Science.gov

Sample records for hydraulic conductivity technical

  1. Hydraulic conductivity of compacted zeolites.

    PubMed

    Oren, A Hakan; Ozdamar, Tuğçe

    2013-06-01

    Hydraulic conductivities of compacted zeolites were investigated as a function of compaction water content and zeolite particle size. Initially, the compaction characteristics of zeolites were determined. The compaction test results showed that maximum dry unit weight (γ(dmax)) of fine zeolite was greater than that of granular zeolites. The γ(dmax) of compacted zeolites was between 1.01 and 1.17 Mg m(-3) and optimum water content (w(opt)) was between 38% and 53%. Regardless of zeolite particle size, compacted zeolites had low γ(dmax) and high w(opt) when compared with compacted natural soils. Then, hydraulic conductivity tests were run on compacted zeolites. The hydraulic conductivity values were within the range of 2.0 × 10(-3) cm s(-1) to 1.1 × 10(-7) cm s(-1). Hydraulic conductivity of all compacted zeolites decreased almost 50 times as the water content increased. It is noteworthy that hydraulic conductivity of compacted zeolite was strongly dependent on the zeolite particle size. The hydraulic conductivity decreased almost three orders of magnitude up to 39% fine content; then, it remained almost unchanged beyond 39%. Only one report was found in the literature on the hydraulic conductivity of compacted zeolite, which is in agreement with the findings of this study.

  2. Hydraulic Conductivity Measurements Barrow 2014

    DOE Data Explorer

    Katie McKnight; Tim Kneafsey; Craig Ulrich; Jil Geller

    2015-02-22

    Six individual ice cores were collected from Barrow Environmental Observatory in Barrow, Alaska, in May of 2013 as part of the Next Generation Ecosystem Experiment (NGEE). Each core was drilled from a different location at varying depths. A few days after drilling, the cores were stored in coolers packed with dry ice and flown to Lawrence Berkeley National Laboratory (LBNL) in Berkeley, CA. 3-dimensional images of the cores were constructed using a medical X-ray computed tomography (CT) scanner at 120kV. Hydraulic conductivity samples were extracted from these cores at LBNL Richmond Field Station in Richmond, CA, in February 2014 by cutting 5 to 8 inch segments using a chop saw. Samples were packed individually and stored at freezing temperatures to minimize any changes in structure or loss of ice content prior to analysis. Hydraulic conductivity was determined through falling head tests using a permeameter [ELE International, Model #: K-770B]. After approximately 12 hours of thaw, initial falling head tests were performed. Two to four measurements were collected on each sample and collection stopped when the applied head load exceeded 25% change from the original load. Analyses were performed between 2 to 3 times for each sample. The final hydraulic conductivity calculations were computed using methodology of Das et al., 1985.

  3. The hydraulic conductivity of chopped sorghum

    SciTech Connect

    Custer, M.H.; Reddell, D.L.; Sweeten, J.M.

    1987-01-01

    Hydraulic conductivity of water through chopped sweet sorghum at various packing densities and soaking times was measured using permeameters. Hydraulic conductivity decreased by two orders of magnitude as packing density increased from 400 to 897 kg/m/sup 3/. Soaking time had less effect on hydraulic conductivity, and the effect depended on packing density.

  4. Mathematical and geological approaches to minimizing the data requirements for statistical analysis of hydraulic conductivity. Technical completion report

    SciTech Connect

    Phillips, F.M.; Wilson, J.L.; Gutjahr, A.L.; Love, D.W.; Davis, J.M.; Lohmann, R.C.; Colarullo, S.J.; Gotkowitz, M.B.

    1992-12-01

    Field scale heterogeneity has been recognized as a dominant control on solute dispersion in groundwater. Numerous random field models exist for quantifying heterogeneity and its influence on solute transport. Minimizing data requirements in model selection and subsequent parameterization will be necessary for efficient application of quantitative models in contaminated subsurface environments. In this study, a detailed quantitative sedimentological study is performed to address the issue of incorporating geologic information into the geostatistical characterization process. A field air-minipermeameter is developed for rapid in-situ measurements. The field study conducted on an outcrop of fluvial/interfluvial deposits of the Pliocene- Pleistocene Sierra Ladrones Formation in the Albuquerque Basin of central New Mexico. Architectural element analysis is adopted for mapping and analysis of depositional environment. Geostatistical analysis is performed at two scales. At the architectural element scale, geostatistical analysis of assigned mean log-permeabilities of a 0.16 km{sup 2} peninsular region indicates that the directions of maximum and minimum correlation correspond to the directions of the large-scale depositional processes. At the facies scale, permeability is found to be adequately represented as a log-normal process. Log-permeability within individual lithofacies appears uncorrelated. The overall correlation structure at the facies scale is found to be a function of the mean log-permeability and spatial distribution of the individual lithofacies. Based on field observations of abrupt spatial changes in lithology and hydrologic properties, an algorithm for simulating multi-dimensional discrete Markov random fields. Finally, a conceptual model is constructed relating the information inferred from dimensional environment analysis to the various random fields of heterogeneity.

  5. The Hydraulic Conductivity of Matrigel™

    PubMed Central

    McCarty, William J.; Johnson, Mark

    2008-01-01

    In this study, we measured the specific hydraulic conductivity (K) of Matrigel™ at 1% and 2% concentrations as a function of perfusion pressure (0 to 100 mmHg) and compared the results to predictions from two models: a fiber matrix model that predicted K of the gel based upon its composition, and a biphasic model that predicted changes in K caused by pressure induced compaction of the gels. The extent of gel compaction as a function of perfusion pressure was also assessed, allowing us to estimate the stiffness of the gels. As expected, 2% Matrigel™ had a lower K and a higher stiffness than did 1% Matrigel™. Measured values of K of both 1% and 2% Matrigel™ samples showed good agreement with the predictions of the fiber matrix model. Pressure-induced changes in K were better described by the biphasic model than a model in which uniform compression of the gel was assumed. We conclude that K of multi-component gels, such as Matrigel™, can be well characterized by fiber matrix models, and that pressure-induced changes in K of such gels can be well characterized by biphasic models. PMID:18401073

  6. HYDRAULIC CONDUCTIVITY OF ESSENTIALLY SATURATED PEAT

    SciTech Connect

    Nichols, R

    2008-02-27

    The Savannah River National Laboratory measured the hydraulic conductivity of peat samples using method ASTM D4511-00. Four samples of peat were packed into 73mm diameter plastic tubes and saturated from the bottom up with water. The columns were packed with Premier ProMoss III TBK peat to a dry density of approximately 0.16 gm/cc (10 lb/ft3). One column was packed using oven dried peat and the other 3 were packed using as delivered peat. The oven dried sample was the most difficult to saturate. All of the peat samples expanded during saturation resulting in a sample length (L) that was longer than when the sample was initially packed. Table 1 contains information related to the column packing. After saturation the hydraulic conductivity test was conducted using the apparatus shown in Figure 1. Three of the samples were tested at 2 different flow conductions, 1 high and 1 low. Table 2 and Figure 2 contain the results of the hydraulic conductivity testing. Each test was run for a minimum of 40 minutes to allow the test conditions to stabilize. The hydraulic conductivity at the end of each test is reported as the hydraulic conductivity for that test. The hydraulic conductivity of the 4 peat samples is 0.0052 {+-} 0.0009 cm/sec. This result compares well with the hydraulic conductivity measured in the pilot scale peat bed after approximately 2 months of operation. The similarity in results between the dry pack sample and moist pack samples shows the moisture content at the time of packing had a minimal effect on the hydraulic conductivity. Additionally, similarity between the results shows the test is reproducible. The hydraulic conductivity results are similar to those reported by other tests of peat samples reported in the literature.

  7. Practical issues in imaging hydraulic conductivity through hydraulic tomography.

    PubMed

    Illman, Walter A; Craig, Andrew J; Liu, Xiaoyi

    2008-01-01

    Hydraulic tomography has been developed as an alternative to traditional geostatistical methods to delineate heterogeneity patterns in parameters such as hydraulic conductivity (K) and specific storage (S(s)). During hydraulic tomography surveys, a large number of hydraulic head data are collected from a series of cross-hole tests in the subsurface. These head data are then used to interpret the spatial distribution of K and S(s) using inverse modeling. Here, we use the Sequential Successive Linear Estimator (SSLE) of Yeh and Liu (2000) to interpret synthetic pumping test data created through numerical simulations and real data generated in a laboratory sandbox aquifer to obtain the K tomograms. Here, we define "K tomogram" as an image of K distribution of the subsurface (or the inverse results) obtained via hydraulic tomography. We examine the influence of signal-to-noise ratio and biases on results using inverse modeling of synthetic and real cross-hole pumping test data. To accomplish this, we first show that the pumping rate, which affects the signal-to-noise ratio, and the order of data included into the SSLE algorithm both have large impacts on the quality of the K tomograms. We then examine the role of conditioning on the K tomogram and find that conditioning can improve the quality of the K tomogram, but can also impair it, if the data are of poor quality and conditioning data have a larger support volume than the numerical grid used to conduct the inversion. Overall, these results show that the quality of the K tomogram depends on the design of pumping tests, their conduct, the order in which they are included in the inverse code, and the quality as well as the support volume of additional data that are used in its computation.

  8. Soil Structure and Saturated Hydraulic Conductivity

    NASA Astrophysics Data System (ADS)

    Houskova, B.; Nagy, V.

    The role of soil structure on saturated hydraulic conductivity changes is studied in plough layers of texturally different soils. Three localities in western part of Slovakia in Zitny ostrov (Corn Island) were under investigation: locality Kalinkovo with light Calcaric Fluvisol (FAO 1970), Macov with medium heavy Calcari-mollic Fluvisol and Jurova with heavy Calcari-mollic Fluvisol. Soil structure was determined in dry as well as wet state and in size of macro and micro aggregates. Saturated hydraulic conductivity was measured by the help of double ring method. During the period of ring filling the soil surface was protected against aggregates damage by falling water drops. Spatial and temporal variability of studied parameters was evaluated. Cultivated crops were ensilage maize at medium heavy and heavy soil and colza at light soil. Textural composition of soil and actual water content at the beginning of measurement are one of major factor affecting aggregate stability and consequently also saturated hydraulic conductivity.

  9. Measurement and modeling of unsaturated hydraulic conductivity

    USGS Publications Warehouse

    Perkins, Kim S.; Elango, Lakshmanan

    2011-01-01

    The unsaturated zone plays an extremely important hydrologic role that influences water quality and quantity, ecosystem function and health, the connection between atmospheric and terrestrial processes, nutrient cycling, soil development, and natural hazards such as flooding and landslides. Unsaturated hydraulic conductivity is one of the main properties considered to govern flow; however it is very difficult to measure accurately. Knowledge of the highly nonlinear relationship between unsaturated hydraulic conductivity (K) and volumetric water content is required for widely-used models of water flow and solute transport processes in the unsaturated zone. Measurement of unsaturated hydraulic conductivity of sediments is costly and time consuming, therefore use of models that estimate this property from more easily measured bulk-physical properties is common. In hydrologic studies, calculations based on property-transfer models informed by hydraulic property databases are often used in lieu of measured data from the site of interest. Reliance on database-informed predicted values with the use of neural networks has become increasingly common. Hydraulic properties predicted using databases may be adequate in some applications, but not others. This chapter will discuss, by way of examples, various techniques used to measure and model hydraulic conductivity as a function of water content, K. The parameters that describe the K curve obtained by different methods are used directly in Richards’ equation-based numerical models, which have some degree of sensitivity to those parameters. This chapter will explore the complications of using laboratory measured or estimated properties for field scale investigations to shed light on how adequately the processes are represented. Additionally, some more recent concepts for representing unsaturated-zone flow processes will be discussed.

  10. Dentin permeability: determinants of hydraulic conductance.

    PubMed

    Reeder, O W; Walton, R E; Livingston, M J; Pashley, D H

    1978-02-01

    A technique is described which permits measurements of the ease with which fluid permeates dentin. This value, the hydraulic conductance of dentin, increased as surface area increases and/or as dentin thickness decreases. It increased 32-fold when dentin was acid etched due to removal of surface debris occluding the tubules.

  11. HYDRAULIC CONDUCTIVITY OF THREE GEOSYNTHETIC CLAY LINERS

    EPA Science Inventory

    The hydraulic conductivity of three 2.9 m2 (32 sq ft) geosynthetic clay liners (GCLs) was measured. Tests were performed on individual sheets of the GCLs, on overlapped pieces of GCLs, and on composite liners consisting of a punctured geomembrane overlying a GCL. Hyd...

  12. Multiple parameterization for hydraulic conductivity identification.

    PubMed

    Tsai, Frank T-C; Li, Xiaobao

    2008-01-01

    Hydraulic conductivity identification remains a challenging inverse problem in ground water modeling because of the inherent nonuniqueness and lack of flexibility in parameterization methods. This study introduces maximum weighted log-likelihood estimation (MWLLE) along with multiple generalized parameterization (GP) methods to identify hydraulic conductivity and to address nonuniqueness and inflexibility problems in parameterization. A scaling factor for information criteria is suggested to obtain reasonable weights of parameterization methods for the MWLLE and model averaging method. The scaling factor is a statistical parameter relating to a desired significance level in Occam's window and the variance of the chi-squares distribution of the fitting error. Through model averaging with multiple GP methods, the conditional estimate of hydraulic conductivity and its total conditional covariances are calculated. A numerical example illustrates the issue arising from Occam's window in estimating model weights and shows the usefulness of the scaling factor to obtain reasonable model weights. Moreover, the numerical example demonstrates the advantage of using multiple GP methods over the zonation and interpolation methods because GP provides better models in the model averaging method. The methodology is applied to the Alamitos Gap area, California, to identify the hydraulic conductivity field. The results show that the use of the scaling factor is necessary in order to incorporate good parameterization methods and to avoid a dominant parameterization method.

  13. Geostatistical Estimations of Regional Hydraulic Conductivity Fields

    NASA Astrophysics Data System (ADS)

    Patriarche, D.; Castro, M. C.; Goovaerts, P.

    2004-12-01

    Direct and indirect measurements of hydraulic conductivity (K) are commonly performed, providing information on the magnitude of this parameter at the local scale (tens of centimeters to hundreds of meters) and at shallow depths. By contrast, field information on hydraulic conductivities at regional scales of tens to hundreds of kilometers and at greater depths is relatively scarce. Geostatistical methods allow for sparsely sampled observations of a variable (primary information) to be complemented by a more densely sampled secondary attribute. Geostatistical estimations of the hydraulic conductivity field in the Carrizo aquifer, a major groundwater flow system extending along Texas, are performed using available primary (e.g., transmissivity, hydraulic conductivity) and secondary (specific capacity) information, for depths up to 2.2 km, and over three regional domains of increasing extent: 1) the domain corresponding to a three-dimensional groundwater flow model previously built (model domain); 2) the area corresponding to the ten counties encompassing the model domain (County domain), and; 3) the full extension of the Carrizo aquifer within Texas (Texas domain). Two different approaches are used: 1) an indirect approach are transmissivity (T) is estimated first and (K) is retrieved through division of the T estimate by the screening length of the wells, and; 2) a direct approach where K data are kriged directly. Prediction performances of the tested geostatistical procedures (kriging combined with linear regression, kriging with known local means, kriging of residuals, and cokriging) are evaluated through cross validation for both log-transformed variables and back-transformed ones. For the indirect approach, kriging of log T residuals yields the best estimates for both log-transformed and back-transformed variables in the model domain. For larger regional scales (County and Texas domains), cokriging performs generally better than univariate kriging procedures

  14. Formed Core Sampler Hydraulic Conductivity Testing

    SciTech Connect

    Miller, D. H.; Reigel, M. M.

    2012-09-25

    A full-scale formed core sampler was designed and functionally tested for use in the Saltstone Disposal Facility (SDF). Savannah River National Laboratory (SRNL) was requested to compare properties of the formed core samples and core drilled samples taken from adjacent areas in the full-scale sampler. While several physical properties were evaluated, the primary property of interest was hydraulic conductivity. Differences in hydraulic conductivity between the samples from the formed core sampler and those representing the bulk material were noted with respect to the initial handling and storage of the samples. Due to testing conditions, the site port samples were exposed to uncontrolled temperature and humidity conditions prior to testing whereas the formed core samples were kept in sealed containers with minimal exposure to an uncontrolled environment prior to testing. Based on the results of the testing, no significant differences in porosity or density were found between the formed core samples and those representing the bulk material in the test stand.

  15. Centrifugal techniques for measuring saturated hydraulic conductivity

    USGS Publications Warehouse

    Nimmo, John R.; Mello, Karen A.

    1991-01-01

    Centrifugal force is an alternative to large pressure gradients for the measurement of low values of saturated hydraulic conductivity (Ksat). With a head of water above a porous medium in a centrifuge bucket, both constant-head and falling-head measurements are practical at forces up to at least 1800 times normal gravity. Darcy's law applied to the known centrifugal potential leads to simple formulas for Ksat that are analogous to those used in the standard gravity-driven constant- and falling-head methods. Both centrifugal methods were tested on several fine-textured samples of soil and ceramic with Ksat between about 10−10 and 10−9 m/s. The results were compared to falling-head gravity measurements. The comparison shows most measurements agreeing to within 20% for a given sample, much of the variation probably resulting from run-to-run changes in sample structure. The falling-head centrifuge method proved to be especially simple in design and operation and was more accurate than the constant-head method. With modified apparatus, Ksat measurements less than 10−10 m/s should be attainable.

  16. Hydraulic conductivity fields: Gaussian or not?

    NASA Astrophysics Data System (ADS)

    Meerschaert, Mark M.; Dogan, Mine; Dam, Remke L.; Hyndman, David W.; Benson, David A.

    2013-08-01

    Hydraulic conductivity (K) fields are used to parameterize groundwater flow and transport models. Numerical simulations require a detailed representation of the K field, synthesized to interpolate between available data. Several recent studies introduced high-resolution K data (HRK) at the Macro Dispersion Experiment (MADE) site, and used ground-penetrating radar (GPR) to delineate the main structural features of the aquifer. This paper describes a statistical analysis of these data, and the implications for K field modeling in alluvial aquifers. Two striking observations have emerged from this analysis. The first is that a simple fractional difference filter can have a profound effect on data histograms, organizing non-Gaussian ln K data into a coherent distribution. The second is that using GPR facies allows us to reproduce the significantly non-Gaussian shape seen in real HRK data profiles, using a simulated Gaussian ln K field in each facies. This illuminates a current controversy in the literature, between those who favor Gaussian ln K models, and those who observe non-Gaussian ln K fields. Both camps are correct, but at different scales.

  17. Statistical Modeling of Hydraulic Conductivity Fields

    NASA Astrophysics Data System (ADS)

    Meerschaert, M. M.; Dogan, M.; Hyndman, D. W.; Bohling, G.

    2011-12-01

    Hydraulic conductivity (K) fields are a main source of uncertainty for ground water modeling. Numerical simulations for flow and transport require a detailed K field, which is usually synthesized using a combination of methods. Another presentation at this meeting will detail our simulation methods, using ground penetrating radar to establish facies boundaries, and a fractal K field simulation in each facies, based on high resolution K (HRK) data from the MADE site. This presentation will present some results of our statistical analysis, and the implications for K field modeling in general. Two striking observations have emerged from our work. The first is that a simple fractional difference filter can have a profound effect on the histograms of K data, organizing seemingly impossible data into a coherent distribution. The second is that a simple Gaussian K field in each facies combines into a strikingly non-Gaussian distribution when all facies are combined. This second observation can help to resolve a current controversy in the literature, between those who favor Gaussian models, and those who observe non-Gaussian K fields. Essentially, both camps are correct, but at different scales.

  18. Hydraulic Conductivity Fields: Gaussian or Not?

    PubMed

    Meerschaert, Mark M; Dogan, Mine; Van Dam, Remke L; Hyndman, David W; Benson, David A

    2013-08-01

    Hydraulic conductivity (K) fields are used to parameterize groundwater flow and transport models. Numerical simulations require a detailed representation of the K field, synthesized to interpolate between available data. Several recent studies introduced high resolution K data (HRK) at the Macro Dispersion Experiment (MADE) site, and used ground-penetrating radar (GPR) to delineate the main structural features of the aquifer. This paper describes a statistical analysis of these data, and the implications for K field modeling in alluvial aquifers. Two striking observations have emerged from this analysis. The first is that a simple fractional difference filter can have a profound effect on data histograms, organizing non-Gaussian ln K data into a coherent distribution. The second is that using GPR facies allows us to reproduce the significantly non-Gaussian shape seen in real HRK data profiles, using a simulated Gaussian ln K field in each facies. This illuminates a current controversy in the literature, between those who favor Gaussian ln K models, and those who observe non-Gaussian ln K fields. Both camps are correct, but at different scales.

  19. Using electrical impedance tomography to map subsurface hydraulic conductivity

    DOEpatents

    Berryman, James G.; Daily, William D.; Ramirez, Abelardo L.; Roberts, Jeffery J.

    2000-01-01

    The use of Electrical Impedance Tomography (EIT) to map subsurface hydraulic conductivity. EIT can be used to map hydraulic conductivity in the subsurface where measurements of both amplitude and phase are made. Hydraulic conductivity depends on at least two parameters: porosity and a length scale parameter. Electrical Resistance Tomography (ERT) measures and maps electrical conductivity (which can be related to porosity) in three dimensions. By introducing phase measurements along with amplitude, the desired additional measurement of a pertinent length scale can be achieved. Hydraulic conductivity controls the ability to flush unwanted fluid contaminants from the surface. Thus inexpensive maps of hydraulic conductivity would improve planning strategies for subsequent remediation efforts. Fluid permeability is also of importance for oil field exploitation and thus detailed knowledge of fluid permeability distribution in three-dimension (3-D) would be a great boon to petroleum reservoir analysts.

  20. Determining the Porosity and Saturated Hydraulic Conductivity of Binary Mixtures

    SciTech Connect

    Zhang, Z. F.; Ward, Anderson L.; Keller, Jason M.

    2009-09-27

    Gravels and coarse sands make up significant portions of some environmentally important sediments, while the hydraulic properties of the sediments are typically obtained in the laboratory using only the fine fraction (e.g., <2 mm or 4.75 mm). Researchers have found that the content of gravel has significant impacts on the hydraulic properties of the bulk soils. Laboratory experiments were conducted to measure the porosity and the saturated hydraulic conductivity of binary mixtures with different fractions of coarse and fine components. We proposed a mixing-coefficient model to estimate the porosity and a power-averaging method to determine the effective particle diameter and further to predict the saturated hydraulic conductivity of binary mixtures. The proposed methods could well estimate the porosity and saturated hydraulic conductivity of the binary mixtures for the full range of gravel contents and was successfully applied to two data sets in the literature.

  1. Determining the Porosity and Saturated Hydraulic Conductivity of Binary Mixtures

    SciTech Connect

    Zhang, Z. F.; Ward, Anderson L.; Keller, Jason M.

    2011-02-14

    Gravels and coarse sands make up significant portions of some environmentally important sediments, while the hydraulic properties of the sediments are typically obtained in the laboratory using only the fine fraction (e.g., <2 mm or 4.75 mm). Researchers have found that the content of gravel has significant impacts on the hydraulic properties of the bulk soils. Laboratory experiments were conducted to measure the porosity and the saturated hydraulic conductivity of binary mixtures with different fractions of coarse and fine components. We proposed a mixing-coefficient model to estimate the porosity and a power-averaging method to determine the effective particle diameter and further to predict the saturated hydraulic conductivity of binary mixtures. The proposed methods could well estimate the porosity and saturated hydraulic conductivity of the binary mixtures for the full range of gravel contents and was successfully applied to two data sets in the literature.

  2. Relationship between Anisotropy in Soil Hydraulic Conductivity and Saturation

    SciTech Connect

    Zhang, Z. Fred

    2014-01-01

    Anisotropy in unsaturated hydraulic conductivity is saturation-dependent. Accurate characterization of soil anisotropy is very important in simulating flow and contaminant (e.g., radioactive nuclides in Hanford) transport. A recently developed tensorial connectivity-tortuosity (TCT) concept describes the hydraulic conductivity tensor of the unsaturated anisotropic soils as the product of a scalar variable, the symmetric connectivity tortuosity tensor, and the hydraulic conductivity tensor at saturation. In this study, the TCT model is used to quantify soil anisotropy in unsaturated hydraulic conductivity. The TCT model can describe different types of soil anisotropy; e.g., the anisotropy coefficient, C, can be monotonically increase or decrease with saturation and can vary from greater than unity to less than unity and vice versa. Soil anisotropy is independent of soil water retention properties and can be characterized by the ratio of the saturated hydraulic conductivities and the difference of the tortuosity-connectivity coefficients in two directions. ln(C) is linearly proportional to ln(Se) with Se being the effective saturation. The log-linear relationship between C and Se allows the saturation-dependent anisotropy to be determined using linear regression with the measurements of the directional hydraulic conductivities at a minimum of two water content levels, of which one may be at full saturation. The model was tested using measurements of directional hydraulic conductivities.

  3. Characterization of unsaturated hydraulic conductivity at the Hanford Site

    SciTech Connect

    Rockhold, M.L.; Fayler, M.J.; Gee, G.W.

    1988-07-01

    This report details some recent field measurements and compares predicted and measured values of hydraulic conductivities for three locations at the Hanford Site. Measurements from small (6-cm-dia) /open quotes/point/close quotes/ and large (2-m by 2-m) /open quotes/plot/close quotes/ areas utilized inflitration and drainage techniques to obtain in situ data for field-saturated and unsaturated hydraulic conductivity. The Guelph permeameter was used for point sampling, and the unsteady drainage-flux method was used on plots for field-saturated and unsaturated hydraulic conductivity measurements. Steady-state techniques were used to measure unsaturated hydraulic conductivities in small columns in the laboratory for one of the three soils tested to provide a comparison with data obtained from the field. Measured unsaturated hydraulic conductivities and those predicted from particle-size distribution and bulk density data agree within one-half to one and one-half orders of magnitude, depending on soil type. To use a particle-size distribution to estimate water retention characteristics and, subsequently, to predict unsaturated hydraulic conductivities, measurements of water-retention characteristics are necessary to determine a parameter value used in one of the models. No single method for measuring or calculating unsaturated hydraulic conductivities was found appropriate for all Hanford Site soils. Ideally, several methods should be used to take advantage of the strengths of each method, considering the data needs and resources available. 45 refs., 24 figs., 19 tabs.

  4. Compound random field models of multiple scale hydraulic conductivity

    SciTech Connect

    Haselow, J.S. ); Brannan, J.R. )

    1992-09-01

    Enormous amounts of hydrologic data are required to accurately simulate subsurface contaminant transport. Effectively supplementing measurements of hydrologic parameters such as permeability and porosity with soft'' information obtained from the interpretation of geologic cores and geophysical logs can improve the simulation of contaminant transport while reducing the measured data that are required. A method is presented herein for generating hydraulic conductivity fields comprised of several geological materials with hydraulic conductivities that can range over several orders of magnitude. This method utilizes indicator fields that are designed to allow random variation at the megascopic scale but are constrained by observations inferred from geophysical logs and geologic core data. The statistical description of random hydraulic conductivity values of distinct geological materials at the macroscopic scale may be obtained by conventional parameter estimation techniques. The combined approach can then be used to generate realizations of a hydraulic conductivity field for subsequent use in flow and transport simulations.

  5. Compound random field models of multiple scale hydraulic conductivity

    SciTech Connect

    Haselow, J.S.; Brannan, J.R.

    1992-09-01

    Enormous amounts of hydrologic data are required to accurately simulate subsurface contaminant transport. Effectively supplementing measurements of hydrologic parameters such as permeability and porosity with ``soft`` information obtained from the interpretation of geologic cores and geophysical logs can improve the simulation of contaminant transport while reducing the measured data that are required. A method is presented herein for generating hydraulic conductivity fields comprised of several geological materials with hydraulic conductivities that can range over several orders of magnitude. This method utilizes indicator fields that are designed to allow random variation at the megascopic scale but are constrained by observations inferred from geophysical logs and geologic core data. The statistical description of random hydraulic conductivity values of distinct geological materials at the macroscopic scale may be obtained by conventional parameter estimation techniques. The combined approach can then be used to generate realizations of a hydraulic conductivity field for subsequent use in flow and transport simulations.

  6. Hydraulic Conductivity of Residual Soil-Cement Mix

    NASA Astrophysics Data System (ADS)

    Govindasamy, P.; Taha, M. R.

    2016-07-01

    In Malaysia, although there are several researches on engineering properties of residual soils, however study on the hydraulic conductivity properties of metasedimentary residual soils is still lacking. Construction of containment walls like slurry wall techniques can be achieved with hydraulic conductivity of approximately 5 x 10-7cm/sec. The objectives of the study were to determine the physical properties of metasedimentary residual soils and to determine the influence of 1%, 3%, 5% and 10% of cement on hydraulic conductivity parameters. The coefficient of hydraulic conductivity of the soil naturally and soil-cement mixtures were determined by using the falling head test. According to the test, the hydraulic conductivity of the original soil was 4.16 x 10-8 m/s. The value decreases to 3.89 x 10-8 m/s, 2.78 x 10-8 m/s then 6.83 x 10-9 m/s with the addition of 1%, 3% and 5% of cement additives, respectively. During the hydration process, cement hydrates is formed followed by the increase in pH value and Ca(OH)2 which will alter the modification of pores size and distribution. When the quantity of cement increases, the pores size decrease. But, the addition of 10% cement gives an increased hydraulic conductivity value to 2.78 x 10-8 m/s. With 10%, the pore size increase might due to flocculation and agglomeration reaction. The generated hydraulic conductivity values will indirectly become a guide in the preliminary soil cement stabilization to modify the properties of the soil to become more like the properties of a soft rock.1. Introduction

  7. Effect of gravel on hydraulic conductivity of compacted soil liners

    SciTech Connect

    Shelley, T.L. ); Daniel, D.E. )

    1993-01-01

    How much gravel should be allowed in low-hydraulic-conductivity, compacted soil liners To address this question, two clayey soils are uniformly mixed with varying percentages of gravel that, by itself, has a hydraulic conductivity of 170 cm/s. Soil/gravel mixtures are compacted and then permeated. Hydraulic conductivity of the compacted gravel/soil mixtures is less than 1 [times] 10[sup [minus]7] cm/s for gravel contents as high as 50-60%. For gravel contents [le] 60%, gravel content is not important: all test specimens have a low hydraulic conductivity. For gravel contents > 50-60%, the clayey soils does not fill voids between gravel particles, and high hydraulic conductivity results. The water content of the nongravel fraction is found to be a useful indicator of proper moisture conditions during compaction. From these experiments in which molding water content and compactive energy are carefully controlled, and gravel is uniformly mixed with the soil, it is concluded that the maximum allowable gravel content is approximately 50%.

  8. Osteoblast hydraulic conductivity is regulated by calcitonin and parathyroid hormone

    NASA Technical Reports Server (NTRS)

    Hillsley, M. V.; Frangos, J. A.

    1996-01-01

    It is our hypothesis that osteoblasts play a major role in regulating bone (re)modeling by regulating interstitial fluid (ISF) flow through individual bone compartments. We hypothesize that osteoblasts of the blood-bone membrane lining the bone surfaces are capable of regulating transosseous fluid flow. This regulatory function of the osteoblasts was tested in vitro by culturing a layer of rat calvarial osteoblasts on porous membranes. Such a layer of osteoblasts subjected to 7.3 mm Hg of hydrostatic pressure posed a significant resistance to fluid flow across the cell layer similar in magnitude to the resistance posed by endothelial monolayers in vitro. The hydraulic conductivity, the volumetric fluid flux per unit pressure drop, of the osteoblast layer was altered in response to certain hormones. Hydraulic conductivity decreased approximately 40% in response to 33 nM parathyroid hormone, while it exhibited biphasic behavior in response to calcitonin: increased 40% in response to 100 nM calcitonin and decreased 40% in response to 1000 nM calcitonin. Further, activation of adenylate cyclase by forskolin dramatically increased the hydraulic conductivity, while elevation of intracellular calcium, [Ca2+]i, by the calcium ionophore A23187 initially decreased the hydraulic conductivity at 5 minutes before increasing conductivity by 30 minutes. These results suggest that cyclic adenosine monophosphate (cAMP) and [Ca2+]i may mediate changes in the osteoblast hydraulic conductivity. The increase in hydraulic conductivity in response to 100 nM calcitonin and the decrease in response to PTH suggest that the stimulatory and inhibitory effects on bone formation of calcitonin and parathyroid hormone, respectively, may be due in part to alterations in bone fluid flow.

  9. Slope instability caused by small variations in hydraulic conductivity

    USGS Publications Warehouse

    Reid, M.E.

    1997-01-01

    Variations in hydraulic conductivity can greatly modify hillslope ground-water flow fields, effective-stress fields, and slope stability. In materials with uniform texture, hydraulic conductivities can vary over one to two orders of magnitude, yet small variations can be difficult to determine. The destabilizing effects caused by small (one order of magnitude or less) hydraulic conductivity variations using ground-water flow modeling, finite-element deformation analysis, and limit-equilibrium analysis are examined here. Low hydraulic conductivity materials that impede downslope ground-water flow can create unstable areas with locally elevated pore-water pressures. The destabilizing effects of small hydraulic heterogeneities can be as great as those induced by typical variations in the frictional strength (approximately 4??-8??) of texturally similar materials. Common "worst-case" assumptions about ground-water flow, such as a completely saturated "hydrostatic" pore-pressure distribution, do not account for locally elevated pore-water pressures and may not provide a conservative slope stability analysis. In site characterization, special attention should be paid to any materials that might impede downslope ground-water flow and create unstable regions.

  10. Hydraulic conductivity of landfill liners containing benzyltriethylammonium-bentonite

    USGS Publications Warehouse

    Smith, James A.; Franklin, Pamela M.; Jaffe, Peter R.

    1992-01-01

    Varying weight percentages of an Ottawa sand, benzyltriethylammonium-bentonite (BTEA-clay), Wyoming bentonite (Na-clay), and water were mixed uniformly and compacted to simulate sand-and-clay liners for waste-disposal facilities. The hydraulic conductivities of the compacted soil cores were measured in triplicate. The hydraulic conductivities of cores containing 92 percent sand and 8 percent BTEA-clay were about of 10-4 cm/s. The hydraulic conductivities of cores containing 92 percent sand and 8 percent Na-clay and of cores containing 88 percent sand, 8 percent Na-clay, and 4 percent BTEA-clay were about 10-8 cm/s.

  11. HYDRAULIC CONDUCTIVITY OF SOME BENTONITES IN ARTIFICIAL SEAWATER

    NASA Astrophysics Data System (ADS)

    Komine, Hideo; Yasuhara, Kazuya; Murakami, Satoshi

    A high-level radioactive waste disposal facility might be built in a coastal area in Japan from the viewpoint of feasible transportation of waste. Therefore, it is important to investigate the effects of seawater on a bentonite-based buffer. This study investigated the influence of seawater on hydraulic conductivity of three common sodium-types of bentonite and one calcium-type bentonite by the laboratory experiments. From the results of laboratory experiment, this study discussed the influence of seawater on hydraulic conductivity of bentonites from the viewpoints of kinds of bentonite such as exchangeable-cation type and montmorillonite content and dry density of bentonite-based buffer.

  12. Measurement of soil hydraulic conductivity in relation with vegetation

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Cheng, Qinbo

    2010-05-01

    Hydraulic conductivity is a key parameter which influences hydrological processes of infiltration, surface and subsurface runoff. Vegetation alters surface characteristics (e.g., surface roughness, litter absorption) or subsurface characteristics (e.g. hydraulic conductivity). Field infiltration experiment of a single ring permeameter is widely used for measuring soil hydraulic conductivity. Measurement equipment is a simple single-ring falling head permeameter which consists of a hollow cylinder that is simply inserted into the top soil. An optimization method on the basis of objective of minimum error between the measured and simulated water depths in the single-ring is developed for determination of the soil hydraulic parameters. Using the single ring permeameter, we measured saturated hydraulic conductivities (Ks) of the red loam soil with and without vegetation covers on five hillslopes at Taoyuan Agro-Ecology Experimental Station, Hunan Province of China. For the measurement plots without vegetation roots, Ks value of the soil at 25cm depth is much smaller than that of surface soil (1.52×10-4 vs. 1.10×10-5 m/s). For the measurement plots with vegetation cover, plant roots significantly increase Ks of the lower layer soil but this increase is not significant for the shallow soil. Moreover, influences of vegetation root on Ks depend on vegetation species and ages. Ks value of the Camellia is about three times larger than that of seeding of Camphor (2.62×10-4 vs. 9.82×10-5 m/s). Ks value of the matured Camellia is 2.72×10-4 m/s while Ks value of the young Camellia is only 2.17×10-4 m/s. Key words: single ring permeameter; soil hydraulic conductivity; vegetation

  13. Upscaling soil saturated hydraulic conductivity from pore throat characteristics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Upscaling and/or estimating saturated hydraulic conductivity Ksat at the core scale from microscopic/macroscopic soil characteristics has been actively under investigation in the hydrology and soil physics communities for several decades. Numerous models have beendeveloped based on different approac...

  14. Radar determination of the spatial structure of hydraulic conductivity.

    PubMed

    Oldenborger, Greg A; Schincariol, Robert A; Mansinha, Lalu

    2003-01-01

    Spatial variability of hydraulic conductivity exerts a predominant control on the flow of fluid through porous media. Heterogeneities influence advective pathways, hydrodynamic dispersion, and density-dependent dispersion; they are, therefore, a key concern for studies of ground water resource development, contaminant transport, and reservoir engineering. Ground-penetrating radar contributes to the remote, geophysical characterization of the macroscale variability of natural porous media. On a controlled excavation of a glacial-fluvial sand and gravel deposit in the Fanshawe Delta area (Ontario, Canada), the hydraulic conductivity field of a 45 x 3 m vertical exposure was characterized using constant-head permeameter measurements performed on undisturbed horizontal sediment cores. Ground-penetrating radar data were collected along the excavation face in the form of both reflection and common midpoint surveys. Comparison of geostatistical analyses of the permeameter measurements and the radar data suggests thatthe horizontal correlation structure of radar stack velocity can be used to directly infer the horizontal correlation structure of hydraulic conductivity. The averaging nature of the common midpoint survey is manifest in the vertical correlation structure of stack velocity, making it less useful. Radar reflection data do not exhibit a spatial structure similar to that of hydraulic conductivity possibly because reflections are a result of material property contrasts rather than the material properties themselves.

  15. Unsaturated soil hydraulic conductivity: The field infiltrometer method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Theory: Field methods to measure the unsaturated soil hydraulic conductivity assume presence of steady-state water flow. Soil infiltrometers are desired to apply water onto the soil surface at constant negative pressure. Water is applied to the soil from the Marriott device through a porous membrane...

  16. Test of the Rosetta Pedotransfer Function for saturated hydraulic conductivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Simulation models are tools that can be used to explore, for example, effects of cultural practices on soil erosion and irrigation on crop yield. However, often these models require many soil related input data of which the saturated hydraulic conductivity (Ks) is one of the most important ones. The...

  17. Chemical effects on clay farbric and hydraulic conductivity

    NASA Astrophysics Data System (ADS)

    Madsen, Fritz T.; Mitchell, James K.

    Hydraulic conductivity and its susceptibility to changes with time or exposure to chemicals are major factors in selection of clay for use in waste containment barriers. Available concepts of clay-chemical interactions and data permit development of conclusions useful for prediction of clay barrier performance in waste containment applications. Among the most important conclusions are that (1) the influences of the many factors that can cause changes in hydraulic conductivity can be understood from the perspective of their effects on the soil fabric, (2) the influences of chemicals on high water content clays, such as in slurry walls, are likely to be much greater than on lower water content compacted clays, (3) the effects of inorganic chemicals are consistent with their effects on particle surface double layers, their effects on surface and edge charges, and on pH, and (4) the effects of organic chemicals are influenced primarily by their water solubility, their dielectric constant, their polarity, and whether the clay is exposed to the pure chemical or a dilute solution. The type of test used may have a very significant effect on the values of hydraulic conductivity that are measured. In almost all cases pure organic liquids will interact adversely with clays by causing some shrinking and cracking, with concurrent large hydraulic conductivity increases; however, dilute solutions of organics have essentially no effect.

  18. Evolution of unsaturated hydraulic conductivity of aggregated soils during compression

    NASA Astrophysics Data System (ADS)

    Berli, M.; Carminati, A.; Ghezzehei, T. A.; Or, D.

    2007-12-01

    Prediction of water flow and transport processes in soils susceptible to structural alteration such as compaction of tilled agricultural lands, or newly constructed landfills rely on accurate description of changes in soil unsaturated hydraulic conductivity. Recent studies have documented the critical impact of aggregate contact characteristics on water flow rates and pathways in unsaturated aggregated soils. We developed an analytical model for aggregate contact size evolution as a basis for quantifying effects of compression on unsaturated hydraulic conductivity of aggregated soil. Relating confined one-dimensional sample strain with aggregate deformation facilitates prediction of the increase in inter-aggregate contact area and concurrent decrease in macro-pore size with degree of sample compression. The hydrologic component of the model predicts unsaturated hydraulic conductivity of a pack of idealized aggregates (spheres) based on contact size and saturation conditions under prescribed sample deformation. Calculated contact areas and hydraulic conductivity for pairs of aggregates agreed surprisingly well with measured values, determined from compaction experiments employing Neutron- as well as X-ray-radiography and image analysis.

  19. Dynamic Hydraulic Conductivity, Streambed Sediment, and Biogeochemistry Following Stream Restoration

    NASA Astrophysics Data System (ADS)

    Baker, S.; Jefferson, A.; Kinsman-Costello, L. E.

    2015-12-01

    Stream restoration projects strive to improve water quality and degraded habitat, yet restoration projects often fall short of achieving their goals. Hyporheic exchange facilitates biogeochemical interaction which can contribute to positive water quality and habitat, but there are limited data on how restoration affects hyporheic processes. Hyporheic flowpaths can be altered by the processes and products of stream restoration, as well as the transport of fine sediment through the stream bed post-restoration. In two northeastern Ohio headwater streams, variations in hydraulic conductivity and pore water chemistry were monitored following restoration, as measures of hyporheic functioning. A second-order stream restored in August 2013, had a slight decrease in average hydraulic conductivity but an increase in heterogeneity from pre-restoration to four months post-restoration. Data collected 10 and 15 months post-restoration show continued declines in hydraulic conductivity throughout large constructed riffles. These piezometers also indicate dominance of downwelling throughout the riffles with only isolated upwelling locations. Grain size analysis of freeze cores collected in streambed sediments show differences suggesting fluvial transport and sorting have occurred since construction was completed. Pore water sampled from piezometers within the riffles had Mn2+ concentrations ten times higher than surface water, suggesting redox transformations are occurring along hyporheic flowpaths. A first-order stream reach, immediately downstream of a dam, restored in April 2014 had no significant change in average hydraulic conductivity between 1 and 2 months post-restoration, but many individual piezometers had increases of over 100% in high gradient positions or decreases of over 50% in low gradient positions. Changes in hydraulic conductivities in both restored streams are thought to be an adjustments from disturbance to a new dynamic equilibrium influenced by the morphology

  20. Hydraulic conductance and rootstock effects in grafted vines of kiwifruit.

    PubMed

    Clearwater, M J; Lowe, R G; Hofstee, B J; Barclay, C; Mandemaker, A J; Blattmann, P

    2004-06-01

    Whole-plant hydraulic conductance, shoot growth, and leaf photosynthetic properties were measured on kiwifruit vines with four clonal rootstocks to examine the relationship between plant hydraulic conductance and leaf stomatal conductance (gs) and to test the hypothesis that reduced hydraulic conductance can provide an explanation for reductions in plant vigour caused by rootstocks. The rootstocks were selected from four species of Actinidia and grafted with Actinidia chinensis var. chinensis 'Hort16A' (yellow kiwifruit) as the scion. Total leaf area of the scion on the least vigorous Actinidia rootstock, A. kolomikta, was 25% of the most vigorous, A. hemsleyana. Based on shoot growth and leaf area, the selections of A. kolomikta and A. polygama are low-vigour rootstocks, and A. macrosperma and A. hemsleyana are high-vigour rootstocks for A. chinensis. Whole-plant hydraulic conductance, the ratio of xylem sap flux to xylem water potential, was lower in the low-vigour rootstocks, reflecting their smaller size. However, leaf-area-specific conductance (Kl) and gs were both higher in the low-vigour rootstocks, the opposite of the expected pattern. Differences in Kl were found in the compartment from the roots to the scion stem, with no difference between rootstocks in the conductance of stems or leaves of the scion. There was no evidence that the graft union caused a significant reduction in hydraulic conductance of vines with low-vigour rootstocks. Leaf photosynthetic capacity did not vary between rootstocks, but photosynthesis and carbon isotope discrimination (Delta13C) under ambient conditions were higher in the low-vigour rootstocks because gs was higher. gs and Delta13C were positively correlated with Kl, although the mechanism for this relationship was not based on stomatal regulation of a similar xylem water potential because water potential varied between rootstocks. For Actinidia rootstocks, changes in Kl do not provide a direct explanation for changes in

  1. Hydraulic waste energy recovery, Phase 2. A technical report

    SciTech Connect

    Not Available

    1992-02-01

    The energy required for booster station operation is supplied by the electrical utility company and has an associated cost. Energy removed by pressure reducing valves in the system is lost or wasted. The objective of this project is to capture the wasted hydraulic energy with in-line turbines. In this application, the in-line turbines act as pressure reducing valves while removing energy from the water distribution system and converting it to electrical energy. The North Service Center pumping station was selected for the pilot program due to the availability of a wide range in pressure drop and flow, which are necessary for hydraulic energy recovery. The research performed during this project resulted in documentation of technical, economic, installation, and operational information necessary for local government officials to make an informed judgement as it relates to in-line turbine generation.

  2. Hydraulic conductivity assessment of slurry wall using piezocone test

    SciTech Connect

    Manassero, M. )

    1994-10-01

    Cone-penetration tests (CPTs) with pore pressure (u) measurement or piezocone tests (CPTUs) are carried out inside a cutoff wall for polluted-groundwater containment. The backfilling material for the cutoff wall is a typical cement-bentonite (CB) self-hardening slurry whose composition is 76.8% water, 19.2% blast furnace cement, and 4% sodium bentonite. A tentative framework for interpretation of CPTUs in terms of hydraulic conductivity (k) is developed. In particular, a continuous assessment of hydraulic conductivity along a vertical profile is attempted by combining the piezocone penetration parameters (i.e., total point resistance (q[sub t]), pore-pressure increment ([Delta]u), and sleeve friction (f[sub s])). The obtained k results are comparable with results from CPTU dissipation tests, in-situ borehole infiltration tests, and laboratory tests performed on the same CB mixture. The test results indicate that the CPTUs are a promising tool for in-situ quality control of cutoff walls in terms of evaluating the actual hydraulic conductivity of the completed cutoff wall and, to some extent, of detecting and locating hydraulic defects that, in many cases, are the main causes of poor in-situ performance.

  3. Characterizing hydraulic conductivity with the direct-push permeameter

    USGS Publications Warehouse

    Butler, J.J.; Dietrich, P.; Wittig, V.; Christy, T.

    2007-01-01

    The direct-push permeameter (DPP) is a promising approach for obtaining high-resolution information about vertical variations in hydraulic conductivity (K) in shallow unconsolidated settings. This small-diameter tool, which consists of a short screened section with a pair of transducers inset in the tool near the screen, is pushed into the subsurface to a depth at which a K estimate is desired. A short hydraulic test is then performed by injecting water through the screen at a constant rate (less than 4 L/min) while pressure changes are monitored at the transducer locations. Hydraulic conductivity is calculated using the injection rate and the pressure changes in simple expressions based on Darcy's Law. In units of moderate or higher hydraulic conductivity (more than 1 m/d), testing at a single level can be completed within 10 to 15 min. Two major advantages of the method are its speed and the insensitivity of the K estimates to the zone of compaction created by tool advancement. The potential of the approach has been assessed at two extensively studied sites in the United States and Germany over a K range commonly faced in practical field investigations (0.02 to 500 m/d). The results of this assessment demonstrate that the DPP can provide high-resolution K estimates that are in good agreement with estimates obtained through other means. ?? 2007 National Ground Water Association.

  4. Quantitative measurements of root water uptake and root hydraulic conductivities

    NASA Astrophysics Data System (ADS)

    Zarebanadkouki, Mohsen; Javaux, Mathieu; Meunier, Felicien; Couvreur, Valentin; Carminati, Andrea

    2016-04-01

    How is root water uptake distributed along the root system and what root properties control this distribution? Here we present a method to: 1) measure root water uptake and 2) inversely estimate the root hydraulic conductivities. The experimental method consists in using neutron radiography to trace deuterated water (D2O) in soil and roots. The method was applied to lupines grown aluminium containers filled with a sandy soil. When the lupines were 4 weeks old, D2O was locally injected in a selected soil regions and its transport was monitored in soil and roots using time-series neutron radiography. By image processing, we quantified the concentration of D2O in soil and roots. We simulated the transport of D2O into roots using a diffusion-convection numerical model. The diffusivity of the roots tissue was inversely estimated by simulating the transport of D2O into the roots during night. The convective fluxes (i.e. root water uptake) were inversely estimating by fitting the experiments during day, when plants were transpiring, and assuming that root diffusivity did not change. The results showed that root water uptake was not uniform along the roots. Water uptake was higher at the proximal parts of the lateral roots and it decreased by a factor of 10 towards the distal parts. We used the data of water fluxes to inversely estimate the profile of hydraulic conductivities along the roots of transpiring plants growing in soil. The water fluxes in the lupine roots were simulated using the Hydraulic Tree Model by Doussan et al. (1998). The fitting parameters to be adjusted were the radial and axial hydraulic conductivities of the roots. The results showed that by using the root architectural model of Doussan et al. (1998) and detailed information of water fluxes into different root segments we could estimate the profile of hydraulic conductivities along the roots. We also found that: 1) in a tap-rooted plant like lupine water is mostly taken up by lateral roots; (2) water

  5. Leaf anatomy mediates coordination of leaf hydraulic conductance and mesophyll conductance to CO2 in Oryza.

    PubMed

    Xiong, Dongliang; Flexas, Jaume; Yu, Tingting; Peng, Shaobing; Huang, Jianliang

    2017-01-01

    Leaf hydraulic conductance (Kleaf ) and mesophyll conductance (gm ) both represent major constraints to photosynthetic rate (A), and previous studies have suggested that Kleaf and gm is correlated in leaves. However, there is scarce empirical information about their correlation. In this study, Kleaf , leaf hydraulic conductance inside xylem (Kx ), leaf hydraulic conductance outside xylem (Kox ), A, stomatal conductance (gs ), gm , and anatomical and structural leaf traits in 11 Oryza genotypes were investigated to elucidate the correlation of H2 O and CO2 diffusion inside leaves. All of the leaf functional and anatomical traits varied significantly among genotypes. Kleaf was not correlated with the maximum theoretical stomatal conductance calculated from stomatal dimensions (gsmax ), and neither gs nor gsmax were correlated with Kx . Moreover, Kox was linearly correlated with gm and both were closely related to mesophyll structural traits. These results suggest that Kleaf and gm are related to leaf anatomical and structural features, which may explain the mechanism for correlation between gm and Kleaf .

  6. Unsaturated hydraulic conductivity of compacted sand-kaolin mixtures

    SciTech Connect

    Chiu, T.F.; Shackelford, C.D.

    1998-02-01

    The unsaturated hydraulic conductivity of compacted sand-kaolin mixtures containing 0, 5, 10, and 30% kaolin (by dry weight) is measured for matric suctions, {psi}{sub m} < {approximately} 6.0 m. The measured unsaturated hydraulic conductivity (k{sub m}) values are compared with predicted unsaturated hydraulic conductivity (k{sub p}) values using the Brooks-Corey-Burdine and van Genuchten-Mualem relative hydraulic conductivity functions. In general, the accuracy of k{sub p} decreases with an increase in kaolin content or an increase in {psi}{sub m}. In addition, k{sub m} tends to be underpredicted for kaolin contents of 10 and 30% at relatively high suctions (1.0 m {le} {psi}{sub m} {le} 6.0 m) and overpredicted for kaolin contents of 0 and 5% at relatively low suctions (0.1 m {le} {psi}{sub m} < 1.0 m). For a given kaolin content and {psi}{sub m}, k{sub p} based on the Brooks-Corey-Burdine function tends to be more accurate than k{sub m} based on the van Genuchten-Mualem function. Finally, for 1.0 m {le} {psi}{sub m} {le} 6.0 m, k{sub p} based on analysis using the maximum volumetric water content ({theta}{sub m}) attained under steady-state flow conditions typically is more accurate than k{sub p} based on analysis using the saturated volumetric water content, {theta}{sub s}, where {theta}{sub m} {approximately} 84--90% of {theta}{sub s} in this study.

  7. Influence of Alluvial Morphology on Upscaled Hydraulic Conductivity.

    PubMed

    Jha, Sanjeev Kumar; Mariethoz, Gregoire; Mathews, George; Vial, John; Kelly, Bryce F J

    2016-05-01

    The hydraulic conductivity of aquifers is a key parameter controlling the interactions between resource exploitation activities, such as unconventional gas production and natural groundwater systems. Furthermore, this parameter is often poorly constrained by typical data used for regional groundwater modeling and calibration studies performed as part of impact assessments. In this study, a systematic investigation is performed to understand the correspondence between the lithological descriptions of channel-type formation and the bulk effective hydraulic conductivities at a larger scale (Kxeff , Kyeff , and Kzeff in the direction of channel cross section, along the channel and in the vertical directions, respectively). This will inform decisions on what additional data gathering and modeling of the geological system can be performed to allow the critical bulk properties to be more accurately predicted. The systems studied are conceptualized as stacked meandering channels formed in an alluvial plain, and are represented as two facies. Such systems are often studied using very detailed numerical models. The main factors that may influence Kxeff , Kyeff , and Kzeff are the proportion of the facies representing connected channels, the aspect ratio of the channels, and the difference in hydraulic conductivity between facies. Our results show that in most cases, Kzeff is only weakly dependent on the orientations of channelized structures, with the main effects coming from channel aspect ratio and facies proportion.

  8. Statistical-physical model of the hydraulic conductivity

    NASA Astrophysics Data System (ADS)

    Usowicz, B.; Marczewski, W.; Usowicz, J. B.; Lukowski, M. I.

    2012-04-01

    The water content in unsaturated subsurface soil layer is determined by processes of exchanging mass and energy between media of soil and atmosphere, and particular members of layered media. Generally they are non-homogeneous on different scales, considering soil porosity, soil texture including presence of vegetation elements in the root zone, and canopy above the surface, and varying biomass density of plants above the surface in clusters. That heterogeneity determines statistically effective values of particular physical properties. This work considers mainly those properties which determine the hydraulic conductivity of soil. This property is necessary for characterizing physically water transfer in the root zone and access of nutrient matter for plants, but it also the water capacity on the field scale. The temporal variability of forcing conditions and evolutionarily changing vegetation causes substantial effects of impact on the water capacity in large scales, bringing the evolution of water conditions in the entire area, spanning a possible temporal state in the range between floods and droughts. The dynamic of this evolution of water conditions is highly determined by vegetation but is hardly predictable in evaluations. Hydrological models require feeding with input data determining hydraulic properties of the porous soil which are proposed in this paper by means of the statistical-physical model of the water hydraulic conductivity. The statistical-physical model was determined for soils being typical in Euroregion Bug, Eastern Poland. The model is calibrated on the base of direct measurements in the field scales, and enables determining typical characteristics of water retention by the retention curves bounding the hydraulic conductivity to the state of water saturation of the soil. The values of the hydraulic conductivity in two reference states are used for calibrating the model. One is close to full saturation, and another is for low water content far

  9. Automated multi-point mini-disk infiltrometer measurements of unsaturated hydraulic conductivity

    NASA Astrophysics Data System (ADS)

    Klipa, Vladimir; Sacha, Jan; Snehota, Michal; Dohnal, Michal; Zumr, David; Tacheci, Pavel

    2014-05-01

    Unsaturated hydraulic conductivity function K(h) is one of hydraulic characteristics needed for numerical modeling of water flow and solute transport in the vadose zone. Tension infiltrometer is advantageous tool to conduct the measurement of unsaturated hydraulic conductivity in field under near saturated conditions. Manually operated minidisk infiltrometers are often used for performing infiltration experiments, but their disadvantage is that permanent attendance is needed during experiments. Therefore automatization of the tension infiltrometer is desirable. A new automated multi-disk tension infiltrometer has been designed at the Faculty of Civil Engineering, Czech Technical University in Prague to facilitate the measurements of near-saturated hydraulic conductivity. Infiltration experiment performed by device is simultaneously carried out by six tension mini-disk infiltrometer modules forming a fixed matrix as they are held by a lightweight aluminum frame. This setup is divided into the two groups of three infiltrometers. Each triplet of modules is controlled by Mariotte`s bottle. Therefore it is possible to conduct six simultaneous infiltration experiments at two different pressure heads. Amount of infiltrated water is registered via changes of buoyant force of vertical bar attached to the weighing sensor in each infiltrometer module and recorded automatically using datalogger. Cumulative infiltration and volumetric flux are calculated and displayed in real time. Near saturated hydraulic conductivity is determined from cumulative infiltration data using nonlinear optimization and improved procedure of Zhang. Device developed was to date tested on four experimental locations. Two sites were arable land (Nucice and Kopaninsky stream) and two located in headwater catchments (Sumava and Jizera Mountains). Soils at experimental sites were classified as Cambisols (empirical van Genuchten parameters α and n ranged from 0.007 to 0.043 cm-1 and from 1.13 to 1

  10. Frequency-dependent effective hydraulic conductivity of strongly heterogeneous media.

    PubMed

    Caspari, E; Gurevich, B; Müller, T M

    2013-10-01

    The determination of the transport properties of heterogeneous porous rocks, such as an effective hydraulic conductivity, arises in a range of geoscience problems, from groundwater flow analysis to hydrocarbon reservoir modeling. In the presence of formation-scale heterogeneities, nonstationary flows, induced by pumping tests or propagating elastic waves, entail localized pressure diffusion processes with a characteristic frequency depending on the pressure diffusivity and size of the heterogeneity. Then, on a macroscale, a homogeneous equivalent medium exists, which has a frequency-dependent effective conductivity. The frequency dependence of the conductivity can be analyzed with Biot's equations of poroelasticity. In the quasistatic frequency regime of this framework, the slow compressional wave is a proxy for pressure diffusion processes. This slow compressional wave is associated with the out-of-phase motion of the fluid and solid phase, thereby creating a relative fluid-solid displacement vector field. Decoupling of the poroelasticity equations gives a diffusion equation for the fluid-solid displacement field valid in a poroelastic medium with spatial fluctuations in hydraulic conductivity. Then, an effective conductivity is found by a Green's function approach followed by a strong-contrast perturbation theory suggested earlier in the context of random dielectrics. This theory leads to closed-form expressions for the frequency-dependent effective conductivity as a function of the one- and two-point probability functions of the conductivity fluctuations. In one dimension, these expressions are consistent with exact solutions in both low- and high-frequency limits for arbitrary conductivity contrast. In 3D, the low-frequency limit depends on the details of the microstructure. However, the derived approximation for the effective conductivity is consistent with the Hashin-Shtrikman bounds.

  11. An Integrated View of Whole-Tree Hydraulic Architecture. Does Stomatal or Hydraulic Conductance Determine Whole Tree Transpiration?

    PubMed

    Rodríguez-Gamir, Juan; Primo-Millo, Eduardo; Forner-Giner, María Ángeles

    2016-01-01

    Hydraulic conductance exerts a strong influence on many aspects of plant physiology, namely: transpiration, CO2 assimilation, growth, productivity or stress response. However we lack full understanding of the contribution of root or shoot water transport capacity to the total water balance, something which is difficult to study in trees. Here we tested the hypothesis that whole plant hydraulic conductance modulates plant transpiration using two different seedlings of citrus rootstocks, Poncirus trifoliata (L.) Raf. and Cleopatra mandarin (Citrus reshni Hort ex Tan.). The two genotypes presented important differences in their root or shoot hydraulic conductance contribution to whole plant hydraulic conductance but, even so, water balance proved highly dependent on whole plant conductance. Further, we propose there is a possible equilibrium between root and shoot hydraulic conductance, similar to that between shoot and root biomass production, which could be related with xylem anatomy.

  12. An Integrated View of Whole-Tree Hydraulic Architecture. Does Stomatal or Hydraulic Conductance Determine Whole Tree Transpiration?

    PubMed Central

    Rodríguez-Gamir, Juan; Primo-Millo, Eduardo; Forner-Giner, María Ángeles

    2016-01-01

    Hydraulic conductance exerts a strong influence on many aspects of plant physiology, namely: transpiration, CO2 assimilation, growth, productivity or stress response. However we lack full understanding of the contribution of root or shoot water transport capacity to the total water balance, something which is difficult to study in trees. Here we tested the hypothesis that whole plant hydraulic conductance modulates plant transpiration using two different seedlings of citrus rootstocks, Poncirus trifoliata (L.) Raf. and Cleopatra mandarin (Citrus reshni Hort ex Tan.). The two genotypes presented important differences in their root or shoot hydraulic conductance contribution to whole plant hydraulic conductance but, even so, water balance proved highly dependent on whole plant conductance. Further, we propose there is a possible equilibrium between root and shoot hydraulic conductance, similar to that between shoot and root biomass production, which could be related with xylem anatomy. PMID:27223695

  13. Effective soil hydraulic conductivity predicted with the maximum power principle

    NASA Astrophysics Data System (ADS)

    Westhoff, Martijn; Erpicum, Sébastien; Archambeau, Pierre; Pirotton, Michel; Zehe, Erwin; Dewals, Benjamin

    2016-04-01

    Drainage of water in soils happens for a large extent through preferential flowpaths, but these subsurface flowpaths are extremely difficult to observe or parameterize in hydrological models. To potentially overcome this problem, thermodynamic optimality principles have been suggested to predict effective parametrization of these (sub-grid) structures, such as the maximum entropy production principle or the equivalent maximum power principle. These principles have been successfully applied to predict heat transfer from the Equator to the Poles, or turbulent heat fluxes between the surface and the atmosphere. In these examples, the effective flux adapts itself to its boundary condition by adapting its effective conductance through the creation of e.g. convection cells. However, flow through porous media, such as soils, can only quickly adapt its effective flow conductance by creation of preferential flowpaths, but it is unknown if this is guided by the aim to create maximum power. Here we show experimentally that this is indeed the case: In the lab, we created a hydrological analogue to the atmospheric model dealing with heat transport between Equator and poles. The experimental setup consists of two freely draining reservoirs connected with each other by a confined aquifer. By adding water to only one reservoir, a potential difference will build up until a steady state is reached. From the steady state potential difference and the observed flow through the aquifer, and effective hydraulic conductance can be determined. This observed conductance does correspond to the one maximizing power of the flux through the confined aquifer. Although this experiment is done in an idealized setting, it opens doors for better parameterizing hydrological models. Furthermore, it shows that hydraulic properties of soils are not static, but they change with changing boundary conditions. A potential limitation to the principle is that it only applies to steady state conditions

  14. Root hydraulic conductivity and adjustments in stomatal conductance: hydraulic strategy in response to salt stress in a halotolerant species

    PubMed Central

    Vitali, Victoria; Bellati, Jorge; Soto, Gabriela; Ayub, Nicolás D.; Amodeo, Gabriela

    2015-01-01

    Recent advances at the molecular level are introducing a new scenario that needs to be integrated into the analysis of plant hydraulic properties. Although it is not yet clear to what extent this scenario alters the current proposal for the hydraulic circuit models, it introduces new insights when studying plants that are able to easily overcome water restrictions. In this context, our aim was to explore water adjustments in a halotolerant model (Beta vulgaris) by studying the coordination between the root in terms of root hydraulic conductivity (Lpr) and the shoot as reflected in the stomatal conductance (gs). The root water pathways were also analysed in terms of root suberization (apoplastic barrier) and aquaporin transcript levels (cell-to-cell pathway). Beta vulgaris showed the ability to rapidly lose (4 h) and gain (24 h) turgor when submitted to salt stress (200 mM). The reduction profile observed in Lpr and gs was consistent with a coupled process. The tuning of the root water flow involved small variations in the studied aquaporin's transcripts before anatomical modifications occurred. Exploring Lpr enhancement after halting the stress contributed to show not only a different profile in restoring Lpr but also the capacity to uncouple Lpr from gs. Beta vulgaris root plays a key role and can anticipate water loss before the aerial water status is affected. PMID:26602985

  15. Improved apparatus for measuring hydraulic conductivity at low water content

    USGS Publications Warehouse

    Nimmo, J.R.; Akstin, K.C.; Mello, K.A.

    1992-01-01

    A modification of the steady-state centrifuge method for unsaturated hydraulic conductivity (K) measurement improves the range and adjustability of this method. The modified apparatus allows mechanical adjustment to vary the measured K by a factor of 360. In addition, the use of different flow-regulation ceramic materials can give a total K range covering about six orders of magnitude. The range extension afforded has led to the lowest steady-state K measurement to date, for a sandy soil of the Delhi series (Typic Xeropsamment). -from Authors

  16. Measurement and modeling of unsaturated hydraulic conductivity: Chapter 21

    USGS Publications Warehouse

    Perkins, Kim S.; Elango, Lakshmanan

    2011-01-01

    This chapter will discuss, by way of examples, various techniques used to measure and model hydraulic conductivity as a function of water content, K(). The parameters that describe the K() curve obtained by different methods are used directly in Richards’ equation-based numerical models, which have some degree of sensitivity to those parameters. This chapter will explore the complications of using laboratory measured or estimated properties for field scale investigations to shed light on how adequately the processes are represented. Additionally, some more recent concepts for representing unsaturated-zone flow processes will be discussed.

  17. Shear stress regulates HUVEC hydraulic conductivity by occludin phosphorylation.

    PubMed

    Pang, Zhengyu; Antonetti, David A; Tarbell, John M

    2005-11-01

    Human umbilical vein endothelial cells (HUVECs) display hydraulic conductivity (L(P)) responses to shear stress that differ markedly from the responses of bovine aortic endothelial cells (BAECs). In HUVECs, 5, 10, and 20 dyn cm(-2) steady shear stress transiently increased L(P) with a return to preshear baseline after a 2-h exposure to shear stress. Pure oscillatory shear stress of 0 +/- 20 dyn cm(-2) (mean+/-amplitude) had no effect on L(P), whereas superposition of oscillatory shear stress on steady shear stress suppressed the effect induced by steady shear stress alone. Shear reversal (amplitude greater than mean) was not necessary for the inhibitory influence of oscillatory shear stress. The transient increase of L(P) by steady shear stress was not affected by incubation with BAPTA-AM (10 microM), suggesting calcium independence of the shear response. Decreasing nitric oxide (NO) concentration with L-NMMA (100 microM), a nitric oxide synthase (NOS) inhibitor, did not inhibit the HUVEC L(P) response to shear stress. At the protein level, 10 dyn cm(-2) shear stress did not affect the total content of occludin, but it did elevate the phosphorylation level transiently. The positive correlation between occludin phosphorylation and hydraulic conductivity parallels observations in BAECs and suggests that occludin phosphorylation may be a general mediator of shear-L(P) responses in diverse endothelial cell types.

  18. Effects of the hydraulic conductivity microstructure on macrodispersivity

    NASA Astrophysics Data System (ADS)

    Di Dato, Mariaines; de Barros, Felipe P. J.; Fiori, Aldo; Bellin, Alberto

    2016-09-01

    Heterogeneity of the hydraulic properties is one of the main causes of the seemingly random distribution of solute concentration observed in contaminated aquifers, with macrodispersivity providing a global measure of spreading. Earlier studies on transport of solutes in heterogeneous formations, either theoretical or numerical, expressed dispersivity as a function of the geostatistical properties of the hydraulic conductivity K. In most cases, K follows a second-order statistical characterization, which may not be adequate when heterogeneity is high. In this work, we adopt the Multi-Indicator Model-Self Consistent Approach (MIMSCA) to compute the longitudinal and transverse macrodispersivity. This methodology enables to model the K field by using geological inclusions of different shapes and orientation (defined here as the microstructure), while replicating the heterogeneous macrostructure obtained by the second-order statistics. The above scheme attempts to reproduce the effect on macrodispersion of different distribution and orientation of local facies, and for instance it may represent the orientation and spatial features of the layers that are often observed in aquifers. The relevant impact of the microstructure on effective conductivity, longitudinal and transverse macrodispersivities is analyzed and discussed, for both binary and lognormally distributed K fields.

  19. Hydraulic Conductivity Estimation using Bayesian Model Averaging and Generalized Parameterization

    NASA Astrophysics Data System (ADS)

    Tsai, F. T.; Li, X.

    2006-12-01

    Non-uniqueness in parameterization scheme is an inherent problem in groundwater inverse modeling due to limited data. To cope with the non-uniqueness problem of parameterization, we introduce a Bayesian Model Averaging (BMA) method to integrate a set of selected parameterization methods. The estimation uncertainty in BMA includes the uncertainty in individual parameterization methods as the within-parameterization variance and the uncertainty from using different parameterization methods as the between-parameterization variance. Moreover, the generalized parameterization (GP) method is considered in the geostatistical framework in this study. The GP method aims at increasing the flexibility of parameterization through the combination of a zonation structure and an interpolation method. The use of BMP with GP avoids over-confidence in a single parameterization method. A normalized least-squares estimation (NLSE) is adopted to calculate the posterior probability for each GP. We employee the adjoint state method for the sensitivity analysis on the weighting coefficients in the GP method. The adjoint state method is also applied to the NLSE problem. The proposed methodology is implemented to the Alamitos Barrier Project (ABP) in California, where the spatially distributed hydraulic conductivity is estimated. The optimal weighting coefficients embedded in GP are identified through the maximum likelihood estimation (MLE) where the misfits between the observed and calculated groundwater heads are minimized. The conditional mean and conditional variance of the estimated hydraulic conductivity distribution using BMA are obtained to assess the estimation uncertainty.

  20. Reduction of saltwater intrusion by modifying hydraulic conductivity

    NASA Astrophysics Data System (ADS)

    Strack, O. D. L.; Stoeckl, L.; Damm, K.; Houben, G.; Ausk, B. K.; de Lange, W. J.

    2016-09-01

    We present an approach for reducing saltwater intrusion in coastal aquifers by artificially reducing the hydraulic conductivity in the upper part of selected areas by using a precipitate. We apply a previously presented analytical approach to develop formulas useful for the design of artificial barriers. Equations for the location of the tip of the saltwater wedge are presented and verified through a sand-tank experiment. The analysis is capable of computing discharges exactly, but requires the Dupuit-Forchheimer approximation to compute points of the interface between flowing fresh and stationary saltwater. We consider a vertical coastline and boundaries in the freshwater zone of either given discharge or given head. We demonstrate in the paper that reduction of the hydraulic conductivity in the upper part of a coastal aquifer will result in a decrease of saltwater intrusion, and present analytic expressions that can be used for design purposes. The previously presented analytical approach can be applied to design systems to reduce saltwater intrusion caused by pumping inland from the zone that contains saline groundwater.

  1. Dentin permeability: effects of temperature on hydraulic conductance.

    PubMed

    Pashley, D H; Thompson, S M; Stewart, F P

    1983-09-01

    The rates of fluid movement across dentin discs, in vitro, were measured at 10, 20, 30, 40, and 50 degrees C in unetched and acid-etched dentin. Increasing the temperature 40 degrees (i.e., from 10 to 50 degrees C) resulted in a 1.8-fold increase in fluid flow in unetched dentin, which was of a magnitude similar to the decrease in viscosity that occurred over the same temperature range. In acid-etched dentin, the 40 degrees C temperature change produced more than a four-fold increase in fluid conductance, more than double that which could be accounted for by changes in viscosity. Analysis of the data suggests that this additional increment in hydraulic conductance is due to thermal expansion-induced increases in tubular diameter.

  2. Pore-structure models of hydraulic conductivity for permeable pavement

    NASA Astrophysics Data System (ADS)

    Kuang, X.; Sansalone, J.; Ying, G.; Ranieri, V.

    2011-03-01

    SummaryPermeable pavement functions as a porous infrastructure interface allowing the infiltration and evaporation of rainfall-runoff while functioning as a relatively smooth load-bearing surface for vehicular transport. Hydraulic conductivity ( k) of permeable pavement is an important hydraulic property and is a function of the pore structure. This study examines k for a cementitious permeable pavement (CPP) through a series of pore-structure models. Measurements utilized include hydraulic head as well as total porosity, ( ϕ t), effective porosity ( ϕ e), tortuosity ( L e/ L) and pore size distribution (PSD) indices generated through X-ray tomography (XRT). XRT results indicate that the permeable pavement pore matrix is hetero-disperse, with high tortuosity and ϕ t ≠ ϕ e. Power law models of k- ϕ t and k- ϕ e relationships are developed for a CPP mix design. Results indicate that the Krüger, Fair-Hatch, Hazen, Slichter, Beyer and Terzaghi models based on simple pore-structure indices do not reproduce measured k values. The conventional Kozeny-Carman model (KCM), a more parameterized pore-structure model, did not reproduce measured k values. This study proposes a modified KCM utilizing ϕ e, specific surface area (SSA) pe and weighted tortuosity ( L e/ L) w. Results demonstrate that such permeable pavement pore-structure parameters with the modified KCM can predict k. The k results are combined with continuous simulation modeling using historical rainfall to provide nomographs examining permeable pavement as a low impact development (LID) infrastructure component.

  3. Vertical hydraulic conductivity measurements in the Denver Basin, Colorado

    USGS Publications Warehouse

    Barkmann, P.E.

    2004-01-01

    The Denver Basin is a structural basin on the eastern flank of the Rocky Mountain Front Range, Colorado, containing approximately 3000 ft of sediments that hold a critical groundwater resource supplying many thousands of households with water. Managing this groundwater resource requires understanding how water gets into and moves through water-bearing layers in a complex multiple-layered sedimentary sequence. The Denver Basin aquifer system consists of permeable sandstone interbedded with impermeable shale that has been subdivided into four principle aquifers named, in ascending order, the Laramie-Fox Hills, Arapahoe, Denver, and Dawson aquifers. Although shale can dominate the stratigraphic interval containing the aquifers, there is very little empirical data regarding the hydrogeologic properties of the shale layers that control groundwater flow in the basin. The amount of water that flows vertically within the basin is limited by the vertical hydraulic conductivity through the confining shale layers. Low vertical flow volumes translate to low natural recharge rates and can have a profound negative impact on long-term well yields and the economic viability of utilizing the resource. To date, direct measurements of vertical hydraulic conductivity from cores of fine-grained sediments have been published from only five locations; and the data span a wide range from 1??10-3 to 1??10-11 cm/sec. This range may be attributable, in part, to differences in sample handling and analytical methods; however, it may also reflect subtle differences in the lithologic characteristics of the fine-grained sediments such as grain-size, clay mineralogy, and compaction that relate to position in the basin. These limited data certainly call for the collection of additional data.

  4. Percolation testing and hydraulic conductivity of soils for percolation areas.

    PubMed

    Mulqueen, J; Rodgers, M

    2001-11-01

    The results of specific percolation tests are expressed in terms of field saturated hydraulic conductivity (Kfs) of the soil. The specific tests comprise the Irish SR 6 and the UK BS 6297 standard tests and the inversed auger hole and square hole tests employed for the design of land drainage. Percolation times from these tests are converted to Kfs values using unit gradient theory and the Elrick and Reynolds (Soil Sci. 142(5) (1986) 308) model which takes into account gravitational, pressure head and matric potential gradients. Kfs is then expressed as the inverse of the percolation rate times a constant, in this way the percolation rate can be directly related to Kfs of the soil. A plot of Kfs against percolation rate for the Irish SR 6 and the UK BS 6297 standard tests is asymptotic at Kfs values less than 0.2 m/d and greater than 0.8 m/d. This behaviour creates difficulty in setting limits for percolation rates in standards. Curves are provided which enable Kfs values to be read off from percolation tests without the restrictions of head range currently enforced, for example in the Irish SR 6 and BS 6297 standards. Experimental measurements of percolation rates and Kfs were carried out on two sands in the laboratory and in the field on two soils. Kfs of these four materials was also measured using a tension infiltrometer and the Guelph permeameter. The saturated hydraulic conductivities (Ks) of the sands were also estimated in a falling head laboratory apparatus and by the Hazen formula. There was good agreement between the different tests for Kfs on each material. Because percolation time continued to increase significantly in consecutive tests in the same test hole while Kfs became constant, the latter is a better measure of the suitability of soils for percolation.

  5. Geostatistical analysis of field hydraulic conductivity in compacted clay

    SciTech Connect

    Rogowski, A.S.; Simmons, D.E.

    1988-05-01

    Hydraulic conductivity (K) of fractured or porous materials is associated intimately with water flow and chemical transport. Basic concepts imply uniform flux through a homogeneous cross-sectional area. If flow were to occur only through part of the area, actual rates could be considerably different. Because laboratory values of K in compacted clays seldom agree with field estimates, questions arise as to what the true values of K are and how they should be estimated. Hydraulic conductivity values were measured on a 10 x 25 m elevated bridge-like platform. A constant water level was maintained for 1 yr over a 0.3-m thick layer of compacted clay, and inflow and outflow rates were monitored using 10 x 25 grids of 0.3-m diameter infiltration rings and outflow drains subtending approximately 1 x 1 m blocks of compacted clay. Variography of inflow and outflow data established relationships between cores and blocks of clay, respectively. Because distributions of outflow rates were much less and bore little resemblance to the distributions of break-through rates based on tracer studies, presence of macropores and preferential flow through the macropores was suspected. Subsequently, probability kriging was applied to reevaluate distribution of flux rates and possible location of macropores. Sites exceeding a threshold outflow of 100 x 10/sup -9/ m/s were classified as outliers and were assumed to probably contain a significant population of macropores. Different sampling schemes were examined. Variogram analysis of outflows with and without outliers suggested adequacy of sampling the site at 50 randomly chosen locations. Because of the potential contribution of macropores to pollutant transport and the practical necessity of extrapolating small plot values to larger areas, conditional simulations with and without outliers were carried out.

  6. Ensemble smoother assimilation of hydraulic head and return flow data to estimate hydraulic conductivity distribution

    NASA Astrophysics Data System (ADS)

    Bailey, R.; Baã¹, D.

    2010-12-01

    Numerical groundwater models, frequently used to enhance understanding of the hydrologic and chemical processes in local or regional aquifers, are often hindered by an incomplete representation of the parameters which characterize these processes. In this study, we present the use of a data assimilation algorithm that incorporates all past model results and data measurements, an ensemble smoother (ES) to provide enhanced estimates of aquifer hydraulic conductivity (K) through assimilation of hydraulic head (H) and groundwater return flow volume (RFV) measurements into groundwater model simulation results. On the basis of the Kalman filter methodology, residuals between forecasted model results and measurements, together with covariances between model results at measurement locations and nonmeasurement locations, are used to correct model results. Parameter estimation is achieved by incorporating model parameters into the algorithm, thus allowing the correlation between H, RFV, and K to correct the K fields. The applicability of the ES is demonstrated using a synthetic two-dimensional transient groundwater modeling simulation. Sensitivity analyses are carried out to show the performance of the ES in regard to measurement error, number of measurements, number of assimilation times, correlation length of the K fields, and the number of stream gage locations. Results show that the departure of the K fields from a reference K field is greatly reduced through data assimilation and demonstrate that the ES scheme is a promising alternative to other inverse modeling techniques because of low computational burden and the ability to run the algorithm entirely independent of the groundwater model simulation.

  7. Interstitial hydraulic conductivity and interstitial fluid pressure for avascular or poorly vascularized tumors.

    PubMed

    Liu, L J; Schlesinger, M

    2015-09-07

    A correct description of the hydraulic conductivity is essential for determining the actual tumor interstitial fluid pressure (TIFP) distribution. Traditionally, it has been assumed that the hydraulic conductivities both in a tumor and normal tissue are constant, and that a tumor has a much larger interstitial hydraulic conductivity than normal tissue. The abrupt transition of the hydraulic conductivity at the tumor surface leads to non-physical results (the hydraulic conductivity and the slope of the TIFP are not continuous at tumor surface). For the sake of simplicity and the need to represent reality, we focus our analysis on avascular or poorly vascularized tumors, which have a necrosis that is mostly in the center and vascularization that is mostly on the periphery. We suggest that there is an intermediary region between the tumor surface and normal tissue. Through this region, the interstitium (including the structure and composition of solid components and interstitial fluid) transitions from tumor to normal tissue. This process also causes the hydraulic conductivity to do the same. We introduce a continuous variation of the hydraulic conductivity, and show that the interstitial hydraulic conductivity in the intermediary region should be monotonically increasing up to the value of hydraulic conductivity in the normal tissue in order for the model to correspond to the actual TIFP distribution. The value of the hydraulic conductivity at the tumor surface should be the lowest in value.

  8. [Effects of invertebrate bioturbation on vertical hydraulic conductivity of streambed for a river].

    PubMed

    Ren, Chao-Liang; Song, Jin-Xi; Yang, Xiao-Gang; Xue, Jian

    2013-11-01

    Streambed hydraulic conductivity is a key factor influencing water exchange between surface water and groundwater. However, the streambed invertebrate bioturbation has a great effect on the hydraulic conductivity. In order to determine the impact of invertebrate bioturbation on streambed hydraulic conductivity, the investigation of invertebrate bioturbation and in-situ test of vertical hydraulic conductivity of streambed are simultaneously conducted at five points along the main stream of the Weihe River. Firstly, correlation between the streambed vertical hydraulic conductivity and grain size distribution is analyzed. Secondly, type and density of the invertebrate and their correlation to hydraulic conductivity are determined. Finally, the effect of invertebrate bioturbation on the streambed hydraulic conductivity is illustrated. The results show that the vertical hydraulic conductivity and biological density of invertebrate are 18.479 m x d(-1) and 139 ind x m(-2), respectively for the Caotan site, where sediment composition with a large amount of sand and gravel particles. For Meixian site, the sediment constitutes a large amount of silt and clay particles, in which the vertical hydraulic conductivity and biological density of invertebrate are 2.807 m x d(-1) and 2 742 ind x m(-2) respectively. Besides, for the low permeability of four sites (Meixian, Xianyang, Lintong and Huaxian), grain size particles are similar while the vertical hydraulic conductivity and biological density of invertebrate are significantly different from one site to another. However, for each site, the vertical hydraulic conductivity closely related to biological density of invertebrate, the Pearson correlation coefficient is 0.987. It can be concluded that both grain size particles and invertebrate bioturbation influence sediment permeability. For example, higher values of streambed hydraulic conductivity from strong permeability site mainly due to the large amount of large-size particles

  9. Effects of distance from the pulp and thickness on the hydraulic conductance of human radicular dentin.

    PubMed

    Fogel, H M; Marshall, F J; Pashley, D H

    1988-11-01

    The purposes of this study were: (1) to measure the effect of distance from the pulp on the hydraulic conductance of human radicular dentin; (2) to determine the influence of dentin thickness on the rates of fluid flow; and (3) to attempt to correlate dentinal tubule densities and diameters with root dentin hydraulic conductance. Dentin slabs prepared from extracted, unerupted, human third molar teeth were placed in a split-chamber device to permit quantitation of fluid filtration rate (hydraulic conductance). In the SEM portion of the study, dentinal tubule numbers and diameters were recorded. The results indicated that radicular dentin hydraulic conductance decreased with distance from the pulp and with increasing dentin thickness. Tubule density and diameter correlated well with the measured hydraulic conductances. The relatively low hydraulic conductance of outer root dentin makes it a significant barrier to fluid movement across root structure.

  10. Spatial Variability of Streambed Hydraulic Conductivity of a Lowland River

    NASA Astrophysics Data System (ADS)

    Schneidewind, Uwe; Thornton, Steven; Van De Vijver, Ellen; Joris, Ingeborg; Seuntjens, Piet

    2015-04-01

    Streambed hydraulic conductivity K is a key physical parameter, which describes flow processes in the hyporheic zone (HZ), i.e. the dynamic interface between aquifers and streams or rivers. Knowledge of the spatial variability of K is also important for the interpretation of contaminant transport processes in the HZ. Streambed K can vary over several magnitudes at small spatial scales. It depends mostly on streambed sediment characteristics (e.g. effective porosity, grain size, packing), streambed processes (e.g. sedimentation, colmation and erosion) and the development of stream channel geometry and streambed morphology (e.g. dunes, anti-dunes, pool-riffle sequences, etc.). Although heterogeneous in natural streambeds, streambed K is often considered to be a constant parameter due to a lack of information on its spatial distribution. Here we show the spatial variability of streambed K for a small section of the River Tern, a lowland river in the UK. Streambed K was determined for more than 120 vertically and horizontally distributed locations from grain size analyses using four empirical approaches (Hazen, Beyer, Kozeny and the USBR model). Additionally, streambed K was estimated from falling head tests in 36 piezometers installed into the streambed on a 4 m by 16 m grid, by applying the Springer-Gelhar Model. For both methods streambed K followed a log-normal distribution. Variogram analysis was used to deduce the spatial variability of the streambed K values within several streambed profiles parallel and perpendicular to the main flow direction in the stream. Hydraulic conductivity Kg estimated from grain size analyses varied between 1 m/d and 155 m/d with standard deviations of 79% to 99% depending on the empirical approach used. Kh estimated from falling head tests varied between 1 m/d and 22 m/d with a standard deviation of about 50%, depending on the degree of anisotropy assumed. After rescaling the data to obtain a common sample support, Pearson correlation

  11. Efficient Method for Calculating Hydraulic Conductivity from Pneumatic Slug Tests

    NASA Astrophysics Data System (ADS)

    Peng, X.; Cheung, B.; Knappett, P. S.; Zhan, H.

    2014-12-01

    Pneumatic slug tests are widely used in characterizing the hydraulic conductivity of aquifers. In comparison to a manual slug test wherein the water level is measured using a water level tape, pneumatic slug tests are especially useful when the water level recovery is very fast (<10 sec) in a high hydraulic conductivity (K) aquifer (>10-4 m/s) and when the recovery is very slow (<10-7 m/s). The submerged pressure transducer monitors pressure changes at intervals of fractions of a second and for longer recoveries no personnel are required to make repeated measurements. A pneumatic slug test begins with pressurizing the well at the well head using an air pump followed by several minutes waiting for the pressure in the well to equalize with the pressure outside the well screen. In semi-confined settings this equalization may take >5 minutes. In lower K media it's not always feasible to wait until the well fully recovers before making the next replicate measurement. Therefore, it would greatly reduce the time needed to make replicate measurements if these waiting times could be reduced. Here we present a method using non-linear least squares regression on a portion of the recovery curve to simultaneously fit 3 parameters used to determine K from a slug tests using the Hvorslev method. The advantage of this approach is that waiting for the well to reach static head between replicate measurements is not required. This is because the regression fits static head (H) from the shape of only part the recovery curve. We compare the resulting K values from this new method to values obtained from manually measured static heads for triplicate measurements on 50 wells. The well's settings ranged from unconfined to semi-confined and K ranged from 10-3 to 10-5 m/s. The new method gave identical results. We performed the same comparison on a subset 16 wells using data collected in half the time, where only part of the recovery curves were measured before starting the next replicate

  12. Coordination of stem and leaf hydraulic conductance in southern California shrubs: a test of the hydraulic segmentation hypothesis.

    PubMed

    Pivovaroff, Alexandria L; Sack, Lawren; Santiago, Louis S

    2014-08-01

    Coordination of water movement among plant organs is important for understanding plant water use strategies. The hydraulic segmentation hypothesis (HSH) proposes that hydraulic conductance in shorter lived, 'expendable' organs such as leaves and longer lived, more 'expensive' organs such as stems may be decoupled, with resistance in leaves acting as a bottleneck or 'safety valve'. We tested the HSH in woody species from a Mediterranean-type ecosystem by measuring leaf hydraulic conductance (Kleaf) and stem hydraulic conductivity (KS). We also investigated whether leaves function as safety valves by relating Kleaf and the hydraulic safety margin (stem water potential minus the water potential at which 50% of conductivity is lost (Ψstem-Ψ50)). We also examined related plant traits including the operating range of water potentials, wood density, leaf mass per area, and leaf area to sapwood area ratio to provide insight into whole-plant water use strategies. For hydrated shoots, Kleaf was negatively correlated with KS , supporting the HSH. Additionally, Kleaf was positively correlated with the hydraulic safety margin and negatively correlated with the leaf area to sapwood area ratio. Consistent with the HSH, our data indicate that leaves may act as control valves for species with high KS , or a low safety margin. This critical role of leaves appears to contribute importantly to plant ecological specialization in a drought-prone environment.

  13. Evaluation of vertical variations in hydraulic conductivity in unconsolidated sediments.

    PubMed

    Dietze, Michael; Dietrich, Peter

    2012-01-01

    Detailed information on vertical variations in hydraulic conductivity (K) is essential to describe the dynamics of groundwater movement at contaminated sites or as input data used for modeling. K values in high vertical resolution should be determined because K tends to be more continuous in the horizontal than in the vertical direction. To determine K in shallow unconsolidated sediments and in the vertical direction, the recently developed direct-push injection logger can be used. The information obtained by this method serves as a proxy for K and has to be calibrated to obtain quantitative K values of measured vertical profiles. In this study, we performed direct-push soil sampling, sieve analyses and direct-push slug tests to obtain K values in vertical high resolution. Using the results of direct-push slug tests, quantitative K values obtained by the direct-push injection logger could be determined successfully. The results of sieve analyses provided lower accordance with the logs due to the inherent limitations of the sieving method.

  14. NMR Logging to Estimate Hydraulic Conductivity in Unconsolidated Aquifers.

    PubMed

    Knight, Rosemary; Walsh, David O; Butler, James J; Grunewald, Elliot; Liu, Gaisheng; Parsekian, Andrew D; Reboulet, Edward C; Knobbe, Steve; Barrows, Mercer

    2016-01-01

    Nuclear magnetic resonance (NMR) logging provides a new means of estimating the hydraulic conductivity (K) of unconsolidated aquifers. The estimation of K from the measured NMR parameters can be performed using the Schlumberger-Doll Research (SDR) equation, which is based on the Kozeny-Carman equation and initially developed for obtaining permeability from NMR logging in petroleum reservoirs. The SDR equation includes empirically determined constants. Decades of research for petroleum applications have resulted in standard values for these constants that can provide accurate estimates of permeability in consolidated formations. The question we asked: Can standard values for the constants be defined for hydrogeologic applications that would yield accurate estimates of K in unconsolidated aquifers? Working at 10 locations at three field sites in Kansas and Washington, USA, we acquired NMR and K data using direct-push methods over a 10- to 20-m depth interval in the shallow subsurface. Analysis of pairs of NMR and K data revealed that we could dramatically improve K estimates by replacing the standard petroleum constants with new constants, optimal for estimating K in the unconsolidated materials at the field sites. Most significant was the finding that there was little change in the SDR constants between sites. This suggests that we can define a new set of constants that can be used to obtain high resolution, cost-effective estimates of K from NMR logging in unconsolidated aquifers. This significant result has the potential to change dramatically the approach to determining K for hydrogeologic applications.

  15. METHOD DEVELOPMENT FOR DETERMINING THE HYDRAULIC CONDUCTIVITY OF FRACTURED POROUS MEDIA

    SciTech Connect

    Dixon, K.

    2013-09-30

    Plausible, but unvalidated, theoretical model constructs for unsaturated hydraulic conductivity of fractured porous media are currently used in Performance Assessment (PA) modeling for cracked saltstone and concrete (Flach 2011). The Nuclear Regulatory Commission (NRC) has expressed concern about the lack of model support for these assumed Moisture Characteristic Curves (MCC) data, as noted in Requests for Additional Information (RAIs) PA-8 and SP-4 (Savannah River Remediation, LLC, 2011). The objective of this task was to advance PA model support by developing an experimental method for determining the hydraulic conductivity of fractured cementitious materials under unsaturated conditions, and to demonstrate the technique on fractured saltstone samples. The task was requested through Task Technical Request (TTR) HLW-SSF-TTR-2012-0016 and conducted in accordance with Task Technical & Quality Assurance Plan (TTQAP) SRNL-TR-2012-00090. Preliminary method development previously conducted by Kohn et al. (2012) identified transient outflow extraction as the most promising method for characterizing the unsaturated properties of fractured porous media. While the research conducted by Kohn et al. (2012) focused on fractured media analogs such as stacked glass slides, the current task focused directly on fractured saltstone. For this task, four sample types with differing fracture geometries were considered: 1) intact saltstone, 2) intact saltstone with a single saw cut, smooth surface fracture, 3) micro-fractured saltstone (induced by oven drying), and 4) micro-fractured saltstone with a single, fully-penetrating, rough-surface fracture. Each sample type was tested initially for saturated hydraulic conductivity following method ASTM D 5084 using a flexible wall permeameter. Samples were subsequently tested using the transient outflow extraction method to determine cumulative outflow as a function of time and applied pressure. Of the four sample types tested, two yielded

  16. Determination of near-saturated hydraulic conductivity by automated minidisk infiltrometer

    NASA Astrophysics Data System (ADS)

    Klipa, Vladimir; Snehota, Michal; Dohnal, Michal; Zumr, David

    2013-04-01

    Numerical models in surface and subsurface hydrology require knowledge of infiltration properties of soils for their routine use in the field of water management, environmental protection or agriculture. A new automated tension infiltration module has been designed at the Faculty of Civil Engineering, Czech Technical University in Prague to facilitate the measurements of near-saturated hydraulic conductivity. In the proposed infiltration module the amount of infiltrated water is registered via changes of buoyant force of stationary float attached to the load cell. Presented setup consists of six mini-disk infiltrometer modules held in the light aluminum frame and two Mariotte's bottles. Three infiltrometer modules connected to each Mariotte's bottle allow performing six simultaneous measurements at two different pressure heads. Infiltration modules are connected to the automatic data logging system and consist of: plastic cover with the integrated load cell and the float, reservoir tube (external diameter of 50 mm), and sintered stainless steel plate (diameter of 44.5 mm). The newly developed device was used for determination of near-saturated hydraulic conductivity of soils in experimental catchments Uhlirska (Jizera Mountains, Northern Bohemia) and Kopaninsky creek (Bohemian-Moravian Highlands). The acquired data show a good agreement with the data obtained from previous measurements.

  17. MEASURING VERTICAL PROFILES OF HYDRAULIC CONDUCTIVITY WITH IN SITU DIRECT-PUSH METHODS

    EPA Science Inventory

    U.S. EPA (Environmental Protection Agency) staff developed a field procedure to measure hydraulic conductivity using a direct-push system to obtain vertical profiles of hydraulic conductivity. Vertical profiles were obtained using an in situ field device-composed of a
    Geopr...

  18. Hydraulic conductivity of fly ash-sewage sludge mixes for use in landfill cover liners.

    PubMed

    Herrmann, Inga; Svensson, Malin; Ecke, Holger; Kumpiene, Jurate; Maurice, Christian; Andreas, Lale; Lagerkvist, Anders

    2009-08-01

    Secondary materials could help meeting the increasing demand of landfill cover liner materials. In this study, the effect of compaction energy, water content, ash ratio, freezing, drying and biological activity on the hydraulic conductivity of two fly ash-sewage sludge mixes was investigated using a 2(7-1) fractional factorial design. The aim was to identify the factors that influence hydraulic conductivity, to quantify their effects and to assess how a sufficiently low hydraulic conductivity can be achieved. The factors compaction energy and drying, as well as the factor interactions material x ash ratio and ash ratio x compaction energy affected hydraulic conductivity significantly (alpha=0.05). Freezing on five freeze-thaw cycles did not affect hydraulic conductivity. Water content affected hydraulic conductivity only initially. The hydraulic conductivity data were modelled using multiple linear regression. The derived models were reliable as indicated by R(adjusted)(2) values between 0.75 and 0.86. Independent on the ash ratio and the material, hydraulic conductivity was predicted to be between 1.7 x 10(-11)m s(-1) and 8.9 x 10(-10)m s(-1) if the compaction energy was 2.4 J cm(-3), the ash ratio between 20% and 75% and drying did not occur. Thus, the investigated materials met the limit value for non-hazardous waste landfills of 10(-9)m s(-1).

  19. Response of four cotton genotypes to N fertilization for root hydraulic conductance and lint yield

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In controlled environments, hydraulic conductance of cotton (Gossypium hirsutum L.) roots is affected by nitrate supply. Limited information is available on the influence of N on cotton root hydraulic conductance under field conditions. The objective of this study was to determine the effect of N fe...

  20. Using high hydraulic conductivity nodes to simulate seepage lakes

    USGS Publications Warehouse

    Anderson, Mary P.; Hunt, Randall J.; Krohelski, James T.; Chung, Kuopo

    2002-01-01

    In a typical ground water flow model, lakes are represented by specified head nodes requiring that lake levels be known a priori. To remove this limitation, previous researchers assigned high hydraulic conductivity (K) values to nodes that represent a lake, under the assumption that the simulated head at the nodes in the high-K zone accurately reflects lake level. The solution should also produce a constant water level across the lake. We developed a model of a simple hypothetical ground water/lake system to test whether solutions using high-K lake nodes are sensitive to the value of K selected to represent the lake. Results show that the larger the contrast between the K of the aquifer and the K of the lake nodes, the smaller the error tolerance required for the solution to converge. For our test problem, a contrast of three orders of magnitude produced a head difference across the lake of 0.005 m under a regional gradient of the order of 10−3 m/m, while a contrast of four orders of magnitude produced a head difference of 0.001 m. The high-K method was then used to simulate lake levels in Pretty Lake, Wisconsin. Results for both the hypothetical system and the application to Pretty Lake compared favorably with results using a lake package developed for MODFLOW (Merritt and Konikow 2000). While our results demonstrate that the high-K method accurately simulates lake levels, this method has more cumbersome postprocessing and longer run times than the same problem simulated using the lake package.

  1. Which sampling design to monitor saturated hydraulic conductivity?

    NASA Astrophysics Data System (ADS)

    Hassler, Sibylle; Lark, Murray; Zimmermann, Beate; Elsenbeer, Helmut

    2014-05-01

    Soil in a changing world is subject to both anthropogenic and environmental stressors. Soil monitoring is essential to assess the magnitude of changes in soil variables and how they affect ecosystem processes and human livelihoods. But which sampling design is best for a given monitoring task? We employed a Rotational Stratified Simple Random Sampling (rotStRS) for the estimation of temporal changes in the spatial mean of saturated hydraulic conductivity (Ks) at three sites in central Panama in 2009, 2010 and 2011. In order to assess this design's efficiency we compared the resulting estimates of the spatial mean and variance for 2009 to those gained from the Stratified Simple Random Sampling (StRS) which was effectively the data obtained on the first sampling time, and to an equivalent unexecuted Simple Random Sampling (SRS). The poor performance of geometrical stratification and the weak predictive relationship between measurements of successive years yielded no advantage of sampling designs more complex than SRS. The failure of stratification may be attributed to the small large-scale variability of Ks. Revisiting previously sampled locations was not beneficial because of the large small-scale variability in combination with destructive sampling, resulting in poor consistency between re-visited samples. We conclude that for our Ks monitoring scheme, repeated SRS is equally effective as rotStRS. Some problems of small-scale variability might be overcome by collecting several samples at close range to reduce the effect of fine-scale variation. Finally, we give recommendations how to consider including stratification and rotation when designing a soil monitoring scheme.

  2. Using high hydraulic conductivity nodes to simulate seepage lakes.

    PubMed

    Anderson, Mary P; Hunt, Randall J; Krohelski, James T; Chung, Kuopo

    2002-01-01

    In a typical ground water flow model, lakes are represented by specified head nodes requiring that lake levels be known a priori. To remove this limitation, previous researchers assigned high hydraulic conductivity (K) values to nodes that represent a lake, under the assumption that the simulated head at the nodes in the high-K zone accurately reflects lake level. The solution should also produce a constant water level across the lake. We developed a model of a simple hypothetical ground water/lake system to test whether solutions using high-K lake nodes are sensitive to the value of K selected to represent the lake. Results show that the larger the contrast between the K of the aquifer and the K of the lake nodes, the smaller the error tolerance required for the solution to converge. For our test problem, a contrast of three orders of magnitude produced a head difference across the lake of 0.005 m under a regional gradient of the order of 10(-3) m/m, while a contrast of four orders of magnitude produced a head difference of 0.001 m. The high-K method was then used to simulate lake levels in Pretty Lake, Wisconsin. Results for both the hypothetical system and the application to Pretty Lake compared favorably with results using a lake package developed for MODFLOW (Merritt and Konikow 2000). While our results demonstrate that the high-K method accurately simulates lake levels, this method has more cumbersome postprocessing and longer run times than the same problem simulated using the lake package.

  3. Leaf hydraulic conductance for a tank bromeliad: axial and radial pathways for moving and conserving water.

    PubMed

    North, Gretchen B; Lynch, Frank H; Maharaj, Franklin D R; Phillips, Carly A; Woodside, Walter T

    2013-01-01

    Epiphytic plants in the Bromeliaceae known as tank bromeliads essentially lack stems and absorptive roots and instead take up water from reservoirs formed by their overlapping leaf bases. For such plants, leaf hydraulic conductance is plant hydraulic conductance. Their simple strap-shaped leaves and parallel venation make them suitable for modeling leaf hydraulic conductance based on vasculature and other anatomical and morphological traits. Plants of the tank bromeliad Guzmania lingulata were investigated in a lowland tropical forest in Costa Rica and a shaded glasshouse in Los Angeles, CA, USA. Stomatal conductance to water vapor and leaf anatomical variables related to hydraulic conductance were measured for both groups. Tracheid diameters and numbers of vascular bundles (veins) were used with the Hagen-Poiseuille equation to calculate axial hydraulic conductance. Measurements of leaf hydraulic conductance using the evaporative flux method were also made for glasshouse plants. Values for axial conductance and leaf hydraulic conductance were used in a model based on leaky cable theory to estimate the conductance of the radial pathway from the vein to the leaf surface and to assess the relative contributions of both axial and radial pathways. In keeping with low stomatal conductance, low stomatal density, low vein density, and narrow tracheid diameters, leaf hydraulic conductance for G. lingulata was quite low in comparison with most other angiosperms. Using the predicted axial conductance in the leaky cable model, the radial resistance across the leaf mesophyll was predicted to predominate; lower, more realistic values of axial conductance resulted in predicted radial resistances that were closer to axial resistance in their impact on total leaf resistance. Tracer dyes suggested that water uptake through the tank region of the leaf was not limiting. Both dye movement and the leaky cable model indicated that the leaf blade of G. lingulata was structurally and

  4. IN-SERVICE HYDRAULIC CONDUCTIVITY OF GCLS IN LANDFILL COVERS - LABORATORY AND FIELD STUDIES

    EPA Science Inventory

    Laboratory experiments using multi-species inorganic solutions (containing calcium and sodium) were conducted on specimens of a new geosynthetic clay liner (GCL) containing sodium bentonite to determine how cation exchange and desiccation affected the hydraulic conductivity. Calc...

  5. Hydraulics.

    ERIC Educational Resources Information Center

    Decker, Robert L.; Kirby, Klane

    This curriculum guide contains a course in hydraulics to train entry-level workers for automotive mechanics and other fields that utilize hydraulics. The module contains 14 instructional units that cover the following topics: (1) introduction to hydraulics; (2) fundamentals of hydraulics; (3) reservoirs; (4) lines, fittings, and couplers; (5)…

  6. Near-saturated hydraulic conductivity: database development, meta-analysis and pedotransfer functions

    NASA Astrophysics Data System (ADS)

    Jarvis, Nicholas; Koestel, John; Messing, Ingmar; Lindahl, Anna

    2013-04-01

    Near-saturated hydraulic conductivity exerts a critical control on water flow and solute transport through the vadose zone, yet very little is known concerning how it is influenced by various soil properties and site factors and attributes. Starting from the 1980's, tension infiltrometers or disc permeameters have become an increasingly popular method to measure near-saturated hydraulic conductivity in undisturbed soil. In this presentation, we describe the development and organization of a large database of tension infiltrometer measurements (n>700) collated from the published literature. The raw datasets were standardized and summarized using a modified Kozeny-Carman model of near-saturated hydraulic conductivity (Jarvis, N.J. 2008. Near-saturated hydraulic properties of macroporous soils. Vadose Zone Journal, 7, 1302-1310). This model was found to accurately describe near-saturated conductivity for this large dataset (92% of cases had R2 values larger than 0.9). We will show the results of some initial analyses of the dataset, which show how hydraulic conductivity at pressure heads of -1 and -10 cm, as well as the slope of the near-saturated conductivity function, are affected by: i.) the choice of method to convert unconfined 3D infiltration to hydraulic conductivity, and ii.) interactions between soil properties such as texture and bulk density and site attributes such as land use and climate. We will also present some initial attempts to develop pedotransfer functions for parameters describing near-saturated hydraulic conductivity using the technique of random forests.

  7. MEASUREMENT OF HYDRAULIC CONDUCTIVITY DISTRIBUTIONS: A MANUAL OF PRACTICE

    EPA Science Inventory

    The ability of hydrologists to perform field measurements of aquifer hydraulic properties must be enhanced in order to significantly improve the capacity to solve groundwater contamination problems at Superfund and other sites. The primary purpose of this manual is to provide ne...

  8. Determination of hydraulic conductivity from grain-size distribution for different depositional environments.

    PubMed

    Rosas, Jorge; Lopez, Oliver; Missimer, Thomas M; Coulibaly, Kapo M; Dehwah, Abdullah H A; Sesler, Kathryn; Lujan, Luis R; Mantilla, David

    2014-01-01

    Over 400 unlithified sediment samples were collected from four different depositional environments in global locations and the grain-size distribution, porosity, and hydraulic conductivity were measured using standard methods. The measured hydraulic conductivity values were then compared to values calculated using 20 different empirical equations (e.g., Hazen, Carman-Kozeny) commonly used to estimate hydraulic conductivity from grain-size distribution. It was found that most of the hydraulic conductivity values estimated from the empirical equations correlated very poorly to the measured hydraulic conductivity values with errors ranging to over 500%. To improve the empirical estimation methodology, the samples were grouped by depositional environment and subdivided into subgroups based on lithology and mud percentage. The empirical methods were then analyzed to assess which methods best estimated the measured values. Modifications of the empirical equations, including changes to special coefficients and addition of offsets, were made to produce modified equations that considerably improve the hydraulic conductivity estimates from grain size data for beach, dune, offshore marine, and river sediments. Estimated hydraulic conductivity errors were reduced to 6 to 7.1 m/day for the beach subgroups, 3.4 to 7.1 m/day for dune subgroups, and 2.2 to 11 m/day for offshore sediments subgroups. Improvements were made for river environments, but still produced high errors between 13 and 23 m/day.

  9. Prediction of the saturated hydraulic conductivity from Brooks and Corey's water retention parameters

    NASA Astrophysics Data System (ADS)

    Nasta, Paolo; Vrugt, Jasper A.; Romano, Nunzio

    2013-05-01

    Prediction of flow through variably saturated porous media requires accurate knowledge of the soil hydraulic properties, namely the water retention function (WRF) and the hydraulic conductivity function (HCF). Unfortunately, direct measurement of the HCF is time consuming and expensive. In this study, we derive a simple closed-form equation that predicts the saturated hydraulic conductivity, Ks from the WRF parameters of Brooks and Corey (1964). This physically based analytical expression uses an empirical tortuosity parameter (τ) and exploits the information embedded in the measured pore-size distribution. Our proposed model is compared against the current state of the art using more than 250 soil samples from the Grenoble soil catalog (GRIZZLY) and hydraulic properties of European soils (HYPRES) databases. Results demonstrate that the proposed model provides better predictions of the saturated hydraulic conductivity values with reduced size of the 90% confidence intervals of about 3 orders of magnitude.

  10. Technical Review of the UNET2D Hydraulic Model

    SciTech Connect

    Perkins, William A.; Richmond, Marshall C.

    2009-05-18

    The Kansas City District of the US Army Corps of Engineers is engaged in a broad range of river management projects that require knowledge of spatially-varied hydraulic conditions such as velocities and water surface elevations. This information is needed to design new structures, improve existing operations, and assess aquatic habitat. Two-dimensional (2D) depth-averaged numerical hydraulic models are a common tool that can be used to provide velocity and depth information. Kansas City District is currently using a specific 2D model, UNET2D, that has been developed to meet the needs of their river engineering applications. This report documents a tech- nical review of UNET2D.

  11. Field-tracing approach to determine flow velocity and hydraulic conductivity in saturated peat soils

    SciTech Connect

    Gafni, A.

    1986-01-01

    A tracing methodology based on the point dilution concept was developed to quantify groundwater velocities in saturated peat soils. Groundwater velocity was measured in four different peatlands. The steepest hydraulic gradient and the dominant direction of groundwater flow were determined for each peatland. The hydraulic conductivity (K) of selected peat layers was estimated from measured groundwater velocity and hydraulic gradient using Darcy's equation. The effective porosity of three peat layers was determined using the pressure plate technique. The estimated hydraulic parameters of one of the bags were further evaluated by analyzing a rainfall-runoff event that exhibited groundwater discharge.

  12. Sample dimensions effect on prediction of soil water retention curve and saturated hydraulic conductivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil water retention curve (SWRC) and saturated hydraulic conductivity (SHC) are key hydraulic properties for unsaturated zone hydrology and groundwater. Not only are the SWRC and SHC measurements time-consuming, their results are scale dependent. Although prediction of the SWRC and SHC from availab...

  13. Saturated hydraulic conductivity of US soils grouped according textural class and bulk density

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Importance of the saturated hydraulic conductivity as soil hydraulic property led to the development of multiple pedotransfer functions for estimating it. One approach to estimating Ksat was using textural classes rather than specific textural fraction contents as pedotransfer inputs. The objective...

  14. Saturated hydraulic conductivity of US soils grouped according to textural class and bulk density

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Importance of the saturated hydraulic conductivity as soil hydraulic property led to the development of multiple pedotransfer functions for estimating it. One approach to estimating Ksat was using textural classes rather than specific textural fraction contents as pedotransfer inputs. The objective...

  15. Characterization of stony soils' hydraulic conductivity using laboratory and numerical experiments

    NASA Astrophysics Data System (ADS)

    Beckers, Eléonore; Pichault, Mathieu; Pansak, Wanwisa; Degré, Aurore; Garré, Sarah

    2016-08-01

    Determining soil hydraulic properties is of major concern in various fields of study. Although stony soils are widespread across the globe, most studies deal with gravel-free soils, so that the literature describing the impact of stones on the hydraulic conductivity of a soil is still rather scarce. Most frequently, models characterizing the saturated hydraulic conductivity of stony soils assume that the only effect of rock fragments is to reduce the volume available for water flow, and therefore they predict a decrease in hydraulic conductivity with an increasing stoniness. The objective of this study is to assess the effect of rock fragments on the saturated and unsaturated hydraulic conductivity. This was done by means of laboratory experiments and numerical simulations involving different amounts and types of coarse fragments. We compared our results with values predicted by the aforementioned predictive models. Our study suggests that it might be ill-founded to consider that stones only reduce the volume available for water flow. We pointed out several factors of the saturated hydraulic conductivity of stony soils that are not considered by these models. On the one hand, the shape and the size of inclusions may substantially affect the hydraulic conductivity. On the other hand, laboratory experiments show that an increasing stone content can counteract and even overcome the effect of a reduced volume in some cases: we observed an increase in saturated hydraulic conductivity with volume of inclusions. These differences are mainly important near to saturation. However, comparison of results from predictive models and our experiments in unsaturated conditions shows that models and data agree on a decrease in hydraulic conductivity with stone content, even though the experimental conditions did not allow testing for stone contents higher than 20 %.

  16. Use of tandem circulation wells to measure hydraulic conductivity without groundwater extraction.

    PubMed

    Goltz, Mark N; Huang, Junqi; Close, Murray E; Flintoft, Mark J; Pang, Liping

    2008-09-10

    Conventional methods to measure the hydraulic conductivity of an aquifer on a relatively large scale (10-100 m) require extraction of significant quantities of groundwater. This can be expensive, and otherwise problematic, when investigating a contaminated aquifer. In this study, innovative approaches that make use of tandem circulation wells to measure hydraulic conductivity are proposed. These approaches measure conductivity on a relatively large scale, but do not require extraction of groundwater. Two basic approaches for using circulation wells to measure hydraulic conductivity are presented; one approach is based upon the dipole-flow test method, while the other approach relies on a tracer test to measure the flow of water between two recirculating wells. The approaches are tested in a relatively homogeneous and isotropic artificial aquifer, where the conductivities measured by both approaches are compared to each other and to the previously measured hydraulic conductivity of the aquifer. It was shown that both approaches have the potential to accurately measure horizontal and vertical hydraulic conductivity for a relatively large subsurface volume without the need to pump groundwater to the surface. Future work is recommended to evaluate the ability of these tandem circulation wells to accurately measure hydraulic conductivity when anisotropy and heterogeneity are greater than in the artificial aquifer used for these studies.

  17. Crosswell seismic investigation of hydraulically conductive, fracture bedrock near Mirror Lake, New Hampshire

    USGS Publications Warehouse

    Ellefsen, K.J.; Hsieh, P.A.; Shapiro, A.M.

    2002-01-01

    Near Mirror Lake, New Hampshire (USA), hydraulically conductive, fractured bedrock was investigated with the crosswell seismic method to determine whether this method could provide any information about hydraulic conductivity between wells. To this end, crosswell seismic data, acoustic logs from boreholes, image logs from boreholes, and single borehole hydraulic tests were analyzed. The analysis showed that, first, the P-wave velocities from the acoustic logs tended to be higher in schist than they were in granite. (Schist and granite were the dominant rock types). Second, the P-wave velocities from the acoustic logs tended to be low near fractures. Third, the hydraulic conductivity was always low (always less than to 10-8 m/s) where no fractures intersected the borehole, but the hydraulic conductivity ranged from low to high (from less than to 10-10 m/s to 10-4 m/s) where one or more fractures intersected the borehole. Fourth, high hydraulic conductivities were slightly more frequent when the P-wave velocity was low (less than 5200 m/s) than when it was high (greater than or equal to 5200 m/s). The interpretation of this statistical relation was that the fractures tended to increase the hydraulic conductivity and to lower the P-wave velocity. This statistical relation was applied to a velocity tomogram to create a map showing the probability of high hydraulic conductivity; the map was consistent with results from independent hydraulic tests. ?? 2002 Elsevier Science B.V. All rights reserved.

  18. Hydraulic conductivity of the streambed, east branch Grand Calumet River, northern Lake County, Indiana

    USGS Publications Warehouse

    Duwelius, R.F.

    1996-01-01

    The hydraulic conductivity of the streambed generally was dependant on the type of sediments in the part of the streambed that was tested. Although most of the streambed contained soft, fine-grained sediments, parts of the streambed also contained fill materials including coal, cinders, and concrete and asphalt rubble. The highest values of horizontal hydraulic conductivity generally were calculated from data collected at locations where the streambed contained fill materials, particularly concrete and asphalt rubble. Horizontal hydraulic conductivities determined for 11 hydraulic tests in predominantly fill materials ranged from 1.2x1O+1 to 1.2x1O+3 feet per day and averaged 5.6x1O+2 feet per day. The lowest values of horizontal hydraulic conductivity were calculated from data collected at locations where the streambed contained fine-grained sediments. Horizontal hydraulic conductivities determined for 36 hydraulic tests in predominantly fine-grained sediments ranged from 1.Ox1O-2 to 2.4x1O+2 feet per day and averaged 1.5x1O+1 feet per day.

  19. Hamiltonian Monte Carlo algorithm for the characterization of hydraulic conductivity from the heat tracing data

    NASA Astrophysics Data System (ADS)

    Djibrilla Saley, A.; Jardani, A.; Soueid Ahmed, A.; Raphael, A.; Dupont, J. P.

    2016-11-01

    Estimating spatial distributions of the hydraulic conductivity in heterogeneous aquifers has always been an important and challenging task in hydrology. Generally, the hydraulic conductivity field is determined from hydraulic head or pressure measurements. In the present study, we propose to use temperature data as source of information for characterizing the spatial distributions of the hydraulic conductivity field. In this way, we performed a laboratory sandbox experiment with the aim of imaging the heterogeneities of the hydraulic conductivity field from thermal monitoring. During the laboratory experiment, we injected a hot water pulse, which induces a heat plume motion into the sandbox. The induced plume was followed by a set of thermocouples placed in the sandbox. After the temperature data acquisition, we performed a hydraulic tomography using the stochastic Hybrid Monte Carlo approach, also called the Hamiltonian Monte Carlo (HMC) algorithm to invert the temperature data. This algorithm is based on a combination of the Metropolis Monte Carlo method and the Hamiltonian dynamics approach. The parameterization of the inverse problem was done with the Karhunen-Loève (KL) expansion to reduce the dimensionality of the unknown parameters. Our approach has provided successful reconstruction of the hydraulic conductivity field with low computational effort.

  20. Hydraulics.

    ERIC Educational Resources Information Center

    Engelbrecht, Nancy; And Others

    These instructional materials provide an orientation to hydraulics for use at the postsecondary level. The first of 12 sections presents an introduction to hydraulics, including discussion of principles of liquids, definitions, liquid flow, the two types of hydraulic fluids, pressure gauges, and strainers and filters. The second section identifies…

  1. Hydraulic Tomography and High-Resolution Slug Testing to Determine Hydraulic Conductivity Distributions - Year 1

    DTIC Science & Technology

    2005-12-01

    the addition into a well of a known volume of water or a physical slug. More recently, pneumatic methods have become popular ( Zemansky and McElwee...and Zemansky , 2000), (Sellwood, 2001) and (Ross, 2004)]. The aquifer material at GEMS exhibits linear and non-linear responses to slug testing...1976; Zurbuchen et al., 2002; and Zemansky and McElwee, 2005). Slug tests have been a common method for obtaining information about the hydraulic

  2. TECHNIQUES TO DETERMINE SPATIAL VARIATIONS IN HYDRAULIC CONDUCTIVITY OF SAND AND GRAVEL

    EPA Science Inventory

    Methods for determining small-scale variations in aquifer properties were investigated for a sand and gravel aquifer on Cape Cod, Massachusetts. easurements of aquifer properties, in particular hydraulic conductivity, are needed for further investigations into the effects of aqui...

  3. Spatial characterization of hydraulic conductivity of perialpine alluvial gravel-and-sand aquifers

    NASA Astrophysics Data System (ADS)

    Diem, Samuel; Vogt, Tobias; Höhn, Eduard

    2010-05-01

    For many hydrogeological and modeling problems on a scale of the order of 10-100 m, an assessment of the spatial distribution of hydraulic conductivity is of great importance. This is one of the tasks of the RECORD project (Restored Corridor Dynamics) of CCES (Competence Center Environment and Sustainability of the ETH Domain). This project aims to understand, how river restoration measures affect river - river corridor - groundwater systems in hydrologic and ecologic terms. The river Thur and the alluvial gravel-and-sand aquifer of the perialpine Thur valley flood plain were chosen for field investigations. In this aquifer, the distribution of hydraulic conductivity at the required scale has not yet been investigated. Thus, the aim of this work is to assess the spatial distribution of hydraulic conductivity of the aquifer on a scale of the order of 10-100 m. To accomplish this, four methods were applied on different scales. Comparing the results of the different methods should lead to an optimization of future hydraulic investigations in alpine and perialpine alluvial gravel-and-sand aquifers. The different methods were applied at a test site in the central part of the valley (Widen, Felben-Wellhausen/TG), which was instrumented with a total of 18 piezometers, covering an approximately 10×20 m area (aquifer thickness, 7 m). The gravel samples of the pre-liminary core drillings were sieved and out of the grain size distributions hydraulic conductivity was calculated (decimeter scale). Further, work included the conduction and analysis of a pumping test (decameter scale), flowmeter logs and multilevel slug tests (meter scale) with appropriate methods. A statistical evaluation of the values of hydraulic conductivity from the above methods showed that the results are quite diverse. Thus, the choice of the method to assess the distribution of hydraulic conductivity has to be done according to the problem and the required level of detail. The following recommendations

  4. Estimating biozone hydraulic conductivity in wastewater soil-infiltration systems using inverse numerical modeling.

    PubMed

    Bumgarner, Johnathan R; McCray, John E

    2007-06-01

    During operation of an onsite wastewater treatment system, a low-permeability biozone develops at the infiltrative surface (IS) during application of wastewater to soil. Inverse numerical-model simulations were used to estimate the biozone saturated hydraulic conductivity (K(biozone)) under variably saturated conditions for 29 wastewater infiltration test cells installed in a sandy loam field soil. Test cells employed two loading rates (4 and 8cm/day) and 3 IS designs: open chamber, gravel, and synthetic bundles. The ratio of K(biozone) to the saturated hydraulic conductivity of the natural soil (K(s)) was used to quantify the reductions in the IS hydraulic conductivity. A smaller value of K(biozone)/K(s,) reflects a greater reduction in hydraulic conductivity. The IS hydraulic conductivity was reduced by 1-3 orders of magnitude. The reduction in IS hydraulic conductivity was primarily influenced by wastewater loading rate and IS type and not by the K(s) of the native soil. The higher loading rate yielded greater reductions in IS hydraulic conductivity than the lower loading rate for bundle and gravel cells, but the difference was not statistically significant for chamber cells. Bundle and gravel cells exhibited a greater reduction in IS hydraulic conductivity than chamber cells at the higher loading rates, while the difference between gravel and bundle systems was not statistically significant. At the lower rate, bundle cells exhibited generally lower K(biozone)/K(s) values, but not at a statistically significant level, while gravel and chamber cells were statistically similar. Gravel cells exhibited the greatest variability in measured values, which may complicate design efforts based on K(biozone) evaluations for these systems. These results suggest that chamber systems may provide for a more robust design, particularly for high or variable wastewater infiltration rates.

  5. Electrical and Hydraulic Properties of Humified Bog Peat as a Function of Pore-fluid Conductivity

    NASA Astrophysics Data System (ADS)

    Comas, X.; Slater, L.

    2003-12-01

    The electrical properties of organic sediments and their relationship to physical properties are poorly understood. A simple approach to relate electrical properties to physical properties commonly applied to inorganic sediments is to model the electrolytic conductivity and the surface conductivity as parallel conduction paths. Low-frequency electrical measurements were made in conjunction with hydraulic conductivity measurements on peat samples from an 11 m section collected in a large freshwater peatland. The electrical and hydraulic measurements were made as a function of NaCl concentration and depth of burial. In all cases, the electrical conductivity of the peat was not well modeled by the parallel conduction path model, with the model yielding formation factor values close to one. Sample measurements along the section suggest a slight increase in the formation factor and surface conductivity values with depth. Hydraulic conductivity measured by constant head method shows a marked increase with increasing NaCl concentration, which we believe results from expansion of macropore porosity by chemical dilation as proposed by others. Attempts to return the samples to their original conditions by decreasing the salinity only partially restored the hydraulic conductivity values, indicating a permanent disruption of the hydraulic properties of the peat. The increase of surface electrical conductivity and hydraulic conductivity with depth may indicate a close correlation with the high cation exchange capacity of organic matter and its tendency for chemical dilation as decomposition of organic matter increases with depth. We propose that the electrical conductivity of peat cannot be modeled by an electrolytic and a surface conduction path in parallel. The increase in the electrolytic conduction causes ionic accumulation and dispersion processes, expanding the macropore porosity and hence inducing a decrease in the formation factor values. A proper electrical model for

  6. Field characterization of hydraulic conductivity in a heterogeneous alpine glacial till

    NASA Astrophysics Data System (ADS)

    Ronayne, Michael J.; Houghton, Tyler B.; Stednick, John D.

    2012-08-01

    SummaryThree different measurement techniques (a mini-disk infiltrometer, a double-ring infiltrometer, and a Guelph permeameter) were used to characterize the saturated hydraulic conductivity of an alpine glacial till in the Rocky Mountains of southern Wyoming, USA. Measurements from 32 locations reveal significant spatial heterogeneity. The hydraulic conductivity varies over two orders of magnitude from approximately 0.05-5 m/d. Along with natural variability throughout the study area, the results also indicate that the estimated hydraulic conductivity is dependent on measurement technique. Compared to the mini-disk infiltrometer, hydraulic conductivities are consistently higher for the double-ring infiltrometer and Guelph permeameter. By considering surface-subsurface hydrologic response during snowmelt, we demonstrate the importance of accurately characterizing the hydraulic conductivity. A model parameterized with a low hydraulic conductivity underestimates the rate of shallow groundwater flow, suggesting that the subsurface saturated zone may not be able to accommodate all of the snowmelt-derived recharge. Saturation-excess overland flow is predicted as a result. These findings have important implications for integrated hydrologic assessments focused on understanding water flows in glaciated alpine watersheds.

  7. Evaluation of hydraulic conductivity of Carson County well field, Amarillo, Texas

    SciTech Connect

    Xiang, J.

    1996-11-01

    Environmental assessment, ground-water management, and aquifer remediation designs rely on comprehension of the hydraulic parameters of aquifers. Because of the heterogeneity of most aquifers, a number of pumping tests are commonly required to provide a reasonable hydraulic parameter distribution. Data for 11 pumping tests, conducted at the Carson County well field, Amarillo, Texas in the 1950s to 1970s were analyzed by the Theis solution and the Cooper and Jacob solution to provide information for optimal ground-water management. The unconfined aquifer at the well field consists of sands, sandstone, gravels, and clay. A delayed gravity response was observed in the drawdown curves from pumping tests conducted in the unconfined aquifer. Because the Theis solution and the Cooper and Jacob solution do not take this delayed response, or other unsaturated effect into account, these two solutions may overestimate hydraulic conductivity of an unconfined aquifer. Therefore, the Neuman solution which considers the delayed gravity response was used to estimate the hydraulic parameters using the software AQTESOLV. This paper presents the results of a study of the unconfined aquifer at Carson County well field, Amarillo, Texas. The analysis shows that the results obtained by the Neuman method are more reasonable than those obtained by the Theis solution and the Cooper and Jacob solution. According to results from the Neuman solution, the hydraulic conductivity of the unconfined aquifer of Carson County well field varies from 2.55 to 5.97 {times} 10{sup {minus}5} m/s (weighted average hydraulic conductivity is 4.13 {times} 10{sup {minus}5} m/s). The small difference of the estimated hydraulic conductivity between wells shows that the unconfined aquifer under Carson County well field is relatively uniform. The effects of infinitesimal borehole assumption, accuracy of individual parameters, skin effects, and spatial distribution of hydraulic conductivity are discussed as well.

  8. Interpretation of hydraulic conductivity in a fractured-rock aquifer over increasingly larger length dimensions

    USGS Publications Warehouse

    Shapiro, Allen M.; Ladderud, Jeffery; Yager, Richard M.

    2015-01-01

    A comparison of the hydraulic conductivity over increasingly larger volumes of crystalline rock was conducted in the Piedmont physiographic region near Bethesda, Maryland, USA. Fluid-injection tests were conducted on intervals of boreholes isolating closely spaced fractures. Single-hole tests were conducted by pumping in open boreholes for approximately 30 min, and an interference test was conducted by pumping a single borehole over 3 days while monitoring nearby boreholes. An estimate of the hydraulic conductivity of the rock over hundreds of meters was inferred from simulating groundwater inflow into a kilometer-long section of a Washington Metropolitan Area Transit Authority tunnel in the study area, and a groundwater modeling investigation over the Rock Creek watershed provided an estimate of the hydraulic conductivity over kilometers. The majority of groundwater flow is confined to relatively few fractures at a given location. Boreholes installed to depths of approximately 50 m have one or two highly transmissive fractures; the transmissivity of the remaining fractures ranges over five orders of magnitude. Estimates of hydraulic conductivity over increasingly larger rock volumes varied by less than half an order of magnitude. While many investigations point to increasing hydraulic conductivity as a function of the measurement scale, a comparison with selected investigations shows that the effective hydraulic conductivity estimated over larger volumes of rock can either increase, decrease, or remain stable as a function of the measurement scale. Caution needs to be exhibited in characterizing effective hydraulic properties in fractured rock for the purposes of groundwater management.

  9. Physically based closed-form expression for the bimodal unsaturated hydraulic conductivity function.

    PubMed

    Liu, Shiyu; Yasufuku, Noriyuki; Liu, Qiang; Hemanta, Hazarika

    2013-01-01

    Simulation of flow and contaminant transport through the vadose zone requires accurate parameterization of the soil hydraulic properties. This requirement is particularly important for soils with a complex structure. In the present study, a physically based closed-form expression for the bimodal unsaturated hydraulic conductivity function is proposed for soils with bimodal pore-size distribution. It combines the bimodal representation of the soil-water characteristic curve (SWCC) function of Liu with the conductivity representation model of Mualem. The proposed equations are defined by parameters that have physical significance, which can be related to the properties of the materials. Experimental data for the representation of bimodal SWCCs and corresponding hydraulic conductivity curves were used to demonstrate the applicability of the proposed functions. The proposed approaches resulted in good agreement with experimental data. These functions can potentially be used as an effective tool for identifying hydraulic porosities in mediums with a complex structure.

  10. Characterization of stony soils' hydraulic conductivity using laboratory and numerical experiments

    NASA Astrophysics Data System (ADS)

    Pichault, M.; Beckers, E.; Degré, A.; Garré, S.

    2015-10-01

    Determining soil hydraulic properties is of major concern in various fields of study. Though stony soils are widespread across the globe, most studies deal with gravel-free soils so that the literature describing the impact of stones on soil's hydraulic conductivity is still rather scarce. Most frequently, models characterizing the saturated hydraulic conductivity of stony soils assume that the only effect of rock fragments is to reduce the volume available for water flow and therefore they predict a decrease in hydraulic conductivity with an increasing stoniness. The objective of this study is to assess the effect of rock fragments on the saturated and unsaturated hydraulic conductivity. This was done by means of laboratory and numerical experiments involving different amounts and types of coarse fragments. We compared our results with values predicted by the aforementioned models. Our study suggests that considering that stones only reduce the volume available for water flow might be ill-founded. We pointed out several drivers of the saturated hydraulic conductivity of stony soils, not considered by these models. On the one hand, the shape and the size of inclusions may substantially affect the hydraulic conductivity. On the other hand, the presence of rock fragments can counteract and even overcome the effect of a reduced volume in some cases. We attribute this to the creation of voids at the fine earth-stone interface. Nevertheless, these differences are mainly important near to saturation. However, we come up with a more nuanced view regarding the validity of the models under unsaturated conditions. Indeed, under unsaturated conditions, the models seem to represent the hydraulic behaviour of stones reasonably well.

  11. EFFECT OF FREEZE-THAW ON THE HYDRAULIC CONDUCTIVITY OF BARRIER MATERIALS: LABORATORY AND FIELD EVALUATION

    EPA Science Inventory

    Laboratory tests were conducted on barrier materials to determine if their hydraulic conductivity changes as a result of freezing and thawing. esults of the tests were compared to data collected from a field study. ests were conducted on two compacted clays, one sand-bentonite mi...

  12. Using temperature modeling to investigate the temporal variability of riverbed hydraulic conductivity during storm events

    NASA Astrophysics Data System (ADS)

    Mutiti, Samuel; Levy, Jonathan

    2010-07-01

    SummaryUnderstanding the impact of storm events on riverbed hydraulic conductivity is crucial in assessing the efficacy of riverbank filtration as a water-treatment option. In this study, the variability of riverbed hydraulic conductivity and its correlation to river stage during storm events was investigated. Water levels and temperatures were continuously monitored in the river using creek piezometers screened beneath the riverbed, and monitoring wells located on the river bank. The range of values for water levels during the study period was from 161.3 to 163.7 m AMSL while temperatures ranged from 3.75 °C to 24 °C. During the duration of the study the Great Miami River was losing water to the underlying aquifer due to pumping in the adjacent municipal well field. Flow and heat transport were simulated in a groundwater heat and flow program VSH2D to determine the hydraulic conductivity of the riverbed. Hydraulic conductivity was estimated by using it as a calibration parameter to match simulated temperatures to observed temperatures in a monitoring well. Hydraulic heads in the aquifer responded to storm events at the same times but with dampened amplitudes compared to the river stage. The relative responses resulted in increased head gradients during the rising limb of the stage-hydrograph. Heat-flow modeling during five storm events demonstrated that a rise in head gradient alone was not sufficient to produce the temperature changes observed in the wells. Simulated temperatures were fitted to the observed data by varying both river stage (as measured in the field) and riverbed hydraulic conductivity. To produce the best fit temperatures, riverbed hydraulic conductivity consistently needed to be increased during the rising and peak stages of the storm events. The increased conductivity probably corresponds to a loss of fine sediments due to scour during high river stage. Hydraulic conductivity increases during storm events varied from a factor of two (0

  13. Hydraulic conductivity of compacted clay liners permeated with inorganic salt solutions.

    PubMed

    Yilmaz, Gonca; Yetimoglu, Temel; Arasan, Seracettin

    2008-10-01

    Due to their low permeability, geosynthetic clay liners (GCLs) and compacted clay liners (CCLs) are the main materials used in waste disposal landfills. The hydraulic conductivity of GCLs and CCLs is closely related to the chemistry of the permeant fluid. In this study, the effect on the hydraulic conductivity of clays of five different inorganic salt solutions as permeant fluid was experimentally investigated. For this purpose, NaCl, NH(4)Cl, KCl, CaCl(2), and FeCl( 3) inorganic salt solutions were used at concentrations of 0.01, 0.10, 0.25, 0.50, 0.75 and 1 M. Laboratory hydraulic conductivity tests were conducted on low plasticity (CL) and high plasticity (CH) compacted raw clays. The change in electrical conductivity and pH values of the clay samples with inorganic salt solutions were also determined. The experimental test results indicated that the effect of inorganic salt solutions on CL clay was different from that on CH clay. The hydraulic conductivity was found to increase for CH clay when the salt concentrations increased whereas when the salt concentrations were increased, the hydraulic conductivity decreased for the CL clay.

  14. Spatial and Temporal Variability of Hydraulic Conductivity on Forested Mountain Hillslopes

    NASA Astrophysics Data System (ADS)

    Lopez, P.; Kampf, S.; Elder, K.

    2008-12-01

    Soil hydraulic conductivity is often assumed spatially and temporally stationary, but steep forested hillslopes can exhibit high variability in soil properties. We investigate hydraulic properties of soils on mountain hillslopes in a seasonally snow-covered conifer forest to improve understanding of how this variability affects hillslope subsurface flow and ecosystem response. The hillslopes are at 2900m elevation within the Fraser Experimental Forest in Colorado, USA. Two methods are used to determine hydraulic conductivity for the hillslopes: (1) tension infiltrometer measurements, and (2) inverse model simulations. For the first method, a Decagon Mini-disk infiltrometer was used to measure surface hydraulic conductivity at 18 locations. Measurements were collected during summer 2008 twice weekly from May to August. Initial results from field measurements show hydraulic conductivity values ranging from 0.036cm-hr-1 to 3.6cm-hr-1 at 1cm of tension. Infiltrometer values show wider variation in late spring after snowmelt than later in the summer. For the second method, inverse simulations were set up using the variably saturated flow model, HYDRUS 1-D, which simulates vertical soil moisture movement. Inverse simulations identified three parameters of the unsaturated hydraulic conductivity function including saturated hydraulic conductivity. Inverse simulations were run for the peak snowmelt time period, from May 1st to May 31st, at an hourly time step. The inverse simulation objectives were to minimize errors between modeled and measured soil water contents at 5 and 50 cm depth. Soil moisture was measured in situ at these depths with Vitel Hydra Probes. To force the simulation, snowmelt fluxes were added at the ground surface via an atmospheric boundary condition. Melt fluxes were derived from acoustic snow depth sensors and snow pit measurements of snow density. Results of the HYDRUS 1-D inverse simulations give hydraulic conductivity values ranging from 4.3cm-hr-1

  15. Getting saturated hydraulic conductivity from surface Ground-Penetrating Radar measurements inside a ring infiltrometer

    NASA Astrophysics Data System (ADS)

    Leger, E.; Saintenoy, A.; Coquet, Y.

    2013-12-01

    Hydraulic properties of soils, described by the soil water retention and hydraulic conductivity functions, strongly influence water flow in the vadoze zone, as well as the partitioning of precipitation between infiltration into the soil and runoff along the ground surface. Their evaluation has important applications for modelling available water resources and for flood forecasting. It is also crucial to evaluate soil's capacity to retain chemical pollutants and to assess the potential of groundwater pollution. The determination of the parameters involved in soil water retention functions, 5 parameters when using the van Genuchten function, is usually done by laboratory experiments, such as the water hanging column. Hydraulic conductivity, on the other hand can be estimated either in laboratory, or in situ using infiltrometry tests. Among the large panel of existing tests, the single or double ring infiltrometers give the field saturated hydraulic conductivity by applying a positive charge on soils, whereas the disk infiltrometer allows to reconstruct the whole hydraulic conductivity curve, by applying different charges smaller than or equal to zero. In their classical use, volume of infiltrated water versus time are fitted to infer soil's hydraulic conductivity close to water saturation. Those tests are time-consuming and difficult to apply to landscape-scale forecasting of infiltration. Furthermore they involve many assumptions concerning the form of the infiltration bulb and its evolution. Ground-Penetrating Radar (GPR) is a geophysical method based on electromagnetic wave propagation. It is highly sensitive to water content variations directly related to the dielectric permittivity. In this study GPR was used to monitor water infiltration inside a ring infiltrometer and retrieve the saturated hydraulic conductivity. We carried out experiments in a quarry of Fontainebleau sand, using a Mala RAMAC system with antennae centered on 1600 MHz. We recorded traces at

  16. The Dependence of Peat Soil Hydraulic Conductivity on Dominant Vegetation Type in Mountain Fens

    NASA Astrophysics Data System (ADS)

    Crockett, A. C.; Ronayne, M. J.; Cooper, D. J.

    2014-12-01

    The peat soil within fen wetlands provides water storage that can substantially influence the hydrology of mountain watersheds. In this study, we investigated the relationship between hydraulic conductivity and vegetation type for fens occurring in Rocky Mountain National Park (RMNP), Colorado, USA. Vegetation in RMNP fens can be dominated by woody plants and shrubs, such as willows; by mosses; or by herbaceous plants such as sedges. Fens dominated by each vegetation type were selected for study. Six fens were investigated, all of which are in the Colorado River watershed on the west side of RMNP. For each site, soil hydraulic conductivity was measured at multiple locations using a single-ring infiltrometer. As a result of the shallow water table in these fens (the water table was always within 10 cm of the surface), horizontal hydraulic gradients were produced during the field tests. The measured infiltration rates were analyzed using the numerical model HYDRUS. In order to determine the hydraulic conductivity, a parameter estimation problem was solved using HYDRUS as the forward simulator. Horizontal flow was explicitly accounted for in the model. This approach produced more accurate estimates of hydraulic conductivity than would be obtained using an analytical solution that assumes strictly vertical flow. Significant differences in hydraulic properties between fens appear to result at least in part from the effects of different dominant vegetation types on peat soil formation.

  17. Hydraulics.

    ERIC Educational Resources Information Center

    Decker, Robert L.

    Designed for use in courses where students are expected to become proficient in the area of hydraulics, including diesel engine mechanic programs, this curriculum guide is comprised of fourteen units of instruction. Unit titles include (1) Introduction, (2) Fundamentals of Hydraulics, (3) Reservoirs, (4) Lines, Fittings, and Couplers, (5) Seals,…

  18. A simple constant-head injection test for streambed hydraulic conductivity estimation.

    PubMed

    Cardenas, M Bayani; Zlotnik, Vitaly A

    2003-01-01

    A fast, efficient constant-head injection test (CHIT) for in situ estimation of hydraulic conductivity (K) of sandy streambeds is presented. This test uses constant-head hydraulic injection through a manually driven piezometer. Results from CHIT compare favorably to estimates from slug testing and grain-size analysis. The CHIT combines simplicity of field performance, data interpretation, and accuracy of K estimation in flowing streams.

  19. Using boosted regression trees to predict the near-saturated hydraulic conductivity of undisturbed soils

    NASA Astrophysics Data System (ADS)

    Koestel, John; Bechtold, Michel; Jorda, Helena; Jarvis, Nicholas

    2015-04-01

    The saturated and near-saturated hydraulic conductivity of soil is of key importance for modelling water and solute fluxes in the vadose zone. Hydraulic conductivity measurements are cumbersome at the Darcy scale and practically impossible at larger scales where water and solute transport models are mostly applied. Hydraulic conductivity must therefore be estimated from proxy variables. Such pedotransfer functions are known to work decently well for e.g. water retention curves but rather poorly for near-saturated and saturated hydraulic conductivities. Recently, Weynants et al. (2009, Revisiting Vereecken pedotransfer functions: Introducing a closed-form hydraulic model. Vadose Zone Journal, 8, 86-95) reported a coefficients of determination of 0.25 (validation with an independent data set) for the saturated hydraulic conductivity from lab-measurements of Belgian soil samples. In our study, we trained boosted regression trees on a global meta-database containing tension-disk infiltrometer data (see Jarvis et al. 2013. Influence of soil, land use and climatic factors on the hydraulic conductivity of soil. Hydrology & Earth System Sciences, 17, 5185-5195) to predict the saturated hydraulic conductivity (Ks) and the conductivity at a tension of 10 cm (K10). We found coefficients of determination of 0.39 and 0.62 under a simple 10-fold cross-validation for Ks and K10. When carrying out the validation folded over the data-sources, i.e. the source publications, we found that the corresponding coefficients of determination reduced to 0.15 and 0.36, respectively. We conclude that the stricter source-wise cross-validation should be applied in future pedotransfer studies to prevent overly optimistic validation results. The boosted regression trees also allowed for an investigation of relevant predictors for estimating the near-saturated hydraulic conductivity. We found that land use and bulk density were most important to predict Ks. We also observed that Ks is large in fine

  20. [Mathematical modeling of measuring the hydraulic conductivity of roots by the relaxation method].

    PubMed

    Logvenkov, S A

    2011-01-01

    The continuum model of radial mass transfer in plant roots developed previously has been used for processing the nonstationary experiments aimed at the determination of the root hydraulic conductivity. It is shown that, in contrast to compartmental models, our model allows one to describe the shape of the relaxation curve, in particular to separate segments with different relaxation times. It has been found that, for correctly determining the hydraulic conductivity, the method of data processing should be modified. A method for estimating the extracellular to intracellular conductivity ratio has been proposed.

  1. Hydraulic conductivity study of compacted clay soils used as landfill liners for an acidic waste.

    PubMed

    Hamdi, Noureddine; Srasra, Ezzeddine

    2013-01-01

    Three natural clayey soils from Tunisia were studied to assess their suitability for use as a liner for an acid waste disposal site. An investigation of the effect of the mineral composition and mechanical compaction on the hydraulic conductivity and fluoride and phosphate removal of three different soils is presented. The hydraulic conductivity of these three natural soils are 8.5 × 10(-10), 2.08 × 10(-9) and 6.8 × 10(-10)m/s for soil-1, soil-2 and soil-3, respectively. Soil specimens were compacted under various compaction strains in order to obtain three wet densities (1850, 1950 and 2050 kg/m(3)). In this condition, the hydraulic conductivity (k) was reduced with increasing density of sample for all soils. The test results of hydraulic conductivity at long-term (>200 days) using acidic waste solution (pH=2.7, charged with fluoride and phosphate ions) shows a decrease in k with time only for natural soil-1 and soil-2. However, the specimens of soil-2 compressed to the two highest densities (1950 and 2050 kg/m(3)) are cracked after 60 and 20 days, respectively, of hydraulic conductivity testing. This damage is the result of a continued increase in the internal stress due to the swelling and to the effect of aggressive wastewater. The analysis of anions shows that the retention of fluoride is higher compared to phosphate and soil-1 has the highest sorption capacity.

  2. Could rapid diameter changes be facilitated by a variable hydraulic conductance?

    PubMed

    Steppe, Kathy; Cochard, Hervé; Lacointe, André; Améglio, Thierry

    2012-01-01

    Adequate radial water transport between elastic bark tissue and xylem is crucial in trees, because it smoothens abrupt changes in xylem water potential, greatly reducing the likelihood of suffering dangerous levels of embolism. The radial hydraulic conductance involved is generally thought to be constant. Evidence collected about variable root and leaf hydraulic conductance led us to speculate that radial hydraulic conductance in stem/branches might also be variable and possibly modulated by putative aquaporins. We therefore correlated diameter changes in walnut (Juglans regia L.) with changes in water potential, altered by perfusion of twig samples with D-mannitol solutions having different osmotic potentials. Temperature and cycloheximide (CHX; a protein synthesis inhibitor) treatments were performed. The temperature response and diameter change inhibition found in CHX-treated twigs underpinned our hypothesis that radial hydraulic conductance is variable and likely mediated by a putative aquaporin abundance and/or activity. Our data demonstrate that radial water transport in stem/branches can take two routes in parallel: an apoplastic and a cell-to-cell route. The contribution of either route depends on the hydraulic demand and is closely linked to a boost of putative aquaporins, causing radial conductance to be variable. This variability should be considered when interpreting and modelling diameter changes.

  3. Geophysical data integration and conditional uncertainty analysis on hydraulic conductivity estimation

    USGS Publications Warehouse

    Rahman, A.; Tsai, F.T.-C.; White, C.D.; Carlson, D.A.; Willson, C.S.

    2007-01-01

    Integration of various geophysical data is essential to better understand aquifer heterogeneity. However, data integration is challenging because there are different levels of support between primary and secondary data needed to be correlated in various ways. This study proposes a geostatistical method to integrate the hydraulic conductivity measurements and electrical resistivity data to better estimate the hydraulic conductivity (K) distribution. The K measurements are obtained from the pumping tests and represent the primary data (hard data). The borehole electrical resistivity data from electrical logs are regarded as the secondary data (soft data). The electrical resistivity data is used to infer hydraulic conductivity values through the Archie law and Kozeny-Carman equation. A pseudo cross-semivariogram is developed to cope with the resistivity data non-collocation. Uncertainty in the auto-semivariograms and pseudo cross-semivariogram is quantified. The methodology is demonstrated by a real-world case study where the hydraulic conductivity is estimated in the Upper Chicot aquifer of Southwestern Louisiana. The groundwater responses by the cokriging and cosimulation of hydraulic conductivity are compared using analysis of variance (ANOVA). ?? 2007 ASCE.

  4. Evolution of unsaturated hydraulic conductivity of aggregated soils due to compressive forces

    NASA Astrophysics Data System (ADS)

    Berli, M.; Carminati, A.; Ghezzehei, T. A.; Or, D.

    2008-05-01

    Prediction of water flow and transport processes in soils susceptible to structural alteration such as compaction of tilled agricultural lands or newly constructed landfills rely on accurate description of changes in soil unsaturated hydraulic conductivity. Recent studies have documented the critical impact of aggregate contact characteristics on water flow rates and pathways in unsaturated aggregated soils. We developed an analytical model for aggregate contact size evolution as a basis for quantifying effects of compression on saturated and unsaturated hydraulic conductivity of aggregated soil. Relating confined one-dimensional sample strain with aggregate deformation facilitates prediction of the increase in interaggregate contact area and concurrent decrease in macropore size with degree of sample compression. The hydrologic component of the model predicts unsaturated hydraulic conductivity of a pack of idealized aggregates (spheres) on the basis of contact size and saturation conditions under prescribed sample deformation. Calculated contact areas and hydraulic conductivity for pairs of aggregates agreed surprisingly well with measured values, determined from compaction experiments employing neutron and X-ray-radiography and image analysis. Model calculations for a unit cell of uniform spherical aggregates in cubic packing were able to mimic some of the differences in saturated and unsaturated hydraulic conductivity observed for aggregates and bulk soil.

  5. Scaling of material properties for Yucca Mountain: literature review and numerical experiments on saturated hydraulic conductivity

    SciTech Connect

    McKenna, S.A.; Rautman, C.A.

    1996-08-01

    A review of pertinent literature reveals techniques which may be practical for upscaling saturated hydraulic conductivity at Yucca Mountain: geometric mean, spatial averaging, inverse numerical modeling, renormalization, and a perturbation technique. Isotropic realizations of log hydraulic conductivity exhibiting various spatial correlation lengths are scaled from the point values to five discrete scales through these techniques. For the variances in log{sub 10} saturated hydraulic conductivity examined here, geometric mean, numerical inverse and renormalization adequately reproduce point scale fluxes across the modeled domains. Fastest particle velocities and dispersion measured on the point scale are not reproduced by the upscaled fields. Additional numerical experiments examine the utility of power law averaging on a geostatistical realization of a cross-section similar to the cross-sections that will be used in the 1995 groundwater travel time calculations. A literature review on scaling techniques for thermal and mechanical properties is included. 153 refs., 29 figs., 6 tabs.

  6. Method for estimating spatially variable seepage loss and hydraulic conductivity in intermittent and ephemeral streams

    USGS Publications Warehouse

    Niswonger, R.G.; Prudic, D.E.; Fogg, G.E.; Stonestrom, D.A.; Buckland, E.M.

    2008-01-01

    A method is presented for estimating seepage loss and streambed hydraulic conductivity along intermittent and ephemeral streams using streamflow front velocities in initially dry channels. The method uses the kinematic wave equation for routing streamflow in channels coupled to Philip's equation for infiltration. The coupled model considers variations in seepage loss both across and along the channel. Water redistribution in the unsaturated zone is also represented in the model. Sensitivity of the streamflow front velocity to parameters used for calculating seepage loss and for routing streamflow shows that the streambed hydraulic conductivity has the greatest sensitivity for moderate to large seepage loss rates. Channel roughness, geometry, and slope are most important for low seepage loss rates; however, streambed hydraulic conductivity is still important for values greater than 0.008 m/d. Two example applications are presented to demonstrate the utility of the method. Copyright 2008 by the American Geophysical Union.

  7. Evaluation of actual and estimated hydraulic conductivity of sands with different gradation and shape.

    PubMed

    Cabalar, Ali Firat; Akbulut, Nurullah

    2016-01-01

    Hydraulic conductivities of sands with different gradation and grain shape were estimated experimentally at a relative density (Dr) of about 40 % and a 22 ± 2 °C of constant temperature. Narli Sand (NS) with 0.67 of sphericity (S) and 0.72 of roundness (R), and Crushed Stone Sand (CSS) with 0.55 of S and 0.15 of R values were artificially graded into sixteen different grain-size fractions (4.75-2, 2-1.18, 1.18-0.6, 0.6-0.425, 0.425-0.3, 0.3-0.075, 4.75-0.075, 2-0.075, 1.18-0.075, 0.6-0.075, 0.425-0.075, 4.75-0.6, 2-0.6, 4.75-0.425, 2-0.425, 1.18-0.425 mm). Hydraulic conductivities of the NS estimated by use of constant head test ranged from 1.61 to 0.01 cm/s, whilst those of the CSS estimated by the same test ranged from 2.45 to 0.012 cm/s. It was observed that the hydraulic conductivity values of the NS are lower than those of the CSS samples, which is likely to be the result of differences in shape, particularly in R values. The results clearly demonstrated that the hydraulic conductivity can be significantly influenced by grading characteristics (d10, d20, d30, d50, d60, cu, cc, n, Io). Furthermore, comparisons between results obtained in the present study and hydraulic conductivity estimated with other formulas available in the literature were made. The comparisons indicated that the best estimation of hydraulic conductivity changes based on the gradation and shape properties of the sands tested.

  8. A novel method for measuring hydraulic conductivity at the human blood-nerve barrier in vitro.

    PubMed

    Helton, E Scott; Palladino, Steven; Ubogu, Eroboghene E

    2017-01-01

    Microvascular barrier permeability to water is an essential biophysical property required for the homeostatic maintenance of unique tissue microenvironments. This is of particular importance in peripheral nerves where strict control of ionic concentrations is needed for axonal signal transduction. Previous studies have associated inflammation, trauma, toxin exposure and metabolic disease with increases in water influx and hydrostatic pressure in peripheral nerves with resultant endoneurial edema that may impair axonal function. The regulation of water permeability across endoneurial microvessels that form the blood-nerve barrier (BNB) is poorly understood. Variations exist in apparatus and methods used to measure hydraulic conductivity. The objective of the study was to develop a simplified hydraulic conductivity system using commercially available components to evaluate the BNB. We determined the mean hydraulic conductivity of cultured confluent primary and immortalized human endoneurial endothelial cell layers as 2.00×10(-7) and 2.17×10(-7)cm/s/cm H₂O respectively, consistent with restrictive microvascular endothelial cells in vitro. We also determined the mean hydraulic conductivity of immortalized human brain microvascular endothelial cell layers, a commonly used blood-brain barrier (BBB) cell line, as 0.20×10(-7)cm/s/cm H₂O, implying a mean 10-fold higher resistance to transendothelial water flux in the brain compared to peripheral nerves. To our knowledge, this is the first reported measurement of human BNB and BBB hydraulic conductivities. This model represents an important tool to further characterize the human BNB and deduce the molecular determinants and signaling mechanisms responsible for BNB hydraulic conductivity in normal and disease states in vitro.

  9. Characterization of hydraulic conductivity of the alluvium and basin fill, Pinal Creek Basin near Globe, Arizona

    USGS Publications Warehouse

    Angeroth, Cory E.

    2002-01-01

    Acidic waters containing elevated concentrations of dissolved metals have contaminated the regional aquifer in the Pinal Creek Basin, which is in Gila County, Arizona, about 100 kilometers east of Phoenix. The aquifer is made up of two geologic units: unconsolidated stream alluvium and consolidated basin fill. To better understand how contaminants are transported through these units, a better understanding of the distribution of hydraulic conductivity and processes that affect it within the aquifer is needed. Slug tests were done in September 1997 and October 1998 on 9 wells finished in the basin fill and 14 wells finished in the stream alluvium. Data from the tests were analyzed by using either the Bouwer and Rice (1976) method, or by using an extension to the method developed by Springer and Gellhar (1991). Both methods are applicable for unconfined aquifers and partially penetrating wells. The results of the analyses show wide variability within and between the two geologic units. Hydraulic conductivity estimates ranged from 0.5 to 250 meters per day for the basin fill and from 3 to 200 meters per day for the stream alluvium. Results of the slug tests also show a correlation coefficient of 0.83 between the hydraulic conductivity and the pH of the ground water. The areas of highest hydraulic conductivity coincide with the areas of lowest pH, and the areas of lowest hydraulic conductivity coincide with the areas of highest pH, suggesting that the acidic water is increasing the hydraulic conductivity of the aquifer by dissolution of carbonate minerals.

  10. Adjustments in hydraulic architecture of Pinus palustris maintain similar stomatal conductance in xeric and mesic habitats.

    PubMed

    Addington, R N; Donovan, L A; Mitchell, R J; Vose, J M; Pecot, S D; Jack, S B; Hacke, U G; Sperry, J S; Oren, R

    2006-04-01

    We investigated relationships between whole-tree hydraulic architecture and stomatal conductance in Pinus palustris Mill. (longleaf pine) across habitats that differed in soil properties and habitat structure. Trees occupying a xeric habitat (characterized by sandy, well-drained soils, higher nitrogen availability and lower overstory tree density) were shorter in stature and had lower sapwood-to-leaf area ratio (A(S):A(L)) than trees in a mesic habitat. The soil-leaf water potential gradient (psiS - psiL) and leaf-specific hydraulic conductance (kL) were similar between sites, as was tissue-specific hydraulic conductivity (Ks) of roots. Leaf and canopy stomatal conductance (gs and Gs, respectively) were also similar between sites, and they tended to be somewhat higher at the xeric site during morning hours when vapour pressure deficit (D) was low. A hydraulic model incorporating tree height, A(S):A(L) and psiS-psiL accurately described the observed variation in individual tree G(Sref) (G(S) at D = 1 kPa) across sites and indicated that tree height was an important determinant of G(Sref) across sites. This, combined with a 42% higher root-to-leaf area ratio (A(R):A(L)) at the xeric site, suggests that xeric site trees are hydraulically well equipped to realize equal--and sometimes higher potential for conductance compared with trees on mesic sites. However, a slightly more sensitive stomatal closure response to increasing D observed in xeric site trees suggests that this potential for higher conductance may only be reached when D is low and when the capacity of the hydraulic system to supply water to foliage is not greatly challenged.

  11. Hydraulic conductivity study of compacted clay soils used as landfill liners for an acidic waste

    SciTech Connect

    Hamdi, Noureddine; Srasra, Ezzeddine

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Examined the hydraulic conductivity evolution as function of dry density of Tunisian clay soil. Black-Right-Pointing-Pointer Follow the hydraulic conductivity evolution at long-term of three clay materials using the waste solution (pH=2.7). Black-Right-Pointing-Pointer Determined how compaction affects the hydraulic conductivity of clay soils. Black-Right-Pointing-Pointer Analyzed the concentration of F and P and examined the retention of each soil. - Abstract: Three natural clayey soils from Tunisia were studied to assess their suitability for use as a liner for an acid waste disposal site. An investigation of the effect of the mineral composition and mechanical compaction on the hydraulic conductivity and fluoride and phosphate removal of three different soils is presented. The hydraulic conductivity of these three natural soils are 8.5 Multiplication-Sign 10{sup -10}, 2.08 Multiplication-Sign 10{sup -9} and 6.8 Multiplication-Sign 10{sup -10} m/s for soil-1, soil-2 and soil-3, respectively. Soil specimens were compacted under various compaction strains in order to obtain three wet densities (1850, 1950 and 2050 kg/m{sup 3}). In this condition, the hydraulic conductivity (k) was reduced with increasing density of sample for all soils. The test results of hydraulic conductivity at long-term (>200 days) using acidic waste solution (pH = 2.7, charged with fluoride and phosphate ions) shows a decrease in k with time only for natural soil-1 and soil-2. However, the specimens of soil-2 compressed to the two highest densities (1950 and 2050 kg/m{sup 3}) are cracked after 60 and 20 days, respectively, of hydraulic conductivity testing. This damage is the result of a continued increase in the internal stress due to the swelling and to the effect of aggressive wastewater. The analysis of anions shows that the retention of fluoride is higher compared to phosphate and soil-1 has the highest sorption capacity.

  12. Analyzing pumped-well impeller logs to ascertain vertical hydraulic conductivity variations

    NASA Astrophysics Data System (ADS)

    Parker, A. H.; West, J.; Odling, N. E.; Bottrell, S. H.

    2007-12-01

    Horizontal variations in the hydraulic conductivity of aquifers are generally well characterized through simple pump test analyses. However, vertical variations are often poorly understood and misrepresented in the regional models used by regulatory bodies and water companies. Understanding these is key for predicting flow paths and hence the behavior of contaminants in the aquifer that might present a risk to public drinking water supplies. Traditionally, packer tests were used to characterize these variations, but they can be time consuming and costly to perform. However, other techniques have been developed which can quantify these variations, including impeller logging. This study aims to present new, more rigorous methods of analyzing impeller flow log data. Impeller logs were taken under pumped conditions in open wells in a chalk aquifer located in N. England. Theoretically, hydraulic conductivity can be obtained from the gradient in flow rate with depth. However, data are typically noisy due to turbulent flow and hole diameter variations with depth; so directly converting the flow rate gradient to hydraulic conductivity leads to rapid non-physical variation and negative hydraulic conductivity values. Correcting for hole diameter variations using caliper logs proved difficult due to phenomena such as jetting, whereby when the water enters a widening, it does not instantly slow down. In order to obtain more realistic hydraulic conductivity profiles, we firstly tried a data smoothing algorithm, but this approach distorted the data and still gave an unacceptable noise level. Instead, a layered modeling approach has been developed. A hydraulic conductivity profile consisting of a discrete number of uniform layers is constructed, and layer thicknesses and hydraulic conductivities are varied until a satisfactory fit to the observed flow log is achieved. Results from field sites on the confined Chalk aquifer of East Yorkshire in the United Kingdom showed good

  13. Steady state method to determine unsaturated hydraulic conductivity at the ambient water potential

    DOEpatents

    HUbbell, Joel M.

    2014-08-19

    The present invention relates to a new laboratory apparatus for measuring the unsaturated hydraulic conductivity at a single water potential. One or more embodiments of the invented apparatus can be used over a wide range of water potential values within the tensiometric range, requires minimal laboratory preparation, and operates unattended for extended periods with minimal supervision. The present invention relates to a new laboratory apparatus for measuring the unsaturated hydraulic conductivity at a single water potential. One or more embodiments of the invented apparatus can be used over a wide range of water potential values within the tensiometric range, requires minimal laboratory preparation, and operates unattended for extended periods with minimal supervision.

  14. Field experiments in a fractured clay till. 1. Hydraulic conductivity and fracture aperture

    NASA Astrophysics Data System (ADS)

    McKay, Larry D.; Cherry, John A.; Gillham, Robert W.

    1993-04-01

    Field values of horizontal hydraulic conductivity measured in the upper 1.5-5.5 m of a weathered and fractured clay-rich till were strongly influenced by smearing around piezometer intakes, which occurs during augering, and by the physical scale of the measuring device. Values measured in conventional augered piezometers were typically 1-2 orders of magnitude lower than those measured in piezometers designed to reduce smearing. Measurements of hydraulic conductivity in small-scale seepage collectors or piezometers, which typically intersect fewer than 10 fractures, vary over a much greater range, 10-10 to 10-6 m/s, than large-scale values based on infiltration into 5.5-m-deep trenches which intersect thousands of fractures (range 10-7 to 3×10-7 m/s). Values of hydraulic fracture aperture, 1-43 μm, and fracture porosity, 3×10-5 to 2×10-3, were calculated using the cubic law with fracture orientation/distribution measurements and the small-scale hydraulic conductivity measurements. This paper provides the first reliable determination of the magnitude and spatial distribution of hydraulically derived fracture parameters in a clay deposit. The absence of such data has, until now, severely limited the application of quantitative groundwater flow and contaminant transport models in this type of deposit.

  15. Electrical Conductivity and Dielectric Studies of Hydraulic Cements

    NASA Astrophysics Data System (ADS)

    Pena, Marianela Perez

    Electrical properties of portland cements and other non-portland cementitious materials have been studied at two different stages of hydration. The following relationships have been observed:. Higher water/cement (w/c) ratio (0.5 compared to 0.4) resulted in an increase of the relative permittivity and electrical conductivity of early stage hydrating materials. The relative permittivity values were close to 10('7). The phenomena giving rise to changes in electrical conductivity have been related to the heat of hydration. Higher alkali ion concentration resulted in higher electrical conductivity and relative permittivity values in cement pastes. Cations of inorganic admixtures were found to increase maximum peak of electrical conductivity and relative permittivity in the order: Ca('++) > Mg('++) > Sr('++) and K('+) (TURNEQ) Na('+) > Li('+). Dielectric properties of pressed hardened materials cured over water for 1 day with w/c = 0.20 and heat treated to 500(DEGREES)C prepared with type I, type III, and a microfine calcium silicate (MC500) cement have been compared as a function of temperature and frequency. The relative permittivity for type I hardened materials at 30(DEGREES)C was found to range from 12.5 to 9.4 at frequencies from 1 KHz to 2 MHz. The dissipation factor was found to range from 0.122 to 0.014. The relative permittivity and dissipation factors for type III hardened materials were found to range from 17.8 to 13.0 and from 0.035 to 0.071, respectively, and for MC500 hardened materials were determined to range from 7.6 to 6.9 and from 0.033 to 0.002, respectively. The activation energies determined from Arrhenius plots for the relaxation mechanism operating in these materials correspond to 0.33, 0.30, and 0.46 eV for type I, type III, and MC500 densified hardened materials, respectively. Cement/polymer composites have been prepared using 1.76 wt.% methyl cellulose polymer and a w/c ratio of 0.17. The relative permittivity and loss factor the samples

  16. A multiscale approach to determine hydraulic conductivity in thick claystone aquitards using field, laboratory, and numerical modeling methods

    NASA Astrophysics Data System (ADS)

    Smith, L. A.; Barbour, S. L.; Hendry, M. J.; Novakowski, K.; van der Kamp, G.

    2016-07-01

    Characterizing the hydraulic conductivity (K) of aquitards is difficult due to technical and logistical difficulties associated with field-based methods as well as the cost and challenge of collecting representative and competent core samples for laboratory analysis. The objective of this study was to produce a multiscale comparison of vertical and horizontal hydraulic conductivity (Kv and Kh, respectively) of a regionally extensive Cretaceous clay-rich aquitard in southern Saskatchewan. Ten vibrating wire pressure transducers were lowered into place at depths between 25 and 325 m, then the annular was space was filled with a cement-bentonite grout. The in situ Kh was estimated at the location of each transducer by simulating the early-time pore pressure measurements following setting of the grout using a 2-D axisymmetric, finite element, numerical model. Core samples were collected during drilling for conventional laboratory testing for Kv to compare with the transducer-determined in situ Kh. Results highlight the importance of scale and consideration of the presence of possible secondary features (e.g., fractures) in the aquitard. The proximity of the transducers to an active potash mine (˜1 km) where depressurization of an underlying aquifer resulted in drawdown through the aquitard provided a unique opportunity to model the current hydraulic head profile using both the Kh and Kv estimates. Results indicate that the transducer-determined Kh estimates would allow for the development of the current hydraulic head distribution, and that simulating the pore pressure recovery can be used to estimate moderately low in situ Kh (<10-11 m s-1).

  17. Hydraulic Tomography and High-Resolution Slug Testing to Determine Hydraulic Conductivity Distributions

    DTIC Science & Technology

    2011-02-01

    physical cores of aquifer material can be obtained by various drilling methods. These samples can then be tested in a laboratory (i.e., falling or...Figure 2. GEMS location map and aerial photographs. 12 Figure 3. Direct push drilling unit, Electrical Conductance probe, and example...and it is connected to an apparatus attached to the top of the casing at the well (Figure 5). 23 Figure 5a. The pneumatic CPT equipment set up

  18. Time-Dependent Soil Hydraulic Conductivity in Salt-Affected Soils

    NASA Astrophysics Data System (ADS)

    Russo, D.

    2012-04-01

    Mixed salts such as sodium-calcium salts interact with the soil matrix. The physico chemical interactions between the soil solution and the soil matrix (SS-SM), particularly in the presence of smectite minerals (e.g., montmorillonite), may change the soil pore-size distribution; the latter could affect the soil hydraulic properties, i.e., the soil hydraulic conductivity and soil water retention. Since the magnitude of the SS-SM interactions depend on time-dependent flow-controlled attributes, i.e., soil solution concentration and composition and water content, the resultant hydraulic properties are also time-dependent. The present talk focuses on the effect of mixed-ion solutions on soil hydraulic properties relevant to water flow and solute transport. Experimental evidence on, and an approach for modeling of the effect of soil solution concentration and composition on the local- (Darcy) scale soil hydraulic properties are presented and discussed. Long-term effect of the soil solution concentration and composition on the soil hydraulic properties, and, concurrently, on water flow and solute transport are presented through simulations of field-scale flow and transport.

  19. THEORETICAL ANALYSIS OF THE TRANSIENT PRESSURE RESPONSE FROM A CONSTANT FLOW RATE HYDRAULIC CONDUCTIVITY TEST.

    USGS Publications Warehouse

    Morin, Roger H.; Olsen, Harold W.

    1987-01-01

    Incorporating a flow pump into a conventional triaxial laboratory system allows fluid to be supplied to or withdrawn from the base of a sediment sample at small and constant rates. An initial transient record of hydraulic head versus time is observed which eventually stabilizes to a constant steady state gradient across the sample; values of hydraulic conductivity can subsequently be determined from Darcy's law. In this paper, analytical methods are presented for determining values of specific storage and hydraulic conductivity from the initial transient phase of such a constant flow rate test. These methods are based on a diffusion equation involving pore pressure and are analogous to those used to describe the soil consolidation process and also to interpret aquifer properties from pumping tests.

  20. Upscaling hydraulic conductivity from measurement-scale to model-scale

    NASA Astrophysics Data System (ADS)

    Gunnink, Jan; Stafleu, Jan; Maljers, Densie; Schokker, Jeroen

    2013-04-01

    The Geological Survey of the Netherlands systematically produces both shallow (< 500 m) and deep 3D geological models of the Netherlands. These models are predictions of geometry and properties of the subsurface, and are used in applied research. One of the geological models for the shallow subsurface (GeoTOP) consists of voxels of 100 x 100 x 0.5 m to a depth of 30-50 m below surface. For each voxel, lithostratigraphy, facies and lithological classes are modeled with geostatistical simulation techniques. These simulation techniques allow for the spatial uncertainty of the model results to be calculated. One of the parameters that is subsequently assigned to the voxels in the GeoTOP model, is hydraulic conductivity (both horizontal and vertical). Hydraulic conductivities are measured on samples taken from high-quality drillings, which are subjected to falling head hydraulic conductivity tests. Samples are taken for all combinations of lithostratigraphy, facies and lithology that are present in the GeoTOP model. The volume of the samples is orders of magnitude smaller than the volume of a voxel in the GeoTOP model. Apart from that, the heterogeneity that occurs within a voxel is not accounted for in the GeoTOP model, since every voxel gets a single lithology that is deemed representative for the entire voxel To account for both the difference in volume and the within-voxel heterogeneity, an upscaling procedure is developed to produce up-scaled hydraulic conductivities for each GeoTOP voxel. A very fine 3D grid of 0.5 x 0.5 x 0.05 m is created that covers the GeoTOP voxel size (100 x 100 x 0.5 m) plus half of the dimensions of the GeoTOP voxel to counteract undesired edge-effects. It is assumed that the scale of the samples is comparable to the voxel size of this fine grid. For each lithostratigraphy and facies combination the spatial correlation structure (variogram) of the lithological classes is used to create 50 equiprobable distributions of lithology for the

  1. Stomatal responses to changes in vapor pressure deficit reflect tissue-specific differences in hydraulic conductance.

    PubMed

    Ocheltree, T W; Nippert, J B; Prasad, P V V

    2014-01-01

    The vapor pressure deficit (D) of the atmosphere can negatively affect plant growth as plants reduce stomatal conductance to water vapor (g(wv)) in response to increasing D, limiting the ability of plants to assimilate carbon. The sensitivity of g(wv) to changes in D varies among species and has been correlated with the hydraulic conductance of leaves (K(leaf) ), but the hydraulic conductance of other tissues has also been implicated in plant responses to changing D. Among the 19 grass species, we found that K(leaf) was correlated with the hydraulic conductance of large longitudinal veins (K(lv), r(2) = 0.81), but was not related to K(root) (r(2) = 0.01). Stomatal sensitivity to D was correlated with K(leaf) relative to total leaf area (r(2) = 0.50), and did not differ between C3 and C4 species. Transpiration (E) increased in response to D, but 8 of the 19 plants showed a decline in E at high D, indicative of an 'apparent feedforward' response. For these individuals, E began to decline at lower values of D in plants with low K(root) (r(2) = 0.72). These results show the significance of both leaf and root hydraulic conductance as drivers of plant responses to evaporative demand.

  2. Evaluating temporal changes in hydraulic conductivities near karst-terrain dams: Dokan Dam (Kurdistan-Iraq)

    NASA Astrophysics Data System (ADS)

    Dafny, Elad; Tawfeeq, Kochar Jamal; Ghabraie, Kazem

    2015-10-01

    Dam sites provide an outstanding opportunity to explore dynamic changes in the groundwater flow regime because of the high hydraulic gradient rapidly induced in their surroundings. This paper investigates the temporal changes of the hydraulic conductivities of the rocks and engineered structures via a thorough analysis of hydrological data collected at the Dokam Dam, Iraq, and a numerical model that simulates the Darcian component of the seepage. Analysis of the data indicates increased seepage with time and suggests that the hydraulic conductivity of the rocks increased as the conductivity of the grout curtain decreased. Conductivity changes on the order of 10-8 m/s, in a 20-yr period were quantified using the numerical analysis. It is postulated that the changes in hydraulic properties in the vicinity of Dokan Dam are due to suspension of fine materials, interbedded in small fissures in the rocks, and re-settlement of these materials along the curtain. Consequently, the importance of the grout curtain to minimize the downstream seepage, not only as a result of the conductivity contrast with the rocks, but also as a barrier to suspended clay sediments, is demonstrated. The numerical analysis also helped us to estimate the proportion of the disconnected karstic conduit flow to the overall flow.

  3. Spatially-Resolved Hydraulic Conductivity Estimation Via Poroelastic Magnetic Resonance Elastography

    PubMed Central

    McGarry, Matthew; Weaver, John B.; Paulsen, Keith D.

    2015-01-01

    Poroelastic magnetic resonance elastography is an imaging technique that could recover mechanical and hydrodynamical material properties of in vivo tissue. To date, mechanical properties have been estimated while hydrodynamical parameters have been assumed homogeneous with literature-based values. Estimating spatially-varying hydraulic conductivity would likely improve model accuracy and provide new image information related to a tissue’s interstitial fluid compartment. A poroelastic model was reformulated to recover hydraulic conductivity with more appropriate fluid-flow boundary conditions. Simulated and physical experiments were conducted to evaluate the accuracy and stability of the inversion algorithm. Simulations were accurate (property errors were < 2%) even in the presence of Gaussian measurement noise up to 3%. The reformulated model significantly decreased variation in the shear modulus estimate (p≪0.001) and eliminated the homogeneity assumption and the need to assign hydraulic conductivity values from literature. Material property contrast was recovered experimentally in three different tofu phantoms and the accuracy was improved through soft-prior regularization. A frequency-dependence in hydraulic conductivity contrast was observed suggesting that fluid-solid interactions may be more prominent at low frequency. In vivo recovery of both structural and hydrodynamical characteristics of tissue could improve detection and diagnosis of neurological disorders such as hydrocephalus and brain tumors. PMID:24771571

  4. Final Report - Hydraulic Conductivity with Depth for Underground Test Area (UGTA) Wells

    SciTech Connect

    P. Oberlander; D. McGraw; C. Russell

    2007-10-31

    Hydraulic conductivity with depth has been calculated for Underground Test Area (UGTA) wells in volcanic tuff and carbonate rock. The following wells in volcanic tuff are evaluated: ER-EC-1, ER-EC-2a, ER-EC-4, ER-EC-5, ER-5-4#2, ER-EC-6, ER-EC-7, and ER-EC-8. The following wells in carbonate rock are evaluated: ER-7-1, ER-6-1, ER-6-1#2, and ER-12-3. There are a sufficient number of wells in volcanic tuff and carbonate rock to associate the conductivity values with the specific hydrogeologic characteristics such as the stratigraphic unit, hydrostratigraphic unit, hydrogeologic unit, lithologic modifier, and alteration modifier used to describe the hydrogeologic setting. Associating hydraulic conductivity with hydrogeologic characteristics allows an evaluation of the data range and the statistical distribution of values. These results are relevant to how these units are considered in conceptual models and represented in groundwater models. The wells in volcanic tuff illustrate a wide range of data values and data distributions when associated with specific hydrogeologic characteristics. Hydraulic conductivity data within a hydrogeologic characteristic can display normal distributions, lognormal distributions, semi-uniform distribution, or no identifiable distribution. There can be multiple types of distributions within a hydrogeologic characteristic such as a single stratigraphic unit. This finding has implications for assigning summary hydrogeologic characteristics to hydrostratigraphic and hydrogeologic units. The results presented herein are specific to the hydrogeologic characteristic and to the wells used to describe hydraulic conductivity. The wells in carbonate rock are associated with a fewer number of hydrogeologic characteristics. That is, UGTA wells constructed in carbonate rock have tended to be in similar hydrogeologic materials, and show a wide range in hydraulic conductivity values and data distributions. Associations of hydraulic conductivity and

  5. Influence of Degree of Saturation in the Electric Resistivity-Hydraulic Conductivity Relationship

    NASA Astrophysics Data System (ADS)

    Khalil, Mohamed Ahmed; Monterio Santos, Fernando A.

    2009-11-01

    The relationship between aquifer hydraulic conductivity and aquifer resistivity, either measured on the ground surface by vertical electrical sounding (VES) or from resistivity logs, or measured in core samples have been published for different types of aquifers in different locations. Generally, these relationships are empirical and semi-empirical, and confined in few locations. This relation has a positive correlation in some studies and negative in others. So far, there is no potentially physical law controlling this relation, which is not completely understood. Electric current follows the path of least resistance, as does water. Within and around pores, the model of conduction of electricity is ionic and thus the resistivity of the medium is controlled more by porosity and water conductivity than by the resistivity of the rock matrix. Thus, at the pore level, the electrical path is similar to the hydraulic path and the resistivity should reflect hydraulic conductivity. We tried in this paper to study the effect of degree of groundwater saturation in the relation between hydraulic conductivity and bulk resistivity via a simple numerical analysis of Archie’s second law and a simplified Kozeny-Carmen equation. The study reached three characteristic non-linear relations between hydraulic conductivity and resistivity depending on the degree of saturation. These relations are: (1) An inverse power relation in fully saturated aquifers and when porosity equals water saturation, (2) An inverse polynomial relation in unsaturated aquifers, when water saturation is higher than 50%, higher than porosity, and (3) A direct polynomial relation in poorly saturated aquifers, when water saturation is lower than 50%, lower than porosity. These results are supported by some field scale relationships.

  6. HOW WELL ARE HYDRAULIC CONDUCTIVITY VARIATIONS APPROXIMATED BY ADDITIVE STABLE PROCESSES? (R826171)

    EPA Science Inventory

    Abstract

    Analysis of the higher statistical moments of a hydraulic conductivity (K) and an intrinsic permeability (k) data set leads to the conclusion that the increments of the data and the logs of the data are not governed by Levy-stable or Gaussian dis...

  7. Short-term effects of potassium fertilization on the hydraulic conductance of Laurus nobilis L.

    PubMed

    Oddo, Elisabetta; Inzerillo, Simone; La Bella, Francesca; Grisafi, Francesca; Salleo, Sebastiano; Nardini, Andrea

    2011-02-01

    This study reports experimental evidence on the effect of short-term potassium fertilization on potassium uptake, tissue concentration and hydraulic conductance of pot-grown laurel plants. Potassium uptake and loading into the xylem of laurel seedlings increased within 24 h after fertilization. Potassium was not accumulated in roots and leaves, but the [K(+)] of xylem sap was 80% higher in fertilized plants (+K) than in potassium-starved plants (-K), as a likely result of recirculation between xylem and phloem. Increased xylem sap [K(+)] resulted in a 45% increase in transpiration rate, a 30% increase in plant hydraulic conductance (K(plant)) and a 120% increase in leaf-specific conductivity of the shoot (k(shoot)). We suggest that this increase was due to ion-mediated up-regulation of xylem hydraulics, possibly caused by the interaction of potassium ions with the pectic matrix of intervessel pits. The enhancement of hydraulic conductance following short-term potassium fertilization is a phenomenon that can be of advantage to plants for maintaining cell turgor, stomatal aperture and gas exchange rates under moderate drought stress. Our data provide additional support for the important role of potassium nutrition in agriculture and forestry.

  8. The effect of mineral-ion interactions on soil hydraulic conductivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The reuse of winery wastewater (WW) for irrigation could provide an alternative water source for wine production. The shift of many wineries and other food processing industries to K+-based cleaners requires studies on the effects of K+ on soil hydraulic conductivity (HC). Soils of contrasting mine...

  9. Response of Leaf Hydraulic Conductance to Changes in Atmospheric CO2 and Temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Because plants play a central role in the terrestrial hydrologic cycle, it is critical to understand the impact of global change factors on the flux of water through plants. Leaves account for a large portion of the resistance to water flow through the whole plant. Leaf hydraulic conductance (K-leaf...

  10. Hydraulic Conductivity Estimates from Particle Size Distributions of Sediments from the Los Alamos Chromium Plume

    NASA Astrophysics Data System (ADS)

    Harris, R.; Reimus, P. W.; Ding, M.

    2015-12-01

    Chromium used in Los Alamos National Laboratory cooling towers was released as effluent onto laboratory property between 1956 and 1972. As a result, the underlying regional aquifer is contaminated with chromium (VI), a toxin and carcinogen. The highest concentration of chromium is ~1 ppm in monitoring well R-42, exceeding the New Mexico drinking water standard of 50 ppb. The chromium plume is currently being investigated to identify an effective remediation method. Geologic heterogeneity within the aquifer causes the hydraulic conductivity within the plume to be spatially variable. This variability, particularly with depth, is crucial for predicting plume transport behavior. Though pump tests are useful for obtaining estimates of site specific hydraulic conductivity, they tend to interrogate hydraulic properties of only the most conductive strata. Variations in particle size distribution as a function of depth can complement pump test data by providing estimates of vertical variations in hydraulic conductivity. Samples were collected from five different sonically-drilled core holes within the chromium plume at depths ranging from 732'-1125' below the surface. To obtain particle size distributions, the samples were sieved into six different fractions from the fine sands to gravel range (>4 mm, 2-4 mm, 1.4-2 mm, 0.355-1.4 mm, 180-355 µm, and smaller than 180 µm). The Kozeny-Carmen equation (k=(δg/µ)(dm2/180)(Φ3/(1-Φ)2)), was used to estimate permeability from the particle size distribution data. Pump tests estimated a hydraulic conductivity varying between 1 and 50 feet per day. The Kozeny-Carmen equation narrowed this estimate down to an average value of 2.635 feet per day for the samples analyzed, with a range of 0.971 ft/day to 6.069 ft/day. The results of this study show that the Kozeny-Carmen equation provides quite specific estimates of hydraulic conductivity in the Los Alamos aquifer. More importantly, it provides pertinent information on the expected

  11. Attempts at Estimating the Hydraulic Conductivity With Induced Polarisation at the Field Scale

    NASA Astrophysics Data System (ADS)

    Hoerdt, A.; Binot, F.; Blaschek, R.; Druiventak, A.; Kemna, A.; Kreye, P.; Zisser, N.

    2008-12-01

    Hydraulic conductivity is an essential parameter for groundwater management and for estimation of aquifer vulnerability. Physical considerations and laboratory measurements suggest that hydraulic conductivity might be estimated from complex electrical conductivity, measured with the spectral induced polarisation (SIP) method. In order to test this idea under field conditions, we carried out SIP measurements at four hydrogeological test sites. The areas cover a lithological spectrum from gravel to silt. At each site, hydraulic conductivity was estimated from the real and imaginary conductivity resulting from 2-D inversion. We applied empirical equations using only one frequency, typically around 1 Hz. The results were compared with k- values obtained from grain size analyses and pump tests. Data from each site were reduced to a few values only to facilitate an overall evaluation. The IP-determined values tend to be too large, display considerable scatter, and only a weak correlation with hydrogeologic data. Two main factors seem to be important: first, the assumption that imaginary conductivity is independent of groundwater salinity, does not hold. Second, the accuracy of phase measurements of complex conductivity is not sufficient, in particular if phases are small. This is severe, because small phase shifts may produce unrealistically large k-values. Our results suggest that existing models with their simplifying assumptions might have to be modified and extended before they lead to substantial improvements when routinely applied at the field scale.

  12. Effects Of Evaporation Rate of Some Common Organic Contaminants on Hydraulic Conductivity of Aquifer Sand

    NASA Astrophysics Data System (ADS)

    Saud, Q. J.; Hasan, S. E.

    2014-12-01

    As part of a larger study to investigate potential effects of hydrocarbons on the geotechnical properties of aquifer solids, a series of laboratory experiments were carried out to ascertain the influence of evaporation rate of some common and widespread organic contaminants on the hydraulic conductivity of aquifer sand. Gasoline and its constituent chemicals-benzene, toluene, ethylbenzene, xylene (BTEX), isooctane- and trichloroethylene (TCE) were used to contaminate sand samples collected from the aquifer and vadose zone, at varying concentrations for extended periods of time. The goal was to study any change in the chemical makeup of the contaminants and its control on hydraulic conductivity of the sand. It was found that: (a) gasoline breaks down into constituent compounds when subjected to evaporation, e.g. during oil spills and leaks; and (b) lighter compounds volatilize faster and in the following order: TCE> benzene > isooctane > toluene > gasoline> ethylbenzene > xylene. In addition, these contaminants also caused a decrease in hydraulic conductivity of sand by up to 60% as compared to the uncontaminated sand. The inherent differences in the chemical structure of contaminating chemicals influenced hydraulic conductivity such that the observed decrease was greater for aliphatic than aromatic and chlorinated hydrocarbons. The presentation includes details of the experimental set up; evaporation rate, and geotechnical tests; X-ray diffraction and scanning electron microscope studies; and data analyses and interpretation. Rate of evaporation test indicates that residual LNAPLs will occupy a certain portion of the pores in the soil either as liquid or vapor phase in the vadose zone, and will create a coating on the adjacent solid mineral grains in the aquifer. Replacement of air by the LNAPLs along with grain coatings and the intramolecular forces would impede groundwater movement, thus affecting overall permeability of contaminated aquifers. Keywords: aquifer

  13. Reducing hydraulic conductivity of porous media using CaCO₃ precipitation induced by Sporosarcina pasteurii.

    PubMed

    Eryürük, Kağan; Yang, Suyin; Suzuki, Daisuke; Sakaguchi, Iwao; Akatsuka, Tetsuji; Tsuchiya, Takayuki; Katayama, Arata

    2015-03-01

    The effect on hydraulic conductivity in porous media of CaCO3 precipitation induced by Sporosarcina pasteurii (ATCC 11859) was investigated using continuous-flow columns containing glass beads between 0.01 mm and 3 mm in diameter. Resting S. pasteurii cells and a precipitation solution composed of 0.5 M CaCl2 and 0.5 M urea were introduced into the columns, and it was shown that the subsequent formation of CaCO3 precipitation reduced hydraulic conductivity from between 8.38 × 10(-1) and 3.27 × 10(-4) cm/s to between 3.70 × 10(-1) and 3.07 × 10(-5) cm/s. The bacterial cells themselves did not decrease the hydraulic conductivity. The amount of precipitation was proportional with the bacterial number in the column. The specific CaCO3 precipitation rate of the resting cells was estimated as 4.0 ± 0.1 × 10(-3) μg CaCO3/cell. Larger amounts of CaCO3 precipitation were deposited in columns packed with small glass beads than in those packed with large glass beads, resulting in a greater reduction in the hydraulic conductivity of the columns containing small glass beads. Analysis using the Kozeny-Carman equation suggested that the effect of microbially induced CaCO3 precipitation on hydraulic conductivity was not due to the formation of individual CaCO3 crystals but instead that the precipitate aggregated with the glass beads, thus increasing their diameter and consequently decreasing the pore size in the column.

  14. Identification of hydraulic conductivity structure in sand and gravel aquifers: Cape Cod data set

    USGS Publications Warehouse

    Eggleston, J.R.; Rojstaczer, S.A.; Peirce, J.J.

    1996-01-01

    This study evaluates commonly used geostatistical methods to assess reproduction of hydraulic conductivity (K) structure and sensitivity under limiting amounts of data. Extensive conductivity measurements from the Cape Cod sand and gravel aquifer are used to evaluate two geostatistical estimation methods, conditional mean as an estimate and ordinary kriging, and two stochastic simulation methods, simulated annealing and sequential Gaussian simulation. Our results indicate that for relatively homogeneousand and gravel aquifers such as the Cape Cod aquifer, neither estimation methods nor stochastic simulation methods give highly accurate point predictions of hydraulic conductivity despite the high density of collected data. Although the stochastic simulation methods yielded higher errors than the estimation methods, the stochastic simulation methods yielded better reproduction of the measured In (K) distribution and better reproduction of local contrasts in In (K). The inability of kriging to reproduce high In (K) values, as reaffirmed by this study, provides a strong instigation for choosing stochastic simulation methods to generate conductivity fields when performing fine-scale contaminant transport modeling. Results also indicate that estimation error is relatively insensitive to the number of hydraulic conductivity measurementso long as more than a threshold number of data are used to condition the realizations. This threshold occurs for the Cape Cod site when there are approximately three conductivity measurements per integral volume. The lack of improvement with additional data suggests that although fine-scale hydraulic conductivity structure is evident in the variogram, it is not accurately reproduced by geostatistical estimation methods. If the Cape Cod aquifer spatial conductivity characteristics are indicative of other sand and gravel deposits, then the results on predictive error versus data collection obtained here have significant practical consequences

  15. Contaminant removal and hydraulic conductivity of laboratory rain garden systems for stormwater treatment.

    PubMed

    Good, J F; O'Sullivan, A D; Wicke, D; Cochrane, T A

    2012-01-01

    In order to evaluate the influence of substrate composition on stormwater treatment and hydraulic effectiveness, mesocosm-scale (180 L, 0.17 m(2)) laboratory rain gardens were established. Saturated (constant head) hydraulic conductivity was determined before and after contaminant (Cu, Zn, Pb and nutrients) removal experiments on three rain garden systems with various proportions of organic topsoil. The system with only topsoil had the lowest saturated hydraulic conductivity (160-164 mm/h) and poorest metal removal efficiency (Cu ≤ 69.0% and Zn ≤ 71.4%). Systems with sand and a sand-topsoil mix demonstrated good metal removal (Cu up to 83.3%, Zn up to 94.5%, Pb up to 97.3%) with adequate hydraulic conductivity (sand: 800-805 mm/h, sand-topsoil: 290-302 mm/h). Total metal amounts in the effluent were <50% of influent amounts for all experiments, with the exception of Cu removal in the topsoil-only system, which was negligible due to high dissolved fraction. Metal removal was greater when effluent pH was elevated (up to 7.38) provided by the calcareous sand in two of the systems, whereas the topsoil-only system lacked an alkaline source. Organic topsoil, a typical component in rain garden systems, influenced pH, resulting in poorer treatment due to higher dissolved metal fractions.

  16. Contrasting xylem vessel constraints on hydraulic conductivity between native and non-native woody understory species

    PubMed Central

    Smith, Maria S.; Fridley, Jason D.; Yin, Jingjing; Bauerle, Taryn L.

    2013-01-01

    We examined the hydraulic properties of 82 native and non-native woody species common to forests of Eastern North America, including several congeneric groups, representing a range of anatomical wood types. We observed smaller conduit diameters with greater frequency in non-native species, corresponding to lower calculated potential vulnerability to cavitation index. Non-native species exhibited higher vessel-grouping in metaxylem compared with native species, however, solitary vessels were more prevalent in secondary xylem. Higher frequency of solitary vessels in secondary xylem was related to a lower potential vulnerability index. We found no relationship between anatomical characteristics of xylem, origin of species and hydraulic conductivity, indicating that non-native species did not exhibit advantageous hydraulic efficiency over native species. Our results confer anatomical advantages for non-native species under the potential for cavitation due to freezing, perhaps permitting extended growing seasons. PMID:24348490

  17. Regional groundwater characteristics and hydraulic conductivity based on geological units in Korean peninsula

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Suk, H.

    2011-12-01

    In this study, about 2,000 deep observation wells, stream and/or river distribution, and river's density were analyzed to identify regional groundwater flow trend, based on the regional groundwater survey of four major river watersheds including Geum river, Han river, Youngsan-Seomjin river, and Nakdong river in Korea. Hydrogeologial data were collected to analyze regional groundwater flow characteristics according to geological units. Additionally, hydrological soil type data were collected to estimate direct runoff through SCS-CN method. Temperature and precipitation data were used to quantify infiltration rate. The temperature and precipitation data were also used to quantify evaporation by Thornthwaite method and to evaluate groundwater recharge, respectively. Understanding the regional groundwater characteristics requires the database of groundwater flow parameters, but most hydrogeological data include limited information such as groundwater level and well configuration. In this study, therefore, groundwater flow parameters such as hydraulic conductivities or transmissivities were estimated using observed groundwater level by inverse model, namely PEST (Non-linear Parameter ESTimation). Since groundwater modeling studies have some uncertainties in data collection, conceptualization, and model results, model calibration should be performed. The calibration may be manually performed by changing parameters step by step, or various parameters are simultaneously changed by automatic procedure using PEST program. In this study, both manual and automatic procedures were employed to calibrate and estimate hydraulic parameter distributions. In summary, regional groundwater survey data obtained from four major river watersheds and various data of hydrology, meteorology, geology, soil, and topography in Korea were used to estimate hydraulic conductivities using PEST program. Especially, in order to estimate hydraulic conductivity effectively, it is important to perform

  18. Deciphering transmissivity and hydraulic conductivity of the aquifer by vertical electrical sounding (VES) experiments in Northwest Bangladesh

    NASA Astrophysics Data System (ADS)

    Sattar, Golam Shabbir; Keramat, Mumnunul; Shahid, Shamsuddin

    2016-03-01

    The vertical electrical soundings (VESs) are carried out in 24 selective locations of Chapai-Nawabganj area of northwest Bangladesh to determine the transmissivity and hydraulic conductivity of the aquifer. Initially, the transmissivity and hydraulic conductivity are determined from the pumping data of nearby available production wells. Afterwards, the T and K are correlated with geoelectrical resistance and the total resistivity of the aquifer. The present study deciphers the functional analogous relations of the geoelectrical resistance with the transmissivity and the total resistivity with the hydraulic conductivity of the aquifer in northwest Bangladesh. It has been shown that the given equations provide reasonable values of transmissivity and hydraulic conductivity where pumping test information is unavailable. It can be expected that the aquifer properties viz. transmissivity and hydraulic conductivity of geologically similar area can be determined with the help of the obtained equations by conducting VES experiments.

  19. Toward A 3-D Picture of Hydraulic Conductivity With Multilevel Slug Tests

    NASA Astrophysics Data System (ADS)

    McElwee, C. D.; McElwee, C. D.; Ross, H. C.

    2001-12-01

    The GEMS (Geohydrologic Experiment and Monitoring Site) field area has been established (in the Kansas River valley near Lawrence, Kansas) for a variety of reasons relating to research and teaching in hydrogeology at the University of Kansas. Over 70 wells have been installed for various purposes. The site overlies an alluvial aquifer with a total thickness of about 70 feet. The water table is typically about 20 feet below the surface, giving a total saturated thickness of about 50 feet. The upper part of the aquifer is finer material consisting of silt and clay. Typically, the lower 35 feet of the aquifer is sand and gravel. A number of wells through out the site are fully screened through the sand and gravel aquifer. Some of these fully screened wells are larger diameters; however, most wells are constructed of 2 inch PVC casing. Slug tests are widely used in hydrogeology to measure hydraulic conductivity. Over the last several years we have been conducting research to improve the slug test method. We have previously reported the detailed structure of hydraulic conductivity that can be seen in a 5 inch well (McElwee and Zemansky, EOS, v. 80, no. 46, p. F397, 1999) at this site, using multilevel slug tests. The existing 2 inch, fully screened wells are spread out over the site and offer the opportunity for developing a 3-D picture of the hydraulic conductivity distribution. However, it is difficult to develop a system that allows multilevel slug tests to be done accurately and efficiently in a 2 inch well. This is especially true in regions of very high hydraulic conductivity, where the water velocity in the casing will be relatively high. The resistance caused by frictional forces in the equipment must be minimized and a model taking account of these forces must be used. We have developed a system (equipment, software, and technique) for performing multilevel slug tests in 2 inch wells. Some equipment configurations work better than others. The data that we have

  20. Comparison of Measured and Modelled Hydraulic Conductivities of Fractured Sandstone Cores

    NASA Astrophysics Data System (ADS)

    Baraka-Lokmane, S.; Liedl, R.; Teutsch, G.

    - A new method for characterising the detailed fracture geometry in sandstone cores is presented. This method is based on the impregnation of samples with coloured resin, without significant disturbance of the fractures. The fractures are made clearly visible by the resin, thus allowing the fracture geometry to be examined digitally. In order to model the bulk hydraulic conductivity, the samples are sectioned serially perpendicular to the flow direction. The hydraulic conductivity of individual sections is estimated by summing the contribution of the matrix and each fracture from the digital data. Finally, the hydraulic conductivity of the bulk sample is estimated by a harmonic average in series along the flow path. Results of this geometrical method are compared with actual physical conductivity values measured from fluid experiments carried out prior to sectioning. The predicted conductivity from the fracture geometry parameters (e.g., fracture aperture, fracture width, fracture length and fracture relative roughness all measured using an optical method) is in good agreement with the independent physical measurements, thereby validating the approach.

  1. Determining the soil hydraulic conductivity by means of a field scale internal drainage

    NASA Astrophysics Data System (ADS)

    Severino, Gerardo; Santini, Alessandro; Sommella, Angelo

    2003-03-01

    Spatial variations of water content in large extents soils (vadose zone) are highly affected by the natural heterogeneity of the porous medium. This implies that the magnitude of the hydraulic properties, especially the conductivity, varies in an irregular manner with scale. Determining mean values of hydraulic properties will not suffice to accurately quantify water flow in the vadose zone. At field scale proper field measurements have to be carried out, similar to standard laboratory methods that also characterize the spatial variability of the hydraulic properties. Toward this aim an internal drainage test has been conducted at Ponticelli site near Naples (Italy) where water content and pressure head were monitored at 50 locations of a 2×50 m 2 plot. The present paper illustrates a method to quantify the mean value and the spatial variability of the hydraulic parameters needed to calibrate the soil conductivity curve at field scale (hereafter defined as field scale hydraulic conductivity). A stochastic model that regards the hydraulic parameters as random space functions (RSFs) is derived by adopting the stream tube approach of Dagan and Bresler (1979). Owing to the randomness of the hydraulic parameters, even the water content θ will be a RSF whose mean value (hereafter termed field scale water content) is obtained as an ensemble average over all the realizations of a local analytical solution of Richards' equation. It is shown that the most frequent data collection should be carried out in the initial stage of the internal drainage experiment, when the most significant changes in water content occur. The model parameters are obtained by a standard least square optimization procedure using water content data at a certain depth (z=30 cm) for several times ( t=5, 24, 48, 96, 144, 216, 312, 408, 576, 744, 912 h). The reliability of the proposed method is then evaluated by comparing the predicted water content with observations at different depths ( z=45, 60, 75

  2. Recovery performance in xylem hydraulic conductivity is correlated with cavitation resistance for temperate deciduous tree species.

    PubMed

    Ogasa, Mayumi; Miki, Naoko H; Murakami, Yuki; Yoshikawa, Ken

    2013-04-01

    Woody species hydraulically vulnerable to xylem cavitation may experience daily xylem embolism. How such species cope with the possibility of accumulated embolism is unclear. In this study, we examined seven temperate woody species to assess the hypothesis that low cavitation resistance (high vulnerability to cavitation) is compensated by high recovery performance via vessel refilling. We also evaluated leaf functional and xylem structural traits. The xylem recovery index (XRI), defined as the ratio of xylem hydraulic conductivity in plants rewatered after soil drought to that in plants under moist conditions, varied among species. The xylem water potential causing 50% loss of hydraulic conductivity (Ψ50) varied among the species studied, whereas only a slight difference was detected with respect to midday xylem water potential (Ψmin), indicating smaller hydraulic safety margins (Ψmin - Ψ50) for species more vulnerable to cavitation. Cavitation resistance (|Ψ50|) was negatively correlated with XRI across species, with cavitation-vulnerable species showing a higher performance in xylem recovery. Wood density was positively correlated with cavitation resistance and was negatively correlated with XRI. These novel results reveal that coordination exists between cavitation resistance and xylem recovery performance, in association with wood functional traits such as denser wood for cavitation-resistant xylem and less-dense but water-storable wood for refillable xylem. These findings provide insights into long-term maintenance of water transport in tree species growing under variable environmental conditions.

  3. Identification, characterization, and analysis of hydraulically conductive fractures in granitic basement rocks, Millville, Massachusetts

    USGS Publications Warehouse

    Paillet, Frederick L.; Ollila, P.W.

    1994-01-01

    A suite of geophysical logs designed to identify and characterize fractures and water production in fractures was run in six bedrock boreholes at a ground-water contamination site near the towns of Millville and Uxbridge in south-central Massachusetts. The geophysical logs used in this study included conventional gamma, single-point resistance, borehole fluid resistivity, caliper, spontaneous potential, and temperature; and the borehole televiewer and heat-pulse flowmeter, which are not usually used to log bedrock water-supply wells. Downward flow under ambient hydraulic-head conditions was measured in three of the boreholes at the site, and the profile of fluid column resistivity inferred from the logs indicated downward flow in all six boreholes. Steady injection tests at about 1.0 gallon per minute were used to identify fractures capable of conducting flow under test conditions. Sixteen of 157 fracturesidentified on the televiewer logs and interpreted as permeable fractures in the data analysis were determined to conduct flow under ambient hydraulic-head conditions or during injection. Hydraulic-head monitoring in the bedrock boreholes indicated a consistent head difference between the upper and lower parts of the boreholes. This naturally occurring hydraulic-head condition may account, in part, for the transport of contaminants from the overlying soil into the bedrock aquifer. The downward flow may also account for the decrease in contaminant concentrations found in some boreholes after routine use of the boreholes as water-supply wells was discontinued.

  4. Polyacrylamide effect on hydraulic conductivity of hardsetting soils in Northeast of Brazil

    NASA Astrophysics Data System (ADS)

    Silva, Laércio; Almeida, Brivaldo; Melo, Diego; Marques, Karina; Almeida, Ceres

    2013-04-01

    Among soil hydro-physical properties, hydraulic conductivity is more sensitive to changes in soil structure. Hydraulic conductivity describes the ease with which a fluid (usually water) can move through pore spaces or fractures. It depends on the intrinsic permeability of the material and on the degree of saturation, and on the density and viscosity of the fluid. Hardsetting soils present very low hydraulic conductivity values. When dry, these soils show high penetration resistance and consistency extremely hard, but change to friable when moist. In this condition are poorly structured, slaking when moist, limit agricultural machinery use and it may reduce the growth of the root system. In Brazil, these soils occur throughout of coastal zone in flat areas called "coastal tableland". Chemical ameliorant, such as polymers based on anionic polyacrylamide (PAM), improve hydraulic conductivity of soil in hardsetting soils. The primary functions of polyacrylamide soil conditioners are to increase soil tilth, aeration, and porosity and reduce compaction and water run-off. PAM effect is attributed to its ability to expand when placed in water, storing it in soil pore space, releasing it gradually to the plants. This process occurs by reducing the water flow through the pores of the soil, due to water molecules can be absorbed by PAM, providing water gradually. Thus, this study tested the hypothesis that PAM reduces the soil hardsetting character. The area is located in coastal zone in Goiana city, Pernambuco, northeastern of Brazil. This soil is typical hardsetting soil. Intact soil cores were collected from four horizons until 70cm depth. In the laboratory, the soil cores were saturated with different PAM concentrations (0.01, 0.005, 0.00125%) and H2O (control). Saturated hydraulic conductivity (Ksat) was determined using a constant head method, according to Klute and Dirksen (1986). Four replicates were used for each horizon and Tukey test at 5% probability was used by

  5. Simple hydraulic conductivity estimation by the Kalman filtered double constraint method.

    PubMed

    El-Rawy, M A; Batelaan, O; Zijl, W

    2015-01-01

    This paper presents the Kalman Filtered Double Constraint Method (DCM-KF) as a technique to estimate the hydraulic conductivities in the grid blocks of a groundwater flow model. The DCM is based on two forward runs with the same initial grid block conductivities, but with alternating flux-head conditions specified on parts of the boundary and the wells. These two runs are defined as: (1) the flux run, with specified fluxes (recharge and well abstractions), and (2) the head run, with specified heads (measured in piezometers). Conductivities are then estimated as the initial conductivities multiplied by the fluxes obtained from the flux run and divided by the fluxes obtained from the head run. The DCM is easy to implement in combination with existing models (e.g., MODFLOW). Sufficiently accurate conductivities are obtained after a few iterations. Because of errors in the specified head-flux couples, repeated estimation under varying hydrological conditions results in different conductivities. A time-independent estimate of the conductivities and their inaccuracy can be obtained by a simple linear KF with modest computational requirements. For the Kleine Nete catchment, Belgium, the DCM-KF yields sufficiently accurate calibrated conductivities. The method also results in distinguishing regions where the head-flux observations influence the calibration from areas where it is not able to influence the hydraulic conductivity.

  6. Characterisation of river-aquifer exchange fluxes: The role of spatial patterns of riverbed hydraulic conductivities

    NASA Astrophysics Data System (ADS)

    Tang, Q.; Kurtz, W.; Brunner, P.; Vereecken, H.; Hendricks Franssen, H.-J.

    2015-12-01

    Interactions between surface water and groundwater play an essential role in hydrology, hydrogeology, ecology, and water resources management. A proper characterisation of riverbed structures might be important for estimating river-aquifer exchange fluxes. The ensemble Kalman filter (EnKF) is commonly used in subsurface flow and transport modelling for estimating states and parameters. However, EnKF only performs optimally for MultiGaussian distributed parameter fields, but the spatial distribution of streambed hydraulic conductivities often shows non-MultiGaussian patterns, which are related to flow velocity dependent sedimentation and erosion processes. In this synthetic study, we assumed a riverbed with non-MultiGaussian channel-distributed hydraulic parameters as a virtual reference. The synthetic study was carried out for a 3-D river-aquifer model with a river in hydraulic connection to a homogeneous aquifer. Next, in a series of data assimilation experiments three different groups of scenarios were studied. In the first and second group of scenarios, stochastic realisations of non-MultiGaussian distributed riverbeds were inversely conditioned to state information, using EnKF and the normal score ensemble Kalman filter (NS-EnKF). The riverbed hydraulic conductivity was oriented in the form of channels (first group of scenarios) or, with the same bimodal histogram, without channelling (second group of scenarios). In the third group of scenarios, the stochastic realisations of riverbeds have MultiGaussian distributed hydraulic parameters and are conditioned to state information with EnKF. It was found that the best results were achieved for channel-distributed non-MultiGaussian stochastic realisations and with parameter updating. However, differences between the simulations were small and non-MultiGaussian riverbed properties seem to be of less importance for subsurface flow than non-MultiGaussian aquifer properties. In addition, it was concluded that both En

  7. A Field Study of How Hydraulic Conductivity Heterogeneity Influences Hyporheic Exchange

    NASA Astrophysics Data System (ADS)

    Ryan, R. J.; Boufadel, M. C.

    2006-05-01

    A conservative solute tracer experiment was conducted in Indian Creek, a small urban stream located in Philadelphia, Pennsylvania to investigate the role of bed sediment hydraulic conductivity on hyporheic (surface- subsurface) exchange. Sodium Bromide (NaBr) was used as a conservative tracer, and it was monitored in the surface water at two stations and in the upper bed sediments (shallow hyporheic zone extending from 7.5 cm to 10 cm below the streambed). The hydraulic conductivity (K) of the upper bed sediments and the lower bed sediments (10 cm to 12.5 cm below the streambed) was measured in situ. High tracer concentrations were observed in the upper layer at locations where the hydraulic conductivity of the upper layer was larger than that of the lower layer. Low concentrations in the upper layer were observed in the converse case. A statistically significant relationship between the mass retained in the upper layer and the difference of K values between layers was observed.

  8. Absolute hydraulic conductivity estimates from aquifer pumping and tracer tests in a stratified aquifer

    SciTech Connect

    Thorbjarnarson, K.W.; Huntley, D.; McCarty, J.J.

    1998-01-01

    Independent estimates of absolute hydraulic conductivity were obtained by a standard aquifer pumping test and a forced-gradient tracer test in a highly heterogeneous aquifer. An aquifer hydraulic test was conducted to evaluate the average hydraulic conductivity (K), and to establish steady-state flow for the tracer test. An average K of 48 m/day was interpreted from the draw-down data in a fully screened well. Type-curve matching and simulation with MODFLOW of the hydraulic response in partially screened wells indicates K of 10 to 15 m/day for the upper section and 71 to 73 m/day for the deeper section. Iodide and fluorescent dye tracers were injected at low rates in wells located approximately 8 m upgradient of the production well. Tracer breakthrough was monitored in the production well and at ten depth intervals within the fully screened monitoring well. Interpretation of tracer response in the production well reveals tracer transport is limited to a 3.9 m thick section of the 20 m thick aquifer, with a hydraulic conductivity of 248 m/day. However, the depth distribution of these permeable strata cannot be determined from the production well tracer response. When sampled at 1.5 m depth intervals in the monitoring well, breakthrough was observed in only three intervals along the entire 18.2 m screened well. K estimates from tracer travel time within discrete high-permeability strata range from 31 to 317 m/day. Inclusion of permeameter K estimates for the lower permeability aquifer sands result in a range in relative K of 0.01 to 1.0. This field site has the highest absolute K estimate for a discrete stratum and the widest range in relative hydraulic conductivity among research field sites with K estimates for discrete strata. Within such a highly stratified aquifer, the use of an average K from an aquifer pumping test to predict solute transport results in great underestimation of transport distances for a given time period.

  9. An inverse procedure for estimating the unsaturated hydraulic conductivities of volcanic tuffs

    SciTech Connect

    Zimmerman, R.W.; Bodvarsson, G.S.; Flint, A.L.; Flint, L.E.

    1993-01-01

    A procedure is developed for estimating the hydraulic conductivity function of unsaturated volcanic tuff, using measurements of the sorptivity and capillary pressure functions. The method assumes that the sorptivity is a linear function of the initial saturation, as is suggested by experimental data. The procedure is tested on a vitrified tuff from the Calico Hills unit at Yucca Mountain, and the predicted conductivities are in reasonable agreement with measured values. Further tests of this method are needed to establish whether or not it can be routinely used for conductivity predictions.

  10. Hydraulic conductivity of stratified unsaturated soils: Effects of random variability and layering

    NASA Astrophysics Data System (ADS)

    Gohardoust, Mohammad R.; Sadeghi, Morteza; Ziatabar Ahmadi, Mirkhalegh; Jones, Scott B.; Tuller, Markus

    2017-03-01

    For simulating flow in heterogeneous porous media it is computationally more efficient to define an equivalent effective (i.e., upscaled) medium rather than considering detailed spatial heterogeneities. In this paper, the effective unsaturated hydraulic conductivity (K) of soils exhibiting random variability, layering, or both is calculated based on numerical simulations of steady-state evaporation from a shallow water table. It is demonstrated that the effective K of randomly-varied coarse-textured soils generally falls between the harmonic and geometric means of the unsaturated hydraulic conductivities of the constituting soils. Layering and random variability when occurring concurrently magnify each other's effects on effective K. As a result, the higher the degree of heterogeneity, the lower the effective K. Therefore, neglecting either random spatial variability or layering in numerical simulations can lead to significant overestimation of water flow in soils.

  11. Relating hydraulic conductivity and hyporheic zone biogeochemical processing to conserve and restore river ecosystem services.

    PubMed

    Mendoza-Lera, Clara; Datry, Thibault

    2017-02-01

    River management practices commonly attempt to improve habitat and ecological functioning (e.g. biogeochemical processing or retention of pollutants) by restoring hydrological exchange with the hyporheic zone (i.e. hyporheic flow) in an effort to increase mass transfer of solutes (nutrients, carbon and electron acceptors such as oxygen or nitrate). However, even when hyporheic flow is increased, often no significant changes in biogeochemical processing are detected. Some of these apparent paradox result from the simplistic assumption that there is a direct relationship between hyporheic flow and biogeochemical processing. We propose an alternative conceptual model that hyporheic flow is non-linearly related with biogeochemical processing. Based on the different solute mass transfer and area available for colonization among hydraulic conductivities, we hypothesize that biogeochemical processing in the hyporheic zone follows a Gaussian function depending on hyporheic hydraulic conductivity. After presenting the conceptual model and its domain of application, we discuss the potential implications, notably for river restoration and further hyporheic research.

  12. Method and apparatus for determining the hydraulic conductivity of earthen material

    DOEpatents

    Sisson, James B.; Honeycutt, Thomas K.; Hubbell, Joel M.

    1996-01-01

    An earthen material hydraulic conductivity determining apparatus includes, a) a semipermeable membrane having a fore earthen material bearing surface and an opposing rear liquid receiving surface; b) a pump in fluid communication with the semipermeable membrane rear surface, the pump being capable of delivering liquid to the membrane rear surface at a plurality of selected variable flow rates or at a plurality of selected variable pressures; c) a liquid reservoir in fluid communication with the pump, the liquid reservoir retaining a liquid for pumping to the membrane rear surface; and d) a pressure sensor in fluid communication with the membrane rear surface to measure pressure of liquid delivered to the membrane by the pump. Preferably, the pump comprises a pair of longitudinally opposed and aligned syringes which are operable to simultaneously fill one syringe while emptying the other. Methods of determining the hydraulic conductivity of earthen material are also disclosed.

  13. Method and apparatus for determining the hydraulic conductivity of earthen material

    DOEpatents

    Sisson, J.B.; Honeycutt, T.K.; Hubbell, J.M.

    1996-05-28

    An earthen material hydraulic conductivity determining apparatus includes: (a) a semipermeable membrane having a fore earthen material bearing surface and an opposing rear liquid receiving surface; (b) a pump in fluid communication with the semipermeable membrane rear surface, the pump being capable of delivering liquid to the membrane rear surface at a plurality of selected variable flow rates or at a plurality of selected variable pressures; (c) a liquid reservoir in fluid communication with the pump, the liquid reservoir retaining a liquid for pumping to the membrane rear surface; and (d) a pressure sensor in fluid communication with the membrane rear surface to measure pressure of liquid delivered to the membrane by the pump. Preferably, the pump comprises a pair of longitudinally opposed and aligned syringes which are operable to simultaneously fill one syringe while emptying the other. Methods of determining the hydraulic conductivity of earthen material are also disclosed. 15 figs.

  14. The effects of overburden stress on the specific storage and hydraulic conductivity of artesian aquifers

    USGS Publications Warehouse

    Sepulveda, N.; Zack, A.L.

    1991-01-01

    A mathematical algorithm is developed to determine the depth-dependent profiles of specific storage and hydraulic conductivity resulting from overburden stress in horizontally isotropic artesian aquifers. Vertical variations in the void ratio of the aquifer matrix brought about by overburden stresses determine the pore-volume compressibility and matrix permeability at specific depths within the aquifers which, in turn, determine the depth-dependent profiles of specific storage and hydraulic conductivity. Time-drawdown curves are obtained for two sands subjected to different overburden stresses. For shallow artesian aquifers with low overburden stress and high aquifer matrix compressibility, noticeable vertical gradients in specific storage occur. These vertical gradients cause deviations from the classical time-drawdown curves defined by the Theis solution. These deviations are negligible for deep artesian aquifers. ?? 1991.

  15. Silicon Enhances Water Stress Tolerance by Improving Root Hydraulic Conductance in Solanum lycopersicum L.

    PubMed Central

    Shi, Yu; Zhang, Yi; Han, Weihua; Feng, Ru; Hu, Yanhong; Guo, Jia; Gong, Haijun

    2016-01-01

    Silicon (Si) can improve drought tolerance in plants, but the mechanism is still not fully understood. Previous research has been concentrating on Si’s role in leaf water maintenance in Si accumulators, while little information is available on its role in water uptake and in less Si-accumulating plants. Here, we investigated the effects of Si on root water uptake and its role in decreasing oxidative damage in relation to root hydraulic conductance in tomato (Solanum lycopersicum ‘Zhongza No.9’) under water stress. Tomato seedlings were subjected to water stress induced by 10% (w/v) polyethylene glycol-6000 in the absence or presence of 2.5 mM added silicate. The results showed that Si addition ameliorated the inhibition in tomato growth and photosynthesis, and improved water status under water stress. The root hydraulic conductance of tomato plants was decreased under water stress, and it was significantly increased by added Si. There was no significant contribution of osmotic adjustment in Si-enhanced root water uptake under water stress. The transcriptions of plasma membrane aquaporin genes were not obviously changed by Si under water stress. Water stress increased the production of reactive oxygen species and induced oxidative damage, while added Si reversed these. In addition, Si addition increased the activities of superoxide dismutase and catalase and the levels of ascorbic acid and glutathione in the roots under stress. It is concluded that Si enhances the water stress tolerance via enhancing root hydraulic conductance and water uptake in tomato plants. Si-mediated decrease in membrane oxidative damage may have contributed to the enhanced root hydraulic conductance. PMID:26941762

  16. Estimation of hydraulic conductivity of a coastal aquifer using satellite imagery

    NASA Astrophysics Data System (ADS)

    Rebolledo-Vieyra, M.; Iglesias-Prieto, R.; Marino-Tapia, I.

    2012-12-01

    The northern Yucatan Peninsula is characterized by a young and dynamic karstic system that yields very high secondary porosity and permeability. However, we have little, if none, knowledge about the hydraulic conductivity and the amount of groundwater being discharged in to ocean. Here we present and estimation of the hydraulic conductivity and quantity of groundwater being discharged by the northern Yucatan Peninsula coastal aquifer into the Gulf of Mexico, using the Sea Surface Temperature (SST) Images offshore the Yucatan coast, where we have detected a thermal anomaly that appears few hours after heavy rainfall in northern Yucatan. We associated these thermal anomalies of the SST to the groundwater being discharged into the ocean. To test our hypothesis we conducted a review of extreme rainfall events in the last 10 years; in parallel we used data from pressure and flow direction gauges installed in a known submarine groundwater discharge (SGD) to estimate the hydraulic conductivity and the quantity of groundwater being discharged. The satellite imagery and the rainfall data, allowed us to estimate the time lag between the rainfall and the SGD beginning, along with the hydraulic data from the gauges we have estimated the hydrogeological parameters of the coastal aquifer. This data is very important to contribute to the understanding the hydrogeological setting of the Yucatan coastal aquifer and its implications of the impact of human activities on the water quality. July 29th, 2005, NOAA's Sea Surface Temperature (SST) image of the Gulf of Mexico taken a week after hurricane Emily (2005). A thermal low is present offshore northern Yucatan.

  17. Silicon Enhances Water Stress Tolerance by Improving Root Hydraulic Conductance in Solanum lycopersicum L.

    PubMed

    Shi, Yu; Zhang, Yi; Han, Weihua; Feng, Ru; Hu, Yanhong; Guo, Jia; Gong, Haijun

    2016-01-01

    Silicon (Si) can improve drought tolerance in plants, but the mechanism is still not fully understood. Previous research has been concentrating on Si's role in leaf water maintenance in Si accumulators, while little information is available on its role in water uptake and in less Si-accumulating plants. Here, we investigated the effects of Si on root water uptake and its role in decreasing oxidative damage in relation to root hydraulic conductance in tomato (Solanum lycopersicum 'Zhongza No.9') under water stress. Tomato seedlings were subjected to water stress induced by 10% (w/v) polyethylene glycol-6000 in the absence or presence of 2.5 mM added silicate. The results showed that Si addition ameliorated the inhibition in tomato growth and photosynthesis, and improved water status under water stress. The root hydraulic conductance of tomato plants was decreased under water stress, and it was significantly increased by added Si. There was no significant contribution of osmotic adjustment in Si-enhanced root water uptake under water stress. The transcriptions of plasma membrane aquaporin genes were not obviously changed by Si under water stress. Water stress increased the production of reactive oxygen species and induced oxidative damage, while added Si reversed these. In addition, Si addition increased the activities of superoxide dismutase and catalase and the levels of ascorbic acid and glutathione in the roots under stress. It is concluded that Si enhances the water stress tolerance via enhancing root hydraulic conductance and water uptake in tomato plants. Si-mediated decrease in membrane oxidative damage may have contributed to the enhanced root hydraulic conductance.

  18. Local-scale variability of seepage and hydraulic conductivity in a shallow gravel-bed river

    USGS Publications Warehouse

    Rosenberry, D.O.; Pitlick, J.

    2009-01-01

    Seepage rate and direction measured with a seepage metre modified for use in flowing water were greatly variable along a 300-m reach of a shallow, gravel-bed river and depended primarily on the local-scale bed topography. The median value of seepage measured at 24 locations was 24 cm/day, but seepage measured at specific sites ranged from -340 to +237 cm/day. Seepage also varied substantially over periods of hours to days and occasionally reversed direction in response to evolution of the sediment bed. Vertical hydraulic conductivity was related to seepage direction and was larger during upward seepage than during downward seepage; with differences ranging from 4 to 40% in areas of active sediment transport to more than an order of magnitude in areas where current was too slow to mobilize bed sediment. Seepage was poorly related to hydraulic gradient measured over vertical distances of 0.3 m and appeared to be opposite the hydraulic gradient at 18% of the locations where both parameters were measured. Results demonstrate the scale dependence of these measurements in coarse-grained hyporheic settings and indicate that hydraulic gradients should be determined over a much shorter vertical increment if used to indicate exchange across the sediment-water interface. Published in 2009 by John Wiley & Sons, Ltd.

  19. Putative Role of Aquaporins in Variable Hydraulic Conductance of Leaves in Response to Light1

    PubMed Central

    Cochard, Hervé; Venisse, Jean-Stéphane; Barigah, Têtè Sévérien; Brunel, Nicole; Herbette, Stéphane; Guilliot, Agnès; Tyree, Melvin T.; Sakr, Soulaiman

    2007-01-01

    Molecular and physiological studies in walnut (Juglans regia) are combined to establish the putative role of leaf plasma membrane aquaporins in the response of leaf hydraulic conductance (Kleaf) to irradiance. The effects of light and temperature on Kleaf are described. Under dark conditions, Kleaf was low, but increased by 400% upon exposure to light. In contrast to dark conditions, Kleaf values of light-exposed leaves responded to temperature and 0.1 mm cycloheximide treatments. Furthermore, Kleaf was not related to stomatal aperture. Data of real-time reverse transcription-polymerase chain reaction showed that Kleaf dynamics were tightly correlated with the transcript abundance of two walnut aquaporins (JrPIP2,1 and JrPIP2,2). Low Kleaf in the dark was associated with down-regulation, whereas high Kleaf in the light was associated with up-regulation of JrPIP2. Light responses of Kleaf and aquaporin transcripts were reversible and inhibited by cycloheximide, indicating the importance of de novo protein biosynthesis in this process. Our results indicate that walnut leaves can rapidly change their hydraulic conductance and suggest that these changes can be explained by regulation of plasma membrane aquaporins. Model simulation suggests that variable leaf hydraulic conductance in walnut might enhance leaf gas exchanges while buffering leaf water status in response to ambient light fluctuations. PMID:17114274

  20. Hydraulic conductivity, photosynthesis and leaf water balance in six evergreen woody species from fall to winter.

    PubMed

    Taneda, Haruhiko; Tateno, Masaki

    2005-03-01

    To confirm that freeze-thaw embolism is a primary stress for evergreen woody species in winter, hydraulic conductivity, photosynthesis and leaf water potential were measured during fall and winter in trees growing in a cool temperate zone (Nikko) and in a warm temperate zone (Tokyo). We examined two evergreen conifers that naturally occur in the cool temperate zone (Abies firma Siebold & Zucc. and Abies homolepis Siebold & Zucc.), and four evergreen broad-leaved woody species that are restricted to the warm temperate zone (Camellia japonica L., Cinnamomum camphora (L.) J. Presl, Ilex crenata Thunb. and Quercus myrsinaefolia Blume). In Tokyo, where no freeze-thaw cycles of xylem sap occurred, hydraulic conductivity, photosynthesis and water balance remained constant during the experimental period. In Nikko, where there were 38 daily freeze-thaw cycles by February, neither of the tracheid-bearing evergreen conifers showed xylem embolism or leaf water deficits. Similarly, the broad-leaved evergreen trees with small-diameter vessels did not exhibit severe embolism or water deficits and maintained CO(2) assimilation even in January. In contrast, the two broad-leaved evergreen trees with large-diameter vessels showed significantly reduced hydraulic conductivity and shoot die-back in winter. We conclude that freeze-thaw embolism restricts evergreen woody species with large-diameter vessels to the warm temperate zone, whereas other stresses limit the distribution of broad-leaved trees, that have small-diameter vessels, but which are restricted to the warm temperate zone.

  1. High-resolution saturated hydraulic conductivity logging of borehole cores using air permeability measurements

    NASA Astrophysics Data System (ADS)

    Rogiers, B.; Winters, P.; Huysmans, M.; Beerten, K.; Mallants, D.; Gedeon, M.; Batelaan, O.; Dassargues, A.

    2014-09-01

    Saturated hydraulic conductivity ( K s) is one of the most important parameters determining groundwater flow and contaminant transport in both unsaturated and saturated porous media. The hand-held air permeameter technique was investigated for high-resolution hydraulic conductivity determination on borehole cores using a spatial resolution of ˜0.05 m. The suitability of such air permeameter measurements on friable to poorly indurated sediments was tested to improve the spatial prediction of classical laboratory-based K s measurements obtained at a much lower spatial resolution (˜2 m). In total, 368 K s measurements were made on ˜350 m of borehole cores originating from the Campine basin, northern Belgium, while ˜5,230 air permeability measurements were performed on the same cores, resulting in a K s range of seven orders of magnitude. Cross-validation demonstrated that, using air permeameter data as the secondary variable for laboratory based K s measurements, the performance increased from R 2 = 0.35 for ordinary kriging (laboratory K s only) to R 2 = 0.61 for co-kriging. The separate treatment of horizontal and vertical hydraulic conductivity revealed considerable anisotropy in certain lithostratigraphical units, while others were clearly isotropic at the sample scale. Air permeameter measurements on borehole cores provide a cost-effective way to improve spatial predictions of traditional laboratory based K s.

  2. Optimal design of pump-and-treat systems under uncertain hydraulic conductivity and plume distribution.

    PubMed

    Baú, Domenico A; Mayer, Alex S

    2008-08-20

    In this work, we present a stochastic optimal control framework for assisting the management of the cleanup by pump-and-treat of polluted shallow aquifers. In the problem being investigated, hydraulic conductivity distribution and dissolved contaminant plume location are considered as the uncertain variables. The framework considers the subdivision of the cleanup horizon in a number of stress periods over which the pumping policy implemented until that stage is dynamically adjusted based upon new information that has become available in the previous stages. In particular, by following a geostatistical approach, we study the idea of monitoring the cumulative contaminant mass extracted from the installed recovery wells, and using these measurements to generate conditional realizations of the hydraulic conductivity field. These realizations are thus used to obtain a more accurate evaluation of the initial plume distribution, and modify accordingly the design of the pump-and-treat system for the remainder of the remedial process. The study indicates that measurements of contaminant mass extracted from pumping wells retain valuable information about the plume location and the spatial heterogeneity characterizing the hydraulic conductivity field. However, such an information may prove quite soft, particularly in the instances where recovery wells are installed in regions where contaminant concentration is low or zero. On the other hand, integrated solute mass measurements may effectively allow for reducing parameter uncertainty and identifying the plume distribution if more recovery wells are available, in particular in the early stages of the cleanup process.

  3. The effect of subsurface military detonations on vadose zone hydraulic conductivity, contaminant transport and aquifer recharge

    NASA Astrophysics Data System (ADS)

    Lewis, Jeffrey; Burman, Jan; Edlund, Christina; Simonsson, Louise; Berglind, Rune; Leffler, Per; Qvarfort, Ulf; Thiboutot, Sonia; Ampleman, Guy; Meuken, Denise; Duvalois, Willem; Martel, Richard; Sjöström, Jan

    2013-03-01

    Live fire military training involves the detonation of explosive warheads on training ranges. The purpose of this experiment is to evaluate the hydrogeological changes to the vadose zone caused by military training with high explosive ammunition. In particular, this study investigates artillery ammunition which penetrates underground prior to exploding, either by design or by defective fuze mechanisms. A 105 mm artillery round was detonated 2.6 m underground, and hydraulic conductivity measurements were taken before and after the explosion. A total of 114 hydraulic conductivity measurements were obtained within a radius of 3 m from the detonation point, at four different depths and at three different time periods separated by 18 months. This data was used to produce a three dimensional numerical model of the soil affected by the exploding artillery round. This model was then used to investigate potential changes to aquifer recharge and contaminant transport caused by the detonating round. The results indicate that an exploding artillery round can strongly affect the hydraulic conductivity in the vadose zone, increasing it locally by over an order of magnitude. These variations, however, appear to cause relatively small changes to both local groundwater recharge and contaminant transport.

  4. The effect of subsurface military detonations on vadose zone hydraulic conductivity, contaminant transport and aquifer recharge.

    PubMed

    Lewis, Jeffrey; Burman, Jan; Edlund, Christina; Simonsson, Louise; Berglind, Rune; Leffler, Per; Qvarfort, Ulf; Thiboutot, Sonia; Ampleman, Guy; Meuken, Denise; Duvalois, Willem; Martel, Richard; Sjöström, Jan

    2013-03-01

    Live fire military training involves the detonation of explosive warheads on training ranges. The purpose of this experiment is to evaluate the hydrogeological changes to the vadose zone caused by military training with high explosive ammunition. In particular, this study investigates artillery ammunition which penetrates underground prior to exploding, either by design or by defective fuze mechanisms. A 105 mm artillery round was detonated 2.6 m underground, and hydraulic conductivity measurements were taken before and after the explosion. A total of 114 hydraulic conductivity measurements were obtained within a radius of 3m from the detonation point, at four different depths and at three different time periods separated by 18months. This data was used to produce a three dimensional numerical model of the soil affected by the exploding artillery round. This model was then used to investigate potential changes to aquifer recharge and contaminant transport caused by the detonating round. The results indicate that an exploding artillery round can strongly affect the hydraulic conductivity in the vadose zone, increasing it locally by over an order of magnitude. These variations, however, appear to cause relatively small changes to both local groundwater recharge and contaminant transport.

  5. The Péclet effect on leaf water enrichment correlates with leaf hydraulic conductance and mesophyll conductance for CO(2).

    PubMed

    Ferrio, Juan Pedro; Pou, Alícia; Florez-Sarasa, Igor; Gessler, Arthur; Kodama, Naomi; Flexas, Jaume; Ribas-Carbó, Miquel

    2012-03-01

    Leaf water gets isotopically enriched through transpiration, and diffusion of enriched water through the leaf depends on transpiration flow and the effective path length (L). The aim of this work was to relate L with physiological variables likely to respond to similar processes. We studied the response to drought and vein severing of leaf lamina hydraulic conductance (K(lamina) ), mesophyll conductance for CO(2) (g(m) ) and leaf water isotope enrichment in Vitis vinifera L cv. Grenache. We hypothesized that restrictions in water pathways would reduce K(lamina) and increase L. As a secondary hypothesis, we proposed that, given the common pathways for water and CO(2) involved, a similar response should be found in g(m) . Our results showed that L was strongly related to mesophyll variables, such as K(lamina) or g(m) across experimental drought and vein-cutting treatments, showing stronger relationships than with variables included as input parameters for the models, such as transpiration. Our findings were further supported by a literature survey showing a close link between L and leaf hydraulic conductance (K(leaf) = 31.5 × L(-0.43) , r(2) = 0.60, n = 24). The strong correlation found between L, K(lamina) and g(m) supports the idea that water and CO(2) share an important part of their diffusion pathways through the mesophyll.

  6. Indirect measurements of field-scale hydraulic conductivity of waste from two landfill sites.

    PubMed

    Fleming, I R

    2011-12-01

    Management and prediction of the movement and distribution of fluids in large landfills is important for various reasons. Bioreactor landfill technology shows promise, but in arid or semi-arid regions, the natural content of landfilled waste may be low, thus requiring addition of significant volumes of water. In more humid locations, landfills can become saturated, flooding gas collection systems and causing sideslope leachate seeps or other undesirable occurrences. This paper compares results from two different approaches to monitoring water in waste. At the Brock West Landfill in eastern Canada, positive pore pressures were measured at various depths in saturated waste. The downward seepage flux through the waste is known, thus the vertical saturated hydraulic conductivity of the waste at this landfill was determined to be 3 × 10(-7)cm/s. By comparison, the Spadina Landfill in western Canada is predominantly unsaturated. The infiltration of moisture into the waste was measured using moisture sensors installed in boreholes which determined arrival time for moisture fronts resulting from major precipitation events as well as longer-term change in moisture content resulting from unsaturated drainage during winter when frozen ground prevented infiltration. The unsaturated hydraulic conductivity calculated from these data ranged from approximately 10(-6)cm/s for the slow winter drainage in the absence of significant recharge to 10(-2)cm/s or higher for shallow waste subject to high infiltration through apparent preferential pathways. These two very different approaches to field-scale measurements of vertical hydraulic conductivity provide insight into the nature of fluid movement in saturated and unsaturated waste masses. It is suggested that the principles of unsaturated seepage apply reasonably well for landfilled waste and that the hydraulic behavior of waste is profoundly influenced by the nature and size of voids and by the degree of saturation prevailing in the

  7. Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees.

    PubMed

    Santiago, L S; Goldstein, G; Meinzer, F C; Fisher, J B; Machado, K; Woodruff, D; Jones, T

    2004-08-01

    We investigated how water transport capacity, wood density and wood anatomy were related to leaf photosynthetic traits in two lowland forests in Panama. Leaf-specific hydraulic conductivity ( k(L)) of upper branches was positively correlated with maximum rates of net CO(2) assimilation per unit leaf area ( A(area)) and stomatal conductance ( g(s)) across 20 species of canopy trees. Maximum k(L) showed stronger correlation with A(area) than initial k(L) suggesting that allocation to photosynthetic potential is proportional to maximum water transport capacity. Terminal branch k(L) was negatively correlated with A(area)/ g(s) and positively correlated with photosynthesis per unit N, indicating a trade-off of efficient use of water against efficient use of N in photosynthesis as water transport efficiency varied. Specific hydraulic conductivity calculated from xylem anatomical characteristics ( k(theoretical)) was positively related to A(area) and k(L), consistent with relationships among physiological measurements. Branch wood density was negatively correlated with wood water storage at saturation, k(L), A(area), net CO(2) assimilation per unit leaf mass ( A(mass)), and minimum leaf water potential measured on covered leaves, suggesting that wood density constrains physiological function to specific operating ranges. Kinetic and static indices of branch water transport capacity thus exhibit considerable co-ordination with allocation to potential carbon gain. Our results indicate that understanding tree hydraulic architecture provides added insights to comparisons of leaf level measurements among species, and links photosynthetic allocation patterns with branch hydraulic processes.

  8. Respiratory complex I deficiency induces drought tolerance by impacting leaf stomatal and hydraulic conductances.

    PubMed

    Djebbar, Reda; Rzigui, Touhami; Pétriacq, Pierre; Mauve, Caroline; Priault, Pierrick; Fresneau, Chantal; De Paepe, Marianne; Florez-Sarasa, Igor; Benhassaine-Kesri, Ghouziel; Streb, Peter; Gakière, Bertrand; Cornic, Gabriel; De Paepe, Rosine

    2012-03-01

    To investigate the role of plant mitochondria in drought tolerance, the response to water deprivation was compared between Nicotiana sylvestris wild type (WT) plants and the CMSII respiratory complex I mutant, which has low-efficient respiration and photosynthesis, high levels of amino acids and pyridine nucleotides, and increased antioxidant capacity. We show that the delayed decrease in relative water content after water withholding in CMSII, as compared to WT leaves, is due to a lower stomatal conductance. The stomatal index and the abscisic acid (ABA) content were unaffected in well-watered mutant leaves, but the ABA/stomatal conductance relation was altered during drought, indicating that specific factors interact with ABA signalling. Leaf hydraulic conductance was lower in mutant leaves when compared to WT leaves and the role of oxidative aquaporin gating in attaining a maximum stomatal conductance is discussed. In addition, differences in leaf metabolic status between the mutant and the WT might contribute to the low stomatal conductance, as reported for TCA cycle-deficient plants. After withholding watering, TCA cycle derived organic acids declined more in CMSII leaves than in the WT, and ATP content decreased only in the CMSII. Moreover, in contrast to the WT, total free amino acid levels declined whilst soluble protein content increased in CMSII leaves, suggesting an accelerated amino acid remobilisation. We propose that oxidative and metabolic disturbances resulting from remodelled respiration in the absence of Complex I activity could be involved in bringing about the lower stomatal and hydraulic conductances.

  9. Impact Of Standing Water On Saltstone Placement II - Hydraulic Conductivity Data

    SciTech Connect

    Cozzi, A. D.; Pickenheim, B. R.

    2012-12-06

    The amount of water present during placement and subsequent curing of saltstone has the potential to impact several properties important for grout quality. An active drain water system can remove residual standing water and expose the surface of the placed saltstone to air. Oxidation of the saltstone may result in an increase in the leachability of redox sensitive elements. A dry surface can lead to cracking, causing an increase in hydraulic conductivity. An inactive drain water system can allow standing water that generates unnecessary hydrostatic head on the vault walls. Standing water that cannot be removed via the drain system will be available for potential incorporation into subsequent grout placements. The objective of this work is to study the impact of standing water on grout quality pertaining to disposal units. A series of saltstone mixes was prepared and cured at ambient temperature to evaluate the impact of standing water on saltstone placement. The samples were managed to control drying effects on leachability by either exposing or capping the samples. The water to premix ratio was varied to represent a range of processing conditions. Samples were analyzed for density, leachability, and hydraulic conductivity. Report SRNL-STI-2012-00546 was issued detailing the experimental procedure, results, and conclusions related to density and leachability. In the previous report, it was concluded that: density tends to increase toward the bottom of the samples. This effect is pronounced with excess bleed water; drying of the saltstone during curing leads to decreased Leachability Index (more leaching) for potassium, sodium, rhenium, nitrite, and nitrate; there is no noticeable effect on saltstone oxidation/leachability by changing the water to premix ratio (over the range studied), or by pouring into standing water (when tested up to 10 volume percent). The hydraulic conductivity data presented in this report show that samples cured exposed to the atmosphere had

  10. Impact of root growth and root hydraulic conductance on water availability of young walnut trees

    NASA Astrophysics Data System (ADS)

    Jerszurki, Daniela; Couvreur, Valentin; Hopmans, Jan W.; Silva, Lucas C. R.; Shackel, Kenneth A.; de Souza, Jorge L. M.

    2015-04-01

    Walnut (Juglans regia L.) is a tree species of high economic importance in the Central Valley of California. This crop has particularly high water requirements, which makes it highly dependent on irrigation. The context of decreasing water availability in the state calls for efficient water management practices, which requires improving our understanding of the relationship between water application and walnut water availability. In addition to the soil's hydraulic conductivity, two plant properties are thought to control the supply of water from the bulk soil to the canopy: (i) root distribution and (ii) plant hydraulic conductance. Even though these properties are clearly linked to crop water requirements, their quantitative relation remains unclear. The aim of this study is to quantitatively explain walnut water requirements under water deficit from continuous measurements of its water consumption, soil and stem water potential, root growth and root system hydraulic conductance. For that purpose, a greenhouse experiment was conducted for a two month period. Young walnut trees were planted in transparent cylindrical pots, equipped with: (i) rhizotron tubes, which allowed for non-invasive monitoring of root growth, (ii) pressure transducer tensiometers for soil water potential, (iii) psychrometers attached to non-transpiring leaves for stem water potential, and (iv) weighing scales for plant transpiration. Treatments consisted of different irrigation rates: 100%, 75% and 50% of potential crop evapotranspiration. Plant responses were compared to predictions from three simple process-based soil-plant-atmosphere models of water flow: (i) a hydraulic model of stomatal regulation based on stem water potential and vapor pressure deficit, (ii) a model of plant hydraulics predicting stem water potential from soil-root interfaces water potential, and (iii) a model of soil water depletion predicting the water potential drop between the bulk soil and soil-root interfaces

  11. Borehole Heat Exchanger Systems: Hydraulic Conductivity and Frost-Resistance of Backfill Materials

    NASA Astrophysics Data System (ADS)

    Anbergen, Hauke; Sass, Ingo

    2016-04-01

    Ground source heat pump (GSHP) systems are economic solutions for both, domestic heating energy supply, as well as underground thermal energy storage (UTES). Over the past decades the technology developed to complex, advanced and highly efficient systems. For an efficient operation of the most common type of UTES, borehole heat exchanger (BHE) systems, it is necessary to design the system for a wide range of carrier fluid temperatures. During heat extraction, a cooled carrier fluid is heated up by geothermal energy. This collected thermal energy is energetically used by the heat pump. Thereby the carrier fluid temperature must have a lower temperature than the surrounding underground in order to collect heat energy. The steeper the thermal gradient, the more energy is transferred to the carrier fluid. The heat injection case works vice versa. For fast and sufficient heat extraction, even over long periods of heating (winter), it might become necessary to run the BHE with fluid temperatures below 0°C. As the heat pump runs periodically, a cyclic freezing of the pore water and corresponding ice-lens growth in the nearfield of the BHE pipes becomes possible. These so called freeze-thaw-cycles (FTC) are a critical state for the backfill material, as the sealing effect eventually decreases. From a hydrogeological point of view the vertical sealing of the BHE needs to be secured at any time (e.g. VDI 4640-2, Draft 2015). The vertical hydraulic conductivity of the BHE is influenced not only by the permeability of the grouting material itself, but by the contact area between BHE pipes and grout. In order to assess the sealing capacity of grouting materials a laboratory testing procedure was developed that measures the vertical hydraulic conductivity of the system BHE pipe and grout. The key features of the procedure are: • assessment of the systeḿs hydraulic conductivity • assessment of the systeḿs hydraulic conductivity after simulation of freeze-thaw-cycle

  12. The hydraulic conductivity of the xylem in conifer needles (Picea abies and Pinus mugo).

    PubMed

    Charra-Vaskou, Katline; Mayr, Stefan

    2011-08-01

    Main resistances of the plant water transport system are situated in leaves. In contrast to angiosperm leaves, knowledge of conifer needle hydraulics and of the partitioning of resistances within needles is poor. A new technique was developed which enabled flow-meter measurements through needles embedded in paraffin and thus quantification of the specific hydraulic conductivity (K(s)) of the needle xylem. In Picea abies, xylem K(s) of needle and axes as well as in needles of different age were compared. In Pinus mugo, resistance partitioning within needles was estimated by measurements of xylem K(s) and leaf conductance (K(leaf), measured via 'rehydration kinetics'). Mean K(s) in P. abies needles was 3.5×10(-4) m(2) s(-1) MPa(-1) with a decrease in older needles, and over all similar to K(s) of corresponding axes xylem. In needles of P. mugo, K(s) was 0.9×10(-4) m(2) s(-1) MPa(-1), and 24% of total needle resistance was situated in the xylem. The results indicate species-specific differences in the hydraulic efficiency of conifer needle xylem. The vascular section of the water transport system is a minor but relevant resistance in needles.

  13. A novel approach to model hydraulic and electrical conductivity in fractal porous media

    NASA Astrophysics Data System (ADS)

    Ghanbarian, B.; Daigle, H.; Sahimi, M.

    2014-12-01

    Accurate prediction of conductivity in partially-saturated porous media has broad applications in various phenomena in porous media, and has been studied intensively since the 1940s by petroleum, chemical and civil engineers, and hydrologists. Many of the models developed in the past are based on the bundle of capillary tubes. In addition, pore network models have also been developed for simulating multiphase fluid flow in porous media and computing the conductivity in unsaturated porous media. In this study, we propose a novel approach using concepts from the effective-medium approximation (EMA) and percolation theory to model hydraulic and electrical conductivity in fractal porous media whose pore-size distributions exhibit power-law scaling. In our approach, the EMA, originally developed for predicting electrical conductivity of composite materials, is used to predict the effective conductivity, from complete saturation to some intermediate water content that represents a crossover point. Below the crossover water content, but still above a critical saturation (percolation threshold), a universal scaling predicted by percolation theory, a power law that expresses the dependence of the conductivity on the water content (less a critical water saturation) with an exponent of 2, is invoked to describe the effective conductivity. In order to evaluate the accuracy of the approach, experimental data were used from the literature. The predicted hydraulic conductivities for most cases are in excellent agreement with the data. In a few cases the theory underestimates the hydraulic conductivities, which correspond to porous media with very broad pore-size distribution in which the largest pore radius is more than 7 orders of magnitude greater than the smallest one. The approach is also used to predict the saturation dependence of the electrical conductivity for experiments in which capillary pressure data are available. The results indicate that the universal scaling of

  14. The influence of topology on hydraulic conductivity in a sand-and-gravel aquifer

    USGS Publications Warehouse

    Morin, R.H.; LeBlanc, D.R.; Troutman, B.M.

    2010-01-01

    A field experiment consisting of geophysical logging and tracer testing was conducted in a single well that penetrated a sand-and-gravel aquifer at the U.S. Geological Survey Toxic Substances Hydrology research site on Cape Cod, Massachusetts. Geophysical logs and flowmeter/pumping measurements were obtained to estimate vertical profiles of porosity ??, hydraulic conductivity K, temperature, and bulk electrical conductivity under background, freshwater conditions. Saline-tracer fluid was then injected into the well for 2 h and its radial migration into the surrounding deposits was monitored by recording an electromagnetic-induction log every 10 min. The field data are analyzed and interpreted primarily through the use of Archie's (1942) law to investigate the role of topological factors such as pore geometry and connectivity, and grain size and packing configuration in regulating fluid flow through these coarse-grained materials. The logs reveal no significant correlation between K and ??, and imply that groundwater models that link these two properties may not be useful at this site. Rather, it is the distribution and connectivity of the fluid phase as defined by formation factor F, cementation index m, and tortuosity ?? that primarily control the hydraulic conductivity. Results show that F correlates well with K, thereby indicating that induction logs provide qualitative information on the distribution of hydraulic conductivity. A comparison of ??, which incorporates porosity data, with K produces only a slightly better correlation and further emphasizes the weak influence of the bulk value of ?? on K. Copyright ?? 2009 The Author(s) are Federal Government Employees. Journal compilation ?? 2009 National Ground Water Association.

  15. Wall Extensibility and Cell Hydraulic Conductivity Decrease in Enlarging Stem Tissues at Low Water Potentials 1

    PubMed Central

    Nonami, Hiroshi; Boyer, John S.

    1990-01-01

    Measurements with a guillotine psychrometer (H Nonami, JS Boyer [1990] Plant Physiol 94: 1601-1609) indicate that the inhibition of stem growth at low water potentials (low ψw) is accompanied by decreases in cell wall extensibility and tissue hydraulic conductance to water that eventually limit growth rate in soybean (Glycine max L. Merr.). To check this conclusion, we measured cell wall properties and cell hydraulic conductivities with independent techniques in soybean seedlings grown and treated the same way, i.e. grown in the dark and exposed to low ψw by transplanting dark grown seedlings to vermiculite of low water content. Wall properties were measured with an extensiometer modified for intact plants, and conductances were measured with a cell pressure probe in intact plants. Theory was developed to relate the wall measurements to those with the psychrometer. In the elongation zone, the plastic deformability of the walls decreased when measured with the extensiometer while growth was inhibited at low ψw. It increased during a modest growth recovery. This behavior was the same as that for the wall extensibility observed previously with the psychrometer. Tissue that was killed before measurement with the extensiometer also showed a similar response, indicating that changes in wall extensibility represented changes in wall physical properties and not rates of wall biosynthesis. The elastic compliance (reciprocal of bulk elastic modulus) did not change in the elongating or mature tissue. The hydraulic conductivity of cortical cells decreased in the elongating tissue and increased slightly during growth recovery in a response similar to that observed with the psychrometer. We conclude that the plastic properties of the cell walls and the conductance of the cells to water were decreased at low ψw but that the elastic properties of the walls were of little consequence in this response. PMID:16667664

  16. Statistical and simulation analysis of hydraulic-conductivity data for Bear Creek and Melton Valleys, Oak Ridge Reservation, Tennessee

    USGS Publications Warehouse

    Connell, J.F.; Bailey, Z.C.

    1989-01-01

    A total of 338 single-well aquifer tests from Bear Creek and Melton Valley, Tennessee were statistically grouped to estimate hydraulic conductivities for the geologic formations in the valleys. A cross-sectional simulation model linked to a regression model was used to further refine the statistical estimates for each of the formations and to improve understanding of ground-water flow in Bear Creek Valley. Median hydraulic-conductivity values were used as initial values in the model. Model-calculated estimates of hydraulic conductivity were generally lower than the statistical estimates. Simulations indicate that (1) the Pumpkin Valley Shale controls groundwater flow between Pine Ridge and Bear Creek; (2) all the recharge on Chestnut Ridge discharges to the Maynardville Limestone; (3) the formations having smaller hydraulic gradients may have a greater tendency for flow along strike; (4) local hydraulic conditions in the Maynardville Limestone cause inaccurate model-calculated estimates of hydraulic conductivity; and (5) the conductivity of deep bedrock neither affects the results of the model nor does it add information on the flow system. Improved model performance would require: (1) more water level data for the Copper Ridge Dolomite; (2) improved estimates of hydraulic conductivity in the Copper Ridge Dolomite and Maynardville Limestone; and (3) more water level data and aquifer tests in deep bedrock. (USGS)

  17. A mutation that eliminates bundle sheath extensions reduces leaf hydraulic conductance, stomatal conductance and assimilation rates in tomato (Solanum lycopersicum).

    PubMed

    Zsögön, Agustin; Negrini, Ana Clarissa Alves; Peres, Lázaro Eustáquio Pereira; Nguyen, Hoa Thi; Ball, Marilyn C

    2015-01-01

    Bundle sheath extensions (BSEs) are key features of leaf structure whose distribution differs among species and ecosystems. The genetic control of BSE development is unknown, so BSE physiological function has not yet been studied through mutant analysis. We screened a population of ethyl methanesulfonate (EMS)-induced mutants in the genetic background of the tomato (Solanum lycopersicum) model Micro-Tom and found a mutant lacking BSEs. The leaf phenotype of the mutant strongly resembled the tomato mutant obscuravenosa (obv). We confirmed that obv lacks BSEs and that it is not allelic to our induced mutant, which we named obv-2. Leaves lacking BSEs had lower leaf hydraulic conductance and operated with lower stomatal conductance and correspondingly lower assimilation rates than wild-type leaves. This lower level of function occurred despite similarities in vein density, midvein vessel diameter and number, stomatal density, and leaf area between wild-type and mutant leaves, the implication being that the lack of BSEs hindered water dispersal within mutant leaves. Our results comparing near-isogenic lines within a single species confirm the hypothesised role of BSEs in leaf hydraulic function. They further pave the way for a genetic model-based analysis of a common leaf structure with deep ecological consequences.

  18. Improved estimation of hydraulic conductivity by combining stochastically simulated hydrofacies with geophysical data

    PubMed Central

    Zhu, Lin; Gong, Huili; Chen, Yun; Li, Xiaojuan; Chang, Xiang; Cui, Yijiao

    2016-01-01

    Hydraulic conductivity is a major parameter affecting the output accuracy of groundwater flow and transport models. The most commonly used semi-empirical formula for estimating conductivity is Kozeny-Carman equation. However, this method alone does not work well with heterogeneous strata. Two important parameters, grain size and porosity, often show spatial variations at different scales. This study proposes a method for estimating conductivity distributions by combining a stochastic hydrofacies model with geophysical methods. The Markov chain model with transition probability matrix was adopted to re-construct structures of hydrofacies for deriving spatial deposit information. The geophysical and hydro-chemical data were used to estimate the porosity distribution through the Archie’s law. Results show that the stochastic simulated hydrofacies model reflects the sedimentary features with an average model accuracy of 78% in comparison with borehole log data in the Chaobai alluvial fan. The estimated conductivity is reasonable and of the same order of magnitude of the outcomes of the pumping tests. The conductivity distribution is consistent with the sedimentary distributions. This study provides more reliable spatial distributions of the hydraulic parameters for further numerical modeling. PMID:26927886

  19. Improved estimation of hydraulic conductivity by combining stochastically simulated hydrofacies with geophysical data

    NASA Astrophysics Data System (ADS)

    Zhu, Lin; Gong, Huili; Chen, Yun; Li, Xiaojuan; Chang, Xiang; Cui, Yijiao

    2016-03-01

    Hydraulic conductivity is a major parameter affecting the output accuracy of groundwater flow and transport models. The most commonly used semi-empirical formula for estimating conductivity is Kozeny-Carman equation. However, this method alone does not work well with heterogeneous strata. Two important parameters, grain size and porosity, often show spatial variations at different scales. This study proposes a method for estimating conductivity distributions by combining a stochastic hydrofacies model with geophysical methods. The Markov chain model with transition probability matrix was adopted to re-construct structures of hydrofacies for deriving spatial deposit information. The geophysical and hydro-chemical data were used to estimate the porosity distribution through the Archie’s law. Results show that the stochastic simulated hydrofacies model reflects the sedimentary features with an average model accuracy of 78% in comparison with borehole log data in the Chaobai alluvial fan. The estimated conductivity is reasonable and of the same order of magnitude of the outcomes of the pumping tests. The conductivity distribution is consistent with the sedimentary distributions. This study provides more reliable spatial distributions of the hydraulic parameters for further numerical modeling.

  20. Improved estimation of hydraulic conductivity by combining stochastically simulated hydrofacies with geophysical data.

    PubMed

    Zhu, Lin; Gong, Huili; Chen, Yun; Li, Xiaojuan; Chang, Xiang; Cui, Yijiao

    2016-03-01

    Hydraulic conductivity is a major parameter affecting the output accuracy of groundwater flow and transport models. The most commonly used semi-empirical formula for estimating conductivity is Kozeny-Carman equation. However, this method alone does not work well with heterogeneous strata. Two important parameters, grain size and porosity, often show spatial variations at different scales. This study proposes a method for estimating conductivity distributions by combining a stochastic hydrofacies model with geophysical methods. The Markov chain model with transition probability matrix was adopted to re-construct structures of hydrofacies for deriving spatial deposit information. The geophysical and hydro-chemical data were used to estimate the porosity distribution through the Archie's law. Results show that the stochastic simulated hydrofacies model reflects the sedimentary features with an average model accuracy of 78% in comparison with borehole log data in the Chaobai alluvial fan. The estimated conductivity is reasonable and of the same order of magnitude of the outcomes of the pumping tests. The conductivity distribution is consistent with the sedimentary distributions. This study provides more reliable spatial distributions of the hydraulic parameters for further numerical modeling.

  1. Scale-dependent hydraulic conductivity of mountain glacial sediments and implications for shallow groundwater recharge and stream baseflow

    NASA Astrophysics Data System (ADS)

    Houghton, T. B.; Ronayne, M. J.; Stednick, J. D.; Musselman, R. C.

    2011-12-01

    The hydraulic conductivity of shallow geologic material is a key control on water and nutrient cycling in mountain watersheds. Many high-elevation watersheds have a veneer of unconsolidated to semi-consolidated glacial sediments, which can serve as an important hydrologic pathway and water storage reservoir. This study utilized three different measurement techniques to characterize the saturated hydraulic conductivity of glacial till sediment across an alpine field site in the Snowy Range Mountains of southern Wyoming, USA. The measurements indicate that the conductivity ranges from approximately 0.05 to 5 m/d and is both spatially variable and scale dependent. The highest estimated conductivities were obtained with a double-ring infiltrometer that is strongly influenced by the coarse-grained fraction of the till. The lowest estimated conductivities were obtained with a mini-disk infiltrometer. The importance of accurately measuring hydraulic conductivity is demonstrated by considering water table fluctuations during snowmelt. A model that is parameterized with the lower, small-scale hydraulic conductivity will overestimate the potential for saturation-excess overland flow (rejected recharge) during peak snowmelt. Using a representative larger-scale hydraulic conductivity, model calculations indicate that the shallow subsurface has the capacity to accommodate all snowmelt. These results show that representative hydraulic conductivities measured at the appropriate scale are critical when quantifying groundwater recharge from snowmelt. This will support efforts to understand groundwater-surface water interaction and late season stream baseflow in mountain watersheds.

  2. Property-Transfer Modeling to Estimate Unsaturated Hydraulic Conductivity of Deep Sediments at the Idaho National Laboratory, Idaho

    USGS Publications Warehouse

    Perkins, Kim S.; Winfield, Kari A.

    2007-01-01

    The unsaturated zone at the Idaho National Laboratory is complex, comprising thick basalt flow sequences interbedded with thinner sedimentary layers. Understanding the highly nonlinear relation between water content and hydraulic conductivity within the sedimentary interbeds is one element in predicting water flow and solute transport processes in this geologically complex environment. Measurement of unsaturated hydraulic conductivity of sediments is costly and time consuming, therefore use of models that estimate this property from more easily measured bulk-physical properties is desirable. A capillary bundle model was used to estimate unsaturated hydraulic conductivity for 40 samples from sedimentary interbeds using water-retention parameters and saturated hydraulic conductivity derived from (1) laboratory measurements on core samples, and (2) site-specific property transfer regression models developed for the sedimentary interbeds. Four regression models were previously developed using bulk-physical property measurements (bulk density, the median particle diameter, and the uniformity coefficient) as the explanatory variables. The response variables, estimated from linear combinations of the bulk physical properties, included saturated hydraulic conductivity and three parameters that define the water-retention curve. The degree to which the unsaturated hydraulic conductivity curves estimated from property-transfer-modeled water-retention parameters and saturated hydraulic conductivity approximated the laboratory-measured data was evaluated using a goodness-of-fit indicator, the root-mean-square error. Because numerical models of variably saturated flow and transport require parameterized hydraulic properties as input, simulations were run to evaluate the effect of the various parameters on model results. Results show that the property transfer models based on easily measured bulk properties perform nearly as well as using curve fits to laboratory-measured water

  3. Field air permeability and hydraulic conductivity of landfilled municipal solid waste in China.

    PubMed

    Wu, Huayong; Chen, Tan; Wang, Hongtao; Lu, Wenjing

    2012-05-15

    The successful design and operation of in situ treatment systems using air and water additions for sustainable landfilling are constrained by a lack of knowledge of the key parameters, such as field air permeability and hydraulic conductivity of landfilled municipal solid waste (MSW). This work provides data on the field air permeability k(a) and hydraulic conductivity K(w) of MSW obtained by conducting short-term air and water injection tests at a landfill in Beijing, China. The k(a) and K(w) values are found to in the range of 1.2 × 10(-13)-1.9 × 10(-12) m(2) and 5.9 × 10(-7)-7.2 × 10(-6) m s(-1), respectively. Both k(a) and K(w) decreased significantly with landfill depth due to the increase in overburden pressure and the finer particles of the waste in deeper layers, leading to a lower porosity of waste. The higher moisture saturation in the deeper layers also contributed to the decrease in k(a). To compare the permeability with respect to air and water, the water permeability k(w) was calculated based on the estimated K(w) and was found to be approximately three orders of magnitude smaller than the corresponding k(a) for waste at the same layer. The differences in k(w) and k(a) may be due to the relative air permeability, the potential short-circuiting of air and active production of biogas, which undermine the relationship between k(w) and k(a). Therefore, to successfully design and operate air and water addition systems in a landfill, in situ measurements of the air permeability and hydraulic conductivity are essential.

  4. Impact of electroviscosity on the hydraulic conductance of the bordered pit membrane: a theoretical investigation.

    PubMed

    Santiago, Michael; Pagay, Vinay; Stroock, Abraham D

    2013-10-01

    In perfusion experiments, the hydraulic conductance of stem segments ( ) responds to changes in the properties of the perfusate, such as the ionic strength ( ), pH, and cationic identity. We review the experimental and theoretical work on this phenomenon. We then proceed to explore the hypothesis that electrokinetic effects in the bordered pit membrane (BPM) contribute to this response. In particular, we develop a model based on electroviscosity in which hydraulic conductance of an electrically charged porous membrane varies with the properties of the electrolyte. We use standard electrokinetic theory, coupled with measurements of electrokinetic properties of plant materials from the literature, to determine how the conductance of BPMs, and therefore , may change due to electroviscosity. We predict a nonmonotonic variation of with with a maximum reduction of 18%. We explore how this reduction depends on the characteristics of the sap and features of the BPM, such as pore size, density of chargeable sites, and their dissociation constant. Our predictions are consistent with changes in observed for physiological values of sap and pH. We conclude that electroviscosity is likely responsible, at least partially, for the electrolyte dependence of conductance through pits and that electroviscosity may be strong enough to play an important role in other transport processes in xylem. We conclude by proposing experiments to differentiate the impact of electroviscosity on from that of other proposed mechanisms.

  5. Interrelations among the soil-water retention, hydraulic conductivity, and suction-stress characteristic curves

    USGS Publications Warehouse

    Lu, Ning; Kaya, Murat; Godt, Jonathan W.

    2014-01-01

    The three fundamental constitutive relations that describe fluid flow, strength, and deformation behavior of variably saturated soils are the soil-water retention curve (SWRC), hydraulic conductivity function (HCF), and suction-stress characteristic curve (SSCC). Until recently, the interrelations among the SWRC, HCF, and SSCC have not been well established. This work sought experimental confirmation of interrelations among these three constitutive functions. Results taken from the literature for six soils and those obtained for 11 different soils were used. Using newly established analytical relations among the SWRC, HCF, and SSCC and these test results, the authors showed that these three constitutive relations can be defined by a common set of hydromechanical parameters. The coefficient of determination for air-entry pressures determined independently using hydraulic and mechanical methods is >0.99, >0.98 for the pore size parameter, and 0.94 for the residual degree of saturation. One practical implication is that one of any of the four experiments (axis-translation, hydraulic, shear-strength, or deformation) is sufficient to quantify all three constitutive relations.

  6. Measurement of saturated hydraulic conductivity in fine-grained glacial tills in Iowa: Comparison of in situ and laboratory methods

    USGS Publications Warehouse

    Bruner, D. Roger; Lutenegger, Alan J.

    1994-01-01

    Nested-standpipe and vibrating-wire piezometers were installed in Pre-Illinoian Wolf Creek and Albernett formations at the Eastern Iowa Till Hydrology Site located in Linn County, Iowa. These surficial deposits are composed of fine-grained glacial diamicton (till) with occasional discontinuous lenses of sand and silt. They overlie the Silurian (dolomite) aquifer which provides private, public, and municipal drinking water supplies in the region. The saturated hydraulic conductivity of the Wolf Creek Formation was investigated in a sub-area of the Eastern Iowa Till Hydrology Site. Calculations of saturated hydraulic conductivity were based on laboratoryflexible-wall permeameter tests, bailer tests, and pumping test data. Results show that bulk hydraulic conductivity increases by several orders of magnitude as the tested volume of till increases. Increasing values of saturated hydraulic conductivity at larger spatial scales conceptually support a double-porosity flow model for this till.

  7. Decline of leaf hydraulic conductance with dehydration: relationship to leaf size and venation architecture.

    PubMed

    Scoffoni, Christine; Rawls, Michael; McKown, Athena; Cochard, Hervé; Sack, Lawren

    2011-06-01

    Across plant species, leaves vary enormously in their size and their venation architecture, of which one major function is to replace water lost to transpiration. The leaf hydraulic conductance (K(leaf)) represents the capacity of the transport system to deliver water, allowing stomata to remain open for photosynthesis. Previous studies showed that K(leaf) relates to vein density (vein length per area). Additionally, venation architecture determines the sensitivity of K(leaf) to damage; severing the midrib caused K(leaf) and gas exchange to decline, with lesser impacts in leaves with higher major vein density that provided more numerous water flow pathways around the damaged vein. Because xylem embolism during dehydration also reduces K(leaf), we hypothesized that higher major vein density would also reduce hydraulic vulnerability. Smaller leaves, which generally have higher major vein density, would thus have lower hydraulic vulnerability. Tests using simulations with a spatially explicit model confirmed that smaller leaves with higher major vein density were more tolerant of major vein embolism. Additionally, for 10 species ranging strongly in drought tolerance, hydraulic vulnerability, determined as the leaf water potential at 50% and 80% loss of K(leaf), was lower with greater major vein density and smaller leaf size (|r| = 0.85-0.90; P < 0.01). These relationships were independent of other aspects of physiological and morphological drought tolerance. These findings point to a new functional role of venation architecture and small leaf size in drought tolerance, potentially contributing to well-known biogeographic trends in leaf size.

  8. Role of leaf hydraulic conductance in the regulation of stomatal conductance in almond and olive in response to water stress.

    PubMed

    Hernandez-Santana, Virginia; Rodriguez-Dominguez, Celia M; Fernández, J Enrique; Diaz-Espejo, Antonio

    2016-06-01

    The decrease of stomatal conductance (gs) is one of the prime responses to water shortage and the main determinant of yield limitation in fruit trees. Understanding the mechanisms related to stomatal closure in response to imposed water stress is crucial for correct irrigation management. The loss of leaf hydraulic functioning is considered as one of the major factors triggering stomatal closure. Thus, we conducted an experiment to quantify the dehydration response of leaf hydraulic conductance (Kleaf) and its impact on gs in two Mediterranean fruit tree species, one deciduous (almond) and one evergreen (olive). Our hypothesis was that a higher Kleaf would be associated with a higher gs and that the reduction in Kleaf would predict the reduction in gs in both species. We measured Kleaf in olive and almond during a cycle of irrigation withholding. We also compared the results of two methods to measure Kleaf: dynamic rehydration kinetics and evaporative flux methods. In addition, determined gs, leaf water potential (Ψleaf), vein density, photosynthetic capacity and turgor loss point. Results showed that gs was higher in almond than in olive and so was Kleaf (Kmax = 4.70 and 3.42 mmol s(-1) MPa(-1) m(-2), in almond and olive, respectively) for Ψleaf > -1.2 MPa. At greater water stress levels than -1.2 MPa, however, Kleaf decreased exponentially, being similar for both species, while gs was still higher in almond than in olive. We conclude that although the Kleaf decrease with increasing water stress does not drive unequivocally the gs response to water stress, Kleaf is the variable most strongly related to the gs response to water stress, especially in olive. Other variables such as the increase in abscisic acid (ABA) may be playing an important role in gs regulation, although in our study the gs-ABA relationship did not show a clear pattern.

  9. 2D aquifer characterization and improved prediction of hydraulic conductivity using surface Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Dlugosch, Raphael; Günther, Thomas; Müller-Petke, Mike; Yaramanci, Ugur

    2014-05-01

    We present recent studies on the characterization of shallow aquifers using Nuclear Magnetic Resonance (NMR). NMR can help to gather detailed information about the water content and pore size related NMR relaxation time, of porous and water saturated material. The field application of surface NMR uses large wire loops placed at the surface of the Earth allows imaging the subsurface down to around hundred meters. First, a sophisticated inversion scheme is presented to simultaneously determine the two-dimensional (2D) distribution of the water content and the NMR relaxation time (T2*) in the subsurface from a surface NMR survey. The outstanding features of the new inversion scheme are its robustness to noisy data and the potential to distinguish aquifers of different lithology due to their specific NMR relaxation time. The successful application of the inversion scheme is demonstrated on two field cases both characterized by channel structures in the glacial sediments of Northern Germany. Second, we revise the prediction of hydraulic conductivity from NMR measurements for coarse-grained and unconsolidated sediments, commonly found in shallow aquifers. The presented Kozeny-Godefroy model replaces the empirical factors in known relations with physical, structural, and intrinsic NMR parameters. It additionally accounts for bulk water relaxation and is not limited to fast diffusion conditions. This improves the prediction of the hydraulic conductivity for clay-free sediments with grain sizes larger than medium sand. The model is validated by laboratory measurements on glass beads and sand samples. Combining the new inversion scheme and petrophysical model allows 2D imaging of the hydraulic conductivity in the subsurface from a surface NMR survey.

  10. Influence of urban land development and subsequent soil rehabilitation on soil aggregates, carbon, and hydraulic conductivity.

    PubMed

    Chen, Yujuan; Day, Susan D; Wick, Abbey F; McGuire, Kevin J

    2014-10-01

    Urban land use change is associated with decreased soil-mediated ecosystem services, including stormwater runoff mitigation and carbon (C) sequestration. To better understand soil structure formation over time and the effects of land use change on surface and subsurface hydrology, we quantified the effects of urban land development and subsequent soil rehabilitation on soil aggregate size distribution and aggregate-associated C and their links to soil hydraulic conductivity. Four treatments [typical practice (A horizon removed, subsoil compacted, A horizon partially replaced), enhanced topsoil (same as typical practice plus tillage), post-development rehabilitated soils (compost incorporation to 60-cm depth in subsoil; A horizon partially replaced plus tillage), and pre-development (undisturbed) soils] were applied to 24 plots in Virginia, USA. All plots were planted with five tree species. After five years, undisturbed surface soils had 26 to 48% higher levels of macroaggregation and 12 to 62% greater macroaggregate-associated C pools than those disturbed by urban land development regardless of whether they were stockpiled and replaced, or tilled. Little difference in aggregate size distribution was observed among treatments in subsurface soils, although rehabilitated soils had the greatest macroaggregate-associated C concentrations and pool sizes. Rehabilitated soils had 48 to 171% greater macroaggregate-associated C pool than the other three treatments. Surface hydraulic conductivity was not affected by soil treatment (ranging from 0.4 to 2.3 cm h(-1)). In deeper regions, post-development rehabilitated soils had about twice the saturated hydraulic conductivity (14.8 and 6.3 cm h(-1) at 10-25 cm and 25-40 cm, respectively) of undisturbed soils and approximately 6-11 times that of soils subjected to typical land development practices. Despite limited effects on soil aggregation, rehabilitation that includes deep compost incorporation and breaking of compacted

  11. Altitudinal changes in leaf hydraulic conductance across five Rhododendron species in eastern Nepal.

    PubMed

    Taneda, Haruhiko; Kandel, Dhan Raj; Ishida, Atsushi; Ikeda, Hiroshi

    2016-10-01

    This study investigated altitudinal changes in leaf-lamina hydraulic conductance (KL) and leaf morphological traits related to KL using five Rhododendron species growing at different altitudes (2500-4500 m above sea level) in Jaljale Himal region in eastern Nepal. Sun leaves were collected from the highest and the lowest altitude populations of each species, and KL was measured with a high pressure flow meter method. Leaf-lamina hydraulic conductance ranged from 7.7 to 19.3 mmol m(-2) s(-1) MPa(-1) and was significantly positively correlated with altitude. The systematic increase with altitude was also found in KL, leaf nitrogen content and stomatal pore index. These relationships suggest that plants from higher-altitude habitats had a large CO2 supply to the intercellular space in a leaf and high CO2 assimilation capacity, which enables efficient photosynthesis at high altitude. The variation in KL was associated with the variation in several leaf morphological traits. High KL was found in leaves with small leaf area and round shape, both of which result in shorter major veins. These results suggest that the short major veins were important for efficient water transport in unlobed leaves of Rhododendron species. The extent of lignification in bundle sheaths and bundle sheath extension was associated with KL Lignified compound primary walls inhibit water conduction along apoplastic routes. All species analyzed had heterobaric leaves, in which bundle sheath extensions developed from minor veins, but strongly lignified compound primary walls were found in Rhododendron species with low KL It is still unclear why cell walls in bundle sheath at minor veins were markedly lignified in Rhododendron species growing at lower altitude. The lignified cell wall provides a high pathogenic resistance to infection and increases the mechanical strength of cell wall. The data imply that lignified bundle sheath may provide a trade-off between leaf hydraulic efficiency and leaf

  12. Role of vegetation type on hydraulic conductivity in urban rain gardens

    NASA Astrophysics Data System (ADS)

    Schott, K.; Balster, N. J.; Johnston, M. R.

    2009-12-01

    Although case studies report improved control of urban stormwater within residential rain gardens, the extent to which vegetation type (shrub, turf, prairie) affects the saturated hydraulic conductivity (Ksat) of these depressions has yet to be investigated in a controlled experiment. We hypothesized that there would be significant differences in hydraulic conductivity by vegetation type due to differences in soil physical characteristics and rooting dynamics such that Ksat of shrub gardens would exceed that of prairie, followed by turf. To test this hypothesis, we measured changes in Ksat relative to the above vegetation types as well as non-vegetative controls, each of which were replicated three times for a total of 12 rain gardens. Ksat was calculated using a published method for curve-fitting to single-ring infiltration with a two-head approach where the shape factor is independent of ponding depth. Constant-head infiltration rates were measured at two alternating ponding depths within each garden twice over the growing season. Root core samples were also taken to qualify belowground characteristics including soil bulk density and rooting dynamics relative to differences in Ksat. We found the control and shrub gardens had the lowest mean Ksat of 3.56 (SE = 0.96) and 3.73 (1.22) cm3 hr-1, respectively. Prairie gardens had the next highest mean Ksat of 12.18 (2.26) cm3 hr-1, and turf had the highest mean value of 23.63 (1.81) cm3 hr-1. These data suggest that a denser rooting network near the soil surface may influence saturated hydraulic conductivity. We applied our observed flow rates to a Glover solution model for 3-dimensional flow, which revealed considerably larger discrepancies in turf gardens than beneath prairie or shrub. This indicated that lateral flow conditions in the turf plots could be the explanation for our observed infiltration rates.

  13. Quantifying Hydraulic Conductivity and Fluid Pressures in the Alpine Fault Hanging-Wall Using DFDP-2 Data and Numerical Models

    NASA Astrophysics Data System (ADS)

    Coussens, J. P.; Woodman, N. D.; Menzies, C. D.; Teagle, D. A. H.; Sutherland, R.; Capova, L.; Cox, S.; Upton, P.; Townend, J.; Toy, V.

    2015-12-01

    Fluid flow can play an important role in fault failure, due to the influence of pore pressure on effective confining stress and through chemical and thermal alteration of the fault zone. Rocks of the Alpine Fault Zone, both exposed at the surface and recovered in cores, show evidence for significant alteration by fluids. However, the fluid flow regime in the region is poorly constrained and its relationship with the behaviour of the fault is uncertain. In 2014 the Deep Fault Drilling Project (DFDP) drilled the DFDP-2B borehole, penetrating 893 m into the hanging-wall of the Alpine Fault. Prior to drilling, a set of hydrogeological models for the Whataroa Valley region, encompassing the DFDP-2B drill site, were constructed using the modelling software FEFLOW. Models were constructed for a range of plausible hydraulic conductivity structures for the region. They predicted strongly artesian hydraulic heads of 50-150 m above surface elevation and temperatures exceeding 100 °C within 1 km depth in bedrock beneath the DFDP-2 drill site, with the exact hydraulic and thermal gradients dependent on the hydraulic conductivity structure chosen. During the drilling project hydraulic and thermal data from the borehole was collected. This included 33 slug test datasets, carried out at a range of borehole depths throughout the project. Estimates for hydraulic conductivity were obtained by analysis of slug test data. Steady state hydraulic heads for the borehole, across a range of depths, were estimated from the slug test measurements. Depth profiles of hydraulic head show rapid increases in hydraulic head with depth, in line with model predictions. Results show fluid pressures greatly exceeding hydrostatic pressure in the shallow crust, reflecting significant upward flow of groundwater beneath the Whataroa Valley. Hydraulic conductivity estimates provide constraints on the hydraulic conductivity structure of the region. All hydraulic conductivity structures modelled thus far

  14. Determining the distribution of hydraulic conductivity in a fractured limestone aquifer by simultaneous injection and geophysical logging

    USGS Publications Warehouse

    Morin, R.H.; Hess, A.E.; Paillet, Frederick L.

    1988-01-01

    A field technique for assessing the vertical distribution of hydraulic conductivity in an aquifer was applied to a fractured carbonate formation in southeastern Nevada. The technique combines the simultaneous use of fluid injection and geophysical logging to measure in situ vertical distributions of fluid velocity and hydraulic head down the borehole; these data subsequently are analyzed to arrive at quantitative estimates of hydraulic conductivity across discrete intervals in the aquifer. The results of this analysis identified the contact margin between the Anchor and Dawn Members of the Monte Cristo Limestone as being the dominant transmissive unit. -from Authors

  15. [Spatial variation characteristics of surface soil water content, bulk density and saturated hydraulic conductivity on Karst slopes].

    PubMed

    Zhang, Chuan; Chen, Hong-Song; Zhang, Wei; Nie, Yun-Peng; Ye, Ying-Ying; Wang, Ke-Lin

    2014-06-01

    Surface soil water-physical properties play a decisive role in the dynamics of deep soil water. Knowledge of their spatial variation is helpful in understanding the processes of rainfall infiltration and runoff generation, which will contribute to the reasonable utilization of soil water resources in mountainous areas. Based on a grid sampling scheme (10 m x 10 m) and geostatistical methods, this paper aimed to study the spatial variability of surface (0-10 cm) soil water content, soil bulk density and saturated hydraulic conductivity on a typical shrub slope (90 m x 120 m, projected length) in Karst area of northwest Guangxi, southwest China. The results showed that the surface soil water content, bulk density and saturated hydraulic conductivity had different spatial dependence and spatial structure. Sample variogram of the soil water content was fitted well by Gaussian models with the nugget effect, while soil bulk density and saturated hydraulic conductivity were fitted well by exponential models with the nugget effect. Variability of soil water content showed strong spatial dependence, while the soil bulk density and saturated hydraulic conductivity showed moderate spatial dependence. The spatial ranges of the soil water content and saturated hydraulic conductivity were small, while that of the soil bulk density was much bigger. In general, the soil water content increased with the increase of altitude while it was opposite for the soil bulk densi- ty. However, the soil saturated hydraulic conductivity had a random distribution of large amounts of small patches, showing high spatial heterogeneity. Soil water content negatively (P < 0.01) correlated with the bulk density and saturated hydraulic conductivity, while there was no significant correlation between the soil bulk density and saturated hydraulic conductivity.

  16. Relationship between hydraulic conductivity and formation factor of coarse-grained soils as a function of particle size

    NASA Astrophysics Data System (ADS)

    Choo, H.; Kim, J.; Lee, W.; Lee, C.

    2016-04-01

    This theoretical and experimental study investigates the variations of both the hydraulic conductivity and the electrical conductivity of coarse-grained soils as a function of pore water conductivity, porosity, and median particle size, with the ultimate goal of developing the relationship between the hydraulic conductivity (K) and the formation factor (F) in coarse-grained soils as a function of particle size. To monitor the variations of both the hydraulic conductivity and electrical conductivity (formation factor) of six sands with varying particle sizes, a series of hydraulic conductivity tests were conducted using a modified constant head permeameter equipped with a four electrode resistivity probe. It is demonstrated that K of the tested coarse-grained soils is mainly determined by the porosity and particle size. In contrast, the effect of particle size on the measured electrical conductivity (or F) is negligible, and the variation of F of the tested soils is mainly determined by porosity. Because the porosity may act as a connecting characteristic between K and F, the relation between them in coarse-grained soils can be expressed as a function of particle size. Finally, simple charts are developed for estimating the hydraulic conductivity of coarse-grained soils from the measured particle sizes and formations factors.

  17. Hydraulic conductance and viscous coupling of three-phase layers in angular capillaries

    NASA Astrophysics Data System (ADS)

    Dehghanpour, H.; Aminzadeh, B.; Dicarlo, D. A.

    2011-06-01

    Predicting three-phase relative permeability by network models requires reliable models for hydraulic conductance of films and layers stabilized by capillary forces at the pore level. We solve the creeping flow approximation of the Navier-Stokes equation for stable wetting and intermediate layers in the corner of angular capillaries by using a continuity boundary condition at the layer interface. We find significant coupling between the condensed phases and calculate the generalized mobilities by solving cocurrent and countercurrent flow of wetting and intermediate layers. Finally, we present a simple heuristic model for the generalized mobilities as a function of the geometry and viscosity ratio.

  18. A similarity law in botanic. The case of hydraulic conductivity of trees

    NASA Astrophysics Data System (ADS)

    Meyra, A. G.; Zarragoicoechea, G. J.; Kuz, V. A.

    2011-03-01

    The hydraulic conductivity of xylem vascular systems is modelled via the Verhulst differential equation with the introduction of relevant dimensionless quantities. Sap pressure is scaled to the geometrical and elastic properties of the xylem tubes, and cavitation events are considered as a limited growth process. The self-similar solution of Verhulst equation is a sigmoidal function, that is the same empirical correlation used to fit the experimental data. An important result of this approach is to reveal the existence of a control parameter. This number, which embodies morphological and physicochemical properties of vascular system, characterizes the discharge of tense fluids.The theoretical predictions are in good agreement with experimental data.

  19. Scale effect of hydraulic conductivity measurements in Pre-Illinoian and Wisconsinan tills in Iowa

    SciTech Connect

    Bruner, D.R. . Geological Survey Bureau)

    1993-03-01

    Two long-term study sites have been established as the basis for a multi-year study of the hydrogeologic properties of glacial tills in Iowa. One is located in Eastern Iowa in Pre-Illinoian till and has had laboratory permeameter tests conducted on Shelby tube samples, collected during construction of piezometers, from the zone to be screen. These piezometers were used to run bailer tests and perform a pumping test. The other site is located in North-Central Iowa in Wisconsinan till and has piezometers constructed to run bailer and pumping tests. Results from both sites has shown that the bulk hydraulic conductivity increases as larger volumes of till are tested. There is consistently at least one order of magnitude increase between bailer and pumping test results. There is also at least three orders of magnitude increase between laboratory permeameter and pumping test results. A system is proposed to conduct pumping tests using vibrating wire transducers hydraulically pushed into the ground to monitor water levels before, during and after the test, and record the measurements to a datalogger.

  20. Influence of streambed hydraulic conductivity on solute exchange with the hyporheic zone

    NASA Astrophysics Data System (ADS)

    Ryan, Robert J.; Boufadel, Michel C.

    2006-11-01

    A conservative solute tracer experiment was conducted in Indian Creek, a small urban stream in Philadelphia, Pennsylvania to investigate the role of subsurface properties on the exchange between streamwater and the hyporheic zone (subsurface surrounding the stream). Sodium Bromide (NaBr) was used as a conservative tracer, and it was monitored in the surface water at two stations and in the upper bed sediments (shallow hyporheic zone extending from 7.5 to 10 cm below the streambed). The hydraulic conductivity ( K) of the upper bed sediments and the lower bed sediments (10 12.5 cm below the streambed) was measured in situ. High tracer concentrations were observed in the upper layer at locations where the hydraulic conductivity of the upper layer was larger than that of the lower layer. Low concentrations in the upper layer were observed in the converse case. A statistically significant relationship between the mass retained in the upper layer and the difference of K values between layers was observed.

  1. Porosity factors that control the hydraulic conductivity of soil-saprolite transitional zones

    USGS Publications Warehouse

    Vepraskas, M.J.; Guertal, W.R.; Kleiss, H.J.; Amoozegar, A.

    1996-01-01

    Slowly permeable transitional horizons separate soil and saprolite, but these horizons cannot be identified easily in the field. The objectives of this study were to determine why the soil-saprolite transitional zone (BC and CB horizons) is slowly permeable, and to evaluate ways for identifying it in the field. Two saprolite deposits were studied in the North Carolina Piedmont. At each site, saturated and unsaturated hydraulic conductivities (Ksat and Kunsat) were measured for major horizons. Volume fractions of water-conducting pores were also compared with the changes in hydraulic conductivity with depth. Horizon mean Ksat values at both sites ranged from virtually 0 to approximately 3 cm h-1. The lowest Ksat values (<0.3 cm h-1) occurred in or near the transitional horizons that were directly below the Bt horizons. Changes in the volume of pores within or between mineral grains (termed inter/intraparticle pores) with depth corresponded to changes in both Ksat and Kunsat. In the transitional horizons, the inter/intraparticle pores were plugged with clay and this caused the horizons to have low K values. In situ measurements of Ksat with depth were the most accurate technique to use for identifying transitional zones in the field. Examination of both the soil and rock structures in pits was also an acceptable technique. Texture and consistence were not considered reliable for pin-pointing transitional horizons.

  2. Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer.

    PubMed

    Lens, Frederic; Sperry, John S; Christman, Mairgareth A; Choat, Brendan; Rabaey, David; Jansen, Steven

    2011-05-01

    • Vulnerability to cavitation and conductive efficiency depend on xylem anatomy. We tested a large range of structure-function hypotheses, some for the first time, within a single genus to minimize phylogenetic 'noise' and maximize detection of functionally relevant variation. • This integrative study combined in-depth anatomical observations using light, scanning and transmission electron microscopy of seven Acer taxa, and compared these observations with empirical measures of xylem hydraulics. • Our results reveal a 2 MPa range in species' mean cavitation pressure (MCP). MCP was strongly correlated with intervessel pit structure (membrane thickness and porosity, chamber depth), weakly correlated with pit number per vessel, and not related to pit area per vessel. At the tissue level, there was a strong correlation between MCP and mechanical strength parameters, and some of the first evidence is provided for the functional significance of vessel grouping and thickenings on inner vessel walls. In addition, a strong trade-off was observed between xylem-specific conductivity and MCP. Vessel length and intervessel wall characteristics were implicated in this safety-efficiency trade-off. • Cavitation resistance and hydraulic conductivity in Acer appear to be controlled by a very complex interaction between tissue, vessel network and pit characteristics.

  3. Water Transport in Onion (Allium cepa L.) Roots (Changes of Axial and Radial Hydraulic Conductivities during Root Development).

    PubMed Central

    Melchior, W.; Steudle, E.

    1993-01-01

    The hydraulic architecture of developing onion (Allium cepa L. cv Calypso) roots grown hydroponically was determined by measuring axial and radial hydraulic conductivities (equal to inverse of specific hydraulic resistances). In the roots, Casparian bands and suberin lamellae develop in the endodermis and exodermis (equal to hypodermis). Using the root pressure probe, changes of hydraulic conductivities along the developing roots were analyzed with high resolution. Axial hydraulic conductivity (Lx) was also calculated from stained cross-sections according to Poiseuille's law. Near the base and the tip of the roots, measured and calculated Lx values were similar. However, at distances between 200 and 300 mm from the apex, measured values of Lx were smaller by more than 1 order of magnitude than those calculated, probably because of remaining cross walls between xylem vessel members. During development of root xylem, Lx increased by 3 orders of magnitude. In the apical 30 mm (tip region), axial resistance limited water transport, whereas in basal parts radial resistances (low radial hydraulic conductivity, Lpr) controlled the uptake. Because of the high axial hydraulic resistance in the tip region, this zone appeared to be "hydraulically isolated" from the rest of the root. Changes of the Lpr of the roots were determined by measuring the hydraulic conductance of roots of different length and referring these data to unit surface area. At distances between 30 and 150 mm from the root tip, Lpr was fairly constant (1.4 x 10-7 m s-1 MPa-1). In more basal root zones, Lpr was considerably smaller and varied between roots. The low contribution of basal zones to the overall water uptake indicated an influence of the exodermal Casparian bands and/or suberin lamellae in the endodermis or exodermis, which develop at distances larger than 50 to 60 mm from the root tip. PMID:12231786

  4. Predicting saturated hydraulic conductivity from percolation test results in layered silt loam soils.

    PubMed

    Jabro, Jay D

    2009-12-01

    The objectives of the study discussed in this article were to develop an empirical relationship between the saturated hydraulic conductivity (Ks) of layered soils and their percolation times (PT) in order to understand the influence of individual layers and compare this with the equations developed by Winneberger (1974) and Fritton, Ratvasky, and Petersen (1986). Field research was conducted on three silt loam soils. Six holes were spaced evenly in two parallel rows of three holes. The Ks was measured at three different layers for each soil using a constant head well permeameter. After completion of the second Ks measurement, the percolation test was conducted. Three linear equations for the upper, middle, and lower layers were developed between the Ks values of each individual layer in all three sites and the corresponding PT. Significant differences were found between the author's results and those predicted by Winneberger (1974) and Fritton and co-authors (1986).

  5. Influence of the heterogeneity on the hydraulic conductivity of a real aquifer

    NASA Astrophysics Data System (ADS)

    Carmine, Fallico; Aldo Pedro, Ferrante; Chiara, Vita Maria; Bartolo Samuele, De

    2010-05-01

    Many factors influence the flux in the porous media therefore the values of the representative parameters of the aquifer such as the hydraulic conductivity (k). A lot of studies have shown that this parameter increases with the portion of the aquifer tested. The main cause of this behaviour is the heterogeneity in the aquifer (Sànchez-Vila et al., 1996). It was also verified that the scale dependence of hydraulic conductivity does not depend on the specific method of measurement (Schulze-Makuch and Cherkauer, 1998). An experimental approach to study this phenomenon is based on sets of measurements carried out at different scales. However, one should consider that for the lower scale values k can be determined by direct measurements, performed in the laboratory using samples of different dimensions; whyle, for the large scales the measurement of the hydraulic conductivity requires indirect methods (Johnson and Sen, 1988; Katz and Thompson, 1986; Bernabé and Revil, 1995). In this study the confined aquifer of Montalto Uffugo test field was examined. This aquifer has the geological characteristics of a recently formed valley, with conglomeratic and sandy alluvial deposits; specifically the layer of sands and conglomerates, with a significant percentage of silt at various levels, lies about 55-60 m below the ground surface, where there is a heavy clay formation. Moreover in the test field, for the considered confined aquifer, there are one completely penetrating well, five partially penetrating wells and two completely penetrating piezometers. Along two vertical lines a series of cylindrical samples (6.4 cm of diameter and 15 cm of head) were extracted and for each one of them the k value was measured in laboratory by direct methods, based on the use of flux cells. Also indirect methods were used; in fact, a series of slug tests was carried out, determining the corresponding k values and the radius of influence (R). Moreover another series of pumping tests was

  6. Co-optimal distribution of leaf nitrogen and hydraulic conductance in plant canopies.

    PubMed

    Peltoniemi, Mikko S; Duursma, Remko A; Medlyn, Belinda E

    2012-05-01

    Leaf properties vary significantly within plant canopies, due to the strong gradient in light availability through the canopy, and the need for plants to use resources efficiently. At high light, photosynthesis is maximized when leaves have a high nitrogen content and water supply, whereas at low light leaves have a lower requirement for both nitrogen and water. Studies of the distribution of leaf nitrogen (N) within canopies have shown that, if water supply is ignored, the optimal distribution is that where N is proportional to light, but that the gradient of N in real canopies is shallower than the optimal distribution. We extend this work by considering the optimal co-allocation of nitrogen and water supply within plant canopies. We developed a simple 'toy' two-leaf canopy model and optimized the distribution of N and hydraulic conductance (K) between the two leaves. We asked whether hydraulic constraints to water supply can explain shallow N gradients in canopies. We found that the optimal N distribution within plant canopies is proportional to the light distribution only if hydraulic conductance, K, is also optimally distributed. The optimal distribution of K is that where K and N are both proportional to incident light, such that optimal K is highest to the upper canopy. If the plant is constrained in its ability to construct higher K to sun-exposed leaves, the optimal N distribution does not follow the gradient in light within canopies, but instead follows a shallower gradient. We therefore hypothesize that measured deviations from the predicted optimal distribution of N could be explained by constraints on the distribution of K within canopies. Further empirical research is required on the extent to which plants can construct optimal K distributions, and whether shallow within-canopy N distributions can be explained by sub-optimal K distributions.

  7. Changes in hydraulic soil conductivity in the walls of zoogenic macropores due to the soil compaction

    NASA Astrophysics Data System (ADS)

    Pelíšek, Igor

    2015-04-01

    This study focuses on assessement of the hydric functions and effectiveness of the preferential zoogenic routes (preferentially lumbricid burrows), with primary focus on the hydric functions and parameters of individual vertical tubular macropores and on the analysis of selected possible detailed effects on these functions. The effect of earthworms (Lumbricidae) on the physical soil properties is notable. During burrowing, earthworms press the material in the vicinity of the hollowed burrows. Several variants of the relationship between the macropores and the soil compaction, permeability and erodibility were verified. Both measurements in the field and laboratory tests of intact collected samples and engineered samples were performed. With regard to preferential focus on the hydraulic processes in gravity macropores, to the limits of the instrumentation and the size of individual earthworms in agricultural soils in the Czech Republic, we assessed the processes in the macropores with diameter of ca 5 mm or larger. In some cases, saturated hydraulic conductivity of zoogenic macropore walls was reduced in order of tens of percent compared with hydraulic conductivity of soil matrix, and the increase of bulk density of soil in the macropore vicinity achieved 25%. The effect of repeated rise and water level stagnation (repeated macropore washing during multiple wetting cycles) was tested. Investigation of water erosion of macropores was limited by adjustable flow, vessel capacity and pump capacity of the accurate continuous infiltrometer. Investigation of the water inlet from above gave more data on the washed-off material in the selected time intervals. Analysis of water rise from below and macropore sealing provided one cumulative data for each testing period.

  8. Ear Rachis Xylem Occlusion and Associated Loss in Hydraulic Conductance Coincide with the End of Grain Filling for Wheat.

    PubMed

    Neghliz, Hayet; Cochard, Hervé; Brunel, Nicole; Martre, Pierre

    2016-01-01

    Seed dehydration is the normal terminal event in the development of orthodox seeds and is physiologically related to the cessation of grain dry mass accumulation and crop grain yield. For a better understanding of grain dehydration, we evaluated the hypothesis that hydraulic conductance of the ear decreases during the latter stages of development and that this decrease results from disruption or occlusion of xylem conduits. Whole ear, rachis, and stem nodes hydraulic conductance and percentage loss of xylem conductivity were measured from flowering to harvest-ripeness on bread wheat (Triticum aestivum L.) cv. Récital grown under controlled environments. Flag leaf transpiration, stomatal conductance, chlorophyll content and grain and ear water potentials were also measured during grain development. We show that grain dehydration was not related with whole plant physiology and leaf senescence, but closely correlated with the hydraulic properties of the xylem conduits irrigating the grains. Indeed, there was a substantial decrease in rachis hydraulic conductance at the onset of the grain dehydration phase. This hydraulic impairment was not caused by the presence of air embolism in xylem conduits of the stem internodes or rachis but by the occlusion of the xylem lumens by polysaccharides (pectins and callose). Our results demonstrate that xylem hydraulics plays a key role during grain maturation.

  9. Hydraulic conductivity of active layer soils in the McMurdo Dry Valleys, Antarctica: Geological legacy controls modern hillslope connectivity

    NASA Astrophysics Data System (ADS)

    Schmidt, Logan M.; Levy, Joseph S.

    2017-04-01

    Spatial variability in the hydraulic and physical properties of active layer soils influences shallow groundwater flow through cold-desert hydrological systems. This study measures the saturated hydraulic conductivity and grain-size distribution of 90 soil samples from the McMurdo Dry Valleys (MDV), Antarctica-primarily from Taylor Valley-to determine what processes affect the spatial distribution of saturated hydraulic conductivity in a simple, mineral-soil-dominated natural hillslope laboratory. We find that the saturated hydraulic conductivity and the grain-size distribution of soils are organized longitudinally within Taylor Valley. Soils sampled down-valley near the coast have a higher percentage of fine-sized sediments (fine sand, silt, clay) and lower saturated hydraulic conductivities than soils collected up-valley near Taylor Glacier (1.3 × 10- 2 vs. 1.2 × 10- 1 cm/s). Soils collected mid-valley have intermediate amounts of fines and saturated hydraulic conductivity values consistent with a hydrogeologic gradient spanning the valley from high inland to low near the coast. These results suggest the organization of modern soil properties within Taylor Valley is a relict signature from past glaciations that have deposited soils of decreasing age toward the mouth of the valley, modified by fluvial activity acting along temporal and microclimate gradients.

  10. Ear Rachis Xylem Occlusion and Associated Loss in Hydraulic Conductance Coincide with the End of Grain Filling for Wheat

    PubMed Central

    Neghliz, Hayet; Cochard, Hervé; Brunel, Nicole; Martre, Pierre

    2016-01-01

    Seed dehydration is the normal terminal event in the development of orthodox seeds and is physiologically related to the cessation of grain dry mass accumulation and crop grain yield. For a better understanding of grain dehydration, we evaluated the hypothesis that hydraulic conductance of the ear decreases during the latter stages of development and that this decrease results from disruption or occlusion of xylem conduits. Whole ear, rachis, and stem nodes hydraulic conductance and percentage loss of xylem conductivity were measured from flowering to harvest-ripeness on bread wheat (Triticum aestivum L.) cv. Récital grown under controlled environments. Flag leaf transpiration, stomatal conductance, chlorophyll content and grain and ear water potentials were also measured during grain development. We show that grain dehydration was not related with whole plant physiology and leaf senescence, but closely correlated with the hydraulic properties of the xylem conduits irrigating the grains. Indeed, there was a substantial decrease in rachis hydraulic conductance at the onset of the grain dehydration phase. This hydraulic impairment was not caused by the presence of air embolism in xylem conduits of the stem internodes or rachis but by the occlusion of the xylem lumens by polysaccharides (pectins and callose). Our results demonstrate that xylem hydraulics plays a key role during grain maturation. PMID:27446150

  11. Tracer diffusion coefficients in sedimentary rocks: correlation to porosity and hydraulic conductivity.

    PubMed

    Boving, T B; Grathwohl, P

    2001-12-01

    Matrix diffusion is an important transport process in geologic materials of low hydraulic conductivity. For predicting the fate and transport of contaminants, a detailed understanding of the diffusion processes in natural porous media is essential. In this study, diffusive tracer transport (iodide) was investigated in a variety of geologically different limestone and sandstone rocks. Porosity, structural and mineralogical composition, hydraulic conductivity, and other rock properties were determined. The effective diffusion coefficients were measured using the time-lag method. The results of the diffusion experiments indicate that there is a close relationship between total porosity and the effective diffusion coefficient of a rock (analogous to Archie's Law). Consequently, the tortousity factor can be expressed as a function of total porosity. The relationship fits best for thicker samples (> 1.0 cm) with high porosities (> 20%), because of the reduced influence of heterogeneity in larger samples. In general, these correlations appear to be a simple way to determine tortuosity and the effective diffusion coefficient from easy to determine rock porosity values.

  12. Root architecture and hydraulic conductance in nutrient deprived Pistacia lentiscus L. seedlings.

    PubMed

    Trubat, Roman; Cortina, Jordi; Vilagrosa, Alberto

    2012-12-01

    Plants respond to low nutrient availability by modifying root morphology and root system topology. Root responses to nitrogen (N) and phosphorus (P) limitation may affect plant capacity to withstand water stress. But studies on the effect of nutrient availability on plant ability to uptake and transport water are scarce. In this study, we assess the effect of nitrogen and phosphorus limitation on root morphology and root system topology in Pistacia lentiscus L seedlings, a common Mediterranean shrub, and relate these changes to hydraulic conductivity of the whole root system. Nitrogen and phosphorus deprivation had no effect on root biomass, but root systems were more branched in nutrient limited seedlings. Total root length was higher in seedlings subjected to phosphorus deprivation. Root hydraulic conductance decreased in nutrient-deprived seedlings, and was related to the number of root junctions but not to other architectural traits. Our study shows that changes in nutrient availability affect seedling water use by modifying root architecture. Changes in nutrient availability should be taken into account when evaluating seedling response to drought.

  13. Ecohydrological controls on soil moisture and hydraulic conductivity within a pinyon-juniper woodland

    USGS Publications Warehouse

    Lebron, I.; Madsen, M.D.; Chandler, D.G.; Robinson, D.A.; Wendroth, O.; Belnap, J.

    2007-01-01

    The impact of pinyon-juniper woodland encroachment on rangeland ecosystems is often associated with a reduction of streamflow and recharge and an increase in soil erosion. The objective of this study is to investigate vegetational control on seasonal soil hydrologic properties along a 15-m transect in pinyon-juniper woodland with biocrust. We demonstrate that the juniper tree controls soil water content (SWC) patterns directly under the canopy via interception, and beyond the canopy via shading in a preferred orientation, opposite to the prevailing wind direction. The juniper also controls the SWC and unsaturated hydraulic conductivity measured close to water saturation (K(h)) under the canopy by the creation of soil water repellency due to needle drop. We use this information to refine the hydrologic functional unit (HFU) concept into three interacting hydrologic units: canopy patches, intercanopy patches, and a transitional unit formed by intercanopy patches in the rain shadow of the juniper tree. Spatial autoregressive state-space models show the close relationship between K(h) close to soil water saturation and SWC at medium and low levels, integrating a number of influences on hydraulic conductivity. Copyright 2007 by the American Geophysical Union.

  14. Low-flow hydraulic conductivity tests at wells that cross the water table.

    PubMed

    Aragon-Jose, Alejandra T; Robbins, Gary A

    2011-01-01

    Wells with screens and sand packs that cross the water table represent a challenging problem for determining hydraulic conductivity by slug testing due to sand pack drainage and resaturation. Sand pack drainage results in a multisegmented recovery curve. One must then subjectively pick a portion of the curve to analyze. Sand pack drainage also results in a change in the effective radius of the well which requires a guess at the porosity or specific yield in analyzing the test. In the study of Robbins et al. (2009), a method was introduced to obtain hydraulic conductivity in monitoring wells using the steady-state drawdown and flow rate obtained during low-flow sampling. The method was tested in this study in wells whose screens cross the water table and shown to avoid sand pack drainage problems that complicate analyzing slug tests. In applying the method to low-flow sampling, only a single pair of steady-state flow rate and drawdown are needed; hence, to derive meaningful results, an accurate determination of these parameters is required.

  15. Vertical series hydraulic conductance classes to characterize the unsaturated zone in North Carolina

    USGS Publications Warehouse

    Eimers, Jo Leslie; Terziotti, Silvia; Ferrell, Gloria M.

    2001-01-01

    This web site contains the Federal Geographic Data Committee-compliant metadata (documentation) for digital data produced for the North Carolina, Department of Environment and Natural Resources, Public Water Supply Section, Source Water Assessment Program. The metadata are for 11 individual Geographic Information System data sets. An overlay and indexing method was used with the data to derive a rating for unsaturated zone and watershed characteristics for use by the State of North Carolina in assessing more than 11,000 public water-supply wells and approximately 245 public surface-water intakes for susceptibility to contamination. For ground-water supplies, the digital data sets used in the assessment included unsaturated zone rating, vertical series hydraulic conductance, land-surface slope, and land cover. For assessment of public surface-water intakes, the data sets included watershed characteristics rating, average annual precipitation, land-surface slope, land cover, and ground-water contribution. Documentation for the land-use data set applies to both the unsaturated zone and watershed characteristics ratings. Documentation for the estimated depth-to-water map used in the calculation of the vertical series hydraulic conductance also is included.

  16. Lead retention mechanisms and hydraulic conductivity studies of various bentonites for geoenvironment applications.

    PubMed

    Nakano, A; Li, L Y; Ohtsubo, M; Mishra, A K; Higashi, T

    2008-05-01

    Four bentonites from various sources were exposed to batch adsorption testing, selective sequential extraction and consolidation tests to investigate their metal retention capacity and hydraulic conductivity for geoenvironmental application such as in clay barrier materials. The Japanese bentonites (JB1-JB3) contain approximately 2-4% of carbonate and trace amount of zeolite (JB2 and JB3), whereas the US bentonite has < 1% carbonate and no zeolite. The rank of smectite content in the bentonites are USB > JB1 > JB3 > JB2. The materials ranked as JB2 approximately JB3 > JB1 > USB, according to retention capacity, while after the removal of carbonate the retention capacity order was JB1 approximately JB2 approximately JB3 > USB. SSE results indicate that carbonate plays a major role at low Pb solution concentration and precipitate as PbCO3. Once the carbonate is exhausted, the clay composition dominates the sorption process. The hydraulic conductivity of the bentonite mixtures (basalt + 10% bentonite) using water was kUSB < kJB1 < kJB3 < kJB2, consistent with the smectite content and swelling power, with USB having the highest proportion of smectite. Among the Japanese bentonites studied, JB1 is the best candidate for barrier material, comparable to the widely used USB.

  17. Control of Leaf Expansion by Nitrogen Nutrition in Sunflower Plants : ROLE OF HYDRAULIC CONDUCTIVITY AND TURGOR.

    PubMed

    Radin, J W; Boyer, J S

    1982-04-01

    Nitrogen nutrition strongly affected the growth rate of young sunflower (Helianthus annuus L.) leaves. When plants were grown from seed on either of two levels of N availability, a 33% decrease in tissue N of expanding leaves was associated with a 75% overall inhibition of leaf growth. Almost all of the growth inhibition resulted from a depression of the daytime growth rate. Measurements of pressure-induced water flux through roots showed that N deficiency decreased root hydraulic conductivity by about half. Thus, N deficiency lowered the steady-state water potential of expanding leaves during the daytime when transpiration was occurring. As a result, N-deficient leaves were unable to maintain adequate turgor for growth in the daytime. N deficiency also decreased the hydraulic conductivity for water movement into expanding leaf cells in the absence of transpiration, but growth inhibition at night was much less than in the daytime. N nutrition had no detectable effects on plastic extensibility or the threshold turgor for growth.

  18. Stomatal sensitivity to vapor pressure deficit and its relationship to hydraulic conductance in Pinus palustris.

    PubMed

    Addington, Robert N; Mitchell, Robert J; Oren, Ram; Donovan, Lisa A

    2004-05-01

    We studied the response of stomatal conductance at leaf (gS) and canopy (GS) scales to increasing vapor pressure deficit (D) in mature Pinus palustris Mill. (longleaf pine) growing in a sandhill habitat in the coastal plain of the southeastern USA. Specifically, we determined if variation in the stomatal response to D was related to variation in hydraulic conductance along the soil-to-leaf pathway (KL) over the course of a growing season. Reductions in KL were associated with a severe growing season drought that significantly reduced soil water content (theta) in the upper 90-cm soil profile. Although KL recovered partially following the drought, it never reached pre-drought values. Stomatal sensitivity to D was well correlated with maximum gS at low D at both leaf and canopy scales, and KL appeared to influence this response by controlling maximum gS. Our results are consistent with the hypothesis that stomatal response to D occurs to regulate minimum leaf water potential, and that the sensitivity of this response is related to changes in whole-plant hydraulics.

  19. Letter Report: Borehole Flow and Horizontal Hydraulic Conductivity with Depth at Well ER-12-4

    SciTech Connect

    Phil L. Oberlander; Charles E. Russell

    2005-12-31

    Borehole flow and fluid temperature during pumping were measured at well ER-12-4 at the Nevada Test Site in Nye County, Nevada. This well was constructed to characterize the carbonate aquifer. The well is cased from land surface to the total depth at 1,132 m (3,713 ft bgs) below ground surface (bgs). The screened section of the well consists of alternating sections of slotted well screen and blank casing from 948 to 1,132 m bgs (3,111 to 3,713 ft bgs). Borehole flow velocity (LT-1) with depth was measured with an impeller flowmeter from the top of the screened section to the maximum accessible depth while the well was pumped and under ambient conditions. A complicating factor to data interpretation is that the well was not filter packed and there is upward and downward vertical flow in the open annulus under ambient and pumping conditions. The open annulus in the well casing likely causes the calculated borehole flow rates being highly nonrepresentative of inflow from the formation. Hydraulic conductivities calculated under these conditions would require unsupportable assumptions and would be subject to very large uncertainties. Borehole hydraulic conductivities are not presented under these conditions.

  20. Leaf hydraulic conductance, measured in situ, declines and recovers daily: leaf hydraulics, water potential and stomatal conductance in four temperate and three tropical tree species.

    PubMed

    Johnson, D M; Woodruff, D R; McCulloh, K A; Meinzer, F C

    2009-07-01

    Adequate leaf hydraulic conductance (Kleaf) is critical for preventing transpiration-induced desiccation and subsequent stomatal closure that would restrict carbon gain. A few studies have reported midday depression of Kleaf (or petiole conductivity) and its subsequent recovery in situ, but the extent to which this phenomenon is universal is not known. The objectives of this study were to measure Kleaf, using a rehydration kinetics method, (1) in the laboratory (under controlled conditions) across a range of water potentials to construct vulnerability curves (VC) and (2) over the course of the day in the field along with leaf water potential and stomatal conductance (gs). Two broadleaf (one evergreen, Arbutus menziesii Pursh., and one deciduous, Quercus garryana Dougl.) and two coniferous species (Pinus ponderosa Dougl. and Pseudotsuga menziesii [Mirbel]) were chosen as representative of different plant types. In addition, Kleaf in the laboratory and leaf water potential in the field were measured for three tropical evergreen species (Protium panamense (Rose), Tachigalia versicolor Standley and L.O. Williams and Vochysia ferruginea Mart) to predict their daily changes in field Kleaf in situ. It was hypothesized that in the field, leaves would close their stomata at water potential thresholds at which Kleaf begins to decline sharply in laboratory-generated VC, thus preventing substantial losses of Kleaf. The temperate species showed a 15-66% decline in Kleaf by midday, before stomatal closure. Although there were substantial midday declines in Kleaf, recovery was nearly complete by late afternoon. Stomatal conductance began to decrease in Pseudotsuga, Pinus and Quercus once Kleaf began to decline; however, there was no detectable reduction in gs in Arbutus. Predicted Kleaf in the tropical species, based on laboratory-generated VC, decreased by 74% of maximum Kleaf in Tachigalia, but only 22-32% in Vochysia and Protium. The results presented here, from the previous

  1. Flowing fluid electrical conductivity logging of a deep borehole during and following drilling: estimation of transmissivity, water salinity and hydraulic head of conductive zones

    NASA Astrophysics Data System (ADS)

    Doughty, Christine; Tsang, Chin-Fu; Rosberg, Jan-Erik; Juhlin, Christopher; Dobson, Patrick F.; Birkholzer, Jens T.

    2016-11-01

    Flowing fluid electrical conductivity (FFEC) logging is a hydrogeologic testing method that is usually conducted in an existing borehole. However, for the 2,500-m deep COSC-1 borehole, drilled at Åre, central Sweden, it was done within the drilling period during a scheduled 1-day break, thus having a negligible impact on the drilling schedule, yet providing important information on depths of hydraulically conductive zones and their transmissivities and salinities. This paper presents a reanalysis of this set of data together with a new FFEC logging data set obtained soon after drilling was completed, also over a period of 1 day, but with a different pumping rate and water-level drawdown. Their joint analysis not only results in better estimates of transmissivity and salinity in the conducting fractures intercepted by the borehole, but also yields the hydraulic head values of these fractures, an important piece of information for the understanding of hydraulic structure of the subsurface. Two additional FFEC logging tests were done about 1 year later, and are used to confirm and refine this analysis. Results show that from 250 to 2,000 m depths, there are seven distinct hydraulically conductive zones with different hydraulic heads and low transmissivity values. For the final test, conducted with a much smaller water-level drawdown, inflow ceased from some of the conductive zones, confirming that their hydraulic heads are below the hydraulic head measured in the wellbore under non-pumped conditions. The challenges accompanying 1-day FFEC logging are summarized, along with lessons learned in addressing them.

  2. Flowing fluid electrical conductivity logging of a deep borehole during and following drilling: estimation of transmissivity, water salinity and hydraulic head of conductive zones

    NASA Astrophysics Data System (ADS)

    Doughty, Christine; Tsang, Chin-Fu; Rosberg, Jan-Erik; Juhlin, Christopher; Dobson, Patrick F.; Birkholzer, Jens T.

    2017-03-01

    Flowing fluid electrical conductivity (FFEC) logging is a hydrogeologic testing method that is usually conducted in an existing borehole. However, for the 2,500-m deep COSC-1 borehole, drilled at Åre, central Sweden, it was done within the drilling period during a scheduled 1-day break, thus having a negligible impact on the drilling schedule, yet providing important information on depths of hydraulically conductive zones and their transmissivities and salinities. This paper presents a reanalysis of this set of data together with a new FFEC logging data set obtained soon after drilling was completed, also over a period of 1 day, but with a different pumping rate and water-level drawdown. Their joint analysis not only results in better estimates of transmissivity and salinity in the conducting fractures intercepted by the borehole, but also yields the hydraulic head values of these fractures, an important piece of information for the understanding of hydraulic structure of the subsurface. Two additional FFEC logging tests were done about 1 year later, and are used to confirm and refine this analysis. Results show that from 250 to 2,000 m depths, there are seven distinct hydraulically conductive zones with different hydraulic heads and low transmissivity values. For the final test, conducted with a much smaller water-level drawdown, inflow ceased from some of the conductive zones, confirming that their hydraulic heads are below the hydraulic head measured in the wellbore under non-pumped conditions. The challenges accompanying 1-day FFEC logging are summarized, along with lessons learned in addressing them.

  3. Variations in hydraulic conductivity with scale of measurement during aquifer tests in heterogeneous, porous carbonate rocks

    NASA Astrophysics Data System (ADS)

    Schulze-Makuch, Dirk; Cherkauer, Douglas S.

    Previous studies have shown that hydraulic conductivity of an aquifer seems to increase as the portion of the aquifer tested increases. To date, such studies have all relied on different methods to determine hydraulic conductivity at each scale of interest, which raises the possibility that the observed increase in hydraulic conductivity is due to the measurement method, not to the scale. This study analyzes hydraulic conductivity with respect to scale during individual aquifer tests in porous, heterogeneous carbonate rocks in southeastern Wisconsin, USA. Results from this study indicate that hydraulic conductivity generally increases during an individual test as the volume of aquifer impacted increases, and the rate of this increase is the same as the rate of increase determined by using different measurement methods. Thus, scale dependence of hydraulic conductivity during single tests does not depend on the method of measurement. This conclusion is supported by 22 of 26 aquifer tests conducted in porous-flow-dominated carbonate units within the aquifer. Instead, scale dependency is probably caused by heterogeneities within the aquifer, a conclusion supported by digital simulation. All of the observed types of hydraulic-conductivity variations with scale during individual aquifer tests can be explained by a conceptual model of a simple heterogeneous aquifer composed of high-conductivity zones within a low-conductivity matrix. Résumé Certaines études ont montré que la conductivité hydraulique d'un aquifère semble augmenter en même temps que la partie testée de l'aquifère s'étend. Jusqu'à présent, ces études ont toutes reposé sur des méthodes de détermination de la conductivité hydraulique différentes pour chaque niveau d'échelle, ce qui a conduit à penser que l'augmentation observée de la conductivité hydraulique pouvait être due aux méthodes de mesure et non à l'effet d'échelle. Cette étude analyse la conductivité hydraulique par

  4. Soil hydraulic conductivity changes caused by irrigation with reclaimed waste water

    SciTech Connect

    Levy, G.J.; Rosenthal, A.; Tarchitzky, J.; Shainberg, I.; Chen, Y.

    1999-10-01

    Use of reclaimed waste water (RWW) in arid and semiarid regions may alleviate problems of fresh water shortage; however, it also involves some potential risks among which are degradation of soil hydraulic properties. The objectives of the current study were to study the effects of organic matter (OM) loads found in RWW obtained from a secondary treatment plant in Tel Aviv, Israel, and different size fractions of the suspended solids in the RWW on the hydraulic conductivity (HC) of three Israeli soils. The hydraulic conductivity of a clayey grumusol (Typic Chromoxerert), a typic loamy loess (Calcic Haploxeralf), and a sandy loam hamra (Typic Rhodexeralf) was determined in the laboratory using soil columns, by leaching with RWW containing zero, low, or high OM load, followed by leaching with distilled water (DW). The effects of suspended solids' size fraction on the HC was determined by filtering RWW. Leaching with high OM load RWW caused the relative HC of the grumusol, loess and hamra to drop to final values of 13.9, 24.2, and 58.8%, respectively. Filtering out suspended solids {gt}1.2 {micro} in this water improved the HC of the hamra, but did not significantly affect the final relative HC of the grumusol and loess. Leaching with low OM load RWW did not significantly decrease the HC beyond the decrease attributed to the effects of the concentration and composition of the electrolytes present in the zero OM load RWW. Subsequent leaching with DW caused an additional decrease in HC, whose magnitude for a given soil did not depend on the quality of the RWW previously used. The presence of OM in the irrigation water did not seem to have significant residual effects on soil HC. Evidently, in high OM load RWW the OM fraction determines the soils' HC, whereas in low OM load RWW, it is the electrolyte concentration and composition in the water, that seem to pose the hazard to soil hydraulic properties, especially during subsequent leaching with DW.

  5. Adsorption and hydraulic conductivity of landfill-leachate perfluorinated compounds in bentonite barrier mixtures.

    PubMed

    Li, Belinda; Li, Loretta Y; Grace, John R

    2015-06-01

    Perfluorinated compounds (PFCs) are leached in landfills from a wide range of domestic and industrial products. Sodium bentonite, a common barrier material, was contacted with water and landfill leachate spiked with PFCs in batch adsorption tests to measure PFC adsorption. Leaching cell tests were also conducted in which water, landfill leachate and PFC-spiked leachate permeated through compacted sand-bentonite mixtures. It was found that the PFCs did not bind substantially to the bentonite. Hydraulic conductivities were not appreciably affected by the PFCs, showing that bentonite liners are not affected for the range of concentrations tested. The sand-bentonite mixture partially retained the PFCs, indicating limited effectiveness in containing PFC within landfills.

  6. Potential use of calcareous mudstones in low hydraulic conductivity earthen barriers for environmental applications.

    PubMed

    Musso, T B; Francisca, F M; Musso, T B; Musso, T B

    2013-01-01

    Earthen layers play a significant role in isolating contaminants in the subsurface, controlling the migration of contaminant plumes, and as landfill liners and covers. The physical, chemical and mineralogical properties of three calcareous mudstones from the Jagüel and Roca formations in North Patagonia, Argentina, are evaluated to determine their potential for the construction of liners. These mudstones were deposited in a marine environment in the Upper Cretaceous-Paleocene. The tested specimens mainly comprise silt and clay-sized particles, and their mineralogy is dominated by a smectite/illite mixed layer (70-90% Sm) and calcite in smaller proportion. Powdered mudstone samples have little viscosity and swelling potential when suspended in water. The hydraulic conductivity of compacted mudstones and sand-mudstone mixtures is very low (around 1-3 x 10(-10) m/s) and in good agreement with the expected hydraulic behaviour of compacted earthen layers. This behaviour can be attributed to the large amount of fine particles, high specific surface and the close packing of particles as confirmed by scanning electron microscope analysis. The tested materials also show a high cation exchange capacity (50-70 cmol/kg), indicating a high contaminant retardation capability. The calcareous mudstones show satisfactory mineralogical and chemical properties as well as an adequate hydraulic behaviour, demonstrating the potential use of these materials for the construction of compacted liners for the containment of leachate or as covers in landfills. These findings confirm the potential usage of marine calcareous mudstones as a low-cost geomaterial in environmental engineering projects.

  7. Interaction between soil mineralogy and the application of crop residues on aggregate stability and hydraulic conductivity of the soil

    NASA Astrophysics Data System (ADS)

    Lado, M.; Kiptoon, R.; Bar-Tal, A.; Wakindiki, I. I. C.; Ben-Hur, M.

    2012-04-01

    One of the main goals of modern agriculture is to achieve sustainability by maintaining crop productivity while avoiding soil degradation. Intensive cultivation could lead to a reduction in soil organic matter that could affect the structure stability and hydraulic conductivity of the soil. Moreover, crops extract nutrients from the soil that are taken away from the field when harvested, and as a consequence, the addition of fertilizers to the soil is necessary to maintain crop productivity. One way to deal with these problems is to incorporate crop residues into the soil after harvest. Crop residues are a source of organic matter that could improve soil physical properties, such as aggregate stability and soil hydraulic conductivity. However, this effect could vary according to other soil properties, such as clay content, clay mineralogy, and the presence of other cementing materials in the soil (mainly carbonates and aluminum and iron oxides). In the present work, the interaction between the addition of chickpea crop residues to the soil and clay mineralogy on aggregate stability and saturated hydraulic conductivity were studied. Chickpea plant residues were added at a rate of 0.5% (w/w) to smectitic, kaolinitic, illitic and non-phyllosilicate soils from different regions. The soils without (control) and with chickpea residues were incubated for 0, 3, 7 and 30 days, and the saturated hydraulic conductivity of the soils was measured in columns after each incubation time. The response of hydraulic conductivity to the addition of residues and incubation time was different in the soils with various mineralogies, although in general, the addition of chickpea residues increased the saturated hydraulic conductivity as compared with the control soils. This positive effect of crop residues on hydraulic conductivity was mainly a result of improved aggregate stability and resistance to slaking during wetting.

  8. Verification of combined thermal-hydraulic and heat conduction analysis code FLOWNET/TRUMP

    NASA Astrophysics Data System (ADS)

    Maruyama, Soh; Fujimoto, Nozomu; Kiso, Yoshihiro; Murakami, Tomoyuki; Sudo, Yukio

    1988-09-01

    This report presents the verification results of the combined thermal-hydraulic and heat conduction analysis code, FLOWNET/TRUMP which has been utilized for the core thermal hydraulic design, especially for the analysis of flow distribution among fuel block coolant channels, the determination of thermal boundary conditions for fuel block stress analysis and the estimation of fuel temperature in the case of fuel block coolant channel blockage accident in the design of the High Temperature Engineering Test Reactor(HTTR), which the Japan Atomic Energy Research Institute has been planning to construct in order to establish basic technologies for future advanced very high temperature gas-cooled reactors and to be served as an irradiation test reactor for promotion of innovative high temperature new frontier technologies. The verification of the code was done through the comparison between the analytical results and experimental results of the Helium Engineering Demonstration Loop Multi-channel Test Section(HENDEL T(sub 1-M)) with simulated fuel rods and fuel blocks.

  9. The vertical hydraulic conductivity of an aquitard at two spatial scales

    USGS Publications Warehouse

    Hart, D.J.; Bradbury, K.R.; Feinstein, D.T.

    2006-01-01

    Aquitards protect underlying aquifers from contaminants and limit recharge to those aquifers. Understanding the mechanisms and quantity of ground water flow across aquitards to underlying aquifers is essential for ground water planning and assessment. We present results of laboratory testing for shale hydraulic conductivities, a methodology for determining the vertical hydraulic conductivity (Kv) of aquitards at regional scales and demonstrate the importance of discrete flow pathways across aquitards. A regional shale aquitard in southeastern Wisconsin, the Maquoketa Formation, was studied to define the role that an aquitard plays in a regional ground water flow system. Calibration of a regional ground water flow model for southeastern Wisconsin using both predevelopment steady-state and transient targets suggested that the regional Kv of the Maquoketa Formation is 1.8 ?? 10 -11 m/s. The core-scale measurements of the Kv of the Maquoketa Formation range from 1.8 ?? 10-14 to 4.1 ?? 10-12 m/s. Flow through some additional pathways in the shale, potential fractures or open boreholes, can explain the apparent increase of the regional-scale Kv. Based on well logs, erosional windows or high-conductivity zones seem unlikely pathways. Fractures cutting through the entire thickness of the shale spaced 5 km apart with an aperture of 50 microns could provide enough flow across the aquitard to match that provided by an equivalent bulk Kv of 1.8 ?? 10-11 m/s. In a similar fashion, only 50 wells of 0.1 m radius open to aquifers above and below the shale and evenly spaced 10 km apart across southeastern Wisconsin can match the model Kv. Copyright ?? 2005 National Ground Water Association.

  10. Diurnal and seasonal variations in leaf hydraulic conductance in evergreen and deciduous trees.

    PubMed

    Lo Gullo, Maria A; Nardini, Andrea; Trifilò, Patrizia; Salleo, Sebastiano

    2005-04-01

    We studied changes in the hydraulic conductance of leaves (K(leaf)) between dawn and dusk during the growth period (July) and at midday at the beginning of autumn in four tree species. The main objectives of the study were to check the extent of diurnal and seasonal changes in K(leaf) and the relationships between K(leaf), irradiance and leaf gas exchange. Two evergreen (Aleurites moluccana and Persea americana) and two deciduous trees (Platanus orientalis and Quercus rubra) were studied. Leaf hydraulic conductance was measured every 2 h between 0700 and 1900 h in July and compared with values measured between 0900 and 1300 h in October. Other variables measured were photosynthetically active radiation (PAR), leaf conductance to water vapor (gL) and water potential (psiL). In July, K(leaf) varied by up to 75% in Pe. americana on a diurnal basis and by at least 44% in Q. rubra. The diurnal time course of K(leaf) showed a distinct increase between dawn and late morning (1100 h) and a subsequent decrease in the evening in A. moluccana and Pl. orientalis, whereas in the other two species, K(leaf) was highest just after dawn and lowest in the evening. In October, K(leaf) of all the species studied was lower than in July, with differences of 20 to 28% for A. moluccana and Pl. orientalis and of 66 to over 70% in Pe. americana and Q. rubra, respectively. Significant correlations were found between PAR and K(leaf) (in all species) as well as between gL and K(leaf) (in three out of four species). Leaf habit (evergreen or deciduous) did not influence absolute values of K(leaf) or its diurnal variation.

  11. Impact of fire on macropore flow and the hydraulic conductivity of near-surface blanket peat

    NASA Astrophysics Data System (ADS)

    Holden, Joseph; Wearing, Catherine; Palmer, Sheila; Jackson, Benjamin; Johnston, Kerrylyn; Brown, Lee

    2013-04-01

    Peatlands can be subject to wildfire or deliberate burning in many locations. Wildfires are known to impact soil properties and runoff production in most soil types but relatively little work has been conducted on peatlands. Furthermore in large parts of the UK uplands prescribed vegetation burning on peat has taken place at regular intervals (e.g. every 8-25 years) on patches of around 300-900 sq. metres over the past century to support increased grouse populations for sport shooting. However, there have been few studies on how these prescribed fires influence near-surface hydrology. It is known that macropores transport a large proportion of flow in near-surface peat layers and we investigated their role in flow transport for fire sites using tension infiltrometers. Measurements were performed, at replicated hillslope positions to control for slope position effects, on unburnt peat (U) and where prescribed burning had taken place two years (P2), four years (P4) and >15 years (P15+) prior to sampling. For the prescribed burning plots, vegetation burning had also occurred at around a 15-20 year interval for most of the past century. We also sampled a nearby wildfire site (W) with the same sampling design where wildfire had occurred four months prior to sampling. Both the contribution of macropore flow to overall infiltration, and the saturated hydraulic conductivity, were significantly lower in the recently burnt sites (W, P2, P4), compared to P15+ and U. There was no significant difference in macropore flow contributions, effective macroporosity and saturated hydraulic conductivity between P15+ and U. The results suggest fire influences the near-surface hydrological functioning of peatlands but that 'recovery' for some hydrological processes to prescribed vegetation burning may be possible within two decades if there are no further fires.

  12. The vertical hydraulic conductivity of an aquitard at two spatial scales.

    PubMed

    Hart, David J; Bradbury, Kenneth R; Feinstein, Daniel T

    2006-01-01

    Aquitards protect underlying aquifers from contaminants and limit recharge to those aquifers. Understanding the mechanisms and quantity of ground water flow across aquitards to underlying aquifers is essential for ground water planning and assessment. We present results of laboratory testing for shale hydraulic conductivities, a methodology for determining the vertical hydraulic conductivity (K(v)) of aquitards at regional scales and demonstrate the importance of discrete flow pathways across aquitards. A regional shale aquitard in southeastern Wisconsin, the Maquoketa Formation, was studied to define the role that an aquitard plays in a regional ground water flow system. Calibration of a regional ground water flow model for southeastern Wisconsin using both predevelopment steady-state and transient targets suggested that the regional K(v) of the Maquoketa Formation is 1.8 x 10(-11) m/s. The core-scale measurements of the K(v) of the Maquoketa Formation range from 1.8 x 10(-14) to 4.1 x 10(-12) m/s. Flow through some additional pathways in the shale, potential fractures or open boreholes, can explain the apparent increase of the regional-scale K(v). Based on well logs, erosional windows or high-conductivity zones seem unlikely pathways. Fractures cutting through the entire thickness of the shale spaced 5 km apart with an aperture of 50 microns could provide enough flow across the aquitard to match that provided by an equivalent bulk K(v) of 1.8 x 10(-11) m/s. In a similar fashion, only 50 wells of 0.1 m radius open to aquifers above and below the shale and evenly spaced 10 km apart across southeastern Wisconsin can match the model K(v).

  13. Deep rooting plants influence on soil hydraulic properties and air conductivity over time

    NASA Astrophysics Data System (ADS)

    Uteau, Daniel; Peth, Stephan; Diercks, Charlotte; Pagenkemper, Sebastian; Horn, Rainer

    2014-05-01

    Crop sequences are commonly suggested as an alternative to improve subsoil structure. A well structured soil can be characterized by enhanced transport properties. Our main hypothesis was, that different root systems can modify the soil's macro/mesopore network if enough cultivation time is given. We analyzed the influence of three crops with either shallower roots (Festuca arundinacea, fescue) or taproots (Cichorium intybus, chicory and Medicago sativa, alfalfa). The crops where cultivated on a Haplic Luvisol near Bonn (Germany) for one, two or three years. Undisturbed soil cores were taken for measurement of unsaturated hydraulic conductivity and air permeability. The unsaturated conductivity was measured using the evaporation method, monitoring the water content and tension at two depths of each undisturbed soil core. The van Genuchten-Mualem model (1991) was fitted to the measured data. Air permeability was measured in a permeameter with constant flow at low pressure gradient. The measurements were repeated at -1, -3, -6, -15, -30 and -50 kPa matric tension and the model of Ball et al. (1988) was used to describe permeability as function of matric tension. Furthermore, the cores equilibrated at -15 kPa matric tension were scanned with X-Ray computer tomography. By means of 3D image analysis, geometrical features as pore size distribution, tortuosity and connectivity of the pore network was analyzed. The measurements showed an increased unsaturated hydraulic conductivity associated to coarser pores at the taprooted cultivations. A enhanced pore system (related to shrink-swell processes) under alfalfa was observed in both transport measurements and was confirmed by the 3D image analysis. This highly functional pore system (consisting mainly of root paths, earthworm channels and shrinking cracks) was clearly visible below the 75 cm of depth and differentiated significantly from the other two treatments only after three years of cultivation, which shows the time

  14. Evolution of neural networks for the prediction of hydraulic conductivity as a function of borehole geophysical logs: Shobasama site, Japan.

    SciTech Connect

    Reeves, Paul C.; McKenna, Sean Andrew

    2004-06-01

    This report describes the methodology and results of a project to develop a neural network for the prediction of the measured hydraulic conductivity or transmissivity in a series of boreholes at the Tono, Japan study site. Geophysical measurements were used as the input to EL feed-forward neural network. A simple genetic algorithm was used to evolve the architecture and parameters of the neural network in conjunction with an optimal subset of geophysical measurements for the prediction of hydraulic conductivity. The first attempt was focused on the estimation of the class of the hydraulic conductivity, high, medium or low, from the geophysical logs. This estimation was done while using the genetic algorithm to simultaneously determine which geophysical logs were the most important and optimizing the architecture of the neural network. Initial results showed that certain geophysical logs provided more information than others- most notably the 'short-normal', micro-resistivity, porosity and sonic logs provided the most information on hydraulic conductivity. The neural network produced excellent training results with accuracy of 90 percent or greater, but was unable to produce accurate predictions of the hydraulic conductivity class. The second attempt at prediction was done using a new methodology and a modified data set. The new methodology builds on the results of the first attempts at prediction by limiting the choices of geophysical logs to only those that provide significant information. Additionally, this second attempt uses a modified data set and predicts transmissivity instead of hydraulic conductivity. Results of these simulations indicate that the most informative geophysical measurements for the prediction of transmissivity are depth and sonic log. The long normal resistivity and self potential borehole logs are moderately informative. In addition, it was found that porosity and crack counts (clear, open, or hairline) do not inform predictions of

  15. Detection of QTL for exudation rate at ripening stage in rice and its contribution to hydraulic conductance.

    PubMed

    Yamamoto, Toshio; Suzuki, Tadafumi; Suzuki, Kenji; Adachi, Shunsuke; Sun, Jian; Yano, Masahiro; Ookawa, Taiichiro; Hirasawa, Tadashi

    2016-01-01

    Dry matter production of crops is determined by how much light they intercept and how efficiently they use it for carbon fixation; i.e., photosynthesis. The high-yielding rice cultivar, Akenohoshi, maintains a high photosynthetic rate in the middle of the day owing to its high hydraulic conductance in comparison with the elite commercial rice cultivar, Koshihikari. We developed 94 recombinant inbred lines derived from Akenohoshi and Koshihikari and measured their exudation rate to calculate hydraulic conductance to osmotic water transport in a paddy field. A quantitative trait locus (QTL) for exudation rate was detected on the long arm of chromosome 2 at the heading and ripening stages. We developed chromosome segment substitution lines which carried Akenohoshi segments in the Koshihikari genetic background, and measured hydraulic conductance to both osmotic and passive water transport. The QTL was confirmed to be located within a region of about 4.2Mbp on the distal end of long arm of chromosome 2. The Akenohoshi allele increased root surface area and hydraulic conductance, but didn't increase hydraulic conductivity of a plant.

  16. Increasing leaf hydraulic conductance with transpiration rate minimizes the water potential drawdown from stem to leaf

    PubMed Central

    Simonin, Kevin A.; Burns, Emily; Choat, Brendan; Barbour, Margaret M.; Dawson, Todd E.; Franks, Peter J.

    2015-01-01

    Leaf hydraulic conductance (k leaf) is a central element in the regulation of leaf water balance but the properties of k leaf remain uncertain. Here, the evidence for the following two models for k leaf in well-hydrated plants is evaluated: (i) k leaf is constant or (ii) k leaf increases as transpiration rate (E) increases. The difference between stem and leaf water potential (ΔΨstem–leaf), stomatal conductance (g s), k leaf, and E over a diurnal cycle for three angiosperm and gymnosperm tree species growing in a common garden, and for Helianthus annuus plants grown under sub-ambient, ambient, and elevated atmospheric CO2 concentration were evaluated. Results show that for well-watered plants k leaf is positively dependent on E. Here, this property is termed the dynamic conductance, k leaf(E), which incorporates the inherent k leaf at zero E, which is distinguished as the static conductance, k leaf(0). Growth under different CO2 concentrations maintained the same relationship between k leaf and E, resulting in similar k leaf(0), while operating along different regions of the curve owing to the influence of CO2 on g s. The positive relationship between k leaf and E minimized variation in ΔΨstem–leaf. This enables leaves to minimize variation in Ψleaf and maximize g s and CO2 assimilation rate over the diurnal course of evaporative demand. PMID:25547915

  17. Increasing leaf hydraulic conductance with transpiration rate minimizes the water potential drawdown from stem to leaf.

    PubMed

    Simonin, Kevin A; Burns, Emily; Choat, Brendan; Barbour, Margaret M; Dawson, Todd E; Franks, Peter J

    2015-03-01

    Leaf hydraulic conductance (k leaf) is a central element in the regulation of leaf water balance but the properties of k leaf remain uncertain. Here, the evidence for the following two models for k leaf in well-hydrated plants is evaluated: (i) k leaf is constant or (ii) k leaf increases as transpiration rate (E) increases. The difference between stem and leaf water potential (ΔΨstem-leaf), stomatal conductance (g s), k leaf, and E over a diurnal cycle for three angiosperm and gymnosperm tree species growing in a common garden, and for Helianthus annuus plants grown under sub-ambient, ambient, and elevated atmospheric CO₂ concentration were evaluated. Results show that for well-watered plants k leaf is positively dependent on E. Here, this property is termed the dynamic conductance, k leaf(E), which incorporates the inherent k leaf at zero E, which is distinguished as the static conductance, k leaf(0). Growth under different CO₂ concentrations maintained the same relationship between k leaf and E, resulting in similar k leaf(0), while operating along different regions of the curve owing to the influence of CO₂ on g s. The positive relationship between k leaf and E minimized variation in ΔΨstem-leaf. This enables leaves to minimize variation in Ψleaf and maximize g s and CO₂ assimilation rate over the diurnal course of evaporative demand.

  18. Unsaturated flow in a centrifugal fields--Measurement of hydraulic conductivity and testing of Darcy's Law

    USGS Publications Warehouse

    Nimmo, J.R.; Rubin, J.; Hammermeister, D.P.

    1987-01-01

    A method has been developed to establish steady flow of water in unsaturated soil sample spinning in a centrifuge. Theoretical analysis predicts moisture conditions in the sample that depend strongly on soil type and certain operating parameter. For Oakley sand, measurements of flux, water content, and matric potential during and after centrifugation verify that steady state flow can be achieved. Experiments have confirmed the theoretical prediction of a nearly uniform moisture distribution for this medium and have demonstrated that the flow can be effectively one-dimensional. The method was used for steady state measurements of hydraulic conductivity K for relatively dry soil, giving values at low as 7. 6 multiplied by 10** minus **1**1 m/s with data obtained in a few hours. Darcy's law was tested by measuring K for different centrifugal driving forces but with the same water content.

  19. Hydraulic conductivity and water quality of the shallow aquifer, Palm Beach County, Florida

    USGS Publications Warehouse

    Scott, W.B.

    1977-01-01

    Subsurface geophysical logs were correlated with logs of drill cuttings to determine the permeability of selected zones of the shallow aquifer, Palm Beach County, Fla. The hydraulic conductivity of the aquifer is estimated to range from 1 to 130 feet per day, based on lithology and physical properties. The yield of wells penetrating this aquifer ranges from 100 to more than 1,000 gallons per minute. Water samples were collected from different depths throughout the county and analyzed for chemical constituents. Stiff diagrams illustrate the changes in types of water by depth and area. Water of suitable quality is in the eastern parts of the county. In this area the aquifer is the thickest and most permeable. The concentration of chemical constituents in the water increase in a westerly direction. The water in the western parts of the county is unsuitable for most purposes. (Woodard-USGS)

  20. Lattice Boltzmann method for evaluating hydraulic conductivity of finite array of spheres.

    PubMed

    Camargo, Mário A; Facin, Paulo C; Pires, Luiz F

    2012-01-01

    The hydraulic conductivity (K) represents an important hydrophysical parameter in a porous media. K direct measurements, usually demand a lot of work, are expensive and time consuming. Factors such as the media spatial variability, sample size, measurement method, and changes in the sample throughout the experiment directly affect K evaluations. One alternative to K measurement is computer simulation using the Lattice Boltzmann method (LBM), which can help to minimize problems such as changes in the sample structure during experimental measurements. This work presents K experimental and theoretical results (simulated) for three regular finite arrangements of spheres. Experimental measurements were carried out aiming at corroborating the LBM potential to predict K once the smallest relative deviation between experimental and simulated results was 1.4%.

  1. A Numerical Method for the Estimation of Distributed Hydraulic Conductivity Using Richards Equation

    NASA Astrophysics Data System (ADS)

    Cockett, R.; Haber, E.

    2013-12-01

    Characterizing groundwater flow in the vadose zone has many important and practical applications in near surface hydrogeology. The spatial estimation of the hydraulic conductivity function, which is the regulator of unsaturated groundwater flow, is an critical step in any hydrogeologic site characterization. However, this estimation is difficult and simplifications are consistently used to avert these conceptual and computational difficulties. Comprehensive time-lapse data of in situ saturations, or proxies of saturation from geophysical methods, are increasingly available. Using these large data sets appropriately, and maximizing the utility of the data to recover estimates of heterogeneous hydraulic conductivity, requires innovative numerical methods. This inverse problem has been approached in many different ways in the literature from stochastic methods to various gradient based methods. However, the way in which the computational complexity of the inverse method scales becomes important as problem size increases; as computational memory and time often become the bottleneck of solving the inverse problem when the problem is solved for heterogeneous hydraulic conductivity in two- and particularly in three-dimensions. For the inverse problem involving Richards equation, some version of a Gauss-Newton method (e.g. Levenberg-Marquardt) with a direct calculation of the sensitivity matrix is commonly used. However, while these approaches allow to deal with moderate scale problems they have one major drawback: the sensitivity matrix is a large dense matrix and its computation requires dense linear algebra and, for large scale problems, a non-trivial amount of storage. Furthermore, previous work use either numerical or automatic differentiation in order to compute the sensitivity matrix and this can generate inaccuracies in its computation and tarry convergence of the optimization algorithm. We suggest a modern numerical method that allows for the solution of the

  2. Effect of solute concentration on intracellular water volume and hydraulic conductivity of human blood platelets.

    PubMed Central

    Armitage, W J

    1986-01-01

    The intracellular water volume of human blood platelets was determined using tritiated water. The cells responded as osmometers over an observed range of solute concentration from 0.292 to 2.180 osmol kg-1. Only 87% of intracellular water was apparently osmotically active (i.e. Ponder's R was 0.87). Changes in cell volume induced by small step changes in external osmolality were followed photometrically and the time constant for the exponential approach of cell volume to its new equilibrium value was determined. Hydraulic conductivity (LP) was calculated from the time constant and was 1.41 X 10(-6) cm atm-1 s-1 under isotonic conditions at 37 degrees C. LP was inversely dependent on extracellular solute concentration, but it was independent of the direction of movement of water across the plasma membrane. PMID:3746695

  3. Scale-dependency of effective hydraulic conductivity on fire-affected hillslopes

    NASA Astrophysics Data System (ADS)

    Langhans, Christoph; Lane, Patrick N. J.; Nyman, Petter; Noske, Philip J.; Cawson, Jane G.; Oono, Akiko; Sheridan, Gary J.

    2016-07-01

    Effective hydraulic conductivity (Ke) for Hortonian overland flow modeling has been defined as a function of rainfall intensity and runon infiltration assuming a distribution of saturated hydraulic conductivities (Ks). But surface boundary condition during infiltration and its interactions with the distribution of Ks are not well represented in models. As a result, the mean value of the Ks distribution (KS¯), which is the central parameter for Ke, varies between scales. Here we quantify this discrepancy with a large infiltration data set comprising four different methods and scales from fire-affected hillslopes in SE Australia using a relatively simple yet widely used conceptual model of Ke. Ponded disk (0.002 m2) and ring infiltrometers (0.07 m2) were used at the small scales and rainfall simulations (3 m2) and small catchments (ca 3000 m2) at the larger scales. We compared KS¯ between methods measured at the same time and place. Disk and ring infiltrometer measurements had on average 4.8 times higher values of KS¯ than rainfall simulations and catchment-scale estimates. Furthermore, the distribution of Ks was not clearly log-normal and scale-independent, as supposed in the conceptual model. In our interpretation, water repellency and preferential flow paths increase the variance of the measured distribution of Ks and bias ponding toward areas of very low Ks during rainfall simulations and small catchment runoff events while areas with high preferential flow capacity remain water supply-limited more than the conceptual model of Ke predicts. The study highlights problems in the current theory of scaling runoff generation.

  4. Quantifying the impact on hyporheic flow of assuming homogenous hydraulic conductivity distributions within permeameters

    NASA Astrophysics Data System (ADS)

    Stonedahl, S. H.; Cooper, D. G.; Everingham, J. M.; Kraciun, M. K.; Stonedahl, F.

    2012-12-01

    Hydraulic conductivity (K) is an important sediment property related to the speed with which water flows through sediments. It affects hyporheic uptake and residence time distributions, which are critical to assessing solute transport and nutrient depletion in streams. In this study we investigated the effect of millimeter-scale K variability on measurements that use one of the simplest in situ measurement techniques, the falling-head permeameter test. In a laboratory setting vertical K values and their variability were calculated for a variety of sands. We created composite systems by layering these sands and measured their respective K values. Spatial head distributions for these composite systems were modeled using the finite difference capability of MODFLOW with inputs of head levels, boundaries, and known localized K values. These head distributions were then used to calculate the volumetric flux through the column, which was used in the Hvorslev constant-head equation to calculate vertical K values. We found that these simulated system K values reproduced the same qualitative trends as the laboratory measurements, and provided a good quantitative match in some cases. We then used the model to select distinct heterogeneous K distributions (i.e. layered, randomly distributed, and systematically increasing) that have the same simulated system K value. These K distributions were used in a two-dimensional dune/ripple-scale pumping model to approximate hyporheic residence time distributions and provide estimates of the error associated with the assumed homogeneity of the K distributions. The results have direct implications for both field studies where hydraulic conductivity is being measured and also for determining the level of detail that should be included in computational models.inite difference model of the constant-head permeameter

  5. Mercury hinders recovery of shoot hydraulic conductivity during grapevine rehydration: evidence from a whole-plant approach.

    PubMed

    Lovisolo, Claudio; Schubert, Andrea

    2006-01-01

    This experiment aimed to test whether recovery of shoot hydraulic conductivity after drought depends on cellular metabolism in addition to xylem hydraulics. We rehydrated droughted grapevines (Vitis vinifera) after treating intact plants through the root with 0.5 mm mercuric chloride (a metabolic inhibitor) at the end of the stress period, before rehydration. The contribution of mercury-inhibited water transport in both shoot and root, and the extent of shoot vessel embolization, were assessed. Drought stress decreased plant water potential and induced embolization of the shoot vessels. The rehydration in Hg-untreated plants re-established both shoot water potential and specific shoot hydraulic conductivity (Kss) at levels comparable with watered controls, and induced recovery of most of the embolisms formed in the shoot during the drought. In contrast, in plants treated with HgCl2, recovery of Kss and root hydraulic conductance were impaired. In rehydrated, Hg-treated plants, the effects of Hg on Kss were reversed when either the shoot or the root was treated with 60 mM beta-mercaptoethanol as a mercuric scavenger. This work suggests that plant cellular metabolism, sensitive to mercuric chloride, affects the recovery of shoot hydraulic conductivity during grapevine rehydration by interfering with embolism removal, and that it involves either the root or the shoot level.

  6. A model for estimating the hydraulic conductivity of granular material based on grain shape, grain size, and porosity

    SciTech Connect

    Sperry, J.M.; Peirce, J.J.

    1995-11-01

    Particle shape is an important parameter in numerous civil, environmental, and petroleum engineering applications. In ground-water flow, the shape of individual particles comprising the soil affects the soil`s pore size distribution and, hence, the important flow characteristics such as hydraulic conductivity and headloss. A model for delineating the relative importance of particle size, particle shape, and porosity, (and their interactions), in explaining the variability of hydraulic conductivity of a granular porous medium is developed and tested. Three types of porous media are considered in this work: spherical glass beads; granular sand; and irregularly shaped, shredded glass particles. A reliable method for quantifying the three-dimensional shape and packing of large samples of irregular particles based on their angle of repose is presented. The results of column experiments indicate that in the size range examined (i.e., 149 {micro}m to 2,380 {micro}m), the single most important predictor of hydraulic conductivity is seen to be particle size, explaining 69% of the variability. Porous media comprising irregular particles exhibit lower hydraulic conductivity only for the larger (707 to 841 {micro}m) particles. For the smaller (149 to 177 {micro}m) particles, particle shape has no observable influence on hydraulic conductivity. The results of the regression analysis reveal the importance off the interaction between particle size and porosity, indicating that similar pore configurations for a given type of particle are not achieved at different sizes. This empirical model seems to provide better estimates of the hydraulic conductivity of granular porous media comprising irregular particles than selected models based solely on grain size, including Hazen, Kozeny-Carman, and more recently Alyamani and Sen.

  7. Soybean leaf hydraulic conductance does not acclimate to growth at elevated [CO2] or temperature in growth chambers or in the field

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leaf hydraulic properties are strongly linked with transpiration and photosynthesis in many species. However, it is not known if gas exchange and hydraulics will have coordinated responses to climate change. Our objective was to investigate the responses of leaf hydraulic conductance (Kleaf) in Glyc...

  8. Inversion of multi-frequency electromagnetic induction data for 3D characterization of hydraulic conductivity

    USGS Publications Warehouse

    Brosten, T.R.; Day-Lewis, F. D.; Schultz, G.M.; Curtis, G.P.; Lane, J.W.

    2011-01-01

    Electromagnetic induction (EMI) instruments provide rapid, noninvasive, and spatially dense data for characterization of soil and groundwater properties. Data from multi-frequency EMI tools can be inverted to provide quantitative electrical conductivity estimates as a function of depth. In this study, multi-frequency EMI data collected across an abandoned uranium mill site near Naturita, Colorado, USA, are inverted to produce vertical distribution of electrical conductivity (EC) across the site. The relation between measured apparent electrical conductivity (ECa) and hydraulic conductivity (K) is weak (correlation coefficient of 0.20), whereas the correlation between the depth dependent EC obtained from the inversions, and K is sufficiently strong to be used for hydrologic estimation (correlation coefficient of -0.62). Depth-specific EC values were correlated with co-located K measurements to develop a site-specific ln(EC)-ln(K) relation. This petrophysical relation was applied to produce a spatially detailed map of K across the study area. A synthetic example based on ECa values at the site was used to assess model resolution and correlation loss given variations in depth and/or measurement error. Results from synthetic modeling indicate that optimum correlation with K occurs at ~0.5m followed by a gradual correlation loss of 90% at 2.3m. These results are consistent with an analysis of depth of investigation (DOI) given the range of frequencies, transmitter-receiver separation, and measurement errors for the field data. DOIs were estimated at 2.0??0.5m depending on the soil conductivities. A 4-layer model, with varying thicknesses, was used to invert the ECa to maximize available information within the aquifer region for improved correlations with K. Results show improved correlation between K and the corresponding inverted EC at similar depths, underscoring the importance of inversion in using multi-frequency EMI data for hydrologic estimation. ?? 2011.

  9. Biochar-induced changes in soil hydraulic conductivity and dissolved nutrient fluxes constrained by laboratory experiments.

    PubMed

    Barnes, Rebecca T; Gallagher, Morgan E; Masiello, Caroline A; Liu, Zuolin; Dugan, Brandon

    2014-01-01

    The addition of charcoal (or biochar) to soil has significant carbon sequestration and agronomic potential, making it important to determine how this potentially large anthropogenic carbon influx will alter ecosystem functions. We used column experiments to quantify how hydrologic and nutrient-retention characteristics of three soil materials differed with biochar amendment. We compared three homogeneous soil materials (sand, organic-rich topsoil, and clay-rich Hapludert) to provide a basic understanding of biochar-soil-water interactions. On average, biochar amendment decreased saturated hydraulic conductivity (K) by 92% in sand and 67% in organic soil, but increased K by 328% in clay-rich soil. The change in K for sand was not predicted by the accompanying physical changes to the soil mixture; the sand-biochar mixture was less dense and more porous than sand without biochar. We propose two hydrologic pathways that are potential drivers for this behavior: one through the interstitial biochar-sand space and a second through pores within the biochar grains themselves. This second pathway adds to the porosity of the soil mixture; however, it likely does not add to the effective soil K due to its tortuosity and smaller pore size. Therefore, the addition of biochar can increase or decrease soil drainage, and suggests that any potential improvement of water delivery to plants is dependent on soil type, biochar amendment rate, and biochar properties. Changes in dissolved carbon (C) and nitrogen (N) fluxes also differed; with biochar increasing the C flux from organic-poor sand, decreasing it from organic-rich soils, and retaining small amounts of soil-derived N. The aromaticity of C lost from sand and clay increased, suggesting lost C was biochar-derived; though the loss accounts for only 0.05% of added biochar-C. Thus, the direction and magnitude of hydraulic, C, and N changes associated with biochar amendments are soil type (composition and particle size) dependent.

  10. Biochar-Induced Changes in Soil Hydraulic Conductivity and Dissolved Nutrient Fluxes Constrained by Laboratory Experiments

    PubMed Central

    Barnes, Rebecca T.; Gallagher, Morgan E.; Masiello, Caroline A.; Liu, Zuolin; Dugan, Brandon

    2014-01-01

    The addition of charcoal (or biochar) to soil has significant carbon sequestration and agronomic potential, making it important to determine how this potentially large anthropogenic carbon influx will alter ecosystem functions. We used column experiments to quantify how hydrologic and nutrient-retention characteristics of three soil materials differed with biochar amendment. We compared three homogeneous soil materials (sand, organic-rich topsoil, and clay-rich Hapludert) to provide a basic understanding of biochar-soil-water interactions. On average, biochar amendment decreased saturated hydraulic conductivity (K) by 92% in sand and 67% in organic soil, but increased K by 328% in clay-rich soil. The change in K for sand was not predicted by the accompanying physical changes to the soil mixture; the sand-biochar mixture was less dense and more porous than sand without biochar. We propose two hydrologic pathways that are potential drivers for this behavior: one through the interstitial biochar-sand space and a second through pores within the biochar grains themselves. This second pathway adds to the porosity of the soil mixture; however, it likely does not add to the effective soil K due to its tortuosity and smaller pore size. Therefore, the addition of biochar can increase or decrease soil drainage, and suggests that any potential improvement of water delivery to plants is dependent on soil type, biochar amendment rate, and biochar properties. Changes in dissolved carbon (C) and nitrogen (N) fluxes also differed; with biochar increasing the C flux from organic-poor sand, decreasing it from organic-rich soils, and retaining small amounts of soil-derived N. The aromaticity of C lost from sand and clay increased, suggesting lost C was biochar-derived; though the loss accounts for only 0.05% of added biochar-C. Thus, the direction and magnitude of hydraulic, C, and N changes associated with biochar amendments are soil type (composition and particle size) dependent

  11. Effect of the method of estimation of soil saturated hydraulic conductivity with regards to the design of stormwater infiltration trenches

    NASA Astrophysics Data System (ADS)

    Paiva coutinho, Artur; Predelus, Dieuseul; Lassabatere, Laurent; Ben Slimene, Erij; Celso Dantas Antonino, Antonio; Winiarski, Thierry; Joaquim da Silva Pereira Cabral, Jaime; Angulo-Jaramillo, Rafael

    2014-05-01

    Best management practices are based on the infiltration of stormwater (e.g. infiltration into basins or trenches) to reduce the risk of flooding of urban areas. Proper estimations of saturated hydraulic conductivity of the vadose zone are required to avoid inappropriate design of infiltration devices. This article aims at assessing (i) the method-dependency of the estimation of soils saturated hydraulic conductivity and (ii) the consequences of such dependency on the design of infiltration trenches. This is illustrated for the specific case of an infiltration trench to be constructed to receive stormwater from a specific parking surface, 250 m2 in area, in Recife (Brazil). Water infiltration experiments were conducted according to the Beerkan Method, i.e. application of a zero water pressure head through a disc source (D=15 cm) and measures of the amount of infiltrated water with time. Saturated hydraulic conductivity estimates are derived from the analysis of these infiltration tests using several different conceptual approaches: one-dimensional models of Horton(1933) and Philip(1957), three-dimensional methods recently developed (Lassabatere et al., 2006, Wu et al., 1999, and Bagarello et al., 2013) and direct 3-dimensional numerical inversion. The estimations for saturated hydraulic conductivity ranged between 65.5 mm/h and 94 mm/h for one-dimensional methods, whereas using three-dimensional methods saturated hydraulic conductivity ranged between 15.6 mm/h and 50 mm/h. These results shows the need for accounting for 3D geometry, and more generally, the physics of water infiltration in soils, if a proper characterization of soil saturated hydraulic conductivity is targeted. In a second step, each estimate of the saturated hydraulic conductivity was used to calculate the stormwater to be stored in the studied trench for several rainfall events of recurrence intervals of 2 to 25 years. The calculation of these volumes showed a great sensitivity with regards to the

  12. Heterogeneous Vertical Hydraulic Conductivity in an Aquitard as Determined by Head Profiles and Pumping Tests

    NASA Astrophysics Data System (ADS)

    Hart, D. J.; Bradbury, K. R.; Cherry, J. A.; Gotkowitz, M. G.; Parker, B. L.

    2005-12-01

    The vertical hydraulic conductivity (Kv) of aquitards is one of the most important parameters in groundwater flow systems but presents special challenges for estimation. It determines the role of the aquitard in a flow system and is a measure of the protection given by the aquitard to underlying aquifers. The properties of aquitards vary vertically and estimates of Kv should reflect this heterogeneity. Vertical head profiles in aquitards show this heterogeneity, and are probably the most important data to be collected in aquitard studies. The heads rarely vary in a linear fashion with depth as would be expected in a homogeneous medium. Instead, most head loss is either at the top or the bottom of the identified aquitard, suggesting that some portion of the aquitard has a much lower Kv than the rest. While this portion is the most effective part of the aquitard, the rest of the aquitard can still present a barrier to flow. We determined the Kv profile of a six-meter thick shaley aquitard, the Eau Claire Formation, by measuring head profiles in, above, and below the aquitard before and during a pumping test. The head profile before the pumping test was measured using three systems: a FLUTeTM multi-level system with pressure transducers, a short interval straddle packer, and series of buried pressure transducers. All three measurements of heads gave similar profiles. The head decreased 1.5 meters in the upper five meters of the aquitard with most of the head drop, nine meters, occurring over the lower meter of the aquitard. The vertical component of gradient varied by a factor of 30. During the pumping test, the head profiles were measured with the FLUTe system and the buried pressure transducers. In general the two measurement systems agreed but significant differences occurred in the lowest conductivity part of the aquitard. The head profile measured by the FLUTe system showed variation similar to that in the rest of the aquitard while the head measured by the

  13. Simulation assessment of the direct-push permeameter for characterizing vertical variations in hydraulic conductivity

    USGS Publications Warehouse

    Liu, Gaisheng; Bohling, G.C.; Butler, J.J.

    2008-01-01

    [1] The direct-push permeameter (DPP) is a tool for the in situ characterization of hydraulic conductivity (K) in shallow, unconsolidated formations. This device, which consists of a short screened section with a pair of pressure transducers near the screen, is advanced into the subsurface with direct-push technology. K is determined through a series of injection tests conducted between advancements. Recent field work by Butler et al. (2007) has shown that the DPP holds great potential for describing vertical variations in K at an unprecedented level of detail, accuracy and speed. In this paper, the fundamental efficacy of the DPP is evaluated through a series of numerical simulations. These simulations demonstrate that the DPP can provide accurate K information under conditions commonly faced in the field. A single DPP test provides an effective K for the domain immediately surrounding the interval between the injection screen and the most distant pressure transducer. Features that are thinner than that interval can be quantified by reducing the vertical distance between successive tests and analyzing the data from all tests simultaneously. A particular advantage of the DPP is that, unlike most other single borehole techniques, a low-K skin or a clogged screen has a minimal impact on the K estimate. In addition, the requirement that only steady-shape conditions be attained allows for a dramatic reduction in the time required for each injection test. Copyright 2008 by the American Geophysical Union.

  14. Techniques for measuring the vertical hydraulic conductivity of flood basalts at the Basalt Waste Isolation Project site

    SciTech Connect

    Javandel, I.

    1983-06-01

    A regional model that can predict groundwater movement through the reference repository location and surrounding area is essential to assessing the site suitability for a nuclear waste repository. During the last two decades, several models have been developed to handle complicated flow patterns through complex geologic materials. The basic problem, however, is obtaining the data base needed to apply these models. The hydrological data needed include the spatial distribution of effective porosity, the hydraulic conductivity tensor and its variation in space, values of specific storage, the hydraulic head distribution, and the fluid properties. In this report, we discuss conventional methods of obtaining vertical hydraulic conductivity and examine their applicability to the BWIP site. 39 references, 12 figures, 4 tables.

  15. Biodegradation of 2,4,6-trichlorophenol and associated hydraulic conductivity reduction in sand-bed columns.

    PubMed

    Antizar-Ladislao, Blanca; Galil, Noah I

    2006-06-01

    The aim of this research was to investigate the long-term hydraulic conductivity changes in sand-bed columns exposed to 2,4,6-trichlorophenol (TCP). Continuous flow laboratory studies were conducted using sand-bed columns (15 cm i.d.; 200 cm length) at 20+/-1 degrees C during 365 d. The influence of (i) initial loads of 2,4,6-TCP (15, 30, 45 and 60 mg kg(-1) of 2,4,6-TCP), and (ii) recirculating water velocity (0.09, 0.56 and 1.18 cm min(-1)) on the biodegradation of 2,4,6-TCP and hydraulic conductivity changes in the sand-bed columns were investigated. The experimental results indicated that biodegradation of 2,4,6-TCP followed pseudo-first-order kinetics in the range of k(1)=0.01-1.64 d(-1), and it was influenced by initial load (p<0.01) and recirculating water velocity (p<0.01). Indigenous microbial biomass growth and changes resulted in a spatial (180 cm) and temporal (365 d) reduction of hydraulic conductivity in the sand-bed columns by up to two orders of magnitude during biodegradation of 2,4,6-TCP. The fastest hydraulic conductivity reductions were observed in the sand-bed column operated at the highest recirculating water velocity and highest cumulative load of 2,4,6-TCP following 365 d of continuous treatment (p<0.05).

  16. A complete soil hydraulic model accounting for capillary and adsorptive water retention, capillary and film conductivity, and hysteresis

    NASA Astrophysics Data System (ADS)

    Rudiyanto; Sakai, Masaru; van Genuchten, Martinus Th.; Alazba, A. A.; Setiawan, Budi Indra; Minasny, Budiman

    2015-11-01

    A soil hydraulic model that considers capillary hysteretic and adsorptive water retention as well as capillary and film conductivity covering the complete soil moisture range is presented. The model was obtained by incorporating the capillary hysteresis model of Parker and Lenhard into the hydraulic model of Peters-Durner-Iden (PDI) as formulated for the van Genuchten (VG) retention equation. The formulation includes the following processes: capillary hysteresis accounting for air entrapment, closed scanning curves, nonhysteretic sorption of water retention onto mineral surfaces, a hysteretic function for the capillary conductivity, a nonhysteretic function for the film conductivity, and a nearly nonhysteretic function of the conductivity as a function of water content (θ) for the entire range of water contents. The proposed model only requires two additional parameters to describe hysteresis. The model was found to accurately describe observed hysteretic water retention and conductivity data for a dune sand. Using a range of published data sets, relationships could be established between the capillary water retention and film conductivity parameters. Including vapor conductivity improved conductivity descriptions in the very dry range. The resulting model allows predictions of the hydraulic conductivity from saturation until complete dryness using water retention parameters.

  17. Mind the bubbles: achieving stable measurements of maximum hydraulic conductivity through woody plant samples

    PubMed Central

    Espino, Susana; Schenk, H. Jochen

    2011-01-01

    The maximum specific hydraulic conductivity (kmax) of a plant sample is a measure of the ability of a plants’ vascular system to transport water and dissolved nutrients under optimum conditions. Precise measurements of kmax are needed in comparative studies of hydraulic conductivity, as well as for measuring the formation and repair of xylem embolisms. Unstable measurements of kmax are a common problem when measuring woody plant samples and it is commonly observed that kmax declines from initially high values, especially when positive water pressure is used to flush out embolisms. This study was designed to test five hypotheses that could potentially explain declines in kmax under positive pressure: (i) non-steady-state flow; (ii) swelling of pectin hydrogels in inter-vessel pit membranes; (iii) nucleation and coalescence of bubbles at constrictions in the xylem; (iv) physiological wounding responses; and (v) passive wounding responses, such as clogging of the xylem by debris. Prehydrated woody stems from Laurus nobilis (Lauraceae) and Encelia farinosa (Asteraceae) collected from plants grown in the Fullerton Arboretum in Southern California, were used to test these hypotheses using a xylem embolism meter (XYL'EM). Treatments included simultaneous measurements of stem inflow and outflow, enzyme inhibitors, stem-debarking, low water temperatures, different water degassing techniques, and varied concentrations of calcium, potassium, magnesium, and copper salts in aqueous measurement solutions. Stable measurements of kmax were observed at concentrations of calcium, potassium, and magnesium salts high enough to suppress bubble coalescence, as well as with deionized water that was degassed using a membrane contactor under strong vacuum. Bubble formation and coalescence under positive pressure in the xylem therefore appear to be the main cause for declining kmax values. Our findings suggest that degassing of water is essential for achieving stable and precise

  18. Responses of foliar delta13C, gas exchange and leaf morphology to reduced hydraulic conductivity in Pinus monticola branches.

    PubMed

    Cernusak, L A; Marshall, J D

    2001-10-01

    We tested the hypothesis that branch hydraulic conductivity partly controls foliar stable carbon isotope ratio (delta13C) by its influence on stomatal conductance in Pinus monticola Dougl. Notching and phloem-girdling treatments were applied to reduce branch conductivity over the course of a growing season. Notching and phloem girdling reduced leaf-specific conductivity (LSC) by about 30 and 90%, respectively. The 90% reduction in LSC increased foliar delta13C by about 1 per thousand (P < 0.0001, n = 65), whereas the 30% reduction in LSC had no effect on foliar delta13C (P = 0.90, n = 65). Variation in the delta13C of dark respiration was similar to that of whole-tissues when compared among treatments. These isotopic measurements, in addition to instantaneous gas exchange measurements, suggested only minor adjustments in the ratio of intercellular to atmospheric CO2 partial pressures (ci/ca) in response to experimentally reduced hydraulic conductivity. A strong correlation was observed between stomatal conductance (gs) and photosynthetic demand over a tenfold range in gs. Although ci/ca and delta13C appeared to be relatively homeostatic, current-year leaf area varied linearly as a function of branch hydraulic conductivity (r2 = 0.69, P < 0.0001, n = 18). These results suggest that, for Pinus monticola, adjustment of leaf area is a more important response to reduced branch conductivity than adjustment of ci/ca.

  19. Root and stem hydraulic conductivity as determinants of growth potential in grafted trees of apple (Malus pumila Mill.).

    PubMed

    Atkinson, C J; Else, M A; Taylor, L; Dover, C J

    2003-04-01

    The anatomy of the graft tissue between a rootstock and its shoot (scion) can provide a mechanistic explanation of the way dwarfing Malus rootstocks reduce shoot growth. Considerable xylem tissue disorganization may result in graft tissue having a low hydraulic conductivity (k(h)), relative to the scion stem. The graft may influence the movement of substances in the xylem such as ions, water and plant-growth-regulating hormones. Measurements were made on 3-year-old apple trees with a low-pressure flow system to determine k(h) of root and scion stem sections incorporating the graft tissue. A range of rootstocks was examined, with different abilities of dwarfing; both ungrafted and grafted with the same scion shoot cultivar. The results showed that the hydraulic conductivity (k(hroot)) of roots from dwarfing rootstocks was lower compared with semi-vigorous rootstocks, at least for the size class of root measured (1.5 mm diameter). Scion hydraulic conductivity (k(hs)) was linked to leaf area and also to the rootstock on to which it was grafted, i.e. hydraulic conductivity was greater for the scion stem on the semi-vigorous rootstock. Expressing conductivities relative to xylem cross-sectional areas (k(s)) did not remove these differences suggesting that there were anatomical changes induced by the rootstock. The calculated hydraulic conductivity of the graft tissue was found to be lower for grafted trees on dwarfing rootstocks compared to invigorating rootstocks. These observations are discussed in relation to the mechanism(s) by which rootstock influences shoot growth in grafted trees.

  20. HYDRAULIC CONDUCTIVITY OF SALTSTONE FORMULATED USING 1Q11, 2Q11 AND 3Q11 TANK 50 SLURRY SAMPLES

    SciTech Connect

    Reigel, M.; Nichols, R.

    2012-06-27

    As part of the Saltstone formulation work requested by Waste Solidification Engineering (WSE), Savannah River National Laboratory (SRNL) was tasked with preparing Saltstone samples for fresh property analysis and hydraulic conductivity measurements using actual Tank 50 salt solution rather than simulated salt solution. Samples of low level waste salt solution collected from Tank 50H during the first, second, and third quarters of 2011 were used to formulate the Saltstone samples. The salt solution was mixed with premix (45 wt % slag, 45 wt % fly ash, and 10 wt % cement), in a ratio consistent with facility operating conditions during the quarter of interest. The fresh properties (gel, set, bleed) of each mix were evaluated and compared to the recommended acceptance criteria for the Saltstone Production Facility. ASTM D5084-03, Method C was used to measure the hydraulic conductivity of the Saltstone samples. The hydraulic conductivity of Saltstone samples prepared from 1Q11 and 2Q11 samples of Tank 50H is 4.2E-9 cm/sec and 2.6E-9 cm/sec, respectively. Two additional 2Q11 and one 3Q11 sample were not successfully tested due to the inability to achieve stable readings during saturation and testing. The hydraulic conductivity of the samples made from Tank 50H salt solution compare well to samples prepared with simulated salt solution and cured under similar conditions (1.4E-9 - 4.9E-8 cm/sec).

  1. Development of the helical reaction hydraulic turbine. Final technical report, July 1, 1996--June 30, 1998

    SciTech Connect

    Gorlov, A.

    1998-08-01

    The present report contains the final results obtained during July 1996--July 1998. This report should be considered in association with the Annual Progress Report submitted in July 1997 due to the fact that not all of the intermediate results reflected in the Progress Report have been included in the Final Report. The aim of the project was to build a helical hydraulic turbine prototype and demonstrate its suitability and advantages as a novel apparatus to harness hydropower from ultra low-head rivers and other free water streams such as ocean currents or rivers without dams. The research objectives of the project are: Design, optimization and selection of the hydro foil section for the helical turbine; Design of the turbine for demonstration project; Construction and testing of the turbine module; Assessing test results and determining scale-up feasibility. The research conducted under this project has substantially exceeded the original goals including designing, constructing and testing of a scaled-up triple-helix turbine, as well as developing recommendations for application of the turbine for direct water pumping in irrigation systems and for future use in wind farms. Measurements collected during two years of turbine testing are kept in the PI files.

  2. Hydraulic conductivity of the High Plains Aquifer re-evaluated using surface drainage patterns

    NASA Astrophysics Data System (ADS)

    Luo, Wei; Pederson, Darryll T.

    2012-01-01

    The High Plains Aquifer (HPA), underlying parts of 8 states from South Dakota to Texas, is one of the largest fresh water aquifers in the world and accounts for 30% of the groundwater used for irrigation in the US. Determining the distribution of HPA's hydraulic conductivity (K) is critical for water management and addressing water quality issues. K is traditionally estimated from well pumping data coupled with computer modeling and is known to be highly variable, spanning several orders of magnitude for the same type of rock. Here we show that applying our innovative method of determining effective horizontal K to HPA (based on surface drainage patterns and a dynamic equilibrium assumption) produced results generally consistent with those from traditional methods but reveals much more detailed spatial variation. With the exception of a few places such as the Sand Hills area, our results also show for the first time (to the best of our knowledge) a distinct relationship between surface stream drainage density and subsurface aquifer K in a major aquifer system on a regional scale. Because aquifer particle size strongly controls K, our results can be used to study patterns of past sediment movement and deposition.

  3. Arbuscular mycorrhizal symbiosis and methyl jasmonate avoid the inhibition of root hydraulic conductivity caused by drought.

    PubMed

    Sánchez-Romera, Beatriz; Ruiz-Lozano, Juan Manuel; Zamarreño, Ángel María; García-Mina, José María; Aroca, Ricardo

    2016-02-01

    Hormonal regulation and symbiotic relationships provide benefits for plants to overcome stress conditions. The aim of this study was to elucidate the effects of exogenous methyl jasmonate (MeJA) application on root hydraulic conductivity (L) of Phaseolus vulgaris plants which established arbuscular mycorrhizal (AM) symbiosis under two water regimes (well-watered and drought conditions). The variation in endogenous contents of several hormones (MeJA, JA, abscisic acid (ABA), indol-3-acetic acid (IAA), salicylic acid (SA)) and the changes in aquaporin gene expression, protein abundance and phosphorylation state were analyzed. AM symbiosis decreased L under well-watered conditions, which was partially reverted by the MeJA treatment, apparently by a drop in root IAA contents. Also, AM symbiosis and MeJA prevented inhibition of L under drought conditions, most probably by a reduction in root SA contents. Additionally, the gene expression of two fungal aquaporins was upregulated under drought conditions, independently of the MeJA treatment. Plant aquaporin gene expression could not explain the behaviour of L. Conversely, evidence was found for the control of L by phosphorylation of aquaporins. Hence, MeJA addition modified the response of L to both AM symbiosis and drought, presumably by regulating the root contents of IAA and SA and the phosphorylation state of aquaporins.

  4. Rapid measurement of field-saturated hydraulic conductivity for areal characterization

    USGS Publications Warehouse

    Nimmo, J.R.; Schmidt, K.M.; Perkins, K.S.; Stock, J.D.

    2009-01-01

    To provide an improved methodology for characterizing the field-saturated hydraulic conductivity (Kfs) over broad areas with extreme spatial variability and ordinary limitations of time and resources, we developed and tested a simplified apparatus and procedure, correcting mathematically for the major deficiencies of the simplified implementation. The methodology includes use of a portable, falling-head, small-diameter (???20 cm) single-ring infiltrometer and an analytical formula for Kfs that compensates both for nonconstant falling head and for the subsurface radial spreading that unavoidably occurs with small ring size. We applied this method to alluvial fan deposits varying in degree of pedogenic maturity in the arid Mojave National Preserve, California. The measurements are consistent with a more rigorous and time-consuming Kfs measurement method, produce the expected systematic trends in Kfs when compared among soils of contrasting degrees of pedogenic development, and relate in expected ways to results of widely accepted methods. ?? Soil Science Society of America. All rights reserved.

  5. Noradrenaline has opposing effects on the hydraulic conductance of arterial intima and media.

    PubMed

    Chooi, K Y; Comerford, A; Sherwin, S J; Weinberg, P D

    2017-03-21

    The uptake of circulating macromolecules by the arterial intima is thought to be a key step in atherogenesis. Such transport is dominantly advective, so elucidating the mechanisms of water transport is important. The relation between vasoactive agents and water transport in the arterial wall is incompletely understood. Here we applied our recently-developed combination of computational and experimental methods to investigate the effects of noradrenaline (NA) on hydraulic conductance of the wall (Lp), medial extracellular matrix volume fraction (ϕ(ECM)) and medial permeability (K1(1)) in the rat abdominal aorta. Experimentally, we found that physiological NA concentrations were sufficient to induce SMC contraction and produced significant decreases in Lp and increases in ϕ(ECM). Simulation results based on 3D confocal images of the extracellular volume showed a corresponding increase in K1(1), attributed to the opening of the ECM. Conversion of permeabilities to layer-specific resistances revealed that although the total wall resistance increased, medial resistance decreased, suggesting an increase in intimal resistance upon application of NA.

  6. DBS-relevant electric fields increase hydraulic conductivity of in vitro endothelial monolayers.

    PubMed

    Lopez-Quintero, S V; Datta, A; Amaya, R; Elwassif, M; Bikson, M; Tarbell, J M

    2010-02-01

    Deep brain stimulation (DBS) achieves therapeutic outcome through generation of electric fields (EF) in the vicinity of energized electrodes. Targeted brain regions are highly vascularized, and it remains unknown if DBS electric fields modulate blood-brain barrier (BBB) function, either through electroporation of individual endothelial cells or electro-permeation of barrier tight junctions. In our study, we calculated the intensities of EF generated around energized Medtronic 3387 and 3389 DBS leads by using a finite element model. Then we designed a novel stimulation system to study the effects of such fields with DBS-relevant waveforms and intensities on bovine aortic endothelial cell (BAEC) monolayers, which were used as a basic analog for the blood-brain barrier endothelium. Following 5 min of stimulation, we observed a transient increase in endothelial hydraulic conductivity (Lp) that could be related to the disruption of the tight junctions (TJ) between cells, as suggested by zonula occludens-1 (ZO-1) protein staining. This 'electro-permeation' occurred in the absence of cell death or single cell electroporation, as indicated by propidium iodide staining and cytosolic calcein uptake. Our in vitro results, using uniform fields and BAEC monolayers, thus suggest that electro-permeation of the BBB may occur at electric field intensities below those inducing electroporation and within intensities generated near DBS electrodes. Further studies are necessary to address potential BBB disruption during clinical studies, with safety and efficacy implications.

  7. Obtaining parsimonious hydraulic conductivity fields using head and transport observations: A bayesian geostatistical parameter estimation approach

    USGS Publications Warehouse

    Fienen, M.; Hunt, R.; Krabbenhoft, D.; Clemo, T.

    2009-01-01

    Flow path delineation is a valuable tool for interpreting the subsurface hydrogeochemical environment. Different types of data, such as groundwater flow and transport, inform different aspects of hydrogeologie parameter values (hydraulic conductivity in this case) which, in turn, determine flow paths. This work combines flow and transport information to estimate a unified set of hydrogeologic parameters using the Bayesian geostatistical inverse approach. Parameter flexibility is allowed by using a highly parameterized approach with the level of complexity informed by the data. Despite the effort to adhere to the ideal of minimal a priori structure imposed on the problem, extreme contrasts in parameters can result in the need to censor correlation across hydrostratigraphic bounding surfaces. These partitions segregate parameters into faci??s associations. With an iterative approach in which partitions are based on inspection of initial estimates, flow path interpretation is progressively refined through the inclusion of more types of data. Head observations, stable oxygen isotopes (18O/16O) ratios), and tritium are all used to progressively refine flow path delineation on an isthmus between two lakes in the Trout Lake watershed, northern Wisconsin, United States. Despite allowing significant parameter freedom by estimating many distributed parameter values, a smooth field is obtained. Copyright 2009 by the American Geophysical Union.

  8. Reassessing the MADE direct-push hydraulic conductivity data using a revised calibration procedure

    NASA Astrophysics Data System (ADS)

    Bohling, Geoffrey C.; Liu, Gaisheng; Dietrich, Peter; Butler, James J.

    2016-11-01

    In earlier work, we presented a geostatistical assessment of high-resolution hydraulic conductivity (K) profiles obtained at the MADE site using direct-push (DP) methods. The profiles are derived from direct-push injection logger (DPIL) measurements that provide a relative indicator of vertical variations in K with a sample spacing of 1.5 cm. The DPIL profiles are converted to K profiles by calibrating to the results of direct-push permeameter (DPP) tests performed at selected depths in some of the profiles. Our original calibration used a linear transform that failed to adequately account for an upper limit on DPIL responses in high-K zones and noise in the DPIL data. Here we present a revised calibration procedure that accounts for the upper limit and noise, leading to DPIL K values that display a somewhat different univariate distribution and a lower lnK variance (5.9 ± 1.5) than the original calibration values (6.9 ± 1.8), although each variance estimate falls within the other's 95% confidence interval. Despite the change in the univariate distribution, the autocorrelation structure and large-scale patterns exhibited by the revised DPIL K values still agree well with those exhibited by the flowmeter data from the site. We provide the DPIL and DPP data, along with our calibrated DPIL K values, in the Supporting Information.

  9. Hydraulic conductivity of a sandy soil at low water content after compaction by various methods

    USGS Publications Warehouse

    Nimmo, John R.; Akstin, Katherine C.

    1988-01-01

    To investigate the degree to which compaction of a sandy soil influences its unsaturated hydraulic conductivity K, samples of Oakley sand (now in the Delhi series; mixed, thermic, Typic Xeropsamments) were packed to various densities and K was measured by the steady-state centrifuge method. The air-dry, machine packing was followed by centrifugal compression with the soil wet to about one-third saturation. Variations in (i) the impact frequency and (ii) the impact force during packing, and (iii) the amount of centrifugal force applied after packing, produced a range of porosity from 0.333 to 0.380. With volumetric water content θ between 0.06 and 0.12, K values were between 7 × 10−11 and 2 × 10−8 m/s. Comparisons of K at a single θ value for samples differing in porosity by about 3% showed as much as fivefold variation for samples prepared by different packing procedures, while there generally was negligible variation (within experimental error of 8%) where the porosity difference resulted from a difference in centrifugal force. Analysis involving capillary-theory models suggests that the differences in K can be related to differences in pore-space geometry inferred from water retention curves measured for the various samples.

  10. Integration of Fuzzy and Probabilistic Information in the Description of Hydraulic Conductivity

    NASA Astrophysics Data System (ADS)

    Druschel, B.; Ozbek, M.; Pinder, G.

    2004-12-01

    Evaluation of the heterogeneity of hydraulic conductivity, K, is a well-known problem in groundwater hydrology. The open question is how to fully represent a given highly heterogeneous K field and its inherent uncertainty at least cost. Today, most K fields are analyzed using field test data and probability theory. Uncertainty is usually reported in the spatial covariance. In an attempt to develop a more cost effective method which still provides an accurate approximation of a K field, we propose using an evidence theory framework to merge probabilistic and fuzzy (or possibilistic) information in an effort to improve our ability to fully define a K field. The tool chosen to fuse probabilistic information obtained via experiment and subjective information provided by the groundwater professional is Dempster's Rule of Combination. In using this theory we must create mass assignments for our subject of interest, describing the degree of evidence that supports the presence of our subject in a particular set. These mass assignments can be created directly from the probabilistic information and, in the case of the subjective information, from feedback we obtain from an expert. The fusion of these two types of information provides a better description of uncertainty than would typically be available with just probability theory alone.

  11. Do electroviscous effects impact the hydraulic conductance of xylem? A theoretical inquiry

    NASA Astrophysics Data System (ADS)

    Santiago, Michael; Pagay, Vinay; Stroock, Abraham

    2013-03-01

    Experiments show that the hydraulic conductance of plant xylem (K) varies with the ionic-strength (I) and pH of the sap, a behavior usually attributed to the swelling of hydrogels that cover bordered pits--conduits that interconnect individual xylem vessels. These gels are believed to swell at low I or large pH, and thus decrease the flow cross-section and K. But experiments have shown behaviors that contradict this hypothesis, where a decrease in I serves to increase K. Here, we investigate whether these observations could be explained by electroviscous effects in the pores of bordered pits, since the literature suggests that pits are covered by materials that develop electric charge in aqueous solution, e.g. lignin and pectin. We use experimental measurements from the literature, combined with standard electrokinetic theory, to estimate the electroviscous effect of I and pH on K. We find that K varies non-monotonically with I and can drop to a minimum of 0.8 of its maximum value, and that our predictions fit the available experimental data for physiologically relevant conditions in I and pH. We conclude that electrokinetics could explain, at least partially, the observed changes in K, and propose experiments to test this hypothesis. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE 1144153.

  12. Soluble complex of complement increases hydraulic conductivity in single microvessels of rat lung.

    PubMed

    Ishikawa, S; Tsukada, H; Bhattacharya, J

    1993-01-01

    We determined the effect of sera enriched with the soluble complex of complement (SC5b-9), on hydraulic conductivity (Lp) of single pulmonary venules (diameter 20-30 microns). Sera free of anticoagulants and blood cells were prepared from rat and human blood. Lp were determined by our split drop technique in isolated, blood-perfused lungs prepared from anesthetized rats (2% halothane; Sprague Dawley, 500 g; n = 73). Zymosan-activated (ZAS) and control sera were used for Lp determinations. In ZAS prepared from human serum, SC5b-9 concentration was > 300 micrograms/ml (control: < 1 microgram/ml) as determined by ELISA. At baseline, Lp averaged 3.4 +/- .4 x 10(-7) ml/(cm2.s.cm H2O), but it increased by 217 +/- 32% with undiluted ZAS (P < 0.05). The Lp increase correlated significantly with different ZAS dilutions for rat serum and with SC5b-9 concentration for human serum. Lp did not increase significantly with ZAS prepared from heat-treated sera, C6- and C8-deficient sera; or with ZAS in which SC5b-9 had been depleted by immunoprecipitation. The ZAS-induced increase of Lp was blocked completely by venular preinfusion with the arginine-glycine-aspartic acid (RGD) tripeptide (1 mg/ml, 10 min). We report for the first time that: (a) SC5b-9 increases lung endothelial Lp; and (b) the increase of Lp is attributable to an integrin-dependent mechanism.

  13. Influence of saline stress on root hydraulic conductance and PIP expression in Arabidopsis.

    PubMed

    Martínez-Ballesta, M Carmen; Aparicio, Federico; Pallás, Vicente; Martínez, Vicente; Carvajal, Micaela

    2003-06-01

    Measurements of the root hydraulic conductance (L0) of roots of Arabidopsis thaliana were carried out and the results were compared with the expression of aquaporins present in the plasma membrane of A. thaliana. L0 of plants treated with different NaCl concentrations was progressively reduced as NaCl concentration was increased compared to control plants. Also, L0 of plants treated with 60 mmol/L NaCl for different lengths of time was measured. Variations during the light period were seen, but only for the controls. A good correlation between mRNA expression and L0 was observed in both experiments. Control plants and plants treated with 60 mmol/L NaCl were incubated with Hg and then with DTT. For these plants, L0 and cell-to-cell pathway contributions to root water transport were determined. These results revealed that in control plants most water movement occurs via the cell-to-cell pathway, thus implying aquaporin involvement. But, in NaCl-stressed plants, the Hg-sensitive cell-to-cell pathway could be inhibited already by the effect of NaCl on water channels. Therefore, short periods of NaCl application to Arabidopsis plants are characterised by decreases in the L0 of roots, and are related to down-regulation of the expression of the PIP aquaporins. This finding indicates that the well known effect of salinity on L0 could involve regulation of aquaporin expression.

  14. The calcium-dependent protein kinase CPK7 acts on root hydraulic conductivity.

    PubMed

    Li, Guowei; Boudsocq, Marie; Hem, Sonia; Vialaret, Jérôme; Rossignol, Michel; Maurel, Christophe; Santoni, Véronique

    2015-07-01

    The hydraulic conductivity of plant roots (Lp(r)) is determined in large part by the activity of aquaporins. Mechanisms occurring at the post-translational level, in particular phosphorylation of aquaporins of the plasma membrane intrinsic protein 2 (PIP2) subfamily, are thought to be of critical importance for regulating root water transport. However, knowledge of protein kinases and phosphatases acting on aquaporin function is still scarce. In the present work, we investigated the Lp(r) of knockout Arabidopsis plants for four Ca(2+)-dependent protein kinases. cpk7 plants showed a 30% increase in Lp(r) because of a higher aquaporin activity. A quantitative proteomic analysis of wild-type and cpk7 plants revealed that PIP gene expression and PIP protein quantity were not correlated and that CPK7 has no effect on PIP2 phosphorylation. In contrast, CPK7 exerts a negative control on the cellular abundance of PIP1s, which likely accounts for the higher Lp(r) of cpk7. In addition, this study revealed that the cellular amount of a few additional proteins including membrane transporters is controlled by CPK7. The overall work provides evidence for CPK7-dependent stability of specific membrane proteins.

  15. Estimation of soil saturated hydraulic conductivity by artificial neural networks ensemble in smectitic soils

    NASA Astrophysics Data System (ADS)

    Sedaghat, A.; Bayat, H.; Safari Sinegani, A. A.

    2016-03-01

    The saturated hydraulic conductivity ( K s ) of the soil is one of the main soil physical properties. Indirect estimation of this parameter using pedo-transfer functions (PTFs) has received considerable attention. The Purpose of this study was to improve the estimation of K s using fractal parameters of particle and micro-aggregate size distributions in smectitic soils. In this study 260 disturbed and undisturbed soil samples were collected from Guilan province, the north of Iran. The fractal model of Bird and Perrier was used to compute the fractal parameters of particle and micro-aggregate size distributions. The PTFs were developed by artificial neural networks (ANNs) ensemble to estimate K s by using available soil data and fractal parameters. There were found significant correlations between K s and fractal parameters of particles and microaggregates. Estimation of K s was improved significantly by using fractal parameters of soil micro-aggregates as predictors. But using geometric mean and geometric standard deviation of particles diameter did not improve K s estimations significantly. Using fractal parameters of particles and micro-aggregates simultaneously, had the most effect in the estimation of K s . Generally, fractal parameters can be successfully used as input parameters to improve the estimation of K s in the PTFs in smectitic soils. As a result, ANNs ensemble successfully correlated the fractal parameters of particles and micro-aggregates to K s .

  16. Measurement of the volume flow and hydraulic conductivity across the isolated dog retinal pigment epithelium.

    PubMed

    Tsuboi, S

    1987-11-01

    The isolated dog retinal pigment epithelium (RPE)-choroid was gently stretched on the inner surface of a spherical stainless mesh, retinal side upward, and clamped between half-chambers made of Kel-F. The volume flow across the tissue was monitored by the movement of water in capillary tubes connected to both chambers. With zero pressure difference across the RPE-choroid, retina-to-choroid fluid flow was determined to be 6.4 microliters/hr/cm2 (absorption). Removal of HCO-3 from the solution did not affect the fluid flow. However, the flow was reduced 88% in Cl- -free medium, indicating a coupling between water and Cl- absorption. The flow was also inhibited by ouabain (10(-5) M) and furosemide (10(-4) M). Hydraulic conductivity (Lp) of the RPE-choroid was determined to be 0.0126 microliters/min/cm2/mm Hg which places the dog RPE-choroid in the category of a "leaky" epithelium.

  17. The chemical identity of intervessel pit membranes in Acer challenges hydrogel control of xylem hydraulic conductivity

    PubMed Central

    Klepsch, Matthias M.; Schmitt, Marco; Paul Knox, J.; Jansen, Steven

    2016-01-01

    Ion-mediated enhancement of the hydraulic conductivity of xylem tissue (i.e. the ionic effect) has been reported for various angiosperm species. One explanation of the ionic effect is that it is caused by the swelling and shrinking of intervessel pit membranes due to the presence of pectins and/or other cell-wall matrix polymers such as heteroxylans or arabinogalactan–proteins (AGPs) that may contain acidic sugars. Here, we examined the ionic effect for six Acer species and their pit membrane chemistry using immunocytochemistry, including antibodies against glycoproteins. Moreover, anatomical features related to the bordered pit morphology and vessel dimensions were investigated using light and electron microscopy. The ionic effect varied from 18 % (± 9) to 32 % (± 13). Epitopes of homogalacturonan (LM18) and xylan (LM11) were not detected in intervessel pit membranes. Negative results were also obtained for glycoproteins (extensin: LM1, JIM20; AGP glycan: LM2), although AGP (JIM13)-related epitopes were detected in parenchyma cells. The mean vessel length was significantly correlated with the magnitude of the ionic effect, unlike other pit or vessel-related characteristics. Our results suggest that intervessel pit membranes of Acer are unlikely to contain pectic or other acidic polysaccharides. Therefore, alternative explanations should be tested to clarify the ionic effect. PMID:27354661

  18. High Plains Aquifer as Megafans? - Perspective from Spatial Distribution of Hydraulic Conductivity

    NASA Astrophysics Data System (ADS)

    Luo, W.; Pederson, D. T.

    2011-12-01

    High Plains Aquifer (HPA) is one on the largest fresh water aquifers in the world and accounts for 30% of the groundwater used for irrigation in the United States. It consists mainly of hydraulically connected geologic units of late Tertiary to Quaternary age, produced from weathering, erosion, and fluvial transportation and deposition processes associated with the post-Paleozoic uplift of the Rocky Mountains, and represents a mountain front megafan deposition environment. We use an innovative method to map the hydraulic conductivity (K) of the aquifer based on surface drainage patterns and a dynamic equilibrium assumption. Under dynamic equilibrium conditions developed over long time scales, the groundwater discharge and seepage induced weathering processes prepare and precondition the rocks for preferential erosion in areas weakened by weathering. The erosion further concentrates groundwater flow at the points of incision due to higher and directional groundwater gradients, guiding further valley development. The resulting drainage system thus reflects the underlying groundwater flow patterns. This linkage between valley development and the groundwater flow system develops a unique overall drainage dissection pattern over geologic time that is controlled by the interplay between surface water, topography, and subsurface aquifer properties. We can thus estimate K based on drainage dissection pattern derived from DEM data. Our K result is generally consistent with previous USGS data but shows much greater detail of its spatial distribution. As K is a function of grain size, its spatial distribution can also indirectly reflect the sediment size distribution. The spatial distribution of K reveals the following: (1) In general, the higher values of K were located closer to the Rocky Mountains, consistent with the large sediment grain sizes that would be expected in a mountain front environment. (2) The high K value near the Platte and Arkansas rivers are also

  19. Co-ordination of hydraulic and stomatal conductances across light qualities in cucumber leaves.

    PubMed

    Savvides, Andreas; Fanourakis, Dimitrios; van Ieperen, Wim

    2012-02-01

    Long-term effects of light quality on leaf hydraulic conductance (K(leaf)) and stomatal conductance (g(s)) were studied in cucumber, and their joint impact on leaf photosynthesis in response to osmotic-induced water stress was assessed. Plants were grown under low intensity monochromatic red (R, 640 nm), blue (B, 420 nm) or combined red and blue (R:B, 70:30) light. K(leaf) and g(s) were much lower in leaves that developed without blue light. Differences in g(s) were caused by differences in stomatal aperture and stomatal density, of which the latter was largely due to differences in epidermal cell size and hardly due to stomatal development. Net photosynthesis (A(N)) was lowest in R-, intermediate in B-, and highest in RB- grown leaves. The low A(N) in R-grown leaves correlated with a low leaf internal CO(2) concentration and reduced PSII operating efficiency. In response to osmotic stress, all leaves showed similar degrees of stomatal closure, but the reduction in A(N) was larger in R- than in B- and RB-grown leaves. This was probably due to damage of the photosynthetic apparatus, which only occurred in R-grown leaves. The present study shows the co-ordination of K(leaf) and g(s) across different light qualities, while the presence of blue in the light spectrum seems to drive both K(leaf) and g(s) towards high, sun-type leaf values, as was previously reported for maximal photosynthetic capacity and leaf morphology. The present results suggest the involvement of blue light receptors in the usually harmonized development of leaf characteristics related to water relations and photosynthesis under different light environments.

  20. Inhibitor studies of leaf lamina hydraulic conductance in trembling aspen (Populus tremuloides Michx.) leaves.

    PubMed

    Voicu, Mihaela C; Zwiazek, Janusz J

    2010-02-01

    The present study investigated leaf water transport properties in trembling aspen (Populus tremuloides) leaves. Leaf lamina hydraulic conductance (K(lam)) and stomatal conductance (g(s)) were drastically suppressed by NaF (a general metabolic inhibitor). In leaves treated with 0.2 mM HgCl(2) (an aquaporin blocker), K(lam) declined by 22% when the leaves were sampled in June but the decline was not significant when the leaves were sampled in August. The leaves sampled in June that transpired 30 mM beta-mercaptoethanol following mercury application showed similar K(lam) as those in control leaves transpiring distilled water. When leaves were pressure-infiltrated with 0.1 mM HgCl(2), K(lam) significantly declined by 25%. Atrazine (a photosystem II inhibitor) drastically reduced leaf net CO(2) uptake by the leaves from seedlings and mature trees but did not have any effect on K(lam) regardless of the irradiance at the leaf level during the K(lam) measurements. When PTS(3) (trisodium 3-hydroxy-5,8,10-pyrenetrisulphonate) apoplastic tracer was pressure-infiltrated inside the leaves, its concentration in the leaf exudates did not change from ambient light to high irradiance treatment and declined in the presence of HgCl(2) in the treatment solution. Trembling aspen K(lam) appears to be linked to leaf metabolism and is uncoupled from the short-term variations in photosynthesis. Aquaporin-mediated water transport does not appear to constitute the dominant pathway for the pressure-driven water flow in the leaves of trembling aspen trees.

  1. Geologic Controls of Hydraulic Conductivity in the Snake River Plain Aquifer At and Near the Idaho National Engineering and Environmental Laboratory, Idaho

    SciTech Connect

    S. R. Anderson; M. A. Kuntz; L. C. Davis

    1999-02-01

    The effective hydraulic conductivity of basalt and interbedded sediment that compose the Snake River Plain aquifer at and near the Idaho National Engineering and Environmental Laboratory (INEEL) ranges from about 1.0x10 -2 to 3.2x10 4 feet per day (ft/d). This six-order-of-magnitude range of hydraulic conductivity was estimated from single-well aquifer tests in 114 wells, and is attributed mainly to the physical characteristics and distribution of basalt flows and dikes. Hydraulic conductivity is greatest in thin pahoehoe flows and near-vent volcanic deposits. Hydraulic conductivity is least in flows and deposits cut by dikes. Estimates of hydraulic conductivity at and near the INEEL are similar to those measured in similar volcanic settings in Hawaii. The largest variety of rock types and the greatest range of hydraulic conductivity are in volcanic rift zones, which are characterized by numerous aligned volcanic vents and fissures related to underlying dikes. Three broad categories of hydraulic conductivity corresponding to six general types of geologic controls can be inferred from the distribution of wells and vent corridors. Hydraulic conductivity of basalt flows probably is increased by localized fissures and coarse mixtures of interbedded sediment, scoria, and basalt rubble. Hydraulic conductivity of basalt flows is decreased locally by abundant alteration minerals of probable hydrothermal origin. Hydraulic conductivity varies as much as six orders of magnitude in a single vent corridor and varies from three to five orders of magnitude within distances of 500 to 1,000 feet. Abrupt changes in hydraulic conductivity over short distances suggest the presence of preferential pathways and local barriers that may greatly affect the movement of ground water and the dispersion of radioactive and chemical wastes downgradient from points of waste disposal.

  2. The role of water channel proteins in facilitating recovery of leaf hydraulic conductance from water stress in Populus trichocarpa.

    PubMed

    Laur, Joan; Hacke, Uwe G

    2014-01-01

    Gas exchange is constrained by the whole-plant hydraulic conductance (Kplant). Leaves account for an important fraction of Kplant and may therefore represent a major determinant of plant productivity. Leaf hydraulic conductance (Kleaf) decreases with increasing water stress, which is due to xylem embolism in leaf veins and/or the properties of the extra-xylary pathway. Water flow through living tissues is facilitated and regulated by water channel proteins called aquaporins (AQPs). Here we assessed changes in the hydraulic conductance of Populus trichocarpa leaves during a dehydration-rewatering episode. While leaves were highly sensitive to drought, Kleaf recovered only 2 hours after plants were rewatered. Recovery of Kleaf was absent when excised leaves were bench-dried and subsequently xylem-perfused with a solution containing AQP inhibitors. We examined the expression patterns of 12 highly expressed AQP genes during a dehydration-rehydration episode to identify isoforms that may be involved in leaf hydraulic adjustments. Among the AQPs tested, several genes encoding tonoplast intrinsic proteins (TIPs) showed large increases in expression in rehydrated leaves, suggesting that TIPs contribute to reversing drought-induced reductions in Kleaf. TIPs were localized in xylem parenchyma, consistent with a role in facilitating water exchange between xylem vessels and adjacent living cells. Dye uptake experiments suggested that reversible embolism formation in minor leaf veins contributed to the observed changes in Kleaf.

  3. The Role of Water Channel Proteins in Facilitating Recovery of Leaf Hydraulic Conductance from Water Stress in Populus trichocarpa

    PubMed Central

    Laur, Joan; Hacke, Uwe G.

    2014-01-01

    Gas exchange is constrained by the whole-plant hydraulic conductance (Kplant). Leaves account for an important fraction of Kplant and may therefore represent a major determinant of plant productivity. Leaf hydraulic conductance (Kleaf) decreases with increasing water stress, which is due to xylem embolism in leaf veins and/or the properties of the extra-xylary pathway. Water flow through living tissues is facilitated and regulated by water channel proteins called aquaporins (AQPs). Here we assessed changes in the hydraulic conductance of Populus trichocarpa leaves during a dehydration-rewatering episode. While leaves were highly sensitive to drought, Kleaf recovered only 2 hours after plants were rewatered. Recovery of Kleaf was absent when excised leaves were bench-dried and subsequently xylem-perfused with a solution containing AQP inhibitors. We examined the expression patterns of 12 highly expressed AQP genes during a dehydration-rehydration episode to identify isoforms that may be involved in leaf hydraulic adjustments. Among the AQPs tested, several genes encoding tonoplast intrinsic proteins (TIPs) showed large increases in expression in rehydrated leaves, suggesting that TIPs contribute to reversing drought-induced reductions in Kleaf. TIPs were localized in xylem parenchyma, consistent with a role in facilitating water exchange between xylem vessels and adjacent living cells. Dye uptake experiments suggested that reversible embolism formation in minor leaf veins contributed to the observed changes in Kleaf. PMID:25406088

  4. Changes in root hydraulic conductivity facilitate the overall hydraulic response of rice (Oryza sativa L.) cultivars to salt and osmotic stress.

    PubMed

    Meng, Delong; Fricke, Wieland

    2017-04-01

    The aim of the present work was to assess the significance of changes in root AQP gene expression and hydraulic conductivity (Lp) in the regulation of water balance in two hydroponically-grown rice cultivars (Azucena, Bala) which differ in root morphology, stomatal regulation and aquaporin (AQP) isoform expression. Plants were exposed to NaCl (25 mM, 50 mM) and osmotic stress (5%, 10% PEG6000). Root Lp was determined for exuding root systems (osmotic forces driving water uptake; 'exudation Lp') and transpiring plants (hydrostatic forces dominating; 'transpiration-Lp'). Gene expression was analysed by qPCR. Stress treatments caused a consistent and significant decrease in plant growth, transpirational water loss, stomatal conductance, shoot-to-root surface area ratio and root Lp. Comparison of exudation-with transpiration-Lp supported a significant contribution of AQP-facilitated water flow to root water uptake. Changes in root Lp in response to treatments were correlated much stronger with root morphological characteristics, such as the number of main and lateral roots, surface area ratio of root to shoot and plant transpiration rate than with AQP gene expression. Changes in root Lp, involving AQP function, form an integral part of the plant hydraulic response to stress and facilitate changes in the root-to-shoot surface area ratio, transpiration and stomatal conductance.

  5. The contribution of vascular and extra-vascular water pathways to drought-induced decline of leaf hydraulic conductance.

    PubMed

    Trifiló, Patrizia; Raimondo, Fabio; Savi, Tadeja; Lo Gullo, Maria A; Nardini, Andrea

    2016-09-01

    Drought stress can impair leaf hydraulic conductance (Kleaf), but the relative contribution of changes in the efficiency of the vein xylem water pathway and in the mesophyll route outside the xylem in driving the decline of Kleaf is still debated. We report direct measurements of dehydration-induced changes in the hydraulic resistance (R=1/K) of whole leaf (Rleaf), as well as of the leaf xylem (Rx) and extra-vascular pathways (Rox) in four Angiosperm species. Rleaf, Rx, and Rox were measured using the vacuum chamber method (VCM). Rleaf values during progressive leaf dehydration were also validated with measurements performed using the rehydration kinetic method (RKM). We analysed correlations between changes in Rx or Rox and Rleaf, as well as between morpho-anatomical traits (including dehydration-induced leaf shrinkage), vulnerability to embolism, and leaf water relation parameters. Measurements revealed that the relative contribution of vascular and extra-vascular hydraulic properties in driving Kleaf decline during dehydration is species-specific. Whilst in two study species the progressive impairment of both vascular and extra-vascular pathways contributed to leaf hydraulic vulnerability, in the other two species the vascular pathway remained substantially unaltered during leaf dehydration, and Kleaf decline was apparently caused only by changes in the hydraulic properties of the extra-vascular compartment.

  6. Field-saturated hydraulic conductivity of unsaturated surficial deposits along the southern extent of the Illinoian glaciation, southern Illinois

    SciTech Connect

    McDonald, T.A.; Padgett, R.J.; Esling, S.P. . Dept. of Geology)

    1992-01-01

    In southern Illinois, glacially-derived surficial deposits control recharge and the migration of contaminants to regional groundwater resources. This study measured the field-saturated hydraulic conductivity of the diamicton and the overlying loess with a Guelph permeameter specially modified to take measurements to a depth of 5 m. Six field sites were chosen, along a transect trending about 50 kilometers southeast of the Mississippi Valley. Along this transect, the loess units thin dramatically, from 8 to 1 m and from 6 to 0.2 m for the Peoria and Roxana Silts, respectively, and the relative influence of the Ohio/Wabash Valleys source area increases. Twenty boreholes were drilled at each site at a spacing of 1.5 m forming a random grid pattern. Initial conductivity tests were conducted near the base of the loess in the B/C, or where possible C, horizon of the modern soil. Boreholes were then deepened and tests were conducted within the oxidized diamicton. The statistical relation between field-saturated hydraulic conductivity, particle size distribution, clay mineralogy, fracture distribution, and weathering zone was investigated. The main factors influencing spatial variability in field-saturated hydraulic conductivity are: (1) particle size distribution, (2) clay mineralogy, and (3) differences in soil development. Source area (Mississippi vs. Ohio/Wabash Valley systems) and distance from the source area control these physical factors.

  7. Wall extensibility and cell hydraulic conductivity decrease in enlarging stem tissues at low water potentials. [Glycine max L. Merr

    SciTech Connect

    Nonami, Hiroshi; Boyer, J.S. )

    1990-08-01

    Measurements with a guillotine psychrometer indicate that the inhibition of stem growth at low water potentials (low {psi}{sub w}) is accompanied by decreases in cell wall extensibility and tissue hydraulic conductance to water that eventually limit growth rate in soybean (Glycine max L. Merr.). To check this conclusion, we measured cell wall properties and cell hydraulic conductivities with independent techniques in soybean seedlings grown and treated the same way, i.e. grown in the dark and exposed to low {psi}{sub w} by transplanting dark grown seedlings to vermiculite of low water content. Results suggest that the plastic properties of the cell walls and the conductance of the cells to water were decreased at low {psi}{sub w} but that the elastic properties of the walls were of little consequence in this response.

  8. A tale of two plasticities: leaf hydraulic conductances and related traits diverge for two tropical epiphytes from contrasting light environments.

    PubMed

    North, Gretchen B; Browne, Marvin G; Fukui, Kyle; Maharaj, Franklin D R; Phillips, Carly A; Woodside, Walter T

    2016-07-01

    We compared the effects of different light environments on leaf hydraulic conductance (Kleaf ) for two congeneric epiphytes, the tank bromeliads Guzmania lingulata (L.) Mez and Guzmania monostachia (L.) Rusby ex Mez. They occur sympatrically at the study site, although G. monostachia is both wider ranging and typically found in higher light. We collected plants from two levels of irradiance and measured Kleaf as well as related morphological and anatomical traits. Leaf xylem conductance (Kxy ) was estimated from tracheid dimensions, and leaf conductance outside the xylem (Kox ) was derived from a leaky cable model. For G. monostachia, but not for G. lingulata, Kleaf and Kxy were significantly higher in high light conditions. Under both light conditions, Kxy and Kox were co-limiting for the two species, and all conductances were in the low range for angiosperms. With respect to hydraulic conductances and a number of related anatomical traits, G. monostachia exhibited greater plasticity than did G. lingulata, which responded to high light chiefly by reducing leaf size. The positive plasticity of leaf hydraulic traits in varying light environments in G. monostachia contrasted with negative plasticity in leaf size for G. lingulata, suggesting that G. monostachia may be better able to respond to forest conditions that are likely to be warmer and more disturbed in the future.

  9. 15 CFR 270.200 - Technical conduct of investigation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... considered research for any purpose. At the completion of the preliminary reconnaissance, the Team will... the event to identify technical issues and major hypotheses requiring investigation. (ii) Collect data... building practices that may warrant revisions based on investigation findings. (xi) Identify research...

  10. Impact of treated wastewater on growth, respiration and hydraulic conductivity of citrus root systems in light and heavy soils.

    PubMed

    Paudel, Indira; Cohen, Shabtai; Shaviv, Avi; Bar-Tal, Asher; Bernstein, Nirit; Heuer, Bruria; Ephrath, Jhonathan

    2016-06-01

    Roots interact with soil properties and irrigation water quality leading to changes in root growth, structure and function. We studied these interactions in an orchard and in lysimeters with clay and sandy loam soils. Minirhizotron imaging and manual sampling showed that root growth was three times lower in the clay relative to sandy loam soil. Treated wastewater (TWW) led to a large reduction in root growth with clay (45-55%) but not with sandy loam soil (<20%). Treated wastewater increased salt uptake, membrane leakage and proline content, and decreased root viability, carbohydrate content and osmotic potentials in the fine roots, especially in clay. These results provide evidence that TWW challenges and damages the root system. The phenology and physiology of root orders were studied in lysimeters. Soil type influenced diameter, specific root area, tissue density and cortex area similarly in all root orders, while TWW influenced these only in clay soil. Respiration rates were similar in both soils, and root hydraulic conductivity was severely reduced in clay soil. Treated wastewater increased respiration rate and reduced hydraulic conductivity of all root orders in clay but only of the lower root orders in sandy loam soil. Loss of hydraulic conductivity increased with root order in clay and clay irrigated with TWW. Respiration and hydraulic properties of all root orders were significantly affected by sodium-amended TWW in sandy loam soil. These changes in root order morphology, anatomy, physiology and hydraulic properties indicate rapid and major modifications of root systems in response to differences in soil type and water quality.

  11. Horizontal hydraulic conductivity estimates for intact coal barriers between closed underground mines

    SciTech Connect

    Mccoy, K.J.; Donovan, J.J.; Leavitt, B.R.

    2006-08-15

    Unmined blocks of coal, called barriers, separate and restrict horizontal leakage between adjacent bituminous coal mines. Understanding the leakage rate across such barriers is important in planning mine closure and strongly affects recharge calculations for postmining flooding. This study presents upper-limit estimates for hydraulic conductivity (K) of intact barriers in two closed mines at moderate depth (75-300 m) in the Pittsburgh coal basin. The estimates are based on pumping rates from these mines for the years ranging from 1992 to 2000. The two mines do not approach the outcrop and are sufficiently deep that vertical infiltration is thought to be negligible. Similarly, there are no saturated zones on the pumped mines' side of shared barriers with other mines, and therefore pumping is the only outflow. Virtually all of the pumping is attributed to leakage across or over the top of barriers shared with upgradient flooded mines. The length of shared barriers totals 24 km for the two mines, and the barriers range in thickness from 15 to 50 m. K values calculated independently for each of the 9 years of the pumping record ranged from 0.037 m/d to 0.18 m/d using an isotropic model of barrier flow. Using an anisotropic model for differential K in the face cleat (K{sub f}) and butt cleat (K{sub b}) directions, results range from 0.074 to 0.34 m/d for K{sub f} and from 0.022 to 0.099 m/d for K{sub b}.

  12. Measurement of hydraulic conductivity in isolated arterioles of rat brain cortex.

    PubMed

    Kimura, M; Dietrich, H H; Huxley, V H; Reichner, D R; Dacey, R G

    1993-06-01

    We have developed a new method for quantification of arteriolar hydraulic conductivity (Lp) from isolated rat brain vessels. The volume flux of water per unit surface area across the arteriole wall (Jv/S) was assessed from measurements of silicon oil drop movement within an occluded vessel at two to three pressures (between 20 and 70 mmHg); the Lp was derived from the slope of the relationship between Jv/S and applied pressure. Lp was measured in isolated cerebral arterioles 1) at room temperature (22 degrees C) without spontaneous vessel tone (control Lp; n = 11), 2) at room temperature with 10(-4) M adenosine (n = 5), and 3) at 37 degrees C with vessels dilated submaximally with 10(-4) M adenosine (n = 6). Lp at 22 degrees C without adenosine was 13.2 +/- 4.2 x 10(-9) (+/- SE) cm.s-1.cmH2O-1 for all vessels studied. Lp values ranged from 1.2 to 44.1 x 10(-9) cm.s-1.cmH2O-1 with a median value that was 5.9 x 10(-9) cm.s-1.cmH2O-1. Lp increased significantly (on average, 2.6-fold) with adenosine at 37 degrees C but not with adenosine at 22 degrees C. Control Lp bore no relationship to either the development of spontaneous tone or the diameter response to pH change, two recognized indicators of vessel viability.

  13. Root hydraulic conductivity measured by pressure clamp is substantially affected by internal unstirred layers.

    PubMed

    Knipfer, Thorsten; Steudle, Ernst

    2008-01-01

    Using the root pressure probe in the pressure clamping (PC) mode, the impact of internal unstirred layers (USLs) was quantified for young corn roots, both in experiments and in computer simulations applying the convection/diffusion model of Knipfer et al. In the experiments, water flows (J(Vr)s) during PC were analysed in great detail, showing that J(Vr)s (and the apparent root hydraulic conductivity) were high during early stages of PC and declined rapidly during the first 80 s of clamping to a steady-state value of 40-30% of the original. The comparison of experimental results with simulations showed that, during PC, internal USLs at the inner surface of the endodermis substantially modify the overall force driving the water. As a consequence, J(Vr) and Lp(r) were inhibited. Effects of internal USLs were minimized when using the pressure relaxation mode, when internal USLs had not yet developed. Additional stop-clamp experiments and experiments where the endodermis was punctured to reduce the effect of internal USLs verified the existence of internal USLs during PC. Data indicated that the role of pressure propagation along the root xylem for both PC and pressure relaxation modes should be small, as should the effects of filling of the capacities during root pressure probe experiments, which are discussed as an alternative model. The results supported the idea that concentration polarization effects at the endodermis (internal USLs) cause a serious problem whenever relatively large amounts of water (xylem sap) are radially moved across the root, such as during PC or when using the high-pressure flow meter technique.

  14. Root hydraulic conductivity measured by pressure clamp is substantially affected by internal unstirred layers

    PubMed Central

    Knipfer, Thorsten; Steudle, Ernst

    2008-01-01

    Using the root pressure probe in the pressure clamping (PC) mode, the impact of internal unstirred layers (USLs) was quantified for young corn roots, both in experiments and in computer simulations applying the convection/diffusion model of Knipfer et al. In the experiments, water flows (JVrs) during PC were analysed in great detail, showing that JVrs (and the apparent root hydraulic conductivity) were high during early stages of PC and declined rapidly during the first 80 s of clamping to a steady-state value of 40–30% of the original. The comparison of experimental results with simulations showed that, during PC, internal USLs at the inner surface of the endodermis substantially modify the overall force driving the water. As a consequence, JVr and Lpr were inhibited. Effects of internal USLs were minimized when using the pressure relaxation mode, when internal USLs had not yet developed. Additional stop-clamp experiments and experiments where the endodermis was punctured to reduce the effect of internal USLs verified the existence of internal USLs during PC. Data indicated that the role of pressure propagation along the root xylem for both PC and pressure relaxation modes should be small, as should the effects of filling of the capacities during root pressure probe experiments, which are discussed as an alternative model. The results supported the idea that concentration polarization effects at the endodermis (internal USLs) cause a serious problem whenever relatively large amounts of water (xylem sap) are radially moved across the root, such as during PC or when using the high-pressure flow meter technique. PMID:18420591

  15. Saturated hydraulic conductivity of soils in the Horqin Sand Land of Inner Mongolia, northern China.

    PubMed

    Yao, Shuxia; Zhang, Tonghui; Zhao, Chuancheng; Liu, Xinping

    2013-07-01

    Water is a limiting factor to plant growth in Horqin Sand Land of China. Knowledge of soil saturated hydraulic conductivity (K(sat)) is of importance because K(sat) influences soil evaporation and water cycling at various scales. In order to analyze the variation of K(sat) along with sand types and soil depths, and its relationship with soil physiochemical properties, six typical lands were chosen, including mobile dune, fixed dune, pine woodland, poplar woodland, grassland, and cropland, and K(sat) was measured in situ by Guelph Permeameter at each type of land. Soil bulk density, organic matter content, and soil particle size distribution were determined in parallel with K(sat) measurement. The results showed that (1) The averaged K(sat) was decreased in the order: mobile dune > fixed dune > pine woodland > poplar woodland > grassland > cropland; changes in K(sat) varied considerably as soil depth increased, e.g., the changes of K(sat) along with soil depth in fixed dune was fitted by exponential model, but it was fitted by parabola model in the pine woodland and grassland. (2) The K(sat) values of fixed dune and mobile dune were varied considerably among three slope positions (dune top, windward slope, and leeward slope). (3) The relationships of K(sat) and soil physiochemical property revealed that soil bulk density, organic matter content, and coarse sand fraction (2∼0.1 mm) were the key factors affecting K(sat) in Horqin Sand Land. Compared with clay and silt content proportion, sand fraction in this region showed a more significant positive correlation with K(sat).

  16. Effect of urban waste compost application on soil near-saturated hydraulic conductivity.

    PubMed

    Schneider, S; Coquet, Y; Vachier, P; Labat, C; Roger-Estrade, J; Benoit, P; Pot, V; Houot, S

    2009-01-01

    Compost application tends to increase soil fertility and is likely to modify soil hydrodynamic properties by acting on soil structural porosity. Two composts, a municipal solid waste compost (MSW) and a co-compost of green wastes and sewage sludge (SGW), have been applied every other year for 6 yr to cultivated plots located on a silt loam soil in the Parisian Basin, France. Four soil zones were defined in the topsoil after plowing: the plowpan located at the base of the plowed layer, compacted (Delta) or noncompacted (Gamma) zones located within the plowed layer, and interfurrows created by plowing and containing a large quantity of crop residues together with the recently-applied compost. To assess the effect of compost application on the near-saturated soil hydraulic conductivity, infiltration rates were measured using a tension disc infiltrometer at three water pressure potentials -0.6, -0.2, and -0.05 kPa in the various zones of the soil profile. Compost addition decreased K((sat)) in the interfurrows after plowing by almost one order of magnitude with average values of 5.6 x 10(-5) m.s(-1) in the MSW plot and 4.1 x 10(-5) m.s(-1) in the SGW plot, against 2.2 x 10(-4) m.s(-1) in the control plot. This effect had disappeared 6 mo after plowing when the average K((sat)) in the control plot had decreased to 1.9 x 10(-5) m.s(-1) while that in the compost-amended plots remained stable.

  17. Hydraulic conductivity and PAT determine hierarchical resource partitioning and ramet development along Fragaria stolons.

    PubMed

    Atkinson, Christopher J; Else, Mark A

    2012-09-01

    Co-ordination of metabolic and physiological activity between plant parts is key to the control of growth and development. Here the movement of resources and their allocation between mother plants and daughter ramets along Fragaria stolons was quantified with respect to hierarchy. Gradients of internodal ramet leaf water potential (ψ) and stolon and ramet hydraulic conductivities (L) were measured together with apparent stolon IAA movement via the polar auxin transport pathway (PAT). These processes are linked with measurements of stolon vascular development. The pattern of tissue differentiation and lignification in sequential stele sections of stolons demonstrated the rapid acquisition of the capacity for water transport, with transpiration potentially varying systematically with stolon lignification and the acropetal decline in stolon xylem ψ. Stolon and ramet L declined acropetally, with L across older ramets being significantly lower than that of the connecting stolons. The capacity for polar IAA transport increased with stolon age; this was due to increased transport intensity in older tissues. The partitioning of dry matter was strongly hierarchical with younger ramets smaller than older ramets, while foliar concentrations of N, P, and K were greater for the younger ramets. The results show that stolon anatomy develops rapidly at the apical end, facilitating hierarchical ramet development, which is evident as a basipetal increase in L. The rapid development of transport tissue functionality enables young unrooted ramets to acquire water, in order to supply an expanding leaf area, as well as mineral ions disproportionally with respect to older ramets. This facilitates colonization and self-rooting of apical ramets. The unidirectional increase in basipetal PAT along stolons facilitates hierarchical ramet development.

  18. Streambed Hydraulic Conductivity Structures: Enhanced Hyporheic Exchange and Contaminant Removal in Model and Constructed Stream

    NASA Astrophysics Data System (ADS)

    Herzog, S.; Higgins, C. P.; McCray, J. E.

    2014-12-01

    Urban- and agriculturally-impacted streams face widespread water quality challenges from excess nutrients, metals, and pathogens from nonpoint sources, which the hyporheic zone (HZ) can capture and treat. However, flow through the HZ is typically small relative to stream flow and thus water quality contributions from the HZ are practically insignificant. Hyporheic exchange is a prominent topic in stream biogeochemistry, but growing understanding of HZ processes has not been translated into practical applications. In particular, existing HZ restoration structures (i.e. cross-vanes) do not exchange water efficiently nor control the residence time (RT) of downwelling streamwater. Here we present subsurface modifications to streambed hydraulic conductivity (K) to drive efficient hyporheic exchange and control RT, thereby enhancing the effectiveness of the HZ. Coordinated high K (i.e. gravel) and low K (i.e. concrete, clay) modifications are termed Biohydrochemical Enhancement structures for Streamwater Treatment (BEST). BEST can simply use native sediments or may also incorporate reactive geomedia to enhance reactions. The contaminant mitigation potentials of BEST were estimated based on hyporheic flow and RT outputs from MODFLOW and MODPATH models and reported nutrient, metal, and pathogen removal rate constants from literature for specific porous media. Reactions of interest include denitrification and removal of phosphate, metals, and E. coli. Simulations showed that BEST structures in series can substantially improve water quality in small streams along reaches of tens of meters. The model results are compared to observed data in tank and constructed stream experiments. Preliminary results with BEST incorporating woodchip geomedia demonstrate rapid denitrification exceeding model predictions. These experiments should establish BEST as a novel stream restoration structure or Best Management Practice (BMP) option to help practitioners achieve stormwater compliance.

  19. Biogeochemical Cycling at Soil Interfaces in the Vadose Zone and its Impact on Hydraulic Conductivity

    NASA Astrophysics Data System (ADS)

    Hansen, D. J.; McGuire, J. T.; Mohanty, B. P.

    2007-12-01

    Much research has focused on understanding and predicting chemical fate and transport in subsurface systems to protect drinking water reserves and ecosystem health. However, chemical changes that occur in the unsaturated zone due to processes such as mineral-water interactions, desorption, or biogeochemical cycling have often been neglected. In particular, the effects of soil structure (i.e. layers, lenses, macropores, or fractures) on these processes remain poorly understood. This study focuses on characterizing the linkages between geochemical processes, hydrologic flow, and microbial activity in the vadose zone using packed soil columns. We constructed three laboratory soil columns: a homogenized medium-grained sand, homogenized organic-rich silty clay, and a sand-over-clay layered column. Both upward and downward infiltration of water was evaluated during experiments to simulate rising water table and rainfall events respectively. In situ collocated probes measured soil water content, matric potential, and Eh. Water samples extracted by lysimeter were analyzed for major cations and anions, ammonium, organic acids, alkalinity, Fe2+, and total sulfide. Enhanced biogeochemical cycling was observed in the layered column. For example, concentrations of the electron acceptor sulfate were two-fold greater in the layered column than in either of the homogeneous columns likely due to increased oxidation/reduction reactions. Rainfall events enhanced denitrification in the layered column through the addition of NO3- via enhanced ammonium oxidation. Biogeochemical cycling was directly linked to hydrologic flow and varied as a function of water infiltration direction (upward/downward). Enhanced biogeochemical activity produced mineral crusts and biofilms that decreased overall hydraulic conductivity. Preliminary results suggest that changes in the vadose zone occur too rapidly for the system to achieve redox equilibrium and suggest that a new conceptual framework to analyze

  20. Capillary tone: cyclooxygenase, shear stress, luminal glycocalyx, and hydraulic conductivity (Lp)

    PubMed Central

    Williams, Donna A; Flood, Mary H

    2015-01-01

    Control of capillary hydraulic conductivity (Lp) is the physiological mechanism that underpins systemic hydration. Capillaries form the largest surface of endothelial cells in any species with a cardiovascular system and all capillaries are exposed to the flow-induced force, shear stress (τ). Vasoactive molecules such as prostacyclin (cyclooxygenase product, COX) are released from endothelial cells in response to τ. Little is known about how COX activity impacts capillary Lp. The purpose here was to assess Lp in situ following an acute Δτ stimulus and during COX1/COX2 inhibition. Mesenteric true capillaries (TC) of Rana pipiens (pithed) were cannulated for Lp assessment using the modified Landis technique. Rana were randomized into Control and Test groups. Two capillaries per animal were used (perfusate, 10 mg·mL−1 BSA/frog Ringer's; superfusate, frog Ringer's or indomethacin (10−5 mol·L−1) mixed in frog Ringer's solution). Three distinct responses of Lp to indomethacin (TC2) were demonstrated (TC1 and TC2 medians: Test Subgroup 1, 3.0 vs. 1.8; Test Subgroup 2, 18.2 vs. 2.2; Test Subgroup 3, 4.2 vs. 10.2 × 10−7 cm·sec−1·cm H2O−1). Multiple regression analysis revealed a relationship between capillary Lp and systemic red blood cell concentration or hematocrit, plasma protein concentration, and Δτ (Test Subgroup 1, R2 = 0.59, P < 0.0001; Test Subgroup 2, R2 = 0.96, P = 0.002), but only during COX inhibition. Maintaining red blood cell and plasma protein levels within a normal range may control barrier function in a healthy state. Recovering barrier function may be an unrecognized benefit of transfusions during blood loss or edema formation. PMID:25896981

  1. Measurement of unsaturated hydraulic conductivity in the Bandelier Tuff at Los Alamos

    SciTech Connect

    Conca, J.; Mockler, T.J.

    1995-04-01

    Hydraulic conductivities, K, were experimentally determined as a function of volumetric water content, {theta}, in Bandelier Tuff cores from Los Alamos, New Mexico. These data were used to determine the feasibility of applying a new unsaturated flow technology (UFA{trademark}) to further hydrologic studies of tuffaceous rocks at Los Alamos. The K({theta}) relationships for eight cores of Bandelier Tuff from boreholes AAA and AAB were measured using the UFA and, together with their in situ water contents, were used to determine transient water flux into these samples at the time of sampling. If the system is at steady-state, then these flux values correspond to the recharge through those points, a situation often encountered in semi-arid to arid regions such as Los Alamos and other sites in the western United States. Samples AAA 9956, AAB 0011, AAB 0012 and AAB 0040 exhibited fluxes of 6 x 10{sup -8} cm/s, 4.8 x 10{sup -7} cm/s, 2.8 x 10{sup -7} cm/s and 2.4 x 10{sup -8} cm/s, respectively, indicating significant flux. Samples AAB 0063, AAB 0065, AAB 0072 and AAB 0081 had very low water contents suggesting fluxes less than 10{sup -10} cm/s, and appear to be close to their residual water contents. Assuming that the samples AAB 0063, AAB 0065, AAB 0072 and AAB 0081 were not accidentally dried out during handling, these results imply that these samples have zero recharge and that redistribution of moisture at these horizons is controlled more by vapor diffusion than by advection. The vapor diffusivities in these cores can be determined using the new UFA gas permeameter. Samples AAA 9956, AAB 0011, AAB 0012 and AAB 0040 appear to be controlled by advection.

  2. Capillary tone: cyclooxygenase, shear stress, luminal glycocalyx, and hydraulic conductivity (Lp).

    PubMed

    Williams, Donna A; Flood, Mary H

    2015-04-01

    Control of capillary hydraulic conductivity (Lp) is the physiological mechanism that underpins systemic hydration. Capillaries form the largest surface of endothelial cells in any species with a cardiovascular system and all capillaries are exposed to the flow-induced force, shear stress (τ). Vasoactive molecules such as prostacyclin (cyclooxygenase product, COX) are released from endothelial cells in response to τ. Little is known about how COX activity impacts capillary Lp. The purpose here was to assess Lp in situ following an acute Δτ stimulus and during COX1/COX2 inhibition. Mesenteric true capillaries (TC) of Rana pipiens (pithed) were cannulated for Lp assessment using the modified Landis technique. Rana were randomized into Control and Test groups. Two capillaries per animal were used (perfusate, 10 mg·mL(-1) BSA/frog Ringer's; superfusate, frog Ringer's or indomethacin (10(-5) mol·L(-1)) mixed in frog Ringer's solution). Three distinct responses of Lp to indomethacin (TC2) were demonstrated (TC1 and TC2 medians: Test Subgroup 1, 3.0 vs. 1.8; Test Subgroup 2, 18.2 vs. 2.2; Test Subgroup 3, 4.2 vs. 10.2 × 10(-7) cm·sec(-1)·cm H2O(-1)). Multiple regression analysis revealed a relationship between capillary Lp and systemic red blood cell concentration or hematocrit, plasma protein concentration, and Δτ (Test Subgroup 1, R(2) = 0.59, P < 0.0001; Test Subgroup 2, R(2) = 0.96, P = 0.002), but only during COX inhibition. Maintaining red blood cell and plasma protein levels within a normal range may control barrier function in a healthy state. Recovering barrier function may be an unrecognized benefit of transfusions during blood loss or edema formation.

  3. Power function decay of hydraulic conductivity for a TOPMODEL-based infiltration routine

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Endreny, Theodore A.; Hassett, James M.

    2006-11-01

    TOPMODEL rainfall-runoff hydrologic concepts are based on soil saturation processes, where soil controls on hydrograph recession have been represented by linear, exponential, and power function decay with soil depth. Although these decay formulations have been incorporated into baseflow decay and topographic index computations, only the linear and exponential forms have been incorporated into infiltration subroutines. This study develops a power function formulation of the Green and Ampt infiltration equation for the case where the power n = 1 and 2. This new function was created to represent field measurements in the New York City, USA, Ward Pound Ridge drinking water supply area, and provide support for similar sites reported by other researchers. Derivation of the power-function-based Green and Ampt model begins with the Green and Ampt formulation used by Beven in deriving an exponential decay model. Differences between the linear, exponential, and power function infiltration scenarios are sensitive to the relative difference between rainfall rates and hydraulic conductivity. Using a low-frequency 30 min design storm with 4.8 cm h-1 rain, the n = 2 power function formulation allows for a faster decay of infiltration and more rapid generation of runoff. Infiltration excess runoff is rare in most forested watersheds, and advantages of the power function infiltration routine may primarily include replication of field-observed processes in urbanized areas and numerical consistency with power function decay of baseflow and topographic index distributions. Equation development is presented within a TOPMODEL-based Ward Pound Ridge rainfall-runoff simulation. Copyright

  4. Simulating soil-water movement through loess-veneered landscapes using nonconsilient saturated hydraulic conductivity measurements

    USGS Publications Warehouse

    Williamson, Tanja N.; Lee, Brad D.; Schoeneberger, Philip J.; McCauley, W. M.; Indorante, Samuel J.; Owens, Phillip R.

    2014-01-01

    Soil Survey Geographic Database (SSURGO) data are available for the entire United States, so are incorporated in many regional and national models of hydrology and environmental management. However, SSURGO does not provide an understanding of spatial variability and only includes saturated hydraulic conductivity (Ksat) values estimated from particle size analysis (PSA). This study showed model sensitivity to the substitution of SSURGO data with locally described soil properties or alternate methods of measuring Ksat. Incorporation of these different soil data sets significantly changed the results of hydrologic modeling as a consequence of the amount of space available to store soil water and how this soil water is moved downslope. Locally described soil profiles indicated a difference in Ksat when measured in the field vs. being estimated from PSA. This, in turn, caused a difference in which soil layers were incorporated in the hydrologic simulations using TOPMODEL, ultimately affecting how soil water storage was simulated. Simulations of free-flowing soil water, the amount of water traveling through pores too large to retain water against gravity, were compared with field observations of water in wells at five slope positions along a catena. Comparison of the simulated data with the observed data showed that the ability to model the range of conditions observed in the field varied as a function of three soil data sets (SSURGO and local field descriptions using PSA-derived Ksat or field-measured Ksat) and that comparison of absolute values of soil water storage are not valid if different characterizations of soil properties are used.

  5. Preliminary data from an instantaneous profile test conducted near the Mixed Waste Landfill, Technical Area 3, Sandia National Laboratories/New Mexico

    SciTech Connect

    Bayliss, S.C.; Goering, T.J.; McVey, M.D.; Strong, W.R.; Peace, J.L.

    1996-04-01

    This paper presents data from an instantaneous profile test conducted near the Sandia National Laboratories/New Mexico Mixed Waste Landfill in Technical Area 3. The test was performed from December 1993 through 1995 as part of the environmental Restoration Project`s Phase 2 RCRA Facility Investigation of the Mixed Waste Landfill. The purpose of the test was to measure the unsaturated hydraulic properties of soils near the Mixed Waste Landfill. The instantaneous profile test and instrumentation are described, and the pressure and moisture content data from the test are presented. These data may be useful for understanding the unsaturated hydraulic properties of soils in Technical Area 3 and for model validation, verification, and calibration.

  6. Effects of steady-state assumption on hydraulic conductivity and recharge estimates in a surficial aquifer system

    USGS Publications Warehouse

    Halford, K.J.

    1999-01-01

    The ability of a calibrated flow model to predict the behavior of a surficial aquifer system is governed the quality of the hydraulic conductivity and recharge estimates used. Reasonable lateral and vertical hydraulic conductivities can be estimated by steady-state simulations driven effective recharge rates that approximate the net effects of evapotranspiration, and water released from storage during periods of recession. Results from a hypothetical, transient, cross-sectional model indicated that most of the water was contributed uniformly from storage from five to 25 days after a recharge event. Results also showed that a steady-state, snapshot calibration approach can be used on aquifers in a humid climate with diffusivities between 20 and 500 m2/d. Most estimates of the lateral and vertical hydraulic conductivities of the hypothetical aquifer system were within 30% of the actual values. Estimates of hydraulic conductivity from the transient cases were similar to those from the snapshot calibration cases. The long-term recharge rate could be identified calibrating to multiple synoptic surveys that were sampled over the range of drier to wetter conditions. The effective recharge rates estimated for the driest and wettest conditions bracketed the long-term recharge rate. Results suggested that the effective recharge rate estimated for the synoptic survey with the lowest water level root-mean-square (RMS) error was the best estimate of the long-term recharge rate. A field application of the snapshot calibration approach simulated the surficial aquifer system beneath Cecil Field Naval Air Station well and provided reasonable estimates of the long-term recharge rate (0.4 mm/d) relative to the range of recharge rates that were independently estimated the chloride concentration ratio method (0.2 to 0.6 mm/d).The ability of a calibrated flow model to predict the behavior of a surficial aquifer system is governed by the quality of the hydraulic conductivity and recharge

  7. A Note on the Fractal Behavior of Hydraulic Conductivity and Effective Porosity for Experimental Values in a Confined Aquifer

    PubMed Central

    De Bartolo, Samuele; Fallico, Carmine; Veltri, Massimo

    2013-01-01

    Hydraulic conductivity and effective porosity values for the confined sandy loam aquifer of the Montalto Uffugo (Italy) test field were obtained by laboratory and field measurements; the first ones were carried out on undisturbed soil samples and the others by slug and aquifer tests. A direct simple-scaling analysis was performed for the whole range of measurement and a comparison among the different types of fractal models describing the scale behavior was made. Some indications about the largest pore size to utilize in the fractal models were given. The results obtained for a sandy loam soil show that it is possible to obtain global indications on the behavior of the hydraulic conductivity versus the porosity utilizing a simple scaling relation and a fractal model in coupled manner. PMID:24385876

  8. Multi-level slug tests in highly permeable formations: 2. Hydraulic conductivity identification, method verification, and field applications

    USGS Publications Warehouse

    Zlotnik, V.A.; McGuire, V.L.

    1998-01-01

    Using the developed theory and modified Springer-Gelhar (SG) model, an identification method is proposed for estimating hydraulic conductivity from multi-level slug tests. The computerized algorithm calculates hydraulic conductivity from both monotonic and oscillatory well responses obtained using a double-packer system. Field verification of the method was performed at a specially designed fully penetrating well of 0.1-m diameter with a 10-m screen in a sand and gravel alluvial aquifer (MSEA site, Shelton, Nebraska). During well installation, disturbed core samples were collected every 0.6 m using a split-spoon sampler. Vertical profiles of hydraulic conductivity were produced on the basis of grain-size analysis of the disturbed core samples. These results closely correlate with the vertical profile of horizontal hydraulic conductivity obtained by interpreting multi-level slug test responses using the modified SG model. The identification method was applied to interpret the response from 474 slug tests in 156 locations at the MSEA site. More than 60% of responses were oscillatory. The method produced a good match to experimental data for both oscillatory and monotonic responses using an automated curve matching procedure. The proposed method allowed us to drastically increase the efficiency of each well used for aquifer characterization and to process massive arrays of field data. Recommendations generalizing this experience to massive application of the proposed method are developed.Using the developed theory and modified Springer-Gelhar (SG) model, an identification method is proposed for estimating hydraulic conductivity from multi-level slug tests. The computerized algorithm calculates hydraulic conductivity from both monotonic and oscillatory well responses obtained using a double-packer system. Field verification of the method was performed at a specially designed fully penetrating well of 0.1-m diameter with a 10-m screen in a sand and gravel alluvial

  9. Use of temperature profiles beneath streams to determine rates of vertical ground-water flow and vertical hydraulic conductivity

    USGS Publications Warehouse

    Lapham, Wayne W.

    1989-01-01

    The use of temperature profiles beneath streams to determine rates of vertical ground-water flow and effective vertical hydraulic conductivity of sediments was evaluated at three field sites by use of a model that numerically solves the partial differential equation governing simultaneous vertical flow of fluid and heat in the Earth. The field sites are located in Hardwick and New Braintree, Mass., and in Dover, N.J. In New England, stream temperature varies from about 0 to 25 ?C (degrees Celsius) during the year. This stream-temperature fluctuation causes ground-water temperatures beneath streams to fluctuate by more than 0.1 ?C during a year to a depth of about 35 ft (feet) in fine-grained sediments and to a depth of about 50 ft in coarse-grained sediments, if ground-water velocity is 0 ft/d (foot per day). Upward flow decreases the depth affected by stream-temperature fluctuation, and downward flow increases the depth. At the site in Hardwick, Mass., ground-water flow was upward at a rate of less than 0.01 ft/d. The maximum effective vertical hydraulic conductivity of the sediments underlying this site is 0.1 ft/d. Ground-water velocities determined at three locations at the site in New Braintree, Mass., where ground water discharges naturally from the underlying aquifer to the Ware River, ranged from 0.10 to 0.20 ft/d upward. The effective vertical hydraulic conductivity of the sediments underlying this site ranged from 2.4 to 17.1 ft/d. Ground-water velocities determined at three locations at the Dover, N.J., site, where infiltration from the Rockaway River into the underlying sediments occurs because of pumping, were 1.5 ft/d downward. The effective vertical hydraulic conductivity of the sediments underlying this site ranged from 2.2 to 2.5 ft/d. Independent estimates of velocity at two of the three sites are in general agreement with the velocities determined using temperature profiles. The estimates of velocities and conductivities derived from the

  10. Toward a new parameterization of hydraulic conductivity in climate models: Simulation of rapid groundwater fluctuations in Northern California

    SciTech Connect

    Vrettas, Michail D.; Fung, Inez Y.

    2015-12-31

    Preferential flow through weathered bedrock leads to rapid rise of the water table after the first rainstorms and significant water storage (also known as ‘‘rock moisture’’) in the fractures. We present a new parameterization of hydraulic conductivity that captures the preferential flow and is easy to implement in global climate models. To mimic the naturally varying heterogeneity with depth in the subsurface, the model represents the hydraulic conductivity as a product of the effective saturation and a background hydraulic conductivity Kbkg, drawn from a lognormal distribution. The mean of the background Kbkg decreases monotonically with depth, while its variance reduces with the effective saturation. Model parameters are derived by assimilating into Richards’ equation 6 years of 30 min observations of precipitation (mm) and water table depths (m), from seven wells along a steep hillslope in the Eel River watershed in Northern California. The results show that the observed rapid penetration of precipitation and the fast rise of the water table from the well locations, after the first winter rains, are well captured with the new stochastic approach in contrast to the standard van Genuchten model of hydraulic conductivity, which requires significantly higher levels of saturated soils to produce the same results. ‘‘Rock moisture,’’ the moisture between the soil mantle and the water table, comprises 30% of the moisture because of the great depth of the weathered bedrock layer and could be a potential source of moisture to sustain trees through extended dry periods. Moreover, storage of moisture in the soil mantle is smaller, implying less surface runoff and less evaporation, with the proposed new model.

  11. Toward a new parameterization of hydraulic conductivity in climate models: Simulation of rapid groundwater fluctuations in Northern California

    DOE PAGES

    Vrettas, Michail D.; Fung, Inez Y.

    2015-12-31

    Preferential flow through weathered bedrock leads to rapid rise of the water table after the first rainstorms and significant water storage (also known as ‘‘rock moisture’’) in the fractures. We present a new parameterization of hydraulic conductivity that captures the preferential flow and is easy to implement in global climate models. To mimic the naturally varying heterogeneity with depth in the subsurface, the model represents the hydraulic conductivity as a product of the effective saturation and a background hydraulic conductivity Kbkg, drawn from a lognormal distribution. The mean of the background Kbkg decreases monotonically with depth, while its variance reducesmore » with the effective saturation. Model parameters are derived by assimilating into Richards’ equation 6 years of 30 min observations of precipitation (mm) and water table depths (m), from seven wells along a steep hillslope in the Eel River watershed in Northern California. The results show that the observed rapid penetration of precipitation and the fast rise of the water table from the well locations, after the first winter rains, are well captured with the new stochastic approach in contrast to the standard van Genuchten model of hydraulic conductivity, which requires significantly higher levels of saturated soils to produce the same results. ‘‘Rock moisture,’’ the moisture between the soil mantle and the water table, comprises 30% of the moisture because of the great depth of the weathered bedrock layer and could be a potential source of moisture to sustain trees through extended dry periods. Moreover, storage of moisture in the soil mantle is smaller, implying less surface runoff and less evaporation, with the proposed new model.« less

  12. Prolonged experimental drought reduces plant hydraulic conductance and transpiration and increases mortality in a piñon–juniper woodland

    PubMed Central

    Pangle, Robert E; Limousin, Jean-Marc; Plaut, Jennifer A; Yepez, Enrico A; Hudson, Patrick J; Boutz, Amanda L; Gehres, Nathan; Pockman, William T; McDowell, Nate G

    2015-01-01

    Plant hydraulic conductance (ks) is a critical control on whole-plant water use and carbon uptake and, during drought, influences whether plants survive or die. To assess long-term physiological and hydraulic responses of mature trees to water availability, we manipulated ecosystem-scale water availability from 2007 to 2013 in a piñon pine (Pinus edulis) and juniper (Juniperus monosperma) woodland. We examined the relationship between ks and subsequent mortality using more than 5 years of physiological observations, and the subsequent impact of reduced hydraulic function and mortality on total woody canopy transpiration (EC) and conductance (GC). For both species, we observed significant reductions in plant transpiration (E) and ks under experimentally imposed drought. Conversely, supplemental water additions increased E and ks in both species. Interestingly, both species exhibited similar declines in ks under the imposed drought conditions, despite their differing stomatal responses and mortality patterns during drought. Reduced whole-plant ks also reduced carbon assimilation in both species, as leaf-level stomatal conductance (gs) and net photosynthesis (An) declined strongly with decreasing ks. Finally, we observed that chronically low whole-plant ks was associated with greater canopy dieback and mortality for both piñon and juniper and that subsequent reductions in woody canopy biomass due to mortality had a significant impact on both daily and annual canopy EC and GC. Our data indicate that significant reductions in ks precede drought-related tree mortality events in this system, and the consequence is a significant reduction in canopy gas exchange and carbon fixation. Our results suggest that reductions in productivity and woody plant cover in piñon–juniper woodlands can be expected due to reduced plant hydraulic conductance and increased mortality of both piñon pine and juniper under anticipated future conditions of more frequent and persistent

  13. [Effects of controlled alternate partial root-zone drip irrigation on apple seedling morphological characteristics and root hydraulic conductivity].

    PubMed

    Yang, Qi-Liang; Zhang, Fu-Cang; Liu, Xiao-Gang; Ge, Zhen-Yang

    2012-05-01

    To investigate the effects of alternate partial root-zone drip irrigation (ADI) on the morphological characteristics and root hydraulic conductivity of apple seedlings, three irrigation modes, i.e., fixed partial root-zone drip irrigation (FDI, fixed watering on one side of the seedling root zone), controlled alternate partial root-zone drip irrigation (ADI, alternate watering on both sides of the seedling root zone), and conventional drip irrigation (CDI, watering cling to the seedling base), and three irrigation quotas, i. e., each irrigation amount of FDI and ADI was 10, 20 and 30 mm, and that of CDI was 20, 30 and 40 mm, respectively, were designed. In treatment ADI, the soil moisture content on the both sides of the root zone appeared a repeated alternation of dry and wet process; while in treatment CDI, the soil moisture content had less difference. At the same irrigation quotas, the soil moisture content at the watering sides had no significant difference under the three drip irrigation modes. At irrigation quota 30 mm, the root-shoot ratio, healthy index of seedlings, and root hydraulic conductivity in treatment ADI increased by 31.6% and 47.1%, 34.2% and 53.6%, and 9.0% and 11.0%, respectively, as compared with those in treatments CDI and FDI. The root dry mass and leaf area had a positive linear correlation with root hydraulic conductivity. It was suggested that controlled alternate partial root-zone drip irrigation had obvious compensatory effects on the root hydraulic conductivity of apple seedlings, improved the soil water use by the roots, benefited the equilibrated dry matter allocation in seedling organs, and markedly enhanced the root-shoot ratio and healthy index of the seedlings.

  14. Application of a new hydraulic conductivity model to simulate rapid groundwater fluctuations in the Eel River watershed in Northern California

    NASA Astrophysics Data System (ADS)

    Vrettas, M. D.; Fung, I. Y.

    2015-12-01

    High-frequency multi-year observations of the water table at several wells in the Angelo Coast Range Reserve in the Eel River Watershed in northern California show rapid fluctuations, where the water table, some 10-15 meters below the surface, rises by as much as 1 meter in a day or two after the first storms of the rain season. The observations highlight preferential flow through weathered bedrock, which can store as much as 30% of the moisture in the column ("rock moisture"). This rapid transfer of moisture and storage at depth could have a significant impact on ecosystem dynamics and the water and energy budgets of the atmosphere on various time scales. Despite its high importance, preferential flow through weather bedrock is not routinely captured in most climate models. This work presents a new hydraulic conductivity parameterization that captures the preferential flow, with straightforward implementation into current global climate models. The hydraulic conductivity is represented as a product of the effective saturation (normalized water content) and a background hydraulic conductivity Kbkg, drawn from a depth dependent lognormal distribution. A unique feature of the parameterization is that the variance of hydraulic conductivity is large when there is little rock moisture, and decreases with increasing saturation, mimicking flow through fractures. The new method is applied to seven wells locations on a steep (35 degrees) hill-slope in the Eel River watershed in Northern California, for the duration of six years and estimates of the model parameters are provided by assimilating, into Richards' equation, measurements of precipitation [mm] and water table depths [m] at 30-minute time intervals. The simulation results show that the new approach yields a good agreement of the rapid rise of the observed water table at the tested well locations. Furthermore, the water stored in the weathered bedrock is estimated to be in the range between 32% and 41%, which could

  15. Toward a new parameterization of hydraulic conductivity in climate models: Simulation of rapid groundwater fluctuations in Northern California

    NASA Astrophysics Data System (ADS)

    Vrettas, Michail D.; Fung, Inez Y.

    2015-12-01

    Preferential flow through weathered bedrock leads to rapid rise of the water table after the first rainstorms and significant water storage (also known as "rock moisture") in the fractures. We present a new parameterization of hydraulic conductivity that captures the preferential flow and is easy to implement in global climate models. To mimic the naturally varying heterogeneity with depth in the subsurface, the model represents the hydraulic conductivity as a product of the effective saturation and a background hydraulic conductivity Kbkg, drawn from a lognormal distribution. The mean of the background Kbkg decreases monotonically with depth, while its variance reduces with the effective saturation. Model parameters are derived by assimilating into Richards' equation 6 years of 30 min observations of precipitation (mm) and water table depths (m), from seven wells along a steep hillslope in the Eel River watershed in Northern California. The results show that the observed rapid penetration of precipitation and the fast rise of the water table from the well locations, after the first winter rains, are well captured with the new stochastic approach in contrast to the standard van Genuchten model of hydraulic conductivity, which requires significantly higher levels of saturated soils to produce the same results. "Rock moisture," the moisture between the soil mantle and the water table, comprises 30% of the moisture because of the great depth of the weathered bedrock layer and could be a potential source of moisture to sustain trees through extended dry periods. Furthermore, storage of moisture in the soil mantle is smaller, implying less surface runoff and less evaporation, with the proposed new model.

  16. Decline of Leaf Hydraulic Conductance with Dehydration: Relationship to Leaf Size and Venation Architecture1[W][OA

    PubMed Central

    Scoffoni, Christine; Rawls, Michael; McKown, Athena; Cochard, Hervé; Sack, Lawren

    2011-01-01

    Across plant species, leaves vary enormously in their size and their venation architecture, of which one major function is to replace water lost to transpiration. The leaf hydraulic conductance (Kleaf) represents the capacity of the transport system to deliver water, allowing stomata to remain open for photosynthesis. Previous studies showed that Kleaf relates to vein density (vein length per area). Additionally, venation architecture determines the sensitivity of Kleaf to damage; severing the midrib caused Kleaf and gas exchange to decline, with lesser impacts in leaves with higher major vein density that provided more numerous water flow pathways around the damaged vein. Because xylem embolism during dehydration also reduces Kleaf, we hypothesized that higher major vein density would also reduce hydraulic vulnerability. Smaller leaves, which generally have higher major vein density, would thus have lower hydraulic vulnerability. Tests using simulations with a spatially explicit model confirmed that smaller leaves with higher major vein density were more tolerant of major vein embolism. Additionally, for 10 species ranging strongly in drought tolerance, hydraulic vulnerability, determined as the leaf water potential at 50% and 80% loss of Kleaf, was lower with greater major vein density and smaller leaf size (|r| = 0.85–0.90; P < 0.01). These relationships were independent of other aspects of physiological and morphological drought tolerance. These findings point to a new functional role of venation architecture and small leaf size in drought tolerance, potentially contributing to well-known biogeographic trends in leaf size. PMID:21511989

  17. Natural attenuation of fuel hydrocarbon contaminants: Hydraulic conductivity dependency of biodegradation rates in a field case study

    SciTech Connect

    Lu, Guoping; Zheng, Chunmiao

    2003-07-15

    Two biodegradation models are developed to represent natural attenuation of fuel-hydrocarbon contaminants as observed in a comprehensive natural-gradient tracer test in a heterogeneous aquifer on the Columbus Air Force Base in Mississippi. The first, a first-order mass loss model, describes the irreversible losses of BTEX and its individual components, i.e., benzene (B), toluene (T), ethyl benzene (E), and xylene (X). The second, a reactive pathway model, describes sequential degradation pathways for BTEX utilizing multiple electron acceptors, including oxygen, nitrate, iron and sulfate, and via methanogenesis. The heterogeneous aquifer is represented by multiple hydraulic conductivity (K) zones delineated on the basis of numerous flowmeter K measurements. A direct propagation artificial neural network (DPN) is used as an inverse modeling tool to estimate the biodegradation rate constants associated with each of the K zones. In both the mass loss model and the reactive pathway model, the biodegradation rate constants show an increasing trend with the hydraulic conductivity. The finding of correlation between biodegradation kinetics and hydraulic conductivity distributions is of general interest and relevance to characterization and modeling of natural attenuation of hydrocarbons in other petroleum-product contaminated sites.

  18. Natural Attenuation of Fuel Hydrocarbon Contaminants: Correlation of Biodegradation with Hydraulic Conductivity in a Field Case Study

    SciTech Connect

    Lu, Guoping; Zheng, Chunmiao

    2003-10-15

    Two biodegradation models are developed to represent natural attenuation of fuel-hydrocarbon contaminants as observed in a comprehensive natural-gradient tracer test in a heterogeneous aquifer on the Columbus Air Force Base in Mississippi, USA. The first, a first-order mass loss model, describes the irreversible losses of BTEX and its individual components, i.e., benzene (B), toluene (T), ethyl benzene (E), and xylene (X). The second, a reactive pathway model, describes sequential degradation pathways for BTEX utilizing multiple electron acceptors, including oxygen, nitrate, iron and sulfate, and via methanogenesis. The heterogeneous aquifer is represented by multiple hydraulic conductivity (K) zones delineated on the basis of numerous flowmeter K measurements. A direct propagation artificial neural network (DPN) is used as an inverse modeling tool to estimate the biodegradation rate constants associated with each of the K zones. In both the mass loss model and the reactive pathway model, the biodegradation rate constants show an increasing trend with the hydraulic conductivity. The finding of correlation between biodegradation kinetics and hydraulic conductivity distributions is of general interest and relevance to characterization and modeling of natural attenuation of hydrocarbons in other petroleum-product contaminated sites.

  19. Recovery of diurnal depression of leaf hydraulic conductance in a subtropical woody bamboo species: embolism refilling by nocturnal root pressure.

    PubMed

    Yang, Shi-Jian; Zhang, Yong-Jiang; Sun, Mei; Goldstein, Guillermo; Cao, Kun-Fang

    2012-04-01

    Despite considerable investigations of diurnal water use characteristics in different plant functional groups, the research on daily water use strategies of woody bamboo grasses remains lacking. We studied the daily water use and gas exchange of Sinarundinaria nitida (Mitford) Nakai, an abundant subtropical bamboo species in Southwest China. We found that the stem relative water content (RWC) and stem hydraulic conductivity (K(s)) of this bamboo species did not decrease significantly during the day, whereas the leaf RWC and leaf hydraulic conductance (K(leaf)) showed a distinct decrease at midday, compared with the predawn values. Diurnal loss of K(leaf) was coupled with a midday decline in stomatal conductance (g(s)) and CO(2) assimilation. The positive root pressures in the different habitats were of sufficient magnitude to refill the embolisms in leaves. We concluded that (i) the studied bamboo species does not use stem water storage for daily transpiration; (ii) diurnal down-regulation in K(leaf) and gs has the function to slow down potential water loss in stems and protect the stem hydraulic pathway from cavitation; (iii) since K(leaf) did not recover during late afternoon, refilling of embolism in bamboo leaves probably fully depends on nocturnal root pressure. The embolism refilling mechanism by root pressure could be helpful for the growth and persistence of this woody monocot species.

  20. A semi-analytical generalized Hvorslev formula for estimating riverbed hydraulic conductivity with an open-ended standpipe permeameter

    NASA Astrophysics Data System (ADS)

    Pozdniakov, Sergey P.; Wang, Ping; Lekhov, Mikhail V.

    2016-09-01

    The well-known Hvorslev (1951) formula was developed to estimate soil permeability using single-well slug tests and has been widely applied to determine riverbed hydraulic conductivity using in situ standpipe permeameter tests. Here, we further develop a general solution of the Hvorslev (1951) formula that accounts for flow in a bounded medium and assumes that the bottom of the river is a prescribed head boundary. The superposition of real and imaginary disk sources is used to obtain a semi-analytical expression of the total hydraulic resistance of the flow in and out of the pipe. As a result, we obtained a simple semi-analytical expression for the resistance, which represents a generalization of the Hvorslev (1951). The obtained expression is benchmarked against a finite-element numerical model of 2-D flow (in r-z coordinates) in an anisotropic medium. The results exhibit good agreement between the simulated and estimated riverbed hydraulic conductivity values. Furthermore, a set of simulations for layered, stochastically heterogeneous riverbed sediments was conducted and processed using the proposed expression to demonstrate the potential associated with measuring vertical heterogeneity in bottom sediments using a series of standpipe permeameter tests with different lengths of pipe inserted into the riverbed sediments.

  1. Hydraulic conductivity of near-surface alluvium in the vicinity of Cattlemans Detention Basin, South Lake Tahoe, California

    USGS Publications Warehouse

    Green, Jena M.; Henkelman, Katherine K.; Caskey, Rachel M.

    2004-01-01

    Cattlemans detention basin, South Lake Tahoe, California is designed to capture and reduce urban runoff and pollutants originating from developed areas before entering Cold Creek, which is tributary to Trout Creek and to Lake Tahoe. The effectiveness of the basin in reducing sediment and nutrient loads currently is being assessed with a five-year study. Hydraulic conductivity of the alluvium near the detention basin is needed to estimate ground-water flow and subsurface nutrient transport. Hydraulic conductivity was estimated using slug tests in 27 monitoring wells that surround the detention basin. For each test, water was poured rapidly into a well, changes in water-level were monitored, and the observed changes were analyzed using the Bouwer and Rice method. Each well was tested one to four times. A total of 24 wells were tested more than once. Of the 24 wells, the differences among the tests were within 10 percent of the average. Estimated hydraulic conductivities of basin alluvium range from 0.5 to 70 feet per day with an average of 17.8 feet per day. This range is consistent with the sandy alluvial deposits observed in the area of Cattlemans detention basin.

  2. Ion-mediated enhancement of xylem hydraulic conductivity in four Acer species: relationships with ecological and anatomical features.

    PubMed

    Nardini, Andrea; Dimasi, Federica; Klepsch, Matthias; Jansen, Steven

    2012-12-01

    The 'ionic effect', i.e., changes in xylem hydraulic conductivity (k(xyl)) due to variation of the ionic sap composition in vessels, was studied in four Acer species growing in contrasting environments differing in water availability. Hydraulic measurements of the ionic effect were performed together with measurements on the sap electrical conductivity, leaf water potential and vessel anatomy. The low ionic effect recorded in Acer pseudoplatanus L. and Acer campestre L. (15.8 and 14.7%, respectively), which represented two species from shady and humid habitats, was associated with a low vessel grouping index, high sap electrical conductivity and least negative leaf water potential. Opposite traits were found for Acer monspessulanum L. and Acer platanoides L., which showed an ionic effect of 23.6 and 23.1%, respectively, and represent species adapted to higher irradiance and/or lower water availability. These findings from closely related species provide additional support that the ionic effect could function as a compensation mechanism for embolism-induced loss of k(xyl), either as a result of high evaporative demand or increased risk of hydraulic failure.

  3. Characterization of humic substances in landfill leachate and impact on the hydraulic conductivity of geosynthetic clay liners.

    PubMed

    Han, Young-Soo; Lee, Jai-Young; Miller, Carol J; Franklin, Lance

    2009-05-01

    A detailed characterization was performed on the humic substances present in landfill leachate derived from the older (10-year) and younger (6-month) municipal landfill cells at a site in Inchion, Korea. The characterization focused on the humic and fulvic acid components of the leachate, relying on information gleaned from the UV/visible spectroscopy, molecular weight distribution, and Fourier transform infrared spectroscopy. The effect of the leachates, and specific components of the leachates, on the hydraulic conductivity of a geosynthetic clay liner (GCL), was evaluated. The humic acid extracted from the older leachate was composed primarily of high molecular weight and aromatic compounds, which is typical for humic acids. However, the humic acid extracted from the younger leachate showed characteristics more similar with fulvic acids, indicating that the younger humic acid was at the initial stage of humification. The hydraulic conductivity of the GCLs to the humic and fulvic acids of the older and younger leachate was similar to those permeated with the distilled deionized water (DI). However, the hydraulic conductivity of the samples tested with the raw leachate was more than 200 times the DI value. This fact suggests that cations present in leachate, rather than humic substances, are the key factor in the increase of the permeability.

  4. The influence of arbuscular mycorrhizal colonization on soil-root hydraulic conductance in Agrostis stolonifera L. under two water regimes.

    PubMed

    Gonzalez-Dugo, Victoria

    2010-08-01

    The hypothesis that mycorrhizal colonization improves the soil-root conductance in plants was experimentally tested in a growth chamber using pot cultures of Agrostis stolonifera L. colonized by Glomus intraradices. Plants were grown in 50-l pots filled with autoclaved sand/silt soil (1:1), with and without the mycorrhizal fungus. Within the mycorrhizal treatment, half of the pots remained well watered, while the other half was subjected to a progressive water deficit. Soil water potential (estimated as plant water potential measured at the end of the dark period), xylem water potential measured at the tiller base, transpiration rate, and soil water content were monitored throughout the experiment. Soil-root hydraulic conductance was estimated as the ratio between the instantaneous transpiration rate and the soil and xylem water potential difference. To obtain cultures with similar nutritional status, the P in the modified Hoagland's nutrient solution was withheld from the inoculated pots and applied only once a month. Even though there were no differences on growth or nutrient status for the mycorrhizal treatments, water transport was enhanced by the inoculum presence. Transpiration rate was maintained at lower xylem water potential values in the presence of mycorrhizae. The analysis of the relationship between soil-root hydraulic resistance and soil water content showed that mycorrhizal colonization increased soil-root hydraulic conductance as the soil dried. For these growing conditions, this effect was ascribed to the range of 6-10%.

  5. Stochastic fusion of dynamic hydrological and geophysical data for estimating hydraulic conductivities: insights and observations (Invited)

    NASA Astrophysics Data System (ADS)

    Irving, J. D.; Singha, K.

    2010-12-01

    Traditionally, hydrological measurements have been used to estimate subsurface properties controlling groundwater flow and contaminant transport. However, such measurements are limited by their support volume and expense. A considerable benefit of geophysical measurements is that they provide a degree of spatial coverage and resolution that are unattainable with other methods, and the data can be acquired in a cost-effective manner. In particular, dynamic geophysical data allow us to indirectly observe changes in hydrological state variables as flow and transport processes occur, and can thus provide a link to hydrological properties when coupled with a process-based model. Stochastic fusion of these two data types offers the potential to provide not only estimates of subsurface hydrological properties, but also a quantification of their uncertainty. This information is critical when considering the end use of the data, which may be for groundwater remediation and management decision making. Here, we examine a number of key issues in the stochastic fusion of dynamic hydrogeophysical data. We focus our attention on the specific problem of integrating time-lapse crosshole electrical resistivity measurements and saline tracer-test concentration data in order to estimate the spatial distribution of hydraulic conductivity (K). To assimilate the geophysical and hydrological measurements in a stochastic manner, we use a Bayesian Markov-chain-Monte-Carlo (McMC) methodology. This provides multiple realizations of the subsurface K field that are consistent with the measured data and assumptions regarding model structure and data errors. To account for incomplete petrophysical knowledge, the geophysical and hydrological forward models are linked through an uncertain relationship between electrical resistivity and concentration following the general form of Archie’s law. To make the spatially distributed, fully stochastic inverse problem computationally tractable, we take

  6. Direct-Push Methods for High-Resolution Characterization of Hydraulic Conductivity (Invited)

    NASA Astrophysics Data System (ADS)

    Butler, J. J.; Dietrich, P.; Knobbe, S.; Bohling, G.; Liu, G.; Reboulet, E. C.

    2009-12-01

    Spatial variations in hydraulic conductivity (K) play a critical role in subsurface transport. A major research challenge has been to develop field methods that allow K information to be obtained at the resolution needed to quantify solute movement in heterogeneous formations, as current state-of-the-practice methods have proven to be of limited effectiveness for this purpose. Direct-push methods have shown much promise for characterizing K in shallow (< 30 m) unconsolidated formations. Over the past decade, methods have progressed from empirical relationships based on parameters from cone penetrometer or electrical conductivity logs to small-diameter pipe variants of the slug test to the new generation of methods that can provide reliable K estimates at a resolution and speed that has not previously been possible. Over the last six years, we have focused on developing and field testing two direct-push tools for high-resolution characterization of K: the direct-push permeameter (DPP) and the direct-push injection logger (DPIL). The DPP is a small-diameter tool with a short cylindrical screen and two pressure transducers set into a direct-push rod. A series of injection tests are performed at a given depth and K is estimated from the test responses. The resulting estimate is a weighted average primarily over the interval between the screen and the farthest transducer. Material outside of that interval has little influence, resulting in significant uncertainty about conditions between test depths. The time required for a test sequence (10-15 minutes in moderate to high-K intervals), coupled with the volumetric averaging of the tool, currently limits DPP resolution to ≈ 0.4 m in most cases. The DPIL consists of a single screened port on a direct-push rod. Water is injected through the screen while the pressure response is monitored behind the screen or at the surface. The injection logging process can be conducted continuously at 0.015-m resolution as the tool is

  7. Water infiltration and hydraulic conductivity in a natural Mediterranean oak forest: impacts of hydrology-oriented silviculture on soil hydraulic properties

    NASA Astrophysics Data System (ADS)

    Di Prima, Simone; Bagarello, Vincenzo; Bautista, Inmaculada; Cerdà, Artemi; Cullotta, Sebastiano; del Campo, Antonio; González-Sanchis, María; Iovino, Massimo; Maetzke, Federico

    2016-04-01

    In the last years researchers reported an increasing need to have more awareness on the intimate link between land use and soil hydrological properties (soil organic matter storage, water infiltration, hydraulic conductivity) and their possible effects on water retention (e.g., Bens et al., 2006; del Campo et al., 2014; González-Sanchis et al., 2015; Molina and del Campo, 2012). In the Mediterranean ecosystems, special attention needs to be paid to the forest-water relationships due to the natural scarcity of water. Adaptive forest management (AFM) aims to adapt the forest to water availability by means of an artificial regulation of the forest structure and density in order to promote tree and stand resilience through enhancing soil water availability (del Campo et al., 2014). The opening of the canopy, due to the removal of a certain number of trees, is an important practice for the management of forests. It results in important modifications to the microclimatic conditions that influence the ecophysiological functioning of trees (Aussenac and Granier, 1988). However, the effect of thinning may vary depending on the specific conditions of the forest (Andréassian, 2004; Brooks et al., 2003; Cosandey et al., 2005; Lewis et al., 2000; Molina and del Campo, 2012). Different authors reported that a reduction in forest cover increases water yield due to the subsequent reduction in evapotranspiration (Brooks et al., 2003; González-Sanchis et al., 2015; Hibbert, 1983; Zhang et al., 2001). On the other hand, the water increase may be easily evaporated from the soil surface (Andréassian, 2004). In this context, determining soil hydraulic properties in forests is essential for understanding and simulating the hydrological processes (Alagna et al., 2015; Assouline and Mualem, 2002), in order to adapt a water-saving management to a specific case, or to study the effects of a particular management practice. However, it must be borne in mind that changes brought about by

  8. Heat conduction in partial vacuum. Final technical progress report

    SciTech Connect

    Thomas, J R

    1980-09-01

    Methods developed for computing conduction heat losses from evacuated solar collectors are reported. Results of such calculations are given, including the minimum vacuum necessary to effectively eliminate conduction. Experiments performed at Owens-Illinois, Inc. to assess helium penetration rates into evacuated collectors are analyzed, and estimates are given as to the likely penetration rate of atmospheric helium. Conclusions are drawn as to the probable effect of helium penetration on the lifetimes of evacuated solar collectors.

  9. Fertilization effects on mean stomatal conductance are mediated through changes in the hydraulic attributes of mature Norway spruce trees.

    PubMed

    Ward, Eric J; Oren, Ram; Sigurdsson, Bjarni D; Jarvis, Paul G; Linder, Sune

    2008-04-01

    Stomatal conductance was quantified with sap flux sensors and whole-tree chambers in mature Norway spruce (Picea abies (L.) Karst.) trees after 3 years of exposure to elevated CO(2) concentration ([CO(2)]) in a 13-year nutrient optimization experiment. The long-term nutrient optimization treatment increased tree height by 3.7 m (67%) and basal diameter by 8 cm (68%); the short-term elevated [CO(2)] exposure had no effect on tree size or allometry. Nighttime transpiration was estimated as approximately 7% of daily transpiration in unchambered trees; accounting for the effect of nighttime flux on the processing of sap flux signals increased estimated daily water uptake by approximately 30%. Crown averaged stomatal conductance (g(s)) was described by a Jarvis-type model. The addition of a stomatal response time constant (tau) and total capacitance of stored water (C(tot)) improved the fit of the model. Model estimates for C(tot) scaled with sapwood volume of the bole in fertilized trees. Hydraulic support-defined as a lumped variable of leaf-specific hydraulic conductivity and water potential gradient (K(l)DeltaPsi) -was estimated from height, sapwood-to-leaf area ratio (A(s):A(l)) and changes in tracheid dimensions. Hydraulic support explained 55% of the variation in g(s) at reference conditions for trees across nutrient and [CO(2)] treatments. Removal of approximately 50% of A(l) from three trees yielded results suggesting that stomatal compensation (i.e., an increase in g(s)) after pruning scales inversely with K(l)DeltaPsi, indicating that the higher the potential hydraulic support after pruning, the less complete the stomatal compensation for the increase in A(s):A(l).

  10. Fracture hydraulic conductivity in the Mexico City clayey aquitard: Field piezometer rising-head tests

    NASA Astrophysics Data System (ADS)

    Vargas, Carlos; Ortega-Guerrero, Adrián

    A regional lacustrine aquitard covers the main aquifer of the metropolitan area of Mexico City. The aquitard's hydraulic conductivity (K') is fundamental for evaluating the natural protection of the aquifer against a variety of contaminants present on the surface and its hydraulic response. This study analyzes the distribution and variation of K' in the plains of Chalco, Texcoco and Mexico City (three of the six former lakes that existed in the Basin of Mexico), on the basis of 225 field-permeability tests, in nests of existing piezometers located at depths of 2-85 m. Tests were interpreted using the Hvorslev method and some by the Bouwer-Rice method. Results indicate that the distribution of K' fits log-Gaussian regression models. Dominant frequencies for K' in the Chalco and Texcoco plains range between 1E-09 and 1E-08 m/s, with similar population means of 1.19E-09 and 1.7E-09 m/s, respectively, which are one to two orders of magnitude higher than the matrix conductivity. In the Mexico City Plain the population mean is near by one order of magnitude lower; K'=2.6E-10 m/s. The contrast between the measured K' and that of the matrix is attributed to the presence of fractures in the upper 25-40 m, which is consistent with the findings of previous studies on solute migration in the aquitard. Un imperméable régional d'origine lacustre recouvre le principal aquifère de la zone urbaine de la ville de Mexico. La conductivité hydraulique K' de cet imperméable est fondamentale pour évaluer la protection naturelle de l'aquifère, contre les différents contaminants présents en surface, et sa réponse hydraulique. Cette étude analyse et les variations de K' dans les plaines de Chalco, Texcoco et Mexico (trois des six anciens lacs qui existaient dans le Bassin de Mexico), sur la base de 225 essais de perméabilité sur le terrain, réalisés en grappes dans des piézomètres existants entre 2 et 85 m de profondeur. Les essais ont été interprétés avec la m

  11. Drought effects on hydraulic conductivity and xylem vulnerability to embolism in diverse species and provenances of Mediterranean cedars.

    PubMed

    Ladjal, Mehdi; Huc, Roland; Ducrey, Michel

    2005-09-01

    We studied hydraulic traits of young plants of the Mediterranean cedar species Cedrus atlantica (Endl.) G. Manetti ex Carrière (Luberon, France), C. brevifolia (Hook. f.) Henry (Cyprus), C. libani A. Rich (Hadeth El Jebbe, Lebanon) and C. libani (Armut Alani, Turkey). With an optimum water supply, no major differences were observed among species or provenances in either stem hydraulic conductivity (Ks) or leaf specific conductivity (Kl) measured on the main shoot. A moderate soil drought applied for 10 weeks induced marked acclimation through a reduction in Ks, particularly in the Lebanese provenance of C. libani, and a decrease in tracheid lumen size in all species. Cedrus atlantica, which had the smallest tracheids, was the species most vulnerable to embolism: a 50% loss in hydraulic conductivity (PsiPLC50) occurred at a water potential of -4.4 MPa in the well-watered treatment, and at -6.0 MPa in the moderate drought treatment. In the other species, PsiPLC50 was unaffected by moderate soil drought, and only declined sharply at water potentials between -6.4 and -7.5 MPa in both irrigation treatments. During severe drought, Ks of twigs and stomatal conductance (g(s)) were measured simultaneously as leaf water potential declined. For all species, lower vulnerability to embolism based on loss of Ks was recorded on current-year twigs. The threshold for stomatal closure (10% of maximum g(s)) was reached at a predawn water potential (Psi(pd)) of -2.5 MPa in C. atlantica (Luberon) and at -3.1 MPa in C. libani (Lebanon), whereas the other provenance and species had intermediate Psi(pd) values. Cedrus brevifolia, with a Psi(pd) (-3.0 MPa) close to that of C. libani (Lebanon), had the highest stomatal conductance of the study species. The importance of a margin of safety between water potential causing stomatal closure and that causing xylem embolism induction is discussed.

  12. Tree level hydrodynamic approach for resolving aboveground water storage and stomatal conductance and modeling the effects of tree hydraulic strategy

    NASA Astrophysics Data System (ADS)

    Mirfenderesgi, Golnazalsadat; Bohrer, Gil; Matheny, Ashley M.; Fatichi, Simone; Moraes Frasson, Renato Prata; Schäfer, Karina V. R.

    2016-07-01

    The finite difference ecosystem-scale tree crown hydrodynamics model version 2 (FETCH2) is a tree-scale hydrodynamic model of transpiration. The FETCH2 model employs a finite difference numerical methodology and a simplified single-beam conduit system to explicitly resolve xylem water potentials throughout the vertical extent of a tree. Empirical equations relate water potential within the stem to stomatal conductance of the leaves at each height throughout the crown. While highly simplified, this approach brings additional realism to the simulation of transpiration by linking stomatal responses to stem water potential rather than directly to soil moisture, as is currently the case in the majority of land surface models. FETCH2 accounts for plant hydraulic traits, such as the degree of anisohydric/isohydric response of stomata, maximal xylem conductivity, vertical distribution of leaf area, and maximal and minimal xylem water content. We used FETCH2 along with sap flow and eddy covariance data sets collected from a mixed plot of two genera (oak/pine) in Silas Little Experimental Forest, NJ, USA, to conduct an analysis of the intergeneric variation of hydraulic strategies and their effects on diurnal and seasonal transpiration dynamics. We define these strategies through the parameters that describe the genus level transpiration and xylem conductivity responses to changes in stem water potential. Our evaluation revealed that FETCH2 considerably improved the simulation of ecosystem transpiration and latent heat flux in comparison to more conventional models. A virtual experiment showed that the model was able to capture the effect of hydraulic strategies such as isohydric/anisohydric behavior on stomatal conductance under different soil-water availability conditions.

  13. Root morphology, hydraulic conductivity and plant water relations of high-yielding rice grown under aerobic conditions

    PubMed Central

    Kato, Yoichiro; Okami, Midori

    2011-01-01

    Background and Aims Increasing physical water scarcity is a major constraint for irrigated rice (Oryza sativa) production. ‘Aerobic rice culture’ aims to maximize yield per unit water input by growing plants in aerobic soil without flooding or puddling. The objective was to determine (a) the effect of water management on root morphology and hydraulic conductance, and (b) their roles in plant–water relationships and stomatal conductance in aerobic culture. Methods Root system development, stomatal conductance (gs) and leaf water potential (Ψleaf) were monitored in a high-yielding rice cultivar (‘Takanari’) under flooded and aerobic conditions at two soil moisture levels [nearly saturated (> –10 kPa) and mildly dry (> –30 kPa)] over 2 years. In an ancillary pot experiment, whole-plant hydraulic conductivity (soil-leaf hydraulic conductance; Kpa) was measured under flooded and aerobic conditions. Key Results Adventitious root emergence and lateral root proliferation were restricted even under nearly saturated conditions, resulting in a 72–85 % reduction in total root length under aerobic culture conditions. Because of their reduced rooting size, plants grown under aerobic conditions tended to have lower Kpa than plants grown under flooded conditions. Ψleaf was always significantly lower in aerobic culture than in flooded culture, while gs was unchanged when the soil moisture was at around field capacity. gs was inevitably reduced when the soil water potential at 20-cm depth reached –20 kPa. Conclusions Unstable performance of rice in water-saving cultivations is often associated with reduction in Ψleaf. Ψleaf may reduce even if Kpa is not significantly changed, but the lower Ψleaf would certainly occur in case Kpa reduces as a result of lower water-uptake capacity under aerobic conditions. Rice performance in aerobic culture might be improved through genetic manipulation that promotes lateral root branching and rhizogenesis as well as deep

  14. Scalable Generalization of Hydraulic Conductivity in Quaternary Strata for Use in a Regional Groundwater Model

    NASA Astrophysics Data System (ADS)

    Jatnieks, J.; Popovs, K.; Klints, I.; Timuhins, A.; Kalvans, A.; Delina, A.; Saks, T.

    2012-04-01

    The cover of Quaternary sediments especially in formerly glaciated territories usually is the most complex part of the sedimentary sequences. In regional hydro-geological models it is often assumed as a single layer with uniform or calibrated properties (Valner 2003). However, the properties and structure of Quaternary sediments control the groundwater recharge: it can either direct the groundwater flow horizontally towards discharge in topographic lows or vertically, recharging groundwater in the bedrock. This work aims to present calibration results and detail our experience while integrating a scalable generalization of hydraulic conductivity for Quaternary strata in the regional groundwater modelling system for the Baltic artesian basin - MOSYS V1. We also present a method for solving boundary transitions between spatial clusters of lithologically similar structure. In this study the main unit of generalization is the spatial cluster. Clusters are obtained from distance calculations combining the Normalized Compression Distance (NCD) metric, calculated by the CompLearn parameter-free machine learning toolkit, with normalized Euclidean distance measures for coordinates of the borehole log data. A hierarchical clustering solution is used for obtaining cluster membership identifier for each borehole. Using boreholes as generator points for Voronoi tessellation and dissolving resulting polygons according to their cluster membership attribute, allows us to obtain spatial regions representing a certain degree of similarity in lithological structure. This degree of similarity and the spatial heterogeneity of the cluster polygons can be varied by different flattening of the hierarchical cluster model into variable number of clusters. This provides a scalable generalization solution which can be adapted according to model calibration performance. Using the dissimilarity matrix of the NCD metric, a borehole most similar to all the others from the lithological structure

  15. 75 FR 42599 - Technical Amendment to Rules of Organization; Conduct and Ethics; and Information and Requests

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-22

    ... COMMISSION 17 CFR Part 200 Technical Amendment to Rules of Organization; Conduct and Ethics; and Information..., Conduct and ethics, and Information and requests. Text of Amendments 0 For the reasons set out in the... ORGANIZATION; CONDUCT AND ETHICS; AND INFORMATION AND REQUESTS 0 1. The authority citation for part...

  16. Differentiation in light energy dissipation between hemiepiphytic and non-hemiepiphytic Ficus species with contrasting xylem hydraulic conductivity.

    PubMed

    Hao, Guang-You; Wang, Ai-Ying; Liu, Zhi-Hui; Franco, Augusto C; Goldstein, Guillermo; Cao, Kun-Fang

    2011-06-01

    Hemiepiphytic Ficus species (Hs) possess traits of more conservative water use compared with non-hemiepiphytic Ficus species (NHs) even during their terrestrial growth phase, which may result in significant differences in photosynthetic light use between these two growth forms. Stem hydraulic conductivity, leaf gas exchange and chlorophyll fluorescence were compared in adult trees of five Hs and five NHs grown in a common garden. Hs had significantly lower stem hydraulic conductivity, lower stomatal conductance and higher water use efficiency than NHs. Photorespiration played an important role in avoiding photoinhibition at high irradiance in both Hs and NHs. Under saturating irradiance levels, Hs tended to dissipate a higher proportion of excessive light energy through thermal processes than NHs, while NHs dissipated a larger proportion of electron flow than Hs through the alternative electron sinks. No significant difference in maximum net CO2 assimilation rate was found between Hs and NHs. Stem xylem hydraulic conductivity was positively correlated with maximum electron transport rate and negatively correlated with the quantum yield of non-photochemical quenching across the 10 studied Ficus species. These findings indicate that a canopy growth habit during early life stages in Hs of Ficus resulted in substantial adaptive differences from congeneric NHs not only in water relations but also in photosynthetic light use and carbon economy. The evolution of epiphytic growth habit, even for only part of their life cycle, involved profound changes in a suite of inter-correlated ecophysiological traits that persist to a large extent even during the later terrestrial growth phase.

  17. Temperature, light and leaf hydraulic conductance of little-leaf linden (Tilia cordata) in a mixed forest canopy.

    PubMed

    Sellin, Arne; Kupper, Priit

    2007-05-01

    Response of whole-leaf hydraulic conductance (G(L)) in little-leaf linden (Tilia cordata Mill.) to temperature and photosynthetic photon flux (Q(P)) was estimated by the evaporative flux method under natural conditions in a mixed forest canopy. Mean midday G(L) in the lower- and upper-crown foliage was 1.14 and 3.06 mmol m(-2) s(-1) MPa(-1), respectively. Over the study period, leaf temperature (T(L)) explained about 67% of the variation in G(L), and Q(P) explained about 10%. Leaf water potential and crown position also affected G(L) significantly. About a third of the temperature effect was attributable to changes in the viscosity of water, and two thirds to changes in protoplast permeability (i.e., symplastic conductance). Leaf hydraulic conductance was highly sensitive to changes in Q(P) when Q(P) was less than 200 micromol m(-2) s(-1), and G(L) sensitivity decreased with increasing irradiance. Sensitivity of G(L) to variation in T(L) increased consistently with increasing temperature in the range of 16 to 29 degrees C. There were positive interactions between temperature and light in their effects on G(L): the light response was more pronounced at higher leaf temperatures. Because of frequent rains during the study period, the trees experienced no soil water deficit, and, within the range experienced, soil water potential had no effect on G(L). Leaf hydraulic conductance exhibited a seasonal pattern that could be explained primarily by temporal variability in mean air temperature and irradiance, in addition to which an age-related trend (P<0.001) of increasing G(L) from the end of June to the beginning of August was observed.

  18. A Negative Hydraulic Message from Oxygen-Deficient Roots of Tomato Plants? (Influence of Soil Flooding on Leaf Water Potential, Leaf Expansion, and Synchrony between Stomatal Conductance and Root Hydraulic Conductivity).

    PubMed Central

    Else, M. A.; Davies, W. J.; Malone, M.; Jackson, M. B.

    1995-01-01

    Four to 10 h of soil flooding delayed and suppressed the normal daily increase in root hydraulic conductance (Lp) in tomato (Lycopersicon esculentum Mill. cv Ailsa Craig) plants. The resulting short-term loss of synchrony between Lp and stomatal conductance decreased leaf water potential ([psi]L) relative to well-drained plants within 2 h. A decrease in [psi]L persisted for 8 h and was mirrored by decreased leaf thickness measured using linear displacement transducers. After 10 h of flooding, further closing of stomata and re-convergence of Lp in flooded and well-drained roots returned [psi]L to control values. In the second photoperiod, Lp in flooded plants exceeded that in well-drained plants in association with much increased Lp and decreased stomatal conductance. Pneumatic balancing pressure applied to roots of intact flooded plants to prevent temporary loss of [psi]L in the 1st d did not modify the patterns of stomatal closure or leaf expansion. Thus, the magnitude of the early negative hydraulic message was neither sufficient nor necessary to promote stomatal closure and inhibit leaf growth in flooded tomato plants. Chemical messages are presumed to be responsible for these early responses to soil flooding. PMID:12228649

  19. Impact of Electroviscosity on the Hydraulic Conductance of the Bordered Pit Membrane: A Theoretical Investigation1[C

    PubMed Central

    Santiago, Michael; Pagay, Vinay; Stroock, Abraham D.

    2013-01-01

    In perfusion experiments, the hydraulic conductance of stem segments () responds to changes in the properties of the perfusate, such as the ionic strength (), pH, and cationic identity. We review the experimental and theoretical work on this phenomenon. We then proceed to explore the hypothesis that electrokinetic effects in the bordered pit membrane (BPM) contribute to this response. In particular, we develop a model based on electroviscosity in which hydraulic conductance of an electrically charged porous membrane varies with the properties of the electrolyte. We use standard electrokinetic theory, coupled with measurements of electrokinetic properties of plant materials from the literature, to determine how the conductance of BPMs, and therefore , may change due to electroviscosity. We predict a nonmonotonic variation of with with a maximum reduction of 18%. We explore how this reduction depends on the characteristics of the sap and features of the BPM, such as pore size, density of chargeable sites, and their dissociation constant. Our predictions are consistent with changes in observed for physiological values of sap and pH. We conclude that electroviscosity is likely responsible, at least partially, for the electrolyte dependence of conductance through pits and that electroviscosity may be strong enough to play an important role in other transport processes in xylem. We conclude by proposing experiments to differentiate the impact of electroviscosity on from that of other proposed mechanisms. PMID:24014573

  20. Influence of leaf vein density and thickness on hydraulic conductance and photosynthesis in rice (Oryza sativa L.) during water stress

    PubMed Central

    Tabassum, Muhammad Adnan; Zhu, Guanglong; Hafeez, Abdul; Wahid, Muhammad Atif; Shaban, Muhammad; Li, Yong

    2016-01-01

    The leaf venation architecture is an ideal, highly structured and efficient irrigation system in plant leaves. Leaf vein density (LVD) and vein thickness are the two major properties of this system. Leaf laminae carry out photosynthesis to harvest the maximum biological yield. It is still unknown whether the LVD and/or leaf vein thickness determines the plant hydraulic conductance (Kplant) and leaf photosynthetic rate (A). To investigate this topic, the current study was conducted with two varieties under three PEG-induced water deficit stress (PEG-IWDS) levels. The results showed that PEG-IWDS significantly decreased A, stomatal conductance (gs), and Kplant in both cultivars, though the IR-64 strain showed more severe decreases than the Hanyou-3 strain. PEG-IWDS significantly decreased the major vein thickness, while it had no significant effect on LVD. A, gs and Kplant were positively correlated with each other, and they were negatively correlated with LVD. A, gs and Kplant were positively correlated with the inter-vein distance and major vein thickness. Therefore, the decreased photosynthesis and hydraulic conductance in rice plants under water deficit conditions are related to the decrease in the major vein thickness. PMID:27848980

  1. Temporal changes of hydraulic conductivity of cultivated soil studied with help of multipoint tension infiltrometer and X-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Klipa, Vladimir; Zumr, David; Snehota, Michal; Dohnal, Michal

    2016-04-01

    Soil aggregates, its shape, size and spatial distribution affect the pores arrangement and thus govern the hydraulic conductivity of soil and soil moisture regime. On arable lands the soil is exposed to rapid structural changes within each growing season due to agrotechnical practices, quick crop and root growth, soil biota and climatic conditions. This contribution is mainly focused on temporal changes of unsaturated hydraulic conductivity of cultivated soil. The research is supplemented by detailed analysis of CT images of soil samples for better understanding of structural change of soil during the year and its impact on soil hydraulic conductivity. The infiltration experiments were done using automated multipoint tension infiltrometer recently developed at CTU in Prague on the plots located on the Nucice experimental catchment. The catchment is situated in a moderately hilly area in central Bohemia (Czech Republic). Fourteen regular infiltration campaigns (77 individual infiltration experiments) were conducted from October 2012 until July 2015 on a single arable plot. In general, agricultural practice captured involved complete life cycle from sowing, through harvest, to postharvest stubble breaking. Weather conditions during infiltration experiments ranged from clear-sky to light rain, with temperatures between 8 and 30°C. All measurements were consistently performed with small suction of 3 cm and hydraulic conductivities were determined using extended semiempirical estimation procedure of Zhang. Results show that unsaturated hydraulic conductivity was the lowest in early spring and did increase at beginning of summer in the years 2012 - 2014. During the summer and autumn (2012 - 2014) the unsaturated hydraulic conductivity remained relatively unchanged. On the contrary, results in the year 2015 show opposite trend - the highest hydraulic conductivity was observed in early spring and did gradually decrease until the end of July. In both cases, however, the

  2. Reduced Content of Homogalacturonan Does Not Alter the Ion-Mediated Increase in Xylem Hydraulic Conductivity in Tobacco

    PubMed Central

    Nardini, Andrea; Gascó, Antonio; Cervone, Felice; Salleo, Sebastiano

    2007-01-01

    Xylem hydraulic conductivity (Ks) in stems of tobacco (Nicotiana tabacum) wild-type SR1 was compared to that of PG7 and PG16, two transgenic lines with increased levels of expression of the gene encoding the Aspergillus niger endopolygalacturonase (AnPGII). Activity of AnPGII removes in planta blocks of homogalacturonan (HG) with deesterified carboxyls, thus increasing the degree of neutrality of pectins. The effect of K+ was tested in increasing stem Ks using model plants with more neutral polysaccharides in primary walls and, hence, in intervessel pit membranes. Ks measured with deionized water was compared to that with KCl solutions at increasing concentrations (ΔKs, %). Plants transformed for HG degree of neutrality showed a dwarfed phenotype, but ΔKs did not differ among the three experimental groups. The ion-mediated hydraulic effect saturated at a KCl concentration of 25 mm in SR1 plants. All the three tobacco lines showed ΔKs of around +12.5% and +17.0% when perfused with 10 and 25 mm KCl, respectively. Because modification of HG content did not influence ion-mediated hydraulic enhancement, we suggest that pectin components other than HG, like rhamnogalacturonan-I and/or rhamnogalacturonan-II, might play important roles in the hydrogel behavior of pit membranes. PMID:17307902

  3. Dynamics of leaf hydraulic conductance with water status: quantification and analysis of species differences under steady state

    PubMed Central

    Scoffoni, Christine; McKown, Athena D.; Rawls, Michael; Sack, Lawren

    2012-01-01

    Leaf hydraulic conductance (Kleaf) is a major determinant of photosynthetic rate in well-watered and drought-stressed plants. Previous work assessed the decline of Kleaf with decreasing leaf water potential (Ψleaf), most typically using rehydration kinetics methods, and found that species varied in the shape of their vulnerability curve, and that hydraulic vulnerability correlated with other leaf functional traits and with drought sensitivity. These findings were tested and extended, using a new steady-state evaporative flux method under high irradiance, and the function for the vulnerability curve of each species was determined individually using maximum likelihood for 10 species varying strongly in drought tolerance. Additionally, the ability of excised leaves to recover in Kleaf with rehydration was assessed, and a new theoretical framework was developed to estimate how rehydration of measured leaves may affect estimation of hydraulic parameters. As hypothesized, species differed in their vulnerability function. Drought-tolerant species showed shallow linear declines and more negative Ψleaf at 80% loss of Kleaf (P80), whereas drought-sensitive species showed steeper, non-linear declines, and less negative P80. Across species, the maximum Kleaf was independent of hydraulic vulnerability. Recovery of Kleaf after 1 h rehydration of leaves dehydrated below their turgor loss point occurred only for four of 10 species. Across species without recovery, a more negative P80 correlated with the ability to maintain Kleaf through both dehydration and rehydration. These findings indicate that resistance to Kleaf decline is important not only in maintaining open stomata during the onset of drought, but also in enabling sustained function during drought recovery. PMID:22016424

  4. Dynamics of leaf hydraulic conductance with water status: quantification and analysis of species differences under steady state.

    PubMed

    Scoffoni, Christine; McKown, Athena D; Rawls, Michael; Sack, Lawren

    2012-01-01

    Leaf hydraulic conductance (K(leaf)) is a major determinant of photosynthetic rate in well-watered and drought-stressed plants. Previous work assessed the decline of K(leaf) with decreasing leaf water potential (Ψ(leaf)), most typically using rehydration kinetics methods, and found that species varied in the shape of their vulnerability curve, and that hydraulic vulnerability correlated with other leaf functional traits and with drought sensitivity. These findings were tested and extended, using a new steady-state evaporative flux method under high irradiance, and the function for the vulnerability curve of each species was determined individually using maximum likelihood for 10 species varying strongly in drought tolerance. Additionally, the ability of excised leaves to recover in K(leaf) with rehydration was assessed, and a new theoretical framework was developed to estimate how rehydration of measured leaves may affect estimation of hydraulic parameters. As hypothesized, species differed in their vulnerability function. Drought-tolerant species showed shallow linear declines and more negative Ψ(leaf) at 80% loss of K(leaf) (P(80)), whereas drought-sensitive species showed steeper, non-linear declines, and less negative P(80). Across species, the maximum K(leaf) was independent of hydraulic vulnerability. Recovery of K(leaf) after 1 h rehydration of leaves dehydrated below their turgor loss point occurred only for four of 10 species. Across species without recovery, a more negative P(80) correlated with the ability to maintain K(leaf) through both dehydration and rehydration. These findings indicate that resistance to K(leaf) decline is important not only in maintaining open stomata during the onset of drought, but also in enabling sustained function during drought recovery.

  5. Prolonged experimental drought reduces plant hydraulic conductance and transpiration and increases mortality in a piñon-juniper woodland.

    PubMed

    Pangle, Robert E; Limousin, Jean-Marc; Plaut, Jennifer A; Yepez, Enrico A; Hudson, Patrick J; Boutz, Amanda L; Gehres, Nathan; Pockman, William T; McDowell, Nate G

    2015-04-01

    Plant hydraulic conductance (k s) is a critical control on whole-plant water use and carbon uptake and, during drought, influences whether plants survive or die. To assess long-term physiological and hydraulic responses of mature trees to water availability, we manipulated ecosystem-scale water availability from 2007 to 2013 in a piñon pine (Pinus edulis) and juniper (Juniperus monosperma) woodland. We examined the relationship between k s and subsequent mortality using more than 5 years of physiological observations, and the subsequent impact of reduced hydraulic function and mortality on total woody canopy transpiration (E C) and conductance (G C). For both species, we observed significant reductions in plant transpiration (E) and k s under experimentally imposed drought. Conversely, supplemental water additions increased E and k s in both species. Interestingly, both species exhibited similar declines in k s under the imposed drought conditions, despite their differing stomatal responses and mortality patterns during drought. Reduced whole-plant k s also reduced carbon assimilation in both species, as leaf-level stomatal conductance (g s) and net photosynthesis (A n) declined strongly with decreasing k s. Finally, we observed that chronically low whole-plant k s was associated with greater canopy dieback and mortality for both piñon and juniper and that subsequent reductions in woody canopy biomass due to mortality had a significant impact on both daily and annual canopy E C and G C. Our data indicate that significant reductions in k s precede drought-related tree mortality events in this system, and the consequence is a significant reduction in canopy gas exchange and carbon fixation. Our results suggest that reductions in productivity and woody plant cover in piñon-juniper woodlands can be expected due to reduced plant hydraulic conductance and increased mortality of both piñon pine and juniper under anticipated future conditions of more frequent and

  6. Arterial mechanics in spontaneously hypertensive rats. Mechanical properties, hydraulic conductivity, and two-phase (solid/fluid) finite element models.

    PubMed

    Gaballa, M A; Raya, T E; Simon, B R; Goldman, S

    1992-07-01

    To characterize the interaction between mechanical and fluid transport properties in hypertension, we measured in vivo elastic material constants and hydraulic conductivity in intact segments of carotid arteries in normal and spontaneously hypertensive rats (SHR). With the use of a finite element model, the arterial wall was modeled as a large-deformation, two-phase (solid/fluid) medium, which accounts for the existence and motion of the tissue fluid. Measurements of internal diameter and transmural pressures were obtained during continuous increases in pressure from 0 to 200 mm Hg. Strain and stress components were calculated based on a pseudostrain exponential energy density function. To measure the hydraulic conductivity, segments of the carotid artery were isolated, filled with a 4% oxygenated albumin-Tyrode's solution, and connected to a capillary tube. The movement of the meniscus of the capillary tube represented the fluid filtration across the artery. To study the influence of transmural pressure on hydraulic conductivity, measurement of fluid filtration across the arterial wall was obtained at transmural pressures of 50 and 100 mm Hg. The material constants in the SHR (n = 9) were higher (p less than 0.05 for all variables) than in normal rats (n = 10): c = 1,343 +/- 96 versus 1,158 +/- 65 mm Hg, b1 = 1.84 +/- 0.24 versus 1.22 +/- 0.22, b2 = 0.769 +/- 0.114 versus 0.616 +/- 0.11, b3 = 0.017 +/- 0.005 versus 0.0065 +/- 0.002, b4 = 0.206 +/- 0.04 versus 0.083 +/- 0.03, b5 = 0.0594 +/- 0.007 versus 0.0217 +/- 0.006, and b6 = 0.22 +/- 0.09 versus 0.123 +/- 0.02, respectively. The hydraulic conductivity of the total wall, calculated from the filtration data, was lower (p less than 0.05) at both 50 and 100 mm Hg in the SHR (n = 6) compared with normal rats (n = 7): 1.12 +/- 0.31 x 10(-8) and 0.72 +/- 0.23 x 10(-8) versus 1.95 +/- 0.53 x 10(-8) and 1.35 +/- 0.47 x 10(-8) cm/(sec.mm Hg), respectively. The intergroup comparisons between 50 and 100 mm Hg in both SHR

  7. Impact of the spatial structure of the hydraulic conductivity field on vorticity in three-dimensional flows

    PubMed Central

    Fiori, A.; Chiogna, G.; de Barros, F. P. J.; Bellin, A.

    2016-01-01

    A material fluid element within a porous medium experiences deformations due to the disordered spatial distribution of the Darcy scale velocity field, caused by the heterogeneity of hydraulic conductivity. A physical consequence of this heterogeneity is the presence of localized kinematical features such as straining, shearing and vorticity in the fluid element. These kinematical features will influence the shape of solute clouds and their fate. Studies on the deformation of material surfaces highlighted the importance of stretching and shearing, whereas vorticity received so far less attention, though it determines folding, a deformation associated with the local rotation of the velocity field. We study vorticity in a three-dimensional porous formation exploring how its fluctuations are influenced by the spatial structure of the porous media, obtained by immersing spheroidal inclusions into a matrix of constant hydraulic conductivity. By comparing porous formations with the same spatial statistics, we analyse how vorticity is affected by the different shape and arrangement of inclusions, defined as the medium ‘microstructure’. We conclude that, as microstructure has a significant impact on vorticity fluctuations, the usual second-order statistical description of the conductivity field is unable to capture local deformations of the plume. PMID:27118915

  8. Impact of the spatial structure of the hydraulic conductivity field on vorticity in three-dimensional flows.

    PubMed

    Di Dato, M; Fiori, A; Chiogna, G; de Barros, F P J; Bellin, A

    2016-03-01

    A material fluid element within a porous medium experiences deformations due to the disordered spatial distribution of the Darcy scale velocity field, caused by the heterogeneity of hydraulic conductivity. A physical consequence of this heterogeneity is the presence of localized kinematical features such as straining, shearing and vorticity in the fluid element. These kinematical features will influence the shape of solute clouds and their fate. Studies on the deformation of material surfaces highlighted the importance of stretching and shearing, whereas vorticity received so far less attention, though it determines folding, a deformation associated with the local rotation of the velocity field. We study vorticity in a three-dimensional porous formation exploring how its fluctuations are influenced by the spatial structure of the porous media, obtained by immersing spheroidal inclusions into a matrix of constant hydraulic conductivity. By comparing porous formations with the same spatial statistics, we analyse how vorticity is affected by the different shape and arrangement of inclusions, defined as the medium 'microstructure'. We conclude that, as microstructure has a significant impact on vorticity fluctuations, the usual second-order statistical description of the conductivity field is unable to capture local deformations of the plume.

  9. Interpretation of Flow Logs from Nevada Test Site Boreholes to Estimate Hydraulic conductivity Using Numerical Simulations Constrained by Single-Well Aquifer Tests

    SciTech Connect

    Garcia, C. Amanda; Halford, Keith J.; Laczniak, Randell J.

    2010-02-12

    Hydraulic conductivities of volcanic and carbonate lithologic units at the Nevada Test Site were estimated from flow logs and aquifer-test data. Borehole flow and drawdown were integrated and interpreted using a radial, axisymmetric flow model, AnalyzeHOLE. This integrated approach is used because complex well completions and heterogeneous aquifers and confining units produce vertical flow in the annular space and aquifers adjacent to the wellbore. AnalyzeHOLE simulates vertical flow, in addition to horizontal flow, which accounts for converging flow toward screen ends and diverging flow toward transmissive intervals. Simulated aquifers and confining units uniformly are subdivided by depth into intervals in which the hydraulic conductivity is estimated with the Parameter ESTimation (PEST) software. Between 50 and 150 hydraulic-conductivity parameters were estimated by minimizing weighted differences between simulated and measured flow and drawdown. Transmissivity estimates from single-well or multiple-well aquifer tests were used to constrain estimates of hydraulic conductivity. The distribution of hydraulic conductivity within each lithology had a minimum variance because estimates were constrained with Tikhonov regularization. AnalyzeHOLE simulated hydraulic-conductivity estimates for lithologic units across screened and cased intervals are as much as 100 times less than those estimated using proportional flow-log analyses applied across screened intervals only. Smaller estimates of hydraulic conductivity for individual lithologic units are simulated because sections of the unit behind cased intervals of the wellbore are not assumed to be impermeable, and therefore, can contribute flow to the wellbore. Simulated hydraulic-conductivity estimates vary by more than three orders of magnitude across a lithologic unit, indicating a high degree of heterogeneity in volcanic and carbonate-rock units. The higher water transmitting potential of carbonate-rock units relative

  10. Interpretation of Flow Logs from Nevada Test Site Boreholes to Estimate Hydraulic Conductivity Using Numerical Simulations Constrained by Single-Well Aquifer Tests

    USGS Publications Warehouse

    Garcia, C. Amanda; Halford, Keith J.; Laczniak, Randell J.

    2010-01-01

    Hydraulic conductivities of volcanic and carbonate lithologic units at the Nevada Test Site were estimated from flow logs and aquifer-test data. Borehole flow and drawdown were integrated and interpreted using a radial, axisymmetric flow model, AnalyzeHOLE. This integrated approach is used because complex well completions and heterogeneous aquifers and confining units produce vertical flow in the annular space and aquifers adjacent to the wellbore. AnalyzeHOLE simulates vertical flow, in addition to horizontal flow, which accounts for converging flow toward screen ends and diverging flow toward transmissive intervals. Simulated aquifers and confining units uniformly are subdivided by depth into intervals in which the hydraulic conductivity is estimated with the Parameter ESTimation (PEST) software. Between 50 and 150 hydraulic-conductivity parameters were estimated by minimizing weighted differences between simulated and measured flow and drawdown. Transmissivity estimates from single-well or multiple-well aquifer tests were used to constrain estimates of hydraulic conductivity. The distribution of hydraulic conductivity within each lithology had a minimum variance because estimates were constrained with Tikhonov regularization. AnalyzeHOLE simulated hydraulic-conductivity estimates for lithologic units across screened and cased intervals are as much as 100 times less than those estimated using proportional flow-log analyses applied across screened intervals only. Smaller estimates of hydraulic conductivity for individual lithologic units are simulated because sections of the unit behind cased intervals of the wellbore are not assumed to be impermeable, and therefore, can contribute flow to the wellbore. Simulated hydraulic-conductivity estimates vary by more than three orders of magnitude across a lithologic unit, indicating a high degree of heterogeneity in volcanic and carbonate-rock units. The higher water transmitting potential of carbonate-rock units relative

  11. Probability distributions of hydraulic conductivity for the hydrogeologic units of the Death Valley regional ground-water flow system, Nevada and California

    USGS Publications Warehouse

    Belcher, Wayne R.; Sweetkind, Donald S.; Elliott, Peggy E.

    2002-01-01

    The use of geologic information such as lithology and rock properties is important to constrain conceptual and numerical hydrogeologic models. This geologic information is difficult to apply explicitly to numerical modeling and analyses because it tends to be qualitative rather than quantitative. This study uses a compilation of hydraulic-conductivity measurements to derive estimates of the probability distributions for several hydrogeologic units within the Death Valley regional ground-water flow system, a geologically and hydrologically complex region underlain by basin-fill sediments, volcanic, intrusive, sedimentary, and metamorphic rocks. Probability distributions of hydraulic conductivity for general rock types have been studied previously; however, this study provides more detailed definition of hydrogeologic units based on lithostratigraphy, lithology, alteration, and fracturing and compares the probability distributions to the aquifer test data. Results suggest that these probability distributions can be used for studies involving, for example, numerical flow modeling, recharge, evapotranspiration, and rainfall runoff. These probability distributions can be used for such studies involving the hydrogeologic units in the region, as well as for similar rock types elsewhere. Within the study area, fracturing appears to have the greatest influence on the hydraulic conductivity of carbonate bedrock hydrogeologic units. Similar to earlier studies, we find that alteration and welding in the Tertiary volcanic rocks greatly influence hydraulic conductivity. As alteration increases, hydraulic conductivity tends to decrease. Increasing degrees of welding appears to increase hydraulic conductivity because welding increases the brittleness of the volcanic rocks, thus increasing the amount of fracturing.

  12. Use of air-pressurized slug tests to estimate hydraulic conductivity at selected piezometers completed in the Santa Fe Group aquifer system, Albuquerque area, New Mexico

    USGS Publications Warehouse

    Thomas, Carole L.; Thorn, Conde R.

    2000-01-01

    The City of Albuquerque Public Works Department, Water Resources Management (City), is interested in quantifying aquifer hydraulic properties in the Albuquerque, New Mexico, area to better understand and manage water resources in the Middle Rio Grande Basin. In 1998, the City and the U.S. Geological Survey entered into a cooperative program to determine hydraulic properties of aquifer material adjacent to screened intervals of piezometers in the Albuquerque area. Investigators conducted slug tests from March 8 through April 8, 1999, to estimate hydraulic conductivity of aquifer material adjacent to the screened intervals of 25 piezometers from 11 nested- piezometer sites in the Albuquerque area. At 20 of the piezometers, slug-test responses were typical; at 2 piezometers, tests were prematurely terminated because the tests were taking too long to complete; and at 3 piezometers, test responses were oscillatory. Methods used to estimate hydraulic conductivity were the Bouwer and Rice method or the Cooper, Bredehoeft, and Papadopulos method for most tests; the Shapiro and Greene method for prematurely terminated tests; and the van der Kamp method for oscillatory tests. Hydraulic-conductivity estimates ranged from about 0.15 to 92 feet per day. In general, the smaller estimated values are associated with fine-grained aquifer materials and the larger estimated hydraulic-conductivity values are associated with coarse- grained aquifer materials adjacent to the screened intervals of the piezometers. Hydraulic-conductivity estimates ranged from 0.15 to 8.2 feet per day for aquifer materials adjacent to the screened intervals at 12 piezometers and from 12 to 41 feet per day for aquifer materials adjacent to the screened intervals at 10 piezometers. Hydraulic-conductivity estimates at four piezometers were greater than 41 feet per day.

  13. Hydraulic and hydrologic evaluation of PAR Pond Dam. Technical evaluation report

    SciTech Connect

    Reich, M.; Wang, P.C.; Khanbilvardi, R.; Bezler, P.

    1993-10-01

    The PAR Pond Dam at Savannah River Plant was constructed in 1958--1959. Seepage, depressions, boils and spring flow were observed in varying locations on the dam in the last few years. Comprehensive geotechnical and hydraulic investigations pertaining to the effects of the above observations on the abilities of the dam to withstand future floods were made in 1991 and early 1993 where dam capacity to survive flooding and seismic events were evaluated. Brookhaven National Laboratory (BNL) was asked by the Department of Energy (EH) to carry out an independent review of the PAR Pond Dam response to future flooding and seismic events. This report addresses the studies made to evaluate the capacity of the dam to survive floods. A companion report will summarize the evaluations performed to assess the seismic capacity of the dam.

  14. Xylem embolism alleviated by ion-mediated increase in hydraulic conductivity of functional xylem: insights from field measurements.

    PubMed

    Trifilò, Patrizia; Lo Gullo, Maria A; Salleo, Sebastiano; Callea, Katia; Nardini, Andrea

    2008-10-01

    Recent studies have shown that, in some species, xylem hydraulic conductivity (K(h)) increases with increasing cation concentration of xylem sap. Evidence indicates that K(h) increases as a result of the de-swelling of pit membrane pectins caused by cation neutralization of polygalacturonanes. We tested whether this ionic effect partly compensates for the embolism-induced loss of stem hydraulic conductivity (PLC) by increasing K(h) of functioning conduits. We report changes in PLC, leaf water status and potassium concentration ([K(+)]) of xylem sap measured in April and July in two evergreens (Ceratonia siliqua L. and Phytolacca dioica L.) and one deciduous tree (Platanus orientalis L.) growing in the field in Sicily. In summer, Ceratonia siliqua and Phytolacca dioica showed similar native embolism (PLC = 30-40%) and [K(+)] of xylem sap (14 to 17 mM), and K(h) of stems perfused with 10 to 25 mM KCl increased by 15 to 18% compared with K(h) of stems perfused with a low concentration of a multi-ionic solution. In contrast, native [K(+)] of sap of Platanus orientalis was 50% of that in the two evergreens in summer, with a parallel lack of detectable changes in PLC that was below 10% in both spring and summer. The ionic effect was PLC-dependent: the enhancement of K(h) induced by 10 to 25 mM KCl changed from 15% for fully hydrated stems to 50-75% for stems with PLC = 50%. In Ceratonia siliqua, PLC was less than 10% in spring and about 40% in summer; concurrently, xylem sap [K(+)] increased from 3 to about 15 mM. This [K(+)] at the recorded PLC would cause an increase in residual K(h) of about 30%. Hence, the actual reduction in water transport capacity of Ceratonia siliqua stems in summer is about 20%. Similar calculations for Phytolacca dioica suggest that the actual loss of hydraulic conductivity in stems of this species in summer would be only about 10%, and not 30% as suggested by hydraulic measurements performed in the laboratory. We conclude that an increase in

  15. Alternative blade materials for technical and ecological optimization of a hydraulic pressure machine

    NASA Astrophysics Data System (ADS)

    Schwyzer, Olivier; Saenger, Nicole

    2016-11-01

    The Hydraulic Pressure Machine (HPM) is an energy converter to exploit head differences between 0.5 and 2.5 m in small streams and irrigation canals. Previous investigations show that efficiencies above 60% are possible. Several case studies indicate good continuity for aquatic life (e.g. fish) and bed load for the technology. The technology is described as an economically and ecologically viable option for small scale hydropower generation. Primary goal of this research is to improve the HPM blade design regarding its continuity properties by maintaining good efficiency rates. This is done by modifying the blade tip and testing within a large physical model under laboratory condition. Blade tips from steel (conventional - reference case) and a combination of EPDM rubber and steel as sandwich construction (rubber, steel, rubber - adhesive layered) are tested and compared. Both materials reach similar values for hydraulic efficiency (approx. 58%) and mechanical power output (approx. 220 W). The variation of different gap sizes pointed out the importance of small clearance gaps to reach high efficiencies. For assessing the two blade tip materials regarding continuity for aquatic life, fish dummies were led through the wheel. Analysis of slow motion video of dummies hit by the blade show significant advantages for the EPDM blade tip. The EPDM rubber allows to bend and thus reduces the shock and the probability for cuts on the fish dummy. It was shown that blade tips from EPDM have certain advantages regarding continuity compared to standard blade tips from steel. No compromise regarding energy production had to be made. These results from the HPM can be transferred to breast shot water wheel and may be applied for new and retrofitting projects.

  16. Linking physiological processes with mangrove forest structure: phosphorus deficiency limits canopy development, hydraulic conductivity and photosynthetic carbon gain in dwarf Rhizophora mangle.

    PubMed

    Lovelock, Catherine E; Ball, Marilyn C; Choat, Brendan; Engelbrecht, Bettina M J; Holbrook, N Michelle; Feller, Ilka C

    2006-05-01

    Spatial gradients in mangrove tree height in barrier islands of Belize are associated with nutrient deficiency and sustained flooding in the absence of a salinity gradient. While nutrient deficiency is likely to affect many parameters, here we show that addition of phosphorus (P) to dwarf mangroves stimulated increases in diameters of xylem vessels, area of conductive xylem tissue and leaf area index (LAI) of the canopy. These changes in structure were consistent with related changes in function, as addition of P also increased hydraulic conductivity (Ks), stomatal conductance and photosynthetic assimilation rates to the same levels measured in taller trees fringing the seaward margin of the mangrove. Increased xylem vessel size and corresponding enhancements in stem hydraulic conductivity in P fertilized dwarf trees came at the cost of enhanced mid-day loss of hydraulic conductivity and was associated with decreased assimilation rates in the afternoon. Analysis of trait plasticity identifies hydraulic properties of trees as more plastic than those of leaf structural and physiological characteristics, implying that hydraulic properties are key in controlling growth in mangroves. Alleviation of P deficiency, which released trees from hydraulic limitations, reduced the structural and functional distinctions between dwarf and taller fringing tree forms of Rhizophora mangle.

  17. Interactions among hydraulic conductivity distributions, subsurface topography, and transport thresholds revealed by a multitracer hillslope irrigation experiment

    DOE PAGES

    Jackson, C. Rhett; Du, Enhao; Klaus, Julian; ...

    2016-08-12

    Interactions among hydraulic conductivity distributions, subsurface topography, and lateral flow are poorly understood. We applied 407 mm of water and a suite of tracers over 51 h to a 12 by 16.5 m forested hillslope segment to determine interflow thresholds, preferential pathway pore velocities, large-scale conductivities, the time series of event water fractions, and the fate of dissolved nutrients. The 12% hillslope featured loamy sand A and E horizons overlying a sandy clay loam Bt at 1.25 m average depth. Interflow measured from two drains within an interception trench commenced after 131 and 208 mm of irrigation. Cumulative interflow equaledmore » 49% of applied water. Conservative tracer differences between the collection drains indicated differences in flow paths and storages within the plot. Event water fractions rose steadily throughout irrigation, peaking at 50% sixteen h after irrigation ceased. Data implied that tightly held water exchanged with event water throughout the experiment and a substantial portion of preevent water was released from the argillic layer. Surface-applied dye tracers bypassed the matrix, with peak concentrations measured shortly after flow commencement, indicating preferential network conductivities of 864–2240 mm/h, yet no macropore flow was observed. Near steady-state flow conditions indicated average conductivities of 460 mm/h and 2.5 mm/h for topsoils and the Bt horizon, respectively. Low ammonium and phosphorus concentrations in the interflow suggested rapid uptake or sorption, while higher nitrate concentrations suggested more conservative transport. Lastly, these results reveal how hydraulic conductivity variation and subsurface topographic complexity explain otherwise paradoxical solute and flow behaviors.« less

  18. Interactions among hydraulic conductivity distributions, subsurface topography, and transport thresholds revealed by a multitracer hillslope irrigation experiment

    SciTech Connect

    Jackson, C. Rhett; Du, Enhao; Klaus, Julian; Griffiths, Natalie A.; Bitew, Menberu; McDonnell, Jeffrey J.

    2016-08-12

    Interactions among hydraulic conductivity distributions, subsurface topography, and lateral flow are poorly understood. We applied 407 mm of water and a suite of tracers over 51 h to a 12 by 16.5 m forested hillslope segment to determine interflow thresholds, preferential pathway pore velocities, large-scale conductivities, the time series of event water fractions, and the fate of dissolved nutrients. The 12% hillslope featured loamy sand A and E horizons overlying a sandy clay loam Bt at 1.25 m average depth. Interflow measured from two drains within an interception trench commenced after 131 and 208 mm of irrigation. Cumulative interflow equaled 49% of applied water. Conservative tracer differences between the collection drains indicated differences in flow paths and storages within the plot. Event water fractions rose steadily throughout irrigation, peaking at 50% sixteen h after irrigation ceased. Data implied that tightly held water exchanged with event water throughout the experiment and a substantial portion of preevent water was released from the argillic layer. Surface-applied dye tracers bypassed the matrix, with peak concentrations measured shortly after flow commencement, indicating preferential network conductivities of 864–2240 mm/h, yet no macropore flow was observed. Near steady-state flow conditions indicated average conductivities of 460 mm/h and 2.5 mm/h for topsoils and the Bt horizon, respectively. Low ammonium and phosphorus concentrations in the interflow suggested rapid uptake or sorption, while higher nitrate concentrations suggested more conservative transport. Lastly, these results reveal how hydraulic conductivity variation and subsurface topographic complexity explain otherwise paradoxical solute and flow behaviors.

  19. Comparison of hydraulic conductivities by grain-size analysis pumping, and slug tests in Quaternary gravels, NE Slovenia

    NASA Astrophysics Data System (ADS)

    Pucko, Tatjana; Verbovšek, Timotej

    2015-08-01

    Hydraulic conductivities (K) can be obtained from pumping and slug tests as well as grain size analysis. Although empirical methods for such estimations are longstanding, there is still insufficient comparison of K values among the various approaches. Six grain-size analysis methods were tested on coarse-grained alluvial sediments from 12 water wells in NE Slovenia. Values of K from grainsize methods were compared to those of pumping tests and slug tests. Six grain-size methods (USBR, Slichter, Hazen, Beyer, Kozeny-Carman, and Terzaghi) were used for comparison with the Theis and Neuman pumping test method and the Bouwer-Rice method for slug tests. The results show that the USBR (US Bureau of Reclamation) method overestimates K values and there is no correlation with other results, so its use is not advised. Conversely, whilst the Slichter method gives much lower estimates of K, it is the only one to completely fulfill the grain size requirements. Other methods (Hazen, Beyer, Kozeny- Carman, and Terzaghi) result in intermediate values and are similar to the Slichter method; however they should be used for smaller-sized sediments. Due to their high transmissivity and small radius of inffiuence, slug tests should be avoided in the analysis of gravels, as they only test a small portion of the aquifer compared to pumping tests. This is confirmed by the low correlation coefficients between hydraulic conductivities obtained from pumping tests and slug tests.

  20. Water uptake by growing cells: an assessment of the controlling roles of wall relaxation, solute uptake, and hydraulic conductance

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1993-01-01

    Growing plant cells increase in volume principally by water uptake into the vacuole. There are only three general mechanisms by which a cell can modulate the process of water uptake: (a) by relaxing wall stress to reduce cell turgor pressure (thereby reducing cell water potential), (b) by modifying the solute content of the cell or its surroundings (likewise affecting water potential), and (c) by changing the hydraulic conductance of the water uptake pathway (this works only for cells remote from water potential equilibrium). Recent studies supporting each of these potential mechanisms are reviewed and critically assessed. The importance of solute uptake and hydraulic conductance is advocated by some recent studies, but the evidence is indirect and conclusions remain controversial. For most growing plant cells with substantial turgor pressure, it appears that reduction in cell turgor pressure, as a consequence of wall relaxation, serves as the major initiator and control point for plant cell enlargement. Two views of wall relaxation as a viscoelastic or a chemorheological process are compared and distinguished.

  1. Leaf hydraulic conductance varies with vein anatomy across Arabidopsis thaliana wild-type and leaf vein mutants.

    PubMed

    Caringella, Marissa A; Bongers, Franca J; Sack, Lawren

    2015-12-01

    Leaf venation is diverse across plant species and has practical applications from paleobotany to modern agriculture. However, the impact of vein traits on plant performance has not yet been tested in a model system such as Arabidopsis thaliana. Previous studies analysed cotyledons of A. thaliana vein mutants and identified visible differences in their vein systems from the wild type (WT). We measured leaf hydraulic conductance (Kleaf ), vein traits, and xylem and mesophyll anatomy for A. thaliana WT (Col-0) and four vein mutants (dot3-111 and dot3-134, and cvp1-3 and cvp2-1). Mutant true leaves did not possess the qualitative venation anomalies previously shown in the cotyledons, but varied quantitatively in vein traits and leaf anatomy across genotypes. The WT had significantly higher mean Kleaf . Across all genotypes, there was a strong correlation of Kleaf with traits related to hydraulic conductance across the bundle sheath, as influenced by the number and radial diameter of bundle sheath cells and vein length per area. These findings support the hypothesis that vein traits influence Kleaf , indicating the usefulness of this mutant system for testing theory that was primarily established comparatively across species, and supports a strong role for the bundle sheath in influencing Kleaf .

  2. Geologically based model of heterogeneous hydraulic conductivity in an alluvial setting

    NASA Astrophysics Data System (ADS)

    Fogg, Graham E.; Noyes, Charles D.; Carle, Steven F.

    Information on sediment texture and spatial continuity are inherent to sedimentary depositional facies descriptions, which are therefore potentially good predictors of spatially varying hydraulic conductivity (K). Analysis of complex alluvial heterogeneity in Livermore Valley, California, USA, using relatively abundant core descriptions and field pumping-test data, demonstrates a depositional-facies approach to characterization of subsurface heterogeneity. Conventional textural classifications of the core show a poor correlation with K; however, further refinement of the textural classifications into channel, levee, debris-flow, and flood-plain depositional facies reveals a systematic framework for spatial modeling of K. This geologic framework shows that most of the system is composed of very low-K flood-plain materials, and that the K measurements predominantly represent the other, higher-K facies. Joint interpretation of both the K and geologic data shows that spatial distribution of K in this system could not be adequately modeled without geologic data and analysis. Furthermore, it appears that K should not be assumed to be log-normally distributed, except perhaps within each facies. Markov chain modeling of transition probability, representing spatial correlation within and among the facies, captures the relevant geologic features while highlighting a new approach for statistical characterization of hydrofacies spatial variability. The presence of fining-upward facies sequences, cross correlation between facies, as well as other geologic attributes captured by the Markov chains provoke questions about the suitability of conventional geostatistical approaches based on variograms or covariances for modeling geologic heterogeneity. Résumé Les informations sur la texture des sédiments et leur continuité spatiale font partie des descriptions de faciès sédimentaires de dépôt. Par conséquent, ces descriptions sont d'excellents prédicteurs potentiels des

  3. Application of ground-penetrating radar, digital optical borehole images, and cores for characterization of porosity hydraulic conductivity and paleokarst in the Biscayne aquifer, southeastern Florida, USA

    USGS Publications Warehouse

    Cunningham, K.J.

    2004-01-01

    This paper presents examples of ground-penetrating radar (GPR) data from two study sites in southeastern Florida where karstic Pleistocene platform carbonates that comprise the unconfined Biscayne aquifer were imaged. Important features shown on resultant GPR profiles include: (1) upward and lateral qualitative interpretative distribution of porosity and hydraulic conductivity; (2) paleotopographic relief on karstic subaerial exposure surfaces; and (3) vertical stacking of chronostratigraphic high-frequency cycles (HFCs). These characteristics were verified by comparison to rock properties observed and measured in core samples, and identified in digital optical borehole images. Results demonstrate that an empirical relation exists between measured whole-core porosity and hydraulic conductivity, observed porosity on digital optical borehole images, formation conductivity, and GPR reflection amplitudes-as porosity and hydraulic conductivity determined from core and borehole images increases, formation conductivity increases, and GPR reflection amplitude decreases. This relation allows for qualitative interpretation of the vertical and lateral distribution of porosity and hydraulic conductivity within HFCs. Two subtidal HFCs in the uppermost Biscayne aquifer have significantly unique populations of whole-core porosity values and vertical hydraulic conductivity values. Porosity measurements from one cycle has a median value about two to three times greater than the values from the other HFC, and median values of vertical hydraulic-conductivity about three orders of magnitude higher than the other HFC. The HFC with the higher porosity and hydraulic conductivity values is shown as a discrete package of relatively low-amplitude reflections, whereas the HFC characterized by lower porosity and hydraulic-conductivity measurements is expressed by higher amplitude reflections. Porosity and hydraulic-conductivity values measured from whole-core samples, and vuggy porosity

  4. Probability distributions of hydraulic conductivity for the hydrogeologic units of the Death Valley regional ground-water flow system, Nevada and California

    SciTech Connect

    Belcher, W.R.; Sweetkind, D.S.; Elliott, P.E.

    2002-11-19

    The use of geologic information such as lithology and rock properties is important to constrain conceptual and numerical hydrogeologic models. This geologic information is difficult to apply explicitly to numerical modeling and analyses because it tends to be qualitative rather than quantitative. This study uses a compilation of hydraulic-conductivity measurements to derive estimates of the probability distributions for several hydrogeologic units within the Death Valley regional ground-water flow system, a geologically and hydrologicaly complex region underlain by basin-fill sediments, volcanic, intrusive, sedimentary, and metamorphic rocks. Probability distributions of hydraulic conductivity for general rock types have been studied previously; however, this study provides more detailed definition of hydrogeologic units based on lithostratigraphy, lithology, alteration, and fracturing and compares the probability distributions to the aquifer test data. Results suggest that these probability distributions can be used for studies involving, for example, numerical flow modeling, recharge, evapotranspiration, and rainfall runoff. These probability distributions can be used for such studies involving the hydrogeologic units in the region, as well as for similar rock types elsewhere. Within the study area, fracturing appears to have the greatest influence on the hydraulic conductivity of carbonate bedrock hydrogeologic units. Similar to earlier studies, we find that alteration and welding in the Tertiary volcanic rocks greatly influence conductivity. As alteration increases, hydraulic conductivity tends to decrease. Increasing degrees of welding appears to increase hydraulic conductivity because welding increases the brittleness of the volcanic rocks, thus increasing the amount of fracturing.

  5. Spatial variation in saturated hydraulic conductivity of sediments at a crude-oil spill site near Bemidji, Minnesota

    USGS Publications Warehouse

    Strobel, Michael L.; Delin, G.N.; Munson, Carissa J.

    1998-01-01

    The average linear velocity of ground water near the spill site was calculated to examine the effects of advective flow on migration of the plumes of oil and dissolved petroleum constituents. The average linear velocity in the well-sorted medium to fine sand facies during September 1996 was about 11 meters per year (m/year). If we assume that this was the average velocity during the 17-year period since the spill (1979-96), total advective flow of ground water in this facies was about 187 m. During this 17-year period, oil floating on the water table migrated only about 40 m. By comparison, the lower sand and gravel unit had an average linear velocity of about 29 m/year, or about 3 times greater than the velocity in the well-sorted medium to fine sand facies. Based on a 29 m/year velocity, advective flow of ground water in this unit during the 17-year period since the spill was about 493 m; whereas, the plume of dissolved petroleum constituents migrated only about 200 m. These results indicate that spatial variability of hydraulic conductivity and ground-water velocity at the research site likely is a factor affecting the rate of contaminant migration. Additional research is needed to fully evaluate how the contaminant plumes are affected by changes in hydraulic properties of the various lithologic units.

  6. Kinetics of recovery of leaf hydraulic conductance and vein functionality from cavitation-induced embolism in sunflower.

    PubMed

    Trifilò, Patrizia; Gascó, Antonio; Raimondo, Fabio; Nardini, Andrea; Salleo, Sebastiano

    2003-10-01

    The kinetics of leaf vein recovery from cavitation-induced embolism was studied in plants of sunflower cv. Margot, together with the impact of vein embolism on the overall leaf hydraulic conductance (Kleaf). During the air-dehydration of leaves to leaf water potentials (Psi L) of -1.25 MPa, Kleaf was found to decrease by about 46% with respect to values recorded in well-hydrated leaves. When leaves, previously dehydrated to Psi L= -1.1 MPa (corresponding to the turgor loss point), were put in contact with water, Kleaf recovered completely in 10 min and so did leaf water potential. Functional vein density was estimated in both dehydrating and rehydrating leaves in terms of total length of red-stained veins infiltrated with a Phloxine B solution per unit leaf surface area. Veins were found to embolize (unstained) with kinetics showing a linear relationship with Kleaf so that about a 70% loss of functional veins corresponded with a Kleaf loss of 46%. Cavitated veins recovered from embolism within 10 min from the beginning of leaf rehydration. These data indicate that: (a) leaves of sunflower underwent substantial vein embolism during dehydration; (b) vein embolism and leaf hydraulic efficiency apparently recovered from dehydration completely and rapidly upon rehydration; (c) vein refilling occurred while conduits were still at more negative xylem pressures than those required for spontaneous bubble dissolution on the basis of Henry's law. The possible consistent contribution of vital mechanisms for vein refilling is discussed.

  7. Use of NMR logging to obtain estimates of hydraulic conductivity in the High Plains aquifer, Nebraska, USA

    USGS Publications Warehouse

    Dlubac, Katherine; Knight, Rosemary; Song, Yi-Qiao; Bachman, Nate; Grau, Ben; Cannia, Jim; Williams, John

    2013-01-01

    Hydraulic conductivity (K) is one of the most important parameters of interest in groundwater applications because it quantifies the ease with which water can flow through an aquifer material. Hydraulic conductivity is typically measured by conducting aquifer tests or wellbore flow (WBF) logging. Of interest in our research is the use of proton nuclear magnetic resonance (NMR) logging to obtain information about water-filled porosity and pore space geometry, the combination of which can be used to estimate K. In this study, we acquired a suite of advanced geophysical logs, aquifer tests, WBF logs, and sidewall cores at the field site in Lexington, Nebraska, which is underlain by the High Plains aquifer. We first used two empirical equations developed for petroleum applications to predict K from NMR logging data: the Schlumberger Doll Research equation (KSDR) and the Timur-Coates equation (KT-C), with the standard empirical constants determined for consolidated materials. We upscaled our NMR-derived K estimates to the scale of the WBF-logging K(KWBF-logging) estimates for comparison. All the upscaled KT-C estimates were within an order of magnitude of KWBF-logging and all of the upscaled KSDR estimates were within 2 orders of magnitude of KWBF-logging. We optimized the fit between the upscaled NMR-derived K and KWBF-logging estimates to determine a set of site-specific empirical constants for the unconsolidated materials at our field site. We conclude that reliable estimates of K can be obtained from NMR logging data, thus providing an alternate method for obtaining estimates of K at high levels of vertical resolution.

  8. Use of NMR logging to obtain estimates of hydraulic conductivity in the High Plains aquifer, Nebraska, USA

    NASA Astrophysics Data System (ADS)

    Dlubac, Katherine; Knight, Rosemary; Song, Yi-Qiao; Bachman, Nate; Grau, Ben; Cannia, Jim; Williams, John

    2013-04-01

    Hydraulic conductivity (K) is one of the most important parameters of interest in groundwater applications because it quantifies the ease with which water can flow through an aquifer material. Hydraulic conductivity is typically measured by conducting aquifer tests or wellbore flow (WBF) logging. Of interest in our research is the use of proton nuclear magnetic resonance (NMR) logging to obtain information about water-filled porosity and pore space geometry, the combination of which can be used to estimate K. In this study, we acquired a suite of advanced geophysical logs, aquifer tests, WBF logs, and sidewall cores at the field site in Lexington, Nebraska, which is underlain by the High Plains aquifer. We first used two empirical equations developed for petroleum applications to predict K from NMR logging data: the Schlumberger Doll Research equation (KSDR) and the Timur-Coates equation (KT-C), with the standard empirical constants determined for consolidated materials. We upscaled our NMR-derived K estimates to the scale of the WBF-logging K(KWBF-logging) estimates for comparison. All the upscaled KT-C estimates were within an order of magnitude of KWBF-logging and all of the upscaled KSDR estimates were within 2 orders of magnitude of KWBF-logging. We optimized the fit between the upscaled NMR-derived K and KWBF-logging estimates to determine a set of site-specific empirical constants for the unconsolidated materials at our field site. We conclude that reliable estimates of K can be obtained from NMR logging data, thus providing an alternate method for obtaining estimates of K at high levels of vertical resolution.

  9. Multi-objective optimization of long-term groundwater monitoring network design under uncertainty of the hydraulic conductivity

    NASA Astrophysics Data System (ADS)

    Luo, Q.; Wu, J.; Yang, Y.

    2012-12-01

    This study develops a new probabilistic Pareto genetic algorithm (PPGA) for long-term groundwater monitoring network design under uncertainty associated with the hydraulic conductivity field of aquifers. The PPGA integrates the previously developed deterministic multi-objective optimization method, namely improved niched Pareto genetic algorithm (INPGA) with a probabilistic Pareto domination ranking and probabilistic niche technique to search for Pareto-optimal solutions to multi-objective optimization problems in a noisy hydrogeological environment arising from insufficient hydraulic conductivity data. The PPGA is then coupled with the commonly used flow and transport codes, MODFLOW and MT3DMS, to identify the optimal sampling network design of a two-dimensional hypothetical test problem and a three-dimensional field problem in Indiana (USA) involving four objectives: (i) minimization of total sampling and analysis costs for contaminant plume monitoring, (ii) minimization of mass estimation error of the plume, (iii) minimization of the first moment estimation error of the plume, and (iv) minimization of the second moment estimation error of the plume. Also, Monte Carlo (MC) analysis is used to demonstrate the effectiveness of the proposed methodology. All of the Pareto-optimal solutions lie on the Pareto band of the MC analysis. Moreover, the root mean square errors of the second and third objectives between the Pareto-optimal solutions by the PPGA and the average values of optimal solutions by the MC analysis are quite small, at 0.0426 and 0.0149 for the hypothetical test problem and at 0.0167 and 0.0094 for the Indiana field application, respectively, but that of the fourth objective is notably larger at 0.9819 for the hypothetical test problem and at 1.2980 for the field application. The higher values of the second moment estimation errors can be attributed to the significant variation of plume shape caused by the variability in the hydraulic conductivity field

  10. Agricultural use of soil, consequences in soil organic matter and hydraulic conductivity compared with natural vegetation in central Spain

    NASA Astrophysics Data System (ADS)

    Vega, Verónica; Carral, Pilar; Alvarez, Ana Maria; Marques, Maria Jose

    2014-05-01

    When ecosystems are under pressure due to high temperatures and water scarcity, the use of land for agriculture can be a handicap for soil and water conservation. The interactions between plants and soils are site-specific. This study provides information about the influence of the preence vs. The absence of vegetation on soil in a semi-arid area of the sout-east of Madrid (Spain, in the Tagus River basin. In this area soil materials are developed over a calcareous-evaporitic lithology. Soils can be classified as Calcisols, having horizons of accumulation with powdered limestone and irregular nodules of calcium carbonate. They can be defined as Haplic Cambisols and Leptic Calcisols (WRB 2006-FAO). The area is mainly used for rainfed agriculture, olive groves, vineyards and cereals. There are some patches of bushes (Quercus sp.) and grasses (Stipa tenacissima L.) although only found on the top of the hills. This study analyses the differences found in soils having three different covers: Quercus coccifera, Stipa tenacissima and lack of vegetation. This last condition was found in the areas between cultivated olive trees. Soil organic matter, porosity and hydraulic conductivity are key properties of soil to understand its ability to adapt to climate or land use changes. In order to measure the influence of different soil covers, four replicates of soil were sampled in each condition at two soil depth, (0-10 cm and 10-20 cm). Hydraulic conductivity was measured in each soil condition and replicate using a Mini-disk® infiltrometer. There were no differences between the two depths sampled. Similarly, there were no changes in electric conductivity (average 0.1±0.03 dS m-1); pH (8.7±0.2) or calcium carbonate content (43±20 %). Nevertheless, significant differences (p>0.001) were found in soil organic matter. The maximum was found in soils under Quercus (4.7±0.5 %), followed by Stipa (2.2±1.1 %). The soil without vegetation in the areas between olive trees had only 0

  11. Estimation of hydraulic parameters from an unconfined aquifer test conducted in a glacial outwash deposit, Cape Cod, Massachusetts

    USGS Publications Warehouse

    Moench, A.F.; Garabedian, Stephen P.; LeBlanc, Denis R.

    2000-01-01

    An aquifer test conducted in a sand and gravel, glacial outwash deposit on Cape Cod, Massachusetts was analyzed by means of a model for flow to a partially penetrating well in a homogeneous, anisotropic unconfined aquifer. The model is designed to account for all significant mechanisms expected to influence drawdown in observation piezometers and in the pumped well. In addition to the usual fluid-flow and storage processes, additional processes include effects of storage in the pumped well, storage in observation piezometers, effects of skin at the pumped-well screen, and effects of drainage from the zone above the water table. The aquifer was pumped at a rate of 320 gallons per minute for 72-hours and drawdown measurements were made in the pumped well and in 20 piezometers located at various distances from the pumped well and depths below the land surface. To facilitate the analysis, an automatic parameter estimation algorithm was used to obtain relevant unconfined aquifer parameters, including the saturated thickness and a set of empirical parameters that relate to gradual drainage from the unsaturated zone. Drainage from the unsaturated zone is treated in this paper as a finite series of exponential terms, each of which contains one empirical parameter that is to be determined. It was necessary to account for effects of gradual drainage from the unsaturated zone to obtain satisfactory agreement between measured and simulated drawdown, particularly in piezometers located near the water table. The commonly used assumption of instantaneous drainage from the unsaturated zone gives rise to large discrepancies between measured and predicted drawdown in the intermediate-time range and can result in inaccurate estimates of aquifer parameters when automatic parameter estimation procedures are used. The values of the estimated hydraulic parameters are consistent with estimates from prior studies and from what is known about the aquifer at the site. Effects of

  12. Changes in hydraulic conductance cause the difference in growth response to short-term salt stress between salt-tolerant and -sensitive black gram (Vigna mungo) varieties.

    PubMed

    Win, Khin Thuzar; Oo, Aung Zaw; Ookawa, Taiichiro; Kanekatsu, Motoki; Hirasawa, Tadashii

    2016-04-01

    Black gram (Vigna mungo) is an important crop in Asia, However, most black gram varieties are salt-sensitive. The causes of varietal differences in salt-induced growth reduction between two black gram varieties, 'U-Taung-2' (salt-tolerant; BT) and 'Mut Pe Khaing To' (salt-sensitive; BS), were examined the potential for the first step toward the genetic improvement of salt tolerance. Seedlings grown in vermiculite irrigated with full-strength Hoagland solution were treated with 0mM NaCl (control) or 225 mM NaCl for up to 10 days. In the 225 mM NaCl treatment, plant growth rate, net assimilation rate, mean leaf area, leaf water potential, and leaf photosynthesis were reduced more in BS than in BT plants. Leaf water potential was closely related to leaf photosynthesis, net assimilation rate, and increase in leaf area. In response to salinity stress, hydraulic conductance of the root, stem, and petiole decreased more strongly in BS than in BT plants. The reduction in stem and petiole hydraulic conductance was caused by cavitation, whereas the reduction in root hydraulic conductance in BS plants was caused by a reduction in root surface area and hydraulic conductivity. We conclude that the different reduction in hydraulic conductance is a cause of the differences in the growth response between the two black gram varieties under short-term salt stress.

  13. Dynamic effects of wet-dry cycles and crust formation on the saturated hydraulic conductivity of surface soils in the constructed Hühnerwasser ("Chicken Creek") catchment

    NASA Astrophysics Data System (ADS)

    Hinz, Christoph; Schümberg, Sabine; Kubitz, Anita; Frank, Franzi; Cheng, Zhang; Nanu Frechen, Tobias; Pohle, Ina

    2016-04-01

    Highly disturbed soils and substrates used in land rehabilitation undergo rapid changes after the first wetting events which in turn can lead to ecosystem degradation. Such changes were detected during the early development of the constructed Hühnerwasser ("Chicken Creek") catchment in Lusatia, Germany. Surface substrates consisting of quaternary sandy sediments formed surface seals during the first rainfall events leading to reduced infiltration and substantially increased surface runoff. Subsequently biological soil crusts formed and stabilised the surface. The aim of this study is to investigate the factors that cause the hydraulic conductivity to decrease using undisturbed and disturbed soil samples. Based on the hypothesis that physical and biological crusts lower the hydraulic conductivity, the first set of experiments with undisturbed soil cores from the Hühnerwasser catchment were carried out to measure the saturated hydraulic conductivity using the constant head method. Measurements were done with intact cores and repeated after the surface crust was removed. As the quaternary glacial sediments tend to display hard setting behaviour, we further hypothesised that the mobilisation of fine particles within the cores lead to pore clogging and that wet-dry cycles will therefore decrease hydraulic conductivity. A second set of experiments using the same methodology consisted of five repeated measurements of hydraulic conductivity after each drying cycle. These measurements were done with undisturbed core samples as well as repacked cores in order to assess how dry packing affects the dynamics of the hydraulic conductivity somewhat similar to the situation during the first wetting after completion of the catchment construction. For all experiments, the temporal evolution of hydraulic conductivity was measured and the turbidity of the effluent was recorded. The results clearly demonstrated that the substrate is highly unstable. The first set of experiments

  14. Correlation Between Bacterial Attachment Rate Coefficients and Hydraulic Conductivity and its Effect on Field-Scale Bacterial Transport

    SciTech Connect

    Scheibe, Timothy D.; Dong, Hailiang; Xie, YuLong

    2007-06-01

    It has been widely observed in field experiments that the apparent rate of bacterial attachment, particularly as parameterized by the collision efficiency in filtration-based models, decreases with transport distance (i.e., exhibits scale-dependency). This effect has previously been attributed to microbial heterogeneity; that is, variability in cell-surface properties within a single monoclonal population. We demonstrate that this effect could also be interpreted as a field-scale manifestation of local-scale correlation between physical heterogeneity (hydraulic conductivity variability) and reaction heterogeneity (attachment rate coefficient variability). A field-scale model of bacterial transport developed for the South Oyster field research site located near Oyster, Virginia, and observations from field experiments performed at that site, are used as the basis for this study. Three-dimensional Monte Carlo simulations of bacterial transport were performed under four alternative scenarios: 1) homogeneous hydraulic conductivity (K) and attachment rate coefficient (Kf), 2) heterogeneous K, homogeneous Kf, 3) heterogeneous K and Kf with local correlation based on empirical and theoretical relationships, and 4) heterogeneous K and Kf without local correlation. The results of the 3D simulations were analyzed using 1D model approximations following conventional methods of field data analysis. An apparent decrease with transport distance of effective collision efficiency was observed only in the case where the local properties were both heterogeneous and correlated. This effect was observed despite the fact that the local collision efficiency was specified as a constant in the 3D model, and can therefore be interpreted as a scale effect associated with the local correlated heterogeneity as manifested at the field scale.

  15. Measurement of Leaf Hydraulic Conductance and Stomatal Conductance and Their Responses to Irradiance and Dehydration Using the Evaporative Flux Method (EFM)

    PubMed Central

    Sack, Lawren; Scoffoni, Christine

    2012-01-01

    Water is a key resource, and the plant water transport system sets limits on maximum growth and drought tolerance. When plants open their stomata to achieve a high stomatal conductance (gs) to capture CO2 for photosynthesis, water is lost by transpiration1,2. Water evaporating from the airspaces is replaced from cell walls, in turn drawing water from the xylem of leaf veins, in turn drawing from xylem in the stems and roots. As water is pulled through the system, it experiences hydraulic resistance, creating tension throughout the system and a low leaf water potential (Ψleaf). The leaf itself is a critical bottleneck in the whole plant system, accounting for on average 30% of the plant hydraulic resistance3. Leaf hydraulic conductance (Kleaf = 1/ leaf hydraulic resistance) is the ratio of the water flow rate to the water potential gradient across the leaf, and summarizes the behavior of a complex system: water moves through the petiole and through several orders of veins, exits into the bundle sheath and passes through or around mesophyll cells before evaporating into the airspace and being transpired from the stomata. Kleaf is of strong interest as an important physiological trait to compare species, quantifying the effectiveness of the leaf structure and physiology for water transport, and a key variable to investigate for its relationship to variation in structure (e.g., in leaf venation architecture) and its impacts on photosynthetic gas exchange. Further, Kleaf responds strongly to the internal and external leaf environment3. Kleaf can increase dramatically with irradiance apparently due to changes in the expression and activation of aquaporins, the proteins involved in water transport through membranes4, and Kleaf declines strongly during drought, due to cavitation and/or collapse of xylem conduits, and/or loss of permeability in the extra-xylem tissues due to mesophyll and bundle sheath cell shrinkage or aquaporin deactivation5-10. Because Kleaf can

  16. Measurement of leaf hydraulic conductance and stomatal conductance and their responses to irradiance and dehydration using the Evaporative Flux Method (EFM).

    PubMed

    Sack, Lawren; Scoffoni, Christine

    2012-12-31

    Water is a key resource, and the plant water transport system sets limits on maximum growth and drought tolerance. When plants open their stomata to achieve a high stomatal conductance (gs) to capture CO2 for photosynthesis, water is lost by transpiration(1,2). Water evaporating from the airspaces is replaced from cell walls, in turn drawing water from the xylem of leaf veins, in turn drawing from xylem in the stems and roots. As water is pulled through the system, it experiences hydraulic resistance, creating tension throughout the system and a low leaf water potential (Ψ(leaf)). The leaf itself is a critical bottleneck in the whole plant system, accounting for on average 30% of the plant hydraulic resistance(3). Leaf hydraulic conductance (K(leaf) = 1/ leaf hydraulic resistance) is the ratio of the water flow rate to the water potential gradient across the leaf, and summarizes the behavior of a complex system: water moves through the petiole and through several orders of veins, exits into the bundle sheath and passes through or around mesophyll cells before evaporating into the airspace and being transpired from the stomata. K(leaf) is of strong interest as an important physiological trait to compare species, quantifying the effectiveness of the leaf structure and physiology for water transport, and a key variable to investigate for its relationship to variation in structure (e.g., in leaf venation architecture) and its impacts on photosynthetic gas exchange. Further, K(leaf) responds strongly to the internal and external leaf environment(3). K(leaf) can increase dramatically with irradiance apparently due to changes in the expression and activation of aquaporins, the proteins involved in water transport through membranes(4), and K(leaf) declines strongly during drought, due to cavitation and/or collapse of xylem conduits, and/or loss of permeability in the extra-xylem tissues due to mesophyll and bundle sheath cell shrinkage or aquaporin deactivation(5

  17. Sap flow, gas exchange, and hydraulic conductance of young apricot trees growing under a shading net and different water supplies.

    PubMed

    Nicolás, Emilio; Torrecillas, Arturo; Dell'Amico, José; Alarcón, Juan José

    2005-04-01

    The experiment was carried out in a research field near Murcia, Spain, over a 3-week period between September 26 and October 16, 2000. Sixteen trees were used in the experiment, eight of which were placed under a rectangular shading net, while the other eight were maintained in the open air. Trees were irrigated once per day and, after October 5th, water was witheld from eight trees (four shaded and four unprotected for 5 days). The leaf stomatal conductance and the photosynthesis rates were higher in the shaded trees than in the exposed plants, probably because the leaf water potential was lower in the unshaded plants. This higher leaf conductance partially compensated for the effect of low radiation on transpiration, and the reduction of daily sap flow registered in shaded trees was only around 10-20%. The net also affected trunk diameter changes, with the shaded trees showing lower values of maximum daily shrinkage. Soil water deficit and high radiation had a similar effect on plant water parameters, lowering leaf water potential, leaf stomatal conductance, and the photosynthesis rate. The effects of both conditions were accumulative and so the exposed water-stressed plants showed the lowest values of total hydraulic resistance and water use efficiency, while the shaded well-irrigated trees registered the highest values for both parameters. For this reason, we think that net shading could be extended to apricot culture in many areas in which irrigation water is scarce and insolation is high.

  18. Effects of combined drought and heavy metal stresses on xylem structure and hydraulic conductivity in red maple (Acer rubrum L.).

    PubMed

    de Silva, Nayana Dilini Gardiyehewa; Cholewa, Ewa; Ryser, Peter

    2012-10-01

    The effects of heavy metal stress, drought stress, and their combination on xylem structure in red maple (Acer rubrum) seedlings were investigated in an outdoor pot experiment. As metal-contaminated substrate, a mixture of 1.5% slag with sand was used, with Ni, Cu, Co, and Cr as the main contaminants. Plants grown on contaminated substrate had increased leaf metal concentrations. The two stresses reduced plant growth in an additive manner. The effects of metal and drought stresses on xylem characteristics were similar to each other, with a reduced proportion of xylem tissue, reduced conduit density in stems, and reduced conduit size in the roots. This resulted, in both stems and roots, in reductions in hydraulic conductance, xylem-specific conductivity, and leaf-specific conductivity. The similarity of the responses to the two stresses suggests that the plants' response to metals was actually a drought response, probably due to the reduced water uptake capacity of the metal-exposed roots. The only plant responses specific to metal stress were decreasing trends of stomatal density and chlorophyll content. In conclusion, the exposure to metals aggravates water stress in an additive manner, making the plants more vulnerable to drought.

  19. Nonlinear effects of locally heterogeneous hydraulic conductivity fields on regional stream-aquifer exchanges

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Winter, C. L.; Wang, Z.

    2015-11-01

    Computational experiments are performed to evaluate the effects of locally heterogeneous conductivity fields on regional exchanges of water between stream and aquifer systems in the Middle Heihe River basin (MHRB) of northwestern China. The effects are found to be nonlinear in the sense that simulated discharges from aquifers to streams are systematically lower than discharges produced by a base model parameterized with relatively coarse effective conductivity. A similar, but weaker, effect is observed for stream leakage. The study is organized around three hypotheses: (H1) small-scale spatial variations of conductivity significantly affect regional exchanges of water between streams and aquifers in river basins, (H2) aggregating small-scale heterogeneities into regional effective parameters systematically biases estimates of stream-aquifer exchanges, and (H3) the biases result from slow paths in groundwater flow that emerge due to small-scale heterogeneities. The hypotheses are evaluated by comparing stream-aquifer fluxes produced by the base model to fluxes simulated using realizations of the MHRB characterized by local (grid-scale) heterogeneity. Levels of local heterogeneity are manipulated as control variables by adjusting coefficients of variation. All models are implemented using the MODFLOW (Modular Three-dimensional Finite-difference Groundwater Flow Model) simulation environment, and the PEST (parameter estimation) tool is used to calibrate effective conductivities defined over 16 zones within the MHRB. The effective parameters are also used as expected values to develop lognormally distributed conductivity (K) fields on local grid scales. Stream-aquifer exchanges are simulated with K fields at both scales and then compared. Results show that the effects of small-scale heterogeneities significantly influence exchanges with simulations based on local-scale heterogeneities always producing discharges that are less than those produced by the base model

  20. Vertical distribution of soil saturated hydraulic conductivity and its influencing factors in a small karst catchment in Southwest China.

    PubMed

    Fu, Tonggang; Chen, Hongsong; Zhang, Wei; Nie, Yunpeng; Wang, Kelin

    2015-03-01

    Saturated hydraulic conductivity (Ks) is one of the most important soil hydraulic parameters influencing hydrological processes. This paper aims to investigate the vertical distribution of Ks and to analyze its influencing factors in a small karst catchment in Southwest China. Ks was measured in 23 soil profiles for six soil horizons using a constant head method. These profiles were chosen in different topographical locations (upslope, downslope, and depression) and different land-use types (forestland, shrubland, shrub-grassland, and farmland). The influencing factors of Ks, including rock fragment content (RC), bulk density (BD), capillary porosity (CP), non-capillary porosity (NCP), and soil organic carbon (SOC), were analyzed by partial correlation analysis. The mean Ks value was higher in the entire profile in the upslope and downslope, but lower value, acting as a water-resisting layer, was found in the 10-20 cm soil depth in the depression. Higher mean Ks values were found in the soil profiles in the forestland, shrubland, and shrub-grassland, but lower in the farmland. These results indicated that saturation-excess runoff could occur primarily in the hillslopes but infiltration-excess runoff in the depression. Compared with other land-use types, surface runoff is more likely to occur in the farmlands. RC had higher correlation coefficients with Ks in all categories concerned except in the forestland and farmland with little or no rock fragments, indicating that RC was the dominant influencing factor of Ks. These results suggested that the vertical distributions of Ks and RC should be considered for hydrological modeling in karst areas.

  1. A safety vs efficiency trade-off identified in the hydraulic pathway of grass leaves is decoupled from photosynthesis, stomatal conductance and precipitation.

    PubMed

    Ocheltree, Troy W; Nippert, Jesse B; Prasad, P V Vara

    2016-04-01

    A common theme in plant physiological research is the trade-off between stress tolerance and growth; an example of this trade-off at the tissue level is the safety vs efficiency hypothesis, which suggests that plants with the greatest resistance to hydraulic failure should have low maximum hydraulic conductance. Here, we quantified the leaf-level drought tolerance of nine C4 grasses as the leaf water potential at which plants lost 50% (P50 × RR ) of maximum leaf hydraulic conductance (Ksat ), and compared this trait with other leaf-level and whole-plant functions. We found a clear trade-off between Ksat and P50 × RR when Ksat was normalized by leaf area and mass (P = 0.05 and 0.01, respectively). However, no trade-off existed between P50 × RR and gas-exchange rates; rather, there was a positive relationship between P50 × RR and photosynthesis (P = 0.08). P50 × RR was not correlated with species distributions based on precipitation (P = 0.70), but was correlated with temperature during the wettest quarter of the year (P < 0.01). These results suggest a trade-off between safety and efficiency in the hydraulic system of grass leaves, which can be decoupled from other leaf-level functions. The unique physiology of C4 plants and adaptations to pulse-driven systems may provide mechanisms that could decouple hydraulic conductance from other plant functions.

  2. Correlations between morpho-anatomical changes and radial hydraulic conductivity in roots of olive trees under water deficit and rewatering.

    PubMed

    Tataranni, Giuseppe; Santarcangelo, Michele; Sofo, Adriano; Xiloyannis, Cristos; Tyerman, Stephen D; Dichio, Bartolomeo

    2015-12-01

    The effects of prolonged drought were studied on olive (Olea europaea L.; drought-sensitive cultivar Biancolilla and drought-tolerant cultivar Coratina) to examine how morpho-anatomical modifications in roots impact on root radial hydraulic conductivity (Lpr). Two-year-old self-rooted plants were subjected to a gradual water depletion. The levels of drought stress were defined by pre-dawn leaf water potentials (Ψw) of -1.5, -3.5 and -6.5 MPa. After reaching the maximum level of drought, plants were rewatered for 23 days. Progressive drought stress, for both cultivars, caused a strong reduction in Lpr (from 1.2 to 1.3 × 10(-5) m MPa(-1) s(-1) in unstressed plants to 0.2-0.6 × 10(-5) m MPa(-1) s(-1) in plants at Ψw = -6.5 MPa), particularly evident in the more suberized (brown) roots, accompanied with decreases in stomatal conductance (gs). No significant differences in Lpr and gs between the two olive cultivars were observed. Epifluorescence microscopy and image analyses revealed a parallel increase of wall suberization that doubled in white stressed roots and tripled in brown ones when compared with unstressed plants. In drought-stressed plants, the number of suberized cellular layers from the endodermis towards the cortex increased from 1-2 to 6-7. Recovery in Lpr during rewatering was correlated to the physical disruption of hydrophobic barriers, while the time necessary to obtain new mature roots likely accounted for the observed delay in the complete recovery of gs. Radial hydraulic conductivity in olive roots was strongly influenced by soil and plant water availability and it was also modulated by structural root modifications, size, growth and anatomy. These findings could be important for maintaining an optimal water status in cultivated olive trees by scheduling efficient irrigation methods, saving irrigation water and obtaining yield of high quality.

  3. Does the soil's effective hydraulic conductivity adapt in order to obey the Maximum Entropy Production principle? A lab experiment

    NASA Astrophysics Data System (ADS)

    Westhoff, Martijn; Zehe, Erwin; Erpicum, Sébastien; Archambeau, Pierre; Pirotton, Michel; Dewals, Benjamin

    2015-04-01

    The Maximum Entropy Production (MEP) principle is a conjecture assuming that a medium is organized in such a way that maximum power is subtracted from a gradient driving a flux (with power being a flux times its driving gradient). This maximum power is also known as the Carnot limit. It has already been shown that the atmosphere operates close to this Carnot limit when it comes to heat transport from the Equator to the poles, or vertically, from the surface to the atmospheric boundary layer. To reach this state close to the Carnot limit, the effective thermal conductivity of the atmosphere is adapted by the creation of convection cells (e.g. wind). The aim of this study is to test if the soil's effective hydraulic conductivity also adapts itself in such a way that it operates close to the Carnot limit. The big difference between atmosphere and soil is the way of adaptation of its resistance. The soil's hydraulic conductivity is either changed by weathering processes, which is a very slow process, or by creation of preferential flow paths. In this study the latter process is simulated in a lab experiment, where we focus on the preferential flow paths created by piping. Piping is the process of backwards erosion of sand particles subject to a large pressure gradient. Since this is a relatively fast process, it is suitable for being tested in the lab. In the lab setup a horizontal sand bed connects two reservoirs that both drain freely at a level high enough to keep the sand bed always saturated. By adding water to only one reservoir, a horizontal pressure gradient is maintained. If the flow resistance is small, a large gradient develops, leading to the effect of piping. When pipes are being formed, the effective flow resistance decreases; the flow through the sand bed increases and the pressure gradient decreases. At a certain point, the flow velocity is small enough to stop the pipes from growing any further. In this steady state, the effective flow resistance of

  4. Negative correlation between porosity and hydraulic conductivity in sand-and-gravel aquifers at Cape Cod, Massachusetts, USA

    USGS Publications Warehouse

    Morin, R.H.

    2006-01-01

    Although it may be intuitive to think of the hydraulic conductivity K of unconsolidated, coarse-grained sediments as increasing monotonically with increasing porosity ??, studies have documented a negative correlation between these two parameters under certain grain-size distributions and packing arrangements. This is confirmed at two sites on Cape Cod, Massachusetts, USA, where groundwater investigations were conducted in sand-and-gravel aquifers specifically to examine the interdependency of several aquifer properties using measurements from four geophysical well logs. Along with K and ??, the electrical resistivity R0 and the natural gamma activity ?? of saturated deposits were determined as functions of depth. Qualitative examination of results from the first site implies a negative correlation between K and ?? that is substantiated by a rigorous multivariate analysis of log data collected from the second site. A principal components analysis describes an over-determined system of inversion equations, with approximately 92% of the cumulative proportion of the total variance being accounted for by only three of the four eigenvectors. A subsequent R-mode factor analysis projects directional trends among the four variables (K, ??, R0 and ??), and a negative correlation between K and ?? emerges as the primary result. ?? 2005 Elsevier B.V. All rights reserved.

  5. Leaf hydraulic conductance is coordinated with leaf morpho-anatomical traits and nitrogen status in the genus Oryza.

    PubMed

    Xiong, Dongliang; Yu, Tingting; Zhang, Tong; Li, Yong; Peng, Shaobing; Huang, Jianliang

    2015-02-01

    Leaf hydraulic conductance (K leaf) is a major determinant of photosynthetic rate in plants. Previous work has assessed the relationships between leaf morpho-anatomical traits and K leaf with woody species, but there has been very little focus on cereal crops. The genus Oryza, which includes rice (Oryza sativa) and wild species (such as O. rufipogon cv. Griff), is ideal material for identifying leaf features associated with K leaf and gas exchange. Leaf morpho-anatomical traits, K leaf, leaf N content per leaf area, and CO2 diffusion efficiency were investigated in 11 Oryza cultivars. K leaf was positively correlated with leaf thickness and related traits, and therefore positively correlated with leaf mass per area and leaf N content per leaf area, and negatively with inter-veinal distance. K leaf was also positively correlated with leaf area and its related traits, and therefore negatively correlated with the proportion of minor vein length per area. In addition, coordination between K leaf and CO2 diffusion conductance in leaves was observed. We conclude that leaf morpho-anatomical traits and N content per leaf area strongly influence K leaf. Our results suggest that more detailed anatomical and structural studies are needed to elucidate the impacts of leaf feature traits on K leaf and gas exchange in grasses.

  6. Overproduction of Abscisic Acid in Tomato Increases Transpiration Efficiency and Root Hydraulic Conductivity and Influences Leaf Expansion1[OA

    PubMed Central

    Thompson, Andrew J.; Andrews, John; Mulholland, Barry J.; McKee, John M.T.; Hilton, Howard W.; Horridge, Jon S.; Farquhar, Graham D.; Smeeton, Rachel C.; Smillie, Ian R.A.; Black, Colin R.; Taylor, Ian B.

    2007-01-01

    Overexpression of genes that respond to drought stress is a seemingly attractive approach for improving drought resistance in crops. However, the consequences for both water-use efficiency and productivity must be considered if agronomic utility is sought. Here, we characterize two tomato (Solanum lycopersicum) lines (sp12 and sp5) that overexpress a gene encoding 9-cis-epoxycarotenoid dioxygenase, the enzyme that catalyzes a key rate-limiting step in abscisic acid (ABA) biosynthesis. Both lines contained more ABA than the wild type, with sp5 accumulating more than sp12. Both had higher transpiration efficiency because of their lower stomatal conductance, as demonstrated by increases in δ13C and δ18O, and also by gravimetric and gas-exchange methods. They also had greater root hydraulic conductivity. Under well-watered glasshouse conditions, mature sp5 plants were found to have a shoot biomass equal to the wild type despite their lower assimilation rate per unit leaf area. These plants also had longer petioles, larger leaf area, increased specific leaf area, and reduced leaf epinasty. When exposed to root-zone water deficits, line sp12 showed an increase in xylem ABA concentration and a reduction in stomatal conductance to the same final levels as the wild type, but from a different basal level. Indeed, the main difference between the high ABA plants and the wild type was their performance under well-watered conditions: the former conserved soil water by limiting maximum stomatal conductance per unit leaf area, but also, at least in the case of sp5, developed a canopy more suited to light interception, maximizing assimilation per plant, possibly due to improved turgor or suppression of epinasty. PMID:17277097

  7. Involvement of root ABA and hydraulic conductivity in the control of water relations in wheat plants exposed to increased evaporative demand.

    PubMed

    Kudoyarova, Guzel; Veselova, Svetlana; Hartung, Wolfram; Farhutdinov, Rashit; Veselov, Dmitry; Sharipova, Guzyal

    2011-01-01

    We studied the possible involvement of ABA in the control of water relations under conditions of increased evaporative demand. Warming the air by 3°C increased stomatal conductance and raised transpiration rates of hydroponically grown Triticum durum plants while bringing about a temporary loss of relative water content (RWC) and immediate cessation of leaf extension. However, both RWC and extension growth recovered within 30 min although transpiration remained high. The restoration of leaf hydration and growth were enabled by increased root hydraulic conductivity after increasing the air temperature. The use of mercuric chloride (an inhibitor of water channels) to interfere with the rise on root hydraulic conductivity hindered the restoration of extension growth. Air warming increased ABA content in roots and decreased it in shoots. We propose this redistribution of ABA in favour of the roots which increased the root hydraulic conductivity sufficiently to permit rapid recovery of shoot hydration and leaf elongation rates without the involvement of stomatal closure. This proposal is based on known ability of ABA to increase hydraulic conductivity confirmed in these experiments by measuring the effect of exogenous ABA on osmotically driven flow of xylem sap from the roots. Accumulation of root ABA was mainly the outcome of increased export from the shoots. When phloem transport in air-warmed plants was inhibited by cooling the shoot base this prevented ABA enrichment of the roots and favoured an accumulation of ABA in the shoot. As a consequence, stomata closed.

  8. Geochemical analyses of ground-water ages, recharge rates, and hydraulic conductivity of the N aquifer, Black Mesa area, Arizona

    USGS Publications Warehouse

    Lopes, Thomas J.; Hoffmann, John P.

    1997-01-01

    The Navajo Nation and Hopi Tribe of the Black Mesa area, Arizona, depend on ground water from the N aquifer to meet most tribal and industrial needs. Increasing use of this aquifer is creating concerns about possible adverse effects of increased ground-water withdrawals on the water resources of the region. A thorough understanding of the N aquifer is necessary to assess the aquifer's response to ground-water withdrawals. This study used geochemical techniques as an independent means of improving the conceptual model of ground-water flow in the N aquifer and to estimate recharge rates and hydraulic conductivity. Ground water flows in a south-southeastward direction from the recharge area around Shonto into the confined part of the N aquifer underneath Black Mesa. Ground-water flow paths diverge in the confined part of the aquifer to the northeast and south. The N aquifer thins to extinction south of Black Mesa. This discontinuity could force ground water to diverge along paths of least resistance. Ground water discharges from the confined part of the aquifer into Laguna Creek and Moenkopi Wash and from springs southwest of Kykotsmovi and southeast of Rough Rock after a residence time of about 35,000 years or more. Recent recharge along the periphery of Black Mesa mixes with older ground water that discharges from the confined part of the aquifer and flows away from Black Mesa. Dissolved-ion concentrations, ratios of dissolved ions, dissolved-gas concentrations, tritium, carbon-13, and chlorine-36 data indicate that water in the overlying D aquifer could be leaking into the confined part of the N aquifer in the southeastern part of Black Mesa. The boundary between the leaky and nonleaky zones is defined roughly by a line from Rough Rock to Second Mesa and separates ground waters that have significantly different chemistries. The Dakota Sandstone and Entrada Formation of the D aquifer could be the sources of leakage. Adjusted radiocarbon ground-water ages and data on

  9. Effects of branch height on leaf gas exchange, branch hydraulic conductance and branch sap flux in open-grown ponderosa pine.

    PubMed

    Hubbard, Robert M; Bond, Barbara J; Senock, Randy S; Ryan, Michael G

    2002-06-01

    Recent studies have shown that stomata respond to changes in hydraulic conductance of the flow path from soil to leaf. In open-grown tall trees, branches of different heights may have different hydraulic conductances because of differences in path length and growth. We determined if leaf gas exchange, branch sap flux, leaf specific hydraulic conductance, foliar carbon isotope composition (delta13C) and ratios of leaf area to sapwood area within branches were dependent on branch height (10 and 25 m) within the crowns of four open-grown ponderosa pine (Pinus ponderosa Laws.) trees. We found no difference in leaf gas exchange or leaf specific hydraulic conductance from soil to leaf between the upper and lower canopy of our study trees. Branch sap flux per unit leaf area and per unit sapwood area did not differ between the 10- and 25-m canopy positions; however, branch sap flux per unit sapwood area at the 25-m position had consistently lower values. Branches at the 25-m canopy position had lower leaf to sapwood area ratios (0.17 m2 cm-2) compared with branches at the 10-m position (0.27 m2 cm-2) (P = 0.03). Leaf specific conductance of branches in the upper crown did not differ from that in the lower crown. Other studies at our site indicate lower hydraulic conductance, sap flux, whole-tree canopy conductance and photosynthesis in old trees compared with young trees. This study suggests that height alone may not explain these differences.

  10. X-ray microtomography observations of xylem embolism in stems of Laurus nobilis are consistent with hydraulic measurements of percentage loss of conductance.

    PubMed

    Nardini, Andrea; Savi, Tadeja; Losso, Adriano; Petit, Giai; Pacilè, Serena; Tromba, Giuliana; Mayr, Stefan; Trifilò, Patrizia; Lo Gullo, Maria A; Salleo, Sebastiano

    2017-02-01

    Drought-induced xylem embolism is a serious threat to plant survival under future climate scenarios. Hence, accurate quantification of species-specific vulnerability to xylem embolism is a key to predict the impact of climate change on vegetation. Low-cost hydraulic measurements of embolism rate have been suggested to be prone to artefacts, thus requiring validation by direct visualization of the functional status of xylem conduits using nondestructive imaging techniques, such as X-ray microtomography (microCT). We measured the percentage loss of conductance (PLC) of excised stems of Laurus nobilis (laurel) dehydrated to different xylem pressures, and compared results with direct observation of gas-filled vs water-filled conduits at a synchrotron-based microCT facility using a phase contrast imaging modality. Theoretical PLC calculated on the basis of microCT observations in stems of laurel dehydrated to different xylem pressures overall were in agreement with hydraulic measurements, revealing that this species suffers a 50% loss of xylem hydraulic conductance at xylem pressures averaging -3.5 MPa. Our data support the validity of estimates of xylem vulnerability to embolism based on classical hydraulic techniques. We discuss possible causes of discrepancies between data gathered in this study and those of recent independent reports on laurel hydraulics.

  11. Overview of EPA's Approach to Developing Prospective Case Studies Technical Workshop: Case Studies to Assess Potential Impacts of Hydraulic Fracturing on Drinking Water Resources

    EPA Science Inventory

    One component of the United States Environmental Protection Agency's (EPA) study of the potential impacts of hydraulic fracturing on drinking water resources is prospective case studies, which are being conducted to more fully understand and assess if and how site specific hydrau...

  12. Using random forests to explore the effects of site attributes and soil properties on near-saturated and saturated hydraulic conductivity

    NASA Astrophysics Data System (ADS)

    Jorda, Helena; Koestel, John; Jarvis, Nicholas

    2014-05-01

    Knowledge of the near-saturated and saturated hydraulic conductivity of soil is fundamental for understanding important processes like groundwater contamination risks or runoff and soil erosion. Hydraulic conductivities are however difficult and time-consuming to determine by direct measurements, especially at the field scale or larger. So far, pedotransfer functions do not offer an especially reliable alternative since published approaches exhibit poor prediction performances. In our study we aimed at building pedotransfer functions by growing random forests (a statistical learning approach) on 486 datasets from the meta-database on tension-disk infiltrometer measurements collected from peer-reviewed literature and recently presented by Jarvis et al. (2013, Influence of soil, land use and climatic factors on the hydraulic conductivity of soil. Hydrol. Earth Syst. Sci. 17(12), 5185-5195). When some data from a specific source publication were allowed to enter the training set whereas others were used for validation, the results of a 10-fold cross-validation showed reasonable coefficients of determination of 0.53 for hydraulic conductivity at 10 cm tension, K10, and 0.41 for saturated conductivity, Ks. The estimated average annual temperature and precipitation at the site were the most important predictors for K10, while bulk density and estimated average annual temperature were most important for Ks prediction. The soil organic carbon content and the diameter of the disk infiltrometer were also important for the prediction of both K10 and Ks. However, coefficients of determination were around zero when all datasets of a specific source publication were excluded from the training set and exclusively used for validation. This may indicate experimenter bias, or that better predictors have to be found or that a larger dataset has to be used to infer meaningful pedotransfer functions for saturated and near-saturated hydraulic conductivities. More research is in progress

  13. Heterogeneity of hydraulic conductivity and Darcian flux in the submerged streambed and adjacent exposed stream bank of the Beiluo River, northwest China

    NASA Astrophysics Data System (ADS)

    Song, Jinxi; Jiang, Weiwei; Xu, Shaofeng; Zhang, Guotao; Wang, Liping; Wen, Min; Zhang, Bo; Wang, Yuanyuan; Long, Yongqing

    2016-12-01

    Recognizing the heterogeneity of hydraulic conductivity and hyporheic flow is critical for understanding contaminant transfer and biogeochemical and hydrological processes involving streams and aquifers. In this study, the heterogeneity of hydraulic conductivity and Darcian flux in a submerged streambed and its adjacent exposed stream banks were investigated in the Beiluo River, northwest China. In the submerged streambed, Darcian flux was estimated by measurement of vertical hydraulic conductivity ( K v) and vertical head gradient (VHG) using in-situ permeameter tests. On exposed stream banks, both horizontal hydraulic conductivity ( K h) and K v were measured by on-site permeameter tests. In the submerged streambed, K v values gradually decreased with depth and the higher values were concentrated in the center and close to the erosional bank. Compared to the exposed stream banks, the K v values were higher in the streambed. From stream stage to the topmost layer of tested sediment, through increasing elevation, the K h values increased on the erosional bank, while they decreased on the depositional bank. The values of VHG along the thalweg illustrate that downwelling flux occurred in the deepest area while upwelling flux appeared in the other areas, which might result from the change of streambed elevation. The higher value of the Darcian flux in the submerged streambed existed near the erosional bank.

  14. Abscisic Acid Regulation of Root Hydraulic Conductivity and Aquaporin Gene Expression Is Crucial to the Plant Shoot Growth Enhancement Caused by Rhizosphere Humic Acids.

    PubMed

    Olaetxea, Maite; Mora, Verónica; Bacaicoa, Eva; Garnica, María; Fuentes, Marta; Casanova, Esther; Zamarreño, Angel M; Iriarte, Juan C; Etayo, David; Ederra, Iñigo; Gonzalo, Ramón; Baigorri, Roberto; García-Mina, Jose M

    2015-12-01

    The physiological and metabolic mechanisms behind the humic acid-mediated plant growth enhancement are discussed in detail. Experiments using cucumber (Cucumis sativus) plants show that the shoot growth enhancement caused by a structurally well-characterized humic acid with sedimentary origin is functionally associated with significant increases in abscisic acid (ABA) root concentration and root hydraulic conductivity. Complementary experiments involving a blocking agent of cell wall pores and water root transport (polyethylenglycol) show that increases in root hydraulic conductivity are essential in the shoot growth-promoting action of the model humic acid. Further experiments involving an inhibitor of ABA biosynthesis in root and shoot (fluridone) show that the humic acid-mediated enhancement of both root hydraulic conductivity and shoot growth depended on ABA signaling pathways. These experiments also show that a significant increase in the gene expression of the main root plasma membrane aquaporins is associated with the increase of root hydraulic conductivity caused by the model humic acid. Finally, experimental data suggest that all of these actions of model humic acid on root functionality, which are linked to its beneficial action on plant shoot growth, are likely related to the conformational structure of humic acid in solution and its interaction with the cell wall at the root surface.

  15. Characterization of subsoil heterogeneity, estimation of grain size distribution and hydraulic conductivity at the Krauthausen test site using Cone Penetration Test.

    PubMed

    Tillmann, A; Englert, A; Nyari, Z; Fejes, I; Vanderborght, J; Vereecken, H

    2008-01-07

    A Cone Penetration Test (CPT) survey with a high spatial resolution was performed in order to investigate the stratigraphy as well as the spatial variability of various soil properties of the Krauthausen test site. Analyses of the CPT measurements showed the subsurface to be dominated by a planar layered structure. Variogram analysis of the various CPT parameters disclosed that within each layer the soil properties have an anisotropic spatial correlation structure. A correlation analysis of the measured CPT data and co-located grain size distributions from soil samples was performed. Since the correlation coefficients were greater equal to 0.7, a reliable empirical relationship between the data sets could be developed. Based on this empirical relationship grain size distributions were estimated at CPT locations. The statistical processing of estimated and measured grain size distributions with respect to their spatial correlation structure disclosed good agreement between the data sets. The estimated grain size distributions from CPT data were used to estimate the hydraulic conductivity in the aquifer. The results provide detailed information of the spatial heterogeneity of the hydraulic conductivity at Krauthausen test site. The validation of these results, using a prior investigation of hydraulic conductivity statistics, suggests the CPT a fast and inexpensive tool for the estimation of three dimensional hydraulic conductivity fields with sufficient accuracy.

  16. Abscisic Acid Regulation of Root Hydraulic Conductivity and Aquaporin Gene Expression Is Crucial to the Plant Shoot Growth Enhancement Caused by Rhizosphere Humic Acids1

    PubMed Central

    Bacaicoa, Eva; Garnica, María; Fuentes, Marta; Casanova, Esther; Etayo, David; Ederra, Iñigo; Gonzalo, Ramón

    2015-01-01

    The physiological and metabolic mechanisms behind the humic acid-mediated plant growth enhancement are discussed in detail. Experiments using cucumber (Cucumis sativus) plants show that the shoot growth enhancement caused by a structurally well-characterized humic acid with sedimentary origin is functionally associated with significant increases in abscisic acid (ABA) root concentration and root hydraulic conductivity. Complementary experiments involving a blocking agent of cell wall pores and water root transport (polyethylenglycol) show that increases in root hydraulic conductivity are essential in the shoot growth-promoting action of the model humic acid. Further experiments involving an inhibitor of ABA biosynthesis in root and shoot (fluridone) show that the humic acid-mediated enhancement of both root hydraulic conductivity and shoot growth depended on ABA signaling pathways. These experiments also show that a significant increase in the gene expression of the main root plasma membrane aquaporins is associated with the increase of root hydraulic conductivity caused by the model humic acid. Finally, experimental data suggest that all of these actions of model humic acid on root functionality, which are linked to its beneficial action on plant shoot growth, are likely related to the conformational structure of humic acid in solution and its interaction with the cell wall at the root surface. PMID:26450705

  17. Diurnal depression in leaf hydraulic conductance at ambient and elevated [CO2] and reveals anisohydric water management in field-grown soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diurnal cycles of photosynthesis and water use in field-grown soybean (Glycine max) are tied to light intensity and vapor pressure deficit (VPD). At high mid-day VPD, transpiration rates can lead to a decline in leaf water potential ('leaf) if leaf hydraulic conductance (Kleaf) is insufficient to su...

  18. Wood anatomy reveals high theoretical hydraulic conductivity and low resistance to vessel implosion in a Cretaceous fossil forest from northern Mexico.

    PubMed

    Martínez-Cabrera, Hugo I; Estrada-Ruiz, Emilio

    2014-01-01

    The Olmos Formation (upper Campanian), with over 60 angiosperm leaf morphotypes, is Mexico's richest Cretaceous flora. Paleoclimate leaf physiognomy estimates indicate that the Olmos paleoforest grew under wet and warm conditions, similar to those present in modern tropical rainforests. Leaf surface area, tree size and climate reconstructions suggest that this was a highly productive system. Efficient carbon fixation requires hydraulic efficiency to meet the evaporative demands of the photosynthetic surface, but it comes at the expense of increased risk of drought-induced cavitation. Here we tested the hypothesis that the Olmos paleoforest had high hydraulic efficiency, but was prone to cavitation. We characterized the hydraulic properties of the Olmos paleoforest using theoretical conductivity (Ks), vessel composition (S) and vessel fraction (F), and measured drought resistance using vessel implosion resistance (t/b)h(2) and the water potential at which there is 50% loss of hydraulic conductivity (P50). We found that the Olmos paleoforest had high hydraulic efficiency, similar to that present in several extant tropical-wet or semi-deciduous forest communities. Remarkably, the fossil flora had the lowest (t/b)h(2), which, together with low median P50 (-1.9 MPa), indicate that the Olmos paleoforest species were extremely vulnerable to drought-induced cavitation. Our findings support paleoclimate inferences from leaf physiognomy and paleoclimatic models suggesting it represented a highly productive wet tropical rainforest. Our results also indicate that the Olmos Formation plants had a large range of water conduction strategies, but more restricted variation in cavitation resistance. These straightforward methods for measuring hydraulic properties, used herein for the first time, can provide useful information on the ecological strategies of paleofloras and on temporal shifts in ecological function of fossil forests chronosequences.

  19. Wood Anatomy Reveals High Theoretical Hydraulic Conductivity and Low Resistance to Vessel Implosion in a Cretaceous Fossil Forest from Northern Mexico

    PubMed Central

    Martínez-Cabrera, Hugo I.; Estrada-Ruiz, Emilio

    2014-01-01

    The Olmos Formation (upper Campanian), with over 60 angiosperm leaf morphotypes, is Mexico's richest Cretaceous flora. Paleoclimate leaf physiognomy estimates indicate that the Olmos paleoforest grew under wet and warm conditions, similar to those present in modern tropical rainforests. Leaf surface area, tree size and climate reconstructions suggest that this was a highly productive system. Efficient carbon fixation requires hydraulic efficiency to meet the evaporative demands of the photosynthetic surface, but it comes at the expense of increased risk of drought-induced cavitation. Here we tested the hypothesis that the Olmos paleoforest had high hydraulic efficiency, but was prone to cavitation. We characterized the hydraulic properties of the Olmos paleoforest using theoretical conductivity (Ks), vessel composition (S) and vessel fraction (F), and measured drought resistance using vessel implosion resistance and the water potential at which there is 50% loss of hydraulic conductivity (P50). We found that the Olmos paleoforest had high hydraulic efficiency, similar to that present in several extant tropical-wet or semi-deciduous forest communities. Remarkably, the fossil flora had the lowest , which, together with low median P50 (−1.9 MPa), indicate that the Olmos paleoforest species were extremely vulnerable to drought-induced cavitation. Our findings support paleoclimate inferences from leaf physiognomy and paleoclimatic models suggesting it represented a highly productive wet tropical rainforest. Our results also indicate that the Olmos Formation plants had a large range of water conduction strategies, but more restricted variation in cavitation resistance. These straightforward methods for measuring hydraulic properties, used herein for the first time, can provide useful information on the ecological strategies of paleofloras and on temporal shifts in ecological function of fossil forests chronosequences. PMID:25279992

  20. Pit membrane chemistry influences the magnitude of ion-mediated enhancement of xylem hydraulic conductance in four Lauraceae species.

    PubMed

    Gortan, Emmanuelle; Nardini, Andrea; Salleo, Sebastiano; Jansen, Steven

    2011-01-01

    The ion-mediated enhancement of xylem hydraulic conductivity in angiosperms is thought to be controlled by the pectin chemistry of intervessel pit membranes. However, there is little or no direct evidence on the ultrastructure and chemical nature of pit membranes in species that show an 'ionic effect'. The potential link between the magnitude of the ionic effect and pectin composition in intervessel pit membranes of four Lauraceae species (Laurus nobilis, Lindera megaphylla, Litsea sericea and Umbellularia californica) that show rather similar vessel and pit dimensions was studied using transmission electron microscopy (TEM). The TEM observations confirmed the presence of a pectic matrix associated with intervessel pit membranes, indicating that the relative abundance of acidic versus methylesterified pectins was closely related to the ionic effect. The two species examined with a high ionic effect ~20%, i.e. Laurus nobilis and Umbellularia californica) showed relatively high levels of acidic pectins, whereas methylesterified pectins were abundant in Lindera megaphylla and Litsea sericea, which showed a low ionic effect (~10%). Variation in the ionic effect is strongly associated with the chemical nature of pit membrane pectins in the species studied. Our findings support the current interpretation of the ionic effect due to dynamic swelling and shrinking behaviour of pit membrane pectins.

  1. Assessment of hydraulic conductivity distributions through assimilation of travel time data from ERT-monitored tracer tests

    NASA Astrophysics Data System (ADS)

    Crestani, E.; Camporese, M.; Salandin, P.

    2015-10-01

    Assessing the spatial distribution of hydraulic conductivity (K) in natural aquifers is fundamental to predict the spatio-temporal evolution of solutes, a process that is mainly controlled by the heterogeneity of K. In sedimentary aquifers, the vertical variations of K are typically more relevant than the horizontal ones in controlling the plume evolution at the local scale; such K vertical distributions can be inferred by combining the Lagrangian formulation of transport with the assimilation of tracer test data via the ensemble Kalman filter (EnKF). In this work, the data for the assimilation procedure are provided by monitoring tracer tests with electrical resistivity tomography (ERT). Our main objective is to show the possibility of directly using ERT data by assimilating the solute travel times, instead of the concentration values, thus avoiding the need for a petrophysical law. The methodology is applied to both a synthetic and a real test case and gives a satisfactory retrieval of the K field distribution, as well as of the solute evolution.

  2. In vitro evaluation of dentinal hydraulic conductance and tubule sealing by a novel calcium-phosphate desensitizer.

    PubMed

    Thanatvarakorn, Ornnicha; Nakashima, Syozi; Sadr, Alireza; Prasansuttiporn, Taweesak; Ikeda, Masaomi; Tagami, Junji

    2013-02-01

    In the current trend of materials used for dentin hypersensitivity treatment, calcium-phosphate-containing desensitizers are expected to have advantages in oral environment. A newly formulated desensitizer containing tetracalcium phosphate and dicalcium phosphate anhydrous (CPD-100) was evaluated in comparison to oxalate containing desensitizer (SS) regarding permeability reduction (PR%) by measuring hydraulic conductance on the etched dentin discs in vitro. CPD-100 exhibited mean PR% of 91%, which significantly increased to 98% after immersion in artificial saliva (AS) for 4 weeks (p < 0.001), while SS showed a significant decrease from 99% to 93% (p < 0.01). SEM observation showed newly formed crystallites on CPD-100 treated dentin, which did not exist in SS treated dentin after AS immersion, suggesting that calcium oxalate inhibited formation of new calcium-phosphate minerals. Five-minute acid challenge did not significantly affect PR% of dentin treated by any of the desensitizers. The energy dispersive X-ray spectroscopy (EDS) analysis indicated that the formed layer of CPD-100 were minerals with similar Ca/P ratio to hydroxyapatite. In conclusion, the newly developed calcium-phosphate desensitizer has the potential to exhibit long-term stability in the oral environment, owing to its chemical properties that promote the crystal growth in salivary fluid.

  3. Field Measurement of Saturated Hydraulic Conductivity at the Hillslope Scale under different Soil Series and Management Practices

    NASA Astrophysics Data System (ADS)

    Elhakeem, M.; Chang, Y.; Wilson, C. G.; Papanicolaou, T.

    2009-12-01

    Heterogeneity of saturated hydraulic conductivity (Ksat) was investigated at the hillslope scale in the South Amana Subwatershed (SAS), IA. Three fields of different soil series, and management practices (tilled, no-till, CRP) were examined at the SAS. Ksat was measured using 30 semi-automated double ring infiltrometer. Soil cores were also collected in the vicinity of the Ksat measurements via a truck-mounted Giddings Probe. Core sample analysis suggests that the spatial variability in Ksat very much reflects the overall soil texture variability found in the tested fields. The spatial variability of Ksat was log-normally distributed, which closely follows the distribution of the surface microroughness. Ksat varied over 3-orders of magnitude within the tested fields. The high sensitivity of Ksat was a good index to identify soil heterogeneity. Comparison between the published soil maps and observed soil series of the collected cores shows that erosion to varying degrees has occurred along the hillslope. Along the sides of the hillslope as we move downhill, the loam layer was found much deeper than along the centerline of the hillslope. This finding was indicative that significant erosion has occurred along the centerline of the hillslope. An outcome of the severe erosion was that the soil texture differed between the centerline and the sides. This different texture was found to affect Ksat at similar slope positions and land cover.

  4. Reversible Deformation of Transfusion Tracheids in Taxus baccata Is Associated with a Reversible Decrease in Leaf Hydraulic Conductance1[OPEN

    PubMed Central

    Zhang, Yong-Jiang; Rockwell, Fulton E.; Wheeler, James K.; Holbrook, N. Michele

    2014-01-01

    Declines in leaf hydraulic conductance (Kleaf) with increasing water stress have been attributed to cavitation of the leaf xylem. However, in the leaves of conifers, the reversible collapse of transfusion tracheids may provide an alternative explanation. Using Taxus baccata, a conifer species without resin, we developed a modified rehydration technique that allows the separation of declines in Kleaf into two components: one reversible and one irreversible upon relaxation of water potential to −1 MPa. We surveyed leaves at a range of water potentials for evidence of cavitation using cryo-scanning electron microscopy and quantified dehydration-induced structural changes in transfusion tracheids by cryo-fluorescence microscopy. Irreversible declines in Kleaf did not occur until leaf water potentials were more negative than −3 MPa. Declines in Kleaf between −2 and −3 MPa were reversible and accompanied by the collapse of transfusion tracheids, as evidenced by cryo-fluorescence microscopy. Based on cryo-scanning electron microscopy, cavitation of either transfusion or xylem tracheids did not contribute to declines in Kleaf in the reversible range. Moreover, the deformation of transfusion tracheids was quickly reversible, thus acting as a circuit breaker regulating the flux of water through the leaf vasculature. As transfusion tissue is present in all gymnosperms, the reversible collapse of transfusion tracheids may be a general mechanism in this group for the protection of leaf xylem from excessive loads generated in the living leaf tissue. PMID:24948828

  5. HydrogeoSieveXL: an Excel-based tool to estimate hydraulic conductivity from grain-size analysis

    NASA Astrophysics Data System (ADS)

    Devlin, J. F.

    2015-06-01

    For over a century, hydrogeologists have estimated hydraulic conductivity ( K) from grain-size distribution curves. The benefits of the practice are simplicity, cost, and a means of identifying spatial variations in K. Many techniques have been developed over the years, but all suffer from similar shortcomings: no accounting of heterogeneity within samples (i.e., aquifer structure is lost), loss of grain packing characteristics, and failure to account for the effects of overburden pressure on K. In addition, K estimates can vary by an order of magnitude between the various methods, and it is not generally possible to identify the best method for a given sample. The drawbacks are serious, but the advantages have seen the use of grain-size distribution curves for K estimation continue, often using a single selected method to estimate K in a given project. In most cases, this restriction results from convenience. It is proposed here that extending the analysis to include several methods would be beneficial since it would provide a better indication of the range of K that might apply. To overcome the convenience limitation, an Excel-based spreadsheet program, HydrogeoSieveXL, is introduced here. HydrogeoSieveXL is a freely available program that calculates K from grain-size distribution curves using 15 different methods. HydrogeoSieveXL was found to calculate K values essentially identical to those reported in the literature, using the published grain-size distribution curves.

  6. Dynamic regulation of the root hydraulic conductivity of barley plants in response to salinity/osmotic stress.

    PubMed

    Kaneko, Toshiyuki; Horie, Tomoaki; Nakahara, Yoshiki; Tsuji, Nobuya; Shibasaka, Mineo; Katsuhara, Maki

    2015-05-01

    Salinity stress significantly reduces the root hydraulic conductivity (Lpr) of several plant species including barley (Hordeum vulgare). Here we characterized changes in the Lpr of barley plants in response to salinity/osmotic stress in detail using a pressure chamber. Salt-tolerant and intermediate barley cultivars, K305 and Haruna-nijyo, but not a salt-sensitive cultivar, I743, exhibited characteristic time-dependent Lpr changes induced by 100 mM NaCl. An identical response was evoked by isotonic sorbitol, indicating that this phenomenon was triggered by osmotic imbalances. Further examination of this mechanism using barley cv. Haruna-nijyo plants in combination with the use of various inhibitors suggested that various cellular processes such as protein phosphorylation/dephosphorylation and membrane internalization appear to be involved. Interestingly, the three above-mentioned barley cultivars did not exhibit a remarkable difference in root cell sap osmolality under hypertonic conditions, in contrast to the case of Lpr. The possible biological significance of the regulation of Lpr in barley plants upon salinity/osmotic stress is discussed.

  7. Differences in hydraulic conductivity and NO[sub 3]-N concentrations between weathered and unweathered zones in late Wisconsin till

    SciTech Connect

    Vondra, G.L.; Simpkins, W.W. . Dept. of Geological and Atmospheric Sciences)

    1993-03-01

    Transport of agricultural chemicals in late Wisconsin till of the Des M