Sample records for hydraulic fracturing method

  1. Parameter Prediction of Hydraulic Fracture for Tight Reservoir Based on Micro-Seismic and History Matching

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Ma, Xiaopeng; Li, Yanlai; Wu, Haiyang; Cui, Chenyu; Zhang, Xiaoming; Zhang, Hao; Yao, Jun

    Hydraulic fracturing is an important measure for the development of tight reservoirs. In order to describe the distribution of hydraulic fractures, micro-seismic diagnostic was introduced into petroleum fields. Micro-seismic events may reveal important information about static characteristics of hydraulic fracturing. However, this method is limited to reflect the distribution area of the hydraulic fractures and fails to provide specific parameters. Therefore, micro-seismic technology is integrated with history matching to predict the hydraulic fracture parameters in this paper. Micro-seismic source location is used to describe the basic shape of hydraulic fractures. After that, secondary modeling is considered to calibrate the parameters information of hydraulic fractures by using DFM (discrete fracture model) and history matching method. In consideration of fractal feature of hydraulic fracture, fractal fracture network model is established to evaluate this method in numerical experiment. The results clearly show the effectiveness of the proposed approach to estimate the parameters of hydraulic fractures.

  2. 3D Simulation of Multiple Simultaneous Hydraulic Fractures with Different Initial Lengths in Rock

    NASA Astrophysics Data System (ADS)

    Tang, X.; Rayudu, N. M.; Singh, G.

    2017-12-01

    Hydraulic fracturing is widely used technique for extracting shale gas. During this process, fractures with various initial lengths are induced in rock mass with hydraulic pressure. Understanding the mechanism of propagation and interaction between these induced hydraulic cracks is critical for optimizing the fracking process. In this work, numerical results are presented for investigating the effect of in-situ parameters and fluid properties on growth and interaction of multi simultaneous hydraulic fractures. A fully coupled 3D fracture simulator, TOUGH- GFEM is used for simulating the effect of different vital parameters, including in-situ stress, initial fracture length, fracture spacing, fluid viscosity and flow rate on induced hydraulic fractures growth. This TOUGH-GFEM simulator is based on 3D finite volume method (FVM) and partition of unity element method (PUM). Displacement correlation method (DCM) is used for calculating multi - mode (Mode I, II, III) stress intensity factors. Maximum principal stress criteria is used for crack propagation. Key words: hydraulic fracturing, TOUGH, partition of unity element method , displacement correlation method, 3D fracturing simulator

  3. An analytical model for hydraulic fracturing in shallow bedrock formations.

    PubMed

    dos Santos, José Sérgio; Ballestero, Thomas Paul; Pitombeira, Ernesto da Silva

    2011-01-01

    A theoretical method is proposed to estimate post-fracturing fracture size and transmissivity, and as a test of the methodology, data collected from two wells were used for verification. This method can be employed before hydrofracturing in order to obtain estimates of the potential hydraulic benefits of hydraulic fracturing. Five different pumping test analysis methods were used to evaluate the well hydraulic data. The most effective methods were the Papadopulos-Cooper model (1967), which includes wellbore storage effects, and the Gringarten-Ramey model (1974), known as the single horizontal fracture model. The hydraulic parameters resulting from fitting these models to the field data revealed that as a result of hydraulic fracturing, the transmissivity increased more than 46 times in one well and increased 285 times in the other well. The model developed by dos Santos (2008), which considers horizontal radial fracture propagation from the hydraulically fractured well, was used to estimate potential fracture geometry after hydrofracturing. For the two studied wells, their fractures could have propagated to distances of almost 175 m or more and developed maximum apertures of about 2.20 mm and hydraulic apertures close to 0.30 mm. Fracturing at this site appears to have expanded and propagated existing fractures and not created new fractures. Hydraulic apertures calculated from pumping test analyses closely matched the results obtained from the hydraulic fracturing model. As a result of this model, post-fracturing geometry and resulting post-fracturing well yield can be estimated before the actual hydrofracturing. Copyright © 2010 The Author(s). Journal compilation © 2010 National Ground Water Association.

  4. Linear Elastic and Cohesive Fracture Analysis to Model Hydraulic Fracture in Brittle and Ductile Rocks

    NASA Astrophysics Data System (ADS)

    Yao, Yao

    2012-05-01

    Hydraulic fracturing technology is being widely used within the oil and gas industry for both waste injection and unconventional gas production wells. It is essential to predict the behavior of hydraulic fractures accurately based on understanding the fundamental mechanism(s). The prevailing approach for hydraulic fracture modeling continues to rely on computational methods based on Linear Elastic Fracture Mechanics (LEFM). Generally, these methods give reasonable predictions for hard rock hydraulic fracture processes, but still have inherent limitations, especially when fluid injection is performed in soft rock/sand or other non-conventional formations. These methods typically give very conservative predictions on fracture geometry and inaccurate estimation of required fracture pressure. One of the reasons the LEFM-based methods fail to give accurate predictions for these materials is that the fracture process zone ahead of the crack tip and softening effect should not be neglected in ductile rock fracture analysis. A 3D pore pressure cohesive zone model has been developed and applied to predict hydraulic fracturing under fluid injection. The cohesive zone method is a numerical tool developed to model crack initiation and growth in quasi-brittle materials considering the material softening effect. The pore pressure cohesive zone model has been applied to investigate the hydraulic fracture with different rock properties. The hydraulic fracture predictions of a three-layer water injection case have been compared using the pore pressure cohesive zone model with revised parameters, LEFM-based pseudo 3D model, a Perkins-Kern-Nordgren (PKN) model, and an analytical solution. Based on the size of the fracture process zone and its effect on crack extension in ductile rock, the fundamental mechanical difference of LEFM and cohesive fracture mechanics-based methods is discussed. An effective fracture toughness method has been proposed to consider the fracture process zone effect on the ductile rock fracture.

  5. Using well casing as an electrical source to monitor hydraulic fracture fluid injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilt, Michael; Nieuwenhuis, Greg; MacLennan, Kris

    2016-03-09

    The depth to surface resistivity (DSR) method transmits current from a source located in a cased or openhole well to a distant surface return electrode while electric field measurements are made at the surface over the target of interest. This paper presents both numerical modelling results and measured data from a hydraulic fracturing field test where conductive water was injected into a resistive shale reservoir during a hydraulic fracturing operation. Modelling experiments show that anomalies due to hydraulic fracturing are small but measureable with highly sensitive sensor technology. The field measurements confirm the model results,showing that measured differences in themore » surface fields due to hydraulic fracturing have been detected above the noise floor. Our results show that the DSR method is sensitive to the injection of frac fluids; they are detectable above the noise floor in a commercially active hydraulic fracturing operation, and therefore this method can be used for monitoring fracture fluid movement.« less

  6. A fully coupled method for massively parallel simulation of hydraulically driven fractures in 3-dimensions: FULLY COUPLED PARALLEL SIMULATION OF HYDRAULIC FRACTURES IN 3-D

    DOE PAGES

    Settgast, Randolph R.; Fu, Pengcheng; Walsh, Stuart D. C.; ...

    2016-09-18

    This study describes a fully coupled finite element/finite volume approach for simulating field-scale hydraulically driven fractures in three dimensions, using massively parallel computing platforms. The proposed method is capable of capturing realistic representations of local heterogeneities, layering and natural fracture networks in a reservoir. A detailed description of the numerical implementation is provided, along with numerical studies comparing the model with both analytical solutions and experimental results. The results demonstrate the effectiveness of the proposed method for modeling large-scale problems involving hydraulically driven fractures in three dimensions.

  7. A fully coupled method for massively parallel simulation of hydraulically driven fractures in 3-dimensions: FULLY COUPLED PARALLEL SIMULATION OF HYDRAULIC FRACTURES IN 3-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Settgast, Randolph R.; Fu, Pengcheng; Walsh, Stuart D. C.

    This study describes a fully coupled finite element/finite volume approach for simulating field-scale hydraulically driven fractures in three dimensions, using massively parallel computing platforms. The proposed method is capable of capturing realistic representations of local heterogeneities, layering and natural fracture networks in a reservoir. A detailed description of the numerical implementation is provided, along with numerical studies comparing the model with both analytical solutions and experimental results. The results demonstrate the effectiveness of the proposed method for modeling large-scale problems involving hydraulically driven fractures in three dimensions.

  8. Trends in hydraulic fracturing distributions and treatment fluids, additives, proppants, and water volumes applied to wells drilled in the United States from 1947 through 2010: data analysis and comparison to the literature

    USGS Publications Warehouse

    Gallegos, Tanya J.; Varela, Brian A.

    2015-01-01

    Hydraulic fracturing is presently the primary stimulation technique for oil and gas production in low-permeability, unconventional reservoirs. Comprehensive, published, and publicly available information regarding the extent, location, and character of hydraulic fracturing in the United States is scarce. This national spatial and temporal analysis of data on nearly 1 million hydraulically fractured wells and 1.8 million fracturing treatment records from 1947 through 2010 (aggregated in Data Series 868) is used to identify hydraulic fracturing trends in drilling methods and use of proppants, treatment fluids, additives, and water in the United States. These trends are compared to the literature in an effort to establish a common understanding of the differences in drilling methods, treatment fluids, and chemical additives and of how the newer technology has affected the water use volumes and areal distribution of hydraulic fracturing. Historically, Texas has had the highest number of records of hydraulic fracturing treatments and associated wells in the United States documented in the datasets described herein. Water-intensive horizontal/directional drilling has also increased from 6 percent of new hydraulically fractured wells drilled in the United States in 2000 to 42 percent of new wells drilled in 2010. Increases in horizontal drilling also coincided with the emergence of water-based “slick water” fracturing fluids. As such, the most current hydraulic fracturing materials and methods are notably different from those used in previous decades and have contributed to the development of previously inaccessible unconventional oil and gas production target areas, namely in shale and tight-sand reservoirs. Publicly available derivative datasets and locations developed from these analyses are described.

  9. Hydraulic Fracturing for Oil and Gas: Impacts from the ...

    EPA Pesticide Factsheets

    This final report provides a review and synthesis of available scientific information concerning the relationship between hydraulic fracturing activities and drinking water resources in the United States. The report is organized around activities in the hydraulic fracturing water cycle and their potential to impact drinking water resources.  The stages include: (1) acquiring water to be used for hydraulic fracturing (Water Acquisition), (2) mixing the water with chemical additives to prepare hydraulic fracturing fluids (Chemical Mixing), (3) injecting the hydraulic fracturing fluids into the production well to create fractures in the targeted production zone (Well Injection), (4) collecting the wastewater that returns through the well after injection (Produced Water Handling), and (5) managing the wastewater via disposal or reuse methods (Wastewater Disposal and Reuse). EPA found scientific evidence that hydraulic fracturing activities can impact drinking water resources under some circumstances. The report identifies certain conditions under which impacts from hydraulic fracturing activities can be more frequent or severe: Water withdrawals for hydraulic fracturing in times or areas of low water availability, particularly in areas with limited or declining groundwater resources; Spills during the handling of hydraulic fracturing fluids and chemicals or produced water that result in large volumes or high concentrations of chem

  10. Advances in Permeable Reactive Barrier Technologies

    DTIC Science & Technology

    2002-08-01

    technical methods, such as jetting and hydraulic fracturing , has improved the ability to access deeper aquifers. Table 1 describes the established and...34, Cape Canaveral Air Station, FL. Hydraulic Fracturing 120 A series of wells are installed along the length of the PRB. A vertical fracture is...especially helpful with deep instal- lation methods, such as hydraulic fracturing , where the barrier installed is just a few inches thick. A second, new type

  11. Evaluating the Longevity and Hydraulic Performance of Permeable Reactive Barriers at Department of Defense Sites

    DTIC Science & Technology

    2003-01-01

    Army Ammunitions Plant) PRBs have become feasible with trenching. Other construction 5 methods, such as jetting, hydraulic fracturing , and vibratory...where the affected aquifer is deeper, innovative methods, such as jetting and hydraulic fracturing , are available, but there is not as much widespread...such as jetting and hydraulic fracturing ) can be used at relatively higher cost. The cost comparison of a PRB versus an active remedy, such as a

  12. A decision-analytic approach to predict state regulation of hydraulic fracturing.

    PubMed

    Linkov, Igor; Trump, Benjamin; Jin, David; Mazurczak, Marcin; Schreurs, Miranda

    2014-01-01

    The development of horizontal drilling and hydraulic fracturing methods has dramatically increased the potential for the extraction of previously unrecoverable natural gas. Nonetheless, the potential risks and hazards associated with such technologies are not without controversy and are compounded by frequently changing information and an uncertain landscape of international politics and laws. Where each nation has its own energy policies and laws, predicting how a state with natural gas reserves that require hydraulic fracturing will regulate the industry is of paramount importance for potential developers and extractors. We present a method for predicting hydraulic fracturing decisions using multiple-criteria decision analysis. The case study evaluates the decisions of five hypothetical countries with differing political, social, environmental, and economic priorities, choosing among four policy alternatives: open hydraulic fracturing, limited hydraulic fracturing, completely banned hydraulic fracturing, and a cap and trade program. The result is a model that identifies the preferred policy alternative for each archetypal country and demonstrates the sensitivity the decision to particular metrics. Armed with such information, observers can predict each country's likely decisions related to natural gas exploration as more data become available or political situations change. Decision analysis provides a method to manage uncertainty and address forecasting concerns where rich and objective data may be lacking. For the case of hydraulic fracturing, the various political pressures and extreme uncertainty regarding the technology's risks and benefits serve as a prime platform to demonstrate how decision analysis can be used to predict future behaviors.

  13. FEASIBILITY OF HYDRAULIC FRACTURING OF SOILS TO IMPROVE REMEDIAL ACTIONS

    EPA Science Inventory

    Hydraulic fracturing, a technique commonly used to increase the yields of oil wells, could improve the effectiveness of several methods of in situ remediation. This project consisted of laboratory and field tests in which hydraulic fractures were created in soil. Laboratory te...

  14. HYDRAULIC FRACTURING IN PORUS AND NONPORUS ROCK AND ITS POTENTIAL FOR DETERMINING IN-SITU STRESSES AT GREAT DEPTH.

    DTIC Science & Technology

    The process of Hydraulic Fracturing as a method of determining in-situ stresses in brittle elastic formations at great depth is analyzed both...theoretically and experimentally. Theoretically, it is found that in attempting to relate the recorded hydraulic fracturing pressures to tectonic stresses...at great depth. The experimental results show that hydraulic fracturing occurred when the internal pressure achieved a critical value that could

  15. Determination of In-Situ Stresses Around Underground Excavations by Means of Hydraulic Fracturing

    DTIC Science & Technology

    inhomogeneous, precracked variable rock is suitable for hydraulic fracturing as a method of in-situ stress measurement. It was found that basically the Coeur...d’Alene quartzite is amenable to hydraulic fracturing testing. The rock has no consistent anisotropy, but is inhomogeneous with physical property...horizontal stress notwithstanding rock condition. Field stress measurements in the Coeur d’Alene mines using the hydraulic fracturing technique are recommended.

  16. Contaminant behavior in fractured sedimentary rocks: Seeing the fractures that matter

    NASA Astrophysics Data System (ADS)

    Parker, B. L.

    2017-12-01

    High resolution spatial sampling of continuous cores from sites contaminated with chlorinated solvents over many decades was used as a strategy to quantify mass stored in low permeability blocks of rock between hydraulically active fractures. Given that core and geophysical logging methods cannot distinguish between hydraulically active fractures and those that do not transmit water, these samples were informed by careful logging of visible fracture features in the core with sample spacing determined by modelled diffusion transport distances given rock matrix properties and expected ages of contamination. These high resolution contaminant concentration profiles from long term contaminated sites in sedimentary rock showed evidence of many more hydraulically active fractures than indicated by the most sophisticated open-hole logging methods. Fracture density is an important attribute affecting fracture connectivity and influencing contaminant plume evolution in fractured porous sedimentary rock. These contaminant profile findings were motivation to find new borehole methods to directly measure hydraulically active fracture occurrence and flux to corroborate the long term "DNAPL tracer experiment" results. Improved sensitivity is obtained when boreholes are sealed using flexible fabric liners (FLUTeTM technology) and various sensor options are deployed in the static water columns used to inflate these liners or in contact with the borehole wall behind the liners. Several methods rely on high resolution temperature measurements of ambient or induced temperature variability such as temperature vector probes (TVP), fiber optic cables for distributed temperature sensing (DTS), both using active heat; packer testing, point dilution testing and groundwater flux measurements between multiple straddle packers to account for leakage. In all cases, numerous hydraulically active fractures are identified over 100 to 300 meters depth, with a large range in transmissivities and hydraulic apertures to inform discrete fracture flow and transport models. 3-D field mapping of decades-old contaminant plumes in sedimentary aquifers shows that numerous hydraulically active fractures are needed to reproduce observed plume concentration distributions and allow targeted monitoring and remediation.

  17. Streaming potential modeling in fractured rock: Insights into the identification of hydraulically active fractures

    NASA Astrophysics Data System (ADS)

    Roubinet, D.; Linde, N.; Jougnot, D.; Irving, J.

    2016-05-01

    Numerous field experiments suggest that the self-potential (SP) geophysical method may allow for the detection of hydraulically active fractures and provide information about fracture properties. However, a lack of suitable numerical tools for modeling streaming potentials in fractured media prevents quantitative interpretation and limits our understanding of how the SP method can be used in this regard. To address this issue, we present a highly efficient two-dimensional discrete-dual-porosity approach for solving the fluid flow and associated self-potential problems in fractured rock. Our approach is specifically designed for complex fracture networks that cannot be investigated using standard numerical methods. We then simulate SP signals associated with pumping conditions for a number of examples to show that (i) accounting for matrix fluid flow is essential for accurate SP modeling and (ii) the sensitivity of SP to hydraulically active fractures is intimately linked with fracture-matrix fluid interactions. This implies that fractures associated with strong SP amplitudes are likely to be hydraulically conductive, attracting fluid flow from the surrounding matrix.

  18. Evaluation of permeable fractures in rock aquifers

    NASA Astrophysics Data System (ADS)

    Bok Lee, Hang

    2015-04-01

    In this study, the practical usefulness and fundamental applicability of a self-potential (SP) method for identifying the permeable fractures were evaluated by a comparison of SP methods with other geophysical logging methods and hydraulic tests. At a 10 m-shallow borehole in the study site, the candidates of permeable fractures crossing the borehole were first determined by conventional geophysical methods such as an acoustic borehole televiwer, temperature, electrical conductivity and gamma-gamma loggings, which was compared to the analysis by the SP method. Constant pressure injection and recovery tests were conducted for verification of the hydraulic properties of the fractures identified by various logging methods. The acoustic borehole televiwer and gamma-gamma loggings detected the open space or weathering zone within the borehole, but they cannot prove the possibility of a groundwater flow through the detected fractures. The temperature and electrical conductivity loggings had limitations to detect the fractured zones where groundwater in the borehole flows out to the surrounding rock aquifers. Comparison of results from different methods showed that there is a best correlation between the distribution of hydraulic conductivity and the variation of the SP signals, and the SP logging can estimate accurately the hydraulic activity as well as the location of permeable fractures. Based on the results, the SP method is recommended for determining the hydraulically-active fractures rather than other conventional geophysical loggings. This self-potential method can be effectively applied in the initial stage of a site investigation which selects the optimal location and evaluates the hydrogeological property of fractures in target sites for the underground structure including the geothermal reservoir and radioactive waste disposal.

  19. 3D Numerical Modeling of the Propagation of Hydraulic Fracture at Its Intersection with Natural (Pre-existing) Fracture

    NASA Astrophysics Data System (ADS)

    Dehghan, Ali Naghi; Goshtasbi, Kamran; Ahangari, Kaveh; Jin, Yan; Bahmani, Aram

    2017-02-01

    A variety of 3D numerical models were developed based on hydraulic fracture experiments to simulate the propagation of hydraulic fracture at its intersection with natural (pre-existing) fracture. Since the interaction between hydraulic and pre-existing fractures is a key condition that causes complex fracture patterns, the extended finite element method was employed in ABAQUS software to simulate the problem. The propagation of hydraulic fracture in a fractured medium was modeled in two horizontal differential stresses (Δ σ) of 5e6 and 10e6 Pa considering different strike and dip angles of pre-existing fracture. The rate of energy release was calculated in the directions of hydraulic and pre-existing fractures (G_{{frac}} /G_{{rock}}) at their intersection point to determine the fracture behavior. Opening and crossing were two dominant fracture behaviors during the hydraulic and pre-existing fracture interaction at low and high differential stress conditions, respectively. The results of numerical studies were compared with those of experimental models, showing a good agreement between the two to validate the accuracy of the models. Besides the horizontal differential stress, strike and dip angles of the natural (pre-existing) fracture, the key finding of this research was the significant effect of the energy release rate on the propagation behavior of the hydraulic fracture. This effect was more prominent under the influence of strike and dip angles, as well as differential stress. The obtained results can be used to predict and interpret the generation of complex hydraulic fracture patterns in field conditions.

  20. United States Air Force Environmental Restoration Program. Guidance on Soil Vapor Extraction Optimization

    DTIC Science & Technology

    2001-06-01

    Pump Exposed Capillary Fringe SVE System Pneumatic/ Hydraulic Fracturing Points Increased Advective Flow draw\\svehandbk1.cdr aee p1 4/5/01 022/736300...propagate further from the extraction well, increasing the advective flow zone round the well. Pneumatic and hydraulic fracturing are the primary methods...enhancing existing fractures and increasing the secondary fracture network. Hydraulic fracturing involves the injection of water or slurry into the

  1. Guidance on Soil Vapor Extraction Optimization

    DTIC Science & Technology

    2001-06-01

    propagate further from the extraction well, increasing the advective flow zone round the well. Pneumatic and hydraulic fracturing are the primary methods...enhancing existing fractures and increasing the secondary fracture network. Hydraulic fracturing involves the injection of water or slurry into the

  2. Non-destructive testing principles and accurate evaluation of the hydraulic measure impact range using the DC method

    NASA Astrophysics Data System (ADS)

    Qiu, Liming; Shen, Rongxi; Song, Dazhao; Wang, Enyuan; Liu, Zhentang; Niu, Yue; Jia, Haishan; Xia, Shankui; Zheng, Xiangxin

    2017-12-01

    An accurate and non-destructive evaluation method for the hydraulic measure impact range in coal seams is urgently needed. Aiming at the application demands, a theoretical study and field test are presented using the direct current (DC) method to evaluate the impact range of coal seam hydraulic measures. We firstly analyzed the law of the apparent resistivity response of an abnormal conductive zone in a coal seam, and then investigated the principle of non-destructive testing of the coal seam hydraulic measure impact range using the DC method, and used an accurate evaluation method based on the apparent resistivity cloud chart. Finally, taking hydraulic fracturing and hydraulic flushing as examples, field experiments were carried out in coal mines to evaluate the impact ranges. The results showed that: (1) in the process of hydraulic fracturing, coal conductivity was enhanced by high-pressure water in the coal seam, and after hydraulic fracturing, the boundary of the apparent resistivity decrease area was the boundary impact range. (2) In the process of hydraulic flushing, coal conductivity was reduced by holes and cracks in the coal seam, and after hydraulic flushing, the boundary of the apparent resistivity increase area was the boundary impact range. (3) After the implementation of the hydraulic measures, there may be some blind zones in the coal seam; in hydraulic fracturing blind zones, the apparent resistivity increased or stayed constant, while in hydraulic flushing blind zones, the apparent resistivity decreased or stayed constant. The DC method realized a comprehensive and non-destructive evaluation of the impact range of the hydraulic measures, and greatly reduced the time and cost of evaluation.

  3. Hydro-mechanical coupled simulation of hydraulic fracturing using the eXtended Finite Element Method (XFEM)

    NASA Astrophysics Data System (ADS)

    Youn, Dong Joon

    This thesis presents the development and validation of an advanced hydro-mechanical coupled finite element program analyzing hydraulic fracture propagation within unconventional hydrocarbon formations under various conditions. The realistic modeling of hydraulic fracturing is necessarily required to improve the understanding and efficiency of the stimulation technique. Such modeling remains highly challenging, however, due to factors including the complexity of fracture propagation mechanisms, the coupled behavior of fracture displacement and fluid pressure, the interactions between pre-existing natural and initiated hydraulic fractures and the formation heterogeneity of the target reservoir. In this research, an eXtended Finite Element Method (XFEM) scheme is developed allowing for representation of single or multiple fracture propagations without any need for re-meshing. Also, the coupled flows through the fracture are considered in the program to account for their influence on stresses and deformations along the hydraulic fracture. In this research, a sequential coupling scheme is applied to estimate fracture aperture and fluid pressure with the XFEM. Later, the coupled XFEM program is used to estimate wellbore bottomhole pressure during fracture propagation, and the pressure variations are analyzed to determine the geometry and performance of the hydraulic fracturing as pressure leak-off test. Finally, material heterogeneity is included into the XFEM program to check the effect of random formation property distributions to the hydraulic fracture geometry. Random field theory is used to create the random realization of the material heterogeneity with the consideration of mean, standard deviation, and property correlation length. These analyses lead to probabilistic information on the response of unconventional reservoirs and offer a more scientific approach regarding risk management for the unconventional reservoir stimulation. The new stochastic approach combining XFEM and random field is named as eXtended Random Finite Element Method (XRFEM). All the numerical analysis codes in this thesis are written in Fortran 2003, and these codes are applicable as a series of sub-modules within a suite of finite element codes developed by Smith and Griffiths (2004).

  4. Improvement of Liquefiable Foundation Conditions Beneath Existing Structures.

    DTIC Science & Technology

    1985-08-01

    filter zones, and drains. Drilling fluids can cause hydraulic fracturing . These hazards can lead to to piping and hvdraulic fracturing Compression . 7...with results of piping and hydraulic fracturing (Continued) * Site conditions have been classified into three cases; Case 1 is for beneath -d...which could lead to piping and hydraulic fracturing Soil Reinforcement 16. Vibro-replacement See methods 2 and 3 stone and sand columns applicable to

  5. Cost and Performance Report - Evaluating the Longevity and Hydraulic Performance of Permeable Reactive Barriers at Department of Defense Sites

    DTIC Science & Technology

    2002-12-01

    methods, such as jetting, hydraulic fracturing , and vibratory beam, have been demonstrated at some sites, as they offer some cost advantages at deep sites...while still keeping the implementation cost relatively low. Beyond these depths, innovative methods (such as jetting and hydraulic fracturing ) can...type excavator and a trench-type barrier. For sites where the affected aquifer is deeper, innovative methods, such as jetting and hydraulic

  6. Method for directional hydraulic fracturing

    DOEpatents

    Swanson, David E.; Daly, Daniel W.

    1994-01-01

    A method for directional hydraulic fracturing using borehole seals to confine pressurized fluid in planar permeable regions, comprising: placing a sealant in the hole of a structure selected from geologic or cemented formations to fill the space between a permeable planar component and the geologic or cemented formation in the vicinity of the permeable planar component; making a hydraulic connection between the permeable planar component and a pump; permitting the sealant to cure and thereby provide both mechanical and hydraulic confinement to the permeable planar component; and pumping a fluid from the pump into the permeable planar component to internally pressurize the permeable planar component to initiate a fracture in the formation, the fracture being disposed in the same orientation as the permeable planar component.

  7. Modeling the Interaction Between Hydraulic and Natural Fractures Using Dual-Lattice Discrete Element Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Jing; Huang, Hai; Deo, Milind

    The interaction between hydraulic fractures (HF) and natural fractures (NF) will lead to complex fracture networks due to the branching and merging of natural and hydraulic fractures in unconventional reservoirs. In this paper, a newly developed hydraulic fracturing simulator based on discrete element method is used to predict the generation of complex fracture network in the presence of pre-existing natural fractures. By coupling geomechanics and reservoir flow within a dual lattice system, this simulator can effectively capture the poro-elastic effects and fluid leakoff into the formation. When HFs are intercepting single or multiple NFs, complex mechanisms such as direct crossing,more » arresting, dilating and branching can be simulated. Based on the model, the effects of injected fluid rate and viscosity, the orientation and permeability of NFs and stress anisotropy on the HF-NF interaction process are investigated. Combined impacts from multiple parameters are also examined in the paper. The numerical results show that large values of stress anisotropy, intercepting angle, injection rate and viscosity will impede the opening of NFs.« less

  8. Cost And Performance Report Evaluating the Longevity and Hydraulic Performance of Permeable Reactive Barriers at Department of Defense Sites

    DTIC Science & Technology

    2003-12-01

    construction methods, such as jetting, hydraulic fracturing , and vibratory beam, have been demonstrated at some sites, as they offer some cost... hydraulic fracturing , are available, but there is not as much widespread experience yet with these techniques for PRBs. Also, these innovative... hydraulic fracturing ) can be used at relatively higher cost. The cost comparison of a PRB versus an active remedy, such as a pump-and-treat system, often

  9. Simulation of Hydraulic and Natural Fracture Interaction Using a Coupled DFN-DEM Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, J.; Huang, H.; Deo, M.

    2016-03-01

    The presence of natural fractures will usually result in a complex fracture network due to the interactions between hydraulic and natural fracture. The reactivation of natural fractures can generally provide additional flow paths from formation to wellbore which play a crucial role in improving the hydrocarbon recovery in these ultra-low permeability reservoir. Thus, accurate description of the geometry of discrete fractures and bedding is highly desired for accurate flow and production predictions. Compared to conventional continuum models that implicitly represent the discrete feature, Discrete Fracture Network (DFN) models could realistically model the connectivity of discontinuities at both reservoir scale andmore » well scale. In this work, a new hybrid numerical model that couples Discrete Fracture Network (DFN) and Dual-Lattice Discrete Element Method (DL-DEM) is proposed to investigate the interaction between hydraulic fracture and natural fractures. Based on the proposed model, the effects of natural fracture orientation, density and injection properties on hydraulic-natural fractures interaction are investigated.« less

  10. Simulation of Hydraulic and Natural Fracture Interaction Using a Coupled DFN-DEM Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Zhou; H. Huang; M. Deo

    The presence of natural fractures will usually result in a complex fracture network due to the interactions between hydraulic and natural fracture. The reactivation of natural fractures can generally provide additional flow paths from formation to wellbore which play a crucial role in improving the hydrocarbon recovery in these ultra-low permeability reservoir. Thus, accurate description of the geometry of discrete fractures and bedding is highly desired for accurate flow and production predictions. Compared to conventional continuum models that implicitly represent the discrete feature, Discrete Fracture Network (DFN) models could realistically model the connectivity of discontinuities at both reservoir scale andmore » well scale. In this work, a new hybrid numerical model that couples Discrete Fracture Network (DFN) and Dual-Lattice Discrete Element Method (DL-DEM) is proposed to investigate the interaction between hydraulic fracture and natural fractures. Based on the proposed model, the effects of natural fracture orientation, density and injection properties on hydraulic-natural fractures interaction are investigated.« less

  11. Electrical and Magnetic Imaging of Proppants in Shallow Hydraulic Fractures

    NASA Astrophysics Data System (ADS)

    Denison, J. L. S.; Murdoch, L. C.; LaBrecque, D. J.; Slack, W. W.

    2015-12-01

    Hydraulic fracturing is an important tool to increase the productivity of wells used for oil and gas production, water resources, and environmental remediation. Currently there are relatively few tools available to monitor the distribution of proppants within a hydraulic fracture, or the propagation of the fracture itself. We have been developing techniques for monitoring hydraulic fractures by injecting electrically conductive, dielectric, or magnetically permeable proppants. We then use the resulting contrast with the enveloping rock to image the proppants using geophysical methods. Based on coupled laboratory and numerical modeling studies, three types of proppants were selected for field evaluation. Eight hydraulic fractures were created near Clemson, SC in May of 2015 by injecting specialized proppants at a depth of 1.5 m. The injections created shallow sub-horizontal fractures extending several meters from the injection point.Each cell had a dense array of electrodes and magnetic sensors on the surface and four shallow vertical electrode arrays that were used to obtain data before and after hydraulic fracturing. Net vertical displacement and transient tilts were also measured. Cores from 130 boreholes were used to characterize the general geometries, and trenching was used to characterize the forms of two of the fractures in detail. Hydraulic fracture geometries were estimated by inverting pre- and post-injection geophysical data. Data from cores and trenching show that the hydraulic fractures were saucer-shaped with a preferred propagation direction. The geophysical inversions generated images that were remarkably similar in form, size, and location to the ground truth from direct observation. Displacement and tilt data appear promising as a constraint on fracture geometry.

  12. Identifying Flow Networks in a Karstified Aquifer by Application of the Cellular Automata-Based Deterministic Inversion Method (Lez Aquifer, France)

    NASA Astrophysics Data System (ADS)

    Fischer, P.; Jardani, A.; Wang, X.; Jourde, H.; Lecoq, N.

    2017-12-01

    The distributed modeling of flow paths within karstic and fractured fields remains a complex task because of the high dependence of the hydraulic responses to the relative locations between observational boreholes and interconnected fractures and karstic conduits that control the main flow of the hydrosystem. The inverse problem in a distributed model is one alternative approach to interpret the hydraulic test data by mapping the karstic networks and fractured areas. In this work, we developed a Bayesian inversion approach, the Cellular Automata-based Deterministic Inversion (CADI) algorithm to infer the spatial distribution of hydraulic properties in a structurally constrained model. This method distributes hydraulic properties along linear structures (i.e., flow conduits) and iteratively modifies the structural geometry of this conduit network to progressively match the observed hydraulic data to the modeled ones. As a result, this method produces a conductivity model that is composed of a discrete conduit network embedded in the background matrix, capable of producing the same flow behavior as the investigated hydrologic system. The method is applied to invert a set of multiborehole hydraulic tests collected from a hydraulic tomography experiment conducted at the Terrieu field site in the Lez aquifer, Southern France. The emergent model shows a high consistency to field observation of hydraulic connections between boreholes. Furthermore, it provides a geologically realistic pattern of flow conduits. This method is therefore of considerable value toward an enhanced distributed modeling of the fractured and karstified aquifers.

  13. Laboratory imaging of hydraulic fractures using microseismicity

    NASA Astrophysics Data System (ADS)

    Zeng, Zhengwen

    2002-09-01

    This dissertation starts with an investigation of the industry's needs for future research and development of hydraulic fracturing (HF) technology. Based on the investigation results of a questionnaire answered by some industrial experts, it was found that reliable hydraulic fracturing diagnostic techniques are in need. Further critical review showed that the microseismic method was one of the most promising techniques that needed further development. Developing robust algorithms and software for locating the coordinates of hydraulic fracturing-induced microseismic events, and for simulating the first motion of the induced waveforms were central tasks for this research. In addition, initiation and propagation characteristics of asymmetrical hydraulic fractures were investigated; a recent discovered tight gas sandstone was systematically characterized; a method for measuring Mode-I fracture toughness was upgraded; and the packer influence on the initiation of asymmetrical fractures was numerically simulated. By completing this research, the following contributions have been made: (1) Development of a simplex-based microseismic LOCATION program. This program overcame the shortcoming of ill-conditioning-prone conditions encountered in conventional location programs. (2) Development of a variance-based computer program, ArrTime, to automatically search the first arrival times from the full waveform data points. (3) Development of the first motion simulator of the induced microseismic waveforms. Using this program, the first motion waveform amplitude in any direction at any location induced from seismic sources at an arbitrary location in a known fracturing mode can be calculated. (4) Complete characterization of a newly discovered tight gas formation, the Jackfork sandstone. (5) Upgrade of a core sample-based method for the measurement of fracture toughness. Mode-I fracture toughness of common core samples in any direction can be measured using this method. (6) Discern of the packer influence on HF initiation. It is numerically shown that a properly functioning packer would transfer tensile stress concentrations from the sealed ends to the borehole wall in the maximum principal stress direction. In contrast, a malfunctioning packer would induce tensile stress concentrations at the sealed ends that, in turn, induces transverse fractures. (7) Image of dynamics of the asymmetrical hydraulic fracture initiation and propagation.

  14. Microseismic imaging using Geometric-mean Reverse-Time Migration in Hydraulic Fracturing Monitoring

    NASA Astrophysics Data System (ADS)

    Yin, J.; Ng, R.; Nakata, N.

    2017-12-01

    Unconventional oil and gas exploration techniques such as hydraulic fracturing are associated with microseismic events related to the generation and development of fractures. For example, hydraulic fracturing, which is popular in Southern Oklahoma, produces earthquakes that are greater than magnitude 2.0. Finding the accurate locations, and mechanisms, of these events provides important information of local stress conditions, fracture distribution, hazard assessment, and economical impact. The accurate source location is also important to separate fracking-induced and wastewater disposal induced seismicity. Here, we implement a wavefield-based imaging method called Geometric-mean Reverse-Time Migration (GmRTM), which takes the advantage of accurate microseismic location based on wavefield back projection. We apply GmRTM to microseismic data collected during hydraulic fracturing for imaging microseismic source locations, and potentially, fractures. Assuming an accurate velocity model, GmRTM can improve the spatial resolution of source locations compared to HypoDD or P/S travel-time based methods. We will discuss the results from GmRTM and HypoDD using this field dataset and synthetic data.

  15. Hydraulic fracture propagation modeling and data-based fracture identification

    NASA Astrophysics Data System (ADS)

    Zhou, Jing

    Successful shale gas and tight oil production is enabled by the engineering innovation of horizontal drilling and hydraulic fracturing. Hydraulically induced fractures will most likely deviate from the bi-wing planar pattern and generate complex fracture networks due to mechanical interactions and reservoir heterogeneity, both of which render the conventional fracture simulators insufficient to characterize the fractured reservoir. Moreover, in reservoirs with ultra-low permeability, the natural fractures are widely distributed, which will result in hydraulic fractures branching and merging at the interface and consequently lead to the creation of more complex fracture networks. Thus, developing a reliable hydraulic fracturing simulator, including both mechanical interaction and fluid flow, is critical in maximizing hydrocarbon recovery and optimizing fracture/well design and completion strategy in multistage horizontal wells. A novel fully coupled reservoir flow and geomechanics model based on the dual-lattice system is developed to simulate multiple nonplanar fractures' propagation in both homogeneous and heterogeneous reservoirs with or without pre-existing natural fractures. Initiation, growth, and coalescence of the microcracks will lead to the generation of macroscopic fractures, which is explicitly mimicked by failure and removal of bonds between particles from the discrete element network. This physics-based modeling approach leads to realistic fracture patterns without using the empirical rock failure and fracture propagation criteria required in conventional continuum methods. Based on this model, a sensitivity study is performed to investigate the effects of perforation spacing, in-situ stress anisotropy, rock properties (Young's modulus, Poisson's ratio, and compressive strength), fluid properties, and natural fracture properties on hydraulic fracture propagation. In addition, since reservoirs are buried thousands of feet below the surface, the parameters used in the reservoir flow simulator have large uncertainty. Those biased and uncertain parameters will result in misleading oil and gas recovery predictions. The Ensemble Kalman Filter is used to estimate and update both the state variables (pressure and saturations) and uncertain reservoir parameters (permeability). In order to directly incorporate spatial information such as fracture location and formation heterogeneity into the algorithm, a new covariance matrix method is proposed. This new method has been applied to a simplified single-phase reservoir and a complex black oil reservoir with complex structures to prove its capability in calibrating the reservoir parameters.

  16. An integrated geophysical and hydraulic investigation to characterize a fractured-rock aquifer, Norwalk, Connecticut

    USGS Publications Warehouse

    Lane, J.W.; Williams, J.H.; Johnson, C.D.; Savino, D.M.; Haeni, F.P.

    2002-01-01

    The U.S. Geological Survey conducted an integrated geophysical and hydraulic investigation at the Norden Systems, Inc. site in Norwalk, Connecticut, where chlorinated solvents have contaminated a fractured-rock aquifer. Borehole, borehole-to-borehole, surface-geophysical, and hydraulic methods were used to characterize the site bedrock lithology and structure, fractures, and transmissive zone hydraulic properties. The geophysical and hydraulic methods included conventional logs, borehole imagery, borehole radar, flowmeter under ambient and stressed hydraulic conditions, and azimuthal square-array direct-current resistivity soundings. Integrated interpretation of geophysical logs at borehole and borehole-to-borehole scales indicates that the bedrock foliation strikes northwest and dips northeast, and strikes north-northeast to northeast and dips both southeast and northwest. Although steeply dipping fractures that cross-cut foliation are observed, most fractures are parallel or sub-parallel to foliation. Steeply dipping reflectors observed in the radar reflection data from three boreholes near the main building delineate a north-northeast trending feature interpreted as a fracture zone. Results of radar tomography conducted close to a suspected contaminant source area indicate that a zone of low electromagnetic (EM) velocity and high EM attenuation is present above 50 ft in depth - the region containing the highest density of fractures. Flowmeter logging was used to estimate hydraulic properties in the boreholes. Thirty-three transmissive fracture zones were identified in 11 of the boreholes. The vertical separation between transmissive zones typically is 10 to 20 ft. Open-hole and discrete-zone transmissivity was estimated from heat-pulse flowmeter data acquired under ambient and stressed conditions. The open-hole transmissivity ranges from 2 to 86 ft2/d. The estimated transmissivity of individual transmissive zones ranges from 0.4 to 68 ft2/d. Drawdown monitoring in nearby boreholes under pumping conditions identified hydraulic connections along a northeast-southwest trend between boreholes as far as 560 ft apart. The vertical distribution of fractures can be described by power law functions, which suggest that the fracture network contains transmissive zones consisting of closely spaced fractures surrounded by a less fractured and much less permeable rock mass.

  17. Study on interaction between induced and natural fractures by extended finite element method

    NASA Astrophysics Data System (ADS)

    Xu, DanDan; Liu, ZhanLi; Zhuang, Zhuo; Zeng, QingLei; Wang, Tao

    2017-02-01

    Fracking is one of the kernel technologies in the remarkable shale gas revolution. The extended finite element method is used in this paper to numerically investigate the interaction between hydraulic and natural fractures, which is an important issue of the enigmatic fracture network formation in fracking. The criteria which control the opening of natural fracture and crossing of hydraulic fracture are tentatively presented. Influence factors on the interaction process are systematically analyzed, which include the approach angle, anisotropy of in-situ stress and fluid pressure profile.

  18. Influence of Hydraulic Fracturing on Overlying Aquifers in the Presence of Leaky Abandoned Wells.

    PubMed

    Brownlow, Joshua W; James, Scott C; Yelderman, Joe C

    2016-11-01

    The association between hydrocarbon-rich reservoirs and organic-rich source rocks means unconventional oil and gas plays usually occur in mature sedimentary basins-where large-scale conventional development has already taken place. Abandoned wells in proximity to hydraulic fracturing could be affected by increased fluid pressures and corresponding newly generated fractures that directly connect (frac hit) to an abandoned well or to existing fractures intersecting an abandoned well. If contaminants migrate to a pathway hydraulically connected to an abandoned well, upward leakage may occur. Potential effects of hydraulic fracturing on upward flow through a particular type of leaky abandoned well-abandoned oil and gas wells converted into water wells were investigated using numerical modeling. Several factors that affect flow to leaky wells were considered including proximity of a leaky well to hydraulic fracturing, flowback, production, and leaky well abandonment methods. The numerical model used historical records and available industry data for the Eagle Ford Shale play in south Texas. Numerical simulations indicate that upward contaminant migration could occur through leaky converted wells if certain spatial and hydraulic conditions exist. Upward flow through leaky converted wells increased with proximity to hydraulic fracturing, but decreased when flowback and production occurred. Volumetric flow rates ranged between 0 and 0.086 m 3 /d for hydraulic-fracturing scenarios. Potential groundwater impacts should be paired with plausible transport mechanisms, and upward flow through leaky abandoned wells could be unrelated to hydraulic fracturing. The results also underscore the need to evaluate historical activities. © 2016, National Ground Water Association.

  19. Theme 3: Mechanical Integrity - Pre & Post Well Integrity Methods for Hydraulically Fractured/Stimulated Wells

    EPA Pesticide Factsheets

    This presentation looks into wellbore design and monitoring techniques that are critical in assuring that wellbore integrity is maintained in conjunction with hydraulic fracturing/stimulation completion practices.

  20. Hydraulic Fracturing Mineback Experiment in Complex Media

    NASA Astrophysics Data System (ADS)

    Green, S. J.; McLennan, J. D.

    2012-12-01

    Hydraulic fracturing (or "fracking") for the recovery of gas and liquids from tight shale formations has gained much attention. This operation which involves horizontal well drilling and massive hydraulic fracturing has been developed over the last decade to produce fluids from extremely low permeability mudstone and siltstone rocks with high organic content. Nearly thirteen thousand wells and about one hundred and fifty thousand stages within the wells were fractured in the US in 2011. This operation has proven to be successful, causing hundreds of billions of dollars to be invested and has produced an abundance of natural gas and is making billions of barrels of hydrocarbon liquids available for the US. But, even with this commercial success, relatively little is clearly known about the complexity--or lack of complexity--of the hydraulic fracture, the extent that the newly created surface area contacts the high Reservoir Quality rock, nor the connectivity and conductivity of the hydraulic fractures created. To better understand this phenomena in order to improve efficiency, a large-scale mine-back experiment is progressing. The mine-back experiment is a full-scale hydraulic fracture carried out in a well-characterized environment, with comprehensive instrumentation deployed to measure fracture growth. A tight shale mudstone rock geologic setting is selected, near the edge of a formation where one to two thousand feet difference in elevation occurs. From the top of the formation, drilling, well logging, and hydraulic fracture pumping will occur. From the bottom of the formation a horizontal tunnel will be mined using conventional mining techniques into the rock formation towards the drilled well. Certain instrumentation will be located within this tunnel for observations during the hydraulic fracturing. After the hydraulic fracturing, the tunnel will be extended toward the well, with careful mapping of the created hydraulic fracture. Fracturing fluid will be traceable, as will injected proppant, in order to demarcate in-situ fracture paths and fluid and proppant progression. This underground experiment is referred to as a "mine-back experiment". Several mine-back experiments have been conducted in the past, and have demonstrated complex, diffuse fracture systems in coals and bundled fracture systems in some sandstones. No mine-back experiment has been conducted in the tight shales; but, economics and environmental considerations dictate that more definitive measurements will be extremely helpful to establish fracture growth patterns and to validate monitoring methods such as micro-seismic measurements. This presentation discusses the mine-back experiment and presents details of geologic setting, hydraulic fracturing, and the excavation required before and after the hydraulic fracture. The mine-back experiment will provide ground-truth assessment of hydraulic fracturing, geologic forecasting, micro-seismicity, and other information.

  1. Review of hydraulic fracture mapping using advanced accelerometer-based receiver systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warpinski, N.R.; Uhl, J.E.; Engler, B.P.

    Hydraulic fracturing is an important tool for natural gas and oil exploitation, but its optimization has been impeded by an inability to observe how the fracture propagates and what its overall dimensions are. The few experiments in which fractures have been exposed through coring or mineback have shown that hydraulic fractures are complicated multi-stranded structures that may behave much differently than currently predicted by models. It is clear that model validation, fracture optimization, problem identification and solution, and field development have all been encumbered by the absence of any ground truth information on fracture behavior in field applications. The solutionmore » to this problem is to develop techniques to image the hydraulic fracture in situ from either the surface, the treatment well, or offset wells. Several diagnostic techniques have been available to assess individual elements of the fracture geometry, but most of these techniques have limitations on their usefulness. For example, tracers and temperature logs can only measure fracture height at the wellbore, well testing and production history matching provide a productive length which may or may not be different from the true fracture length, and tiltmeters can provide accurate information on azimuth and type of fracture (horizontal or vertical), but length and height can only be extracted from a non-unique inversion of the data. However, there is a method, the microseismic technique, which possesses the potential for imaging the entire hydraulic fracture and, more importantly, its growth history. This paper discusses application of advanced technology to the microseismic method in order to provide detailed accurate images of fractures and their growth processes.« less

  2. Experimental analysis of multiple factors on hydraulic fracturing in coalbed methane reservoirs

    PubMed Central

    Ma, Geng; Liu, Xiao; Tao, Yunqi; Feng, Dan; Li, Rui

    2018-01-01

    Hydraulic fracturing can improve the permeability of coalbed methane (CBM) reservoirs effectively, which is of great significance to the commercial production of CBM. However, the efficiency of hydraulic fracturing is affected by multiple factors. The mechanism of fracture initiation, morphology and propagation in CBM reservoirs is not clear and need to be further explored. Hydraulic fracturing experiment is an accurate tool to explore these mechanisms. The quantity of experimental coal rock is large and processing method is complex, so specimen made of similar materials was applied to replace coal rock. The true triaxial hydraulic fracturing experimental apparatus, 3D scanning device for coal rock section were applied to carry out hydraulic fracturing experiment. The results show that the initiation pressure is inversely proportional to the horizontal stress difference (Δσ) and positively related to fracturing fluid injection rate. When vertical stress (σv) is constant, the initiation pressure and fracture width decrease with the increasing of Δσ. Natural fractures can be connected by main fracture when propagates perpendicular to the direction of minimum horizontal stress (σh), then secondary fractures and fracture network form in CBM reservoirs. When two stresses of crustal stress are close and far different from the third one, the fracture morphology and propagation become complex. Influenced by perforations and filtration of fracturing fluid in specimen, fracturing fluid flows to downward easily after comparing horizontal well fracturing with vertical well fracturing. Fracture width increases with the decreasing of elastic modulus, the intensity of fracture is positively related with the elastic modulus of coal rock. The research results can provide theoretical basis and technical support for the efficient development of CBM. PMID:29621295

  3. Experimental analysis of multiple factors on hydraulic fracturing in coalbed methane reservoirs.

    PubMed

    Zhang, Fan; Ma, Geng; Liu, Xiao; Tao, Yunqi; Feng, Dan; Li, Rui

    2018-01-01

    Hydraulic fracturing can improve the permeability of coalbed methane (CBM) reservoirs effectively, which is of great significance to the commercial production of CBM. However, the efficiency of hydraulic fracturing is affected by multiple factors. The mechanism of fracture initiation, morphology and propagation in CBM reservoirs is not clear and need to be further explored. Hydraulic fracturing experiment is an accurate tool to explore these mechanisms. The quantity of experimental coal rock is large and processing method is complex, so specimen made of similar materials was applied to replace coal rock. The true triaxial hydraulic fracturing experimental apparatus, 3D scanning device for coal rock section were applied to carry out hydraulic fracturing experiment. The results show that the initiation pressure is inversely proportional to the horizontal stress difference (Δσ) and positively related to fracturing fluid injection rate. When vertical stress (σv) is constant, the initiation pressure and fracture width decrease with the increasing of Δσ. Natural fractures can be connected by main fracture when propagates perpendicular to the direction of minimum horizontal stress (σh), then secondary fractures and fracture network form in CBM reservoirs. When two stresses of crustal stress are close and far different from the third one, the fracture morphology and propagation become complex. Influenced by perforations and filtration of fracturing fluid in specimen, fracturing fluid flows to downward easily after comparing horizontal well fracturing with vertical well fracturing. Fracture width increases with the decreasing of elastic modulus, the intensity of fracture is positively related with the elastic modulus of coal rock. The research results can provide theoretical basis and technical support for the efficient development of CBM.

  4. Method of fracturing a geological formation

    DOEpatents

    Johnson, James O.

    1990-01-01

    An improved method of fracturing a geological formation surrounding a well bore is disclosed. A relatively small explosive charge is emplaced in a well bore and the bore is subsequently hydraulically pressurized to a pressure less than the formation breakdown pressure and preferably greater than the fracture propagation pressure of the formation. The charge is denoted while the bore is so pressurized, resulting in the formation of multiple fractures in the surrounding formation with little or no accompanying formation damage. Subsequent hydraulic pressurization can be used to propagate and extend the fractures in a conventional manner. The method is useful for stimulating production of oil, gas and possibly water from suitable geologic formations.

  5. Fully coupled simulation of multiple hydraulic fractures to propagate simultaneously from a perforated horizontal wellbore

    NASA Astrophysics Data System (ADS)

    Zeng, Qinglei; Liu, Zhanli; Wang, Tao; Gao, Yue; Zhuang, Zhuo

    2018-02-01

    In hydraulic fracturing process in shale rock, multiple fractures perpendicular to a horizontal wellbore are usually driven to propagate simultaneously by the pumping operation. In this paper, a numerical method is developed for the propagation of multiple hydraulic fractures (HFs) by fully coupling the deformation and fracturing of solid formation, fluid flow in fractures, fluid partitioning through a horizontal wellbore and perforation entry loss effect. The extended finite element method (XFEM) is adopted to model arbitrary growth of the fractures. Newton's iteration is proposed to solve these fully coupled nonlinear equations, which is more efficient comparing to the widely adopted fixed-point iteration in the literatures and avoids the need to impose fluid pressure boundary condition when solving flow equations. A secant iterative method based on the stress intensity factor (SIF) is proposed to capture different propagation velocities of multiple fractures. The numerical results are compared with theoretical solutions in literatures to verify the accuracy of the method. The simultaneous propagation of multiple HFs is simulated by the newly proposed algorithm. The coupled influences of propagation regime, stress interaction, wellbore pressure loss and perforation entry loss on simultaneous propagation of multiple HFs are investigated.

  6. Streaming Potential Modeling to Understand the Identification of Hydraulically Active Fractures and Fracture-Matrix Fluid Interactions Using the Self-Potential Method

    NASA Astrophysics Data System (ADS)

    Jougnot, D.; Roubinet, D.; Linde, N.; Irving, J.

    2016-12-01

    Quantifying fluid flow in fractured media is a critical challenge in a wide variety of research fields and applications. To this end, geophysics offers a variety of tools that can provide important information on subsurface physical properties in a noninvasive manner. Most geophysical techniques infer fluid flow by data or model differencing in time or space (i.e., they are not directly sensitive to flow occurring at the time of the measurements). An exception is the self-potential (SP) method. When water flows in the subsurface, an excess of charge in the pore water that counterbalances electric charges at the mineral-pore water interface gives rise to a streaming current and an associated streaming potential. The latter can be measured with the SP technique, meaning that the method is directly sensitive to fluid flow. Whereas numerous field experiments suggest that the SP method may allow for the detection of hydraulically active fractures, suitable tools for numerically modeling streaming potentials in fractured media do not exist. Here, we present a highly efficient two-dimensional discrete-dual-porosity approach for solving the fluid-flow and associated self-potential problems in fractured domains. Our approach is specifically designed for complex fracture networks that cannot be investigated using standard numerical methods due to computational limitations. We then simulate SP signals associated with pumping conditions for a number of examples to show that (i) accounting for matrix fluid flow is essential for accurate SP modeling and (ii) the sensitivity of SP to hydraulically active fractures is intimately linked with fracture-matrix fluid interactions. This implies that fractures associated with strong SP amplitudes are likely to be hydraulically conductive, attracting fluid flow from the surrounding matrix.

  7. 2005 Tri-Service Infrastructure Systems Conference and Exhibition. Volume 7, Tracks 7 and 8

    DTIC Science & Technology

    2005-08-04

    dense soils have the potential to wash-out and erode with fluid rotary methods and over excavation and hydraulic fracturing can result. Short...circuiting is possible outside of the temporary or outer casing or through weak soils to grade. Hydraulic fracturing may take place due to soil properties...prevented the potential for hydraulic fracturing of the sensitive dam prior to grouting. Sonic drilling was selected from a ran of proposed

  8. Surrogate-based optimization of hydraulic fracturing in pre-existing fracture networks

    NASA Astrophysics Data System (ADS)

    Chen, Mingjie; Sun, Yunwei; Fu, Pengcheng; Carrigan, Charles R.; Lu, Zhiming; Tong, Charles H.; Buscheck, Thomas A.

    2013-08-01

    Hydraulic fracturing has been used widely to stimulate production of oil, natural gas, and geothermal energy in formations with low natural permeability. Numerical optimization of fracture stimulation often requires a large number of evaluations of objective functions and constraints from forward hydraulic fracturing models, which are computationally expensive and even prohibitive in some situations. Moreover, there are a variety of uncertainties associated with the pre-existing fracture distributions and rock mechanical properties, which affect the optimized decisions for hydraulic fracturing. In this study, a surrogate-based approach is developed for efficient optimization of hydraulic fracturing well design in the presence of natural-system uncertainties. The fractal dimension is derived from the simulated fracturing network as the objective for maximizing energy recovery sweep efficiency. The surrogate model, which is constructed using training data from high-fidelity fracturing models for mapping the relationship between uncertain input parameters and the fractal dimension, provides fast approximation of the objective functions and constraints. A suite of surrogate models constructed using different fitting methods is evaluated and validated for fast predictions. Global sensitivity analysis is conducted to gain insights into the impact of the input variables on the output of interest, and further used for parameter screening. The high efficiency of the surrogate-based approach is demonstrated for three optimization scenarios with different and uncertain ambient conditions. Our results suggest the critical importance of considering uncertain pre-existing fracture networks in optimization studies of hydraulic fracturing.

  9. 3D Modeling and Characterization of Hydraulic Fracture Efficiency Integrated with 4D/9C Time-Lapse Seismic Interpretations in the Niobrara Formation, Wattenberg Field, Denver Basin

    NASA Astrophysics Data System (ADS)

    Alfataierge, Ahmed

    Hydrocarbon recovery rates within the Niobrara Shale are estimated as low as 2-8%. These recovery rates are controlled by the ability to effectively hydraulic fracture stimulate the reservoir using multistage horizontal wells. Subsequent to any mechanical issues that affect production from lateral wells, the variability in production performance and reserve recovery along multistage lateral shale wells is controlled by the reservoir heterogeneity and its consequent effect on hydraulic fracture stimulation efficiency. Using identical stimulation designs on a number of wells that are as close as 600ft apart can yield variable production and recovery rates due to inefficiencies in hydraulic fracture stimulation that result from the variability in elastic rock properties and in-situ stress conditions. As a means for examining the effect of the geological heterogeneity on hydraulic fracturing and production within the Niobrara Formation, a 3D geomechanical model is derived using geostatistical methods and volumetric calculations as an input to hydraulic fracture stimulation. The 3D geomechanical model incorporates the faults, lithological facies changes and lateral variation in reservoir properties and elastic rock properties that best represent the static reservoir conditions pre-hydraulic fracturing. Using a 3D numerical reservoir simulator, a hydraulic fracture predictive model is generated and calibrated to field diagnostic measurements (DFIT) and observations (microseismic and 4D/9C multicomponent time-lapse seismic). By incorporating the geological heterogeneity into the 3D hydraulic fracture simulation, a more representative response is generated that demonstrate the variability in hydraulic fracturing efficiency along the lateral wells that will inevitability influence production performance. Based on the 3D hydraulic fracture simulation results, integrated with microseismic observations and 4D/9C time-lapse seismic analysis (post-hydraulic fracturing & post production), the variability in production performance within the Niobrara Shale wells is shown to significantly be affected by the lateral variability in reservoir quality, well and stage positioning relative to the target interval, and the relative completion efficiency. The variation in reservoir properties, faults, rock strength parameters, and in-situ stress conditions are shown to influence and control the hydraulic fracturing geometry and stimulation efficiency resulting in complex and isolated induced fracture geometries to form within the reservoir. This consequently impacts the effective drainage areas, production performance and recovery rates from inefficiently stimulated horizontal wells. The 3D simulation results coupled with the 4D seismic interpretations illustrate that there is still room for improvement to be made in optimizing well spacing and hydraulic fracturing efficiency within the Niobrara Formation. Integrated analysis show that the Niobrara reservoir is not uniformly stimulated. The vertical and lateral variability in rock properties control the hydraulic fracturing efficiency and geometry. Better production is also correlated to higher fracture conductivity. 4D seismic interpretation is also shown to be essential for the validation and calibration hydraulic fracture simulation models. The hydraulic fracture modeling also demonstrations that there is bypassed pay in the Niobrara B chalk resulting from initial Niobrara C chalk stimulation treatments. Forward modeling also shows that low pressure intervals within the Niobrara reservoir influence hydraulic fracturing and infill drilling during field development.

  10. Characterization of the Oriskany and Berea Sandstones: Evaluating Biogeochemical Reactions of Potential Sandstone–Hydraulic Fracturing Fluid Interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verba, Circe; Harris, Aubrey

    The Marcellus shale, located in the mid-Atlantic Appalachian Basin, has been identified as a source for natural gas and targeted for hydraulic fracturing recovery methods. Hydraulic fracturing is a technique used by the oil and gas industry to access petroleum reserves in geologic formations that cannot be accessed with conventional drilling techniques (Capo et al., 2014). This unconventional technique fractures rock formations that have low permeability by pumping pressurized hydraulic fracturing fluids into the subsurface. Although the major components of hydraulic fracturing fluid are water and sand, chemicals, such as recalcitrant biocides and polyacrylamide, are also used (Frac Focus, 2015).more » There is domestic concern that the chemicals could reach groundwater or surface water during transport, storage, or the fracturing process (Chapman et al., 2012). In the event of a surface spill, understanding the natural attenuation of the chemicals in hydraulic fracturing fluid, as well as the physical and chemical properties of the aquifers surrounding the spill site, will help mitigate potential dangers to drinking water. However, reports on the degradation pathways of these chemicals are limited in existing literature. The Appalachian Basin Marcellus shale and its surrounding sandstones host diverse mineralogical suites. During the hydraulic fracturing process, the hydraulic fracturing fluids come into contact with variable mineral compositions. The reactions between the fracturing fluid chemicals and the minerals are very diverse. This report: 1) describes common minerals (e.g. quartz, clay, pyrite, and carbonates) present in the Marcellus shale, as well as the Oriskany and Berea sandstones, which are located stratigraphically below and above the Marcellus shale; 2) summarizes the existing literature of the degradation pathways for common hydraulic fracturing fluid chemicals [polyacrylamide, ethylene glycol, poly(diallyldimethylammonium chloride), glutaraldehyde, guar gum, and isopropanol]; 3) reviews the known research about the interactions between several hydraulic fracturing chemicals [e.g. polyacrylamide, ethylene glycol, poly(diallyldimethylammonium chloride), and glutaraldehyde] with the minerals (quartz, clay, pyrite, and carbonates) common to the lithologies of the Marcellus shale and its surrounding sandstones; and 4) characterizes the Berea sandstone and analyzes the physical and chemical effects of flowing guar gum through a Berea sandstone core.« less

  11. Micromechanical Aspects of Hydraulic Fracturing Processes

    NASA Astrophysics Data System (ADS)

    Galindo-torres, S. A.; Behraftar, S.; Scheuermann, A.; Li, L.; Williams, D.

    2014-12-01

    A micromechanical model is developed to simulate the hydraulic fracturing process. The model comprises two key components. Firstly, the solid matrix, assumed as a rock mass with pre-fabricated cracks, is represented by an array of bonded particles simulated by the Discrete Element Model (DEM)[1]. The interaction is ruled by the spheropolyhedra method, which was introduced by the authors previously and has been shown to realistically represent many of the features found in fracturing and communition processes. The second component is the fluid, which is modelled by the Lattice Boltzmann Method (LBM). It was recently coupled with the spheropolyhedra by the authors and validated. An advantage of this coupled LBM-DEM model is the control of many of the parameters of the fracturing fluid, such as its viscosity and the injection rate. To the best of the authors' knowledge this is the first application of such a coupled scheme for studying hydraulic fracturing[2]. In this first implementation, results are presented for a two-dimensional situation. Fig. 1 shows one snapshot of the LBM-DEM coupled simulation for the hydraulic fracturing where the elements with broken bonds can be identified and the fracture geometry quantified. The simulation involves a variation of the underground stress, particularly the difference between the two principal components of the stress tensor, to explore the effect on the fracture path. A second study focuses on the fluid viscosity to examine the effect of the time scales of different injection plans on the fracture geometry. The developed tool and the presented results have important implications for future studies of the hydraulic fracturing process and technology. references 1. Galindo-Torres, S.A., et al., Breaking processes in three-dimensional bonded granular materials with general shapes. Computer Physics Communications, 2012. 183(2): p. 266-277. 2. Galindo-Torres, S.A., A coupled Discrete Element Lattice Boltzmann Method for the simulation of fluid-solid interaction with particles of general shapes. Computer Methods in Applied Mechanics and Engineering, 2013. 265(0): p. 107-119.

  12. Characteristic Length Scales in Fracture Networks: Hydraulic Connectivity through Periodic Hydraulic Tests

    NASA Astrophysics Data System (ADS)

    Becker, M.; Bour, O.; Le Borgne, T.; Longuevergne, L.; Lavenant, N.; Cole, M. C.; Guiheneuf, N.

    2017-12-01

    Determining hydraulic and transport connectivity in fractured bedrock has long been an important objective in contaminant hydrogeology, petroleum engineering, and geothermal operations. A persistent obstacle to making this determination is that the characteristic length scale is nearly impossible to determine in sparsely fractured networks. Both flow and transport occur through an unknown structure of interconnected fracture and/or fracture zones making the actual length that water or solutes travel undetermined. This poses difficulties for flow and transport models. For, example, hydraulic equations require a separation distance between pumping and observation well to determine hydraulic parameters. When wells pairs are close, the structure of the network can influence the interpretation of well separation and the flow dimension of the tested system. This issue is explored using hydraulic tests conducted in a shallow fractured crystalline rock. Periodic (oscillatory) slug tests were performed at the Ploemeur fractured rock test site located in Brittany, France. Hydraulic connectivity was examined between three zones in one well and four zones in another, located 6 m apart in map view. The wells are sufficiently close, however, that the tangential distance between the tested zones ranges between 6 and 30 m. Using standard periodic formulations of radial flow, estimates of storativity scale inversely with the square of the separation distance and hydraulic diffusivity directly with the square of the separation distance. Uncertainty in the connection paths between the two wells leads to an order of magnitude uncertainty in estimates of storativity and hydraulic diffusivity, although estimates of transmissivity are unaffected. The assumed flow dimension results in alternative estimates of hydraulic parameters. In general, one is faced with the prospect of assuming the hydraulic parameter and inverting the separation distance, or vice versa. Similar uncertainties exist, for instance, when trying to invert transport parameters from tracer mean residence time. This field test illustrates that when dealing with fracture networks, there is a need for analytic methods of complexity that lie between simple radial solutions and discrete fracture network models.

  13. Continuous TDEM for monitoring shale hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Yan, Liang-Jun; Chen, Xiao-Xiong; Tang, Hao; Xie, Xing-Bing; Zhou, Lei; Hu, Wen-Bao; Wang, Zhong-Xin

    2018-03-01

    Monitoring and delineating the spatial distribution of shale fracturing is fundamentally important to shale gas production. Standard monitoring methods, such as time-lapse seismic, cross-well seismic and micro-seismic methods, are expensive, timeconsuming, and do not show the changes in the formation with time. The resistivities of hydraulic fracturing fluid and reservoir rocks were measured. The results suggest that the injection fluid and consequently the injected reservoir are characterized by very low resistivity and high chargeability. This allows using of the controlled-source electromagnetic method (CSEM) to monitor shale gas hydraulic fracturing. Based on the geoelectrical model which was proposed according to the well-log and seismic data in the test area the change rule of the reacted electrical field was studied to account for the change of shale resistivity, and then the normalized residual resistivity method for time lapse processing was given. The time-domain electromagnetic method (TDEM) was used to continuously monitor the shale gas fracturing at the Fulin shale gas field in southern China. A high-power transmitter and multi-channel transient electromagnetic receiver array were adopted. 9 h time series of Ex component of 224 sites which were laid out on the surface and over three fracturing stages of a horizontal well at 2800 m depth was recorded. After data processing and calculation of the normalized resistivity residuals, the changes in the Ex signal were determined and a dynamic 3D image of the change in resistivity was constructed. This allows modeling the spatial distribution of the fracturing fluid. The model results suggest that TDEM is promising for monitoring hydraulic fracturing of shale.

  14. Development of Rapid Radiochemical Method for Gross Alpha and Gross Beta Activity Concentration in Flowback and Produced Waters from Hydraulic Fracturing Operations

    EPA Science Inventory

    This report summarizes the development and validation of an improved method for the Determination of Gross Alpha and Gross Beta Activity in Flowback and Produced Waters from Hydraulic Fracturing Operations (FPWHFO). Flowback and produced waters are characterized by high concentra...

  15. Hydraulic fracturing system and method

    DOEpatents

    Ciezobka, Jordan; Salehi, Iraj

    2017-02-28

    A hydraulic fracturing system and method for enhancing effective permeability of earth formations to increase hydrocarbon production, enhance operation efficiency by reducing fluid entry friction due to tortuosity and perforation, and to open perforations that are either unopened or not effective using traditional techniques, by varying a pump rate and/or a flow rate to a wellbore.

  16. Hydraulic fracturing system and method

    DOEpatents

    Ciezobka, Jordan; Maity, Debotyam

    2018-01-30

    A hydraulic fracturing system and method for enhancing effective permeability of earth formations to increase hydrocarbon production, enhance operation efficiency by reducing fluid entry friction due to tortuosity and perforation, and to open perforations that are either unopened or not effective using traditional techniques, by varying a pump rate and/or a flow rate to a wellbore.

  17. Hydraulic fracturing system and method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciezobka, Jordan; Maity, Debotyam

    A hydraulic fracturing system and method for enhancing effective permeability of earth formations to increase hydrocarbon production, enhance operation efficiency by reducing fluid entry friction due to tortuosity and perforation, and to open perforations that are either unopened or not effective using traditional techniques, by varying a pump rate and/or a flow rate to a wellbore.

  18. Discussion of comparison study of hydraulic fracturing models -- Test case: GRI Staged Field Experiment No. 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleary, M.P.

    This paper provides comments to a companion journal paper on predictive modeling of hydraulic fracturing patterns (N.R. Warpinski et. al., 1994). The former paper was designed to compare various modeling methods to demonstrate the most accurate methods under various geologic constraints. The comments of this paper are centered around potential deficiencies in the former authors paper which include: limited actual comparisons offered between models, the issues of matching predictive data with that from related field operations was lacking or undocumented, and the relevance/impact of accurate modeling on the overall hydraulic fracturing cost and production.

  19. Geophysical Properties of Hard Rock for Investigation of Stress Fields in Deep Mines

    NASA Astrophysics Data System (ADS)

    Tibbo, M.; Young, R. P.; Schmitt, D. R.; Milkereit, B.

    2014-12-01

    A complication in geophysical monitoring of deep mines is the high-stress dependency of the physical properties of hard rocks. In-mine observations show anisotropic variability of the in situ P- and S-wave velocities and resistivity of the hard rocks that are likely related to stress field changes. As part of a comprehensive study in a deep, highly stressed mine located in Sudbury, Ontario, Canada, data from in situ monitoring of the seismicity, conductivity, stress, and stress dependent physical properties has been obtain. In-laboratory experiments are also being performed on borehole cores from the Sudbury mines. These experiments will measure the Norite borehole core's properties including elastic modulus, bulk modulus, P- and S-wave velocities, and density. Hydraulic fracturing has been successfully implemented in industries such as oil and gas and enhanced geothermal systems, and is currently being investigated as a potential method for preconditioning in mining. However, further research is required to quantify how hydraulic fractures propagate through hard, unfractured rock as well as naturally fractured rock typically found in mines. These in laboratory experiments will contribute to a hydraulic fracturing project evaluating the feasibility and effectiveness of hydraulic fracturing as a method of de-stressing hard rock mines. A tri-axial deformation cell equipped with 18 Acoustic Emission (AE) sensors will be used to bring the borehole cores to a tri-axial state of stress. The cores will then be injected with fluid until the the hydraulic fracture has propagated to the edge of the core, while AE waveforms will be digitized continuously at 10 MHz and 12-bit resolution for the duration of each experiment. These laboratory hydraulic fracture experiments will contribute to understanding how parameters including stress ratio, fluid injection rate, and viscosity, affect the fracturing process.

  20. Integrated In Situ Stress Estimation by Hydraulic Fracturing, Borehole Observations and Numerical Analysis at the EXP-1 Borehole in Pohang, Korea

    NASA Astrophysics Data System (ADS)

    Kim, Hanna; Xie, Linmao; Min, Ki-Bok; Bae, Seongho; Stephansson, Ove

    2017-12-01

    It is desirable to combine the stress measurement data produced by different methods to obtain a more reliable estimation of in situ stress. We present a regional case study of integrated in situ stress estimation by hydraulic fracturing, observations of borehole breakouts and drilling-induced fractures, and numerical modeling of a 1 km-deep borehole (EXP-1) in Pohang, South Korea. Prior to measuring the stress, World Stress Map (WSM) and modern field data in the Korean Peninsula are used to construct a best estimate stress model in this area. Then, new stress data from hydraulic fracturing and borehole observations is added to determine magnitude and orientation of horizontal stresses. Minimum horizontal principal stress is estimated from the shut-in pressure of the hydraulic fracturing measurement at a depth of about 700 m. The horizontal stress ratios ( S Hmax/ S hmin) derived from hydraulic fracturing, borehole breakout, and drilling-induced fractures are 1.4, 1.2, and 1.1-1.4, respectively, and the average orientations of the maximum horizontal stresses derived by field methods are N138°E, N122°E, and N136°E, respectively. The results of hydraulic fracturing and borehole observations are integrated with a result of numerical modeling to produce a final rock stress model. The results of the integration give in situ stress ratios of 1.3/1.0/0.8 ( S Hmax/ S V/ S hmin) with an average azimuth of S Hmax in the orientation range of N130°E-N136°E. It is found that the orientation of S Hmax is deviated by more than 40° clockwise compared to directions reported for the WSM in southeastern Korean peninsula.

  1. A methodology for using borehole temperature-depth profiles under ambient, single and cross-borehole pumping conditions to estimate fracture hydraulic properties

    NASA Astrophysics Data System (ADS)

    Klepikova, Maria V.; Le Borgne, Tanguy; Bour, Olivier; Davy, Philippe

    2011-09-01

    SummaryTemperature profiles in the subsurface are known to be sensitive to groundwater flow. Here we show that they are also strongly related to vertical flow in the boreholes themselves. Based on a numerical model of flow and heat transfer at the borehole scale, we propose a method to invert temperature measurements to derive borehole flow velocities. This method is applied to an experimental site in fractured crystalline rocks. Vertical flow velocities deduced from the inversion of temperature measurements are compared with direct heat-pulse flowmeter measurements showing a good agreement over two orders of magnitudes. Applying this methodology under ambient, single and cross-borehole pumping conditions allows us to estimate fracture hydraulic head and local transmissivity, as well as inter-borehole fracture connectivity. Thus, these results provide new insights on how to include temperature profiles in inverse problems for estimating hydraulic fracture properties.

  2. FEASIBILITY OF HYDRAULIC FRACTURING OF SOILS TO IMPROVE REMEDIAL ACTIONS

    EPA Science Inventory

    Hydraulic fracturing, a method of increasing fluid flow within the subsurface, should improve the effectiveness of several remedial techniques, including pump and treat, vapor extraction, bio-remediation, and soil-flushing. he technique is widely used to increase the yields of oi...

  3. Hydraulically controlled discrete sampling from open boreholes

    USGS Publications Warehouse

    Harte, Philip T.

    2013-01-01

    Groundwater sampling from open boreholes in fractured-rock aquifers is particularly challenging because of mixing and dilution of fluid within the borehole from multiple fractures. This note presents an alternative to traditional sampling in open boreholes with packer assemblies. The alternative system called ZONFLO (zonal flow) is based on hydraulic control of borehole flow conditions. Fluid from discrete fractures zones are hydraulically isolated allowing for the collection of representative samples. In rough-faced open boreholes and formations with less competent rock, hydraulic containment may offer an attractive alternative to physical containment with packers. Preliminary test results indicate a discrete zone can be effectively hydraulically isolated from other zones within a borehole for the purpose of groundwater sampling using this new method.

  4. Impact of ductility on hydraulic fracturing in shales

    NASA Astrophysics Data System (ADS)

    Auton, Lucy; MacMinn, Chris

    2015-11-01

    Hydraulic fracturing is a method for extracting natural gas and oil from low-permeability rocks such as shale via the injection of fluid at high pressure. This creates fractures in the rock, providing hydraulic access deeper into the reservoir and enabling gas to be collected from a larger region of the rock. Fracture is the tensile failure of a brittle material upon reaching a threshold tensile stress, but some shales have a high clay content and may yield plastically before fracturing. Plastic deformation is the shear failure of a ductile material, during which stress relaxes through irreversible rearrangements of the particles of the material. Here, we investigate the impact of the ductility of shales on hydraulic fracturing. We consider a simple, axisymmetric model for radially outward fluid injection from a wellbore into a ductile porous rock. We solve the model semi-analytically at steady state, and numerically in general. We find that plastic deformation greatly reduces the maximum tensile stress, and that this maximum stress does not always occur at the wellbore. These results imply that hydraulic fracturing may fail in ductile rocks, or that the required injection rate for fracking may be much larger than the rate predicted from purely elastic models.

  5. Micro-mechanics of hydro-mechanical coupled processes during hydraulic fracturing in sandstone

    NASA Astrophysics Data System (ADS)

    Caulk, R.; Tomac, I.

    2017-12-01

    This contribution presents micro-mechanical study of hydraulic fracture initiation and propagation in sandstone. The Discrete Element Method (DEM) Yade software is used as a tool to model fully coupled hydro-mechanical behavior of the saturated sandstone under pressures typical for deep geo-reservoirs. Heterogeneity of sandstone strength tensile and shear parameters are introduced using statistical representation of cathodoluminiscence (CL) sandstone rock images. Weibull distribution of statistical parameter values was determined as a best match of the CL scans of sandstone grains and cement between grains. Results of hydraulic fracturing stimulation from the well bore indicate significant difference between models with the bond strengths informed from CL scans and uniform homogeneous representation of sandstone parameters. Micro-mechanical insight reveals formed hydraulic fracture typical for mode I or tensile cracking in both cases. However, the shear micro-cracks are abundant in the CL informed model while they are absent in the standard model with uniform strength distribution. Most of the mode II cracks, or shear micro-cracks, are not part of the main hydraulic fracture and occur in the near-tip and near-fracture areas. The position and occurrence of the shear micro-cracks is characterized as secondary effect which dissipates the hydraulic fracturing energy. Additionally, the shear micro-crack locations qualitatively resemble acoustic emission cloud of shear cracks frequently observed in hydraulic fracturing, and sometimes interpreted as re-activation of existing fractures. Clearly, our model does not contain pre-existing cracks and has continuous nature prior to fracturing. This observation is novel and interesting and is quantified in the paper. The shear particle contact forces field reveals significant relaxation compared to the model with uniform strength distribution.

  6. Impact of ductility on hydraulic fracturing in shales

    NASA Astrophysics Data System (ADS)

    MacMinn, Chris; Auton, Lucy

    2016-04-01

    Hydraulic fracturing is a method for extracting natural gas and oil from low-permeability rocks such as shale via the high-pressure injection of fluid into the bulk of the rock. The goal is to initiate and propagate fractures that will provide hydraulic access deeper into the reservoir, enabling gas or oil to be collected from a larger region of the rock. Fracture is the tensile failure of a brittle material upon reaching a threshold tensile stress, but some shales have a high clay content and may yield plastically before fracturing. Plastic deformation is the shear failure of a ductile material, during which stress relaxes through irreversible rearrangements of the particles of the material. Here, we investigate the impact of the ductility of shales on hydraulic fracturing. We first consider a simple, axisymmetric model for radially outward fluid injection from a wellbore into a ductile porous rock. We use this model to show that plastic deformation greatly reduces the maximum tensile stress, and that this maximum stress does not always occur at the wellbore. We then complement these results with laboratory experiments in an analogue system, and with numerical simulations based on the discrete element method (DEM), both of which suggest that ductile failure can indeed dramatically change the resulting deformation pattern. These results imply that hydraulic fracturing may fail in ductile rocks, or that the required injection rate for fracking may be much larger than the rate predicted from models that assume purely elastic mechanical behavior.

  7. Identifying fracture‐zone geometry using simulated annealing and hydraulic‐connection data

    USGS Publications Warehouse

    Day-Lewis, Frederick D.; Hsieh, Paul A.; Gorelick, Steven M.

    2000-01-01

    A new approach is presented to condition geostatistical simulation of high‐permeability zones in fractured rock to hydraulic‐connection data. A simulated‐annealing algorithm generates three‐dimensional (3‐D) realizations conditioned to borehole data, inferred hydraulic connections between packer‐isolated borehole intervals, and an indicator (fracture zone or background‐K bedrock) variogram model of spatial variability. We apply the method to data from the U.S. Geological Survey Mirror Lake Site in New Hampshire, where connected high‐permeability fracture zones exert a strong control on fluid flow at the hundred‐meter scale. Single‐well hydraulic‐packer tests indicate where permeable fracture zones intersect boreholes, and multiple‐well pumping tests indicate the degree of hydraulic connection between boreholes. Borehole intervals connected by a fracture zone exhibit similar hydraulic responses, whereas intervals not connected by a fracture zone exhibit different responses. Our approach yields valuable insights into the 3‐D geometry of fracture zones at Mirror Lake. Statistical analysis of the realizations yields maps of the probabilities of intersecting specific fracture zones with additional wells. Inverse flow modeling based on the assumption of equivalent porous media is used to estimate hydraulic conductivity and specific storage and to identify those fracture‐zone geometries that are consistent with hydraulic test data.

  8. Adequacy of Current State Setbacks for Directional High-Volume Hydraulic Fracturing in the Marcellus, Barnett, and Niobrara Shale Plays

    PubMed Central

    Haley, Marsha; McCawley, Michael; Epstein, Anne C.; Arrington, Bob; Bjerke, Elizabeth Ferrell

    2016-01-01

    Background: There is an increasing awareness of the multiple potential pathways leading to human health risks from hydraulic fracturing. Setback distances are a legislative method to mitigate potential risks. Objectives: We attempted to determine whether legal setback distances between well-pad sites and the public are adequate in three shale plays. Methods: We reviewed geography, current statutes and regulations, evacuations, thermal modeling, air pollution studies, and vapor cloud modeling within the Marcellus, Barnett, and Niobrara Shale Plays. Discussion: The evidence suggests that presently utilized setbacks may leave the public vulnerable to explosions, radiant heat, toxic gas clouds, and air pollution from hydraulic fracturing activities. Conclusions: Our results suggest that setbacks may not be sufficient to reduce potential threats to human health in areas where hydraulic fracturing occurs. It is more likely that a combination of reasonable setbacks with controls for other sources of pollution associated with the process will be required. Citation: Haley M, McCawley M, Epstein AC, Arrington B, Bjerke EF. 2016. Adequacy of current state setbacks for directional high-volume hydraulic fracturing in the Marcellus, Barnett, and Niobrara Shale Plays. Environ Health Perspect 124:1323–1333; http://dx.doi.org/10.1289/ehp.1510547 PMID:26895553

  9. Study of gas production from shale reservoirs with multi-stage hydraulic fracturing horizontal well considering multiple transport mechanisms.

    PubMed

    Guo, Chaohua; Wei, Mingzhen; Liu, Hong

    2018-01-01

    Development of unconventional shale gas reservoirs (SGRs) has been boosted by the advancements in two key technologies: horizontal drilling and multi-stage hydraulic fracturing. A large number of multi-stage fractured horizontal wells (MsFHW) have been drilled to enhance reservoir production performance. Gas flow in SGRs is a multi-mechanism process, including: desorption, diffusion, and non-Darcy flow. The productivity of the SGRs with MsFHW is influenced by both reservoir conditions and hydraulic fracture properties. However, rare simulation work has been conducted for multi-stage hydraulic fractured SGRs. Most of them use well testing methods, which have too many unrealistic simplifications and assumptions. Also, no systematical work has been conducted considering all reasonable transport mechanisms. And there are very few works on sensitivity studies of uncertain parameters using real parameter ranges. Hence, a detailed and systematic study of reservoir simulation with MsFHW is still necessary. In this paper, a dual porosity model was constructed to estimate the effect of parameters on shale gas production with MsFHW. The simulation model was verified with the available field data from the Barnett Shale. The following mechanisms have been considered in this model: viscous flow, slip flow, Knudsen diffusion, and gas desorption. Langmuir isotherm was used to simulate the gas desorption process. Sensitivity analysis on SGRs' production performance with MsFHW has been conducted. Parameters influencing shale gas production were classified into two categories: reservoir parameters including matrix permeability, matrix porosity; and hydraulic fracture parameters including hydraulic fracture spacing, and fracture half-length. Typical ranges of matrix parameters have been reviewed. Sensitivity analysis have been conducted to analyze the effect of the above factors on the production performance of SGRs. Through comparison, it can be found that hydraulic fracture parameters are more sensitive compared with reservoir parameters. And reservoirs parameters mainly affect the later production period. However, the hydraulic fracture parameters have a significant effect on gas production from the early period. The results of this study can be used to improve the efficiency of history matching process. Also, it can contribute to the design and optimization of hydraulic fracture treatment design in unconventional SGRs.

  10. Study of gas production from shale reservoirs with multi-stage hydraulic fracturing horizontal well considering multiple transport mechanisms

    PubMed Central

    Wei, Mingzhen; Liu, Hong

    2018-01-01

    Development of unconventional shale gas reservoirs (SGRs) has been boosted by the advancements in two key technologies: horizontal drilling and multi-stage hydraulic fracturing. A large number of multi-stage fractured horizontal wells (MsFHW) have been drilled to enhance reservoir production performance. Gas flow in SGRs is a multi-mechanism process, including: desorption, diffusion, and non-Darcy flow. The productivity of the SGRs with MsFHW is influenced by both reservoir conditions and hydraulic fracture properties. However, rare simulation work has been conducted for multi-stage hydraulic fractured SGRs. Most of them use well testing methods, which have too many unrealistic simplifications and assumptions. Also, no systematical work has been conducted considering all reasonable transport mechanisms. And there are very few works on sensitivity studies of uncertain parameters using real parameter ranges. Hence, a detailed and systematic study of reservoir simulation with MsFHW is still necessary. In this paper, a dual porosity model was constructed to estimate the effect of parameters on shale gas production with MsFHW. The simulation model was verified with the available field data from the Barnett Shale. The following mechanisms have been considered in this model: viscous flow, slip flow, Knudsen diffusion, and gas desorption. Langmuir isotherm was used to simulate the gas desorption process. Sensitivity analysis on SGRs’ production performance with MsFHW has been conducted. Parameters influencing shale gas production were classified into two categories: reservoir parameters including matrix permeability, matrix porosity; and hydraulic fracture parameters including hydraulic fracture spacing, and fracture half-length. Typical ranges of matrix parameters have been reviewed. Sensitivity analysis have been conducted to analyze the effect of the above factors on the production performance of SGRs. Through comparison, it can be found that hydraulic fracture parameters are more sensitive compared with reservoir parameters. And reservoirs parameters mainly affect the later production period. However, the hydraulic fracture parameters have a significant effect on gas production from the early period. The results of this study can be used to improve the efficiency of history matching process. Also, it can contribute to the design and optimization of hydraulic fracture treatment design in unconventional SGRs. PMID:29320489

  11. Overview of microseismic monitoring of hydraulic fracturing for unconventional oil and gas plays

    NASA Astrophysics Data System (ADS)

    Shemeta, J. E.

    2011-12-01

    The exponential growth of unconventional resources for oil and gas production has been driven by the use of horizontal drilling and hydraulic fracturing. These drilling and completion methods increase the contact area of the low permeability and porosity hydrocarbon bearing formations and allow for economic production in what was previously considered uncommercial rock. These new resource plays have sparked an enormous interest in microseismic monitoring of hydraulic fracture treatments. As a hydraulic fracture is pumped, microseismic events are emitted in a volume of rock surrounding the stimulated fracture. The goal of the monitoring is to identify and locate the microseismic events to a high degree of precision and to map the position of the induced hydraulic fracture in time and space. The microseismic events are very small, typically having a moment-magnitude range of -4 to 0. The microseismic data are collected using a variety of seismic array designs and instrumentation, including borehole, shallow borehole, near-surface and surface arrays, using either of three-component clamped 15 Hz borehole sondes to simple vertical 10 Hz geophones for surface monitoring. The collection and processing of these data is currently under rapid technical development. Each monitoring method has technical challenges which include accurate velocity modeling, correct seismic phase identification and signal to noise issues. The microseismic locations are used to guide hydrocarbon exploration and production companies in crucial reservoir development decisions such as the direction to drill the horizontal well bores and the appropriate inter-well spacing between horizontal wells to optimally drain the resource. The fracture mapping is also used to guide fracture and reservoir engineers in designing and calibrating the fluid volumes and types, injection rates and pressures for the hydraulic fracture treatments. The microseismic data can be located and mapped in near real-time during an injection and used to assist the operators in the avoidance of geohazards (such as a karst feature or fault) or fracture height growth into undesirable formations such as water-bearing zones (that could ruin the well). An important objective for hydraulic fracture mapping is to map the effective fracture geometry: the specific volume of rock that is contributing to hydrocarbon flow in to the well. This, however, still remains an elusive goal that has yet to be completely understood with the current mapping technology.

  12. Numerical Simulation of Potential Groundwater Contaminant Pathways from Hydraulically Fractured Oil Shale in the Nevada Basin and Range Province

    NASA Astrophysics Data System (ADS)

    Rybarski, S.; Pohll, G.; Pohlmann, K.; Plume, R.

    2014-12-01

    In recent years, hydraulic fracturing (fracking) has become an increasingly popular method for extraction of oil and natural gas from tight formations. Concerns have been raised over a number of environmental risks associated with fracking, including contamination of groundwater by fracking fluids, upwelling of deep subsurface brines, and methane migration. Given the potentially long time scale for contaminant transport associated with hydraulic fracturing, numerical modeling remains the best practice for risk assessment. Oil shale in the Humboldt basin of northeastern Nevada has now become a target for hydraulic fracturing operations. Analysis of regional and shallow groundwater flow is used to assess several potential migration pathways specific to the geology and hydrogeology of this basin. The model domain in all simulations is defined by the geologic structure of the basin as determined by deep oil and gas well bores and formation outcrops. Vertical transport of gaseous methane along a density gradient is simulated in TOUGH2, while fluid transport along faults and/or hydraulic fractures and lateral flow through more permeable units adjacent to the targeted shale are modeled in FEFLOW. Sensitivity analysis considers basin, fault, and hydraulic fracturing parameters, and results highlight key processes that control fracking fluid and methane migration and time scales under which it might occur.

  13. Semi-analytical model of cross-borehole flow experiments for fractured medium characterization

    NASA Astrophysics Data System (ADS)

    Roubinet, D.; Irving, J.; Day-Lewis, F. D.

    2014-12-01

    The study of fractured rocks is extremely important in a wide variety of research fields where the fractures and faults can represent either rapid access to some resource of interest or potential pathways for the migration of contaminants in the subsurface. Identification of their presence and determination of their properties are critical and challenging tasks that have led to numerous fracture characterization methods. Among these methods, cross-borehole flowmeter analysis aims to evaluate fracture connections and hydraulic properties from vertical-flow-velocity measurements conducted in one or more observation boreholes under forced hydraulic conditions. Previous studies have demonstrated that analysis of these data can provide important information on fracture connectivity, transmissivity, and storativity. Estimating these properties requires the development of analytical and/or numerical modeling tools that are well adapted to the complexity of the problem. Quantitative analysis of cross-borehole flowmeter experiments, in particular, requires modeling formulations that: (i) can be adapted to a variety of fracture and experimental configurations; (ii) can take into account interactions between the boreholes because their radii of influence may overlap; and (iii) can be readily cast into an inversion framework that allows for not only the estimation of fracture hydraulic properties, but also an assessment of estimation error. To this end, we present a new semi-analytical formulation for cross-borehole flow in fractured media that links transient vertical-flow velocities measured in one or a series of observation wells during hydraulic forcing to the transmissivity and storativity of the fractures intersected by these wells. Our model addresses the above needs and provides a flexible and computationally efficient semi-analytical framework having strong potential for future adaptation to more complex configurations. The proposed modeling approach is demonstrated in the context of sensitivity analysis for a relatively simple two-fracture synthetic problem, as well as in the context of field-data analysis for fracture connectivity and estimation of corresponding hydraulic properties.

  14. Engineering and Design: Geotechnical Analysis by the Finite Element Method

    DTIC Science & Technology

    1995-07-31

    of an Idealized ’Wet Clay’.” Nobari, E. S., Lee, K. L., and Duncan, J. M. Soil Mechanics, Wiesbaden I, 47-54. (1973). “ Hydraulic Fracturing in Zoned...nonsteady flow conditions - Pore pressures induced by loading under undrained conditions - Potential for cracking in embankment dams - Potential for hydraulic ... fracturing in embankment dams - Potential for hydraulic separation between concrete and soil - Settlements and horizontal movements b. Comparing

  15. The Shear Mechanisms of Natural Fractures during the Hydraulic Stimulation of Shale Gas Reservoirs.

    PubMed

    Zhang, Zhaobin; Li, Xiao

    2016-08-23

    The shearing of natural fractures is important in the permeability enhancement of shale gas reservoirs during hydraulic fracturing treatment. In this work, the shearing mechanisms of natural fractures are analyzed using a newly proposed numerical model based on the displacement discontinuities method. The fluid-rock coupling system of the model is carefully designed to calculate the shearing of fractures. Both a single fracture and a complex fracture network are used to investigate the shear mechanisms. The investigation based on a single fracture shows that the non-ignorable shearing length of a natural fracture could be formed before the natural fracture is filled by pressurized fluid. Therefore, for the hydraulic fracturing treatment of the naturally fractured shale gas reservoirs, the shear strength of shale is generally more important than the tensile strength. The fluid-rock coupling propagation processes of a complex fracture network are simulated under different crustal stress conditions and the results agree well with those of the single fracture. The propagation processes of complex fracture network show that a smaller crustal stress difference is unfavorable to the shearing of natural fractures, but is favorable to the formation of complex fracture network.

  16. The Shear Mechanisms of Natural Fractures during the Hydraulic Stimulation of Shale Gas Reservoirs

    PubMed Central

    Zhang, Zhaobin; Li, Xiao

    2016-01-01

    The shearing of natural fractures is important in the permeability enhancement of shale gas reservoirs during hydraulic fracturing treatment. In this work, the shearing mechanisms of natural fractures are analyzed using a newly proposed numerical model based on the displacement discontinuities method. The fluid-rock coupling system of the model is carefully designed to calculate the shearing of fractures. Both a single fracture and a complex fracture network are used to investigate the shear mechanisms. The investigation based on a single fracture shows that the non-ignorable shearing length of a natural fracture could be formed before the natural fracture is filled by pressurized fluid. Therefore, for the hydraulic fracturing treatment of the naturally fractured shale gas reservoirs, the shear strength of shale is generally more important than the tensile strength. The fluid-rock coupling propagation processes of a complex fracture network are simulated under different crustal stress conditions and the results agree well with those of the single fracture. The propagation processes of complex fracture network show that a smaller crustal stress difference is unfavorable to the shearing of natural fractures, but is favorable to the formation of complex fracture network. PMID:28773834

  17. Rate decline curves analysis of multiple-fractured horizontal wells in heterogeneous reservoirs

    NASA Astrophysics Data System (ADS)

    Wang, Jiahang; Wang, Xiaodong; Dong, Wenxiu

    2017-10-01

    In heterogeneous reservoir with multiple-fractured horizontal wells (MFHWs), due to the high density network of artificial hydraulic fractures, the fluid flow around fracture tips behaves like non-linear flow. Moreover, the production behaviors of different artificial hydraulic fractures are also different. A rigorous semi-analytical model for MFHWs in heterogeneous reservoirs is presented by combining source function with boundary element method. The model are first validated by both analytical model and simulation model. Then new Blasingame type curves are established. Finally, the effects of critical parameters on the rate decline characteristics of MFHWs are discussed. The results show that heterogeneity has significant influence on the rate decline characteristics of MFHWs; the parameters related to the MFHWs, such as fracture conductivity and length also can affect the rate characteristics of MFHWs. One novelty of this model is to consider the elliptical flow around artificial hydraulic fracture tips. Therefore, our model can be used to predict rate performance more accurately for MFHWs in heterogeneous reservoir. The other novelty is the ability to model the different production behavior at different fracture stages. Compared to numerical and analytic methods, this model can not only reduce extensive computing processing but also show high accuracy.

  18. Non-destructive evaluation of laboratory scale hydraulic fracturing using acoustic emission

    NASA Astrophysics Data System (ADS)

    Hampton, Jesse Clay

    The primary objective of this research is to develop techniques to characterize hydraulic fractures and fracturing processes using acoustic emission monitoring based on laboratory scale hydraulic fracturing experiments. Individual microcrack AE source characterization is performed to understand the failure mechanisms associated with small failures along pre-existing discontinuities and grain boundaries. Individual microcrack analysis methods include moment tensor inversion techniques to elucidate the mode of failure, crack slip and crack normal direction vectors, and relative volumetric deformation of an individual microcrack. Differentiation between individual microcrack analysis and AE cloud based techniques is studied in efforts to refine discrete fracture network (DFN) creation and regional damage quantification of densely fractured media. Regional damage estimations from combinations of individual microcrack analyses and AE cloud density plotting are used to investigate the usefulness of weighting cloud based AE analysis techniques with microcrack source data. Two granite types were used in several sample configurations including multi-block systems. Laboratory hydraulic fracturing was performed with sample sizes ranging from 15 x 15 x 25 cm3 to 30 x 30 x 25 cm 3 in both unconfined and true-triaxially confined stress states using different types of materials. Hydraulic fracture testing in rock block systems containing a large natural fracture was investigated in terms of AE response throughout fracture interactions. Investigations of differing scale analyses showed the usefulness of individual microcrack characterization as well as DFN and cloud based techniques. Individual microcrack characterization weighting cloud based techniques correlated well with post-test damage evaluations.

  19. Vibrational modes of hydraulic fractures: Inference of fracture geometry from resonant frequencies and attenuation

    NASA Astrophysics Data System (ADS)

    Lipovsky, Bradley P.; Dunham, Eric M.

    2015-02-01

    Oscillatory seismic signals arising from resonant vibrations of hydraulic fractures are observed in many geologic systems, including volcanoes, glaciers and ice sheets, and hydrocarbon and geothermal reservoirs. To better quantify the physical dimensions of fluid-filled cracks and properties of the fluids within them, we study wave motion along a thin hydraulic fracture waveguide. We present a linearized analysis, valid at wavelengths greater than the fracture aperture, that accounts for quasi-static elastic deformation of the fracture walls, as well as fluid viscosity, inertia, and compressibility. In the long-wavelength limit, anomalously dispersed guided waves known as crack or Krauklis waves propagate with restoring force from fracture wall elasticity. At shorter wavelengths, the waves become sound waves within the fluid channel. Wave attenuation in our model is due to fluid viscosity, rather than seismic radiation from crack tips or fracture wall roughness. We characterize viscous damping at both low frequencies, where the flow is always fully developed, and at high frequencies, where the flow has a nearly constant velocity profile away from viscous boundary layers near the fracture walls. Most observable seismic signals from resonating fractures likely arise in the boundary layer crack wave limit, where fluid-solid coupling is pronounced and attenuation is minimal. We present a method to estimate the aperture and length of a resonating hydraulic fracture using both the seismically observed quality factor and characteristic frequency. Finally, we develop scaling relations between seismic moment and characteristic frequency that might be useful when interpreting the statistics of hydraulic fracture events.

  20. Stimulation Of The Methane Production With The Use Of Changing Of The Rock Massif Physical Conditions

    NASA Astrophysics Data System (ADS)

    Baev, Mikhail; Khyamyalyaynen, Veniamin; Shevtsov, Aleksandr

    2017-11-01

    The commercial coalbed methane production success is majorly defined by the effectiveness of the use of special gas inflow stimulation methods. The necessity of using of such methods issubject to the aspects of searching and displacement of methane within the coal compound. Theanalysis of the ways of methane production stimulation from virgin coal formations is given. The description of the process of hydraulic fracturing (fracturing) as the most common stimulation method during the commercial coalbed methane production as well as its major advantages are presented. The present work provides data about the initiated laboratory research of sands collected from Kemerovo region deposits for the purpose of finding of the most prospective samples by means of anchoring of fractures. The prospectivity and ability to implement the hydraulic fracturing with the use of locally available sands acting as proppants are shown. The influence of the strain-stress state of the rock massif on the alteration of permeability and the necessity of its extension study with respect to different technological features of hydraulic fracturing is shown

  1. Mixed integer simulation optimization for optimal hydraulic fracturing and production of shale gas fields

    NASA Astrophysics Data System (ADS)

    Li, J. C.; Gong, B.; Wang, H. G.

    2016-08-01

    Optimal development of shale gas fields involves designing a most productive fracturing network for hydraulic stimulation processes and operating wells appropriately throughout the production time. A hydraulic fracturing network design-determining well placement, number of fracturing stages, and fracture lengths-is defined by specifying a set of integer ordered blocks to drill wells and create fractures in a discrete shale gas reservoir model. The well control variables such as bottom hole pressures or production rates for well operations are real valued. Shale gas development problems, therefore, can be mathematically formulated with mixed-integer optimization models. A shale gas reservoir simulator is used to evaluate the production performance for a hydraulic fracturing and well control plan. To find the optimal fracturing design and well operation is challenging because the problem is a mixed integer optimization problem and entails computationally expensive reservoir simulation. A dynamic simplex interpolation-based alternate subspace (DSIAS) search method is applied for mixed integer optimization problems associated with shale gas development projects. The optimization performance is demonstrated with the example case of the development of the Barnett Shale field. The optimization results of DSIAS are compared with those of a pattern search algorithm.

  2. Impacts of Glutaraldehyde on Microbial Community Structure and Degradation Potential in Streams Impacted by Hydraulic Fracturing.

    PubMed

    Campa, Maria Fernanda; Techtmann, Stephen M; Gibson, Caleb M; Zhu, Xiaojuan; Patterson, Megan; Garcia de Matos Amaral, Amanda; Ulrich, Nikea; Campagna, Shawn R; Grant, Christopher J; Lamendella, Regina; Hazen, Terry C

    2018-05-15

    The environmental impacts of hydraulic fracturing, particularly those of surface spills in aquatic ecosystems, are not fully understood. The goals of this study were to (1) understand the effect of previous exposure to hydraulic fracturing fluids on aquatic microbial community structure and (2) examine the impacts exposure has on biodegradation potential of the biocide glutaraldehyde. Microcosms were constructed from hydraulic fracturing-impacted and nonhydraulic fracturing-impacted streamwater within the Marcellus shale region in Pennsylvania. Microcosms were amended with glutaraldehyde and incubated aerobically for 56 days. Microbial community adaptation to glutaraldehyde was monitored using 16S rRNA gene amplicon sequencing and quantification by qPCR. Abiotic and biotic glutaraldehyde degradation was measured using ultra-performance liquid chromatography--high resolution mass spectrometry and total organic carbon. It was found that nonhydraulic fracturing-impacted microcosms biodegraded glutaraldehyde faster than the hydraulic fracturing-impacted microcosms, showing a decrease in degradation potential after exposure to hydraulic fracturing activity. Hydraulic fracturing-impacted microcosms showed higher richness after glutaraldehyde exposure compared to unimpacted streams, indicating an increased tolerance to glutaraldehyde in hydraulic fracturing impacted streams. Beta diversity and differential abundance analysis of sequence count data showed different bacterial enrichment for hydraulic fracturing-impacted and nonhydraulic fracturing-impacted microcosms after glutaraldehyde addition. These findings demonstrated a lasting effect on microbial community structure and glutaraldehyde degradation potential in streams impacted by hydraulic fracturing operations.

  3. Fracture Propagation, Fluid Flow, and Geomechanics of Water-Based Hydraulic Fracturing in Shale Gas Systems and Electromagnetic Geophysical Monitoring of Fluid Migration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jihoon; Um, Evan; Moridis, George

    2014-12-01

    We investigate fracture propagation induced by hydraulic fracturing with water injection, using numerical simulation. For rigorous, full 3D modeling, we employ a numerical method that can model failure resulting from tensile and shear stresses, dynamic nonlinear permeability, leak-off in all directions, and thermo-poro-mechanical effects with the double porosity approach. Our numerical results indicate that fracture propagation is not the same as propagation of the water front, because fracturing is governed by geomechanics, whereas water saturation is determined by fluid flow. At early times, the water saturation front is almost identical to the fracture tip, suggesting that the fracture is mostlymore » filled with injected water. However, at late times, advance of the water front is retarded compared to fracture propagation, yielding a significant gap between the water front and the fracture top, which is filled with reservoir gas. We also find considerable leak-off of water to the reservoir. The inconsistency between the fracture volume and the volume of injected water cannot properly calculate the fracture length, when it is estimated based on the simple assumption that the fracture is fully saturated with injected water. As an example of flow-geomechanical responses, we identify pressure fluctuation under constant water injection, because hydraulic fracturing is itself a set of many failure processes, in which pressure consistently drops when failure occurs, but fluctuation decreases as the fracture length grows. We also study application of electromagnetic (EM) geophysical methods, because these methods are highly sensitive to changes in porosity and pore-fluid properties due to water injection into gas reservoirs. Employing a 3D finite-element EM geophysical simulator, we evaluate the sensitivity of the crosswell EM method for monitoring fluid movements in shaly reservoirs. For this sensitivity evaluation, reservoir models are generated through the coupled flow-geomechanical simulator and are transformed via a rock-physics model into electrical conductivity models. It is shown that anomalous conductivity distribution in the resulting models is closely related to injected water saturation, but not closely related to newly created unsaturated fractures. Our numerical modeling experiments demonstrate that the crosswell EM method can be highly sensitive to conductivity changes that directly indicate the migration pathways of the injected fluid. Accordingly, the EM method can serve as an effective monitoring tool for distribution of injected fluids (i.e., migration pathways) during hydraulic fracturing operations« less

  4. Longwall top coal caving (LTCC) mining technologies with roof softening by hydraulic fracturing method

    NASA Astrophysics Data System (ADS)

    Klishin, V.; Nikitenko, S.; Opruk, G.

    2018-05-01

    The paper discusses advanced top coal caving technologies for thick coal seams and addresses some issues of incomplete coal extraction, which can result in the environmental damage, landscape change, air and water pollution and endogenous fires. The authors put forward a fundamentally new, having no equivalent and ecology-friendly method to difficult-to-cave roof coal – directional hydraulic fracturing and nonexplosive disintegration.

  5. Stochastic Ground Water Flow Simulation with a Fracture Zone Continuum Model

    USGS Publications Warehouse

    Langevin, C.D.

    2003-01-01

    A method is presented for incorporating the hydraulic effects of vertical fracture zones into two-dimensional cell-based continuum models of ground water flow and particle tracking. High hydraulic conductivity features are used in the model to represent fracture zones. For fracture zones that are not coincident with model rows or columns, an adjustment is required for the hydraulic conductivity value entered into the model cells to compensate for the longer flowpath through the model grid. A similar adjustment is also required for simulated travel times through model cells. A travel time error of less than 8% can occur for particles moving through fractures with certain orientations. The fracture zone continuum model uses stochastically generated fracture zone networks and Monte Carlo analysis to quantify uncertainties with simulated advective travel times. An approach is also presented for converting an equivalent continuum model into a fracture zone continuum model by establishing the contribution of matrix block transmissivity to the bulk transmissivity of the aquifer. The methods are used for a case study in west-central Florida to quantify advective travel times from a potential wetland rehydration site to a municipal supply wellfield. Uncertainties in advective travel times are assumed to result from the presence of vertical fracture zones, commonly observed on aerial photographs as photolineaments.

  6. Hydraulic-fracture diagnostic research. Final report, December 1989-December 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fix, J.E.; Adair, R.G.; Clawson, G.E.

    1992-05-01

    The results of the research in microseismic methods to determine hydraulic fracture dimensions during the contract were significant. The GRI Hydraulic Fracture Test Site (HFTS) development planning was a major effort. Ten meetings of the Planning Team were coordinated and hosted. A statement of the HFTS mission, scope, objectives, and requirements was created. The primary objectives were to provide for interdisciplinary experiments on fracture modeling and fracture diagnostics. A Conceptual Plan for the HFTS was compiled by Teledyne Geotech and distributed at the Project Advisors Group meeting. An experiment at the Shell South Belridge Field in California was a directmore » analog of the HFTS. Multiple fracture stimulations were monitored from 3 wells with cemented-in geophones. Methods of handling and processing large data volumes in real time were established. The final fracture geometry did not fit the circular model. Fracture diagnostics were monitored at two GRI cooperative wells: the Enron S. Hogsback No. 13-8A and the Phillips Ward C No. 11. Theoretical studies indicate that crack waves might be used as an estimate of fracture length. After applying advanced signal enhancement techniques to low-frequency signals from 14 surveys, it was concluded that the data from presently available sondes is contaminated by sonde resonances.« less

  7. What happens between pure hydraulic and buckling mechanisms of blowout fractures?

    PubMed

    Nagasao, Tomohisa; Miyamoto, Junpei; Shimizu, Yusuke; Jiang, Hua; Nakajima, Tatsuo

    2010-06-01

    The present study aims to evaluate how the ratio of the hydraulic and buckling mechanisms affects blowout fracture patterns, when these two mechanisms work simultaneously. Three-dimensional computer-aided-design (CAD)models were generated simulating ten skulls. To simulate impact, 1.2J was applied on the orbital region of these models in four patterns. Pattern 1: All the energy works to cause the hydraulic effect. Pattern 2: Two-thirds of the energy works to cause the hydraulic effect; one-third of the energy works to cause the buckling effect. Pattern 3: One-third of the energy works to cause the hydraulic effect; two-thirds of the energy works to cause the buckling effect. Pattern 4: The entire energy quantum works to cause the buckling effect. Using the finite element method, the regions where fractures were theoretically expected to occur were calculated and were compared between the four patterns. More fracture damage occurred for Pattern 1 than Pattern 2, and for Pattern 3 than for Pattern 4. The hydraulic and buckling mechanisms interact with one another. When these two mechanisms are combined, the orbital walls tend to develop serious fractures. Copyright (c) 2009 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  8. Scaling of the flow-stiffness relationship in weakly correlated single fractures

    NASA Astrophysics Data System (ADS)

    Petrovitch, Christopher L.

    The remote characterization of the hydraulic properties of fractures in rocks is important in many subsurface projects. Fractures create uncertainty in the hydraulic properties of the subsurface in that their topology controls the amount of flow that can occur in addition to that from the matrix. In turn, the fracture topology is also affected by stress which alters the topology as the stress changes directly. This alteration of fracture topology with stress is captured by fracture specific stiffness. The specific stiffness of a single fracture can be remotely probed from the attenuation and velocity of seismic waves. The hydromechanical coupling of single fractures, i.e. the relationship between flow and stiffness, holds the key to finding a method to remotely characterize a fractures hydraulic properties. This thesis is separated into two parts: (1) a description of the hydromechanical coupling of fractures based on numerical models used to generate synthetic fractures, compute the flow through a fracture, and deform fracture topologies to unravel the scaling function that is fundamental to the hydromechanical coupling of single fractures; (2) a Discontinuous Galerkin (DG) method was developed to accurately simulate the scattered seismic waves from realistic fracture topologies. The scaling regimes of fluid flow and specific stiffness in weakly correlated fractures are identified by using techniques from Percolation Theory and initially treating the two processes separately. The fixed points associated with fluid flow were found to display critical scaling while the fixed points for specific stiffness were trivial. The two processes could be indirectly related because the trivial scaling of the mechanical properties allowed the specific stiffness to be used as surrogate to the void area fraction. The dynamic transport exponent was extracted at threshold by deforming fracture geometries within the effective medium regime (near the ``cubic law'' regime) to the critical regime. From this, a scaling function was defined for the hydromechanical coupling. This scaling function provides the link between fluid flow and fracture specific stiffness so that seismic waves may be used to remotely probe the hydraulic properties of fractures. Then, the DG method is shown to be capable of measuring such fracture specific stiffnesses by numerically measuring the velocity of interface waves when propagated across laboratory measured fracture geometries of Austin Chalk.

  9. A Hydraulic Stress Measurement System for Deep Borehole Investigations

    NASA Astrophysics Data System (ADS)

    Ask, Maria; Ask, Daniel; Cornet, Francois; Nilsson, Tommy

    2017-04-01

    Luleå University of Technology (LTU) is developing and building a wire-line system for hydraulic rock stress measurements, with funding from the Swedish Research Council and Luleå University of Technology. In this project, LTU is collaborating with University of Strasbourg and Geosigma AB. The stress state influences drilling and drillability, as well as rock mass stability and permeability. Therefore, knowledge about the state of in-situ stress (stress magnitudes, and orientations) and its spatial variation with depth is essential for many underground rock engineering projects, for example for underground storage of hazardous material (e.g. nuclear waste, carbon dioxide), deep geothermal exploration, and underground infrastructure (e.g. tunneling, hydropower dams). The system is designed to conduct hydraulic stress testing in slim boreholes. There are three types of test methods: (1) hydraulic fracturing, (2) sleeve fracturing and (3) hydraulic testing of pre-existing fractures. These are robust methods for determining in situ stresses from boreholes. Integration of the three methods allows determination of the three-dimensional stress tensor and its spatial variation with depth in a scientific unambiguously way. The stress system is composed of a downhole and a surface unit. The downhole unit consists of hydraulic fracturing equipment (straddle packers and downhole imaging tool) and their associated data acquisition systems. The testing system is state of the art in several aspects including: (1) Large depth range (3 km), (2) Ability to test three borehole dimensions (N=76 mm, H=96 mm, and P=122 mm), (3) Resistivity imager maps the orientation of tested fracture; (4) Highly stiff and resistive to corrosion downhole testing equipment; and (5) Very detailed control on the injection flow rate and cumulative volume is obtained by a hydraulic injection pump with variable piston rate, and a highly sensitive flow-meter. At EGU General Assembly 2017, we would like to present this new and unique stress measurement system and some initial test results from a 1200 m long borehole in crystalline rock.

  10. Coupling Hydraulic Fracturing Propagation and Gas Well Performance for Simulation of Production in Unconventional Shale Gas Reservoirs

    NASA Astrophysics Data System (ADS)

    Wang, C.; Winterfeld, P. H.; Wu, Y. S.; Wang, Y.; Chen, D.; Yin, C.; Pan, Z.

    2014-12-01

    Hydraulic fracturing combined with horizontal drilling has made it possible to economically produce natural gas from unconventional shale gas reservoirs. An efficient methodology for evaluating hydraulic fracturing operation parameters, such as fluid and proppant properties, injection rates, and wellhead pressure, is essential for the evaluation and efficient design of these processes. Traditional numerical evaluation and optimization approaches are usually based on simulated fracture properties such as the fracture area. In our opinion, a methodology based on simulated production data is better, because production is the goal of hydraulic fracturing and we can calibrate this approach with production data that is already known. This numerical methodology requires a fully-coupled hydraulic fracture propagation and multi-phase flow model. In this paper, we present a general fully-coupled numerical framework to simulate hydraulic fracturing and post-fracture gas well performance. This three-dimensional, multi-phase simulator focuses on: (1) fracture width increase and fracture propagation that occurs as slurry is injected into the fracture, (2) erosion caused by fracture fluids and leakoff, (3) proppant subsidence and flowback, and (4) multi-phase fluid flow through various-scaled anisotropic natural and man-made fractures. Mathematical and numerical details on how to fully couple the fracture propagation and fluid flow parts are discussed. Hydraulic fracturing and production operation parameters, and properties of the reservoir, fluids, and proppants, are taken into account. The well may be horizontal, vertical, or deviated, as well as open-hole or cemented. The simulator is verified based on benchmarks from the literature and we show its application by simulating fracture network (hydraulic and natural fractures) propagation and production data history matching of a field in China. We also conduct a series of real-data modeling studies with different combinations of hydraulic fracturing parameters and present the methodology to design these operations with feedback of simulated production data. The unified model aids in the optimization of hydraulic fracturing design, operations, and production.

  11. Tracer Methods for Characterizing Fracture Creation in Engineered Geothermal Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, Peter; Harris, Joel

    2014-05-08

    The aim of this proposal is to develop, through novel high-temperature-tracing approaches, three technologies for characterizing fracture creation within Engineered Geothermal Systems (EGS). The objective of a first task is to identify, develop and demonstrate adsorbing tracers for characterizing interwell reservoir-rock surface areas and fracture spacing. The objective of a second task is to develop and demonstrate a methodology for measuring fracture surface areas adjacent to single wells. The objective of a third task is to design, fabricate and test an instrument that makes use of tracers for measuring fluid flow between newly created fractures and wellbores. In one methodmore » of deployment, it will be used to identify qualitatively which fractures were activated during a hydraulic stimulation experiment. In a second method of deployment, it will serve to measure quantitatively the rate of fluid flowing from one or more activated fracture during a production test following a hydraulic stimulation.« less

  12. Imaging hydraulic fractures using temperature transients in the Belridge Diatomite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shahin, G.T.; Johnston, R.M.

    1995-12-31

    Results of a temperature transient analysis of Shell`s Phase 1 and Phase 2 Diatomite Steamdrive Pilots are used to image hydraulic injection fracture lengths, angles, and heat injectivities into the low-permeability formation. The Phase 1 Pilot is a limited-interval injection test. In Phase 2, steam is injected into two 350 ft upper and lower zones through separate hydraulic fractures. Temperature response of both pilots is monitored with sixteen logging observation wells. A perturbation analysis of the non-linear pressure diffusion and heat transport equations indicates that at a permeability of about 0.1 md or less, heat transport in the Diatomite tendsmore » to be dominated by thermal diffusivity, and pressure diffusion is dominated by the ratio of thermal expansion to fluid compressibility. Under these conditions, the temperature observed at a logging observation well is governed by a dimensionless quantity that depends on the perpendicular distance between the observation well and the hydraulic fracture, divided by the square root of time. Using this dependence, a novel method is developed for imaging hydraulic fracture geometry and relative heat injectivity from the temperature history of the pilot.« less

  13. Adequacy of Current State Setbacks for Directional High-Volume Hydraulic Fracturing in the Marcellus, Barnett, and Niobrara Shale Plays.

    PubMed

    Haley, Marsha; McCawley, Michael; Epstein, Anne C; Arrington, Bob; Bjerke, Elizabeth Ferrell

    2016-09-01

    There is an increasing awareness of the multiple potential pathways leading to human health risks from hydraulic fracturing. Setback distances are a legislative method to mitigate potential risks. We attempted to determine whether legal setback distances between well-pad sites and the public are adequate in three shale plays. We reviewed geography, current statutes and regulations, evacuations, thermal modeling, air pollution studies, and vapor cloud modeling within the Marcellus, Barnett, and Niobrara Shale Plays. The evidence suggests that presently utilized setbacks may leave the public vulnerable to explosions, radiant heat, toxic gas clouds, and air pollution from hydraulic fracturing activities. Our results suggest that setbacks may not be sufficient to reduce potential threats to human health in areas where hydraulic fracturing occurs. It is more likely that a combination of reasonable setbacks with controls for other sources of pollution associated with the process will be required. Haley M, McCawley M, Epstein AC, Arrington B, Bjerke EF. 2016. Adequacy of current state setbacks for directional high-volume hydraulic fracturing in the Marcellus, Barnett, and Niobrara Shale Plays. Environ Health Perspect 124:1323-1333; http://dx.doi.org/10.1289/ehp.1510547.

  14. Experimental investigation of the hydraulic and heat-transfer properties of artificially fractured granite.

    PubMed

    Luo, Jin; Zhu, Yongqiang; Guo, Qinghai; Tan, Long; Zhuang, Yaqin; Liu, Mingliang; Zhang, Canhai; Xiang, Wei; Rohn, Joachim

    2017-01-05

    In this paper, the hydraulic and heat-transfer properties of two sets of artificially fractured granite samples are investigated. First, the morphological information is determined using 3D modelling technology. The area ratio is used to describe the roughness of the fracture surface. Second, the hydraulic properties of fractured granite are tested by exposing samples to different confining pressures and temperatures. The results show that the hydraulic properties of the fractures are affected mainly by the area ratio, with a larger area ratio producing a larger fracture aperture and higher hydraulic conductivity. Both the hydraulic apertureand the hydraulic conductivity decrease with an increase in the confining pressure. Furthermore, the fracture aperture decreases with increasing rock temperature, but the hydraulic conductivity increases owing to a reduction of the viscosity of the fluid flowing through. Finally, the heat-transfer efficiency of the samples under coupled hydro-thermal-mechanical conditions is analysed and discussed.

  15. Experimental investigation of the hydraulic and heat-transfer properties of artificially fractured granite

    PubMed Central

    Luo, Jin; Zhu, Yongqiang; Guo, Qinghai; Tan, Long; Zhuang, Yaqin; Liu, Mingliang; Zhang, Canhai; Xiang, Wei; Rohn, Joachim

    2017-01-01

    In this paper, the hydraulic and heat-transfer properties of two sets of artificially fractured granite samples are investigated. First, the morphological information is determined using 3D modelling technology. The area ratio is used to describe the roughness of the fracture surface. Second, the hydraulic properties of fractured granite are tested by exposing samples to different confining pressures and temperatures. The results show that the hydraulic properties of the fractures are affected mainly by the area ratio, with a larger area ratio producing a larger fracture aperture and higher hydraulic conductivity. Both the hydraulic apertureand the hydraulic conductivity decrease with an increase in the confining pressure. Furthermore, the fracture aperture decreases with increasing rock temperature, but the hydraulic conductivity increases owing to a reduction of the viscosity of the fluid flowing through. Finally, the heat-transfer efficiency of the samples under coupled hydro-thermal-mechanical conditions is analysed and discussed. PMID:28054594

  16. Physical simulation study on the hydraulic fracture propagation of coalbed methane well

    NASA Astrophysics Data System (ADS)

    Wu, Caifang; Zhang, Xiaoyang; Wang, Meng; Zhou, Longgang; Jiang, Wei

    2018-03-01

    As the most widely used technique to modify reservoirs in the exploitation of unconventional natural gas, hydraulic fracturing could effectively raise the production of CBM wells. To study the propagation rules of hydraulic fractures, analyze the fracture morphology, and obtain the controlling factors, a physical simulation experiment was conducted with a tri-axial hydraulic fracturing test system. In this experiment, the fracturing sample - including the roof, the floor, and the surrounding rock - was prepared from coal and similar materials, and the whole fracturing process was monitored by an acoustic emission instrument. The results demonstrated that the number of hydraulic fractures in coal is considerably higher than that observed in other parts, and the fracture morphology was complex. Vertical fractures were interwoven with horizontal fractures, forming a connected network. With the injection of fracturing fluid, a new hydraulic fracture was produced and it extended along the preexisting fractures. The fracture propagation was a discontinuous, dynamic process. Furthermore, in-situ stress plays a key role in fracture propagation, causing the fractures to extend in a direction perpendicular to the minimum principal stress. To a certain extent, the different mechanical properties of the coal and the other components inhibited the vertical propagation of hydraulic fractures. Nonetheless, the vertical stress and the interfacial property are the major factors to influence the formation of the "T" shaped and "工" shaped fractures.

  17. Simulation of quasi-static hydraulic fracture propagation in porous media with XFEM

    NASA Astrophysics Data System (ADS)

    Juan-Lien Ramirez, Alina; Neuweiler, Insa; Löhnert, Stefan

    2015-04-01

    Hydraulic fracturing is the injection of a fracking fluid at high pressures into the underground. Its goal is to create and expand fracture networks to increase the rock permeability. It is a technique used, for example, for oil and gas recovery and for geothermal energy extraction, since higher rock permeability improves production. Many physical processes take place when it comes to fracking; rock deformation, fluid flow within the fractures, as well as into and through the porous rock. All these processes are strongly coupled, what makes its numerical simulation rather challenging. We present a 2D numerical model that simulates the hydraulic propagation of an embedded fracture quasi-statically in a poroelastic, fully saturated material. Fluid flow within the porous rock is described by Darcy's law and the flow within the fracture is approximated by a parallel plate model. Additionally, the effect of leak-off is taken into consideration. The solid component of the porous medium is assumed to be linear elastic and the propagation criteria are given by the energy release rate and the stress intensity factors [1]. The used numerical method for the spatial discretization is the eXtended Finite Element Method (XFEM) [2]. It is based on the standard Finite Element Method, but introduces additional degrees of freedom and enrichment functions to describe discontinuities locally in a system. Through them the geometry of the discontinuity (e.g. a fracture) becomes independent of the mesh allowing it to move freely through the domain without a mesh-adapting step. With this numerical model we are able to simulate hydraulic fracture propagation with different initial fracture geometries and material parameters. Results from these simulations will also be presented. References [1] D. Gross and T. Seelig. Fracture Mechanics with an Introduction to Micromechanics. Springer, 2nd edition, (2011) [2] T. Belytschko and T. Black. Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Meth. Engng. 45, 601-620, (1999)

  18. 78 FR 55253 - Notification of Public Teleconference of the Hydraulic Fracturing Research Advisory Panel

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-10

    ... research described in ORD's Study of the Potential Impacts of Hydraulic Fracturing on Drinking Water... Hydraulic Fracturing Research Advisory Panel AGENCY: Environmental Protection Agency (EPA). ACTION: Notice... public teleconference of the Hydraulic Fracturing Research Advisory Panel to receive written and oral...

  19. Overview of Chronic Oral Toxicity Values for Chemicals Present in Hydraulic Fracturing Fluids, Flowback and Produced Waters

    EPA Pesticide Factsheets

    as part of EPA's Hydraulic Fracturing Drinking Water Assessment, EPA is summarizing existing toxicity data for chemicals reported to be used in hydraulic fracturing fluids and/or found in flowback or produced waters from hydraulically fractured wells

  20. Cross-borehole flowmeter tests for transient heads in heterogeneous aquifers.

    PubMed

    Le Borgne, Tanguy; Paillet, Frederick; Bour, Olivier; Caudal, Jean-Pierre

    2006-01-01

    Cross-borehole flowmeter tests have been proposed as an efficient method to investigate preferential flowpaths in heterogeneous aquifers, which is a major task in the characterization of fractured aquifers. Cross-borehole flowmeter tests are based on the idea that changing the pumping conditions in a given aquifer will modify the hydraulic head distribution in large-scale flowpaths, producing measurable changes in the vertical flow profiles in observation boreholes. However, inversion of flow measurements to derive flowpath geometry and connectivity and to characterize their hydraulic properties is still a subject of research. In this study, we propose a framework for cross-borehole flowmeter test interpretation that is based on a two-scale conceptual model: discrete fractures at the borehole scale and zones of interconnected fractures at the aquifer scale. We propose that the two problems may be solved independently. The first inverse problem consists of estimating the hydraulic head variations that drive the transient borehole flow observed in the cross-borehole flowmeter experiments. The second inverse problem is related to estimating the geometry and hydraulic properties of large-scale flowpaths in the region between pumping and observation wells that are compatible with the head variations deduced from the first problem. To solve the borehole-scale problem, we treat the transient flow data as a series of quasi-steady flow conditions and solve for the hydraulic head changes in individual fractures required to produce these data. The consistency of the method is verified using field experiments performed in a fractured-rock aquifer.

  1. 77 FR 67361 - Request for Information To Inform Hydraulic Fracturing Research Related to Drinking Water Resources

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-09

    ... Inform Hydraulic Fracturing Research Related to Drinking Water Resources AGENCY: Environmental Protection... specific to inform EPA's research study on the potential impacts of hydraulic fracturing on drinking water... scientific literature to inform EPA's research on the potential impacts of hydraulic fracturing on drinking...

  2. 78 FR 20637 - Notification of Public Meeting and a Public Teleconference of the Hydraulic Fracturing Research...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-05

    ... on EPA's ongoing research on the potential impacts of hydraulic fracturing on drinking water... Teleconference of the Hydraulic Fracturing Research Advisory Panel AGENCY: Environmental Protection Agency (EPA... Office announces a public meeting and public teleconference of the Hydraulic Fracturing Research Advisory...

  3. Numerical simulation based on core analysis of a single fracture in an Enhanced Geothermal System

    NASA Astrophysics Data System (ADS)

    Jarrahi, Miad; Holländer, Hartmut

    2017-04-01

    The permeability of reservoirs is widely affected by the presence of fractures dispersed within them, as they form superior paths for fluid flow. Core analysis studies the fractures characteristics and explains the fluid-rock interactions to provide the information of permeability and saturation of a hydraulic fracturing reservoir or an enhanced geothermal system (EGS). This study conducted numerical simulations of a single fracture in a Granite core obtained from a depth of 1890 m in borehole EPS1 from Soultz-sous-Forêts, France. Blaisonneau et al. (2016) designed the apparatus to investigate the complex physical phenomena on this cylindrical sample. The method of the tests was to percolate a fluid through a natural fracture contained in a rock sample, under controlled thermo-hydro-mechanical conditions. A divergent radial flow within the fracture occurred due to the injection of fluid into the center of the fracture. The tests were performed within a containment cell with a normal stress of 2.6, 4.9, 7.2 and 9.4 MPa loading on the sample perpendicular to the fracture plane. This experiment was numerically performed to provide an efficient numerical method by modeling single phase flow in between the fracture walls. Detailed morphological features of the fracture such as tortuosity and roughness, were obtained by image processing. The results included injection pressure plots with respect to injection flow rate. Consequently, by utilizing Hagen-Poiseuille's cubic law, the equivalent hydraulic aperture size, of the fracture was derived. Then, as the sample is cylindrical, to modify the Hagen-Poiseuille's cubic law for circular parallel plates, the geometric relation was applied to obtain modified hydraulic aperture size. Finally, intrinsic permeability of the fracture under each mechanical normal stress was evaluated based on modified hydraulic aperture size. The results were presented in two different scenarios, before and after reactive percolation test, to demonstrate the effect of chemical reactive flow. The fracture after percolation test showed larger equivalent aperture size and higher permeability. Additionally, the higher the normal stress, the lower permeability was investigated. This confirmed the permeability evolution due to chemical percolation and mechanical loading. All results showed good agreements with corresponding experimental results provided by Blaisonneau et al. (2016). Keyword: Core analysis, Hydraulic fracturing, Enhanced geothermal system, Permeability, Fluid-rock interactions.

  4. Multiphase flow models for hydraulic fracturing technology

    NASA Astrophysics Data System (ADS)

    Osiptsov, Andrei A.

    2017-10-01

    The technology of hydraulic fracturing of a hydrocarbon-bearing formation is based on pumping a fluid with particles into a well to create fractures in porous medium. After the end of pumping, the fractures filled with closely packed proppant particles create highly conductive channels for hydrocarbon flow from far-field reservoir to the well to surface. The design of the hydraulic fracturing treatment is carried out with a simulator. Those simulators are based on mathematical models, which need to be accurate and close to physical reality. The entire process of fracture placement and flowback/cleanup can be conventionally split into the following four stages: (i) quasi-steady state effectively single-phase suspension flow down the wellbore, (ii) particle transport in an open vertical fracture, (iii) displacement of fracturing fluid by hydrocarbons from the closed fracture filled with a random close pack of proppant particles, and, finally, (iv) highly transient gas-liquid flow in a well during cleanup. The stage (i) is relatively well described by the existing hydralics models, while the models for the other three stages of the process need revisiting and considerable improvement, which was the focus of the author’s research presented in this review paper. For stage (ii), we consider the derivation of a multi-fluid model for suspension flow in a narrow vertical hydraulic fracture at moderate Re on the scale of fracture height and length and also the migration of particles across the flow on the scale of fracture width. At the stage of fracture cleanaup (iii), a novel multi-continua model for suspension filtration is developed. To provide closure relationships for permeability of proppant packings to be used in this model, a 3D direct numerical simulation of single phase flow is carried out using the lattice-Boltzmann method. For wellbore cleanup (iv), we present a combined 1D model for highly-transient gas-liquid flow based on the combination of multi-fluid and drift-flux approaches. The derivation of the drift-flux model from conservation olaws is criticall revisited in order to define the list of underlying assumptions and to mark the applicability margins of the model. All these fundamental problems share the same technological application (hydraulic fracturing) and the same method of research, namely, the multi-fluid approach to multiphase flow modeling and the consistent use of asymptotic methods. Multi-fluid models are then discussed in comparison with semi-empirical (often postulated) models widely used in the industry.

  5. The Influence of Hydraulic Fracturing on Carbon Storage Performance

    NASA Astrophysics Data System (ADS)

    Fu, Pengcheng; Settgast, Randolph R.; Hao, Yue; Morris, Joseph P.; Ryerson, Frederick J.

    2017-12-01

    Conventional principles of the design and operation of geologic carbon storage (GCS) require injecting CO2 below the caprock fracturing pressure to ensure the integrity of the storage complex. In nonideal storage reservoirs with relatively low permeability, pressure buildup can lead to hydraulic fracturing of the reservoir and caprock. While the GCS community has generally viewed hydraulic fractures as a key risk to storage integrity, a carefully designed stimulation treatment under appropriate geologic conditions could provide improved injectivity while maintaining overall seal integrity. A vertically contained hydraulic fracture, either in the reservoir rock or extending a limited height into the caprock, provides an effective means to access reservoir volume far from the injection well. Employing a fully coupled numerical model of hydraulic fracturing, solid deformation, and matrix fluid flow, we study the enabling conditions, processes, and mechanisms of hydraulic fracturing during CO2 injection. A hydraulic fracture's pressure-limiting behavior dictates that the near-well fluid pressure is only slightly higher than the fracturing pressure of the rock and is insensitive to injection rate and mechanical properties of the formation. Although a fracture contained solely within the reservoir rock with no caprock penetration, would be an ideal scenario, poroelastic principles dictate that sustaining such a fracture could lead to continuously increasing pressure until the caprock fractures. We also investigate the propagation pattern and injection pressure responses of a hydraulic fracture propagating in a caprock subjected to heterogeneous in situ stress. The results have important implications for the use of hydraulic fracturing as a tool for managing storage performance.

  6. Altered-stress fracturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warpinski, N.R.; Branagan, P.T.

    Altered-stress fracturing is a concept whereby a hydraulic fracture in one well is reoriented by another hydraulic fracture in a nearby location. The application is in tight, naturally fractured, anisotropic reservoirs in which conventional hydraulic fractures parallel the highly permeable natural fractures and little production enhancement is achieved by conventional hydraulic fracturing. Altered-stress fracturing can modify the stress field so that hydraulic fractures propagate across the permeable natural fractures. A field test was conducted in which stress changes of 250 to 300 psi (1.7 to 2.1 MPa) were measured in an offset well 120 ft (37 m) away during relativelymore » small minifracs in a production well. These results show that stress-altered fracturing is possible at this site and others. Analytic and finite element calculations quantify the effects of layers, stresses, and crack size. Reservoir calculations show significant enhancement compared to conventional treatments. 21 refs., 12 figs., 3 tabs.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Zhou; H. Huang; M. Deo

    Log and seismic data indicate that most shale formations have strong heterogeneity. Conventional analytical and semi-analytical fracture models are not enough to simulate the complex fracture propagation in these highly heterogeneous formation. Without considering the intrinsic heterogeneity, predicted morphology of hydraulic fracture may be biased and misleading in optimizing the completion strategy. In this paper, a fully coupling fluid flow and geomechanics hydraulic fracture simulator based on dual-lattice Discrete Element Method (DEM) is used to predict the hydraulic fracture propagation in heterogeneous reservoir. The heterogeneity of rock is simulated by assigning different material force constant and critical strain to differentmore » particles and is adjusted by conditioning to the measured data and observed geological features. Based on proposed model, the effects of heterogeneity at different scale on micromechanical behavior and induced macroscopic fractures are examined. From the numerical results, the microcrack will be more inclined to form at the grain weaker interface. The conventional simulator with homogeneous assumption is not applicable for highly heterogeneous shale formation.« less

  8. Characteristics and management of flowback/produced water from hydraulically fractured wells in California - findings from the California SB 4 assessment

    NASA Astrophysics Data System (ADS)

    Varadharajan, C.; Cooley, H.; Heberger, M. G.; Stringfellow, W. T.; Domen, J. K.; Sandelin, W.; Camarillo, M. K.; Jordan, P. D.; Reagan, M. T.; Donnelly, K.; Birkholzer, J. T.; Long, J. C. S.

    2015-12-01

    As part of a recent assessment of well stimulation in California, we analyzed the hazards and potential impacts of hydraulic fracturing (the primary form of well stimulation in California) on water resources, which included an analysis of the quantity and quality of flowback/produced water generated, current management and disposal practices, associated potential release mechanisms and transport pathways that can lead to contaminants being released into the environment, and practices to mitigate or avoid impacts from produced water on water resources. The wastewater returned after stimulation includes "recovered fluids" (flowback fluids collected into tanks following stimulation, but before the start of production) and "produced water" (water extracted with oil and gas during production). In contrast to hydraulic fracturing in regions with primarily gas production, the quantities of recovered fluids from hydraulically fractured wells in California are small in comparison to the fluids injected (typically <5%), and large quantities of produced water are generated. Our analysis indicates some fraction of returning fracturing fluids is likely present in produced water from wells that have been hydraulically fractured. Chemical measurements of recovered fluids show that some samples can contain high levels of some contaminants, including total carbohydrates (indicating the presence of guar, a component of fracturing fluid), total dissolved solids (TDS), trace elements and naturally occurring radioactive material (NORM). Data on produced water chemistry are more limited. In California, produced water is typically managed via pipelines and disposed or reused in many ways. A majority of produced water from hydraulically fractured wells in California is disposed in percolation pits, many of which may lie in areas with good groundwater quality. Some of the remaining produced water is injected into Class II wells; although a few of the wells are under review or have been shut down since they were injecting into aquifers. Other methods of management of produced water include reuse for irrigation and discharge into sewer systems. Each of these disposal and reuse methods presents its own unique set of concerns that need to be considered together, in designing a produced water management plan.

  9. Physical-chemical evaluation of hydraulic fracturing chemicals in the context of produced water treatment.

    PubMed

    Camarillo, Mary Kay; Domen, Jeremy K; Stringfellow, William T

    2016-12-01

    Produced water is a significant waste stream that can be treated and reused; however, the removal of production chemicals-such as those added in hydraulic fracturing-must be addressed. One motivation for treating and reusing produced water is that current disposal methods-typically consisting of deep well injection and percolation in infiltration pits-are being limited. Furthermore, oil and gas production often occurs in arid regions where there is demand for new water sources. In this paper, hydraulic fracturing chemical additive data from California are used as a case study where physical-chemical and biodegradation data are summarized and used to screen for appropriate produced water treatment technologies. The data indicate that hydraulic fracturing chemicals are largely treatable; however, data are missing for 24 of the 193 chemical additives identified. More than one-third of organic chemicals have data indicating biodegradability, suggesting biological treatment would be effective. Adsorption-based methods and partitioning of chemicals into oil for subsequent separation is expected to be effective for approximately one-third of chemicals. Volatilization-based treatment methods (e.g. air stripping) will only be effective for approximately 10% of chemicals. Reverse osmosis is a good catch-all with over 70% of organic chemicals expected to be removed efficiently. Other technologies such as electrocoagulation and advanced oxidation are promising but lack demonstration. Chemicals of most concern due to prevalence, toxicity, and lack of data include propargyl alcohol, 2-mercaptoethyl alcohol, tetrakis hydroxymethyl-phosphonium sulfate, thioglycolic acid, 2-bromo-3-nitrilopropionamide, formaldehyde polymers, polymers of acrylic acid, quaternary ammonium compounds, and surfactants (e.g. ethoxylated alcohols). Future studies should examine the fate of hydraulic fracturing chemicals in produced water treatment trains to demonstrate removal and clarify interactions between upstream and downstream processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. High resolution monitoring of strain fields in concrete during hydraulic fracturing processes.

    PubMed

    Chen, Rongzhang; Zaghloul, Mohamed A S; Yan, Aidong; Li, Shuo; Lu, Guanyi; Ames, Brandon C; Zolfaghari, Navid; Bunger, Andrew P; Li, Ming-Jun; Chen, Kevin P

    2016-02-22

    We present a distributed fiber optic sensing scheme to image 3D strain fields inside concrete blocks during laboratory-scale hydraulic fracturing. Strain fields were measured by optical fibers embedded during casting of the concrete blocks. The axial strain profile along the optical fiber was interrogated by the in-fiber Rayleigh backscattering with 1-cm spatial resolution using optical frequency domain reflectometry (OFDR). The 3D strain fields inside the cubes under various driving pressures and pumping schedules were measured and used to characterize the location, shape, and growth rate of the hydraulic fractures. The fiber optic sensor detection method presented in this paper provides scientists and engineers an unique laboratory tool to understand the hydraulic fracturing processes via internal, 3D strain measurements with the potential to ascertain mechanisms related to crack growth and its associated damage of the surrounding material as well as poromechanically-coupled mechanisms driven by fluid diffusion from the crack into the permeable matrix of concrete specimens.

  11. High resolution monitoring of strain fields in concrete during hydraulic fracturing processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Rongzhang; Zaghloul, Mohamed A. S.; Yan, Aidong

    Here, we present a distributed fiber optic sensing scheme to image 3D strain fields inside concrete blocks during laboratory-scale hydraulic fracturing. Strain fields were measured by optical fibers embedded during casting of the concrete blocks. The axial strain profile along the optical fiber was interrogated by the in-fiber Rayleigh backscattering with 1-cm spatial resolution using optical frequency domain reflectometry (OFDR). The 3D strain fields inside the cubes under various driving pressures and pumping schedules were measured and used to characterize the location, shape, and growth rate of the hydraulic fractures. The fiber optic sensor detection method presented in this papermore » provides scientists and engineers an unique laboratory tool to understand the hydraulic fracturing processes via internal, 3D strain measurements with the potential to ascertain mechanisms related to crack growth and its associated damage of the surrounding material as well as poromechanically-coupled mechanisms driven by fluid diffusion from the crack into the permeable matrix of concrete specimens.« less

  12. High resolution monitoring of strain fields in concrete during hydraulic fracturing processes

    DOE PAGES

    Chen, Rongzhang; Zaghloul, Mohamed A. S.; Yan, Aidong; ...

    2016-02-17

    Here, we present a distributed fiber optic sensing scheme to image 3D strain fields inside concrete blocks during laboratory-scale hydraulic fracturing. Strain fields were measured by optical fibers embedded during casting of the concrete blocks. The axial strain profile along the optical fiber was interrogated by the in-fiber Rayleigh backscattering with 1-cm spatial resolution using optical frequency domain reflectometry (OFDR). The 3D strain fields inside the cubes under various driving pressures and pumping schedules were measured and used to characterize the location, shape, and growth rate of the hydraulic fractures. The fiber optic sensor detection method presented in this papermore » provides scientists and engineers an unique laboratory tool to understand the hydraulic fracturing processes via internal, 3D strain measurements with the potential to ascertain mechanisms related to crack growth and its associated damage of the surrounding material as well as poromechanically-coupled mechanisms driven by fluid diffusion from the crack into the permeable matrix of concrete specimens.« less

  13. Hydraulic Conductivity Calibration of Logging NMR in a Granite Aquifer, Laramie Range, Wyoming.

    PubMed

    Ren, Shuangpo; Parsekian, Andrew D; Zhang, Ye; Carr, Bradley J

    2018-05-15

    In granite aquifers, fractures can provide both storage volume and conduits for groundwater. Characterization of fracture hydraulic conductivity (K) in such aquifers is important for predicting flow rate and calibrating models. Nuclear magnetic resonance (NMR) well logging is a method to quickly obtain near-borehole hydraulic conductivity (i.e., K NMR ) at high-vertical resolution. On the other hand, FLUTe flexible liner technology can produce a K profile at comparable resolution but requires a fluid driving force between borehole and formation. For three boreholes completed in a fractured granite, we jointly interpreted logging NMR data and FLUTe K estimates to calibrate an empirical equation for translating borehole NMR data to K estimates. For over 90% of the depth intervals investigated from these boreholes, the estimated K NMR are within one order of magnitude of K FLUTe . The empirical parameters obtained from calibrating the NMR data suggest that "intermediate diffusion" and/or "slow diffusion" during the NMR relaxation time may occur in the flowing fractures when hydraulic aperture are sufficiently large. For each borehole, "intermediate diffusion" dominates the relaxation time, therefore assuming "fast diffusion" in the interpretation of NMR data from fractured rock may lead to inaccurate K NMR estimates. We also compare calibrations using inexpensive slug tests that suggest reliable K NMR estimates for fractured rock may be achieved using limited calibration against borehole hydraulic measurements. © 2018, National Ground Water Association.

  14. Investigation of the Effect of Cemented Fractures on Fracturing Network Propagation in Model Block with Discrete Orthogonal Fractures

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Li, C. H.

    2017-07-01

    Researchers have recently realized that the natural fractures in shale reservoirs are often cemented or sealed with various minerals. However, the influence of cement characteristics of natural fracture on fracturing network propagation is still not well understood. In this work, laboratory-scaled experiments are proposed to prepare model blocks with discrete orthogonal fractures network with different strength of natural fracture, in order to reveal the influence of cemented natural fractures on the interactions between hydraulic fractures and natural fractures. A series of true triaxial hydraulic fracturing experiments were conducted to investigate the mechanism of hydraulic fracture initiation and propagation in model blocks with natural fractures of different cement strength. The results present different responses of interactions between hydraulic and natural fractures, which can be reflected on the pump pressure profiles and block failure morphology. For model blocks with fluctuated pump pressure curves, the communication degree of hydraulic and natural fractures is good, which is confirmed by a proposed new index of "P-SRV." The most significant finding is that too high and too low strength properties of cemented natural fracture are adverse to generate complex fracturing network. This work can help us better understand how cemented natural fractures affect the fracturing network propagation subsurface and give us reference to develop more accurate hydraulic fracturing models.

  15. Laboratory investigation of shale rock to identify fracture propagation in vertical direction to bedding

    NASA Astrophysics Data System (ADS)

    Peng, Tan; Yan, Jin; Bing, Hou; Yingcao, Zhou; Ruxin, Zhang; Zhi, Chang; Meng, Fan

    2018-06-01

    Affected by beddings and natural fractures, fracture geometry in the vertical plane is complex in shale formation, which differs from a simple fracture in homogeneous sandstone reservoirs. However, the propagation mechanism of a hydraulic fracture in the vertical plane has not been well understood. In this paper, a true tri-axial pressure machine was deployed for shale horizontal well fracturing simulation experiments of shale outcrops. The effects of multiple factors on hydraulic fracture vertical propagation were studied. The results revealed that hydraulic fracture initiation and propagation displayed four basic patterns in the vertical plane of laminated shale formation. A hydraulic fracture would cross the beddings under the high vertical stress difference between a vertical stress and horizontal minimum stress of 12 MPa, while a hydraulic fracture propagates along the beddings under a low vertical stress difference of 3 MPa. Four kinds of fracture geometry, including a single main fracture, a nonplanar fracture, a complex fracture, and a complex fracture network, were observed due to the combined effects of flow rate and viscosity. Due to the influence of binding strength (or cementing strength) on the fracture communication effects between a hydraulic fracture and the beddings, the opening region of the beddings takes the shape of an ellipse.

  16. Hydraulic fracturing: paving the way for a sustainable future?

    PubMed

    Chen, Jiangang; Al-Wadei, Mohammed H; Kennedy, Rebekah C M; Terry, Paul D

    2014-01-01

    With the introduction of hydraulic fracturing technology, the United States has become the largest natural gas producer in the world with a substantial portion of the production coming from shale plays. In this review, we examined current hydraulic fracturing literature including associated wastewater management on quantity and quality of groundwater. We conclude that proper documentation/reporting systems for wastewater discharge and spills need to be enforced at the federal, state, and industrial level. Furthermore, Underground Injection Control (UIC) requirements under SDWA should be extended to hydraulic fracturing operations regardless if diesel fuel is used as a fracturing fluid or not. One of the biggest barriers that hinder the advancement of our knowledge on the hydraulic fracturing process is the lack of transparency of chemicals used in the practice. Federal laws mandating hydraulic companies to disclose fracturing fluid composition and concentration not only to federal and state regulatory agencies but also to health care professionals would encourage this practice. The full disclosure of fracturing chemicals will allow future research to fill knowledge gaps for a better understanding of the impacts of hydraulic fracturing on human health and the environment.

  17. Hydraulic Fracturing: Paving the Way for a Sustainable Future?

    PubMed Central

    Chen, Jiangang; Al-Wadei, Mohammed H.; Kennedy, Rebekah C. M.; Terry, Paul D.

    2014-01-01

    With the introduction of hydraulic fracturing technology, the United States has become the largest natural gas producer in the world with a substantial portion of the production coming from shale plays. In this review, we examined current hydraulic fracturing literature including associated wastewater management on quantity and quality of groundwater. We conclude that proper documentation/reporting systems for wastewater discharge and spills need to be enforced at the federal, state, and industrial level. Furthermore, Underground Injection Control (UIC) requirements under SDWA should be extended to hydraulic fracturing operations regardless if diesel fuel is used as a fracturing fluid or not. One of the biggest barriers that hinder the advancement of our knowledge on the hydraulic fracturing process is the lack of transparency of chemicals used in the practice. Federal laws mandating hydraulic companies to disclose fracturing fluid composition and concentration not only to federal and state regulatory agencies but also to health care professionals would encourage this practice. The full disclosure of fracturing chemicals will allow future research to fill knowledge gaps for a better understanding of the impacts of hydraulic fracturing on human health and the environment. PMID:24790614

  18. Using borehole geophysics and cross-borehole flow testing to define hydraulic connections between fracture zones in bedrock aquifers

    USGS Publications Warehouse

    Paillet, Frederick L.

    1993-01-01

    Nearly a decade of intensive geophysical logging at fractured rock hydrology research sites indicates that geophysical logs can be used to identify and characterize fractures intersecting boreholes. However, borehole-to-borehole flow tests indicate that only a few of the apparently open fractures found to intersect boreholes conduct flow under test conditions. This paper presents a systematic approach to fracture characterization designed to define the distribution of fractures along boreholes, relate the measured fracture distribution to structure and lithology of the rock mass, and define the nature of fracture flow paths across borehole arrays. Conventional electrical resistivity, gamma, and caliper logs are used to define lithology and large-scale structure. Borehole wall image logs obtained with the borehole televiewer are used to give the depth, orientation, and relative size of fractures in situ. High-resolution flowmeter measurements are used to identify fractures conducting flow in the rock mass adjacent to the boreholes. Changes in the flow field over time are used to characterize the hydraulic properties of fracture intersections between boreholes. Application of this approach to an array of 13 boreholes at the Mirror Lake, New Hamsphire site demonstrates that the transient flow analysis can be used to distinguish between fractures communicating with each other between observation boreholes, and those that are hydraulically isolated from each other in the surrounding rock mass. The Mirror Lake results also demonstrate that the method is sensitive to the effects of boreholes on the hydraulic properties of the fractured-rock aquifer. Experiments conducted before and after the drilling of additional boreholes in the array and before and after installation of packers in existing boreholes demonstrate that the presence of new boreholes or the inflation of packers in existing boreholes has a large effect on the measured hydraulic properties of the rock mass surrounding the borehole array. ?? 1993.

  19. Where Does Water Go During Hydraulic Fracturing?

    PubMed

    O'Malley, D; Karra, S; Currier, R P; Makedonska, N; Hyman, J D; Viswanathan, H S

    2016-07-01

    During hydraulic fracturing millions of gallons of water are typically injected at high pressure into deep shale formations. This water can be housed in fractures, within the shale matrix, and can potentially migrate beyond the shale formation via fractures and/or faults raising environmental concerns. We describe a generic framework for producing estimates of the volume available in fractures and undamaged shale matrix where water injected into a representative shale site could reside during hydraulic fracturing, and apply it to a representative site that incorporates available field data. The amount of water that can be stored in the fractures is estimated by calculating the volume of all the fractures associated with a discrete fracture network (DFN) based on real data and using probability theory to estimate the volume of smaller fractures that are below the lower cutoff for the fracture radius in the DFN. The amount of water stored in the matrix is estimated utilizing two distinct methods-one using a two-phase model at the pore-scale and the other using a single-phase model at the continuum scale. Based on these calculations, it appears that most of the water resides in the matrix with a lesser amount in the fractures. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  20. Using flowmeter pulse tests to define hydraulic connections in the subsurface: A fractured shale example

    USGS Publications Warehouse

    Williams, J.H.; Paillet, Frederick L.

    2002-01-01

    Cross-borehole flowmeter pulse tests define subsurface connections between discrete fractures using short stress periods to monitor the propagation of the pulse through the flow system. This technique is an improvement over other cross-borehole techniques because measurements can be made in open boreholes without packers or previous identification of water-producing intervals. The method is based on the concept of monitoring the propagation of pulses rather than steady flow through the fracture network. In this method, a hydraulic stress is applied to a borehole connected to a single, permeable fracture, and the distribution of flow induced by that stress monitored in adjacent boreholes. The transient flow responses are compared to type curves computed for several different types of fracture connections. The shape of the transient flow response indicates the type of fracture connection, and the fit of the data to the type curve yields an estimate of its transmissivity and storage coefficient. The flowmeter pulse test technique was applied in fractured shale at a volatile-organic contaminant plume in Watervliet, New York. Flowmeter and other geophysical logs were used to identify permeable fractures in eight boreholes in and near the contaminant plume using single-borehole flow measurements. Flowmeter cross-hole pulse tests were used to identify connections between fractures detected in the boreholes. The results indicated a permeable fracture network connecting many of the individual boreholes, and demonstrated the presence of an ambient upward hydraulic-head gradient throughout the site.

  1. Hydraulic Fracturing in Zoned Earth and Rockfill Dams: A Report of an Investigation.

    DTIC Science & Technology

    The investigation involves two parts: first, an experimental investigation to study the phenomenon of hydraulic fracturing under carefully...be reduced sufficiently by arching so that hydraulic fracturing can occur. Analyses were also performed to examine the effectiveness of various countermeasures which can reduce the arching and the likelihood of hydraulic fracturing .

  2. Hydraulic Fracturing and Production Optimization in Eagle Ford Shale Using Coupled Geomechanics and Fluid Flow Model

    NASA Astrophysics Data System (ADS)

    Suppachoknirun, Theerapat; Tutuncu, Azra N.

    2017-12-01

    With increasing production from shale gas and tight oil reservoirs, horizontal drilling and multistage hydraulic fracturing processes have become a routine procedure in unconventional field development efforts. Natural fractures play a critical role in hydraulic fracture growth, subsequently affecting stimulated reservoir volume and the production efficiency. Moreover, the existing fractures can also contribute to the pressure-dependent fluid leak-off during the operations. Hence, a reliable identification of the discrete fracture network covering the zone of interest prior to the hydraulic fracturing design needs to be incorporated into the hydraulic fracturing and reservoir simulations for realistic representation of the in situ reservoir conditions. In this research study, an integrated 3-D fracture and fluid flow model have been developed using a new approach to simulate the fluid flow and deliver reliable production forecasting in naturally fractured and hydraulically stimulated tight reservoirs. The model was created with three key modules. A complex 3-D discrete fracture network model introduces realistic natural fracture geometry with the associated fractured reservoir characteristics. A hydraulic fracturing model is created utilizing the discrete fracture network for simulation of the hydraulic fracture and flow in the complex discrete fracture network. Finally, a reservoir model with the production grid system is used allowing the user to efficiently perform the fluid flow simulation in tight formations with complex fracture networks. The complex discrete natural fracture model, the integrated discrete fracture model for the hydraulic fracturing, the fluid flow model, and the input dataset have been validated against microseismic fracture mapping and commingled production data obtained from a well pad with three horizontal production wells located in the Eagle Ford oil window in south Texas. Two other fracturing geometries were also evaluated to optimize the cumulative production and for the three wells individually. Significant reduction in the production rate in early production times is anticipated in tight reservoirs regardless of the fracturing techniques implemented. The simulations conducted using the alternating fracturing technique led to more oil production than when zipper fracturing was used for a 20-year production period. Yet, due to the decline experienced, the differences in cumulative production get smaller, and the alternating fracturing is not practically implementable while field application of zipper fracturing technique is more practical and widely used.

  3. The combined use of heat-pulse flowmeter logging and packer testing for transmissive fracture recognition

    NASA Astrophysics Data System (ADS)

    Lo, Hung-Chieh; Chen, Po-Jui; Chou, Po-Yi; Hsu, Shih-Meng

    2014-06-01

    This paper presents an improved borehole prospecting methodology based on a combination of techniques in the hydrogeological characterization of fractured rock aquifers. The approach is demonstrated by on-site tests carried out in the Hoshe Experimental Forest site and the Tailuge National Park, Taiwan. Borehole televiewer logs are used to obtain fracture location and distribution along boreholes. The heat-pulse flow meter log is used to measure vertical velocity flow profiles which can be analyzed to estimate fracture transmissivity and to indicate hydraulic connectivity between fractures. Double-packer hydraulic tests are performed to determine the rock mass transmissivity. The computer program FLASH is used to analyze the data from the flowmeter logs. The FLASH program is confirmed as a useful tool which quantitatively predicts the fracture transmissivity in comparison to the hydraulic properties obtained from packer tests. The location of conductive fractures and their transmissivity is identified, after which the preferential flow paths through the fracture network are precisely delineated from a cross-borehole test. The results provide robust confirmation of the use of combined flowmeter and packer methods in the characterization of fractured-rock aquifers, particularly in reference to the investigation of groundwater resource and contaminant transport dynamics.

  4. Estimation of the hydraulic conductivity of a two-dimensional fracture network using effective medium theory and power-law averaging

    NASA Astrophysics Data System (ADS)

    Zimmerman, R. W.; Leung, C. T.

    2009-12-01

    Most oil and gas reservoirs, as well as most potential sites for nuclear waste disposal, are naturally fractured. In these sites, the network of fractures will provide the main path for fluid to flow through the rock mass. In many cases, the fracture density is so high as to make it impractical to model it with a discrete fracture network (DFN) approach. For such rock masses, it would be useful to have recourse to analytical, or semi-analytical, methods to estimate the macroscopic hydraulic conductivity of the fracture network. We have investigated single-phase fluid flow through generated stochastically two-dimensional fracture networks. The centers and orientations of the fractures are uniformly distributed, whereas their lengths follow a lognormal distribution. The aperture of each fracture is correlated with its length, either through direct proportionality, or through a nonlinear relationship. The discrete fracture network flow and transport simulator NAPSAC, developed by Serco (Didcot, UK), is used to establish the “true” macroscopic hydraulic conductivity of the network. We then attempt to match this value by starting with the individual fracture conductances, and using various upscaling methods. Kirkpatrick’s effective medium approximation, which works well for pore networks on a core scale, generally underestimates the conductivity of the fracture networks. We attribute this to the fact that the conductances of individual fracture segments (between adjacent intersections with other fractures) are correlated with each other, whereas Kirkpatrick’s approximation assumes no correlation. The power-law averaging approach proposed by Desbarats for porous media is able to match the numerical value, using power-law exponents that generally lie between 0 (geometric mean) and 1 (harmonic mean). The appropriate exponent can be correlated with statistical parameters that characterize the fracture density.

  5. Hydromechanical modeling of clay rock including fracture damage

    NASA Astrophysics Data System (ADS)

    Asahina, D.; Houseworth, J. E.; Birkholzer, J. T.

    2012-12-01

    Argillaceous rock typically acts as a flow barrier, but under certain conditions significant and potentially conductive fractures may be present. Fracture formation is well-known to occur in the vicinity of underground excavations in a region known as the excavation disturbed zone. Such problems are of particular importance for low-permeability, mechanically weak rock such as clays and shales because fractures can be relatively transient as a result of fracture self-sealing processes. Perhaps not as well appreciated is the fact that natural fractures can form in argillaceous rock as a result of hydraulic overpressure caused by phenomena such as disequlibrium compaction, changes in tectonic stress, and mineral dehydration. Overpressure conditions can cause hydraulic fracturing if the fluid pressure leads to tensile effective stresses that exceed the tensile strength of the material. Quantitative modeling of this type of process requires coupling between hydrogeologic processes and geomechanical processes including fracture initiation and propagation. Here we present a computational method for three-dimensional, hydromechanical coupled processes including fracture damage. Fractures are represented as discrete features in a fracture network that interact with a porous rock matrix. Fracture configurations are mapped onto an unstructured, three-dimensonal, Voronoi grid, which is based on a random set of spatial points. Discrete fracture networks (DFN) are represented by the connections of the edges of a Voronoi cells. This methodology has the advantage that fractures can be more easily introduced in response to coupled hydro-mechanical processes and generally eliminates several potential issues associated with the geometry of DFN and numerical gridding. A geomechanical and fracture-damage model is developed here using the Rigid-Body-Spring-Network (RBSN) numerical method. The hydrogelogic and geomechanical models share the same geometrical information from a 3D Voronoi grid and associated nodes, where the scalar field quantities (e.g. temperature, pressure, and saturation) and the generalized displacements are obtained by an integral finite difference method (e.g., TOUGH2) and RBSN, respectively. Fractures propagate along Voronoi cell boundaries as induced stresses evolve and exceed the material strength. Examples of fracture propagation in clay rock are examined for the excavation disturbed zone and for cases in which hydraulic overpressure leads to hydraulic fracture. Fluid flow behavior in these evolving fracture networks and eventual fracture closing and self-sealing are investigated. Funding for this work was provided by the Used Fuel Disposition Campaign, Office of Nuclear Energy, of the U.S. Department of Energy under Contract NumberDE-AC02-05CH11231 with Berkeley Lab.

  6. Shale Fracture Analysis using the Combined Finite-Discrete Element Method

    NASA Astrophysics Data System (ADS)

    Carey, J. W.; Lei, Z.; Rougier, E.; Knight, E. E.; Viswanathan, H.

    2014-12-01

    Hydraulic fracturing (hydrofrac) is a successful method used to extract oil and gas from highly carbonate rocks like shale. However, challenges exist for industry experts estimate that for a single $10 million dollar lateral wellbore fracking operation, only 10% of the hydrocarbons contained in the rock are extracted. To better understand how to improve hydrofrac recovery efficiencies and to lower its costs, LANL recently funded the Laboratory Directed Research and Development (LDRD) project: "Discovery Science of Hydraulic Fracturing: Innovative Working Fluids and Their Interactions with Rocks, Fractures, and Hydrocarbons". Under the support of this project, the LDRD modeling team is working with the experimental team to understand fracture initiation and propagation in shale rocks. LANL's hybrid hydro-mechanical (HM) tool, the Hybrid Optimization Software Suite (HOSS), is being used to simulate the complex fracture and fragment processes under a variety of different boundary conditions. HOSS is based on the combined finite-discrete element method (FDEM) and has been proven to be a superior computational tool for multi-fracturing problems. In this work, the comparison of HOSS simulation results to triaxial core flooding experiments will be presented.

  7. Hydraulic fracturing water use variability in the United States and potential environmental implications

    PubMed Central

    Varela, Brian A.; Haines, Seth S.; Engle, Mark A.

    2015-01-01

    Abstract Until now, up‐to‐date, comprehensive, spatial, national‐scale data on hydraulic fracturing water volumes have been lacking. Water volumes used (injected) to hydraulically fracture over 263,859 oil and gas wells drilled between 2000 and 2014 were compiled and used to create the first U.S. map of hydraulic fracturing water use. Although median annual volumes of 15,275 m3 and 19,425 m3 of water per well was used to hydraulically fracture individual horizontal oil and gas wells, respectively, in 2014, about 42% of wells were actually either vertical or directional, which required less than 2600 m3 water per well. The highest average hydraulic fracturing water usage (10,000−36,620 m3 per well) in watersheds across the United States generally correlated with shale‐gas areas (versus coalbed methane, tight oil, or tight gas) where the greatest proportion of hydraulically fractured wells were horizontally drilled, reflecting that the natural reservoir properties influence water use. This analysis also demonstrates that many oil and gas resources within a given basin are developed using a mix of horizontal, vertical, and some directional wells, explaining why large volume hydraulic fracturing water usage is not widespread. This spatial variability in hydraulic fracturing water use relates to the potential for environmental impacts such as water availability, water quality, wastewater disposal, and possible wastewater injection‐induced earthquakes. PMID:26937056

  8. Hydraulic fracturing water use variability in the United States and potential environmental implications

    USGS Publications Warehouse

    Gallegos, Tanya J.; Varela, Brian A.; Haines, Seth S.; Engle, Mark A.

    2015-01-01

    Until now, up-to-date, comprehensive, spatial, national-scale data on hydraulic fracturing water volumes have been lacking. Water volumes used (injected) to hydraulically fracture over 263,859 oil and gas wells drilled between 2000 and 2014 were compiled and used to create the first U.S. map of hydraulic fracturing water use. Although median annual volumes of 15,275 m3 and 19,425 m3 of water per well was used to hydraulically fracture individual horizontal oil and gas wells, respectively, in 2014, about 42% of wells were actually either vertical or directional, which required less than 2600 m3 water per well. The highest average hydraulic fracturing water usage (10,000−36,620 m3 per well) in watersheds across the United States generally correlated with shale-gas areas (versus coalbed methane, tight oil, or tight gas) where the greatest proportion of hydraulically fractured wells were horizontally drilled, reflecting that the natural reservoir properties influence water use. This analysis also demonstrates that many oil and gas resources within a given basin are developed using a mix of horizontal, vertical, and some directional wells, explaining why large volume hydraulic fracturing water usage is not widespread. This spatial variability in hydraulic fracturing water use relates to the potential for environmental impacts such as water availability, water quality, wastewater disposal, and possible wastewater injection-induced earthquakes.

  9. Hydraulic fracturing near domestic groundwater wells.

    PubMed

    Jasechko, Scott; Perrone, Debra

    2017-12-12

    Hydraulic fracturing operations are generating considerable discussion about their potential to contaminate aquifers tapped by domestic groundwater wells. Groundwater wells located closer to hydraulically fractured wells are more likely to be exposed to contaminants derived from on-site spills and well-bore failures, should they occur. Nevertheless, the proximity of hydraulic fracturing operations to domestic groundwater wells is unknown. Here, we analyze the distance between domestic groundwater wells (public and self-supply) constructed between 2000 and 2014 and hydraulically fractured wells stimulated in 2014 in 14 states. We show that 37% of all recorded hydraulically fractured wells stimulated during 2014 exist within 2 km of at least one recently constructed (2000-2014) domestic groundwater well. Furthermore, we identify 11 counties where most ([Formula: see text]50%) recorded domestic groundwater wells exist within 2 km of one or more hydraulically fractured wells stimulated during 2014. Our findings suggest that understanding how frequently hydraulic fracturing operations impact groundwater quality is of widespread importance to drinking water safety in many areas where hydraulic fracturing is common. We also identify 236 counties where most recorded domestic groundwater wells exist within 2 km of one or more recorded oil and gas wells producing during 2014. Our analysis identifies hotspots where both conventional and unconventional oil and gas wells frequently exist near recorded domestic groundwater wells that may be targeted for further water-quality monitoring.

  10. Hydraulic fracturing near domestic groundwater wells

    PubMed Central

    Jasechko, Scott; Perrone, Debra

    2017-01-01

    Hydraulic fracturing operations are generating considerable discussion about their potential to contaminate aquifers tapped by domestic groundwater wells. Groundwater wells located closer to hydraulically fractured wells are more likely to be exposed to contaminants derived from on-site spills and well-bore failures, should they occur. Nevertheless, the proximity of hydraulic fracturing operations to domestic groundwater wells is unknown. Here, we analyze the distance between domestic groundwater wells (public and self-supply) constructed between 2000 and 2014 and hydraulically fractured wells stimulated in 2014 in 14 states. We show that 37% of all recorded hydraulically fractured wells stimulated during 2014 exist within 2 km of at least one recently constructed (2000–2014) domestic groundwater well. Furthermore, we identify 11 counties where most (>50%) recorded domestic groundwater wells exist within 2 km of one or more hydraulically fractured wells stimulated during 2014. Our findings suggest that understanding how frequently hydraulic fracturing operations impact groundwater quality is of widespread importance to drinking water safety in many areas where hydraulic fracturing is common. We also identify 236 counties where most recorded domestic groundwater wells exist within 2 km of one or more recorded oil and gas wells producing during 2014. Our analysis identifies hotspots where both conventional and unconventional oil and gas wells frequently exist near recorded domestic groundwater wells that may be targeted for further water-quality monitoring. PMID:29180405

  11. Hydraulic Fracturing of Soils; A Literature Review.

    DTIC Science & Technology

    1977-03-01

    best case, or worst case. The study reported herein is an overview of one such test or technique, hydraulic fracturing , which is defined as the...formation of cracks, in soil by the application of hydraulic pressure greater than the minor principal stress at that point. Hydraulic fracturing , as a... hydraulic fracturing as a means for determination of lateral stresses, the technique can still be used for determining in situ total stress and permeability at a point in a cohesive soil.

  12. Complementary hydro-mechanical coupled finite/discrete element and microseismic modelling to predict hydraulic fracture propagation in tight shale reservoirs

    NASA Astrophysics Data System (ADS)

    Profit, Matthew; Dutko, Martin; Yu, Jianguo; Cole, Sarah; Angus, Doug; Baird, Alan

    2016-04-01

    This paper presents a novel approach to predict the propagation of hydraulic fractures in tight shale reservoirs. Many hydraulic fracture modelling schemes assume that the fracture direction is pre-seeded in the problem domain discretisation. This is a severe limitation as the reservoir often contains large numbers of pre-existing fractures that strongly influence the direction of the propagating fracture. To circumvent these shortcomings, a new fracture modelling treatment is proposed where the introduction of discrete fracture surfaces is based on new and dynamically updated geometrical entities rather than the topology of the underlying spatial discretisation. Hydraulic fracturing is an inherently coupled engineering problem with interactions between fluid flow and fracturing when the stress state of the reservoir rock attains a failure criterion. This work follows a staggered hydro-mechanical coupled finite/discrete element approach to capture the key interplay between fluid pressure and fracture growth. In field practice, the fracture growth is hidden from the design engineer and microseismicity is often used to infer hydraulic fracture lengths and directions. Microseismic output can also be computed from changes of the effective stress in the geomechanical model and compared against field microseismicity. A number of hydraulic fracture numerical examples are presented to illustrate the new technology.

  13. TOUGH-RBSN simulator for hydraulic fracture propagation within fractured media: Model validations against laboratory experiments

    NASA Astrophysics Data System (ADS)

    Kim, Kunhwi; Rutqvist, Jonny; Nakagawa, Seiji; Birkholzer, Jens

    2017-11-01

    This paper presents coupled hydro-mechanical modeling of hydraulic fracturing processes in complex fractured media using a discrete fracture network (DFN) approach. The individual physical processes in the fracture propagation are represented by separate program modules: the TOUGH2 code for multiphase flow and mass transport based on the finite volume approach; and the rigid-body-spring network (RBSN) model for mechanical and fracture-damage behavior, which are coupled with each other. Fractures are modeled as discrete features, of which the hydrological properties are evaluated from the fracture deformation and aperture change. The verification of the TOUGH-RBSN code is performed against a 2D analytical model for single hydraulic fracture propagation. Subsequently, modeling capabilities for hydraulic fracturing are demonstrated through simulations of laboratory experiments conducted on rock-analogue (soda-lime glass) samples containing a designed network of pre-existing fractures. Sensitivity analyses are also conducted by changing the modeling parameters, such as viscosity of injected fluid, strength of pre-existing fractures, and confining stress conditions. The hydraulic fracturing characteristics attributed to the modeling parameters are investigated through comparisons of the simulation results.

  14. Disclosure of hydraulic fracturing fluid chemical additives: analysis of regulations.

    PubMed

    Maule, Alexis L; Makey, Colleen M; Benson, Eugene B; Burrows, Isaac J; Scammell, Madeleine K

    2013-01-01

    Hydraulic fracturing is used to extract natural gas from shale formations. The process involves injecting into the ground fracturing fluids that contain thousands of gallons of chemical additives. Companies are not mandated by federal regulations to disclose the identities or quantities of chemicals used during hydraulic fracturing operations on private or public lands. States have begun to regulate hydraulic fracturing fluids by mandating chemical disclosure. These laws have shortcomings including nondisclosure of proprietary or "trade secret" mixtures, insufficient penalties for reporting inaccurate or incomplete information, and timelines that allow for after-the-fact reporting. These limitations leave lawmakers, regulators, public safety officers, and the public uninformed and ill-prepared to anticipate and respond to possible environmental and human health hazards associated with hydraulic fracturing fluids. We explore hydraulic fracturing exemptions from federal regulations, as well as current and future efforts to mandate chemical disclosure at the federal and state level.

  15. Understanding the Geometry of Connected Fracture Flow with Multiperiod Oscillatory Hydraulic Tests.

    PubMed

    Sayler, Claire; Cardiff, Michael; Fort, Michael D

    2018-03-01

    An understanding of the spatial and hydraulic properties of fast preferential flow pathways in the subsurface is necessary in applications ranging from contaminant fate and transport modeling to design of energy extraction systems. One method for the characterization of fracture properties over interwellbore scales is Multiperiod Oscillatory Hydraulic (MOH) testing, in which the aquifer response to oscillatory pressure stimulations is observed. MOH tests were conducted on isolated intervals of wells in siliciclastic and carbonate aquifers in southern Wisconsin. The goal was to characterize the spatial properties of discrete fractures over interwellbore scales. MOH tests were conducted on two discrete fractured intervals intersecting two boreholes at one field site, and a nest of three piezometers at another field site. Fracture diffusivity estimates were obtained using analytical solutions that relate diffusivity to observed phase lag and amplitude decay. In addition, MOH tests were used to investigate the spatial extent of flow using different conceptual models of fracture geometry. Results indicated that fracture geometry at both field sites can be approximated by permeable two-dimensional fracture planes, oriented near-horizontally at one site, and near-vertically at the other. The technique used on MOH field data to characterize fracture geometry shows promise in revealing fracture network characteristics important to groundwater flow and transport. © 2017, National Ground Water Association.

  16. Description and analysis of cored hydraulic fractures -- Lost Hills field, Kern County, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fast, R.E.; Murer, A.S.; Timmer, R.S.

    1994-05-01

    An inclined observation well was drilled in shallow (2,000 ft) Opal-A diatomite. Seven sand-propped hydraulic fractures were cored and recovered. The hydraulic fractures were found within 5[degree] of the azimuth measured with tilt meters and were tilted 15[degree] from vertical, oriented perpendicular to the formation bedding dip. Hydraulic fractures widths ranged from less than one sand grain (40/60 mesh) to 0.4 in. Scanning electron microscopy (SEM) examination of fracture faces showed no damage to the matrix from proppant embedment or compaction, and no evidence of guard residue was detected in the proppant pack or on the formation face. Fractures appearmore » to be considerably longer than modeled. Three closely spaced fractures are interpreted to be branches of a single hydraulic fracture treatment. This paper presents a description of the fractures recovered during coring in Well OO2. Findings related to fracture dimensions and orientations, fracture sources, fracture permeability measurements, and fracture characteristics (proppant embedment, presence of gel residue) are presented. Implications related to field development are discussed.« less

  17. Dynamic Response in Transient Stress-Field Behavior Induced by Hydraulic Fracturing

    NASA Astrophysics Data System (ADS)

    Jenkins, Andrew

    Hydraulic fracturing is a technique which is used to exploit geologic features and subsurface properties in an effort to increase production in low-permeability formations. The process of hydraulic fracturing provides a greater surface contact area between the producing formation and the wellbore and thus increases the amount of recoverable hydrocarbons from within the reservoir. The use of this stimulation technique has brought on massive applause from the industry due to its widespread success and effectiveness, however the dynamic processes that take part in the development of hydraulic fractures is a relatively new area of research with respect to the massive scale operations that are seen today. The process of hydraulic fracturing relies upon understanding and exploiting the in-situ stress distribution throughout the area of study. These in-situ stress conditions are responsible for directing fracture orientation and propagation paths throughout the period of injection. The relative magnitude of these principle stresses is key in developing a successful stimulation plan. In horizontal well plan development the interpretation of stress within the reservoir is required for determining the azimuth of the horizontal well path. These horizontal laterals are typically oriented in a manner such that the well path lies parallel to the minimum horizontal stress. This allows for vertical fractures to develop transversely to the wellbore, or normal to the least principle stress without the theoretical possibility of fractures overlapping, creating the most efficient use of the fluid energy during injection. The orientation and magnitude of these in-situ stress fields however can be dynamic, controlled by the subsequent fracture propagation and redistribution of the surrounding stresses. That is, that as the fracture propagates throughout the reservoir, the relative stress fields surrounding the fractures may see a shift and deviate from their original direction or magnitude. These types of shifts are of great concern because they can impact subsequent fracture development causing non-uniform fracture propagation and the potential overlapping of fracture paths as they extend from the wellbore at the point of injection. The dynamics of stress variation that occur with respect to hydraulic fracturing is a somewhat new area of study. In order to accomplish the goals of this thesis and continue future research in this area a new transient model has been developed in order to asses these dynamic systems and determine their influence on fracture behavior. This applies the use of a fully coupled finite element method in 2-D using linear elastic fracture mechanics which is then expanded using displacement discontinuity to a cohesive zone model in 3-D. A static boundary element model was also used to determine stress fields surrounding static, predetermined fracture geometries. These models have been verified against analytical solutions for simple cases and are now being applied to more detailed case studies and analysis. These models have been briefly discussed throughout this thesis in order to give insight on their current capabilities and application as well as their future potential within this area of research. The majority of this work introduces transient stress field prediction to cases of single and multiple hydraulic fractures. The static assessment of these stresses is determined for verification of results to those found in publication which leads into these transient stress field variations. A new method has been developed and applied to the stress state prediction for the first time in a transient fracture model which is partly based upon a critical distance theory. These dynamic interactions can provide useful insight to pertinent issues within the petroleum and natural gas industry such as those to hydraulic fracturing fluid loss and induced seismic events, as well as to applications of efficiency and optimization of the stimulation treatment plan.

  18. Microseismic reverse time migration with a multi-cross-correlation staining algorithm for fracture imaging

    NASA Astrophysics Data System (ADS)

    Yuan, Congcong; Jia, Xiaofeng; Liu, Shishuo; Zhang, Jie

    2018-02-01

    Accurate characterization of hydraulic fracturing zones is currently becoming increasingly important in production optimization, since hydraulic fracturing may increase the porosity and permeability of the reservoir significantly. Recently, the feasibility of the reverse time migration (RTM) method has been studied for the application in imaging fractures during borehole microseismic monitoring. However, strong low-frequency migration noise, poorly illuminated areas, and the low signal to noise ratio (SNR) data can degrade the imaging results. To improve the quality of the images, we propose a multi-cross-correlation staining algorithm to incorporate into the microseismic reverse time migration for imaging fractures using scattered data. Under the modified RTM method, our results are revealed in two images: one is the improved RTM image using the multi-cross-correlation condition, and the other is an image of the target region using the generalized staining algorithm. The numerical examples show that, compared with the conventional RTM, our method can significantly improve the spatial resolution of images, especially for the image of target region.

  19. A magnetic method for determining the geometry of hydraulic fractures

    USGS Publications Warehouse

    Byerlee, J.D.; Johnston, M.J.S.

    1976-01-01

    We propose a method that may be used to determine the spatial orientation of the fracture plane developed during hydraulic fracture. In the method, magnetic particles are injected into the crack with the fracturing fluid so as to generate a sheet of magnetized material. Since the magnetization of a body with extreme dimension ratios, such as a crack, exceeds that of an equidimensional body and since this magnetization is sensitive both to orientation and geometry, this could be used to obtain information about the crack. By measuring the vertical and horizontal components of the magnetic field and field gradients at the earth's surface surrounding the injection well with superconducting magnetometers having 10-4 gamma sensitivity and also by measuring field direction within the well itself, it should be possible to calculate the orientation and perhaps infer the approximate geometry of the fracture surface. Experiments on electric field potential operated in conjunction with this experiment could further constrain estimates of shape and orientation. ?? 1976 Birkha??user Verlag.

  20. Site characterization in densely fractured dolomite: Comparison of methods

    USGS Publications Warehouse

    Muldoon, M.; Bradbury, K.R.

    2005-01-01

    One of the challenges in characterizing fractured-rock aquifers is determining whether the equivalent porous medium approximation is valid at the problem scale. Detailed hydrogeologic characterization completed at a small study site in a densely fractured dolomite has yielded an extensive data set that was used to evaluate the utility of the continuum and discrete-fracture approaches to aquifer characterization. There are two near-vertical sets of fractures at the site; near-horizontal bedding-plane partings constitute a third fracture set. Eighteen boreholes, including five coreholes, were drilled to a depth of ???10.6 m. Borehole geophysical logs revealed several laterally extensive horizontal fractures and dissolution zones. Flowmeter and short-interval packer testing identified which of these features were hydraulically important. A monitoring system, consisting of short-interval piezometers and multilevel samplers, was designed to monitor four horizontal fractures and two dissolution zones. The resulting network consisted of >70 sampling points and allowed detailed monitoring of head distributions in three dimensions. Comparison of distributions of hydraulic head - and hydraulic conductivity determined by these two approaches suggests that even in a densely fractured-carbonate aquifer, a characterization approach using traditional long-interval monitoring wells is inadequate to characterize ground water movement for the purposes of regulatory monitoring or site remediation. In addition, traditional multiwell pumping tests yield an average or bulk hydraulic conductivity that is not adequate for predicting rapid ground water travel times through the fracture network, and the pumping test response does not appear to be an adequate tool for assessing whether the porous medium approximation is valid. Copyright ?? 2005 National Ground Water Association.

  1. Site characterization in densely fractured dolomite: comparison of methods.

    PubMed

    Muldoon, Maureen; Bradbury, Ken R

    2005-01-01

    One of the challenges in characterizing fractured-rock aquifers is determining whether the equivalent porous medium approximation is valid at the problem scale. Detailed hydrogeologic characterization completed at a small study site in a densely fractured dolomite has yielded an extensive data set that was used to evaluate the utility of the continuum and discrete-fracture approaches to aquifer characterization. There are two near-vertical sets of fractures at the site; near-horizontal bedding-plane partings constitute a third fracture set. Eighteen boreholes, including five coreholes, were drilled to a depth of approximately 10.6 m. Borehole geophysical logs revealed several laterally extensive horizontal fractures and dissolution zones. Flowmeter and short-interval packer testing identified which of these features were hydraulically important. A monitoring system, consisting of short-interval piezometers and multilevel samplers, was designed to monitor four horizontal fractures and two dissolution zones. The resulting network consisted of >70 sampling points and allowed detailed monitoring of head distributions in three dimensions. Comparison of distributions of hydraulic head and hydraulic conductivity determined by these two approaches suggests that even in a densely fractured-carbonate aquifer, a characterization approach using traditional long-interval monitoring wells is inadequate to characterize ground water movement for the purposes of regulatory monitoring or site remediation. In addition, traditional multiwell pumping tests yield an average or bulk hydraulic conductivity that is not adequate for predicting rapid ground water travel times through the fracture network, and the pumping test response does not appear to be an adequate tool for assessing whether the porous medium approximation is valid.

  2. Hydraulic fracturing to enhance the remediation of DNAPL in low permeability soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murdoch, L.; Slack, B.

    1996-08-01

    Meager rates of fluid flow are a major obstacle to in situ remediation of low permeability soils. This paper describes methods designed to avoid that obstacle by creating fractures and filling them with sand to increase well discharge and change paths of fluid flow in soil. Gently dipping fractures 10 m in maximum dimension and 1 to 2 cm thick can be created in some contaminated soils at depths of a few in or greater. Hydraulic fractures can also be used to create electrically conductive layers or to deliver granules of chemically or biologically active compounds that will degrade contaminantsmore » in place. Benefits of applying hydraulic fractures to DNAPL recovery include rates of fluid recovery, enhancing upward gradients to improve hydrodynamic stabilization, forming flat-lying reactive curtains to intersect compounds moving downward, or improving the performance of electrokinetics intended to recover compounds dissolved in water. 30 refs., 7 figs., 1 tab.« less

  3. Fully Coupled 3D Finite Element Model of Hydraulic Fracturing in a Permeable Rock Formation

    NASA Astrophysics Data System (ADS)

    Salimzadeh, S.; Paluszny, A.; Zimmerman, R. W.

    2015-12-01

    Hydraulic fracturing in permeable rock formations is a complex three-dimensional multi-physics phenomenon. Numerous analytical models of hydraulic fracturing processes have been proposed that typically simplify the physical processes, or somehow reduce the problem from three dimensions to two dimensions. Moreover, although such simplified models are able to model the growth of a single hydraulic fracture into an initially intact, homogeneous rock mass, they are generally not able to model fracturing of heterogeneous rock formations, or to account for interactions between multiple induced fractures, or between an induced fracture and pre-existing natural fractures. We have developed a numerical finite-element model for hydraulic fracturing that does not suffer from any of the limitations mentioned above. The model accounts for fluid flow within a fracture, the propagation of the fracture, and the leak-off of fluid from the fracture into the host rock. Fluid flow through the permeable rock matrix is modelled using Darcy's law, and is coupled with the laminar flow within the fracture. Fractures are discretely modelled in the three-dimensional mesh. Growth of a fracture is modelled using the concepts of linear elastic fracture mechanics (LEFM), with the onset and direction of growth based on stress intensity factors that are computed for arbitrary tetrahedral meshes. The model has been verified against several analytical solutions available in the literature for plane-strain (2D) and penny-shaped (3D) fractures, for various regimes of domination: viscosity, toughness, storage and leak-off. The interaction of the hydraulically driven fracture with pre-existing fractures and other fluid-driven fractures in terms of fluid leak-off, stress interaction and fracture arrest is investigated and the results are presented. Finally, some preliminary results are presented regarding the interaction of a hydraulically-induced fracture with a set of pre-existing natural fractures.

  4. Scale and Time Effects in Hydraulic Fracturing.

    DTIC Science & Technology

    1984-07-01

    An experimental study was conducted to determine the effects of scale and time on hydraulic fracturing in compacted samples of Teton Dam silt and...occurrence of hydraulic fracturing . Finite element analyses were used to investigate the possible effects of nonlinear soil behavior. Both experimental and...theoretical studies show that hydraulic fracturing can be initiated by seepage-induced forces without the presence of a preexisting flaw in the soil. (Author)

  5. A Hydraulic Stress Measurement System for Investigations at Depth in Slim Boreholes

    NASA Astrophysics Data System (ADS)

    Ask, M. V. S.; Ask, D.; Cornet, F. H.; Nilsson, T.; Talib, M.; Sundberg, J.

    2017-12-01

    Knowledge of the state of stress is essential to most underground work in rock mechanics as it provides means to analyze the mechanical behavior of a rock mass, serve as boundary condition in rock engineering problems, and help understand rock mass stability and groundwater flow. Luleå University of Technology (LTU) has developed and built a wire-line system for hydraulic rock stress measurements in slim boreholes together with the University of Strasbourg and Geosigma AB. The system consists of a downhole- and a surface unit. The downhole unit consists of hydraulic fracturing equipment (straddle packers and downhole imaging tool) and their associated data acquisition systems. The surface unit comprises of a 40-foot container permanently mounted on a trailer, which is equipped with a tripod, wire-line winches, water hydraulics, and a generator. The surface unit serves as a climate-independent on-site operations center, as well as a self-supporting transport vessel for the entire system. Three hydraulic stress testing methods can be applied: hydraulic fracturing, sleeve fracturing and hydraulic testing of pre-existing fractures. The three-dimensional stress tensor and its variation with depth within a continuous rock mass can be determined in a scientific unambiguously way by integrating results from the three test methods. The testing system is state of the art in several aspects including: (1) Large depth range (3 km), (2) Ability to test three borehole dimensions, (3) Resistivity imager maps the orientation of tested fracture (which is highlighted); (4) Highly stiff and resistive to corrosion downhole testing equipment; and (5) Very detailed control on the injection flow rate and cumulative volume is obtained by a hydraulic injection pump with variable piston rate, and a highly sensitive flow-meter. These aspects highly reduce measurement-related uncertainties of stress determination. Commissioning testing and initial field tests are scheduled to occur in a 1200 m long borehole in crystalline rock during the autumn of 2017. We aim at presenting this new and unique stress measurement system and some test results from the initial field tests.

  6. Assessment of the Potential Impacts of Hydraulic Fracturing for ...

    EPA Pesticide Factsheets

    This assessment provides a review and synthesis of available scientific literature and data to assess the potential for hydraulic fracturing for oil and gas to impact the quality or quantity of drinking water resources, and identifies factors affecting the frequency or severity of any potential impacts. The scope of this assessment is defined by the hydraulic fracturing water cycle which includes five main activities: Water acquisition – the withdrawal of ground or surface water needed for hydraulic fracturing fluids;Chemical mixing – the mixing of water, chemicals, and proppant on the well pad to create the hydraulic fracturing fluid;Well injection – the injection of hydraulic fracturing fluids into the well to fracture the geologic formation; Flowback and Produced water – the return of injected fluid and water produced from the formation to the surface, and subsequent transport for reuse, treatment, or disposal; andWastewater treatment and waste disposal – the reuse, treatment and release, or disposal of wastewater generated at the well pad, including produced water. This report can be used by federal, tribal, state, and local officials; industry; and the public to better understand and address vulnerabilities of drinking water resources to hydraulic fracturing activities. To assess the potential impacts of hydraulic fracturing on drinking water resources, if any, and to identify the driving factors that may affect the severity and frequency of s

  7. Discrete Fracture Network Characterization of Fractured Shale Reservoirs with Implications to Hydraulic Fracturing Optimization

    NASA Astrophysics Data System (ADS)

    Jin, G.

    2016-12-01

    Shales are important petroleum source rocks and reservoir seals. Recent developments in hydraulic fracturing technology have facilitated high gas production rates from shale and have had a strong impact on the U.S. gas supply and markets. Modeling of effective permeability for fractured shale reservoirs has been challenging because the presence of a fracture network significantly alters the reservoir hydrologic properties. Due to the frequent occurrence of fracture networks, it is of vital importance to characterize fracture networks and to investigate how these networks can be used to optimize the hydraulic fracturing. We have conducted basic research on 3-D fracture permeability characterization and compartmentization analyses for fractured shale formations, which takes the advantages of the discrete fracture networks (DFN). The DFN modeling is a stochastic modeling approach using the probabilistic density functions of fractures. Three common scenarios of DFN models have been studied for fracture permeability mapping using our previously proposed techniques. In DFN models with moderately to highly concentrated fractures, there exists a representative element volume (REV) for fracture permeability characterization, which indicates that the fractured reservoirs can be treated as anisotropic homogeneous media. Hydraulic fracturing will be most effective if the orientation of the hydraulic fracture is perpendicular to the mean direction of the fractures. A DFN model with randomized fracture orientations, on the other hand, lacks an REV for fracture characterization. Therefore, a fracture permeability tensor has to be computed from each element. Modeling of fracture interconnectivity indicates that there exists no preferred direction for hydraulic fracturing to be most effective oweing to the interconnected pathways of the fracture network. 3-D fracture permeability mapping has been applied to the Devonian Chattanooga Shale in Alabama and the results suggest that an REV exist for fluid flow and transport modeling at element sizes larger than 200 m. Fracture pathway analysis indicates that hydraulic fracturing can be equally effective for hydrocarbon fluid/gas exploration as long as its orientation is not aligned with that of the regional system fractures.

  8. A New Physics-Based Modeling of Multiple Non-Planar Hydraulic Fractures Propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Jing; Huang, Hai; Deo, Milind

    Because of the low permeability in shale plays, closely spaced hydraulic fractures and multilateral horizontal wells are generally required to improve production. Therefore, understanding the potential fracture interaction and stress evolution is critical in optimizing fracture/well design and completion strategy in multi-stage horizontal wells. In this paper, a novel fully coupled reservoir flow and geomechanics model based on the dual-lattice system is developed to simulate multiple non-planar fractures propagation. The numerical model from Discrete Element Method (DEM) is used to simulate the mechanics of fracture propagations and interactions, while a conjugate irregular lattice network is generated to represent fluid flowmore » in both fractures and formation. The fluid flow in the formation is controlled by Darcy’s law, but within fractures it is simulated by using cubic law for laminar flow through parallel plates. Initiation, growth and coalescence of the microcracks will lead to the generation of macroscopic fractures, which is explicitly mimicked by failure and removal of bonds between particles from the discrete element network. We investigate the fracture propagation path in both homogeneous and heterogeneous reservoirs using the simulator developed. Stress shadow caused by the transverse fracture will change the orientation of principal stress in the fracture neighborhood, which may inhibit or alter the growth direction of nearby fracture clusters. However, the initial in-situ stress anisotropy often helps overcome this phenomenon. Under large in-situ stress anisotropy, the hydraulic fractures are more likely to propagate in a direction that is perpendicular to the minimum horizontal stress. Under small in-situ stress anisotropy, there is a greater chance for fractures from nearby clusters to merge with each other. Then, we examine the differences in fracture geometry caused by fracturing in cemented or uncemented wellbore. Moreover, the impact of intrinsic reservoir heterogeneity caused by the rock fabric and mineralogy on fracture nucleation and propagation paths is examined through a three-layered reservoir. Finally, we apply the method to a realistic heterogeneous dataset.« less

  9. Hydraulic Fracturing for Oil and Gas: Impacts from the Hydraulic Fracturing Water Cycle on Drinking Water Resources in the United States (Final Report)

    EPA Science Inventory

    This final report provides a review and synthesis of available scientific information concerning the relationship between hydraulic fracturing activities and drinking water resources in the United States.

    The report is organized around activities in the hydraulic...

  10. Anomalous Induced Seismicity due to Hydraulic Fracturing. Case of study in the Montney Formation, Northeast British Columbia.

    NASA Astrophysics Data System (ADS)

    Longobardi, M.; Bustin, A. M. M.; Johansen, K.; Bustin, R. M.

    2017-12-01

    One of our goals is to investigate the variables and processes controlling the anomalous induced seismicity and its associated ground motions, to better understand the anomalous induced seismicity (AIS) due to hydraulic fracturing in Northeast British Columbia. Our other main objective is to optimize-completions and well design. Although the vast majority of earthquakes that occur in the world each year have natural causes, some of these earthquakes and a number of lesser magnitude seismic events are induced by human activities. The recorded induced seismicity resulting from the fluid injection during hydraulic fracturing is generally small in magnitude (< M 1). Shale gas operations in Northeast British Columbia (BC) have induced the largest recorded occurrence and magnitude of AIS because of hydraulic fracturing. Anomalous induced seismicity have been recorded in seven clusters within the Montney area, with magnitudes up to ML 4.6. Five of these clusters have been linked to hydraulic fracturing. To analyse our AIS data, we first have calculated the earthquakes hypocenters. The data was recorded on an array of real-time accelerometers. We built the array based on our modified design from the early earthquake detectors installed in BC schools for the Earthquake Early Warning System for British Columbia. We have developed a new technique for locating hypocenters and applied it to our dataset. The technique will enable near real-time event location, aiding in both mitigating induced events and adjusting completions to optimize the stimulation. Our hypocenter program assumes to consider a S wave speed, fitting the arrival times to the hypocenter, and using an "amoebae method" multivariate. We have used this method because it is well suited to minimizing of the chi-squared function of the arrival time deviation. We show some preliminary results on the Montney dataset.

  11. Borehole characterization of hydraulic properties and groundwater flow in a crystalline fractured aquifer of a headwater mountain watershed, Laramie Range, Wyoming

    NASA Astrophysics Data System (ADS)

    Ren, Shuangpo; Gragg, Samuel; Zhang, Ye; Carr, Bradley J.; Yao, Guangqing

    2018-06-01

    Fractured crystalline aquifers of mountain watersheds may host a significant portion of the world's freshwater supply. To effectively utilize water resources in these environments, it is important to understand the hydraulic properties, groundwater storage, and flow processes in crystalline aquifers and field-derived insights are critically needed. Based on borehole hydraulic characterization and monitoring data, this study inferred hydraulic properties and groundwater flow of a crystalline fractured aquifer in Laramie Range, Wyoming. At three open holes completed in a fractured granite aquifer, both slug tests and FLUTe liner profiling were performed to obtain estimates of horizontal hydraulic conductivity (Kh). Televiewer (i.e., optical and acoustic) and flowmeter logs were then jointly interpreted to identify the number of flowing fractures and fracture zones. Based on these data, hydraulic apertures were obtained for each borehole. Average groundwater velocity was then computed using Kh, aperture, and water level monitoring data. Finally, based on all available data, including cores, borehole logs, LIDAR topography, and a seismic P-wave velocity model, a three dimensional geological model of the site was built. In this fractured aquifer, (1) borehole Kh varies over ∼4 orders of magnitude (10-8-10-5 m/s). Kh is consistently higher near the top of the bedrock that is interpreted as the weathering front. Using a cutoff Kh of 10-10 m/s, the hydraulically significant zone extends to ∼40-53 m depth. (2) FLUTe-estimated hydraulic apertures of fractures vary over 1 order of magnitude, and at each borehole, the average hydraulic aperture by FLUTe is very close to that obtained from slug tests. Thus, slug test can be used to provide a reliable estimate of the average fracture hydraulic aperture. (3) Estimated average effective fracture porosity is 4.0 × 10-4, therefore this fractured aquifer can host significant quantity of water. (4) Natural groundwater velocity is estimated to range from 0.4 to 81.0 m/day, implying rapid pathways of fracture flow. (5) The average ambient water table position follows the boundary between saprolite and fractured bedrock. Groundwater flow at the site appears topography driven.

  12. 40 CFR 147.52 - State-administered program-Hydraulic Fracturing of Coal Beds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Fracturing of Coal Beds. 147.52 Section 147.52 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... PROGRAMS Alabama § 147.52 State-administered program—Hydraulic Fracturing of Coal Beds. The UIC program for hydraulic fracturing of coal beds in the State of Alabama, except those on Indian lands, is the program...

  13. 40 CFR 147.52 - State-administered program-Hydraulic Fracturing of Coal Beds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Fracturing of Coal Beds. 147.52 Section 147.52 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... PROGRAMS Alabama § 147.52 State-administered program—Hydraulic Fracturing of Coal Beds. The UIC program for hydraulic fracturing of coal beds in the State of Alabama, except those on Indian lands, is the program...

  14. 40 CFR 147.52 - State-administered program-Hydraulic Fracturing of Coal Beds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Fracturing of Coal Beds. 147.52 Section 147.52 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... PROGRAMS Alabama § 147.52 State-administered program—Hydraulic Fracturing of Coal Beds. The UIC program for hydraulic fracturing of coal beds in the State of Alabama, except those on Indian lands, is the program...

  15. 40 CFR 147.52 - State-administered program-Hydraulic Fracturing of Coal Beds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Fracturing of Coal Beds. 147.52 Section 147.52 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... PROGRAMS Alabama § 147.52 State-administered program—Hydraulic Fracturing of Coal Beds. The UIC program for hydraulic fracturing of coal beds in the State of Alabama, except those on Indian lands, is the program...

  16. Application of Reservoir Flow Simulation Integrated with Geomechanics in Unconventional Tight Play

    NASA Astrophysics Data System (ADS)

    Lin, Menglu; Chen, Shengnan; Mbia, Ernest; Chen, Zhangxing

    2018-01-01

    Multistage hydraulic fracturing techniques, combined with horizontal drilling, have enabled commercial production from the vast reserves of unconventional tight formations. During hydraulic fracturing, fracturing fluid and proppants are pumped into the reservoir matrix to create the hydraulic fractures. Understanding the propagation mechanism of hydraulic fractures is essential to estimate their properties, such as half-length. In addition, natural fractures are often present in tight formations, which might be activated during the fracturing process and contribute to the post-stimulation well production rates. In this study, reservoir simulation is integrated with rock geomechanics to predict the well post-stimulation productivities. Firstly, a reservoir geological model is built based on the field data collected from the Montney formation in the Western Canadian Sedimentary Basin. The hydraulic fracturing process is then simulated through an integrated approach of fracturing fluid injection, rock geomechanics, and tensile failure criteria. In such a process, the reservoir pore pressure increases with a continuous injection of the fracturing fluid and proppants, decreasing the effective stress exerted on the rock matrix accordingly as the overburden pressure remains constant. Once the effective stress drops to a threshold value, tensile failure of the reservoir rock occurs, creating hydraulic fractures in the formation. The early production history of the stimulated well is history-matched to validate the predicted fracture geometries (e.g., half-length) generated from the fracturing simulation process. The effects of the natural fracture properties and well bottom-hole pressures on well productivity are also studied. It has been found that nearly 40% of hydraulic fractures propagate in the beginning stage (the pad step) of the fracturing schedule. In addition, well post-stimulation productivity will increase significantly if the natural fractures are propped or partially propped by the proppants. This paper provides insights on fracture propagation and can be a reference for fracturing treatments in unconventional tight reservoirs.

  17. Repair, Evaluation, Maintenance, and Rehabilitation Research Program: The Effects of Vegetation on these Structural Integrity of Sandy Levees.

    DTIC Science & Technology

    1991-08-01

    cracking in earth dams commonly occurs by hydraulic fracturing . Hydraulic fracturing is a tensile separation along an internal surface in a 25 soil mass...stress. This hydraulic fracturing is facilitated by differential settle- ment and internal stress transfer in an earthen structure. Sherard also showed...the hydraulic fracturing . 42. BioLic activity, i.e., the actions of plant roots and burrowing animals, has provided a popular explanation for pipe

  18. Overview of Chronic Oral Toxicity Values for Chemicals Present in Hydraulic Fracturing Fluids, Flowback, and Produced Waters.

    PubMed

    Yost, Erin E; Stanek, John; DeWoskin, Robert S; Burgoon, Lyle D

    2016-05-03

    Concerns have been raised about potential public health effects that may arise if hydraulic fracturing-related chemicals were to impact drinking water resources. This study presents an overview of the chronic oral toxicity values-specifically, chronic oral reference values (RfVs) for noncancer effects, and oral slope factors (OSFs) for cancer-that are available for a list of 1173 chemicals that the United States (U.S.) Environmental Protection Agency (EPA) identified as being associated with hydraulic fracturing, including 1076 chemicals used in hydraulic fracturing fluids and 134 chemicals detected in flowback or produced waters from hydraulically fractured wells. The EPA compiled RfVs and OSFs using six governmental and intergovernmental data sources. Ninety (8%) of the 1076 chemicals reported in hydraulic fracturing fluids and 83 (62%) of the 134 chemicals reported in flowback/produced water had a chronic oral RfV or OSF available from one or more of the six sources. Furthermore, of the 36 chemicals reported in hydraulic fracturing fluids in at least 10% of wells nationwide (identified from EPA's analysis of the FracFocus Chemical Disclosure Registry 1.0), 8 chemicals (22%) had an available chronic oral RfV. The lack of chronic oral RfVs and OSFs for the majority of these chemicals highlights the significant knowledge gap that exists to assess the potential human health hazards associated with hydraulic fracturing.

  19. Hydraulic tomography offers improved imaging of heterogeneity in fractured rocks.

    PubMed

    Illman, Walter A

    2014-01-01

    Fractured rocks have presented formidable challenges for accurately predicting groundwater flow and contaminant transport. This is mainly due to our difficulty in mapping the fracture-rock matrix system, their hydraulic properties and connectivity at resolutions that are meaningful for groundwater modeling. Over the last several decades, considerable effort has gone into creating maps of subsurface heterogeneity in hydraulic conductivity (K) and specific storage (Ss ) of fractured rocks. Developed methods include kriging, stochastic simulation, stochastic inverse modeling, and hydraulic tomography. In this article, I review the evolution of various heterogeneity mapping approaches and contend that hydraulic tomography, a recently developed aquifer characterization technique for unconsolidated deposits, is also a promising approach in yielding robust maps (or tomograms) of K and Ss heterogeneity for fractured rocks. While hydraulic tomography has recently been shown to be a robust technique, the resolution of the K and Ss tomograms mainly depends on the density of pumping and monitoring locations and the quality of data. The resolution will be improved through the development of new devices for higher density monitoring of pressure responses at discrete intervals in boreholes and potentially through the integration of other data from single-hole tests, borehole flowmeter profiling, and tracer tests. Other data from temperature and geophysical surveys as well as geological investigations may improve the accuracy of the maps, but more research is needed. Technological advances will undoubtedly lead to more accurate maps. However, more effort should go into evaluating these maps so that one can gain more confidence in their reliability. © 2013, National Ground Water Association.

  20. Hydraulic tomography offers improved imaging of heterogeneity in fractured rocks

    NASA Astrophysics Data System (ADS)

    Illman, W. A.

    2013-12-01

    Fractured rocks have presented formidable challenges for accurately predicting groundwater flow and contaminant transport. This is mainly due to our difficulty in mapping the fracture-rock matrix system, their hydraulic properties and connectivity at resolutions that are meaningful for groundwater flow and especially transport modeling. Over the last several decades, considerable effort has gone into creating maps of subsurface heterogeneity in hydraulic conductivity (K) and specific storage (Ss) of fractured rocks. Developed methods include kriging, stochastic simulation, stochastic inverse modeling, and hydraulic tomography. In this presentation, I review the evolution of various heterogeneity mapping approaches and contend that hydraulic tomography, a recently developed aquifer characterization technique for unconsolidated deposits, is also a promising approach in yielding robust maps (or tomograms) of K and Ss heterogeneity for fractured rocks. While hydraulic tomography has recently been shown to be a robust technique, the resolution of the K and Ss tomograms mainly depends on the density of pumping and monitoring locations and the quality of data. The resolution will be improved through the development of new devices for higher density monitoring of pressure responses at discrete intervals in boreholes and potentially through the integration of other data from single-hole tests, borehole flowmeter profiling and tracer tests. Other data from temperature and geophysical surveys as well as geological investigations may improve the accuracy of the maps, but more research is needed. Technological advances will undoubtedly lead to more accurate maps. However, more effort should go into evaluating these maps so that one can gain more confidence in their reliability.

  1. Simulation of a multistage fractured horizontal well in a water-bearing tight fractured gas reservoir under non-Darcy flow

    NASA Astrophysics Data System (ADS)

    Zhang, Rui-Han; Zhang, Lie-Hui; Wang, Rui-He; Zhao, Yu-Long; Huang, Rui

    2018-06-01

    Reservoir development for unconventional resources such as tight gas reservoirs is in increasing demand due to the rapid decline of production in conventional reserves. Compared with conventional reservoirs, fluid flow in water-bearing tight gas reservoirs is subject to more nonlinear multiphase flow and gas slippage in nano/micro matrix pores because of the strong collisions between rock and gas molecules. Economic gas production from tight gas reservoirs depends on extensive application of water-based hydraulic fracturing of horizontal wells, associated with non-Darcy flow at a high flow rate, geomechanical stress sensitivity of un-propped natural fractures, complex flow geometry and multiscale heterogeneity. How to efficiently and accurately predict the production performance of a multistage fractured horizontal well (MFHW) is challenging. In this paper, a novel multicontinuum, multimechanism, two-phase simulator is established based on unstructured meshes and the control volume finite element method to analyze the production performance of MFHWs. The multiple interacting continua model and discrete fracture model are coupled to integrate the unstimulated fractured reservoir, induced fracture networks (stimulated reservoir volumes, SRVs) and irregular discrete hydraulic fractures. Several simulations and sensitivity analyses are performed with the developed simulator for determining the key factors affecting the production performance of MFHWs. Two widely applied fracturing models, classic hydraulic fracturing which generates long double-wing fractures and the volumetric fracturing aimed at creating large SRVs, are compared to identify which of them can make better use of tight gas reserves.

  2. 75 FR 36387 - Informational Public Meetings for Hydraulic Fracturing Research Study; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-25

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9168-2] Informational Public Meetings for Hydraulic Fracturing Research Study; Correction AGENCY: Environmental Protection Agency (EPA). ACTION: Notice... of June 21, 2010, announcing public meetings for the Hydraulic Fracturing Research Study. The...

  3. Tracer Tests in the Fractured Rock to Investigate Preferential Groundwater Flow

    NASA Astrophysics Data System (ADS)

    Chan, W.; Chung, L.; Lee, T.; Liu, C.; Chia, Y.; Teng, M.

    2012-12-01

    Hydraulic tests are often used to obtain hydraulic conductivity in the aquifer. Test results usually reflect the average hydraulic conductivity in the surrounding strat. However, in fractured rock, groundwater flows primarily through a few fractures. Saltwater tracer test can be used to detect the direction of groundwater flow, but it was difficult to know the hydraulic connectivity between fractures. In this study, we use a variety of field tests, including tracer test, hydraulic test, and heat-pulse flowmeter test, to locate the permeable fractures and detect the hydraulic connections between boreholes. There are eight test wells and two observation wells on field experimental site in central Taiwan. Geological survey results show that there are at least three sets of joint planes. In order to realize the location of the preferential pathway of groundwater flow, heat-pulse flowmeter measurement was adopted to identify the depth of permeable fractures. Multi-well pumping test was also performed to investigate the hydraulic connectivity between these wells. Tracer tests were then used to detect the hydraulic connectivity of permeable fractures between two wells. Injection of nano zero valent iron in one well and and collection of iron tracer with a magnet array in the other well can specifically locate the permeable fracture and determine the connectivity. Saltwater tracer test result can be used to support that of nano-iron tracer test, and verify the relationship between well water conductivity increases and rock fracture location. The results show that tracer test is a useful tool to investigate the preferential groundwater flow in the fractured rock, but it is essential to flush the mud in fractures prior to the test.

  4. One-dimensional analytical solution for hydraulic head and numerical solution for solute transport through a horizontal fracture for submarine groundwater discharge.

    PubMed

    He, Cairong; Wang, Tongke; Zhao, Zhixue; Hao, Yonghong; Yeh, Tian-Chyi J; Zhan, Hongbin

    2017-11-01

    Submarine groundwater discharge (SGD) has been recognized as a major pathway of groundwater flow to coastal oceanic environments. It could affect water quality and marine ecosystems due to pollutants and trace elements transported through groundwater. Relations between different characteristics of aquifers and SGD have been investigated extensively before, but the role of fractures in SGD still remains unknown. In order to better understand the mechanism of groundwater flow and solute transport through fractures in SGD, one-dimensional analytical solutions of groundwater hydraulic head and velocity through a synthetic horizontal fracture with periodic boundary conditions were derived using a Laplace transform technique. Then, numerical solutions of solute transport associated with the given groundwater velocity were developed using a finite-difference method. The results indicated that SGD associated with groundwater flow and solute transport was mainly controlled by sea level periodic fluctuations, which altered the hydraulic head and the hydraulic head gradient in the fracture. As a result, the velocity of groundwater flow associated with SGD also fluctuated periodically. We found that the pollutant concentration associated with SGD oscillated around a constant value, and could not reach a steady state. This was particularly true at locations close to the seashore. This finding of the role of fracture in SGD will assist pollution remediation and marine conservation in coastal regions. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. One-dimensional analytical solution for hydraulic head and numerical solution for solute transport through a horizontal fracture for submarine groundwater discharge

    NASA Astrophysics Data System (ADS)

    He, Cairong; Wang, Tongke; Zhao, Zhixue; Hao, Yonghong; Yeh, Tian-Chyi J.; Zhan, Hongbin

    2017-11-01

    Submarine groundwater discharge (SGD) has been recognized as a major pathway of groundwater flow to coastal oceanic environments. It could affect water quality and marine ecosystems due to pollutants and trace elements transported through groundwater. Relations between different characteristics of aquifers and SGD have been investigated extensively before, but the role of fractures in SGD still remains unknown. In order to better understand the mechanism of groundwater flow and solute transport through fractures in SGD, one-dimensional analytical solutions of groundwater hydraulic head and velocity through a synthetic horizontal fracture with periodic boundary conditions were derived using a Laplace transform technique. Then, numerical solutions of solute transport associated with the given groundwater velocity were developed using a finite-difference method. The results indicated that SGD associated with groundwater flow and solute transport was mainly controlled by sea level periodic fluctuations, which altered the hydraulic head and the hydraulic head gradient in the fracture. As a result, the velocity of groundwater flow associated with SGD also fluctuated periodically. We found that the pollutant concentration associated with SGD oscillated around a constant value, and could not reach a steady state. This was particularly true at locations close to the seashore. This finding of the role of fracture in SGD will assist pollution remediation and marine conservation in coastal regions.

  6. Integrated analysis and interpretation of microseismic monitoring of hydraulic fracturing in the Marcellus Shale

    NASA Astrophysics Data System (ADS)

    Zorn, Erich Victor

    In 2012 and 2013, hydraulic fracturing was performed at two Marcellus Shale well pads, under the supervision of the Energy Corporation of America. Six lateral wells were hydraulically fractured in Greene County in southwestern Pennsylvania and one lateral well was fractured in Clearfield County in north-central Pennsylvania. During hydraulic fracturing operations, microseismic monitoring by strings of downhole geophones detected a combination of >16,000 microseismic events at the two sites. High quality traditional and geomechanical well logs were acquired at Clearfield County, as well as tomographic velocity profiles before and after stimulation. In partnership with the US Department of Energy's National Energy Technology Laboratory, I completed detailed analysis of these geophysical datasets to maximize the understanding of the engineering and geological conditions in the reservoir, the connection between hydraulic input and microseismic expression, and the geomechanical factors that control microseismic properties. Additionally, one broad-band surface seismometer was deployed at Greene County and left to passively monitor site acoustics for the duration of hydraulic fracturing. Data from this instrument shows the presence of slow-slip or long period/long duration (LPLD) seismicity. In years prior to our investigation, lab-scale fracturing studies and broadband seismic monitoring of hydraulic fracturing had been completed by other researchers in unconventional shale and tight sand in Texas and Canada. This is the first study of LPLD seismicity in the Marcellus Shale and reveals aseismic deformation during hydraulic fracturing that could account for a large portion of "lost" hydraulic energy input. Key accomplishments of the studies contained in this dissertation include interpreting microseismic data in terms of hydraulic pumping data and vice versa, verifying the presence of LPLD seismicity during fracturing, establishing important geomechanical controls on the character of induced microseismicity, and extensive data integration toward locating a previously unmapped fault that appears to have exhibited significant control over well stimulation efforts at Clearfield.

  7. Understanding hydraulic fracturing: a multi-scale problem.

    PubMed

    Hyman, J D; Jiménez-Martínez, J; Viswanathan, H S; Carey, J W; Porter, M L; Rougier, E; Karra, S; Kang, Q; Frash, L; Chen, L; Lei, Z; O'Malley, D; Makedonska, N

    2016-10-13

    Despite the impact that hydraulic fracturing has had on the energy sector, the physical mechanisms that control its efficiency and environmental impacts remain poorly understood in part because the length scales involved range from nanometres to kilometres. We characterize flow and transport in shale formations across and between these scales using integrated computational, theoretical and experimental efforts/methods. At the field scale, we use discrete fracture network modelling to simulate production of a hydraulically fractured well from a fracture network that is based on the site characterization of a shale gas reservoir. At the core scale, we use triaxial fracture experiments and a finite-discrete element model to study dynamic fracture/crack propagation in low permeability shale. We use lattice Boltzmann pore-scale simulations and microfluidic experiments in both synthetic and shale rock micromodels to study pore-scale flow and transport phenomena, including multi-phase flow and fluids mixing. A mechanistic description and integration of these multiple scales is required for accurate predictions of production and the eventual optimization of hydrocarbon extraction from unconventional reservoirs. Finally, we discuss the potential of CO2 as an alternative working fluid, both in fracturing and re-stimulating activities, beyond its environmental advantages.This article is part of the themed issue 'Energy and the subsurface'. © 2016 The Author(s).

  8. Understanding hydraulic fracturing: a multi-scale problem

    PubMed Central

    Hyman, J. D.; Jiménez-Martínez, J.; Viswanathan, H. S.; Carey, J. W.; Porter, M. L.; Rougier, E.; Karra, S.; Kang, Q.; Frash, L.; Chen, L.; Lei, Z.; O’Malley, D.; Makedonska, N.

    2016-01-01

    Despite the impact that hydraulic fracturing has had on the energy sector, the physical mechanisms that control its efficiency and environmental impacts remain poorly understood in part because the length scales involved range from nanometres to kilometres. We characterize flow and transport in shale formations across and between these scales using integrated computational, theoretical and experimental efforts/methods. At the field scale, we use discrete fracture network modelling to simulate production of a hydraulically fractured well from a fracture network that is based on the site characterization of a shale gas reservoir. At the core scale, we use triaxial fracture experiments and a finite-discrete element model to study dynamic fracture/crack propagation in low permeability shale. We use lattice Boltzmann pore-scale simulations and microfluidic experiments in both synthetic and shale rock micromodels to study pore-scale flow and transport phenomena, including multi-phase flow and fluids mixing. A mechanistic description and integration of these multiple scales is required for accurate predictions of production and the eventual optimization of hydrocarbon extraction from unconventional reservoirs. Finally, we discuss the potential of CO2 as an alternative working fluid, both in fracturing and re-stimulating activities, beyond its environmental advantages. This article is part of the themed issue ‘Energy and the subsurface’. PMID:27597789

  9. Aerobic biodegradation of organic compounds in hydraulic fracturing fluids.

    PubMed

    Kekacs, Daniel; Drollette, Brian D; Brooker, Michael; Plata, Desiree L; Mouser, Paula J

    2015-07-01

    Little is known of the attenuation of chemical mixtures created for hydraulic fracturing within the natural environment. A synthetic hydraulic fracturing fluid was developed from disclosed industry formulas and produced for laboratory experiments using commercial additives in use by Marcellus shale field crews. The experiments employed an internationally accepted standard method (OECD 301A) to evaluate aerobic biodegradation potential of the fluid mixture by monitoring the removal of dissolved organic carbon (DOC) from an aqueous solution by activated sludge and lake water microbial consortia for two substrate concentrations and four salinities. Microbial degradation removed from 57 % to more than 90 % of added DOC within 6.5 days, with higher removal efficiency at more dilute concentrations and little difference in overall removal extent between sludge and lake microbe treatments. The alcohols isopropanol and octanol were degraded to levels below detection limits while the solvent acetone accumulated in biological treatments through time. Salinity concentrations of 40 g/L or more completely inhibited degradation during the first 6.5 days of incubation with the synthetic hydraulic fracturing fluid even though communities were pre-acclimated to salt. Initially diverse microbial communities became dominated by 16S rRNA sequences affiliated with Pseudomonas and other Pseudomonadaceae after incubation with the synthetic fracturing fluid, taxa which may be involved in acetone production. These data expand our understanding of constraints on the biodegradation potential of organic compounds in hydraulic fracturing fluids under aerobic conditions in the event that they are accidentally released to surface waters and shallow soils.

  10. Mineback Stimulation Research Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warpinski, N.R.

    The Mineback Stimulation Research Program is a systematic study of hydraulic fracturing and the parameters which influence or control fracture geometry or behavior. Fractures are created near a tunnel complex at DOE's Nevada Test Site and are monitored, instrumented, and mined back to observe the effect of treatment, rock and reservoir properties on the fractures. An initial experiment to measure width and pressure in a hydraulic fracture was completed in FY 1983. The test showed that pressure drops along fractures are much larger than predicted, with the result that fractures are shorter, higher, and wider than present models estimate. Themore » cause of this is the complex morphology of hydraulic fractures, including a hierarchy of roughnesses, multiple stranding, and corners, such as the offsets which occur when natural fractures are intersected. A test to study flow behavior in hydraulic fractures with proppant is proposed for FY 1984. 7 figures.« less

  11. Multilayer geospatial analysis of water availability for shale resources development in Mexico

    NASA Astrophysics Data System (ADS)

    Galdeano, C.; Cook, M. A.; Webber, M. E.

    2017-08-01

    Mexico’s government enacted an energy reform in 2013 that aims to foster competitiveness and private investment throughout the energy sector value chain. As part of this reform, it is expected that extraction of oil and gas via hydraulic fracturing will increase in five shale basins (e.g. Burgos, Sabinas, Tampico, Tuxpan, and Veracruz). Because hydraulic fracturing is a water-intensive activity, it is relevant to assess the potential water availability for this activity in Mexico. This research aims to quantify the water availability for hydraulic fracturing in Mexico and identify its spatial distribution along the five shale basins. The methodology consisted of a multilayer geospatial analysis that overlays the water availability in the watersheds and aquifers with the different types of shale resources areas (e.g. oil and associated gas, wet gas and condensate, and dry gas) in the five shale basins. The aquifers and watersheds in Mexico are classified in four zones depending on average annual water availability. Three scenarios were examined based on different impact level on watersheds and aquifers from hydraulic fracturing. For the most conservative scenario analyzed, the results showed that the water available could be used to extract between 8.15 and 70.42 Quadrillion British thermal units (Quads) of energy in the typical 20-30 year lifetime of the hydraulic fracturing wells that could be supplied with the annual water availability overlaying the shale areas, with an average across estimates of around 18.05 Quads. However, geographic variation in water availability could represent a challenge for extracting the shale reserves. Most of the water available is located closer to the Gulf of Mexico, but the areas with the larger recoverable shale reserves coincide with less water availability in Northern Mexico. New water management techniques (such as recycling and re-use), more efficient fracturing methods, shifts in usage patterns, or other water sources need to be identified to allocate water for hydraulic fracturing without affecting current users (e.g. municipal, irrigation, industrial, and environmental flows).

  12. Development of technical means for directional hydraulic fracturing with shearing loading of borehole walls

    NASA Astrophysics Data System (ADS)

    Rybalkin, LA; Patutin, AV; Patutin, DV

    2018-03-01

    During the process of mineral deposits’ mining one of the most important conditions for safe and economically profitable work of a mining enterprise is obtaining timely information on the stress state of the developed massif. One of the most common methods of remote study of the geomechanical state of the rock massif is hydraulic fracturing of the formation. Directional hydraulic fracturing is a type of the method employed to form cracks across production wells. This technology was most widely used in the gas industry to extract gas from shale formations. In mining, this technology is used to set up filtration screens, to integrate degassing, to soften the hard roof of coal seams. Possible practical appliance is the expansion of the application field of this technology to intensify the production of viscous oil, to leach non-ferrous metals, to create in the rock massif anti-filtration screens for various purposes, as well as to measure stresses acting along the wells.

  13. Estimating the hydraulic conductivity of two-dimensional fracture networks

    NASA Astrophysics Data System (ADS)

    Leung, C. T.; Zimmerman, R. W.

    2010-12-01

    Most oil and gas reservoirs, as well as most potential sites for nuclear waste disposal, are naturally fractured. In these sites, the network of fractures will provide the main path for fluid to flow through the rock mass. In many cases, the fracture density is so high as to make it impractical to model it with a discrete fracture network (DFN) approach. For such rock masses, it would be useful to have recourse to analytical, or semi-analytical, methods to estimate the macroscopic hydraulic conductivity of the fracture network. We have investigated single-phase fluid flow through stochastically generated two-dimensional fracture networks. The centres and orientations of the fractures are uniformly distributed, whereas their lengths follow either a lognormal distribution or a power law distribution. We have considered the case where the fractures in the network each have the same aperture, as well as the case where the aperture of each fracture is directly proportional to the fracture length. The discrete fracture network flow and transport simulator NAPSAC, developed by Serco (Didcot, UK), is used to establish the “true” macroscopic hydraulic conductivity of the network. We then attempt to match this conductivity using a simple estimation method that does not require extensive computation. For our calculations, fracture networks are represented as networks composed of conducting segments (bonds) between nodes. Each bond represents the region of a single fracture between two adjacent intersections with other fractures. We assume that the bonds are arranged on a kagome lattice, with some fraction of the bonds randomly missing. The conductance of each bond is then replaced with some effective conductance, Ceff, which we take to be the arithmetic mean of the individual conductances, averaged over each bond, rather than over each fracture. This is in contrast to the usual approximation used in effective medium theories, wherein the geometric mean is used. Our explanation is that the conductivities of the bonds that meet at a given node in a fracture network do not satisfy the usual assumption of being uncorrelated; rather, the conductances of at least two of these bonds are highly correlated, as they represent the incoming and outgoing branches of the same fracture. The effective conductance of our idealized “equivalent network” is then trivial to calculate. We find that this estimate of the hydraulic conductivity agrees very closely with the numerically computed value, essentially for all fracture densities that are not too close to the percolation threshold. Moreover, the same methodology applies regardless of whether the fracture lengths are distributed lognormally, or according to a power law.

  14. Mathematical modeling and simulation analysis of hydraulic fracture propagation in three-layered poro-elastic media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, H.Y.; Advani, S.H.; Lee, T.S.

    1992-11-01

    Hydraulic fracturing plays a pivotal role in the enhancement of oil and gas production recovery from low permeability reservoirs. The process of hydraulic fracturing entails the generation of a fracture by pumping fluids blended with special chemicals and proppants into the payzone at high injection rates and pressures to extend and wedge fractures. The mathematical modeling of hydraulically induced fractures generally incorporates coupling between the formation elasticity, fracture fluid flow, and fracture mechanics equations governing the formation structural responses, fluid pressure profile, and fracture growth. Two allied unsymmetric elliptic fracture models are developed for fracture configuration evolutions in three-layered rockmore » formations. The first approach is based on a Lagrangian formulation incorporating pertinent energy components associated with the formation structural responses and fracture fluid flow. The second model is based on a generalized variational principle, introducing an energy rate related functional. These models initially simulate a penny-shaped fracture, which becomes elliptic if the crack tips encounters (upper and/or lower) barriers with differential reservoir properties (in situ stresses, 16 elastic moduli, and fracture toughness-contrasts and fluid leak-off characteristics). The energy rate component magnitudes are determined to interpret the governing hydraulic fracture mechanisms during fracture evolution. The variational principle is extended to study the phenomenon and consequences of fluid lag in fractures. Finally, parametric sensitivity and energy rate investigations to evaluate the roles of controllable hydraulic treatment variables and uncontrollable reservoir property characterization parameters are performed. The presented field applications demonstrate the overall capabilities of the developed models. These studies provide stimulation treatment guidelines for fracture configuration design, control, and optimization.« less

  15. Review of Well Operator Files for Hydraulically Fractured Oil and Gas Production Wells: Hydraulic Fracturing Operations

    EPA Pesticide Factsheets

    EPA conducted a survey of oil and gas production wells hydraulically fractured by nine oil and gas service companies in the United States during 2009 and 2010. This is the second well file review report.

  16. Hydraulic Properties of Closely Spaced Dipping Open Fractures Intersecting a Fluid-Filled Borehole Derived From Tube Wave Generation and Scattering

    NASA Astrophysics Data System (ADS)

    Minato, Shohei; Ghose, Ranajit; Tsuji, Takeshi; Ikeda, Michiharu; Onishi, Kozo

    2017-10-01

    Fluid-filled fractures and fissures often determine the pathways and volume of fluid movement. They are critically important in crustal seismology and in the exploration of geothermal and hydrocarbon reservoirs. We introduce a model for tube wave scattering and generation at dipping, parallel-wall fractures intersecting a fluid-filled borehole. A new equation reveals the interaction of tube wavefield with multiple, closely spaced fractures, showing that the fracture dip significantly affects the tube waves. Numerical modeling demonstrates the possibility of imaging these fractures using a focusing analysis. The focused traces correspond well with the known fracture density, aperture, and dip angles. Testing the method on a VSP data set obtained at a fault-damaged zone in the Median Tectonic Line, Japan, presents evidences of tube waves being generated and scattered at open fractures and thin cataclasite layers. This finding leads to a new possibility for imaging, characterizing, and monitoring in situ hydraulic properties of dipping fractures using the tube wavefield.

  17. Comparing the shear strength of grouted fractures: conventional methods vs biomineralisation

    NASA Astrophysics Data System (ADS)

    El Mountassir, G.; Tobler, D. J.; Moir, H.; Lunn, R. J.; Phoenix, V. R.

    2011-12-01

    For many engineering applications, such as geological disposal of nuclear waste, underground railways etc., it is necessary to limit fluid flow through fractures. The particle size of conventional cementitious grouts limits the size of fractures into which they can penetrate. To address this issue increasingly microfine and ultrafine cement grouts are becoming commercially available. Despite this the radius of penetration remains dependent on the grout viscosity alongside injection pressure, pumping rate, grout setting time and grout cohesion. As such lower viscosity aqueous solutions may have a greater radius of penetration potentially requiring fewer injection points. In addition cementitious grouts typically undergo volumetric shrinkage during setting. In many applications this change in volume may not be of particular importance but in others where a very low hydraulic conductivity is a critical design criterion, as in nuclear waste repositories, this reduction in volume may be highly significant. This study investigates the use of microbially induced carbonate precipitation (MCP) as a technique for grouting fine aperture rock fractures. Artificial fractures were created in granite cores and were subjected to conventional cementitious grouting methods and MCP. Following treatment the hydraulic and mechanical properties of the grouted fractures were investigated. The mechanical properties of grouts after setting is not usually considered to be a significant issue, but in applications which consider much longer timescales (100,000 years) grouts which result in fractures with improved strength and lower hydraulic conductivity are likely to be preferred.

  18. Numerical Borehole Breakdown Investigations using XFEM

    NASA Astrophysics Data System (ADS)

    Beckhuis, Sven; Leonhart, Dirk; Meschke, Günther

    2016-04-01

    During pressurization of a wellbore a typical downhole pressure record shows the following regimes: first the applied wellbore pressure balances the reservoir pressure, then after the compressive circumferential hole stresses are overcome, tensile stresses are induced on the inside surface of the hole. When the magnitude of these stresses reach the tensile failure stress of the surrounding rock medium, a fracture is initiated and propagates into the reservoir. [1] In standard theories this pressure, the so called breakdown pressure, is the peak pressure in the down-hole pressure record. However experimental investigations [2] show that the breakdown did not occur even if a fracture was initiated at the borehole wall. Drilling muds had the tendency to seal and stabilize fractures and prevent fracture propagation. Also fracture mechanics analysis of breakdown process in mini-frac or leak off tests [3] show that the breakdown pressure could be either equal or larger than the fracture initiation pressure. In order to gain a deeper understanding of the breakdown process in reservoir rock, numerical investigations using the extended finite element method (XFEM) for hydraulic fracturing of porous materials [4] are discussed. The reservoir rock is assumed to be pre-fractured. During pressurization of the borehole, the injection pressure, the pressure distribution and the position of the highest flux along the fracture for different fracturing fluid viscosities are recorded and the influence of the aforementioned values on the stability of fracture propagation is discussed. [1] YEW, C. H. (1997), "Mechanics of Hydraulic Fracturing", Gulf Publishing Company [2] MORITA, N.; BLACK, A. D.; FUH, G.-F. (1996), "Borehole Breakdown Pressure with Drilling Fluids". International Journal of Rock Mechanics and Mining Sciences 33, pp. 39-51 [3] DETOURNAY, E.; CARBONELL, R. (1996), "Fracture Mechanics Analysis of the Breakdown Process in Minifrac or Leakoff Test", Society of Petroleum Engineers, Inc. [4] MESCHKE, G.; Leonhart, D. (2015), "A generalized finite element method for hydro-mechanically coupled analysis of hydraulic fracturing problems using space-time variant enrichment functions." Computer Methods in Applied Mechanics and Engineering, 290:438 - 465

  19. On the possibility of magnetic nano-markers use for hydraulic fracturing in shale gas mining

    NASA Astrophysics Data System (ADS)

    Zawadzki, Jaroslaw; Bogacki, Jan

    2016-04-01

    Recently shale gas production became essential for the global economy, thanks to fast advances in shale fracturing technology. Shale gas extraction can be achieved by drilling techniques coupled with hydraulic fracturing. Further increasing of shale gas production is possible by improving the efficiency of hydraulic fracturing and assessing the spatial distribution of fractures in shale deposits. The latter can be achieved by adding magnetic markers to fracturing fluid or directly to proppant, which keeps the fracture pathways open. After that, the range of hydraulic fracturing can be assessed by measurement of vertical and horizontal component of earth's magnetic field before and after fracturing. The difference in these components caused by the presence of magnetic marker particles may allow to delineate spatial distribution of fractures. Due to the fact, that subterranean geological formations may contain minerals with significant magnetic properties, it is important to provide to the markers excellent magnetic properties which should be also, independent of harsh chemical and geological conditions. On the other hand it is of great significance to produce magnetic markers at an affordable price because of the large quantities of fracturing fluids or proppants used during shale fracturing. Examining the properties of nano-materials, it was found, that they possess clearly superior magnetic properties, as compared to the same structure but having a larger particle size. It should be then possible, to use lower amount of magnetic marker, to obtain the same effect. Although a research on properties of new magnetic nano-materials is very intensive, cheap magnetic nano-materials are not yet produced on a scale appropriate for shale gas mining. In this work we overview, in detail, geological, technological and economic aspects of using magnetic nano-markers in shale gas mining. Acknowledgment This work was supported by the NCBiR under Grant "Electromagnetic method to estimate penetration of proppant in the fracturing process".

  20. Rapid method for the determination of 226Ra in hydraulic fracturing wastewater samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maxwell, Sherrod L.; Culligan, Brian K.; Warren, Richard A.

    A new method that rapidly preconcentrates and measures 226Ra from hydraulic fracturing wastewater samples was developed in the Savannah River Environmental Laboratory. The method improves the quality of 226Ra measurements using gamma spectrometry by providing up to 100x preconcentration of 226Ra from this difficult sample matrix, which contains very high levels of calcium, barium, strontium, magnesium and sodium. The high chemical yield, typically 80-90%, facilitates a low detection limit, important for lower level samples, and indicates method ruggedness. Ba-133 tracer is used to determine chemical yield and correct for geometry-related counting issues. The 226Ra sample preparation takes < 2 hours.

  1. Rapid method for the determination of 226Ra in hydraulic fracturing wastewater samples

    DOE PAGES

    Maxwell, Sherrod L.; Culligan, Brian K.; Warren, Richard A.; ...

    2016-03-24

    A new method that rapidly preconcentrates and measures 226Ra from hydraulic fracturing wastewater samples was developed in the Savannah River Environmental Laboratory. The method improves the quality of 226Ra measurements using gamma spectrometry by providing up to 100x preconcentration of 226Ra from this difficult sample matrix, which contains very high levels of calcium, barium, strontium, magnesium and sodium. The high chemical yield, typically 80-90%, facilitates a low detection limit, important for lower level samples, and indicates method ruggedness. Ba-133 tracer is used to determine chemical yield and correct for geometry-related counting issues. The 226Ra sample preparation takes < 2 hours.

  2. Target-oriented imaging of hydraulic fractures by applying the staining algorithm for downhole microseismic migration

    NASA Astrophysics Data System (ADS)

    Lin, Ye; Zhang, Haijiang; Jia, Xiaofeng

    2018-03-01

    For microseismic monitoring of hydraulic fracturing, microseismic migration can be used to image the fracture network with scattered microseismic waves. Compared with conventional microseismic location-based fracture characterization methods, microseismic migration can better constrain the stimulated reservoir volume regardless of the completeness of detected and located microseismic sources. However, the imaging results from microseismic migration may suffer from the contamination of other structures and thus the target fracture zones may not be illuminated properly. To solve this issue, in this study we propose a target-oriented staining algorithm for microseismic reverse-time migration. In the staining algorithm, the target area is first stained by constructing an imaginary velocity field and then a synchronized source wavefield only concerning the target structure is produced. As a result, a synchronized image from imaging with the synchronized source wavefield mainly contains the target structures. Synthetic tests based on a downhole microseismic monitoring system show that the target-oriented microseismic reverse-time migration method improves the illumination of target areas.

  3. Drill Cuttings-based Methodology to Optimize Multi-stage Hydraulic Fracturing in Horizontal Wells and Unconventional Gas Reservoirs

    NASA Astrophysics Data System (ADS)

    Ortega Mercado, Camilo Ernesto

    Horizontal drilling and hydraulic fracturing techniques have become almost mandatory technologies for economic exploitation of unconventional gas reservoirs. Key to commercial success is minimizing the risk while drilling and hydraulic fracturing these wells. Data collection is expensive and as a result this is one of the first casualties during budget cuts. As a result complete data sets in horizontal wells are nearly always scarce. In order to minimize the data scarcity problem, the research addressed throughout this thesis concentrates on using drill cuttings, an inexpensive direct source of information, for developing: 1) A new methodology for multi-stage hydraulic fracturing optimization of horizontal wells without any significant increases in operational costs. 2) A new method for petrophysical evaluation in those wells with limited amount of log information. The methods are explained using drill cuttings from the Nikanassin Group collected in the Deep Basin of the Western Canada Sedimentary Basin (WCSB). Drill cuttings are the main source of information for the proposed methodology in Item 1, which involves the creation of three 'log tracks' containing the following parameters for improving design of hydraulic fracturing jobs: (a) Brittleness Index, (b) Measured Permeability and (c) An Indicator of Natural Fractures. The brittleness index is primarily a function of Poisson's ratio and Young Modulus, parameters that are obtained from drill cuttings and sonic logs formulations. Permeability is measured on drill cuttings in the laboratory. The indication of natural fractures is obtained from direct observations on drill cuttings under the microscope. Drill cuttings are also the main source of information for the new petrophysical evaluation method mentioned above in Item 2 when well logs are not available. This is important particularly in horizontal wells where the amount of log data is almost non-existent in the vast majority of the wells. By combining data from drill cuttings and previously available empirical relationships developed from cores it is possible to estimate water saturations, pore throat apertures, capillary pressures, flow units, porosity (or cementation) exponent m, true formation resistivity Rt, distance to a water table (if present), and to distinguish the contributions of viscous and diffusion-like flow in the tight gas formation. The method further allows the construction of Pickett plots using porosity and permeability obtained from drill cuttings, without previous availability of well logs. The method assumes the existence of intervals at irreducible water saturation, which is the case of the Nikanassin Group throughout the gas column. The new methods mentioned above are not meant to replace the use of detailed and sophisticated evaluation techniques. But the proposed methods provide a valuable and practical aid in those cases where geomechanical and petrophysical information are scarce.

  4. Application of Fractal Geometry in Evaluation of Effective Stimulated Reservoir Volume in Shale Gas Reservoirs

    NASA Astrophysics Data System (ADS)

    Sheng, Guanglong; Su, Yuliang; Wang, Wendong; Javadpour, Farzam; Tang, Meirong

    According to hydraulic-fracturing practices conducted in shale reservoirs, effective stimulated reservoir volume (ESRV) significantly affects the production of hydraulic fractured well. Therefore, estimating ESRV is an important prerequisite for confirming the success of hydraulic fracturing and predicting the production of hydraulic fracturing wells in shale reservoirs. However, ESRV calculation remains a longstanding challenge in hydraulic-fracturing operation. In considering fractal characteristics of the fracture network in stimulated reservoir volume (SRV), this paper introduces a fractal random-fracture-network algorithm for converting the microseismic data into fractal geometry. Five key parameters, including bifurcation direction, generating length (d), deviation angle (α), iteration times (N) and generating rules, are proposed to quantitatively characterize fracture geometry. Furthermore, we introduce an orthogonal-fractures coupled dual-porosity-media representation elementary volume (REV) flow model to predict the volumetric flux of gas in shale reservoirs. On the basis of the migration of adsorbed gas in porous kerogen of REV with different fracture spaces, an ESRV criterion for shale reservoirs with SRV is proposed. Eventually, combining the ESRV criterion and fractal characteristic of a fracture network, we propose a new approach for evaluating ESRV in shale reservoirs. The approach has been used in the Eagle Ford shale gas reservoir, and results show that the fracture space has a measurable influence on migration of adsorbed gas. The fracture network can contribute to enhancement of the absorbed gas recovery ratio when the fracture space is less than 0.2 m. ESRV is evaluated in this paper, and results indicate that the ESRV accounts for 27.87% of the total SRV in shale gas reservoirs. This work is important and timely for evaluating fracturing effect and predicting production of hydraulic fracturing wells in shale reservoirs.

  5. Development of the T+M coupled flow–geomechanical simulator to describe fracture propagation and coupled flow–thermal–geomechanical processes in tight/shale gas systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jihoon; Moridis, George J.

    2013-10-01

    We developed a hydraulic fracturing simulator by coupling a flow simulator to a geomechanics code, namely T+M simulator. Modeling of the vertical fracture development involves continuous updating of the boundary conditions and of the data connectivity, based on the finite element method for geomechanics. The T+M simulator can model the initial fracture development during the hydraulic fracturing operations, after which the domain description changes from single continuum to double or multiple continua in order to rigorously model both flow and geomechanics for fracture-rock matrix systems. The T+H simulator provides two-way coupling between fluid-heat flow and geomechanics, accounting for thermoporomechanics, treatsmore » nonlinear permeability and geomechanical moduli explicitly, and dynamically tracks changes in the fracture(s) and in the pore volume. We also fully accounts for leak-off in all directions during hydraulic fracturing. We first validate the T+M simulator, matching numerical solutions with the analytical solutions for poromechanical effects, static fractures, and fracture propagations. Then, from numerical simulation of various cases of the planar fracture propagation, shear failure can limit the vertical fracture propagation of tensile failure, because of leak-off into the reservoirs. Slow injection causes more leak-off, compared with fast injection, when the same amount of fluid is injected. Changes in initial total stress and contributions of shear effective stress to tensile failure can also affect formation of the fractured areas, and the geomechanical responses are still well-posed.« less

  6. Estimation of In Situ Stresses with Hydro-Fracturing Tests and a Statistical Method

    NASA Astrophysics Data System (ADS)

    Lee, Hikweon; Ong, See Hong

    2018-03-01

    At great depths, where borehole-based field stress measurements such as hydraulic fracturing are challenging due to difficult downhole conditions or prohibitive costs, in situ stresses can be indirectly estimated using wellbore failures such as borehole breakouts and/or drilling-induced tensile failures detected by an image log. As part of such efforts, a statistical method has been developed in which borehole breakouts detected on an image log are used for this purpose (Song et al. in Proceedings on the 7th international symposium on in situ rock stress, 2016; Song and Chang in J Geophys Res Solid Earth 122:4033-4052, 2017). The method employs a grid-searching algorithm in which the least and maximum horizontal principal stresses ( S h and S H) are varied, and the corresponding simulated depth-related breakout width distribution as a function of the breakout angle ( θ B = 90° - half of breakout width) is compared to that observed along the borehole to determine a set of S h and S H having the lowest misfit between them. An important advantage of the method is that S h and S H can be estimated simultaneously in vertical wells. To validate the statistical approach, the method is applied to a vertical hole where a set of field hydraulic fracturing tests have been carried out. The stress estimations using the proposed method were found to be in good agreement with the results interpreted from the hydraulic fracturing test measurements.

  7. Hydraulic fracturing in shales: the spark that created an oil and gas boom

    NASA Astrophysics Data System (ADS)

    Olson, J. E.

    2017-12-01

    In the oil and gas business, one of the valued properties of a shale was its lack of flow capacity (its sealing integrity) and its propensity to provide mechanical barriers to hydraulic fracture height growth when exploiting oil and gas bearing sandstones. The other important property was the high organic content that made shale a potential source rock for oil and gas, commodities which migrated elsewhere to be produced. Technological advancements in horizontal drilling and hydraulic fracturing have turned this perspective on its head, making shale (or other ultra-low permeability rocks that are described with this catch-all term) the most prized reservoir rock in US onshore operations. Field and laboratory results have changed our view of how hydraulic fracturing works, suggesting heterogeneities like bedding planes and natural fractures can cause significant complexity in hydraulic fracture growth, resulting in induced networks of fractures whose details are controlled by factors including in situ stress contrasts, ductility contrasts in the stratigraphy, the orientation and strength of pre-existing natural fractures, injection fluid viscosity, perforation cluster spacing and effective mechanical layer thickness. The stress shadowing and stress relief concepts that structural geologists have long used to explain joint spacing and orthogonal fracture pattern development in stratified sequences are key to understanding optimal injection point spacing and promotion of more uniform length development in induced hydraulic fractures. Also, fracture interaction criterion to interpret abutting vs crossing natural fracture relationships in natural fracture systems are key to modeling hydraulic fracture propagation within natural fractured reservoirs such as shale. Scaled physical experiments provide constraints on models where the physics is uncertain. Numerous interesting technical questions remain to be answered, and the field is particularly appealing in that better geologic understanding of the stratigraphic heterogeneity and material property attributes of shale can have a direct effect on the engineering design of wellbores and stimulation treatments.

  8. Application of the boundary elements method for modeling of the fracture of cylindrical bodies by hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Legan, M. A.; Blinov, V. A.; Larichkin, A. Yu; Novoselov, A. N.

    2017-10-01

    Experimental study of hydraulic fracturing of thick-walled cylinders with a central circular hole was carried out using the machine that creates a high oil pressure. Experiments on the compression fracture of the solid cylinders by diameter and rectangular parallelepipeds perpendicular to the ends were carried out with a multipurpose test machine Zwick / Roell Z100. Samples were made of GF-177 material based on cement. Ultimate stresses in the material under study were determined for three types of stress state: under compression, with a pure shear on the surface of the hole under frecking conditions and under a compound stress state under conditions of diametral compression of a solid cylinder. The value of the critical stress intensity factor of GF-177 material was obtained. The modeling of the fracturing process taking into account the inhomogeneity of the stress state near the hole was carried out using the boundary elements method (in the variant of the fictitious load method) and the gradient fracture criterion. Calculation results of the ultimate pressure were compared with values obtained analytically on the basis of the Lame solution and with experimental data.

  9. Crack deflection in brittle media with heterogeneous interfaces and its application in shale fracking

    NASA Astrophysics Data System (ADS)

    Zeng, Xiaguang; Wei, Yujie

    Driven by the rapid progress in exploiting unconventional energy resources such as shale gas, there is growing interest in hydraulic fracture of brittle yet heterogeneous shales. In particular, how hydraulic cracks interact with natural weak zones in sedimentary rocks to form permeable cracking networks is of significance in engineering practice. Such a process is typically influenced by crack deflection, material anisotropy, crack-surface friction, crustal stresses, and so on. In this work, we extend the He-Hutchinson theory (He and Hutchinson, 1989) to give the closed-form formulae of the strain energy release rate of a hydraulic crack with arbitrary angles with respect to the crustal stress. The critical conditions in which the hydraulic crack deflects into weak interfaces and exhibits a dependence on crack-surface friction and crustal stress anisotropy are given in explicit formulae. We reveal analytically that, with increasing pressure, hydraulic fracture in shales may sequentially undergo friction locking, mode II fracture, and mixed mode fracture. Mode II fracture dominates the hydraulic fracturing process and the impinging angle between the hydraulic crack and the weak interface is the determining factor that accounts for crack deflection; the lower friction coefficient between cracked planes and the greater crustal stress difference favor hydraulic fracturing. In addition to shale fracking, the analytical solution of crack deflection could be used in failure analysis of other brittle media.

  10. Inverse modeling of the hydraulic properties of fractured media : development of a flow tomography approach

    NASA Astrophysics Data System (ADS)

    Bour, O.; Klepikova, M.; Le Borgne, T.; De Dreuzy, J.

    2013-12-01

    Inverse modeling of hydraulic and geometrical properties of fractured media is a very challenging objective due to the spatial heterogeneity of the medium and the scarcity of data. Here we present a flow tomography approach that permits to characterize the location, the connectivity and the hydraulic properties of main flow paths in fractured media. The accurate characterization of the location, hydraulic properties and connectivity of major fracture zones is essential to model flow and solute transport in fractured media. Cross-borehole flowmeter tests, which consist of measuring changes in vertical borehole flows when pumping a neighboring borehole, were shown to be an efficient technique to provide information on the properties of the flow zones that connect borehole pairs [Paillet, 1998; Le Borgne et al., 2006]. The interpretation of such experiments may however be quite uncertain when multiple connections exist. In this study, we explore the potential of flow tomography (i.e., sequential cross-borehole flowmeter tests) for characterizing aquifer heterogeneity. We first propose a framework for inverting flow and drawdown data to infer fracture connectivity and transmissivities. Here we use a simplified discrete fracture network approach that highlights main connectivity structures. This conceptual model attempts to reproduce fracture network connectivity without taking fracture geometry (length, orientation, dip) into account. We then explore the potential of the method for simplified synthetic fracture network models and quantify the sensitivity of drawdown and borehole flow velocities to the transmissivity of the connecting flowpaths. Flow tomography is expected to be most effective if cross-borehole pumping induces large changes in vertical borehole velocities. The uncertainty of the transmissivity estimates increases for small borehole flow velocities. The uncertainty about the transmissivity of fractures that connect the main flowpath but not the boreholes is generally higher. We demonstrate that successively changing pumping and observation boreholes improves the quality of available information and reduces the indetermination of the problem. The inverse method is validated for different synthetic flow scenarios. It is shown to provide a good estimation of connectivity patterns and transmissivities of main flowpaths. Although the chosen fracture network geometry has been simplified, flow tomography appears to be a promising approach for characterizing connectivity patterns and transmissivities of fractured media.

  11. Fracturing Behavior of Methane-Hydrate-Bearing Sediment

    NASA Astrophysics Data System (ADS)

    Konno, Y.; Jin, Y.; Yoneda, J.; Uchiumi, T.; Shinjou, K.; Nagao, J.

    2016-12-01

    As a part of a Japanese national hydrate research program (MH21, funded by the Ministry of Economy, Trade, and Industry), we performed laboratory experiments of hydraulic fracturing in methane-hydrate-bearing sediment. Distilled water was injected into methane-hydrate-bearing sand which was artificially made in a tri-axial pressure cell. X-ray computed tomography revealed that tensile failure was occurred after a rapid drop in the injection pressure. It was found that generated fractures cause a significant increase in the effective water permeability of hydrate-bearing sand. The result contributes fundamental understanding of the accumulation mechanism of gas hydrates in sediments and shows that hydraulic fracturing is one of promising enhanced recovery methods for low-permeable gas hydrate reservoirs.

  12. Inverse modeling of hydraulic tests in fractured crystalline rock based on a transition probability geostatistical approach

    NASA Astrophysics Data System (ADS)

    Blessent, Daniela; Therrien, René; Lemieux, Jean-Michel

    2011-12-01

    This paper presents numerical simulations of a series of hydraulic interference tests conducted in crystalline bedrock at Olkiluoto (Finland), a potential site for the disposal of the Finnish high-level nuclear waste. The tests are in a block of crystalline bedrock of about 0.03 km3 that contains low-transmissivity fractures. Fracture density, orientation, and fracture transmissivity are estimated from Posiva Flow Log (PFL) measurements in boreholes drilled in the rock block. On the basis of those data, a geostatistical approach relying on a transitional probability and Markov chain models is used to define a conceptual model based on stochastic fractured rock facies. Four facies are defined, from sparsely fractured bedrock to highly fractured bedrock. Using this conceptual model, three-dimensional groundwater flow is then simulated to reproduce interference pumping tests in either open or packed-off boreholes. Hydraulic conductivities of the fracture facies are estimated through automatic calibration using either hydraulic heads or both hydraulic heads and PFL flow rates as targets for calibration. The latter option produces a narrower confidence interval for the calibrated hydraulic conductivities, therefore reducing the associated uncertainty and demonstrating the usefulness of the measured PFL flow rates. Furthermore, the stochastic facies conceptual model is a suitable alternative to discrete fracture network models to simulate fluid flow in fractured geological media.

  13. Integration of fracturing dynamics and pressure transient analysis for hydraulic fracture evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arihara, N.; Abbaszadeh, M.; Wright, C.A.

    This paper presents pre- and post-fracture pressure transient analysis, combined with net fracture pressure interpretation, for a well in a naturally fractured geothermal reservoir. Integrated analysis was performed to achieve a consistent interpretation of the created fracture geometry, propagation, conductivity, shrinkage, reservoir flow behavior, and formation permeability characteristics. The interpreted data includes two-rate pre-frac injection tests, step-rate injection tests, a series of pressure falloff tests, and the net fracturing pressure from a massive fracture treatment. Pressure transient analyses were performed utilizing advanced well test interpretation techniques and a thermal reservoir simulator with fracture propagation option. Hydraulic fracture propagation analysis wasmore » also performed Milt a generalized 3-D dynamic fracture growth model simulator. Three major conclusions resulted from the combined analysis: (1) that an increasing number of hydraulic fractures were being simultaneously propagated during the fracture treatment. (2) that the reservoir behaved as a composite reservoir Keith the outer region permeability being greater than the permeability of the region immediately surrounding the wellbore, and (3) that the created fractures extended into the outer region during the fracture treatment but retreated to the inner region several days after stimulation had ceased. These conclusions were apparent from independent pressure transient analysis and from independent hydraulic fracture propagation analysis. Integrated interpretation, however, increased the confidence in these conclusions and greatly aided the quantification of the created hydraulic fracture geometry and characterization of the reservoir permeability.« less

  14. Application of characteristic time concepts for hydraulic fracture configuration design, control, and optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Advani, S.H.; Lee, T.S.; Moon, H.

    1992-10-01

    The analysis of pertinent energy components or affiliated characteristic times for hydraulic stimulation processes serves as an effective tool for fracture configuration designs optimization, and control. This evaluation, in conjunction with parametric sensitivity studies, provides a rational base for quantifying dominant process mechanisms and the roles of specified reservoir properties relative to controllable hydraulic fracture variables for a wide spectrum of treatment scenarios. Results are detailed for the following multi-task effort: (a) Application of characteristic time concept and parametric sensitivity studies for specialized fracture geometries (rectangular, penny-shaped, elliptical) and three-layered elliptic crack models (in situ stress, elastic moduli, and fracturemore » toughness contrasts). (b) Incorporation of leak-off effects for models investigated in (a). (c) Simulation of generalized hydraulic fracture models and investigation of the role of controllable vaxiables and uncontrollable system properties. (d) Development of guidelines for hydraulic fracture design and optimization.« less

  15. Application of characteristic time concepts for hydraulic fracture configuration design, control, and optimization. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Advani, S.H.; Lee, T.S.; Moon, H.

    1992-10-01

    The analysis of pertinent energy components or affiliated characteristic times for hydraulic stimulation processes serves as an effective tool for fracture configuration designs optimization, and control. This evaluation, in conjunction with parametric sensitivity studies, provides a rational base for quantifying dominant process mechanisms and the roles of specified reservoir properties relative to controllable hydraulic fracture variables for a wide spectrum of treatment scenarios. Results are detailed for the following multi-task effort: (a) Application of characteristic time concept and parametric sensitivity studies for specialized fracture geometries (rectangular, penny-shaped, elliptical) and three-layered elliptic crack models (in situ stress, elastic moduli, and fracturemore » toughness contrasts). (b) Incorporation of leak-off effects for models investigated in (a). (c) Simulation of generalized hydraulic fracture models and investigation of the role of controllable vaxiables and uncontrollable system properties. (d) Development of guidelines for hydraulic fracture design and optimization.« less

  16. The Process of Hydraulic Fracturing

    EPA Pesticide Factsheets

    Hydraulic fracturing, know as fracking or hydrofracking, produces fractures in a rock formation by pumping fluids (water, proppant, and chemical additives) at high pressure down a wellbore. These fractures stimulate the flow of natural gas or oil.

  17. Compilation of Physicochemical and Toxicological Information About Hydraulic Fracturing-Related Chemicals (Draft Database)

    EPA Science Inventory

    The purpose of this product is to make accessible the information about the 1,173 hydraulic fracturing-related chemicals that were listed in the external review draft of the Hydraulic Fracturing Drinking Water Assessment that was released recently. The product consists of a serie...

  18. Overview of Chronic Oral Toxicity Values for Chemicals Present in Hydraulic Fracturing Fluids, Flowback and Produced Waters

    EPA Science Inventory

    As the use of hydraulic fracturing has increased, concerns have been raised about potential public health effects that may arise if hydraulic fracturing-related chemicals were to impact drinking water resources. This study presents an overview of the chronic oral toxicity values—...

  19. 78 FR 25267 - Request for Information To Inform Hydraulic Fracturing Research Related to Drinking Water Resources

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-30

    ... Inform Hydraulic Fracturing Research Related to Drinking Water Resources AGENCY: Environmental Protection... to submit data and scientific literature to inform EPA's research on the potential impacts of hydraulic fracturing on drinking water resources from April 30, 2013 until November 15, 2013. EPA is...

  20. Plan to Study the Potential Impacts of Hydraulic Fracturing on Drinking Water Resources (Monterey, CA)

    EPA Science Inventory

    A summary of EPA's research relating to potential impacts of hydraulic fracturing on drinking water resources will be presented. Background about the study plan development will be presented along with an analysis of the water cycle as it relates to hydraulic fracturing processe...

  1. Hydraulic Fracturing and Drinking Water Resources: Update on EPA Hydraulic Fracturing Study

    EPA Science Inventory

    Natural gas plays a key role in our nation's energy future and the process known as hydraulic fracturing (HF) is one way of accessing that resource. Over the past few years, several key technical, economic, and energy developments have spurred increased use of HF for gas extracti...

  2. Final Plan to Study the Potential Impacts of Hydraulic Fracturing on Drinking Water Resources (02-24-2012)

    EPA Science Inventory

    The overall purpose of this study is to elucidate the relationship, if any, between hydraulic fracturing and drinking water resources. More specifically, the study has been designed to assess the potential impacts of hydraulic fracturing on drinking water resources and to identif...

  3. Final Plan to Study the Potential Impacts of Hydraulic Fracturing on Drinking Water Resources

    EPA Science Inventory

    The overall purpose of this study is to elucidate the relationship, if any, between hydraulic fracturing and drinking water resources. More specifically, the study has been designed to assess the potential impacts of hydraulic fracturing on drinking water resources and to identif...

  4. Mechanics of Hydraulic Fractures

    NASA Astrophysics Data System (ADS)

    Detournay, Emmanuel

    2016-01-01

    Hydraulic fractures represent a particular class of tensile fractures that propagate in solid media under pre-existing compressive stresses as a result of internal pressurization by an injected viscous fluid. The main application of engineered hydraulic fractures is the stimulation of oil and gas wells to increase production. Several physical processes affect the propagation of these fractures, including the flow of viscous fluid, creation of solid surfaces, and leak-off of fracturing fluid. The interplay and the competition between these processes lead to multiple length scales and timescales in the system, which reveal the shifting influence of the far-field stress, viscous dissipation, fracture energy, and leak-off as the fracture propagates.

  5. Using Fiber Optic Distributed Acoustic Sensing to Measure Hydromechanics in a Crystalline Rock Aquifer

    NASA Astrophysics Data System (ADS)

    Ciervo, C.; Becker, M.; Cole, M. C.; Coleman, T.; Mondanos, M.

    2016-12-01

    Measuring hydromechanical behavior in fractured rock is important for hydraulic fracturing and stimulation in petroleum reservoirs, predicting thermal effects in geothermal fields, and monitoring geologic carbon sequestration injection. We present a new method for measuring geomechanical response to fluid pressure in fractures that employs fiber optic Distributed Acoustic Sensing (DAS). DAS was designed to measure acoustic and seismic signals, often in petroleum wells. DAS seismic monitoring has been proposed as a particularly useful tool for performing seismic testing for carbon sequestration and geothermal projects because fiber optic cable is able to withstand high temperatures and pressures. DAS measures seismic vibration in the Hz to kHz frequency range by measuring strain rate in the fiber optic cable. We adapted this technology to measure rock strain in response to periodic hydraulic pulses in the mHz frequency range. A field experiment was conducted in a low-permeability fractured crystalline bedrock to test the ability of DAS to measure hydromechanical response to periodic pumping and injection. The fiber optic cable was coupled to the borehole wall using a flexible liner designed with an air coupled transducer to measure fluid pressure. Both strain and pressure were measured across a known fracture zone hydraulically connected to the pumping/injection well 30 m away. Periodic strain with amplitudes as small as 50 nm were measured in response to head amplitudes of 2 mm. Clean strain signals were detected at all tested periods of hydraulic oscillation ranging from 2 to 18 minutes. A non-linear relationship was found between opening and closing of the fracture (as measured by cable strain) and fluid pressure in the fracture. The response was also sensitive to the fiber optic cable design. This field test suggests potential for measuring hydraulic connectivity and hydromechanical behavior in fractured formations through cementing fiber optic cable in wellbores outside of well casings.

  6. Discrete fracture modeling of multiphase flow and hydrocarbon production in fractured shale or low permeability reservoirs

    NASA Astrophysics Data System (ADS)

    Hao, Y.; Settgast, R. R.; Fu, P.; Tompson, A. F. B.; Morris, J.; Ryerson, F. J.

    2016-12-01

    It has long been recognized that multiphase flow and transport in fractured porous media is very important for various subsurface applications. Hydrocarbon fluid flow and production from hydraulically fractured shale reservoirs is an important and complicated example of multiphase flow in fractured formations. The combination of horizontal drilling and hydraulic fracturing is able to create extensive fracture networks in low permeability shale rocks, leading to increased formation permeability and enhanced hydrocarbon production. However, unconventional wells experience a much faster production decline than conventional hydrocarbon recovery. Maintaining sustainable and economically viable shale gas/oil production requires additional wells and re-fracturing. Excessive fracturing fluid loss during hydraulic fracturing operations may also drive up operation costs and raise potential environmental concerns. Understanding and modeling processes that contribute to decreasing productivity and fracturing fluid loss represent a critical component for unconventional hydrocarbon recovery analysis. Towards this effort we develop a discrete fracture model (DFM) in GEOS (LLNL multi-physics computational code) to simulate multiphase flow and transfer in hydraulically fractured reservoirs. The DFM model is able to explicitly account for both individual fractures and their surrounding rocks, therefore allowing for an accurate prediction of impacts of fracture-matrix interactions on hydrocarbon production. We apply the DFM model to simulate three-phase (water, oil, and gas) flow behaviors in fractured shale rocks as a result of different hydraulic stimulation scenarios. Numerical results show that multiphase flow behaviors at the fracture-matrix interface play a major role in controlling both hydrocarbon production and fracturing fluid recovery rates. The DFM model developed in this study will be coupled with the existing hydro-fracture model to provide a fully integrated geomechanical and reservoir simulation capability for an accurate prediction and assessment of hydrocarbon production and hydraulic fracturing performance. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  7. Toughness-Dominated Regime of Hydraulic Fracturing in Cohesionless Materials

    NASA Astrophysics Data System (ADS)

    Germanovich, L. N.; Hurt, R. S.; Ayoub, J.; Norman, W. D.

    2011-12-01

    This work examines the mechanisms of hydraulic fracturing in cohesionless particulate materials with geotechnical, geological, and petroleum applications. For this purpose, experimental techniques have been developed, and used to quantify the initiation and propagation of hydraulic fractures in saturated particulate materials. The fracturing liquid is injected into particulate materials, which are practically cohesionless. The liquid flow is localized in thin self-propagating crack-like conduits. By analogy we call them 'cracks' or 'hydraulic fractures.' When a fracture propagates in a solid, new surfaces are created by breaking material bonds. Consequently, the material is in tension at the fracture tip. Because the particulate material is already 'fractured,' no new surface is created and no fracturing process per se is involved. Therefore, the conventional fracture mechanics principles cannot be directly applied. Based on the laboratory observations, performed on three particulate materials (Georgia Red Clay, silica flour, and fine sand, and their mixtures), this work offers physical concepts to explain the observed phenomena. The goal is to determine the controlling parameters of fracture behavior and to quantify their effects. An important conclusion of our work is that all parts of the cohesionless particulate material (including the tip zone of hydraulic fracture) are likely to be in compression. The compressive stress state is an important characteristic of hydraulic fracturing in particulate materials with low, or no, cohesion (such as were used in our experiments). At present, two kinematic mechanisms of fracture propagation, consistent with the compressive stress regime, can be offered. The first mechanism is based on shear bands propagating ahead of the tip of an open fracture. The second is based on the tensile strain ahead of the fracture tip and reduction of the effective stresses to zero within the leak-off zone. Scaling indicates that in our experiments, there is a high pressure gradient in the leak-off zone in the direction normal to the fracture. Fluid pressure does not decrease considerably along the fracture, however, due to the relatively wide fracture aperture. This suggests that hydraulically induced fractures in unconsolidated materials may be considered to be within the toughness-dominated regime of hydraulic fracturing. Our results indicate that the primary influence on peak or initiation pressure comes from the remote stresses. However, fracture morphology changes significantly with other chosen parameters (stress, flow rate, rheology and permeability). Additionally, an important characteristic feature of fractures in our experiments is the frequent bluntness of the fracture tip, which suggests that plastic deformation at the fracture tip is important. Modeling shows that large openings at the fracture tip correspond to relatively large 'effective' fracture (surface) energy, which can be orders of magnitude greater than for typical (solid) rocks.

  8. Hydraulic Excavation System. Phase 2

    DTIC Science & Technology

    1988-09-01

    excavation techniques. Hydraulic fracturing has been particulary attractive in past work. The tensile strength of most rock is less than 20 MPa, which...Fairhurst, C. (1970) "In-situ Stress Determination at Great Depth by Means of Hydraulic Fracturing ," Proceedings of the 11th Symposium on Rock...Technique for Controlled Small-scale Hydraulic Fracturing ," First International Symposium on Rock Fragmentation bY Blasting, Vol. 3, A. Rustan and R

  9. Effect of Random Natural Fractures on Hydraulic Fracture Propagation Geometry in Fractured Carbonate Rocks

    NASA Astrophysics Data System (ADS)

    Liu, Zhiyuan; Wang, Shijie; Zhao, Haiyang; Wang, Lei; Li, Wei; Geng, Yudi; Tao, Shan; Zhang, Guangqing; Chen, Mian

    2018-02-01

    Natural fractures have a significant influence on the propagation geometry of hydraulic fractures in fractured reservoirs. True triaxial volumetric fracturing experiments, in which random natural fractures are created by placing cement blocks of different dimensions in a cuboid mold and filling the mold with additional cement to create the final test specimen, were used to study the factors that influence the hydraulic fracture propagation geometry. These factors include the presence of natural fractures around the wellbore, the dimension and volumetric density of random natural fractures and the horizontal differential stress. The results show that volumetric fractures preferentially formed when natural fractures occurred around the wellbore, the natural fractures are medium to long and have a volumetric density of 6-9%, and the stress difference is less than 11 MPa. The volumetric fracture geometries are mainly major multi-branch fractures with fracture networks or major multi-branch fractures (2-4 fractures). The angles between the major fractures and the maximum horizontal in situ stress are 30°-45°, and fracture networks are located at the intersections of major multi-branch fractures. Short natural fractures rarely led to the formation of fracture networks. Thus, the interaction between hydraulic fractures and short natural fractures has little engineering significance. The conclusions are important for field applications and for gaining a deeper understanding of the formation process of volumetric fractures.

  10. A methodology for using borehole temperature-depth profiles under ambient, single and cross-borehole pumping conditions to estimate fracture hydraulic properties

    NASA Astrophysics Data System (ADS)

    Klepikova, M.; Le Borgne, T.; Bour, O.; Lavenant, N.

    2011-12-01

    In fractured aquifers flow generally takes place in a few fractured zones. The identification of these main flow paths is critical as it controls the transfer of fluids in the subsurface. For realistic modeling of the flow the knowledge about the spatial variability of hydraulic properties is required. Inverse problems based on hydraulic head data are generally strongly underconstrained. A possible way of reducing the uncertainty is to combine different type of data, such as flow measurements, temperature profiles or tracer test data. Here, we focus on the use of temperature, which can be seen as a natural tracer of ground water flow. Previous studies used temperature anomalies to quantify vertical or horizontal regional groundwater flow velocities. Most of these studies assume that water in the borehole is stagnant, and, thus, the temperature profile in the well is representative of the temperature in the aquifer. In fractured media, differences in hydraulic head between flow paths connected to a borehole generally create ambient vertical flow within the borehole. These differences in hydraulic head are in general due to regional flow conditions. Estimation of borehole vertical flow is of interest as it can be used to derive large scale hydraulic connections. Under a single-borehole configuration, the estimation of vertical flow can be used to estimate the local transimissivities and the hydraulic head differences driving the flow through the borehole. Under a cross-borehole set up, it can be used to characterize hydraulic connections and estimate their hydraulic properties. Using a flow and heat transfer numerical model, we find that the slope of the temperature profile is related directly to vertical borehole flow velocity. Thus, we propose a method to invert temperature measurements to derive borehole flow velocities and subsequently the fracture zone hydraulic and connectivity properties. The advantage of temperature measurements compared to flowmeter measurements is that temperature can be measured easily and very accurately, continuously in space and time. To test the methodology, we have performed a field experiment at a crystalline rocks field site, located in Ploemeur, Brittany (France). The site is composed of three 100 meters deep boreholes, located at 6-10 m distances from each other. The experiment consisted in measuring the borehole temperature profiles under all possible pumping configurations. Hence, the pumping and monitoring wells were successively changed. The thermal response in observation well induced by changes in pumping conditions is related to changes in vertical flow velocities and thus to the inter-borehole fracture connectivity. Based on this dataset, we propose a methodology to include temperature profiles in inverse problem for characterizing the spatial distribution of fracture zone hydraulic properties.

  11. Transient pressure analysis of fractured well in bi-zonal gas reservoirs

    NASA Astrophysics Data System (ADS)

    Zhao, Yu-Long; Zhang, Lie-Hui; Liu, Yong-hui; Hu, Shu-Yong; Liu, Qi-Guo

    2015-05-01

    For hydraulic fractured well, how to evaluate the properties of fracture and formation are always tough jobs and it is very complex to use the conventional method to do that, especially for partially penetrating fractured well. Although the source function is a very powerful tool to analyze the transient pressure for complex structure well, the corresponding reports on gas reservoir are rare. In this paper, the continuous point source functions in anisotropic reservoirs are derived on the basis of source function theory, Laplace transform method and Duhamel principle. Application of construction method, the continuous point source functions in bi-zonal gas reservoir with closed upper and lower boundaries are obtained. Sequentially, the physical models and transient pressure solutions are developed for fully and partially penetrating fractured vertical wells in this reservoir. Type curves of dimensionless pseudo-pressure and its derivative as function of dimensionless time are plotted as well by numerical inversion algorithm, and the flow periods and sensitive factors are also analyzed. The source functions and solutions of fractured well have both theoretical and practical application in well test interpretation for such gas reservoirs, especial for the well with stimulated reservoir volume around the well in unconventional gas reservoir by massive hydraulic fracturing which always can be described with the composite model.

  12. Numerical analysis of fracture propagation during hydraulic fracturing operations in shale gas systems

    EPA Pesticide Factsheets

    Researchers used the TOUGH+ geomechanics computational software and simulation system to examine the likelihood of hydraulic fracture propagation (the spread of fractures) traveling long distances to connect with drinking water aquifers.

  13. XFEM modeling of hydraulic fracture in porous rocks with natural fractures

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Liu, ZhanLi; Zeng, QingLei; Gao, Yue; Zhuang, Zhuo

    2017-08-01

    Hydraulic fracture (HF) in porous rocks is a complex multi-physics coupling process which involves fluid flow, diffusion and solid deformation. In this paper, the extended finite element method (XFEM) coupling with Biot theory is developed to study the HF in permeable rocks with natural fractures (NFs). In the recent XFEM based computational HF models, the fluid flow in fractures and interstitials of the porous media are mostly solved separately, which brings difficulties in dealing with complex fracture morphology. In our new model the fluid flow is solved in a unified framework by considering the fractures as a kind of special porous media and introducing Poiseuille-type flow inside them instead of Darcy-type flow. The most advantage is that it is very convenient to deal with fluid flow inside the complex fracture network, which is important in shale gas extraction. The weak formulation for the new coupled model is derived based on virtual work principle, which includes the XFEM formulation for multiple fractures and fractures intersection in porous media and finite element formulation for the unified fluid flow. Then the plane strain Kristianovic-Geertsma-de Klerk (KGD) model and the fluid flow inside the fracture network are simulated to validate the accuracy and applicability of this method. The numerical results show that large injection rate, low rock permeability and isotropic in-situ stresses tend to lead to a more uniform and productive fracture network.

  14. The Effect of Loading Rate on Hydraulic Fracturing in Synthetic Granite - a Discrete Element Study

    NASA Astrophysics Data System (ADS)

    Tomac, I.; Gutierrez, M.

    2015-12-01

    Hydraulic fracture initiation and propagation from a borehole in hard synthetic rock is modeled using the two dimensional Discrete Element Method (DEM). DEM uses previously established procedure for modeling the strength and deformation parameters of quasi-brittle rocks with the Bonded Particle Model (Itasca, 2004). A series of simulations of laboratory tests on granite in DEM serve as a reference for synthetic rock behavior. Fracturing is enabled by breaking parallel bonds between DEM particles as a result of the local stress state. Subsequent bond breakage induces fracture propagation during a time-stepping procedure. Hydraulic fracturing occurs when pressurized fluid induces hoop stresses around the wellbore which cause rock fracturing and serves for geo-reservoir permeability enhancement in oil, gas and geothermal industries. In DEM, a network of fluid pipes and reservoirs is used for mathematical calculation of fluid flow through narrow channels between DEM particles, where the hydro-mechanical coupling is fully enabled. The fluid flow calculation is superimposed with DEM stress-strain calculation at each time step. As a result, the fluid pressures during borehole pressurization in hydraulic fracturing, as well as, during the fracture propagation from the borehole, can be simulated. The objective of this study is to investigate numerically a hypothesis that fluid pressurization rate, or the fluid flow rate, influences upon character, shape and velocity of fracture propagation in rock. The second objective is to better understand and define constraints which are important for successful fracture propagation in quasi-brittle rock from the perspective of flow rate, fluid density, viscosity and compressibility relative to the rock physical properties. Results from this study indicate that not only too high fluid flow rates cause fracture arrest and multiple fracture branching from the borehole, but also that the relative compressibility of fracturing fluid and rock plays a significant role in fracture propagation velocity. Fluid viscosity effects are similar to the loading rate effects, because in both cases the rapid buildup of the pressure in the wellbore in absence of the inflow of the fluid into initiated fracture causes induction of multiple simultaneous fracture branches at the wellbore wall.

  15. Gravity-Driven Hydraulic Fractures

    NASA Astrophysics Data System (ADS)

    Germanovich, L. N.; Garagash, D.; Murdoch, L. C.; Robinowitz, M.

    2014-12-01

    This study is motived by a new method for disposing of nuclear waste by injecting it as a dense slurry into a hydraulic fracture that grows downward to great enough depth to permanently isolate the waste. Disposing of nuclear waste using gravity-driven hydraulic fractures is mechanically similar to the upward growth of dikes filled with low density magma. A fundamental question in both applications is how the injected fluid controls the propagation dynamics and fracture geometry (depth and breadth) in three dimensions. Analog experiments in gelatin [e.g., Heimpel and Olson, 1994; Taisne and Tait, 2009] show that fracture breadth (the short horizontal dimension) remains nearly stationary when the process in the fracture "head" (where breadth is controlled) is dominated by solid toughness, whereas viscous fluid dissipation is dominant in the fracture tail. We model propagation of the resulting gravity-driven (buoyant or sinking), finger-like fracture of stationary breadth with slowly varying opening along the crack length. The elastic response to fluid loading in a horizontal cross-section is local and can be treated similar to the classical Perkins-Kern-Nordgren (PKN) model of hydraulic fracturing. The propagation condition for a finger-like crack is based on balancing the global energy release rate due to a unit crack extension with the rock fracture toughness. It allows us to relate the net fluid pressure at the tip to the fracture breadth and rock toughness. Unlike the PKN fracture, where breadth is known a priori, the final breadth of a finger-like fracture is a result of processes in the fracture head. Because the head is much more open than the tail, viscous pressure drop in the head can be neglected leading to a 3D analog of Weertman's hydrostatic pulse. This requires relaxing the local elasticity assumption of the PKN model in the fracture head. As a result, we resolve the breadth, and then match the viscosity-dominated tail with the 3-D, toughness-dominated head to obtain a complete closed-form solution. We then analyze the gravity fracture propagation in conditions of either continuous injection or finite volume release for sets of parameters representative of dense waste injection technique and low viscosity magma diking.

  16. Geo-mechanical modeling and selection of suitable layer for hydraulic fracturing operation in an oil reservoir (south west of Iran)

    NASA Astrophysics Data System (ADS)

    Darvish, Hoda; Nouri-Taleghani, Morteza; Shokrollahi, Amin; Tatar, Afshin

    2015-11-01

    According to the growth of demands to oil resources, increasing the rate of oil production seems necessary. However, oil production declines with time as a result of pressure drop in reservoir as well as sealing of microscopic cracks and pores in the reservoir rock. Hydraulic fracturing is one of the common methods with high performance, which is widely applied to oil and gas reservoirs. In this study, wells in three sections of east, center, and west sides of a field are compared regarding the suitable layer for hydraulic fracturing operation. Firstly, elastic modulus were obtained in both dynamic and static conditions, then uniaxial compressive strength (UCS), type of shear and tensile failures, the most accurate model of failure in wells, safe and stable mud window, the best zone and layers, and finally reference pressures are determined as nominates for hydraulic fracturing. Types of shear failure in minimum, and maximum range of model and in tensile model were determined to be "Shear failure wide breakout (SWBO)", "Shear narrow breakout (SNBO)", and "Tensile vertical failure (TVER)", respectively. The range of safe mud window (SMW) in the studied wells was almost in the same range as it was in every three spots of the field. This range was determined between 5200-8800psi and 5800-10100psi for Ilam and Sarvak zones, respectively. Initial fracture pressure ranges for selected layers were determined 11,759-14,722, 11,910-14,164, and 11,848-14,953psi for the eastern, central, and western wells. Thus, western wells have the best situation for Hydraulic fracturing operation. Finally, it was concluded that the operation is more economic in Sarvak zone and western wells.

  17. Infiltration and hydraulic connections from the Niagara River to a fractured-dolomite aquifer in Niagara Falls, New York

    USGS Publications Warehouse

    Yager, R.M.; Kappel, W.M.

    1998-01-01

    The spatial distribution of hydrogen and oxygen stable-isotope values in groundwater can be used to distinguish different sources of recharge and to trace groundwater flow directions from recharge boundaries. This method can be particularly useful in fractured-rock settings where multiple lines of evidence are required to delineate preferential flow paths that result from heterogeneity within fracture zones. Flow paths delineated with stable isotopes can be combined with hydraulic data to form a more complete picture of the groundwater flow system. In this study values of ??D and ??18O were used to delineate paths of river-water infiltration into the Lockport Group, a fractured dolomite aquifer, and to compute the percentage of fiver water in groundwater samples from shallow bedrock wells. Flow paths were correlated with areas of high hydraulic diffusivity in the shallow bedrock that were delineated from water-level fluctuations induced by diurnal stage fluctuations in man-made hydraulic structures. Flow paths delineated with the stable-isotope and hydraulic data suggest that fiver infiltration reaches an unlined storm sewer in the bedrock through a drainage system that surrounds aqueducts carrying river water to hydroelectric power plants. This finding is significant because the storm sewer is the discharge point for contaminated groundwater from several chemical waste-disposal sites and the cost of treating the storm sewer's discharge could be reduced if the volume of infiltration from the river were decreased.The spatial distribution of hydrogen and oxygen stable-isotope values in groundwater can be used to distinguish different sources of recharge and to trace groundwater flow directions from recharge boundaries. This method can be particularly useful in fractured-rock settings where multiple lines of evidence are required to delineate preferential flow paths that result from heterogeneity within fracture zones. Flow paths delineated with stable isotopes can be combined with hydraulic data to form a more complete picture of the groundwater flow system. In this study values of ??D and ??18O were used to delineate paths of river-water infiltration into the Lockport Group, a fractured dolomite aquifer, and to compute the percentage of river water in groundwater samples from shallow bedrock wells. Flow paths were correlated with areas of high hydraulic diffusivity in the shallow bedrock that were delineated from water-level fluctuations induced by diurnal stage fluctuations in man-made hydraulic structures. Flow paths delineated with the stable-isotope and hydraulic data suggest that river infiltration reaches an unlined storm sewer in the bedrock through a drainage system that surrounds aqueducts carrying river water to hydroelectric power plants. This finding is significant because the storm sewer is the discharge point for contaminated groundwater from several chemical waste-disposal sites and the cost of treating the storm sewer's discharge could be reduced if the volume of infiltration from the river were decreased.

  18. Complex Fluids and Hydraulic Fracturing.

    PubMed

    Barbati, Alexander C; Desroches, Jean; Robisson, Agathe; McKinley, Gareth H

    2016-06-07

    Nearly 70 years old, hydraulic fracturing is a core technique for stimulating hydrocarbon production in a majority of oil and gas reservoirs. Complex fluids are implemented in nearly every step of the fracturing process, most significantly to generate and sustain fractures and transport and distribute proppant particles during and following fluid injection. An extremely wide range of complex fluids are used: naturally occurring polysaccharide and synthetic polymer solutions, aqueous physical and chemical gels, organic gels, micellar surfactant solutions, emulsions, and foams. These fluids are loaded over a wide range of concentrations with particles of varying sizes and aspect ratios and are subjected to extreme mechanical and environmental conditions. We describe the settings of hydraulic fracturing (framed by geology), fracturing mechanics and physics, and the critical role that non-Newtonian fluid dynamics and complex fluids play in the hydraulic fracturing process.

  19. Evaluation of Oil-Industry Stimulation Practices for Engineered Geothermal Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter Van Dyke; Leen Weijers; Ann Robertson-Tait

    Geothermal energy extraction is typically achieved by use of long open-hole intervals in an attempt to connect the well with the greatest possible rock mass. This presents a problem for the development of Enhanced (Engineered) Geothermal Systems (EGS), owing to the challenge of obtaining uniform stimulation throughout the open-hole interval. Fluids are often injected in only a fraction of that interval, reducing heat transfer efficiency and increasing energy cost. Pinnacle Technologies, Inc. and GeothermEx, Inc. evaluated a variety of techniques and methods that are commonly used for hydraulic fracturing of oil and gas wells to increase and evaluate stimulation effectivenessmore » in EGS wells. Headed by Leen Weijers, formerly Manager of Technical Development at Pinnacle Technologies, Inc., the project ran from August 1, 2004 to July 31, 2006 in two one-year periods to address the following tasks and milestones: 1) Analyze stimulation results from the closest oil-field equivalents for EGS applications in the United States (e.g., the Barnett Shale in North Texas) (section 3 on page 8). Pinnacle Technologies, Inc. has collected fracture growth data from thousands of stimulations (section 3.1 on page 12). This data was further evaluated in the context of: a) Identifying techniques best suited to developing a stimulated EGS fracture network (section 3.2 on page 29), and b) quantifying the growth of the network under various conditions to develop a calibrated model for fracture network growth (section 3.3 on page 30). The developed model can be used to design optimized EGS fracture networks that maximize contact with the heat source and minimize short-circuiting (section 3.4 on page 38). 2) Evaluate methods used in oil field applications to improve fluid diversion and penetration and determine their applicability to EGS (section 4 on page 50). These methods include, but are not limited to: a) Stimulation strategies (propped fracturing versus water fracturing versus injecting fluid below fracturing gradients) (section 4.1 on page 50); b) zonal isolation methods (by use of perforated casing or packers) (section 4.2 on page 57); c) fracture re-orientation and fracture network growth techniques (e.g., by use of alternating high- and low-rate injections) (section 4.4 on page 74); and d) fluid diversion methods (by use of the SurgiFrac technique, the StimGun perforation technique, or stress shadowing). This project task is to be completed in the first project year, enabling the most promising techniques to be field tested and evaluated in the second project year. 3) Study the applicability of the methods listed above by utilizing several techniques (section 5 on page 75) including, but not limited to: a) Hydraulic Impedance Testing (HIT) to determine the location of open hydraulic fractures along a open-hole interval; b) pressure transient testing to determine reservoir permeability, pore pressure, and closure stress; and c) treatment well tilt mapping or microseismic mapping to evaluate fracture coverage. These techniques were reviewed for their potential application for EGS in the first project year (section 5.1 on page 75). This study also includes further analysis of any field testing that will be conducted in the Desert Peak area in Nevada for ORMAT Nevada, Inc. (section 5.2 on page 86), with the aim to close the loop to provide reliable calibrated fracture model results. Developed through its hydraulic fracture consulting business, techniques of Pinnacle Technologies, Inc. for stimulating and analyzing fracture growth have helped the oil and gas industry to improve hydraulic fracturing from both a technical and economic perspective. In addition to more than 30 years of experience in the development of geothermal energy for commercial power generation throughout the world, GeothermEx, Inc. brings to the project: 1) Detailed information about specific developed and potential EGS reservoirs, 2) experience with geothermal well design, completion, and testing practices, and 3) a direct connection to the Desert Peak EGS project.« less

  20. Development of a new code to solve hydro-mechanical coupling, shear failure and tensile failure due to hydraulic fracturing operations.

    NASA Astrophysics Data System (ADS)

    María Gómez Castro, Berta; De Simone, Silvia; Carrera, Jesús

    2016-04-01

    Nowadays, there are still some unsolved relevant questions which must be faced if we want to proceed to the hydraulic fracturing in a safe way. How much will the fracture propagate? This is one of the most important questions that have to be solved in order to avoid the formation of pathways leading to aquifer targets and atmospheric release. Will the fracture failure provoke a microseismic event? Probably this is the biggest fear that people have in fracking. The aim of this work (developed as a part of the EU - FracRisk project) is to understand the hydro-mechanical coupling that controls the shear of existing fractures and their propagation during a hydraulic fracturing operation, in order to identify the key parameters that dominate these processes and answer the mentioned questions. This investigation focuses on the development of a new C++ code which simulates hydro-mechanical coupling, shear movement and propagation of a fracture. The framework employed, called Kratos, uses the Finite Element Method and the fractures are represented with an interface element which is zero thickness. This means that both sides of the element lie together in the initial configuration (it seems a 1D element in a 2D domain, and a 2D element in a 3D domain) and separate as the adjacent matrix elements deform. Since we are working in hard, fragile rocks, we can assume an elastic matrix and impose irreversible displacements in fractures when rock failure occurs. The formulation used to simulate shear and tensile failures is based on the analytical solution proposed by Okada, 1992 and it is part of an iterative process. In conclusion, the objective of this work is to employ the new code developed to analyze the main uncertainties related with the hydro-mechanical behavior of fractures derived from the hydraulic fracturing operations.

  1. A decision analysis framework for estimating the potential hazards for drinking water resources of chemicals used in hydraulic fracturing fluids.

    PubMed

    Yost, Erin E; Stanek, John; Burgoon, Lyle D

    2017-01-01

    Despite growing concerns over the potential for hydraulic fracturing to impact drinking water resources, there are limited data available to identify chemicals used in hydraulic fracturing fluids that may pose public health concerns. In an effort to explore these potential hazards, a multi-criteria decision analysis (MCDA) framework was employed to analyze and rank selected subsets of these chemicals by integrating data on toxicity, frequency of use, and physicochemical properties that describe transport in water. Data used in this analysis were obtained from publicly available databases compiled by the United States Environmental Protection Agency (EPA) as part of a larger study on the potential impacts of hydraulic fracturing on drinking water. Starting with nationwide hydraulic fracturing chemical usage data from EPA's analysis of the FracFocus Chemical Disclosure Registry 1.0, MCDAs were performed on chemicals that had either noncancer toxicity values (n=37) or cancer-specific toxicity values (n=10). The noncancer MCDA was then repeated for subsets of chemicals reported in three representative states (Texas, n=31; Pennsylvania, n=18; and North Dakota, n=20). Within each MCDA, chemicals received scores based on relative toxicity, relative frequency of use, and physicochemical properties (mobility in water, volatility, persistence). Results show a relative ranking of these chemicals based on hazard potential, and provide preliminary insight into chemicals that may be more likely than others to impact drinking water resources. Comparison of nationwide versus state-specific analyses indicates regional differences in the chemicals that may be of more concern to drinking water resources, although many chemicals were commonly used and received similar overall hazard rankings. Several chemicals highlighted by these MCDAs have been reported in groundwater near areas of hydraulic fracturing activity. This approach is intended as a preliminary analysis, and represents one possible method for integrating data to explore potential public health impacts. Published by Elsevier B.V.

  2. Hydraulic Fracture Extending into Network in Shale: Reviewing Influence Factors and Their Mechanism

    PubMed Central

    Ren, Lan; Zhao, Jinzhou; Hu, Yongquan

    2014-01-01

    Hydraulic fracture in shale reservoir presents complex network propagation, which has essential difference with traditional plane biwing fracture at forming mechanism. Based on the research results of experiments, field fracturing practice, theory analysis, and numerical simulation, the influence factors and their mechanism of hydraulic fracture extending into network in shale have been systematically analyzed and discussed. Research results show that the fracture propagation in shale reservoir is influenced by the geological and the engineering factors, which includes rock mineral composition, rock mechanical properties, horizontal stress field, natural fractures, treating net pressure, fracturing fluid viscosity, and fracturing scale. This study has important theoretical value and practical significance to understand fracture network propagation mechanism in shale reservoir and contributes to improving the science and efficiency of shale reservoir fracturing design. PMID:25032240

  3. Modeling of Propagation of Interacting Cracks Under Hydraulic Pressure Gradient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Hai; Mattson, Earl Douglas; Podgorney, Robert Karl

    A robust and reliable numerical model for fracture initiation and propagation, which includes the interactions among propagating fractures and the coupling between deformation, fracturing and fluid flow in fracture apertures and in the permeable rock matrix, would be an important tool for developing a better understanding of fracturing behaviors of crystalline brittle rocks driven by thermal and (or) hydraulic pressure gradients. In this paper, we present a physics-based hydraulic fracturing simulator based on coupling a quasi-static discrete element model (DEM) for deformation and fracturing with conjugate lattice network flow model for fluid flow in both fractures and porous matrix. Fracturingmore » is represented explicitly by removing broken bonds from the network to represent microcracks. Initiation of new microfractures and growth and coalescence of the microcracks leads to the formation of macroscopic fractures when external and/or internal loads are applied. The coupled DEM-network flow model reproduces realistic growth pattern of hydraulic fractures. In particular, simulation results of perforated horizontal wellbore clearly demonstrate that elastic interactions among multiple propagating fractures, fluid viscosity, strong coupling between fluid pressure fluctuations within fractures and fracturing, and lower length scale heterogeneities, collectively lead to complicated fracturing patterns.« less

  4. A time step criterion for the stable numerical simulation of hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Juan-Lien Ramirez, Alina; Löhnert, Stefan; Neuweiler, Insa

    2017-04-01

    The process of propagating or widening cracks in rock formations by means of fluid flow, known as hydraulic fracturing, has been gaining attention in the last couple of decades. There is growing interest in its numerical simulation to make predictions. Due to the complexity of the processes taking place, e.g. solid deformation, fluid flow in an open channel, fluid flow in a porous medium and crack propagation, this is a challenging task. Hydraulic fracturing has been numerically simulated for some years now [1] and new methods to take more of its processes into account (increasing accuracy) while modeling in an efficient way (lower computational effort) have been developed in recent years. An example is the use of the Extended Finite Element Method (XFEM), whose application originated within the framework of solid mechanics, but is now seen as an effective method for the simulation of discontinuities with no need for re-meshing [2]. While more focus has been put to the correct coupling of the processes mentioned above, less attention has been paid to the stability of the model. When using a quasi-static approach for the simulation of hydraulic fracturing, choosing an adequate time step is not trivial. This is in particular true if the equations are solved in a staggered way. The difficulty lies within the inconsistency between the static behavior of the solid and the dynamic behavior of the fluid. It has been shown that too small time steps may lead to instabilities early into the simulation time [3]. While the solid reaches a stationary state instantly, the fluid is not able to achieve equilibrium with its new surrounding immediately. This is why a time step criterion has been developed to quantify the instability of the model concerning the time step. The presented results were created with a 2D poroelastic model, using the XFEM for both the solid and the fluid phases. An embedded crack propagates following the energy release rate criteria when the fluid pressure within the crack rises. The fluid flow within the crack and in the porous medium are simulated using the mass balance for water and Darcy's law for flow. The equations for flow and deformation in the rock and that for flow in the fracture are solved in a staggered manner. The two sets of equations are coupled via Lagrange multipliers. We present a time step criterion for the stability of the scheme and illustrate this criterion with test examples of crack propagation. [1] T. Boone and A. Ingraffea. A numerical procedure for simulation of hydraulically-driven fracture propagation in poroelastic media. Int. J. Numer. Anal. Met. 14, 27-47, (1990) [2] T. Mohammadnejad and A. Khoei. An extended finite element method for hydraulic fracture propagation in deformable porous media with the cohesive crack model. Finite Elements in Analysis and Design. 73, 77-95, (2013) [3] E.W. Remij, J.J.C. Remmers, J.M. Huyghe, D.M.J. Smeulders. The enhanced local pressure model for the accurate analysis of fluid pressure driven fracture in porous materials. Comput. Methods Appl. Mech. Engrg. 286, 293-312, (2015)

  5. The EPA's Study on the Potential Impacts of Hydraulic Fracturing on Drinking Water Resources

    NASA Astrophysics Data System (ADS)

    Burden, Susan

    2013-03-01

    Natural gas plays a key role in our nation's clean energy future. The United States has vast reserves of natural gas that are commercially viable as a result of advances in horizontal drilling and hydraulic fracturing technologies, which enable greater access to gas in rock formations deep underground. These advances have spurred a significant increase in the production of both natural gas and oil across the country. However, as the use of hydraulic fracturing has increased, so have concerns about its potential human health and environmental impacts, especially for drinking water. In response to public concern, the US Congress requested that the US Environmental Protection Agency (EPA) conduct scientific research to examine the relationship between hydraulic fracturing and drinking water resources. In 2011, the EPA began research to assess the potential impacts of hydraulic fracturing on drinking water resources, if any, and to identify the driving factors that may affect the severity and frequency of such impacts. The study is organized around the five stages of the hydraulic fracturing water cycle, from water acquisition through the mixing of chemicals and the injection of fracturing fluid to post-fracturing treatment and/or disposal of wastewater. EPA scientists are using a transdisciplinary research approach involving laboratory studies, computer modeling, toxicity assessments, and case studies to answer research questions associated with each stage of the water cycle. This talk will provide an overview of the EPA's study, including a description of the hydraulic fracturing water cycle and a summary of the ongoing research projects.

  6. DEMONSTRATION BULLETIN: HYDRAULIC FRACTURING OF CONTAMINATED SOIL

    EPA Science Inventory

    Hydraulic fracturing is a physical process that creates fractures in silty clay soil to enhance its permeability. The technology, developed by the Risk Reduction Engineering Laboratory (RREL) and the University of Cincinnati, creates sand-filled horizontal fractures up to 1 in. i...

  7. Microseismicity Induced by Hydraulic Fracturing in Oil and Gas Wells

    NASA Astrophysics Data System (ADS)

    Warpinski, N. R.; Maxwell, S.; Waltman, C.

    2006-12-01

    The detection and analysis of microseismicity induced by injection of fluids at high pressure has proved to be an effective technology for monitoring the placement of the fluid in applications such as hydraulic fracture stimulation of oil and gas wells, "shear-dilation" enhancement of hot-dry-rock reservoirs, waterflooding and tertiary recovery processes in oil reservoirs, CO2 injection for sequestration, drill cuttings injection, and many others. Microseismic mapping of hydraulic fractures, in particular, has grown into an extensive industry that provides critical information on many facets of fracture behavior and the overall geometry, with the results showing both expected and unexpected behavior in various tests. These industrial fractures are typically mapped with arrays of downhole tri-axial receivers placed in one or more wells at the reservoir level. With the number of microseismically mapped fractures now exceeding 1,000, numerous observations and inferences about fracture mechanisms can be made. In a large group of reservoirs, the created hydraulic fractures are mostly planar and follow a consistent azimuth. In other reservoirs, such as naturally fractured shales similar to the Barnett shale in the Fort Worth basin, the created fracture is highly dependent on the treatment. In these shale reservoirs, the use of viscous gels results in a mostly planar geometry, but stimulations with high-rate, large-volume "waterfracs" result in network fractures that may exceed 400 m by 1200 m in areal extent. In horizontal wells where several stages of these waterfracs are commonly pumped, the stages are found to often interfere and redirect subsequent stages. In many reservoirs, the heights of the hydraulic fractures have been found to be less than the expected heights based on known or inferred in situ stress contrasts between the reservoir layer and the bounding rocks, suggesting that some properties of the layering are important for limiting height growth. In lenticular sandstones, fractures are commonly observed to follow the sandstone lithologies and migrate upward or downward to remain within the accreted sandstone beds. A number of mapping tests have been performed in environments where the hydraulic fracture has interacted with faults. In such cases, the log-scale relative magnitudes of the events may suddenly increase by two or more. The faults often extend hundreds of meters upward or downward out of zone, or in directions different from the initial hydraulic fracture. Overall, the orientations and dimensions of the mapped fractures are providing the necessary information to optimize field development and improve hydraulic fracture effectiveness. In addition, these tests are providing important clues to help understand the geomechanical conditions of the reservoir and the changes induced by hydraulic fracturing.

  8. Periodic Hydraulic Testing for Discerning Fracture Network Connections

    NASA Astrophysics Data System (ADS)

    Becker, M.; Le Borgne, T.; Bour, O.; Guihéneuf, N.; Cole, M.

    2015-12-01

    Discrete fracture network (DFN) models often predict highly variable hydraulic connections between injection and pumping wells used for enhanced oil recovery, geothermal energy extraction, and groundwater remediation. Such connections can be difficult to verify in fractured rock systems because standard pumping or pulse interference tests interrogate too large a volume to pinpoint specific connections. Three field examples are presented in which periodic hydraulic tests were used to obtain information about hydraulic connectivity in fractured bedrock. The first site, a sandstone in New York State, involves only a single fracture at a scale of about 10 m. The second site, a granite in Brittany, France, involves a fracture network at about the same scale. The third site, a granite/schist in the U.S. State of New Hampshire, involves a complex network at scale of 30-60 m. In each case periodic testing provided an enhanced view of hydraulic connectivity over previous constant rate tests. Periodic testing is particularly adept at measuring hydraulic diffusivity, which is a more effective parameter than permeability for identify the complexity of flow pathways between measurement locations. Periodic tests were also conducted at multiple frequencies which provides a range in the radius of hydraulic penetration away from the oscillating well. By varying the radius of penetration, we attempt to interrogate the structure of the fracture network. Periodic tests, therefore, may be uniquely suited for verifying and/or calibrating DFN models.

  9. Characterization of the chemicals used in hydraulic fracturing fluids for wells located in the Marcellus Shale Play.

    PubMed

    Chen, Huan; Carter, Kimberly E

    2017-09-15

    Hydraulic fracturing, coupled with the advances in horizontal drilling, has been used for recovering oil and natural gas from shale formations and has aided in increasing the production of these energy resources. The large volumes of hydraulic fracturing fluids used in this technology contain chemical additives, which may be toxic organics or produce toxic degradation byproducts. This paper investigated the chemicals introduced into the hydraulic fracturing fluids for completed wells located in Pennsylvania and West Virginia from data provided by the well operators. The results showed a total of 5071 wells, with average water volumes of 5,383,743 ± 2,789,077 gal (mean ± standard deviation). A total of 517 chemicals was introduced into the formulated hydraulic fracturing fluids. Of the 517 chemicals listed by the operators, 96 were inorganic compounds, 358 chemicals were organic species, and the remaining 63 cannot be identified. Many toxic organics were used in the hydraulic fracturing fluids. Some of them are carcinogenic, including formaldehyde, naphthalene, and acrylamide. The degradation of alkylphenol ethoxylates would produce more toxic, persistent, and estrogenic intermediates. Acrylamide monomer as a primary degradation intermediate of polyacrylamides is carcinogenic. Most of the chemicals appearing in the hydraulic fracturing fluids can be removed when adopting the appropriate treatments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. In Situ Local Fracture Flow Measurement by the Double Packer Dilution Test

    NASA Astrophysics Data System (ADS)

    Englert, A.; Le Borgne, T.; Bour, O.; Klepikova, M.; Lavenant, N.

    2011-12-01

    For prediction of flow and transport in fractured media, prior estimation of the fracture network is essential, but challenging. Recent developments in hydraulic tomography have shown promising results for understanding connectivities between boreholes. However, as the hydraulic tomographic survey is typically based on the propagation of head only, it becomes a strongly non unique problem. To reduce the non uniqueness of tomographic surveys point conditioning has been found beneficial. Just as well, measurement of local flow in a fracture can serve as point conditioning for hydraulic and tracer tomographic surveys. Nevertheless, only few measurements of local fracture flow have been performed since this type of measurements implies several important technical issues. Dilution test in a packed off interval is a possible method for measuring fracture flow (e.g. Drost et al. 1968, Novakowski et al., 2005). However, a key issue for estimating flow with dilution tests is to ensure a full mixing of the tracer in the packed interval. This is typically done by including a mixing system within the packer. The design of such system can be challenging for deep wells and small diameters. Here, we propose a method where mixing is ensured by a recirculation loop including a surface tank. This method is adapted from the design proposed by Brouyere et al. (2008), who measured dilution in open wells. Dilution is quantified by measuring the concentration in the surface barrel as function of time. Together with the measurement of the circulating flow and the water filled volume in the surface barrel, the measured tracer dilution allows for calculation of the fracture flow. Since the method can be applied using a classical double packer system, it may provide a broader application of local flow measurements in heterogeneous media. We tested the approach on the Ploemeur fractured crystalline rock site. A one meter interval at depth 80 m with a single flowing fracture was isolated with a double packer dilution system. We performed a pumping test in the adjacent well. Different flow rates were estimated from the dilution curves for the different pumping rates in the adjacent well, showing a linear response. The obtained fracture flow rates provide important information on the flow geometry and connectivity between the two wells. Future joint interpretation of flow measurements, hydraulic head and tracer test data is expected to provide detailed insights in the flow and transport processes at the Ploemeur site. Drost, W., Klotz, D., Koch, A., Moser, H., Neumaier, F., Rauert, W.: Point dilution methods of investigating ground water flow by means of radioisotopes, Water. Resour. Res., 4(1), 1968. Novakowski, K., Bickerton, G., Lapcevic, P., Voralek, J., Ross, N.: Measurements of groundwater velocity in discrete rock fractures: Jour. Cont. Hydr., 82(1-2), 2006. Brouyere, S., Batlle-Aguilar, J., Goderniaux, P., Dassargues, A.: A new tracer technique for monitoring groundwater fluxes: The Finite Volume Point Dilution Method, Jour. Cont. Hydr., 95(3-4), 121-140, 2008.

  11. Experimental validation of microseismic emissions from a controlled hydraulic fracture in a synthetic layered medium

    NASA Astrophysics Data System (ADS)

    Roundtree, Russell

    A controlled hydraulic fracture experiment was performed on two medium sized (11" x 11" x 15") synthetic layered blocks of low permeability, low porosity Lyons sandstone sandwiched between cement. The purpose of the research was to better understand and characterize the fracture evolution as the fracture tip impinged upon the layer boundaries between the well bonded layers. It is also one of the first documented uses of passive microseismic used in a laboratory environment to characterize hydraulic fracturing. A relatively low viscosity fluid of 1000 centipoise, compared to properly scaled previous work (Casas 2005, and Athavale 2007), was pumped at a constant rate of 10 mL/minute through a steel cased hole landed and isolated in the sandstone layer. Efforts were made to contain the hydraulic fracture within the confines of the rock specimen to retain the created hydraulic fracture geometry. Two identical samples and treatment schedules were created and differed only in the monitoring system used to characterize the microseismic activity during the fracture treatment. The first block had eight embedded P-wave transducers placed in the sandstone layer to record the passive microseismic emissions and localize the location and time of the acoustic event. The second block had six compressional wave transducers and twelve shear wave transducers embedded in the sandstone layer of the block. The intention was to record and process the seismic data using conventional P-wave to S-wave difference timing techniques well known in industry. While this goal ultimately not possible due to the geometry of the receiver placements and the limitations of the Vallene acquisition processing software, the data received and the events localized from the 18 transducer test were of much higher numbers and quality than on the eight transducer test. This experiment proved conclusively that passive seismic emission recording can yield positive results in the laboratory. Just as in the field, this provides one of the best far field (away from the well bore) measurements to assess hydraulic fracture behavior. It also provides a calibration tool to extend laboratory results to field scale endeavors. The identification of strong microseismic activity at stress states far below fracture initiation confirms that rocks are critically stressed meta-stable materials and that microseismicity is caused by stress changes, not fractures directly. Advancements are necessary to fully exploit the potential of the microseismic method in laboratory sized samples. Both processing and visualization enhancements are necessary to realize the full benefits of this promising technology in the laboratory environment.

  12. Influence of natural fractures on hydraulic fracture propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teufel, L.W.; Warpinski, N.R.

    Hydraulic fracturing has become a valuable technique for the stimulation of oil, gas, and geothermal reservoirs in a variety of reservoir rocks. In many applications, only short fractures are needed for economic production. In low-permeability reservoirs, however, long penetrating fractures are generally needed, and in this case, natural fractures can be the cause of many adverse effects during a fracture treatment. Natural fractures can influence the overall geometry and effectiveness of the hydraulic fracture by: (1) arresting the vertical or lateral growth, (2) reducing total fracture length via fluid leakoff, (3) limiting proppant transport and placement, and (4) enhancing themore » creation of multiple or secondary fractures rather than a single planar hydraulic fracture. The result may range from negligible to catastrophic depending on the values of the ancillary treatment and reservoir parameters, such as the treating pressure, in-situ stresses, pore pressure, orientations of the natural fractures relative to principal in-situ stresses, spacing and distribution of the natural fractures, permeability, etc. Field observations from mineback experiments at DOE's Nevada Test Site and the multiwell experiment in Colorado, laboratory tests, and analyses of these data are integrated to describe the complex fracture behavior found and to provide guidelines for predicting when this complex fracturing will occur.« less

  13. Influence of natural fractures on hydraulic fracture propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teufel, L.W.; Warpinski, N.R.

    Hydraulic fracturing has become a valuable technique for the stimulation of oil, gas, and geothermal reservoirs in a variety of reservoir rocks. In many applications, only short fractures are needed for economic production. In low-permeability reservoirs, however, long penetrating fractures are generally needed, and in this case, natural fractures can be the cause of many adverse effects during a fracture treatment. Natural fractures can influence the overall geometry and effectiveness of the hydraulic fracture by: (1) arresting the vertical or lateral growth, (2) reducing total fracture length via fluid leakoff, (3) limiting proppant transport and placement, and (4) enhancing themore » creation of multiple or secondary fractures rather than a single planar hydraulic fracture. The result may range from negligible to catastrophic depending on the values of the ancillary treatment and reservoir parameters, such as the treating pressure, in-situ stresses, pore pressure, orientations of the natural fractures relative to principle in-situ stresses, spacing and distribution of the natural fractures, permeability, etc. Field observations from mineback experiments at DOE's Nevada Test Site and the multiwell experiment in Colorado, laboratory tests, and analyses of these data are integrated to describe the complex fracture behavior found to an provide guidelines for predicting when this complex fracturing occurs.« less

  14. Draft Genome Sequence of Pseudomonas sp. BDAL1 Reconstructed from a Bakken Shale Hydraulic Fracturing-Produced Water Storage Tank Metagenome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipus, Daniel; Ross, Daniel; Bibby, Kyle

    We report the 5,425,832 bp draft genome ofPseudomonassp. strain BDAL1, recovered from a Bakken shale hydraulic fracturing-produced water tank metagenome. Genome annotation revealed several key biofilm formation genes and osmotic stress response mechanisms necessary for survival in hydraulic fracturing-produced water.

  15. Geotechnical Investigations

    DTIC Science & Technology

    2001-01-01

    and erosion of embankment or foundation materials and hydraulic fracturing while using water. The new ER establishes a policy for drilling in earth...Table 5-4 In Situ Tests to Determine Stress Conditions Bibliographic Test Soils Rocks Reference Remarks Hydraulic fracturing X...Leach (1977) Only for normally consolidated or slightly Mitchell, Guzikowski, consolidated soils and Villet (1978) Hydraulic fracturing X RTH 344 Stress

  16. Draft Genome Sequence of Pseudomonas sp. BDAL1 Reconstructed from a Bakken Shale Hydraulic Fracturing-Produced Water Storage Tank Metagenome

    DOE PAGES

    Lipus, Daniel; Ross, Daniel; Bibby, Kyle; ...

    2017-03-16

    We report the 5,425,832 bp draft genome ofPseudomonassp. strain BDAL1, recovered from a Bakken shale hydraulic fracturing-produced water tank metagenome. Genome annotation revealed several key biofilm formation genes and osmotic stress response mechanisms necessary for survival in hydraulic fracturing-produced water.

  17. Investigation of possible wellbore cement failures during hydraulic fracturing operations

    EPA Pesticide Factsheets

    Researchers used the peer-reviewed TOUGH+ geomechanics computational software and simulation system to investigate the possibility of fractures and shear failure along vertical wells during hydraulic fracturing operations.

  18. Active and passive seismic imaging of a hydraulic fracture in diatomite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vinegar, H.J.; Wills, P.B.; De Martini, D.C.

    1992-01-01

    This paper reports on a comprehensive set of experiments including remote- and treatment-well microseismic monitoring, interwell shear-wave shadowing, and surface tiltmeter arrays, that was used to monitor the growth of a hydraulic fracture in the Belridge diatomite. To obtain accurate measurements, and extensive subsurface network of geophones was cemented spanning the diatomite formation in three closely spaced observation wells around the well to be fracture treated. Data analysis indicates that the minifracture and main hydraulic fracture stimulations resulted in a nearly vertical fracture zone (striking N26{degrees}E) vertically segregated into two separate elements, the uppermost of which grew 60 ft abovemore » the perforated interval. The interwell seismic effects are consistent with a side process zone of reduced shear velocity, which remote-well microseismic data independently suggest may be as wide as 40 ft. The experiments indicate complicated processes occurring during hydraulic fracturing that have significant implications for stimulation, waterflooding, in fill drilling, and EOR. These processes are neither well understood nor included in current hydraulic fracture models.« less

  19. Transmissivity Changes and Microseismicity Induced by Small-Scale Hydraulic Fracturing Tests in Crystalline Rock

    NASA Astrophysics Data System (ADS)

    Jalali, Mohammadreza; Gischig, Valentin; Doetsch, Joseph; Näf, Rico; Krietsch, Hannes; Klepikova, Maria; Amann, Florian; Giardini, Domenico

    2018-03-01

    Multiple meter-scale hydraulic fracturing (HF) experiments were executed in the crystalline rock at the Grimsel Test Site, Switzerland. The effect of the HF on the rock transmissivity has been quantified with hydraulic tests before and after each HF experiment. We observe transmissivity enhancement of 2 to 3 orders of magnitude and a change in the dominant flow regime after most of the HF tests. From microseismicity induced by the HF, we do not observe a systematic correlation between transmissivity enhancement and event numbers, frequency-magnitude distribution, or maximum magnitude. However, the radii of hydraulic fractures inferred independently from seismicity clouds and hydraulic responses coincide, implying that slip along fractures is the common underlying mechanism for transmissivity increase and seismicity.

  20. Using borehole flow logging to optimize hydraulic-test procedures in heterogeneous fractured aquifers

    USGS Publications Warehouse

    Paillet, F.L.

    1995-01-01

    Hydraulic properties of heterogeneous fractured aquifers are difficult to characterize, and such characterization usually requires equipment-intensive and time-consuming applications of hydraulic testing in situ. Conventional coring and geophysical logging techniques provide useful and reliable information on the distribution of bedding planes, fractures and solution openings along boreholes, but it is often unclear how these locally permeable features are organized into larger-scale zones of hydraulic conductivity. New boreholes flow-logging equipment provides techniques designed to identify hydraulically active fractures intersecting boreholes, and to indicate how these fractures might be connected to larger-scale flow paths in the surrounding aquifer. Potential complications in interpreting flowmeter logs include: 1) Ambient hydraulic conditions that mask the detection of hydraulically active fractures; 2) Inability to maintain quasi-steady drawdowns during aquifer tests, which causes temporal variations in flow intensity to be confused with inflows during pumping; and 3) Effects of uncontrolled background variations in hydraulic head, which also complicate the interpretation of inflows during aquifer tests. Application of these techniques is illustrated by the analysis of cross-borehole flowmeter data from an array of four bedrock boreholes in granitic schist at the Mirror Lake, New Hampshire, research site. Only two days of field operations were required to unambiguously identify the few fractures or fracture zones that contribute most inflow to boreholes in the CO borehole array during pumping. Such information was critical in the interpretation of water-quality data. This information also permitted the setting of the available string of two packers in each borehole so as to return the aquifer as close to pre-drilling conditions as possible with the available equipment.

  1. Influence of pressure change during hydraulic tests on fracture aperture.

    PubMed

    Ji, Sung-Hoon; Koh, Yong-Kwon; Kuhlman, Kristopher L; Lee, Moo Yul; Choi, Jong Won

    2013-03-01

    In a series of field experiments, we evaluate the influence of a small water pressure change on fracture aperture during a hydraulic test. An experimental borehole is instrumented at the Korea Atomic Energy Research Institute (KAERI) Underground Research Tunnel (KURT). The target fracture for testing was found from the analyses of borehole logging and hydraulic tests. A double packer system was developed and installed in the test borehole to directly observe the aperture change due to water pressure change. Using this packer system, both aperture and flow rate are directly observed under various water pressures. Results indicate a slight change in fracture hydraulic head leads to an observable change in aperture. This suggests that aperture change should be considered when analyzing hydraulic test data from a sparsely fractured rock aquifer. © 2012, The Author(s). Groundwater © 2012, National Ground Water Association.

  2. Microseismic Velocity Imaging of the Fracturing Zone

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Chen, Y.

    2015-12-01

    Hydraulic fracturing of low permeability reservoirs can induce microseismic events during fracture development. For this reason, microseismic monitoring using sensors on surface or in borehole have been widely used to delineate fracture spatial distribution and to understand fracturing mechanisms. It is often the case that the stimulated reservoir volume (SRV) is determined solely based on microseismic locations. However, it is known that for some fracture development stage, long period long duration events, instead of microseismic events may be associated. In addition, because microseismic events are essentially weak and there exist different sources of noise during monitoring, some microseismic events could not be detected and thus located. Therefore the estimation of the SRV is biased if it is solely determined by microseismic locations. With the existence of fluids and fractures, the seismic velocity of reservoir layers will be decreased. Based on this fact, we have developed a near real time seismic velocity tomography method to characterize velocity changes associated with fracturing process. The method is based on double-difference seismic tomography algorithm to image the fracturing zone where microseismic events occur by using differential arrival times from microseismic event pairs. To take into account varying data distribution for different fracking stages, the method solves the velocity model in the wavelet domain so that different scales of model features can be obtained according to different data distribution. We have applied this real time tomography method to both acoustic emission data from lab experiment and microseismic data from a downhole microseismic monitoring project for shale gas hydraulic fracturing treatment. The tomography results from lab data clearly show the velocity changes associated with different rock fracturing stages. For the field data application, it shows that microseismic events are located in low velocity anomalies. By combining low velocity anomalies with microseismic events, we should better estimate the SRV.

  3. Laboratory hydraulic fracturing experiments in intact and pre-fractured rock

    USGS Publications Warehouse

    Zoback, M.D.; Rummel, F.; Jung, R.; Raleigh, C.B.

    1977-01-01

    Laboratory hydraulic fracturing experiments were conducted to investigate two factors which could influence the use of the hydrofrac technique for in-situ stress determinations; the possible dependence of the breakdown pressure upon the rate of borehole pressurization, and the influence of pre-existing cracks on the orientation of generated fractures. The experiments have shown that while the rate of borehole pressurization has a marked effect on breakdown pressures, the pressure at which hydraulic fractures initiate (and thus tensile strength) is independent of the rate of borehole pressurization when the effect of fluid penetration is negligible. Thus, the experiments indicate that use of breakdown pressures rather than fracture initiation pressures may lead to an erroneous estimate of tectonic stresses. A conceptual model is proposed to explain anomalously high breakdown pressures observed when fracturing with high viscosity fluids. In this model, initial fracture propagation is presumed to be stable due to large differences between the borehole pressure and that within the fracture. In samples which contained pre-existing fractures which were 'leaky' to water, we found it possible to generate hydraulic fractures oriented parallel to the direction of maximum compression if high viscosity drilling mud was used as the fracturing fluid. ?? 1977.

  4. Multiple well-shutdown tests and site-scale flow simulation in fractured rocks

    USGS Publications Warehouse

    Tiedeman, Claire; Lacombe, Pierre J.; Goode, Daniel J.

    2010-01-01

    A new method was developed for conducting aquifer tests in fractured-rock flow systems that have a pump-and-treat (P&T) operation for containing and removing groundwater contaminants. The method involves temporary shutdown of individual pumps in wells of the P&T system. Conducting aquifer tests in this manner has several advantages, including (1) no additional contaminated water is withdrawn, and (2) hydraulic containment of contaminants remains largely intact because pumping continues at most wells. The well-shutdown test method was applied at the former Naval Air Warfare Center (NAWC), West Trenton, New Jersey, where a P&T operation is designed to contain and remove trichloroethene and its daughter products in the dipping fractured sedimentary rocks underlying the site. The detailed site-scale subsurface geologic stratigraphy, a three-dimensional MODFLOW model, and inverse methods in UCODE_2005 were used to analyze the shutdown tests. In the model, a deterministic method was used for representing the highly heterogeneous hydraulic conductivity distribution and simulations were conducted using an equivalent porous media method. This approach was very successful for simulating the shutdown tests, contrary to a common perception that flow in fractured rocks must be simulated using a stochastic or discrete fracture representation of heterogeneity. Use of inverse methods to simultaneously calibrate the model to the multiple shutdown tests was integral to the effectiveness of the approach.

  5. Application of Phase-Field Techniques to Hydraulically- and Deformation-Induced Fracture.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Culp, David; Miller, Nathan; Schweizer, Laura

    Phase-field techniques provide an alternative approach to fracture problems which mitigate some of the computational expense associated with tracking the crack interface and the coalescence of individual fractures. The technique is extended to apply to hydraulically driven fracture such as would occur during fracking or CO 2 sequestration. Additionally, the technique is applied to a stainless steel specimen used in the Sandia Fracture Challenge. It was found that the phase-field model performs very well, at least qualitatively, in both deformation-induced fracture and hydraulically-induced fracture, though spurious hourglassing modes were observed during coupled hydralically-induced fracture. Future work would include performing additionalmore » quantitative benchmark tests and updating the model as needed.« less

  6. A web-based multicriteria evaluation of spatial trade-offs between environmental and economic implications from hydraulic fracturing in a shale gas region in Ohio.

    PubMed

    Liu, X; Gorsevski, P V; Yacobucci, M M; Onasch, C M

    2016-06-01

    Planning of shale gas infrastructure and drilling sites for hydraulic fracturing has important spatial implications. The evaluation of conflicting and competing objectives requires an explicit consideration of multiple criteria as they have important environmental and economic implications. This study presents a web-based multicriteria spatial decision support system (SDSS) prototype with a flexible and user-friendly interface that could provide educational or decision-making capabilities with respect to hydraulic fracturing site selection in eastern Ohio. One of the main features of this SDSS is to emphasize potential trade-offs between important factors of environmental and economic ramifications from hydraulic fracturing activities using a weighted linear combination (WLC) method. In the prototype, the GIS-enabled analytical components allow spontaneous visualization of available alternatives on maps which provide value-added features for decision support processes and derivation of final decision maps. The SDSS prototype also facilitates nonexpert participation capabilities using a mapping module, decision-making tool, group decision module, and social media sharing tools. The logical flow of successively presented forms and standardized criteria maps is used to generate visualization of trade-off scenarios and alternative solutions tailored to individual user's preferences that are graphed for subsequent decision-making.

  7. The Depths of Hydraulic Fracturing and Accompanying Water Use Across the United States.

    PubMed

    Jackson, Robert B; Lowry, Ella R; Pickle, Amy; Kang, Mary; DiGiulio, Dominic; Zhao, Kaiguang

    2015-08-04

    Reports highlight the safety of hydraulic fracturing for drinking water if it occurs "many hundreds of meters to kilometers underground". To our knowledge, however, no comprehensive analysis of hydraulic fracturing depths exists. Based on fracturing depths and water use for ∼44,000 wells reported between 2010 and 2013, the average fracturing depth across the United States was 8300 ft (∼2500 m). Many wells (6900; 16%) were fractured less than a mile from the surface, and 2600 wells (6%) were fractured above 3000 ft (900 m), particularly in Texas (850 wells), California (720), Arkansas (310), and Wyoming (300). Average water use per well nationally was 2,400,000 gallons (9,200,000 L), led by Arkansas (5,200,000 gallons), Louisiana (5,100,000 gallons), West Virginia (5,000,000 gallons), and Pennsylvania (4,500,000 gallons). Two thousand wells (∼5%) shallower than one mile and 350 wells (∼1%) shallower than 3000 ft were hydraulically fractured with >1 million gallons of water, particularly in Arkansas, New Mexico, Texas, Pennsylvania, and California. Because hydraulic fractures can propagate 2000 ft upward, shallow wells may warrant special safeguards, including a mandatory registry of locations, full chemical disclosure, and, where horizontal drilling is used, predrilling water testing to a radius 1000 ft beyond the greatest lateral extent.

  8. Mapping of hydraulic fractures from tiltmeter measurements

    NASA Astrophysics Data System (ADS)

    Lecampion, B.; Jeffrey, R.

    2003-12-01

    In considering the problem of inverse modeling of tiltmeter data for hydraulic fracture mapping, we address the issues of selecting the elastic model to represent the hydraulic fracture and limitations imposed by distance and fracture size on the information that can be recovered about the fracture. A tiltmeter measures, at its location, the changes in the surface inclination in two orthogonal directions. These inclinations are a direct measure of the horizontal gradient of the vertical component of the displacement field. Since advances in instrumentation in the last two decades, this type of apparatus have become extremely precise and can detect inclination changes down to a nanoradian. The simplicity of tiltmeter measurements has attracted interest not only in geophysics, but also in the petroleum industry. The idea of using tiltmeters to monitor hydraulic fractures can be traced back to the paper of Sun te{S} and is now a commercial service offered to the petroleum industry te{W}. However, the modeling and associated inverse problems required to analyze tiltmeter data raise difficult questions. The object(s) (fault, dyke, fracture) responsible for the recorded tilt are often modeled by finite Displacement Discontinuities, also called dislocation models. The validity of this type of model has been extensively discussed te{O,E} and many solutions for different configurations can be found in the literature. We show that it is possible to construct the solution for any type of dislocation model from the fundamental solution for an infinitesimal Displacement Discontinuity tensor. The eigenstrain theory te{M} is used to obtain this fundamental solution from the Green's function for the desired elastic domain (e.g. full or half space). Comparisons with known solutions demonstrate the flexibility of such method. We then focus on the problem of obtaining information about the orientation and size of an opening mode hydraulic fracture from the measured tilt field. One important problem is the identification of all the dimensions of the fracture model (length, width). The ability to obtain these parameters is controlled by limits, expressed in terms of the distance between the measurements and the fracture compared to the size of the fracture itself. The value of this ratio provides a condition that must be met before the fracture length-scales can be resolved. Determination of the fracture orientation is then investigated using a spatial Fourier Transform on the data set. This procedure highlights the requirement on the measurement array needed for a reliable identification: extension, number of tiltmeters, relative angle between the array and the fracture plane. \\begin{thebibliography}{1} \\bibitem{E} {Evans K.} \

  9. Draft Genome Sequence of Methanohalophilus mahii Strain DAL1 Reconstructed from a Hydraulic Fracturing-Produced Water Metagenome

    PubMed Central

    Lipus, Daniel; Vikram, Amit

    2016-01-01

    We report here the 1,882,100-bp draft genome sequence of Methanohalophilus mahii strain DAL1, recovered from Marcellus Shale hydraulic fracturing-produced water using metagenomic contig binning. Genome annotation revealed several key methanogenesis genes and provides valuable information on archaeal activity associated with hydraulic fracturing-produced water environments. PMID:27587817

  10. Draft Genome Sequence of Pseudomonas sp. BDAL1 Reconstructed from a Bakken Shale Hydraulic Fracturing-Produced Water Storage Tank Metagenome

    PubMed Central

    Lipus, Daniel; Ross, Daniel

    2017-01-01

    ABSTRACT We report the 5,425,832 bp draft genome of Pseudomonas sp. strain BDAL1, recovered from a Bakken shale hydraulic fracturing-produced water tank metagenome. Genome annotation revealed several key biofilm formation genes and osmotic stress response mechanisms necessary for survival in hydraulic fracturing-produced water. PMID:28302780

  11. Construction Productivity Advancement Research (CPAR) Program.

    DTIC Science & Technology

    1998-04-01

    1981). "Laboratory study of hydraulic fracturing ," Journal of the Geotechnical Engineering Division, Proceedings of the American Society of Civil...Christi, TX. Yanagisawa and Komak Panah. (1994). "Two-dimensional study of hydraulic fracturing criteria in cohesive soils," Soils and Foundations...horizontal directional drilling process and the risk of hydraulic fracturing . Reasonable limits must be placed on maximum fluid pressures in the

  12. Geological and petrological considerations relevant to the disposal of radioactive wastes by hydraulic fracturing: an example at the US Department of Energy's Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haase, C.S.

    1983-01-01

    At Oak Ridge National Laboratory the Pumpkin Valley Shale is used as a host formation for hydraulic fracturing waste disposal. Determination of the relationships between the distribution of different lithologies and porosity-permeability trends within this host formation allows these properties, important to hydraulic fracturing operations, to be related to measurable and mappable geological and petrological parameters. It also permits extrapolation of such patterns to little-studied portions of the Pumpkin Valley Shale. Such knowledge better allows for the satisfactory operation and assessment of the hydraulic fracturing at Oak Ridge National Laboratory.

  13. Shale Gas Well, Hydraulic Fracturing, and Formation Data to Support Modeling of Gas and Water Flow in Shale Formations

    NASA Astrophysics Data System (ADS)

    Edwards, Ryan W. J.; Celia, Michael A.

    2018-04-01

    The potential for shale gas development and hydraulic fracturing to cause subsurface water contamination has prompted a number of modeling studies to assess the risk. A significant impediment for conducting robust modeling is the lack of comprehensive publicly available information and data about the properties of shale formations, shale wells, the process of hydraulic fracturing, and properties of the hydraulic fractures. We have collated a substantial amount of these data that are relevant for modeling multiphase flow of water and gas in shale gas formations. We summarize these data and their sources in tabulated form.

  14. Selective perceptions of hydraulic fracturing.

    PubMed

    Sarge, Melanie A; VanDyke, Matthew S; King, Andy J; White, Shawna R

    2015-01-01

    Hydraulic fracturing (HF) is a focal topic in discussions about domestic energy production, yet the American public is largely unfamiliar and undecided about the practice. This study sheds light on how individuals may come to understand hydraulic fracturing as this unconventional production technology becomes more prominent in the United States. For the study, a thorough search of HF photographs was performed, and a systematic evaluation of 40 images using an online experimental design involving N = 250 participants was conducted. Key indicators of hydraulic fracturing support and beliefs were identified. Participants showed diversity in their support for the practice, with 47 percent expressing low support, 22 percent high support, and 31 percent undecided. Support for HF was positively associated with beliefs that hydraulic fracturing is primarily an economic issue and negatively associated with beliefs that it is an environmental issue. Level of support was also investigated as a perceptual filter that facilitates biased issue perceptions and affective evaluations of economic benefit and environmental cost frames presented in visual content of hydraulic fracturing. Results suggested an interactive relationship between visual framing and level of support, pointing to a substantial barrier to common understanding about the issue that strategic communicators should consider.

  15. Water usage for natural gas production through hydraulic fracturing in the United States from 2008 to 2014.

    PubMed

    Chen, Huan; Carter, Kimberly E

    2016-04-01

    Hydraulic fracturing has promoted the exploitation of shale oil and natural gas in the United States (U.S.). However, the large amounts of water used in hydraulic fracturing may constrain oil and natural gas production in the shale plays. This study surveyed the amounts of freshwater and recycled produced water used to fracture wells from 2008 to 2014 in Arkansas, California, Colorado, Kansas, Louisiana, Montana, North Dakota, New Mexico, Ohio, Oklahoma, Pennsylvania, Texas, West Virginia, and Wyoming. Results showed that the annual average water volumes used per well in most of these states ranged between 1000 m(3) and 30,000 m(3). The highest total amount of water was consumed in Texas with 457.42 Mm(3) of water used to fracture 40,521 wells, followed by Pennsylvania with 108.67 Mm(3) of water used to treat 5127 wells. Water usages ranged from 96.85 Mm(3) to 166.10 Mm(3) annually in Texas from 2012 to 2014 with more than 10,000 wells fractured during that time. The percentage of water used for hydraulic fracturing in each state was relatively low compared to water usages for other industries. From 2009 to 2014, 6.55% (median) of the water volume used in hydraulic fracturing contained recycled produced water or recycled hydraulic fracturing wastewater. 10.84% (median) of wells produced by hydraulic fracturing were treated with recycled produced water. The percentage of wells where recycled wastewater was used was lower, except in Ohio and Arkansas, where more than half of the wells were fractured using recycled produced water. The median recycled wastewater volume in produced wells was 7127 m(3) per well, more than half the median value in annual water used per well 11,259 m(3). This indicates that, for wells recycling wastewater, more than half of their water use consisted of recycled wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Fractures in Rock: An Annotated Bibliography

    DTIC Science & Technology

    1990-01-01

    different mechanisms. Fractures in the thicker beds are thought due to hydraulic fracturing . The actual mechanism is discussed. They suggest that...increase in grain size would be asso- ciated with increase in spacing with reference to hydraulic fracturing . Lee, F.T., Miller, D.R. and Nichols, T.C., Jr

  17. Evaluation of rock/fracture interactions during steam injection through vertical hydraulic fractures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovscek, A.R.; Johnston, R.M.; Patzek, T.W.

    1997-05-01

    The design, results, and analysis of a steamdrive pilot in the South Belridge diatomite, Kern County, California, are reviewed. Pilot results demonstrate that steam can be injected across a 1,000-ft-tall diatomite column using hydraulically fractured wells and that significant oil is produced in response to steaming. A computationally simple numerical model is proposed and used to analyze reservoir heating and volumetric sweep by steam. Results from the analysis show that hydraulic fractures undergoing steam injection can be dynamic and asymmetrical.

  18. Increasing the production efficiency and reducing the environmental impacts of hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Viswanathan, H. S.

    2016-12-01

    Shale gas is an unconventional fossil energy resource profoundly impacting US energy independence and is projected to last for at least 100 years. Production of methane and other hydrocarbons from low permeability shale involves hydraulic fracturing of rock, establishing fracture connectivity, and multiphase fluid-flow and reaction processes all of which are poorly understood. The result is inefficient extraction with many environmental concerns. A science-based capability is required to quantify the governing mesoscale fluid-solid interactions, including microstructural control of fracture patterns and the interaction of engineered fluids with hydrocarbon flow. These interactions depend on coupled thermo-hydro-mechanical-chemical (THMC) processes over scales from microns to tens of meters. Determining the key mechanisms in subsurface THMC systems has been impeded due to the lack of sophisticated experimental methods to measure fracture aperture and connectivity, multiphase permeability, and chemical exchange capacities at the high temperature, pressure, and stresses present in the subsurface. In this study, we developed and prototyped the microfluidic and triaxial core flood experiments required to reveal the fundamental dynamics of fracture-fluid interactions. The goal is transformation of hydraulic fracturing from present ad hoc approaches to science-based strategies while safely enhancing production. Specifically, we have demonstrated an integrated experimental/modeling approach that allows for a comprehensive characterization of fluid-solid interactions and develop models that can be used to determine the reservoir operating conditions necessary to gain a degree of control over fracture generation, fluid flow, and interfacial processes over a range of subsurface conditions.

  19. Experimental Determination of the Fracture Toughness and Brittleness of the Mancos Shale, Utah.

    NASA Astrophysics Data System (ADS)

    Chandler, Mike; Meredith, Phil; Crawford, Brian

    2013-04-01

    The hydraulic fracturing of Gas-Shales has become a topic of interest since the US Shale Gas Revolution, and is increasingly being investigated across Europe. A significant issue during hydraulic fracturing is the risk of fractures propagating further than desired into aquifers or faults. This occured at Preese Hall, UK in April and May 2011 when hydraulic fractures propagated into an adjacent fault causing 2.3ML and 1.7ML earthquakes [1]. A rigorous understanding of how hydraulic fractures propagate under in-situ conditions is therefore important for treatment design, both to maximise gas accessed, and to minimise risks due to fracture overextension. Fractures will always propagate along the path of least resistance, but the direction and extent of this path is a complex relationship between the in-situ stress-field, the anisotropic mechanical properties of the rock, and the pore and fracturing pressures [2]. It is possible to estimate the anisotropic in-situ stress field using an isolated-section hydraulic fracture test, and the pore-pressure using well logs. However, the anisotropic mechanical properties of gas-shales remain poorly constrained, with a wide range of reported values. In particular, there is an extreme paucity of published data on the Fracture Toughness of soft sediments such as shales. Mode-I Fracture Toughness is a measure of a material's resistance to dynamic tensile fracture propagation. Defects such as pre-existing microcracks and pores in a material can induce high local stress concentrations, causing fracture propagation and material failure under substantially lower stress than its bulk strength. The mode-I stress intensity factor, KI, quantifies the concentration of stress at the crack tip. For linear elastic materials the Fracture Toughness is defined by the critical value of this stress intensity factor; KIc, beyond which rapid catastrophic crack growth occurs. However, rocks such as shales are relatively ductile and display significant non-linearity. This produces hysteresis during cyclic loading, allowing for the calculation of a brittleness coefficient using the residual displacement after successive loading cycles. This can then be used to define a brittleness corrected Fracture Toughness, KIcc. We report anisotropic KIcc values and a variety of supporting measurements made on the Mancos Shale in the three principle Mode-I crack orientations (Arrester, Divider and Short-Transverse) using a modified Short-Rod sample geometry. The Mancos is an Upper Cretaceous shale from western Colorado and eastern Utah with a relatively high siliclastic content for a gas target formation. The Short-Rod methodology involves the propagation of a crack through a triangular ligament in a chevron-notched cylindrical sample [3]. A very substantial anisotropy is observed in the loading curves and KIcc values for the three crack orientations, with the Divider orientation having KIcc values 25% higher than the other orientations. The measured brittleness for these Mancos shales is in the range 1.5-2.1; higher than for any other rocks we have found in the literature. This implies that the material is extremely non-linear. Increases in KIcc with increasing confining pressure are also investigated, as Shale Gas reservoirs occur at depths where confining pressure may be as high as 35MPa and temperature as high as 100oC. References [1] C.A. Green, P. Styles & B.J. Baptie, "Preese Hall Shale Gas Fracturing", Review & Recommendations for Induced Seismic Mitigation, 2012. [2] N.R. Warpinski & M.B. Smith, "Rock Mechanics and Fracture Geometry", Recent advances in Hydraulic Fracturing, SPE Monograms, Vol. 12, pp. 57-80, 1990. [3] F. Ouchterlony, "International Society for Rock Mechanics Commision on Testing Methods: Suggested Methods for Determining the Fracture Toughness of Rock", International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, Vol. 25, 1988.

  20. Uncertainty Analysis of Simulated Hydraulic Fracturing

    NASA Astrophysics Data System (ADS)

    Chen, M.; Sun, Y.; Fu, P.; Carrigan, C. R.; Lu, Z.

    2012-12-01

    Artificial hydraulic fracturing is being used widely to stimulate production of oil, natural gas, and geothermal reservoirs with low natural permeability. Optimization of field design and operation is limited by the incomplete characterization of the reservoir, as well as the complexity of hydrological and geomechanical processes that control the fracturing. Thus, there are a variety of uncertainties associated with the pre-existing fracture distribution, rock mechanics, and hydraulic-fracture engineering that require evaluation of their impact on the optimized design. In this study, a multiple-stage scheme was employed to evaluate the uncertainty. We first define the ranges and distributions of 11 input parameters that characterize the natural fracture topology, in situ stress, geomechanical behavior of the rock matrix and joint interfaces, and pumping operation, to cover a wide spectrum of potential conditions expected for a natural reservoir. These parameters were then sampled 1,000 times in an 11-dimensional parameter space constrained by the specified ranges using the Latin-hypercube method. These 1,000 parameter sets were fed into the fracture simulators, and the outputs were used to construct three designed objective functions, i.e. fracture density, opened fracture length and area density. Using PSUADE, three response surfaces (11-dimensional) of the objective functions were developed and global sensitivity was analyzed to identify the most sensitive parameters for the objective functions representing fracture connectivity, which are critical for sweep efficiency of the recovery process. The second-stage high resolution response surfaces were constructed with dimension reduced to the number of the most sensitive parameters. An additional response surface with respect to the objective function of the fractal dimension for fracture distributions was constructed in this stage. Based on these response surfaces, comprehensive uncertainty analyses were conducted among input parameters and objective functions. In addition, reduced-order emulation models resulting from this analysis can be used for optimal control of hydraulic fracturing. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  1. Long-period long-duration seismic events during hydraulic fracturing: Implications for tensile fracture development

    NASA Astrophysics Data System (ADS)

    Hu, Hongru; Li, Aibing; Zavala-Torres, Ricardo

    2017-05-01

    Long-period long-duration (LPLD) seismic events are observed from a microseismic data set acquired by surface receivers in the Eagle Ford Shale. These events are characterized by low frequencies of 10-60 Hz and long durations of 30-60 s. The seismograms are dominated with P waves, and the frequency spectra have peaks at several isolated frequencies, similar to volcanic tremors. The LPLD events are located close to the horizontal hydraulic treatment well and migrate away from the well with time. These observations suggest that the LPLD events are related to hydraulic fracturing and are possibly caused by the jerky opening and resonance of fluid-filled cracks. Imaging this type of LPLD events can potentially map fluid flow and tensile fracture development during hydraulic fracturing.

  2. Draft Genome Sequence of Methanohalophilus mahii Strain DAL1 Reconstructed from a Hydraulic Fracturing-Produced Water Metagenome.

    PubMed

    Lipus, Daniel; Vikram, Amit; Ross, Daniel E; Bibby, Kyle

    2016-09-01

    We report here the 1,882,100-bp draft genome sequence of Methanohalophilus mahii strain DAL1, recovered from Marcellus Shale hydraulic fracturing-produced water using metagenomic contig binning. Genome annotation revealed several key methanogenesis genes and provides valuable information on archaeal activity associated with hydraulic fracturing-produced water environments. Copyright © 2016 Lipus et al.

  3. Draft Genome Sequence of Pseudomonas sp. BDAL1 Reconstructed from a Bakken Shale Hydraulic Fracturing-Produced Water Storage Tank Metagenome.

    PubMed

    Lipus, Daniel; Ross, Daniel; Bibby, Kyle; Gulliver, Djuna

    2017-03-16

    We report the 5,425,832 bp draft genome of Pseudomonas sp. strain BDAL1, recovered from a Bakken shale hydraulic fracturing-produced water tank metagenome. Genome annotation revealed several key biofilm formation genes and osmotic stress response mechanisms necessary for survival in hydraulic fracturing-produced water. Copyright © 2017 Lipus et al.

  4. Hydraulic Fracturing Induced Seismicity at Preese Hall, UK: Moment Tensors, Uncertainties and Implications for Microseismic Monitoring Strategies

    NASA Astrophysics Data System (ADS)

    O'toole, T. B.; Woodhouse, J. H.; Verdon, J.; Kendall, J.

    2012-12-01

    Hydraulic fracturing operations carried out in April and May 2011 by Cuadrilla Resources Ltd. during the exploration of a shale gas reservoir at Preese Hall, near Blackpool, UK, induced a series of microseismic events. The largest of these, with magnitude ML = 2.3, was felt at the surface and recorded by the British Geological Survey regional seismic network. Subsequently, two local seismic stations were installed, which continued to detect seismicity with ML ≤ 1.5 until the hydraulic fracture treatment was suspended due to the anomalously large magnitudes of the induced earthquakes. Here, we present the results of moment tensor inversions of seismic waveforms recorded by these two near-field stations. We determine the best point source description of an event by minimising the least-squares difference between observed and synthetic waveforms. In contrast to source mechanisms obtained from body wave polarity and amplitude picks, which require a good sampling of the focal sphere and typically assume a pure double-couple mechanism, using the whole waveform allows us to place good constraints on the moment tensor even when only a few seismograms are available, and also enables the investigation of possible non-double-couple components and volume changes associated with a source. We discuss our results in the context of the studies commissioned by Cuadrilla after the suspension of hydraulic fracturing operations at Preese Hall. Using synthetic waveform data, we investigate how different monitoring geometries can be used to reduce uncertainties in source parameters of induced microseisms. While our focus is on the monitoring of hydraulic fracturing operations, the methods developed here are general and could equally be applied to determine moment tensors from surface and borehole observations of seismicity induced by other activities.

  5. Delineation of Groundwater Flow Pathway in Fractured Bedrock Using Nano-Iron Tracer Test in the Sealed Well

    NASA Astrophysics Data System (ADS)

    Chuang, Po-Yu; Chia, Yeeping; Chiu, Yung-Chia; Liou, Ya-Hsuan; Teng, Mao-Hua; Liu, Ching-Yi; Lee, Tsai-Ping

    2016-04-01

    Deterministic delineation of the preferential flow paths and their hydraulic properties are desirable for developing hydrogeological conceptual models in bedrock aquifers. In this study, we proposed using nanoscale zero-valent iron (nZVI) as a tracer to characterize the fractured connectivity and hydraulic properties. Since nZVI particles are magnetic, we designed a magnet array to attract the arriving nZVI particles in the observation well for identifying the location of incoming tracer. This novel approach was examined at two experiment wells with well hydraulic connectivity in a hydrogeological research station in the fractured aquifer. Heat-pulse flowmeter test was used to detect the vertical distribution of permeable zones in the borehole, providing the design basis of tracer test. Then, the less permeable zones in the injection well were sealed by casing to prevent the injected nZVI particles from being stagnated at the bottom hole. Afterwards, hydraulic test was implemented to examine the hydraulic connectivity between two wells. When nZVI slurry was released in the injection well, they could migrate through connected permeable fractures to the observation well. A breakthrough curve was obtained by the fluid conductivity sensor in the observation well, indicating the arrival of nZVI slurry. The iron nanoparticles that were attracted to the magnets in the observation well provide the quantitative information to locate the position of tracer inlet, which corroborates well with the depth of a permeable zone delineated by the flowmeter. Finally, the numerical method was utilized to simulate the process of tracer migration. This article demonstrates that nano-iron tracer test can be a promising approach for characterizing connectivity patterns and transmissivities of the flow paths in the fractured rock.

  6. Hydraulic fracture and resilience of epithelial monolayers under stretch

    NASA Astrophysics Data System (ADS)

    Arroyo, Marino; Lucantonio, Alessandro; Noselli, Giovanni; Casares, Laura; Desimone, Antonio; Trepat, Xavier

    Epithelial monolayers are very simple and prevalent tissues. Their functions include delimiting distinct physicochemical containers and protecting us from pathogens. Epithelial fracture disrupts the mechanical integrity of this barrier, and hence compromises these functions. Here, we show that in addition to the conventional fracture resulting from excessive tissue tension, epithelia can hydraulically fracture under stretch as a result of the poroelastic nature of the matrix. We will provide experimental evidence of this counterintuitive mechanism of fracture, in which cracks appear under compression. Intriguingly, unlike tensional fracture, which is localized and catastrophic, hydraulic epithelial fracture is distributed and reversible. We will also describe the active mechanisms responsible for crack healing, and the physical principles by which the poroelastic matrix contributes to this resilient behavior.

  7. Shallow Aquifer Vulnerability From Subsurface Fluid Injection at a Proposed Shale Gas Hydraulic Fracturing Site

    NASA Astrophysics Data System (ADS)

    Wilson, M. P.; Worrall, F.; Davies, R. J.; Hart, A.

    2017-11-01

    Groundwater flow resulting from a proposed hydraulic fracturing (fracking) operation was numerically modeled using 91 scenarios. Scenarios were chosen to be a combination of hydrogeological factors that a priori would control the long-term migration of fracking fluids to the shallow subsurface. These factors were induced fracture extent, cross-basin groundwater flow, deep low hydraulic conductivity strata, deep high hydraulic conductivity strata, fault hydraulic conductivity, and overpressure. The study considered the Bowland Basin, northwest England, with fracking of the Bowland Shale at ˜2,000 m depth and the shallow aquifer being the Sherwood Sandstone at ˜300-500 m depth. Of the 91 scenarios, 73 scenarios resulted in tracked particles not reaching the shallow aquifer within 10,000 years and 18 resulted in travel times less than 10,000 years. Four factors proved to have a statistically significant impact on reducing travel time to the aquifer: increased induced fracture extent, absence of deep high hydraulic conductivity strata, relatively low fault hydraulic conductivity, and magnitude of overpressure. Modeling suggests that high hydraulic conductivity formations can be more effective barriers to vertical flow than low hydraulic conductivity formations. Furthermore, low hydraulic conductivity faults can result in subsurface pressure compartmentalization, reducing horizontal groundwater flow, and encouraging vertical fluid migration. The modeled worst-case scenario, using unlikely geology and induced fracture lengths, maximum values for strata hydraulic conductivity and with conservative tracer behavior had a particle travel time of 130 years to the base of the shallow aquifer. This study has identified hydrogeological factors which lead to aquifer vulnerability from shale exploitation.

  8. Hydraulic fracture monitoring in hard rock at 410 m depth with an advanced fluid-injection protocol and extensive sensor array

    NASA Astrophysics Data System (ADS)

    Zang, Arno; Stephansson, Ove; Stenberg, Leif; Plenkers, Katrin; Specht, Sebastian; Milkereit, Claus; Schill, Eva; Kwiatek, Grzegorz; Dresen, Georg; Zimmermann, Günter; Dahm, Torsten; Weber, Michael

    2017-02-01

    In this paper, an underground experiment at the Äspö Hard Rock Laboratory (HRL) is described. Main goal is optimizing geothermal heat exchange in crystalline rock mass at depth by multistage hydraulic fracturing with minimal impact on the environment, that is, seismic events. For this, three arrays with acoustic emission, microseismicity and electromagnetic sensors are installed mapping hydraulic fracture initiation and growth. Fractures are driven by three different water injection schemes (continuous, progressive and pulse pressurization). After a brief review of hydraulic fracture operations in crystalline rock mass at mine scale, the site geology and the stress conditions at Äspö HRL are described. Then, the continuous, single-flow rate and alternative, multiple-flow rate fracture breakdown tests in a horizontal borehole at depth level 410 m are described together with the monitoring networks and sensitivity. Monitoring results include the primary catalogue of acoustic emission hypocentres obtained from four hydraulic fractures with the in situ trigger and localizing network. The continuous versus alternative water injection schemes are discussed in terms of the fracture breakdown pressure, the fracture pattern from impression packer result and the monitoring at the arrays. An example of multistage hydraulic fracturing with several phases of opening and closing of fracture walls is evaluated using data from acoustic emissions, seismic broad-band recordings and electromagnetic signal response. Based on our limited amount of in situ tests (six) and evaluation of three tests in Ävrö granodiorite, in the multiple-flow rate test with progressively increasing target pressure, the acoustic emission activity starts at a later stage in the fracturing process compared to the conventional fracturing case with continuous water injection. In tendency, also the total number and magnitude of acoustic events are found to be smaller in the progressive treatment with frequent phases of depressurization.

  9. Conceptualization of flow and transport in a limestone aquifer by multiple dedicated hydraulic and tracer tests

    NASA Astrophysics Data System (ADS)

    Mosthaf, Klaus; Brauns, Bentje; Fjordbøge, Annika S.; Rohde, Magnus M.; Kerrn-Jespersen, Henriette; Bjerg, Poul L.; Binning, Philip J.; Broholm, Mette M.

    2018-06-01

    Limestone aquifers are of great interest as a drinking water resource in many countries. They often have a complex crushed and fractured geology, which makes the analysis and description of flow and transport processes in such aquifers a challenging task. In this study, the solute transport behavior including fracture-matrix interaction in hydrogeological units of a limestone aquifer in eastern Denmark was characterized by designing, conducting and interpreting six depth-specific tracer tests involving natural- and forced-gradient conditions with multiple tracers representing different diffusion properties. To determine flow parameters, the tracer tests were complemented by a comprehensive set of depth-specific borehole and hydraulic tests. Based on the tests, a new and stronger conceptual understanding was developed for the different aquifer units. The investigated limestone aquifer is composed of a glacially crushed unit and two fractured units, with calcarenitic and bryozoan limestone of similar hydraulic properties. Hydraulic tests revealed that the crushed unit has a lower hydraulic conductivity than the fractured limestone units, likely due to the crushed conditions with small limestone clusters and small-aperture fractures potentially filled with fine material. In the fractured limestone units, a distinct preferential flow and primary transport along major horizontal fractures was inferred from the tracer tests under forced-gradient conditions. The dominant horizontal fractures were identified on impeller flow logs and appear connected between wells, having an extent of up to several hundred meters. Connectivity between the aquifer units was investigated with a long-term pumping test and tracer tests, revealing restricted vertical flow and transport. A very pronounced hydraulic conductivity contrast between major fractures and matrix could also be inferred from the borehole and hydraulic tests, which is consistent with the findings from the tracer tests. The difference in the matrix diffusion behavior of the simultaneously injected tracers and a long tailing in the breakthrough curves revealed that matrix diffusion has a strong influence on the solute transport in the fractured limestone.

  10. A Comprehensive Numerical Model for Simulating Fluid Transport in Nanopores

    PubMed Central

    Zhang, Yuan; Yu, Wei; Sepehrnoori, Kamy; Di, Yuan

    2017-01-01

    Since a large amount of nanopores exist in tight oil reservoirs, fluid transport in nanopores is complex due to large capillary pressure. Recent studies only focus on the effect of nanopore confinement on single-well performance with simple planar fractures in tight oil reservoirs. Its impacts on multi-well performance with complex fracture geometries have not been reported. In this study, a numerical model was developed to investigate the effect of confined phase behavior on cumulative oil and gas production of four horizontal wells with different fracture geometries. Its pore sizes were divided into five regions based on nanopore size distribution. Then, fluid properties were evaluated under different levels of capillary pressure using Peng-Robinson equation of state. Afterwards, an efficient approach of Embedded Discrete Fracture Model (EDFM) was applied to explicitly model hydraulic and natural fractures in the reservoirs. Finally, three fracture geometries, i.e. non-planar hydraulic fractures, non-planar hydraulic fractures with one set natural fractures, and non-planar hydraulic fractures with two sets natural fractures, are evaluated. The multi-well performance with confined phase behavior is analyzed with permeabilities of 0.01 md and 0.1 md. This work improves the analysis of capillarity effect on multi-well performance with complex fracture geometries in tight oil reservoirs. PMID:28091599

  11. A Comprehensive Numerical Model for Simulating Fluid Transport in Nanopores

    NASA Astrophysics Data System (ADS)

    Zhang, Yuan; Yu, Wei; Sepehrnoori, Kamy; di, Yuan

    2017-01-01

    Since a large amount of nanopores exist in tight oil reservoirs, fluid transport in nanopores is complex due to large capillary pressure. Recent studies only focus on the effect of nanopore confinement on single-well performance with simple planar fractures in tight oil reservoirs. Its impacts on multi-well performance with complex fracture geometries have not been reported. In this study, a numerical model was developed to investigate the effect of confined phase behavior on cumulative oil and gas production of four horizontal wells with different fracture geometries. Its pore sizes were divided into five regions based on nanopore size distribution. Then, fluid properties were evaluated under different levels of capillary pressure using Peng-Robinson equation of state. Afterwards, an efficient approach of Embedded Discrete Fracture Model (EDFM) was applied to explicitly model hydraulic and natural fractures in the reservoirs. Finally, three fracture geometries, i.e. non-planar hydraulic fractures, non-planar hydraulic fractures with one set natural fractures, and non-planar hydraulic fractures with two sets natural fractures, are evaluated. The multi-well performance with confined phase behavior is analyzed with permeabilities of 0.01 md and 0.1 md. This work improves the analysis of capillarity effect on multi-well performance with complex fracture geometries in tight oil reservoirs.

  12. Discussion of examination of a cored hydraulic fracture in a deep gas well

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nolte, K.G.

    Warpinski et al. document information found from a core through a formation after a hydraulic fracture treatment. As they indicate, the core provides the first detailed evaluation of an actual propped hydraulic fracture away from the well and at a significant depth, and this evaluation leads to findings that deviate substantially from the assumptions incorporated into current fracturing models. In this discussion, a defense of current fracture design assumptions is developed. The affirmation of current assumptions, for general industry applications, is based on an assessment of the global impact of the local complexity found in the core. The assessment leadsmore » to recommendations for the evolution of fracture design practice.« less

  13. Geological and petrological considerations relevant to the disposal of radioactive wastes by hydraulic fracturing: an example at the US Department of Energy's Oak Ridge National Laboratory. [Pumpkin Valley shales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haase, C.S.

    1982-01-01

    At Oak Ridge National Laboratory the Pumpkin Valley Shale is used as a host formation for hydraulic-fracturing waste disposal. Determination of the relationships between the distribution of different lithologies and porosity-permeability trends within this host formation allows these properties, important to hydraulic-fracturing operations, to be related to measurable and mappable geological and petrological parameters. It also permits extrapolation of such patterns to little-studied portions of the Pumpkin Valley Shale. Such knowledge better allows for the satisfactory operation and assessment of the hydraulic fracturing at Oak Ridge National Laboratory.

  14. Environmental risks associated with unconventional gas extraction: an Australian perspective

    NASA Astrophysics Data System (ADS)

    Mallants, Dirk; Bekele, Elise; Schmidt, Wolfgang; Miotlinski, Konrad; Gerke Gerke, Kirill

    2015-04-01

    Coal seam gas is naturally occurring methane gas (CH4) formed by the degradation of organic material in coal seam layers over geological times, typically over several millions of years. Unlike conventional gas resources, which occur as discrete accumulations in traps formed by folds and other structures in sedimentary layers, coal seam gas is generally trapped in low permeable rock by adsorption of the gas molecules within the rock formation and cannot migrate to a trap and form a conventional gas deposit. Extraction of coal seam gas requires producers to de pressurise the coal measures by abstracting large amounts of groundwater through pumping. For coal measures that have too low permeabilities for gas extraction to be economical, mechanical and chemical techniques are required to increase permeability and thus gas yield. One such technique is hydraulic fracturing (HF). Hydraulic fracturing increases the rate and total amount of gas extracted from coal seam gas reservoirs. The process of hydraulic fracturing involves injecting large volumes of hydraulic fracturing fluids under high pressure into the coal seam layers to open up (i.e. fracture) the gas-containing coal layers, thus facilitating extraction of methane gas through pumping. After a hydraulic fracturing operation has been completed in a coal seam gas well, the fracturing fluid pressure is lowered and a significant proportion of the injected fluid returns to the surface as "flowback" water via coal seam gas wells. Flowback water is fluid that returns to the surface after hydraulic fracturing has occurred but before the well is put into production; whereas produced water is fluid from the coal measure that is pumped to the surface after the well is in production. This paper summarises available literature data from Australian coal seam gas practices on i) spills from hydraulic fracturing-related fluids used during coal seam gas drilling and hydraulic fracturing operations, ii) leaks to soil and shallow groundwater of flowback water and produced water from surface impoundments, iii) risks from well integrity failure, and iv) increased gas in water bores.

  15. Experimental Investigation on the Basic Law of Directional Hydraulic Fracturing Controlled by Dense Linear Multi-Hole Drilling

    NASA Astrophysics Data System (ADS)

    Zhao, Xinglong; Huang, Bingxiang; Wang, Zhen

    2018-06-01

    Directional rupture is a significant and routine problem for ground control in mines. Directional hydraulic fracturing controlled by dense linear multi-hole drilling was proposed. The physical model experiment, performed by the large-scale true triaxial hydraulic fracturing experimental system, aims to investigate the basic law of directional hydraulic fracturing controlled by dense linear multi-hole drilling, the impact of three different pumping modes on the initiation and propagation of hydraulic fractures among boreholes are particular investigated. The experimental results indicated that there are mutual impacts among different boreholes during crack propagation, which leads to a trend of fracture connection. Furthermore, during propagation, the fractures not only exhibit an overall bias toward the direction in which the boreholes are scattered but also partially offset against the borehole axes and intersect. The directional fracturing effect of equivalent pumping rate in each borehole is better than the other two pumping modes. In practical applications, because of rock mass heterogeneity, there may be differences in terms of filtration rate and effective input volume in different boreholes; thus, water pressure increase and rupture are not simultaneous in different boreholes. Additionally, if the crack initiation directions of different boreholes at different times are not consistent with each other, more lamellar failure planes will occur, and the mutual influences of these lamellar failure planes cause fractures to extend and intersect.

  16. Summary and interpretation of dye-tracer tests to investigate the hydraulic connection of fractures at a ridge-and-valley-wall site near Fishtrap Lake, Pike County, Kentucky

    USGS Publications Warehouse

    Taylor, Charles J.

    1994-01-01

    Dye-tracer tests were done during 1985-92 to investigate the hydraulic connection between fractures in Pennsylvanian coal-bearing strata at a ridge-and-valley-wall site near Fishtrap Lake, Pike County, Ky. Fluorescent dye was injected into a core hole penetrating near-surface and mining-induced fractures near the crest of the ridge. The rate and direction of migration of dye in the subsurface were determined by measuring the relative concentration of dye in water samples collected from piezometers completed in conductive fracture zones and fractured coal beds at various stratigraphic horizons within the ridge. Dye-concentration data and water-level measurements for each piezometer were plotted as curves on dye-recovery hydrographs. The dye-recovery hydrographs were used to evaluate trends in the fluctuation of dye concentrations and hydraulic heads in order to identify geologic and hydrologic factors affecting the subsurface transport of dye. The principal factors affecting the transport of dye in the subsurface hydrologic system were determined to be (1) the distribution, interconnection, and hydraulic properties of fractures; (2) hydraulic-head conditions in the near-fracture zone at the time of dye injection; and (3) subsequent short- and long-term fluctuations in recharge to the hydrologic system. In most of the dye-tracer tests, dye-recovery hydrographs are characterized by complex, multipeaked dye-concentration curves that are indicative of a splitting of dye flow as ground water moved through fractures. Intermittent dye pulses (distinct upward spikes in dye concentration) mark the arrivals of dye-labeled water to piezometers by way of discrete fracture-controlled flow paths that vary in length, complexity, and hydraulic conductivity. Dye injections made during relatively high- or increasinghead conditions resulted in rapid transport of dye (within several days or weeks) from near-surf ace fractures to piezometers. Injections made during relatively low- or decreasing-head conditions resulted in dye being trapped in hydraulically dead zones in water-depleted fractures. Residual dye was remobilized from storage and transported (over periods ranging from several months to about 2 years) by increased recharge to the hydrologic system. Subsequent fluctuations in hydraulic gradients, resulting from increases or decreases in recharge to the hydrologic system, acted to speed or slow the transport of dye along the fracture-controlled flow paths. The dye-tracer tests also demonstrated that mining-related disturbances significantly altered the natural fracture-controlled flow paths of the hydrologic system over time. An abandoned underground mine and subsidence-related surface cracks extend to within 250 ft of the principal dye-injection core hole. Results from two of the dye-tracer tests at the site indicate that the annular seal in the core hole was breached by subsurface propagation of the mining-induced fractures. This propagation of fractures resulted in hydraulic short-circuiting between the dye-injection zone in the core hole and two lower piezometer zones, and a partial disruption of the hydraulic connection between the injection core hole and downgradient piezometers on the ridge crest and valley wall. In addition, injected dye was detected in piezometers monitoring a flooded part of the abandoned underground mine. Dye was apparently transported into the mine through a hydraulic connection between the injection core hole and subsidence-related fractures.

  17. A linearized microstructural model for hydraulic conductivity evolution due to brittle damage: application to Hydraulic Fracturing treatments

    NASA Astrophysics Data System (ADS)

    Caramiello, G.; Montanino, A.; Della Vecchia, G., Sr.; Pandolfi, A., Sr.

    2017-12-01

    Among the features of geological structures, fractures and discontinuities play a dominant role, due to their significant influence on both the hydraulic and the mechanical behavior of the rock mass. Despite the current availability of fault and fracture mappings, the understanding of the influence of faults on fluid flow is nowadays not satisfactory, in particular when hydro-mechanical coupling is significant. In engineering technology fracture processes are often exploited. Hydraulic fracturing is one of the most important example. Hydraulic fracturing is a process characterized by the inception and propagation of fractures as a consequence of a hydraulic driven solicitation and it is used to improve the production and optimize well stimulation in low permeability reservoirs. Due to the coupling of several different phenomena (hydro-thermo-chemical coupling) there is not a reliable complete mathematical model able to simulate in a proper way the process. To design hydraulic fracturing treatments, it is necessary to predict the growth of fracture geometry as a function of treatment parameters. In this contribution we present a recently developed model of brittle damage of confined rock masses, with particular emphasis on the influence of mechanical damage on the evolution of porosity and permeability. The model is based on an explicit micromechanical construction of connected patterns of parallel equi-spaced cracks. A relevant feature of the model is that the fracture patterns are not arbitrary, but their inception, orientation and spacing follow from energetic consideration. The model, based on the Terzaghi effective stress concepts, has been then implemented into a coupled hydro-mechanical finite element code, where the linear momentum and the fluid mass balance equations are numerically solved via a staggered approach. The coupled code is used to simulate fracturing processes induced by an increase in pore pressure. The examples show the capability of the model in reproducing three-dimensional multiscale complex fracture patterns and permeability enhancement in the damaged porous medium. The numerical code, has been used to verify the influence of the distance between the different perforation slots as well of the wellbore-deviation from the minimum stress axis on the propagation of multiple.

  18. Consequences of Fluid Lag in Three-Dimensional Hydraulic Fractures

    NASA Astrophysics Data System (ADS)

    Advani (Deceased), S. H.; Lee, T. S.; Dean, R. H.; Pak, C. K.; Avasthi, J. M.

    1997-04-01

    Research investigations on three-dimensional (3-D) rectangular hydraulic fracture configurations with varying degrees of fluid lag are reported. This paper demonstrates that a 3-D fracture model coupled with fluid lag (a small region of reduced pressure) at the fracture tip can predict very large excess pressure measurements for hydraulic fracture processes. Predictions of fracture propagation based on critical stress intensity factors are extremely sensitive to the pressure profile at the tip of a propagating fracture. This strong sensitivity to the pressure profile at the tip of a hydraulic fracture is more strongly pronounced in 3-D models versus 2-D models because 3-D fractures are clamped at the top and bottom, and pressures in the 3-D fractures that are far removed from the fracture tip have little effect on the stress intensity factor at the fracture tip. This rationale for the excess pressure mechanism is in marked contrast to the crack tip process damage zone assumptions and attendant high rock fracture toughness value hypotheses advanced in the literature. A comparison with field data is presented to illustrate the proposed fracture fluid pressure sensitivity phenomenon. This paper does not attempt to calculate the length of the fluid lag region in a propagating fracture but instead attempts to show that the pressure profile at the tip of the propagating fracture plays a major role in fracture propagation, and this role is magnified in 3-D models. Int. J. Numer. Anal. Meth. Geomech., vol. 21, 229-240 (1997).

  19. Investigation of Stimulation-Response Relationships for Complex Fracture Systems in Enhanced Geothermal Reservoirs

    DOE Data Explorer

    Fu, Pengcheng; Johnson, Scott M.; Carrigan, Charles R.

    2011-01-01

    Hydraulic fracturing is currently the primary method for stimulating low-permeability geothermal reservoirs and creating Enhanced (or Engineered) Geothermal Systems (EGS) with improved permeability and heat production efficiency. Complex natural fracture systems usually exist in the formations to be stimulated and it is therefore critical to understand the interactions between existing fractures and newly created fractures before optimal stimulation strategies can be developed. Our study aims to improve the understanding of EGS stimulation-response relationships by developing and applying computer-based models that can effectively reflect the key mechanisms governing interactions between complex existing fracture networks and newly created hydraulic fractures. In this paper, we first briefly describe the key modules of our methodology, namely a geomechanics solver, a discrete fracture flow solver, a rock joint response model, an adaptive remeshing module, and most importantly their effective coupling. After verifying the numerical model against classical closed-form solutions, we investigate responses of reservoirs with different preexisting natural fractures to a variety of stimulation strategies. The factors investigated include: the in situ stress states (orientation of the principal stresses and the degree of stress anisotropy), pumping pressure, and stimulation sequences of multiple wells.

  20. EPA releases progress report on hydraulic fracturing study

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2013-01-01

    The U.S. Environmental Protection Agency (EPA) provided a 21 December progress report on its ongoing national study about the potential impacts of hydraulic fracturing on drinking water resources. The agency said that a draft of the congressionally requested study will be released in 2014 for public and peer review and that its progress report does not draw conclusions about the potential impacts of hydraulic fracturing, often referred to as fracking.

  1. New approach for simulating groundwater flow in discrete fracture network

    NASA Astrophysics Data System (ADS)

    Fang, H.; Zhu, J.

    2017-12-01

    In this study, we develop a new approach to calculate groundwater flowrate and hydraulic head distribution in two-dimensional discrete fracture network (DFN) where both laminar and turbulent flows co-exist in individual fractures. The cubic law is used to calculate hydraulic head distribution and flow behaviors in fractures where flow is laminar, while the Forchheimer's law is used to quantify turbulent flow behaviors. Reynolds number is used to distinguish flow characteristics in individual fractures. The combination of linear and non-linear equations is solved iteratively to determine flowrates in all fractures and hydraulic heads at all intersections. We examine potential errors in both flowrate and hydraulic head from the approach of uniform flow assumption. Applying the cubic law in all fractures regardless of actual flow conditions overestimates the flowrate when turbulent flow may exist while applying the Forchheimer's law indiscriminately underestimate the flowrate when laminar flows exist in the network. The contrast of apertures of large and small fractures in the DFN has significant impact on the potential errors of using only the cubic law or the Forchheimer's law. Both the cubic law and Forchheimer's law simulate similar hydraulic head distributions as the main difference between these two approaches lies in predicting different flowrates. Fracture irregularity does not significantly affect the potential errors from using only the cubic law or the Forchheimer's law if network configuration remains similar. Relative density of fractures does not significantly affect the relative performance of the cubic law and Forchheimer's law.

  2. The Hydraulic Mechanism in the Orbital Blowout Fracture Because of a High-Pressure Air Gun Injury.

    PubMed

    Kang, Seok Joo; Chung, Eui Han

    2015-10-01

    There are 2 predominant mechanisms that are used to explain the pathogenesis of orbital blowout fracture; these include hydraulic and buckling mechanisms. Still, however, its pathophysiology remains uncertain. To date, studies in this series have been conducted using dry skulls, cadavers, or animals. But few clinical studies have been conducted to examine whether the hydraulic mechanism is involved in the occurrence of pure orbital blowout fracture. The authors experienced a case of a 52-year-old man who had a pure medial blowout fracture after sustaining an eye injury because of a high-pressure air gun. Our case suggests that surgeons should be aware of the possibility that the hydraulic mechanism might be involved in the blowout fracture in patients presenting with complications, such as limitation of eye movement, diplopia, and enophthalmos.

  3. Recover Act. Verification of Geothermal Tracer Methods in Highly Constrained Field Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becker, Matthew W.

    2014-05-16

    The prediction of the geothermal system efficiency is strong linked to the character of the flow system that connects injector and producer wells. If water flow develops channels or “short circuiting” between injection and extraction wells thermal sweep is poor and much of the reservoir is left untapped. The purpose of this project was to understand how channelized flow develops in fracture geothermal reservoirs and how it can be measured in the field. We explored two methods of assessing channelization: hydraulic connectivity tests and tracer tests. These methods were tested at a field site using two verification methods: ground penetratingmore » radar (GPR) images of saline tracer and heat transfer measurements using distributed temperature sensing (DTS). The field site for these studies was the Altona Flat Fractured Rock Research Site located in northeastern New York State. Altona Flat Rock is an experimental site considered a geologic analog for some geothermal reservoirs given its low matrix porosity. Because soil overburden is thin, it provided unique access to saturated bedrock fractures and the ability image using GPR which does not effectively penetrate most soils. Five boreholes were drilled in a “five spot” pattern covering 100 m2 and hydraulically isolated in a single bedding plane fracture. This simple system allowed a complete characterization of the fracture. Nine small diameter boreholes were drilled from the surface to just above the fracture to allow the measurement of heat transfer between the fracture and the rock matrix. The focus of the hydraulic investigation was periodic hydraulic testing. In such tests, rather than pumping or injection in a well at a constant rate, flow is varied to produce an oscillating pressure signal. This pressure signal is sensed in other wells and the attenuation and phase lag between the source and receptor is an indication of hydraulic connection. We found that these tests were much more effective than constant pumping tests in identifying a poorly connected well. As a result, we were able to predict which well pairs would demonstrate channelized flow. The focus of the tracer investigation was multi-ionic tests. In multi-ionic tests several ionic tracers are injected simultaneously and the detected in a nearby pumping well. The time history of concentration, or breakthrough curve, will show a separation of the tracers. Anionic tracers travel with the water but cationic tracer undergo chemical exchange with cations on the surface of the rock. The degree of separation is indicative of the surface area exposed to the tracer. Consequently, flow channelization will tend to decrease the separation in the breakthrough. Estimation of specific surface area (the ration of fracture surface area to formation volume) is performed through matching the breakthrough curve with a transport model. We found that the tracer estimates of surface area were confirmed the prediction of channelized flow between well pairs produced by the periodic hydraulic tests. To confirm that the hydraulic and tracer tests were correctly predicting channelize flow, we imaged the flow field using surface GPR. Saline water was injected between the well pairs which produced a change in the amplitude and phase of the reflected radar signal. A map was produced of the migration of saline tracer from these tests which qualitatively confirmed the flow channelization predicted by the hydraulic and tracer tests. The resolution of the GPR was insufficient to quantitatively estimate swept surface area, however. Surface GPR is not applicable in typical geothermal fields because the penetration depths do not exceed 10’s of meters. Nevertheless, the method of using of phase to measure electrical conductivity and the assessment of antennae polarization represent a significant advancement in the field of surface GPR. The effect of flow character on fracture / rock thermal exchange was evaluated using heated water as a tracer. Water elevated 30 degrees C above the formation water was circulated between two wells pairs. One well pair had been identified in hydraulic and tracer testing as well connected and the other poorly connected. Temperature rise was measured in the adjacent rock matrix using coiled fiber optic cable interrogated for temperature using a DTS. This experimental design produced over 4000 temperature measurements every hour. We found that heat transfer between the fracture and the rock matrix was highly impacted by the character of the flow field. The strongly connected wells which had demonstrated flow channelization produced heat rise in a much more limited area than the more poorly connected wells. In addition, the heat increase followed the natural permeability of the fracture rather than the induced flow field. The primary findings of this work are (1) even in a single relatively planar fracture, the flow field can be highly heterogeneous and exhibit flow channeling, (2) channeling results from a combination of fracture permeability structure and the induced flow field, and (3) flow channeling leads to reduced heat transfer. Multi-ionic tracers effectively estimate relative surface area but an estimate of ion-exchange coefficients are necessary to provide an absolute measure of specific surface area. Periodic hydraulic tests also proved a relative indicator of connectivity but cannot prove an absolute measure of specific surface area.« less

  4. Approaching a universal scaling relationship between fracture stiffness and fluid flow

    NASA Astrophysics Data System (ADS)

    Pyrak-Nolte, Laura J.; Nolte, David D.

    2016-02-01

    A goal of subsurface geophysical monitoring is the detection and characterization of fracture alterations that affect the hydraulic integrity of a site. Achievement of this goal requires a link between the mechanical and hydraulic properties of a fracture. Here we present a scaling relationship between fluid flow and fracture-specific stiffness that approaches universality. Fracture-specific stiffness is a mechanical property dependent on fracture geometry that can be monitored remotely using seismic techniques. A Monte Carlo numerical approach demonstrates that a scaling relationship exists between flow and stiffness for fractures with strongly correlated aperture distributions, and continues to hold for fractures deformed by applied stress and by chemical erosion as well. This new scaling relationship provides a foundation for simulating changes in fracture behaviour as a function of stress or depth in the Earth and will aid risk assessment of the hydraulic integrity of subsurface sites.

  5. The Geothermic Fatigue Hydraulic Fracturing Experiment in Äspö Hard Rock Laboratory, Sweden: New Insights Into Fracture Process through In-situ AE Monitoring

    NASA Astrophysics Data System (ADS)

    Kwiatek, G.; Plenkers, K.; Zang, A.; Stephansson, O.; Stenberg, L.

    2016-12-01

    The geothermic Fatigue Hydraulic Fracturing (FHF) in situ experiment (Nova project 54-14-1) took place in the Äspö Hard Rock Laboratory/Sweden in a 1.8 Ma old granitic to dioritic rock mass. The experiment aims at optimizing geothermal heat exchange in crystalline rock mass by multistage hydraulic fracturing at 10 m scale. Six fractures are driven by three different water injection schemes (continuous, cyclic, pulse pressurization) inside a 28 m long, horizontal borehole at depth level 410 m. The rock volume subject to hydraulic fracturing and monitored by three different networks with acoustic emission (AE), micro-seismicity and electromagnetic sensors is about 30 m x 30 m x 30 m in size. The 16-channel In-situ AE monitoring network by GMuG monitored the rupture generation and propagation in the frequency range 1000 Hz to 100,000 Hz corresponding to rupture dimensions from cm- to dm-scale. The in-situ AE monitoring system detected and analyzed AE activity in-situ (P- and S-wave picking, localization). The results were used to review the ongoing microfracturing activity in near real-time. The in-situ AE monitoring network successfully recorded and localized 196 seismic events for most, but not all, hydraulic fractures. All AE events detected in-situ occurred during fracturing time periods. The source parameters (fracture sizes, moment magnitudes, static stress drop) of AE events framing injection periods were calculated using the combined spectral fitting/spectra ratio techniques. The AE activity is clustered in space and clearly outline the fractures location, its orientation, and expansion as well as their temporal evolution. The outward migration of AE events away from the borehole is observed. Fractures extend up to 7 m from the injection interval in the horizontal borehole. The fractures orientation and location correlate for most fractures roughly with the results gained by image packer. Clear differences in seismic response between hydraulic fractures in different formations and injection schemes are visible which need further investigation. For further analysis all AE data of fracturing time periods were recorded continuously with 1 MHz sampling frequency per channel.

  6. Interpretation of hydraulic conductivity in a fractured-rock aquifer over increasingly larger length dimensions

    USGS Publications Warehouse

    Shapiro, Allen M.; Ladderud, Jeffery; Yager, Richard M.

    2015-01-01

    A comparison of the hydraulic conductivity over increasingly larger volumes of crystalline rock was conducted in the Piedmont physiographic region near Bethesda, Maryland, USA. Fluid-injection tests were conducted on intervals of boreholes isolating closely spaced fractures. Single-hole tests were conducted by pumping in open boreholes for approximately 30 min, and an interference test was conducted by pumping a single borehole over 3 days while monitoring nearby boreholes. An estimate of the hydraulic conductivity of the rock over hundreds of meters was inferred from simulating groundwater inflow into a kilometer-long section of a Washington Metropolitan Area Transit Authority tunnel in the study area, and a groundwater modeling investigation over the Rock Creek watershed provided an estimate of the hydraulic conductivity over kilometers. The majority of groundwater flow is confined to relatively few fractures at a given location. Boreholes installed to depths of approximately 50 m have one or two highly transmissive fractures; the transmissivity of the remaining fractures ranges over five orders of magnitude. Estimates of hydraulic conductivity over increasingly larger rock volumes varied by less than half an order of magnitude. While many investigations point to increasing hydraulic conductivity as a function of the measurement scale, a comparison with selected investigations shows that the effective hydraulic conductivity estimated over larger volumes of rock can either increase, decrease, or remain stable as a function of the measurement scale. Caution needs to be exhibited in characterizing effective hydraulic properties in fractured rock for the purposes of groundwater management.

  7. An approximate solution for a penny-shaped hydraulic fracture that accounts for fracture toughness, fluid viscosity and leak-off.

    PubMed

    Dontsov, E V

    2016-12-01

    This paper develops a closed-form approximate solution for a penny-shaped hydraulic fracture whose behaviour is determined by an interplay of three competing physical processes that are associated with fluid viscosity, fracture toughness and fluid leak-off. The primary assumption that permits one to construct the solution is that the fracture behaviour is mainly determined by the three-process multiscale tip asymptotics and the global fluid volume balance. First, the developed approximation is compared with the existing solutions for all limiting regimes of propagation. Then, a solution map, which indicates applicability regions of the limiting solutions, is constructed. It is also shown that the constructed approximation accurately captures the scaling that is associated with the transition from any one limiting solution to another. The developed approximation is tested against a reference numerical solution, showing that accuracy of the fracture width and radius predictions lie within a fraction of a per cent for a wide range of parameters. As a result, the constructed approximation provides a rapid solution for a penny-shaped hydraulic fracture, which can be used for quick fracture design calculations or as a reference solution to evaluate accuracy of various hydraulic fracture simulators.

  8. An approximate solution for a penny-shaped hydraulic fracture that accounts for fracture toughness, fluid viscosity and leak-off

    NASA Astrophysics Data System (ADS)

    Dontsov, E. V.

    2016-12-01

    This paper develops a closed-form approximate solution for a penny-shaped hydraulic fracture whose behaviour is determined by an interplay of three competing physical processes that are associated with fluid viscosity, fracture toughness and fluid leak-off. The primary assumption that permits one to construct the solution is that the fracture behaviour is mainly determined by the three-process multiscale tip asymptotics and the global fluid volume balance. First, the developed approximation is compared with the existing solutions for all limiting regimes of propagation. Then, a solution map, which indicates applicability regions of the limiting solutions, is constructed. It is also shown that the constructed approximation accurately captures the scaling that is associated with the transition from any one limiting solution to another. The developed approximation is tested against a reference numerical solution, showing that accuracy of the fracture width and radius predictions lie within a fraction of a per cent for a wide range of parameters. As a result, the constructed approximation provides a rapid solution for a penny-shaped hydraulic fracture, which can be used for quick fracture design calculations or as a reference solution to evaluate accuracy of various hydraulic fracture simulators.

  9. Imaging hydraulic fractures at Median Tectonic Line, Japan using multiply generated and scattered tube waves in a shallow VSP experiment

    NASA Astrophysics Data System (ADS)

    Minato, Shohei; Ghose, Ranajit; Tsuji, Takeshi; Ikeda, Michiharu; Onishi, Kozo

    2016-04-01

    Tube waves are low frequency guided waves that propagate along a fluid-filled borehole. The analysis of tube waves is a promising approach to image and characterize hydraulic fractures intersecting a borehole. It exploits tube waves generated by an external seismic wavefield which compresses fractures and injects fluid into the borehole. It also utilizes the attenuation of tube waves due to fluid exchange between the fracture and the borehole, which creates scattered waves (reflection and transmission). Conventional approaches consider tube waves due to a single fracture. However, when the spacing between multiple fractures is short relative to the wavelength of the tube waves, the generated and scattered tube waves interfere with each other, making it difficult to isolate the effect of a single fracture. The analysis of closely spaced fractures is important in highly fractured areas, such as a fault zone. In this study, we explore the possibility of prediction and utilization of generated and scattered tube waves due to multiple fractures. We derive a new integral equation of the full tube wavefield using 1D wavefield representation theory incorporating nonwelded interfaces. We adapt the recent developments in modeling tube wave generation/scattering at a fracture. In these models, a fracture is represented as a parallel wall or a thin poloelastic layer. This allowed us to consider the effects of a dynamic fracture aperture with fracture compliances and the permeability. The representation also leads to a new imaging method for the hydraulic fractures, using multiply-generated and scattered tube waves. This is achieved by applying an inverse operator to the observed tube waves, which focuses the tube waves to the depth where they are generated and/or scattered. The inverse operator is constructed by a tube wave Green's function with a known propagation velocity. The Median Tectonic Line (MTL) is the most significant fault in Japan, extending NE-SW for over 1000 km across the Japanese Islands. We observed multiple tube waves in a P-wave VSP experiment in a 250 m deep, vertical borehole located on the MTL at Shikoku, Japan. The borehole televiewer and the core studies show that below 40 m depth, the Sambagawa metamorphic rocks contain highly fractured zones which consist of more than 100 open fractures and more than 30 cataclasites. We predict the full tube wavefield using the values of fracture depth and thickness known from the borehole televiewer. We model the open fractures as parallel-wall fractures and the cataclasites as thin poroelastic layers. Furthermore, we estimate the depth of the hydraulic fractures by applying the inverse operator. The results show that the tube waves could be generated and scattered at these permeable structures. Our preliminary results also indicate the possibility that the effect of the open fractures is more dominant in the generation and scattering of tube waves than that of the cataclasites in this field. The formulation and the results presented in this study and the following discussion will be useful in analysis of tube waves in highly fractured zones, in order to localize and characterize hydraulic fractures.

  10. A Novel CO2-Responsive Viscoelastic Amphiphilic Surfactant Fluid for Fracking in Enhanced Oil/Gas Recovery

    NASA Astrophysics Data System (ADS)

    Zhong, L.; Wu, X.; Dai, C.

    2017-12-01

    Over the past decade, the rapid rise of unconventional shale gas and tight sandstone oil development through horizontal drilling and high volume hydraulic fracturing has expanded the extraction of hydrocarbon resources. Hydraulic fracturing fluids play very important roles in enhanced oil/gas recovery. However, damage to the reservoir rock and environmental contamination caused by hydraulic fracturing flowback fluids has raised serious concerns. The development of reservoir rock friendly and environmental benign fracturing fluids is in immediate demand. Studies to improve properties of hydraulic fracturing fluids have found that viscoelastic surfactant (VES) fracturing fluid can increase the productivity of gas/oil and be efficiently extracted after fracturing. Compared to conventional polymer fracturing fluid, VES fracturing fluid has many advantages, such as few components, easy preparation, good proppant transport capacity, low damage to cracks and formations, and environment friendly. In this work, we are developing a novel CO2-responsive VES fracking fluid that can readily be reused. This fluid has a gelling-breaking process that can be easily controlled by the presence of CO2 and its pressure. We synthesized erucamidopropyl dimethylamine (EA) as a thickening agent for hydraulic fracturing fluid. The influence of temperature, presence of CO2 and pressure on the viscoelastic behavior of this fluid was then investigated through rheological measurements. The fracturing fluid performance and recycle property were lastly studied using core flooding tests. We expect this fluid finds applications not only in enhanced oil/gas recovery, but also in areas such as controlling groundwater pollution and microfluidics.

  11. Mechanical and hydraulic properties of rocks related to induced seismicity

    USGS Publications Warehouse

    Witherspoon, P.A.; Gale, J.E.

    1977-01-01

    Witherspoon, P.A. and Gale, J.E., 1977. Mechanical and hydraulic properties of rocks related to induced seismicity. Eng. Geol., 11(1): 23-55. The mechanical and hydraulic properties of fractured rocks are considered with regard to the role they play in induced seismicity. In many cases, the mechanical properties of fractures determine the stability of a rock mass. The problems of sampling and testing these rock discontinuities and interpreting their non-linear behavior are reviewed. Stick slip has been proposed as the failure mechanism in earthquake events. Because of the complex interactions that are inherent in the mechanical behavior of fractured rocks, there seems to be no simple way to combine the deformation characteristics of several sets of fractures when there are significant perturbations of existing conditions. Thus, the more important fractures must be treated as individual components in the rock mass. In considering the hydraulic properties, it has been customary to treat a fracture as a parallel-plate conduit and a number of mathematical models of fracture systems have adopted this approach. Non-steady flow in fractured systems has usually been based on a two-porosity model, which assumes the primary (intergranular) porosity contributes only to storage and the secondary (fracture) porosity contributes only to the overall conductivity. Using such a model, it has been found that the time required to achieve quasi-steady state flow in a fractured reservoir is one or two orders of magnitude greater than it is in a homogeneous system. In essentially all of this work, the assumption has generally been made that the fractures are rigid. However, it is clear from a review of the mechanical and hydraulic properties that not only are fractures easily deformed but they constitute the main flow paths in many rock masses. This means that one must consider the interaction of mechanical and hydraulic effects. A considerable amount of laboratory and field data is now available that clearly demonstrates this stress-flow behavior. Two approaches have been used in attempting to numerically model such behavior: (1) continuum models, and (2) discrete models. The continuum approach only needs information as to average values of fracture spacing and material properties. But because of the inherent complexity of fractured rock masses and the corresponding decrease in symmetry, it is difficult to develop an equivalent continuum that will simulate the behavior of the entire system. The discrete approach, on the other hand, requires details of the fracture geometry and material properties of both fractures and rock matrix. The difficulty in obtaining such information has been considered a serious limitation of discrete models, but improved borehole techniques can enable one to obtain the necessary data, at least in shallow systems. The possibility of extending these methods to deeper fracture systems needs more investigation. Such data must be considered when deciding whether to use a continuum or discrete model to represent the interaction of rock and fluid forces in a fractured rock system, especially with regard to the problem of induced seismicity. When one is attempting to alter the pressure distribution in a fault zone by injection or withdrawal of fluids, the extent to which this can be achieved will be controlled in large measure by the behavior of the fractures that communicate with the borehole. Since this is essentially a point phenomenon, i.e., the changes will propagate from a relatively small region around the borehole, the use of a discrete model would appear to be preferable. ?? 1977.

  12. Role of Induced and Natural Imbibition in Frac Fluid Transport and Fate in Gas Shales, March 28-29, 2011

    EPA Pesticide Factsheets

    Hydraulic fracture modeling and fracture surface area calculations determined from pressure decay analysis and reservoir numerical flow simulation support estimates of created hydraulic fracture surface areas of 24-60 MM sq ft.

  13. Fuel for Debate: Three Studies of the Political Mobilization for and against Hydraulic Fracturing in New York State

    NASA Astrophysics Data System (ADS)

    Dokshin, Fedor Aleksandrovich

    This dissertation uses the context of the unfolding boom in oil and gas production enabled by hydraulic fracturing ("fracking") technology to ask several interrelated questions: What motivates people to oppose or support industrial development? How do material interests interact with political identities to shape political mobilization? What consequences does this political contestation have for policymaking? Three stand-alone articles, each using unique data and methods, provide new evidence for answering these questions. The three studies place a common emphasis on the multiple meanings that fracking has for opponents and supporters of proposed development as well as the alternative structural conditions that give rise to the divergent beliefs and the social networks that facilitate mobilization. The first article, examines the passage of local zoning ordinances prohibiting fracking and identifies spatial and temporal processes that influenced the pattern of ordinance adoption. The second article, looks more closely at political mobilization for and against hydraulic fracturing by examining individual-level data collected from one town's debate over a proposed ban on oil and gas development. The third article uses a large set of public comments to directly examine the meanings that the public attached to hydraulic fracturing and whether residents who live in close proximity to proposed development understood the industry in systematically different terms than individuals who participated in the debate despite facing little or no direct impact from fracking.

  14. Field Applications of In Situ Remediation Technologies: Permeable Reactive Barriers

    DTIC Science & Technology

    2002-01-01

    dweymann@ emconinc.com Caldwell Trucking Northern NJ 1998 TCE Hydraulic Fracturing , $1.12 M Fe0 Only 60% John Vidumsky Permeation Infilling...Oriented $1.15 M Granular No problems except Stephen H. Shoemaker Chloroform, Freon 11, Hydraulic Fracturing cast iron at recovering an Tel: 704-362...VC Massachusetts Falmouth, MA 1998 PCE, TCE Hydraulic Fracturing $160 K Fe0 Robert W. Gillham Military Reservation Tel: 519-888-4658 CS-10 Plume Fax

  15. Smart magnetic markers use in hydraulic fracturing.

    PubMed

    Zawadzki, Jarosław; Bogacki, Jan

    2016-11-01

    One of the main challenges and unknowns during shale gas exploration is to assess the range and efficiency of hydraulic fracturing. It is also essential to assess the distribution of proppant, which keeps the fracture pathways open. Solving these problems may considerably increase the efficiency of the shale gas extraction. Because of that, the idea of smart magnetic marker, which can be detected when added to fracturing fluid, has been considered for a long time. This study provides overview of the possibilities of magnetic marker application for shale gas extraction. The imaging methods using electromagnetic markers, are considered or developed in two directions. The first possibility is the markers' electromagnetic activity throughout the whole volume of the fracturing fluid. Thus, it can be assumed that the whole fracturing fluid is the marker. Among these type of hydraulic fracturing solutions, ferrofluid could be considered. The second possibility is marker, which is just one of many components of the fracturing fluid. In this case feedstock magnetic materials, ferrites and nanomaterials could be considered. Magnetic properties of magnetite could be too low and ferrofluids' or nanomaterials' price is unacceptably high. Because of that, ferrites, especially ZnMn ferrites seems to be the best material for magnetic marker. Because of the numerous applications in electronics, it is cheap and easily available, although the price is higher, then that of magnetite. The disadvantage of using ferrite, could be too small mechanical strength. It creates an essential need for combining magnetic marker with proppant into magnetic-ceramic composite. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. 75 FR 35023 - Informational Public Meetings for Hydraulic Fracturing Research Study

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-21

    ... Fracturing Research Study AGENCY: Environmental Protection Agency (EPA). ACTION: Notice. SUMMARY: The... its proposed plan to study the relationship between hydraulic fracturing and drinking water. The... Agency's preliminary plans for study scope and design, and EPA will receive public comments on the...

  17. Mineral Reactions in Shale Gas Reservoirs: Barite Scale Formation from Reusing Produced Water As Hydraulic Fracturing Fluid.

    PubMed

    Paukert Vankeuren, Amelia N; Hakala, J Alexandra; Jarvis, Karl; Moore, Johnathan E

    2017-08-15

    Hydraulic fracturing for gas production is now ubiquitous in shale plays, but relatively little is known about shale-hydraulic fracturing fluid (HFF) reactions within the reservoir. To investigate reactions during the shut-in period of hydraulic fracturing, experiments were conducted flowing different HFFs through fractured Marcellus shale cores at reservoir temperature and pressure (66 °C, 20 MPa) for one week. Results indicate HFFs with hydrochloric acid cause substantial dissolution of carbonate minerals, as expected, increasing effective fracture volume (fracture volume + near-fracture matrix porosity) by 56-65%. HFFs with reused produced water composition cause precipitation of secondary minerals, particularly barite, decreasing effective fracture volume by 1-3%. Barite precipitation occurs despite the presence of antiscalants in experiments with and without shale contact and is driven in part by addition of dissolved sulfate from the decomposition of persulfate breakers in HFF at reservoir conditions. The overall effect of mineral changes on the reservoir has yet to be quantified, but the significant amount of barite scale formed by HFFs with reused produced water composition could reduce effective fracture volume. Further study is required to extrapolate experimental results to reservoir-scale and to explore the effect that mineral changes from HFF interaction with shale might have on gas production.

  18. What is fracking?

    NASA Astrophysics Data System (ADS)

    Norris, J. Quinn

    2016-03-01

    Fracking is the common term for the use of hydraulic fracturing during oil and gas recovery. During a hydraulic fracturing treatment, water and additives are injected into a target reservoir generating one or more fractures that enable oil and gas to flow to the borehole. Since the 1940's, hydraulic fracturing has been used to increase the production of traditional (typically sandstone) reservoirs with very little controversy. Hydraulic fracturing developments in the 1990's (specifically horizontal drilling and slickwater) enabled large-scale commercial recovery of oil and gas from tight shale reservoirs. This recovery has led to dramatic decreases in the prices of oil and gas and has made fracking highly controversial. While there are environmental risks associated the recovery and use of any natural resource, it is important to understand the specific environmental risks associated with hydraulic fracturing. Some risks like the generation of earthquakes are misunderstood. Many risks like drinking water contamination can be reduced through proper practices and regulation. While others like large water use are inherent to the process. In all cases, reliable publicly-accessible information and research are necessary for making informed decisions about fracking. US DOE Grant #DE-FG02-04ER1556.

  19. OpenACC directive-based GPU acceleration of an implicit reconstructed discontinuous Galerkin method for compressible flows on 3D unstructured grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lou, Jialin; Xia, Yidong; Luo, Lixiang

    2016-09-01

    In this study, we use a combination of modeling techniques to describe the relationship between fracture radius that might be accomplished in a hypothetical enhanced geothermal system (EGS) and drilling distance required to create and access those fractures. We use a combination of commonly applied analytical solutions for heat transport in parallel fractures and 3D finite-element method models of more realistic heat extraction geometries. For a conceptual model involving multiple parallel fractures developed perpendicular to an inclined or horizontal borehole, calculations demonstrate that EGS will likely require very large fractures, of greater than 300 m radius, to keep interfracture drillingmore » distances to ~10 km or less. As drilling distances are generally inversely proportional to the square of fracture radius, drilling costs quickly escalate as the fracture radius decreases. It is important to know, however, whether fracture spacing will be dictated by thermal or mechanical considerations, as the relationship between drilling distance and number of fractures is quite different in each case. Information about the likelihood of hydraulically creating very large fractures comes primarily from petroleum recovery industry data describing hydraulic fractures in shale. Those data suggest that fractures with radii on the order of several hundred meters may, indeed, be possible. The results of this study demonstrate that relatively simple calculations can be used to estimate primary design constraints on a system, particularly regarding the relationship between generated fracture radius and the total length of drilling needed in the fracture creation zone. Comparison of the numerical simulations of more realistic geometries than addressed in the analytical solutions suggest that simple proportionalities can readily be derived to relate a particular flow field.« less

  20. The subsurface impact of hydraulic fracturing in shales- Perspectives from the well and reservoir

    NASA Astrophysics Data System (ADS)

    ter Heege, Jan; Coles, Rhys

    2017-04-01

    It has been identified that the main risks of subsurface shale gas operations in the U.S.A. and Canada are associated with (1) drilling and well integrity, (2) hydraulic fracturing, and (3) induced seismicity. Although it is unlikely that hydraulic fracturing operations result in direct pathways of enhanced migration between stimulated fracture disturbed rock volume and shallow aquifers, operations may jeopardize well integrity or induce seismicity. From the well perspective, it is often assumed that fluid injection leads to the initiation of tensile (mode I) fractures at different perforation intervals along the horizontal sections of shale gas wells if pore pressure exceeds the minimum principal stress. From the reservoir perspective, rise in pore pressure resulting from fluid injection may lead to initiation of tensile fractures, reactivation of shear (mode II) fractures if the criterion for failure in shear is exceeded, or combinations of different fracturing modes. In this study, we compare tensile fracturing simulations using conventional well-based models with shear fracturing simulations using a fractured shale model with characteristic fault populations. In the fractured shale model, stimulated permeability is described by an analytical model that incorporates populations of reactivated faults and that combines 3D permeability tensors for layered shale matrix, damage zone and fault core. Well-based models applied to wells crosscutting the Posidonia Shale Formation are compared to generic fractured shale models, and fractured shale models are compared to micro-seismic data from the Marcellus Shale. Focus is on comparing the spatial distribution of permeability, stimulated reservoir volume and seismicity, and on differences in fracture initiation pressure and fracture orientation for tensile and shear fracturing end-members. It is shown that incorporation of fault populations (for example resulting from analysis of 3D seismics or outcrops) in hydraulic fracturing models provides better constraints on well pressures, stimulated fracture disturbed volume and induced seismicity. Thereby, it helps assessing the subsurface impact of hydraulic fracturing in shales and mitigating risks associated with loss of loss of well integrity, loss of fracture containment, and induced seismicity.

  1. kISMET: Stress analysis and intermediate-scale hydraulic fracturing at the Sanford Underground Research Facility

    NASA Astrophysics Data System (ADS)

    Dobson, P. F.; Oldenburg, C. M.; Wu, Y.; Cook, P. J.; Kneafsey, T. J.; Nakagawa, S.; Ulrich, C.; Siler, D. L.; Guglielmi, Y.; Ajo Franklin, J. B.; Rutqvist, J.; Daley, T. M.; Birkholzer, J. T.; Wang, H. F.; Lord, N.; Haimson, B. C.; Sone, H.; Vigilante, P.; Roggenthen, W.; Doe, T.; Lee, M.; Ingraham, M. D.; Huang, H.; Mattson, E.; Johnson, T. C.; Zhou, J.; Zoback, M. D.; Morris, J.; White, J. A.; Johnson, P. A.; Coblentz, D. D.; Heise, J.

    2017-12-01

    In 2015, we established a field test facility at the Sanford Underground Research Facility (SURF), and in 2016 we carried out in situ hydraulic fracturing experiments to characterize the stress field, understand the effects of crystalline rock fabric on fracturing, and gain experience in monitoring using geophysical methods. The kISMET (permeability (k) and Induced Seismicity Management for Energy Technologies) project test site was established in the West Access Drift at the 4850 ft level, 1478 m below ground in phyllite of the Precambrian Poorman Formation. The kISMET team drilled and cored five near-vertical boreholes in a line on 3 m spacing, deviating the two outermost boreholes slightly to create a five-spot pattern around the test borehole centered in the test volume 40 m below the drift invert (floor) at a total depth of 1518 m. Laboratory measurements of core from the center test borehole showed P-wave velocity heterogeneity along each core indicating strong, fine-scale ( 1 cm or smaller) changes in the mechanical properties of the rock. Tensile strength ranges between 3‒7.5 MPa and 5‒12 MPa. Pre-fracturing numerical simulations with a discrete element code were carried out to predict fracture size and magnitude of microseismicity. Field measurements of the stress field were made using hydraulic fracturing, which produced remarkably uniformly oriented fractures suggesting rock fabric did not play a significant role in controlling fracture orientation. Electrical resistivity tomography (ERT) and continuous active seismic source monitoring (CASSM) were deployed in the four monitoring boreholes, and passive seismic accelerometer-based measurements in the West Access Drift were carried out during the generation of a larger fracture (so-called stimulation test). ERT was not able to detect the fracture created, nor did the accelerometers in the drift, but microseismicity was detected for the first (deepest) hydraulic-fracturing stress measurement. Analytical solutions suggest that the fracture radius of the large fracture (stimulation test) was more than 6 m, depending on the unknown amount of leak-off. Currently kISMET team members are analyzing a large number of borehole breakouts recorded in nearby boreholes at SURF to generate a more complete picture of the stress field and its variations at SURF.

  2. Hydraulic fracturing and permeability enhancement in granite from subcritical/brittle to supercritical/ductile conditions

    NASA Astrophysics Data System (ADS)

    Watanabe, Noriaki; Egawa, Motoki; Sakaguchi, Kiyotoshi; Ishibashi, Takuya; Tsuchiya, Noriyoshi

    2017-06-01

    Hydraulic fracturing experiments were conducted at 200-450°C by injecting water into cylindrical granite samples containing a borehole at an initial effective confining pressure of 40 MPa. Intensive fracturing was observed at all temperatures, but the fracturing characteristics varied with temperature, perhaps due to differences in the water viscosity. At the lowest considered temperature (200°C), fewer fractures propagated linearly from the borehole, and the breakdown pressure was twice the confining pressure. However, these characteristics disappeared with increasing temperature; the fracture pattern shifted toward the formation of a greater number of shorter fractures over the entire body of the sample, and the breakdown pressure decreased greatly. Hydraulic fracturing significantly increased the permeability at all temperatures, and this permeability enhancement was likely to form a productive geothermal reservoir even at the highest considered temperature, which exceeded both the brittle-ductile transition temperature of granite and the critical temperature of water.

  3. Modeling of Hydraulic Fracturing on the Basis of the Particle Method

    NASA Astrophysics Data System (ADS)

    Berezhnoi, D. V.; Gabsalikova, N. F.; Izotov, V. G.; Miheev, V. V.

    2018-01-01

    A technique of calculating the deformation of the soil environment when it interacts with a liquid on the basis of the particle method a is realized. To describe the behavior of the solid and liquid phases of the soil, a classical two-parameter Lennard-Jones interaction potential and its modified version proposed by the authors were chosen. The model problem of deformation and partial destruction of a soil massif under strong pressure from the liquid pumped into it is solved. Analysis of the results shows that the use of the modified Lennard-Jones potential for describing the solid phase of the soil environment makes it possible to describe the process of formation of cracks in the soil during hydraulic fracturing of the formation.

  4. Development of chemical compositions for impervious screens in rocks

    NASA Astrophysics Data System (ADS)

    Kurlenya, MV; Serdyukov, SV; Shilova, TV; Patutin, AV

    2017-02-01

    The paper presents the method to create anti-seepage screens by hydraulic fracturing with three-component polyurethane mixture. The proposed working fluids and their pumping circuits allow creation of a fracture and an adjacent insulation layer. Gas permeability of porous medium is determined at limit consumption of reagents per insulating screen unit area.

  5. Data Analytics of Hydraulic Fracturing Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jovan Yang; Viswanathan, Hari; Hyman, Jeffery

    These are a set of slides on the data analytics of hydraulic fracturing data. The conclusions from this research are the following: they proposed a permeability evolution as a new mechanism to explain hydraulic fracturing trends; they created a model to include this mechanism and it showed promising results; the paper from this research is ready for submission; they devised a way to identify and sort refractures in order to study their effects, and this paper is currently being written.

  6. Abyssal Sequestration of Nuclear Waste in Earth's Crust

    NASA Astrophysics Data System (ADS)

    Germanovich, L. N.; Garagash, D.; Murdoch, L. C.; Robinowitz, M.

    2013-12-01

    This work outlines a new method for disposing of hazardous (e.g., nuclear) waste. The technique is called Abyssal Sequestration, and it involves placing the waste at extreme depths in Earth's crust where it could achieve the geologically-long period of isolation. Abyssal Sequestration involves storing the waste in hydraulic fractures driven by gravity, a process we term gravity fracturing. In short, we suggest creating a dense fluid (slurry) containing waste, introducing the fluid into a fracture, and extending the fracture downward until it becomes long enough to propagate independently. The fracture will continue to propagate downward to great depth, permanently isolating the waste. Storing solid wastes by mixing them with fluids and injecting them into hydraulic fractures is a well-known technology. The essence of our idea differs from conventional hydraulic fracturing techniques only slightly in that it uses fracturing fluid heavier than the surrounding rock. This difference is fundamental, however, because it allows hydraulic fractures to propagate downward and carry wastes by gravity instead of or in addition to being injected by pumping. An example of similar gravity-driven fractures with positive buoyancy is given by magmatic dikes that may serve as an analog of Abyssal Sequestration occurring in nature. Mechanics of fracture propagation in conditions of positive (diking) and negative (heavy waste slurry) buoyancy is similar and considered in this work for both cases. Analog experiments in gelatin show that fracture breadth (horizontal dimension) remains nearly stationary when fracturing process in the fracture 'head' (where breadth is 'created') is dominated by solid toughness, as opposed to the viscous fluid dissipation dominant in the fracture tail. We model propagation of the resulting 'buoyant' or 'sinking' finger-like fracture of stationary breadth with slowly varying opening along the crack length. The elastic response of the crack to fluid loading in a horizontal cross-section is local and can be treated similar to the classical Perkins-Kern-Nordgren (PKN) model of hydraulic fracturing. The propagation condition for a finger-like crack is based on balancing the global energy release rate due to unit crack extension and the rock fracture toughness. It allows to relate the net fluid pressure at the tip to the fracture breadth and rock toughness. Unlike the PKN fracture, which breadth is known a priori, the final breadth of a finger-like fracture is a result of the fracturing process in the fracture head. To resolve the breadth, we relax the local elasticity assumption in the fracture head by neglecting viscous pressure drop there. The resulting fracture head model is a 3D analog of the Weertman's hydrostatic pulse, and yields expressions for the terminal breadth, b = 0.34 (K / Delta rho g))^(2/3), and for the head volume, V = 10.4 K b^(5/2) / E'. We then combine the finger crack solution for the viscous tail with the 3-D pulse solution for the fracture head. The obtained closed-form solution is compared to numerical simulations. Based on this solution, we analyzed the gravity fracture propagation in conditions of either continuous injection or finite volume release for sets of parameters representative of the heavy waste injection technique and low viscosity magma diking.

  7. Semi-analytical solution of flow to a well in an unconfined-fractured aquifer system separated by an aquitard

    NASA Astrophysics Data System (ADS)

    Sedghi, Mohammad M.; Samani, Nozar; Barry, D. A.

    2018-04-01

    Semi-analytical solutions are presented for flow to a well in an extensive homogeneous and anisotropic unconfined-fractured aquifer system separated by an aquitard. The pumping well is of infinitesimal radius and screened in either the overlying unconfined aquifer or the underlying fractured aquifer. An existing linearization method was used to determine the watertable drainage. The solution was obtained via Laplace and Hankel transforms, with results calculated by numerical inversion. The main findings are presented in the form of non-dimensional drawdown-time curves, as well as scaled sensitivity-dimensionless time curves. The new solution permits determination of the influence of fractures, matrix blocks and watertable drainage parameters on the aquifer drawdown. The effect of the aquitard on the drawdown response of the overlying unconfined aquifer and the underlying fractured aquifer was also explored. The results permit estimation of the unconfined and fractured aquifer hydraulic parameters via type-curve matching or coupling of the solution with a parameter estimation code. The solution can also be used to determine aquifer hydraulic properties from an optimal pumping test set up and duration.

  8. Data regarding hydraulic fracturing distributions and treatment fluids, additives, proppants, and water volumes applied to wells drilled in the United States from 1947 through 2010

    USGS Publications Warehouse

    Gallegos, Tanya J.; Varela, Brian A.

    2015-01-01

    Comprehensive, published, and publicly available data regarding the extent, location, and character of hydraulic fracturing in the United States are scarce. The objective of this data series is to publish data related to hydraulic fracturing in the public domain. The spreadsheets released with this data series contain derivative datasets aggregated temporally and spatially from the commercial and proprietary IHS database of U.S. oil and gas production and well data (IHS Energy, 2011). These datasets, served in 21 spreadsheets in Microsoft Excel (.xlsx) format, outline the geographical distributions of hydraulic fracturing treatments and associated wells (including well drill-hole directions) as well as water volumes, proppants, treatment fluids, and additives used in hydraulic fracturing treatments in the United States from 1947 through 2010. This report also describes the data—extraction/aggregation processing steps, field names and descriptions, field types and sources. An associated scientific investigation report (Gallegos and Varela, 2014) provides a detailed analysis of the data presented in this data series and comparisons of the data and trends to the literature.

  9. Innovative Field Methods for Characterizing the Hydraulic Properties of a Complex Fractured Rock Aquifer (Ploemeur, Brittany)

    NASA Astrophysics Data System (ADS)

    Bour, O.; Le Borgne, T.; Longuevergne, L.; Lavenant, N.; Jimenez-Martinez, J.; De Dreuzy, J. R.; Schuite, J.; Boudin, F.; Labasque, T.; Aquilina, L.

    2014-12-01

    Characterizing the hydraulic properties of heterogeneous and complex aquifers often requires field scale investigations at multiple space and time scales to better constrain hydraulic property estimates. Here, we present and discuss results from the site of Ploemeur (Brittany, France) where complementary hydrological and geophysical approaches have been combined to characterize the hydrogeological functioning of this highly fractured crystalline rock aquifer. In particular, we show how cross-borehole flowmeter tests, pumping tests and frequency domain analysis of groundwater levels allow quantifying the hydraulic properties of the aquifer at different scales. In complement, we used groundwater temperature as an excellent tracer for characterizing groundwater flow. At the site scale, measurements of ground surface deformation through long-base tiltmeters provide robust estimates of aquifer storage and allow identifying the active structures where groundwater pressure changes occur, including those acting during recharge process. Finally, a numerical model of the site that combines hydraulic data and groundwater ages confirms the geometry of this complex aquifer and the consistency of the different datasets. The Ploemeur site, which has been used for water supply at a rate of about 106 m3 per year since 1991, belongs to the French network of hydrogeological sites H+ and is currently used for monitoring groundwater changes and testing innovative field methods.

  10. Development of a Neutron Diffraction Based Experiemental Capability for Investigating Hydraulic Fracturing for EGS-like Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polsky, Yarom; Anovitz, Lawrence; An, Ke

    2013-01-01

    Hydraulic fracturing to enhance formation permeability is an established practice in the Oil & Gas (O&G) industry and is expected to be an enabler for EGS. However, it is rarely employed in conventional geothermal systems and there are significant questions regarding the translation of practice from O&G to both conventional geothermal and EGS applications. Lithological differences(sedimentary versus crystalline rocks, significantly greater formation temperatures and different desired fracture characteristics are among a number of factors that are likely to result in a gap of understanding of how to manage hydraulic fracturing practice for geothermal. Whereas the O&G community has had bothmore » the capital and the opportunity to develop its understanding of hydraulic fracturing operations empirically in the field as well through extensive R&D efforts, field testing opportunities for EGS are likely to be minimal due to the high expense of hydraulic fracturing field trials. A significant portion of the knowledge needed to guide the management of geothermal/EGS hydraulic fracturing operations will therefore likely have to come from experimental efforts and simulation. This paper describes ongoing efforts at Oak Ridge National Laboratory (ORNL) to develop an experimental capability to map the internal stresses/strains in core samples subjected to triaxial stress states and temperatures representative of EGS-like conditions using neutron diffraction based strain mapping techniques. This capability is being developed at ORNL\\'s Spallation Neutron Source, the world\\'s most powerful pulsed neutron source and is still in a proof of concept phase. A specialized pressure cell has been developed that permits independent radial and axial fluid pressurization of core samples, with axial flow through capability and a temperature rating up to 300 degrees C. This cell will ultimately be used to hydraulically pressurize EGS-representative core samples to conditions of imminent fracture and map the associated internal strain states of the sample. This will hopefully enable a more precise mapping of the rock material failure envelope, facilitate a more refined understanding of the mechanism of hydraulically induced rock fracture, particularly in crystalline rocks, and serve as a platform for validating and improving fracture simulation codes. The elements of the research program and preliminary strain mapping results of a Sierra White granite sample subjected only to compressive loading will be discussed in this paper.« less

  11. Compilation of Physicochemical and Toxicological Information ...

    EPA Pesticide Factsheets

    The purpose of this product is to make accessible the information about the 1,173 hydraulic fracturing-related chemicals that were listed in the external review draft of the Hydraulic Fracturing Drinking Water Assessment that was released recently. The product consists of a series of spreadsheets with physicochemical and toxicological information pulled from several sources of information, including: EPI Suite, LeadScope, QikiProp, Reaxys, IRIS, PPRTV, ATSDR, among other sources. The spreadsheets also contain background information about how the list of chemicals were compiled, what the different sources of chemical information are, and definitions and descriptions of the values presented. The purpose of this product is to compile and make accessible information about the 1,173 hydraulic fracturing-related chemicals listed in the external review draft of the Hydraulic Fracturing Drinking Water Assessment.

  12. Compressive Stress-Induced Microcracks and Effective Elastic Properties of Limestone and Concrete. Phase 1

    DTIC Science & Technology

    1991-04-19

    McLennan (Technical Consultant) Ph.D. Rock Mechanics, University of Toronto, 1980. Thesis Title: " Hydraulic Fracturing : A Fracture Mechanics Approach...the principal stresses. Certain techniques such as micro- hydraulic fracturing , televiewer surveys and mapping of borehole breakouts have been used to

  13. Cost and Performance Report; In-Situ Remediation of MTBE Contaminated Aquifers Using Propane Biosparging

    DTIC Science & Technology

    2003-12-01

    potential problem is decreasing the permeability by pneumatic or hydraulic fracturing . Pneumatic fracturing (PF) uses the injection of pressurized air...to increase the biodegradation of the contaminants. Hydraulic fracturing is similar to PF with the exception that water is used and at pressures as

  14. In Situ Remediation of MTBE-Contaminated Aquifers Using Propane Biosparging

    DTIC Science & Technology

    2003-09-01

    problem is decreasing the permeability by pneumatic or hydraulic fracturing . Pneumatic fracturing (PF) uses the injection of pressurized air 47 (up to...increase the biodegradation of the contaminants. Hydraulic fracturing is similar to PF with the exception that water is used and at pressures as high as

  15. Seismic refraction and electrical resistivity tests for fracture induced hydraulic anisotropy in a mountain watershed.

    NASA Astrophysics Data System (ADS)

    Mendieta, A. L.; Bradford, J.; Liberty, L. M.; McNamara, J. P.

    2016-12-01

    Granitic based terrains often have complex hydrogeological systems. It is often assumed that the bedrock is impermeable, unless it is fractured. If the bedrock is fractured this can greatly affect fluid flow, depending on fracture density and orientation. Recently there has been a substantial increase in the number of geophysical studies designed to investigate hydrologic processes in mountain watersheds, however few of these studies have taken fracture induced geophysical and hydraulic anisotropy into consideration. Vertically oriented fractures with a preferred orientation produce azimuthal anisotropy in the electrical resistivity, the seismic primary wave (P-wave) velocity, and the hydraulic permeability. By measuring the electrical and seismic anisotropy we can estimate fracture orientation and density which improves our understanding of hydraulic properties. Despite numerous previous studies of the hydrologic system, the subsurface hydraulic system at the Dry Creek Experimental Watershed (DCEW), located near Boise, Idaho, is not completely understood. This is particularly true of the deep (>5m) system which is difficult to study using conventional hydrologic measurements, particularly in rugged and remote mountain environments. From previous studies, it is hypothesized that there is a system of fractures that may be aligned according to the local stress field. To test for the preferential alignment, ergo the direction of preferential water flow, we collected seismic and electrical resistivity profiles along different azimuths. The preliminary results show an azimuthal dependence of the P-wave velocities in the bedrock, at depths greater than 18 m; P-wave velocities range from 3500 to 4100 m/s, which represents a 17.5 % difference. We interpret this difference to be caused by fractures present in the bedrock. At the same location, we measured an electric resistivity value of 29 ohm-m, and we expect a difference of 37 %, if the fractures are fully saturated. Future studies will include coincident multi-azimuthal electrical resistivity surveys both to verify the results of the seismic study and to improve our understanding of the hydraulic properties.

  16. Hydraulic properties of 3D rough-walled fractures during shearing: An experimental study

    NASA Astrophysics Data System (ADS)

    Yin, Qian; Ma, Guowei; Jing, Hongwen; Wang, Huidong; Su, Haijian; Wang, Yingchao; Liu, Richeng

    2017-12-01

    This study experimentally analyzed the influence of shear processes on nonlinear flow behavior through 3D rough-walled rock fractures. A high-precision apparatus was developed to perform stress-dependent fluid flow tests of fractured rocks. Then, water flow tests on rough-walled fractures with different mechanical displacements were conducted. At each shear level, the hydraulic pressure ranged from 0 to 0.6 MPa, and the normal load varied from 7 to 35 kN. The results show that (i) the relationship between the volumetric flow rate and hydraulic gradient of rough-walled fractures can be well fit using Forchheimer's law. Notably, both the linear and nonlinear coefficients in Forchheimer's law decrease during shearing; (ii) a sixth-order polynomial function is used to evaluate the transmissivity based on the Reynolds number of fractures during shearing. The transmissivity exhibits a decreasing trend as the Reynolds number increases and an increasing trend as the shear displacement increases; (iii) the critical hydraulic gradient, critical Reynolds number and equivalent hydraulic aperture of the rock fractures all increase as the shear displacement increases. When the shear displacement varies from 0 to 15 mm, the critical hydraulic gradient ranges from 0.3 to 2.2 for a normal load of 7 kN and increases to 1.8-8.6 for a normal load of 35 kN; and (iv) the Forchheimer law results are evaluated by plotting the normalized transmissivity of the fractures during shearing against the Reynolds number. An increase in the normal load shifts the fitted curves downward. Additionally, the Forchheimer coefficient β decreases with the shear displacement but increases with the applied normal load.

  17. Assessment of the Impacts of Hydraulic Fracturing at Bakken on Regional Water Resources

    NASA Astrophysics Data System (ADS)

    Lin, Z.; Lin, T.; Lim, S.; Borders, M.

    2015-12-01

    Unconventional oil production at the Bakken Shale of western North Dakota increased more than ten-fold from 2008 to 2014. Although unconventional oil production uses less water than conventional oil production per unit of energy, the cumulative water needs for unconventional oil production due to multiple drilling and fracturing operations may be locally or temporally significant. We collected and analyzed the data for a total of 8453 horizontal wells developed at Bakken in western North Dakota during 2007-2014. The hydraulic fracturing activities mainly occurred in a core area of four counties, including Dunn, McKenzie, Mountrail, and Williams. The annual total water used for hydraulic fracking in western North Dakota increased from 302 ac-ft in 2007 to 21,605 ac-ft in 2014, by more than 70 times in 8 years. The four-county core area accounted for about 90% of total hydraulic fracturing water use in western North Dakota. Compared to the total water uses of all types, hydraulic fracturing water use in the four-county core area accounted for 0.7% in 2007 and 43.1% in 2014. Statewide, this percentage increased from 0.1% to 6.1% in the same time period. As horizontal drilling and hydraulic fracturing technologies matured for unconventional oil development at Bakken, the total depth and the total length of laterals per well seemed to reach an optimal value in the last four years (2011-2014). However, the number of fracturing stages and the volume of fracking water used per completion are still on the rise. The average water use per well increased from about 1.7 ac-ft in 2007 to 11.4 ac-ft in 2014. Correspondingly, the water intensity (volume of fracking water used per foot of laterals) increased from 67 gallon/ft in 2007 to about 372 gallon/ft 2014. The results helped us better understand the environmental impacts of hydraulic fracturing at Bakken and better manage the water resources in the region.

  18. Consistent lithological units and its influence on geomechanical stratification in shale reservoir: case study from Baltic Basin, Poland.

    NASA Astrophysics Data System (ADS)

    Pachytel, Radomir; Jarosiński, Marek; Bobek, Kinga

    2017-04-01

    Geomechanical investigations in shale reservoir are crucial to understand rock behavior during hydraulic fracturing treatment and to solve borehole wall stability problem. Anisotropy should be considered as key mechanical parameter while trying to characterize shale properties in variety of scales. We are developing a concept of step-by-step approach to characterize and upscale the Consistent Lithological Units (CLU) at several scales of analysis. We decided that the most regional scale model, comparable to lithostratigraphic formations, is too general for hydraulic fracture propagation study thus a more detailed description is needed. The CLU's hierarchic model aims in upscale elastic properties with their anisotropy based on available data from vertical borehole. For the purpose of our study we have an access to continuous borehole core profile and full set of geophysical logging from several wells in the Pomeranian part of the Ordovician and Silurian shale complex belongs to the Baltic Basin. We are focused on shale properties that might be crucial for mechanical response to hydraulic fracturing: mineral components, porosity, density, elastic parameters and natural fracture pattern. To prepare the precise CLU model we compare several methods of determination and upscaling every single parameter used for consistent units secretion. Mineralogical data taken from ULTRA log, GEM log, X-ray diffraction and X-ray fluorescence were compared with Young modulus from sonic logs and Triaxial Compressive Strength Tests. The results showed the impact of clay content and porosity increase on Young's modulus reduction while carbonates (both calcite and dolomite) have stronger impact on elastic modulus growth, more than quartz, represented here mostly by detrital particles. Comparing the shales of similar composition in a few wells of different depths we concluded that differences in diagenesis and compaction due to variation in formation depth in a range of 1 km has negligible influence on the values of Young modulus. Both mineralogical and mechanical brittleness display differences not only between lithostratigraphic formations, but also for the lower-order CLUs which may influence development of tectonic and technological fractures. Using this approach, we can predict the areas that may be more prone to fracture propagation and branching during hydraulic fracturing treatment and also places that can create barriers to their development. Furthermore, we demonstrate relationship between CLU's mechanical properties and the density of natural fractures determined from core and Electric-Resistivity Borehole Imager analysis. As fracture friction may rule reservoir response to technological loads induced while drilling and fracking we also applied a method of massive determination of static friction coefficient on borehole core. Tuffite beds or other weak intercalations were included in the CLU's model as possible structural barriers for hydraulic fracture propagation. Distinguished set of CLUs is possible to be traced from well to well across tens of kilometers of the Baltic Basin. Our study in the frame of ShaleMech Project funded by Polish Committee for Scientific Research is in progress and the results are preliminary.

  19. Intermediate-Scale Hydraulic Fracturing in a Deep Mine - kISMET Project Summary 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oldenburg, C. M.; Dobson, P. F.; Wu, Y.

    In support of the U.S. DOE SubTER Crosscut initiative, we established a field test facility in a deep mine and designed and carried out in situ hydraulic fracturing experiments in the crystalline rock at the site to characterize the stress field, understand the effects of rock fabric on fracturing, and gain experience in monitoring using geophysical methods. The project also included pre- and post-fracturing simulation and analysis, laboratory measurements and experiments, and we conducted an extended analysis of the local stress state using previously collected data. Some of these activities are still ongoing. The kISMET (permeability (k) and Induced Seismicitymore » Management for Energy Technologies) experiments meet objectives in SubTER’s “stress” pillar and the “new subsurface signals” pillar. The kISMET site was established in the West Access Drift of SURF 4850 ft (1478 m) below ground (on the 4850L) in phyllite of the Precambrian Poorman Formation. We drilled and cored five near-vertical boreholes in a line on 3 m spacing, deviating the two outermost boreholes slightly to create a five-spot pattern around the test borehole centered in the test volume at ~1528 m (5013 ft). Laboratory measurements of core from the center test borehole showed P-wave velocity heterogeneity along each core indicating strong, fine-scale (~1 cm or smaller) changes in the mechanical properties of the rock. The load-displacement record on the core suggests that the elastic stiffness is anisotropic. Tensile strength ranges between 3-7.5 MPa and 5-12 MPa. Permeability measurements are planned, as are two types of laboratory miniature hydraulic fracturing experiments to investigate the importance of rock fabric (anisotropy and heterogeneity) on near-borehole hydraulic fracture generation. Pre-fracturing numerical simulations with INL’s FALCON discrete element code predicted a fracture radius of 1.2 m for a corresponding injection volume of 1.2 L for the planned fractures, and negligible microseismicity. Field measurements of the stress field by hydraulic fracturing showed that the minimum horizontal stress at the kISMET site averages 21.7 MPa (3146 psi) pointing approximately N-S (356 degrees azimuth) and plunging slightly NNW at 12°. The vertical and horizontal maximum stress are similar in magnitude at 42-44 MPa (6090-6380 psi) for the depths of testing which averaged approximately 1530 m (5030 ft). Hydraulic fractures were remarkably uniform suggesting core-scale and larger rock fabric did not play a role in controlling fracture orientation. Monitoring using ERT and CASSM in the four monitoring boreholes, and passive seismic accelerometer-based measurements in the West Access Drift, was carried out during the generation of a larger fracture (so-called stimulation test) at a depth of 40 m below the invert. ERT was not able to detect the fracture created, nor were the accelerometers in the drift, but microseismicity was detected for first (deepest) hydraulic-fracturing stress measurement. The CASSM data have not yet been analyzed. Analytical solutions suggest fracture radius of the large fracture (stimulation test) was more than 6 m, depending on the unknown amount of leak-off. The kISMET results for stress state are consistent with large-scale mid-continent estimates of stress. Currently we are using the orientation of the stress field we determined to interpret a large number of borehole breakouts recorded in nearby boreholes at SURF to generate a more complete picture of the stress field and its variations at SURF. The efforts on the project have prompted a host of additional follow-on studies that we recommend be carried out at the kISMET site.« less

  20. Imaging Fracking Zones by Microseismic Reverse Time Migration for Downhole Microseismic Monitoring

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Zhang, H.

    2015-12-01

    Hydraulic fracturing is an engineering tool to create fractures in order to better recover oil and gas from low permeability reservoirs. Because microseismic events are generally associated with fracturing development, microseismic monitoring has been used to evaluate the fracking process. Microseismic monitoring generally relies on locating microseismic events to understand the spatial distribution of fractures. For the multi-stage fracturing treatment, fractures created in former stages are strong scatterers in the medium and can induce strong scattering waves on the waveforms for microseismic events induced during later stages. In this study, we propose to take advantage of microseismic scattering waves to image fracking zones by using seismic reverse time migration method. For downhole microseismic monitoring that involves installing a string of seismic sensors in a borehole near the injection well, the observation geometry is actually similar to the VSP (vertical seismic profile) system. For this reason, we adapt the VSP migration method for the common shot gather to the common event gather. Microseismic reverse-time migration method involves solving wave equation both forward and backward in time for each microseismic event. At current stage, the microseismic RTM is based on 2D acoustic wave equation (Zhang and Sun, 2008), solved by the finite-difference method with PML absorbing boundary condition applied to suppress the reflections of artificial boundaries. Additionally, we use local wavefield decomposition instead of cross-correlation imaging condition to suppress the imaging noise. For testing the method, we create a synthetic dataset for a downhole microseismic monitoring system with multiple fracking stages. It shows that microseismic migration using individual event is able to clearly reveal the fracture zone. The shorter distance between fractures and the microseismic event the clearer the migration image is. By summing migration images for many events, it can better reveal the fracture development during the hydraulic fracturing treatment. The synthetic test shows that microseismic migration is able to characterize the fracturing zone along with microseismic events. We will extend the method from 2D to 3D as well as from acoustic to elastic and apply it to real microseismic data.

  1. Experimental Analysis of Hydraulic Fracture Growth and Acoustic Emission Response in a Layered Formation

    NASA Astrophysics Data System (ADS)

    Ning, Li; Shicheng, Zhang; Yushi, Zou; Xinfang, Ma; Shan, Wu; Yinuo, Zhang

    2018-04-01

    Microseismic/acoustic emission (AE) monitoring is an essential technology for understanding hydraulic fracture (HF) geometry and stimulated reservoir volume (SRV) during hydraulic fracturing in unconventional reservoirs. To investigate HF growth mechanisms and features of induced microseismic/AE events in a layered formation, laboratory fracturing experiments were performed on shale specimens (30 cm × 30 cm × 30 cm) with multiple bedding planes (BPs) under triaxial stresses. AE monitoring was used to reveal the spatial distribution and hypocenter mechanisms of AE events induced by rock failure. Computerized tomography scanning was used to observe the internal fracture geometry. Experimental results showed that the various HF geometries could be obviously distinguished based on injection pressure curves and AE responses. Fracture complexity was notably increased when vertically growing HFs connected with and opened more BPs. The formation of a complex fracture network was generally indicated by frequent fluctuations in injection pressure curves, intense AE activity, and three-dimensionally distributed AE events. Investigations of the hypocenter mechanisms revealed that shear failure/event dominated in shale specimens. Shear and tensile events were induced in hydraulically connected regions, and shear events also occurred around BPs that were not hydraulically connected. This led to an overestimation of HF height and SRV in layered formations based on the AE location results. The results also showed that variable injection rate and using plugging agent were conducive in promoting HF to penetrate through the weak and high-permeability BPs, thereby increasing the fracture height.

  2. Hydraulic Fracturing Fluid Analysis for Regulatory Parameters - A Progress Report

    EPA Pesticide Factsheets

    This presentation is a progress report on the analysis of Hydraulic Fracturing Fluids for regulatory compounds outlined in the various US EPA methodologies. Fracturing fluids vary significantly in consistency and viscosity prior to fracturing. Due to the nature of the fluids the analytical challenges will have to be addressed. This presentation also outlines the sampling issues associated with the collection of dissolved gas samples.

  3. Interaction of hydraulic and buckling mechanisms in blowout fractures.

    PubMed

    Nagasao, Tomohisa; Miyamoto, Junpei; Jiang, Hua; Tamaki, Tamotsu; Kaneko, Tsuyoshi

    2010-04-01

    The etiology of blowout fractures is generally attributed to 2 mechanisms--increase in the pressure of the orbital contents (the hydraulic mechanism) and direct transmission of impacts on the orbital walls (the buckling mechanism). The present study aims to elucidate whether or not an interaction exists between these 2 mechanisms. We performed a simulation experiment using 10 Computer-Aided-Design skull models. We applied destructive energy to the orbits of the 10 models in 3 different ways. First, to simulate pure hydraulic mechanism, energy was applied solely on the internal walls of the orbit. Second, to simulate pure buckling mechanism, energy was applied solely on the inferior rim of the orbit. Third, to simulate the combined effect of the hydraulic and buckling mechanisms, energy was applied both on the internal wall of the orbit and inferior rim of the orbit. After applying the energy, we calculated the areas of the regions where fracture occurred in the models. Thereafter, we compared the areas among the 3 energy application patterns. When the hydraulic and buckling mechanisms work simultaneously, fracture occurs on wider areas of the orbital walls than when each of these mechanisms works separately. The hydraulic and buckling mechanisms interact, enhancing each other's effect. This information should be taken into consideration when we examine patients in whom blowout fracture is suspected.

  4. Hydraulic fracture height limits and fault interactions in tight oil and gas formations

    NASA Astrophysics Data System (ADS)

    Flewelling, Samuel A.; Tymchak, Matthew P.; Warpinski, Norm

    2013-07-01

    widespread use of hydraulic fracturing (HF) has raised concerns about potential upward migration of HF fluid and brine via induced fractures and faults. We developed a relationship that predicts maximum fracture height as a function of HF fluid volume. These predictions generally bound the vertical extent of microseismicity from over 12,000 HF stimulations across North America. All microseismic events were less than 600 m above well perforations, although most were much closer. Areas of shear displacement (including faults) estimated from microseismic data were comparatively small (radii on the order of 10 m or less). These findings suggest that fracture heights are limited by HF fluid volume regardless of whether the fluid interacts with faults. Direct hydraulic communication between tight formations and shallow groundwater via induced fractures and faults is not a realistic expectation based on the limitations on fracture height growth and potential fault slip.

  5. Characterization of Hydraulic Fractures Growth During the Äspö Hard Rock Laboratory Experiment (Sweden)

    NASA Astrophysics Data System (ADS)

    López-Comino, J. A.; Cesca, S.; Heimann, S.; Grigoli, F.; Milkereit, C.; Dahm, T.; Zang, A.

    2017-11-01

    A crucial issue to characterize hydraulic fractures is the robust, accurate and automated detection and location of acoustic emissions (AE) associated with the fracture nucleation and growth process. Waveform stacking and coherence analysis techniques are here adapted using massive datasets with very high sampling (1 MHz) from a hydraulic fracturing experiment that took place 410 m below surface in the Äspö Hard Rock Laboratory (Sweden). We present the results obtained during the conventional, continuous water injection experiment Hydraulic Fracture 2. The resulting catalogue is composed of more than 4000 AEs. Frequency-magnitude distribution from AE magnitudes (MAE) reveals a high b value of 2.4. The magnitude of completeness is also estimated approximately MAE 1.1, and we observe an interval range of MAE between 0.77 and 2.79. The hydraulic fractures growth is then characterized by mapping the spatiotemporal evolution of AE hypocentres. The AE activity is spatially clustered in a prolate ellipsoid, resembling the main activated fracture volume ( 105 m3), where the lengths of the principal axes ( a = 10 m; b = 5 m; c = 4 m) define its size and its orientation can be estimated for a rupture plane (strike 123°, dip 60°). An asymmetric rupture process regarding to the fracturing borehole is clearly exhibited. AE events migrate upwards covering the depth interval between 404 and 414 m. After completing each injection and reinjection phase, the AE activity decreases and appears located in the same area of the initial fracture phase, suggesting a crack-closing effect.

  6. Experimental insights into geochemical changes in hydraulically fractured Marcellus Shale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcon, Virginia; Joseph, Craig; Carter, Kimberly E.

    Hydraulic fracturing applied to organic-rich shales has significantly increased the recoverable volume of methane available for U.S. energy consumption. Fluid-shale reactions in the reservoir may affect long-term reservoir productivity and waste management needs through changes to fracture mineral composition and produced fluid chemical composition. We performed laboratory experiments with Marcellus Shale and lab-generated hydraulic fracturing fluid at elevated pressures and temperatures to evaluate mineral reactions and the release of trace elements into solution. Results from the experiment containing fracturing chemicals show evidence for clay and carbonate dissolution, secondary clay and anhydrite precipitation, and early-stage (24-48 h) fluid enrichment of certainmore » elements followed by depletion in later stages (i.e. Al, Cd, Co, Cr, Cu, Ni, Sc, Zn). Other elements such as As, Fe, Mn, Sr, and Y increased in concentration and remained elevated throughout the duration of the experiment with fracturing fluid. Geochemical modeling of experimental fluid data indicates primary clay dissolution, and secondary formation of smectites and barite, after reaction with fracturing fluid. Changes in aqueous organic composition were observed, indicating organic additives may be chemically transformed or sequestered by the formation after hydraulic fracturing. The NaCl concentrations in our fluids are similar to measured concentrations in Marcellus Shale produced waters, showing that these experiments are representative of reservoir fluid chemistries and can provide insight on geochemical reactions that occur in the field. These results can be applied towards evaluating the evolution of hydraulically-fractured reservoirs, and towards understanding geochemical processes that control the composition of produced water from unconventional shales.« less

  7. Experimental insights into geochemical changes in hydraulically fractured Marcellus Shale

    DOE PAGES

    Marcon, Virginia; Joseph, Craig; Carter, Kimberly E.; ...

    2016-11-09

    Hydraulic fracturing applied to organic-rich shales has significantly increased the recoverable volume of methane available for U.S. energy consumption. Fluid-shale reactions in the reservoir may affect long-term reservoir productivity and waste management needs through changes to fracture mineral composition and produced fluid chemical composition. We performed laboratory experiments with Marcellus Shale and lab-generated hydraulic fracturing fluid at elevated pressures and temperatures to evaluate mineral reactions and the release of trace elements into solution. Results from the experiment containing fracturing chemicals show evidence for clay and carbonate dissolution, secondary clay and anhydrite precipitation, and early-stage (24-48 h) fluid enrichment of certainmore » elements followed by depletion in later stages (i.e. Al, Cd, Co, Cr, Cu, Ni, Sc, Zn). Other elements such as As, Fe, Mn, Sr, and Y increased in concentration and remained elevated throughout the duration of the experiment with fracturing fluid. Geochemical modeling of experimental fluid data indicates primary clay dissolution, and secondary formation of smectites and barite, after reaction with fracturing fluid. Changes in aqueous organic composition were observed, indicating organic additives may be chemically transformed or sequestered by the formation after hydraulic fracturing. The NaCl concentrations in our fluids are similar to measured concentrations in Marcellus Shale produced waters, showing that these experiments are representative of reservoir fluid chemistries and can provide insight on geochemical reactions that occur in the field. These results can be applied towards evaluating the evolution of hydraulically-fractured reservoirs, and towards understanding geochemical processes that control the composition of produced water from unconventional shales.« less

  8. Advanced Hydraulic Fracturing Technology for Unconventional Tight Gas Reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephen Holditch; A. Daniel Hill; D. Zhu

    2007-06-19

    The objectives of this project are to develop and test new techniques for creating extensive, conductive hydraulic fractures in unconventional tight gas reservoirs by statistically assessing the productivity achieved in hundreds of field treatments with a variety of current fracturing practices ranging from 'water fracs' to conventional gel fracture treatments; by laboratory measurements of the conductivity created with high rate proppant fracturing using an entirely new conductivity test - the 'dynamic fracture conductivity test'; and by developing design models to implement the optimal fracture treatments determined from the field assessment and the laboratory measurements. One of the tasks of thismore » project is to create an 'advisor' or expert system for completion, production and stimulation of tight gas reservoirs. A central part of this study is an extensive survey of the productivity of hundreds of tight gas wells that have been hydraulically fractured. We have been doing an extensive literature search of the SPE eLibrary, DOE, Gas Technology Institute (GTI), Bureau of Economic Geology and IHS Energy, for publicly available technical reports about procedures of drilling, completion and production of the tight gas wells. We have downloaded numerous papers and read and summarized the information to build a database that will contain field treatment data, organized by geographic location, and hydraulic fracture treatment design data, organized by the treatment type. We have conducted experimental study on 'dynamic fracture conductivity' created when proppant slurries are pumped into hydraulic fractures in tight gas sands. Unlike conventional fracture conductivity tests in which proppant is loaded into the fracture artificially; we pump proppant/frac fluid slurries into a fracture cell, dynamically placing the proppant just as it occurs in the field. From such tests, we expect to gain new insights into some of the critical issues in tight gas fracturing, in particular the roles of gel damage, polymer loading (water-frac versus gel frac), and proppant concentration on the created fracture conductivity. To achieve this objective, we have designed the experimental apparatus to conduct the dynamic fracture conductivity tests. The experimental apparatus has been built and some preliminary tests have been conducted to test the apparatus.« less

  9. Analysis of the groundwater monitoring controversy at the Pavillion, Wyoming natural gas field.

    PubMed

    Stephens, Daniel B

    2015-01-01

    The U.S. Environmental Protection Agency (EPA) was contacted by citizens of Pavillion, Wyoming 6 years ago regarding taste and odor in their water wells in an area where hydraulic fracturing operations were occurring. EPA conducted a field investigation, including drilling two deep monitor wells, and concluded in a draft report that constituents associated with hydraulic fracturing had impacted the drinking water aquifer. Following extensive media coverage, pressure from state and other federal agencies, and extensive technical criticism from industry, EPA stated the draft report would not undergo peer review, that it would not rely on the conclusions, and that it had relinquished its lead role in the investigation to the State of Wyoming for further investigation without resolving the source of the taste and odor problem. Review of the events leading up to EPA's decision suggests that much of the criticism could have been avoided through improved preproject planning with clear objectives. Such planning would have identified the high national significance and potential implications of the proposed work. Expanded stakeholder involvement and technical input could have eliminated some of the difficulties that plagued the investigation. However, collecting baseline groundwater quality data prior to initiating hydraulic fracturing likely would have been an effective way to evaluate potential impacts. The Pavillion groundwater investigation provides an excellent opportunity for improving field methods, report transparency, clarity of communication, and the peer review process in future investigations of the impacts of hydraulic fracturing on groundwater. © 2014, National Ground Water Association.

  10. Preferential flow paths in fractured rock detected by cross-borehole nano-iron tracer test

    NASA Astrophysics Data System (ADS)

    Chia, Yeeping; Chuang, Po-Yu

    2017-04-01

    Characterization of the preferential flow paths and their hydraulic properties is desirable for developing a hydrogeological conceptual model in fractured rock. However, the heterogeneity and anisotropy of the hydraulic property often make it difficult to understand groundwater flow paths through fractures. In this study, we adopted nanoscale zero-valent iron (nZVI) as a tracer to characterize fracture connectivity and hydraulic properties. A magnet array was placed in an observation well to attract arriving nZVI particles for identifying the location of incoming tracer. This novel approach was developed for the investigation of fracture flow at a hydrogeological research station in central Taiwan. A heat-pulse flowmeter test was performed to delineate the vertical distribution of permeable fractures in two boreholes, making it possible to design a field tracer test. The nZVI slurry was released in the sealed injection well. The arrival of the slurry in the observation well was evidenced by a breakthrough curve recorded by the fluid conductivity sensor as well as the nZVI particles attracted to the magnets. The iron nanoparticles attracted to the magnets provide the quantitative criteria for locating the position of tracer inlet in the observation well. The position of the magnet attracting the maximum weight of iron nanoparticles agrees well with the depth of a permeable fracture zone delineated by the flowmeter. Besides, a conventional saline tracer test was conducted in the field, producing a similar outcome as the nZVI tracer test. Our study results indicate that the nano-iron tracer test could be a promising method for the characterization of the preferential flow paths in fractured rock.

  11. Cost and Performance Report In-Situ Remediation of MTBE Contaminated Aquifers Using Propane Biosparging

    DTIC Science & Technology

    2003-12-01

    by pneumatic or hydraulic fracturing . Pneumatic fracturing (PF) uses the injection of pressurized air 47 (up to 175 psi) in to the formation that...contaminants. Hydraulic fracturing is similar to PF with the exception that water is used and at pressures as high as 2000 psi. Technical questions

  12. Fault activation by hydraulic fracturing in western Canada.

    PubMed

    Bao, Xuewei; Eaton, David W

    2016-12-16

    Hydraulic fracturing has been inferred to trigger the majority of injection-induced earthquakes in western Canada, in contrast to the Midwestern United States, where massive saltwater disposal is the dominant triggering mechanism. A template-based earthquake catalog from a seismically active Canadian shale play, combined with comprehensive injection data during a 4-month interval, shows that earthquakes are tightly clustered in space and time near hydraulic fracturing sites. The largest event [moment magnitude (M W ) 3.9] occurred several weeks after injection along a fault that appears to extend from the injection zone into crystalline basement. Patterns of seismicity indicate that stress changes during operations can activate fault slip to an offset distance of >1 km, whereas pressurization by hydraulic fracturing into a fault yields episodic seismicity that can persist for months. Copyright © 2016, American Association for the Advancement of Science.

  13. An iterative matching and locating technique for borehole microseismic monitoring

    NASA Astrophysics Data System (ADS)

    Chen, H.; Meng, X.; Niu, F.; Tang, Y.

    2016-12-01

    Microseismic monitoring has been proven to be an effective and valuable technology to image hydraulic fracture geometry. The success of hydraulic fracturing monitoring relies on the detection and characterization (i.e., location and focal mechanism estimation) of a maximum number of induced microseismic events. All the events are important to quantify the stimulated reservior volume (SRV) and characterize the newly created fracture network. Detecting and locating low magnitude events, however, are notoriously difficult, particularly at a high noisy production environment. Here we propose an iterative matching and locating technique (iMLT) to obtain a maximum detection of small events and the best determination of their locations from continuous data recorded by a single azimuth downhole geophone array. As the downhole array is located in one azimuth, the regular M&L using the P-wave cross-correlation only is not able to resolve the location of a matched event relative to the template event. We thus introduce the polarization direction in the matching, which significantly improve the lateral resolution of the M&L method based on numerical simulations with synthetic data. Our synthetic tests further indicate that the inclusion of S-wave cross-correlation data can help better constrain the focal depth of the matched events. We apply this method to a dataset recorded during hydraulic fracturing treatment of a pilot horizontal well within the shale play in southwest China. Our approach yields a more than fourfold increase in the number of located events, compared with the original event catalog from traditional downhole processing.

  14. Implicit level set algorithms for modelling hydraulic fracture propagation.

    PubMed

    Peirce, A

    2016-10-13

    Hydraulic fractures are tensile cracks that propagate in pre-stressed solid media due to the injection of a viscous fluid. Developing numerical schemes to model the propagation of these fractures is particularly challenging due to the degenerate, hypersingular nature of the coupled integro-partial differential equations. These equations typically involve a singular free boundary whose velocity can only be determined by evaluating a distinguished limit. This review paper describes a class of numerical schemes that have been developed to use the multiscale asymptotic behaviour typically encountered near the fracture boundary as multiple physical processes compete to determine the evolution of the fracture. The fundamental concepts of locating the free boundary using the tip asymptotics and imposing the tip asymptotic behaviour in a weak form are illustrated in two quite different formulations of the governing equations. These formulations are the displacement discontinuity boundary integral method and the extended finite-element method. Practical issues are also discussed, including new models for proppant transport able to capture 'tip screen-out'; efficient numerical schemes to solve the coupled nonlinear equations; and fast methods to solve resulting linear systems. Numerical examples are provided to illustrate the performance of the numerical schemes. We conclude the paper with open questions for further research. This article is part of the themed issue 'Energy and the subsurface'. © 2016 The Author(s).

  15. Implicit level set algorithms for modelling hydraulic fracture propagation

    PubMed Central

    2016-01-01

    Hydraulic fractures are tensile cracks that propagate in pre-stressed solid media due to the injection of a viscous fluid. Developing numerical schemes to model the propagation of these fractures is particularly challenging due to the degenerate, hypersingular nature of the coupled integro-partial differential equations. These equations typically involve a singular free boundary whose velocity can only be determined by evaluating a distinguished limit. This review paper describes a class of numerical schemes that have been developed to use the multiscale asymptotic behaviour typically encountered near the fracture boundary as multiple physical processes compete to determine the evolution of the fracture. The fundamental concepts of locating the free boundary using the tip asymptotics and imposing the tip asymptotic behaviour in a weak form are illustrated in two quite different formulations of the governing equations. These formulations are the displacement discontinuity boundary integral method and the extended finite-element method. Practical issues are also discussed, including new models for proppant transport able to capture ‘tip screen-out’; efficient numerical schemes to solve the coupled nonlinear equations; and fast methods to solve resulting linear systems. Numerical examples are provided to illustrate the performance of the numerical schemes. We conclude the paper with open questions for further research.  This article is part of the themed issue ‘Energy and the subsurface’. PMID:27597787

  16. Aquifer Characteristics Data Report for the Weldon Spring Site chemical plant/raffinate pits and vicinity properties for the Weldon Spring Site Remedial Action Project, Weldon Spring, Missouri

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-11-01

    This report describes the procedures and methods used, and presents the results of physical testing performed, to characterize the hydraulic properties of the shallow Mississippian-Devonian aquifer beneath the Weldon Spring chemical plant, raffinate pits, and vicinity properties. The aquifer of concern is composed of saturated rocks of the Burlington-Keokuk Limestone which constitutes the upper portion of the Mississippian-Devonian aquifer. This aquifer is a heterogeneous anisotropic medium which can be described in terms of diffuse Darcian flow overlain by high porosity discrete flow zones and conduits. Average hydraulic conductivity for all wells tested is 9.6E-02 meters/day (3.1E-01 feet/day). High hydraulic conductivitymore » values are representative of discrete flow in the fractured and weathered zones in the upper Burlington-Keokuk Limestone. They indicate heterogeneities within the Mississippian-Devonian aquifer. Aquifer heterogeneity in the horizontal plane is believed to be randomly distributed and is a function of fracture spacing, solution voids, and preglacial weathering phenomena. Relatively high hydraulic conductivities in deeper portions of the aquifer are though to be due to the presence of widely spaced fractures. 44 refs., 27 figs., 9 tabs.« less

  17. Pore network properties of sandstones in a fault damage zone

    NASA Astrophysics Data System (ADS)

    Bossennec, Claire; Géraud, Yves; Moretti, Isabelle; Mattioni, Luca; Stemmelen, Didier

    2018-05-01

    The understanding of fluid flow in faulted sandstones is based on a wide range of techniques. These depend on the multi-method determination of petrological and structural features, porous network properties and both spatial and temporal variations and interactions of these features. The question of the multi-parameter analysis on fluid flow controlling properties is addressed for an outcrop damage zone in the hanging wall of a normal fault zone on the western border of the Upper Rhine Graben, affecting the Buntsandstein Group (Early Triassic). Diagenetic processes may alter the original pore type and geometry in fractured and faulted sandstones. Therefore, these may control the ultimate porosity and permeability of the damage zone. The classical model of evolution of hydraulic properties with distance from the major fault core is nuanced here. The hydraulic behavior of the rock media is better described by a pluri-scale model including: 1) The grain scale, where the hydraulic properties are controlled by sedimentary features, the distance from the fracture, and the impact of diagenetic processes. These result in the ultimate porous network characteristics observed. 2) A larger scale, where the structural position and characteristics (density, connectivity) of the fracture corridors are strongly correlated with both geo-mechanical and hydraulic properties within the damage zone.

  18. Group invariant solution for a pre-existing fracture driven by a power-law fluid in impermeable rock

    NASA Astrophysics Data System (ADS)

    Fareo, A. G.; Mason, D. P.

    2013-12-01

    The effect of power-law rheology on hydraulic fracturing is investigated. The evolution of a two-dimensional fracture with non-zero initial length and driven by a power-law fluid is analyzed. Only fluid injection into the fracture is considered. The surrounding rock mass is impermeable. With the aid of lubrication theory and the PKN approximation a partial differential equation for the fracture half-width is derived. Using a linear combination of the Lie-point symmetry generators of the partial differential equation, the group invariant solution is obtained and the problem is reduced to a boundary value problem for an ordinary differential equation. Exact analytical solutions are derived for hydraulic fractures with constant volume and with constant propagation speed. The asymptotic solution near the fracture tip is found. The numerical solution for general working conditions is obtained by transforming the boundary value problem to a pair of initial value problems. Throughout the paper, hydraulic fracturing with shear thinning, Newtonian and shear thickening fluids are compared.

  19. Results of the multiwell experiment in situ stresses, natural fractures, and other geological controls on reservoirs

    NASA Astrophysics Data System (ADS)

    Lorenz, John C.; Warpinski, Norman R.; Teufel, Lawrence W.; Branagan, Paul T.; Sattler, Allan R.; Northrop, David A.

    Hundreds of millions of cubic meters of natural gas are locked up in low-permeability, natural gas reservoirs. The Multiwell Experiment (MWX) was designed to characterize such reservoirs, typical of much of the western United States, and to assess and develop a technology for the production of this unconventional resource. Flow-rate tests of the MWX reservoirs indicate a system permeability that is several orders of magnitude higher than laboratory permeability measurements made on matrix-rock sandstones. This enhanced permeability is caused by natural fractures. The single set of fractures present in the reservoirs provides a significant permeability anisotropy that is aligned with the maximum in situ horizontal stress. Hydraulic fractures therefore form parallel to the natural fractures and are consequently an inefficient mechanism for stimulation. Successful stimulation may be possible by perturbing the local stress field with a large hydraulic fracture in one well so that a second hydraulic fracture in an offset well propagates transverse to the natural fracture permeability trend.

  20. The Functional Potential of Microbial Communities in Hydraulic Fracturing Source Water and Produced Water from Natural Gas Extraction Characterized by Metagenomic Sequencing

    PubMed Central

    Mohan, Arvind Murali; Bibby, Kyle J.; Lipus, Daniel; Hammack, Richard W.; Gregory, Kelvin B.

    2014-01-01

    Microbial activity in produced water from hydraulic fracturing operations can lead to undesired environmental impacts and increase gas production costs. However, the metabolic profile of these microbial communities is not well understood. Here, for the first time, we present results from a shotgun metagenome of microbial communities in both hydraulic fracturing source water and wastewater produced by hydraulic fracturing. Taxonomic analyses showed an increase in anaerobic/facultative anaerobic classes related to Clostridia, Gammaproteobacteria, Bacteroidia and Epsilonproteobacteria in produced water as compared to predominantly aerobic Alphaproteobacteria in the fracturing source water. The metabolic profile revealed a relative increase in genes responsible for carbohydrate metabolism, respiration, sporulation and dormancy, iron acquisition and metabolism, stress response and sulfur metabolism in the produced water samples. These results suggest that microbial communities in produced water have an increased genetic ability to handle stress, which has significant implications for produced water management, such as disinfection. PMID:25338024

  1. The functional potential of microbial communities in hydraulic fracturing source water and produced water from natural gas extraction characterized by metagenomic sequencing

    DOE PAGES

    Mohan, Arvind Murali; Bibby, Kyle J.; Lipus, Daniel; ...

    2014-10-22

    Microbial activity in produced water from hydraulic fracturing operations can lead to undesired environmental impacts and increase gas production costs. However, the metabolic profile of these microbial communities is not well understood. Here, for the first time, we present results from a shotgun metagenome of microbial communities in both hydraulic fracturing source water and wastewater produced by hydraulic fracturing. Taxonomic analyses showed an increase in anaerobic/facultative anaerobic classes related to Clostridia, Gammaproteobacteria, Bacteroidia and Epsilonproteobacteria in produced water as compared to predominantly aerobic Alphaproteobacteria in the fracturing source water. Thus, the metabolic profile revealed a relative increase in genes responsiblemore » for carbohydrate metabolism, respiration, sporulation and dormancy, iron acquisition and metabolism, stress response and sulfur metabolism in the produced water samples. These results suggest that microbial communities in produced water have an increased genetic ability to handle stress, which has significant implications for produced water management, such as disinfection.« less

  2. The functional potential of microbial communities in hydraulic fracturing source water and produced water from natural gas extraction characterized by metagenomic sequencing.

    PubMed

    Mohan, Arvind Murali; Bibby, Kyle J; Lipus, Daniel; Hammack, Richard W; Gregory, Kelvin B

    2014-01-01

    Microbial activity in produced water from hydraulic fracturing operations can lead to undesired environmental impacts and increase gas production costs. However, the metabolic profile of these microbial communities is not well understood. Here, for the first time, we present results from a shotgun metagenome of microbial communities in both hydraulic fracturing source water and wastewater produced by hydraulic fracturing. Taxonomic analyses showed an increase in anaerobic/facultative anaerobic classes related to Clostridia, Gammaproteobacteria, Bacteroidia and Epsilonproteobacteria in produced water as compared to predominantly aerobic Alphaproteobacteria in the fracturing source water. The metabolic profile revealed a relative increase in genes responsible for carbohydrate metabolism, respiration, sporulation and dormancy, iron acquisition and metabolism, stress response and sulfur metabolism in the produced water samples. These results suggest that microbial communities in produced water have an increased genetic ability to handle stress, which has significant implications for produced water management, such as disinfection.

  3. Seismic characteristics of tensile fracture growth induced by hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Eaton, D. W. S.; Van der Baan, M.; Boroumand, N.

    2014-12-01

    Hydraulic fracturing is a process of injecting high-pressure slurry into a rockmass to enhance its permeability. Variants of this process are used for unconventional oil and gas development, engineered geothermal systems and block-cave mining; similar processes occur within volcanic systems. Opening of hydraulic fractures is well documented by mineback trials and tiltmeter monitoring and is a physical requirement to accommodate the volume of injected fluid. Numerous microseismic monitoring investigations acquired in the audio-frequency band are interpreted to show a prevalence of shear-dominated failure mechanisms surrounding the tensile fracture. Moreover, the radiated seismic energy in the audio-frequency band appears to be a miniscule fraction (<< 1%) of the net injected energy, i.e., the integral of the product of fluid pressure and injection rate. We use a simple penny-shaped crack model as a predictive framework to describe seismic characteristics of tensile opening during hydraulic fracturing. This model provides a useful scaling relation that links seismic moment to effective fluid pressure within the crack. Based on downhole recordings corrected for attenuation, a significant fraction of observed microseismic events are characterized by S/P amplitude ratio < 5. Despite the relatively small aperture of the monitoring arrays, which precludes both full moment-tensor analysis and definitive identification of nodal planes or axes, this ratio provides a strong indication that observed microseismic source mechanisms have a component of tensile failure. In addition, we find some instances of periodic spectral notches that can be explained by an opening/closing failure mechanism, in which fracture propagation outpaces fluid velocity within the crack. Finally, aseismic growth of tensile fractures may be indicative of a scenario in which injected energy is consumed to create new fracture surfaces. Taken together, our observations and modeling provide evidence that failure mechanisms documented by passive monitoring of hydraulic fractures may contain a significant component of tensile failure, including fracture opening and closing, although creation of extensive new fracture surfaces may be a seismically inefficient process that radiates at sub-audio frequencies.

  4. Apparatus and method for monitoring underground fracturing

    DOEpatents

    Warpinski, N.R.; Steinfort, T.D.; Branagan, P.T.; Wilmer, R.H.

    1999-08-10

    An apparatus and method for measuring deformation of a rock mass around the vicinity of a fracture, commonly induced by hydraulic fracturing is provided. To this end, a well is drilled offset from the proposed fracture region, if no existing well is present. Once the well is formed to a depth approximately equal or exceeding the depth of the proposed fracture, a plurality of inclinometers, for example tiltmeters, are inserted downhole in the well. The inclinometers are located both above and below the approximate depth of the proposed fracture. The plurality of inclinometers may be arranged on a wireline that may be retrieved from the downhole portion of the well and used again or, alternatively, the inclinometers may be cemented in place. In either event, the inclinometers are used to measure the deformation of the rock around the induced fracture. 13 figs.

  5. Apparatus and method for monitoring underground fracturing

    DOEpatents

    Warpinski, Norman R.; Steinfort, Terry D.; Branagan, Paul T.; Wilmer, Roy H.

    1999-08-10

    An apparatus and method for measuring deformation of a rock mass around the vicinity of a fracture, commonly induced by hydraulic fracturing is provided. To this end, a well is drilled offset from the proposed fracture region, if no existing well is present. Once the well is formed to a depth approximately equal or exceeding the depth of the proposed fracture, a plurality of inclinometers, for example tiltmeters, are inserted downhole in the well. The inclinometers are located both above and below the approximate depth of the proposed fracture. The plurality of inclinometers may be arranged on a wireline that may be retrieved from the downhole portion of the well and used again or, alternatively, the inclinometers may be cemented in place. In either event, the inclinometers are used to measure the deformation of the rock around the induced fracture.

  6. Halogenated Organic Compounds Identified in Hydraulic Fracturing Wastewaters Using Ultrahigh Resolution Mass Spectrometry.

    PubMed

    Luek, Jenna L; Schmitt-Kopplin, Philippe; Mouser, Paula J; Petty, William Tyler; Richardson, Susan D; Gonsior, Michael

    2017-05-16

    Large volumes of water return to the surface following hydraulic fracturing of deep shale formations to retrieve oil and natural gas. Current understanding of the specific organic constituents in these hydraulic fracturing wastewaters is limited to hydrocarbons and a fraction of known chemical additives. In this study, we analyzed hydraulic fracturing wastewater samples using ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) as a nontargeted technique to assign unambiguous molecular formulas to singly charged molecular ions. Halogenated molecular formulas were identified and confirmed using isotopic simulation and MS-MS fragmentation spectra. The abundance of halogenated organic compounds in flowback fluids rather than older wastewaters suggested that the observed molecular ions might have been related to hydraulic fracturing additives and related subsurface reactions, such as through the reaction of shale-extracted chloride, bromide, and iodide with strong oxidant additives (e.g., hypochlorite, persulfate, hydrogen peroxide) and subsequently with diverse dissolved organic matter. Some molecular ions matched the exact masses of known disinfection byproducts including diiodoacetic acid, dibromobenzoic acid, and diiodobenzoic acid. The identified halogenated organic compounds, particularly iodinated organic molecules, are absent from inland natural systems and these compounds could therefore play an important role as environmental tracers.

  7. Large Scale Geologic Controls on Hydraulic Stimulation

    NASA Astrophysics Data System (ADS)

    McLennan, J. D.; Bhide, R.

    2014-12-01

    When simulating a hydraulic fracturing, the analyst has historically prescribed a single planar fracture. Originally (in the 1950s through the 1970s) this was necessitated by computational restrictions. In the latter part of the twentieth century, hydraulic fracture simulation evolved to incorporate vertical propagation controlled by modulus, fluid loss, and the minimum principal stress. With improvements in software, computational capacity, and recognition that in-situ discontinuities are relevant, fully three-dimensional hydraulic simulation is now becoming possible. Advances in simulation capabilities enable coupling structural geologic data (three-dimensional representation of stresses, natural fractures, and stratigraphy) with decision making processes for stimulation - volumes, rates, fluid types, completion zones. Without this interaction between simulation capabilities and geological information, low permeability formation exploitation may linger on the fringes of real economic viability. Comparative simulations have been undertaken in varying structural environments where the stress contrast and the frequency of natural discontinuities causes varying patterns of multiple, hydraulically generated or reactivated flow paths. Stress conditions and nature of the discontinuities are selected as variables and are used to simulate how fracturing can vary in different structural regimes. The basis of the simulations is commercial distinct element software (Itasca Corporation's 3DEC).

  8. Determination of the effect of formation water on fracture-fluid cleanup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-03-01

    Understanding hydraulic-fracture cleanup is essential for improving well stimulation. Residual gel damages fracture conductivity, shortens effective fracture half-length, and limits well productivity. The drive to develop fluids, additives, and procedures that minimize this damage continues to be a dominant theme in fracture-fluid-development programs. Fracture cleanup is a complex problem, and many parameters (e.g., fluid system, job design, flowback procedure, and reservoir conditions) can influence polymer and fluid recovery efficiencies. Often, specific products and methods that work well in one reservoir have little effect in another. Systematic analysis of fluid and polymer returns after a treatment is completed is the onlymore » way to quantify fracture cleanup. This is referred to as flowback analysis. This paper discusses a flowback-analysis field study on large hydraulic-fracturing treatments in the Taylor zone of the Cotton Valley formation in east Texas. This is a low-permeability (approximately 0.01 md) tight gas formation. It is a heterogeneous zone with layers of productive sandstone interspersed with relatively impermeable layers of shale. A typical well in this field initially produces approximately 0.75 to 1.3 MMcf/D gas and 35 to 40 bbl of water/MMcf of gas. The returns from 10 wells in this field were analyzed thoroughly.« less

  9. Simulation Study of CO2-EOR in Tight Oil Reservoirs with Complex Fracture Geometries

    PubMed Central

    Zuloaga-Molero, Pavel; Yu, Wei; Xu, Yifei; Sepehrnoori, Kamy; Li, Baozhen

    2016-01-01

    The recent development of tight oil reservoirs has led to an increase in oil production in the past several years due to the progress in horizontal drilling and hydraulic fracturing. However, the expected oil recovery factor from these reservoirs is still very low. CO2-based enhanced oil recovery is a suitable solution to improve the recovery. One challenge of the estimation of the recovery is to properly model complex hydraulic fracture geometries which are often assumed to be planar due to the limitation of local grid refinement approach. More flexible methods like the use of unstructured grids can significantly increase the computational demand. In this study, we introduce an efficient methodology of the embedded discrete fracture model to explicitly model complex fracture geometries. We build a compositional reservoir model to investigate the effects of complex fracture geometries on performance of CO2 Huff-n-Puff and CO2 continuous injection. The results confirm that the appropriate modelling of the fracture geometry plays a critical role in the estimation of the incremental oil recovery. This study also provides new insights into the understanding of the impacts of CO2 molecular diffusion, reservoir permeability, and natural fractures on the performance of CO2-EOR processes in tight oil reservoirs. PMID:27628131

  10. Cross-borehole flow analysis to characterize fracture connections in the Melechov Granite, Bohemian-Moravian Highland, Czech Republic

    USGS Publications Warehouse

    Paillet, Frederick L.; Williams, John H.; Urik, Joseph; Lukes, Joseph; Kobr, Miroslav; Mares, Stanislav

    2012-01-01

    Application of the cross-borehole flow method, in which short pumping cycles in one borehole are used to induce time-transient flow in another borehole, demonstrated that a simple hydraulic model can characterize the fracture connections in the bedrock mass between the two boreholes. The analysis determines the properties of fracture connections rather than those of individual fractures intersecting a single borehole; the model contains a limited number of adjustable parameters so that any correlation between measured and simulated flow test data is significant. The test was conducted in two 200-m deep boreholes spaced 21 m apart in the Melechov Granite in the Bohemian-Moravian Highland, Czech Republic. Transient flow was measured at depth stations between the identified transmissive fractures in one of the boreholes during short-term pumping and recovery periods in the other borehole. Simulated flows, based on simple model geometries, closely matched the measured flows. The relative transmissivity and storage of the inferred fracture connections were corroborated by tracer testing. The results demonstrate that it is possible to assess the properties of a fracture flow network despite being restricted to making measurements in boreholes in which a local population of discrete fractures regulates the hydraulic communication with the larger-scale aquifer system.

  11. Systems and methods for locating and imaging proppant in an induced fracture

    DOEpatents

    Aldridge, David F.; Bartel, Lewis C.

    2016-02-02

    Born Scattering Inversion (BSI) systems and methods are disclosed. A BSI system may be incorporated in a well system for accessing natural gas, oil and geothermal reserves in a geologic formation beneath the surface of the Earth. The BSI system may be used to generate a three-dimensional image of a proppant-filled hydraulically-induced fracture in the geologic formation. The BSI system may include computing equipment and sensors for measuring electromagnetic fields in the vicinity of the fracture before and after the fracture is generated, adjusting the parameters of a first Born approximation model of a scattered component of the surface electromagnetic fields using the measured electromagnetic fields, and generating the image of the proppant-filled fracture using the adjusted parameters.

  12. 78 FR 48158 - Intent To Grant an Exclusive Patent License

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-07

    ... HYDROCARBONS AND ETHERS IN SUBSURFACE SOIL BY INTRODUCTION OF A SOLID OXYGEN SOURCE BY HYDRAULIC FRACTURING... IN SUBSURFACE SOIL BY INTRODUCTION OF A SOLID OXYGEN SOURCE BY HYDRAULIC FRACTURING, filed as U.S...

  13. Hydraulic Fracturing in Coalbed Methane Development, Raton Basin, Southern Colorado

    EPA Pesticide Factsheets

    Pioneer Natural Resources has performed hydraulic fractures on 2400 shallow CBM wells in the Raton Basin with no impact to drinking water. This presentation, given by Pioneer Natural Resources, discusses why might be.

  14. Field determination of the three-dimensional hydraulic conductivity tensor of anisotropic media: 2. Methodology and application to fractured rocks

    USGS Publications Warehouse

    Hsieh, Paul A.; Neuman, Shlomo P.; Stiles, Gary K.; Simpson, Eugene S.

    1985-01-01

    The analytical solutions developed in the first paper can be used to interpret the results of cross-hole tests conducted in anisotropic porous or fractured media. In the particular case where the injection and monitoring intervals are short relative to the distance between them, the test results can be analyzed graphically. From the transient variation of hydraulic head in a given monitoring interval, one can determine the directional hydraulic diffusivity, Kd(e)/Ss, and the quantity D/Ss, by curve matching. (Here Kd(e) is directional hydraulic conductivity parallel to the unit vector, e, pointing from the injection to the monitoring interval, Ss is specific storage, and D is the determinant of the hydraulic conductivity tensor, K.) The principal values and directions of K, together with Ss, can then be evaluated by fitting an ellipsoid to the square roots of the directional diffusivities. Ideally, six directional measurements are required. In practice, a larger number of measurements is often necessary to enable fitting an ellipsoid to the data by least squares. If the computed [Kd(e)/ss]½ values fluctuate so severely that a meaningful least squares fit is not possible, one has a direct indication that the subsurface does not behave as a uniform anisotropic medium on the scale of the test. Test results from a granitic rock near Oracle in southern Arizona are presented to illustrate how the method works for fractured rocks. At the site, the Oracle granite is shown to respond as a near-uniform, anisotropic medium, the hydraulic conductivity of which is strongly controlled by the orientations of major fracture sets. The cross-hole test results are shown to be consistent with the results of more than 100 single-hole packer tests conducted at the site.

  15. Determining the spatial altitude of the hydraulic fractures.

    NASA Astrophysics Data System (ADS)

    Khamiev, Marsel; Kosarev, Victor; Goncharova, Galina

    2016-04-01

    Mathematical modeling and numerical simulation are the most widely used approaches for the solving geological problems. They imply software tools which are based on Monte Carlo method. The results of this project presents shows the possibility of using PNL tool to determine fracturing location. The modeled media is a homogeneous rock (limestone) cut by a vertical borehole (d=216 mm) with metal casing 9 mm thick. The cement sheath is 35 mm thick. The borehole is filled with fresh water. The rock mass is cut by crack, filled with a mixture of doped (gadolinium oxide Gd2O3) proppant (75%) and water (25%). A pulse neutron logging (PNL) tool is used for quality control in hydraulic fracturing operations. It includes a fast neutron source (so-called "neutron generator") and a set of thermal (or epithermal) neutron-sensing devices, forming the so-called near (ND) and far (FD) detectors. To evaluate neutron properties various segments (sectors) of the rock mass, the detector must register only neutrons that come from this very formation. It's possible if detecting block includes some (6 for example) thermal neutron detectors arranged circumferentially inside the tool. As a result we get few independent well logs, each accords with define rock sector. Afterwards synthetic logs processing we can determine spatial position of the hydraulic fracture.

  16. Performance of hydraulic fracturing and matrix acidizing in horizontal wellbores -- Offshore Qatar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, M.G.R.; Pongratz, R.

    Considerable debate in the Middle East has centered upon what was previously felt to be two separate methods of enhancing revenues and daily production; hydraulic fracturing and horizontal drilling. In an effort to maximize return on investment, these two issues have been successfully combined in other areas of the world. In order to establish the suitability of this technology in this area, two horizontal wells with over 3,050m (10,000ft) of lateral section were drilled into the Cretaceous Kharaib formation, overlying the North Field, Offshore Qatar. A massive stimulation program was performed in order to evaluate the most feasible stimulation methodmore » from both a technical and economical perspective for further field development considerations.Three propped hydraulic fracturing treatments were performed using 183, 500kg (403, 700lb) of 20/40 mesh sand, and seventeen acid matrix treatments placing over 3,217,250l (850,000gals) of HCL into the lateral sections of both wells. This paper describes the performance, operation and logistical support required to complete this offshore operation with join a minimal time frame. The use of a mobile offshore jack-up platform, whereby a land based fracturing spread was placed onto the deck of a converted drilling rig is described.« less

  17. In-situ stress and fracture permeability in a fault-hosted geothermal reservoir at Dixie Valley, Nevada

    USGS Publications Warehouse

    Hickman, Stephen; Barton, Colleen; Zoback, Mark; Morin, Roger; Sass, John; Benoit, Richard; ,

    1997-01-01

    As part of a study relating fractured rock hydrology to in-situ stress and recent deformation within the Dixie Valley Geothermal Field, borehole televiewer logging and hydraulic fracturing stress measurements were conducted in a 2.7-km-deep geothermal production well (73B-7) drilled into the Stillwater fault zone. Borehole televiewer logs from well 73B-7 show numerous drilling-induced tensile fractures, indicating that the direction of the minimum horizontal principal stress, Shmin, is S57 ??E. As the Stillwater fault at this location dips S50 ??E at approximately 3??, it is nearly at the optimal orientation for normal faulting in the current stress field. Analysis of the hydraulic fracturing data shows that the magnitude of Shmin is 24.1 and 25.9 MPa at 1.7 and 2.5 km, respectively. In addition, analysis of a hydraulic fracturing test from a shallow well 1.5 km northeast of 73B-7 indicates that the magnitude of Shmin is 5.6 MPa at 0.4 km depth. Coulomb failure analysis shows that the magnitude of Shmin in these wells is close to that predicted for incipient normal faulting on the Stillwater and subparallel faults, using coefficients of friction of 0.6-1.0 and estimates of the in-situ fluid pressure and overburden stress. Spinner flowmeter and temperature logs were also acquired in well 73B-7 and were used to identify hydraulically conductive fractures. Comparison of these stress and hydrologic data with fracture orientations from the televiewer log indicates that hydraulically conductive fractures within and adjacent to the Stillwater fault zone are critically stressed, potentially active normal faults in the current west-northwest extensional stress regime at Dixie Valley.

  18. Electrically-conductive proppant and methods for making and using same

    DOEpatents

    Cannan, Chad; Roper, Todd; Savoy, Steve; Mitchell, Daniel R.

    2016-09-06

    Electrically-conductive sintered, substantially round and spherical particles and methods for producing such electrically-conductive sintered, substantially round and spherical particles from an alumina-containing raw material. Methods for using such electrically-conductive sintered, substantially round and spherical particles in hydraulic fracturing operations.

  19. Occupational exposures to respirable crystalline silica during hydraulic fracturing.

    PubMed

    Esswein, Eric J; Breitenstein, Michael; Snawder, John; Kiefer, Max; Sieber, W Karl

    2013-01-01

    This report describes a previously uncharacterized occupational health hazard: work crew exposures to respirable crystalline silica during hydraulic fracturing. Hydraulic fracturing involves high pressure injection of large volumes of water and sand, and smaller quantities of well treatment chemicals, into a gas or oil well to fracture shale or other rock formations, allowing more efficient recovery of hydrocarbons from a petroleum-bearing reservoir. Crystalline silica ("frac sand") is commonly used as a proppant to hold open cracks and fissures created by hydraulic pressure. Each stage of the process requires hundreds of thousands of pounds of quartz-containing sand; millions of pounds may be needed for all zones of a well. Mechanical handling of frac sand creates respirable crystalline silica dust, a potential exposure hazard for workers. Researchers at the National Institute for Occupational Safety and Health collected 111 personal breathing zone samples at 11 sites in five states to evaluate worker exposures to respirable crystalline silica during hydraulic fracturing. At each of the 11 sites, full-shift samples exceeded occupational health criteria (e.g., the Occupational Safety and Health Administration calculated permissible exposure limit, the NIOSH recommended exposure limit, or the ACGIH threshold limit value), in some cases, by 10 or more times the occupational health criteria. Based on these evaluations, an occupational health hazard was determined to exist for workplace exposures to crystalline silica. Seven points of dust generation were identified, including sand handling machinery and dust generated from the work site itself. Recommendations to control exposures include product substitution (when feasible), engineering controls or modifications to sand handling machinery, administrative controls, and use of personal protective equipment. To our knowledge, this represents the first systematic study of work crew exposures to crystalline silica during hydraulic fracturing. Companies that conduct hydraulic fracturing using silica sand should evaluate their operations to determine the potential for worker exposure to respirable crystalline silica and implement controls as necessary to protect workers.

  20. Hydraulic fracture orientation and production/injection induced reservoir stress changes in diatomite waterfloods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, C.A.; Conant, R.A.; Golich, G.M.

    1995-12-31

    This paper summarizes the (preliminary) findings from extensive field studies of hydraulic fracture orientation in diatomite waterfloods and related efforts to monitor the induced surface subsidence. Included are case studies from the Belridge and Lost Hills diatomite reservoirs. The primary purpose of the paper is to document a large volume of tiltmeter hydraulic fracture orientation data that demonstrates waterflood-induced fracture reorientation--a phenomenon not previously considered in waterflood development planning. Also included is a brief overview of three possible mechanisms for the observed waterflood fracture reorientation. A discussion section details efforts to isolate the operative mechanism(s) from the most extensive casemore » study, as well as suggesting a possible strategy for detecting and possibly mitigating some of the adverse effects of production/injection induced reservoir stress changes--reservoir compaction and surface subsidence as well as fracture reorientation.« less

  1. Triaxial Permeability Device

    DTIC Science & Technology

    1988-01-01

    potential for particle migration which can lead to piping, clogging, or hydraulic fracturing . Since the chemical conductivity under the high gradient...U~ .. .. - > 63 consolidation or expansion, it may be concluded that this gradient did not cause piping, clogging, or hydraulic fracturing for

  2. Executive Summary, Hydraulic Fracturing Study - Draft Assessment 2015

    EPA Pesticide Factsheets

    In this Executive Summary of the HF Draft report, EPA highlights the reviews of scientific literature to assess the potential for hydraulic fracturing for oil and gas to change the quality or quantity of drinking water resources.

  3. Diesel Fuels Hydraulic Fracturing (DFHF)

    EPA Pesticide Factsheets

    This webpage provides information on how hydraulic fracturing is regulated by the Underground Injection Control Program. It includes information about what owners and operators need to do to be in compliance and guidance for EPA Class II permit writers.

  4. Underground Injection Control, Hydraulic Fracturing, and Sources of Drinking Water in the Western United States

    NASA Astrophysics Data System (ADS)

    Jackson, R. B.; Kang, M.

    2016-12-01

    Oil and gas extraction is expanding in the United States, attributable to the success of high-volume hydraulic fracturing, and associated wastewater disposal is increasing as a result. The United States currently has approximately 180,000 Class II injection wells associated with the oil and gas industry, more than 50,000 of them in California. Hydraulic fracturing and underground injection often occur many thousands of feet belowground. Previously, however, we documented shallow hydraulic fracturing and other oil and gas activities across the western United States in particular, including California and Wyoming. In eight CA counties, for example, as many as 19% and 35% of oil/gas activities have occurred directly in freshwater zones and USDWs, respectively (Kang and Jackson 2016 PNAS). Here we expand this analysis to examine the underground injection control program and accompanying hydrogeologic variables found in California and elsewhere.

  5. 77 FR 38024 - Oil and Gas; Well Stimulation, Including Hydraulic Fracturing, on Federal and Indian Lands

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-26

    ...On May 11, 2012, the Bureau of Land Management (BLM) published in the Federal Register a proposed rule to regulate hydraulic fracturing on public land and Indian land. The rule would require disclosure to the public of chemicals used in hydraulic fracturing on public land and Indian land, strengthen regulations related to well- bore integrity, and address issues related to flowback water. This rule is necessary to provide useful information to the public and to help ensure that hydraulic fracturing is conducted in a way that adequately protects the environment. Due to the complexity of the rule and the issues surrounding it, the BLM is extending the comment period for 60 days beyond the end of the initial comment period. As a result of this extension, the comment period will now close on September 10, 2012.

  6. Non-double-couple mechanisms of microearthquakes induced by hydraulic fracturing

    USGS Publications Warehouse

    Sileny, J.; Hill, D.P.; Eisner, Leo; Cornet, F.H.

    2009-01-01

    We have inverted polarity and amplitude information of representative microearthquakes to investigate source mechanisms of seismicity induced by hydraulic fracturing in the Carthage Cotton Valley, east Texas, gas field. With vertical arrays of four and eight three-component geophones in two monitoring wells, respectively, we were able to reliably determine source mechanisms of the strongest events with the best signal-to-noise ratio. Our analysis indicates predominantly non-double-couple source mechanisms with positive volumetric component consistent with opening cracks oriented close to expected hydraulic fracture orientation. Our observations suggest the induced events are directly the result of opening cracks by fluid injection, in contrast to many previous studies where the seismicity is interpreted to be primarily shearing caused by pore pressure diffusion into the surrounding rock or associated with shear stresses created at the hydraulic fracture tip. Copyright 2009 by the American Geophysical Union.

  7. Influence of mechanical rock properties and fracture healing rate on crustal fluid flow dynamics

    NASA Astrophysics Data System (ADS)

    Sachau, Till; Bons, Paul; Gomez-Rivas, Enrique; Koehn, Daniel; de Riese, Tamara

    2016-04-01

    Fluid flow in the Earth's crust is very slow over extended periods of time, during which it occurs within the connected pore space of rocks. If the fluid production rate exceeds a certain threshold, matrix permeability alone is insufficient to drain the fluid volume and fluid pressure builds up, thereby reducing the effective stress supported by the rock matrix. Hydraulic fractures form once the effective pressure exceeds the tensile strength of the rock matrix and act subsequently as highly effective fluid conduits. Once local fluid pressure is sufficiently low again, flow ceases and fractures begin to heal. Since fluid flow is controlled by the alternation of fracture permeability and matrix permeability, the flow rate in the system is strongly discontinuous and occurs in intermittent pulses. Resulting hydraulic fracture networks are largely self-organized: opening and subsequent healing of hydraulic fractures depends on the local fluid pressure and on the time-span between fluid pulses. We simulate this process with a computer model and describe the resulting dynamics statistically. Special interest is given to a) the spatially and temporally discontinuous formation and closure of fractures and fracture networks and b) the total flow rate over time. The computer model consists of a crustal-scale dual-porosity setup. Control parameters are the pressure- and time-dependent fracture healing rate, and the strength and the permeability of the intact rock. Statistical analysis involves determination of the multifractal properties and of the power spectral density of the temporal development of the total drainage rate and hydraulic fractures. References Bons, P. D. (2001). The formation of large quartz veins by rapid ascent of fluids in mobile hydrofractures. Tectonophysics, 336, 1-17. Miller, S. a., & Nur, A. (2000). Permeability as a toggle switch in fluid-controlled crustal processes. Earth and Planetary Science Letters, 183(1-2), 133-146. Sachau, T., Bons, P. D., & Gomez-Rivas, E. (2015). Transport efficiency and dynamics of hydraulic fracture networks. Frontiers in Physics, 3.

  8. Inflatable straddle packers and associated equipment for hydraulic fracturing and hydrologic testing

    USGS Publications Warehouse

    Shuter, Eugene; Pemberton, Robert R.

    1978-01-01

    Independent aquifer testing is the only way to fully understand the hydrology encountered in boreholes intersecting multiple aquifers. The most feasible method to accomplish the testing of multiple aquifer wells is through the use inflatable packers. The straddle packers and associated equipment herein described arE valuable tools for making isolated aquifer tests as well as conducting hydraulic fracturing experiments. The system, due to design, permits multiple tests in a bore-hole without the necessity of tripping in and out of the hole to redress the packers prior to testing each zone. Electronic pressure transducers, the output of which was fed into strip-chart recorders, were used to monitor the zone being tested, as well as to monitor the zones above and below the packers. This was necessary to ensure that no leaking had occurred around the packers, causing hydraulic continuity between the isolated zones.

  9. Ambient Seismic Imaging of Hydraulically Active Fractures at km Depths

    NASA Astrophysics Data System (ADS)

    Malin, P. E.; Sicking, C.

    2017-12-01

    Streaming Depth Images of ambient seismic signals using numerous, densely-distributed, receivers have revealed their connection to hydraulically active fractures at 0.5 to 5 km depths. Key for this type of imaging is very high-fold stacking over both multiple receives and periods of a few hours. Also important is suppression of waveforms from fixed, repeating sources such as pumps, generators, and traffic. A typical surface-based ambient SDI survey would use a 3D seismic receiver grid. It would have 1,000 to 4,000 uniformly distributed receivers at a density of 50/km2over the target. If acquired by borehole receivers buried 100 m deep, the density can be dropped by an order of magnitude. We show examples of the acquisition and signal processing scenarios used to produce the ambient images. (Sicking et al., SEG Interpretation, Nov 2017.) While the fracture-fluid source connection of SDI has been verified by drilling and various types of hydraulic tests, the precise nature of the signal's origin is not clear. At the current level of observation, the signals do not have identifiable phases, but can be focused using P wave velocities. Suggested sources are resonances of pressures fluctuations in the fractures, or small, continuous, slips on fractures surfaces. In either case, it appears that the driving mechanism is tectonic strain in an inherently unstable crust. Solid earth tides may enhance these strains. We illustrate the value of the ambient SDI method in its industrial application by showing case histories from energy industry and carbon-capture-sequestration projects. These include ambient images taken before, during, and after hydraulic treatments in un-conventional reservoirs. The results show not only locations of active fractures, but also their time responses to stimulation and production. Time-lapse ambient imaging can forecast and track events such as well interferences and production changes that can result from nearby treatments.

  10. Optimizing Water Management for Collocated Conventional and Unconventional Reservoirs

    NASA Astrophysics Data System (ADS)

    Reedy, R. C.; Scanlon, B. R.; Walsh, M.

    2016-12-01

    With the U.S. producing much more water than oil from oil and gas reservoirs, managing produced water is becoming a critical issue. Here we quantify water production from collocated conventional and unconventional reservoirs using well by well analysis and evaluate various water management strategies using the U.S. Permian Basin as a case study. Water production during the past 15 years in the Permian Basin totaled 55×109 barrels (bbl), 95% from wells in conventional reservoirs resulting in an average water to oil ratio of 12 compared to ratios of 2-3 in wells in unconventional reservoirs. Some of this water ( 25%) is returned to the reservoir for secondary oil recovery (water flooding) while the remaining water is injected into an average of 18,000 salt water disposal wells. Total water production over the past 15 yr (2000 - 2015) exceeds water used for hydraulic fracturing by almost 40 times. Analyzing water injection into salt water disposal wells relative to water requirements for hydraulic fracturing at a 5 square mile grid scale based on 2014 data indicates that water disposal exceeds water requirements for hydraulic fracturing throughout most of the play. Reusing/recycling of produced water for hydraulic fracturing would reduce sourcing and disposal issues related to hydraulic fracturing. Because shales (unconventional reservoirs) provide the source rocks for many conventional reservoirs, coordinating water management from both conventional and unconventional reservoirs can help resolve issues related to sourcing of water for hydraulic fracturing and disposing of produced water. Reusing/recycling produced water can also help reduce water scarcity concerns in some regions.

  11. A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States.

    PubMed

    Vengosh, Avner; Jackson, Robert B; Warner, Nathaniel; Darrah, Thomas H; Kondash, Andrew

    2014-01-01

    The rapid rise of shale gas development through horizontal drilling and high volume hydraulic fracturing has expanded the extraction of hydrocarbon resources in the U.S. The rise of shale gas development has triggered an intense public debate regarding the potential environmental and human health effects from hydraulic fracturing. This paper provides a critical review of the potential risks that shale gas operations pose to water resources, with an emphasis on case studies mostly from the U.S. Four potential risks for water resources are identified: (1) the contamination of shallow aquifers with fugitive hydrocarbon gases (i.e., stray gas contamination), which can also potentially lead to the salinization of shallow groundwater through leaking natural gas wells and subsurface flow; (2) the contamination of surface water and shallow groundwater from spills, leaks, and/or the disposal of inadequately treated shale gas wastewater; (3) the accumulation of toxic and radioactive elements in soil or stream sediments near disposal or spill sites; and (4) the overextraction of water resources for high-volume hydraulic fracturing that could induce water shortages or conflicts with other water users, particularly in water-scarce areas. Analysis of published data (through January 2014) reveals evidence for stray gas contamination, surface water impacts in areas of intensive shale gas development, and the accumulation of radium isotopes in some disposal and spill sites. The direct contamination of shallow groundwater from hydraulic fracturing fluids and deep formation waters by hydraulic fracturing itself, however, remains controversial.

  12. Methodology for assessing quantities of water and proppant injection, and water production associated with development of continuous petroleum accumulations

    USGS Publications Warehouse

    Haines, Seth S.

    2015-07-13

    The quantities of water and hydraulic fracturing proppant required for producing petroleum (oil, gas, and natural gas liquids) from continuous accumulations, and the quantities of water extracted during petroleum production, can be quantitatively assessed using a probabilistic approach. The water and proppant assessment methodology builds on the U.S. Geological Survey methodology for quantitative assessment of undiscovered technically recoverable petroleum resources in continuous accumulations. The U.S. Geological Survey assessment methodology for continuous petroleum accumulations includes fundamental concepts such as geologically defined assessment units, and probabilistic input values including well-drainage area, sweet- and non-sweet-spot areas, and success ratio within the untested area of each assessment unit. In addition to petroleum-related information, required inputs for the water and proppant assessment methodology include probabilistic estimates of per-well water usage for drilling, cementing, and hydraulic-fracture stimulation; the ratio of proppant to water for hydraulic fracturing; the percentage of hydraulic fracturing water that returns to the surface as flowback; and the ratio of produced water to petroleum over the productive life of each well. Water and proppant assessments combine information from recent or current petroleum assessments with water- and proppant-related input values for the assessment unit being studied, using Monte Carlo simulation, to yield probabilistic estimates of the volume of water for drilling, cementing, and hydraulic fracture stimulation; the quantity of proppant for hydraulic fracture stimulation; and the volumes of water produced as flowback shortly after well completion, and produced over the life of the well.

  13. Characterization of a remotely intersected set of hydraulic fractures: Results of intersection well no. 1-B, GRI/DOE multi-site project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branagan, P.T.; Peterson, R.E.; Warpinski, N.R.

    A deviated observation or {open_quotes}intersection{close_quotes} well (IW 1-B) was drilled, cored, logged and tested through an area in a fluvial sandstone reservoir that had previously been hydraulically fractured. The point of intersection with the fractured interval was located 126 ft from the fracture well along one wing of the fracture(s) at a measured depth of 4,675 ft. Direct observations from core and borehole imagery logs in IW 1-B indicate that a total of 11 far-field vertical fractures were created. Clustered in a narrow 2.6-ft-wide interval, these 11 fractures are the direct result of 6 experimental fracture treatments executed in themore » distant frac well over a 4-month period. Diagnostic data acquired through IW I-B included direct core observations and measurements, borehole log imagery, gamma ray (GR) tracer identification, well-to-well pressure transient and fracture conductivity tests, and production logging surveys. The explicit intent in the emplacement of IW 1-B was to provide direct observations and information to characterize the hydraulic fracture(s) in support of a remote-sensing fracture diagnostic program that included microseismic monitoring and inclinometer measurements.« less

  14. Experimental and numerical study of hydraulic fracture geometry in shale formations with complex geologic conditions

    NASA Astrophysics Data System (ADS)

    Ma, Xinfang; Zhou, Tong; Zou, Yushi

    2017-05-01

    Strike-slip fault geostress and dipping laminated structures in Lujiaping shale formation typically result in difficultly predicting hydraulic fracture (HF) geometries. In this study, a novel 3D fracture propagation model based on discrete element method (DEM) is established. A series of simulations is performed to illustrate the influence of vertical stress difference (△σv = σv-σh), fluid viscosity, and injection rate, on HF growth geometry in the dipping layered formation. Results reveal that the fracturing fluid can easily infiltrate the dipping bedding plane (BP) interfaces with low net pressure for △σv = 1 MPa. HF height growth is also restricted. With increased △σv, fracture propagation in the vertical direction is enhanced, and a fracture network is formed by VF and partially opened dipping BPs. However, it is likely to create simple VF for △σv = 20 MPa. Appropriately increasing fracturing fluid viscosity and injection rate is conductive to weakening the containment effect of BPs on HF growth by increasing the fluid net pressure. However, no indication is found on whether a higher fracturing fluid viscosity is better. Higher viscosity can reduce the activation of BPs, so a stimulated reservoir volume is not necessarily increased. All these results can serve as theoretical guidance for the optimization of fracturing treatments in Lujiaping shale formation.

  15. Shale Frac Sequential Flowback Analyses and Reuse Implications, March 30, 2011

    EPA Pesticide Factsheets

    Water re-use challenges and solutions have direct and indirect influences in the design of hydraulic fracturing fluid systems and products used in High Volume, High Rate (HVHR) hydraulic fracturing of shale wells (1,2).

  16. EPA Published Research Related to the Hydraulic Fracturing Study

    EPA Pesticide Factsheets

    A list of publications that will support the draft assessment report on the potential impacts of hydraulic fracturing on drinking water resources. These publications have undergone peer review through the journal where the paper has been published.

  17. EPA Study of Hydraulic Fracturing and Drinking Water Resources

    EPA Science Inventory

    In its FY2010 Appropriations Committee Conference Report, Congress directed EPA to study the relationship between hydraulic fracturing and drinking water, using: • Best available science • Independent sources of information • Transparent, peer-reviewed process • Consultatio...

  18. Analysis of Hydraulic Fracturing Fluid Data from the FracFocus Chemical Disclosure Registry 1

    EPA Pesticide Factsheets

    The EPA analyzed data from the FracFocus Chemical Disclosure Registry 1.0 to better understand the chemicals and water used to hydraulically fracture oil and gas production wells across the United States.

  19. A New Numerical Simulation technology of Multistage Fracturing in Horizontal Well

    NASA Astrophysics Data System (ADS)

    Cheng, Ning; Kang, Kaifeng; Li, Jianming; Liu, Tao; Ding, Kun

    2017-11-01

    Horizontal multi-stage fracturing is recognized the effective development technology of unconventional oil resources. Geological mechanics in the numerical simulation of hydraulic fracturing technology occupies very important position, compared with the conventional numerical simulation technology, because of considering the influence of geological mechanics. New numerical simulation of hydraulic fracturing can more effectively optimize the design of fracturing and evaluate the production after fracturing. This paper studies is based on the three-dimensional stress and rock physics parameters model, using the latest fluid-solid coupling numerical simulation technology to engrave the extension process of fracture and describes the change of stress field in fracturing process, finally predict the production situation.

  20. The direct-current response of electrically conducting fractures excited by a grounded current source

    DOE PAGES

    Weiss, Chester J.; Aldridge, David F.; Knox, Hunter A.; ...

    2016-05-01

    Hydraulic fracture stimulation of low permeability reservoir rocks is an established and cross–cutting technology for enhancing hydrocarbon production in sedimentary formations and increasing heat exchange in crystalline geothermal systems. Whereas the primary measure of success is the ability to keep the newly generated fractures sufficiently open, long–term reservoir management requires a knowledge of the spatial extent, morphology, and distribution of the fractures — knowledge primarily informed by microseismic and ground deformation monitoring. To minimize the uncertainty associated with interpreting such data, we investigate through numerical simulation the usefulness of direct-current (DC) resistivity data for characterizing subsurface fractures with elevated electricalmore » conductivity by considering a geophysical experiment consisting of a grounded current source deployed in a steel cased borehole. In doing so, the casing efficiently energizes the fractures with steady current. Finite element simulations of this experiment for a horizontal well intersecting a small set of vertical fractures indicate that the fractures manifest electrically in (at least) two ways: (1) a local perturbation in electric potential proximal to the fracture set, with limited farfield expression and (2) an overall reduction in the electric potential along the borehole casing due to enhanced current flow through the fractures into the surrounding formation. The change in casing potential results in a measurable effect that can be observed far from fractures themselves. Under these conditions, our results suggest that farfield, timelapse measurements of DC potentials can be interpreted by simple, linear inversion for a Coulomb charge distribution along the borehole path, including a local charge perturbation due to the fractures. As a result, this approach offers an inexpensive method for detecting and monitoring the time-evolution of electrically conducting fractures while ultimately providing an estimate of their effective conductivity — the latter providing an important measure independent of seismic methods on fracture shape, size, and hydraulic connectivity.« less

  1. The direct-current response of electrically conducting fractures excited by a grounded current source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, Chester J.; Aldridge, David F.; Knox, Hunter A.

    Hydraulic fracture stimulation of low permeability reservoir rocks is an established and cross–cutting technology for enhancing hydrocarbon production in sedimentary formations and increasing heat exchange in crystalline geothermal systems. Whereas the primary measure of success is the ability to keep the newly generated fractures sufficiently open, long–term reservoir management requires a knowledge of the spatial extent, morphology, and distribution of the fractures — knowledge primarily informed by microseismic and ground deformation monitoring. To minimize the uncertainty associated with interpreting such data, we investigate through numerical simulation the usefulness of direct-current (DC) resistivity data for characterizing subsurface fractures with elevated electricalmore » conductivity by considering a geophysical experiment consisting of a grounded current source deployed in a steel cased borehole. In doing so, the casing efficiently energizes the fractures with steady current. Finite element simulations of this experiment for a horizontal well intersecting a small set of vertical fractures indicate that the fractures manifest electrically in (at least) two ways: (1) a local perturbation in electric potential proximal to the fracture set, with limited farfield expression and (2) an overall reduction in the electric potential along the borehole casing due to enhanced current flow through the fractures into the surrounding formation. The change in casing potential results in a measurable effect that can be observed far from fractures themselves. Under these conditions, our results suggest that farfield, timelapse measurements of DC potentials can be interpreted by simple, linear inversion for a Coulomb charge distribution along the borehole path, including a local charge perturbation due to the fractures. As a result, this approach offers an inexpensive method for detecting and monitoring the time-evolution of electrically conducting fractures while ultimately providing an estimate of their effective conductivity — the latter providing an important measure independent of seismic methods on fracture shape, size, and hydraulic connectivity.« less

  2. Monitoring radionuclides in subsurface drinking water sources near unconventional drilling operations: a pilot study.

    PubMed

    Nelson, Andrew W; Knight, Andrew W; Eitrheim, Eric S; Schultz, Michael K

    2015-04-01

    Unconventional drilling (the combination of hydraulic fracturing and horizontal drilling) to extract oil and natural gas is expanding rapidly around the world. The rate of expansion challenges scientists and regulators to assess the risks of the new technologies on drinking water resources. One concern is the potential for subsurface drinking water resource contamination by naturally occurring radioactive materials co-extracted during unconventional drilling activities. Given the rate of expansion, opportunities to test drinking water resources in the pre- and post-fracturing setting are rare. This pilot study investigated the levels of natural uranium, lead-210, and polonium-210 in private drinking wells within 2000 m of a large-volume hydraulic fracturing operation--before and approximately one-year following the fracturing activities. Observed radionuclide concentrations in well waters tested did not exceed maximum contaminant levels recommended by state and federal agencies. No statistically-significant differences in radionuclide concentrations were observed in well-water samples collected before and after the hydraulic fracturing activities. Expanded monitoring of private drinking wells before and after hydraulic fracturing activities is needed to develop understanding of the potential for drinking water resource contamination from unconventional drilling and gas extraction activities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Laboratory measurement of tip and global behavior for zero-toughness hydraulic fractures with circular and blade-shaped (PKN) geometry

    NASA Astrophysics Data System (ADS)

    Xing, Pengju; Yoshioka, Keita; Adachi, Jose; El-Fayoumi, Amr; Bunger, Andrew P.

    2017-07-01

    The tip behavior of hydraulic fractures is characterized by a rich nesting of asymptotic solutions, comprising a formidable challenge for the development of efficient and accurate numerical simulators. We present experimental validation of several theoretically-predicted asymptotic behaviors, namely for hydraulic fracture growth under conditions of negligible fracture toughness, with growth progressing from early-time radial geometry to large-time blade-like (PKN) geometry. Our experimental results demonstrate: 1) existence of a asymptotic solution of the form w ∼ s3/2 (LEFM) in the near tip region, where w is the crack opening and s is the distance from the crack tip, 2) transition to an asymptotic solution of the form w ∼ s2/3 away from the near-tip region, with the transition length scale also consistent with theory, 3) transition to an asymptotic solution of the form w ∼ s1/3 after the fracture attains blade-like (PKN) geometry, and 4) existence of a region near the tip of a blade-like (PKN) hydraulic fracture in which plane strain conditions persist, with the thickness of this region of the same order as the crack height.

  4. SERDP and ESTCP Expert Panel Workshop on Reducing the Uncertainty of DNAPL Source Zone Remediation

    DTIC Science & Technology

    2006-09-01

    Conventional – Wells – Geoprobe • Pneumatic Fracturing • Hydraulic Fracturing • Pressure Pulse Success is achieved when enough Oxidant/Reductant is...al, 2003; Parker et al, 2004). In fractured aquitards (i.e., silts/clays and shales/mudstones), where the bulk hydraulic conductivity is...relatively low, DNAPL can readily migrate into these units via the fractures and, after a few years to decades, nearly all the mass resides in the low

  5. Optimizing hydraulic fracture design in the diatomite formation, Lost Hills Field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, D.G.; Klins, M.A.; Manrique, J.F.

    1996-12-31

    Since 1988, over 1.3 billion pounds of proppant have been placed in the Lost Hills Field of Kern County. California in over 2700 hydraulic fracture treatments involving investments of about $150 million. In 1995, systematic reevaluation of the standard, field trial-based fracture design began. Reservoir, geomechanical, and hydraulic fracture characterization; production and fracture modeling; sensitivity analysis; and field test results were integrated to optimize designs with regard to proppant volume, proppant ramps, and perforating strategy. The results support a reduction in proppant volume from 2500 to 1700 lb/ft which will save about $50,000 per well, totalling over $3 million permore » year. Vertical coverage was found to be a key component of fracture quality which could be optimized by eliminating perforations from lower stress intervals, reducing the total number of perforations, and reducing peak slurry loading from 16 to 12 ppa. A relationship between variations in lithology, pore pressure, and stress was observed. Point-source, perforating strategies were investigated and variable multiple fracture behavior was observed. The discussed approach has application in areas where stresses are variable; pay zones are thick; hydraulic fracture design is based primarily on empirical, trial-and-error field test results; and effective, robust predictive models involving real-data feedback have not been incorporated into the design improvement process.« less

  6. Hydraulic stimulation or low water injection in fractured reservoir of the geothermal well GRT-1 at Rittershoffen (France)?

    NASA Astrophysics Data System (ADS)

    Vidal, J.; Genter, A.; Schmittbuhl, J.; Baujard, C.

    2016-12-01

    In the Upper Rhine Graben, several deep geothermal projects, such as at Soultz-sous-Forêts (France) or Basel (Switzerland), were based on the Enhanced Geothermal System technology. The principle underlying this technology consists of increasing the low initial natural hydraulic performance of pre-existing natural fractures in the geothermal granitic reservoir via hydraulic and/or chemical stimulations. Hydraulic stimulation consists of injection of a large amount of water at a high flow rate to promote hydroshearing of pre-existing fractures. At Soultz-sous-Forêts and Basel, the maximum wellhead pressures were 16 MPa and 30 MPa respectively which induced larger magnitude seismic events of 2.9 and 3.4 respectively. Those specific induced seismicity events were felt by local population. At Rittershoffen (France), the geothermal well GRT-1 was drilled in 2012 down to a depth of 2.6 km and penetrates fractured sandstones and granite. The reservoir temperature reaches more than 160°C but the production flowrate was too low for an industrial project economically viable. Thus, the well was subjected to Thermal, Chemical and Hydraulic stimulations, which improved the injectivity index five-fold. During the hydraulic operation, a moderate volume of water was injected from the wellhead with a low pressure of 3 MPa. Approximately 300 microseismic events were detected during the hydraulic stimulations. Due to the low wellhead pressure during injection, no events were felt by nearby residents. The goal of the study was to assess the impact of the stimulation by comparing pre- and post-stimulation acoustic image logs. This comparison revealed minor modifications of almost all the natural fractures. However, not all of these fractures are associated with permeability enhancement. The most important permeability enhancement was observed on the originally permeable fault zone affecting the top of the granitic basement. In the Upper Rhine Graben, several deep geothermal projects, such as at Soultz-sous-Forêts (France) or Basel (Switzerland), were based on the Enhanced Geothermal System technology. The principle underlying this technology consists of increasing the low initial natural hydraulic performance of pre-existing natural fractures in the geothermal granitic reservoir via hydraulic and/or chemical stimulations. Hydraulic stimulation consists of injection of a large amount of water at a high flow rate to promote hydroshearing of pre-existing fractures. At Soultz-sous-Forêts and Basel, the maximum wellhead pressures were 16 MPa and 30 MPa respectively which induced larger magnitude seismic events of 2.9 and 3.4 respectively. Those specific induced seismicity events were felt by local population. At Rittershoffen (France), the geothermal well GRT-1 was drilled in 2012 down to a depth of 2.6 km and penetrates fractured sandstones and granite. The reservoir temperature reaches more than 160°C but the production flowrate was too low for an industrial project economically viable. Thus, the well was subjected to Thermal, Chemical and Hydraulic stimulations, which improved the injectivity index five-fold. During the hydraulic operation, a moderate volume of water was injected from the wellhead with a low pressure of 3 MPa. Approximately 300 microseismic events were detected during the hydraulic stimulations. Due to the low wellhead pressure during injection, no events were felt by nearby residents. The goal of the study was to assess the impact of the stimulation by comparing pre- and post-stimulation acoustic image logs. This comparison revealed minor modifications of almost all the natural fractures. However, not all of these fractures are associated with permeability enhancement. The most important permeability enhancement was observed on the originally permeable fault zone affecting the top of the granitic basement.

  7. Rock deformation models and fluid leak-off in hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Yarushina, Viktoriya M.; Bercovici, David; Oristaglio, Michael L.

    2013-09-01

    Fluid loss into reservoir rocks during hydraulic fracturing is modelled via a poro-elastoplastic pressure diffusion equation in which the total compressibility is a sum of fluid, rock and pore space compressibilities. Inclusion of pore compressibility and porosity-dependent permeability in the model leads to a strong pressure dependence of leak-off (i.e. drainage rate). Dilation of the matrix due to fluid invasion causes higher rates of fluid leak-off. The present model is appropriate for naturally fractured and tight gas reservoirs as well as for soft and poorly consolidated formations whose mechanical behaviour departs from simple elastic laws. Enhancement of the leak-off coefficient by dilation, predicted by the new model, may help explain the low percentage recovery of fracturing fluid (usually between 5 and 50 per cent) in shale gas stimulation by hydraulic fracturing.

  8. Apparatus and method for monitoring underground fracturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warpinski, N.R.; Steinfort, T.D.; Branagan, P.T.

    An apparatus and method for measuring deformation of a rock mass around the vicinity of a fracture, commonly induced by hydraulic fracturing is provided. To this end, a well is drilled offset from the proposed fracture region, if no existing well is present. Once the well is formed to a depth approximately equal or exceeding the depth of the proposed fracture, a plurality of inclinometers, for example tiltmeters, are inserted downhole in the well. The inclinometers are located both above and below the approximate depth of the proposed fracture. The plurality of inclinometers may be arranged on a wireline thatmore » may be retrieved from the downhole portion of the well and used again or, alternatively, the inclinometers may be cemented in place. In either event, the inclinometers are used to measure the deformation of the rock around the induced fracture. 13 figs.« less

  9. a Fractal Network Model for Fractured Porous Media

    NASA Astrophysics Data System (ADS)

    Xu, Peng; Li, Cuihong; Qiu, Shuxia; Sasmito, Agus Pulung

    2016-04-01

    The transport properties and mechanisms of fractured porous media are very important for oil and gas reservoir engineering, hydraulics, environmental science, chemical engineering, etc. In this paper, a fractal dual-porosity model is developed to estimate the equivalent hydraulic properties of fractured porous media, where a fractal tree-like network model is used to characterize the fracture system according to its fractal scaling laws and topological structures. The analytical expressions for the effective permeability of fracture system and fractured porous media, tortuosity, fracture density and fraction are derived. The proposed fractal model has been validated by comparisons with available experimental data and numerical simulation. It has been shown that fractal dimensions for fracture length and aperture have significant effect on the equivalent hydraulic properties of fractured porous media. The effective permeability of fracture system can be increased with the increase of fractal dimensions for fracture length and aperture, while it can be remarkably lowered by introducing tortuosity at large branching angle. Also, a scaling law between the fracture density and fractal dimension for fracture length has been found, where the scaling exponent depends on the fracture number. The present fractal dual-porosity model may shed light on the transport physics of fractured porous media and provide theoretical basis for oil and gas exploitation, underground water, nuclear waste disposal and geothermal energy extraction as well as chemical engineering, etc.

  10. Assessing flow paths in a karst aquifer based on multiple dye tracing tests using stochastic simulation and the MODFLOW-CFP code

    NASA Astrophysics Data System (ADS)

    Assari, Amin; Mohammadi, Zargham

    2017-09-01

    Karst systems show high spatial variability of hydraulic parameters over small distances and this makes their modeling a difficult task with several uncertainties. Interconnections of fractures have a major role on the transport of groundwater, but many of the stochastic methods in use do not have the capability to reproduce these complex structures. A methodology is presented for the quantification of tortuosity using the single normal equation simulation (SNESIM) algorithm and a groundwater flow model. A training image was produced based on the statistical parameters of fractures and then used in the simulation process. The SNESIM algorithm was used to generate 75 realizations of the four classes of fractures in a karst aquifer in Iran. The results from six dye tracing tests were used to assign hydraulic conductivity values to each class of fractures. In the next step, the MODFLOW-CFP and MODPATH codes were consecutively implemented to compute the groundwater flow paths. The 9,000 flow paths obtained from the MODPATH code were further analyzed to calculate the tortuosity factor. Finally, the hydraulic conductivity values calculated from the dye tracing experiments were refined using the actual flow paths of groundwater. The key outcomes of this research are: (1) a methodology for the quantification of tortuosity; (2) hydraulic conductivities, that are incorrectly estimated (biased low) with empirical equations that assume Darcian (laminar) flow with parallel rather than tortuous streamlines; and (3) an understanding of the scale-dependence and non-normal distributions of tortuosity.

  11. Permeability estimations and frictional flow features passing through porous media comprised of structured microbeads

    NASA Astrophysics Data System (ADS)

    Shin, C.

    2017-12-01

    Permeability estimation has been extensively researched in diverse fields; however, methods that suitably consider varying geometries and changes within the flow region, for example, hydraulic fracture closing for several years, are yet to be developed. Therefore, in the present study a new permeability estimation method is presented based on the generalized Darcy's friction flow relation, in particular, by examining frictional flow parameters and characteristics of their variations. For this examination, computational fluid dynamics (CFD) simulations of simple hydraulic fractures filled with five layers of structured microbeads and accompanied by geometry changes and flow transitions are performed. Consequently, it was checked whether the main structures and shapes of each flow path are preserved, even for geometry variations within porous media. However, the scarcity and discontinuity of streamlines increase dramatically in the transient- and turbulent-flow regions. The quantitative and analytic examinations of the frictional flow features were also performed. Accordingly, the modified frictional flow parameters were successfully presented as similarity parameters of porous flows. In conclusion, the generalized Darcy's friction flow relation and friction equivalent permeability (FEP) equation were both modified using the similarity parameters. For verification, the FEP values of the other aperture models were estimated and then it was checked whether they agreed well with the original permeability values. Ultimately, the proposed and verified method is expected to efficiently estimate permeability variations in porous media with changing geometric factors and flow regions, including such instances as hydraulic fracture closings.

  12. QAPP for Hydraulic Fracturing (HF) Surface Spills Data Analysis

    EPA Pesticide Factsheets

    This QAPP provides information concerning the analysis of spills associated with hydraulic fracturing. This project is relevant to both the chemical mixing and flowback and produced water stages of the HF water cycle as found in the HF Study Plan.

  13. Well Completions and Workovers for Wells with Hydraulic Fracturing- September 2012 Workshop

    EPA Pesticide Factsheets

    View presentations on well completions and workovers for wells with hydraulic fracturing, presented at the Stakeholder Workshop on Natural Gas in the Inventory of U.S. Greenhouse Gas (GHG) Emissions and Sinks on Thursday, September 13, 2012.

  14. Analysis of Hydraulic Fracturing Fluid Data from the FracFocus Chemical Disclosure Registry 1 (PDF)

    EPA Pesticide Factsheets

    The EPA analyzed data from the FracFocus Chemical Disclosure Registry 1.0 to better understand the chemicals and water used to hydraulically fracture oil and gas production wells across the United States.

  15. Baseflow recession analysis in a large shale play: Climate variability and anthropogenic alterations mask effects of hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Arciniega-Esparza, Saúl; Breña-Naranjo, Jose Agustín; Hernández-Espriú, Antonio; Pedrozo-Acuña, Adrián; Scanlon, Bridget R.; Nicot, Jean Philippe; Young, Michael H.; Wolaver, Brad D.; Alcocer-Yamanaka, Victor Hugo

    2017-10-01

    Water resources development and landscape alteration exert marked impacts on water-cycle dynamics, including areas subjected to hydraulic fracturing (HF) for exploitation of unconventional oil and gas resources found in shale or tight sandstones. Here we apply a conceptual framework for linking baseflow analysis to changes in water demands from different sectors (e.g. oil/gas extraction, irrigation, and municipal consumption) and climatic variability in the semiarid Eagle Ford play in Texas, USA. We hypothesize that, in water-limited regions, baseflow (Qb) changes are partly due (along with climate variability) to groundwater abstraction. For a more realistic assessment, the analysis was conducted in two different sets of unregulated catchments, located outside and inside the Eagle Ford play. Three periods were considered in the analysis related to HF activities: pre-development (1980-2000), moderate (2001-2008) and intensive (2009-2015) periods. Results indicate that in the Eagle Ford play region, temporal changes in baseflow cannot be directly related to the increase in hydraulic fracturing. Instead, substantial baseflow declines during the intensive period of hydraulic fracturing represent the aggregated effects from the combination of: (1) a historical exceptional drought during 2011-2012; (2) increased groundwater-based irrigation; and (3) an intensive hydraulic fracturing activity.

  16. Fault reactivation and earthquakes with magnitudes of up to Mw4.7 induced by shale-gas hydraulic fracturing in Sichuan Basin, China.

    PubMed

    Lei, Xinglin; Huang, Dongjian; Su, Jinrong; Jiang, Guomao; Wang, Xiaolong; Wang, Hui; Guo, Xin; Fu, Hong

    2017-08-11

    This paper presents a timely and detailed study of significant injection-induced seismicity recently observed in the Sichuan Basin, China, where shale-gas hydraulic fracturing has been initiated and the aggressive production of shale gas is planned for the coming years. Multiple lines of evidence, including an epidemic-type aftershock sequence model, relocated hypocenters, the mechanisms of 13 large events (M W  > 3.5), and numerically calculated Coulomb failure stress results, convincingly suggest that a series of earthquakes with moment magnitudes up to M W 4.7 has been induced by "short-term" (several months at a single well pad) injections for hydraulic fracturing at depths of 2.3 to 3 km. This, in turn, supports the hypothesis that they represent examples of injection-induced fault reactivation. The geologic reasons why earthquake magnitudes associated with hydraulic fracturing operations are so high in this area are discussed. Because hydraulic fracturing operations are on the rise in the Sichuan Basin, it would be beneficial for the geoscience, gas operator, regulator, and academic communities to work collectively to elucidate the local factors governing the high level of injection-induced seismicity, with the ultimate goal of ensuring that shale gas fracking can be carried out effectively and safely.

  17. Zonation of shale reservoir stimulation modes: a conceptual model based on hydraulic fracturing data from the Baltic Basin (Poland).

    NASA Astrophysics Data System (ADS)

    Jarosiński, Marek; Pachytel, Radomir

    2017-04-01

    Depending on the pressure distribution within Stimulated Reservoir Volume (SRV), a different modes of hydraulic fracturing or tectonic fracture reactivation are active. Hydraulic pressure-driven shortening or expansion of reservoir produces changes in stress field that results in decrease of differential stress either by increasing of horizontal stress minimum (Shmin) or/and by decreasing of horizontal stress maximum (SHmax). For further considerations we assume initial strike-slip stress regime which prevails in the Polish part of the Lower Paleozoic Baltic Basin (BB), as well as in majority of the USA shale basins. The data come from vertical and horizontal shale gas exploration wells drilled from one pad located in the middle of the BB. Structural survey of a long core interval combined with stress analysis based on microfrac tests and fracturing tests allow to reconstruct the initial structural and geomechanical state of reservoir. Further geomechanical evolution of the SRV depends on the hydraulic pressure bubble growth, which is in general unknown. However, the state of pressure can be determined close to the injection borehole and in the front of the SRV migrating in time. In our case, we are able to distinguish four stimulation zones characterized by increasingly diverse stimulation modes and successively closer to the borehole injection zone: (1) shear on preexisting fractures generates microseismic events that produce open fractures propped by their natural asperities being impenetrable for proppant grains; (2) above + initial hydraulic opening of natural fractures that are preferentially oriented to the Shmin, which favors microseismic events triggered by secondary shear on bedding planes and produces open spaces supported by natural fracture asperities and fine-grained proppant; (3) above + failure of primary hydraulic fractures, which increases extensional component of the microseismic events and opens space for coarse-grained proppant; (4) above + opening of horizontal bedding fractures, that do not prevail any microseismic mechanism, stabilizes the stresses at the level close to the thrust fault regime and opens space for large amount of proppant. This stimulation mode is undesirable because horizontal bedding fractures do not drain shale matrix efficiently due to low vertical permeability of shale and sealing of bedding planes by high clay content that enhances embedment effect on proppant. The number and order of stimulation zones is site- or basin-specific and may not apply directly to other locations. In the case of strong mechanical layering the stimulation mode can also vary among formations. Large number of preferentially oriented natural fractures (like in majority of boreholes in the BB), may cause the technological hydraulic fractures to play a subordinate role. Because in the BB tectonic fractures are filled with calcite, it may negatively influence gas drainage to stimulated fractures. In our scenario, also the primary shear failure mode is not achieved due to low differential stress in respect to compressive strength of shale. The shape of stimulation zones might not be regular but adjusted to the pattern of stimulated fractures creating principal pathways for hydraulic pressure propagation into reservoir. Bearing in mind the sequence of stimulation mode zones we are able to better understand the pattern of microseismic events and predict, to some extend, the proppant distribution within SRV.

  18. Fracture Network Characteristics Informed by Detailed Studies of Chlorinated Solvent Plumes in Sedimentary Rock Aquifers

    NASA Astrophysics Data System (ADS)

    Parker, B. L.; Chapman, S.

    2015-12-01

    Various numerical approaches have been used to simulate contaminant plumes in fractured porous rock, but the one that allows field and laboratory measurements to be most directly used as inputs to these models is the Discrete Fracture Network (DFN) Approach. To effectively account for fracture-matrix interactions, emphasis must be placed on identifying and parameterizing all of the fractures that participate substantially in groundwater flow and contaminated transport. High resolution plume studies at four primary research sites, where chlorinated solvent plumes serve as long-term (several decades) tracer tests, provide insight concerning the density of the fracture network unattainable by conventional methods. Datasets include contaminant profiles from detailed VOC subsampling informed by continuous core logs, hydraulic head and transmissivity profiles, packer testing and sensitive temperature logging methods in FLUTe™ lined holes. These show presence of many more transmissive fractures, contrasting observations of only a few flow zones per borehole obtained from conventional hydraulic tests including flow metering in open boreholes. Incorporating many more fractures with a wider range of transmissivities is key to predicting contaminant migration. This new understanding of dense fracture networks combined with matrix property measurements have informed 2-D DFN flow and transport modelling using Fractran and HydroGeosphere to simulate plume characteristics ground-truthed by detailed field site plume characterization. These process-based simulations corroborate field findings that plumes in sedimentary rock after decades of transport show limited plume front distances and strong internal plume attenuation by diffusion, transverse dispersion and slow degradation. This successful application of DFN modeling informed by field-derived parameters demonstrates how the DFN Approach can be applied to other sites to inform plume migration rates and remedial efficacy.

  19. Percolation Theory and Modern Hydraulic Fracturing

    NASA Astrophysics Data System (ADS)

    Norris, J. Q.; Turcotte, D. L.; Rundle, J. B.

    2015-12-01

    During the past few years, we have been developing a percolation model for fracking. This model provides a powerful tool for understanding the growth and properties of the complex fracture networks generated during a modern high volume hydraulic fracture stimulations of tight shale reservoirs. The model can also be used to understand the interaction between the growing fracture network and natural reservoir features such as joint sets and faults. Additionally, the model produces a power-law distribution of bursts which can easily be compared to observed microseismicity.

  20. Pore Pressure and Stress Distributions Around a Hydraulic Fracture in Heterogeneous Rock

    NASA Astrophysics Data System (ADS)

    Gao, Qian; Ghassemi, Ahmad

    2017-12-01

    One of the most significant characteristics of unconventional petroleum bearing formations is their heterogeneity, which affects the stress distribution, hydraulic fracture propagation and also fluid flow. This study focuses on the stress and pore pressure redistributions during hydraulic stimulation in a heterogeneous poroelastic rock. Lognormal random distributions of Young's modulus and permeability are generated to simulate the heterogeneous distributions of material properties. A 3D fully coupled poroelastic model based on the finite element method is presented utilizing a displacement-pressure formulation. In order to verify the model, numerical results are compared with analytical solutions showing excellent agreements. The effects of heterogeneities on stress and pore pressure distributions around a penny-shaped fracture in poroelastic rock are then analyzed. Results indicate that the stress and pore pressure distributions are more complex in a heterogeneous reservoir than in a homogeneous one. The spatial extent of stress reorientation during hydraulic stimulations is a function of time and is continuously changing due to the diffusion of pore pressure in the heterogeneous system. In contrast to the stress distributions in homogeneous media, irregular distributions of stresses and pore pressure are observed. Due to the change of material properties, shear stresses and nonuniform deformations are generated. The induced shear stresses in heterogeneous rock cause the initial horizontal principal stresses to rotate out of horizontal planes.

  1. Influence of Natural Fractures Cohesive Properties on Geometry of Hydraulic Fracture Networks

    NASA Astrophysics Data System (ADS)

    Gonzalez-Chavez, M. A.; Dahi Taleghani, A.; Puyang, P.

    2014-12-01

    An integrated modeling methodology is proposed to analyze hydraulic fracturing jobs in the presence of the natural fracture network in the formation. A propagating hydraulic fracture may arrest, cross, or diverts into a preexisting natural crack depending on fracture properties of rock and magnitude and direction of principal rock stresses. Opening of natural fractures during fracturing treatment could define the effectiveness of the stimulation technique. Here, we present an integrated methodology initiated with lab scale fracturing properties using Double Cantilever Beam tests (DCB) to determine cohesive properties of rock and natural fractures. We used cohesive finite element models to reproduce laboratory results to verify the numerical model for the interaction of the hydraulic fracture and individual cemented natural fractures. Based on the initial investigations, we found out that distribution of pre-existing natural fractures could play a significant role in the final geometry of the induced fracture network; however in practice, there is not much information about the distribution of natural fractures in the subsurface due to the limited access. Hence, we propose a special optimization scheme to generate natural fracture geometry from the location of microseismic events. Accordingly, the criteria of evaluating the fitness of natural fracture realizations is defined as the total minimum distance squares of all microseismic events, which is the sum of minimum square distance for all microseismic events. Moreover, an additional constraint in this problem is that we need to set a minimum distance between fracture grids. Using generated natural fracture realizations, forward field-scale simulations are implemented using cohesive finite element analysis to find the best match with the recorded bottomhole pressure. To show the robustness of the proposed workflow for real field problem, we implemented this technique on available data from several well Chicontepec basin to forecast post-treatment production rate. Our results show a constructive approach to integrate microseismic maps with lab mechanical measurements and bottomhole pressure to estimate the geometry of induced fracture network in the subsurface which does not suffer from any limiting assumption about fracture geometries.

  2. Fluid Production Induced Stress Analysis Surrounding an Elliptic Fracture

    NASA Astrophysics Data System (ADS)

    Pandit, Harshad Rajendra

    Hydraulic fracturing is an effective technique used in well stimulation to increase petroleum well production. A combination of multi-stage hydraulic fracturing and horizontal drilling has led to the recent boom in shale gas production which has changed the energy landscape of North America. During the fracking process, highly pressurized mixture of water and proppants (sand and chemicals) is injected into to a crack, which fractures the surrounding rock structure and proppants help in keeping the fracture open. Over a longer period, however, these fractures tend to close due to the difference between the compressive stress exerted by the reservoir on the fracture and the fluid pressure inside the fracture. During production, fluid pressure inside the fracture is reduced further which can accelerate the closure of a fracture. In this thesis, we study the stress distribution around a hydraulic fracture caused by fluid production. It is shown that fluid flow can induce a very high hoop stress near the fracture tip. As the pressure gradient increases stress concentration increases. If a fracture is very thin, the flow induced stress along the fracture decreases, but the stress concentration at the fracture tip increases and become unbounded for an infinitely thin fracture. The result from the present study can be used for studying the fracture closure problem, and ultimately this in turn can lead to the development of better proppants so that prolific well production can be sustained for a long period of time.

  3. Electrically conductive proppant and methods for detecting, locating and characterizing the electrically conductive proppant

    DOEpatents

    Cannan, Chad; Bartel, Lewis; Palisch, Terrence; Aldridge, David

    2015-01-13

    Electrically conductive proppants and methods for detecting, locating, and characterizing same are provided. The electrically conductive proppant can include a substantially uniform coating of an electrically conductive material having a thickness of at least 500 nm. The method can include injecting a hydraulic fluid into a wellbore extending into a subterranean formation at a rate and pressure sufficient to open a fracture therein, injecting into the fracture a fluid containing the electrically conductive proppant, electrically energizing the earth at or near the fracture, and measuring three dimensional (x, y, and z) components of electric and magnetic field responses at a surface of the earth or in an adjacent wellbore.

  4. Passive characterization of hydrofracture properties using signals from hydraulic pumps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rector III, J.W.; Dong, Q.; Patzek, T.W.

    1999-01-02

    Massive hydraulic fracturing is used to enhance production from the low-permeability diatomite fields of Kern County, CA. Although critical for designing injection and recovery well patterns, the in-situ hydraulic fracture geometry is poorly understood. In 1990, Shell conducted an extensive seismic monitoring experiment on several hydrofractures prior to a steam drive pilot to characterize hydrofracture geometry. The seismic data were recorded by cemented downhole geophone arrays in three observation holes (MO-1, MO-2, and MO-3) located near the hydraulic fracture treatment wells. Using lowpass filtering and moveout analysis, events in the geophone recordings are identified as conical shear waves radiating frommore » tube waves traveling down the treatment well. These events appear to be created by the hydraulic pumps, since their amplitudes are correlated with the injection rate and the wellhead pressure. Conical wave amplitudes are related to the tube wave attenuation in the treatment well and to wave-propagation characteristics of the shear component traveling in the earth. During the main fracturing stage, geophones above the fracture zone for wells MO-1 and MO-2 (both roughly along the inferred vertical fracture plane) exhibited conical-wave amplitude increases that are caused by shear wave reflection/scattering off the top of a fracture zone. From changes in the reflection amplitude as a function of depth, we interpret that the fracture zone initially extends along a confined vertical plane at a depth that correlates with many of the microseismic events. Toward the end of the main fracturing stage, the fracture zone extends upward and also extends in width, although we cannot determine the dimensions of the fracture from the reflection amplitudes alone. For all wells, we observe that the reflection (and what we infer to be the initial fracture) begins during a time period where no marked change in fracture pressure or injection rate or slurry concentration is observed. As the main fracturing stage progressed, we observed a significant decrease in amplitude for geophones below the top of the fracture zone. The attenuation was most pronounced for wells MO-1 and MO-2 (along the fracture plane). However, near the end of the main stage, well MO-3 also exhibited a significant amplitude decrease, suggesting the development of a fractured ''process zone'' around the main fracture plane. In addition, well MO-3 also exhibited an amplitude decrease in an interval well below the initial fracture zone. Both the interval and the direction (toward MO-3) correspond with temperature log increases observed during later steam injection.« less

  5. Influence of Concentration and Salinity on the Biodegradability of Organic Additives in Hydraulic Fracturing Fluid

    NASA Astrophysics Data System (ADS)

    Mouser, P. J.; Kekacs, D.

    2014-12-01

    One of the risks associated with the use of hydraulic fracturing technologies for energy development is the potential release of hydraulic fracturing-related fluids into surface waters or shallow aquifers. Many of the organic additives used in hydraulic fracturing fluids are individually biodegradable, but little is know on how they will attenuate within a complex organic fluid in the natural environment. We developed a synthetic hydraulic fracturing fluid based on disclosed recipes used by Marcellus shale operators to evaluate the biodegradation potential of organic additives across a concentration (25 to 200 mg/L DOC) and salinity gradient (0 to 60 g/L) similar to Marcellus shale injected fluids. In aerobic aqueous solutions, microorganisms removed 91% of bulk DOC from low SFF solutions and 57% DOC in solutions having field-used SFF concentrations within 7 days. Under high SFF concentrations, salinity in excess of 20 g/L inhibited organic compound biodegradation for several weeks, after which time the majority (57% to 75%) of DOC remained in solution. After SFF amendment, the initially biodiverse lake or sludge microbial communities were quickly dominated (>79%) by Pseudomonas spp. Approximately 20% of added carbon was converted to biomass while the remainder was respired to CO2 or other metabolites. Two alcohols, isopropanol and octanol, together accounted for 2-4% of the initial DOC, with both compounds decreasing to below detection limits within 7 days. Alcohol degradation was associated with an increase in acetone at mg/L concentrations. These data help to constrain the biodegradation potential of organic additives in hydraulic fracturing fluids and guide our understanding of the microbial communities that may contribute to attenuation in surface waters.

  6. Probabilistic Risk Assessment of Hydraulic Fracturing in Unconventional Reservoirs by Means of Fault Tree Analysis: An Initial Discussion

    NASA Astrophysics Data System (ADS)

    Rodak, C. M.; McHugh, R.; Wei, X.

    2016-12-01

    The development and combination of horizontal drilling and hydraulic fracturing has unlocked unconventional hydrocarbon reserves around the globe. These advances have triggered a number of concerns regarding aquifer contamination and over-exploitation, leading to scientific studies investigating potential risks posed by directional hydraulic fracturing activities. These studies, balanced with potential economic benefits of energy production, are a crucial source of information for communities considering the development of unconventional reservoirs. However, probabilistic quantification of the overall risk posed by hydraulic fracturing at the system level are rare. Here we present the concept of fault tree analysis to determine the overall probability of groundwater contamination or over-exploitation, broadly referred to as the probability of failure. The potential utility of fault tree analysis for the quantification and communication of risks is approached with a general application. However, the fault tree design is robust and can handle various combinations of regional-specific data pertaining to relevant spatial scales, geological conditions, and industry practices where available. All available data are grouped into quantity and quality-based impacts and sub-divided based on the stage of the hydraulic fracturing process in which the data is relevant as described by the USEPA. Each stage is broken down into the unique basic events required for failure; for example, to quantify the risk of an on-site spill we must consider the likelihood, magnitude, composition, and subsurface transport of the spill. The structure of the fault tree described above can be used to render a highly complex system of variables into a straightforward equation for risk calculation based on Boolean logic. This project shows the utility of fault tree analysis for the visual communication of the potential risks of hydraulic fracturing activities on groundwater resources.

  7. A seismological overview of the induced earthquakes in the Duvernay play near Fox Creek, Alberta

    NASA Astrophysics Data System (ADS)

    Schultz, Ryan; Wang, Ruijia; Gu, Yu Jeffrey; Haug, Kristine; Atkinson, Gail

    2017-01-01

    This paper summarizes the current state of understanding regarding the induced seismicity in connection with hydraulic fracturing operations targeting the Duvernay Formation in central Alberta, near the town of Fox Creek. We demonstrate that earthquakes in this region cluster into distinct sequences in time, space, and focal mechanism using (i) cross-correlation detection methods to delineate transient temporal relationships, (ii) double-difference relocations to confirm spatial clustering, and (iii) moment tensor solutions to assess fault motion consistency. The spatiotemporal clustering of the earthquake sequences is strongly related to the nearby hydraulic fracturing operations. In addition, we identify a preference for strike-slip motions on subvertical faults with an approximate 45° P axis orientation, consistent with expectation from the ambient stress field. The hypocentral geometries for two of the largest-magnitude (M 4) sequences that are robustly constrained by local array data provide compelling evidence for planar features starting at Duvernay Formation depths and extending into the shallow Precambrian basement. We interpret these lineaments as subvertical faults orientated approximately north-south, consistent with the regional moment tensor solutions. Finally, we conclude that the sequences were triggered by pore pressure increases in response to hydraulic fracturing stimulations along previously existing faults.

  8. A Comprehensive Overview of the Duvernay Induced Seismicity near Fox Creek, Alberta

    NASA Astrophysics Data System (ADS)

    Schultz, R.; Wang, R.; Gu, Y. J.; Haug, K.; Atkinson, G. M.

    2016-12-01

    In this work we summarize the current state of understanding regarding the induced seismicity related to Duvernay hydraulic fracturing operations in central Alberta, near the town of Fox Creek. Earthquakes in this region cluster into distinct sequences in time, space, and focal mechanism. To corroborate this point, we use cross-correlation detection methods to delineate transient temporal relationships, double-difference relocations to confirm spatial clustering, and moment tensor determinations to show fault motion consistency. The spatiotemporal clustering of sequences is strongly related to nearby hydraulic fracturing operations. In addition, we identify a strong preference for subvertical strike-slip motion with a roughly 45º P-axis orientation, consistent with ambient stress field considerations. The hypocentral geometry in two red traffic light protocol cases, that are robustly constrained by local array data, provide compelling evidence for planar features starting at Duvernay Formation depths and extending into the shallow Precambrian basement. We interpret these features as faults orientated approximately north-south and subvertically, consistent with moment tensor determinations. Finally, we conclude that the primary sequences are best explained as induced events in response to effective stress changes as a result of pore-pressure increase along previously existing faults due to hydraulic fracturing stimulations.

  9. Unveiling the signals from extremely noisy microseismic data for high-resolution hydraulic fracturing monitoring.

    PubMed

    Huang, Weilin; Wang, Runqiu; Li, Huijian; Chen, Yangkang

    2017-09-20

    Microseismic method is an essential technique for monitoring the dynamic status of hydraulic fracturing during the development of unconventional reservoirs. However, one of the challenges in microseismic monitoring is that those seismic signals generated from micro seismicity have extremely low amplitude. We develop a methodology to unveil the signals that are smeared in the strong ambient noise and thus facilitate a more accurate arrival-time picking that will ultimately improve the localization accuracy. In the proposed technique, we decompose the recorded data into several morphological multi-scale components. In order to unveil weak signal, we propose an orthogonalization operator which acts as a time-varying weighting in the morphological reconstruction. The orthogonalization operator is obtained using an inversion process. This orthogonalized morphological reconstruction can be interpreted as a projection of the higher-dimensional vector. We first test the proposed technique using a synthetic dataset. Then the proposed technique is applied to a field dataset recorded in a project in China, in which the signals induced from hydraulic fracturing are recorded by twelve three-component (3-C) geophones in a monitoring well. The result demonstrates that the orthogonalized morphological reconstruction can make the extremely weak microseismic signals detectable.

  10. Chemical and toxicological characterizations of hydraulic fracturing flowback and produced water.

    PubMed

    He, Yuhe; Flynn, Shannon L; Folkerts, Erik J; Zhang, Yifeng; Ruan, Dongliang; Alessi, Daniel S; Martin, Jonathan W; Goss, Greg G

    2017-05-01

    Hydraulic fracturing (HF) has emerged as a major method of unconventional oil and gas recovery. The toxicity of hydraulic fracturing flowback and produced water (HF-FPW) has not been previously reported and is complicated by the combined complexity of organic and inorganic constituents in HF fluids and deep formation water. In this study, we characterized the solids, salts, and organic signatures in an HF-FPW sample from the Duvernay Formation, Alberta, Canada. Untargeted HPLC-Orbitrap revealed numerous unknown dissolved polar organics. Among the most prominent peaks, a substituted tri-phenyl phosphate was identified which is likely an oxidation product of a common polymer antioxidant. Acute toxicity of zebrafish embryo was attributable to high salinity and organic contaminants in HF-FPW with LC50 values ranging from 0.6% to 3.9%, depending on the HF-FPW fractions and embryo developmental stages. Induction of ethoxyresorufin-O-deethylase (EROD) activity was detected, due in part to polycyclic aromatic hydrocarbons (PAHs), and suspended solids might have a synergistic effect on EROD induction. This study demonstrates that toxicological profiling of real HF-FPW sample presents great challenges for assessing the potential risks and impacts posed by HF-FPW spills. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. The Energy and Security Nexus: A Strategic Dilemma

    DTIC Science & Technology

    2011-07-15

    substantial natural gas reserves which can be exploited if we solve problems associated with hydraulic fracturing and competition over water. Other parts of...between energy, water, and security. Sometimes water is diverted to produce energy as in the case of hydropower, hydraulic fracturing , irrigation of

  12. Modeling of fault reactivation and induced seismicity during hydraulic fracturing of shale-gas reservoirs

    EPA Science Inventory

    We have conducted numerical simulation studies to assess the potential for injection-induced fault reactivation and notable seismic events associated with shale-gas hydraulic fracturing operations. The modeling is generally tuned toward conditions usually encountered in the Marce...

  13. Increased likelihood of induced seismicity in highly overpressured shale formations

    NASA Astrophysics Data System (ADS)

    Eaton, David W.; Schultz, Ryan

    2018-05-01

    Fluid-injection processes such as disposal of saltwater or hydraulic fracturing can induce earthquakes by increasing pore pressure and/or shear stress on faults. Natural processes, including transformation of organic material (kerogen) into hydrocarbon and cracking to produce gas, can similarly cause fluid overpressure. Here we document two examples from the Western Canada Sedimentary Basin where earthquakes induced by hydraulic fracturing are strongly clustered within areas characterized by pore-pressure gradient in excess of 15 kPa/m. Despite extensive hydraulic-fracturing activity associated with resource development, induced earthquakes are virtually absent in the Montney and Duvernay Formations elsewhere. Statistical analysis suggests a negligible probability that this spatial correlation developed by chance. This implies that, in addition to known factors such as anthropogenic pore-pressure increase and proximity to critically stressed faults, high in-situ overpressure of shale formations may also represent a controlling factor for inducing earthquakes by hydraulic fracturing. On a geological timescale, natural pore-pressure generation may lead to fault-slip episodes that regulate magnitude of formation-overpressure.

  14. Microbial metabolisms in a 2.5-km-deep ecosystem created by hydraulic fracturing in shales.

    PubMed

    Daly, Rebecca A; Borton, Mikayla A; Wilkins, Michael J; Hoyt, David W; Kountz, Duncan J; Wolfe, Richard A; Welch, Susan A; Marcus, Daniel N; Trexler, Ryan V; MacRae, Jean D; Krzycki, Joseph A; Cole, David R; Mouser, Paula J; Wrighton, Kelly C

    2016-09-05

    Hydraulic fracturing is the industry standard for extracting hydrocarbons from shale formations. Attention has been paid to the economic benefits and environmental impacts of this process, yet the biogeochemical changes induced in the deep subsurface are poorly understood. Recent single-gene investigations revealed that halotolerant microbial communities were enriched after hydraulic fracturing. Here, the reconstruction of 31 unique genomes coupled to metabolite data from the Marcellus and Utica shales revealed that many of the persisting organisms play roles in methylamine cycling, ultimately supporting methanogenesis in the deep biosphere. Fermentation of injected chemical additives also sustains long-term microbial persistence, while thiosulfate reduction could produce sulfide, contributing to reservoir souring and infrastructure corrosion. Extensive links between viruses and microbial hosts demonstrate active viral predation, which may contribute to the release of labile cellular constituents into the extracellular environment. Our analyses show that hydraulic fracturing provides the organismal and chemical inputs for colonization and persistence in the deep terrestrial subsurface.

  15. Microbial metabolisms in a 2.5-km-deep ecosystem created by hydraulic fracturing in shales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daly, Rebecca A.; Borton, Mikayla A.; Wilkins, Michael J.

    Hydraulic fracturing is the industry standard for extracting hydrocarbons from shale formations. Attention has been paid to the economic benefits and environmental impacts of this process, yet the biogeochemical changes induced in the deep subsurface are poorly understood. Recent single-gene investigations revealed that halotolerant microbial communities were enriched after hydraulic fracturing. Here the reconstruction of 31 unique genomes coupled to metabolite data from the Marcellus and Utica shales revealed that methylamine cycling supports methanogenesis in the deep biosphere. Fermentation of injected chemical additives also sustains long-term microbial persistence, while sulfide generation from thiosulfate represents a poorly recognized corrosion mechanism inmore » shales. Extensive links between viruses and microbial hosts demonstrate active viral predation, which may contribute to the release of labile cellular constituents into the extracellular environment. Our analyses show that hydraulic fracturing provides the organismal and chemical inputs for colonization and persistence in the deep terrestrial subsurface.« less

  16. Discourse over a contested technology on Twitter: A case study of hydraulic fracturing.

    PubMed

    Hopke, Jill E; Simis, Molly

    2015-10-04

    High-volume hydraulic fracturing, a drilling simulation technique commonly referred to as "fracking," is a contested technology. In this article, we explore discourse over hydraulic fracturing and the shale industry on the social media platform Twitter during a period of heightened public contention regarding the application of the technology. We study the relative prominence of negative messaging about shale development in relation to pro-shale messaging on Twitter across five hashtags (#fracking, #globalfrackdown, #natgas, #shale, and #shalegas). We analyze the top actors tweeting using the #fracking hashtag and receiving @mentions with the hashtag. Results show statistically significant differences in the sentiment about hydraulic fracturing and shale development across the five hashtags. In addition, results show that the discourse on the main contested hashtag #fracking is dominated by activists, both individual activists and organizations. The highest proportion of tweeters, those posting messages using the hashtag #fracking, were individual activists, while the highest proportion of @mention references went to activist organizations. © The Author(s) 2015.

  17. An analysis of chemicals and other constituents found in produced water from hydraulically fractured wells in California and the challenges for wastewater management.

    PubMed

    Chittick, Emily A; Srebotnjak, Tanja

    2017-12-15

    As high-volume hydraulic fracturing (HF) has grown substantially in the United States over the past decade, so has the volume of produced water (PW), i.e., briny water brought to the surface as a byproduct of oil and gas production. According to a recent study (Groundwater Protection Council, 2015), more than 21 billion barrels of PW were generated in 2012. In addition to being high in TDS, PW may contain hydrocarbons, PAH, alkylphenols, naturally occurring radioactive material (NORM), metals, and other organic and inorganic substances. PW from hydraulically fractured wells includes flowback water, i.e., injection fluids containing chemicals and additives used in the fracturing process such as friction reducers, scale inhibitors, and biocides - many of which are known to cause serious health effects. It is hence important to gain a better understanding of the chemical composition of PW and how it is managed. This case study of PW from hydraulically fractured wells in California provides a first aggregate chemical analysis since data collection began in accordance with California's 2013 oil and gas well stimulation law (SB4, Pavley). The results of analyzing one-time wastewater analyses of 630 wells hydraulically stimulated between April 1, 2014 and June 30, 2015 show that 95% of wells contained measurable and in some cases elevated concentrations of BTEX and PAH compounds. PW from nearly 500 wells contained lead, uranium, and/or other metals. The majority of hazardous chemicals known to be used in HF operations, including formaldehyde and acetone, are not reported in the published reports. The prevalent methods for dealing with PW in California - underground injection and open evaporation ponds - are inadequate for this waste stream due to risks from induced seismicity, well integrity failure, well upsets, accidents and spills. Beneficial reuse of PW, such as for crop irrigation, is as of yet insufficiently safety tested for consumers and agricultural workers as well as plant health. Technological advances in onsite direct PW reuse and recycling look promising but need to control energy requirements, productivity and costs. The case study concludes that (i) reporting of PW chemical composition should be expanded in frequency and cover a wider range of chemicals used in hydraulic fracturing fluids, and (ii) PW management practices should be oriented towards safer and more sustainable options such as reuse and recycling, but with adequate controls in place to ensure their safety and reliability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. The use of broadband microseisms for hydraulic fracture mapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sleefe, G.E.; Warpinski, N.R.; Engler, B.P.

    When a hydrocarbon reservoir is subjected to a hydraulic fracture treatment, the cracking and slipping of the formation results in the emission of seismic energy. The objective of this study was to determine the advantages of using broadband (100 Hz to 1500 M) microseismic emissions to map a hydraulic fracture treatment. A hydraulic fracture experiment was performed in the Piceance Basin of Western Colorado to induce and record broadband microseismic events. The formation was subjected to four processes; break-down/ballout, step-rate test, KCL mini-fracture, and linear-gel mini-fracture. Broadband microseisms were successfully recorded by a novel three-component wall-locked seismic accelerometer package, placedmore » in an observation well 211 ft (64 m) offset from the treatment well. During the two hours of formation treatment, more than 1200 significant microseismic events were observed. The occurrences of the events strongly correlated with the injection bore-bole pressures during the treatments. Using both hodogram analysis and time of arrival information, estimates of the origination point of the seismic events were computed. A map of the event locations yielded a fracture orientation estimate consistent with the known orientation of the field in the formation. This paper describes the technique for acquiring and analyzing broadband microseismic events and illustrate how the new broadband approach can enhance signal detectability and event location resolution.« less

  19. A method to evaluate hydraulic fracture using proppant detection.

    PubMed

    Liu, Juntao; Zhang, Feng; Gardner, Robin P; Hou, Guojing; Zhang, Quanying; Li, Hu

    2015-11-01

    Accurate determination of the proppant placement and propped fracture height are important for evaluating and optimizing stimulation strategies. A technology using non-radioactive proppant and a pulsed neutron gamma energy spectra logging tool to determine the placement and height of propped fractures is proposed. Gd2O3 was incorporated into ceramic proppant and a Monte Carlo method was utilized to build the logging tools and formation models. Characteristic responses of the recorded information of different logging tools to fracture widths, proppant concentrations and influencing factors were studied. The results show that Gd capture gamma rays can be used to evaluate propped fractures and it has higher sensitivity to the change of fracture width and traceable proppant content compared with the exiting non-radioactive proppant evaluation techniques and only an after-fracture measurement is needed for the new method; The changes in gas saturation and borehole size have a great impact on determining propped fractures when compensated neutron and pulsed neutron capture tool are used. A field example is presented to validate the application of the new technique. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Modeling of fault activation and seismicity by injection directly into a fault zone associated with hydraulic fracturing of shale-gas reservoirs

    DOE PAGES

    Rutqvist, Jonny; Rinaldi, Antonio P.; Cappa, Frédéric; ...

    2015-03-01

    We conducted three-dimensional coupled fluid-flow and geomechanical modeling of fault activation and seismicity associated with hydraulic fracturing stimulation of a shale-gas reservoir. We simulated a case in which a horizontal injection well intersects a steeply dip- ping fault, with hydraulic fracturing channeled within the fault, during a 3-hour hydraulic fracturing stage. Consistent with field observations, the simulation results show that shale-gas hydraulic fracturing along faults does not likely induce seismic events that could be felt on the ground surface, but rather results in numerous small microseismic events, as well as aseismic deformations along with the fracture propagation. The calculated seismicmore » moment magnitudes ranged from about -2.0 to 0.5, except for one case assuming a very brittle fault with low residual shear strength, for which the magnitude was 2.3, an event that would likely go unnoticed or might be barely felt by humans at its epicenter. The calculated moment magnitudes showed a dependency on injection depth and fault dip. We attribute such dependency to variation in shear stress on the fault plane and associated variation in stress drop upon reactivation. Our simulations showed that at the end of the 3-hour injection, the rupture zone associated with tensile and shear failure extended to a maximum radius of about 200 m from the injection well. The results of this modeling study for steeply dipping faults at 1000 to 2500 m depth is in agreement with earlier studies and field observations showing that it is very unlikely that activation of a fault by shale-gas hydraulic fracturing at great depth (thousands of meters) could cause felt seismicity or create a new flow path (through fault rupture) that could reach shallow groundwater resources.« less

  1. Modeling of fault activation and seismicity by injection directly into a fault zone associated with hydraulic fracturing of shale-gas reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutqvist, Jonny; Rinaldi, Antonio P.; Cappa, Frédéric

    We conducted three-dimensional coupled fluid-flow and geomechanical modeling of fault activation and seismicity associated with hydraulic fracturing stimulation of a shale-gas reservoir. We simulated a case in which a horizontal injection well intersects a steeply dip- ping fault, with hydraulic fracturing channeled within the fault, during a 3-hour hydraulic fracturing stage. Consistent with field observations, the simulation results show that shale-gas hydraulic fracturing along faults does not likely induce seismic events that could be felt on the ground surface, but rather results in numerous small microseismic events, as well as aseismic deformations along with the fracture propagation. The calculated seismicmore » moment magnitudes ranged from about -2.0 to 0.5, except for one case assuming a very brittle fault with low residual shear strength, for which the magnitude was 2.3, an event that would likely go unnoticed or might be barely felt by humans at its epicenter. The calculated moment magnitudes showed a dependency on injection depth and fault dip. We attribute such dependency to variation in shear stress on the fault plane and associated variation in stress drop upon reactivation. Our simulations showed that at the end of the 3-hour injection, the rupture zone associated with tensile and shear failure extended to a maximum radius of about 200 m from the injection well. The results of this modeling study for steeply dipping faults at 1000 to 2500 m depth is in agreement with earlier studies and field observations showing that it is very unlikely that activation of a fault by shale-gas hydraulic fracturing at great depth (thousands of meters) could cause felt seismicity or create a new flow path (through fault rupture) that could reach shallow groundwater resources.« less

  2. What Matters? The Peak, the Volume and the Duration of Floods and Their Coincidence Across the Globe

    NASA Astrophysics Data System (ADS)

    Lin, Z.; Lin, T.; Lim, S.; Borders, M.

    2014-12-01

    Unconventional oil production at the Bakken Shale of western North Dakota increased more than ten-fold from 2008 to 2014. Although unconventional oil production uses less water than conventional oil production per unit of energy, the cumulative water needs for unconventional oil production due to multiple drilling and fracturing operations may be locally or temporally significant. We collected and analyzed the data for a total of 8453 horizontal wells developed at Bakken in western North Dakota during 2007-2014. The hydraulic fracturing activities mainly occurred in a core area of four counties, including Dunn, McKenzie, Mountrail, and Williams. The annual total water used for hydraulic fracking in western North Dakota increased from 302 ac-ft in 2007 to 21,605 ac-ft in 2014, by more than 70 times in 8 years. The four-county core area accounted for about 90% of total hydraulic fracturing water use in western North Dakota. Compared to the total water uses of all types, hydraulic fracturing water use in the four-county core area accounted for 0.7% in 2007 and 43.1% in 2014. Statewide, this percentage increased from 0.1% to 6.1% in the same time period. As horizontal drilling and hydraulic fracturing technologies matured for unconventional oil development at Bakken, the total depth and the total length of laterals per well seemed to reach an optimal value in the last four years (2011-2014). However, the number of fracturing stages and the volume of fracking water used per completion are still on the rise. The average water use per well increased from about 1.7 ac-ft in 2007 to 11.4 ac-ft in 2014. Correspondingly, the water intensity (volume of fracking water used per foot of laterals) increased from 67 gallon/ft in 2007 to about 372 gallon/ft 2014. The results helped us better understand the environmental impacts of hydraulic fracturing at Bakken and better manage the water resources in the region.

  3. Hydraulic Fracture Induced Seismicity During A Multi-Stage Pad Completion in Western Canada: Evidence of Activation of Multiple, Parallel Faults

    NASA Astrophysics Data System (ADS)

    Maxwell, S.; Garrett, D.; Huang, J.; Usher, P.; Mamer, P.

    2017-12-01

    Following reports of injection induced seismicity in the Western Canadian Sedimentary Basin, regulators have imposed seismic monitoring and traffic light protocols for fracturing operations in specific areas. Here we describe a case study in one of these reservoirs, the Montney Shale in NE British Columbia, where induced seismicity was monitored with a local array during multi-stage hydraulic fracture stimulations on several wells from a single drilling pad. Seismicity primarily occurred during the injection time periods, and correlated with periods of high injection rates and wellhead pressures above fracturing pressures. Sequential hydraulic fracture stages were found to progressively activate several parallel, critically-stressed faults, as illuminated by multiple linear hypocenter patterns in the range between Mw 1 and 3. Moment tensor inversion of larger events indicated a double-couple mechanism consistent with the regional strike-slip stress state and the hypocenter lineations. The critically-stressed faults obliquely cross the well paths which were purposely drilled parallel to the minimum principal stress direction. Seismicity on specific faults started and stopped when fracture initiation points of individual injection stages were proximal to the intersection of the fault and well. The distance ranges when the seismicity occurs is consistent with expected hydraulic fracture dimensions, suggesting that the induced fault slip only occurs when a hydraulic fracture grows directly into the fault and the faults are temporarily exposed to significantly elevated fracture pressures during the injection. Some faults crossed multiple wells and the seismicity was found to restart during injection of proximal stages on adjacent wells, progressively expanding the seismogenic zone of the fault. Progressive fault slip is therefore inferred from the seismicity migrating further along the faults during successive injection stages. An accelerometer was also deployed close to the pad operations providing information about the local ground motion at near offsets, although no ground motion was recorded that exceeds the minimum levels requiring mandatory reporting to the regulator.

  4. Development and Advanced Analysis of Dynamic and Static Casing Strain Monitoring to Characterize the Orientation and Dimensions of Hydraulic Fractures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruno, Michael; Ramos, Juan; Lao, Kang

    Horizontal wells combined with multi-stage hydraulic fracturing have been applied to significantly increase production from low permeability formations, contributing to expanded total US production of oil and gas. Not all applications are successful, however. Field observations indicate that poorly designed or placed fracture stages in horizontal wells can result in significant well casing deformation and damage. In some instances, early fracture stages have deformed the casing enough so that it is not possible to drill out plugs in order to complete subsequent fracture stages. Improved fracture characterization techniques are required to identify potential problems early in the development of themore » field. Over the past decade, several new technologies have been presented as alternatives to characterize the fracture geometry for unconventional reservoirs. Monitoring dynamic casing strain and deformation during hydraulic fracturing represents one of these new techniques. The objective of this research is to evaluate dynamic and static strains imposed on a well casing by single and multiple stage fractures, and to use that information in combination with numerical inversion techniques to estimate fracture characteristics such as length, orientation and post treatment opening. GeoMechanics Technologies, working in cooperation with the Department of Energy, Small Business Innovation Research through DOE SBIR Grant No: DE-SC-0017746, is conducting a research project to complete an advanced analysis of dynamic and static casing strain monitoring to characterize the orientation and dimensions of hydraulic fractures. This report describes our literature review and technical approach. The following conclusions summarize our review and simulation results to date: A literature review was performed related to the fundamental theoretical and analytical developments of stress and strain imposed by hydraulic fracturing along casing completions and deformation monitoring techniques. Analytical solutions have been developed to understand the mechanisms responsible for casing deformation induced by hydraulic fracturing operations. After reviewing a range of casing deformation techniques, including fiber optic sensors, borehole ultrasonic tools and electromagnetic tools, we can state that challenges in deployment, data acquisition and interpretation must still be overcome to ensure successful application of strain measurement and inversion techniques to characterize hydraulic fractures in the field. Numerical models were developed to analyze induced strain along casing, cement and formation interfaces. The location of the monitoring sensor around the completion, mechanical properties of the cement and its condition in the annular space can impact the strain measurement. Field data from fiber optic sensors were evaluated to compare against numerical models. A reasonable match for the fracture height characterization was obtained. Discrepancies in the strain magnitude between the field data and the numerical model was observed and can be caused by temperature effects, the cement condition in the well and the perturbation at the surface during injection. To avoid damage in the fiber optic cable during the perforation (e.g. when setting up multi stage HF scenarios), oriented perforation technologies are suggested. This issue was evidenced in the analyzed field data, where it was not possible to obtain strain measurement below the top of the perforation. This presented a limitation to characterize the entire fracture geometry. The comparison results from numerical modeling and field data for fracture characterization shows that the proposed methodology should be validated with alternative field demonstration techniques using measurements in an offset observation well to monitor and measure the induced strain. We propose to expand on this research in Phase II with a further study of multi-fracture characterization and field demonstration for horizontal wells.« less

  5. Fracture and Medium Modeling, by Analizing Hidraulic Fracturing Induced Microseismicity

    NASA Astrophysics Data System (ADS)

    Gomez Alba, S.; Vargas Jiménez, C. A.

    2014-12-01

    Hydraulic fracturing is an essential technology for most unconventional hydrocarbon resources and many conventional ones as well. The primary limitation on the improvement and optimization of the fracturing process is the minimal access to observe the behavior of the fracture in the subsurface. Without direct observational evidence, hypothetical mechanisms must be assumed and then tested for their validity with indirect information such as wellbore measurements, indirect production and pressure behavior. One of the most important sources of information today is the relation made between micro seismic source mechanisms and fracture behavior. Hydraulic fractures induce some level of micro seismicity when the stress conditions in the Earth are altered by changes in stress during the operations. The result is the sudden movement between rock elements and the radiation of both compressional and shear energy in a seismic range that can be detected and recorded with sensitive receivers. The objective of this work is to provide reasonable information when applying inversion methods in order to estimate the vertical and horizontal spatial heterogeneities in medium and energy radiation distribution of microseisms while fracking operations. The method consist in record microseisms at a previous lineal array of stations (triaxial accelerometers) which are located close to the source coordinates and cover the area of study. The analysis clarify some ideas about what information can be gained from the micro seismic source data and according to the obtained results, what kind of comparisons and associations might be done to evaluate the fracking performance operation. Non uniformities in medium such as faults would be revealed by interpreted scattering coefficients. Fracture properties like distance, velocity and orientation would be also determined by analyzing energy radiation.

  6. Under the Yoke: Europe’s Natural Gas Dependency on Russia

    DTIC Science & Technology

    2012-03-01

    extraction technique known as hydraulic fracturing or " fracking ". North America’s use of this technique is already increasing availability and... fracking go beyond poisoned water supplies and earthquakes," Earth Times, March 22, 2011, http://www.earthtimes.org/energy/dangers- hydraulic ...nuclear power, the EU’s need for gas is increasing while its limited organic gas sources, such as the North Sea, are depleting. Hydraulic fracturing is

  7. The Multi-Porosity Multi-Permeability and Electrokinetic Natures of Shales and Their Effects in Hydraulic Fracturing of Unconventional Shale Reservoirs

    NASA Astrophysics Data System (ADS)

    Liu, C.; Hoang, S. K.; Tran, M. H.; Abousleiman, Y. N.

    2013-12-01

    Imaging studies of unconventional shale reservoir rocks have recently revealed the multi-porosity multi-permeability nature of these intricate formations. In particular, the porosity spectrum of shale reservoir rocks often comprises of the nano-porosity in the organic matters, the inter-particle micro-porosity, and the macroscopic porosity of the natural fracture network. Shale is also well-known for its chemically active behaviors, especially shrinking and swelling when exposed to aqueous solutions, as the results of pore fluid exchange with external environment due to the difference in electro-chemical potentials. In this work, the effects of natural fractures and electrokinetic nature of shale on the formation responses during hydraulic fracturing are examined using the dual-poro-chemo-electro-elasticity approach which is a generalization of the classical Biot's poroelastic formulation. The analyses show that the presence of natural fractures can substantially increase the leak-off rate of fracturing fluid into the formation and create a larger region of high pore pressure near the fracture face as shown in Fig.1a. Due to the additional fluid invasion, the naturally fractured shale swells up more and the fracture aperture closes faster compared to an intrinsically low permeability non-fractured shale formation as shown in Fig.1b. Since naturally fractured zones are commonly targeted as pay zones, it is important to account for the faster fracture closing rate in fractured shales in hydraulic fracturing design. Our results also show that the presence of negative fixed charges on the surface of clay minerals creates an osmotic pressure at the interface of the shale and the external fluid as shown in Fig.1c. This additional Donnan-induced pore pressure can result in significant tensile effective stresses and tensile damage in the shale as shown in Fig.1d. The induced tensile damage can exacerbate the problem of proppant embedment resulting in more fracture closure and reduction of fracture length and productivity. The results also suggest that a fracturing fluid with appropriately designed salinity can minimize the chemically induced tensile damage and, thus, maximize the productivity from the created hydraulic fractures.

  8. Correlations to predict frictional pressure loss of hydraulic-fracturing slurry in coiled tubing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, S.; Zhoi, Y.X.; Bailey, M.

    2009-08-15

    Compared with conventional-tubing fracturing, coiled-tubing (CT) fracturing has several advantages. CT fracturing has become an effective stimulation technique for multizone oil and gas wells. It is also an attractive production-enhancement method for multiseam coalbed-methane wells, and wells with bypassed zones. The excessive frictional pressure loss through CT has been a concern in fracturing. The small diameter of the string limits the cross-sectional area open to flow. Furthermore, the tubing curvature causes secondary flow and results in extra flow resistance. This increased frictional pressure loss results in high surface pumping pressure. The maximum possible pump rate and sand concentration, therefore, havemore » to be reduced. To design a CT fracturing job properly, it is essential to predict the frictional pressure loss through the tubing accurately. This paper presents correlations for the prediction of frictional pressure loss of fracturing slurries in straight tubing and CT. They are developed on the basis of full-scale slurry-flow tests with 11/2-in. CT and slurries prepared with 35 lbm/1,000 gal of guar gel. The extensive experiments were conducted at the full-scale CT-flow test facility. The proposed correlations have been verified with the experimental data and actual field CT-fracturing data. Case studies of wells recently fractured are provided to demonstrate the application of the correlations. The correlations will be useful to the CT engineers in their hydraulics design calculations.« less

  9. Potential Relationships Between Hydraulic Fracturing and Drinking Water Resources

    EPA Science Inventory

    The conferees urge the Agency to carry out a study on the relationship between hydraulic fracturing and drinking water, using a credible approach that relies on the best available science, as well as independent sources of information. The conferees expect the study to be conduct...

  10. The Role of Toxicological Science in Meeting the Challenges and Opportunities of Hydraulic Fracturing

    EPA Science Inventory

    We briefly describe how toxicology can inform the discussion and debate of the merits of hydraulic fracturing by providing information on the potential toxicity of the chemical and physical agents associated with this process, individually and in combination. We consider upstream...

  11. Assessment Methods for Well Integrity During the Hydraulic Fracturing Cycle, March 11, 2011

    EPA Pesticide Factsheets

    The focus of this assessment is to concentrate on well integrity during drilling & completion activities associated with running & cementing of production casing operations, completion activities including the HF process & post-frac activities.

  12. Final Report to DOE EERE – Geothermal Technologies Program Project Title: Monitoring and modeling of fluid flow in a developing enhanced geothermal system (EGS) reservoir

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fehler, Michael

    The primary objective of this project was to improve our ability to predict performance of an Enhanced Geothermal System (EGS) reservoir over time by relating, in a quantitative manner, microseismic imaging with fluid and temperature changes within the reservoir. Historically, microseismic data have been used qualitatively to place bounds on the growth of EGS reservoirs created by large hydraulic fracturing experiments. Previous investigators used an experimentally based fracture opening relationship (fracture aperture as a function of pressure), the spatial extent of microseismic events, and some assumptions about fracture frequency to determine the size of an EGS reservoir created during largemore » pumping tests. We addressed a number of issues (1) locating microearthquakes that occur during hydraulic fracturing, (2) obtaining more information about a reservoir than the microearthquake locations from the microearthquake data, for example, information about the seismic velocity structure of the reservoir or the scattering of seismic waves within the reservoir, (3) developing an improved methodology for estimating properties of fractures that intersect wellbores in a reservoir, and (4) developing a conceptual model for explaining the downward growth of observed seismicity that accompanies some hydraulic injections into geothermal reservoirs. We used two primary microseismic datasets for our work. The work was motivated by a dataset from the Salak Geothermal Field in Indonesia where seismicity accompanying a hydraulic injection was observed to migrate downward. We also used data from the Soultz EGS site in France. We also used Vertical Seismic Profiling data from a well in the United States. The work conducted is of benefit for characterizing reservoirs that are created by hydraulic fracturing for both EGS and for petroleum recovery.« less

  13. Conductivity Evolution of Fracture Proppant in Partial Monolayers and Multilayers

    NASA Astrophysics Data System (ADS)

    Fan, M.; Han, Y.; McClure, J. E.; Chen, C.

    2017-12-01

    Proppant is a granular material, typically sand, coated sand, or man-made ceramic materials, which is widely used in hydraulic fracturing to keep the induced fractures open. Optimization of proppant placement in a hydraulic fracture, as well as its role on the fracture's conductivity, is vital for effective and economical production of petroleum hydrocarbons. In this research, a numerical modeling approach, combining Discrete Element Method (DEM) with lattice Boltzmann (LB) method, was adopted to advance the understanding of fracture conductivity as function of proppant concentration under various effective stresses. DEM was used to simulate effective stress increase and the resultant proppant particle compaction and rearrangement during the process of reservoir depletion due to hydrocarbon extraction. DEM-simulated pore structure was extracted and imported into the LB simulator as boundary conditions to calculate the time-dependent permeability of the proppant pack. We first validated the DEM-LB coupling workflow; the simulated proppant pack permeabilities as functions of effective stress were in good agreement with laboratory measurements. Next, several proppant packs were generated with various proppant concentrations, ranging from partial-monolayer to multilayer structures. Proppant concentration is defined as proppant mass per unit fracture face area. Fracture conductivity as function of proppant concentration was measured in LB simulations. It was found that a partial-monolayer proppant pack with large-diameter particles was optimal in maintaining sufficient conductivity while lowering production costs. Three proppant packs with the same average diameter but different diameter distributions were generated. Specifically, we used the coefficient of variation (COV) of diameter, defined as the ratio of standard deviation of diameter to mean diameter, to characterize the heterogeneity in particle size. We obtained proppant pack porosity, permeability, and fracture width reduction as functions of effective stress. Under the same effective stress, a proppant pack with a smaller diameter COV had higher porosity and permeability and smaller fracture width reduction, which are all favorable for maintaining the fracture conductivity during the process of hydrocarbon extraction.

  14. Fractal Analysis of Permeability of Unsaturated Fractured Rocks

    PubMed Central

    Jiang, Guoping; Shi, Wei; Huang, Lili

    2013-01-01

    A physical conceptual model for water retention in fractured rocks is derived while taking into account the effect of pore size distribution and tortuosity of capillaries. The formula of calculating relative hydraulic conductivity of fractured rock is given based on fractal theory. It is an issue to choose an appropriate capillary pressure-saturation curve in the research of unsaturated fractured mass. The geometric pattern of the fracture bulk is described based on the fractal distribution of tortuosity. The resulting water content expression is then used to estimate the unsaturated hydraulic conductivity of the fractured medium based on the well-known model of Burdine. It is found that for large enough ranges of fracture apertures the new constitutive model converges to the empirical Brooks-Corey model. PMID:23690746

  15. Fractal analysis of permeability of unsaturated fractured rocks.

    PubMed

    Jiang, Guoping; Shi, Wei; Huang, Lili

    2013-01-01

    A physical conceptual model for water retention in fractured rocks is derived while taking into account the effect of pore size distribution and tortuosity of capillaries. The formula of calculating relative hydraulic conductivity of fractured rock is given based on fractal theory. It is an issue to choose an appropriate capillary pressure-saturation curve in the research of unsaturated fractured mass. The geometric pattern of the fracture bulk is described based on the fractal distribution of tortuosity. The resulting water content expression is then used to estimate the unsaturated hydraulic conductivity of the fractured medium based on the well-known model of Burdine. It is found that for large enough ranges of fracture apertures the new constitutive model converges to the empirical Brooks-Corey model.

  16. Mapping Fluid Injection and Associated Induced Seismicity Using InSAR Analysis

    NASA Astrophysics Data System (ADS)

    Thorpe, S. D.; Tiampo, K. F.

    2016-12-01

    In recent years there has been a rise in unconventional oil and gas production in western North America which has been coupled with an increase in the number of earthquakes recorded in these regions, commonly referred to as "induced seismicity" (Ellsworth, 2013). As fluid is pumped into the subsurface during hydraulic fracturing or fluid disposal, the state of stress within the subsurface changes, potentially reactivating pre-existing faults and/or causing subsidence or uplift of the surface. This anthropogenic surface deformation also provides significant hazard to communities and structures surrounding these hydraulic fracturing or fluid disposal sites (Barnhart et al., 2014; Shirzaei et al., 2016). This study aims to relate, both spatially and temporally, this surface deformation to hydraulic fracturing and fluid disposal operations in Alberta (AB) and British Columbia (BC) using Differential Interferometric Synthetic Aperture Radar (InSAR) analysis. Satellite-based geodetic methods such as InSAR provide frequent measurements of ground deformation at high spatial resolution. Based on locations of previously identified induced seismicity in areas throughout AB and BC, images were acquired for multiple locations from the Canadian RADARSAT-2 satellite, including Fort St. John and Fox Creek, AB (Atkinson et al., 2016). Using advanced processing techniques, these images then were stacked to generate coherent interferograms. We present results from this processing as a set of time series that are correlated with both hydraulic fracturing and fluid disposal sites at each location. These results reveal the temporal and spatial relationship between well injection activity and associated induced seismicity in western Canada. Future work will utilise these time series to model subsurface fluid flow, providing important information regarding the nature of the subsurface structure and associated aquifer due to fluid injection and withdrawal.

  17. Borehole geophysical investigation of a formerly used defense site, Machiasport, Maine, 2003-2006

    USGS Publications Warehouse

    Johnson, Carole D.; Mondazzi, Remo A.; Joesten, Peter K.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, collected borehole geophysical logs in 18 boreholes and interpreted the data along with logs from 19 additional boreholes as part of an ongoing, collaborative investigation at three environmental restoration sites in Machiasport, Maine. These sites, located on hilltops overlooking the seacoast, formerly were used for military defense. At each of the sites, chlorinated solvents, used as part of defense-site operations, have contaminated the fractured-rock aquifer. Borehole geophysical techniques and hydraulic methods were used to characterize bedrock lithology, fractures, and hydraulic properties. In addition, each geophysical method was evaluated for effectiveness for site characterization and for potential application for further aquifer characterization and (or) evaluation of remediation efforts. Results of borehole geophysical logging indicate the subsurface is highly fractured, metavolcanic, intrusive, metasedimentary bedrock. Selected geophysical logs were cross-plotted to assess correlations between rock properties. These plots included combinations of gamma, acoustic reflectivity, electromagnetic induction conductivity, normal resistivity, and single-point resistance. The combined use of acoustic televiewer (ATV) imaging and natural gamma logs proved to be effective for delineating rock types. Each of the rock units in the study area could be mapped in the boreholes, on the basis of the gamma and ATV reflectivity signatures. The gamma and mean ATV reflectivity data were used along with the other geophysical logs for an integrated interpretation, yielding a determination of quartz monzonite, rhyolite, metasedimentary units, or diabase/gabbro rock types. The interpretation of rock types on the basis of the geophysical logs compared well to drilling logs and geologic mapping. These results may be helpful for refining the geologic framework at depth. A stereoplot of all fractures intersecting the boreholes indicates numerous fractures, a high proportion of steeply dipping fractures, and considerable variation in fracture orientation. Low-dip-angle fractures associated with unloading and exfoliation are also present, especially at a depth of less than 100 feet below the top of casing. These sub-horizontal fractures help to connect the steeply dipping fractures, making this a highly connected fracture network. The high variability in the fracture orientations also increases the connectivity of the fracture network. A preliminary comparison of all fracture data from all the boreholes suggests fracturing decreases with depth. Because all the boreholes were not drilled to the same depth, however, there is a clear sampling bias. Hence, the deepest boreholes are analyzed separately for fracture density. For the deepest boreholes in the study, the intensity of fracturing does not decline significantly with depth. It is possible the fractures observed in these boreholes become progressively tighter or closed with depth, but this is difficult to verify with the borehole methods used in this investigation. The fact that there are more sealed fractures at depth (observed in optical televiewer logs in some of the boreholes) may indicate less opening of the sealed fractures, less water moving through the rock, and less weathering of the fracture infilling minerals. Although the fracture orientation remained fairly constant with depth, differences in the fracture patterns for the three restoration sites indicate the orientation of fractures varies across the study area. The fractures in boreholes on Miller Mountain predominantly strike northwest-southeast, and to a lesser degree they strike northeast. The fractures on or near the summit of Howard Mountain strike predominantly east-west and dip north and south, and the fractures near the Transmitter Site strike northeast-southwest and dip northwest and southeast. The fracture populations for the boreholes on or near the summit of Howard Mountain show more variation than at the other two sites. This variation may be related to the proximity of the fault, which is northeast of the summit of Howard Mountain. In a side-by-side comparison of stereoplots from selected boreholes, there was no clear correspondence between fracture orientation and proximity to the fault. There is, however, a difference in the total populations of fractures for the boreholes on or near the summit of Howard Mountain and the boreholes near the Transmitter Site. Further to the southwest and further away from the fault, the fractures at the Transmitter Site predominantly strike northeast-southwest and northwest-southeast.Heat-pulse flowmeter (HPFM) logging was used to identify transmissive fractures and to estimate the hydraulic properties along the boreholes. Ambient downflow was measured in 13 boreholes and ambient upflow was measured in 9 boreholes. In nine other bedrock boreholes, the HPFM did not detect measurable vertical flow. The observed direction of vertical flow in the boreholes generally was consistent with the conceptual flow model of downward movement in recharge locations and upward flow in discharge locations or at breaks in the slope of land surface. Under low-rate pumping or injection rates [0.25 to 1 gallon per minute (gal/min)], one to three inflow zones were identified in each borehole. Two limitations of HPFM methods are (1) the HPFM can only identify zones within 1.5 to 2 orders of magnitude of the most transmissive zone in each borehole, and (2) the HPFM cannot detect flow rates less than 0.010 + or - 0.005 gal/min, which corresponds to a transmissivity of about 1 foot squared per day (ft2/d). Consequently, the HPFM is considered an effective tool for identifying the most transmissive fractures in a borehole, down to its detection level. Transmissivities below that cut-off must be measured with another method, such as packer testing or fluid-replacement logging. Where sufficient water-level and flowmeter data were available, HPFM results were numerically modeled. For each borehole model, the fracture location and measured flow rates were specified, and the head and transmissivity of each fracture zone were adjusted until a model fit was achieved with the interpreted ambient and stressed flow profiles. The transmissivities calculated by this method are similar to the results of an open-hole slug test; with the added information from the flowmeter, however, the head and transmissivity of discrete zones also can be determined. The discrete-interval transmissivities ranged from 0.16 to 330 ft2/d. The flowmeter-derived open-hole transmissivity, which is the combined total of each of the transmissive zones, ranged from 1 to 511 ft2/d. The whole-well open-hole transmissivity values determined with HPFM methods were compared to the results of open-hole hydraulic tests. Despite the fact that the flowmeter-derived transmissivities consistently were lower than the estimates derived from open-hole hydraulic tests alone, the correlation was very strong (with a coefficient of determination, R2, of 0.9866), indicating the HPFM method provides a reasonable estimate of transmissivities for the most transmissive fractures in the borehole. Geologic framework, fracture characterization, and estimates of hydraulic properties were interpreted together to characterize the fracture network. The data and interpretation presented in this report should provide information useful for site investigators as the conceptual site groundwater flow model is refined. Collectively, the results and the conceptual site model are important for evaluating remediation options and planning or implementing the design of a well field and borehole completions that will be adequate for monitoring flow, remediation efforts, groundwater levels, and (or) water quality. Similar kinds of borehole geophysical logging (specifically the borehole imaging, gamma, fluid logs, and HPFM) should be conducted in any newly installed boreholes and integrated with interpretations of any nearby boreholes. If boreholes are installed close to existing or other new boreholes, cross-hole flowmeter surveys may be appropriate and may help characterize the aquifer properties and connections between the boreholes.

  18. IG Statement: EPA Inspector General Responds to Sen. Inhofe's Letter about Review of Hydraulic Fracturing

    EPA Pesticide Factsheets

    EPA IG Arthur Elkins Jr. responded to Sen. James Inhofe’s Oct 2, 2014, letter asserting that the EPA OIG should not proceed with a program evaluation of the EPA’s and states’ ability to manage potential threats to water resources from hydraulic fracturing.

  19. Case Study Analysis of the Impacts of Water Acquisition for Hydraulic Fracturing on Local Water Availability

    EPA Science Inventory

    Hydraulic fracturing (HF) is used to develop unconventional gas reserves, but the technology requires large volumes of water, placing demands on local water resources and potentially creating conflict with other users and ecosystems. This study examines the balance between water ...

  20. Report: Enhanced EPA Oversight and Action Can Further Protect Water Resources From the Potential Impacts of Hydraulic Fracturing

    EPA Pesticide Factsheets

    Report #15-P-0204, July 16, 2015. Enhanced EPA oversight of the permitting process for diesel fuel use during hydraulic fracturing can further EPA efforts to protect water resources, and establishment of a plan for determining whether to propose a chemical

  1. Zero Discharge Water Management for Horizontal Shale Gas Well Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul Ziemkiewicz; Jennifer Hause; Raymond Lovett

    Hydraulic fracturing technology (fracking), coupled with horizontal drilling, has facilitated exploitation of huge natural gas (gas) reserves in the Devonian-age Marcellus Shale Formation (Marcellus) of the Appalachian Basin. The most-efficient technique for stimulating Marcellus gas production involves hydraulic fracturing (injection of a water-based fluid and sand mixture) along a horizontal well bore to create a series of hydraulic fractures in the Marcellus. The hydraulic fractures free the shale-trapped gas, allowing it to flow to the well bore where it is conveyed to pipelines for transport and distribution. The hydraulic fracturing process has two significant effects on the local environment. First,more » water withdrawals from local sources compete with the water requirements of ecosystems, domestic and recreational users, and/or agricultural and industrial uses. Second, when the injection phase is over, 10 to 30% of the injected water returns to the surface. This water consists of flowback, which occurs between the completion of fracturing and gas production, and produced water, which occurs during gas production. Collectively referred to as returned frac water (RFW), it is highly saline with varying amounts of organic contamination. It can be disposed of, either by injection into an approved underground injection well, or treated to remove contaminants so that the water meets the requirements of either surface release or recycle use. Depending on the characteristics of the RFW and the availability of satisfactory disposal alternatives, disposal can impose serious costs to the operator. In any case, large quantities of water must be transported to and from well locations, contributing to wear and tear on local roadways that were not designed to handle the heavy loads and increased traffic. The search for a way to mitigate the situation and improve the overall efficiency of shale gas production suggested a treatment method that would allow RFW to be used as make-up water for successive fracs. RFW, however, contains dissolved salts, suspended sediment and oils that may interfere with fracking fluids and/or clog fractures. This would lead to impaired well productivity. The major technical constraints to recycling RFW involves: identification of its composition, determination of industry standards for make-up water, and development of techniques to treat RFW to acceptable levels. If large scale RFW recycling becomes feasible, the industry will realize lower transportation and disposal costs, environmental conflicts, and risks of interruption in well development schedules.« less

  2. Three-dimensional characterization of microporosity and permeability in fault zones hosted in heterolithic succession

    NASA Astrophysics Data System (ADS)

    Riegel, H. B.; Zambrano, M.; Jablonska, D.; Emanuele, T.; Agosta, F.; Mattioni, L.; Rustichelli, A.

    2017-12-01

    The hydraulic properties of fault zones depend upon the individual contributions of the damage zone and the fault core. In the case of the damage zone, it is generally characterized by means of fracture analysis and modelling implementing multiple approaches, for instance the discrete fracture network model, the continuum model, and the channel network model. Conversely, the fault core is more difficult to characterize because it is normally composed of fine grain material generated by friction and wear. If the dimensions of the fault core allows it, the porosity and permeability are normally studied by means of laboratory analysis or in the other case by two dimensional microporosity analysis and in situ measurements of permeability (e.g. micro-permeameter). In this study, a combined approach consisting of fracture modeling, three-dimensional microporosity analysis, and computational fluid dynamics was applied to characterize the hydraulic properties of fault zones. The studied fault zones crosscut a well-cemented heterolithic succession (sandstone and mudstones) and may vary in terms of fault core thickness and composition, fracture properties, kinematics (normal or strike-slip), and displacement. These characteristics produce various splay and fault core behavior. The alternation of sandstone and mudstone layers is responsible for the concurrent occurrence of brittle (fractures) and ductile (clay smearing) deformation. When these alternating layers are faulted, they produce corresponding fault cores which act as conduits or barriers for fluid migration. When analyzing damage zones, accurate field and data acquisition and stochastic modeling was used to determine the hydraulic properties of the rock volume, in relation to the surrounding, undamaged host rock. In the fault cores, the three-dimensional pore network quantitative analysis based on X-ray microtomography images includes porosity, pore connectivity, and specific surface area. In addition, images were used to perform computational fluid simulation (Lattice-Boltzmann multi relaxation time method) and estimate the permeability. These results will be useful for understanding the deformation process and hydraulic properties across meter-scale damage zones.

  3. Numerical Simulation of Permeability Change in Wellbore Cement Fractures after Geomechanical Stress and Geochemical Reactions Using X-ray Computed Tomography Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kabilan, Senthil; Jung, Hun Bok; Kuprat, Andrew P.

    X-ray microtomography (XMT) imaging combined with a three-dimensional (3D) computational fluid dynamics (CFD) modeling technique was used to study the effect of geochemical and geomechanical processes on fracture properties in composite Portland cement–basalt caprock core samples. The effect of fluid properties and flow conditions on fracture permeability was numerically studied by using fluids with varying physical properties and simulating different pressure conditions. CFD revealed that the application of geomechanical stress led to increased fluid flow, which resulted in increased fracture permeability. After CO2-reaction, XMT images displayed preferential precipitation of calcium carbonate within the fractures in the cement matrix and lessmore » precipitation in fractures located at the cement–basalt interface. CFD predicted changes in flow characteristics and differences in absolute values of flow properties due to different pressure gradients. CFD was able to highlight the profound effect of fluid properties on flow characteristics and hydraulic properties of fractures. This study demonstrates the applicability of XMT imaging and CFD as powerful tools for characterizing the hydraulic properties of fractures in a number of applications like geologic carbon sequestration and storage, hydraulic fracturing for shale gas production, and enhanced geothermal systems.« less

  4. Measurement of width and pressure in a propagating hydraulic fracture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warpinski, N.R.

    Measurements of width and pressure in a propagating hydraulic fracture have been made in tests conducted at DOE's Nevada Test Site. This was accomplished by creating an instrumented fracture at a tunnel complex (at a depth of 1400 ft) where realistic in situ conditions prevail, particularly with respect to stress and geologic features such as natural fractures and material anisotropy. Analyses of these data show that the pressure drop along the fracture length is much larger than predicted by viscous theory and currently in use in models today. This is apparently due to the tortuosity of the fracture path, multiplemore » fracture strands, roughness and sharp turns (corners) in the flow path due to natural fractures and rock property variations. It suggests that fracture design models need to be updated to include a more realistic friction factor so that fracture lengths are not overestimated.« less

  5. Electromagnetic Monitoring of Hydraulic Fracturing: Relationship to Permeability, Seismicity, and Stress

    NASA Astrophysics Data System (ADS)

    Thiel, Stephan

    2017-09-01

    Hydraulic fracking is a geoengineering application designed to enhance subsurface permeability to maximize fluid and gas flow. Fracking is commonly used in enhanced geothermal systems (EGS), tight shale gas, and coal seam gas (CSG) plays and in CO_2 storage scenarios. Common monitoring methods include microseismics and mapping small earthquakes with great resolution associated with fracture opening at reservoir depth. Recently, electromagnetic (EM) methods have been employed in the field to provide an alternative way of direct detection of fluids as they are pumped in the ground. Surface magnetotelluric (MT) measurements across EGS show subtle yet detectable changes during fracking derived from time-lapse MT deployments. Changes are directional and are predominantly aligned with current stress field, dictating preferential fracture orientation, supported by microseismic monitoring of frack-related earthquakes. Modeling studies prior to the injection are crucial for survey design and feasibility of monitoring fracks. In particular, knowledge of sediment thickness plays a fundamental role in resolving subtle changes. Numerical forward modeling studies clearly favor some form of downhole measurement to enhance sensitivity; however, these have yet to be conclusively demonstrated in the field. Nevertheless, real surface-based monitoring examples do not necessarily replicate the expected magnitude of change derived from forward modeling and are larger than expected in some cases from EGS and CSG systems. It appears the injected fluid volume alone cannot account for the surface change in resistivity, but connectedness of pore space is also significantly enhanced and nonlinear. Recent numerical studies emphasize the importance of percolation threshold of the fracture network on both electrical resistivity and permeability, which may play an important role in accounting for temporal changes in surface EM measurements during hydraulic fracking.

  6. Cross-hole fracture connectivity assessed using hydraulic responses during liner installations in crystalline bedrock boreholes

    NASA Astrophysics Data System (ADS)

    Persaud, Elisha; Levison, Jana; Pehme, Peeter; Novakowski, Kentner; Parker, Beth

    2018-01-01

    In order to continually improve the current understanding of flow and transport in crystalline bedrock environments, developing and improving fracture system characterization techniques is an important area of study. The presented research examines the installation of flexible, impermeable FLUTe™ liners as a means for assessing cross-hole fracture connectivity. FLUTe™ liners are used to generate a new style of hydraulic pulse, with pressure response monitored in a nearby network of open boreholes drilled in gneissic rock of the Canadian Shield in eastern Ontario, Canada. Borehole liners were installed in six existing 10-15 cm diameter boreholes located 10-35 m apart and drilled to depths ranging between 25-45 m. Liner installation tests were completed consecutively with the number of observation wells available for each test ranging between one and six. The collected pressure response data have been analyzed to identify significant groundwater flow paths between source and observation boreholes as well as to estimate inter-well transmissivity and storativity using a conventional type-curve analysis. While the applied solution relies on a number of general assumptions, it has been found that reasonable comparison can be made to previously completed pulse interference and pumping tests. Results of this research indicate areas where method refinement is necessary, but, nonetheless, highlight the potential for use in crystalline bedrock environments. This method may provide value to future site characterization efforts given that it is complementary to, and can be used in conjunction with, other currently employed borehole liner applications, such as the removal of cross-connection at contaminated sites and the assessment of discrete fracture distributions when boreholes are sealed, recreating natural hydraulic gradient conditions.

  7. A comparison of microseismicity induced by gel-proppant-and water-injected hydraulic fractures, Carthage Cotton Valley gas field, East Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutledge, J. T.; Phillips, W. S.

    In May and July, 1997, a consortia of operators and service companies conducted a series of hydraulic fracture imaging tests in the Carthage Cotton Valley gas field of East Texas (Walker, 1997). Microseismic data were collected and processed for six hydraulic fracture treatments in two wells (3 completion intervals per well) (Mayerhofer et al., 2000). One well was completed with gel-proppant treatments in which a viscous crosslink gel was injected to entrain high concentrations of sand proppant into formation. The second well was completed using treated water and very low proppant concentrations (waterfracs). Waterfracs have been shown to be justmore » as effective as the conventional gel-proppant treatments in Cotton Valley reservoirs, but at greatly reduced cost. Mayerhofer and Meehan (1998) suggest two possible reasons why waterfracs are successful: (1) Induced shear displacement along natural and hydraulic fractures results in self-propping (shear dilation enhanced by fracture branching, proppant and spalled rock fragments), and (2) Fracture extension and cleanup is easier to achieve with low-viscosity fluids. With improved source location precision and focal mechanism determination (fracture plane orientation and sense of slip), we have reexamined the Cotton Valley data, comparing the seismicity induced by water and gel-proppant treatments at common depth intervals. We have improved the location precision and computed focal mechanism of microearthquakes induced during a series of hydraulic fracture completions within the Cotton Valley formation of East Texas. Conventional gel-proppant treatments and treatments using treated water and very low proppant concentrations (waterfracs) were monitored. Waterfracs have been shown to be just as effective as the conventional gel-proppant treatments in Cotton Valley reservoirs, but at greatly reduced cost (Mayerhofer and Meehan, 1998). Comparison of the seismicity induced by the two treatment types show similar distributions of event locations and focal mechanisms for common depth intervals. We interpret the induced seismicity to be primarily controlled by the natural fracture geometry and independent of treatment design. By implication, we expect the effectiveness of shear-induced fracture propping to be independent of the treatment fluid in Cotton Valley reservoirs.« less

  8. Full waveform approach for the automatic detection and location of acoustic emissions from hydraulic fracturing at Äspö (Sweden)

    NASA Astrophysics Data System (ADS)

    Ángel López Comino, José; Cesca, Simone; Heimann, Sebastian; Grigoli, Francesco; Milkereit, Claus; Dahm, Torsten; Zang, Arno

    2017-04-01

    A crucial issue to analyse the induced seismicity for hydraulic fracturing is the detection and location of massive microseismic or acoustic emissions (AE) activity, with robust and sufficiently accurate automatic algorithms. Waveform stacking and coherence analysis have been tested for local seismic monitoring and mining induced seismicity improving the classical detection and location methods (e.g. short-term-average/long-term-average and automatic picking of the P and S waves first arrivals). These techniques are here applied using a full waveform approach for a hydraulic fracturing experiment (Nova project 54-14-1) that took place 410 m below surface in the Äspö Hard Rock Laboratory (Sweden). Continuous waveform recording with a near field network composed by eleven AE sensors are processed. The piezoelectric sensors have their highest sensitive in the frequency range 1 to 100 kHz, but sampling rates were extended to 1 MHz. We present the results obtained during the conventional, continuous water-injection experiment HF2 (Hydraulic Fracture 2). The event detector is based on the stacking of characteristic functions. It follows a delay-and-stack approach, where the likelihood of the hypocenter location in a pre-selected seismogenic volume is mapped by assessing the coherence of the P onset times at different stations. A low detector threshold is chosen, in order not to loose weaker events. This approach also increases the number of false detections. Therefore, the dataset has been revised manually, and detected events classified in terms of true AE events related to the fracturing process, electronic noise related to 50 Hz overtones, long period and other signals. The location of the AE events is further refined using a more accurate waveform stacking method which uses both P and S phases. A 3D grid is generated around the hydraulic fracturing volume and we retrieve a multidimensional matrix, whose absolute maximum corresponds to the spatial coordinates of the seismic event. The relative location accuracy is improved using a master event approach to correct for travel time perturbations. The master event is selected based on a good signal to noise ratio leading to a robust location with small uncertainties. Relative magnitudes are finally estimated upon the decay of the maximal recorded amplitude from the AE location. The resulting catalogue is composed of more than 4000 AEs. Their hypocenters are spatially clustered in a planar region, resembling the main fracture plane; its orientation and size are estimated from the spatial distribution of AEs. This work is funded by the EU H2020 SHEER project. Nova project 54-14-1 was financially supported by the GFZ German Research Center for Geosciences (75%), the KIT Karlsruhe Institute of Technology (15%) and the Nova Center for University Studies, Research and Development (10%). An additional in-kind contribution of SKB for using Äspö Hard Rock Laboratory as test site for geothermal research is greatly acknowledged.

  9. Fractional flow in fractured chalk; a flow and tracer test revisited.

    PubMed

    Odling, N E; West, L J; Hartmann, S; Kilpatrick, A

    2013-04-01

    A multi-borehole pumping and tracer test in fractured chalk is revisited and reinterpreted in the light of fractional flow. Pumping test data analyzed using a fractional flow model gives sub-spherical flow dimensions of 2.2-2.4 which are interpreted as due to the partially penetrating nature of the pumped borehole. The fractional flow model offers greater versatility than classical methods for interpreting pumping tests in fractured aquifers but its use has been hampered because the hydraulic parameters derived are hard to interpret. A method is developed to convert apparent transmissivity and storativity (L(4-n)/T and S(2-n)) to conventional transmissivity and storativity (L2/T and dimensionless) for the case where flow dimension, 2

  10. A Theoretical Investigation of Radial Lateral Wells with Shockwave Completion in Shale Gas Reservoirs

    NASA Astrophysics Data System (ADS)

    Shan, Jia

    As its role in satisfying the energy demand of the U.S. and as a clean fuel has become more significant than ever, the shale gas production in the U.S. has gained increasing momentum over recent years. Thus, effective and environmentally friendly methods to extract shale gas are critical. Hydraulic fracturing has been proven to be efficient in the production of shale gas. However, environmental issues such as underground water contamination and high usage of water make this technology controversial. A potential technology to eliminate the environmental issues concerning water usage and contamination is to use blast fracturing, which uses explosives to create fractures. It can be further aided by HEGF and multi-pulse pressure loading technology, which causes less crushing effect near the wellbore and induces longer fractures. Radial drilling is another relatively new technology that can bypass damage zones due to drilling and create a larger drainage area through drilling horizontal wellbores. Blast fracturing and radial drilling both have the advantage of cost saving. The successful combination of blast fracturing and radial drilling has a great potential for improving U.S. shale gas production. An analytical productivity model was built in this study, considering linear flow from the reservoir rock to the fracture face, to analyze factors affecting shale gas production from radial lateral wells with shockwave completion. Based on the model analyses, the number of fractures per lateral is concluded to be the most effective factor controlling the productivity index of blast-fractured radial lateral wells. This model can be used for feasibility studies of replacing hydraulic fracturing by blast fracturing in shale gas well completions. Prediction of fracture geometry is recommended for future studies.

  11. Estimates of hydraulic fracturing (Frac) sand production, consumption, and reserves in the United States

    USGS Publications Warehouse

    Bleiwas, Donald I.

    2015-01-01

    The practice of fracturing reservoir rock in the United States as a method to increase the flow of oil and gas from wells has a relatively long history and can be traced back to 1858 in Fredonia, New York, when a gas well situated in shale of the Marcellus Formation was successfully fractured using black powder as a blasting agent. Nearly all domestic hydraulic fracturing, often referred to as hydrofracking or fracking, is a process where fluids are injected under high pressure through perforations in the horizontal portion of a well casing in order to generate fractures in reservoir rock with low permeability (“tight”). Because the fractures are in contact with the well bore they can serve as pathways for the recovery of gas and oil. To prevent the fractures generated by the fracking process from closing or becoming obstructed with debris, material termed “proppant,” most commonly high-silica sand, is injected along with water-rich fluids to maintain or “prop” open the fractures. The first commercial application of fracking in the oil and gas industry took place in Oklahoma and Texas during the 1940s. In 1949, over 300 wells, mostly vertical, were fracked (ALL Consulting, LLC, 2012; McGee, 2012; Veil, 2012) and used silica sand as a proppant (Fracline, 2011). The resulting increase in well productivity demonstrated the significant potential that fracking might have for the oil and gas industry.

  12. Mechanical stability of propped hydraulic fractures: A numerical study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asgian, M.I.; Cundall, P.A.; Brady, B.H.

    1995-03-01

    Proppant is sometimes produced along with hydrocarbons in hydraulically fractured petroleum wells. Sometimes 10% to 20% of the proppant is backproduced, which can lead to damaged equipment and downtime. Furthermore, proppant flowback can lead to a substantial loss of fracture conductivity. A numerical study was conducted to help understand what conditions are likely to lead to proppant flowback. In the simulations, the mechanical interaction of a larger number (several thousand) individual proppant grains was modeled with a distinct-element-type code. The numerical simulations show that hydraulic fractures propped with cohesionless, unbonded proppant fail under closure stress at a critical ratio ofmore » mean grain diameter to fracture width. This is consistent with published laboratory studies. The simulations identify the mechanism (arch failure) that triggers the mechanical instability and also show that the primary way that drawdowns (less than {approx} 75 psi/ft) affect proppant flowback is to transport loose proppant grains in front of the stable arch to the wellbore. Drawdowns > 75 psi/ft are sufficient to destabilize the arch and to cause progressive failure of the propped fractures.« less

  13. Modeling Responses of Naturally Fractured Geothermal Reservoir to Low-Pressure Stimulation

    DOE Data Explorer

    Fu, Pengcheng; Carrigan, Charles R.

    2012-01-01

    Hydraulic shearing is an appealing reservoir stimulation strategy for Enhanced Geothermal Systems. It is believed that hydro-shearing is likely to simulate a fracture network that covers a relatively large volume of the reservoir whereas hydro-fracturing tends to create a small number of fractures. In this paper, we examine the geomechanical and hydraulic behaviors of natural fracture systems subjected to hydro-shearing stimulation and develop a coupled numerical model within the framework of discrete fracture network modeling. We found that in the low pressure hydro-shearing regime, the coupling between the fluid phase and the rock solid phase is relatively simple, and the numerical model is computationally efficient. Using this modified model, we study the behavior of a random fracture network subjected to hydro-shearing stimulation.

  14. Measuring the hydraulic fracture-induced deformation of reservoirs and adjacent rocks employing a deeply buried inclinometer array: GRI/DOE multi-site project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branagan, P.T.; Warpinski, N.R.; Engler, B.

    A vertical inclinometer array consisting of six biaxial tiltmeters was cemented behind pipe at depths between 4,273 and 4,628 ft. This wide-aperture array provided real-time tilt profiles corresponding to a series of seven hydraulic fractures being conducted in a nearby offset well in a fluvial sandstone reservoir. Array profiles for three KCl water fracs indicated that height growth was confined to the gross thickness of the reservoir despite extensive fracture length extension. Long-term monitoring of the array suggests that a substantial residual frac: width remained long after fracture closure occurred. For two 400-bbl linear gel minifracs, some height growth wasmore » observed but it was not extensive. Tilt amplitudes related to expanded frac widths were found to increase as would be expected with these thicker frac fluids. When cross-linker and proppant were included in the last fracture, tilt-derived heights were seen to grow rapidly extending into the bounding layers as the more complex fluids entered the fracture system. This inclinometer array was one of several independent, yet complimentary, fracture diagnostics tools that included crosswell multilevel microseismic arrays, FRACPRO{reg_sign} and a remote fracture intersection well. Their purpose was to provide integrated field-scale data regarding hydraulic fracture dynamics and geometry that would be used to construct accurate fracture mapping and diagnostic techniques.« less

  15. Evaluation of Hydraulic Fracturing (Fracking) Plays for Potential Impact on USACE-Managed Waterways

    DTIC Science & Technology

    2015-01-01

    production, these fractures allow for oil and gas to be recovered that normally cannot be produced with other methods . Hydrofracturing is a technology...that dates back to the 1940s. However, new advances in hydrofracturing have resulted in very widespread applications to known geological formations...hydrofracturing to date has been substantial (USEIA 2011). For example, shale oil has increased from less than 50 million barrels in 2007 to over 200

  16. Assessment of the Potential Impacts of Hydraulic Fracturing for Oil and Gas on Drinking Water Resources (External Review Draft)

    EPA Science Inventory

    This assessment provides a review and synthesis of available scientific literature and data to assess the potential for hydraulic fracturing for oil and gas to impact the quality or quantity of drinking water resources, and identifies factors affecting the frequency or severity o...

  17. Stakeholder Engagement Road Map and Peer Review Overview for EPA's Study of the Potential Impacts of Hydraulic Fracturing on Drinking Water Resources

    EPA Pesticide Factsheets

    This roadmap outlines EPA’s plans to build upon the Agency’s commitment to transparency & stakeholder engagement coordinated during the development of the Hydraulic Fracturing (HF) Study Plan & will help inform the 2014 HF study draft assessment report.

  18. 40 CFR 147.52 - State-administered program-Hydraulic Fracturing of Coal Beds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 24 2013-07-01 2013-07-01 false State-administered program-Hydraulic Fracturing of Coal Beds. 147.52 Section 147.52 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) STATE, TRIBAL, AND EPA-ADMINISTERED UNDERGROUND INJECTION CONTROL PROGRAMS Alabama § 147.52...

  19. Proceedings of the Technical Workshops For the Hydraulic Fracturing Study: Well Construction and Operation, U.S. Environmental Protection Agency EPA 600/R-11/046, May 2011

    EPA Pesticide Factsheets

    These proceedings provide an overview of the twenty-four presentations given on well construction and operations at the Technical Workshop for the U.S. EPA Hydraulic Fracturing Study held on March 10–11, 2011.

  20. Potential Impacts of Spilled Hydraulic Fracturing Fluid Chemicals on Water Resources: Types, volumes, and physical-chemical properties of chemicals

    EPA Science Inventory

    Hydraulic fracturing (HF) fluid chemicals spilled on-site may impact drinking water resources. While chemicals generally make up <2% of the total injected fluid composition by mass, spills may have undiluted concentrations. HF fluids typically consist of a mixture of base flui...

  1. Scoping Materials for Initial Design of EPA Research Study on Potential Relationships Between Hydraulic Fracturing and Drinking Water Resources, March 2010

    EPA Pesticide Factsheets

    The purpose of this document is to describe the initial steps in framing a study consistent with the House of Representatives Appropriate Conference committee mandate to carry out a study on the relationship between hydraulic fracturing and drinking water.

  2. Numerical simulation of the environmental impact of hydraulic fracturing of tight/shale gas reservoirs on near-surface ground water: background, base cases, shallow reservoirs, short-term gas and water transport

    EPA Pesticide Factsheets

    Researchers examined gas and water transport between a deep tight shale gas reservoir and a shallow overlying aquifer in the two years following hydraulic fracturing, assuming a pre-existing connecting pathway.

  3. Effect of Shock Loading on Rock Properties and in situ States.

    DTIC Science & Technology

    1980-06-01

    site to contain a nuclear event, con- siderable effort was spent in obtaining the stresses, via the overcore technique and hydraulic fracturing . The...Dining Car region indicated, via hydraulic fracturing , a minimum in situ stress of about 3.8 MPa and via the overcore technique, approximately 2.8 MPa...decreased to about 1.2 MPa, as compared to a pre-Dining Car stress of 3-3.5 MPa. These measurements were obtained via a combina- tion of hydraulic

  4. Measurement of width and pressure in a propagating hydraulic fracture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warpinski, N.R.

    Measurements of width and pressure in a propagating hydraulic fracture have been made in tests conducted at the U.S. DOE's Nevada test site. This was accomplished by creating an ''instrumented fracture'' at a tunnel complex (at a depth of 1,400 ft (425 m)) where realistic insitu conditions prevail, particularly with respect to stress and geologic features such as natural fractures and material anisotropy. Analyses of these data show that the pressure drop along the fracture length is much larger than predicted by viscous theory, which currently is used in models. This apparently is caused by the tortuosity of the fracturemore » path, multiple fracture strands, roughness, and sharp turns (corners) in the flow path resulting from natural fractures and rock property variations. It suggests that fracture design models need to be updated to include a more realistic friction factor so that fracture lengths are not overestimated.« less

  5. Measurement of width and pressure in a propagating hydraulic fracture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warpinski, N.R.

    Measurements of width and pressure in a propagating hydraulic fracture have been made in tests conducted at DOE's Nevada Test Site. This was accomplished by creating an ''instrumented fracture'' at a tunnel complex (at a depth of 1400 ft) where realistic in-situ conditions prevail, particularly with respect to stress and geologic features such as natural fractures and material anisotropy. Analyses of these data show that the pressure drop along the fracture length is much larger than predicted by viscous theory and currently in use in models today. This is apparently due to the tortuosity of the fracture path, multiple fracturemore » strands, roughness and sharp turns (corners) in the flow path due to natural fractures and rock property variations. It suggests that fracture design models need to be updated to include a more realistic friction factor so that fracture lengths are not overestimated.« less

  6. Optimizing for Large Planar Fractures in Multistage Horizontal Wells in Enhanced Geothermal Systems Using a Coupled Fluid and Geomechanics Simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Xiexiaomen; Tutuncu, Azra; Eustes, Alfred

    Enhanced Geothermal Systems (EGS) could potentially use technological advancements in coupled implementation of horizontal drilling and multistage hydraulic fracturing techniques in tight oil and shale gas reservoirs along with improvements in reservoir simulation techniques to design and create EGS reservoirs. In this study, a commercial hydraulic fracture simulation package, Mangrove by Schlumberger, was used in an EGS model with largely distributed pre-existing natural fractures to model fracture propagation during the creation of a complex fracture network. The main goal of this study is to investigate optimum treatment parameters in creating multiple large, planar fractures to hydraulically connect a horizontal injectionmore » well and a horizontal production well that are 10,000 ft. deep and spaced 500 ft. apart from each other. A matrix of simulations for this study was carried out to determine the influence of reservoir and treatment parameters on preventing (or aiding) the creation of large planar fractures. The reservoir parameters investigated during the matrix simulations include the in-situ stress state and properties of the natural fracture set such as the primary and secondary fracture orientation, average fracture length, and average fracture spacing. The treatment parameters investigated during the simulations were fluid viscosity, proppant concentration, pump rate, and pump volume. A final simulation with optimized design parameters was performed. The optimized design simulation indicated that high fluid viscosity, high proppant concentration, large pump volume and pump rate tend to minimize the complexity of the created fracture network. Additionally, a reservoir with 'friendly' formation characteristics such as large stress anisotropy, natural fractures set parallel to the maximum horizontal principal stress (SHmax), and large natural fracture spacing also promote the creation of large planar fractures while minimizing fracture complexity.« less

  7. Initiation and propagation of a PKN hydraulic fracture in permeable rock: Toughness dominated regime

    NASA Astrophysics Data System (ADS)

    Sarvaramini, E.; Garagash, D.

    2011-12-01

    The present work investigates the injection of a low-viscosity fluid into a pre-existing fracture with constrained height (PKN), as in waterflooding or supercritical CO2 injection. Contrary to conventional hydraulic fracturing, where 'cake build up' limits diffusion to a small zone, the low viscosity fluid allows for diffusion over a wider range of scales. Over large injection times the pattern becomes 2 or 3-D, necessitating a full-space diffusion modeling. In addition, the dissipation of energy associated with fracturing of rock dominates the energy needed for the low-viscosity fluid flow into the propagating crack. As a result, the fracture toughness is important in evaluating both the initiation and the ensuing propagation of these fractures. Classical PKN hydraulic fracturing model, amended to account for full-space leak-off and the toughness [Garagash, unpublished 2009], is used to evaluate the pressure history and fluid leak-off volume during the injection of low viscosity fluid into a pre-existing and initially stationary. In order to find the pressure history, the stationary crack is first subject to a step pressure increase. The response of the porous medium to the step pressure increase in terms of fluid leak-off volume provides the fundamental solution, which then can be used to find the transient pressurization using Duhamel theorem [Detournay & Cheng, IJSS 1991]. For the step pressure increase an integral equation technique is used to find the leak-off rate history. For small time the solution must converge to short time asymptote, which corresponds to 1-D diffusion pattern. However, as the diffusion length in the zone around the fracture increases the assumption of a 1-D pattern is no longer valid and the diffusion follows a 2-D pattern. The solution to the corresponding integral equation gives the leak-off rate history, which is used to find the cumulative leak-off volume. The transient pressurization solution is obtained using global conservation of fluid injected into the fracture. With increasing pressure in the fracture due to the fluid injection, the energy release rate eventually becomes equal to the toughness and fracture propagates. The evolution of the fracture length is established using the method similar to the one employed for the stationary crack.

  8. Water Use and Management in the Bakken Shale Oil Play in North Dakota

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horner, R. M.; Harto, C. B.; Jackson, R. B.

    2016-03-15

    Oil and natural gas development in the Bakken shale play of North Dakota has grown substantially since 2008. This study provides a comprehensive overview and analysis of water quantity and management impacts from this development by (1) estimating water demand for hydraulic fracturing in the Bakken from 2008 to 2012; (2) compiling volume estimates for maintenance water, or brine dilution water; (3) calculating water intensities normalized by the amount of oil produced, or estimated ultimate recovery (EUR); (4) estimating domestic water demand associated with the large oil services population; (5) analyzing the change in wastewater volumes from 2005 to 2012;more » and (6) examining existing water sources used to meet demand. Water use for hydraulic fracturing in the North Dakota Bakken grew 5-fold from 770 million gallons in 2008 to 4.3 billion gallons in 2012. First-year wastewater volumes grew in parallel, from an annual average of 1 135 000 gallons per well in 2008 to 2 905 000 gallons in 2012, exceeding the mean volume of water used in hydraulic fracturing and surpassing typical 4-year wastewater totals for the Barnett, Denver, and Marcellus basins. Surprisingly, domestic water demand from the temporary oilfield services population in the region may be comparable to the regional water demand from hydraulic fracturing activities. Existing groundwater resources are inadequate to meet the demand for hydraulic fracturing, but there appear to be adequate surface water resources, provided that access is available.« less

  9. Identification, characterization, and analysis of hydraulically conductive fractures in granitic basement rocks, Millville, Massachusetts

    USGS Publications Warehouse

    Paillet, Frederick L.; Ollila, P.W.

    1994-01-01

    A suite of geophysical logs designed to identify and characterize fractures and water production in fractures was run in six bedrock boreholes at a ground-water contamination site near the towns of Millville and Uxbridge in south-central Massachusetts. The geophysical logs used in this study included conventional gamma, single-point resistance, borehole fluid resistivity, caliper, spontaneous potential, and temperature; and the borehole televiewer and heat-pulse flowmeter, which are not usually used to log bedrock water-supply wells. Downward flow under ambient hydraulic-head conditions was measured in three of the boreholes at the site, and the profile of fluid column resistivity inferred from the logs indicated downward flow in all six boreholes. Steady injection tests at about 1.0 gallon per minute were used to identify fractures capable of conducting flow under test conditions. Sixteen of 157 fracturesidentified on the televiewer logs and interpreted as permeable fractures in the data analysis were determined to conduct flow under ambient hydraulic-head conditions or during injection. Hydraulic-head monitoring in the bedrock boreholes indicated a consistent head difference between the upper and lower parts of the boreholes. This naturally occurring hydraulic-head condition may account, in part, for the transport of contaminants from the overlying soil into the bedrock aquifer. The downward flow may also account for the decrease in contaminant concentrations found in some boreholes after routine use of the boreholes as water-supply wells was discontinued.

  10. Water Use and Management in the Bakken Shale Oil Play in North Dakota.

    PubMed

    Horner, R M; Harto, C B; Jackson, R B; Lowry, E R; Brandt, A R; Yeskoo, T W; Murphy, D J; Clark, C E

    2016-03-15

    Oil and natural gas development in the Bakken shale play of North Dakota has grown substantially since 2008. This study provides a comprehensive overview and analysis of water quantity and management impacts from this development by (1) estimating water demand for hydraulic fracturing in the Bakken from 2008 to 2012; (2) compiling volume estimates for maintenance water, or brine dilution water; (3) calculating water intensities normalized by the amount of oil produced, or estimated ultimate recovery (EUR); (4) estimating domestic water demand associated with the large oil services population; (5) analyzing the change in wastewater volumes from 2005 to 2012; and (6) examining existing water sources used to meet demand. Water use for hydraulic fracturing in the North Dakota Bakken grew 5-fold from 770 million gallons in 2008 to 4.3 billion gallons in 2012. First-year wastewater volumes grew in parallel, from an annual average of 1,135,000 gallons per well in 2008 to 2,905,000 gallons in 2012, exceeding the mean volume of water used in hydraulic fracturing and surpassing typical 4-year wastewater totals for the Barnett, Denver, and Marcellus basins. Surprisingly, domestic water demand from the temporary oilfield services population in the region may be comparable to the regional water demand from hydraulic fracturing activities. Existing groundwater resources are inadequate to meet the demand for hydraulic fracturing, but there appear to be adequate surface water resources, provided that access is available.

  11. Effect of rock rheology on fluid leak- off during hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Yarushina, V. M.; Bercovici, D.; Oristaglio, M. L.

    2012-04-01

    In this communication, we evaluate the effect of rock rheology on fluid leak­off during hydraulic fracturing of reservoirs. Fluid leak-off in hydraulic fracturing is often nonlinear. The simple linear model developed by Carter (1957) for flow of fracturing fluid into a reservoir has three different regions in the fractured zone: a filter cake on the fracture face, formed by solid additives from the fracturing fluid; a filtrate zone affected by invasion of the fracturing fluid; and a reservoir zone with the original formation fluid. The width of each zone, as well as its permeability and pressure drop, is assumed to remain constant. Physical intuition suggests some straightforward corrections to this classical theory to take into account the pressure dependence of permeability, the compressibility or non-Newtonian rheology of fracturing fluid, and the radial (versus linear) geometry of fluid leak­off from the borehole. All of these refinements, however, still assume that the reservoir rock adjacent to the fracture face is non­deformable. Although the effect of poroelastic stress changes on leak-off is usually thought to be negligible, at the very high fluid pressures used in hydraulic fracturing, where the stresses exceed the rock strength, elastic rheology may not be the best choice. For example, calculations show that perfectly elastic rock formations do not undergo the degree of compaction typically seen in sedimentary basins. Therefore, pseudo-elastic or elastoplastic models are used to fit observed porosity profiles with depth. Starting from balance equations for mass and momentum for fluid and rock, we derive a hydraulic flow equation coupled with a porosity equation describing rock compaction. The result resembles a pressure diffusion equation with the total compressibility being a sum of fluid, rock and pore-space compressibilities. With linear elastic rheology, the bulk formation compressibility is dominated by fluid compressibility. But the possibility of permanent, time-independent (plastic) rock deformation significantly increases the pore space compressibility (compaction), which becomes a leading term in the total compressibility. Inclusion of rock and fluid compressibilities in the model can explain both linear and nonlinear leak­off. In particular, inclusion of rock compaction and decompaction may be important for description of naturally fractured and tight gas reservoirs for which very strong dependence of permeability on porosity has been reported. Carter R.D. Derivation of the general equation for estimating the extent of the fractured area. Appendix I of "Optimum fluid characteristics for fracture extension", Drilling and Production Practice, G.C. Howard and C.R.Fast, New York, New York, USA, American Petroleum Institute (1957), 261-269.

  12. AN INTEGRATED VIEW OF GROUNDWATER FLOW CHARACTERIZATION AND MODELING IN FRACTURED GEOLOGIC MEDIA

    EPA Science Inventory

    The particular attributes of fractured geologic media pertaining to groundwater flow characterization and modeling are presented. These cover the issues of fracture network and hydraulic control of fracture geometry parameters, major and minor fractures, heterogeneity, anisotrop...

  13. Hydraulic Tomography in Fractured Sedimentary Rocks to Estimate High-Resolution 3-D Distribution of Hydraulic Conductivity

    NASA Astrophysics Data System (ADS)

    Tiedeman, C. R.; Barrash, W.; Thrash, C. J.; Patterson, J.; Johnson, C. D.

    2016-12-01

    Hydraulic tomography was performed in a 100 m2 by 20 m thick volume of contaminated fractured mudstones at the former Naval Air Warfare Center (NAWC) in the Newark Basin, New Jersey, with the objective of estimating the detailed distribution of hydraulic conductivity (K). Characterizing the fine-scale K variability is important for designing effective remediation strategies in complex geologic settings such as fractured rock. In the tomography experiment, packers isolated two to six intervals in each of seven boreholes in the volume of investigation, and fiber-optic pressure transducers enabled collection of high-resolution drawdown observations. A hydraulic tomography dataset was obtained by conducting multiple aquifer tests in which a given isolated well interval was pumped and drawdown was monitored in all other intervals. The collective data from all tests display a wide range of behavior indicative of highly heterogeneous K within the tested volume, such as: drawdown curves for different intervals crossing one another on drawdown-time plots; unique drawdown curve shapes for certain intervals; and intervals with negligible drawdown adjacent to intervals with large drawdown. Tomographic inversion of data from 15 tests conducted in the first field season focused on estimating the K distribution at a scale of 1 m3 over approximately 25% of the investigated volume, where observation density was greatest. The estimated K field is consistent with prior geologic, geophysical, and hydraulic information, including: highly variable K within bedding-plane-parting fractures that are the primary flow and transport paths at NAWC, connected high-K features perpendicular to bedding, and a spatially heterogeneous distribution of low-K rock matrix and closed fractures. Subsequent tomographic testing was conducted in the second field season, with the region of high observation density expanded to cover a greater volume of the wellfield.

  14. Fracture characterization in a deep geothermal reservoir

    NASA Astrophysics Data System (ADS)

    Rühaak, Wolfram; Hehn, Vera; Hassanzadegan, Alireza; Tischner, Torsten

    2017-04-01

    At the geothermal research drilling Horstberg in North West Germany studies for the characterization of a vertical fracture are performed. The fracture was created by a massive hydraulic stimulation in 2003 in approx. 3700 m depth within rocks of the middle Buntsandstein. The fracture surface is in the order of 100,000 m2, depending on the flow rate at which water is injected. Besides hydraulic characterization, multiple tracer tests are planned. At the depth of interest the reservoir temperature is around 150 °C, pressure is around 600 bar (60 MPa) and due to salinity the water density is around 1200 kg/m3. Knowledge of tracer stability and behavior at these reservoir conditions is limited. Additionally, the planned tracer tests will be performed within one single borehole. In a closed cycle water is injected into the inner pipe of the well (tubing), which is separated by a permanent packer from the outer pipe (annulus). The water is produced back from the annulus approximately 150 m above the injection point. Thus, the circulation of thermal water between two sandstone layers via an artificial fracture can be achieved. Tests will be carried out with different flow rates and accordingly with different pressures, resulting in different fracture areas. Due to this test setup tracer signals will be stacked and will remain for a longer time in the fracture - which is the reason why different tracers are required. For an optimal characterization both conservative and reactive tracers will be used and different injection methods (continuous, instantaneous and pulsed) will be applied. For a proper setup of the tracer test numerical modelling studies are performed in advance. The relevant thermal, hydraulic and chemical processes (mainly adsorption and degredation) are coupled, resulting in a THC model; additionally the dependence of fracture aperture and area on fluid pressure has to be considered. Instead of applying a mechanically coupled model (THMC) a simplified approach is applied which takes the pressure dependence of the fracture permeability into account by using constitutive relations. Results of this modeling study will be presented together with details of the planned field study.

  15. Optimization of Well Configuration for a Sedimentary Enhanced Geothermal Reservoir

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Mengnan; Cho, JaeKyoung; Zerpa, Luis E.

    The extraction of geothermal energy in the form of hot water from sedimentary rock formations could expand the current geothermal energy resources toward new regions. From previous work, we observed that sedimentary geothermal reservoirs with relatively low permeability would require the application of enhancement techniques (e.g., well hydraulic stimulation) to achieve commercial production/injection rates. In this paper we extend our previous work to develop a methodology to determine the optimum well configuration that maximizes the hydraulic performance of the geothermal system. The geothermal systems considered consist of one vertical well doublet system with hydraulic fractures, and three horizontal well configurationsmore » with open-hole completion, longitudinal fractures and transverse fractures, respectively. A commercial thermal reservoir simulation is used to evaluate the geothermal reservoir performance using as design parameters the well spacing and the length of the horizontal wells. The results obtained from the numerical simulations are used to build a response surface model based on the multiple linear regression method. The optimum configuration of the sedimentary geothermal systems is obtained from the analysis of the response surface model. The proposed methodology is applied to a case study based on a reservoir model of the Lyons sandstone formation, located in the Wattenberg field, Denver-Julesburg basin, Colorado.« less

  16. Practical measures for reducing the risk of environmental contamination in shale energy production.

    PubMed

    Ziemkiewicz, Paul; Quaranta, John D; McCawley, Michael

    2014-07-01

    Gas recovery from shale formations has been made possible by advances in horizontal drilling and hydraulic fracturing technology. Rapid adoption of these methods has created a surge in natural gas production in the United States and increased public concern about its environmental and human health effects. We surveyed the environmental literature relevant to shale gas development and studied over fifteen well sites and impoundments in West Virginia to evaluate pollution caused by air emissions, light and noise during drilling. Our study also characterized liquid and solid waste streams generated by drilling and hydraulic fracturing and evaluated the integrity of impoundments used to store fluids produced by hydraulic fracturing. While most shale gas wells are completed with little or no environmental contamination, we found that many of the problems associated with shale gas development resulted from inattention to accepted engineering practices such as impoundment construction, improper liner installation and a lack of institutional controls. Recommendations are provided based on the literature and our field studies. They will address not all but a great many of the deficiencies that result in environmental release of contaminants from shale gas development. We also identified areas where new technologies are needed to fully address contaminant releases to air and water.

  17. Fracturing alliance allows massive diatomite oil reserves to be economically produced at Lost Hills, California: A case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klins, M.A.; Stewart, D.W.; Pferdehirt, D.J.

    1995-12-31

    As North American oilfield operations mature, there is a perceptible loosening of the autocratic ties between oil companies and contractors. They are being replaced by alliances or partnerships designed to minimize cost while improving profitability of the companies involved. Many papers have been written concerning alliance theory, but little documentation exists detailing actual performance. This paper evaluates a mature alliance, its implementation, structure and results. In Lost Hills, California, the diatomite formation requires hydraulic fracturing to allow oil recovery at profitable production rates. Because hydraulic fracturing is approximately two-thirds of the total well cost, it is imperative that fracturing investmentsmore » be optimized to allow field development to proceed at optimum levels. Therefore, in 1990, a fracturing alliance (the first of its kind) was initiated between Chevron and Schlumberger Dowell. Over 1 billion lbm of sand has been successfully placed during approximately 2,000 fracture stimulation jobs. Through this prototype fracturing alliance, many major accomplishments are being achieved. The most notable are the hydraulic fracturing costs that have been reduced by 40% while improving the profitability of both companies. This paper illustrates the benefits of an alliance and justifies the change in management style from a low-bid operating strategy to a win-win customer/supplier attitude.« less

  18. The water footprint of hydraulic fracturing in Sichuan Basin, China.

    PubMed

    Zou, Caineng; Ni, Yunyan; Li, Jian; Kondash, Andrew; Coyte, Rachel; Lauer, Nancy; Cui, Huiying; Liao, Fengrong; Vengosh, Avner

    2018-07-15

    Shale gas is likely to play a major role in China's transition away from coal. In addition to technological and infrastructural constraints, the main challenges to China's sustainable shale gas development are sufficient shale gas production, water availability, and adequate wastewater management. Here we present, for the first time, actual data of shale gas production and its water footprint from the Weiyuan gas field, one of the major gas fields in Sichuan Basin. We show that shale gas production rates during the first 12 months (24 million m 3 per well) are similar to gas production rates in U.S. shale basins. The amount of water used for hydraulic fracturing (34,000 m 3 per well) and the volume of flowback and produced (FP) water in the first 12 months (19,800 m 3 per well) in Sichuan Basin are also similar to the current water footprints of hydraulic fracturing in U.S. basins. We present salinity data of the FP water (5000 to 40,000 mgCl/L) in Sichuan Basin and the treatment operations, which include sedimentation, dilution with fresh water, and recycling of the FP water for hydraulic fracturing. We utilize the water use data, empirical decline rates of shale gas and FP water productions in Sichuan Basin to generate two prediction models for water use for hydraulic fracturing and FP water production upon achieving China's goals to generate 100 billion m 3 of shale gas by 2030. The first model utilizes the current water use and FP production data, and the second assumes a yearly 5% intensification of the hydraulic fracturing process. The predicted water use for hydraulic fracturing in 2030 (50-65 million m 3 per year), FP water production (50-55 million m 3 per year), and fresh water dilution of FP water (25 million m 3 per year) constitute a water footprint that is much smaller than current water consumption and wastewater generation for coal mining, but higher than those of conventional gas production in China. Given estimates for water availability in Sichuan Basin, our predictions suggest that water might not be a limiting factor for future large-scale shale gas development in Sichuan Basin. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. In situ stress and fracture permeability along the Stillwater fault zone, Dixie Valley Nevada

    USGS Publications Warehouse

    Hickman, S.H.; Barton, C.A.; Zoback, M.D.; Morin, R.; Sass, J.; Benoit, R.

    1997-01-01

    Borehole televiewer and hydrologic logging and hydraulic fracturing stress measurements were carried out in a 2.7-km-deep geothermal production well (73B-7) drilled into the Stillwater fault zone. Precision temperature and spinner flowmeter logs were also acquired in well 73B-7, with and without simultaneously injecting water into the well. Localized perturbations to well-bore temperature and flow were used to identify hydraulically conductive fractures. Comparison of these data with fracture orientations from the televiewer log indicates that permeable fractures within and adjacent to the Stillwater fault zone are critically stressed, potentially active shear planes in the current west-northwest extensional stress regime at Dixie Valley.

  20. Hydraulic fracturing and the Crooked Lake Sequences: Insights gleaned from regional seismic networks

    NASA Astrophysics Data System (ADS)

    Schultz, Ryan; Stern, Virginia; Novakovic, Mark; Atkinson, Gail; Gu, Yu Jeffrey

    2015-04-01

    Within central Alberta, Canada, a new sequence of earthquakes has been recognized as of 1 December 2013 in a region of previous seismic quiescence near Crooked Lake, ~30 km west of the town of Fox Creek. We utilize a cross-correlation detection algorithm to detect more than 160 events to the end of 2014, which is temporally distinguished into five subsequences. This observation is corroborated by the uniqueness of waveforms clustered by subsequence. The Crooked Lake Sequences have come under scrutiny due to its strong temporal correlation (>99.99%) to the timing of hydraulic fracturing operations in the Duvernay Formation. We assert that individual subsequences are related to fracturing stimulation and, despite adverse initial station geometry, double-difference techniques allow us to spatially relate each cluster back to a unique horizontal well. Overall, we find that seismicity in the Crooked Lake Sequences is consistent with first-order observations of hydraulic fracturing induced seismicity.

  1. Algal treatment of wastewater generated during oil and gas production using hydraulic fracturing technology.

    PubMed

    Lutzu, Giovanni Antonio; Dunford, Nurhan Turgut

    2017-12-19

    Hydraulic fracturing technology is widely used for recovering natural gas and oil from tight oil and gas reserves. Large volumes of wastewater, flowback water, are produced during the fracturing process. This study examines algal treatment of flowback water. Thirteen microalgae strains consisting of cyanobacteria and green algae were examined. Wastewater quality before and after algae treatment, as well as volatile matter, fixed carbon and ash contents of the biomass grown in flowback water were examined. The experimental results demonstrated that microalgae can grow in flowback water. The chemical composition of the algal biomass produced in flowback water was strain specific. Over 65% total dissolved solids, 100% nitrate and over 95% boron reduction in flowback water could be achieved. Hence, algal treatment of flowback water can significantly reduce the adverse environmental impact of hydraulic fracturing technology and produce biomass that can be converted to bioproducts.

  2. Stability of a horizontal well and hydraulic fracture initiation in rocks of the bazhenov formation

    NASA Astrophysics Data System (ADS)

    Stefanov, Yu. P.; Bakeev, R. A.; Myasnikov, A. V.; Akhtyamova, A. I.; Romanov, A. S.

    2017-12-01

    Three-dimensional numerical modeling of the formation of the stress-strain state in the vicinity of a horizontal well in weakened rocks of the Bazhenov formation is carried out. The influence of the well orientation and plastic deformation on the stress-strain state and the possibility of hydraulic fracturing are considered. It is shown that the deviation of the well from the direction of maximum compression leads to an increase in plastic deformation and a discrepancy between tangential stresses around the well bore and principle stresses in the surrounding medium. In an elastoplastic medium, an increase in the pressure in the well can lead to a large-scale development of plastic deformation, at which no tensile stresses necessary for hydraulic fracturing according to the classical scheme arise. In this case, there occur plastic expansion and fracture of the well.

  3. Combined interpretation of radar, hydraulic, and tracer data from a fractured-rock aquifer near Mirror Lake, New Hampshire, USA

    USGS Publications Warehouse

    Day-Lewis, F. D.; Lane, J.W.; Gorelick, S.M.

    2006-01-01

    An integrated interpretation of field experimental cross-hole radar, tracer, and hydraulic data demonstrates the value of combining time-lapse geophysical monitoring with conventional hydrologic measurements for improved characterization of a fractured-rock aquifer. Time-lapse difference-attenuation radar tomography was conducted during saline tracer experiments at the US Geological Survey Fractured Rock Hydrology Research Site near Mirror Lake, Grafton County, New Hampshire, USA. The presence of electrically conductive saline tracer effectively illuminates permeable fractures or pathways for geophysical imaging. The geophysical results guide the construction of three-dimensional numerical models of ground-water flow and solute transport. In an effort to explore alternative explanations for the tracer and tomographic data, a suite of conceptual models involving heterogeneous hydraulic conductivity fields and rate-limited mass transfer are considered. Calibration data include tracer concentrations, the arrival time of peak concentration at the outlet, and steady-state hydraulic head. Results from the coupled inversion procedure suggest that much of the tracer mass migrated outside the three tomographic image planes, and that solute is likely transported by two pathways through the system. This work provides basic and site-specific insights into the control of permeability heterogeneity on ground-water flow and solute transport in fractured rock. ?? Springer-Verlag 2004.

  4. Selection of the optimal completion of horizontal wells with multi-stage hydraulic fracturing of the low-permeable formation, field C

    NASA Astrophysics Data System (ADS)

    Bozoev, A. M.; Demidova, E. A.

    2016-03-01

    At the moment, many fields of Western Siberia are in the later stages of development. In this regard, the multilayer fields are actually involved in the development of hard to recover reserves by conducting well interventions. However, most of these assets may not to be economical profitable without application of horizontal drilling and multi-stage hydraulic fracturing treatment. Moreover, location of frac ports in relative to each other, number of stages, volume of proppant per one stage are the main issues due to the fact that the interference effect could lead to the loss of oil production. The optimal arrangement of horizontal wells with multi-stage hydraulic fracture was defined in this paper. Several analytical approaches have been used to predict the started oil flow rate and chose the most appropriate for field C reservoir J1. However, none of the analytical equations could not take into account the interference effect and determine the optimum number of fractures. Therefore, the simulation modelling was used. Finally, the universal equation is derived for this field C, the reservoir J1. This tool could be used to predict the flow rate of the horizontal well with hydraulic fracturing treatment on the qualitative level without simulation model.

  5. The Impact of Mineralogy on the Geochemical Alteration of Shales During Hydraulic Fracturing Operations

    NASA Astrophysics Data System (ADS)

    Maher, K.; Harrison, A. L.; Jew, A. D.; Dustin, M. K.; Kiss, A. M.; Kohli, A. H.; Thomas, D.; Joe-Wong, C. M.; Brown, G. E.; Bargar, J.

    2016-12-01

    The extraction of oil and gas resources from low permeability shale reservoirs using hydraulic fracturing techniques has increased significantly in recent years. During hydraulic fracturing, large volumes of fluid are injected into subsurface shale formations, which drives substantial fluid-rock interaction that can release contaminants and alter rock permeability. Here, a combined experimental, imaging, and modeling approach was employed to systematically evaluate the impact of shale mineralogy on its physical and chemical alteration when exposed to fracturing fluids of different composition. Batch reactor experiments contained different shales with unique mineralogical compositions that were exposed to simulated hydraulic fracturing fluid. Experiments revealed that the balance between fluid acidity and acid neutralizing capacity of the rock was the strongest control on the evolution of fluid and rock chemistry. Carbonate mineral-rich shales rapidly recovered solution pH to circum-neutral conditions, whereas fluids in contact with carbonate mineral-poor shales remained acidic. The dissolution of shale minerals released metal contaminants, yet the precipitation of Fe(III)-bearing secondary phases helped to attenuate their release via co-precipitation or sorption. Post-reaction imaging illustrated that selective dissolution of carbonate minerals generated secondary porosity, the connectivity of which was dictated by initial carbonate distribution. Conversely, the precipitation of secondary Al- and Fe-bearing phases may occlude porosity, potentially inhibiting transport of water, contaminants, and hydrocarbons. The maturation of secondary Fe-bearing phases from amorphous to crystalline over time suggests that porosity will continue to evolve even after oxidation reactions have effectively ceased. These experiments reveal that the relative abundance and distribution of carbonate minerals is the master variable dictating both porosity alteration and contaminant release from shale formations, implying that the response of a reservoir to hydraulic fracturing can be better assessed using robust mineralogical data.

  6. Modeling of fault reactivation and induced seismicity during hydraulic fracturing of shale-gas reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutqvist, Jonny; Rinaldi, Antonio P.; Cappa, Frédéric

    2013-07-01

    We have conducted numerical simulation studies to assess the potential for injection-induced fault reactivation and notable seismic events associated with shale-gas hydraulic fracturing operations. The modeling is generally tuned towards conditions usually encountered in the Marcellus shale play in the Northeastern US at an approximate depth of 1500 m (~;;4,500 feet). Our modeling simulations indicate that when faults are present, micro-seismic events are possible, the magnitude of which is somewhat larger than the one associated with micro-seismic events originating from regular hydraulic fracturing because of the larger surface area that is available for rupture. The results of our simulations indicatedmore » fault rupture lengths of about 10 to 20 m, which, in rare cases can extend to over 100 m, depending on the fault permeability, the in situ stress field, and the fault strength properties. In addition to a single event rupture length of 10 to 20 m, repeated events and aseismic slip amounted to a total rupture length of 50 m, along with a shear offset displacement of less than 0.01 m. This indicates that the possibility of hydraulically induced fractures at great depth (thousands of meters) causing activation of faults and creation of a new flow path that can reach shallow groundwater resources (or even the surface) is remote. The expected low permeability of faults in producible shale is clearly a limiting factor for the possible rupture length and seismic magnitude. In fact, for a fault that is initially nearly-impermeable, the only possibility of larger fault slip event would be opening by hydraulic fracturing; this would allow pressure to penetrate the matrix along the fault and to reduce the frictional strength over a sufficiently large fault surface patch. However, our simulation results show that if the fault is initially impermeable, hydraulic fracturing along the fault results in numerous small micro-seismic events along with the propagation, effectively preventing larger events from occurring. Nevertheless, care should be taken with continuous monitoring of induced seismicity during the entire injection process to detect any runaway fracturing along faults.« less

  7. Assessing the monitoring performance using a synthetic microseismic catalogue for hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Ángel López Comino, José; Kriegerowski, Marius; Cesca, Simone; Dahm, Torsten; Mirek, Janusz; Lasocki, Stanislaw

    2016-04-01

    Hydraulic fracturing is considered among the human operations which could induce or trigger seismicity or microseismic activity. The influence of hydraulic fracturing operations is typically expected in terms of weak magnitude events. However, the sensitivity of the rock mass to trigger seismicity varies significantly for different sites and cannot be easily predicted prior to operations. In order to assess the sensitivity of microseismity to hydraulic fracturing operations, we perform a seismic monitoring at a shale gas exploration/exploitation site in the central-western part of the Peribaltic synclise at Pomerania (Poland). The monitoring will be continued before, during and after the termination of hydraulic fracturing operations. The fracking operations are planned in April 2016 at a depth 4000 m. A specific network setup has been installed since summer 2015, including a distributed network of broadband stations and three small-scale arrays. The network covers a region of 60 km2. The aperture of small scale arrays is between 450 and 950 m. So far no fracturing operations have been performed, but seismic data can already be used to assess the seismic noise and background microseismicity, and to investigate and assess the detection performance of our monitoring setup. Here we adopt a recently developed tool to generate a synthetic catalogue and waveform dataset, which realistically account for the expected microseismicity. Synthetic waveforms are generated for a local crustal model, considering a realistic distribution of hypocenters, magnitudes, moment tensors, and source durations. Noise free synthetic seismograms are superposed to real noise traces, to reproduce true monitoring conditions at the different station locations. We estimate the detection probability for different magnitudes, source-receiver distances, and noise conditions. This information is used to estimate the magnitude of completeness at the depth of the hydraulic fracturing horizontal wells. Our technique is useful to evaluate the efficiency of the seismic network and validate detection and location algorithms, taking into account the signal to noise ratio. The same dataset may be used at a later time, to assess the performance of other seismological analysis, such as hypocentral location, magnitude estimation and source parameters inversion. This work is funded by the EU H2020 SHEER project.

  8. Theoretical Analysis of the Mechanism of Fracture Network Propagation with Stimulated Reservoir Volume (SRV) Fracturing in Tight Oil Reservoirs.

    PubMed

    Su, Yuliang; Ren, Long; Meng, Fankun; Xu, Chen; Wang, Wendong

    2015-01-01

    Stimulated reservoir volume (SRV) fracturing in tight oil reservoirs often induces complex fracture-network growth, which has a fundamentally different formation mechanism from traditional planar bi-winged fracturing. To reveal the mechanism of fracture network propagation, this paper employs a modified displacement discontinuity method (DDM), mechanical mechanism analysis and initiation and propagation criteria for the theoretical model of fracture network propagation and its derivation. A reasonable solution of the theoretical model for a tight oil reservoir is obtained and verified by a numerical discrete method. Through theoretical calculation and computer programming, the variation rules of formation stress fields, hydraulic fracture propagation patterns (FPP) and branch fracture propagation angles and pressures are analyzed. The results show that during the process of fracture propagation, the initial orientation of the principal stress deflects, and the stress fields at the fracture tips change dramatically in the region surrounding the fracture. Whether the ideal fracture network can be produced depends on the geological conditions and on the engineering treatments. This study has both theoretical significance and practical application value by contributing to a better understanding of fracture network propagation mechanisms in unconventional oil/gas reservoirs and to the improvement of the science and design efficiency of reservoir fracturing.

  9. Theoretical Analysis of the Mechanism of Fracture Network Propagation with Stimulated Reservoir Volume (SRV) Fracturing in Tight Oil Reservoirs

    PubMed Central

    Su, Yuliang; Ren, Long; Meng, Fankun; Xu, Chen; Wang, Wendong

    2015-01-01

    Stimulated reservoir volume (SRV) fracturing in tight oil reservoirs often induces complex fracture-network growth, which has a fundamentally different formation mechanism from traditional planar bi-winged fracturing. To reveal the mechanism of fracture network propagation, this paper employs a modified displacement discontinuity method (DDM), mechanical mechanism analysis and initiation and propagation criteria for the theoretical model of fracture network propagation and its derivation. A reasonable solution of the theoretical model for a tight oil reservoir is obtained and verified by a numerical discrete method. Through theoretical calculation and computer programming, the variation rules of formation stress fields, hydraulic fracture propagation patterns (FPP) and branch fracture propagation angles and pressures are analyzed. The results show that during the process of fracture propagation, the initial orientation of the principal stress deflects, and the stress fields at the fracture tips change dramatically in the region surrounding the fracture. Whether the ideal fracture network can be produced depends on the geological conditions and on the engineering treatments. This study has both theoretical significance and practical application value by contributing to a better understanding of fracture network propagation mechanisms in unconventional oil/gas reservoirs and to the improvement of the science and design efficiency of reservoir fracturing. PMID:25966285

  10. Experiments and Simulations of Fully Hydro-Mechanically Coupled Response of Rough Fractures Exposed to High-Pressure Fluid Injection

    NASA Astrophysics Data System (ADS)

    Vogler, D.; Settgast, R. R.; Annavarapu, C.; Madonna, C.; Bayer, P.; Amann, F.

    2018-02-01

    In this work, we present the application of a fully coupled hydro-mechanical method to investigate the effect of fracture heterogeneity on fluid flow through fractures at the laboratory scale. Experimental and numerical studies of fracture closure behavior in the presence of heterogeneous mechanical and hydraulic properties are presented. We compare the results of two sets of laboratory experiments on granodiorite specimens against numerical simulations in order to investigate the mechanical fracture closure and the hydro-mechanical effects, respectively. The model captures fracture closure behavior and predicts a nonlinear increase in fluid injection pressure with loading. Results from this study indicate that the heterogeneous aperture distributions measured for experiment specimens can be used as model input for a local cubic law model in a heterogeneous fracture to capture fracture closure behavior and corresponding fluid pressure response.

  11. Quantifying fracture geometry with X-ray tomography: Technique of Iterative Local Thresholding (TILT) for 3D image segmentation

    DOE PAGES

    Deng, Hang; Fitts, Jeffrey P.; Peters, Catherine A.

    2016-02-01

    This paper presents a new method—the Technique of Iterative Local Thresholding (TILT)—for processing 3D X-ray computed tomography (xCT) images for visualization and quantification of rock fractures. The TILT method includes the following advancements. First, custom masks are generated by a fracture-dilation procedure, which significantly amplifies the fracture signal on the intensity histogram used for local thresholding. Second, TILT is particularly well suited for fracture characterization in granular rocks because the multi-scale Hessian fracture (MHF) filter has been incorporated to distinguish fractures from pores in the rock matrix. Third, TILT wraps the thresholding and fracture isolation steps in an optimized iterativemore » routine for binary segmentation, minimizing human intervention and enabling automated processing of large 3D datasets. As an illustrative example, we applied TILT to 3D xCT images of reacted and unreacted fractured limestone cores. Other segmentation methods were also applied to provide insights regarding variability in image processing. The results show that TILT significantly enhanced separability of grayscale intensities, outperformed the other methods in automation, and was successful in isolating fractures from the porous rock matrix. Because the other methods are more likely to misclassify fracture edges as void and/or have limited capacity in distinguishing fractures from pores, those methods estimated larger fracture volumes (up to 80 %), surface areas (up to 60 %), and roughness (up to a factor of 2). In conclusion, these differences in fracture geometry would lead to significant disparities in hydraulic permeability predictions, as determined by 2D flow simulations.« less

  12. Overview of EPA's Approach to Developing Prospective Case Studies Technical Workshop: Case Studies to Assess Potential Impacts of Hydraulic Fracturing on Drinking Water Resources

    EPA Science Inventory

    One component of the United States Environmental Protection Agency's (EPA) study of the potential impacts of hydraulic fracturing on drinking water resources is prospective case studies, which are being conducted to more fully understand and assess if and how site specific hydrau...

  13. Chloride concentration gradients in tank-stored hydraulic fracturing fluids following flowback

    Treesearch

    Pamela J. Edwards; Linda L. Tracy; William K. Wilson

    2011-01-01

    A natural gas well in West Virginia was hydraulically fractured and the flowback was recovered and stored in an 18-foot-deep tank. Both in situ field test kit and laboratory measurements of electrical conductivity and chloride concentrations increased substantially with depth, although the laboratory measurements showed a greater increase. The field test kit also...

  14. Geotechnical Assessment of United States and Foreign Test Sites and Material Properties of Geologic Media

    DTIC Science & Technology

    1979-06-01

    kilometers. Hydraulic fracturing data in crystalline rock and indicates that the stress state-varies depending on the tectonic environment (Figure 17). The...S. CAROLINA 0 -A GRANITE. WISCONSIN SO 10 * GRANITE. CALIFORNIA 0 NTS TUFF. NEVADA A 10 t0 50 40 Figure 17. Hydraulic fracturing data in Crystalline

  15. 77 FR 27691 - Oil and Gas; Well Stimulation, Including Hydraulic Fracturing, on Federal and Indian Lands

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-11

    ...] RIN 1004-AE26 Oil and Gas; Well Stimulation, Including Hydraulic Fracturing, on Federal and Indian... stimulate production from oil and gas wells, has been a growing practice in recent years. Public awareness... oil and gas resources across the country, sometimes in areas that have not previously experienced...

  16. Regelation and ice segregation

    NASA Technical Reports Server (NTRS)

    Miller, Robert D.

    1988-01-01

    Macroscopic processes can have an important effect on the state of regolith water. The two primary mechanisms responsible for the formation of segregated ice on Earth, thermally induced regelation and hydraulic fracturing, are reviewed while their potential importance on Mars is examined. While regelation is the dominant terrestrial process, it requires a warmer and wetter environment than currently exists on Mars. In this respect, the conditions required for hydraulic fracturing are less demanding. In assessing its potential importance on Mars, it is noted that hydraulic fracturing can produce a localized zone of high pressure water that could readily disrupt an overburden of frozen ground. Such a process, it is concluded, may have triggered the release of groundwater that led to the formation of the major outflow channels.

  17. Response to 'Word choice as political speech': Hydraulic fracturing is a partisan issue.

    PubMed

    Hopke, Jill E; Simis, Molly

    2016-04-28

    In 2015, Hopke & Simis published an analysis of social media discourse around hydraulic fracturing. Grubert (2016) offered a commentary on the research, highlighting the politicization of terminology used in the discourse on this topic. The present article is a response to Grubert (2016)'s commentary, in which we elaborate on the distinctions between terminology used in social media discourse around hydraulic fracturing (namely, 'frack,' 'fracking,' 'frac,' and 'fracing'). Additionally preliminary analysis supports the claim that industry-preferred terminology is severely limited in its reach. When industry actors opt-out of the discourse, the conversation followed by the majority of lay audiences is dominated by activists. exacerbating the political schism on the issue. © The Author(s) 2016.

  18. Failure of a gas well to respond to a foam hydraulic fracturing treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rauscher, B.D.

    1996-12-31

    Well No. 1 (not the real name of the well) is not producing gas at maximum capacity following a foam hydraulic fracturing treatment performed upon completion of the well in 1987. The failure of the stimulation treatment, which has affected other wells throughout the field, was due to a combination of three factors: (1) downward fracture growth and proppant settling during injection (2) embedment due to a high pressure drawdown in the wellbore during flowback procedures, and (3) poor cleanup of the fracture fluid due to high capillary pressures. The following are recommendations to help improve future fracturing treatments throughoutmore » the field: (1) Fracture at lower treating pressures; (2) Improve perforating techniques; (3) Change flowback procedures; and (4) Evaluate using N{sub 2} as a fracture fluid.« less

  19. Elucidating hydraulic fracturing impacts on groundwater quality using a regional geospatial statistical modeling approach.

    PubMed

    Burton, Taylour G; Rifai, Hanadi S; Hildenbrand, Zacariah L; Carlton, Doug D; Fontenot, Brian E; Schug, Kevin A

    2016-03-01

    Hydraulic fracturing operations have been viewed as the cause of certain environmental issues including groundwater contamination. The potential for hydraulic fracturing to induce contaminant pathways in groundwater is not well understood since gas wells are completed while isolating the water table and the gas-bearing reservoirs lay thousands of feet below the water table. Recent studies have attributed ground water contamination to poor well construction and leaks in the wellbore annulus due to ruptured wellbore casings. In this paper, a geospatial model of the Barnett Shale region was created using ArcGIS. The model was used for spatial analysis of groundwater quality data in order to determine if regional variations in groundwater quality, as indicated by various groundwater constituent concentrations, may be associated with the presence of hydraulically fractured gas wells in the region. The Barnett Shale reservoir pressure, completions data, and fracture treatment data were evaluated as predictors of groundwater quality change. Results indicated that elevated concentrations of certain groundwater constituents are likely related to natural gas production in the study area and that beryllium, in this formation, could be used as an indicator variable for evaluating fracturing impacts on regional groundwater quality. Results also indicated that gas well density and formation pressures correlate to change in regional water quality whereas proximity to gas wells, by itself, does not. The results also provided indirect evidence supporting the possibility that micro annular fissures serve as a pathway transporting fluids and chemicals from the fractured wellbore to the overlying groundwater aquifers. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Air monitoring of volatile organic compounds at relevant receptors during hydraulic fracturing operations in Washington County, Pennsylvania.

    PubMed

    Maskrey, Joshua R; Insley, Allison L; Hynds, Erin S; Panko, Julie M

    2016-07-01

    A 3-month air monitoring study was conducted in Washington County, Pennsylvania, at the request of local community members regarding the potential risks resulting from air emissions of pollutants related to hydraulic fracturing operations. Continuous air monitoring for total volatile organic compounds was performed at two sampling sites, including a school and a residence, located within 900 m of a hydraulic fracturing well pad that had been drilled prior to the study. Intermittent 24-hour air samples for 62 individual volatile organic compounds were also collected. The ambient air at both sites was monitored during four distinct periods of unconventional natural gas extraction activity: an inactive period prior to fracturing operations, during fracturing operations, during flaring operations, and during another inactive period after operations. The results of the continuous monitoring during fracturing and flaring sampling periods for total volatile organic compounds were similar to the results obtained during inactive periods. Total volatile organic compound 24-hour average concentrations ranged between 0.16 and 80 ppb during all sampling periods. Several individual volatile compounds were detected in the 24-hour samples, but they were consistent with background atmospheric levels measured previously at nearby sampling sites and in other areas in Washington County. Furthermore, a basic yet conservative screening level evaluation demonstrated that the detected volatile organic compounds were well below health-protective levels. The primary finding of this study was that the operation of a hydraulic fracturing well pad in Washington County did not substantially affect local air concentrations of total and individual volatile organic compounds.

Top