.37-0.55 for 1.0 mm samples after the preservation. The preservation in the trehalose system was better than in the sucrose system and comparable to that in the pure CO2 clathrate hydrate system. This comparison indicates that trehalose is a more suitable sugar for the novel frozen carbonated dessert using CO2 clathrate hydrate than sucrose in terms of CO2 concentration in the dessert. It is inferred that existence of aqueous solution in the samples is a significant factor of the preservation of CO2 clathrate hydrate in the presence of sugar.

  10. Obsidian hydration dates glacial loading?

    USGS Publications Warehouse

    Friedman, I.; Pierce, K.L.; Obradovich, J.D.; Long, W.D.

    1973-01-01

    Three different groups of hydration rinds have been measured on thin sections of obsidian from Obsidian Cliff, Yellowstone National Park, Wyoming . The average thickness of the thickest (oldest) group of hydration rinds is 16.3 micrometers and can be related to the original emplacement of the flow 176,000 years ago (potassium-argon age). In addition to these original surfaces, most thin sections show cracks and surfaces which have average hydration rind thicknesses of 14.5 and 7.9 micrometers. These later two hydration rinds compare closely in thickness with those on obsidian pebbles in the Bull Lake and Pinedale terminal moraines in the West Yellowstone Basin, which are 14 to 15 and 7 to 8 micrometers thick, respectively. The later cracks are thought to have been formed by glacial loading during the Bull Lake and Pinedale glaciations, when an estimated 800 meters of ice covered the Obsidian Cliff flow.

  11. Obsidian hydration dates glacial loading?

    PubMed

    Friedman, I; Pierce, K L; Obradovich, J D; Long, W D

    1973-05-18

    Three different groups of hydration rinds have been measured on thin sections of obsidian from Obsidian Cliff, Yellowstone National Park, Wyoming. The average thickness of the thickest (oldest) group of hydration rinds is 16.3 micrometers and can be related to the original emplacement of the flow 176,000 years ago (potassium-argon age). In addition to these original surfaces, most thin sections show cracks and surfaces which have average hydration rind thicknesses of 14.5 and 7.9 micrometers. These later two hydration rinds compare closely in thickness with those on obsidian pebbles in the Bull Lake and Pinedale terminal moraines in the West Yellowstone Basin, which are 14 to 15 and 7 to 8 micrometers thick, respectively. The later cracks are thought to have been formed by glacial loading during the Bull Lake and Pinedale glaciations, when an estimated 800 meters of ice covered the Obsidian Cliff flow.

  12. Skin hydration in nursing home residents using disposable bed baths.

    PubMed

    Gillis, Katrin; Tency, Inge; Roelant, Ella; Laureys, Sarina; Devriendt, Hendrik; Lips, Dirk

    2016-01-01

    The objective of this study was to evaluate a new way for applying bed baths and reducing the risk for dry skin by comparing the effect of two washing methods on skin hydration. A cluster randomized trial was conducted. Skin hydration was measured before and after implementation of disposable wash gloves, using a MoistureMeter SC at three skin sites. Total skin hydration did not differ between residents at the start of the study in both groups. After implementation, the post minus pre hydration scores were higher for the intervention group than the control group at all skin sites. However, the difference was only significant at cheek site. The use of disposable wash gloves does not increase the risk for dry skin in comparison with traditional washing methods. These results may encourage the introduction of disposable wash gloves as an innovation in daily skin care practice. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Methane Hydrate in Confined Spaces: An Alternative Storage System.

    PubMed

    Borchardt, Lars; Casco, Mirian Elizabeth; Silvestre-Albero, Joaquin

    2018-06-05

    Methane hydrate inheres the great potential to be a nature-inspired alternative for chemical energy storage, as it allows to store large amounts of methane in a dense solid phase. The embedment of methane hydrate in the confined environment of porous materials can be capitalized for potential applications as its physicochemical properties, such as the formation kinetics or pressure and temperature stability, are significantly changed compared to the bulk system. We review this topic from a materials scientific perspective by considering porous carbons, silica, clays, zeolites, and polymers as host structures for methane hydrate formation. We discuss the contribution of advanced characterization techniques and theoretical simulations towards the elucidation of the methane hydrate formation and dissociation process within the confined space. We outline the scientific challenges this system is currently facing and look on possible future applications for this technology. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Molecular level studies on interfacial hydration of zwitterionic and other antifouling polymers in situ.

    PubMed

    Leng, Chuan; Sun, Shuwen; Zhang, Kexin; Jiang, Shaoyi; Chen, Zhan

    2016-08-01

    Antifouling polymers have wide applications in biomedical engineering and marine industry. Recently, zwitterionic materials have been reported as promising candidates for antifouling applications, while strong hydration is believed to be the key antifouling mechanism. Zwitterionic materials can be designed with various molecular structures, which affect their hydration and antifouling performance. Although strong hydration has been proposed to occur at the material surfaces, probing the solid material/water interfaces is challenging with traditional analytical techniques. Here in this review, we will review our studies on surface hydration of zwitterionic materials and other antifouling materials by using sum frequency generation (SFG) vibrational spectroscopy, which provides molecular understanding of the water structures at various material surfaces. The materials studied include zwitterionic polymer brushes with different molecular structures, amphiphilic polymers with zwitterionic groups, uncharged hydrophilic polymer brushes, amphiphilic polypeptoids, and widely used antifouling material poly(ethylene glycol). We will compare the differences among zwitterionic materials with various molecular structures as well as the differences between antifouling materials and fouling surfaces of control samples. We will also discuss the effects of pH and biological molecules like proteins on the surface hydration of the zwitterionic materials. Using SFG spectroscopy, we have measured the hydration layers of antifouling materials and found that strong hydrogen bonds are key to the formation of strong hydration layers preventing protein fouling at the polymer interfaces. Antifouling polymers have wide applications in biomedical engineering and marine industry. Recently, zwitterionic materials have been reported as promising candidates for antifouling applications, while strong hydration is believed to be the key antifouling mechanism. However, zwitterionic materials can be designed with various molecular structures, which affect their hydration and antifouling performance. Moreover, although strong hydration has been proposed to occur at the material surfaces, probing the solid material/water interfaces is challenging with traditional analytical techniques. Here in this manuscript, we will review our studies on surface hydration of zwitterionic materials and other antifouling materials by using sum frequency generation (SFG) vibrational spectroscopy, which provides molecular understanding of the water structures at various material surfaces. The materials studied include zwitterionic polymer brushes with different molecular structures, amphiphilic polymers with zwitterionic groups, uncharged hydrophilic polymer brushes, amphiphilic polypeptoids, and widely used antifouling material poly(ethylene glycol). We will compare the differences among zwitterionic materials with various molecular structures as well as the differences between antifouling materials and fouling surfaces of control samples. We will also discuss the effects of pH and biological molecules like proteins on the surface hydration of the zwitterionic materials. All the SFG results indicate that strongly hydrogen-bonded water at the materials' surfaces (strong surface hydration) is closely correlated to the good antifouling properties of the materials. This review will be widely interested by readers of Acta Biomaterialia and will impact many different research fields in chemistry, materials, engineering, and beyond. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Examination of core samples from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope: Effects of retrieval and preservation

    USGS Publications Warehouse

    Kneafsey, T.J.; Lu, H.; Winters, W.; Boswell, R.; Hunter, R.; Collett, T.S.

    2011-01-01

    Collecting and preserving undamaged core samples containing gas hydrates from depth is difficult because of the pressure and temperature changes encountered upon retrieval. Hydrate-bearing core samples were collected at the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well in February 2007. Coring was performed while using a custom oil-based drilling mud, and the cores were retrieved by a wireline. The samples were characterized and subsampled at the surface under ambient winter arctic conditions. Samples thought to be hydrate bearing were preserved either by immersion in liquid nitrogen (LN), or by storage under methane pressure at ambient arctic conditions, and later depressurized and immersed in LN. Eleven core samples from hydrate-bearing zones were scanned using x-ray computed tomography to examine core structure and homogeneity. Features observed include radial fractures, spalling-type fractures, and reduced density near the periphery. These features were induced during sample collection, handling, and preservation. Isotopic analysis of the methane from hydrate in an initially LN-preserved core and a pressure-preserved core indicate that secondary hydrate formation occurred throughout the pressurized core, whereas none occurred in the LN-preserved core, however no hydrate was found near the periphery of the LN-preserved core. To replicate some aspects of the preservation methods, natural and laboratory-made saturated porous media samples were frozen in a variety of ways, with radial fractures observed in some LN-frozen sands, and needle-like ice crystals forming in slowly frozen clay-rich sediments. Suggestions for hydrate-bearing core preservation are presented.

  16. Hydration of calcium sulfoaluminate cements - Experimental findings and thermodynamic modelling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winnefeld, Frank, E-mail: Frank.Winnefeld@empa.c; Lothenbach, Barbara

    Calcium sulfoaluminate cements (CSA) are a promising low-CO{sub 2} alternative to ordinary Portland cements and are as well of interest concerning their use as binder for waste encapsulation. In this study, the hydration of two CSA cements has been investigated experimentally and by thermodynamic modelling between 1 h and 28 days at w/c ratios of 0.72 and 0.80, respectively. The main hydration product of CSA is ettringite, which precipitates together with amorphous Al(OH){sub 3} until the calcium sulfate is consumed after around 1-2 days of hydration. Afterwards, monosulfate is formed. In the presence of belite, straetlingite occurs as an additionalmore » hydration product. The pore solution analysis reveals that straetlingite can bind a part of the potassium ions, which are released by the clinker minerals. The microstructure of both cements is quite dense even after 16 h of hydration, with not much pore space available at a sample age of 28 days. The pore solution of both cements is dominated during the first hours of hydration by potassium, sodium, calcium, aluminium and sulfate; the pH is around 10-11. When the calcium sulfate is depleted, the sulfate concentration drops by a factor of 10. This increases pH to around 12.5-12.8. Based on the experimental data, a thermodynamic hydration model for CSA cements based on cement composition, hydration kinetics of clinker phases and calculations of thermodynamic equilibria by geochemical speciation has been established. The modelled phase development with ongoing hydration agrees well with the experimental findings.« less

  17. The anomalous halogen bonding interactions between chlorine and bromine with water in clathrate hydrates.

    PubMed

    Dureckova, Hana; Woo, Tom K; Udachin, Konstantin A; Ripmeester, John A; Alavi, Saman

    2017-10-13

    Clathrate hydrate phases of Cl 2 and Br 2 guest molecules have been known for about 200 years. The crystal structure of these phases was recently re-determined with high accuracy by single crystal X-ray diffraction. In these structures, the water oxygen-halogen atom distances are determined to be shorter than the sum of the van der Waals radii, which indicates the action of some type of non-covalent interaction between the dihalogens and water molecules. Given that in the hydrate phases both lone pairs of each water oxygen atom are engaged in hydrogen bonding with other water molecules of the lattice, the nature of the oxygen-halogen interactions may not be the standard halogen bonds characterized recently in the solid state materials and enzyme-substrate compounds. The nature of the halogen-water interactions for the Cl 2 and Br 2 molecules in two isolated clathrate hydrate cages has recently been studied with ab initio calculations and Natural Bond Order analysis (Ochoa-Resendiz et al. J. Chem. Phys. 2016, 145, 161104). Here we present the results of ab initio calculations and natural localized molecular orbital analysis for Cl 2 and Br 2 guests in all cage types observed in the cubic structure I and tetragonal structure I clathrate hydrates to characterize the orbital interactions between the dihalogen guests and water. Calculations with isolated cages and cages with one shell of coordinating molecules are considered. The computational analysis is used to understand the nature of the halogen bonding in these materials and to interpret the guest positions in the hydrate cages obtained from the X-ray crystal structures.

  18. Morphology of methane hydrate host sediments

    USGS Publications Warehouse

    Jones, K.W.; Feng, H.; Tomov, S.; Winters, W.J.; Eaton, M.; Mahajan, D.

    2005-01-01

    The morphological features including porosity and grains of methane hydrate host sediments were investigated using synchrotron computed microtomography (CMT) technique. The sediment sample was obtained during Ocean Drilling Program Leg 164 on the Blake Ridge at water depth of 2278.5 m. The CMT experiment was performed at the Brookhaven National Synchrotron Light Source facility. The analysis gave ample porosity, specific surface area, mean particle size, and tortuosity. The method was found to be highly effective for the study of methane hydrate host sediments.

  19. Hydrogen-Bonding System in Barium Nitroprusside 6.5-Hydrate

    NASA Astrophysics Data System (ADS)

    Navaza, A.; Chevrier, G.; Guida, J. A.

    1995-01-01

    The hydrogen-bond system in barium nitroprusside 6.5-hydrate, [Ba 2(H 2O) 10][Fe(CN) 5NOl 23H 2O], has been determined by neutron diffraction on monocrystals. Results show the compound to be orthorhombic, space group Cmc2 1 (36), a = 16.008(43), b = 11.550(3), c = 16.648(5) Å, V = 3078(3) Å 3, Z = 4. Refinement of the structure, using 973 observed structure factors, converged to the final RW factor of 0.058. The 2 independent barium atoms, separated 4.60 Å, share a plane of three water molecules forming dimeric tetravalent units. The nitroprusside anions deviate from the C4r ideal symmetry, but this deviation is less than that observed in other nitroprussides. The 10 crystallographically independent water molecules have been classified according to their coordination. Analysis of the H-bond strength, together with a comparison of the packing of the two known barium nitroprusside hydrates (3-hydrate and 6.5-hydrate), suggests that the water molecules labeled as W(1), W(7), W(8), and W(9) could be lost during the partial dehydration of 6.5-hydrate into 3-hydrate.

  20. Scientific objectives of the Gulf of Mexico gas hydrate JIP leg II drilling

    USGS Publications Warehouse

    Jones, Emrys; Latham, T.; McConnell, Daniel R.; Frye, Matthew; Hunt, J.H.; Shedd, William; Shelander, Dianna; Boswell, Ray; Rose, Kelly K.; Ruppel, Carolyn D.; Hutchinson, Deborah R.; Collett, Timothy S.; Dugan, Brandon; Wood, Warren T.

    2008-01-01

    The Gulf of Mexico Methane Hydrate Joint Industry Project (JIP) has been performing research on marine gas hydrates since 2001 and is sponsored by both the JIP members and the U.S. Department of Energy. In 2005, the JIP drilled the Atwater Valley and Keathley Canyon exploration blocks in the Gulf of Mexico to acquire downhole logs and recover cores in silt- and clay-dominated sediments interpreted to contain gas hydrate based on analysis of existing 3-D seismic data prior to drilling. The new 2007-2009 phase of logging and coring, which is described in this paper, will concentrate on gas hydrate-bearing sands in the Alaminos Canyon, Green Canyon, and Walker Ridge protraction areas. Locations were selected to target higher permeability, coarser-grained lithologies (e.g., sands) that have the potential for hosting high saturations of gas hydrate and to assist the U.S. Minerals Management Service with its assessment of gas hydrate resources in the Gulf of Mexico.This paper discusses the scientific objectives for drilling during the upcoming campaign and presents the results from analyzing existing seismic and well log data as part of the site selection process. Alaminos Canyon 818 has the most complete data set of the selected blocks, with both seismic data and comprehensive downhole log data consistent with the occurrence of gas hydrate-bearing sands. Preliminary analyses suggest that the Frio sandstone just above the base of the gas hydrate stability zone may have up to 80% of the available sediment pore space occupied by gas hydrate.The proposed sites in the Green Canyon and Walker Ridge areas are also interpreted to have gas hydrate-bearing sands near the base of the gas hydrate stability zone, but the choice of specific drill sites is not yet complete. The Green Canyon site coincides with a 4-way closure within a Pleistocene sand unit in an area of strong gas flux just south of the Sigsbee Escarpment. The Walker Ridge site is characterized by a sand-prone sedimentary section that rises stratigraphically across the base of the gas hydrate stability zone and that has seismic indicators of gas hydrate.

  1. An encapsulated fruit and vegetable juice concentrate increases skin microcirculation in healthy women.

    PubMed

    De Spirt, S; Sies, H; Tronnier, H; Heinrich, U

    2012-01-01

    Microcirculation in the dermis of the skin is important for nutrient delivery to this tissue. In this study, the effects of a micronutrient concentrate (Juice Plus+®; 'active group'), composed primarily of fruit and vegetable juice powder, on skin microcirculation and structure were compared to placebo. This 12-week study had a monocentric, double-blind placebo and randomized controlled design with two treatment groups consisting of 26 healthy middle-aged women each. The 'oxygen to see' device was used to evaluate microcirculation. Skin density and thickness were measured using ultrasound. Measurements for skin hydration (Corneometer®), transepidermal water loss and serum analysis for carotenoids and α-tocopherol were also performed. By 12 weeks, microcirculation of the superficial plexus increased by 39%. Furthermore, skin hydration increased by 9% while skin thickness increased by 6% and skin density by 16% in the active group. In the placebo group, microcirculation decreased, and a slight increase in skin density was observed. Ingestion of a fruit- and vegetable-based concentrate increases microcirculation of the skin at 12 weeks of intervention and positively affects skin hydration, density and thickness. Copyright © 2011 S. Karger AG, Basel.

  2. Structure of the ordered hydration of amino acids in proteins: analysis of crystal structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biedermannová, Lada, E-mail: lada.biedermannova@ibt.cas.cz; Schneider, Bohdan

    2015-10-27

    The hydration of protein crystal structures was studied at the level of individual amino acids. The dependence of the number of water molecules and their preferred spatial localization on various parameters, such as solvent accessibility, secondary structure and side-chain conformation, was determined. Crystallography provides unique information about the arrangement of water molecules near protein surfaces. Using a nonredundant set of 2818 protein crystal structures with a resolution of better than 1.8 Å, the extent and structure of the hydration shell of all 20 standard amino-acid residues were analyzed as function of the residue conformation, secondary structure and solvent accessibility. Themore » results show how hydration depends on the amino-acid conformation and the environment in which it occurs. After conformational clustering of individual residues, the density distribution of water molecules was compiled and the preferred hydration sites were determined as maxima in the pseudo-electron-density representation of water distributions. Many hydration sites interact with both main-chain and side-chain amino-acid atoms, and several occurrences of hydration sites with less canonical contacts, such as carbon–donor hydrogen bonds, OH–π interactions and off-plane interactions with aromatic heteroatoms, are also reported. Information about the location and relative importance of the empirically determined preferred hydration sites in proteins has applications in improving the current methods of hydration-site prediction in molecular replacement, ab initio protein structure prediction and the set-up of molecular-dynamics simulations.« less

  3. Instability of buried hydration sites increases protein subdomains fluctuations in the human prion protein by the pathogenic mutation T188R

    NASA Astrophysics Data System (ADS)

    Tomobe, Katsufumi; Yamamoto, Eiji; Akimoto, Takuma; Yasui, Masato; Yasuoka, Kenji

    2016-05-01

    The conformational change from the cellular prion protein (PrPc) to scrapie prion protein (PrPsc) is a key process in prion diseases. The prion protein has buried water molecules which significantly contribute to the stability of the protein; however, there has been no report investigating the influence on the buried hydration sites by a pathogenic mutation not adjacent to the buried hydration sites. Here, we perform molecular dynamics simulations of wild type (WT) PrPc and pathogenic point mutant T188R to investigate conformational changes and the buried hydration sites. In WT-PrPc, four buried hydration sites are identified by residence time and rotational relaxation analysis. However, there are no stable buried hydration sites in one of T188R simulations, which indicates that T188R sometimes makes the buried hydration sites fragile. We also find that fluctuations of subdomains S1-H1-S2 and H1-H2 increase in T188R when the buried hydration sites become unstable. Since the side chain of arginine which is replaced from threonine in T188R is larger than of threonine, the side chain cannot be embedded in the protein, which is one of the causes of the instability of subdomains. These results show correlations between the buried hydration sites and the mutation which is far from them, and provide a possible explanation for the instability by mutation.

  4. CaCl 2 -Accelerated Hydration of Tricalcium Silicate: A STXM Study Combined with 29 Si MAS NMR

    DOE PAGES

    Li, Qinfei; Ge, Yong; Geng, Guoqing; ...

    2015-01-01

    Tmore » he effect of calcium chloride (CaCl 2 ) on tricalcium silicate (C 3 S) hydration was investigated by scanning transmission X-ray microscopy (SXM) with Near Edge X-ray Absorption Fine Structure (NEXAFS) spectra and 29 Si MAS NMR. SXM is demonstrated to be a powerful tool for studying the chemical composition of a cement-based hydration system. he Ca L 3,2 -edge NEXAFS spectra obtained by examining C 3 S hydration in the presence of CaCl 2 showed that this accelerator does not change the coordination of calcium in the calcium silicate hydrate (C-S-H), which is the primary hydration product. O K-edge NEXAFS is also very useful in distinguishing the chemical components in hydrated C 3 S. Based on the Ca L 3,2 -edge spectra and chemical component mapping, we concluded that CaCl 2 prefers to coexist with unhydrated C 3 S instead of C-S-H. In Si K-edge NEXAFS analysis, CaCl 2 increases the degree of silicate polymerization of C-S-H in agreement with the 29 Si CP/MAS NMR results, which show that the presence of CaCl 2 in hydrated C 3 S considerably accelerates the formation of middle groups ( Q 2 ) and branch sites ( Q 3 ) in the silicate chains of C-S-H gel at 1-day hydration.« less

  5. Periprocedural effects of statins on the incidence of contrast-induced acute kidney injury: a systematic review and meta-analysis of randomized controlled trials.

    PubMed

    Cheungpasitporn, Wisit; Thongprayoon, Charat; Kittanamongkolchai, Wonngarm; Edmonds, Peter J; O'Corragain, Oisin A; Srivali, Narat; Ungprasert, Patompong; Erickson, Stephen B

    2015-05-01

    The reports on the efficacy of statins for the prevention of contrast-induced acute kidney injury (CIAKI) remain controversial. The objective of this meta-analysis was to assess the effect of statins for the prevention of CIAKI. Comprehensive literature searches for randomized controlled trials (RCTs) of periprocedural statin treatment for prevention of CIAKI were performed using MEDLINE, EMBASE, Cochrane Database of Systematic Reviews, Cochrane Central Register of Controlled Trials Systematic Reviews and clinicaltrials.gov from inception until May 2014. The primary outcome was the incidence of CIAKI. Thirteen prospective RCTs were included in our analysis. Of 5803 patients with contrast exposures, 304 patients (5.2%) had CIAKI. Patients in the statin group had an overall lower incidence of CIAKI (3.6%) compared to the control group (6.9%). Intravenous (IV) fluid hydration was used in both groups of all included studies for prevention of CIAKI. There was a significant protective effect of periprocedural statins on the incidence of CIAKI when compared to the control group [risk ratios (RRs): 0.49; 95% CI: 0.37-0.66, I(2) of 25%]. Our study demonstrates a statistically significant protective effect of statin treatment during procedures with contrast exposures. This finding suggests the use of statins in addition to standard IV crystalloid hydration may be beneficial in the prevention of CIAKI.

  6. Cation Hydration Constants by Proton NMR: A Physical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Smith, Robert L.; And Others

    1988-01-01

    Studies the polarization effect on water by cations and anions. Describes an experiment to illustrate the polarization effect of sodium, lithium, calcium, and strontium ions on the water molecule in the hydration spheres of the ions. Analysis is performed by proton NMR. (MVL)

  7. Assessment of degree of hydration in dialysis patients using whole body and calf bioimpedance analysis

    NASA Astrophysics Data System (ADS)

    Zhu, F.; Kotanko, P.; Handelman, G. J.; Raimann, J.; Liu, L.; Carter, M.; Kuhlmann, M. K.; Siebert, E.; Leonard, E. F.; Levin, N. W.

    2010-04-01

    Prescription of an appropriate post hemodialysis (HD) dialysis target weight requires accurate evaluation of the degree of hydration. The aim of this study was to investigate whether a state of normal hydration as defined by calf bioimpedance spectroscopy (cBIS) could be characterized in HD and normal subjects (NS). cBIS was performed in 62 NS (33 m/29 f) and 30 HD patients (16 m /14 f) pre- and post-dialysis to measure extracellular resistance. Normalized calf resistivity at 5 kHz (ρN,5) was defined as resistivity divided by body mass index. Measurements were made at baseline (BL) and at a state of normal hydration (NH) established following the progressive reduction of post-HD weight over successive dialysis treatments until the ρN,5 was in the range of NS. Blood pressures were measured pre- and post-HD treatment. ρN,5 in males and females differed significantly in NS (20.5±1.99 vs 21.7±2.6 10-2 Ωm3/kg, p>0.05). In patients, ρN,5 notably increased and reached NH range due to progressive decrease in body weight, and systolic blood pressure (SBP) significantly decreased pre- and post-HD between BL and NBH respectively. This establishes the use of ρN,5 as a new comparator allowing the clinician to incrementally monitor the effect of removal of extracellular fluid from patients over a course of dialysis treatments.

  8. Self-curing concrete with different self-curing agents

    NASA Astrophysics Data System (ADS)

    Gopala krishna sastry, K. V. S.; manoj kumar, Putturu

    2018-03-01

    Concrete is recognised as a versatile construction material globally. Properties of concrete depend upon, to a greater extent, the hydration of cement and microstructure of hydrated cement. Congenial atmosphere would aid the hydration of cement and hence curing of concrete becomes essential, till a major portion of the hydration process is completed. But in areas of water inadequacy and concreting works at considerable heights, curing is problematic. Self-Curing or Internal Curing technique overcomes these problems. It supplies redundant moisture, for more than sufficient hydration of cement and diminish self-desiccation. Self-Curing agents substantially help in the conservation of water in concrete, by bringing down the evaporation during the hydration of Concrete. The present study focuses on the impact of self-curing agents such as Poly Ethylene Glycol (PEG), Poly Vinyl Alcohol (PVA) and Super Absorbent Polymer (SAP) on the concrete mix of M25 grade (reference mix). The effect of these agents on strength properties of Concrete such as compressive strength, split tensile strength and flexural strength was observed on a comparative basis which revealed that PEG 4000 was the most effective among all the agents.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendoza, Oscar, E-mail: oamendoz@unal.edu.co; Giraldo, Carolina; Camargo, Sergio S.

    This research evaluates the effect of sodium and potassium hydroxide on the structure and nano-mechanical properties of Calcium Silicate Hydrate (C-S-H) formed from the hydration of pure alite. Monoclinic (MIII) alite was synthesized and hydrated, using water-to-alite ratios of 0.5 and 0.6 and additions of 10% NaOH and KOH by weight of alite. Based on results of X-ray diffraction, isothermal calorimetry, thermogravimetric analysis, Nuclear Magnetic Resonance and nanoindentation, two different effects of the alkaline hydroxides on the hydration reaction of alite, both at early and later ages, can be identified: (i) a differentiated hydration process, attributed to an enhancement inmore » calcium hydroxide (CH) precipitation and a stimulation of the C-S-H nuclei; and (ii) an increase in the elastic modulus of the C-S-H aggregations, attributed to an electrostatic attraction between positive charges from the alkaline cations and negative charges from the C-S-H structure.« less

  10. Polyethylene oxide hydration in grafted layers

    NASA Astrophysics Data System (ADS)

    Dormidontova, Elena; Wang, Zilu

    Hydration of water soluble polymers is one of the key-factors defining their conformation and properties, similar to biopolymers. Polyethylene oxide (PEO) is one of the most important biomedical-applications polymers and is known for its reverse temperature solubility due to hydrogen bonding with water. As in many practical applications PEO chains are grafted to surfaces, e.g. of nanoparticles or planar surfaces, it is important to understand PEO hydration in such grafted layers. Using atomistic molecular dynamic simulations we investigate the details of molecular conformation and hydration of PEO end-grafted to gold surfaces. We analyze polymer and water density distribution as a function of distance from the surface for different grafting densities. Based on a detailed analysis of hydrogen bonding between polymer and water in grafted PEO layers, we will discuss the extent of PEO hydration and its implication for polymer conformation, mobility and layer properties. This research is supported by NSF (DMR-1410928).

  11. Study on the hydration and microstructure of Portland cement containing diethanol-isopropanolamine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Suhua, E-mail: yc982@163.com; Li, Weifeng; Zhang, Shenbiao

    2015-01-15

    Diethanol-isopropanolamine (DEIPA) is a tertiary alkanolamine used in the formulation of cement grinding-aid additives and concrete early-strength agents. In this research, isothermal calorimetry was used to study the hydration kinetics of Portland cement with DEIPA. A combination of X-ray powder diffraction (XRPD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC)–thermogravimetric (TG) analysis and micro-Raman spectroscopy was used to investigate the phase development in the process of hydration. Mercury intrusion porosimetry was used to study the pore size distribution and porosity. The results indicate that DEIPA promotes the formation of ettringite (AFt) and enhances the second hydration rate of the aluminatemore » and ferrite phases, the transformation of AFt into monosulfoaluminate (AFm) and the formation of microcrystalline portlandite (CH) at early stages. At later stages, DEIPA accelerates the hydration of alite and reduces the pore size and porosity.« less

  12. Hydration and Fluid Replacement Knowledge, Attitudes, Barriers, and Behaviors of NCAA Division 1 American Football Players.

    PubMed

    Judge, Lawrence W; Kumley, Roberta F; Bellar, David M; Pike, Kim L; Pierson, Eric E; Weidner, Thomas; Pearson, David; Friesen, Carol A

    2016-11-01

    Judge, LW, Kumley, RF, Bellar, DM, Pike, KL, Pierson, EE, Weidner, T, Pearson, D, and Friesen, CA. Hydration and fluid replacement knowledge, attitudes, barriers, and behaviors of NCAA Division 1 American football players. J Strength Cond Res 30(11): 2972-2978, 2016-Hydration is an important part of athletic performance, and understanding athletes' hydration knowledge, attitudes, barriers, and behaviors is critical for sport practitioners. The aim of this study was to assess National Collegiate Athletic Association (NCAA) Division 1 (D1) American football players, with regard to hydration and fluid intake before, during, and after exercise, and to apply this assessment to their overall hydration practice. The sample consisted of 100 student-athletes from 2 different NCAA D1 universities, who participated in voluntary summer football conditioning. Participants completed a survey to identify the fluid and hydration knowledge, attitudes and behaviors, demographic data, primary football position, previous nutrition education, and barriers to adequate fluid consumption. The average Hydration Knowledge Score (HKS) for the participants in the present study was 11.8 ± 1.9 (69.4% correct), with scores ranging from 42 to 100% correct. Four key misunderstandings regarding hydration, specifically related to intervals of hydration habits among the study subjects, were revealed. Only 24% of the players reported drinking enough fluids before, during, immediately after, and 2 hours after practice. Generalized linear model analysis predicted the outcome variable HKS (χ = 28.001, p = 0.045), with nutrition education (Wald χ = 8.250, p = 0.041) and position on the football team (χ = 9.361, p = 0.025) being significant predictors. "Backs" (e.g., quarterbacks, running backs, and defensive backs) demonstrated significantly higher hydration knowledge than "Linemen" (p = 0.014). Findings indicated that if changes are not made to increase hydration awareness levels among football teams, serious health consequences, including potential fatalities, could occur on the field, especially among heavier linemen.

  13. Invasion of drilling mud into gas-hydrate-bearing sediments. Part I: effect of drilling mud properties

    NASA Astrophysics Data System (ADS)

    Ning, Fulong; Zhang, Keni; Wu, Nengyou; Zhang, Ling; Li, Gang; Jiang, Guosheng; Yu, Yibing; Liu, Li; Qin, Yinghong

    2013-06-01

    To our knowledge, this study is the first to perform a numerical simulation and analysis of the dynamic behaviour of drilling mud invasion into oceanic gas-hydrate-bearing sediment (GHBS) and to consider the effects of such an invasion on borehole stability and the reliability of well logging. As a case study, the simulation background sets up the conditions of mud temperature over hydrate equilibrium temperature and overbalanced drilling, considering the first Chinese expedition to drill gas hydrate (GMGS-1). The results show that dissociating gas may form secondary hydrates in the sediment around borehole by the combined effects of increased pore pressure (caused by mud invasion and flow resistance), endothermic cooling that accompanies hydrate dissociation compounded by the Joule-Thompson effect and the lagged effect of heat transfer in sediments. The secondary hydrate ring around the borehole may be more highly saturated than the in situ sediment. Mud invasion in GHBS is a dynamic process of thermal, fluid (mud invasion), chemical (hydrate dissociation and reformation) and mechanical couplings. All of these factors interact and influence the pore pressure, flow ability, saturation of fluid and hydrates, mechanical parameters and electrical properties of sediments around the borehole, thereby having a strong effect on borehole stability and the results of well logging. The effect is particularly clear in the borehole SH7 of GMGS-1 project. The borehole collapse and resistivity distortion were observed during practical drilling and wireline logging operations in borehole SH7 of the GMGS-1.mud density (i.e. the corresponding borehole pressure), temperature and salinity have a marked influence on the dynamics of mud invasion and on hydrate stability. Therefore, perhaps well-logging distortion caused by mud invasion, hydrate dissociation and reformation should be considered for identifying and evaluating gas hydrate reservoirs. And some suitable drilling measurements need to be adopted to reduce the risk of well-logging distortion and borehole instability.

  14. Hydration shell parameters of aqueous alcohols: THz excess absorption and packing density.

    PubMed

    Matvejev, V; Zizi, M; Stiens, J

    2012-12-06

    Solvation in water requires minimizing the perturbations in its hydrogen bonded network. Hence solutes distort water molecular motions in a surrounding domain, forming a molecule-specific hydration shell. The properties of those hydration shells impact the structure and function of the solubilized molecules, both at the single molecule and at higher order levels. The size of the hydration shell and the picoseconds time-scale water dynamics retardation are revealed by terahertz (THz) absorption coefficient measurements. Room-temperature absorption coefficient at f = 0.28 [THz] is measured as a function of alcohol concentration in aqueous methanol, ethanol, 1,2-propanol, and 1-butanol solutions. Highly diluted alcohol measurements and enhanced overall measurement accuracy are achieved with a THz absorption measurement technique of nL-volume liquids in a capillary tube. In the absorption analysis, bulk and interfacial molecular domains of water and alcohol are considered. THz ideal and excess absorption coefficients are defined in accordance with thermodynamics mixing formulations. The parameter extraction method is developed based on a THz excess absorption model and hydrated solute molecule packing density representation. First, the hydration shell size is deduced from the hydrated solute packing densities at two specific THz excess absorption nonlinearity points: at infinite alcohol dilution (IAD) and at the THz excess absorption extremum (EAE). Consequently, interfacial water and alcohol molecular domain absorptions are deduced from the THz excess absorption model. The hydration shell sizes obtained at the THz excess absorption extremum are in excellent agreement with other reports. The hydration shells of methanol, ethanol, 1- and 2-propanol consist of 13.97, 22.94, 22.99, and 31.10 water molecules, respectively. The hydration shell water absorption is on average 0.774 ± 0.028 times the bulk water absorption. The hydration shell parameters might shed light on hydration dynamics of biomolecules.

  15. Joint Measurements Of Acoustic And Mechanical Properties For Methane Hydrate-Bearing Unconsolidated Sediments Synthesized In Laboratory

    NASA Astrophysics Data System (ADS)

    Yang, Z.; He, T.

    2017-12-01

    To more accurately explain geophysical exploration data of natural gas hydrate reservoir and to better assess the formation stability for geological or engineering hazards, it is important to comprehensively understand the geophysical and mechanical properties of hydrate-bearing unconsolidated marine sediments, which are significantly different from sea-water saturated ones. Compared to hard-to-control in-situ measurement, laboratory methods are important and feasible to investigate the parameter effects. With the new designed experimental apparatus, we measured ultrasonic velocity, resistivity and stress-strain relation of methane hydrate-bearing unconsolidated sediments. The experimental mineral mixture is prepared as the composition of sample HY-3 of core SH-7 from Shenhu area, South China Sea. It composed of 0.4 wt. % kaolinite, 23.5 wt. % silt (4 - 63 μm), 32.1 wt. % fine sand (63 - 250 μm), 29.2 wt. % medium sand (250 - 500 μm) and 14.8 wt. % coarse sand (500 - 2000 μm). The pure methane enters into the brine (NaCl salinity of 3.5%) saturated sample all around to synthesis methane hydrate. The methane hydrate saturation was calculated by methane consumption amount, which was in turn calculated by gas state equation using the measured methane pressure drop in high pressure reactor. The ultrasonic velocities and resistivity were measured frequently during methane hydrate saturation increasing to examine the velocity varying pattern, especially for S-wave velocities, which may reflect different hydrate occurrence states in sediment pores: load-bearing or not. The stress - strain curves of methane hydrate - bearing sediments showed typical elastic - plastic characteristics and were used to obtain Young's modulus, Poisson's ratio, failure strength and other mechanical parameters. With these results, we can know better about the hydrate reservoir at Shenhu area.

  16. Molecular mechanisms responsible for hydrate anti-agglomerant performance.

    PubMed

    Phan, Anh; Bui, Tai; Acosta, Erick; Krishnamurthy, Pushkala; Striolo, Alberto

    2016-09-28

    Steered and equilibrium molecular dynamics simulations were employed to study the coalescence of a sI hydrate particle and a water droplet within a hydrocarbon mixture. The size of both the hydrate particle and the water droplet is comparable to that of the aqueous core in reverse micelles. The simulations were repeated in the presence of various quaternary ammonium chloride surfactants. We investigated the effects due to different groups on the quaternary head group (e.g. methyl vs. butyl groups), as well as different hydrophobic tail lengths (e.g. n-hexadecyl vs. n-dodecyl tails) on the surfactants' ability to prevent coalescence. Visual inspection of sequences of simulation snapshots indicates that when the water droplet is not covered by surfactants it is more likely to approach the hydrate particle, penetrate the protective surfactant film, reach the hydrate surface, and coalesce with the hydrate than when surfactants are present on both surfaces. Force-distance profiles obtained from steered molecular dynamics simulations and free energy profiles obtained from umbrella sampling suggest that surfactants with butyl tripods on the quaternary head group and hydrophobic tails with size similar to the solvent molecules can act as effective anti-agglomerants. These results qualitatively agree with macroscopic experimental observations. The simulation results provide additional insights, which could be useful in flow assurance applications: the butyl tripod provides adhesion between surfactants and hydrates; when the length of the surfactant tail is compatible with that of the hydrocarbon in the liquid phase a protective film can form on the hydrate; however, once a molecularly thin chain of water molecules forms through the anti-agglomerant film, connecting the water droplet and the hydrate, water flows to the hydrate and coalescence is inevitable.

  17. Sensitivity Analysis of Methane Hydrate Reservoirs: Effects of Reservoir Parameters on Gas Productivity and Economics

    NASA Astrophysics Data System (ADS)

    Anderson, B. J.; Gaddipati, M.; Nyayapathi, L.

    2008-12-01

    This paper presents a parametric study on production rates of natural gas from gas hydrates by the method of depressurization, using CMG STARS. Seven factors/parameters were considered as perturbations from a base-case hydrate reservoir description based on Problem 7 of the International Methane Hydrate Reservoir Simulator Code Comparison Study led by the Department of Energy and the USGS. This reservoir is modeled after the inferred properties of the hydrate deposit at the Prudhoe Bay L-106 site. The included sensitivity variables were hydrate saturation, pressure (depth), temperature, bottom-hole pressure of the production well, free water saturation, intrinsic rock permeability, and porosity. A two-level (L=2) Plackett-Burman experimental design was used to study the relative effects of these factors. The measured variable was the discounted cumulative gas production. The discount rate chosen was 15%, resulting in the gas contribution to the net present value of a reservoir. Eight different designs were developed for conducting sensitivity analysis and the effects of the parameters on the real and discounted production rates will be discussed. The breakeven price in various cases and the dependence of the breakeven price on the production parameters is given in the paper. As expected, initial reservoir temperature has the strongest positive effect on the productivity of a hydrate deposit and the bottom-hole pressure in the production well has the strongest negative dependence. Also resulting in a positive correlation is the intrinsic permeability and the initial free water of the formation. Negative effects were found for initial hydrate saturation (at saturations greater than 50% of the pore space) and the reservoir porosity. These negative effects are related to the available sensible heat of the reservoir, with decreasing productivity due to decreasing available sensible heat. Finally, we conclude that for the base case reservoir, the break-even price (BEP) for natural gas is approximately 7/mcf and for warmer and deeper reservoirs the BEP can approach 5.33/mcf.

  18. Effects of carbohydrate-hydration strategies on glucose metabolism, sprint performance and hydration during a soccer match simulation in recreational players.

    PubMed

    Kingsley, Michael; Penas-Ruiz, Carlos; Terry, Chris; Russell, Mark

    2014-03-01

    This study compared the effects of three carbohydrate-hydration strategies on blood glucose concentration, exercise performance and hydration status throughout simulated soccer match-play. A randomized, double-blind and cross-over study design was employed. After familiarization, 14 recreational soccer players completed the soccer match simulation on three separate occasions. Participants consumed equal volumes of 9.6% carbohydrate-caffeine-electrolyte (∼ 6 mg/kg BW caffeine) solution with carbohydrate-electrolyte gels (H-CHO), 5.6% carbohydrate-electrolyte solution with electrolyte gels (CHO) or electrolyte solution and electrolyte gels (PL). Blood samples were taken at rest, immediately before exercise and every 15 min during exercise (first half: 15, 30, 45 min; second half: 60, 75, 90 min). Supplementation influenced blood glucose concentration (time × treatment interaction: p<0.001); however, none of the supplementation regimes were effective in preventing a drop in blood glucose at 60 min. Mean sprint speed was 3 ± 1% faster in H-CHO when compared with PL (treatment: p=0.047). Supplementation caused a 2.3 ± 0.5% increase in plasma osmolality in H-CHO (p<0.001) without change in CHO or PL. Similarly, mean sodium concentrations were 2.1 ± 0.4% higher in H-CHO when compared with PL (p=0.006). Combining high carbohydrate availability with caffeine resulted in improved sprint performance and elevated blood glucose concentrations throughout the first half and at 90 min of exercise; however, this supplementation strategy negatively influenced hydration status when compared with 5.6% carbohydrate-electrolyte and electrolyte solutions. Copyright © 2013 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  19. Gas Hydrate Petroleum System Analysis

    NASA Astrophysics Data System (ADS)

    Collett, T. S.

    2012-12-01

    In a gas hydrate petroleum system, the individual factors that contribute to the formation of gas hydrate accumulations, such as (1) gas hydrate pressure-temperature stability conditions, (2) gas source, (3) gas migration, and (4) the growth of the gas hydrate in suitable host sediment can identified and quantified. The study of know and inferred gas hydrate accumulations reveal the occurrence of concentrated gas hydrate is mostly controlled by the presence of fractures and/or coarser grained sediments. Field studies have concluded that hydrate grows preferentially in coarse-grained sediments because lower capillary pressures in these sediments permit the migration of gas and nucleation of hydrate. Due to the relatively distal nature of the deep marine geologic settings, the overall abundance of sand within the shallow geologic section is usually low. However, drilling projects in the offshore of Japan, Korea, and in the Gulf of Mexico has revealed the occurrence of significant hydrate-bearing sand reservoirs. The 1999/2000 Japan Nankai Trough drilling confirmed occurrence of hydrate-bearing sand-rich intervals (interpreted as turbidite fan deposits). Gas hydrate was determined to fill the pore spaces in these deposits, reaching saturations up to 80% in some layers. A multi-well drilling program titled "METI Toaki-oki to Kumano-nada" also identified sand-rich reservoirs with pore-filling hydrate. The recovered hydrate-bearing sand layers were described as very-fine- to fine-grained turbidite sand layers measuring from several centimeters up to a meter thick. However, the gross thickness of the hydrate-bearing sand layers were up to 50 m. In 2010, the Republic of Korea conducted the Second Ulleung Basin Gas Hydrate (UBGH2) Drilling Expedition. Seismic data clearly showed the development of a thick, potential basin wide, sedimentary sections characterized by mostly debris flows. The downhole LWD logs and core data from Site UBGH2-5 reveal that each debris flows is characterized by basal silt- to sand-rich clay dominated stratigraphic units. The upper most debris flow at Site UBGH2-5 extends into the overlying gas hydrate stability zone and IR core scans indicate that this section contains some amount of gas hydrate. The UBGH2 LWD and coring program also confirmed the occurrence of numerous volcaniclastic and siliciclastic sand reservoirs that were deposited as part of local to basin-wide turbidite events. Gas hydrate saturations within the turbidite sands ranged between 60-80 percent. In 2009, the Gulf of Mexico (GOM) Joint Industry Project (JIP) drilled seven wells at three sites, finding gas hydrate at high concentration in sands in four wells, with suspected gas hydrate at low to moderate saturations in two other wells. In the northern GOM, high sedimentation rates in conjunction with salt tectonism, has promoted the formation of complex seafloor topography. As a result, coarse-grained deposition can occur as gravity-driven sedimentation traversing the slope within intra-slope "ponded" accommodation spaces.

  20. Micro-structural characterization of the hydration products of bauxite-calcination-method red mud-coal gangue based cementitious materials.

    PubMed

    Liu, Xiaoming; Zhang, Na; Yao, Yuan; Sun, Henghu; Feng, Huan

    2013-11-15

    In this research, the micro-structural characterization of the hydration products of red mud-coal gangue based cementitious materials has been investigated through SEM-EDS, (27)Al MAS NMR and (29)Si MAS NMR techniques, in which the used red mud was derived from the bauxite calcination method. The results show that the red mud-coal gangue based cementitious materials mainly form fibrous C-A-S-H gel, needle-shaped/rod-like AFt in the early hydration period. With increasing of the hydration period, densification of the pastes were promoted resulting in the development of strength. EDS analysis shows that with the Ca/Si of red mud-coal gangue based cementitious materials increases, the average Ca/Si and Ca/(Si+Al) atomic ratio of C-A-S-H gel increases, while the average Al/Si atomic ratio of C-A-S-H gel decreases. MAS NMR analysis reveals that Al in the hydration products of red mud-coal gangue based cementitious materials exists in the forms of Al(IV) and Al(VI), but mainly in the form of Al(VI). Increasing the Ca/Si ratio of raw material promotes the conversion of [AlO4] to [AlO6] and inhibits the combination between [AlO4] and [SiO4] to form C-A-S-H gel. Meanwhile, the polymerization degree of [SiO4] in the hydration products declines. Published by Elsevier B.V.

  1. Gravimetric analysis and differential scanning calorimetric studies on glycerin-induced skin hydration.

    PubMed

    Lee, Ae-Ri Cho; Moon, Hee Kyung

    2007-11-01

    A thermal gravimetric analysis (TGA) and a differential scanning calorimetry (DSC) were carried out to characterize the water property and an alteration of lipid phase transition of stratum corneum (SC) by glycerin. In addition, the relationship between steady state skin permeation rate and skin hydration in various concentrations of glycerin was investigated. Water vapor absorption-desorption was studied in the hairless mouse stratum corneum. Dry SC samples were exposed to different conc. of glycerin (0-50%) followed by exposure to dry air and the change in weight property was monitored over time by use of TGA. In DSC study, significant decrease in DeltaH of the lipid transition in 10% glycerin and water treated sample: the heat of lipid transition of normal, water, 10% glycerin treated SC were 6.058, 4.412 and 4.316 mJ/mg, respectively. In 10% glycerin treated SCs, the Tc of water shifts around 129 degrees C, corresponding to the weakly bound secondary water. In 40% glycerin treated SC, the Tc of water shifts to 144 degrees C corresponding to strongly bound primary water. There was a good correlation between the hydration property of the skin and the steady state skin flux with the correlation coefficient (r2=0.94). As the hydration increased, the steady state flux increased. As glycerin concentration increased, hydration property decreased. High diffusivity induced by the hydration effect of glycerin and water could be the major contributing factor for the enhanced skin permeation of nicotinic acid (NA).

  2. Prospecting for marine gas hydrate resources

    USGS Publications Warehouse

    Boswell, Ray; Shipp, Craig; Reichel, Thomas; Shelander, Dianna; Saeki, Tetsuo; Frye, Matthew; Shedd, William; Collett, Timothy S.; McConnell, Daniel R.

    2016-01-01

    As gas hydrate energy assessment matures worldwide, emphasis has evolved away from confirmation of the mere presence of gas hydrate to the more complex issue of prospecting for those specific accumulations that are viable resource targets. Gas hydrate exploration now integrates the unique pressure and temperature preconditions for gas hydrate occurrence with those concepts and practices that are the basis for conventional oil and gas exploration. We have aimed to assimilate the lessons learned to date in global gas hydrate exploration to outline a generalized prospecting approach as follows: (1) use existing well and geophysical data to delineate the gas hydrate stability zone (GHSZ), (2) identify and evaluate potential direct indications of hydrate occurrence through evaluation of interval of elevated acoustic velocity and/or seismic events of prospective amplitude and polarity, (3) mitigate geologic risk via regional seismic and stratigraphic facies analysis as well as seismic mapping of amplitude distribution along prospective horizons, and (4) mitigate further prospect risk through assessment of the evidence of gas presence and migration into the GHSZ. Although a wide range of occurrence types might ultimately become viable energy supply options, this approach, which has been tested in only a small number of locations worldwide, has directed prospect evaluation toward those sand-hosted, high-saturation occurrences that were presently considered to have the greatest future commercial potential.

  3. Biot-type scattering effects in gas hydrate-bearing sediments

    NASA Astrophysics Data System (ADS)

    Rubino, J. GermáN.; Ravazzoli, Claudia L.; Santos, Juan E.

    2008-06-01

    This paper studies the energy conversions that take place at discontinuities within gas hydrate-bearing sediments and their influence on the attenuation of waves traveling through these media. The analysis is based on a theory recently developed by some of the authors, to describe wave propagation in multiphasic porous media composed of two solids saturated by a single-phase fluid. Real data from the Mallik 5L-38 Gas Hydrate Research well are used to calibrate the physical model, allowing to obtain information about the characteristics of the cementation between the mineral grains and gas hydrates for this well. Numerical experiments show that, besides energy conversions to reflected and transmitted classical waves, significant fractions of the energy of propagating waves may be converted into slow-waves energy at plane heterogeneities within hydrated sediments. Moreover, numerical simulations of wave propagation show that very high levels of attenuation can take place in the presence of heterogeneous media composed of zones with low and high gas hydrate saturations with sizes smaller or on the order of the wavelengths of the fast waves at sonic frequencies. These attenuation levels are in very good agreement with those measured at the Mallik 5L-38 Gas Hydrate Research Well, suggesting that these scattering-type effects may be a key-parameter to understand the high sonic attenuation observed at gas hydrate-bearing sediments.

  4. Polycrystalline methane hydrate: Synthesis from superheated ice, and low-temperature mechanical properties

    USGS Publications Warehouse

    Stern, L.A.; Kirby, S.H.; Durham, W.B.

    1998-01-01

    We describe a new and efficient technique to grow aggregates of pure methane hydrate in quantities suitable for physical and material properties testing. Test specimens were grown under static conditions by combining cold, pressurized CH4 gas with granulated H2O ice, and then warming the reactants to promote the reaction CH4(g) + 6H2O(s???1) ??? CH4??6H2O (methane hydrate). Hydrate formation evidently occurs at the nascent ice/liquid water interface on ice grain surfaces, and complete reaction was achieved by warming the system above the ice melting point and up to 290 K, at 25-30 MPa, for approximately 8 h. The resulting material is pure, cohesive, polycrystalline methane hydrate with controlled grain size and random orientation. Synthesis conditions placed the H2O ice well above its melting temperature while reaction progressed, yet samples and run records showed no evidence for bulk melting of the unreacted portions of ice grains. Control experiments using Ne, a non-hydrate-forming gas, showed that under otherwise identical conditions, the pressure reduction and latent heat associated with ice melting are easily detectable in our fabrication apparatus. These results suggest that under hydrate-forming conditions, H2O ice can persist metastably to temperatures well above its ordinary melting point while reacting to form hydrate. Direct observations of the hydrate growth process in a small, high-pressure optical cell verified these conclusions and revealed additional details of the hydrate growth process. Methane hydrate samples were then tested in constant-strain-rate deformation experiments at T = 140-200 K, Pc = 50-100 MPa, and ?? = 10-4 10-6 s-1. Measurements in both the brittle and ductile fields showed that methane hydrate has measurably different strength than H2O ice, and work hardens to an unusually high degree compared to other ices as well as to most metals and ceramics at high homologous temperatures. This work hardening may be related to a changing stoichiometry under pressure during plastic deformation; X-ray analyses showed that methane hydrate undergoes a process of solid-state disproportionation or exsolution during deformation at conditions well within its conventional stability field.

  5. Time lapse survey plan on the first offshore methane hydrate production test in 2013 around the eastern Nankai Trough area by multi-component OBC seismic tool

    NASA Astrophysics Data System (ADS)

    Inamori, T.; Hayashi, T.; Asakawa, E.; Takahashi, H.; Saeki, T.

    2011-12-01

    We are planning to conduct the multi-component ocean bottom cable (hereafter OBC) seismic survey to monitor the methane hydrate dissociation zone at the 1st offshore methane hydrate production test site in the eastern Nankai Trough, Japan, in 2013. We conducted the first OBC survey in the methane hydrate concentrated zone around the eastern Nankai Trough area in 2006 by RSCS which we developed. We obtained to the good image of methane hydrate bearing layer by P-P section as similar as the conventional surface seismic survey. However, we could not obtain the good image from P-S section compared with P-P section. On the other hand, we studied the sonic velocity distribution at the Mallik 2nd production test before and after in 2007, by the sonic tool data. We could clearly delineate the decrease of S-wave velocity, however, we could not detect the decrease of P-wave velocity because of the presence of the dissociated methane gas from methane hydrate. From these reason we guess the S-wave data is more proper to delineate the condition of the methane hydrate zone at the methane hydrate production tests than P-wave data. We are now developing the new OBC system, which we call Deep-sea Seismic System (hereafter DSS). The sensor of the DSS will install three accelerometers and one hydrophone. A feasibility study to detect the methane hydrate dissociation with the DSS was carried out and we found that the methane hydrate dissociation could be detected with the DSS depending on the zone of the dissociation. And the baseline survey will be held at the 1st offshore methane hydrate production test site in summer 2012. Two monitoring surveys are planned after the methane hydrate production test in 2013. We believe that we will get the good images to delineate the methane hydrate dissociated zone from this time lapse survey. The Authors would like to thank METI, MH21 consortium and JOGMEC for permissions to publish this paper.

  6. Quantification of the degree of reaction of fly ash

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ben Haha, M., E-mail: mohsen.ben-haha@empa.c; De Weerdt, K., E-mail: klaartje.de.weerdt@sintef.n; Lothenbach, B.

    2010-11-15

    The quantification of the fly ash (FA) in FA blended cements is an important parameter to understand the effect of the fly ash on the hydration of OPC and on the microstructural development. The FA reaction in two different blended OPC-FA systems was studied using a selective dissolution technique based on EDTA/NaOH, diluted NaOH solution, the portlandite content and by backscattered electron image analysis. The amount of FA determined by selective dissolution using EDTA/NaOH is found to be associated with a significant possible error as different assumptions lead to large differences in the estimate of FA reacted. In addition, atmore » longer hydration times, the reaction of the FA is underestimated by this method due to the presence of non-dissolved hydrates and MgO rich particles. The dissolution of FA in diluted NaOH solution agreed during the first days well with the dissolution as observed by image analysis. At 28 days and longer, the formation of hydrates in the diluted solutions leads to an underestimation. Image analysis appears to give consistent results and to be most reliable technique studied.« less

  7. Effect of Nano-SiO₂ on the Early Hydration of Alite-Sulphoaluminate Cement.

    PubMed

    Sun, Jinfeng; Xu, Zhiqiang; Li, Weifeng; Shen, Xiaodong

    2017-05-03

    The impact of nano-SiO₂ on the early hydration properties of alite-sulphoaluminate (AC$A) cement was investigated with a fixed water to solid ratio ( w / s ) of one. Nano-SiO₂ was used in partial substitution of AC$A cement at zero, one and three wt %. Calorimetry, X-ray diffraction (XRD), thermogravimetric/derivative thermogravimetric (TG/DTG), mercury intrusion porosimetry (MIP) and scanning electron microscopy (SEM) analyses were used to characterize the hydration and hydrates of the blended cement. The hydration of the AC$A cement was significantly promoted, resulting in an increase of the heat released with the addition of nano-SiO₂. Phase development composition analysis showed that nano-SiO₂ had no effect on the type of crystalline hydration products of the AC$A cement. Moreover, nano-SiO₂ showed significant positive effects on pore refinement where the total porosity decreased by 54.09% at three days with the inclusion of 3% nano-SiO₂. Finally, from the SEM observations, nano-SiO₂ was conducive to producing a denser microstructure than that of the control sample.

  8. Direct Measurements of 3D Structure, Chemistry and Mass Density During the Induction Period of C3S Hydration

    PubMed Central

    Hu, Qinang; Aboustait, Mohammed; Kim, Taehwan; Ley, M. Tyler; Bullard, Jeffrey W.; Scherer, George; Hanan, Jay C.; Rose, Volker; Winarski, Robert; Gelb, Jeffrey

    2017-01-01

    The reasons for the start and end of the induction period of cement hydration remain topic of controversy. One long-standing hypothesis is that a thin metastable hydrate forming on the surface of cement grains significantly reduces the particle dissolution rate; the eventual disappearance of this layer re-establishes higher dissolution rates at the beginning of the acceleration period. However, the importance, or even the existence, of this metastable layer has been questioned because it cannot be directly detected in most experiments. In this work, a combined analysis using nano-tomography and nano-X-ray fluorescence makes the direct imaging of early hydration products possible. These novel X-ray imaging techniques provide quantitative measurements of 3D structure, chemical composition, and mass density of the hydration products during the induction period. This work does not observe a low density product on the surface of the particle, but does provide insights into the formation of etch pits and the subsequent hydration products that fill them. PMID:28919638

  9. Measurement of clathrate hydrates via Raman spectroscopy

    USGS Publications Warehouse

    Sum, A.K.; Burruss, R.C.; Sloan, E.D.

    1997-01-01

    Raman spectra of clathrate hydrate guest molecules are presented for three known structures (I (sI), II (sII), and H (sH)) in the following systems: CH4 (sI), CO2 (sI), C3H8 (sII), CH4 + CO2 (sI), CD4 + C3H8 (sII), CH4 + N2 (sI), CH4 + THF-d8 (sII), and CH4 + C7D14 (sH). Relative occupancy of CH4 in the large and small cavities of sI were determined by deconvoluting the ??1 symmetric bands, resulting in hydration numbers of 6.04 ?? 0.03. The frequency of the ??1 bands for CH4 in structures I, II, and H differ statistically, so that Raman spectroscopy is a potential tool to identify hydrate crystal structure. Hydrate guest compositions were also measured for two vapor compositions of the CH4 + CO2 system, and they compared favorably with predictions. The large cavities were measured to be almost fully occupied by CH4 and CO2, whereas only a small fraction of the small cavities are occupied by CH4. No CO2 was found in the small cavities. Hydration numbers from 7.27 to 7.45 were calculated for the mixed hydrate.

  10. Pectin as an Extraordinary Natural Kinetic Hydrate Inhibitor

    PubMed Central

    Xu, Shurui; Fan, Shuanshi; Fang, Songtian; Lang, Xuemei; Wang, Yanhong; Chen, Jun

    2016-01-01

    Pectin as a novel natural kinetic hydrate inhibitor, expected to be eco-friendly and sufficiently biodegradable, was studied in this paper. The novel crystal growth inhibition (CGI) and standard induction time methods were used to evaluate its effect as hydrate inhibitor. It could successfully inhibit methane hydrate formation at subcooling temperature up to 12.5 °C and dramatically slowed the hydrate crystal growth. The dosage of pectin decreased by 66% and effective time extended 10 times than typical kinetic inhibitor. Besides, its maximum growth rate was no more than 2.0%/h, which was far less than 5.5%/h of growth rate for PVCap at the same dosage. The most prominent feature was that it totally inhibited methane hydrate crystal rapid growth when hydrate crystalline occurred. Moreover, in terms of typical natural inhibitors, the inhibition activity of pectin increased 10.0-fold in induction time and 2.5-fold in subcooling temperature. The extraordinary inhibition activity is closely related to its hydrogen bonding interaction with water molecules and the hydrophilic structure. Finally, the biodegradability and economical efficiency of pectin were also taken into consideration. The results showed the biodegradability improved 75.0% and the cost reduced by more than 73.3% compared to typical commercial kinetic inhibitors. PMID:26996773

  11. Hydration Characteristics of Low-Heat Cement Substituted by Fly Ash and Limestone Powder.

    PubMed

    Kim, Si-Jun; Yang, Keun-Hyeok; Moon, Gyu-Don

    2015-09-01

    This study proposed a new binder as an alternative to conventional cement to reduce the heat of hydration in mass concrete elements. As a main cementitious material, low-heat cement (LHC) was considered, and then fly ash (FA), modified FA (MFA) by vibrator mill, and limestone powder (LP) were used as a partial replacement of LHC. The addition of FA delayed the induction period at the hydration heat curve and the maximum heat flow value ( q max ) increased compared with the LHC based binder. As the proportion and fineness of the FA increased, the induction period of the hydration heat curve was extended, and the q max increased. The hydration production of Ca(OH)₂ was independent of the addition of FA or MFA up to an age of 7 days, beyond which the amount of Ca(OH)₂ gradually decreased owing to their pozzolanic reaction. In the case of LP being used as a supplementary cementitious material, the induction period of the hydration heat curve was reduced by comparison with the case of LHC based binder, and monocarboaluminate was observed as a hydration product. The average pore size measured at an age of 28 days was smaller for LHC with FA or MFA than for 100% LHC.

  12. Crystal structure, stability and spectroscopic properties of methane and CO2 hydrates.

    PubMed

    Martos-Villa, Ruben; Francisco-Márquez, Misaela; Mata, M Pilar; Sainz-Díaz, C Ignacio

    2013-07-01

    Methane hydrates are highly present in sea-floors and in other planets and their moons. Hence, these compounds are of great interest for environment, global climate change, energy resources, and Cosmochemistry. The knowledge of stability and physical-chemical properties of methane hydrate crystal structure is important for evaluating some new green becoming technologies such as, strategies to produce natural gas from marine methane hydrates and simultaneously store CO2 as hydrates. However, some aspects related with their stability, spectroscopic and other chemical-physical properties of both hydrates are not well understood yet. The structure and stability of crystal structure of methane and CO2 hydrates have been investigated by means of calculations with empirical interatomic potentials and quantum-mechanical methods based on Hartree-Fock and Density Functional Theory (DFT) approximations. Molecular Dynamic simulations have been also performed exploring different configurations reproducing the experimental crystallographic properties. Spectroscopic properties have also been studied. Frequency shifts of the main vibration modes were observed upon the formation of these hydrates, confirming that vibration stretching peaks of C-H at 2915cm(-1) and 2905cm(-1) are due to methane in small and large cages, respectively. Similar effect is observed in the CO2 clathrates. The guest-host binding energy in these clathrates calculated with different methods are compared and discussed in terms of adequacy of empirical potentials and DFT methods for describing the interactions between gas guest and the host water cage, proving an exothermic nature of methane and CO2 hydrates formation process. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Skin hydration and lifestyle-related factors in community-dwelling older people.

    PubMed

    Iizaka, Shinji

    2017-09-01

    This study aimed to investigate skin hydration status of the lower legs by comparing several methods and examining lifestyle-related factors in community-dwelling older people. A cross-sectional study was conducted in three community settings in Japan from autumn to winter. Participants were older people aged ≥65 years (n=118). Skin hydration status of the lower legs was evaluated by stratum corneum hydration using an electrical device, clinical symptoms by an expert's observation and the visual analogue scale. Lifestyle factors of skin care were evaluated by a self-administered questionnaire. The mean age of participants was 74.4 years and 83.9% were women. Stratum corneum hydration was significantly correlated with clinical scores by an expert's observation (rho=-0.46, P<0.001), but it was not correlated with the visual analogue scale (rho=-0.08, P=0.435). Among participants who did not perceive dry skin, 57.5% showed low stratum corneum hydration. Hospitalization in the past year (b=-9.4, P=0.008), excessive bathing habits (b=-4.6, P=0.014), and having an outdoor hobby (b=-5.7, P=0.007) were negatively associated, and diuretics (b=11.5, P=0.002) and lotion-type moisturizer use (b=4.6, P=0.022) were positively associated with stratum corneum hydration. Stratum corneum hydration measurements show an adequate association with observation-based evaluation by an expert, but poor agreement with subjective evaluation in community-dwelling older people. Hospitalization experience and lifestyle factors are associated with skin hydration. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. A machine learning approach to quantifying geologic similarities between sites of gas hydrate accumulation

    NASA Astrophysics Data System (ADS)

    Runyan, T. E.; Wood, W. T.; Palmsten, M. L.; Zhang, R.

    2016-12-01

    Gas hydrates, specifically methane hydrates, are sparsely sampled on a global scale, and their accumulation is difficult to predict geospatially. Several attempts have been made at estimating global inventories, and to some extent geospatial distribution, using geospatial extrapoltions guided with geophysical and geochemical methods. Our objective is to quantitatively predict the geospatial likelihood of encountering methane hydrates, with uncertainty. Predictions could be incorporated into analyses of drilling hazards as well as climate change. We use global data sets (including water depth, temperature, pressure, TOC, sediment thickness, and heat flow) as parameters to train a k-nearest neighbor (KNN) machine learning technique. The KNN is unsupervised and non-parametric, we do not provide any interpretive influence on prior probability distribution, so our results are strictly data driven. We have selected as test sites several locations where gas hydrates have been well studied, each with significantly different geologic settings.These include: The Blake Ridge (U.S. East Coast), Hydrate Ridge (U.S. West Coast), and the Gulf of Mexico. We then use KNN to quantify similarities between these sites, and determine, via the distance in parameter space, what is the likelihood and uncertainty of encountering gas hydrate anywhere in the world. Here we are operating under the assumption that the distance in parameter space is proportional to the probability of the occurrence of gas hydrate. We then compare these global similarity maps made from our several test sites to identify the geologic (geophyisical, bio-geochemical) parameters best suited for predicting gas hydrate occurrence.

  15. Comparing effectiveness of rhamnolipid biosurfactant with a quaternary ammonium salt surfactant for hydrate anti-agglomeration.

    PubMed

    York, J Dalton; Firoozabadi, Abbas

    2008-01-24

    Natural gas is projected to be the premium fuel of the 21st century because of availability, as well as economical and environmental considerations. Natural gas is coproduced with water from the subsurface forming gas hydrates. Hydrate formation may result in shutdown of onshore and offshore operations. Industry practice has been usage of alcohols--which have undesirable environmental impacts--to affect bulk-phase properties and inhibit hydrate formation. An alternative to alcohols is changing the surface properties through usage of polymers and surfactants, effective at 0.5-3 wt % of coproduced water. One group of low-dosage hydrate inhibitors (LDHI) are kinetic inhibitors, which affect nucleation rate and growth. A second group of LDHI are anti-agglomerants, which prevent agglomeration of small hydrate crystallites. Despite great potential, reported work on hydrate anti-agglomeration is very limited. In this paper, our focus is on the use of two vastly different surfactants as anti-agglomerants. We use a model oil, water, and tetrahydrofuran as a hydrate-forming species. We examine the effectiveness of a quaternary ammonium salt (i.e., quat). Visual observation measurements show that a small concentration of the quat (0.01%) can prevent agglomeration. However, a quat is not a green chemical and therefore may be undesirable. We show that a rhamnolipid biosurfactant can be effective to a concentration of 0.05 wt %. One difference between the two surfactants is the stability of the water-in-oil emulsions created. The biosurfactant forms a less stable emulsion, which makes it very desirable for hydrate application.

  16. Coupling of the hydration water dynamics and the internal dynamics of actin detected by quasielastic neutron scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujiwara, Satoru, E-mail: fujiwara.satoru@jaea.go.jp; Plazanet, Marie; Oda, Toshiro

    2013-02-15

    Highlights: ► Quasielastic neutron scattering spectra of F-actin and G-actin were measured. ► Analysis of the samples in D{sub 2}O and H{sub 2}O provided the spectra of hydration water. ► The first layer hydration water around F-actin is less mobile than around G-actin. ► This difference in hydration water is in concert with the internal dynamics of actin. ► Water outside the first layer behaves bulk-like but influenced by the first layer. -- Abstract: In order to characterize dynamics of water molecules around F-actin and G-actin, quasielastic neutron scattering experiments were performed on powder samples of F-actin and G-actin, hydratedmore » either with D{sub 2}O or H{sub 2}O, at hydration ratios of 0.4 and 1.0. By combined analysis of the quasielastic neutron scattering spectra, the parameter values characterizing the dynamics of the water molecules in the first hydration layer and those of the water molecules outside of the first layer were obtained. The translational diffusion coefficients (D{sub T}) of the hydration water in the first layer were found to be 1.2 × 10{sup −5} cm{sup 2}/s and 1.7 × 10{sup −5} cm{sup 2}/s for F-actin and G-actin, respectively, while that for bulk water was 2.8 × 10{sup −5} cm{sup 2}/s. The residence times were 6.6 ps and 5.0 ps for F-actin and G-actin, respectively, while that for bulk water was 0.62 ps. These differences between F-actin and G-actin, indicating that the hydration water around G-actin is more mobile than that around F-actin, are in concert with the results of the internal dynamics of F-actin and G-actin, showing that G-actin fluctuates more rapidly than F-actin. This implies that the dynamics of the hydration water is coupled to the internal dynamics of the actin molecules. The D{sub T} values of the water molecules outside of the first hydration layer were found to be similar to that of bulk water though the residence times are strongly affected by the first hydration layer. This supports the recent observation on intracellular water that shows bulk-like behavior.« less

  17. Trapping and migration of methane associated with the gas hydrate stability zone at the Blake Ridge Diapir: New insights from seismic data

    USGS Publications Warehouse

    Taylor, M.H.; Dillon, William P.; Pecher, I.A.

    2000-01-01

    The Blake Ridge Diapir is the southernmost of a line of salt diapirs along the Carolina trough. Diapirs cause faulting of the superjacent sediments, creating pathways for migration of fluids and gas to the seafloor. We analyzed reflection seismic data from the Blake Ridge Diapir, which is located in a region with known abundant gas hydrate occurrence. A striking feature in these data is a significant shallowing of the base of gas hydrate stability (BGHS) over the center of the diapir. The seafloor is warped up by about 100 m above the diapir, from about 2300 m to about 2200 m. The BGHS, as indicated by a bottom simulating reflection (BSR), is about 4.5 s off the flanks of the diapir, rising to about 4.15 s at the center. Above the diapir, a fault system appears to rise vertically from the BGHS to about 0.05 s below the seafloor (40-50 m); it then diverges into several steeply dipping faults that breach the seafloor and cover an area ~700 m in diameter. Other secondary faults diverge from the main fault or emerge directly from the BGHS near the crest of the diapir. Gas and other fluids may migrate upward through the faults. We performed complex trace analysis to compare the reflection strength and instantaneous frequency along individual reflections. A low-frequency anomaly over the center of the diapir indicates high seismic attenuation. This is interpreted to be caused by migration of fluids (probably methane) along fault pathways. The migration of gas (i.e. probably mainly methane) through the gas hydrate stability zone is not yet understood. We speculate that pore fluids in the faults may be too warm and too salty to form gas hydrate, even at depths where gas hydrate is stable away from the diapir. Alternatively, gas hydrates may seal the fault walls such that water supply is too low to transform all the gas into gas hydrates. The shallowing of the BSR may reflect increased heatflow above the diapir either caused by the high thermal conductivity of the underlying salt or by advective heat transport along with fluids. High pore water salinity shifts the gas hydrate stability to lower temperatures and may also play a significant role in BSR shallowing. We, therefore, investigated the possible effect of pore water salinity on shallowing of the BSR. We found that BSR shallowing may theoretically be entirely caused by increased salinity over the diapir, although geologically this would not be reasonable. This observation demonstrates the potential importance of pore water salinity for lateral variations of BSR depths, in particular, above salt structures: (C) 2000 Elsevier Science B.V.

  18. Analysis of the Optimum Usage of Slag for the Compressive Strength of Concrete.

    PubMed

    Lee, Han-Seung; Wang, Xiao-Yong; Zhang, Li-Na; Koh, Kyung-Taek

    2015-03-18

    Ground granulated blast furnace slag is widely used as a mineral admixture to replace partial Portland cement in the concrete industry. As the amount of slag increases, the late-age compressive strength of concrete mixtures increases. However, after an optimum point, any further increase in slag does not improve the late-age compressive strength. This optimum replacement ratio of slag is a crucial factor for its efficient use in the concrete industry. This paper proposes a numerical procedure to analyze the optimum usage of slag for the compressive strength of concrete. This numerical procedure starts with a blended hydration model that simulates cement hydration, slag reaction, and interactions between cement hydration and slag reaction. The amount of calcium silicate hydrate (CSH) is calculated considering the contributions from cement hydration and slag reaction. Then, by using the CSH contents, the compressive strength of the slag-blended concrete is evaluated. Finally, based on the parameter analysis of the compressive strength development of concrete with different slag inclusions, the optimum usage of slag in concrete mixtures is determined to be approximately 40% of the total binder content. The proposed model is verified through experimental results of the compressive strength of slag-blended concrete with different water-to-binder ratios and different slag inclusions.

  19. Quasichemical analysis of the cluster-pair approximation for the thermodynamics of proton hydration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pollard, Travis; Beck, Thomas L.; Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221

    2014-06-14

    A theoretical analysis of the cluster-pair approximation (CPA) is presented based on the quasichemical theory of solutions. The sought single-ion hydration free energy of the proton includes an interfacial potential contribution by definition. It is shown, however, that the CPA involves an extra-thermodynamic assumption that does not guarantee uniform convergence to a bulk free energy value with increasing cluster size. A numerical test of the CPA is performed using the classical polarizable AMOEBA force field and supporting quantum chemical calculations. The enthalpy and free energy differences are computed for the kosmotropic Na{sup +}/F{sup −} ion pair in water clusters ofmore » size n = 5, 25, 105. Additional calculations are performed for the chaotropic Rb{sup +}/I{sup −} ion pair. A small shift in the proton hydration free energy and a larger shift in the hydration enthalpy, relative to the CPA values, are predicted based on the n = 105 simulations. The shifts arise from a combination of sequential hydration and interfacial potential effects. The AMOEBA and quantum chemical results suggest an electrochemical surface potential of water in the range −0.4 to −0.5 V. The physical content of single-ion free energies and implications for ion-water force field development are also discussed.« less

  20. Analysis of the Optimum Usage of Slag for the Compressive Strength of Concrete

    PubMed Central

    Lee, Han-Seung; Wang, Xiao-Yong; Zhang, Li-Na; Koh, Kyung-Taek

    2015-01-01

    Ground granulated blast furnace slag is widely used as a mineral admixture to replace partial Portland cement in the concrete industry. As the amount of slag increases, the late-age compressive strength of concrete mixtures increases. However, after an optimum point, any further increase in slag does not improve the late-age compressive strength. This optimum replacement ratio of slag is a crucial factor for its efficient use in the concrete industry. This paper proposes a numerical procedure to analyze the optimum usage of slag for the compressive strength of concrete. This numerical procedure starts with a blended hydration model that simulates cement hydration, slag reaction, and interactions between cement hydration and slag reaction. The amount of calcium silicate hydrate (CSH) is calculated considering the contributions from cement hydration and slag reaction. Then, by using the CSH contents, the compressive strength of the slag-blended concrete is evaluated. Finally, based on the parameter analysis of the compressive strength development of concrete with different slag inclusions, the optimum usage of slag in concrete mixtures is determined to be approximately 40% of the total binder content. The proposed model is verified through experimental results of the compressive strength of slag-blended concrete with different water-to-binder ratios and different slag inclusions. PMID:28787998

  1. The structure of aqueous sodium hydroxide solutions: a combined solution x-ray diffraction and simulation study.

    PubMed

    Megyes, Tünde; Bálint, Szabolcs; Grósz, Tamás; Radnai, Tamás; Bakó, Imre; Sipos, Pál

    2008-01-28

    To determine the structure of aqueous sodium hydroxide solutions, results obtained from x-ray diffraction and computer simulation (molecular dynamics and Car-Parrinello) have been compared. The capabilities and limitations of the methods in describing the solution structure are discussed. For the solutions studied, diffraction methods were found to perform very well in describing the hydration spheres of the sodium ion and yield structural information on the anion's hydration structure. Classical molecular dynamics simulations were not able to correctly describe the bulk structure of these solutions. However, Car-Parrinello simulation proved to be a suitable tool in the detailed interpretation of the hydration sphere of ions and bulk structure of solutions. The results of Car-Parrinello simulations were compared with the findings of diffraction experiments.

  2. Stability of Gas Hydrates on Continental Margins: Implications of Subsurface Fluid Flow

    NASA Astrophysics Data System (ADS)

    Nunn, J. A.

    2008-12-01

    Gas hydrates are found at or just below the sediment-ocean interface in continental margins settings throughout the world. They are also found on land in high latitude regions such as the north slope of Alaska. While gas hydrate occurrence is common, gas hydrates are stable under a fairly restricted range of temperatures and pressures. In a purely conductive thermal regime, near surface temperatures depend on basal heat flow, thermal conductivity of sediments, and temperature at the sediment-water or sediment-air interface. Thermal conductivity depends on porosity and sediment composition. Gas hydrates are most stable in areas of low heat flow and high thermal conductivity which produce low temperature gradients. Older margins with thin continental crust and coarse grained sediments would tend to be colder. Another potentially important control on subsurface temperatures is advective heat transport by recharge/discharge of groundwater. Upward fluid flow depresses temperature gradients over a purely conductive regime with the same heat flow which would make gas hydrates more stable. Downward fluid flow would have the opposite effect. However, regional scale fluid flow may substantially increase heat flow in discharge areas which would destabilize gas hydrates. For example, discharge of topographically driven groundwater along the coast in the Central North Slope of Alaska has increased surface heat flow in some areas by more than 50% over a purely conductive thermal regime. Fluid flow also alters the pressure regime which can affect gas hydrate stability. Modeling results suggest a positive feedback between gas hydrate formation/disassociation and fluid flow. Disassociation of gas hydrates or permafrost due to global warming could increase permeability. This could enhance fluid flow and associated heat transport causing a more rapid and/or more spatially extensive gas hydrate disassociation than predicted solely from conductive propagation of temporal changes in surface or water bottom temperature. Model results from both the North Slope of Alaska and the Gulf of Mexico are compared.

  3. Inadequate Hydration, BMI, and Obesity Among US Adults: NHANES 2009-2012.

    PubMed

    Chang, Tammy; Ravi, Nithin; Plegue, Melissa A; Sonneville, Kendrin R; Davis, Matthew M

    2016-07-01

    Improving hydration is a strategy commonly used by clinicians to prevent overeating with the goal of promoting a healthy weight among patients. The relationship between weight status and hydration, however, is unclear. Our objective was to assess the relationship between inadequate hydration and BMI and inadequate hydration and obesity among adults in the United States. Our study used a nationally representative sample from the National Health and Nutrition Examination Survey (NHANES) 2009 to 2012, and included adults aged 18 to 64 years. The primary outcome of interest was body mass index (BMI), measured in continuous values and also categorized as obese (BMI ≥30) or not (BMI <30). Individuals with urine osmolality values of 800 mOsm/kg or greater were considered to be inadequately hydrated. Linear and logistic regressions were performed with continuous BMI and obesity status as the outcomes, respectively. Models were adjusted for known confounders including age, race/ethnicity, sex, and income-to-poverty ratio. In this nationally representative sample (n = 9,528; weighted n = 193.7 million), 50.8% were women, 64.5% were non-Hispanic white, and the mean age was 41 years. Mean urine osmolality was 631.4 mOsm/kg (SD = 236.2 mOsm/kg); 32.6% of the sample was inadequately hydrated. In adjusted models, adults who were inadequately hydrated had higher BMIs (1.32 kg/m(2); 95% CI, 0.85-1.79; P <.001) and higher odds of being obese (OR = 1.59; 95% CI, 1.35-1.88; P <.001) compared with hydrated adults. We found a significant association between inadequate hydration and elevated BMI and inadequate hydration and obesity, even after controlling for confounders. This relationship has not previously been shown on a population level and suggests that water, an essential nutrient, may deserve greater focus in weight management research and clinical strategies. © 2016 Annals of Family Medicine, Inc.

  4. Absolute proton hydration free energy, surface potential of water, and redox potential of the hydrogen electrode from first principles: QM/MM MD free-energy simulations of sodium and potassium hydration.

    PubMed

    Hofer, Thomas S; Hünenberger, Philippe H

    2018-06-14

    The absolute intrinsic hydration free energy G H + ,wat ◦ of the proton, the surface electric potential jump χ wat ◦ upon entering bulk water, and the absolute redox potential V H + ,wat ◦ of the reference hydrogen electrode are cornerstone quantities for formulating single-ion thermodynamics on absolute scales. They can be easily calculated from each other but remain fundamentally elusive, i.e., they cannot be determined experimentally without invoking some extra-thermodynamic assumption (ETA). The Born model provides a natural framework to formulate such an assumption (Born ETA), as it automatically factors out the contribution of crossing the water surface from the hydration free energy. However, this model describes the short-range solvation inaccurately and relies on the choice of arbitrary ion-size parameters. In the present study, both shortcomings are alleviated by performing first-principle calculations of the hydration free energies of the sodium (Na + ) and potassium (K + ) ions. The calculations rely on thermodynamic integration based on quantum-mechanical molecular-mechanical (QM/MM) molecular dynamics (MD) simulations involving the ion and 2000 water molecules. The ion and its first hydration shell are described using a correlated ab initio method, namely resolution-of-identity second-order Møller-Plesset perturbation (RIMP2). The next hydration shells are described using the extended simple point charge water model (SPC/E). The hydration free energy is first calculated at the MM level and subsequently increased by a quantization term accounting for the transformation to a QM/MM description. It is also corrected for finite-size, approximate-electrostatics, and potential-summation errors, as well as standard-state definition. These computationally intensive simulations provide accurate first-principle estimates for G H + ,wat ◦ , χ wat ◦ , and V H + ,wat ◦ , reported with statistical errors based on a confidence interval of 99%. The values obtained from the independent Na + and K + simulations are in excellent agreement. In particular, the difference between the two hydration free energies, which is not an elusive quantity, is 73.9 ± 5.4 kJ mol -1 (K + minus Na + ), to be compared with the experimental value of 71.7 ± 2.8 kJ mol -1 . The calculated values of G H + ,wat ◦ , χ wat ◦ , and V H + ,wat ◦ (-1096.7 ± 6.1 kJ mol -1 , 0.10 ± 0.10 V, and 4.32 ± 0.06 V, respectively, averaging over the two ions) are also in remarkable agreement with the values recommended by Reif and Hünenberger based on a thorough analysis of the experimental literature (-1100 ± 5 kJ mol -1 , 0.13 ± 0.10 V, and 4.28 ± 0.13 V, respectively). The QM/MM MD simulations are also shown to provide an accurate description of the hydration structure, dynamics, and energetics.

  5. Analysis of mesoscopic attenuation in gas-hydrate bearing sediments

    NASA Astrophysics Data System (ADS)

    Rubino, J. G.; Ravazzoli, C. L.; Santos, J. E.

    2007-05-01

    Several authors have shown that seismic wave attenuation combined with seismic velocities constitute a useful geophysical tool to infer the presence and amounts of gas hydrates lying in the pore space of the sediments. However, it is still not fully understood the loss mechanism associated to the presence of the hydrates, and most of the works dealing with this problem focuse on macroscopic fluid flow, friction between hydrates and sediment matrix and squirt flow. It is well known that an important cause of the attenuation levels observed in seismic data from some sedimentary regions is the mesoscopic loss mechanism, caused by heterogeneities in the rock and fluid properties greater than the pore size but much smaller than the wavelengths. In order to analyze this effect in heterogeneous gas-hydrate bearing sediments, we developed a finite-element procedure to obtain the effective complex modulus of an heterogeneous porous material containing gas hydrates in its pore space using compressibility tests at different oscillatory frequencies in the seismic range. The complex modulus were obtained by solving Biot's equations of motion in the space-frequency domain with appropriate boundary conditions representing a gedanken laboratory experiment measuring the complex volume change of a representative sample of heterogeneous bulk material. This complex modulus in turn allowed us to obtain the corresponding effective phase velocity and quality factor for each frequency and spatial gas hydrate distribution. Physical parameters taken from the Mallik 5L-38 Gas Hydrate Research well (Mackenzie Delta, Canada) were used to analyze the mesoscopic effects in realistic hydrated sediments.

  6. Use of high-frequency ultrasonography for evaluation of skin thickness in relation to hydration status and fluid distribution at various cutaneous sites in dogs.

    PubMed

    Diana, Alessia; Guglielmini, Carlo; Fracassi, Federico; Pietra, Marco; Balletti, Erika; Cipone, Mario

    2008-09-01

    To assess the usefulness of high-frequency diagnostic ultrasonography for evaluation of changes of skin thickness in relation to hydration status and fluid distribution at various cutaneous sites in dogs. 10 clinically normal adult dogs (6 males and 4 females) of various breeds. Ultrasonographic examination of the skin was performed before and after hydration via IV administration of an isotonic crystalloid solution (30 mL/kg/h for 30 minutes). A 13-MHz linear-array transducer was used to obtain series of ultrasonographic images at 4 different cutaneous sites (the frontal, sacral, flank, and metatarsal regions). Weight and various clinicopathologic variables (PCV; serum osmolality; and serum total protein, albumin, and sodium concentrations) were determined before and after the infusion. These variables and ultrasonographic measurements of skin thickness before and after hydration were compared. Among the 10 dogs, mean preinfusion skin thickness ranged from 2,211 microm (metatarsal region) to 3,249 microm (sacral region). Compared with preinfusion values, weight was significantly increased, whereas PCV; serum osmolality; and serum total protein, albumin, and sodium concentrations were significantly decreased after infusion. After infusion, dermal echogenicity decreased and skin thickness increased significantly by 21%, 14%, 15%, and 13% in the frontal, sacral, flank, and metatarsal regions, respectively. Cutaneous site and hydration were correlated with cutaneous characteristics and skin thickness determined by use of high-frequency ultrasonography in dogs. Thus, diagnostic ultrasonography may be a useful tool for the noninvasive evaluation of skin hydration in healthy dogs and in dogs with skin edema.

  7. Observation of hydration of single, modified carbon aerosols

    NASA Technical Reports Server (NTRS)

    Wyslouzil, B. E.; Carleton, K. L.; Sonnenfroh, D. M.; Rawlins, W. T.; Arnold, S.

    1994-01-01

    We have compared the hydration behavior of single carbon particles that have been treated by exposure to gaseous H2SO4 with that of untreated particles. Untreated carbon particles did not hydrate as the relative humidity varied from 0 to 80% at 23 C. In contrast, treated particles hydrated under subsaturation conditions; mass increases of up to 30% were observed. The mass increase is consistent with sulfuric acid equilibration with the ambient relative humidity in the presence of inert carbon. For the samples studied, the average amount of absorbed acid was 14% +/- 6% by weight, which corresponds to a surface coverage of approximately 0.1 monolayer. The mass fraction of surface-absorbed acid is comparable to the soluble mass fraction observed by Whitefield et al. (1993) in jet aircraft engine aerosols. Estimates indicate this mass fraction corresponds to 0.1% of the available SO2 exiting an aircraft engine ending up as H2SO4 on the carbon aerosol. If this heterogeneous process occurs early enough in the exhaust plume, it may compete with homogeneous nucleation as a mechanism for producing sulfuric acid rich aerosols.

  8. Effect of mass concentration of composite phase change material CA-DE on HCFC-141b hydrate induction time and system stability

    NASA Astrophysics Data System (ADS)

    Li, Juan; Sun, Zhigao; Liu, Chenggang; Zhu, Minggui

    2018-03-01

    HCFC-141b hydrate is a new type of environment-friendly cold storage medium which may be adopted to balance energy supply and demand, achieve peak load shifting and energy saving, wherein the hydrate induction time and system stability are key factors to promote and realize its application in industrial practice. Based on step cooling curve measurement, two kinds of aliphatic hydrocarbon organics, n-capric acid (CA) and lauryl alcohol (DE), were selected to form composite phase change material and to promote the generation of HCFC-141b hydrate. Five kinds of CA-DE mass concentration were chosen to compare the induction time and hydration system stability. In order to accelerate temperature reduction rate, the metal Cu with high heat conductivity performance was adopted to conduct out the heat generated during phase change. Instability index was introduced to appraise system stability. Experimental results show that phase change temperature and sub-cooling degree of CA-DE is 11.1°C and 3.0°C respectively, which means it is a preferable medium for HCFC-141b hydrate formation. For the experimental hydration systems, segmented emulsification is achieved by special titration manner to avoid rapid layering under static condition. Induction time can achieve up to 23.3min with the densest HCFC-141b hydrate and the lowest instability index, wherein CA-DE mass concentration is 3%.

  9. Vibrational spectroscopy of water in hydrated lipid multi-bilayers. II. Two-dimensional infrared and peak shift observables within different theoretical approximations.

    PubMed

    Gruenbaum, Scott M; Pieniazek, Piotr A; Skinner, J L

    2011-10-28

    In a previous report, we calculated the infrared absorption spectrum and both the isotropic and anisotropic pump-probe signals for the OD stretch of isotopically dilute water in dilauroylphosphatidylcholine (DLPC) multi-bilayers as a function of the lipid hydration level. These results were then compared to recent experimental measurements and are in generally good agreement. In this paper, we will further investigate the structure and dynamics of hydration water using molecular dynamics simulations and calculations of the two-dimensional infrared and vibrational echo peak shift observables for hydration water in DLPC membranes. These observables have not yet been measured experimentally, but future comparisons may provide insight into spectral diffusion processes and hydration water heterogeneity. We find that at low hydration levels the motion of water molecules inside the lipid membrane is significantly arrested, resulting in very slow spectral diffusion. At higher hydration levels, spectral diffusion is more rapid, but still slower than in bulk water. We also investigate the effects of several common approximations on the calculation of spectroscopic observables by computing these observables within multiple levels of theory. The impact of these approximations on the resulting spectra affects our interpretation of these measurements and reveals that, for example, the cumulant approximation, which may be valid for certain systems, is not a good approximation for a highly heterogeneous environment such as hydration water in lipid multi-bilayers.

  10. Efficacy of chloral hydrate-hydroxyzine and chloral hydrate-midazolam in pediatric magnetic resonance imaging sedation.

    PubMed

    Fallah, Razieh; Fadavi, Nafiseh; Behdad, Shekofah; Fallah Tafti, Mahmoud

    2014-01-01

    Magnetic resonance imaging (MRI) is a useful diagnostic tool for the evaluation of congenital or acquired brain lesions. But, in all of less than 8-year-old children, pharmacological agents and procedural sedation should be used to induce motionless conditions for imaging studies. The purpose of this study was to compare the efficacy and safety of combination of chloral hydrate-hydroxyzine (CH+H) and chloral hydrate-midazolam (CH+M) in pediatric MRI sedation. In a parallel single-blinded randomized clinical trial, sixty 1-7-year-old children who underwent brain MRI, were randomly assigned to receive chloral hydrate in a minimum dosage of 40 mg/kg in combination with either 2 mg/kg of hydroxyzine or 0.5 mg/kg of midazolam. The primary outcomes were efficacy of adequate sedation (Ramsay sedation score of five) and completion of MRI examination. The secondary outcome was clinical side-effects. Twenty-eight girls (46.7%) and 32 boys (53.3%) with the mean age of 2.72±1.58 years were studied. Adequate sedation and completion of MRI were achieved in 76.7% of CH+H group. Mild and transient clinical side-effects, such as vomiting of one child in each group and agitation in 2 (6.6 %) children of CH+M group, were also seen. The adverse events were more frequent in CH+M group. Combinations of chloral hydrate-hydroxyzine and chloral hydrate-midazolam were effective in pediatric MRI sedation; however, chloral hydrate-hydroxyzine was safer.

  11. Bioelectrical impedance vector analysis as a useful predictor of nutritional status in patients with short bowel syndrome.

    PubMed

    Fassini, Priscila Giacomo; Nicoletti, Carolina Ferreira; Pfrimer, Karina; Nonino, Carla Barbosa; Marchini, Júlio Sérgio; Ferriolli, Eduardo

    2017-08-01

    Short bowel syndrome (SBS) represents a serious intestinal absorption disorder. Therefore, patients with SBS may have severe malnutrition and excessive mineral and fluid losses. Once the assessment of nutritional status is important in their follow-up, body composition measurements and especially total body water (TBW) must be repeatedly evaluated for the assessment of changes in hydration and nutritional care. The aim of this study was to investigate if bioelectrical impedance vector analysis (BIVA) is a useful predictor of nutritional and hydration status in SBS patients. In this observational study, 22 participants (12 women), 11 with SBS and 11 gender, age and BMI-matched controls, were evaluated using the bioelectrical impedance measurements (BIA) and BIVA to assess nutritional and hydration status. Participants age was 53 ± 8 y (mean ± SD). Body water, fat mass and lean mass as assessed by BIA did not differ between the two groups. However, BIVA showed important differences between the groups regarding hydration and amount of soft tissue (p < 0.0001 for women and p = 0.0015 for men). The results also evidenced that women's vectors were related to cachexia, while men's vectors were divided into lean and cachexia quadrants. The use of BIVA analysis also evidenced hydration disturbance and losses of soft tissue. BIVA may represent a better predictor of nutritional status for analysis and interpretation of body composition in patients with short bowel syndrome. This trial was registered at ClinicalTrials.gov as NCT02113228. Copyright © 2016 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  12. Integrated analysis of well logs and seismic data to estimate gas hydrate concentrations at Keathley Canyon, Gulf of Mexico

    USGS Publications Warehouse

    Lee, M.W.; Collett, T.S.

    2008-01-01

    Accurately detecting and quantifying gas hydrate or free gas in sediments from seismic data require downhole well-log data to calibrate the physical properties of the gas hydrate-/free gas-bearing sediments. As part of the Gulf of Mexico Joint Industry Program, a series of wells were either cored or drilled in the Gulf of Mexico to characterize the physical properties of gas hydrate-bearing sediments, to calibrate geophysical estimates, and to evaluate source and transport mechanisms for gas within the gas hydrates. Downhole acoustic logs were used sparingly in this study because of degraded log quality due to adverse wellbore conditions. However, reliable logging while drilling (LWD) electrical resistivity and porosity logs were obtained. To tie the well-log information to the available 3-D seismic data in this area, a velocity log was calculated from the available resistivity log at the Keathley Canyon 151-2 well, because the acoustic log or vertical seismic data acquired at the nearby Keathley Canyon 151-3 well were either of poor quality or had limited depth coverage. Based on the gas hydrate saturations estimated from the LWD resistivity log, the modified Biot-Gassmann theory was used to generate synthetic acoustic log and a synthetic seismogram was generated with a fairly good agreement with a seismic profile crossing the well site. Based on the well-log information, a faintly defined bottom-simulating reflection (BSR) in this area is interpreted as a reflection representing gas hydrate-bearing sediments with about 15% saturation overlying partially gas-saturated sediments with 3% saturation. Gas hydrate saturations over 30-40% are estimated from the resistivity log in two distinct intervals at 220-230 and 264-300 m below the sea floor, but gas hydrate was not physically recovered in cores. It is speculated that the poor recovery of cores and gas hydrate morphology are responsible for the lack of physical gas hydrate recovery.

  13. Characterization of gas hydrate distribution using conventional 3D seismic data in the Pearl River Mouth Basin, South China Sea

    USGS Publications Warehouse

    Wang, Xiujuan; Qiang, Jin; Collett, Timothy S.; Shi, Hesheng; Yang, Shengxiong; Yan, Chengzhi; Li, Yuanping; Wang, Zhenzhen; Chen, Duanxin

    2016-01-01

    A new 3D seismic reflection data volume acquired in 2012 has allowed for the detailed mapping and characterization of gas hydrate distribution in the Pearl River Mouth Basin in the South China Sea. Previous studies of core and logging data showed that gas hydrate occurrence at high concentrations is controlled by the presence of relatively coarse-grained sediment and the upward migration of thermogenic gas from the deeper sediment section into the overlying gas hydrate stability zone (BGHSZ); however, the spatial distribution of the gas hydrate remains poorly defined. We used a constrained sparse spike inversion technique to generate acoustic-impedance images of the hydrate-bearing sedimentary section from the newly acquired 3D seismic data volume. High-amplitude reflections just above the bottom-simulating reflectors (BSRs) were interpreted to be associated with the accumulation of gas hydrate with elevated saturations. Enhanced seismic reflections below the BSRs were interpreted to indicate the presence of free gas. The base of the BGHSZ was established using the occurrence of BSRs. In areas absent of well-developed BSRs, the BGHSZ was calculated from a model using the inverted P-wave velocity and subsurface temperature data. Seismic attributes were also extracted along the BGHSZ that indicate variations reservoir properties and inferred hydrocarbon accumulations at each site. Gas hydrate saturations estimated from the inversion of acoustic impedance of conventional 3D seismic data, along with well-log-derived rock-physics models were also used to estimate gas hydrate saturations. Our analysis determined that the gas hydrate petroleum system varies significantly across the Pearl River Mouth Basin and that variability in sedimentary properties as a product of depositional processes and the upward migration of gas from deeper thermogenic sources control the distribution of gas hydrates in this basin.

  14. Direct Visualization of the Hydration Layer on Alumina Nanoparticles with the Fluid Cell STEM in situ

    PubMed Central

    Firlar, Emre; Çınar, Simge; Kashyap, Sanjay; Akinc, Mufit; Prozorov, Tanya

    2015-01-01

    Rheological behavior of aqueous suspensions containing nanometer-sized powders is of relevance to many branches of industry. Unusually high viscosities observed for suspensions of nanoparticles compared to those of micron size powders cannot be explained by current viscosity models. Formation of so-called hydration layer on alumina nanoparticles in water was hypothesized, but never observed experimentally. We report here on the direct visualization of aqueous suspensions of alumina with the fluid cell in situ. We observe the hydration layer formed over the particle aggregates and show that such hydrated aggregates constitute new particle assemblies and affect the flow behavior of the suspensions. We discuss how these hydrated nanoclusters alter the effective solid content and the viscosity of nanostructured suspensions. Our findings elucidate the source of high viscosity observed for nanoparticle suspensions and are of direct relevance to many industrial sectors including materials, food, cosmetics, pharmaceutical among others employing colloidal slurries with nanometer-scale particles. PMID:25996055

  15. Direct Visualization of the Hydration Layer on Alumina Nanoparticles with the Fluid Cell STEM in situ.

    PubMed

    Firlar, Emre; Çınar, Simge; Kashyap, Sanjay; Akinc, Mufit; Prozorov, Tanya

    2015-05-21

    Rheological behavior of aqueous suspensions containing nanometer-sized powders is of relevance to many branches of industry. Unusually high viscosities observed for suspensions of nanoparticles compared to those of micron size powders cannot be explained by current viscosity models. Formation of so-called hydration layer on alumina nanoparticles in water was hypothesized, but never observed experimentally. We report here on the direct visualization of aqueous suspensions of alumina with the fluid cell in situ. We observe the hydration layer formed over the particle aggregates and show that such hydrated aggregates constitute new particle assemblies and affect the flow behavior of the suspensions. We discuss how these hydrated nanoclusters alter the effective solid content and the viscosity of nanostructured suspensions. Our findings elucidate the source of high viscosity observed for nanoparticle suspensions and are of direct relevance to many industrial sectors including materials, food, cosmetics, pharmaceutical among others employing colloidal slurries with nanometer-scale particles.

  16. Direct visualization of the hydration layer on alumina nanoparticles with the fluid cell STEM in situ

    DOE PAGES

    Firlar, Emre; Çınar, Simge; Kashyap, Sanjay; ...

    2015-05-21

    Rheological behavior of aqueous suspensions containing nanometer-sized powders is of relevance to many branches of industry. Unusually high viscosities observed for suspensions of nanoparticles compared to those of micron size powders cannot be explained by current viscosity models. Formation of so-called hydration layer on alumina nanoparticles in water was hypothesized, but never observed experimentally. We report here on the direct visualization of aqueous suspensions of alumina with the fluid cell in situ. We observe the hydration layer formed over the particle aggregates and show that such hydrated aggregates constitute new particle assemblies and affect the flow behavior of the suspensions.more » We discuss how these hydrated nanoclusters alter the effective solid content and the viscosity of nanostructured suspensions. As a result, our findings elucidate the source of high viscosity observed for nanoparticle suspensions and are of direct relevance to many industrial sectors including materials, food, cosmetics, pharmaceutical among others employing colloidal slurries with nanometer-scale particles.« less

  17. Hydrolytic catalysis and structural stabilization in a designed metalloprotein

    PubMed Central

    Zastrow, Melissa L.; Peacock, Anna F. A.; Stuckey, Jeanne A.; Pecoraro, Vincent L.

    2011-01-01

    Metal ions are an important part of many natural proteins, providing structural, catalytic and electron transfer functions. Reproducing these functions in a designed protein is the ultimate challenge to our understanding of them. Here, we present an artificial metallohydrolase, which has been shown by X-ray crystallography to contain two different metal ions – a Zn(II) ion which is important for catalytic activity and a Hg(II) ion which provides structural stability. This metallohydrolase displays catalytic activity that compares well with several characteristic reactions of natural enzymes. It catalyses p-nitrophenyl acetate hydrolysis (pNPA) to within ~100-fold of the efficiency of human carbonic anhydrase (CA)II and is at least 550-fold better than comparable synthetic complexes. Similarly, CO2 hydration occurs with an efficiency within ~500-fold of CAII. While histidine residues in the absence of Zn(II) exhibit pNPA hydrolysis, miniscule apopeptide activity is observed for CO2 hydration. The kinetic and structural analysis of this first de novo designed hydrolytic metalloenzyme uncovers necessary design features for future metalloenzymes containing one or more metals. PMID:22270627

  18. Overview of DAN/MSL water and chlorine measurements acquired in Gale area for four years of surface observations

    NASA Astrophysics Data System (ADS)

    Litvak, Maxim

    2017-04-01

    During more than 4 years MSL Curiosity rover (landed in Gale crater in August 2012) is traveling toward sedimentary layered mound deposited with phyllosilicates and hematite hydrated minerals. Curiosity already traversed more than 14 km and identified lacustrine deposits left from ancient lakes filled Gale area in early history of Mars. Along the traverse the Curiosity rover discovered unique signatures regarding how the Mars environment changed from ancient warm and wet conditions and probably habitable environment to the modern cold and dry climate. We have summarized numerous measurements from the Dynamic Albedo of Neutron (DAN) instrument on Curiosity rover to overview variations of subsurface bound water distribution from the wet to the dry locations, compared it with other MSL measurements and with possible distribution of hydrated minerals and sequence of geological units travelled by Curiosity. We have also performed joint analysis of water and chlorine distributions and compared bulk (down to 0.5 m depth) equivalent chlorine concentrations measured by DAN throughout the Gale area and APXS observations of corresponding local surface targets and drill fines.

  19. Analysis of Vaginal Microbicide Film Hydration Kinetics by Quantitative Imaging Refractometry

    PubMed Central

    Rinehart, Matthew; Grab, Sheila; Rohan, Lisa; Katz, David; Wax, Adam

    2014-01-01

    We have developed a quantitative imaging refractometry technique, based on holographic phase microscopy, as a tool for investigating microscopic structural changes in water-soluble polymeric materials. Here we apply the approach to analyze the structural degradation of vaginal topical microbicide films due to water uptake. We implemented transmission imaging of 1-mm diameter film samples loaded into a flow chamber with a 1.5×2 mm field of view. After water was flooded into the chamber, interference images were captured and analyzed to obtain high resolution maps of the local refractive index and subsequently the volume fraction and mass density of film material at each spatial location. Here, we compare the hydration dynamics of a panel of films with varying thicknesses and polymer compositions, demonstrating that quantitative imaging refractometry can be an effective tool for evaluating and characterizing the performance of candidate microbicide film designs for anti-HIV drug delivery. PMID:24736376

  20. Analysis of vaginal microbicide film hydration kinetics by quantitative imaging refractometry.

    PubMed

    Rinehart, Matthew; Grab, Sheila; Rohan, Lisa; Katz, David; Wax, Adam

    2014-01-01

    We have developed a quantitative imaging refractometry technique, based on holographic phase microscopy, as a tool for investigating microscopic structural changes in water-soluble polymeric materials. Here we apply the approach to analyze the structural degradation of vaginal topical microbicide films due to water uptake. We implemented transmission imaging of 1-mm diameter film samples loaded into a flow chamber with a 1.5×2 mm field of view. After water was flooded into the chamber, interference images were captured and analyzed to obtain high resolution maps of the local refractive index and subsequently the volume fraction and mass density of film material at each spatial location. Here, we compare the hydration dynamics of a panel of films with varying thicknesses and polymer compositions, demonstrating that quantitative imaging refractometry can be an effective tool for evaluating and characterizing the performance of candidate microbicide film designs for anti-HIV drug delivery.

  1. Effects of Agitation and Storage Temperature on Measurements of Hydration Status.

    PubMed

    Adams, Heather M; Eberman, Lindsey E; Yeargin, Susan W; Niemann, Andrew J; Mata, Heather L; Dziedzicki, David J

    2015-12-01

    Hypohydration can have significant implications on normal physiological functions of the body. This study aimed to determine the impact of agitation, storage temperature, and storage time on urine osmolality compared to the criterion control. We used a descriptive diagnostic validity test design. To investigate agitation, we recruited 75 healthy individuals (males = 41, females = 34; mean age = 22 ± 5 years; mean self-reported height = 172 ± 23 cm and mass = 77 ± 17 kg) who provided one or more samples (total = 81). The independent variables were agitation (vortex, hand shaken, no agitation) and temperature (room temperature, freezer, and refrigerator) type. Participants completed informed consent, a health questionnaire and were asked to provide a urine sample, which was split and labeled according to agitation type or storage temperature. Urine osmolality was used to determine hydration status at two time points (within 2 hours [control], 48 hours). We used t-tests to determine the difference between each condition and the control and calculated percent error for each condition. No significant differences for no agitation (t79 = -0.079, P = 0.937), hand shaken (t79 = 1.395, P = 0.167) or vortex mixed (t79 = -0.753, P = 0.453) were identified when compared to the criterion control. No significant differences for room temperature (t82 = -0.720, P = 0.474), refrigerator (t82 = -2.697, P = 0.008) or freezer (t82 = 2.576, P = 0.012) were identified when compared to the criterion control. Our findings suggest agitation of urine specimen is not necessary and samples do not require refrigeration or freezing if assessed within 48 hours. Analysis within two hours of collection is not necessary and samples can be stored for up to 48 hours without impacting the hydration status of the sample.

  2. A Comparative Study of the Influence of Sugars Sucrose, Trehalose, and Maltose on the Hydration and Diffusion of DMPC Lipid Bilayer at Complete Hydration: Investigation of Structural and Spectroscopic Aspect of Lipid-Sugar Interaction.

    PubMed

    Roy, Arpita; Dutta, Rupam; Kundu, Niloy; Banik, Debasis; Sarkar, Nilmoni

    2016-05-24

    It is well-known that sugars protect membrane structures against fusion and leakage. Here, we have investigated the interaction between different sugars (sucrose, trehalose, and maltose) and phospholipid membrane of 1,2-dimyristoyl-sn-glycero-3-phoshpocholine (DMPC) using dynamic light scattering (DLS), transmission electron microscopy (TEM), and other various spectroscopic techniques. DLS measurement reveals that the addition of sugar molecule results a significant increase of the average diameter of DMPC membrane. We have also noticed that in the presence of different sugars the rotational relaxation and solvation time of coumarin 480 (C480) and coumarin 153 (C153) surrounding DMPC membrane increases, suggesting a marked reduction of the hydration behavior at the surface of phospholipid membrane. In addition, we have also investigated the effect of sugar molecules on the lateral mobility of phospholipids. Interestingly, the relative increase in rotational, solvation and lateral diffusion is more prominent for C480 than that of C153 because of their different location in lipid bilayer. It is because of preferential location of comparatively hydrophilic probe C480 in the interfacial region of the lipid bilayer. Sugars intercalate with the phospholipid headgroup through hydrogen bonding and replace smaller sized water molecules from the membrane surface. Therefore, overall, we have monitored a comparative analysis regarding the interaction of different sugar molecules (sucrose, trehalose, and maltose) with the DMPC membrane through DLS, TEM, solvation dynamics, time-resolved anisotropy, and fluorescence correlation spectroscopy (FCS) measurements to explore the structural and spectroscopic aspect of lipid-sugar interaction.

  3. Offshore gas hydrate sample database with an overview and preliminary analysis

    USGS Publications Warehouse

    Booth, James S.; Rowe, Mary M.; Fisher, Kathleen M.

    1996-01-01

    Synopsis -- A database of offshore gas hydrate samples was constructed from published observations and measurements. More than 90 samples from 15 distinct regions are represented in 13 data categories. This database has permitted preliminary description of gas hydrate (chiefly methane hydrate) tendencies and associations with respect to their geological environment. Gas hydrates have been recovered from offshore sediment worldwide and from total depths (water depth plus subseabed depth) ranging from 500 m to nearly 6,000 m. Samples have come from subbottom depths ranging from 0 to 400 m. Various physiographic provinces are represented in the data set including second order landforms such as continental margins and deep-sea trenches, and third order forms such as submarine canyons, continental slopes, continental margin ridges and intraslope basins. There is a clear association between fault zones and other manifestations of local, tectonic-related processes, and hydrate-bearing sediment. Samples of gas hydrate frequently consist of individual grains or particles. These types of hydrates are often further described as inclusions or disseminated in the sediment. Moreover, hydrates occur as a cement, as nodules, or as layers (mostly laminae) or in veins. The preponderance of hydrates that could be characterized as 2- dimensional (planar) were associated with fine sediment, either as intercalated layers or in fractures. Hydrate cements were commonly associated with coarser sediment. Hydrates have been found in association with grain sizes ranging from clay through gravel. More hydrates are associated with the more abundant finer-grained sediment than with coarser sediment, and many were discovered in the presence of both fine (silt and clay) and coarse sediment. The thickness of hydrate zones (i. e., sections of hydrate-bearing sediment) varies from a few centimeters to as much as 30 m. In contrast, the thickness of layers of pure hydrate or the dimensions of individual hydrate grains were most often characterized in terms of millimeters or centimeters, although a pure hydrate layer discovered in the Middle America Trench off Guatemala was as much as 3-4-m-thick. The data suggest that grains, or thin veins or laminae of pure gas hydrate may be ubiquitous in many hydrate zones but that typically they may only comprise a minor component of the thicker zones. In more than 80 percent of the hydrate samples the methane was of biogenic origin. The methane in the remainder was either classified as (or may be at least part) thermogenic. Each site where thermogenic gas was identified is characterized by faults or other manifestions of a dynamic geological environment (e.g., diapirs, mud volcanoes, gas seeps). Every sample in the database came from within the zone of theoretical methane hydrate stability, as determined on the basis of assumed regional pressure and temperature gradients. Most show that they were situated --- expressed in terms of depth --- well above the phase boundary and about 70% of the samples were located more than 100 m above the assumed regional position of that boundary. The calculated subseabed positions of the phase boundaries and the BSRs (bottom simulating reflector) are essentially identical. This may be taken as general corroboration of the regional phase boundary calculations and the concept of the BSR. Three provocative aspects of marine gas hydrates have been disclosed by the database: gas hydrates are frequently situated at much shallower subseabed depths than the assumed contemporary position of the regional phase boundary hydrates are often found in areas typified by faults or other indicators of a dynamic geological environment zones of gas hydrate-bearing sediment tend to be tens of centimeters to tens of meters thick but the hydrate within the thicker zones tends to be only a minor constituent. Whether existing as dispersed particles, cements, or pure layers or vein

  4. Effects of exercise in the heat on thermoregulation of Japanese and Malaysian males.

    PubMed

    Saat, Mohamed; Tochihara, Yutaka; Hashiguchi, Nobuko; Sirisinghe, Roland Gamini; Fujita, Mizuho; Chou, Chin Mei

    2005-07-01

    The effect of low-intensity exercise in the heat on thermoregulation and certain biochemical changes in temperate and tropical subjects under poorly and well-hydrated states was examined. Two VO2max matched groups of subjects consisting of 8 Japanese (JS) and 8 Malaysians (MS) participated in this study under two conditions: poorly-hydrated (no water was given) and well-hydrated (3 mL x Kg(-1) body weight of water was provided at onset of exercise, and the 15th, 35th and 55th min of exercise). The experimental room in both countries was adjusted to a constant level (Ta: 31.6+/-0.03 degrees C, rh: 72.3+/-0.13%). Subjects spent an initial 10 min rest, 60 min of cycling at 40% VO2max and then 40 min recovery in the experimental room. Rectal temperatures (Tre) skin temperatures (Tsk), heart rate (HR), heat-activated sweat glands density (HASG), local sweat rate (M sw-back) and percent dehydration were recorded during the test. Blood samples were analysed for plasma glucose and lactate levels.The extent of dehydration was significantly higher in the combined groups of JS (1.43+/-0.08%) compared to MS (1.15+/-0.05%). During exercise M sw-back was significantly higher in JS compared to MS in the well-hydrated condition. The HASG was significantly more in JS compared to MS at rest and recovery. Tre was higher in MS during the test. Tsk was significantly higher starting at the 5th min of exercise until the end of the recovery period in MS compared to JS. In conclusion, tropical natives have lower M sw-back associated with higher Tsk and Tre during the rest, exercise and recovery periods. However, temperate natives have higher M sw-back and lower Tsk and Tre during experiments in a hot environment. This phenomenon occurs in both poorly-hydrated and well-hydrated states with low intensity exercise. The differences in M sw-back, Tsk and Tre are probably due to a setting of the core temperature at a higher level and enhancement of dry heat loss, which occurred during passive heat exposure.

  5. Ferric citrate hydrate for the treatment of hyperphosphatemia in nondialysis-dependent CKD.

    PubMed

    Yokoyama, Keitaro; Hirakata, Hideki; Akiba, Takashi; Fukagawa, Masafumi; Nakayama, Masaaki; Sawada, Kenichi; Kumagai, Yuji; Block, Geoffrey A

    2014-03-01

    Ferric citrate hydrate is a novel iron-based phosphate binder being developed for hyperphosphatemia in patients with CKD. A phase 3, multicenter, randomized, double blind, placebo-controlled study investigated the efficacy and safety of ferric citrate hydrate in nondialysis-dependent patients with CKD. Starting in April of 2011, 90 CKD patients (eGFR=9.21±5.72 ml/min per 1.73 m(2)) with a serum phosphate≥5.0 mg/dl were randomized 2:1 to ferric citrate hydrate or placebo for 12 weeks. The primary end point was change in serum phosphate from baseline to the end of treatment. Secondary end points included the percentage of patients achieving target serum phosphate levels (2.5-4.5 mg/dl) and change in fibroblast growth factor-23 at the end of treatment. The mean change in serum phosphate was -1.29 mg/dl (95% confidence interval, -1.63 to -0.96 mg/dl) in the ferric citrate hydrate group and 0.06 mg/dl (95% confidence interval, -0.20 to 0.31 mg/dl) in the placebo group (P<0.001 for difference between groups). The percentage of patients achieving target serum phosphate levels was 64.9% in the ferric citrate hydrate group and 6.9% in the placebo group (P<0.001). Fibroblast growth factor-23 concentrations were significantly lower in patients treated with ferric citrate hydrate versus placebo (change from baseline [median], -142.0 versus 67.0 pg/ml; P<0.001). Ferric citrate hydrate significantly increased serum iron, ferritin, and transferrin saturation compared with placebo (P=0.001 or P<0.001). Five patients discontinued active treatment because of treatment-emergent adverse events with ferric citrate hydrate treatment versus one patient with placebo. Overall, adverse drug reactions were similar in patients receiving ferric citrate hydrate or placebo, with gastrointestinal disorders occurring in 30.0% of ferric citrate hydrate patients and 26.7% of patients receiving placebo. In patients with nondialysis-dependent CKD, 12-week treatment with ferric citrate hydrate resulted in significant reductions in serum phosphate and fibroblast growth factor-23 while simultaneously increasing serum iron parameters.

  6. The Lithological Constraint To Gas Hydrate Formation: Evidence OF Grain Size Of Sediments From IODP 311 On CASCADIA Margin

    NASA Astrophysics Data System (ADS)

    Wang, J.

    2006-12-01

    A total of 614 sediment samples at intervals of about 1.5 m from all 5 sites of the Integrated Ocean Drilling Program (IODP) Expedition 311 on Cascadia Margin were analyzed using a Beckman Coulter LS-230 Particle Analyzer. The grain-size data were then plotted in depth and compared with other proxies of gas hydrate- occurrence such as soupy/mousse-like structures in sediments, gas hydrate concentration (Sh) derived from LWD data using Archie's relation, IR core images (infrared image) and the recovered samples of gas hydrate¨Cbearing sediments. A good relationship between the distribution of coarse grains in size of 31-63¦Ìm and 63-125¦Ìm sediments and the potential occurrence of gas hydrate was found across the entire gas hydrate stability zone. The depth distribution of grain size from the Site U1326 shows clear excursions at depths of 5-8, 21-26, 50- 123, 132-140, 167-180, 195-206 and 220-240 mbsf, which coincide with the potential occurrence of gas hydrate suggested by soupy/mousse-like structures, logging-derived gas hydrate concentrations (Sh) and the recovered samples of the gas hydrate¨Cbearing sand layers. The lithology of sediments significantly affects the formation of gas hydrate. Gas hydrate forms preferentially within relatively coarse grain-size sediments above 31 ¦Ìm. Key words: grain size of sediments, constraint, occurrence of gas hydrate, IODP 311 IODP Expedition 311 Scientists: Michael Riedel (Co-chief Scientist), Timothy S. Collett (Co-chief Scientist), Mitchell Malone (Expedition Project Manager/Staff Scientist), Gilles Gu¨¨rin, Fumio Akiba, Marie-Madeleine Blanc-Valleron, Michelle Ellis, Yoshitaka Hashimoto, Verena Heuer, Yosuke Higashi, Melanie Holland, Peter D. Jackson, Masanori Kaneko, Miriam Kastner, Ji-Hoon Kim, Hiroko Kitajima, Philip E. Long, Alberto Malinverno, Greg Myers, Leena D. Palekar, John Pohlman, Peter Schultheiss, Barbara Teichert, Marta E. Torres, Anne M. Tr¨¦hu, Jiasheng Wang, Ulrich G. Wortmann, Hideyoshi Yoshioka. Acknowledgement: This study was supported by the IODP/JOI Alliance, IODP-China 863 Project (grant 2004AA615030) and NSFC Project (grant 40472063).

  7. Development of Carbon Sequestration Options by Studying Carbon Dioxide-Methane Exchange in Hydrates

    NASA Astrophysics Data System (ADS)

    Horvat, Kristine Nicole

    Gas hydrates form naturally at high pressures (>4 MPa) and low temperatures (<4 °C) when a set number of water molecules form a cage in which small gas molecules can be entrapped as guests. It is estimated that about 700,000 trillion cubic feet (tcf) of methane (CH4) exist naturally as hydrates in marine and permafrost environments, which is more than any other natural sources combined as CH4 hydrates contain about 14 wt% CH4. However, a vast amount of gas hydrates exist in marine environments, which makes gas extraction an environmental challenge, both for potential gas losses during extraction and the potential impact of CH4 extraction on seafloor stability. From the climate change point of view, a 100 ppm increase in atmospheric carbon dioxide (CO2) levels over the past century is of urgent concern. A potential solution to both of these issues is to simultaneously exchange CH4 with CO 2 in natural hydrate reserves by forming more stable CO2 hydrates. This approach would minimize disturbances to the host sediment matrix of the seafloor while sequestering CO2. Understanding hydrate growth over time is imperative to prepare for large scale CH4 extraction coupled with CO2 sequestration. In this study, we performed macroscale experiments in a 200 mL high-pressure Jerguson cell that mimicked the pressure-temperature conditions of the seafloor. A total of 13 runs were performed under varying conditions. These included the formation of CH4 hydrates, followed by a CO2 gas injection and CO2 hydrate formation followed by a CH4 gas injection. Results demonstrated that once gas hydrates formed, they show "memory effect" in subsequent charges, irrespective of the two gases injected. This was borne out by the induction time data for hydrate formation that reduced from 96 hours for CH4 and 24 hours for CO2 to instant hydrate formation in both cases upon injection of a secondary gas. During the study of CH4-CO2 exchange where CH4 hydrates were first formed and CO2 gas was injected into the system, gas chromatographic (GC) analysis of the cell indicated a pure CH4 gas phase, i.e., all injected CO2 gas entered the hydrate phase and remained trapped in hydrate cages for several hours, though over time some CO2 did enter the gas phase. Alternatively, during the CH 4-CO2 exchange study where CO2 hydrates were first formed, the injected CH4 initially entered the hydrate phase, but quickly gaseous CO2 exchanged with CH4 in hydrates to form more stable CO2 hydrates. These results are consistent with the better thermodynamic stability of CO2 hydrates, and this appears to be a promising method to sequester CO2 in natural CH4 hydrate matrices. The macroscale study described above was complemented by a microscale study to visualize hydrate growth. This first-of-its-kind in-situ study utilized the x-ray computed microtomography (CMT) technique to visualize microscale CO2, CH4, and mixed CH 4-CO2 hydrate growth phenomenon in salt solutions in the presence or absence of porous media. The data showed that under the experimental conditions used, pure CH4 formed CH4 hydrates as mostly spheres, while pure CO2 hydrates were more dendritic branches. Additionally, varying ratios of mixed CH4-CO2 hydrates were also formed that had needle-like growth. In porous media, CO2 hydrates grew, consistent with known growth models in which the solution was the sediment wetting phase. When glass beads and Ottawa sand were used as a host, the system exhibited pore-filling hydrate growth, while the presence of liquid CO2 and possible CO2 hydrates in Ottawa sand initially were pore-filling that over time transformed into a grain-displacing morphology. The data appears promising to develop a method that would supplant our energy supply by extracting CH4 from naturally occurring hydrates while CO2 is sequestered in the same formations.

  8. Halocarbons as hydrogen bond acceptors: a spectroscopic study of haloethylbenzenes (PhCH2CH2X, X = F, Cl, Br) and their hydrate clusters.

    PubMed

    Robertson, Patrick A; Villani, Luigi; Dissanayake, Uresha L M; Duncan, Luke F; Abbott, Belinda M; Wilson, David J D; Robertson, Evan G

    2018-03-28

    The electronic spectra of 2-bromoethylbenzene and its chloro and fluoro analogues have been recorded by resonant two-photon ionisation (R2PI) spectroscopy. Anti and gauche conformers have been assigned by rotational band contour analysis and IR-UV ion depletion spectroscopy in the CH region. Hydrate clusters of the anti conformers have also been observed, allowing the role of halocarbons as hydrogen bond acceptors to be examined in this context. The donor OH stretch of water bound to chlorine is red-shifted by 36 cm -1 , or 39 cm -1 in the case of bromine. Although classed as weak H-bond acceptors, halocarbons are favourable acceptor sites compared to π systems. Fluorine stands out as the weakest H-bond acceptor amongst the halogens. Chlorine and bromine are also weak H-bond acceptors, but allow for more geometric lability, facilitating complimentary secondary interactions within the host molecule. Ab initio and DFT quantum chemical calculations, both harmonic and anharmonic, aid the structural assignments and analysis.

  9. Quantitative determination of major active components in Ginkgo biloba dietary supplements by liquid chromatography/mass spectrometry.

    PubMed

    Ding, Shujing; Dudley, Ed; Plummer, Sue; Tang, Jiandong; Newton, Russell P; Brenton, A Gareth

    2006-01-01

    A reversed-phase high-performance liquid chromatography/electrospray ionisation mass spectrometry (RP-HPLC/ESI-MS) method was developed and validated for the simultaneous determination of ten major active components in Ginkgo biloba extract (bilobalide, ginkgolides A, B, C, quercetin, kaempferol, isorhamnetin, rutin hydrate, quercetin-3-beta-D-glucoside and quercitrin hydrate) which have not been previously reported to be quantified in a single analysis. The ten components exhibit baseline separation in 50 min by C18 chromatography using a water/1:1 (v/v) methanol/acetonitrile gradient. Quantitation was performed using negative ESI-MS in selected ion monitoring (SIM) mode. Good reproducibility and recovery were obtained by this method. The sensitivity of both UV and different mass spectrometry modes (full scan, selected ion monitoring (SIM), and selected reaction monitoring (SRM)) were compared and both quantitation with and without internal standard were evaluated. The analysis of Ginkgo biloba commercial products showed remarkable variations in the rutin and quercetin content as well as the terpene lactone contents although all the products satisfy the conventional quality control method. Copyright 2006 John Wiley & Sons, Ltd.

  10. Structural and Stratigraphic Controls on Methane Hydrate occurrence and distribution: Gulf of Mexico, Walker Ridge 313 and Green Canyon 955: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaiswal, Priyank

    The goal of this project was to determine structural and stratigraphic controls on hydrate occurrence and distribution in Green Canyon (GC) 955 and Walker Ridge (WR) 313 blocks using seismic and well data. Gas hydrate was discovered in these blocks in coarse- and fine-grained sediments during the 2009 Joint Industrial project (JIP) Leg 11 drilling expedition. Although the immediate interest of the exploration community is exclusively hydrate which is present in coarse–grained sediments, factors that control hydrate and free gas distribution in the two blocks and whether coarse and fine-grained hydrate-bearing units are related in any manner, formed the coremore » of this research. The project spanned from 10/01/2012 to 07/31/2016. In the project, in both the leased blocks, the interval spanning the gas hydrate stability zone (GHSZ) was characterized using a joint analysis of sparse Ocean Bottom Seismic (OBS) and dense, surface–towed multichannel seismic (MCS) data. The project team had the luxury of calibrating their results with two well logs. Advance processing methods such as depth migration and full-waveform inversion (FWI) were used for seismic data analysis. Hydrate quantification was achieved through interpretation of the FWI velocity field using appropriate rock physics models at both blocks. The seismic modeling/inversion methodology (common to both GC955 and WR313 blocks) was as follows. First, the MCS data were depth migrated using a P-wave velocity (VP) model constructed using inversion of reflection arrival times of a few (four in both cases) key horizons carefully picked in the OBS data to farthest possible offsets. Then, the resolution of the traveltime VP model was improved to wavelength scale by inverting OBS gathers up to the highest frequency possible (21.75 Hz for GC955 and 17.5 for WR313) using FWI. Finally, the hydrate saturation (or the volume fraction) was estimated at the well location assuming one of the other hydrate morphology (filling the primary or the secondary porosity) was extrapolated out from the wells using the FWI VP as a guide. General outcomes were as follows. First and foremost, an imaging methodology using sparse seismic data, which is easily replicable at other sites with similar datasets, has been demonstrated. The end product of this methodology at both the leased blocks is quantitative estimates of hydrate distribution. Second, at both locations there is strong evidence that the base of the GHSZ, which does not appear as a clear Bottom Simulating Reflection (BSR), manifests in the VP perturbations created by FWI, suggesting that FWI is sensitive to subtle compositional changes in shallow sediments and establishes it as a valuable tool for investigations of hydrate-bearing basins. Third, through joint interpretation of the depth migrated image and the FWI VP model, how structure and stratigraphy jointly determine hydrate and free gas distribution in both blocks could be clearly visualized. The joint interpretation also suggests that the coarse and fine grained hydrate-bearing sediments at both leased are connected. Site specific results, in addition to general results, are as follows. At GC955 the overlying fine-grained hydrate-bearing unit could have been sourced from the underlying hydrate coarse-grained channel-levee complex through a chimney feature. The channel-levee system at GC955 is compartmentalized by faults, of which only a few may be impermeable. Although compartmentalized, the channel-levee system in the GC955 as a whole might be in communication except selected zones. At WR313 the overlying fine-grained fracture-filled hydrate unit appears to be sourced from below the GHSZ. The reason that only a particular fine-grained unit has hydrate, despite having lower porosity that the bounding units, could be the presence of secondary porosity (such as those formed from clay dewatering under compaction). In conclusion, the project was a pioneering effort in in joint analysis of OBS and MCS datasets for advancing the knowledge about a hydrate and free–gas system dynamics using advanced processing methods such as FWI and depth migration. Results obtained in this project can greatly advance the tools and techniques used for delineating specific hydrate prospects. Results obtained in this project can also be seamlessly incorporated into other DOE funded project on modeling the potential productivity and commercial viability of hydrate from sand-dominated reservoirs. The OBS and MCS data in this project were acquired in 2012 (after the JIP II drilling) by the USGS and therefore the results are a posteriori. Nonetheless, the seismic inversion workflow established through this project can be used to generate various what-if quantification scenarios even in absence of logs and serve as a valuable tool for guiding drilling operations. Results from this project can augment other DOE sponsored projects on determining the commercial viability of methane production from the Gulf of Mexico.« less

  11. Modulators of heterogeneous protein surface water dynamics

    NASA Astrophysics Data System (ADS)

    Han, Songi

    The hydration water that solvates proteins is a major factor in driving or enabling biological events, including protein-protein and protein-ligand interactions. We investigate the role of the protein surface in modulating the hydration water fluctuations on both the picosecond and nanosecond timescale with an emerging experimental NMR technique known as Overhauser Dynamic Nuclear Polarization (ODNP). We carry out site-specific ODNP measurements of the hydration water fluctuations along the surface of Chemotaxis Y (CheY), and correlate the measured fluctuations to hydropathic and topological properties of the CheY surface as derived from molecular dynamics (MD) simulation. Furthermore, we compare hydration water fluctuations measured on the CheY surface to that of other globular proteins, as well as intrinsically disordered proteins, peptides, and liposome surfaces to systematically test characteristic effects of the biomolecular surface on the hydration water dynamics. Our results suggest that the labile (ps) hydration water fluctuations are modulated by the chemical nature of the surface, while the bound (ns) water fluctuations are present on surfaces that feature a rough topology and chemical heterogeneity such as the surface of a folded and structured protein. In collaboration with: Ryan Barnes, Dept of Chemistry and Biochemistry, University of California Santa Barbara

  12. [Prospects for Application of Gases and Gas Hydrates to Cryopreservation].

    PubMed

    Shishova, N V; Fesenko, E E

    2015-01-01

    In the present review, we tried to evaluate the known properties of gas hydrates and gases participating in the formation of gas hydrates from the point of view of the mechanisms of cryoinjury and cryoprotection, to consider the papers on freezing biological materials in the presence of inert gases, and to analyze the perspectives for the development of this direction. For the purpose, we searched for the information on the physical properties of gases and gas hydrates, compared processes occured during the formation of gas hydrates and water ice, analyzed the influence of the formation and growth of gas hydrates on the structure of biological objects. We prepared a short review on the biological effects of xenon, krypton, argon, carbon dioxide, hydrogen sulfide, and carbon monoxide especially on hypothermal conditions and probable application of these properties in cryopreservation technologies. The description of the existing experiments on cryopreservation of biological objects with the use of gases was analyzed. On the basis of the information we found, the most perspective directions of work in the field of cryopreservation of biological objects with the use of gases were outlined. An attempt was made to forecast the potential problems in this field.

  13. Cell hydration as a biomarker for estimation of biological effects of nonionizing radiation on cells and organisms.

    PubMed

    Ayrapetyan, Sinerik; De, Jaysankar

    2014-01-01

    "Changes in cell hydration" have been hypothesized as an input signal for intracellular metabolic cascade responsible for biological effects of nonionizing radiation (NIR). To test this hypothesis a comparative study on the impacts of different temperature and NIR (infrasound frequency mechanical vibration (MV), static magnetic field (SMF), extremely low frequency electromagnetic field (ELF EMF), and microwave (MW)) pretreated water on the hydration of barley seeds in its dormant and germination periods was performed. In dormant state temperature sensitivity (Q 10) of seed hydration in distilled water (DW) was less than 2, and it was nonsensitive to NIR treated DW, whereas during the germination period (48-72 hours) seeds hydration exhibited temperature sensitivity Q 10 > 2 and higher sensitivity to NIR treated DW. Obtained data allow us to suggest that the metabolic driving of intracellular water dynamics accompanied by hydrogen bonding and breaking is more sensitive to NIR-induced water structure changes in seed bathing aqua medium than the simple thermodynamic processes such as osmotic gradient driven water absorption by seeds in dormant state. Therefore, cell hydration is suggested to be a universal and extrasensitive biomarker for detection of biological effects of NIR on cells and organisms.

  14. Evaluation of the phase properties of hydrating cement composite using simulated nanoindentation technique

    NASA Astrophysics Data System (ADS)

    Gautham, S.; Sindu, B. S.; Sasmal, Saptarshi

    2017-10-01

    Properties and distribution of the products formed during the hydration of cementitious composite at the microlevel are investigated using a nanoindentation technique. First, numerical nanoindentation using nonlinear contact mechanics is carried out on three different phase compositions of cement paste, viz. mono-phase Tri-calcium Silicate (C3S), Di-calcium Silicate (C2S) and Calcium-Silicate-Hydrate (CSH) individually), bi-phase (C3S-CSH, C2S-CSH) and multi-phase (more than 10 individual phases including water pores). To reflect the multi-phase characteristics of hydrating cement composite, a discretized multi-phase microstructural model of cement composite during the progression of hydration is developed. Further, a grid indentation technique for simulated nanoindentation is established, and employed to evaluate the mechanical characteristics of the hydrated multi-phase cement paste. The properties obtained from the numerical studies are compared with those obtained from experimental grid nanoindentation. The influence of composition and distribution of individual phase properties on the properties obtained from indentation are closely investigated. The study paves the way to establishing the procedure for simulated grid nanoindentation to evaluate the mechanical properties of heterogeneous composites, and facilitates the design of experimental nanoindentation.

  15. Ecosystem Modelling for Impact Assessment of Possible Methane Leakage during Methane Hydrate Utilization

    NASA Astrophysics Data System (ADS)

    Yamazaki, T.; Nakano, Y.; Monoe, D.; Oomi, T.; Doi, T.; Nakata, K.; Fukushima, T.

    2005-05-01

    Natural methane hydrate has been scientifically studied as a carbon reservoir globally. However, in Japan, the potential for energy resource has been industrially highlighted. There is less domestic oil and natural gas resources in Japan, but many potential deposition areas for methane hydrate in ocean around Japan are the reasons. Less CO2 discharge from methane compared with coal, oil and conventional natural gas when the same calorie value we get is considered as the advantage for energy resource. However, because methane hydrate distributes in shallower sediment layer in ocean floor, accidental leakage of methane may occur while we utilize methane hydrate. Methane itself has 21-times impact on the greenhouse effect, if it reaches the atmosphere. Therefore, it is necessary to estimate the behavior in the environment after the leakage, if we want to use methane hydrate as energy resource. The mass balance after leakage of methane on seafloor and in water column is numerically studied through the analyses of methane emissions from natural cold seepages and hydrothermal activities in this research. The outline structure of mass balance ecosystem model creating is introduced and some preliminary examination results from the test calculation are discussed.

  16. Prediction of induction time for methane hydrate formation in the presence or absence of THF in flow loop system by Natarajan model

    NASA Astrophysics Data System (ADS)

    Talaghat, Mohammad Reza; Jokar, Seyyed Mohammad

    2018-03-01

    The induction time is a time interval to detect the initial hydrate formation, which is counted from the moment when the stirrer is turned on until the first detection of hydrate formation. The main objective of the present work is to predict and measure the induction time of methane hydrate formation in the presence or absence of tetrahydrofuran (THF) as promoter in the flow loop system. A laboratory flow mini-loop apparatus was set up to measure the induction time of methane hydrate formation. The induction time is predicted using developed Kashchiev and Firoozabadi model and modified model of Natarajan for a flow loop system. Furthermore, the effects of volumetric flow rate of the fluid on the induction time were investigated. The results of the models were compared with experimental data. They show that the induction time of hydrate formation in the presence of THF is very short at high pressure and high volumetric flow rate of the fluid. It decreases with increasing pressure and liquid volumetric flow rate. It is also shown that the modified Natarajan model is more accurate than the Kashchiev and Firoozabadi ones in prediction of the induction time.

  17. Effects of physiological environments on the hydration behavior of mineral trioxide aggregate.

    PubMed

    Lee, Yuan-Ling; Lee, Bor-Shiunn; Lin, Feng-Huei; Yun Lin, Ava; Lan, Wan-Hong; Lin, Chun-Pin

    2004-02-01

    Utilizing scanning electron microscope, X-ray diffraction (XRD) and microhardness tests, we evaluated how various physiological environments affect the hydration behavior and physical properties of mineral trioxide aggregate (MTA). We found that the microstructure of hydrated MTA consists of cubic and needle-like crystals. The former comprised the principal structure of MTA, whereas the later were less prominent and formed in the inter-grain spaces between the cubic crystals. MTA samples were hydrated in distilled water, normal saline, pH 7, and pH 5. However, no needle-like crystals were observed in the pH 5 specimens, and erosion of the cubic crystal surfaces was noted. XRD indicated a peak corresponding to Portlandite, a hydration product of MTA, and the peak decreased noticeably in the pH 5 group. The pH 5 specimens' microhardness was also significantly weaker compared to the other three groups (p<0.0001). These findings suggest that physiological environmental effects on MTA formation are determined, in part, by environmental pH and the presence of ions. In particular, an acidic environment of pH 5 adversely affects both the physical properties and the hydration behavior of MTA.

  18. The Effect of Oral Midazolam and Chloral Hydrate Before Echocardiography in Pediatric Patients: A Randomized Double-Blind Clinical Trial.

    PubMed

    Salehi, Forod; Riasi, Hamid Reza; Ebrahimzadeh, Ali; Askari Janatabadi, Sima

    2017-01-01

    This study aimed to compare the effects of oral midazolam and chloral hydrate in pre-echocardiography sedation of children. In this double-blind clinical trial, 68 children were randomly assigned to midazolam (0.2 mg/kg) or chloral hydrate (50 mg/kg). The intensity, duration, and onset of the drugs' effects were assessed. Data were analyzed using the χ 2 and Mann-Whitney tests ( P ≤ .05). The average onset and duration of sedation in the children assigned to midazolam was shorter than in those assigned chloral hydrate (6.35 ± 3.65 and 19.14 ± 5.86 minutes, P = .0001, and 27.64 ± 8.34 and 48.97 ± 14.81 minutes, P = .0001). Gastrointestinal side effects were more frequent in the chloral hydrate group (23.5% against 0%, P = .003). According to the results of the present study, chloral hydrate and midazolam can be appropriate choices for pre-echocardiography sedation of patients without cardiovascular risk factors. Considering the similar effectiveness, more rapid onset, and shorter duration of sedation, besides less side effects in the midazolam group, researchers recommend the routine use of this drug.

  19. Kinetics of methane-ethane gas replacement in clathrate-hydrates studied by time-resolved neutron diffraction and Raman spectroscopy.

    PubMed

    Murshed, M Mangir; Schmidt, Burkhard C; Kuhs, Werner F

    2010-01-14

    The kinetics of CH(4)-C(2)H(6) replacement in gas hydrates has been studied by in situ neutron diffraction and Raman spectroscopy. Deuterated ethane structure type I (C(2)H(6) sI) hydrates were transformed in a closed volume into methane-ethane mixed structure type II (CH(4)-C(2)H(6) sII) hydrates at 5 MPa and various temperatures in the vicinity of 0 degrees C while followed by time-resolved neutron powder diffraction on D20 at ILL, Grenoble. The role of available surface area of the sI starting material on the formation kinetics of sII hydrates was studied. Ex situ Raman spectroscopic investigations were carried out to crosscheck the gas composition and the distribution of the gas species over the cages as a function of structure type and compared to the in situ neutron results. Raman micromapping on single hydrate grains showed compositional and structural gradients between the surface and core of the transformed hydrates. Moreover, the observed methane-ethane ratio is very far from the one expected for a formation from a constantly equilibrated gas phase. The results also prove that gas replacement in CH(4)-C(2)H(6) hydrates is a regrowth process involving the nucleation of new crystallites commencing at the surface of the parent C(2)H(6) sI hydrate with a progressively shrinking core of unreacted material. The time-resolved neutron diffraction results clearly indicate an increasing diffusion limitation of the exchange process. This diffusion limitation leads to a progressive slowing down of the exchange reaction and is likely to be responsible for the incomplete exchange of the gases.

  20. Constraints of gas venting activity for the interstitial water geochemistry at the shallow gas hydrate site, eastern margin of the Japan Sea; results from high resolution time-series fluid sampling by OsmoSampler

    NASA Astrophysics Data System (ADS)

    Owari, S.; Tomaru, H.; Matsumoto, R.

    2016-12-01

    We have conducted ROV researches in the eastern margin of the Japan Sea where active gas venting and outcropping of gas hydrates were observed near the seafloor and have found the strength and location of venting had changed within a few days. These observations indicate the seafloor environments with the shallow gas hydrate system could have changed for short period compared to a geological time scale. We have applied a long-term osmotic fluid sampling system "OsmoSampler" on the active gas hydrate system for one year in order to document how the gas venting and gas hydrate activity have changed the geochemical environments near the seafloor. All the major ion concentrations in the interstitial water show synchronous increase and decrease repeatedly in three to five days, reflecting the incorporation and release of fresh water in gas hydrates in response to the gas concentration change near the sampling site. Dissolved methane concentration increases rapidly and excessively (over several mM) in the first 40 days corresponding to the active gas venting. The increases of methane concentration are often associated with high ion concentration during high water pressure period, indicating excess gas release from shallow gas pockets. Contrarily, enhanced gas hydrate growth may plug the fluid-gas paths in shallow sediment, reducing gas hydrate formation due to the decrease of methane flux. This study was conducted under the commission from AIST as a part of the methane hydrate research project funded by METI (the Ministry of Economy, Trade and Industry, Japan).

  1. Synthesis of polycrystalline methane hydrate, and its phase stability and mechanical properties at elevated pressure

    USGS Publications Warehouse

    Stern, L.A.; Kirby, S.H.; Durham, W.B.

    1997-01-01

    Test specimens of methane hydrate were grown under static conditions by combining cold, pressurized CH4 gas with H2O ice grains, then warming the system to promote the reaction CH4 (g) + 6H2O (s???l) ??? CH4??6H2O. Hydrate formation evidently occurs at the nascent ice/liquid water interface, and complete reaction was achieved by warming the system above 271.5 K and up to 289 K, at 25-30 MPa, for approximately 8 hours. The resulting material is pure methane hydrate with controlled grain size and random texture. Fabrication conditions placed the H2O ice well above its melting temperature before reaction completed, yet samples and run records showed no evidence for bulk melting of the ice grains. Control experiments using Ne, a non-hydrate-forming gas, verified that under otherwise identical conditions, the pressure reduction and latent heat associated with ice melting is easily detectable in our fabrication apparatus. These results suggest that under hydrate-forming conditions, H2O ice can persist metastably at temperatures well above its melting point. Methane hydrate samples were then tested in constant-strain-rate deformation experiments at T= 140-200 K, Pc= 50-100 MPa, and ????= 10-4-10-6 s-1. Measurements in both the brittle and ductile fields showed that methane hydrate has measurably different strength than H2O ice, and work hardens to a higher degree compared to other ices as well as to most metals and ceramics at high homologous temperatures. This work hardening may be related to a changing stoichiometry under pressure during plastic deformation; x-ray analyses showed that methane hydrate undergoes a process of solid-state disproportionation or exsolution during deformation at conditions well within its conventional stability field.

  2. α-chymotrypsin in water-acetone and water-dimethyl sulfoxide mixtures: Effect of preferential solvation and hydration.

    PubMed

    Sirotkin, Vladimir A; Kuchierskaya, Alexandra A

    2017-10-01

    We investigated water/organic solvent sorption and residual enzyme activity to simultaneously monitor preferential solvation/hydration of protein macromolecules in the entire range of water content at 25°C. We applied this approach to estimate protein destabilization/stabilization due to the preferential interactions of bovine pancreatic α-chymotrypsin with water-acetone (moderate-strength H-bond acceptor) and water-DMSO (strong H-bond acceptor) mixtures. There are three concentration regimes for the dried α-chymotrypsin. α-Chymotrypsin is preferentially hydrated at high water content. The residual enzyme activity values are close to 100%. At intermediate water content, the dehydrated α-chymotrypsin has a higher affinity for acetone/DMSO than for water. Residual enzyme activity is minimal in this concentration range. The acetone/DMSO molecules are preferentially excluded from the protein surface at the lowest water content, resulting in preferential hydration. The residual catalytic activity in the water-poor acetone is ∼80%, compared with that observed after incubation in pure water. This effect is very small for the water-poor DMSO. Two different schemes are operative for the hydrated enzyme. At high and intermediate water content, α-chymotrypsin exhibits preferential hydration. However, at intermediate water content, in contrast to the dried enzyme, the initially hydrated α-chymotrypsin possesses increased preferential hydration parameters. At low water content, no residual enzyme activity was observed. Preferential binding of DMSO/acetone to α-chymotrypsin was detected. Our data clearly demonstrate that the hydrogen bond accepting ability of organic solvents and the protein hydration level constitute key factors in determining the stability of protein-water-organic solvent systems. © 2017 Wiley Periodicals, Inc.

  3. Gas Hydrate Formation Probability Distributions: The Effect of Shear and Comparisons with Nucleation Theory.

    PubMed

    May, Eric F; Lim, Vincent W; Metaxas, Peter J; Du, Jianwei; Stanwix, Paul L; Rowland, Darren; Johns, Michael L; Haandrikman, Gert; Crosby, Daniel; Aman, Zachary M

    2018-03-13

    Gas hydrate formation is a stochastic phenomenon of considerable significance for any risk-based approach to flow assurance in the oil and gas industry. In principle, well-established results from nucleation theory offer the prospect of predictive models for hydrate formation probability in industrial production systems. In practice, however, heuristics are relied on when estimating formation risk for a given flowline subcooling or when quantifying kinetic hydrate inhibitor (KHI) performance. Here, we present statistically significant measurements of formation probability distributions for natural gas hydrate systems under shear, which are quantitatively compared with theoretical predictions. Distributions with over 100 points were generated using low-mass, Peltier-cooled pressure cells, cycled in temperature between 40 and -5 °C at up to 2 K·min -1 and analyzed with robust algorithms that automatically identify hydrate formation and initial growth rates from dynamic pressure data. The application of shear had a significant influence on the measured distributions: at 700 rpm mass-transfer limitations were minimal, as demonstrated by the kinetic growth rates observed. The formation probability distributions measured at this shear rate had mean subcoolings consistent with theoretical predictions and steel-hydrate-water contact angles of 14-26°. However, the experimental distributions were substantially wider than predicted, suggesting that phenomena acting on macroscopic length scales are responsible for much of the observed stochastic formation. Performance tests of a KHI provided new insights into how such chemicals can reduce the risk of hydrate blockage in flowlines. Our data demonstrate that the KHI not only reduces the probability of formation (by both shifting and sharpening the distribution) but also reduces hydrate growth rates by a factor of 2.

  4. The assessment of different production methods for hydrate bearing sediments - results from small and large scale experiments

    NASA Astrophysics Data System (ADS)

    Schicks, Judith; Heeschen, Katja; Spangenberg, Erik; Luzi-Helbing, Manja; Beeskow-Strauch, Bettina; Priegnitz, Mike; Giese, Ronny; Abendroth, Sven; Thaler, Jan

    2017-04-01

    Natural gas hydrates occur at all active and passive continental margins, in permafrost regions, and deep lakes. Since they are supposed to contain enormous amounts of methane, gas hydrates are discussed as an energy resource. For the production of gas from hydrate bearing sediments, three different production methods were tested during the last decade: depressurization, thermal and chemical stimulation as well as combinations of these methods. In the framework of the SUGAR project we developed a Large Scale Reservoir Simulator (LARS) with a total volume of 425L to test these three methods in a pilot plant scale. For this purpose we formed hydrate from methane saturated brine in sediments under conditions close to natural gas hydrate deposits. The obtained hydrate saturations varied between 40-90%. Hydrate saturation and distribution were determined using electrical resistivity tomography (ERT). The volumes of the produced gas and water were determined and the gas phase was analyzed via gas chromatography. Multi-step depressurization, thermal stimulation applying in-situ combustion as well as chemical stimulation via the injection of CO2 and a CO2-N2-mixture were tested. Depressurization and thermal stimulation appear to be less complicated compared to the chemical stimulation. For the understanding of the macroscopically observed processes on a molecular level, we also performed experiments on a smaller scale using microscopic observation, Raman spectroscopy and X-ray diffraction. The results of these experiments are of particular importance for the understanding of the processes occurring during the CO2-CH4 swapping. Under the chosen experimental conditions the observations indicate a (partial) decomposition and reformation of the hydrate structure rather than a diffusion-controlled exchange of the molecules.

  5. Influence of Carbon Nanotubes on the Structure Formation of Cement Matrix

    NASA Astrophysics Data System (ADS)

    Petrunin, S.; Vaganov, V.; Reshetniak, V.; Zakrevskaya, L.

    2015-11-01

    The potential of application of CNTs as a reinforcing agent in cement composites is governed by their unique mechanical and electronic properties. The analysis of concrete strength changes under CNTs introduction shows non-uniformity and sometimes inconsistency of results. Due to the fact that CNTs influence the hydration kinetics, structure and phase composition of concrete, an idea concerning the importance of interaction between the surface of CNTs and hydrate ions formed by the dissolution of the clinker phases has been suggested. In this paper, the theoretical and experimental study of interaction between hydrate ions and CNTs surface is discussed. Reference nanotubes and nanotubes functionalized by carboxylic groups are used in this research. Phase composition was determined by X-Ray analysis according to the Rietveld method. It was found that the presence of oxygen-containing functional groups on CNTs surface leads to intensification of the hydration process and increase in concentration of C-S-H gel from 65.9% to 74.4%. Special attention is usually paid to interactions between Ca2+ ions and CNTs, because the hardening rate and structure of cement stone are determined by principle of Ca2+ localization in the solution. In this paper the possible binding mechanisms are discussed. Based on the experimental results, the hypothesis regarding the formation of cement composite structure for different CNTs surface functionalizations is considered. According to this hypothesis, the CNTs act as the centers of crystallization for hydration products contributing to the acceleration of hydration, increase of the concentration of C-S-H gel and strength improvement of CNTs based composites.

  6. Small Effect of Hydration on Elastic Wave Velocities of Ringwoodite in Earth's Transition Zone

    NASA Astrophysics Data System (ADS)

    Schulze, K.; Marquardt, H.; Boffa Ballaran, T.; Kurnosov, A.; Kawazoe, T.; Koch-Müller, M.

    2017-12-01

    Ringwoodite can incorporate significant amounts of hydrogen as OH-defects into its crystal structure. The measurement of 1.4 wt.% H20 in a natural ringwoodite diamond inclusion (Pearson et al. 2014) showed that hydrous ringwoodite can exist in the Earth's mantle. Since ringwoodite is considered to be the major phase in the mantle between 520 and 660 km depth it likely plays an important role for Earth's deep water cycle and the mantle water budget. Previous experimental work has shown that hydration reduces seismic wave velocities in ringwoodite, motivating attempts to map the hydration state of the mantle using seismic wave speed variations as depicted by seismic tomography. However, large uncertainties on the actual effects at transition zone pressures and temperatures remain. A major difficulty is the comparability of studies with different experimental setups and pressure- and temperature conditions. Here, we present results from a comparative elasticity study designed to quantify the effects of hydration on the seismic wave velocities of ringwoodite in Earth's transition zone. Focused ion beam cut single-crystals of four samples of either Fo90 or Fo100 ringwoodite with hydration states between 0.21 - 1.71 wt.% H2O were loaded in the pressure chamber of one diamond-anvil cell to ensure identical experimental conditions. Single-crystal Brillouin Spectroscopy and X-ray diffraction measurements were performed at room temperature to a pressure of 22 GPa. Additional experiments at high pressure and temperatures up to 500 K were performed. Our data collected at low pressures show a significant reduction of elastic wave velocities with hydration, consistent with previous work. However, in contrast to previous inferences, our results indicate that pressure significantly reduces the effect of hydration. Based on the outcome of our work, the redution in aggregate velocities caused by 1 wt.% H2O becomes smaller than 1% in ringwoodite at pressures equivalent to the Earth's transition zone. The detection of differences in the hydration state in pyrolitic mantle with about 56% ringwoodite by seismic tomography, might therefore be only possible in mantle regions of very high water contents.

  7. Dry Climate as Major Factor Controlling Formation of Hydrated Sulfate Minerals in Valles Marineris on Mars

    NASA Astrophysics Data System (ADS)

    Szynkiewicz, A.

    2016-12-01

    In this study, a model for the formation of hydrated sulfate salts (Mg-Ca-Na sulfates) in the Rio Puerco watershed of New Mexico, a terrestrial analog site from the semi-arid Southwest U.S., was used to assess the origin and climate condition that may have controlled deposition of hydrated sulfates in Valles Marineris on Mars. In this analog site, the surface accumulation of sulfate minerals along canyon walls, slopes and valley surfaces closely resemble occurrences of hydrated sulfates in Valles Marineris on Mars. Significant surface accumulations of Mg-Ca-Na sulfates are a result of prevailing semiarid conditions and a short-lived hydrological cycle that mobilizes sulfur present in the bedrock as sulfides, sulfate minerals, and atmospheric deposition. Repeating cycles of salt dissolution and re-precipitation appear to be the underpinning processes that serve to transport sulfate from bedrock to sulfate salts (e.g., efflorescences) and into surface water. This process occurs in the shallow surface environment and is not accompanied by deep groundwater flow because of prevailing dry conditions and low annual precipitation. Generally, close resemblance of surface occurrence and mineralogical composition of sulfate salts between the studied terrestrial analog and Valles Marineris suggest that a similar sulfate cycle, involving limited water activity during formation of hydrated sulfates, was once present in Valles Marineris. Measured as efflorescence, the distributed surface mass of hydrated sulfates in Valles Marineris is relatively small (4 to 42%) when compared to terrestrial settings with higher surface accumulation of sulfate minerals such as the White Sands gypsum dune field. Under semi-arid conditions similar to the studied analog in the Rio Pueurco watershed, it would take only 100 to 1,000 years to activate an equivalent flux of aqueous sulfate in Valles Marineris, when comparing terrestrial annual sulfate fluxes from the Rio Puerco watershed with the amount of hydrated sulfates and the size of Valles Marineris. The results of this study suggest that during formation of hydrated sulfates in Valles Marineris on Mars the climate was relatively dry with limited aqueous processes in surface environment.

  8. SOFIA + FORCAST Observations of 10 Aqueously Altered Asteroids

    NASA Astrophysics Data System (ADS)

    McAdam, Margaret; Sunshine, Jessica M.; Kelley, Michael S.; Bus, Schelte J.

    2016-10-01

    Aqueous alteration, or the reaction of water and minerals to produce hydrated minerals, has affected certain groups of carbonaceous meteorites (e.g., the CM and CI meteorites) and asteroids. In the visible/near-infrared (VNIR), CM/CI meteorites and some dark C-complex asteroids are known to have 0.7-µm absorptions that indicate the presence of hydrated minerals [1, 2, 3]. However, this feature does not provide any information about the amount of hydrated minerals in asteroids or meteorites [1]. In contrast, at mid-infrared (MIR) wavelengths, strong spectral features change continuously with amount of hydrated minerals in a suite of well-characterized CM/CI meteorites [1].Using these results, we analyze the spectra of 10 C-complex asteroids observed by SOFIA + FORCAST. These targets are large objects (>95 km diameter) situated in the mid to outer Main Asteroid Belt (2.4 - 3.4 AU). We present spectra of the following asteroids, spectral types in parentheses: 36 Atalante (C), 38 Leda (Cgh), 62 Erato (Ch), 121 Hermione (Ch), 165 Loreley (Cb), 194 Prokne (C), 203 Pompeja (C), 266 Aline (Ch), 52 Europa (Ch), and 19 Fortuna (Ch). Spectra were obtained in two wavelength regions: 8.5-13.6-μm and 17.6-27.7-μm. In these spectral regions, mineralogical features that are known to change continuously with amount of hydrated minerals appear. Most of these targets are known to have hydrated minerals on their surfaces by the presence of the 0.7-μm feature [e.g. 3, 4] or from observations in the 3-μm region [5]. We interpret the spectral features observed using SOFIA and estimate the abundances of hydrated minerals for each asteroid. Additionally, we compare these observations to Spitzer observations of similar objects. A subset of these asteroids have also been measured in VNIR, which allows us to directly compare the signatures of hydration in both the VNIR and the MIR.[1] McAdam et al., (2015), Icarus, 245, 320-332. [2] Cloutis, et al., (2011), Icarus, 216, 309-346. [3] Vilas and Gaffey (1989), Science, 246, 790-792. [4] Bus and Binzel (2002), Icarus, 158, 146-177. Takir and Emery (2012), Icarus, 219, 641-654.

  9. Formation of Methane Hydrate in the Presence of Natural and Synthetic Nanoparticles

    PubMed Central

    2018-01-01

    Natural gas hydrates occur widely on the ocean-bed and in permafrost regions, and have potential as an untapped energy resource. Their formation and growth, however, poses major problems for the energy sector due to their tendency to block oil and gas pipelines, whereas their melting is viewed as a potential contributor to climate change. Although recent advances have been made in understanding bulk methane hydrate formation, the effect of impurity particles, which are always present under conditions relevant to industry and the environment, remains an open question. Here we present results from neutron scattering experiments and molecular dynamics simulations that show that the formation of methane hydrate is insensitive to the addition of a wide range of impurity particles. Our analysis shows that this is due to the different chemical natures of methane and water, with methane generally excluded from the volume surrounding the nanoparticles. This has important consequences for our understanding of the mechanism of hydrate nucleation and the design of new inhibitor molecules. PMID:29401390

  10. Multiscale understanding of tricalcium silicate hydration reactions.

    PubMed

    Cuesta, Ana; Zea-Garcia, Jesus D; Londono-Zuluaga, Diana; De la Torre, Angeles G; Santacruz, Isabel; Vallcorba, Oriol; Dapiaggi, Monica; Sanfélix, Susana G; Aranda, Miguel A G

    2018-06-04

    Tricalcium silicate, the main constituent of Portland cement, hydrates to produce crystalline calcium hydroxide and calcium-silicate-hydrates (C-S-H) nanocrystalline gel. This hydration reaction is poorly understood at the nanoscale. The understanding of atomic arrangement in nanocrystalline phases is intrinsically complicated and this challenge is exacerbated by the presence of additional crystalline phase(s). Here, we use calorimetry and synchrotron X-ray powder diffraction to quantitatively follow tricalcium silicate hydration process: i) its dissolution, ii) portlandite crystallization and iii) C-S-H gel precipitation. Chiefly, synchrotron pair distribution function (PDF) allows to identify a defective clinotobermorite, Ca 11 Si 9 O 28 (OH) 2 . 8.5H 2 O, as the nanocrystalline component of C-S-H. Furthermore, PDF analysis also indicates that C-S-H gel contains monolayer calcium hydroxide which is stretched as recently predicted by first principles calculations. These outcomes, plus additional laboratory characterization, yielded a multiscale picture for C-S-H nanocomposite gel which explains the observed densities and Ca/Si atomic ratios at the nano- and meso- scales.

  11. Fiber optic sensing technology for detecting gas hydrate formation and decomposition.

    PubMed

    Rawn, C J; Leeman, J R; Ulrich, S M; Alford, J E; Phelps, T J; Madden, M E

    2011-02-01

    A fiber optic-based distributed sensing system (DSS) has been integrated with a large volume (72 l) pressure vessel providing high spatial resolution, time-resolved, 3D measurement of hybrid temperature-strain (TS) values within experimental sediment-gas hydrate systems. Areas of gas hydrate formation (exothermic) and decomposition (endothermic) can be characterized through this proxy by time series analysis of discrete data points collected along the length of optical fibers placed within a sediment system. Data are visualized as an animation of TS values along the length of each fiber over time. Experiments conducted in the Seafloor Process Simulator at Oak Ridge National Laboratory clearly indicate hydrate formation and dissociation events at expected pressure-temperature conditions given the thermodynamics of the CH(4)-H(2)O system. The high spatial resolution achieved with fiber optic technology makes the DSS a useful tool for visualizing time-resolved formation and dissociation of gas hydrates in large-scale sediment experiments.

  12. Analysis of the interplay among charge, hydration and shape of proteins through the modeling of their CZE mobility data.

    PubMed

    Piaggio, Maria V; Peirotti, Marta B; Deiber, Julio A

    2009-07-01

    Electrophoretic mobility data of four proteins are analyzed and interpreted through a physicochemical CZE model, which provides estimates of quantities like equivalent hydrodynamic radius (size), effective charge number, shape orientation factor, hydration, actual pK values of ionizing groups, and pH near molecule, among others. Protein friction coefficients are simulated through the creeping flow theory of prolate spheroidal particles. The modeling of the effective electrophoretic mobility of proteins requires consideration of hydrodynamic size and shape coupled to hydration and effective charge. The model proposed predicts native protein hydration within the range of values obtained experimentally from other techniques. Therefore, this model provides consistently other physicochemical properties such as average friction and diffusion coefficients and packing fractal dimension. As the pH varies from native conditions to those that are denaturing the protein, hydration and packing fractal dimension change substantially. Needs for further research are also discussed and proposed.

  13. Fiber optic sensing technology for detecting gas hydrate formation and decomposition

    NASA Astrophysics Data System (ADS)

    Rawn, C. J.; Leeman, J. R.; Ulrich, S. M.; Alford, J. E.; Phelps, T. J.; Madden, M. E.

    2011-02-01

    A fiber optic-based distributed sensing system (DSS) has been integrated with a large volume (72 l) pressure vessel providing high spatial resolution, time-resolved, 3D measurement of hybrid temperature-strain (TS) values within experimental sediment-gas hydrate systems. Areas of gas hydrate formation (exothermic) and decomposition (endothermic) can be characterized through this proxy by time series analysis of discrete data points collected along the length of optical fibers placed within a sediment system. Data are visualized as an animation of TS values along the length of each fiber over time. Experiments conducted in the Seafloor Process Simulator at Oak Ridge National Laboratory clearly indicate hydrate formation and dissociation events at expected pressure-temperature conditions given the thermodynamics of the CH4-H2O system. The high spatial resolution achieved with fiber optic technology makes the DSS a useful tool for visualizing time-resolved formation and dissociation of gas hydrates in large-scale sediment experiments.

  14. New in Situ Measurements of the Viscosity of Gas Clathrate Hydrate Slurries Formed from Model Water-in-Oil Emulsions.

    PubMed

    Majid, Ahmad A A; Wu, David T; Koh, Carolyn A

    2017-10-24

    In situ rheological measurements for clathrate hydrate slurries were performed using a high pressure rheometer to determine the effect of hydrate particles on the viscosity and transportability of these slurries. These measurements were conducted using a well-characterized model water-in-oil emulsion ( Delgado-Linares et al. Model Water in-Oil Emulsions for Gas Hydrate Studies in Oil Continuous Systems . Energy Fuels 2013 , 27 , 4564 - 4573 ). The emulsion consists of a model liquid hydrocarbon, water, and a surfactant mixture of sorbitane monooleate 80 (Span 80) and sodium di-2-ethylhexylsulfosuccinate (Aerosol OT, AOT). This emulsion was used as an analog to water-in-crude oil (w/o) emulsions and provides reproducible results. The flow properties of the model w/o emulsion prior to hydrate formation were investigated in terms of several parameters including water percentage, temperature and pressure. A general equation that describes the viscosity of the emulsion as a function of the aforementioned parameters was developed. This general equation was able to predict the viscosity of a saturated emulsion at various temperatures and water percentages to within ±13% error. The general equation was then used to analyze the effect of hydrate formation on the transportability of gas hydrate slurries. As for hydrate slurries investigation, measurements were performed using methane gas as the hydrate former and a straight vane impeller as a stirring system. Tests were conducted at constant temperature and pressure (1 °C and 1500 psig of methane) and water percentages ranging from 5 to 30 vol %. Results of this work were analyzed and presented in terms of relative values, i.e., viscosities of the slurries relative to the viscosities of the continuous phase at similar temperature and pressure. In this work, a correlation to predict the relative viscosity of a hydrate slurry at various hydrate volume fractions was developed. Analysis of the developed correlation showed that the model was able to predict the relative viscosity of a hydrate slurry to within ±17% error.

  15. Calibration and validation of a numerical model against experimental data of methane hydrate formation and dissociation in a sandy porous medium

    NASA Astrophysics Data System (ADS)

    Yin, Z.; Moridis, G. J.; Chong, Z. R.; Linga, P.

    2017-12-01

    Methane hydrates (MH) are known to trap enormous amounts of CH4 in oceanic and permafrost-associated deposits, and are being considered as a potential future energy source. Several powerful numerical simulators were developed to describe the behavior of natural hydrate-bearing sediments (HBS). The complexity and strong nonlinearities in HBS do not allow analytical solutions for code validation. The only reliable method to develop confidence in these models is through comparisons to laboratory and/or field experiments. The objective of this study is to reproduce numerically the results from earlier experiments of MH formation and depressurization (and the corresponding fluid production) in 1.0L reactor involving unconsolidated sand, thus validating and calibrating the TOUGH+Hydrate v1.5 simulator. We faithfully describe the reactor geometry and the experimental process that involves both hydrate formation and dissociation. We demonstrate that the laboratory experiments can only be captured by a kinetic hydration model. There is an excellent agreement between observations and predictions (a) of the cumulative gas depletion (during formation) and production (during dissociation) and (b) of pressure over time. The temperature agreement is less satisfactory, and the deviations are attributed to the fixed locations of the limited number of sensors that cannot fully capture the hydrate heterogeneity. We also predict the spatial distributions over time of the various phase (gas, aqueous and hydrate) saturations. Thus, hydrates form preferentially along the outer boundary of the sand core, and the hydrate front moves inward leaving a significant portion of the sand at the center hydrate-free. During depressurization, dissociation advances again inward from the reactor boundary to the center of the reactor. As expected, methane gas accumulates initially at the locations of most intense dissociation, and then gradually migrates to the upper section of the reactor because of buoyancy and of the pressure gradient caused by the pressure outlet. Sensitivity analysis indicates that the composite thermal conductivity of the HBS and the kinetic parameters of the hydration reaction are the dominant factors. The absolute permeability of the sand does not play a significant role in this small reactor.

  16. A Computationally Efficient Equation of State for Ternary Gas Hydrate Systems

    NASA Astrophysics Data System (ADS)

    White, M. D.

    2012-12-01

    The potential energy resource of natural gas hydrates held in geologic accumulations, using lower volumetric estimates, is sufficient to meet the world demand for natural gas for nearly eight decades, at current rates of increase. As with other unconventional energy resources, the challenge is to economically produce the natural gas fuel. The gas hydrate challenge is principally technical. Meeting that challenge will require innovation, but more importantly, scientific research to understand the resource and its characteristics in porous media. The thermodynamic complexity of gas hydrate systems makes numerical simulation a particularly attractive research tool for understanding production strategies and experimental observations. Simply stated, producing natural gas from gas hydrate deposits requires releasing CH4 from solid gas hydrate. The conventional way to release CH4 is to dissociate the hydrate by changing the pressure and temperature conditions to those where the hydrate is unstable. Alternatively, the guest-molecule exchange technology releases CH4 by replacing it with more thermodynamically stable molecules (e.g., CO2, N2). This technology has three advantageous: 1) it sequesters greenhouse gas, 2) it potentially releases energy via an exothermic reaction, and 3) it retains the hydraulic and mechanical stability of the hydrate reservoir. Numerical simulation of the production of gas hydrates from geologic deposits requires accounting for coupled processes: multifluid flow, mobile and immobile phase appearances and disappearances, heat transfer, and multicomponent thermodynamics. The ternary gas hydrate system comprises five components (i.e., H2O, CH4, CO2, N2, and salt) and the potential for six phases (i.e., aqueous, nonaqueous liquid, gas, hydrate, ice, and precipitated salt). The equation of state for ternary hydrate systems has three requirements: 1) phase occurrence, 2) phase composition, and 3) phase properties. Numerical simulations that predict the production of geologic accumulations of gas hydrates have historically suffered from relatively slow execution times, compared with other multifluid, porous media systems, due to strong nonlinearities and phase transitions. The phase equilibria for the ternary gas hydrate system within the gas hydrate stability range of composition, temperature and pressure, includes regions where the gas hydrate is in equilibrium with gas, nonaqueous liquid, or mixtures of gas and nonaqeuous liquid near the CO2-CH4-N2 mixture critical point. In these regions, solutions to cubic equations of state can be nonconvergent without accurate initial guesses. A hybrid tabular-cubic equation of state is described which avoids convergence issues, but conserves the characteristics and advantages of the cubic equation of state approaches to phase equilibria calculations. The application of interest will be the production of a natural gas hydrate deposit from a geologic formation, using the guest molecule exchange process; where, a mixture of CO2 and N2 are injected into the formation. During the guest-molecule exchange, CO2 and N2 will predominately replace CH4 in the large and small cages of the sI structure, respectively.

  17. Effects of hydrated lime on radionuclides stabilization of Hanford tank residual waste.

    PubMed

    Wang, Guohui; Um, Wooyong; Cantrell, Kirk J; Snyder, Michelle M V; Bowden, Mark E; Triplett, Mark B; Buck, Edgar C

    2017-10-01

    Chemical stabilization of tank residual waste is part of a Hanford Site tank closure strategy to reduce overall risk levels to human health and the environment. In this study, a set of column leaching experiments using tank C-104 residual waste were conducted to evaluate the leachability of uranium (U) and technetium (Tc) where grout and hydrated lime were applied as chemical stabilizing agents. The experiments were designed to simulate future scenarios where meteoric water infiltrates through the vadose zones into the interior of the tank filled with layers of grout or hydrated lime, and then contacts the residual waste. Effluent concentrations of U and Tc were monitored and compared among three different packing columns (waste only, waste + grout, and waste + grout + hydrated lime). Geochemical modeling of the effluent compositions was conducted to determine saturation indices of uranium solid phases that could control the solubility of uranium. The results indicate that addition of hydrated lime strongly stabilized the uranium through transforming uranium to a highly insoluble calcium uranate (CaUO 4 ) or similar phase, whereas no significant stabilization effect of grout or hydrated lime was observed on Tc leachability. The result implies that hydrated lime could be a great candidate for stabilizing Hanford tank residual wastes where uranium is one of the main concerns. Published by Elsevier Ltd.

  18. Global minimum-energy structure and spectroscopic properties of I2(*-) x n H2O clusters: a Monte Carlo simulated annealing study.

    PubMed

    Pathak, Arup Kumar; Mukherjee, Tulsi; Maity, Dilip Kumar

    2010-01-18

    The vibrational (IR and Raman) and photoelectron spectral properties of hydrated iodine-dimer radical-anion clusters, I(2)(*-) x n H(2)O (n=1-10), are presented. Several initial guess structures are considered for each size of cluster to locate the global minimum-energy structure by applying a Monte Carlo simulated annealing procedure including spin-orbit interaction. In the Raman spectrum, hydration reduces the intensity of the I-I stretching band but enhances the intensity of the O-H stretching band of water. Raman spectra of more highly hydrated clusters appear to be simpler than the corresponding IR spectra. Vibrational bands due to simultaneous stretching vibrations of O-H bonds in a cyclic water network are observed for I(2)(*-) x n H(2)O clusters with n > or = 3. The vertical detachment energy (VDE) profile shows stepwise saturation that indicates closing of the geometrical shell in the hydrated clusters on addition of every four water molecules. The calculated VDE of finite-size small hydrated clusters is extrapolated to evaluate the bulk VDE value of I(2)(*-) in aqueous solution as 7.6 eV at the CCSD(T) level of theory. Structure and spectroscopic properties of these hydrated clusters are compared with those of hydrated clusters of Cl(2)(*-) and Br(2)(*-).

  19. Validation of beverage intake methods vs. hydration biomarkers; a short review.

    PubMed

    Nissensohn, Mariela; Ruano, Cristina; Serra-Majem, Lluis

    2013-11-01

    Fluid intake is difficult to monitor. Biomarkers of beverage intake are able to assess dietary intake/hydration status without the bias of self-reported dietary intake errors and also the intra-individual variability. Various markers have been proposed to assess hydration, however, to date; there is a lack of universally accepted biomarker that reflects changes of hydration status in response to changes in beverage intake. We conduct a review to find out the questionnaires of beverage intake available in the scientific literature to assess beverage intake and hydration status and their validation against hydration biomarkers. A scientific literature search was conducted. Only two articles were selected, in which, two different beverage intake questionnaires designed to capture the usual beverage intake were validated against Urine Specific Gravidity biomarker (Usg). Water balance questionnaire (WBQ) reported no correlations in the first study and the Beverage Intake Questionnaire (BEVQ), a quantitative Food frequency questionnaire (FFQ) in the second study, also found a negative correlation. FFQ appears to measure better beverage intake than WBQ when compared with biomarkers. However, the WBQ seems to be a more complete method to evaluate the hydration balance of a given population. Further research is needed to understand the meaning of the different correlations between intake estimates and biomarkers of beverage in distinct population groups and environments. Copyright AULA MEDICA EDICIONES 2013. Published by AULA MEDICA. All rights reserved.

  20. Effect of the hydration temperature on the microstructure of Class G cement: C-S-H composition and density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahafid, Sara; Ghabezloo, Siavash; Duc, Myriam

    Curing temperature has a significant influence on cement paste microstructure and the properties of its principal hydrate C-S-H. In this paper, the effect of the hydration temperature in the range of 7 °C to 90 °C on the microstructure of a class G oil-well cement is studied. This is done by combining various experimental methods, including X-ray diffraction associated with the Rietveld analysis, thermo-gravimetric analysis, mercury intrusion porosimetry and porosity evaluation by drying. The experimental results show an increase of the capillary porosity and a decrease of the gel porosity by increasing the hydration temperature. This is attributed to amore » decrease of the C-S-H intrinsic porosity and a corresponding increase of the C-S-H density for higher curing temperatures. The experimental results are used in a simple analysis method to evaluate the density of C-S-H, as well as its C/S ratio and H/S ratio in dry and saturated conditions. The evaluated C-S-H density varies from 1.88 g/cm{sup 3} at 7 °C to 2.10 g/cm{sup 3} at 90 °C. The results also show a decrease of molar C/S ratio with increasing hydration temperature from 1.93 at 7 °C to 1.71 at 90 °C and of the H/S ratio from 5.1 at 7 °C to 2.66 at 90 °C.« less

  1. Hydration Free Energy from Orthogonal Space Random Walk and Polarizable Force Field.

    PubMed

    Abella, Jayvee R; Cheng, Sara Y; Wang, Qiantao; Yang, Wei; Ren, Pengyu

    2014-07-08

    The orthogonal space random walk (OSRW) method has shown enhanced sampling efficiency in free energy calculations from previous studies. In this study, the implementation of OSRW in accordance with the polarizable AMOEBA force field in TINKER molecular modeling software package is discussed and subsequently applied to the hydration free energy calculation of 20 small organic molecules, among which 15 are positively charged and five are neutral. The calculated hydration free energies of these molecules are compared with the results obtained from the Bennett acceptance ratio method using the same force field, and overall an excellent agreement is obtained. The convergence and the efficiency of the OSRW are also discussed and compared with BAR. Combining enhanced sampling techniques such as OSRW with polarizable force fields is very promising for achieving both accuracy and efficiency in general free energy calculations.

  2. In vivo confirmation of hydration based contrast mechanisms for terahertz medical imaging using MRI

    NASA Astrophysics Data System (ADS)

    Bajwa, Neha; Sung, Shijun; Garritano, James; Nowroozi, Bryan; Tewari, Priyamvada; Ennis, Daniel B.; Alger, Jeffery; Grundfest, Warren; Taylor, Zachary

    2014-09-01

    Terahertz (THz) detection has been proposed and applied to a variety of medical imaging applications in view of its unrivaled hydration profiling capabilities. Variations in tissue dielectric function have been demonstrated at THz frequencies to generate high contrast imagery of tissue, however, the source of image contrast remains to be verified using a modality with a comparable sensing scheme. To investigate the primary contrast mechanism, a pilot comparison study was performed in a burn wound rat model, widely known to create detectable gradients in tissue hydration through both injured and surrounding tissue. Parallel T2 weighted multi slice multi echo (T2w MSME) 7T Magnetic Resonance (MR) scans and THz surface reflectance maps were acquired of a full thickness skin burn in a rat model over a 5 hour time period. A comparison of uninjured and injured regions in the full thickness burn demonstrates a 3-fold increase in average T2 relaxation times and a 15% increase in average THz reflectivity, respectively. These results support the sensitivity and specificity of MRI for measuring in vivo burn tissue water content and the use of this modality to verify and understand the hydration sensing capabilities of THz imaging for acute assessments of the onset and evolution of diseases that affect the skin. A starting point for more sophisticated in vivo studies, this preliminary analysis may be used in the future to explore how and to what extent the release of unbound water affects imaging contrast in THz burn sensing.

  3. Comparing the Effects of Alcohol Mixed with Artificially-Sweetened and Carbohydrate Containing Beverages on Breath Alcohol Concentration

    ERIC Educational Resources Information Center

    Irwin, Christopher; Shum, David; Desbrow, Ben; Leveritt, Michael

    2014-01-01

    This study investigated the impact of alcohol mixed with artificially sweetened or carbohydrate containing beverages on breath alcohol concentration s (BrAC) under various levels of hydration status. Two groups of males participated in 3 experimental trials where alcohol was consumed under three different levels of hydration status. One group…

  4. Effect of Nano-SiO2 on the Early Hydration of Alite-Sulphoaluminate Cement

    PubMed Central

    Sun, Jinfeng; Xu, Zhiqiang; Li, Weifeng; Shen, Xiaodong

    2017-01-01

    The impact of nano-SiO2 on the early hydration properties of alite-sulphoaluminate (AC$A) cement was investigated with a fixed water to solid ratio (w/s) of one. Nano-SiO2 was used in partial substitution of AC$A cement at zero, one and three wt %. Calorimetry, X-ray diffraction (XRD), thermogravimetric/derivative thermogravimetric (TG/DTG), mercury intrusion porosimetry (MIP) and scanning electron microscopy (SEM) analyses were used to characterize the hydration and hydrates of the blended cement. The hydration of the AC$A cement was significantly promoted, resulting in an increase of the heat released with the addition of nano-SiO2. Phase development composition analysis showed that nano-SiO2 had no effect on the type of crystalline hydration products of the AC$A cement. Moreover, nano-SiO2 showed significant positive effects on pore refinement where the total porosity decreased by 54.09% at three days with the inclusion of 3% nano-SiO2. Finally, from the SEM observations, nano-SiO2 was conducive to producing a denser microstructure than that of the control sample. PMID:28467348

  5. Hydration products and thermokinetic properties of cement-bentonite and cement-chalk mortars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klyusov, A.A.

    1988-08-20

    Bentonite and chalk are the most popular auxiliary additives to portland cement for borehole cementation. The authors studied by physicochemical analysis methods (x-ray phase, derivatographic, and scanning and electron microscopy in combination with microdiffraction) the newly formed solid-phase composition of cement-bentonite and cement-chalk mortars (binder-additive ratio 9:1) prepared from portland cement for cold boreholes and 8% calcium chloride solution at a water-mixing ratio of 0.9. The mechanism of the influence of Ca-bentonite and chalk additives on the portland cement hydration rate was ascertained from the heat evolution rate curves. It was found that the phase compositions of the hydration productsmore » are represented in the studied systems by newly formed substances typical for portland cement. It has been noted that Ca-bentonite interacts with the calcium hydroxide of hydrated cement with the formation of hexagonal and cubic calcium hydroaluminates. Unlike Ca-bentonite, chalk does not react with portland cement at normal and reduced temperatures, does not block hydrated cement particles, which, in turn, ensures all other conditions remaining equal, a higher initial rate of hydration of cement-chalk mortar.« less

  6. Systemic Hydration: Relating Science to Clinical Practice in Vocal Health

    PubMed Central

    Hartley, Naomi A.; Thibeault, Susan L.

    2014-01-01

    Objectives To examine the current state of the science regarding the role of systemic hydration in vocal function and health. Study Design Literature Review Methods Literature search spanning multiple disciplines, including speech-language pathology, nutrition and dietetics, medicine, sports and exercise science, physiology and biomechanics. Results The relationship between hydration and physical function is an area of common interest amongst multiple professions. Each discipline provides valuable insight into the connection between performance and water balance, as well as complimentary methods of investigation. Existing voice literature suggests a relationship between hydration and voice production, however the underlying mechanisms are not yet defined and a treatment effect for systemic hydration remains to be demonstrated. Literature from other disciplines sheds light on methodological shortcomings and in some cases offers an alternative explanation for observed phenomena. Conclusions A growing body of literature in the field of voice science is documenting a relationship between hydration and vocal function, however greater understanding is required to guide best practice in the maintenance of vocal health and management of voice disorders. Integration of knowledge and technical expertise from multiple disciplines facilitates analysis of existing literature and provides guidance as to future research. PMID:24880674

  7. Hydration of dimethyldodecylamine-N-oxide: enthalpy and entropy driven processes.

    PubMed

    Kocherbitov, Vitaly; Söderman, Olle

    2006-07-13

    Dimethyldodecylamine-N-oxide (DDAO) has only one polar atom that is able to interact with water. Still, this surfactant shows very hydrophilic properties: in mixtures with water, it forms normal liquid crystalline phases and micelles. Moreover, there is data in the literature indicating that the hydration of this surfactant is driven by enthalpy while other studies show that hydration of surfactants and lipids typically is driven by entropy. Sorption calorimetry allows resolving enthalpic and entropic contributions to the free energy of hydration at constant temperature and thus directly determines the driving forces of hydration. The results of the present sorption calorimetric study show that the hydration of liquid crystalline phases of DDAO is driven by entropy, except for the hydration of the liquid crystalline lamellar phase which is co-driven by enthalpy. The exothermic heat effect of the hydration of the lamellar phase arises from formation of strong hydrogen bonds between DDAO and water. Another issue is the driving forces of the phase transitions caused by the hydration. The sorption calorimetric results show that the transitions from the lamellar to cubic and from the cubic to the hexagonal phase are driven by enthalpy. Transitions from solid phases to the liquid crystalline lamellar phase are entropically driven, while the formation of the monohydrate from the dry surfactant is driven by enthalpy. The driving forces of the transition from the hexagonal phase to the isotropic solution are close to zero. These sorption calorimetric results are in good agreement with the analysis of the binary phase diagram based on the van der Waals differential equation. The phase diagram of the DDAO-water system determined using DSC and sorption calorimetry is presented.

  8. Comparable stability of Hoogsteen and Watson-Crick base pairs in ionic liquid choline dihydrogen phosphate.

    PubMed

    Tateishi-Karimata, Hisae; Nakano, Miki; Sugimoto, Naoki

    2014-01-08

    The instability of Hoogsteen base pairs relative to Watson-Crick base pairs has limited biological applications of triplex-forming oligonucleotides. Hydrated ionic liquids (ILs) provide favourable environments for a wide range of chemical reactions and are known to impact the stabilities of Watson-Crick base pairs. We found that DNA triplex formation was significantly stabilized in hydrated choline dihydrogen phosphate as compared with an aqueous buffer at neutral pH. Interestingly, the stability of Hoogsteen base pairs was found to be comparable with that of Watson-Crick base pairs in the hydrated IL. Molecular dynamics simulations of a DNA triplex in the presence of choline ions revealed that the DNA triplex was stabilized because of the binding of choline ion around the third strand in the grooves. Our finding will facilitate the development of new DNA materials. Our data also indicate that triplex formation may be stabilized inside cells where choline ions and their derivatives are abundant in vivo.

  9. Comparable Stability of Hoogsteen and Watson–Crick Base Pairs in Ionic Liquid Choline Dihydrogen Phosphate

    PubMed Central

    Tateishi-Karimata, Hisae; Nakano, Miki; Sugimoto, Naoki

    2014-01-01

    The instability of Hoogsteen base pairs relative to Watson–Crick base pairs has limited biological applications of triplex-forming oligonucleotides. Hydrated ionic liquids (ILs) provide favourable environments for a wide range of chemical reactions and are known to impact the stabilities of Watson–Crick base pairs. We found that DNA triplex formation was significantly stabilized in hydrated choline dihydrogen phosphate as compared with an aqueous buffer at neutral pH. Interestingly, the stability of Hoogsteen base pairs was found to be comparable with that of Watson–Crick base pairs in the hydrated IL. Molecular dynamics simulations of a DNA triplex in the presence of choline ions revealed that the DNA triplex was stabilized because of the binding of choline ion around the third strand in the grooves. Our finding will facilitate the development of new DNA materials. Our data also indicate that triplex formation may be stabilized inside cells where choline ions and their derivatives are abundant in vivo. PMID:24399194

  10. Short-range, overpressure-driven methane migration in coarse-grained gas hydrate reservoirs

    DOE PAGES

    Nole, Michael; Daigle, Hugh; Cook, Ann E.; ...

    2016-08-31

    Two methane migration mechanisms have been proposed for coarse-grained gas hydrate reservoirs: short-range diffusive gas migration and long-range advective fluid transport from depth. Herein we demonstrate that short-range fluid flow due to overpressure in marine sediments is a significant additional methane transport mechanism that allows hydrate to precipitate in large quantities in thick, coarse-grained hydrate reservoirs. Two-dimensional simulations demonstrate that this migration mechanism, short-range advective transport, can supply significant amounts of dissolved gas and is unencumbered by limitations of the other two end-member mechanisms. Here, short-range advective migration can increase the amount of methane delivered to sands as compared tomore » the slow process of diffusion, yet it is not necessarily limited by effective porosity reduction as is typical of updip advection from a deep source.« less

  11. Short-range, overpressure-driven methane migration in coarse-grained gas hydrate reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nole, Michael; Daigle, Hugh; Cook, Ann E.

    Two methane migration mechanisms have been proposed for coarse-grained gas hydrate reservoirs: short-range diffusive gas migration and long-range advective fluid transport from depth. Herein we demonstrate that short-range fluid flow due to overpressure in marine sediments is a significant additional methane transport mechanism that allows hydrate to precipitate in large quantities in thick, coarse-grained hydrate reservoirs. Two-dimensional simulations demonstrate that this migration mechanism, short-range advective transport, can supply significant amounts of dissolved gas and is unencumbered by limitations of the other two end-member mechanisms. Here, short-range advective migration can increase the amount of methane delivered to sands as compared tomore » the slow process of diffusion, yet it is not necessarily limited by effective porosity reduction as is typical of updip advection from a deep source.« less

  12. SEM Analysis of the Interfacial Transition Zone between Cement-Glass Powder Paste and Aggregate of Mortar under Microwave Curing

    PubMed Central

    Kong, Yaning; Wang, Peiming; Liu, Shuhua; Zhao, Guorong; Peng, Yu

    2016-01-01

    In order to investigate the effects of microwave curing on the microstructure of the interfacial transition zone of mortar prepared with a composite binder containing glass powder and to explain the mechanism of microwave curing on the improvement of compressive strength, in this study, the compressive strength of mortar under microwave curing was compared against mortar cured using (a) normal curing at 20 ± 1 °C with relative humidity (RH) > 90%; (b) steam curing at 40 °C for 10 h; and (c) steam curing at 80 °C for 4 h. The microstructure of the interfacial transition zone of mortar under the four curing regimes was analyzed by Scanning electron microscopy (SEM). The results showed that the improvement of the compressive strength of mortar under microwave curing can be attributed to the amelioration of the microstructure of the interfacial transition zone. The hydration degree of cement is accelerated by the thermal effect of microwave curing and Na+ partially dissolved from the fine glass powder to form more reticular calcium silicate hydrate, which connects the aggregate, calcium hydroxide, and non-hydrated cement and glass powder into a denser integral structure. In addition, a more stable triangular structure of calcium hydroxide contributes to the improvement of compressive strength. PMID:28773854

  13. SEM Analysis of the Interfacial Transition Zone between Cement-Glass Powder Paste and Aggregate of Mortar under Microwave Curing.

    PubMed

    Kong, Yaning; Wang, Peiming; Liu, Shuhua; Zhao, Guorong; Peng, Yu

    2016-08-27

    In order to investigate the effects of microwave curing on the microstructure of the interfacial transition zone of mortar prepared with a composite binder containing glass powder and to explain the mechanism of microwave curing on the improvement of compressive strength, in this study, the compressive strength of mortar under microwave curing was compared against mortar cured using (a) normal curing at 20 ± 1 °C with relative humidity (RH) > 90%; (b) steam curing at 40 °C for 10 h; and (c) steam curing at 80 °C for 4 h. The microstructure of the interfacial transition zone of mortar under the four curing regimes was analyzed by Scanning electron microscopy (SEM). The results showed that the improvement of the compressive strength of mortar under microwave curing can be attributed to the amelioration of the microstructure of the interfacial transition zone. The hydration degree of cement is accelerated by the thermal effect of microwave curing and Na⁺ partially dissolved from the fine glass powder to form more reticular calcium silicate hydrate, which connects the aggregate, calcium hydroxide, and non-hydrated cement and glass powder into a denser integral structure. In addition, a more stable triangular structure of calcium hydroxide contributes to the improvement of compressive strength.

  14. Seismic reflection profile of the Blake Ridge near sites 994, 995, and 997: Chapter 4

    USGS Publications Warehouse

    Dillon, William P.; Hutchinson, Deborah R.; Drury, Rebecca M.

    1996-01-01

    Seismic reflection profiles near Sites 994, 995, and 997 were collected with seismic sources that provide maximum resolution with adequate power to image the zone of gas hydrate stability and the region direction beneath it. The overall structure of the sediment drift deposit that constitutes the Blake Ridge consists of southwestward-dipping strata. These strata are approximately conformal to the seafloor on the southwest side of the ridge and are truncated by erosion on the northeast side. A bottom-simulating reflection (BSR) marks the velocity contrast between gas hydrate-bearing sediment and regions containing free gas beneath the zone of gas hydrate stability. The BSR is strong and continuous near the ridge crest but becomes discontinuous on the flanks, where concentration of gas is reduced and dipping strata pass through the level of the base o fgas hydrate stability or the strata are disrupted by faults. Seismic reflection amplitudes appear to be reduced in the region of gas hydrate formation compared to normal amplitudes. A faulted zone ~0.5-0.6 s thick parallels reflections from strata. We infer that this may represent a formerly gas hydrate-bearing zone that was faulted because of a breakdown of hydrate near its phase limit (at the base of the zone). Strong reflections at the top of the faulted zone are caused by free-gas acccumulation at Site 994. Similar strong reflections probably are caused by free-gas accumulations where the top of the faulted zone rises above the BSR, although this would require local free gas within the hydrate-stable zone.

  15. Structure-based analysis reveals hydration changes induced by arginine hydrochloride.

    PubMed

    Nakakido, Makoto; Tanaka, Yoshikazu; Mitsuhori, Mariko; Kudou, Motonori; Ejima, Daisuke; Arakawa, Tsutomu; Tsumoto, Kouhei

    2008-10-01

    Arginine hydrochloride has been used to suppress protein aggregation during refolding and in various other applications. We investigated the structure of hen egg-white lysozyme (HEL) and solvent molecules in arginine hydrochloride solution by X-ray crystallography. Neither the backbone nor side-chain structure of HEL was altered by the presence of arginine hydrochloride. In addition, no stably bound arginine molecules were observed. The number of hydration water molecules, however, changed with the arginine hydrochloride concentration. We suggest that arginine hydrochloride suppresses protein aggregation by altering the hydration structure and the transient binding of arginine molecules that could not be observed.

  16. Local stress distribution around garnet inclusions during hydration of granulite in the Bergen Arcs, Norway

    NASA Astrophysics Data System (ADS)

    Centrella, Stephen; Vrijmoed, Johannes C.; Putnis, Andrew; Austrheim, Håkon

    2017-04-01

    The importance of heterogeneous stress and pressure distribution within a rock has been established over the last decades (see review in Tajčmanová et al., 2015). During a hydration reaction, depending on whether the system is open to mass transfer, the volume changes of the reaction may be accommodated by removing material into the fluid phase that leaves the system (Centrella et al., 2015; Centrella et al., 2016). The magnitudes and the spatial distribution of stress and pressure that evolve during such processes is largely unknown. We present here a natural example where a granulite is hydrated at amphibolite facies conditions from the Bergen Arcs in Norway. Granulitic garnet is associated with kyanite and quartz on one side, and amphibole-biotite on the other side. The first couple replaces the plagioclase of the granulite matrix whereas the second replaces the garnet. We use electron probe microanalysis (EPMA) and X-ray mapping to investigate the spatial and possible temporal relationships between these two parageneses. Gresens' analysis has been used to determine the mass balance and the local volume changes associated with the two reactions. The reaction to kyanite+quartz induces a loss in volume compared to the original plagioclase whereas the second reaction amphibole+biotite gains volume compared to the original garnet. The specific mass evolution associated with both reactions suggests a local mass balance probably associated with a single hydration event. Using the methodology of Vrijmoed & Podladchikov (2015) we test whether the microstructure may be partly related to the local stress heterogeneity around the garnet inclusion. We evaluate the phase assemblage and distribution at chemical equilibrium under a given input pressure field that can be computed with the Thermolab software. By varying the input pressure field using the Finite Element Method and comparing the resulting equilibrium assemblage to the real data an estimate of the local stress and pressure distribution around the garnet inclusion is obtained. The differences of the equilibrium model with the observations are discussed. References: Centrella, S., Austrheim, H., and Putnis, A., 2015, Coupled mass transfer through a fluid phase and volume preservation during the hydration of granulite: An example from the Bergen Arcs, Norway: Lithos, 236-237, p. 245-255, doi: 10.1016/j.lithos.2015.09.010. Centrella, S., Austrheim, H., and Putnis, A., 2016, Mass transfer and trace element redistribution during hydration of granulites in the Bergen Arcs, Norway: Lithos, v. 262, p. 1-10, doi: 10.1016/j.lithos.2016.06.019. Tajčmanová, L., Vrijmoed, J., and Moulas, E., 2015, Grain-scale pressure variations in metamorphic rocks: implications for the interpretation of petrographic observations: Lithos, 216-217, p. 338-351, doi: 10.1016/j.lithos.2015.01.006. Vrijmoed, J.C., and Podladchikov, Y.Y., 2015, Thermodynamic equilibrium at heterogeneous pressure: Contributions to Mineralogy and Petrology, v. 170, no. 1, doi: 10.1007/s00410-015-1156-1.

  17. Self-preservation and structural transition of gas hydrates during dissociation below the ice point: an in situ study using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhong, Jin-Rong; Zeng, Xin-Yang; Zhou, Feng-He; Ran, Qi-Dong; Sun, Chang-Yu; Zhong, Rui-Qin; Yang, Lan-Ying; Chen, Guang-Jin; Koh, Carolyn A.

    2016-12-01

    The hydrate structure type and dissociation behavior for pure methane and methane-ethane hydrates at temperatures below the ice point and atmospheric pressure were investigated using in situ Raman spectroscopic analysis. The self-preservation effect of sI methane hydrate is significant at lower temperatures (268.15 to 270.15 K), as determined by the stable C-H region Raman peaks and AL/AS value (Ratio of total peak area corresponding to occupancies of guest molecules in large cavities to small cavities) being around 3.0. However, it was reduced at higher temperatures (271.15 K and 272.15 K), as shown from the dramatic change in Raman spectra and fluctuations in AL/AS values. The self-preservation effect for methane-ethane double hydrate is observed at temperatures lower than 271.15 K. The structure transition from sI to sII occurred during the methane-ethane hydrate decomposition process, which was clearly identified by the shift in peak positions and the change in relative peak intensities at temperatures from 269.15 K to 271.15 K. Further investigation shows that the selectivity for self-preservation of methane over ethane leads to the structure transition; this kind of selectivity increases with decreasing temperature. This work provides new insight into the kinetic behavior of hydrate dissociation below the ice point.

  18. Magnetic hysteresis parameters and Day plot analysis to characterize diagenetic alteration in gas hydrate-bearing sediments

    NASA Astrophysics Data System (ADS)

    Enkin, Randolph J.; Baker, Judith; Nourgaliev, Danis; Iassonov, Pavel; Hamilton, Tark S.

    2007-06-01

    The J meter coercivity spectrometer is a machine capable of rapid and simple measurement of magnetic hysteresis, isothermal remanence acquisition and magnetic viscosity of rocks and sediments. The J meter was used to study a suite of samples collected from strata in the gas hydrate-bearing JAPEX/JNOC/GSC Mallik 5L-38 well (69.5°N, 134.6°W) in the Mackenzie Delta of the northwestern Canadian Arctic. The Day plot of magnetic hysteresis ratios for these samples is exotic in that the points do not plot along a hyperbola as is usually observed. Rather, they plot as a scatter which is shown to contour into vertical slices using coercivity field (HC) or saturation magnetization (JS), and horizontal slices using the relative quantity of superparamagnetism (JSPM/JS). Optical microscopy reveals that the magnetic minerals are detrital magnetite and authigenic greigite. Greigite is dominant in sands which in situ had >70% gas hydrate saturation and in silts in which gas hydrate growth was blocked by insufficient porosity. We infer that the silts were the accumulation sites for solutes which had been excluded from the pore waters in neighboring coarser-grained sediments during the course of gas hydrate formation. Consequently, we conclude that magnetic properties are related to gas hydrate-related processes, and as such, may have potential as a method of remote sensing for gas hydrate deposits.

  19. Assessing Hydration in Children: From Science to Practice.

    PubMed

    Guelinckx, I; Frémont-Marquis, A S; Eon, E; Kavouras, S A; Armstrong, L E

    2015-01-01

    Raising children's awareness about their hydration status could be done through a noninvasive biomarker. Urine color (UC) has been validated as a biomarker of hydration in adults and children aged 8-14 years. The aim of this survey was to design and to evaluate the level of understanding and attractiveness of a self-assessment, UC-based hydration tool for children aged 6-11 years. The first phase of the survey consisted of face-to-face interviews during which 84 children identified those graphical elements necessary to understand the hydration message from 6 illustration-based designs containing the UC chart. The graphic elements selected were the basis to create 3 new designs. During the 2nd phase, the level of understanding and attractiveness of these 3 new designs was then evaluated via an online questionnaire by a total of 1,231 children in 3 countries. The design with the highest level of understanding was totally or partially understood by 76% of the participants, independent of age and gender. The levels of understanding, however, differed in the countries. In Indonesia, the levels of understanding of the 3 designs were comparable; whereas in both France (74%) and Mexico (78%), significantly more participants totally and partially understood one of the 3 designs. The levels of attractiveness of the 3 designs were comparable, independent of country, age, and gender. On average, 80% of all participants liked the 3 designs a bit or a lot. Only 14% did not like the designs, and 5% of participants had no opinion regarding attractiveness. These results indicated that three out of four children like and understand the correct hydration message from a strictly illustration-based tool containing the eight-point UC scale. © 2015 S. Karger AG, Basel.

  20. The impact of sub-clinical over-hydration on left ventricular mass in peritoneal dialysis patients.

    PubMed

    Hassan, Kamal; Hassan, Dunia; Shturman, Alexander; Rubinchik, Irina; Fadi, Hassan; Shadi, Hassan; Atar, Shaul

    2015-01-01

    Left ventricular hypertrophy (LVH) represents a major predictor of the development of cardiovascular (CV) complications. Over-hydration (OH) is an important uremic risk factor associated with LVH and increased CV morbidity and mortality in peritoneal dialysis (PD) patients. In the present study we evaluated the prevalence of sub-clinical OH (SCOH) among PD patients and its effects on left ventricular mass (LVM). In this cross sectional study hydration status, blood pressure, glucose load, systemic inflammation and LVM were evaluated in 43 clinically stable patients on maintenance PD for 24-76 months. The hydration status was assessed by whole-body bio-impedance spectroscopy (BIS). Peripheral edema and any evidence of pulmonary congestion were considered clinical signs of OH. OH ≥ 1.5 L was detected in 26 (60.5%) of the study participants; the OH in 19 (73.1%) of them was sub-clinical. Only 23.5% (4/17) of patients with OH < 1.5 L had LVH compared to 68.4% (13/19) of those with SCOH ≥ 1.5 L (P = 0.007). Compared to patients with OH < 1.5 L, patients with SCOH ≥ 1.5 L had higher levels of blood pressure, peritoneal glucose load, plasma brain natriuretic peptide, high sensitive C-reactive protein, interleukin-6 and LVMI; and lower levels of serum albumin (P < 0.001). No significant differences were found between patients with clinical OH or SCOH with OH ≥ 1.5 L. SCOH is highly prevalent among PD patients and may contribute to the development of LVH. Considering the poor prognosis associated with over-hydrated PD patients, periodic assessment of hydration status using accurate BIS is suggested.

  1. Combustion of Methane Hydrate

    NASA Astrophysics Data System (ADS)

    Roshandell, Melika

    A significant methane storehouse is in the form of methane hydrates on the sea floor and in the arctic permafrost. Methane hydrates are ice-like structures composed of water cages housing a guest methane molecule. This caged methane represents a resource of energy and a potential source of strong greenhouse gas. Most research related to methane hydrates has been focused on their formation and dissociation because they can form solid plugs that complicate transport of oil and gas in pipelines. This dissertation explores the direct burning of these methane hydrates where heat from the combustion process dissociates the hydrate into water and methane, and the released methane fuels the methane/air diffusion flame heat source. In contrast to the pipeline applications, very little research has been done on the combustion and burning characteristics of methane hydrates. This is the first dissertation on this subject. In this study, energy release and combustion characteristics of methane hydrates were investigated both theoretically and experimentally. The experimental study involved collaboration with another research group, particularly in the creation of methane hydrate samples. The experiments were difficult because hydrates form at high pressure within a narrow temperature range. The process can be slow and the resulting hydrate can have somewhat variable properties (e.g., extent of clathration, shape, compactness). The experimental study examined broad characteristics of hydrate combustion, including flame appearance, burning time, conditions leading to flame extinguishment, the amount of hydrate water melted versus evaporated, and flame temperature. These properties were observed for samples of different physical size. Hydrate formation is a very slow process with pure water and methane. The addition of small amounts of surfactant increased substantially the hydrate formation rate. The effects of surfactant on burning characteristics were also studied. One finding from the experimental component of the research was that hydrates can burn completely, and that they burn most rapidly just after ignition and then burn steadily when some of the water in the dissociated zone is allowed to drain away. Excessive surfactant in the water creates a foam layer around the hydrate that acts as an insulator. The layer prevents sufficient heat flux from reaching the hydrate surface below the foam to release additional methane and the hydrate flame extinguishes. No self-healing or ice-freezing processes were observed in any of the combustion experiments. There is some variability, but a typical hydrate flame is receiving between one and two moles of water vapor from the liquid dissociated zone of the hydrate for each mole of methane it receives from the dissociating solid region. This limits the flame temperature to approximately 1800 K. In the theoretical portion of the study, a physical model using an energy balance from methane combustion was developed to understand the energy transfer between the three phases of gas, liquid and solid during the hydrate burn. Also this study provides an understanding of the different factors impacting the hydrate's continuous burn, such as the amount of water vapor in the flame. The theoretical study revealed how the water layer thickness on the hydrate surface, and its effect on the temperature gradient through the dissociated zone, plays a significant role in the hydrate dissociation rate and methane release rate. Motivated by the above mentioned observation from the theoretical analysis, a 1-D two-phase numerical simulation based on a moving front model for hydrate dissociation from a thermal source was developed. This model was focused on the dynamic growth of the dissociated zone and its effect on the dissociation rate. The model indicated that the rate of hydrate dissociation with a thermal source is a function of the dissociated zone thickness. It shows that in order for a continuous dissociation and methane release, some of the water from the dissociated zone needs to be drained. The results are consistent with the experimental observations. The understanding derived from the experiments and the numerical model permitted a brief exploration into the potential effects of pressure on the combustion of methane hydrates. The prediction is that combustion should improve under high pressure conditions because the evaporation of water is suppressed allowing more energy into the dissociation. Future experiments are needed to validate these initial findings.

  2. Hydration behavior of magnesium potassium phosphate cement and stability analysis of its hydration products through thermodynamic modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Tao; Chen, Huisu; Li, Xiangyu

    Magnesium potassium phosphate cement (MKPC) is normally applied in civil engineering because of its short setting time and superior mechanical properties. This study investigates the hydration behavior and hydration products of MKPC influenced by molar ratio between magnesia and phosphate (M/P ratio) through thermodynamic method. Results show that the composition of ultimate hydration products are controlled by concentration of KH{sub 2}PO{sub 4} and MgO, activity of water and pH value of solution. When M/P ratio is lower than 0.64, the hydration product is MgHPO{sub 4}·3H{sub 2}O; When M/P ratio is between 0.64 and 0.67, the hydration products are MgHPO{sub 4}·3H{submore » 2}O and Mg{sub 2}KH(PO{sub 4}){sub 2}·15H{sub 2}O. When M/P ratio is between 0.67 and 1.00, hydration products are Mg{sub 2}KH(PO{sub 4}){sub 2}·15H{sub 2}O and KMgPO{sub 4}·6H{sub 2}O; When M/P ratio is higher than 1.00, the hydration product is KMgPO{sub 4}·6H{sub 2}O together with unreacted MgO. This study also investigated the effect of additives, namely B(OH){sub 3}, H{sub 3}PO{sub 4}, K{sub 2}HPO{sub 4} and KH{sub 2}PO{sub 4}. - Highlights: • A database particularly for MKPC system at 25°C, 0.1 MPa was established and verified. • The pH value corresponding to specific M/P ratio in MKPC system is successfully predicted at 25°C, 0.1 MPa. • The composition of hydration products influenced by M/P ratio and some additives is successfully predicted at 25°C, 0.1 MPa.« less

  3. In-Situ Sampling and Characterization of Naturally Occurring Marine Methane Hydrate Using the D/V JOIDES Resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rack, Frank; Storms, Michael; Schroeder, Derryl

    The primary accomplishments of the JOI Cooperative Agreement with DOE/NETL in this quarter were (1) the preliminary postcruise evaluation of the tools and measurement systems that were used during ODP Leg 204 to study hydrate deposits on Hydrate Ridge, offshore Oregon from July through September 2002; and (2) the preliminary study of the hydrate-bearing core samples preserved in pressure vessels and in liquid nitrogen cryofreezers, which are now stored at the ODP Gulf Coast Repository in College Station, TX. During ODP Leg 204, several newly modified downhole tools were deployed to better characterize the subsurface lithologies and environments hosting microbialmore » populations and gas hydrates. A preliminary review of the use of these tools is provided herein. The DVTP, DVTP-P, APC-methane, and APC-Temperature tools (ODP memory tools) were used extensively and successfully during ODP Leg 204 aboard the D/V JOIDES Resolution. These systems provided a strong operational capability for characterizing the in situ properties of methane hydrates in subsurface environments on Hydrate Ridge during ODP Leg 204. Pressure was also measured during a trial run of the Fugro piezoprobe, which operates on similar principles as the DVTP-P. The final report describing the deployments of the Fugro Piezoprobe is provided in Appendix A of this report. A preliminary analysis and comparison between the piezoprobe and DVTP-P tools is provided in Appendix B of this report. Finally, a series of additional holes were cored at the crest of Hydrate Ridge (Site 1249) specifically geared toward the rapid recovery and preservation of hydrate samples as part of a hydrate geriatric study partially funded by the Department of Energy (DOE). In addition, the preliminary results from gamma density non-invasive imaging of the cores preserved in pressure vessels are provided in Appendix C of this report. An initial visual inspection of the samples stored in liquid nitrogen is provided in Appendix D of this report.« less

  4. A new body moisturizer increases skin hydration and improves atopic dermatitis symptoms among children and adults.

    PubMed

    Simpson, Eric; Dutronc, Yves

    2011-07-01

    Moisturizers result in an increase of skin hydration and restoration of the skin barrier function and play a prominent role in the longterm management of atopic dermatitis (AD). Cetaphil RestoradermTM Moisturizer (CRM) contains novel ingredients specifically designed for AD, and its effects on skin hydration, skin barrier function and signs of AD were assessed in four studies, three of which were evaluator-blinded, randomized and intra-individual comparison trials. A single application of CRM induced significantly greater hydration than the untreated control for at least 24 hours (P is less than 0.001). After the skin was disrupted with 0.5% sodium dodecyl sulfate (SDS), applications of CRM led to a more rapid restoration of skin barrier function and maintained significantly greater skin hydration compared to the untreated control (both P is less than 0.05). After four weeks of twice-daily CRM application among subjects with a history of AD, a significant decrease of itching/stinging scores compared to baseline was reported, as well as an improvement in the quality-of- life and a high level of satisfaction regarding the product. When CRM was used as an adjunctive treatment with topical steroid for four weeks among subjects with mild-to-moderate AD, a more rapid decrease of overall disease severity was observed on days 7, 14 and 21 by the blinded investigator (P is less than 0.05), compared to steroid treatment alone. In summary, CRM is suitable for the specific needs of patients with AD and can be used either alone for long-term management or in adjunction with traditional treatment for both short and long-term disease control.

  5. Random and Block Sulfonated Polyaramides as Advanced Proton Exchange Membranes

    DOE PAGES

    Kinsinger, Corey L.; Liu, Yuan; Liu, Feilong; ...

    2015-10-09

    We present here the experimental and computational characterization of two novel copolyaramide proton exchange membranes (PEMs) with higher conductivity than Nafion at relatively high temperatures, good mechanical properties, high thermal stability, and the capability to operate in low humidity conditions. The random and block copolyaramide PEMs are found to possess different ion exchange capacities (IEC) in addition to subtle structural and morphological differences, which impact the stability and conductivity of the membranes. SAXS patterns indicate the ionomer peak for the dry block copolymer resides at q = 0.1 Å –1, which increases in amplitude when initially hydrated to 25% relativemore » humidity, but then decrease in amplitude with additional hydration. This pattern is hypothesized to signal the transport of water into the polymer matrix resulting in a reduced degree of phase separation. Coupled to these morphological changes, the enhanced proton transport characteristics and structural/mechanical stability for the block copolymer are hypothesized to be primarily due to the ordered structure of ionic clusters that create connected proton transport pathways while reducing swelling upon hydration. Interestingly, the random copolymer did not possess an ionomer peak at any of the hydration levels investigated, indicating a lack of any significant ionomer structure. The random copolymer also demonstrated higher proton conductivity than the block copolymer, which is opposite to the trend normally seen in polymer membranes. However, it has reduced structural/mechanical stability as compared to the block copolymer. In conclusion, this reduction in stability is due to the random morphology formed by entanglements of polymer chains and the adverse swelling characteristics upon hydration. Therefore, the block copolymer with its enhanced proton conductivity characteristics, as compared to Nafion, and favorable structural/mechanical stability, as compared to the random copolymer, represents a viable alternative to current proton exchange membranes.« less

  6. The effect of topical anti blister products on the risk of friction blister formation on the foot.

    PubMed

    Hashmi, Farina; Kirkham, Suzanne; Nester, Christopher; Lam, Sharon

    2016-08-01

    Foot blisters are a common injury, which can impact on activity and lead to infection. Increased skin surface hydration has been identified as a risk factor for blister formation, indicating that a reduction in hydration could reduce the risk of blister. Thirty healthy adults were randomised into 3 groups, each receiving a preventative foot blister treatment (2Toms(®) Blister Shield(®); Flexitol(®) Blistop and Boots Anti-Perspirant Foot Spray). Cycles of compression and shear loads where applied to heel skin using a mechanism driven by compressed air. Temperature changes were measured during load application using a thermal imaging camera (FLIR Systems Inc. and Therm CAM™ Quick Report). Near surface hydration of the skin was measured using a Corneometer(®) (C & K, Germany). There was no significant difference in the rate of temperature change of the skin between the three groups compared to not using products (p = 0.767, p = 0.767, p = 0.515) or when comparing each product (p = 0.551). There was a significant decrease in near surface skin hydration, compared to baseline, after the application of powder (-8.53 AU, p = 0.01). There was no significant difference in hydration after the application of film former and antiperspirant (-1.47 AU, p = 0.26; -1.00 AU, p = 0.80, respectively). With the application of external load we found no significant difference in the effect of the three products on temperature change. The powder product demonstrated an effect on reducing the risk of blister. It is postulated that powder may have a barrier effect. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  7. On-line Differential Thermal Isotope Analysis: A New Method for Measuring Oxygen and Hydrogen Isotopes of Hydration Water in Minerals

    NASA Astrophysics Data System (ADS)

    Bauska, T.; Hodell, D. A.; Walters, G.

    2016-12-01

    Oxygen (16O,17O,18O) and hydrogen (H,D) isotopes of hydration water in minerals provide a rich source of information about the conditions under which hydrated minerals form on Earth and other planetary bodies (e.g. Mars). We have developed a new method for measuring different types of bonded water (e.g., molecular, hydroxyl) contained in hydrated minerals by coupling a thermal gravimeter (TG) and a cavity ringdown laser spectrometer (CRDS). The method involves step heating a mineral sample, precisely measuring the weight loss and enthalpy as the sample undergoes dehydration and dehydroxylation, whilst simultaneously determining the oxygen and hydrogen isotopes of the water vapor evolved from the mineral sample by cavity ring-down laser spectroscopy (CRDS). Nitrogen carrier gas is used to transfer the sample from the TG to the CRDS via a heated line and interface box. The interface includes the capability of (i) cryogenic trapping discrete types of water for samples containing small amounts of water; (ii) injecting small quantities of water of known isotopic value for calibration; and (iii) converting volatile organic compounds to nascent amounts of water using a catalyst. The CRDS continually measures water vapor concentration in the optical cavity and hydrogen and oxygen isotope ratios. Isotopic values are calculated by integrating the product of the water amount and its isotopic value for the separated peaks after correcting for background. Precision of the method was estimated by comparing isotope results of total water for gypsum measured by DTIA with our conventional method of extraction and analysis (Gázquez et al., 2015. Rapid Communications in Mass Spectrometry, 29, 1997-2006). Errors for the isotopic values of total hydration water vary between ±0.08 and ±0.34 ‰ for δ18O and between ±0.16 and ±0.86 ‰ for δD. We demonstrate the application of the DTIA method to a variety of hydrous minerals and mineraloids including gypsum, clays, and amorphous silica (opal, glass, chert). The DTIA method has wide ranging application for addressing fundamental problems across many disciplines in Earth and Planetary Sciences, including: paleoclimatology, sedimentology, volcanology, water exchange between the solid earth and hydrosphere, and water on Mars and other planetary bodies.

  8. Randomised trial of no hydration vs. sodium bicarbonate hydration in patients with chronic kidney disease undergoing acute computed tomography-pulmonary angiography.

    PubMed

    Kooiman, J; Sijpkens, Y W J; van Buren, M; Groeneveld, J H M; Ramai, S R S; van der Molen, A J; Aarts, N J M; van Rooden, C J; Cannegieter, S C; Putter, H; Rabelink, T J; Huisman, M V

    2014-10-01

    Hydration to prevent contrast-induced acute kidney injury (CI-AKI) induces a diagnostic delay when performing computed tomography-pulmonary angiography (CTPA) in patients suspected of having acute pulmonary embolism. To analyze whether withholding hydration is non-inferior to sodium bicarbonate hydration before CTPA in patients with chronic kidney disease (CKD). We performed an open-label multicenter randomized trial between 2009 and 2013. One hundred thirty-nine CKD patients were randomized, of whom 138 were included in the intention-to-treat population: 67 were randomized to withholding hydration and 71 were randomized to 1-h 250 mL 1.4% sodium bicarbonate hydration before CTPA. Primary outcome was the increase in serum creatinine 48-96 h after CTPA. Secondary outcomes were the incidence of CI-AKI (creatinine increase > 25%/> 0.5 mg dL(-1) ), recovery of renal function, and the need for dialysis within 2 months after CTPA. Withholding hydration was considered non-inferior if the mean relative creatinine increase was ≤ 15% compared with sodium bicarbonate. Mean relative creatinine increase was -0.14% (interquartile range -15.1% to 12.0%) for withholding hydration and -0.32% (interquartile range -9.7% to 10.1%) for sodium bicarbonate (mean difference 0.19%, 95% confidence interval -5.88% to 6.25%, P-value non-inferiority < 0.001). CI-AKI occurred in 11 patients (8.1%): 6 (9.2%) were randomized to withholding hydration and 5 (7.1%) to sodium bicarbonate (relative risk 1.29, 95% confidence interval 0.41-4.03). Renal function recovered in 80.0% of CI-AKI patients within each group (relative risk 1.00, 95% confidence interval 0.54-1.86). None of the CI-AKI patients developed a need for dialysis. Our results suggest that preventive hydration could be safely withheld in CKD patients undergoing CTPA for suspected acute pulmonary embolism. This will facilitate management of these patients and prevents delay in diagnosis as well as unnecessary start of anticoagulant treatment while receiving volume expansion. © 2014 International Society on Thrombosis and Haemostasis.

  9. Absolute proton hydration free energy, surface potential of water, and redox potential of the hydrogen electrode from first principles: QM/MM MD free-energy simulations of sodium and potassium hydration

    NASA Astrophysics Data System (ADS)

    Hofer, Thomas S.; Hünenberger, Philippe H.

    2018-06-01

    The absolute intrinsic hydration free energy GH+,w a t ◦ of the proton, the surface electric potential jump χwa t ◦ upon entering bulk water, and the absolute redox potential VH+,w a t ◦ of the reference hydrogen electrode are cornerstone quantities for formulating single-ion thermodynamics on absolute scales. They can be easily calculated from each other but remain fundamentally elusive, i.e., they cannot be determined experimentally without invoking some extra-thermodynamic assumption (ETA). The Born model provides a natural framework to formulate such an assumption (Born ETA), as it automatically factors out the contribution of crossing the water surface from the hydration free energy. However, this model describes the short-range solvation inaccurately and relies on the choice of arbitrary ion-size parameters. In the present study, both shortcomings are alleviated by performing first-principle calculations of the hydration free energies of the sodium (Na+) and potassium (K+) ions. The calculations rely on thermodynamic integration based on quantum-mechanical molecular-mechanical (QM/MM) molecular dynamics (MD) simulations involving the ion and 2000 water molecules. The ion and its first hydration shell are described using a correlated ab initio method, namely resolution-of-identity second-order Møller-Plesset perturbation (RIMP2). The next hydration shells are described using the extended simple point charge water model (SPC/E). The hydration free energy is first calculated at the MM level and subsequently increased by a quantization term accounting for the transformation to a QM/MM description. It is also corrected for finite-size, approximate-electrostatics, and potential-summation errors, as well as standard-state definition. These computationally intensive simulations provide accurate first-principle estimates for GH+,w a t ◦, χwa t ◦, and VH+,w a t ◦, reported with statistical errors based on a confidence interval of 99%. The values obtained from the independent Na+ and K+ simulations are in excellent agreement. In particular, the difference between the two hydration free energies, which is not an elusive quantity, is 73.9 ± 5.4 kJ mol-1 (K+ minus Na+), to be compared with the experimental value of 71.7 ± 2.8 kJ mol-1. The calculated values of GH+,w a t ◦, χwa t ◦, and VH+,w a t ◦ (-1096.7 ± 6.1 kJ mol-1, 0.10 ± 0.10 V, and 4.32 ± 0.06 V, respectively, averaging over the two ions) are also in remarkable agreement with the values recommended by Reif and Hünenberger based on a thorough analysis of the experimental literature (-1100 ± 5 kJ mol-1, 0.13 ± 0.10 V, and 4.28 ± 0.13 V, respectively). The QM/MM MD simulations are also shown to provide an accurate description of the hydration structure, dynamics, and energetics.

  10. Association between preoperative hydration status and acute kidney injury in patients managed surgically for kidney tumours.

    PubMed

    Ellis, Robert J; Del Vecchio, Sharon J; Kalma, Benjamin; Ng, Keng Lim; Morais, Christudas; Francis, Ross S; Gobe, Glenda C; Ferris, Rebekah; Wood, Simon T

    2018-07-01

    The purpose of this study was to investigate whether preoperative dehydration and intraoperative hypotension were associated with postoperative acute kidney injury in patients managed surgically for kidney tumours. A retrospective analysis of 184 patients who underwent nephrectomy at a single centre was performed, investigating associations between acute kidney injury after nephrectomy, and both intraoperative hypotension and preoperative hydration/volume status. Intraoperative hypotension was defined as mean arterial pressure < 60 mmHg for ≥ 5 min. Urine conductivity was evaluated as a surrogate measure of preoperative hydration (euhydrated < 15 mS/cm; mildly dehydrated 15-20 mS/cm; dehydrated > 20 mS/cm). Multivariable logistic regression was used to evaluate associations between exposures and the primary outcome, with adjustment made for potential confounders. Patients who were dehydrated and mildly dehydrated had an increased risk of acute kidney injury (adjusted odds ratio [aOR] 4.1, 95% CI 1.3-13.5; and aOR 2.4, 95% CI 1.1-5.3, respectively) compared with euhydrated patients (p = 0.009). Surgical approach appeared to modify this effect, where dehydrated patients undergoing laparoscopic surgery were most likely to develop acute kidney injury, compared with patients managed using an open approach. Intraoperative hypotension was not associated with acute kidney injury. Preoperative dehydration may be associated with postoperative acute kidney injury. Avoiding dehydration in the preoperative period may be advisable, and adherence to international evidence-based guidelines on preoperative fasting is recommended.

  11. Deposition behavior of residual aluminum in drinking water distribution system: Effect of aluminum speciation.

    PubMed

    Zhang, Yue; Shi, Baoyou; Zhao, Yuanyuan; Yan, Mingquan; Lytle, Darren A; Wang, Dongsheng

    2016-04-01

    Finished drinking water usually contains some residual aluminum. The deposition of residual aluminum in distribution systems and potential release back to the drinking water could significantly influence the water quality at consumer taps. A preliminary analysis of aluminum content in cast iron pipe corrosion scales and loose deposits demonstrated that aluminum deposition on distribution pipe surfaces could be excessive for water treated by aluminum coagulants including polyaluminum chloride (PACl). In this work, the deposition features of different aluminum species in PACl were investigated by simulated coil-pipe test, batch reactor test and quartz crystal microbalance with dissipation monitoring. The deposition amount of non-polymeric aluminum species was the least, and its deposition layer was soft and hydrated, which indicated the possible formation of amorphous Al(OH)3. Al13 had the highest deposition tendency, and the deposition layer was rigid and much less hydrated, which indicated that the deposited aluminum might possess regular structure and self-aggregation of Al13 could be the main deposition mechanism. While for Al30, its deposition was relatively slower and deposited aluminum amount was relatively less compared with Al13. However, the total deposited mass of Al30 was much higher than that of Al13, which was attributed to the deposition of particulate aluminum matters with much higher hydration state. Compared with stationary condition, stirring could significantly enhance the deposition process, while the effect of pH on deposition was relatively weak in the near neutral range of 6.7 to 8.7. Copyright © 2015. Published by Elsevier B.V.

  12. Estimates of in situ gas hydrate concentration from resistivity monitoring of gas hydrate bearing sediments during temperature equilibration

    USGS Publications Warehouse

    Riedel, M.; Long, P.E.; Collett, T.S.

    2006-01-01

    As part of Ocean Drilling Program Leg 204 at southern Hydrate Ridge off Oregon we have monitored changes in sediment electrical resistivity during controlled gas hydrate dissociation experiments. Two cores were used, each filled with gas hydrate bearing sediments (predominantly mud/silty mud). One core was from Site 1249 (1249F-9H3), 42.1 m below seafloor (mbsf) and the other from Site 1248 (1248C-4X1), 28.8 mbsf. At Site 1247, a third experiment was conducted on a core without gas hydrate (1247B-2H1, 3.6 mbsf). First, the cores were imaged using an infra-red (IR) camera upon recovery to map the gas hydrate occurrence through dissociation cooling. Over a period of several hours, successive runs on the multi-sensor track (includes sensors for P-wave velocity, resistivity, magnetic susceptibility and gamma-ray density) were carried out complemented by X-ray imaging on core 1249F-9H3. After complete equilibration to room temperature (17-18??C) and complete gas hydrate dissociation, the final measurement of electrical resistivity was used to calculate pore-water resistivity and salinities. The calculated pore-water freshening after dissociation is equivalent to a gas hydrate concentration in situ of 35-70% along core 1249F-9H3 and 20-35% for core 1248C-4X1 assuming seawater salinity of in situ pore fluid. Detailed analysis of the IR scan, X-ray images and split-core photographs showed the hydrate mainly occurred disseminated throughout the core. Additionally, in core 1249F-9H3, a single hydrate filled vein, approximately 10 cm long and dipping at about 65??, was identified. Analyses of the logging-while-drilling (LWD) resistivity data revealed a structural dip of 40-80?? in the interval between 40 and 44 mbsf. We further analyzed all resistivity data measured on the recovered core during Leg 204. Generally poor data quality due to gas cracks allowed analyses to be carried out only at selected intervals at Sites 1244, 1245, 1246, 1247, 1248, 1249, and 1252. With a few exceptions, data from these intervals yield low to no gas hydrate concentration, which corresponds to estimates from downhole resistivity logs. However, since the gas cracking may be the result of gas hydrate dissociation, this is a biased sampling. Cores that had contained some gas hydrate may have been excluded. ?? 2005 Elsevier B.V. All rights reserved.

  13. Monitoring Hydration Status Pre- and Post-Training among University Athletes Using Urine Color and Weight Loss Indicators

    ERIC Educational Resources Information Center

    Webb, Marquitta C.; Salandy, Sinead T.; Beckford, Safiya E.

    2016-01-01

    Objective: To investigate the hydration status pre- and post-training among university athletes using urine color and weight loss as indicators. Participants: Participants were 52 university athletes training for campus games in a developing country. Methods: Pre- and post-training urine specimens were compared with a standard urine color scale.…

  14. Molecular-dynamics simulations of alkaline-earth metal cations in water by atom-bond electronegativity equalization method fused into molecular mechanics.

    PubMed

    Yang, Zhong-Zhi; Li, Xin

    2005-09-01

    Intermolecular potential for alkaline-earth metal (Be(2+), Mg(2+), and Ca(2+)) cations in water has been derived using the atom-bond electronegativity equalization method fused into molecular mechanics (ABEEM/MM), and it is consistent with what was previously applied to the hydration study of the monovalent cations. Parameters for the effective interaction between a cation and a water molecule were determined, reproducing the ab initio results. The static, dynamic, and thermodynamic properties of Be(2+)(aq), Mg(2+)(aq), and Ca(2+)(aq) were studied using these potential parameters. Be(2+) requires a more complicated form of the potential function than Mg(2+) and Ca(2+) in order to obtain better fits. Strong influences of the twofold charged cations on the structures of the hydration shells and some other properties of aqueous ionic solutions are discussed and compared with the results of a previous study of monovalent cations in water. At the same time, comparative study of the hydration properties of each cation is also discussed. This work demonstrates that ABEEM/MM provides a useful tool in the exploration of the hydration of double-charged cations in water.

  15. Emergency department treatment of viral gastritis using intravenous ondansetron or dexamethasone in children.

    PubMed

    Stork, Christine M; Brown, Kathleen M; Reilly, Tracey H; Secreti, LaLaina; Brown, Lawrence H

    2006-10-01

    To compare the efficacy of intravenous ondansetron or dexamethasone compared with intravenous fluid therapy alone in children presenting to the emergency department with refractory vomiting from viral gastritis who had failed attempts at oral hydration. This double-blind, randomized, controlled trial was performed in a tertiary care pediatric emergency department. Children aged 6 months to 12 years presenting with more than three episodes of vomiting in the past 24 hours, mild/moderate dehydration, and failed oral hydration were included. Patients with other medical causes were excluded. Subjects were randomized to dexamethasone 1 mg/kg (15 mg maximum), ondansetron 0.15 mg/kg, or placebo (normal saline [NS], 10 mL). All subjects also received intravenous NS at 10-20 mL/kg/hr. Oral fluid tolerance was evaluated at two and four hours. Those not tolerating oral fluids at four hours were admitted. Discharged patients were evaluated at 24 and 72 hours for vomiting and repeat health care visits. The primary study outcome was hospitalization rates between the groups. Data were analyzed using chi-square test, Kruskal-Wallis test, Mantel-Haenszel test, and analysis of variance, with p < 0.05 considered significant. A total of 166 subjects were enrolled; data for analysis were available for 44 NS-treated patients, 46 ondansetron-treated patients, and 47 dexamethasone-treated patients. Hospital admission occurred in nine patients (20.5%) receiving placebo (NS alone), two patients (4.4%) receiving ondansetron, and seven patients (14.9%) receiving dexamethasone, with ondansetron significantly different from placebo (p = 0.02). Similarly, at two hours, more ondansetron-treated patients (39 [86.6%]) tolerated oral hydration than NS-treated patients (29 [67.4%]; relative risk, 1.28; 95% confidence interval = 1.02 to 1.68). There were no differences in number of mean episodes of vomiting or repeat visits to health care at 24 and 72 hours in the ondansetron, dexamethasone, or NS groups. In children with dehydration secondary to vomiting from acute viral gastritis, ondansetron with intravenous rehydration improves tolerance of oral fluids after two hours and reduces the hospital admission rate when compared with intravenous rehydration with or without dexamethasone.

  16. Predictive Mechanical Characterization of Macro-Molecular Material Chemistry Structures of Cement Paste at Nano Scale - Two-phase Macro-Molecular Structures of Calcium Silicate Hydrate, Tri-Calcium Silicate, Di-Calcium Silicate and Calcium Hydroxide

    NASA Astrophysics Data System (ADS)

    Padilla Espinosa, Ingrid Marcela

    Concrete is a hierarchical composite material with a random structure over a wide range of length scales. At submicron length scale the main component of concrete is cement paste, formed by the reaction of Portland cement clinkers and water. Cement paste acts as a binding matrix for the other components and is responsible for the strength of concrete. Cement paste microstructure contains voids, hydrated and unhydrated cement phases. The main crystalline phases of unhydrated cement are tri-calcium silicate (C3S) and di-calcium silicate (C2S), and of hydrated cement are calcium silicate hydrate (CSH) and calcium hydroxide (CH). Although efforts have been made to comprehend the chemical and physical nature of cement paste, studies at molecular level have primarily been focused on individual components. Present research focuses on the development of a method to model, at molecular level, and analysis of the two-phase combination of hydrated and unhydrated phases of cement paste as macromolecular systems. Computational molecular modeling could help in understanding the influence of the phase interactions on the material properties, and mechanical performance of cement paste. Present work also strives to create a framework for molecular level models suitable for potential better comparisons with low length scale experimental methods, in which the sizes of the samples involve the mixture of different hydrated and unhydrated crystalline phases of cement paste. Two approaches based on two-phase cement paste macromolecular structures, one involving admixed molecular phases, and the second involving cluster of two molecular phases are investigated. The mechanical properties of two-phase macromolecular systems of cement paste consisting of key hydrated phase CSH and unhydrated phases C3S or C2S, as well as CSH with the second hydrated phase CH were calculated. It was found that these cement paste two-phase macromolecular systems predicted an isotropic material behavior. Also, these systems exhibited a high bulk modulus, compared to the elastic modulus. These results are an indication and concur with the high compression strength of cement paste seen at engineering length scale. In addition, the bulk modulus of two-phase systems consisting of hydrated CSH and unhydrated C3S or C2S was found to increase with higher levels of unhydrated components. The interaction energies of two-phase cement paste molecular structures studied in the present work were calculated, showing that a higher interaction is attained when the two phases are admixed as small components instead of cluster of phases. Finally, the mechanical behavior under shear deformation was predicted by using a quasi-static deformation method and analyzed for a representative two-phase (CSH and C2S) macromolecular structure of cement paste.

  17. CO2 injection into submarine, CH4-hydrate bearing sediments: Parameter studies towards the development of a hydrate conversion technology

    NASA Astrophysics Data System (ADS)

    Deusner, Christian; Bigalke, Nikolaus; Kossel, Elke; Haeckel, Matthias

    2013-04-01

    In the recent past, international research efforts towards exploitation of submarine and permafrost hydrate reservoirs have increased substantially. Until now, findings indicate that a combination of different technical means such as depressurization, thermal stimulation and chemical activation is the most promising approach for producing gas from natural hydrates. Moreover, emission neutral exploitation of CH4-hydrates could potentially be achieved in a combined process with CO2 injection and storage as CO2-hydrate. In the German gas hydrate initiative SUGAR, a combination of experimental and numerical studies is used to elucidate the process mechanisms and technical parameters on different scales. Experiments were carried out in the novel high-pressure flow-through system NESSI (Natural Environment Simulator for sub-Seafloor Interactions). Recent findings suggest that the injection of heated, supercritical CO2 is beneficial for both CH4 production and CO2 retention. Among the parameters tested so far are the CO2 injection regime (alternating vs. continuous injection) and the reservoir pressure / temperature conditions. Currently, the influence of CO2 injection temperature is investigated. It was shown that CH4 production is optimal at intermediate reservoir temperatures (8 ° C) compared to lower (2 ° C) and higher temperatures (10 ° C). The reservoir pressure, however, was of minor importance for the production efficiency. At 8 ° C, where CH4- and CO2-hydrates are thermodynamically stable, CO2-hydrate formation appears to be slow. Eventual clogging of fluid conduits due to CO2-rich hydrate formation force open new conduits, thereby tapping different regions inside the CH4-hydrate sample volume for CH4gas. In contrast, at 2 ° C immediate formation of CO2-hydrate results in rapid and irreversible obstruction of the entire pore space. At 10 ° C pure CO2-hydrates can no longer be formed. Consequently the injected CO2 flows through quickly and interaction with the reservoir is minimized. Our results clearly indicate that the formation of mixed CH4-CO2-hydrates is an important aspect in the conversion process. The experimental studies have shown that the injection of heated CO2 into the hydrate reservoir induces a variety of spatial and temporal processes which result in substantial bulk heterogeneity. Current numerical simulators are not able to predict these process dynamics and it is important to improve available transport-reaction models (e.g. to include the effect of bulk sediment permeability on the conversion dynamics). Our results confirm that experimental studies are important to better understand the mechanisms of hydrate dissociation and conversion at CO2-injection conditions as a basis towards the development of a suitable hydrate conversion technology. The application of non-invasive analytical methods such as Magnetic Resonance Imaging (MRI) and Raman microscopy are important tools, which were applied to resolve process dynamics on the pore scale. Additionally, the NESSI system is being modified to allow high-pressure flow-through experiments under triaxial loading to better simulate hydrate-sediment mechanics. This aspect is important for overall process development and evaluation of process safety issues.

  18. The diagnostic accuracy of multi-frequency bioelectrical impedance analysis in diagnosing dehydration after stroke.

    PubMed

    Kafri, Mohannad W; Myint, Phyo Kway; Doherty, Danielle; Wilson, Alexander Hugh; Potter, John F; Hooper, Lee

    2013-07-10

    Non-invasive methods for detecting water-loss dehydration following acute stroke would be clinically useful. We evaluated the diagnostic accuracy of multi-frequency bioelectrical impedance analysis (MF-BIA) against reference standards serum osmolality and osmolarity. Patients admitted to an acute stroke unit were recruited. Blood samples for electrolytes and osmolality were taken within 20 minutes of MF-BIA. Total body water (TBW%), intracellular (ICW%) and extracellular water (ECW%), as percentages of total body weight, were calculated by MF-BIA equipment and from impedance measures using published equations for older people. These were compared to hydration status (based on serum osmolality and calculated osmolarity). The most promising Receiver Operating Characteristics curves were plotted. 27 stroke patients were recruited (mean age 71.3, SD10.7). Only a TBW% cut-off at 46% was consistent with current dehydration (serum osmolality >300 mOsm/kg) and TBW% at 47% impending dehydration (calculated osmolarity ≥295-300 mOsm/L) with sensitivity and specificity both >60%. Even here diagnostic accuracy of MF-BIA was poor, a third of those with dehydration were wrongly classified as hydrated and a third classified as dehydrated were well hydrated. Secondary analyses assessing diagnostic accuracy of TBW% for men and women separately, and using TBW as a percentage of lean body mass showed some promise, but did not provide diagnostically accurate measures across the population. MF-BIA appears ineffective at diagnosing water-loss dehydration after stroke and cannot be recommended as a test for dehydration, but separating assessment by sex, and using TBW as a percentage of lean body weight may warrant further investigation.

  19. Evaluation of multifrequency bioelectrical impedance analysis in assessing body composition of wrestlers.

    PubMed

    Utter, Alan C; Lambeth, Pamela G

    2010-02-01

    To evaluate the accuracy of multifrequency bioelectrical impedance analysis (MFBIA) in assessing fat-free mass (FFM) in comparison with hydrostatic weighing (HW) and skinfolds (SK) in high school wrestlers in a hydrated state. Body composition was determined by MFBIA, HW, and three-site SK in 72 high school wrestlers (mean +/- SD; age = 15.3 +/- 1.4 yr, height = 1.71 +/- 0.08 m, body mass = 67.3 +/- 13.4 kg). Hydration state was quantified by evaluating urine specific gravity. There were no significant differences for estimated FFM between MFBIA (57.2 +/- 9.5 kg) and HW (57.0 +/- 10.1 kg) or SK (56.4 +/- 8.8 kg). The SEE for FFM with HW as the reference method were 2.73 kg for MFBIA and 2.66 kg for SK. Correlations were found for FFM between HW and MFBIA (r = 0.96, P < 0.001) and between HW and SK (r = 0.97, P < 0.001). A systematic bias was found for MFBIA because the difference between MFBIA and HW correlated with the FFM average of the two methods (r = -0.22, P < 0.001). A bias was also seen between SK and HW and correlated with the FFM average (r = -0.47, P < 0.001). This study demonstrates that MFBIA provides similar estimates of FFM when compared with HW in a heterogeneous high school wrestling population during a hydrated state. MFBIA is an attractive assessment tool, easy to use, and may be considered as an alternative field-based method of estimating the FFM of high school wrestlers.

  20. Deep eutectic solvents as efficient solvent system for the extraction of κ-carrageenan from Kappaphycus alvarezii.

    PubMed

    Das, Arun Kumar; Sharma, Mukesh; Mondal, Dibyendu; Prasad, Kamalesh

    2016-01-20

    Three different deep eutectic solvents (DESs) prepared by the complexation of choline chloride with urea, ethylene glycol and glycerol along with their hydrated counterparts were used for the selective extraction of κ-carrageenan from Kappaphycus alvarezii. Upon comparison of the quality of the polysaccharide with the one obtained using water as extraction media as well as the one extracted using widely practiced conventional method, it was found that, the physicochemical as well as rheological properties of κ-carrageenan obtained using DESs as solvents was at par to the one obtained using conventional method and was superior in quality when compared to κ-carrageenan obtained using water as solvent. Considering the tedious nature of the extraction method employed in conventional extraction process, the DESs can be considered as suitable alternative solvents for the facile extraction of the polysaccharide directly from the seaweed. However, among the hydrated and non-hydrated DESs, the hydrated ones were found to be more effective in comparison to their non-hydrated counterparts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Vibrational Dynamics and Guest-Host Coupling in Clathrate Hydrates

    NASA Astrophysics Data System (ADS)

    Koza, Michael M.; Schober, Helmut

    Clathrate hydrates may turn out either a blessing or a curse for mankind. On one hand, they constitute a huge reservoir of fossil fuel. On the other hand, their decomposition may liberate large amounts of green house gas and have disastrous consequences on sea floor stability. It is thus of paramount importance to understand the formation and stability of these guest-host compounds. Neutron diffraction has successfully occupied a prominent place on the stage of these scientific investigations. Complete understanding, however, is not achieved without an explanation for the thermal properties of clathrates. In particular, the thermal conductivity has a large influence on clathrate formation and conservation. Neutron spectroscopy allows probing the microscopic dynamics of clathrate hydrates. We will show how comparative studies of vibrations in clathrate hydrates give insight into the coupling of the guest to the host lattice. This coupling together with the anharmonicity of the vibrational modes is shown to lay the foundations for the peculiar thermodynamic properties of clathrate hydrates. The results obtained reach far beyond the specific clathrate system. Similar mechanisms are expected to be at work in any guest-host complex.

  2. Hydrate Evolution in Response to Ongoing Environmental Shifts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rempel, Alan

    Natural gas hydrates have the potential to become a vital domestic clean-burning energy source. However, past changes in environmental conditions have caused hydrates to become unstable and trigger both massive submarine landslides and the development of crater-like pockmarks, thereby releasing methane into the overlying seawater and atmosphere, where it acts as a powerful greenhouse gas. This project was designed to fill critical gaps in our understanding of domestic hydrate resources and improve forecasts for their response to environmental shifts. Project work can be separated into three interrelated components, each involving the development of predictive mathematical models. The first project componentmore » concerns the role of sediment properties on the development and dissociation of concentrated hydrate anomalies. To this end, we developed numerical models to predict equilibrium solubility of methane in twophase equilibrium with hydrate as a function of measureable porous medium characteristics. The second project component concerned the evolution of hydrate distribution in heterogeneous reservoirs. To this end, we developed numerical models to predict the growth and decay of anomalies in representative physical environments. The third project component concerned the stability of hydrate-bearing slopes under changing environmental conditions. To this end, we developed numerical treatments of pore pressure evolution and consolidation, then used "infinite-slope" analysis to approximate the landslide potential in representative physical environments, and developed a "rate-and-state" frictional formulation to assess the stability of finite slip patches that are hypothesized to develop in response to the dissociation of hydrate anomalies. The increased predictive capabilities that result from this work provide a framework for interpreting field observations of hydrate anomalies in terms of the history of environmental forcing that led to their development. Moreover, by taking explicit account of anomaly dissociation, project results are designed to help improve forecasts for changes in slope stability that could pose significant threats to energy infrastructure, disrupt hydrate reserves, and pollute the atmosphere with vast quantities of methane. This report presents the details of our work and outlines some of the highlights from our findings.« less

  3. Seismic Modeling Of Reservoir Heterogeneity Scales: An Application To Gas Hydrate Reservoirs

    NASA Astrophysics Data System (ADS)

    Huang, J.; Bellefleur, G.; Milkereit, B.

    2008-12-01

    Natural gas hydrates, a type of inclusion compound or clathrate, are composed of gas molecules trapped within a cage of water molecules. The occurrence of gas hydrates in permafrost regions has been confirmed by core samples recovered from the Mallik gas hydrate research wells located within Mackenzie Delta in Northwest Territories of Canada. Strong vertical variations of compressional and shear sonic velocities and weak surface seismic expressions of gas hydrates indicate that lithological heterogeneities control the distribution of hydrates. Seismic scattering studies predict that typical scales and strong physical contrasts due to gas hydrate concentration will generate strong forward scattering, leaving only weak energy captured by surface receivers. In order to understand the distribution of hydrates and the seismic scattering effects, an algorithm was developed to construct heterogeneous petrophysical reservoir models. The algorithm was based on well logs showing power law features and Gaussian or Non-Gaussian probability density distribution, and was designed to honor the whole statistical features of well logs such as the characteristic scales and the correlation among rock parameters. Multi-dimensional and multi-variable heterogeneous models representing the same statistical properties were constructed and applied to the heterogeneity analysis of gas hydrate reservoirs. The petrophysical models provide the platform to estimate rock physics properties as well as to study the impact of seismic scattering, wave mode conversion, and their integration on wave behavior in heterogeneous reservoirs. Using the Biot-Gassmann theory, the statistical parameters obtained from Mallik 5L-38, and the correlation length estimated from acoustic impedance inversion, gas hydrate volume fraction in Mallik area was estimated to be 1.8%, approximately 2x108 m3 natural gas stored in a hydrate bearing interval within 0.25 km2 lateral extension and between 889 m and 1115 m depth. With parallel 3-D viscoelastic Finite Difference (FD) software, we conducted a 3D numerical experiment of near offset Vertical Seismic Profile. The synthetic results implied that the strong attenuation observed in the field data might be caused by the scattering.

  4. Multimodal approach to characterization of hydrophilic matrices manufactured by wet and dry granulation or direct compression methods.

    PubMed

    Kulinowski, Piotr; Woyna-Orlewicz, Krzysztof; Obrał, Jadwiga; Rappen, Gerd-Martin; Haznar-Garbacz, Dorota; Węglarz, Władysław P; Jachowicz, Renata; Wyszogrodzka, Gabriela; Klaja, Jolanta; Dorożyński, Przemysław P

    2016-02-29

    The purpose of the research was to investigate the effect of the manufacturing process of the controlled release hydrophilic matrix tablets on their hydration behavior, internal structure and drug release. Direct compression (DC) quetiapine hemifumarate matrices and matrices made of powders obtained by dry granulation (DG) and high shear wet granulation (HS) were prepared. They had the same quantitative composition and they were evaluated using X-ray microtomography, magnetic resonance imaging and biorelevant stress test dissolution. Principal results concerned matrices after 2 h of hydration: (i) layered structure of the DC and DG hydrated tablets with magnetic resonance image intensity decreasing towards the center of the matrix was observed, while in HS matrices layer of lower intensity appeared in the middle of hydrated part; (ii) the DC and DG tablets retained their core and consequently exhibited higher resistance to the physiological stresses during simulation of small intestinal passage than HS formulation. Comparing to DC, HS granulation changed properties of the matrix in terms of hydration pattern and resistance to stress in biorelevant dissolution apparatus. Dry granulation did not change these properties-similar hydration pattern and dissolution in biorelevant conditions were observed for DC and DG matrices. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Chlorine hazard evaluation for the zinc-chlorine electric vehicle battery. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zalosh, R.G.; Bajpai, S.N.; Short, T.P.

    1980-04-01

    An evaluation of the hazards associated with conceivable accidental chlorine releases from zinc-chlorine electric vehicle batteries is presented. Since commercial batteries are not yet available, this hazard assessment is based both on theoretical chlorine dispersion models and small-scale and large-scale spill tests with chlorine hydrate. Six spill tests involving chlorine hydrate indicate that the danger zone in which chlorine vapor concentrations intermittently exceed 100 ppM extends at least 23 m directly downwind of a spill onto a warm road surface. Chlorine concentration data from the hydrate spill tests compare favorably with calculations based on a quasi-steady area source dispersion modelmore » and empirical estimates of the hydrate decomposition rate. The theoretical dispersion model has been combined with assumed hydrate spill probabilities and current motor vehicle accident statistics in order to project expected chlorine-induced fatality rates. These calculations indicate that expected chlorine fatality rates are several times higher in a city with a warm and calm climate than in a colder and windier city. Calculated chlorine-induced fatality rate projections for various climates are presented as a function of hydrate spill probability in order to illustrate the degree of vehicle/battery crashworthiness required to maintain chlorine-induced fatality rates below current vehicle fatility rates due to fires and asphyxiations.« less

  6. The influence of silanized nano-SiO{sub 2} on the hydration of cement paste: NMR investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bede, A., E-mail: Andrea.Bede@phys.utcluj.ro; Pop, A.; Ardelean, I.

    2015-12-23

    It is known that by adding a small amount of nanoparticles to the cement-based materials a strong influence on the workability, strength and durability is obtained. These characteristics of the material are fundamentally determined by the hydration process taking place after mixing the cement grains with water. In the present study the influence introduced by the addition of nano-silica with silanized surfaces on the hydration process was investigated using low-field nuclear magnetic resonance (NMR) relaxometry. The cement samples were prepared using gray cement at a water-to-cement ratio of 0.4 and a 5% addition of nanosilica. The surface of the nanoparticlesmore » was modified using a coating of Silane A174. The cement pastes were monitored during their standard curing time of 28 days. It was established that, by using unmodified nanosilica particles, an acceleration of the hydration process takes place as compared with the pure cement paste. On the other side, by adding silanized nanoparticles, the dormancy stage significantly extends and the hydration process is slower. This slowing down process could enhance the mechanical strength of cement based materials as a result of a better compaction of the hydrated samples.« less

  7. Clinical, biochemical, and hygiene assessment of stabled horses provided continuous or intermittent access to drinking water.

    PubMed

    Freeman, D A; Cymbaluk, N F; Schott, H C; Hinchcliff, K; McDonnell, S M; Kyle, B

    1999-11-01

    To compare health, hydration status, and management of stabled pregnant mares provided drinking water continuously or via 1 of 3 intermittent delivery systems. 22 Quarter Horse (QH) or QH-crossbred mares and 18 Belgian or Belgian-crossbred mares (study 1); 24 QH or QH-crossbred mares and 18 Belgian or Belgian-crossbred mares (study 2). Stabled horses were provided water continuously or via 1 of 3 intermittent water delivery systems in 2 study periods during a 2-year period. Body temperature, attitude, appetite, water intake, and urine output were recorded daily. Hygiene of each horse and the stable were assessed weekly. Clinical and biochemical measures of hydration were determined 3 times during each study. Clinical measures of hydration included skin turgor, gum moisture, capillary refill time, and fecal consistency. Biochemical measures of hydration included PCV, plasma total protein concentration, serum osmolality, plasma vasopressin concentration, urine specific gravity, and urine osmolality. All horses remained healthy. Stable hygiene was worse when horses had continuous access to water. Clinical and biochemical measures of hydration did not differ among water delivery systems. Various continuous and intermittent water delivery systems provided adequate amounts of water to stabled horses to maintain health and hydration status. Providing intermittent access to water may be preferable on the basis of stable hygiene.

  8. The importance of hydration in wound healing: reinvigorating the clinical perspective.

    PubMed

    Ousey, K; Cutting, K F; Rogers, A A; Rippon, M G

    2016-03-01

    Balancing skin hydration levels is important as any disruption in skin integrity will result in disturbance of the dermal water balance. The discovery that a moist environment actively supports the healing response when compared with a dry environment highlights the importance of water and good hydration levels for optimal healing. The benefits of 'wet' or 'hyper-hydrated' wound healing appear similar to those offered by moist over a dry environment. This suggests that the presence of free water may not be detrimental to healing, but any adverse effects of wound fluid on tissues is more likely related to the biological components contained within chronic wound exudate, for example elevated protease levels. Appropriate dressings applied to wounds must not only be able to absorb the exudate, but also retain this excess fluid together with its protease solutes, while concurrently preventing desiccation. This is particularly important in the case of chronic wounds where peri-wound skin barrier properties are compromised and there is increased permeation across the injured skin. This review discusses the importance of appropriate levels of hydration in skin, with a particular focus on the need for optimal hydration levels for effective healing. Declaration of interest: This paper was supported by Paul Hartmann Ltd. The authors have provided consultative services to Paul Hartmann Ltd.

  9. Modeling the Hydration Layer around Proteins: Applications to Small- and Wide-Angle X-Ray Scattering

    PubMed Central

    Virtanen, Jouko Juhani; Makowski, Lee; Sosnick, Tobin R.; Freed, Karl F.

    2011-01-01

    Small-/wide-angle x-ray scattering (SWAXS) experiments can aid in determining the structures of proteins and protein complexes, but success requires accurate computational treatment of solvation. We compare two methods by which to calculate SWAXS patterns. The first approach uses all-atom explicit-solvent molecular dynamics (MD) simulations. The second, far less computationally expensive method involves prediction of the hydration density around a protein using our new HyPred solvation model, which is applied without the need for additional MD simulations. The SWAXS patterns obtained from the HyPred model compare well to both experimental data and the patterns predicted by the MD simulations. Both approaches exhibit advantages over existing methods for analyzing SWAXS data. The close correspondence between calculated and observed SWAXS patterns provides strong experimental support for the description of hydration implicit in the HyPred model. PMID:22004761

  10. Equivalent formation strength as a proxy tool for exploring the existence and distribution of gas hydrates

    NASA Astrophysics Data System (ADS)

    Hamada, Y.; Yamada, Y.; Sanada, Y.; Nakamura, Y.; Kido, Y. N.; Moe, K.

    2017-12-01

    Gas hydrates bearing layer can be normally identified by a basement simulating reflector (BSR) or well logging because of their high acoustic- and electric impedance compared to the surrounding formation. These characteristics of the gas hydrate can also represent contrast of in-situ formation strength. We here attempt to describe gas hydrate bearing layers based on the equivalent strength (EST). The Indian National Gas Hydrate Program (NGHP) Expedition 02 was executed 2015 off the eastern margin of the Indian Peninsula to investigate distribution and occurrence of gas hydrates. From 25 drill sites, downhole logging data, cored samples, and drilling performance data were collected. Recorded drilling performance data was converted to the EST, which is a developed mechanical strength calculated only by drilling parameters (top drive torque, rotation per minute , rate of penetration , and drill bit diameter). At a representative site, site 23, the EST shows constant trend of 5 to 10 MPa, with some positive peaks at 0 - 270 mbsf interval, and sudden increase up to 50 MPa above BSR depth (270 - 290 mbsf). Below the BSR, the EST stays at 5-10 MPa down to the bottom of the hole (378 mbsf). Comparison of the EST with logging data and core sample description suggests that the depth profiles of the EST reflect formation lithology and gas hydrate content: the EST increase in the sand-rich layer and the gas hydrate bearing zone. Especially in the gas hydrate zone, the EST curve indicates approximately the same trend with that of P-wave velocity and resistivity measured by downhole logging. Cross plot of the increment of the EST and resistivity revealed the relation between them is roughly logarithmic, indicating the increase and decrease of the EST strongly depend on the saturation factor of gas hydrate. These results suggest that the EST, proxy of in-situ formation strength, can be an indicator of existence and amount of the gas-hydrate layer. Although the EST was calculated after drilling utilizing recorded surface drilling parameter in this study, the EST can be acquired during drilling by using real-time drilling parameters. In addition, the EST only requires drilling performance parameters without any additional tools or measurements, making it a simplified and economical tool for the exploration of gas hydrates.

  11. Interactions of the "piano-stool" [ruthenium(II)(η(6) -arene)(quinolone)Cl](+) complexes with water; DFT computational study.

    PubMed

    Zábojníková, Tereza; Cajzl, Radim; Kljun, Jakob; Chval, Zdeněk; Turel, Iztok; Burda, Jaroslav V

    2016-07-15

    Full optimizations of stationary points along the reaction coordinate for the hydration of several quinolone Ru(II) half-sandwich complexes were performed in water environment using the B3PW91/6-31+G(d)/PCM/UAKS method. The role of diffuse functions (especially on oxygen) was found crucial for correct geometries along the reaction coordinate. Single-point (SP) calculations were performed at the B3LYP/6-311++G(2df,2pd)/DPCM/saled-UAKS level. In the first part, two possible reaction mechanisms-associative and dissociative were compared. It was found that the dissociative mechanism of the hydration process is kinetically slightly preferred. Another important conclusion concerns the reaction channels. It was found that substitution of chloride ligand (abbreviated in the text as dechlorination reaction) represents energetically and kinetically the most feasible pathway. In the second part the same hydration reaction was explored for reactivity comparison of the Ru(II)-complexes with several derivatives of nalidixic acid: cinoxacin, ofloxacin, and (thio)nalidixic acid. The hydration process is about four orders of magnitude faster in a basic solution compared to neutral/acidic environment with cinoxacin and nalidixic acid as the most reactive complexes in the former and latter environments, respectively. The explored hydration reaction is in all cases endergonic; nevertheless the endergonicity is substantially lower (by ∼6 kcal/mol) in basic environment. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. High-Throughput Analytical Techniques for Determination of Residues of 653 Multiclass Pesticides and Chemical Pollutants in Tea--Part V: A Comparative Study of the Influence of Tea Hydration on the Efficiency of Pesticide Multiresidue Determination Using Three Sample Preparation Methods and GC/MS/MS.

    PubMed

    Chen, Xi; Li, Yan; Chang, Qiao-Ying; Hu, Xue-Yan; Pang, Guo-Fang; Fan, Chun-Lin

    2015-01-01

    This paper describes a comparative study of the influence of three sample preparation techniques (M1: hydration+oscillating extraction+partial extraction solution hexane partitioning cleanup; M2: hydration+oscillating extraction+overall extraction solution SPE cleanup; and M3: pure acetonitrile homogeneous extraction+overall extraction SPE cleanup) on the determination efficiency of 456 pesticide multiresidues in tea. First, it was discovered from the mathematical correlation equation of 329 pesticide recoveries established and log Kow values that the extraction efficiency of hydration method M1 has obvious correlation with pesticide log Kow, making the extraction efficiency of M1 take the shape of an arc trend line with a certain arc hanging down from both ends of polar pesticides and nonpolar pesticides. Second, regarding the M1 method, the interfering matter after co-extraction increased in large quantities, which markedly lowered the S/N of the target pesticides and method sensitivity, leading to an obvious decrease of the method efficiency. The fortification experiment of the uniform limit 0.010 mg/kg proved that with the M1 hydration method there are 23 pesticides with recoveries between 70 and 120% and RSD<20%, accounting for only 5.0%, while with nonhydration method M3 there are 229 pesticides, making up 50%.

  13. Effects of silicone gel sheet on the stratum corneum hydration.

    PubMed

    Suetak, T; Sasai, S; Zhen, Y X; Tagami, H

    2000-09-01

    Various groups have reported the efficacy of treatment with topical silicone gel sheet (SGS) for keloids and hypertrophic scars. Because its hydrating effect on the stratum corneum (SC) has been suggested as a mechanism underlying its therapeutic effectiveness, we evaluated it by comparing it with simple plastic film occlusion. With biophysical instruments we assessed the water content of the skin surface as well as its water evaporation on the flexor aspects of bilateral forearms of 10 healthy volunteers for 30min after removal of dressings of SGS or a plastic film that were applied either for 1 day or for 7 days. Occlusion with SGS or plastic film induced hydration of the skin surface, which was followed by an initial quick and later slow process of dehydration when the skin was exposed to the ambient atmosphere. The magnitude of the increase in hydration induced by SGS was always smaller than that of the plastic film occlusion and, unlike the latter treatment, hydration became less with repetition of SGS treatment. On day 7, the SC hydration quickly reduced to the level of non-treated control skin after removal of the dressings. An in vivo test demonstrated that the water-holding capacity of the SC normalised after 7 days of SGS treatment. SGS probably produces a favourable condition for the skin by protecting it from various environmental stimuli, while keeping the SC in an adequately but not over-hydrated condition.

  14. Mapping the Fluid Pathways and Permeability Barriers of a Large Gas Hydrate Reservoir

    NASA Astrophysics Data System (ADS)

    Campbell, A.; Zhang, Y. L.; Sun, L. F.; Saleh, R.; Pun, W.; Bellefleur, G.; Milkereit, B.

    2012-12-01

    An understanding of the relationship between the physical properties of gas hydrate saturated sedimentary basins aids in the detection, exploration and monitoring one of the world's upcoming energy resources. A large gas hydrate reservoir is located in the MacKenzie Delta of the Canadian Arctic and geophysical logs from the Mallik test site are available for the gas hydrate stability zone (GHSZ) between depths of approximately 850 m to 1100 m. The geophysical data sets from two neighboring boreholes at the Mallik test site are analyzed. Commonly used porosity logs, as well as nuclear magnetic resonance, compressional and Stoneley wave velocity dispersion logs are used to map zones of elevated and severely reduced porosity and permeability respectively. The lateral continuity of horizontal permeability barriers can be further understood with the aid of surface seismic modeling studies. In this integrated study, the behavior of compressional and Stoneley wave velocity dispersion and surface seismic modeling studies are used to identify the fluid pathways and permeability barriers of the gas hydrate reservoir. The results are compared with known nuclear magnetic resonance-derived permeability values. The aim of investigating this heterogeneous medium is to map the fluid pathways and the associated permeability barriers throughout the gas hydrate stability zone. This provides a framework for an understanding of the long-term dissociation of gas hydrates along vertical and horizontal pathways, and will improve the knowledge pertaining to the production of such a promising energy source.

  15. Prevention of Contrast-Induced Acute Kidney Injury by Furosemide With Matched Hydration in Patients Undergoing Interventional Procedures: A Systematic Review and Meta-Analysis of Randomized Trials.

    PubMed

    Putzu, Alessandro; Boscolo Berto, Martina; Belletti, Alessandro; Pasotti, Elena; Cassina, Tiziano; Moccetti, Tiziano; Pedrazzini, Giovanni

    2017-02-27

    The objective of this meta-analysis of randomized trials was to evaluate if the administration of furosemide with matched hydration using the RenalGuard System reduces contrast-induced acute kidney injury (CI-AKI) in patients undergoing interventional procedures. CI-AKI is a serious complication following angiographic procedures and a powerful predictor of unfavorable early and long-term outcomes. Online databases were searched up to October 1, 2016, for randomized controlled trials. The primary outcome was the incidence of CI-AKI, and the secondary outcomes were need for renal replacement therapy, mortality, stroke, and adverse events. A total of four trials (n = 698) published between 2011 and 2016 were included in the analysis and included patients undergoing percutaneous coronary procedures and transcatheter aortic valve replacement. RenalGuard therapy was associated with a lower incidence of CI-AKI compared with control treatment (27 of 348 [7.76%] patients vs. 75 of 350 [21.43%] patients; odds ratio [OR]: 0.31; 95% confidence interval [CI]: 0.19 to 0.50; I 2  = 4%; p < 0.00001) and with a lower need for renal replacement therapy (2 of 346 [0.58%] patients vs. 12 of 348 [3.45%] patients; OR: 0.19; 95% CI: 0.05 to 0.76; I 2  = 0%; p = 0.02). No major adverse events occurred in patients undergoing RenalGuard therapy. The main finding of this meta-analysis is that furosemide with matched hydration by the RenalGuard System may reduce the incidence of CI-AKI in high-risk patients undergoing percutaneous coronary intervention or transcatheter aortic valve replacement. However, further independent high-quality randomized trials should elucidate the effectiveness and safety of this prophylactic intervention in interventional cardiology. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  16. Evidence for the Use of Isoflurane as a Replacement for Chloral Hydrate Anesthesia in Experimental Stroke: An Ethical Issue

    PubMed Central

    Maud, Pétrault; Thavarak, Ouk; Cédrick, Lachaud; Michèle, Bastide; Vincent, Bérézowski; Olivier, Pétrault; Régis, Bordet

    2014-01-01

    Since an ethical issue has been raised regarding the use of the well-known anesthetic agent chloral hydrate, owing to its mutagenic and carcinogenic effects in animals, attention of neuroscientists has turned to finding out an alternative agent able to meet not only potency, safety, and analgesic efficacy, but also reduced neuroprotective effect for stroke research. The aim of this study was to compare the potential of chloral hydrate and isoflurane for both modulating the action of the experimental neuroprotectant MK801 and exerting analgesia. After middle cerebral artery occlusion in rats, no difference was observed in 24 h survival rate, success of ischemia, or infarct volume reduction between both anesthetics. However, isoflurane exerted a more pronounced analgesic effect than chloral hydrate as evidenced by formalin test 3 hours after anesthesia onset, thus encouraging the use of isoflurane in experimental stroke models. PMID:24719888

  17. Drinking policies and exercise-associated hyponatraemia: is anyone still promoting overdrinking?

    PubMed

    Beltrami, F G; Hew-Butler, T; Noakes, T D

    2008-10-01

    The purpose of this review is to describe the evolution of hydration research and advice on drinking during exercise from published scientific papers, books and non-scientific material (advertisements and magazine contents) and detail how erroneous advice is likely propagated throughout the global sports medicine community. Hydration advice from sports-linked entities, the scientific community, exercise physiology textbooks and non-scientific sources was analysed historically and compared with the most recent scientific evidence. Drinking policies during exercise have changed substantially throughout history. Since the mid-1990s, however, there has been an increase in the promotion of overdrinking by athletes. While the scientific community is slowly moving away from "blanket" hydration advice in which one form of advice fits all and towards more modest, individualised, hydration guidelines in which thirst is recognised as the best physiological indicator of each subject's fluid needs during exercise, marketing departments of the global sports drink industry continue to promote overdrinking.

  18. Low-δD hydration rinds in Yellowstone perlites record rapid syneruptive hydration during glacial and interglacial conditions

    USGS Publications Warehouse

    Bindeman, Ilya N.; Lowenstern, Jacob B.

    2016-01-01

    Hydration of silicic volcanic glass forms perlite, a dusky, porous form of altered glass characterized by abundant “onion-skin” fractures. The timing and temperature of perlite formation are enigmatic and could plausibly occur during eruption, during post-eruptive cooling, or much later at ambient temperatures. To learn more about the origin of natural perlite, and to fingerprint the hydration waters, we investigated perlitic glass from several synglacial and interglacial rhyolitic lavas and tuffs from the Yellowstone volcanic system. Perlitic cores are surrounded by a series of conchoidal cracks that separate 30- to 100-µm-thick slivers, likely formed in response to hydration-induced stress. H2O and D/H profiles confirm that most D/H exchange happens together with rapid H2O addition but some smoother D/H variations may suggest separate minor exchange by deuterium atom interdiffusion following hydration. The hydrated rinds (2–3 wt% H2O) transition rapidly (within 30 µm, or by 1 wt% H2O per 10 µm) to unhydrated glass cores. This is consistent with quenched “hydration fronts” where H2O diffusion coefficients are strongly dependent on H2O concentrations. The chemical, δ18O, and δD systematics of bulk glass records last equilibrium between ~110 and 60 °C without chemical exchange but with some δ18O exchange. Similarly, the δ18O of water extracted from glass by rapid heating suggests that water was added to the glass during cooling at <200 °C. Our observations support fast hydration at temperatures as low as 60 °C; prolonged exposure to high temperature of 175°–225° during water addition is less likely as the glass would lose alkalies and should alter to clays within days. A compilation of low-temperature hydration diffusion coefficients suggests ~2 orders of magnitude higher rates of diffusion at 60–110 °C temperatures, compared with values expected from extrapolation of high-temperature (>400 °C) experimental data. The thick hydration rinds in perlites, measuring hundreds of microns, preserve the original D/H values of hydrating water as a recorder of paleoclimate conditions. Measured δD values in perlitic lavas are −150 to −191 or 20–40 ‰ lower than glass hydrated by modern Yellowstone waters. This suggests that Yellowstone perlites record the low-δD signature of glacial ice. Cooling calculations, combined with the observed high water diffusion coefficients noted for 60–150 °C, suggest that if sufficient hot water or steam is available, any rhyolite flow greater than ~5 m thick can develop the observed ~250-µm hydration rinds within the expected timescale of cooling (weeks–years). As the process of hydration involves shattering of 30- to 100-µm-thick slivers to expose unhydrated rhyolite glass, the time required for hydration may be even shorter. Rapid hydration and formation of relatively thick-walled glass shards allow perlites to provide a snapshot view of the meteoric water (and thus climate) at the time of initial alteration. Perlites retain their initial hydration D/H signal better than thin-walled ash, which in contrast hydrates over many thousands of years with time-averaged precipitation.

  19. Low-δD hydration rinds in Yellowstone perlites record rapid syneruptive hydration during glacial and interglacial conditions

    NASA Astrophysics Data System (ADS)

    Bindeman, Ilya N.; Lowenstern, Jacob B.

    2016-11-01

    Hydration of silicic volcanic glass forms perlite, a dusky, porous form of altered glass characterized by abundant "onion-skin" fractures. The timing and temperature of perlite formation are enigmatic and could plausibly occur during eruption, during post-eruptive cooling, or much later at ambient temperatures. To learn more about the origin of natural perlite, and to fingerprint the hydration waters, we investigated perlitic glass from several synglacial and interglacial rhyolitic lavas and tuffs from the Yellowstone volcanic system. Perlitic cores are surrounded by a series of conchoidal cracks that separate 30- to 100-µm-thick slivers, likely formed in response to hydration-induced stress. H2O and D/H profiles confirm that most D/H exchange happens together with rapid H2O addition but some smoother D/H variations may suggest separate minor exchange by deuterium atom interdiffusion following hydration. The hydrated rinds (2-3 wt% H2O) transition rapidly (within 30 µm, or by 1 wt% H2O per 10 µm) to unhydrated glass cores. This is consistent with quenched "hydration fronts" where H2O diffusion coefficients are strongly dependent on H2O concentrations. The chemical, δ18O, and δD systematics of bulk glass records last equilibrium between 110 and 60 °C without chemical exchange but with some δ18O exchange. Similarly, the δ18O of water extracted from glass by rapid heating suggests that water was added to the glass during cooling at <200 °C. Our observations support fast hydration at temperatures as low as 60 °C; prolonged exposure to high temperature of 175°-225° during water addition is less likely as the glass would lose alkalies and should alter to clays within days. A compilation of low-temperature hydration diffusion coefficients suggests 2 orders of magnitude higher rates of diffusion at 60-110 °C temperatures, compared with values expected from extrapolation of high-temperature (>400 °C) experimental data. The thick hydration rinds in perlites, measuring hundreds of microns, preserve the original D/H values of hydrating water as a recorder of paleoclimate conditions. Measured δD values in perlitic lavas are -150 to -191 or 20-40 ‰ lower than glass hydrated by modern Yellowstone waters. This suggests that Yellowstone perlites record the low-δD signature of glacial ice. Cooling calculations, combined with the observed high water diffusion coefficients noted for 60-150 °C, suggest that if sufficient hot water or steam is available, any rhyolite flow greater than 5 m thick can develop the observed 250-µm hydration rinds within the expected timescale of cooling (weeks-years). As the process of hydration involves shattering of 30- to 100-µm-thick slivers to expose unhydrated rhyolite glass, the time required for hydration may be even shorter. Rapid hydration and formation of relatively thick-walled glass shards allow perlites to provide a snapshot view of the meteoric water (and thus climate) at the time of initial alteration. Perlites retain their initial hydration D/H signal better than thin-walled ash, which in contrast hydrates over many thousands of years with time-averaged precipitation.

  20. Scale-dependent gas hydrate saturation estimates in sand reservoirs in the Ulleung Basin, East Sea of Korea

    USGS Publications Warehouse

    Lee, Myung Woong; Collett, Timothy S.

    2013-01-01

    Through the use of 2-D and 3-D seismic data, several gas hydrate prospects were identified in the Ulleung Basin, East Sea of Korea and thirteen drill sites were established and logging-while-drilling (LWD) data were acquired from each site in 2010. Sites UBGH2–6 and UBGH2–10 were selected to test a series of high amplitude seismic reflections, possibly from sand reservoirs. LWD logs from the UBGH2–6 well indicate that there are three significant sand reservoirs with varying thickness. Two upper sand reservoirs are water saturated and the lower thinly bedded sand reservoir contains gas hydrate with an average saturation of 13%, as estimated from the P-wave velocity. The well logs at the UBGH2–6 well clearly demonstrated the effect of scale-dependency on gas hydrate saturation estimates. Gas hydrate saturations estimated from the high resolution LWD acquired ring resistivity (vertical resolution of about 5–8 cm) reaches about 90% with an average saturation of 28%, whereas gas hydrate saturations estimated from the low resolution A40L resistivity (vertical resolution of about 120 cm) reaches about 25% with an average saturation of 11%. However, in the UBGH2–10 well, gas hydrate occupies a 5-m thick sand reservoir near 135 mbsf with a maximum saturation of about 60%. In the UBGH2–10 well, the average and a maximum saturation estimated from various well logging tools are comparable, because the bed thickness is larger than the vertical resolution of the various logging tools. High resolution wireline log data further document the role of scale-dependency on gas hydrate calculations.

Top