Science.gov

Sample records for hydraulic piston pump

  1. Performance analysis and field testing of a compact dual-piston, hydraulic sucker rod pumping unit

    SciTech Connect

    Evans, R.D.; Weaver, P.

    1985-03-01

    This paper presents a new compact dual acting piston hydraulic sucker rod pumping unit. Some unique advantages of the unit are presented. Stroke length and speed are readily changed by simple adjustments made to the hydraulics. Larger hydraulic piston cylinders are interchangable without having to replace the entire unit. Performance data is presented which compares the hydraulic unit against selected conventional rotary pumping units. A comparison is made between the hydraulic unit and conventional beam pumping units. Performance evaluations were made, based on numerous accoustical well sounding and dynamometer tests. Field dynagraph cards and their analysis are presented which provide a quantitative comparison of the hydraulic unit versus the beam unit. The results obtained verify that the hydraulic unit is superior to that of a conventional well pumping unit. Economic advantages and potential applications of the hydraulic unit are discussed.

  2. Dynamically balanced, hydraulically driven compressor/pump apparatus for resonant free piston Stirling engines

    DOEpatents

    Corey, John A.

    1984-05-29

    A compressor, pump, or alternator apparatus is designed for use with a resonant free piston Stirling engine so as to isolate apparatus fluid from the periodically pressurized working fluid of the Stirling engine. The apparatus housing has a first side closed by a power coupling flexible diaphragm (the engine working member) and a second side closed by a flexible diaphragm gas spring. A reciprocally movable piston is disposed in a transverse cylinder in the housing and moves substantially at right angles relative to the flexible diaphragms. An incompressible fluid fills the housing which is divided into two separate chambers by suitable ports. One chamber provides fluid coupling between the power diaphragm of the RFPSE and the piston and the second chamber provides fluid coupling between the gas spring diaphragm and the opposite side of the piston. The working members of a gas compressor, pump, or alternator are driven by the piston. Sealing and wearing parts of the apparatus are mounted at the external ends of the transverse cylinder in a double acting arrangement for accessibility. An annular counterweight is mounted externally of the reciprocally movable piston and is driven by incompressible fluid coupling in a direction opposite to the piston so as to damp out transverse vibrations.

  3. Constant-Pressure Hydraulic Pump

    NASA Technical Reports Server (NTRS)

    Galloway, C. W.

    1982-01-01

    Constant output pressure in gas-driven hydraulic pump would be assured in new design for gas-to-hydraulic power converter. With a force-multiplying ring attached to gas piston, expanding gas would apply constant force on hydraulic piston even though gas pressure drops. As a result, pressure of hydraulic fluid remains steady, and power output of the pump does not vary.

  4. Hydraulic pump

    SciTech Connect

    Polak, P.R.; Jantzen, D.E.

    1984-05-15

    This invention relates to an improved pump jack characterized by a hollow piston rod which telescopes down over the sucker rod to which it is clamped for reciprocating motion. The cylinder, in turn, is fastened in fixed position directly to the upper exposed end of the well casing. As fluid is introduced into the lower end of the cylinder it raises the piston into engagement with a pushrod housed in the upper cylinder head that lifts switch-actuating means associated therewith into a position operative to actuate a switch located adjacent thereto thereby causing the latter to change state and actuate a multi-function solenoid valve so as to cut off fluid flow to the cylinder. As gravity lowers the sucker rod and piston exhausting the hydraulic fluid therebeneath, an adjustable stop engages the pushrod from above so as to return it together with the switch-actuating means associated therewith to their original positions thereby resetting the switch to complete the operating cycle.

  5. Hydraulic generator with free-piston engine

    SciTech Connect

    Bouthers, P.; Breting, O.

    1983-11-15

    A hydraulic generator is disclosed with a free-piston engine and hydropneumatic return cushion and with an associated hydraulic-fluid pumping piston feeding a hydraulic accumulator intended to be charged between two detected levels of pressure. The generator includes a lock device for the free piston at the power-stroke dead center with voluntary control, and servo-control means for this lock device with means for detection of the aforementioned two pressure levels, to assure locking the piston in response to detection of the aforementioned highest pressure level and to assure its unlocking in response to detection of the aforementioned lowest pressure level, and thus an automatic intermittent running of said engine.

  6. Thermally Actuated Hydraulic Pumps

    NASA Technical Reports Server (NTRS)

    Jones, Jack; Ross, Ronald; Chao, Yi

    2008-01-01

    Thermally actuated hydraulic pumps have been proposed for diverse applications in which direct electrical or mechanical actuation is undesirable and the relative slowness of thermal actuation can be tolerated. The proposed pumps would not contain any sliding (wearing) parts in their compressors and, hence, could have long operational lifetimes. The basic principle of a pump according to the proposal is to utilize the thermal expansion and contraction of a wax or other phase-change material in contact with a hydraulic fluid in a rigid chamber. Heating the chamber and its contents from below to above the melting temperature of the phase-change material would cause the material to expand significantly, thus causing a substantial increase in hydraulic pressure and/or a substantial displacement of hydraulic fluid out of the chamber. Similarly, cooling the chamber and its contents from above to below the melting temperature of the phase-change material would cause the material to contract significantly, thus causing a substantial decrease in hydraulic pressure and/or a substantial displacement of hydraulic fluid into the chamber. The displacement of the hydraulic fluid could be used to drive a piston. The figure illustrates a simple example of a hydraulic jack driven by a thermally actuated hydraulic pump. The pump chamber would be a cylinder containing encapsulated wax pellets and containing radial fins to facilitate transfer of heat to and from the wax. The plastic encapsulation would serve as an oil/wax barrier and the remaining interior space could be filled with hydraulic oil. A filter would retain the encapsulated wax particles in the pump chamber while allowing the hydraulic oil to flow into and out of the chamber. In one important class of potential applications, thermally actuated hydraulic pumps, exploiting vertical ocean temperature gradients for heating and cooling as needed, would be used to vary hydraulic pressures to control buoyancy in undersea research

  7. Downhold hydraulic actuated pump

    SciTech Connect

    Roeder, G.K.

    1987-05-12

    This patent describes a downhole pump of the type having a main housing within which there is formed an engine chamber and a production chamber. A piston is reciprocatingly received within the engine chamber, a plunger reciprocatingly received within the production chamber, a connecting rod by which the piston and plunger are connected together; the combination with the main housing, piston, plunger.

  8. Hydraulic well pumping apparatus

    SciTech Connect

    Wright, C.P.

    1987-03-03

    This patent describes a hydraulic powered well pumping apparatus for operation of a sucker rod well pump in a well borehole, the apparatus comprising: (a) an elongate polished rod having upper and lower ends, the rod being aligned above and adapted to connect to a string of sucker rods in a well borehole therebelow; (b) an adjustably positioned sleeve means aligned above and enclosing a portion of the polished rod and having a shorter length than the polished rod to enable the polished rod to extend above the sleeve means and below the sleeve means for connection to the string of sucker rods in the well borehole; (c) an axially hollow upstanding cylinder slideably receiving the sleeve means therethrough and enclosing a piston therein, the piston being: (1) moved on admitting hydraulic oil to the cylinder, and (2) joined to the sleeve means for moving the sleeve means and thereby moving the polished rod; (d) means for mounting the upstanding cylinder directly aligned with and above a casing at the top of a well adapted to have a sucker rod string positioned therein; (e) means for adjusting the stroke length imparted to the sucker rod string between minimum and maximum stroke lengths; and (f) means for adjusting the location of the sleeve means relative to the polished rod to vary the relative length of polished rod below the sleeve means and wherein a portion of the polished rod extends above the sleeve means dependent on the relative respective portions thereof.

  9. Downhole hydraulic actuated pump

    SciTech Connect

    Roeder, G.K.

    1988-09-06

    This patent describes a downhole hydraulically actuated pump assembly of the type having a main housing within which an engine and pump is enclosed; a connecting rod, an engine piston, a pump plunger, means by which the engine and connecting rod reciprocate the pump plunger and thereby produces fluid; the main housing has a lower end having a formation fluid inlet; and upper end having a power fluid inlet; and, a produced fluid outlet; the plunger divides one marginal end of the housing into upper and lower production chambers; the lower end of the connecting rod is hollow and extends through the plunger into fluid communication with the formation fluid inlet to provide a source of formation fluid for the upper and lower production chambers; a traveling value assembly contained within the plunger and arranged to transfer formation fluid from the hollow rod, through the plunger, and into the upper and lower production chambers, respectively, as the plunger upstrokes and downstrokes; produced fluid valve means by which fluid flows from the upper and lower production chambers and through the produced fluid outlet.

  10. Wellhead with hydraulic pump actuator

    SciTech Connect

    Brown, H.D.; Brown, M.A.; Rohling, L.J.

    1984-07-31

    A wellhead assembly especially suited for oil wells has a wide working pressure range and employs three components which fit together to seal the well casing, hold the tubing against high wellhead pressures, and provide a connection to the tubing through which the sucker rods are operated. The primary casing seal is formed by the mating contact of metal surfaces that are not subject to deterioration. The actuator for the subsurface pump is a vertically disposed hydraulic cylinder unit aligned with the sucker rods and forming the uppermost section of an elongated cylindrical housing, which also has a lowermost section on the wellhead that provides the outlets for the fluid pumped from the well, and an intermediate, control section that contains a spool valve for controlling the hydraulic actuator. The spool is shifted by the piston and rod of the hydraulic actuator at the upper and lower limits of their stroke to thereby reciprocate the sucker rods and operate the subsurface pump.

  11. Free-piston regenerative hot gas hydraulic engine

    NASA Technical Reports Server (NTRS)

    Beremand, D. G. (Inventor)

    1980-01-01

    A displacer piston which is driven pneumatically by a high-pressure or low-pressure gas is included in a free-piston regenerative hydraulic engine. Actuation of the displacer piston circulates the working fluid through a heater, a regenerator and a cooler. The present invention includes an inertial mass such as a piston or a hydraulic fluid column to effectively store and supply energy during portions of the cycle. Power is transmitted from the working fluid to a hydraulic fluid across a diaphragm or lightweight piston to achieve a hydraulic power out-put. The displacer piston of the present invention may be driven pneumatically, hydraulically or electromagnetically. In addition, the displacer piston and the inertial mass of the present invention may be positioned on the same side of the diaphragm member or may be separated by the diaphragm member.

  12. Reciprocating piston pump system with screw drive

    NASA Technical Reports Server (NTRS)

    Perkins, Gerald S. (Inventor); Moore, Nicholas R. (Inventor)

    1981-01-01

    A pump system of the reciprocating piston type is described, which facilitates direct motor drive and cylinder sealing. A threaded middle potion of the piston is engaged by a nut connected to rotate with the rotor of an electric motor, in a manner that minimizes loading on the rotor by the use of a coupling that transmits torque to the nut but permits it to shift axially and radially with respect to the rotor. The nut has a threaded hydrostatic bearing for engaging the threaded piston portion, with an oil-carrying groove in the nut being interrupted. A fluid emitting seal located at the entrance to each cylinder, can serve to center the piston within the cylinder, wash the piston, and to aid in sealing. The piston can have a long stroke to diameter ratio to minimize reciprocations and wear on valves at high pressures. The voltage applied to the motor can be reversed prior to the piston reaching the end of its stroke, to permit pressure on the piston to aid in reversing the motor.

  13. Applying Switched Reluctance Motor to Oil Hydraulic Pump Use

    NASA Astrophysics Data System (ADS)

    Yamai, Hiroyuki; Sawada, Yuzo; Ohyama, Kazunobu

    Hydraulic pump units are widely used to operate hydraulic actuators. In a typical machine shop, conventional constant speed hydraulic pump units consume more than 20% of the total electric power necessary to operate CNC machine tools. Most of that energy are wasted to run the axial piston pump at idle. This paper describes a variable speed hydraulic pump unit using a switched reluctance motor (SRM), which saves energy drastically. SRM was selected as the most suitable motor for this application. Design and control strategy of this motor are described. Application examples to machine tools shows the effectiveness of the new hybrid pump system in saving energy and in reducing acoustic noise.

  14. Hydraulic pump with in-ground filtration and monitoring capability

    DOEpatents

    Hopkins, Charles D.; Livingston, Ronald R.; Toole, Jr., William R.

    1996-01-01

    A hydraulically operated pump for in-ground filtering and monitoring of ws or other fluid sources, including a hollow cylindrical pump housing with an inlet and an outlet, filtering devices positioned in the inlet and the outlet, a piston that fits slidably within the pump housing, and an optical cell in fluid communication with the pump housing. A conduit within the piston allows fluid communication between the exterior and one end of the piston. A pair of o-rings form a seal between the inside of the pump housing and the exterior of the piston. A flow valve positioned within the piston inside the conduit allows fluid to flow in a single direction. In operation, fluid enters the pump housing through the inlet, flows through the conduit and towards an end of the pump housing. The piston then makes a downward stroke closing the valve, thus forcing the fluid out from the pump housing into the optical cell, which then takes spectrophotometric measurements of the fluid. A spring helps return the piston back to its starting position, so that a new supply of fluid may enter the pump housing and the downward stroke can begin again. The pump may be used independently of the optical cell, as a sample pump to transport a sample fluid from a source to a container for later analysis.

  15. Hydraulic pump with in-ground filtration and monitoring capability

    DOEpatents

    Hopkins, C.D.; Livingston, R.R.; Toole, W.R. Jr.

    1996-10-29

    A hydraulically operated pump is described for in-ground filtering and monitoring of waters or other fluid sources, includes a hollow cylindrical pump housing with an inlet and an outlet, filtering devices positioned in the inlet and the outlet, a piston that fits slidably within the pump housing, and an optical cell in fluid communication with the pump housing. A conduit within the piston allows fluid communication between the exterior and one end of the piston. A pair of o-rings form a seal between the inside of the pump housing and the exterior of the piston. A flow valve positioned within the piston inside the conduit allows fluid to flow in a single direction. In operation, fluid enters the pump housing through the inlet, flows through the conduit and towards an end of the pump housing. The piston then makes a downward stroke closing the valve, thus forcing the fluid out from the pump housing into the optical cell, which then takes spectrophotometric measurements of the fluid. A spring helps return the piston back to its starting position, so that a new supply of fluid may enter the pump housing and the downward stroke can begin again. The pump may be used independently of the optical cell, as a sample pump to transport a sample fluid from a source to a container for later analysis. 5 figs.

  16. Hydraulic pump with in-ground filtration and monitoring capability

    DOEpatents

    Hopkins, C.D.; Livingston, R.R.; Toole, W.R. Jr.

    1995-01-01

    A hydraulically operated pump is described for in-ground filtering and monitoring of wells or other fluid sources, including a hollow cylindrical pump housing with an inlet and an outlet, filtering devices positioned in the inlet and the outlet, a piston that fits slidably within the pump housing, and an optical cell in fluid communication with the pump housing. A conduit within the piston allows fluid communication between the exterior and one end of the piston. A pair of O-rings form a seal between the inside of the pump housing and the exterior of the piston. A flow valve positioned within the piston inside the conduit allows fluid to flow in a single direction. In operation, fluid enters the pump housing through the inlet, flows through the conduit and towards an end of the pump housing. The piston then makes a downward stroke closing the valve, thus forcing the fluid out from the pump housing into the optical cell, which then takes spectrophotometric measurements of the fluid. A spring helps return the piston back to its starting position, so that a new supply of fluid may enter the pump housing and the downward stroke can begin again. The pump may be used independently of the optical cell, as a sample pump to transport a sample fluid from a source to a container for later analysis.

  17. Remotely Adjustable Hydraulic Pump

    NASA Technical Reports Server (NTRS)

    Kouns, H. H.; Gardner, L. D.

    1987-01-01

    Outlet pressure adjusted to match varying loads. Electrohydraulic servo has positioned sleeve in leftmost position, adjusting outlet pressure to maximum value. Sleeve in equilibrium position, with control land covering control port. For lowest pressure setting, sleeve shifted toward right by increased pressure on sleeve shoulder from servovalve. Pump used in aircraft and robots, where hydraulic actuators repeatedly turned on and off, changing pump load frequently and over wide range.

  18. Hydraulic well pump

    SciTech Connect

    Dollison, W.W.

    1987-09-08

    This patent describes a system for operating a sucker rod string connected with a well pump comprising: a double-acting fluid cylinder having opposing power ends; means for connecting the cylinder with the sucker rod string for raising and lowering the string to operate the pump; hydraulic pump means for supplying pressurized fluid alternately to the cylinder ends including a direction control movable between extend and retract conditions to extend and retract the cylinder; drive means for shifting the direction control; control means for operating the drive means responsive to the extend and retract movements of the cylinder; and means for applying a fluid counterbalancing force into the cylinder for offsetting the combined weights of the sucker rod string. A production fluid column in a well bore above the pump, and movable surface equipment supported on the cylinder include an accumulator connected with the hydraulic pump means and the direction control for supercharging the intake of the pump during the extend movement of the cylinder and for applying an opposing hydraulic force to the cylinder during the retract movement.

  19. Hydraulic well pump

    SciTech Connect

    Dollison, W.W.

    1986-02-25

    This patent describes a system for operating a sucker rod string connected with a well pump. This pump consists of: a double-acting fluid cylinder having opposing power ends; means for connecting the cylinder with the sucker rod string for raising and lowering the string to operate the pump; means for supplying pressurized fluid alternately to the cylinder ends including a direction control movable between extend and retract conditions to extend and retract the cylinder; drive means for shifting the direction control; control means for operating the drive means responsive to the extend and retract movements of the cylinder; including limit valves positioned to simulate the hydraulic cylinder extend and retract stroke end locations, the limit valves being movably mounted for changing the location of each limit valve and the distance between the limit valves for selectively adjusting the length of the strokes of the hydraulic cylinder and the end limit of the extend and retract strokes of the cylinder. A cam operator is for opening and closing each of the limit valves at the end locations and means connecting the cam operator means with the hydraulic cylinder. Cable is reeved over the movable and fixed sheave means and secured along the second end thereof at a fixed location; and means for applying a fluid counterbalancing force into the cylinder for offsetting the combined weights of the sucker rods string, a production fluid column in a well core above the pump, and movable surface equipment supported on the cylinder.

  20. Mathematical modeling of bent-axis hydraulic piston motors

    NASA Technical Reports Server (NTRS)

    Bartos, R. D.

    1992-01-01

    Each of the DSN 70-m antennas uses 16 bent-axis hydraulic piston motors as part of the antenna drive system. On each of the two antenna axes, four motors are used to drive the antenna and four motors provide counter torque to remove the backlash in the antenna drive train. This article presents a mathematical model for bent-axis hydraulic piston motors. The model was developed to understand the influence of the hydraulic motors on the performance of the DSN 70-m antennas' servo control system.

  1. Output characteristics of a series three-port axial piston pump

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaogang; Quan, Long; Yang, Yang; Wang, Chengbin; Yao, Liwei

    2012-05-01

    Driving a hydraulic cylinder directly by a closed-loop hydraulic pump is currently a key research area in the field of electro-hydraulic control technology, and it is the most direct means to improve the energy efficiency of an electro-hydraulic control system. So far, this technology has been well applied to the pump-controlled symmetric hydraulic cylinder. However, for the differential cylinder that is widely used in hydraulic technology, satisfactory results have not yet been achieved, due to the asymmetric flow constraint. Therefore, based on the principle of the asymmetric valve controlled asymmetric cylinder in valve controlled cylinder technology, an innovative idea for an asymmetric pump controlled asymmetric cylinder is put forward to address this problem. The scheme proposes to transform the oil suction window of the existing axial piston pump into two series windows. When in use, one window is connected to the rod chamber of the hydraulic cylinder and the other is linked with a low-pressure oil tank. This allows the differential cylinders to be directly controlled by changing the displacement or rotation speed of the pumps. Compared with the loop principle of offsetting the area difference of the differential cylinder through hydraulic valve using existing technology, this method may simplify the circuits and increase the energy efficiency of the system. With the software SimulationX, a hydraulic pump simulation model is set up, which examines the movement characteristics of an individual piston and the compressibility of oil, as well as the flow distribution area as it changes with the rotation angle. The pump structure parameters, especially the size of the unloading groove of the valve plate, are determined through digital simulation. All of the components of the series arranged three distribution-window axial piston pump are designed, based on the simulation analysis of the flow pulse characteristics of the pump, and then the prototype pump is made

  2. Piston pump and method of reducing vapor lock

    DOEpatents

    Phillips, Benjamin A.; Harvey, Michael N.

    2001-01-30

    A pump includes a housing defining a cavity, at least one bore, a bore inlet, and a bore outlet. The bore extends from the cavity to the outlet and the inlet communicates with the bore at a position between the cavity and the outlet. A crankshaft is mounted in supports and has an eccentric portion disposed in the cavity. The eccentric portion is coupled to a piston so that rotation of the crankshaft reciprocates the piston in the bore between a discharge position an intake position. The bore may be offset from an axis of rotation to reduce bending of the piston during crankshaft rotation. During assembly of the pump, separate parts of the housing can be connected together to facilitate installation of internal pumping components. Also disclosed is a method of reducing vapor lock by mixing vapor and liquid portions of a substance and introducing the mixture into a piston bore.

  3. Piston pump and method of reducing vapor lock

    DOEpatents

    Phillips, Benjamin A.; Harvey, Michael N.

    2000-02-15

    A pump includes a housing defining a cavity, at least one bore, a bore inlet, and a bore outlet. The bore extends from the cavity to the outlet and the inlet communicates with the bore at a position between the cavity and the outlet. A crankshaft is mounted in supports and has an eccentric portion disposed in the cavity. The eccentric portion is coupled to a piston so that rotation of the crankshaft reciprocates the piston in the bore between a discharge position an intake position. The bore may be offset from an axis of rotation to reduce bending of the piston during crankshaft rotation. During assembly of the pump, separate parts of the housing can be connected together to facilitate installation of internal pumping components. Also disclosed is a method of reducing vapor lock by mixing vapor and liquid portions of a substance and introducing the mixture into a piston bore.

  4. Electromagnetic liquid pistons for capillarity-based pumping.

    PubMed

    Malouin, Bernard A; Vogel, Michael J; Olles, Joseph D; Cheng, Lili; Hirsa, Amir H

    2011-02-01

    The small scales associated with lab-on-a-chip technologies lend themselves well to capillarity-dominated phenomena. We demonstrate a new capillarity-dominated system where two adjoining ferrofluid droplets can behave as an electronically-controlled oscillator or switch by an appropriate balance of magnetic, capillary, and inertial forces. Their oscillatory motion can be exploited to displace a surrounding liquid (akin to an axial piston pump), forming electromagnetic "liquid pistons." Such ferrofluid pistons can pump a precise volume of liquid via finely tunable amplitudes (cf. pump stroke) or resonant frequencies (cf. pump speed) with no solid moving parts for long-term operation without wear in a small device. Furthermore, the rapid propagation of electromagnetic fields and the favorable scaling of capillary forces with size permit micron sized devices with very fast operating speeds (∼kHz). The pumping dynamics and performance of these liquid pistons is explored, with experimental measurements showing good agreement with a spherical cap model. While these liquid pistons may find numerous applications in micro- and mesoscale fluidic devices (e.g., remotely activated drug delivery), here we demonstrate the use of these liquid pistons in capillarity-dominated systems for chip-level, fast-acting adaptive liquid lenses with nearly perfect spherical interfaces.

  5. Hydraulic oil well pumping apparatus

    SciTech Connect

    McDuffie, T.F.

    1983-09-27

    The preferred embodiment is directed to an oil well pumping apparatus incorporating a walking beam having a horsehead at one end which connects to the sucker rods in the oil well. The opposite end of the walking beam is supported on a fixed pivot. A hydraulic and pneumatic combination unit connects from a supporting platform to a central point on the beam to raise and lower the beam. The improved apparatus utilizes air pressure to balance the static load on the apparatus and dynamically strokes the sucker rod string by imparting a reciprocating motion through hydraulic power applied at a specified rate to raise and lower the walking beam. A pump and motor system for a closed hydraulic loop is included. Alternate preferred embodiments are disclosed. In one form, a lubricating system is incorporated. First and second alternate forms of pickoff apparatus which powers the pneumatically balanced pumping apparatus is also included.

  6. Non-adiabatic pumping in an oscillating-piston model

    NASA Astrophysics Data System (ADS)

    Chuchem, Maya; Dittrich, Thomas; Cohen, Doron

    2012-05-01

    We consider the prototypical "piston pump" operating on a ring, where a circulating current is induced by means of an AC driving. This can be regarded as a generalized Fermi-Ulam model, incorporating a finite-height moving wall (piston) and non-trivial topology (ring). The amount of particles transported per cycle is determined by a layered structure of phase space. Each layer is characterized by a different drift velocity. We discuss the differences compared with the adiabatic and Boltzmann pictures, and highlight the significance of the "diabatic" contribution that might lead to a counter-stirring effect.

  7. HYDRAULIC SERVO

    DOEpatents

    Wiegand, D.E.

    1962-05-01

    A hydraulic servo is designed in which a small pressure difference produced at two orifices by an electrically operated flapper arm in a constantly flowing hydraulic loop is hydraulically amplified by two constant flow pumps, two additional orifices, and three unconnected ball pistons. Two of the pistons are of one size and operate against the additional orifices, and the third piston is of a different size and operates between and against the first two pistons. (AEC)

  8. Piston diaphragm pumps: An economic and reliable tool for slurry pipeline transportation

    SciTech Connect

    Broek, B. van den

    1998-07-01

    Slurry transportation systems by means of pumps and pipelines has been in use now for over 100 years. Hydraulic transportation of slurries is defined as a two-phase transportation of a mixture of a fluid carrier and solids, mainly in enclosed pipelines. In the mid fifties, slurry transportation techniques became more sophisticated, resulting in the design and operation of long distance pipelines for raw materials, such as coal, copper concentrate, iron concentrate, kaolin and phosphate. Nowadays, slurry transportation through pipelines has become a generally accepted means of solids transportation. A major contribution to its acceptance was the development of reliable and efficient high pressure positive displacement piston diaphragm slurry pumps. This paper will deal with the latest development in this field, namely, the high pressure GEHO piston diaphragm pump. In order to create more understanding for the possible applications and use of such piston diaphragm pumps in relation to minerals and waste transportation through pipelines, a number of typical examples will be discussed.

  9. Preliminary Study of a Piston Pump for Cryogenic Fluids

    NASA Technical Reports Server (NTRS)

    Biermann, Arnold E.; Kohl, Robert C.

    1959-01-01

    Preliminary data are presented covering the performance of a low-speed, five-cylinder piston pump designed for handling boiling hydrogen. This pump was designed for a flow of 55 gallons per minute at 240 rpm with a discharge pressure of 135 pounds per square inch. Tests were made using JP-4 fuel, liquid nitrogen, and liquid hydrogen. Pump delivery and endurance characteristics were satisfactory for the range of operation covered. In connection with the foregoing pump development, the cavitation characteristics of a preliminary visual model, glass-cylinder pump and of a simple reciprocating disk were studied. Subcooling of approximately 0.60 F was obtained from the cavitation produced by reciprocating a disk in boiling nitrogen and in boiling water. The subcooling obtained in a similar manner with liquid hydrogen was somewhat less.

  10. Piston

    DOEpatents

    Donahue, Richard J.

    2007-11-13

    A number of embodiments of a piston may have a shape that provides enhanced piston guidance. In such embodiments, the piston shape may include an axial profile that is configured to provide certain thrust load characteristics.

  11. Piston

    DOEpatents

    Donahue, Richard J.

    2007-12-04

    A number of embodiments of a piston may have a shape that provides enhanced piston guidance. In such embodiments, the piston shape may include an axial profile that is configured to provide certain thrust load characteristics.

  12. Piston

    DOEpatents

    Donahue, Richard J.

    2009-03-24

    A number of embodiments of a piston may have a shape that provides enhanced piston guidance. In such embodiments, the piston shape may include an axial profile that is configured to provide certain thrust load characteristics.

  13. Piston

    DOEpatents

    Donahue, Richard J.

    2009-02-24

    A number of embodiments of a piston may have a shape that provides enhanced piston guidance. In such embodiments, the piston shape may include an axial profile that is configured to provide certain thrust load characteristics.

  14. Modeling and Performance Improvement of the Constant Power Regulator Systems in Variable Displacement Axial Piston Pump

    PubMed Central

    Park, Sung Hwan; Lee, Ji Min; Kim, Jong Shik

    2013-01-01

    An irregular performance of a mechanical-type constant power regulator is considered. In order to find the cause of an irregular discharge flow at the cut-off pressure area, modeling and numerical simulations are performed to observe dynamic behavior of internal parts of the constant power regulator system for a swashplate-type axial piston pump. The commercial numerical simulation software AMESim is applied to model the mechanical-type regulator with hydraulic pump and simulate the performance of it. The validity of the simulation model of the constant power regulator system is verified by comparing simulation results with experiments. In order to find the cause of the irregular performance of the mechanical-type constant power regulator system, the behavior of main components such as the spool, sleeve, and counterbalance piston is investigated using computer simulation. The shape modification of the counterbalance piston is proposed to improve the undesirable performance of the mechanical-type constant power regulator. The performance improvement is verified by computer simulation using AMESim software. PMID:24282389

  15. Optimizing the performance of a solar liquid piston pump

    NASA Astrophysics Data System (ADS)

    Murphy, C. L.

    The 0.1-m solar liquid piston pump (SLPP) model is shown to exhibit stable operation over a wide range of conditions, provided the heat input (at T = 85 C) and the heat rejected (at T = 22 C) are maintained above the critical values for stalling. Under these conditions, the pumps operation is affected primarily by the heating coil position and the geometries of the inlet and outlet water tubes. It is found that the optimum output power of the model SLPP is 4.5 W at a pumping heat of 2 m, a mass flow rate of 0.23 kg/s, and an overall efficiency of 1%. It is noted that further optimization of the model would at best only marginally increase the output power and efficiency. It is thought that larger mass flow rates can be obtained by increasing the cross sectional area of the working tube and/or staging a number of pumps in parallel. It is possible to increase the pump head by staging a number of pumps in series.

  16. 21. VIEW TO NORTHWEST, ENGINE/PUMP HOUSE EXTENSION, HIGH PRESSURE PISTON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. VIEW TO NORTHWEST, ENGINE/PUMP HOUSE EXTENSION, HIGH PRESSURE PISTON OF STEAM ENGINE NO. 4; CONTROL PANEL MOUNTED ON THE ENGINE; FLOOR VALVES CONTROL THE STEAM. - Deer Island Pumping Station, Boston, Suffolk County, MA

  17. 39. THREECYLINDER HYDRAULIC OIL PUMP (MANUFACTURED BY WORTHINGTON: PUMP AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. THREE-CYLINDER HYDRAULIC OIL PUMP (MANUFACTURED BY WORTHINGTON: PUMP AND MACHINERY COMPANY, HOLYOKE MASSACHUSETTS) IN MACHINERY CHAMBER FOR SLUICE GATE WORKS ON GALLERY 1. NOTE OIL TANK ABOVE PUMP MOTOR. VIEW TO NORTHWEST. - Owyhee Dam, Across Owyhee River, Nyssa, Malheur County, OR

  18. Experimental and theoretical analysis of a Solar Liquid Piston Pump

    SciTech Connect

    Murphy, C.L.; Brew-Hammoud, A.

    1985-08-01

    The Solar Liquid Piston Pump (SLPP) is driven by oscillations of an enclosed column of liquid Freon 113. Cyclic evaporation and condensation from heating and cooling coils at the top of the liquid column generate the oscillations. The frequency and amplitude of the oscillations are enhanced by momentum forces in the inlet, outlet, and working tubes. Three geometrically different experimental models of a SLPP have been tested. To optimize the performance of the SLPP, a theoretical model was required to account for the large number of interdependent parametres that could be varied. A semiemperical time-incremented computer model was developed. A theoretical cycle was assumed and the heat transfer and fluid friction coefficient adjusted, within reasonable limits, so that the theoretical pressurevolume diagrams agreed closely with experimental ones. Input parameters were then varied for the theoretical model and compared to experimental results available. The theoretical model successfully predicted performance trends of the SLPP.

  19. Final design of a free-piston hydraulic advanced Stirling conversion system

    NASA Technical Reports Server (NTRS)

    Wallace, D. A.; Noble, J. E.; Emigh, S. G.; Ross, B. A.; Lehmann, G. A.

    1991-01-01

    Under the US Department of Energy's (DOEs) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for solar distributed receiver systems. The final design is described of an engineering prototype advanced Stirling conversion system (ASCS) with a free-piston hydraulic engine output capable of delivering about 25 kW of electric power to a utility grid. The free-piston Stirling engine has the potential for a highly reliable engine with long life because it has only a few moving parts, has noncontacting bearings, and can be hermetically sealed. The ASCS is designed to deliver maximum power per year over a range of solar input with a design life of 30 years (60,000 h). The system includes a liquid Nak pool boiler heat transport system and a free-piston Stirling engine with high-pressure hydraulic output, coupled with a bent axis variable displacement hydraulic motor and a rotary induction generator.

  20. The Hydraulic Ram (Or Impulse) Pump

    ERIC Educational Resources Information Center

    Mills, Allan

    2014-01-01

    The hydraulic impulse pump utilizes a fraction of the momentum of a flowing stream to lift a small portion of that water to a higher level. There it may be accumulated in an elevated cistern to provide sufficient water for several families, for the pump works 24 h a day with no additional source of energy. The operation of the pump is described,…

  1. The hydraulic ram (or impulse) pump

    NASA Astrophysics Data System (ADS)

    Mills, Allan

    2014-03-01

    The hydraulic impulse pump utilizes a fraction of the momentum of a flowing stream to lift a small portion of that water to a higher level. There it may be accumulated in an elevated cistern to provide sufficient water for several families, for the pump works 24 h a day with no additional source of energy. The operation of the pump is described, along with a working demonstration model constructed from plastic waste pipe and fittings.

  2. Gas-to-hydraulic power converter

    NASA Technical Reports Server (NTRS)

    Galloway, C. W. (Inventor)

    1982-01-01

    A gas piston driven hydraulic piston pump is described in which the gas cycle is of high efficiency by injecting the gas in slugs at the beginning of each power stroke. The hydraulic piston is disposed to operate inside the as piston, and the two pistons, both slidably but nonrotatably mounted, are coupled together with a rotating but non-sliding motion transfer ring extending into antifriction grooves in the sidewalls of the two pistons. To make the hydraulic piston move at a constant speed during constant hydraulic horsepower demand and thus exert a constant pressure on the hydraulic fluid, these grooves are machined with variable pitches and one is the opposite of the other, i.e., the gas piston groove increases in pitch during its power stroke while the hydraulic piston groove decreases. Any number of piston assembly sets may be used to obtain desired hydraulic horsepower.

  3. Pre-compression volume on flow ripple reduction of a piston pump

    NASA Astrophysics Data System (ADS)

    Xu, Bing; Song, Yuechao; Yang, Huayong

    2013-11-01

    Axial piston pump with pre-compression volume(PCV) has lower flow ripple in large scale of operating condition than the traditional one. However, there is lack of precise simulation model of the axial piston pump with PCV, so the parameters of PCV are difficult to be determined. A finite element simulation model for piston pump with PCV is built by considering the piston movement, the fluid characteristic(including fluid compressibility and viscosity) and the leakage flow rate. Then a test of the pump flow ripple called the secondary source method is implemented to validate the simulation model. Thirdly, by comparing results among the simulation results, test results and results from other publications at the same operating condition, the simulation model is validated and used in optimizing the axial piston pump with PCV. According to the pump flow ripples obtained by the simulation model with different PCV parameters, the flow ripple is the smallest when the PCV angle is 13°, the PCV volume is 1.3×10-4 m3 at such operating condition that the pump suction pressure is 2 MPa, the pump delivery pressure 15 MPa, the pump speed 1 000 r/min, the swash plate angle 13°. At the same time, the flow ripple can be reduced when the pump suction pressure is 2 MPa, the pump delivery pressure is 5 MPa,15 MPa, 22 MPa, pump speed is 400 r/min, 1 000 r/min, 1 500 r/min, the swash plate angle is 11°, 13°, 15° and 17°, respectively. The finite element simulation model proposed provides a method for optimizing the PCV structure and guiding for designing a quieter axial piston pump.

  4. Reducing the net torque and flow ripple effects of multiple hydraulic piston motor drives

    NASA Technical Reports Server (NTRS)

    Bartos, R. D.

    1992-01-01

    The torque and flow ripple effects which result when multiple hydraulic motors are used to drive a single motion of a mechanical device can significantly affect the way in which the device performs. This article presents a mathematical model describing the torque and flow ripple effects of a bent-axis hydraulic piston motor. The model is used to show how the ripple magnitude can be reduced when multiple motors are used to drive a motion. A discussion of the hydraulic servo system of the 70-m antennas located with the Deep Space Network is included to demonstrate the application of the concepts presented.

  5. Intermittent chaos and sliding window symbol sequence statistics-based early fault diagnosis for hydraulic pump on hydraulic tube tester

    NASA Astrophysics Data System (ADS)

    Zhao, Zhen; Jia, Mingxing; Wang, Fuli; Wang, Shu

    2009-07-01

    To ensure the safety, continuity of production, make a reasonable maintenance plan, save the cost of maintenance for hydraulic tube tester, it is needed to quickly identify an assignable cause of a fault. This paper is concerned with early fault diagnosis of hydraulic pump which are the heart of hydraulic tube tester. Considering that the signal of the hydraulic pump early fault is a periodic weak signal, an intermittent chaos, sliding window symbol sequence statistics-based method is proposed to detect the early fault of one single piston loose shoes of hydraulic pump on a hydraulic tube tester. The approach presented is based on the insight that the phase transition of chaos oscillator, for example, the Duffing oscillator, is very sensitive to a periodic weak signal having little angular frequency difference with the referential signal of the oscillator. While observing the intermittent chaos phenomenon through figure is not easy for computer, a sliding window symbol sequence statistics is developed to realize real-time computer observation of this phenomenon. Rather more, this paper takes a trick to decreasing the computational complexity of the sliding window symbol sequence statistics method, also analyzes the influences of different window size, depths of the symbol tree on the information entropy. At last, a control limit is introduced to realize automatic early fault alarm. The resultant approach is experimented with data simulated from an AMESim model of hydraulic tube tester. The results indicate that the proposed approach is capable of detecting the signal of hydraulic pump early fault on hydraulic tube tester.

  6. Rotary hydraulic engine having oppositely disposed pistons in a scotch yoke assembly

    SciTech Connect

    Courtright, H.D.

    1986-07-08

    A rotary hydraulic engine is described comprising, in combination; frame means; crankshaft means supported by aid frame means in substantially fixed relation therewith and having an eccentric crank portion; housing means encircling the crankshaft means and being rotatable relative thereto, the housing means defining a plurality of pairs of cylinders disposed in laterally opposed sets such that each cylinder is laterally opposed to and co-axial with an opposed cylinder; a piston slidingly disposed within each of the cylinders; a scotch yoke assembly having a pair of discrete slide members each of which interconnects the pistons disposed within the laterally opposed set of cylinders and has cooperative relation with the eccentric crank portion so as to effect tandem movement of the interconnected pistons and thereby effect relative movement between the housing means and the crankshaft means; external valve means operatively associated with each of the cylinders so as to enable selective application of fluid pressure to the pistons in a manner adapted to effect predetermined sequential movement of the pistons and associated scotch yoke assembly, thereby imparting rotary motion to the housing.

  7. Simulation of a Hydraulic Pump Control Valve

    NASA Technical Reports Server (NTRS)

    Molen, G. Vander; Akers, A.

    1987-01-01

    This paper describes the mode of operation of a control valve assembly that is used with a hydraulic pump. The operating system of the valve is modelled in a simplified form, and an analogy for hydraulic resonance of the pressure sensing system is presented. For the control valve investigated, air entrainment, length and diameter of the resonator neck, and valve mass produced the greatest shift in resonant frequency. Experimental work was conducted on the hydraulic system so that the resonance levels and frequencies could be measured and the accuracy of the theory verified. The results obtained make it possible to evaluate what changes to any of the variables considered would be most effective in driving the second harmonic frequency above the operating range.

  8. Method for building or repairing rotary injection fuel pump piston cylinders

    SciTech Connect

    Tompkins, M.J. Jr.; Ash, E.G.

    1986-06-17

    A rotary fuel injection pump is described for an internal combustion engine including a housing with inlet and outlet passages, a rotor having a longitudinal axis journaled in the housing having a rotor body with angularly spaced radially extending bores and a fuel passage in communication with the inner ends of the bores having inlet and outlet ports which communicate alternately with the inlet and outlet passages during rotation of the rotor for alternately conducting fuel to and from the bores respectively, a plunger assembly for each bore comprising a pump plunger reciprocally mounted in the bore to sequentially receive charges of fuel from and deliver them to the inlet and outlet passages respectively, and a plunger operating roller and roller shoe at the outer end of the plunger having a radial position relative to the axis of the rotor, a cam ring with an inner cam contour surrounding the rotor in the plane of revolution of the rollers engageable therewith to translate the cam contour into reciprocal movement of the plungers, and a plunger stroke limit mechanism for limiting the outward stroke of the plungers and thereby regulate the quantity of fuel injected during each inward pumping stroke thereof, a timing advance connector connected to the cam ring for changing the radial position of the lobes in the plane of revolution of the rollers relative to the rollers to thereby advance or retard the fuel injection depending upon the position of the cam ring, a timing means controlling the movement of a hydraulic timing piston mounted in a cylinder which moves the connector.

  9. Hydraulic gas pump: A discussion of its power usage

    SciTech Connect

    Amani, M.

    1995-12-31

    This paper presents the results of a study that compares the theoretically calculated power consumption of a Hydraulic Gas Pump, rod pumps, and electric submersible pumps. The results indicate that, depending on the flowing bottomhole pressure of a well, a Hydraulic Gas Pump can have lower power costs than a rod pump or a submersible pump. The author presents a method for calculating the power cost of a Hydraulic Gas Pump and discusses the relationship of the power cost of this pump to the flowing bottomhole pressure. Several graphs compare the calculated power consumption of a rod pump, submersible pump, and Hydraulic Gas Pump for well depths ranging between 6,000 and 10,000 feet; flowing bottomhole pressure ranging between 500 and 2,000 psi; and production rates of 300 and 500 BLPD.

  10. Hydraulic stud tensioning aids pump performance

    SciTech Connect

    Marchand, G.J.

    1986-03-31

    This article considers the use of hydraulic stud tensioners on mud pump fluid ends. It contains tensioner testing and application. A typical problem involving a fluid end stud is presented to illustrate the use of hydraulic tensioning. Hydraulic stud tensioners give optimum preload reliability over traditional torque tensioning methods. Accurately controlling preload increases stud fatigue life and minimizes maintenance. At one time it was acceptable just to get fluid end connections tight by means of slogging wrenches, impact wrenches, or two of your biggest men on a 10-ft cheater pipe. If the connection did not leak during hydrotest, it was accepted and put into operation. Users of mud pumps are faced with fluid ends that may ''breathe'' excessively due to improper stud preload. Today's equipment is smaller in size and larger in horsepower than ever before, using large retaining studs requiring torques of 3,000 ft-lb and up. In present compact designs, many bolted connections have become virtually inaccessible using traditional tightening procedures. No longer will large wrenches, cheater pipes, and sledge hammers clear surrounding equipment.

  11. 93. STARBOARD CATAPULT HYDRAULIC PUMP PORT LOOKING TO STARBOARD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    93. STARBOARD CATAPULT HYDRAULIC PUMP - PORT LOOKING TO STARBOARD SHOWING ONE OF THE SEVEN (7) HYDRAULIC USED TO OPERATE THE CATAPULT. - U.S.S. HORNET, Puget Sound Naval Shipyard, Sinclair Inlet, Bremerton, Kitsap County, WA

  12. Free-piston Stirling hydraulic engine and drive system for automobiles

    NASA Technical Reports Server (NTRS)

    Beremand, D. G.; Slaby, J. G.; Nussle, R. C.; Miao, D.

    1982-01-01

    The calculated fuel economy for an automotive free piston Stirling hydraulic engine and drive system using a pneumatic accumulator with the fuel economy of both a conventional 1980 spark ignition engine in an X body class vehicle and the estimated fuel economy of a 1984 spark ignition vehicle system are compared. The results show that the free piston Stirling hydraulic system with a two speed transmission has a combined fuel economy nearly twice that of the 1980 spark ignition engine - 21.5 versus 10.9 km/liter (50.7 versus 25.6 mpg) under comparable conditions. The fuel economy improvement over the 1984 spark ignition engine was 81 percent. The fuel economy sensitivity of the Stirling hydraulic system to system weight, number of transmission shifts, accumulator pressure ratio and maximum pressure, auxiliary power requirements, braking energy recovery, and varying vehicle performance requirements are considered. An important finding is that a multispeed transmission is not required. The penalty for a single speed versus a two speed transmission is about a 12 percent drop in combined fuel economy to 19.0 km/liter (44.7 mpg). This is still a 60 percent improvement in combined fuel economy over the projected 1984 spark ignition vehicle.

  13. Dynamics and design of a power unit with a hydraulic piston actuator

    NASA Astrophysics Data System (ADS)

    Misyurin, S. Yu.; Kreinin, G. V.

    2016-07-01

    The problem of the preselection of parameters of a power unit of a mechatronic complex on the basis of the condition for providing a required control energy has been discussed. The design of the unit is based on analysis of its dynamics under the effect of a special-type test conditional control signal. The specific features of the approach used are a reasonably simplified normalized dynamic model of the unit and the formation of basic similarity criteria. Methods of designing a power unit with a hydraulic piston actuator that operates in point-to-point and oscillatory modes have been considered.

  14. Optimizing the performance of a solar liquid piston pump

    NASA Astrophysics Data System (ADS)

    Murphy, C. L.

    Utilization of solar energy for pumping water for irrigation or storage is discussed. Oscillations of a Freon 113 liquid column are generated in a working tube when a continuous flow of hot water, and cooling water, are supplied to heated and cooling coils located in the tube. The oscillations are converted into a pump (SLPP) model exhibited self starting, stable operation over a wide range of conditions, provides the inlet hot water heat source and inlet cooling water heat sink are above and below the critical values for stalling at a given pump head. The operation of the SLPP model, is primarily affected by the heating coil position within the working tube, and the geometries of the inlet and outlet water tubes.

  15. Powertrain System HANT: Hydraulic Pump/Motor

    SciTech Connect

    Not Available

    1993-06-01

    The development of the new Hydraulic Pump/Motor is the main part of the Powertrain-System HANT. Several Engineering Models of the same design have been tested to prove that the new concept is effective. The important ranges: Maximum pressure and rpm and low power (low pressure, rpm, swashplate angle) were tested successfully. The efficiencies in all areas have already shown the same or better data then those of the best products on the market. The tests have been conducted in Switzerland (maximum power) in 1987 and at the UWM-Madison, Wisconsin (low power efficiency) in 1988. Based on these data and several new useful design features the Engineering Model has been updated. In addition, the reduction of unnecessary safety factor, new materials and mass-production like manufacturing methods, has lead to an significantly improved Prototype Design. The updated version and its expected improved technical data are presented in this report.

  16. RE-1000 free-piston Stirling engine hydraulic output system description

    NASA Technical Reports Server (NTRS)

    Schreiber, Jeffrey G.; Geng, Steven M.

    1987-01-01

    The NASA Lewis Research Center was involved in free-piston Stirling engine research since 1976. Most of the work performed in-house was related to characterization of the RE-1000 engine. The data collected from the RE-1000 tests were intended to provide a data base for the validation of Stirling cycle simulations. The RE-1000 was originally build with a dashpot load system which did not convert the output of the engine into useful power, but was merely used as a load for the engine to work against during testing. As part of the interagency program between NASA Lewis and the Oak Ridge National Laboratory, (ORNL), the RE-1000 was converted into a configuration that produces useable hydraulic power. A goal of the hydraulic output conversion effort was to retain the same thermodynamic cycle that existed with the dashpot loaded engine. It was required that the design must provide a hermetic seal between the hydraulic fluid and the working gas of the engine. The design was completed and the hardware was fabricated. The RE-1000 was modified in 1985 to the hydraulic output configuration. The early part of the RE-1000 hydraulic output program consisted of modifying hardware and software to allow the engine to run at steady-state conditions. A complete description of the engine is presented in sufficient detail so that the device can be simulated on a computer. Tables are presented showing the masses of the oscillating components and key dimensions needed for modeling purposes. Graphs are used to indicate the spring rate of the diaphragms used to separate the helium of the working and bounce space from the hydraulic fluid.

  17. Free-piston Stirling engine diaphragm-coupled Heat-Actuated Heat Pump component technology program. Volume 1: Technical discussion

    NASA Astrophysics Data System (ADS)

    Ackermann, R. A.

    1988-01-01

    This report presents the results of an effort to develop and demonstrate the technical feasibility of a residential size Stirling-engine-driven diaphragm-coupled compressor for a heat pump application. The heat pump module consists of a 3-kW free-piston Stirling engine (FPSE), an efficient hydraulic transmission, and a nominal 3-ton capacity refrigerant (R-22) reciprocating compressor. During earlier Phase 1 activity, the lower end (hydraulic transmission and compressor) was designed, fabricated, mated to an existing Mechanical Technology Incorporated (MTI) FPSE, and tested. After several years of development, this heat pump module achieved a capacity of 2.5 refrigeration tons at 95 F ambient conditions. While this was below the module's rated 3.0-ton capacity, it demonstrated the potential of the FPSE heat pump (FPSE/HP) and identified a lack of engine power as the main reason for the low capacity. During a companion engine development program sponsored by the Gas Research Institute, the engine was improved by developing a new displacer drive that increased the FPSE's power capability. During Phase 2, the new engine, the Mark I, was mated to the lower end (transmission/compressor) and tested. The testing of the Mark I FPSE/HP module was very successful, with the system achieving its 3.0-ton capacity goal and all other proof-of-concepts targets. Included herein is a discussion of the Phase 2 activity, including the results of the Mark I FPSE/HP module testing, a component design effort of several key lower end components that was performed to optimize the design, and the Lennox evaluation.

  18. 50. VIEW OF HYDRAULIC PUMP INSIDE 'CATFISH' SILO Everett Weinreb, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. VIEW OF HYDRAULIC PUMP INSIDE 'CATFISH' SILO Everett Weinreb, photographer, March 1988 - Mount Gleason Nike Missile Site, Angeles National Forest, South of Soledad Canyon, Sylmar, Los Angeles County, CA

  19. The numerical simulation based on CFD of hydraulic turbine pump

    NASA Astrophysics Data System (ADS)

    Duan, X. H.; Kong, F. Y.; Liu, Y. Y.; Zhao, R. J.; Hu, Q. L.

    2016-05-01

    As the functions of hydraulic turbine pump including self-adjusting and compensation with each other, it is far-reaching to analyze its internal flow by the numerical simulation based on CFD, mainly including the pressure field and the velocity field in hydraulic turbine and pump.The three-dimensional models of hydraulic turbine pump are made by Pro/Engineer software;the internal flow fields in hydraulic turbine and pump are simulated numerically by CFX ANSYS software. According to the results of the numerical simulation in design condition, the pressure field and the velocity field in hydraulic turbine and pump are analyzed respectively .The findings show that the static pressure decreases systematically and the pressure gradient is obvious in flow area of hydraulic turbine; the static pressure increases gradually in pump. The flow trace is regular in suction chamber and flume without spiral trace. However, there are irregular traces in the turbine runner channels which contrary to that in flow area of impeller. Most of traces in the flow area of draft tube are spiral.

  20. Tribological experiences of an axial piston pump and motor manufacturer with todays available biodegradable fluids

    SciTech Connect

    Witte, K.H.; Wills, D.K.

    1997-12-31

    Since the late 1970`s, biodegradable fluids have been used in hydrostatics with limited success. Performance has not matched expectations during extensive field testing. For example, fluids reported as having excellent lubricating properties, by bench and field testing, produced excessive wear. Design modifications successfully resolved some of these problems, but wear problems with sealing and bearing surfaces still exist, suggesting that fluid properties may need to be modified. New test procedures measuring wear, e.g., may need to be developed as well because of the correlation problem between reported fluid properties and axial piston pump performance like good lubricity resulted in excessive wear.

  1. Fatigue Analysis of the Piston Rod in a Kaplan Turbine Based on Crack Propagation under Unsteady Hydraulic Loads

    NASA Astrophysics Data System (ADS)

    Liu, X.; Y Luo, Y.; Wang, Z. W.

    2014-03-01

    As an important component of the blade-control system in Kaplan turbines, piston rods are subjected to fluctuating forces transferred by the turbines blades from hydraulic pressure oscillations. Damage due to unsteady hydraulic loads might generate unexpected down time and high repair cost. In one running hydropower plant, the fracture failure of the piston rod was found twice at the same location. With the transient dynamic analysis, the retainer ring structure of the piston rod existed a relative high stress concentration. This predicted position of the stress concentration agreed well with the actual fracture position in the plant. However, the local strain approach was not able to explain why this position broke frequently. Since traditional structural fatigue analyses use a local stress strain approach to assess structural integrity, do not consider the effect of flaws which can significantly degrade structural life. Using linear elastic fracture mechanism (LEFM) approaches that include the effect of flaws is becoming common practice in many industries. In this research, a case involving a small semi-ellipse crack was taken into account at the stress concentration area, crack growth progress was calculated by FEM. The relationship between crack length and remaining life was obtained. The crack propagation path approximately agreed with the actual fracture section. The results showed that presence of the crack had significantly changed the local stress and strain distributions of the piston rod compared with non-flaw assumption.

  2. Conceptual design and cost analysis of hydraulic output unit for 15 kW free-piston Stirling engine

    NASA Technical Reports Server (NTRS)

    White, M. A.

    1982-01-01

    A long-life hydraulic converter with unique features was conceptually designed to interface with a specified 15 kW(e) free-piston Stirling engine in a solar thermal dish application. Hydraulic fluid at 34.5 MPa (5000 psi) is produced to drive a conventional hydraulic motor and rotary alternator. Efficiency of the low-maintenance converter design was calculated at 93.5% for a counterbalanced version and 97.0% without the counterbalance feature. If the converter were coupled to a Stirling engine with design parameters more typcial of high-technology Stirling engines, counterbalanced converter efficiency could be increased to 99.6%. Dynamic computer simulation studies were conducted to evaluate performance and system sensitivities. Production costs of the complete Stirling hydraulic/electric power system were evaluated at $6506 which compared with $8746 for an alternative Stirling engine/linear alternator system.

  3. Servo Controlled Variable Pressure Modification to Space Shuttle Hydraulic Pump

    NASA Technical Reports Server (NTRS)

    Kouns, H. H.

    1983-01-01

    Engineering drawings show modifications made to the constant pressure control of the model AP27V-7 hydraulic pump to an electrically controlled variable pressure setting compensator. A hanger position indicator was included for continuously monitoring hanger angle. A simplex servo driver was furnished for controlling the pressure setting servovalve. Calibration of the rotary variable displacement transducer is described as well as pump performance and response characteristics.

  4. The combustion process in a DI diesel hydraulic free piston engine

    SciTech Connect

    Somhorst, J.H.E.; Achten, P.A.J.

    1996-09-01

    In a free piston engine the piston is neither connected to a crankshaft mechanism nor to any other kinematic system. Instead the piston movement is determined by the free forces that act upon it. This difference between the kinematic principle of the crankshaft engine and the free piston principle has a significant influence on the combustion process. In this paper the combustion process in a free piston engine is described on the basis of experiments. The experimental data were obtained from measurements on the free piston engine that has been developed by the Dutch company Innas. This article discusses the influence of the free piston principle on cold start, ignition delay, heat release, heat transfer, indicated efficiency and emissions. In the optimum point the engine has an indicated efficiency of 51%, a NOx emission of 6 gr/kWhi and a soot emission corresponding to a Bosch Filter Number of less than 0.5. The combustion process of the free piston engine is furthermore characterized by a nearly constant volume combustion process.

  5. A prototype of volume-controlled tidal liquid ventilator using independent piston pumps.

    PubMed

    Robert, Raymond; Micheau, Philippe; Cyr, Stéphane; Lesur, Olivier; Praud, Jean-Paul; Walti, Hervé

    2006-01-01

    Liquid ventilation using perfluorochemicals (PFC) offers clear theoretical advantages over gas ventilation, such as decreased lung damage, recruitment of collapsed lung regions, and lavage of inflammatory debris. We present a total liquid ventilator designed to ventilate patients with completely filled lungs with a tidal volume of PFC liquid. The two independent piston pumps are volume controlled and pressure limited. Measurable pumping errors are corrected by a programmed supervisor module, which modifies the inserted or withdrawn volume. Pump independence also allows easy functional residual capacity modifications during ventilation. The bubble gas exchanger is divided into two sections such that the PFC exiting the lungs is not in contact with the PFC entering the lungs. The heating system is incorporated into the metallic base of the gas exchanger, and a heat-sink-type condenser is placed on top of the exchanger to retrieve PFC vapors. The prototype was tested on 5 healthy term newborn lambs (<5 days old). The results demonstrate the efficiency and safety of the prototype in maintaining adequate gas exchange, normal acido-basis equilibrium, and cardiovascular stability during a short, 2-hour total liquid ventilator. Airway pressure, lung volume, and ventilation scheme were maintained in the targeted range.

  6. A prototype of volume-controlled tidal liquid ventilator using independent piston pumps.

    PubMed

    Robert, Raymond; Micheau, Philippe; Cyr, Stéphane; Lesur, Olivier; Praud, Jean-Paul; Walti, Hervé

    2006-01-01

    Liquid ventilation using perfluorochemicals (PFC) offers clear theoretical advantages over gas ventilation, such as decreased lung damage, recruitment of collapsed lung regions, and lavage of inflammatory debris. We present a total liquid ventilator designed to ventilate patients with completely filled lungs with a tidal volume of PFC liquid. The two independent piston pumps are volume controlled and pressure limited. Measurable pumping errors are corrected by a programmed supervisor module, which modifies the inserted or withdrawn volume. Pump independence also allows easy functional residual capacity modifications during ventilation. The bubble gas exchanger is divided into two sections such that the PFC exiting the lungs is not in contact with the PFC entering the lungs. The heating system is incorporated into the metallic base of the gas exchanger, and a heat-sink-type condenser is placed on top of the exchanger to retrieve PFC vapors. The prototype was tested on 5 healthy term newborn lambs (<5 days old). The results demonstrate the efficiency and safety of the prototype in maintaining adequate gas exchange, normal acido-basis equilibrium, and cardiovascular stability during a short, 2-hour total liquid ventilator. Airway pressure, lung volume, and ventilation scheme were maintained in the targeted range. PMID:17117053

  7. 24. VIEW OF BOXES CONTAINING SOLENOIDS AND HYDRAULIC PUMP CONTRACTORS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. VIEW OF BOXES CONTAINING SOLENOIDS AND HYDRAULIC PUMP CONTRACTORS FOR ENVIRONMENTAL DOORS AND BREAKERS FOR RECEPTACLES ON SEVERAL STATIONS. BOXES LOCATED IN THE SOUTHEAST CORNER OF SLC-3W MST STATION 63. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  8. Anti rotational device for down hole hydraulic pumping unit

    SciTech Connect

    Roussel, L.J.

    1987-01-20

    This patent describes, for use in a down hole pumping unit operated by a sucker rod driven by a hydraulic pump having a cylinder and cylinder rod, an anti rotational device for connecting the cylinder rod to the sucker rod while permitting rotation of the sucker rod comprising: vertical spacer means connectable adjacent an upper end therof in fixed relation to the cylinder rod; means rotating the sucker rod; means connecting the sucker rod adjacent a lower end of the vertical spacer means for rotation relative thereto; and vertical guide means permitting vertical movement of the vertical spacer means while preventing rotation thereof.

  9. Development of a residential free-piston Stirling engine heat pump

    NASA Astrophysics Data System (ADS)

    Ackermann, Robert A.

    After several years of development, the free-piston Stirling engine heat pump (FPSE/HP) has successfully met proof-of-concept targets. The performance targets were achieved during an off-site test and evaluation program conducted at the Lennox Industries Engineering Center. The performance achieved for the module was a cooling thermal coefficient of performance (COP) of 0.91 and a heating thermal COP of 1.62. In addition to its performance achievement, the FPSE/HP module demonstrated good reliability in over 60 days of operation and ran stably and repeatably over a range of ambient conditions from 0 to 105 F. This paper will provide a description of the FPSE/HP module tested at Lennox, describe the developmental history of the FPSE/HP at Mechanical Technology Incorporated (MTI), and present the results of the Lennox tests. This work has been a collaborative effort of MTI, Oak Ridge National Laboratory (ORNL), the Department of Energy (DOE), and the Gas Research Institute (GRI). The financial and technical support provided by ORNL, DOE, and GRI was responsible for the success achieved.

  10. Solid Rocket Booster Hydraulic Pump Port Cap Joint Load Testing

    NASA Technical Reports Server (NTRS)

    Gamwell, W. R.; Murphy, N. C.

    2004-01-01

    The solid rocket booster uses hydraulic pumps fabricated from cast C355 aluminum alloy, with 17-4 PH stainless steel pump port caps. Corrosion-resistant steel, MS51830 CA204L self-locking screw thread inserts are installed into C355 pump housings, with A286 stainless steel fasteners installed into the insert to secure the pump port cap to the housing. In the past, pump port cap fasteners were installed to a torque of 33 Nm (300 in-lb). However, the structural analyses used a significantly higher nut factor than indicated during tests conducted by Boeing Space Systems. When the torque values were reassessed using Boeing's nut factor, the fastener preload had a factor of safety of less than 1, with potential for overloading the joint. This paper describes how behavior was determined for a preloaded joint with a steel bolt threaded into steel inserts in aluminum parts. Finite element models were compared with test results. For all initial bolt preloads, bolt loads increased as external applied loads increased. For higher initial bolt preloads, less load was transferred into the bolt, due to external applied loading. Lower torque limits were established for pump port cap fasteners and additional limits were placed on insert axial deformation under operating conditions after seating the insert with an initial preload.

  11. Engine with hydraulic fuel injection and ABS circuit using a single high pressure pump

    DOEpatents

    Bartley, Bradley E.; Blass, James R.; Gibson, Dennis H.

    2001-01-01

    An engine system comprises a hydraulically actuated fuel injection system and an ABS circuit connected via a fluid flow passage that provides hydraulic fluid to both the fuel injection system and to the ABS circuit. The hydraulically actuated system includes a high pressure pump. The fluid control passage is in fluid communication with an outlet from the high pressure pump.

  12. Self-aligning hydraulic piston assembly for tensile testing of ceramic

    DOEpatents

    Liu, Kenneth C.

    1987-01-01

    The present invention is directed to a self-aligning grip housing assembly that can transmit an uniaxial load to a tensil specimen without introducing bending stresses into the specimen. Disposed inside said grip housing assembly are a multiplicity of supporting pistons connected to a common source of pressurized oil that carry equal shares of the load applied to the specimen irregardless whether there is initial misalignment between the specimen load column assembly and housing axis.

  13. Self-aligning hydraulic piston assembly for tensile testing of ceramic

    DOEpatents

    Liu, K.C.

    1987-08-18

    The present invention is directed to a self-aligning grip housing assembly that can transmit an uniaxial load to a tensile specimen without introducing bending stresses into the specimen. Disposed inside said grip housing assembly are a multiplicity of supporting pistons connected to a common source of pressurized oil that carry equal shares of the load applied to the specimen regardless whether there is initial misalignment between the specimen load column assembly and housing axis. 4 figs.

  14. Method and apparatus for stimulating hydraulically pumped wells

    SciTech Connect

    Moore, B.K.; Morris, D.R.

    1989-09-12

    This patent describes a method of stimulating a well having a production tubing extending in a well casing with a production packer therebetween in which the production tubing includes an internal shoulder and a fluid port above the shoulder communicating between the inside of the tubing and the casing, with a hydraulic pump seated on the shoulder for pumping fluid from the well. The method comprises removing the hydraulic pump from the production tubing while leaving the production tubing in place, lowering a coil tubing having a fluid injector at its lower end into the production tubing, sealingly seating the injector onto the shoulder, pressuring fluid against the top of the seated injector and against the top of the production packer for maintaining the injector on the seat and maintaining the packer in place and stimulating the well through the coil tubing through the injector. This patent describes an apparatus for stimulating wells in which a production tubing extends in a well casing with a production packer therebetween in which the production tubing includes an internal shoulder and a fluid port above the shoulder communicating between the inside of the tubing and the casing. The apparatus comprising, coil tubing with a fluid injector at its lower end, the injector including means for seating on the internal shoulder and means for sealingly engaging the internal shoulder, and a fluid inflatable packer connected to the coil tubing at a position above the injector for positioning above the fluid port when the injector is seated on the shoulder.

  15. An evaluation of a hubless inducer and a full flow hydraulic turbine driven inducer boost pump

    NASA Technical Reports Server (NTRS)

    Lindley, B. K.; Martinson, A. R.

    1971-01-01

    The purpose of the study was to compare the performance of several configurations of hubless inducers with a hydrodynamically similar conventional inducer and to demonstrate the performance of a full flow hydraulic turbine driven inducer boost pump using these inducers. A boost pump of this type consists of an inducer connected to a hydraulic turbine with a high speed rotor located in between. All the flow passes through the inducer, rotor, and hydraulic turbine, then into the main pump. The rotor, which is attached to the main pump shaft, provides the input power to drive the hydraulic turbine which, in turn, drives the inducer. The inducer, rotating at a lower speed, develops the necessary head to prevent rotor cavitation. The rotor speed is consistent with present main engine liquid hydrogen pump designs and the overall boost pump head rise is sufficient to provide adequate main pump suction head. This system would have the potential for operating at lower liquid hydrogen tank pressures.

  16. Use a Log Splitter to Demonstrate Two-Stage Hydraulic Pump

    ERIC Educational Resources Information Center

    Dell, Timothy W.

    2012-01-01

    The two-stage hydraulic pump is commonly used in many high school and college courses to demonstrate hydraulic systems. Unfortunately, many textbooks do not provide a good explanation of how the technology works. Another challenge that instructors run into with teaching hydraulic systems is the cost of procuring an expensive real-world machine…

  17. Importance of mechanical testing of hydraulic fluids

    SciTech Connect

    Reichel, J.

    1997-12-31

    Anti-wear properties of hydraulic fluids are important because hydraulic pump and motor wear is costly. Hydraulic fluid performance specifications represent minimum requirements. International hydraulic fluid performance standards are being developed by ISO/TC28/SC4 committee as draft (ISO DIS 11158 ``Specifications for Mineral Oil Hydraulic Fluids``). Performance specifications for non-mineral oil hydraulic fluids are also being developed. Typically, both the user and fluid manufacturer have insufficient information relating to the anti-wear properties of a new fluid to be used in hydraulic equipment, such as axial piston pumps, vane pumps or radial piston motors. Therefore, pump lubrication and operation requirements, preferably pre-existing in pump manufacturer`s specifications, must be determined. The required fluid lubrication properties may be determined by either laboratory pump tests or by a field trial, often at the expense of the customer. More preferably, the lubrication properties of the hydraulic fluid should be determined under mechanical conditions equivalent to field practice. In this paper, the use of both the vane pump test and the FZG Gear Test to predetermine the recommended hydraulic fluid lubrication performance will be discussed. In this way, fluid performance may be determined at significantly lower cost than more expensive large scale hydraulic pump and motor tests which are slower and more energy consuming.

  18. Downhole hydraulic seismic generator

    DOEpatents

    Gregory, Danny L.; Hardee, Harry C.; Smallwood, David O.

    1992-01-01

    A downhole hydraulic seismic generator system for transmitting energy wave vibrations into earth strata surrounding a borehole. The system contains an elongated, unitary housing operably connected to a well head aboveground by support and electrical cabling, and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a hydraulic oscillator containing a double-actuating piston whose movement is controlled by an electro-servovalve regulating a high pressure hydraulic fluid flow into and out of upper and lower chambers surrounding the piston. The spent hydraulic fluid from the hydraulic oscillator is stored and pumped back into the system to provide high pressure fluid for conducting another run at the same, or a different location within the borehole.

  19. Engine having hydraulic and fan drive systems using a single high pressure pump

    DOEpatents

    Bartley, Bradley E.; Blass, James R.; Gibson, Dennis H.

    2000-01-01

    An engine comprises a hydraulic system attached to an engine housing that includes a high pressure pump and a hydraulic fluid flowing through at least one passageway. A fan drive system is also attached to the engine housing and includes a hydraulic motor and a fan which can move air over the engine. The hydraulic motor includes an inlet fluidly connected to the at least one passageway.

  20. Examples of oil cavitation erosion in positive displacement pumps

    NASA Technical Reports Server (NTRS)

    Halat, J. A.; Ellis, G. O.

    1974-01-01

    The effects of cavitation flow on piston type, positive displacement, hydraulic pumps are discussed. The operating principles of the pump and the components which are most subject to erosion effects are described. The mechanisms of cavitation phenomena are identified from photographic records. Curves are developed to show the solubility of air in water, oil-water emulsion, and industrial hydraulic oil.

  1. Optimization and testing of the Beck Engineering free-piston cryogenic pump for LNG systems on heavy vehicles. Final technical report

    SciTech Connect

    Beck, Douglas S.

    2003-01-10

    Task 7 was completed by reaching Milestone 7: Test free piston cryogenic pump (FPCP) in Integrated LNG System. Task 4: Alternative Pump Design was also completed. The type of performance of the prototype LNG system is consistent with requirements of fuel systems for heavy vehicles; however, the maximum flow capacity of the prototype LNG system is significantly less than the total flow requirement. The flow capacity of the prototype LNG system is determined by a cavitation limit for the FPCP.

  2. Review Of Low-Flow Bladder Pump And High-Volume Air Piston Pump Groundwater Sampling Systems At Sandia National Laboratories, New Mexico

    SciTech Connect

    Collins, S. S.; Bailey, G. A.; Jackson, T. O.

    2003-02-25

    Since 1996, Sandia National Laboratories, New Mexico (SNL/NM) has run both a portable high-volume air-piston pump system and a dedicated, low-flow bladder pump system to collect groundwater samples. The groundwater contaminants of concern at SNL/NM are nitrate and the volatile organic compounds trichloroethylene (TCE) and tetrachloethene (PCE). Regulatory acceptance is more common for the high-volume air piston pump system, especially for programs like SNL/NM's, which are regulated under the Resource Conservation and Recovery Act (RCRA). This paper describes logistical and analytical results of the groundwater sampling systems used at SNL/NM. With two modifications to the off-the-shelf low-flow bladder pump, SNL/NM consistently operates the dedicated low-flow system at depths greater than 450 feet below ground surface. As such, the low-flow sampling system requires fewer personnel, less time and materials, and generates less purge and decontamination water than does the high-volume system. However, the bladder pump cannot work in wells with less than 4 feet of water. A review of turbidity and laboratory analytical results for TCE, PCE, and chromium (Cr) from six wells highlight the affect or lack of affects the sampling systems have on groundwater samples. In the PVC wells, turbidity typically remained < 5 nephelometric turbidity units (NTU) regardless of the sampling system. In the wells with a stainless steel screen, turbidity typically remained < 5 NTU only with the low-flow system. When the high-volume system was used, the turbidity and Cr concentration typically increased an order of magnitude. TCE concentrations at two wells did not appear to be sensitive to the sampling method used. However, PCE and TCE concentrations dropped an order of magnitude when the high-volume system was used at two other wells. This paper recommends that SNL/NM collaborate with other facilities with similar groundwater depths, continue to pursue regulatory approval for using

  3. Review of low-flow bladder pump and high-volume air piston pump groundwater sampling systems at Sandia National Laboratories, New Mexico.

    SciTech Connect

    Collins, Sue S.; Jackson, Timmie Okchumpulla (Weston Solutions, Inc., Albuquerque, NM); Bailey, Glenn A.

    2003-01-01

    Since 1996, Sandia National Laboratories, New Mexico (SNL/NM) has run both a portable high-volume air-piston pump system and a dedicated, low-flow bladder pump system to collect groundwater samples. The groundwater contaminants of concern at SNL/NM are nitrate and the volatile organic compounds trichloroethylene (TCE) and tetrachloethene (PCE). Regulatory acceptance is more common for the high-volume air piston pump system, especially for programs like SNL/NM's, which are regulated under the Resource Conservation and Recovery Act (RCRA). This paper describes logistical and analytical results of the groundwater sampling systems used at SNL/NM. With two modifications to the off-the-shelf low-flow bladder pump, SNL/NM consistently operates the dedicated low-flow system at depths greater than 450 feet below ground surface. As such, the low-flow sampling system requires fewer personnel, less time and materials, and generates less purge and decontamination water than does the high-volume system. However, the bladder pump cannot work in wells with less than 4 feet of water. A review of turbidity and laboratory analytical results for TCE, PCE, and chromium (Cr) from six wells highlight the affect or lack of affects the sampling systems have on groundwater samples. In the PVC wells, turbidity typically remained < 5 nephelometric turbidity units (NTU) regardless of the sampling system. In the wells with a stainless steel screen, turbidity typically remained < 5 NTU only with the low-flow system. When the high-volume system was used, the turbidity and Cr concentration typically increased an order of magnitude. TCE concentrations at two wells did not appear to be sensitive to the sampling method used. However, PCE and TCE concentrations dropped an order of magnitude when the high-volume system was used at two other wells. This paper recommends that SNL/NM collaborate with other facilities with similar groundwater depths, continue to pursue regulatory approval for using

  4. Slip flow coefficient analysis in water hydraulics gear pump for environmental friendly application

    NASA Astrophysics Data System (ADS)

    Yusof, A. A.; Wasbari, F.; Zakaria, M. S.; Ibrahim, M. Q.

    2013-12-01

    Water hydraulics is the sustainable option in developing fluid power systems with environmental friendly approach. Therefore, an investigation on water-based external gear pump application is being conducted, as a low cost solution in the shifting effort of using water, instead of traditional oil hydraulics in fluid power application. As the gear pump is affected by fluid viscosity, an evaluation has been conducted on the slip flow coefficient, in order to understand to what extent the spur gear pump can be used with water-based hydraulic fluid. In this paper, the results of a simulated study of variable-speed fixed displacement gear pump are presented. The slip flow coefficient varies from rotational speed of 250 RPM to 3500 RPM, and provides volumetric efficiency ranges from 9 % to 97% accordingly.

  5. Reduction of hydraulic line oscillating pressures induced by pump cavitation

    NASA Astrophysics Data System (ADS)

    Druhak, G.; Marino, P.; Bernstein, M.

    1982-05-01

    A Helmholtz resonator cavitation attenuator to reduce oscillating pressure and resulting vibration induced stresses was developed. Its development, the magnitude of reduction it effected in hydraulic line and bracket stresses, and the analytic procedure to calculate the standing pressure wave induced stresses in hydraulic lines are described.

  6. Human Aorta Is a Passive Pump

    NASA Astrophysics Data System (ADS)

    Pahlevan, Niema; Gharib, Morteza

    2012-11-01

    Impedance pump is a simple valveless pumping mechanism that operates based on the principles of wave propagation and reflection. It has been shown in a zebrafish that a similar mechanism is responsible for the pumping action in the embryonic heart during early stages before valve formation. Recent studies suggest that the cardiovascular system is designed to take advantage of wave propagation and reflection phenomena in the arterial network. Our aim in this study was to examine if the human aorta is a passive pump working like an impedance pump. A hydraulic model with different compliant models of artificial aorta was used for series of in-vitro experiments. The hydraulic model includes a piston pump that generates the waves. Our result indicates that wave propagation and reflection can create pumping mechanism in a compliant aorta. Similar to an impedance pump, the net flow and the flow direction depends on the frequency of the waves, compliance of the aorta, and the piston stroke.

  7. Summary of Test Results From a 1 kW(sub e)-Class Free-Piston Stirling Power Convertor Integrated With a Pumped NaK Loop

    NASA Technical Reports Server (NTRS)

    Briggs, Maxwell H.; Geng, Steven M.; Pearson, J. Boise; Godfroy, Thomas J.

    2010-01-01

    As a step towards development of Stirling power conversion for potential use in Fission Surface Power (FSP) systems, a pair of commercially available 1 kW class free-piston Stirling convertors was modified to operate with a NaK liquid metal pumped loop for thermal energy input. This was the first-ever attempt at powering a free-piston Stirling engine with a pumped liquid metal heat source and is a major FSP project milestone towards demonstrating technical feasibility. The tests included performance mapping the convertors over various hot and cold-end temperatures, piston amplitudes and NaK flow rates; and transient test conditions to simulate various start-up and fault scenarios. Performance maps of the convertors generated using the pumped NaK loop for thermal input show increases in power output over those measured during baseline testing using electric heating. Transient testing showed that the Stirling convertors can be successfully started in a variety of different scenarios and that the convertors can recover from a variety of fault scenarios.

  8. Test Results From a Pair of 1-kWe Dual-Opposed Free-Piston Stirling Power Convertors Integrated With a Pumped NaK Loop

    NASA Technical Reports Server (NTRS)

    Geng, Steven M.; Briggs, Maxwell H.; Penswick, L. Barry; Pearson, J. Boise; Godfroy, Thomas J.

    2011-01-01

    As a step towards development of Stirling power conversion for potential use in Fission Surface Power (FSP) systems, a pair of commercially available 1-kW-class free-piston Stirling convertors were modified to operate with a NaK (sodium (Na) and potassium (K)) liquid metal pumped loop for thermal energy input. This was the first-ever attempt at powering a free-piston Stirling engine with a pumped liquid metal heat source and is a major FSP project milestone towards demonstrating technical feasibility. The convertors were successfully tested at the Marshall Space Flight Center (MSFC) from June 6 through July 14, 2009. The convertors were operated for a total test time of 66 hr and 16 min. The tests included (a) performance mapping the convertors over various hot- and cold-end temperatures, piston amplitudes, and NaK flow rates and (b) transient test conditions to simulate various startup (i.e., low-, medium-, and high-temperature startups) and fault scenarios (i.e., loss of heat source, loss of NaK pump, convertor stall, etc.). This report documents the results of this testing

  9. Summary of Test Results From a 1 kWe-Class Free-Piston Stirling Power Convertor Integrated With a Pumped NaK Loop

    NASA Technical Reports Server (NTRS)

    Briggs, Maxwell H.; Geng, Steven M.; Pearson, J. Boise; Godfroy, Thomas J.

    2010-01-01

    As a step towards development of Stirling power conversion for potential use in Fission Surface Power (FSP) systems, a pair of commercially available 1 kW class free-piston Stirling convertors was modified to operate with a NaK liquid metal pumped loop for thermal energy input. This was the first-ever attempt at powering a free-piston Stirling engine with a pumped liquid metal heat source and is a major FSP project milestone towards demonstrating technical feasibility. The tests included performance mapping the convertors over various hot and cold-end temperatures, piston amplitudes and NaK flow rates; and transient test conditions to simulate various start-up and fault scenarios. Performance maps of the convertors generated using the pumped NaK loop for thermal input show increases in power output over those measured during baseline testing using electric heating. Transient testing showed that the Stirling convertors can be successfully started in a variety of different scenarios and that the convertors can recover from a variety of fault scenarios.

  10. Cooled spool piston compressor

    NASA Technical Reports Server (NTRS)

    Morris, Brian G. (Inventor)

    1993-01-01

    A hydraulically powered gas compressor receives low pressure gas and outputs a high pressure gas. The housing of the compressor defines a cylinder with a center chamber having a cross-sectional area less than the cross-sectional area of a left end chamber and a right end chamber, and a spool-type piston assembly is movable within the cylinder and includes a left end closure, a right end closure, and a center body that are in sealing engagement with the respective cylinder walls as the piston reciprocates. First and second annual compression chambers are provided between the piston enclosures and center housing portion of the compressor, thereby minimizing the spacing between the core gas and a cooled surface of the compressor. Restricted flow passageways are provided in the piston closure members and a path is provided in the central body of the piston assembly, such that hydraulic fluid flows through the piston assembly to cool the piston assembly during its operation. The compressor of the present invention may be easily adapted for a particular application, and is capable of generating high gas pressures while maintaining both the compressed gas and the compressor components within acceptable temperature limits.

  11. Design of hydraulic output Stirling engine

    NASA Technical Reports Server (NTRS)

    Toscano, W. M.; Harvey, A. C.; Lee, K.

    1983-01-01

    A hydraulic output system for the RE-1000 free piston stirling engine (FPSE) was designed. The hydraulic output system can be readily integrated with the existing hot section of RE-1000 FPSE. The system has two simply supported diaphragms which separate the engine gas from the hydraulic fluid, a dynamic balance mechanism, and a novel, null center band hydraulic pump. The diaphragms are designed to endure more than 10 billion cycles, and to withstand the differential pressure load as high as 14 MPa. The projected thermodynamic performance of the hydraulic output version of RE-1000 FPSE is 1.87 kW at 29/7 percent brake efficiency.

  12. Compression retaining piston

    SciTech Connect

    Quaglino, A.V. Jr.

    1987-06-16

    A piston apparatus is described for maintaining compression between the piston wall and the cylinder wall, that comprises the following: a generally cylindrical piston body, including: a head portion defining the forward end of the body; and a continuous side wall portion extending rearward from the head portion; a means for lubricating and preventing compression loss between the side wall portion and the cylinder wall, including an annular recessed area in the continuous side wall portion for receiving a quantity of fluid lubricant in fluid engagement between the wall of the recessed and the wall of the cylinder; a first and second resilient, elastomeric, heat resistant rings positioned in grooves along the wall of the continuous side wall portion, above and below the annular recessed area. Each ring engages the cylinder wall to reduce loss of lubricant within the recessed area during operation of the piston; a first pump means for providing fluid lubricant to engine components other than the pistons; and a second pump means provides fluid lubricant to the recessed area in the continuous side wall portion of the piston. The first and second pump means obtains lubricant from a common source, and the second pump means including a flow line supplies oil from a predetermined level above the level of oil provided to the first pump means. This is so that should the oil level to the second pump means fall below the predetermined level, the loss of oil to the recessed area in the continuous side wall portion of the piston would result in loss of compression and shut down of the engine.

  13. Composite piston

    NASA Technical Reports Server (NTRS)

    Taylor, Allan H. (Inventor)

    1988-01-01

    A composite piston structure is disclosed which provides a simple and reliable means for joining a carbon-carbon or ceramic piston cap with a metallic piston body. Attachment is achieved by means of a special geometry which compensates for differences in thermal expansion without complicated mechanical fastening devices. The shape employs a flange created by opposed frustoconical shapes with coincident vertices intersecting on the radial centerline of the piston in order to retain the piston cap. The use of carbon-carbon for the piston cap material allows a close fit between the piston and a cylinder wall, eliminating the need for piston rings. The elimination of extra mechanical parts of previous composite pistons provides a lightweight composite piston capable of extended high temperature operation.

  14. Vehicle having hydraulic and power steering systems using a single high pressure pump

    DOEpatents

    Bartley, Bradley E.; Blass, James R.; Gibson, Dennis H.

    2001-06-22

    A vehicle comprises a plurality of wheels attached to a vehicle housing. Also attached to the vehicle housing is a power steering system, including a fluid flow circuit, which is operably coupled to a number of the wheels. An internal combustion engine attached to the vehicle housing is connected to a hydraulically actuated system that includes a high pressure pump. An outlet of the high pressure pump is in fluid communication with the fluid flow circuit.

  15. Hydraulic forces caused by annular pressure seals in centrifugal pumps

    NASA Technical Reports Server (NTRS)

    Iino, T.; Kaneko, H.

    1980-01-01

    The hydraulic forces caused by annular pressure seals were investigated. The measured inlet and exit loss coefficients of the flow through the seals were much smaller than the conventional values. The results indicate that the damping coefficient and the inertia coefficient of the fluid film in the seal are not affected much by the rotational speed or the eccentricity of the rotor, though the stiffness coefficient seemed to be influenced by the eccentricity.

  16. Piston-Skirt Lubrication System For Compressor

    NASA Technical Reports Server (NTRS)

    Schroeder, Edgar C.; Burzynski, Marion, Jr.

    1994-01-01

    Piston-skirt lubrication system provides steady supply of oil to piston rings of gas compressor. No need for oil-filled crankcase or external oil pump. Instead, part of each piston acts as its own oil pump circulating oil from reservoir. Annular space at bottom of piston and cylinder constitutes working volume of small oil pump. Depending on application, reservoir open to atmosphere, or sealed and pressurized in bellows to prevent contact between oil and atmosphere. Filter removes particles worn away from piston rings and cylinder wall during normal operation.

  17. Piezoelectric-hydraulic pump based band brake actuation system for automotive transmission control

    NASA Astrophysics Data System (ADS)

    Kim, Gi-Woo; Wang, K. W.

    2007-04-01

    The actuation system of friction elements (such as band brakes) is essential for high quality operations in modern automotive automatic transmissions (in short, ATs). The current band brake actuation system consists of several hydraulic components, including the oil pump, the regulating valve and the control valves. In general, it has been recognized that the current AT band brake actuation system has many limitations. For example, the oil pump and valve body are relatively heavy and complex. Also, the oil pumps induce inherently large drag torque, which affects fuel economy. This research is to overcome these problems of the current system by exploring the utilization of a hybrid type piezo-hydraulic pump device for AT band brake control. This new actuating system integrates a piezo-hydraulic pump to the input of the band brake. Compared with the current systems, this new actuator features much simpler structure, smaller size, and lower weight. This paper describes the development, design and fabrication of the new stand-alone prototype actuator for AT band brake control. An analytical model is developed and validated using experimental data. Performance tests on the hardware and system simulations utilizing the validated model are performed to characterize the new prototype actuator. It is predicted that with increasing of accumulator pressure and driving frequency, the proposed prototype actuating system will satisfy the band brake requirement for AT shift control.

  18. Induced hydraulic pumping via integrated submicrometer cylindrical glass capillaries.

    PubMed

    Cao, Zhen; Yobas, Levent

    2014-08-01

    Here, we report on a micropump that generates hydraulic pressure owing to a mismatch in EOF rates of microchannels and submicrometer cylindrical glass capillaries integrated on silicon. The electrical conductance of such capillaries in the dilute limit departs from bulk linear behavior as well as from the surface-charge-governed saturation in nanoslits that is well described by the assumption of a constant surface charge density. The capillaries show rather a gradual decrease in conduction at low salt concentrations, which can be explained more aptly by a variable surface charge density that accounts for chemical equilibrium of the surface. The micropump uses a traditional cross-junction structure with ten identical capillaries integrated in parallel on a side arm and each with a 750 nm diameter and 3 mm length. For an applied voltage of 700 V, a hydraulic pressure up to 5 kPa is generated with a corresponding flow velocity nearly 3 mm/s in a straight field-free branch 20 μm wide, 10 μm deep, and 10 mm long. The micropump utility has been demonstrated in an open tubular LC of three fluorescently labeled amino acids in just less than 20 s with minimal plate height values between 3 and 7 μm. The submicrometer capillaries are self-enclosed and produced through a unique process that does not require high-resolution advanced lithography or wafer-bonding techniques to define their highly controlled precise structures. PMID:24917552

  19. Determining optimum pumping rates for creation of hydraulic barriers to ground-water pollutant migration

    SciTech Connect

    Shafer, J.M.

    1984-04-01

    In certain ground-water flow regimes control of the migration of pollutants can be achieved by hydraulic barriers created by ground-water withdrawal and/or injection. However, for complicated flow domains and situations where multiple wells may be installed, the determination of pumping rates to achieve a pollution control objective can be difficult. A nonlinear programming (NLP) algorithm is coupled to a two-dimensional, steady-state, ground-water flow model and an advective transport model for determination of optimum pumping rates for creation of hydraulic barriers. This technique is a screening tool for the selection of pumping rates to be subsequently confirmed with more detailed simulation. Two example applications of this technique are presented. The first example shows how NLP can be used to determine pumping rates required to develop a stagnation point. Optimum pumping rates for eight wells arranged in a circular configuration are determined so as to reduce the ground-water velocity to near zero over a precise region within a nonhomogeneous aquifer. The second example involves the determination of optimum steady-state pumping rates for six wells in a nonhomogeneous flow domain where the objective is the control (i.e., steering) of the trajectory of a contaminant plume. 17 references, 10 figures, 5 tables.

  20. Helmholtz resonance in a piezoelectric-hydraulic pump-based hybrid actuator

    NASA Astrophysics Data System (ADS)

    Kim, Gi-Woo; Wang, K. W.

    2011-01-01

    This paper demonstrates that a hydraulically acting Helmholtz resonator can exist in a piezoelectric-hydraulic pump (PHP) based hybrid actuator, which in turn affects the volumetric efficiency of the PHP. The simulation and experimental results illustrate the effect of Helmholtz resonance on the flow rate performance of the PHP. The study also shows how to shift the Helmholtz resonant frequency to a higher value through changing parameters such as the cylinder diameter and the effective bulk modulus of the working fluid, which will improve the volumetric efficiency and broaden the operating frequency range of the PHP actuator.

  1. Effects of radial diffuser hydraulic design on a double-suction centrifugal pump

    NASA Astrophysics Data System (ADS)

    Hou, H. C.; Zhang, Y. X.; Xu, C.; Zhang, J. Y.; Li, Z. L.

    2016-05-01

    In order to study effects of radial diffuser on hydraulic performance of crude oil pump, the steady CFD numerical method is applied and one large double-suction oil pump running in long-distance pipeline is considered. The research focuses on analysing the influence of its diffuser vane profile on hydraulic performance of oil pump. The four different types of cylindrical vane have been designed by in-house codes mainly including double arcs (DA), triple arcs (TA), equiangular spiral line (ES) and linear variable angle spiral line (LVS). During design process diffuser vane angles at inlet and outlet are tentatively given within a certain range and then the wrapping angle of the four types of diffuser vanes can be calculated automatically. Under the given inlet and outlet angles, the linear variable angle spiral line profile has the biggest wrapping angle and profile length which is good to delay channel diffusion but bring more friction hydraulic loss. Finally the vane camber line is thickened at the certain uniform thickness distribution and the 3D diffuser models are generated. The whole flow passage of oil pump with different types of diffusers under various flow rate conditions are numerically simulated based on RNG k-ɛ turbulent model and SIMPLEC algorithm. The numerical results show that different types of diffusers can bring about great difference on the hydraulic performance of oil pump, of which the ES profile diffuser with its proper setting angle shows the best hydraulic performance and its inner flow field is improved obviously. Compared with the head data from model sample, all designed diffusers can make a certain improvement on head characteristic. At the large flow rate conditions the hydraulic efficiency increases obviously and the best efficiency point shift to the large flow rate range. The ES profile diffuser embodies the better advantages on pump performance which can be explained theoretically that the diffuser actually acts as a diffusion

  2. Lightweight piston

    NASA Technical Reports Server (NTRS)

    Taylor, Allan H. (Inventor)

    1987-01-01

    A lightweight piston composed of carbon-carbon composites is presented. The use of carbon-carbon composites over conventional materials, such as aluminum, reduces piston weight and improves thermal efficiency of the internal combustion reciprocation engine. Due to the negligible coefficient of thermal expansion and unique strength at elevated temperatures of carbon-carbon, the piston-to-cylinder wall clearance is so small as to eliminate the necessity for piston rings. Use of the carbon-carbon composite has the effect of reducing the weight of other reciprocating engine components allowing the piston to run at higher speeds and improving specific engine performance.

  3. Prognostic for hydraulic pump based upon DCT-composite spectrum and the modified echo state network.

    PubMed

    Sun, Jian; Li, Hongru; Xu, Baohua

    2016-01-01

    Prognostic is a key step of the condition-based maintenance (CBM). In order to improve the predicting performance, a novel method for prognostic for the hydraulic pump is proposed in this paper. Based on the improvement of the traditional composite spectrum, the DCT-composite spectrum (DCS) fusion algorithm is initially presented to make fusion of multi-channel vibration signals. The DCS composite spectrum entropy is extracted as the feature. Furthermore, the modified echo state networks (ESN) model is established for prognostic using the extracted feature. The reservoir is updated and the elements of the neighboring matrix are redefined for improving predicting accuracy. Analysis of the application in the hydraulic pump degradation experiment demonstrates that the proposed algorithm is feasible and is meaningful for CBM.

  4. Prognostic for hydraulic pump based upon DCT-composite spectrum and the modified echo state network.

    PubMed

    Sun, Jian; Li, Hongru; Xu, Baohua

    2016-01-01

    Prognostic is a key step of the condition-based maintenance (CBM). In order to improve the predicting performance, a novel method for prognostic for the hydraulic pump is proposed in this paper. Based on the improvement of the traditional composite spectrum, the DCT-composite spectrum (DCS) fusion algorithm is initially presented to make fusion of multi-channel vibration signals. The DCS composite spectrum entropy is extracted as the feature. Furthermore, the modified echo state networks (ESN) model is established for prognostic using the extracted feature. The reservoir is updated and the elements of the neighboring matrix are redefined for improving predicting accuracy. Analysis of the application in the hydraulic pump degradation experiment demonstrates that the proposed algorithm is feasible and is meaningful for CBM. PMID:27547667

  5. Recharge and pumping hydraulics in a till drumlin above fractured bedrock (Massachusetts, USA)

    NASA Astrophysics Data System (ADS)

    Ostendorf, David W.; Lukas, William G.; Rotaru, Camelia

    2015-02-01

    Recharge and pumping hydraulics of a till-mantled bedrock are analyzed with existing closed-form theory and 12 years of monthly water levels in cluster wells from Scituate Hill, a glacial till drumlin in eastern Massachusetts (USA). The weathered brown till atop Scituate Hill is an unconfined aquifer, delivering steady recharge and a seasonally varying recharge-head fluctuation to the unweathered gray till aquitard beneath it. The water-table fluctuations generate no seasonally varying flow field in the gray till, due to the relatively low hydraulic diffusivity of the brown till. Nearby irrigation pumps drilled into the underlying Dedham Granite in 2011 have introduced seasonal drawdown, and the gray till leaks into the fractured bedrock aquifer. The leakage reflects the moderate diffusivity of the gray till and the relatively high hydraulic diffusivity of the fractured bedrock. Both seasonal disturbances are mildly attenuated across the gray till, so that the Dedham Granite senses recharge, while the water table in Scituate Hill is drawn down by irrigation pumping. Steady and seasonal gray till data are accordingly used to calibrate the transmissivity and storativity of the fractured bedrock and specific yield of the brown till, with physically plausible values.

  6. Internal hydraulic analysis of impeller rounding in centrifugal pumps as turbines

    SciTech Connect

    Singh, Punit; Nestmann, Franz

    2011-01-15

    The use of pumps as turbines in different applications has been gaining importance in the recent years, but the subject of hydraulic optimization still remains an open research problem. One of these optimization techniques that include rounding of the sharp edges at the impeller periphery (or turbine inlet) has shown tendencies of performance enhancement. In order to understand the effect of this hydraulic optimization, the paper introduces an analytical model in the pump as turbine control volume and brings out the functionalities of the internal variables classified under control variables consisting of the system loss coefficient and exit relative flow direction and under dependent variables consisting of net tangential flow velocity, net head and efficiency. The paper studies the effects of impeller rounding on a combination of radial flow and mixed flow pumps as turbines using experimental data. The impeller rounding is seen to have positive impact on the overall efficiency in different operating regions with an improvement in the range of 1-3%. The behaviour of the two control variables have been elaborately studied in which it is found that the system loss coefficient has reduced drastically due to rounding effects, while the extent of changes to the exit relative flow direction seems to be limited in comparison. The reasons for changes to these control variables have been physically interpreted and attributed to the behaviour of the wake zone at the turbine inlet and circulation within the impeller control volume. The larger picture of impeller rounding has been discussed in comparison with performance prediction models in pumps as turbines. The possible limitations of the analytical model as well as the test setup are also presented. The paper concludes that the impeller rounding technique is very important for performance optimization and recommends its application on all pump as turbine projects. It also recommends the standardization of the rounding

  7. Overview of free-piston Stirling technology at the NASA Lewis Research Center

    SciTech Connect

    Slaby, J.G.

    1985-01-01

    The activities include: (1) a generic free-piston Stirling technology project being conducted to develop technologies synergistic to both space power and terrestrial heat pump applications in a cooperative, cost-shared effort with the Department of Energy (DOE/Oak Ridge National Laboratory (ORNL)), and (2) a free-piston Stirling space power technology demonstration project as part of the SP-100 program being conducted in support of the Department of Defense (DOD), DOE, and NASA/Lewis. The generic technology effort includes extensive parametric testing of a 1 kW free-piston Stirling engine (RE-1000), development and validation of a free-piston Stirling performance computer code, and fabrication and initial testing of an hydraulic output modification for the RE-1000 engine. The space power technology effort, under SP-100, addresses the status of the 25 kWe Space Power Demonstrator Engine (SPDE) including early test results.

  8. Hydraulic motor for cars

    SciTech Connect

    Gagnon, D.C.

    1986-09-02

    A hydraulic motor for a car is described comprising, in combination, an automotive vehicle engine for travel self-propulsion, including a block, a plurality of cylinders in the block, a piston slidable in each cylinder, a crankshaft in the block, a piston rod connected between the crankshaft and each of the pistons, a power take-off gear on the crankshaft for the travel self-propulsion, and the engine including a hydraulic means for driving the pistons in the cylinders.

  9. Spray bottle apparatus with pressure multiplying pistons

    DOEpatents

    Moss, Owen R.; Gordon, Norman R.; DeFord, Henry S.

    1990-01-01

    The present invention comprises a spray bottle in which the pressure resulting from the gripping force applied by the user is amplified and this increased pressure used in generating a spray such as an aerosol or fluid stream. In its preferred embodiment, the invention includes a high pressure chamber and a corresponding piston which is operative for driving fluid out of this chamber at high pressure through a spray nozzle and a low pressure chamber and a corresponding piston which is acted upon the hydraulic pressure within the bottle resulting from the gripping force. The low pressure chamber and piston are of larger size than the high pressure chamber and piston. The pistons are rigidly connected so that the force created by the pressure acting on the piston in the low pressure chamber is transmitted to the piston in the high pressure chamber where it is applied over a more limited area thereby generating greater hydraulic pressure for use in forming the spray.

  10. Spray bottle apparatus with force multiply pistons

    DOEpatents

    Eschbach, Eugene A.

    1992-01-01

    The present invention comprises a spray bottle in which the pressure resulting from the gripping force applied by the user is amplified and this increased pressure used in generating a spray such as an aerosol or fluid stream. In its preferred embodiment, the invention includes a high pressure chamber and a corresponding piston which is operative for driving fluid out of this chamber at high pressure through a spray nozzle and a low pressure chamber and corresponding piston which is acted upon by the hydraulic pressure within the bottle resulting from the gripping force. The low pressure chamber and piston are of larger size than the high pressure chamber and piston. The pistons are rigidly connected so that the force created by the pressure acting on the piston in the low pressure chamber is transmitted to the piston in the high pressure chamber where it is applied over a more limited area thereby generating greater hydraulic pressure for use in forming the spray.

  11. In-casing hydraulic jack system

    SciTech Connect

    Henderson, T.

    1988-05-24

    An in-casing hydraulic jack system for operating well bottom pumping units via a sucker rod string and polish rod is described, comprising a jack unit having a hydraulic cylinder with top and bottom ends and a piston positioned for reciprocation within the hydraulic cylinder, mounting means connected to the jack unit for suspending the jack unit fully within a well casing, sealing means carried by the jack unit for producing a seal between the jack unit and the interior of the well casing, connecting means at the bottom end of the hydraulic cylinder for connecting the jack unit to a top end of a well fluid delivery tubing, attaching means for attaching a top end of a polish rod to the piston of the jack unit so as to be displaceable in conjunction therewith and access means disposed above the jack unit for enabling insertion and removal of the polish rod while the jack unit is suspended in the well casing. There are also hydraulic fluid supply means connected to the hydraulic cylinder for producing reciprocation of the piston within the cylinder by delivery of hydraulic fluid to the hydraulic cylinder in a manner to as to produce an upward stroking of the polish rod, and discharge means in the jack unit for enabling well fluid delivered by the well fluid delivery tubing to bypass the sealing means so as to be discharged from the well casing at a location above the seal means.

  12. Impact of typical steady-state conditions and transient conditions on flow ripple and its test accuracy for axial piston pump

    NASA Astrophysics Data System (ADS)

    Xu, Bing; Hu, Min; Zhang, Junhui

    2015-09-01

    The current research about the flow ripple of axial piston pump mainly focuses on the effect of the structure of parts on the flow ripple. Therein, the structure of parts are usually designed and optimized at rated working conditions. However, the pump usually has to work in large-scale and time-variant working conditions. Therefore, the flow ripple characteristics of pump and analysis for its test accuracy with respect to variant steady-state conditions and transient conditions in a wide range of operating parameters are focused in this paper. First, a simulation model has been constructed, which takes the kinematics of oil film within friction pairs into account for higher accuracy. Afterwards, a test bed which adopts Secondary Source Method is built to verify the model. The simulation and tests results show that the angular position of the piston, corresponding to the position where the peak flow ripple is produced, varies with the different pressure. The pulsating amplitude and pulsation rate of flow ripple increase with the rise of pressure and the variation rate of pressure. For the pump working at a constant speed, the flow pulsation rate decreases dramatically with the increasing speed when the speed is less than 27.78% of the maximum speed, subsequently presents a small decrease tendency with the speed further increasing. With the rise of the variation rate of speed, the pulsating amplitude and pulsation rate of flow ripple increase. As the swash plate angle augments, the pulsating amplitude of flow ripple increases, nevertheless the flow pulsation rate decreases. In contrast with the effect of the variation of pressure, the test accuracy of flow ripple is more sensitive to the variation of speed. It makes the test accuracy above 96.20% available for the pulsating amplitude of pressure deviating within a range of ±6% from the mean pressure. However, with a variation of speed deviating within a range of ±2% from the mean speed, the attainable test

  13. Investigation and Parameter Optimization of a Hydraulic Ram Pump Using Taguchi Method

    NASA Astrophysics Data System (ADS)

    Sarma, Dhrupad; Das, Monotosh; Brahma, Bipul; Pandwar, Deepak; Rongphar, Sermirlong; Rahman, Mafidur

    2016-06-01

    The main objective of this research work is to investigate the effect of Waste Valve height and Pressure Chamber height on the output flow rate of a Hydraulic ram pump. Also the second objective of this work is to optimize them for a hydraulic ram pump delivering water up to a height of 3.81 m (12.5 feet ) from the ground with a drive head (inlet head) of 1.86 m (6.11 feet). Two one-factor-at-a-time experiments have been conducted to decide the levels of the selected input parameters. After deciding the input parameters, an experiment has been designed using Taguchi's L9 Orthogonal Array with three repetitions. Analysis of Variance (ANOVA) is carried out to verify the significance of effect of the factors on the output flow rate of the pump. Results show that the height of the Waste Valve and height of the Pressure Chamber have significant effect on the outlet flow of the pump. For a pump of drive pipe diameter (inlet pipe) 31.75 mm (1.25 in.) and delivery pipe diameter of 12.7 mm (0.5 in.) the optimum setting was found out to be at a height of 114.3 mm (4.5 in.) of the Waste Valve and 406.4 mm (16 in.) of the Pressure vessel providing a delivery flow rate of 93.14 l per hour. For the same pump estimated range of output flow rate is, 90.65-94.97 l/h.

  14. Hydraulic shock absorber

    SciTech Connect

    Tanaka, T.

    1987-03-03

    This patent describes a hydraulic shock absorber including a piston reciprocating in a cylinder, a piston upper chamber and a piston lower chamber which are oil-tightly separated by the piston, piston ports formed through the piston in a circle for communicating the piston upper chamber with the piston lower chamber, and return ports formed outside of the piston ports in a circle for communicating the piston upper chamber with the piston lower chamber. It also includes a sheet ring-like non-return valve provided above the piston and fitted to a piston rod, valve holes formed through the non-return valve in opposed relation with the piston ports. A ring-like non-return valve stopper fixed to the piston rod on an upper side of the non-return valve with a small spaced defined between the non-return valve and the non-return valve stopper, and a spring is interposed between the non-return valve and the non-return valve stopper for normally urging the non-return valve to an upper surface of the piston. Movement of the piston to the piston upper chamber allows oil to flow from the piston upper chamber through the piston ports to the piston lower chamber, while the return ports are closed by the non-return valve to generate a vibration damping force by resistance upon pass of the oil through the piston parts. The improvement described here comprises a groove formed in an upper surface of the piston facing the non-return valve and aligned with the valve holes, the groove being in the circle where the piston ports lie and being in communication with the piston ports.

  15. Quasi-three dimensional hydraulic design and performance calculation of high specific speed mixed-flow pump

    NASA Astrophysics Data System (ADS)

    Su, M.; Zhang, Y. X.; Zhang, J. Y.; Hou, H. C.

    2016-05-01

    According to the basic parameters of 211-80 high specific speed mixed-flow pump, based on the quasi-three dimensional flow theory, the hydraulic design of impeller and its matching spaced guide vanes for high specific speed mixed flow pump was completed, in which the iterative calculation of S 1, S 2 stream surfaces was employed to obtain meridional flow fields and the point-by-point integration method was employed to draw blade camber lines. Blades are thickened as well as blade leading edges are smoothed in the conformal mapping surface. Subsequently the internal fields of the whole flow passage of the designed pump were simulated by using RANS equations with RNG k-ε two-equation turbulent model. The results show that, compared with the 211-80 model, the hydraulic efficiency of the designed pump at the optimal flow rate increases 9.1%. The hydraulic efficiency of designed pump in low flow rate condition (78% designed flow rate) increases 6.46%. The hydraulic efficiency in high flow rate areas increases obviously and there is no bad phenomenon of suddenly decrease of hydraulic efficiency in model pump. From the distributions of velocity and pressure fields, it can be seen that the flow in impeller is uniform and the increase of pressure is gentle. There are no obvious impact phenomenon on impeller inlet and obvious wake shedding vortex phenomenon from impeller outlet to guide vanes inlet.

  16. Hydraulics.

    ERIC Educational Resources Information Center

    Decker, Robert L.; Kirby, Klane

    This curriculum guide contains a course in hydraulics to train entry-level workers for automotive mechanics and other fields that utilize hydraulics. The module contains 14 instructional units that cover the following topics: (1) introduction to hydraulics; (2) fundamentals of hydraulics; (3) reservoirs; (4) lines, fittings, and couplers; (5)…

  17. Variable stiffness actuator based on fluidic flexible matrix composites and piezoelectric-hydraulic pump

    NASA Astrophysics Data System (ADS)

    Kim, Gi-Woo; Li, Suyi; Wang, K. W.

    2010-04-01

    Recently, a new biological-inspired fluidic flexible matrix composite (in short, F2MC) concept has been developed for linear/torsional actuation and structural stiffness tailoring. Although the actuation and the variable stiffness features of the F2MC have been successfully demonstrated individually, their combined functions and full potentials were not yet manifested. In addition, the current hydraulic pressurization systems are bulky and heavy, limiting the potential of the F2MC actuator. To address these issues, we synthesize a new variable stiffness actuator concept that can provide both effective actuation and tunable stiffness (dual-mode), incorporating the F2MC with a compact piezoelectric-hydraulic pump (in short, PHP). This dual-mode mechanism will significantly enhance the potential of the F2MC adaptive structures.

  18. Estimation of changes in dynamic hydraulic force in a magnetically suspended centrifugal blood pump with transient computational fluid dynamics analysis.

    PubMed

    Masuzawa, Toru; Ohta, Akiko; Tanaka, Nobuatu; Qian, Yi; Tsukiya, Tomonori

    2009-01-01

    The effect of the hydraulic force on magnetically levitated (maglev) pumps should be studied carefully to improve the suspension performance and the reliability of the pumps. A maglev centrifugal pump, developed at Ibaraki University, was modeled with 926 376 hexahedral elements for computational fluid dynamics (CFD) analyses. The pump has a fully open six-vane impeller with a diameter of 72.5 mm. A self-bearing motor suspends the impeller in the radial direction. The maximum pressure head and flow rate were 250 mmHg and 14 l/min, respectively. First, a steady-state analysis was performed using commercial code STAR-CD to confirm the model's suitability by comparing the results with the real pump performance. Second, transient analysis was performed to estimate the hydraulic force on the levitated impeller. The impeller was rotated in steps of 1 degrees using a sliding mesh. The force around the impeller was integrated at every step. The transient analysis revealed that the direction of the radial force changed dynamically as the vane's position changed relative to the outlet port during one circulation, and the magnitude of this force was about 1 N. The current maglev pump has sufficient performance to counteract this hydraulic force. Transient CFD analysis is not only useful for observing dynamic flow conditions in a centrifugal pump but is also effective for obtaining information about the levitation dynamics of a maglev pump. PMID:19894088

  19. Estimation of changes in dynamic hydraulic force in a magnetically suspended centrifugal blood pump with transient computational fluid dynamics analysis.

    PubMed

    Masuzawa, Toru; Ohta, Akiko; Tanaka, Nobuatu; Qian, Yi; Tsukiya, Tomonori

    2009-01-01

    The effect of the hydraulic force on magnetically levitated (maglev) pumps should be studied carefully to improve the suspension performance and the reliability of the pumps. A maglev centrifugal pump, developed at Ibaraki University, was modeled with 926 376 hexahedral elements for computational fluid dynamics (CFD) analyses. The pump has a fully open six-vane impeller with a diameter of 72.5 mm. A self-bearing motor suspends the impeller in the radial direction. The maximum pressure head and flow rate were 250 mmHg and 14 l/min, respectively. First, a steady-state analysis was performed using commercial code STAR-CD to confirm the model's suitability by comparing the results with the real pump performance. Second, transient analysis was performed to estimate the hydraulic force on the levitated impeller. The impeller was rotated in steps of 1 degrees using a sliding mesh. The force around the impeller was integrated at every step. The transient analysis revealed that the direction of the radial force changed dynamically as the vane's position changed relative to the outlet port during one circulation, and the magnitude of this force was about 1 N. The current maglev pump has sufficient performance to counteract this hydraulic force. Transient CFD analysis is not only useful for observing dynamic flow conditions in a centrifugal pump but is also effective for obtaining information about the levitation dynamics of a maglev pump.

  20. Feed-pump hydraulic performance and design improvement, Phase I: research program design. Final report

    SciTech Connect

    Brown, W.H.; Gopalakrishnan, S.; Fehlau, R.; Thompson, W.E.; Wilson, D.G.

    1982-03-01

    As a result of prior EPRI-sponsored studies, it was concluded that a research program should be designed and implemented to provide an improved basis for the design, procurement, testing, and operation of large feed pumps with increased reliability and stability over the full range of operating conditions. This two-volume report contains a research plan which is based on a review of the present state of the art and which defines the necessary R and D program and estimates the benefits and costs of the program. The recommended research program consists of 30 interrelated tasks. It is designed to perform the needed research; to verify the results; to develop improved components; and to publish computer-aided design methods, pump specification guidelines, and a troubleshooting manual. Most of the technology proposed in the research plan is applicable to nuclear power plants as well as to fossil-fired plants. This volume contains appendixes on pump design, cavitation damage, performance testing, hydraulics, two-phase flow in pumps, flow stability, and rotor dynamics.

  1. Numerical analysis on the cavitation and unsteady flow in a scroll hydraulic pump

    NASA Astrophysics Data System (ADS)

    Sun, S. H.; Guo, P. C.; Huang, Y.; Zuo, J. L.; Luo, X. Q.

    2016-05-01

    This paper presents numerical analysis of unsteady flow in a scroll hydraulic pump to discover its flow mechanism. The dynamic mesh model has to be used to simulate the flow field unsteadily. The unsteady flow patterns and pressure distributions in the suction, squeezing and discharge chamber are analysed. The suction process continues until the crank angle reaches the 320 degree. Then the pressure in the chamber rises instantaneously, and the fluid begins to flow out from the chamber. Because of the high pressure difference at the clearance, the jet flow and the vortex appear, and the large flow losses generates with them. In addition, the velocity and static pressure distribution in the two symmetry crescent suction chamber is different remarkably. One reason is that the location of suction port cannot be set symmetrically for the simplification of the pump structure. Another reason for that is the fluid is impelled by different part of the orbiting scroll. The asymmetric pressure distribution will result in the extra force on the scroll. The cavitation generates at the negative pressure region. Therefore, the unsteady simulation shows some important phenomena. The structure of the scroll pump need to be optimized to reduce the maximum pressure, weaken the jet flow, vortex and the uneven pressure distribution to ensure the pump working safely and efficiently.

  2. Optimization on the impeller of a low-specific-speed centrifugal pump for hydraulic performance improvement

    NASA Astrophysics Data System (ADS)

    Pei, Ji; Wang, Wenjie; Yuan, Shouqi; Zhang, Jinfeng

    2016-08-01

    In order to widen the high-efficiency operating range of a low-specific-speed centrifugal pump, an optimization process for considering efficiencies under 1.0Q d and 1.4Q d is proposed. Three parameters, namely, the blade outlet width b 2, blade outlet angle β 2, and blade wrap angle φ, are selected as design variables. Impellers are generated using the optimal Latin hypercube sampling method. The pump efficiencies are calculated using the software CFX 14.5 at two operating points selected as objectives. Surrogate models are also constructed to analyze the relationship between the objectives and the design variables. Finally, the particle swarm optimization algorithm is applied to calculate the surrogate model to determine the best combination of the impeller parameters. The results show that the performance curve predicted by numerical simulation has a good agreement with the experimental results. Compared with the efficiencies of the original impeller, the hydraulic efficiencies of the optimized impeller are increased by 4.18% and 0.62% under 1.0Q d and 1.4Q d, respectively. The comparison of inner flow between the original pump and optimized one illustrates the improvement of performance. The optimization process can provide a useful reference on performance improvement of other pumps, even on reduction of pressure fluctuations.

  3. Hydraulics.

    ERIC Educational Resources Information Center

    Engelbrecht, Nancy; And Others

    These instructional materials provide an orientation to hydraulics for use at the postsecondary level. The first of 12 sections presents an introduction to hydraulics, including discussion of principles of liquids, definitions, liquid flow, the two types of hydraulic fluids, pressure gauges, and strainers and filters. The second section identifies…

  4. Double bowl piston

    DOEpatents

    Meffert, Darrel Henry; Urven, Jr., Roger Leroy; Brown, Cory Andrew; Runge, Mark Harold

    2007-03-06

    A piston for an internal combustion engine is disclosed. The piston has a piston crown with a face having an interior annular edge. The piston also has first piston bowl recessed within the face of the piston crown. The first piston bowl has a bottom surface and an outer wall. A line extending from the interior annular edge of the face and tangent with the outer wall forms an interior angle greater than 90 degrees with the face of the piston. The piston also has a second piston bowl that is centrally located and has an upper edge located below a face of the piston crown.

  5. Hydraulic concentration of magnetic fields in the solar photosphere. I - Turbulent pumping

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1974-01-01

    Observations suggest that most of the magnetic flux through the solar photosphere is concentrated in vertical filaments in the supergranule boundaries. Each filament appears to contain about 3 times 10 to the 18-th power maxwells, in the form of a field of 500 gauss or more, over a diameter of 700 km or less. The magnetic energy density in the filaments is 100 times the observed kinetic energy density of the observed supergranule motions, but comparable to the kinetic energy density of the granules. Force-free field configurations cannot duplicate the observational numbers, nor can such cooling effects as are believed responsible for the intense fields in sunspot umbrae. We point out a simple hydraulic mechanism (turbulent pumping) that appears to account for the observed concentration of fields.

  6. Hydraulics.

    ERIC Educational Resources Information Center

    Decker, Robert L.

    Designed for use in courses where students are expected to become proficient in the area of hydraulics, including diesel engine mechanic programs, this curriculum guide is comprised of fourteen units of instruction. Unit titles include (1) Introduction, (2) Fundamentals of Hydraulics, (3) Reservoirs, (4) Lines, Fittings, and Couplers, (5) Seals,…

  7. Retrofitting an existing pump intake and hydraulic conveyance system requiring tripling of cooling water demand

    SciTech Connect

    Sarkar, C.K.; Pandit, D.R.

    1997-09-01

    The paper describes a hydraulic study, analysis, and design to retrofit an existing intake structure and water conveyance system for supplying cooling water to a new 286 MW cogeneration plant built within an existing power house building where a plant of much smaller capacity was formerly housed. The new plant requires a threefold increase in its cooling water demand. The existing hydraulic conveyance system consisted of a large tidal basin intake, a 1,000-foot-long intake tunnel, a pump intake basin of long, narrow, and difficult configuration with two small surge chambers located in the basement of the powerhouse building, and a 984-foot-long discharge tunnel. To satisfy the project license requirements, the thermal effluent had to be carried beyond the basin to the river mid-stream, almost tripling the length of the discharge tunnel. The cooling system for the new plant has been designed on the principle of siphon head recovery. The challenge was to satisfactorily accommodate the tripled flow capacity requirement in the system, while avoiding major structural enlargement/alterations and keeping costs of modifications to the minimum. The new plant, known as the Brooklyn Navy Yard Cogeneration Project (BNYCP), consists of a 286 MW combined-cycle cogeneration facility constructed in Building B-41 leased from the Brooklyn Navy Yard Development Corporation (BNYDC).

  8. Collapsible pistons for light-gas guns

    NASA Technical Reports Server (NTRS)

    Teng, R. N.

    1973-01-01

    Moving and expandable parts of gun consist of pump-tube diaphragm, piston, launch-tube diaphragm, and saboted projectile. As a result of improved piston design, pressure cycle has been significantly improved by smoother buildup, increasing muzzle velocities up to 50%.

  9. Collapsible pistons

    NASA Technical Reports Server (NTRS)

    Teng, R. N. (Inventor)

    1973-01-01

    A piston assembly is described for use in a hypervelocity gun comprising a forward cylindrical section longitudinally spaced from a rearward cylindrical section by an intermediate section. The intermediate section is longitudinally collapsible when subjected to a predetermined force, to allow the distance between the forward and rearward sections to be suddenly reduced.

  10. Hydraulic efficiency of a hydrostatic transmission with a variable displacement pump and motor

    NASA Astrophysics Data System (ADS)

    Coombs, Daniel

    Pumps and motors are commonly connected hydraulically to create hydrostatic drives, also known as hydrostatic transmissions. A typical hydrostatic transmission consists of a variable displacement pump and a fixed displacement motor. Maximum efficiency is typically created for the system when the motor operates at maximum volumetric displacement. The objective of this research is to determine if a hydrostatic transmission with a variable displacement motor can be more efficient than one with a fixed displacement motor. A work cycle for a Caterpillar 320D excavator was created and the efficiency of the hydrostatic drive system, controlling the swing circuit, with a fixed displacement motor was compared to the efficiency with a variable displacement motor. Both multiplicative and additive uncertainty analysis were performed to determine uncertainty models that could be used to analyze the robustness of the system with feedback control applied. A PID and an H∞ controller were designed for a position control model, as well as velocity control. It was found that while it may seem obvious to achieve maximum efficiency at maximum displacement, there are some cases where maximum efficiency is achieved at a lower displacement. It was also found that for the given work cycle, a hydrostatic transmission with a variable displacement motor can be more efficient.

  11. Improvements to the measurement of electrically controlled hydraulic pumps' flow/pressure characteristics

    NASA Astrophysics Data System (ADS)

    Tao, Jian-Feng; Liu, Cheng-Liang; Gu, Jian-Jiang; Shen, Liang-Chong

    2011-12-01

    To increase the measurement accuracy, and also to automate the measurement operation, we modify the electrically controlled hydraulic pumps' (ECHPs') flow/pressure performance characteristic description and improve the test method in existent standards. According to ECHPs' working principle, we divide ECHPs' operation into two models: constant flow operating mode (CFOM) and constant pressure operating mode (CPOM). A direct drive servo-proportional control valve (DDV) is used to load the test pump. In the CFOM, we change the pressure load at a constant rate by driving the DDV's displacement with nonlinear feedback and a proportional-integral (PI) controller. In the CPOM, we take advantage of the DDV's inherent linearity between its input signal and output flow, and change the flow load at a constant rate by using open-loop spool displacement control. A mathematic model is built for the derivation of a stable condition and the analysis of steady-state pressure tracking error. The theoretical analysis shows that the feedback linearization and PI controller with negative proportional and integral gains are able to track a slope pressure load command with a desired rate. The test results also show that the mathematical model is valid and the proposed method can improve the measurement accuracy remarkably.

  12. Apparatus for controlling an engine in a hydraulically driven vehicle

    SciTech Connect

    Kitada, T.

    1987-01-27

    An apparatus is described for controlling the internal combustion engine of a hydraulically driven vehicle comprising: a transmission mechanism for transmitting the operation of a fuel control lever to a governor control lever and having a loose spring mechanism with a loose spring therein: a hydraulic decelerator cylinder connected to the transmission mechanism and having a spring and piston therein. The deceleration cylinder spring has a slightly larger spring force than the loose spring in the loose spring mechanism and applies a force absorbing action, in the absence of hydraulic force acting on the piston, to set the governor control lever in its deceleration position when the fuel control lever is moved to its full engine speed position and for moving the governor control lever to its full engine speed position when hydraulic force is applied to the piston; an electromagnetic valve for applying fluid pressure from a control pump driven by the engine to the piston in the decelerator cylinder and releasing the fluid pressure; and an electric circuit including switches operationally associated with levers for operating a hydraulic valve.

  13. Evaluation of hydraulic radial forces on the impeller by the volute in a centrifugal rotary blood pump.

    PubMed

    Boehning, Fiete; Timms, Daniel L; Amaral, Felipe; Oliveira, Leonardo; Graefe, Roland; Hsu, Po-Lin; Schmitz-Rode, Thomas; Steinseifer, Ulrich

    2011-08-01

    In many state-of-the-art rotary blood pumps for long-term ventricular assistance, the impeller is suspended within the casing by magnetic or hydrodynamic means. For the design of such suspension systems, profound knowledge of the acting forces on the impeller is crucial. Hydrodynamic bearings running at low clearance gaps can yield increased blood damage and magnetic bearings counteracting high forces consume excessive power. Most current rotary blood pump devices with contactless bearings are centrifugal pumps that incorporate a radial diffuser volute where hydraulic forces on the impeller develop. The yielding radial forces are highly dependent on impeller design, operating point and volute design. There are three basic types of volute design--singular, circular, and double volute. In this study, the hydraulic radial forces on the impeller created by the volute in an investigational centrifugal blood pump are evaluated and discussed with regard to the choice of contactless suspension systems. Each volute type was tested experimentally in a centrifugal pump test setup at various rotational speeds and flow rates. For the pump's design point at 5 L/min and 2500 rpm, the single volute had the lowest radial force (∼0 N), the circular volute yielded the highest force (∼2 N), and the double volute possessed a force of approx. 0.5 N. Results of radial force magnitude and direction were obtained and compared with a previously performed computational fluid dynamics (CFD) study.

  14. Piston rod seal

    DOEpatents

    Lindskoug, Stefan

    1984-01-01

    In a piston rod seal of the type comprising a gland through which the piston rod is passed the piston is provided with a sleeve surrounding the piston rod and extending axially so as to axially partly overlap the gland when the piston is in its bottom dead center position.

  15. Comparison of hydraulic conductivities by grain-size analysis pumping, and slug tests in Quaternary gravels, NE Slovenia

    NASA Astrophysics Data System (ADS)

    Pucko, Tatjana; Verbovšek, Timotej

    2015-08-01

    Hydraulic conductivities (K) can be obtained from pumping and slug tests as well as grain size analysis. Although empirical methods for such estimations are longstanding, there is still insufficient comparison of K values among the various approaches. Six grain-size analysis methods were tested on coarse-grained alluvial sediments from 12 water wells in NE Slovenia. Values of K from grainsize methods were compared to those of pumping tests and slug tests. Six grain-size methods (USBR, Slichter, Hazen, Beyer, Kozeny-Carman, and Terzaghi) were used for comparison with the Theis and Neuman pumping test method and the Bouwer-Rice method for slug tests. The results show that the USBR (US Bureau of Reclamation) method overestimates K values and there is no correlation with other results, so its use is not advised. Conversely, whilst the Slichter method gives much lower estimates of K, it is the only one to completely fulfill the grain size requirements. Other methods (Hazen, Beyer, Kozeny- Carman, and Terzaghi) result in intermediate values and are similar to the Slichter method; however they should be used for smaller-sized sediments. Due to their high transmissivity and small radius of inffiuence, slug tests should be avoided in the analysis of gravels, as they only test a small portion of the aquifer compared to pumping tests. This is confirmed by the low correlation coefficients between hydraulic conductivities obtained from pumping tests and slug tests.

  16. Development of free-piston Stirling engine performance and optimization codes based on Martini simulation technique

    NASA Technical Reports Server (NTRS)

    Martini, William R.

    1989-01-01

    A FORTRAN computer code is described that could be used to design and optimize a free-displacer, free-piston Stirling engine similar to the RE-1000 engine made by Sunpower. The code contains options for specifying displacer and power piston motion or for allowing these motions to be calculated by a force balance. The engine load may be a dashpot, inertial compressor, hydraulic pump or linear alternator. Cycle analysis may be done by isothermal analysis or adiabatic analysis. Adiabatic analysis may be done using the Martini moving gas node analysis or the Rios second-order Runge-Kutta analysis. Flow loss and heat loss equations are included. Graphical display of engine motions and pressures and temperatures are included. Programming for optimizing up to 15 independent dimensions is included. Sample performance results are shown for both specified and unconstrained piston motions; these results are shown as generated by each of the two Martini analyses. Two sample optimization searches are shown using specified piston motion isothermal analysis. One is for three adjustable input and one is for four. Also, two optimization searches for calculated piston motion are presented for three and for four adjustable inputs. The effect of leakage is evaluated. Suggestions for further work are given.

  17. Overview of free-piston Stirling technology at the NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Slaby, J. G.

    1985-01-01

    An overview of the National Aeronautics and Space Administration (NASA) Lewis Research Center (Lewis) free-piston Stirling engine activities is presented. These activities include: (1) a generic free-piston Stirling technology project being conducted to develop technologies synergistic to both space power and terrestrial heat pump applications in a cooperative, cost-shared effort with the Department of Energy (DOE/Oak Ridge National Laboratory (ONRL)), and (2) a free-piston Stirling space-power technology demonstration project as part of the SP-100 program being conducted in support of the Department of Defense (DOD), DOE, and NASA/Lewis. The generic technology effort includes extensive parametric testing of a 1 kw free-piston Stirling engine (RE-1000), development and validation of a free-piston Stirling performance computer code, and fabrication and initial testing of an hydraulic output modification for the RE-1000 engine. The space power technology effort, under SP-100, addresses the status of the 25 kWe Space Power Demonstrator Engine (SPDE) including early test results.

  18. Squeeze bottle apparatus with force multiplying pistons

    DOEpatents

    Moss, Owen R.; Gordon, Norman R.; DeFord, Henry S.; Eschbach, Eugene A.

    1994-01-01

    The present invention comprises a spray bottle in which the pressure resulting from the gripping force applied by the user is amplified and this increased pressure used in generating a spray such as an aerosol or fluid stream. In its preferred embodiment, the invention includes a high pressure chamber and a corresponding piston which is operative for driving fluid out of this chamber at high pressure through a spray nozzle and a low pressure chamber, and a corresponding piston which is acted upon by the hydraulic pressure within the bottle resulting from the gripping force. The low pressure chamber and piston are of larger size than the high pressure chamber and piston. The pistons are rigidly connected so that the force created by the pressure acting on the piston in the low pressure chamber is transmitted to the piston in the high pressure chamber where it is applied over a more limited area, thereby generating greater hydraulic pressure for use in forming the spray.

  19. Hydraulic development of high specific-speed pump-turbines by means of an inverse design method, numerical flow-simulation (CFD) and model testing

    NASA Astrophysics Data System (ADS)

    Kerschberger, P.; Gehrer, A.

    2010-08-01

    In recent years an increased interest in pump-turbines has been recognized in the market. The rapid availability of pumped storage schemes and the benefits to the power system by peak lopping, providing reserve and rapid response for frequency control are becoming of growing advantage. In that context it is requested to develop pump-turbines that reliably stand dynamic operation modes, fast changes of the discharge rate by adjusting the variable diffuser vanes as well as fast changes from pump to turbine operation. Within the present study various flow patterns linked to the operation of a pump-turbine system are discussed. In that context pump and turbine mode are presented separately and different load cases at both operation modes are shown. In order to achieve modern, competitive pump-turbine designs it is further explained which design challenges should be considered during the geometry definition of a pump-turbine impeller. Within the present study a runner-blade profile for a low head pump-turbine has been developed. For the initial hydraulic runner-blade design, an inverse design method has been applied. Within this design procedure, a first blade geometry is generated by imposing the pressure loading-distribution and by means of an inverse 3D potential-flow-solution. The hydraulic behavior of both, pump-mode and turbine-mode is then evaluated by solving the full 3D Navier-Stokes equations in combination with a robust turbulence model. Based on this initial design the blade profile has been further optimized and redesigned considering various hydraulic pump-turbine requirements. Finally, the progress in hydraulic design is demonstrated by model test results which show a significant improvement in hydraulic performance compared to an existing reference design.

  20. Composite hydraulic system

    SciTech Connect

    Williamson, W.A.

    1987-03-17

    A composite hydraulic system is described for a work vehicle having an implement hydraulic circuit and a steering hydraulic circuit comprising a first pump which supplies the implement hydraulic circuit primarily, a second pump which supplies the steering hydraulic circuit primarily, a third pump which is operable also as a motor and which transfers hydraulic fluid between the implement and the steering hydraulic circuits, an engine which operates the three pumps simultaneously, and servo system means whereby the third pump under at least one condition of operation operates as a motor to provide regeneration.

  1. Switching sliding mode force tracking control of piezoelectric-hydraulic pump-based friction element actuation systems for automotive transmissions

    NASA Astrophysics Data System (ADS)

    Kim, Gi-Woo; Wang, K. W.

    2009-08-01

    In this study, a nonlinear sliding-mode controller is designed for force tracking of a piezoelectric-hydraulic pump (PHP)-based actuation system, which is developed to replace the current electro-hydraulic actuation systems for automatic transmission (AT) friction elements, such as band brakes or clutches. By utilizing the PHP, one can eliminate the various hydraulic components (oil pump, regulating valve and control valve) in current ATs and achieve a simpler configuration with more efficient operation. With the derived governing equation of motion of the PHP-based actuation system integrated with the friction element (band brake), a switching control law is synthesized based on the sliding-mode theory. To evaluate the effectiveness of the proposed control law, its force tracking performance for the engagement of a friction element during an AT 1\\to 2 up-shift is examined experimentally. It is shown that one can successfully track the desired force trajectory for AT shift control with small tracking error. This study demonstrates the potential of the PHP as a new controllable actuation system for AT friction elements.

  2. HEP (hydraulic, electronic, pneumatic) pumping unit: performance characteristics, potential applications, and field trial results

    SciTech Connect

    Jesperson, P.J.; Laidlaw, R.N.; Scott, R.J.

    1981-01-01

    THe HEP pumping unit constitutes an alternative to the familiar beam pumping unit as a means of transferring energy from the prime mover to the sucker rod string of a pumping well. This paper addresses some basic concepts which are part of the HEP system design and describes some of the resultant unit performance characteristics. The potential for enhancement of pumping well operations utilizing the high degree of control over rod string motion attainable with the HEP system, is discussed together with the results of a number of field trials and some plans for further unit evaluation and development. A lift capacity comparison with conventional beam pumping units is also included. 8 refs.

  3. Hydraulic High Pressure Valve Controller Using the In-Situ Pressure Difference

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi (Inventor); Sherrit, Stewart (Inventor); Badescu, Mircea (Inventor); Bar-Cohen, Yoseph (Inventor); Hall, Jeffery L. (Inventor)

    2016-01-01

    A hydraulic valve controller that uses an existing pressure differential as some or all of the power source for valve operation. In a high pressure environment, such as downhole in an oil or gas well, the pressure differential between the inside of a pipe and the outside of the pipe may be adequately large to drive a linear slide valve. The valve is operated hydraulically by a piston in a bore. When a higher pressure is applied to one end of the bore and a lower pressure to the other end, the piston moves in response to the pressure differential and drives a valve attached to it. If the pressure differential is too small to drive the piston at a sufficiently high speed, a pump is provided to generate a larger pressure differential to be applied. The apparatus is conveniently constructed using multiport valves, which can be rotary valves.

  4. HYDRAULIC SERVO CONTROL MECHANISM

    DOEpatents

    Hussey, R.B.; Gottsche, M.J. Jr.

    1963-09-17

    A hydraulic servo control mechanism of compact construction and low fluid requirements is described. The mechanism consists of a main hydraulic piston, comprising the drive output, which is connected mechanically for feedback purposes to a servo control piston. A control sleeve having control slots for the system encloses the servo piston, which acts to cover or uncover the slots as a means of controlling the operation of the system. This operation permits only a small amount of fluid to regulate the operation of the mechanism, which, as a result, is compact and relatively light. This mechanism is particuiarly adaptable to the drive and control of control rods in nuclear reactors. (auth)

  5. Piston and connecting rod assembly

    NASA Technical Reports Server (NTRS)

    Brogdon, James William (Inventor); Gill, David Keith (Inventor); Chatten, John K. (Inventor)

    2001-01-01

    A piston and connecting rod assembly includes a piston crown, a piston skirt, a connecting rod, and a bearing insert. The piston skirt is a component separate from the piston crown and is connected to the piston crown to provide a piston body. The bearing insert is a component separate from the piston crown and the piston skirt and is fixedly disposed within the piston body. A bearing surface of a connecting rod contacts the bearing insert to thereby movably associate the connecting rod and the piston body.

  6. 20. ENGINE/PUMP HOUSE EXTENSION, PUMP NO. 4, HOUSING FOR ECCENTRICS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. ENGINE/PUMP HOUSE EXTENSION, PUMP NO. 4, HOUSING FOR ECCENTRICS THAT CONTROL THE STEAM FOR EAST PISTON LOCATED BELOW THE PISTON CRANKSHAFT HUB AND ABOVE THE THRUST BEARING; CONTROL RODS FOR PISTON NO. 3 LOCATED AT RIGHT. - Deer Island Pumping Station, Boston, Suffolk County, MA

  7. Stirling cycle piston engine

    SciTech Connect

    Morgan, G. R.

    1985-02-12

    This device is an improvement over the conventional type of Stirling cycle engine where the expander piston is connected to a crankshaft and the displacer piston is connected to the same or another crankshaft for operation. The improvement is based on both the expansion and displacer pistons being an integral unit having regenerating means which eliminate the mechanisms that synchronize the regeneration mode.

  8. Assessment of 25 kW free-piston Stirling technology alternatives for solar applications

    NASA Astrophysics Data System (ADS)

    Erbeznik, Raymond M.; White, Maurice A.; Penswick, L. B.; Neely, Ronald E.; Ritter, Darren C.; Wallace, David A.

    The final design, construction, and testing of a 25-kW free-piston advanced Stirling conversion system (ASCS) are examined. The final design of the free-piston hydraulic ASCS consists of five subsystems: heat transport subsystem (solar receiver and pool boiler), free-piston hydraulic Stirling engine, hydraulic subsystem, cooling subsystem, and electrical and control subsystem. Advantages and disadvantages are identified for each technology alternative. Technology alternatives considered are gas bearings vs flexure bearings, stationary magnet linear alternator vs moving magnetic linear alternator, and seven different control options. Component designs are generated using available in-house procedures to meet the requirements of the free-piston Stirling convertor configurations.

  9. Lightweight piston architecture

    NASA Technical Reports Server (NTRS)

    Taylor, Allan H. (Inventor); Ransone, Philip O. (Inventor)

    1990-01-01

    The invention is an improvement in a lightweight carbon-carbon composite piston, the improvement uses near-net shape knitted or warp-interlock preforms to improve the structural qualities of the piston. In its preferred embodiment, a one piece, tubular, closed-ended, knitted preform (a sock) of carbon fibers embedded within the matrix of the piston structure forms the crown, side wall, skirt and inner surface of the piston, and wrap-interlock preforms strengthen the piston crown and wrist pin bosses.

  10. A conceptual study of the potential for automotive-derived and free-piston Stirling engines in 30- to 400-kilowatt stationary power applications

    NASA Technical Reports Server (NTRS)

    Vatsky, A.; Chen, H. S.; Dineen, J.

    1982-01-01

    The technical feasibility of applying automotive-derived kinematic and free-piston Stirling engine concepts for stationary applications was explored. Automotive-derived engines offer cost advantages by providing a mature and developd engine technology base with downrating and parts commonality options for specific applications. Two engine sizes (30 and 400 kW), two Stirling engine configurations (kinematic and free-piston), and two output systems (crankshaft and hydraulic pump) were studied. The study includes the influences of using either hydrogen or helium as the working gas. The first kinematic configuration selects an existing Stirling engine design from an automotive application and adapts it to stationary requirements. A 50,000-hour life requirement was established by downrating the engine to 40 kW and reducing auxiliary loads. Efficiency improvements were gained by selective material and geometric variations and peak brake efficiency of 36.8 percent using helium gas was achieved. The second design was a four-cylinder, 400 kW engine, utilizing a new output drive system known as the z-crank, which provides lower friction losses and variable stroke power control. Three different material and working gas combinations were considered. Brake efficiency levels varied from 40.5 percent to 45.6 percent. A 37.5 kW single-cycle, free-piston hydraulic output design was generated by scaling one cylinder of the original automotive engine and mating it to a counterbalanced reciprocal hydraulic pump. Metallic diaphragms were utilized to transmit power.

  11. Hydraulics of Fuel-Injection Pumps for Compression-ignition Engines

    NASA Technical Reports Server (NTRS)

    Rothrock, A M

    1932-01-01

    Formulas are derived for computing the instantaneous pressures delivered by a fuel pump. The first derivation considers the compressibility of the fuel and the second, the compressibility, elasticity, and inertia of the fuel. The second derivation follows that given by Sass; it is shown to be the more accurate of the two. Additional formulas are given for determining the resistance losses in the injection tube. Experimental data are presented in support of the analyses. The report is concluded with an application of the theory to the design of fuel pump injection systems for which sample calculations are included.

  12. Feed-pump hydraulic performance and design improvement, Phase I: research program design. Final report

    SciTech Connect

    Brown, W.H.; Gopalakrishnan, S.; Fehlau, R.; Thompson, W.E.; Wilson, D.G.

    1982-03-01

    As a result of prior EPRI-sponsored studies, it was concluded that a research program should be designed and implemented to provide an improved basis for the design, procurement, testing, and operation of large feed pumps with increased reliability and stability over the full range of operating conditions. This two-volume report contains a research plan which is based on a review of the present state of the art and which defines the necessary R and D program and estimates the benefits and costs of the program. The recommended research program consists of 30 interrelated tasks. It is designed to perform the needed research; to verify the results; to develop improved components; and to publish computer-aided design methods, pump specification guidelines, and a troubleshooting manual. Most of the technology proposed in the research plan is applicable to nuclear power plants as well as to fossil-fired plants. This volume discusses the design, performance and failures of feed pumps, and recommendations for research on pump dynamics, design, and specifications.

  13. Well pump

    DOEpatents

    Ames, Kenneth R.; Doesburg, James M.

    1987-01-01

    A well pump includes a piston and an inlet and/or outlet valve assembly of special structure. Each is formed of a body of organic polymer, preferably PTFE. Each includes a cavity in its upper portion and at least one passage leading from the cavity to the bottom of the block. A screen covers each cavity and a valve disk covers each screen. Flexible sealing flanges extend upwardly and downwardly from the periphery of the piston block. The outlet valve block has a sliding block and sealing fit with the piston rod.

  14. Influence of bearing support structures on shaft vibration of large hydraulic pump/turbines

    SciTech Connect

    Pistner, C.A.; Greenplate, B.S.; Waddell, A.M.

    1995-12-31

    Start-up transient loads from pump/turbine impellers can cause excessive vibration problems in the shaft system. If the radial guide bearing supports are structurally soft or loose, or if the bearings are worn, the resulting radial shaft movement causes abnormal wear. The wear normally occurs at the impeller sealing surfaces, main shaft seals, motor/generator components, piping, brackets, foundation connections, etc. This paper explores the critical factors causing shaft system vibration problems at the Tennessee Valley Authority`s Raccoon Mountain Pumped Storage Plant, as well as the unique modifications which were implemented to strengthen and improve the units. The solution involved extensive three-dimensional finite element structural and thermal transient analyses of the original and re-designed turbine shoe bearing, bearing housings, and support structures. The conclusion compares the calculated and measured shaft system response to transient loads of the original and modified system.

  15. Design, test and model of a hybrid magnetostrictive hydraulic actuator

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Anirban; Yoo, Jin-Hyeong; Wereley, Norman M.

    2009-08-01

    The basic operation of hybrid hydraulic actuators involves high frequency bi-directional operation of an active material that is converted to uni-directional motion of hydraulic fluid using valves. A hybrid actuator was developed using magnetostrictive material Terfenol-D as the driving element and hydraulic oil as the working fluid. Two different lengths of Terfenol-D rod, 51 and 102 mm, with the same diameter, 12.7 mm, were used. Tests with no load and with load were carried out to measure the performance for uni-directional motion of the output piston at different pumping frequencies. The maximum no-load flow rates were 24.8 cm3 s-1 and 22.7 cm3 s-1 with the 51 mm and 102 mm long rods respectively, and the peaks were noted around 325 Hz pumping frequency. The blocked force of the actuator was close to 89 N in both cases. A key observation was that, at these high pumping frequencies, the inertial effects of the fluid mass dominate over the viscous effects and the problem becomes unsteady in nature. In this study, we also develop a mathematical model of the hydraulic hybrid actuator in the time domain to show the basic operational principle under varying conditions and to capture phenomena affecting system performance. Governing equations for the pumping piston and output shaft were obtained from force equilibrium considerations, while compressibility of the working fluid was taken into account by incorporating the bulk modulus. Fluid inertia was represented by a lumped parameter approach to the transmission line model, giving rise to strongly coupled ordinary differential equations. The model was then used to calculate the no-load velocities of the actuator at different pumping frequencies and simulation results were compared with experimental data for model validation.

  16. Variable delivery, fixed displacement pump

    DOEpatents

    Sommars, Mark F.

    2001-01-01

    A variable delivery, fixed displacement pump comprises a plurality of pistons reciprocated within corresponding cylinders in a cylinder block. The pistons are reciprocated by rotation of a fixed angle swash plate connected to the pistons. The pistons and cylinders cooperate to define a plurality of fluid compression chambers each have a delivery outlet. A vent port is provided from each fluid compression chamber to vent fluid therefrom during at least a portion of the reciprocal stroke of the piston. Each piston and cylinder combination cooperates to close the associated vent port during another portion of the reciprocal stroke so that fluid is then pumped through the associated delivery outlet. The delivery rate of the pump is varied by adjusting the axial position of the swash plate relative to the cylinder block, which varies the duration of the piston stroke during which the vent port is closed.

  17. The piston-flow interaction as a model for the deflagration-to-detonation transition

    SciTech Connect

    Brailovsky, Irina; Kagan, Leonid; Sivashinsky, Gregory

    2011-01-15

    The piston-flow interaction induced by a piston pushing hydraulically resisted gas through a long tube is discussed. It is shown that the hydraulic resistance causes a significant precompression and preheating of the gas adjacent to the piston's edge. In the case of an explosive premixture this development may lead to a localized autoignition triggering detonation. It is suggested that the problem may serve as a guide for understanding the deflagration-to-detonation transition in tubes, with the piston modeling the impact of the advancing flame. (author)

  18. OSCILLATORY PUMP

    DOEpatents

    Underwood, N.

    1958-09-23

    This patent relates to a pump suitable fur pumping highly corrosive gases wherein no lubricant is needed in the pumping chamber thus eliminating possible contamination sources. The chamber contains a gas inlet and outlet in each side, with a paddle like piston suspended by a sylphon seal between these pcrts. An external arrangement causes the paddle to oscillate rapidly between the ports, alternately compressing and exhausting the gas trapped on each side of the paddle. Since the paddle does nnt touch the chamber sides at any point, no lubricant is required. This pump is useful for pumping large quantities of uranium hexafluorine.

  19. Free piston stirling engines

    SciTech Connect

    Walker, C.

    1985-01-01

    This book presents a basic introduction to free piston Stirling engine technology through a review of specialized background material. It also includes information based on actual construction and operation experience with these machines, as well as theoretical and analytical insights into free piston Stirling engine technology.

  20. Stirling engine piston ring

    DOEpatents

    Howarth, Roy B.

    1983-01-01

    A piston ring design for a Stirling engine wherein the contact pressure between the piston and the cylinder is maintained at a uniform level, independent of engine conditions through a balancing of the pressure exerted upon the ring's surface and thereby allowing the contact pressure on the ring to be predetermined through the use of a preloaded expander ring.

  1. Hydraulic performance improvement of the bidirectional pit pump installation based on CFD

    NASA Astrophysics Data System (ADS)

    Chen, H. X.; Zhou, D. Q.

    2013-12-01

    At present, the efficiency of bidirectional pit pump installation with lift under 2m is still low because of lack of research on it in the past. In the paper, the CFD numerical method and experimental test were applied to study flow characteristic of bidirectional pit pump installation under positive and reverse condition. Through changing airfoil type and position of blade and stay vane, the comprehensive performance of improved model were obtained by calculating many different models. The results showed that when improved model is obtained with type A runner with 4 blades that is 0.7D away from pit exit and unsymmetrical guide vane 0.25dh which away from the impeller outlet, and the flow pattern of the improved solution is steady with high efficiency. Compared with the original scheme, the efficiency of positive and reverse design condition reach to 67.23% and 58.32% respectively, which is increased 6% more than original model on the design condition and 5% on the optimum operating condition, and it achieved the purpose of improvement. According to the runner blade angle of the optimization solution, model synthetic characteristic curve was drawn and internal flow field characteristics was analyzed under optimal positive and reverse conditions. The numerical calculation shows that owing to the lack of stay vane to recycle the energy in outlet runner chamber, the water flow regime is not steady enough in the outlet passage, and that is the main reason for lower efficiency at reverse condition than that at positive condition.

  2. Free piston inertia compressor

    DOEpatents

    Richards, W.D.C.; Bilodeau, D.; Marusak, T.; Dutram, L. Jr.; Brady, J.

    A free piston inertia compressor comprises a piston assembly including a connecting rod having pistons on both ends, the cylinder being split into two substantially identical portions by a seal through which the connecting rod passes. Vents in the cylinder wall are provided near the seal to permit gas to escape the cylinder until the piston covers the vent whereupon the remaining gas in the cylinder functions as a gas spring and cushions the piston against impact on the seal. The connecting rod has a central portion of relatively small diameter providing free play of the connecting rod through the seal and end portions of relatively large diameter providing a limited tolerance between the connecting rod and the seal. Finally, the seal comprises a seal ring assembly consisting of a dampener plate, a free floating seal at the center of the dampener plate and a seal retainer plate in one face of the dampener plate.

  3. Free piston inertia compressor

    DOEpatents

    Richards, William D. C.; Bilodeau, Denis; Marusak, Thomas; Dutram, Jr., Leonard; Brady, Joseph

    1981-01-01

    A free piston inertia compressor comprises a piston assembly including a connecting rod having pistons on both ends, the cylinder being split into two substantially identical portions by a seal through which the connecting rod passes. Vents in the cylinder wall are provided near the seal to permit gas to excape the cylinder until the piston covers the vent whereupon the remaining gas in the cylinder functions as a gas spring and cushions the piston against impact on the seal. The connecting rod has a central portion of relatively small diameter providing free play of the connecting rod through the seal and end portions of relatively large diameter providing a limited tolerance between the connecting rod and the seal. Finally, the seal comprises a seal ring assembly consisting of a dampener plate, a free floating seal at the center of the dampener plate and a seal retainer plate in one face of the dampener plate.

  4. Theoretical Analysis and Bench Tests of a Control-Surface Booster Employing a Variable Displacement Hydraulic Pump

    NASA Technical Reports Server (NTRS)

    Mathews, Charles W.; Kleckner, Harold F.

    1947-01-01

    The NACA is conducting a general investigation of servo-mechanisms for use in powering aircraft control surfaces. This paper presents a theoretical analysis and the results of bench tests of a control-booster system which employs a variable displacement hydraulic pump. The booster is intended for use in a flight investigation to determine the effects of various booster parameters on the handling qualities of airplanes. Such a flight investigation would aid in formulating specific requirements concerning the design of control boosters in general. Results of the theoretical analysis and the bench tests indicate that the subject booster is representative of types which show promise of satisfactory performance. The bench tests showed that the following desirable features were inherent in this booster system: (1) No lost motion or play in any part of the system; (2) no detectable lag between motion of the contra1 stick and control surface; and (3) Good agreement between control displacements and stick-force variations with no hysteresis in the stick-force characteristics. The final design configuration of this booster system showed no tendency to oscillate, overshoot, or have other undesirable transient characteristics common to boosters.

  5. Fluid-operated piston

    SciTech Connect

    Ledermen, F.E.

    1987-01-13

    An improvement is described in a friction torque transmitting device having a piston slidably disposed in a cylinder and being selectively pressurized therein for controlling the engagement of frictional plates. The improvement comprises: a rigid piston body generally U-shaped in cross section; an elastomeric covering portion bonded on the piston body and incorporating therein a pair of lip seal portions for engaging the cylinder and cooperating therewith to form a fluid tight joint; valve means formed in the bonded portion for permitting air bleed from the cylinder; a reaction ring bonded to the elastomeric covering; and a spring portion integral with the elastomeric portion operatively disposed between the piston body and the reaction ring.

  6. Fuel injection pump

    SciTech Connect

    Iiyama, A.; Nishimura, T.

    1988-12-06

    This patent describes a fuel injection pump comprising: (a) engageable first and second cam members, the first cam member reciprocating axially as the first cam member moves angularly relative to the second cam member when the first and second cam members are in engagement; (b) means for urging the first cam member toward the second cam member to engage the first and second cam members; (c) a plunger connected to the first cam member for reciprocation with the first cam member, the plunger defining at least a part of a pumping chamber, the pumping chamber contracting and expanding as the plunger reciprocates; (d) means for allowing fuel to move into the pumping chamber as the pumping chamber expands in a fuel intake stroke; (e) means for allowing the fuel to move out of the pumping chamber as the pumping chamber contracts in a fuel compression stroke; and (f) means for resisting movement of the plunger in at least part of the fuel compression stroke and relieving resistance to the movement of the plunger in the fuel intake stroke wherein the resisting means comprises a piston slidably mounted on the plunger, a spring urging the piston to seat the piston on a shoulder on the plunger so that the piston reciprocates as the plunger reciprocates, wherein the piston is seated on the shoulder in the fuel compression stroke and separates from the shoulder against the force of the spring in the fuel intake stroke, a second fluid chamber at least partially defined by the piston.

  7. Spherical rotary piston machine as an artificial heart.

    PubMed

    Wipf, S L

    1991-01-01

    A positive displacement pump with six rotary pistons was proposed as an artificial heart. The pump's design was characterized by high symmetry and compactness. Thus, a spherical volume of 4 1/4 inch diameter sufficed for a pump delivering 10 L/min at 120 pulses/min with the pistons turning at 30 rpm. The pistons and four connecting gears were the only moving parts. The pump functions in two separate halves as left and right ventricles, with two of the six pistons each having inlet and outlet passages, and one of them replacing mitral and pulmonary valves with the other, tricuspid and aortic valves. The function of the intraventricular septum was provided by the other four pistons whose interiors also accommodated driving motors each capable of 0.4 Nm torque for a combined power of 5 watts. There were no stagnant regions in the pumping volume, and at all internal surfaces in contact with blood, there was periodic shear stress not exceeding approximately 300 Pa.

  8. Spherical rotary piston machine as an artificial heart.

    PubMed

    Wipf, S L

    1991-01-01

    A positive displacement pump with six rotary pistons was proposed as an artificial heart. The pump's design was characterized by high symmetry and compactness. Thus, a spherical volume of 4 1/4 inch diameter sufficed for a pump delivering 10 L/min at 120 pulses/min with the pistons turning at 30 rpm. The pistons and four connecting gears were the only moving parts. The pump functions in two separate halves as left and right ventricles, with two of the six pistons each having inlet and outlet passages, and one of them replacing mitral and pulmonary valves with the other, tricuspid and aortic valves. The function of the intraventricular septum was provided by the other four pistons whose interiors also accommodated driving motors each capable of 0.4 Nm torque for a combined power of 5 watts. There were no stagnant regions in the pumping volume, and at all internal surfaces in contact with blood, there was periodic shear stress not exceeding approximately 300 Pa. PMID:1751131

  9. Piston Ring Pressure Distribution

    NASA Technical Reports Server (NTRS)

    Kuhn, M.

    1943-01-01

    The discovery and introduction of the internal combustion engine has resulted in a very rapid development in machines utilizing the action of a piston. Design has been limited by the internal components of the engine, which has been subjected to ever increasing thermal and mechanical stresses, Of these internal engine components, the piston and piston rings are of particular importance and the momentary position of engine development is not seldom dependent upon the development of both of the components, The piston ring is a well-known component and has been used in its present shape in the steam engine of the last century, Corresponding to its importance, the piston ring has been a rich field for creative activity and it is noteworthy that in spite of this the ring has maintained its shape through the many years. From the many and complicated designs which have been suggested as a packing between piston and cylinder wall hardly one suggestion has remained which does not resemble the original design of cast iron rectangular ring.

  10. PUMPS

    DOEpatents

    Thornton, J.D.

    1959-03-24

    A pump is described for conveving liquids, particure it is not advisable he apparatus. The to be submerged in the liquid to be pumped, a conduit extending from the high-velocity nozzle of the injector,and means for applying a pulsating prcesure to the surface of the liquid in the conduit, whereby the surface oscillates between positions in the conduit. During the positive half- cycle of an applied pulse liquid is forced through the high velocity nozzle or jet of the injector and operates in the manner of the well known water injector and pumps liquid from the main intake to the outlet of the injector. During the negative half-cycle of the pulse liquid flows in reverse through the jet but no reverse pumping action takes place.

  11. Adaptive sliding mode back-stepping pitch angle control of a variable-displacement pump controlled pitch system for wind turbines.

    PubMed

    Yin, Xiu-xing; Lin, Yong-gang; Li, Wei; Liu, Hong-wei; Gu, Ya-jing

    2015-09-01

    A variable-displacement pump controlled pitch system is proposed to mitigate generator power and flap-wise load fluctuations for wind turbines. The pitch system mainly consists of a variable-displacement hydraulic pump, a fixed-displacement hydraulic motor and a gear set. The hydraulic motor can be accurately regulated by controlling the pump displacement and fluid flows to change the pitch angle through the gear set. The detailed mathematical representation and dynamic characteristics of the proposed pitch system are thoroughly analyzed. An adaptive sliding mode pump displacement controller and a back-stepping stroke piston controller are designed for the proposed pitch system such that the resulting pitch angle tracks its desired value regardless of external disturbances and uncertainties. The effectiveness and control efficiency of the proposed pitch system and controllers have been verified by using realistic dataset of a 750 kW research wind turbine.

  12. Adaptive sliding mode back-stepping pitch angle control of a variable-displacement pump controlled pitch system for wind turbines.

    PubMed

    Yin, Xiu-xing; Lin, Yong-gang; Li, Wei; Liu, Hong-wei; Gu, Ya-jing

    2015-09-01

    A variable-displacement pump controlled pitch system is proposed to mitigate generator power and flap-wise load fluctuations for wind turbines. The pitch system mainly consists of a variable-displacement hydraulic pump, a fixed-displacement hydraulic motor and a gear set. The hydraulic motor can be accurately regulated by controlling the pump displacement and fluid flows to change the pitch angle through the gear set. The detailed mathematical representation and dynamic characteristics of the proposed pitch system are thoroughly analyzed. An adaptive sliding mode pump displacement controller and a back-stepping stroke piston controller are designed for the proposed pitch system such that the resulting pitch angle tracks its desired value regardless of external disturbances and uncertainties. The effectiveness and control efficiency of the proposed pitch system and controllers have been verified by using realistic dataset of a 750 kW research wind turbine. PMID:26303957

  13. 21 CFR 880.5725 - Infusion pump.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Infusion pump. 880.5725 Section 880.5725 Food and... Infusion pump. (a) Identification. An infusion pump is a device used in a health care facility to pump fluids into a patient in a controlled manner. The device may use a piston pump, a roller pump, or...

  14. 21 CFR 880.5725 - Infusion pump.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Infusion pump. 880.5725 Section 880.5725 Food and... Infusion pump. (a) Identification. An infusion pump is a device used in a health care facility to pump fluids into a patient in a controlled manner. The device may use a piston pump, a roller pump, or...

  15. 21 CFR 880.5725 - Infusion pump.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Infusion pump. 880.5725 Section 880.5725 Food and... Infusion pump. (a) Identification. An infusion pump is a device used in a health care facility to pump fluids into a patient in a controlled manner. The device may use a piston pump, a roller pump, or...

  16. Analysis of Piston Slap Motion

    NASA Astrophysics Data System (ADS)

    Narayan, S.

    2015-05-01

    Piston slap is the major force contibuting towards noise levels in combustion engines.This type of noise depends upon a number of factors such as the piston-liner gap, type of lubricant used, number of piston pins as well as geometry of the piston. In this work the lateral and rotary motion of the piston in the gap between the cylinder liner and piston has been analyzed. A model that can predict the forces and response of the engine block due to slap has been dicussed. The parameters such as mass, spring and damping constant have been predicted using a vibrational mobility model.

  17. Reciprocating piston internal combustion engine

    SciTech Connect

    Hayashi, Y.

    1986-04-15

    A reciprocating piston internal combustion engine is described which consists of: a piston movably disposed within an engine cylinder, the piston having a top surface and a piston ring, the engine cylinder and the top surface of the piston defining a combustion chamber, the piston having first and second sections which are divided by a vertical plane containing an axis of a piston pin, the first section being formed with a major thrust surface and the second section being formed with a minor thrust surface; and means for thrusting the piston against a major thrust side wall of the cylinder before the piston reaches top dead center in the cylinder, the thrusting means comprising: means defining a space in the piston, the space communicating with the combustion chamber and being located in the piston second section; a movable member disposed within the space, the movable member being capable of being thrust in the direction of a minor thrust side wall of the cylinder by gas pressure within the combustion chamber and being arranged to thrust the piston ring against the minor thrust side wall when thrust by the gas pressure; and means for producing gas pressure within the combustion chamber such that the gas pressure enters the space at the compression stroke of the engine so that the movable member receives the gas pressure and is thrust toward the minor thrust side wall of the cylinder such that the piston is thrust against a major thrust side wall of the cylinder.

  18. RE-1000 free-piston Stirling engine update

    NASA Technical Reports Server (NTRS)

    Schreiber, J. G.

    1985-01-01

    A free piston Stirling engine was tested. The tests performed over the past several years on the single cylinder engine were designed to investigate the dynamics of a free piston Stirling engine. The data are intended to be used primarily for computer code validation. The tests designed to investigate the sensitivity of the engine performance to variations in working space pressure, heater and cooler temperatures, regenerator porosity, power piston mass and displacer dynamics were completed. In addition, some data were recorded with alternate working fluids. A novel resonant balance system for the engine was also tested. Some preliminary test results of the tests performed are presented along with an outline of future tests to be run with the engine coupled to a hydraulic output unit. A description of the hydraulic output unit is given.

  19. Free-piston engine

    SciTech Connect

    Van Blarigan, Peter

    2001-01-01

    A combustion system which can utilize high compression ratios, short burn durations, and homogeneous fuel/air mixtures in conjunction with low equivalence ratios. In particular, a free-piston, two-stroke autoignition internal combustion engine including an electrical generator having a linear alternator with a double-ended free piston that oscillates inside a closed cylinder is provided. Fuel and air are introduced in a two-stroke cycle fashion on each end, where the cylinder charge is compressed to the point of autoignition without spark plugs. The piston is driven in an oscillating motion as combustion occurs successively on each end. This leads to rapid combustion at almost constant volume for any fuel/air equivalence ratio mixture at very high compression ratios. The engine is characterized by high thermal efficiency and low NO.sub.x emissions. The engine is particularly suited for generating electrical current in a hybrid automobile.

  20. Simulation of dynamics of hydraulic system with proportional control valve

    NASA Astrophysics Data System (ADS)

    Bureček, Adam; Hružík, Lumír; Vašina, Martin

    2016-03-01

    Dynamics of a hydraulic system is influenced by several parameters, in this case mainly by proportional control valve, oil bulk modulus, oil viscosity, mass load etc. This paper will be focused on experimental measurement and mathematical simulation of dynamics of a hydraulic system with proportional control valve, linear hydraulic cylinder and mass load. The measurement is performed on experimental equipment that enables realization of dynamic processes of the hydraulic system. Linear hydraulic cylinder with mass load is equipped with position sensor of piston. The movement control of piston rod is ensured by the proportional control valve. The equipment enables to test an influence of parameter settings of regulator of the proportional control valve on position and pressure system responses. The piston position is recorded by magnetostrictive sensor that is located in drilled piston rod side of the linear hydraulic cylinder. Pressures are measured by piezoresistive sensors on the piston side and the piston rod side of the hydraulic cylinder. The measurement is performed during movement of the piston rod with mass load to the required position. There is realized and verified a mathematical model using Matlab SimHydraulics software for this hydraulic system.

  1. Assessment of Hydraulic Performance and Biocompatibility of a MagLev Centrifugal Pump System Designed for Pediatric Cardiac or Cardiopulmonary Support

    PubMed Central

    Dasse, Kurt A.; Gellman, Barry; Kameneva, Marina V.; Woolley, Joshua R.; Johnson, Carl A.; Gempp, Thomas; Marks, John D.; Kent, Stella; Koert, Andrew; Richardson, J. Scott; Franklin, Steve; Snyder, Trevor A.; Wearden, Peter; Wagner, William R.; Gilbert, Richard J.; Borovetz, Harvey S.

    2011-01-01

    The treatment of children with life-threatening cardiac and cardiopulmonary failure is a large and underappreciated public health concern. We have previously shown that the CentriMag is a magnetically levitated centrifugal pump system, having the utility for treating adults and large children (1,500 utilized worldwide). We present here the Pedi-VAS, a pump system whose design was modified from the CentriMag to meet the physiological requirements of young pediatric and neonatal patients. The PediVAS is comprised of a single-use centrifugal blood pump, reusable motor, and console, and is suitable for right ventricular assist device (RVAD), left ventricular assist device (LVAD), biventricular assist device (BVAD), or extracorporeal membrane oxygenator (ECMO) applications. It is designed to operate without bearings, seals and valves, and without regions of blood stasis, friction, or wear. The PediVAS pump is compatible with the CentriMag hardware, although the priming volume was reduced from 31 to 14 ml, and the port size reduced from 3/8 to ¼ in. For the expected range of pediatric flow (0.3–3.0 L/min), the PediVAS exhibited superior hydraulic efficiency compared with the CentriMag. The PediVAS was evaluated in 14 pediatric animals for up to 30 days, demonstrating acceptable hydraulic function and hemocompatibility. The current results substantiate the performance and biocompatibility of the PediVAS cardiac assist system and are likely to support initiation of a US clinical trial in the future. PMID:18043164

  2. Negative feedback system reduces pump oscillations

    NASA Technical Reports Server (NTRS)

    Rosenmann, W.

    1967-01-01

    External negative feedback system counteracts low frequency oscillations in rocket engine propellant pumps. The system uses a control piston to sense pump discharge fluid on one side and a gas pocket on the other.

  3. Using the motor to monitor pump conditions

    SciTech Connect

    Casada, D.

    1996-12-01

    When the load of a mechanical device being driven by a motor changes, whether in response to changes in the overall process or changes in the performance of the driven device, the motor inherently responds. For induction motors, the current amplitude and phase angle change as the shaft load changes. By examining the details of these changes in amplitude and phase, load fluctuations of the driven device can be observed. The usefulness of the motor as a transducer to improve the understanding of devices with high torque fluctuations, such as positive displacement compressors and motor-operated valves, has been recognized and demonstrated for a number of years. On such devices as these, the spectrum of the motor current amplitude, phase, or power normally has certain characteristic peaks associated with various load components, such as the piston stroke or gear tooth meshing frequencies. Comparison and trending of the amplitudes of these peaks has been shown to provide some indication of their mechanical condition. For most centrifugal pumps, the load fluctuations are normally low in torque amplitude, and as a result, the motor experiences a correspondingly lower level of load fluctuation. However, both laboratory and field test data have demonstrated that the motor does provide insight into some important pump performance conditions, such as hydraulic stability and pump-to-motor alignment. Comparisons of other dynamic signals, such as vibration and pressure pulsation, to motor data for centrifugal pumps are provided. The effects of inadequate suction head, misalignment, mechanical and hydraulic unbalance on these signals are presented.

  4. High pressure slurry pump. Sand slurry test loop design and results. Wear parts lifetime analysis

    SciTech Connect

    Fongaro, S.; Severini, P.; Vinciguerra, G.

    2000-07-01

    This paper shows the experimental phase, following previous work presented at the Sixth International Conference on ``Multiphase Flow in Industrial Plants'', Milan, September 98. A Sand Water Slurry Test Loop has been tested using different sand percentages for a total power of 680 HP with a flow-rate of 35,000 [gpm] and pressure of 2300 [psig]. Its design considered, carefully, the particles build-up effect respecting flow velocity and dead space along the loop and into the hydraulics. The test pump is a TRIPLEX SINGLE ACTING that is one third of the COAL SLURRY SEPTUPLEX PUMP designed for a CHINA PROJECT. Wear rate on the main parts of an high pressure slurry pump have been analyzed running at 145 rpm (piston mean speed of 3.3 [ft/s]) with a net flow of 33,290 [gpm] and pressures between 1216 and 1575 [psig]. Tests gave indications of a damaging process on valves, piston seals and the relative weight on the overall damages. Design changes of piston-seal and its material have been done, results being a longer parts lifetime. The authors compared the results with literature on coal slurry and other sand tests. The pump speed, i.e., valve cycle, isn't the main wear factor, while the fluid speed under the valve is. Their goals are to improve the wear parts lifetime and define functions to relate the wear to operating parameters, design choice, and materials used.

  5. Electric-hydraulic car

    SciTech Connect

    Clark, R.W.; Greene, H.

    1993-07-27

    A propulsion system is described for a vehicle having a chassis and at least one drive wheel, the propulsion system including in combination: a constant speed power source comprising an alternating current electric motor operated at a constant speed corresponding to its optimum performance; a source of energy comprising a storage battery and an inverter connected to the electric motor for operating the electric motor of the constant speed power source; a hydraulic fluid system including a main hydraulic pump coupled with the electric motor of the constant speed power source and driven thereby; at least one hydraulic drive motor coupled with the hydraulic pump for receiving fluid flow therefrom; and means for varying the fluid flow through the main hydraulic pump to vary the speed of operation of the hydraulic drive motor.

  6. Piston engine configuration alternatives

    SciTech Connect

    Wyczalek, F.A.

    1989-01-01

    This paper provides a technological assessment of alternate engine component configuration and material alternatives. It includes a comparative analysis of key characteristics of Gasoline, Diesel and Gas Turbine engines built by Daihatsu, Honda, Isuzu, Mazda, Mitsubishi, Nissan, Suburu, Suzuki and Toyota. The piston engines range from two to ten cylinders with inline, vee and opposed configurations. Furthermore, additional special features and alternative choices include variable compression ratio, ceramic structural components, supercharger, turbocharger, twin turbocharger, supercharger-turbocharger combined and the regenerative gas turbine.

  7. Carbon-carbon piston development

    NASA Technical Reports Server (NTRS)

    Gorton, Mark P.

    1994-01-01

    A new piston concept, made of carbon-carbon refractory-composite material, has been developed that overcomes a number of the shortcomings of aluminum pistons. Carbon-carbon material, developed in the early 1960's, is lighter in weight than aluminum, has higher strength and stiffness than aluminum and maintains these properties at temperatures over 2500 F. In addition, carbon-carbon material has a low coefficient of thermal expansion and excellent resistance to thermal shock. An effort, called the Advanced Carbon-Carbon Piston Program was started in 1986 to develop and test carbon-carbon pistons for use in spark ignition engines. The carbon-carbon pistons were designed to be replacements for existing aluminum pistons, using standard piston pin assemblies and using standard rings. Carbon-carbon pistons can potentially enable engines to be more reliable, more efficient and have greater power output. By utilizing the unique characteristics of carbon-carbon material a piston can: (1) have greater resistance to structural damage caused by overheating, lean air-fuel mixture conditions and detonation; (2) be designed to be lighter than an aluminum piston thus, reducing the reciprocating mass of an engine, and (3) be operated in a higher combustion temperature environment without failure.

  8. Analysis of piston secondary motion

    NASA Astrophysics Data System (ADS)

    Tan, Yeow-Chong; Ripin, Zaidi Mohd

    2013-09-01

    A nonlinear model of the piston with reciprocating, lateral and rotational degree of freedom is developed to investigate the piston secondary motion and the induced vibration behavior of the engine block by the piston slap. The model parameters are obtained from mobility measurement. The gap between the piston skirt and the cylinder liner is modeled as a translational hard stop which is the nonlinear component in the model. The value of the friction coefficient between the piston ring and the cylinder liner is determined by correlating the experimental data with the friction force equation. During the piston slap on the cylinder liner, the high damping coefficient and stiffness of the translational hard stop are added to the equation for the piston secondary motion. The model is validated by experimental data obtained from three laser displacement sensors which capture the distinct modes of the piston secondary motion directly from the piston assembly under motorized conditions. The predicted trend of the piston secondary motion and the vibration response of cylinder block are appropriate and compare well with the measured results.

  9. Hot piston ring tests

    NASA Astrophysics Data System (ADS)

    Allen, David J.; Tomazic, William A.

    1987-12-01

    As part of the DOE/NASA Automotive Stirling Engine Project, tests were made at NASA Lewis Research Center to determine whether appendix gap losses could be reduced and Stirling engine performance increased by installing an additional piston ring near the top of each piston dome. An MTI-designed upgraded Mod I Automotive Stirling Engine was used. Unlike the conventional rings at the bottom of the piston, these hot rings operated in a high temperature environment (700 C). They were made of a high temperature alloy (Stellite 6B) and a high temperature solid lubricant coating (NASA Lewis-developed PS-200) was applied to the cylinder walls. Engine tests were run at 5, 10, and 15 MPa operating pressure over a range of operating speeds. Tests were run both with hot rings and without to provide a baseline for comparison. Minimum data to assess the potential of both the hot rings and high temperature low friction coating was obtained. Results indicated a slight increase in power and efficiency, an increase over and above the friction loss introduced by the hot rings. Seal leakage measurements showed a significant reduction. Wear on both rings and coating was low.

  10. Hot piston ring tests

    NASA Technical Reports Server (NTRS)

    Allen, David J.; Tomazic, William A.

    1987-01-01

    As part of the DOE/NASA Automotive Stirling Engine Project, tests were made at NASA Lewis Research Center to determine whether appendix gap losses could be reduced and Stirling engine performance increased by installing an additional piston ring near the top of each piston dome. An MTI-designed upgraded Mod I Automotive Stirling Engine was used. Unlike the conventional rings at the bottom of the piston, these hot rings operated in a high temperature environment (700 C). They were made of a high temperature alloy (Stellite 6B) and a high temperature solid lubricant coating (NASA Lewis-developed PS-200) was applied to the cylinder walls. Engine tests were run at 5, 10, and 15 MPa operating pressure over a range of operating speeds. Tests were run both with hot rings and without to provide a baseline for comparison. Minimum data to assess the potential of both the hot rings and high temperature low friction coating was obtained. Results indicated a slight increase in power and efficiency, an increase over and above the friction loss introduced by the hot rings. Seal leakage measurements showed a significant reduction. Wear on both rings and coating was low.

  11. Extreme pressure fluid sample transfer pump

    DOEpatents

    Halverson, Justin E.; Bowman, Wilfred W.

    1990-01-01

    A transfer pump for samples of fluids at very low or very high pressures comprising a cylinder having a piston sealed with an O-ring, the piston defining forward and back chambers, an inlet and exit port and valve arrangement for the fluid to enter and leave the forward chamber, and a port and valve arrangement in the back chamber for adjusting the pressure across the piston so that the pressure differential across the piston is essentially zero and approximately equal to the pressure of the fluid so that the O-ring seals against leakage of the fluid and the piston can be easily moved, regardless of the pressure of the fluid. The piston may be actuated by a means external to the cylinder with a piston rod extending through a hole in the cylinder sealed with a bellows attached to the piston head and the interior of the back chamber.

  12. Extreme pressure fluid sample transfer pump

    SciTech Connect

    Halverson, J.E.; Bowman, W.W.

    1989-06-08

    A transfer pump for samples of fluids at very low or very high pressures comprising a cylinder having a piston sealed with an O-ring, the piston defining forward and back chambers, an inlet and exit port and valve arrangement for the fluid to enter and leave the forward chamber, and a port and valve arrangement in the back chamber for adjusting the pressure across the piston so that the pressure differential across the piston is essentially zero and approximately equal to the pressure of the fluid so that the O-ring seals against leakage of the fluid and the piston can be easily moved, regardless of the pressure of the fluid. The piston may be actuated by a means external to the cylinder with a piston rod extending through a hole in the cylinder sealed with a bellows attached to the piston head and the interior of the back chamber. 2 figs.

  13. Extreme pressure fluid sample transfer pump

    SciTech Connect

    Halverson, J.E.; Bowman, W.W.

    1990-12-04

    This patent describes a transfer pump for samples of fluids at very low or very high pressures comprising a cylinder having a piston sealed with an O-ring, the piston defining forward and back chambers, an inlet and exit port and valve arrangement for the fluid to enter and leave the forward chamber, and a port and valve arrangement in the back chamber for adjusting the pressure across the piston so that the pressure differential across the piston is essentially zero and approximately equal to the pressure of the fluid so that the O-ring seals against leakage of the fluid and the piston can be easily moved, regardless of the pressure of the fluid. The piston may be actuated by a means external to the cylinder with a piston rod extending through a hole in the cylinder sealed with a bellows attached to the piston head and the interior of the back chamber.

  14. Computer-aided simulation of piston and piston ring dynamics

    SciTech Connect

    Knoll, G.; Peeken, H.; Lechtape-Grueter, R.; Lang, J.

    1996-10-01

    A numerical computer simulation program was developed, aiding in finding optimum design parameters in the multibody-system piston, piston-rings, and cylinder with respect to optimum sealing, minimal friction, and minimum noise stimulation(impact impulse). In the simulation of piston secondary movement and piston ring motion, forces arising from the combustion process, subsonic/supersonic gas flow between the combustion chamber and the crank case, inertial forces and forces resulting from the hydrodynamic lubrication between cylinder liner and piston shaft and piston rings and between piston ring flanks and piston grooves are considered. In addition it is possible to account for effects of global, three-dimensional ring deformation as well as local piston deformation, roughness effects in lubricated contacts, and variable viscosity and variable oil supply. The governing differential equations for the pressure as well as the deformation are solved via finite element techniques, while initial value problems are solved by efficient implicit time integration schemes. The application of the developed computer code is presented in examples.

  15. Piston and piston ring for an internal combustion engine

    SciTech Connect

    Tokoro, N.

    1988-10-04

    This patent describes internal combustion engine comprising: a cylinder block having at least one cylinder bore, the cylinder bore having an inner cylinder bore surface; a piston located within the cylinder bore of the cylinder block, so as to be displaceable upwardly and downwardly in the longitudinal direction of the cylinder bore, the piston including at least one annular groove having upper and lower surfaces, at least the lower surface being an inclined surface such that a bottom of the annular groove is lower than an outer edge of the annular groove; and a piston ring including an outer peripheral portion and an inner peripheral portion, the inner peripheral portion of the piston ring being located within the annular groove of the piston for sliding engagement with the inclined surface of the annular groove of the piston, and inner edge of the inner peripheral portion of the piston ring being located apart from the bottom of the annular groove of the piston and below the outer edge of the annular groove, and the outer peripheral portion of the piston ring being in contact with the cylinder bore surface of the cylinder block.

  16. 49 CFR 229.55 - Piston travel.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Piston travel. 229.55 Section 229.55... Piston travel. (a) Brake cylinder piston travel shall be sufficient to provide brake shoe clearance when... piston travel may not exceed 11/2 inches less than the total possible piston travel. The total...

  17. 49 CFR 229.55 - Piston travel.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Piston travel. 229.55 Section 229.55... Piston travel. (a) Brake cylinder piston travel shall be sufficient to provide brake shoe clearance when... piston travel may not exceed 11/2 inches less than the total possible piston travel. The total...

  18. Free-piston cutting machine

    DOEpatents

    Ciccarelli, Gaby; Subudhi, Manomohan; Hall, Robert E.

    2000-01-01

    A cutting machine includes a gun barrel for receiving a projectile. A compression tube is disposed in flow communication with the barrel and includes a piston therein. A reservoir is disposed in flow communication with the tube and receives a first gas under pressure. A second gas fills the compression tube on a front face of the piston. And, the pressurized first gas is discharged into the tube on a back face of the piston to accelerate the piston through the tube for compressing the second gas, and in turn launching the projectile through the barrel to impact a workpiece.

  19. Rotating head and piston engine

    SciTech Connect

    Gomm, T.J.; Messick, N.C.

    1992-07-21

    This patent describes a rotary piston combustion engine. It comprises a housing means, an engine block housing a single toroidal bore, a piston carrier ring spaced outwardly along the entire perimeter of the toroidal bore with at least one finger extending inwardly for piston attachment, a power transfer cylinder, a power output shaft, an auxiliary shaft with driven gearing means meshing with the driving gearing means, a rotating head with windows for piston passage, a trapezoidal porting means in the engine block and in the rotating head, an exhaust port means.

  20. 49 CFR 230.93 - Pistons and piston rods.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Pistons and piston rods. 230.93 Section 230.93 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives...

  1. Reciprocating piston engine

    SciTech Connect

    Eickmann, K.

    1986-01-07

    This patent describes a reciprocating combustion engine consisting of a cylinder, a piston reciprocating in the cylinder, a top for closing one end of the cylinder, inlets and outlets extending to and from the cylinder for the intake of combustible gas and the expelling of burned exhaust gases. The engine also consists of a device for ignition of the combustible gas, a means of cooling the cylinder and top, a turbine of a turbocharger connected to the outlet, and a compressor of the turbocharger connected to the inlet.

  2. Nonlinear dynamic modeling for smart material electro-hydraulic actuator development

    NASA Astrophysics Data System (ADS)

    Larson, John P.; Dapino, Marcelo J.

    2013-03-01

    Smart material electro-hydraulic actuators use hydraulic rectification by one-way check valves to amplify the motion of smart materials, such as magnetostrictives and piezoelectrics, in order to create compact, lightweight actuators. A piston pump driven by a smart material is combined with a hydraulic cylinder to form a self-contained, power-by-wire actuator that can be used in place of a conventional hydraulic system without the need for hydraulic lines and a centralized pump. The performance of an experimental actuator driven by a 12.7 mm diameter, 114 mm length Terfenol-D rod is evaluated over a range of applied input frequencies, loads, and currents. The peak performance achieved is 37 W, moving a 220 N load at a rate of 17 cm/s and producing a blocked pressure of 12.5 MPa. Additional tests are conducted to quantify the dynamic behavior of the one-way reed valves using a scanning laser vibrometer to identify the frequency response of the reeds and the effect of the valve seat and fluid mass loading. A lumped-parameter model is developed for the system that includes valve inertia and fluid response nonlinearities, and the model results are compared with the experimental data.

  3. Manual or hydraulic gearshifting apparatus

    SciTech Connect

    Ishida, H.; Kojima, Y.

    1986-04-08

    A vehicle transmission control apparatus is described which consists of: a plurality of shift members for operating a vehicle transmission; a lever adapted for linear movement into a plurality of positions, one each of the lever being operatively coupled to a different one of the shift members in each of the positions; the lever being further adapted for pivotal movement in response to which the one end of the lever actuates the operatively coupled shift member; a select actuator means comprising a select hydraulic cylinder and a select piston retained thereby, the select piston being coupled to the lever and hydraulically controlled to produce the linear movement thereof; a shift actuator means comprising a shift hydraulic cylinder and a shift piston retained thereby, the shift piston being coupled to the lever and hydraulically controlled to produce the pivotal movement thereof; a casing means retaining the lever, the select actuator means, and the shift actuator means; and a control member comprising a portion within the casing means and coupled to the lever and a manually accessible portion always disposed outside the casing means and having means adapted for manual actuation to produce either the linear or the pivotal movement of the lever.

  4. Stirling cycle heat pump for heating and/or cooling systems

    SciTech Connect

    Meijer, R.J.; Khalili, K.; Meijer, E.; Godett, T.M.

    1991-03-05

    This patent describes a duplex Stirling cycle machine acting as a heat pump. It comprises: a Stirling engine having pistons axially displaceable within parallel cylinders, the engine further having a swashplate rotatable about an axis of, rotation parallel to the cylinders and defining a plane inclined from the axis of rotation. The pistons connected to the swashplate via crossheads whereby axial displacement of the pistons is converted to rotation of the swashplate, and a Stirling cycle heat pump having a compression heat exchanger, an expansion heat exchanger and a regenerator with pistons equal in number to the engine pistons and axially displaceable within cylinders which are oriented co-axially with the engine cylinders. The crossheads further connected to the heat pump pistons whereby the heat pump pistons move simultaneously with the engine pistons over an equal stroke distance.

  5. 128. TUBING FOR HYDRAULIC FLUID AT BACK OF HYDRAULIC CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    128. TUBING FOR HYDRAULIC FLUID AT BACK OF HYDRAULIC CONTROL PANEL IN UMBILICAL MAST PUMP ROOM (209), LSB (BLDG. 751). PUMP ON RIGHT; ACCUMULATOR FOR MAST RETRACTION ON LEFT. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  6. Research on MEMS sensor in hydraulic system flow detection

    NASA Astrophysics Data System (ADS)

    Zhang, Hongpeng; Zhang, Yindong; Liu, Dong; Ji, Yulong; Jiang, Jihai; Sun, Yuqing

    2010-12-01

    With the development of mechatronics technology and fault diagnosis theory, people regard flow information much more than before. Cheap, fast and accurate flow sensors are urgently needed by hydraulic industry. So MEMS sensor, which is small, low cost, well performed and easy to integrate, will surely play an important role in this field. Based on the new method of flow measurement which was put forward by our research group, this paper completed the measurement of flow rate in hydraulic system by setting up the mathematical model, using numerical simulation method and doing physical experiment. Based on viscous fluid flow equations we deduced differential pressure-velocity model of this new sensor and did optimization on parameters. Then, we designed and manufactured the throttle and studied the velocity and pressure field inside the sensor by FLUENT. Also in simulation we get the differential pressure-velocity curve .The model machine was simulated too to direct experiment. In the static experiments we calibrated the MEMS sensing element and built some sample sensors. Then in a hydraulic testing system we compared the sensor signal with a turbine meter. It presented good linearity and could meet general hydraulic system use. Based on the CFD curves, we analyzed the error reasons and made some suggestion to improve. In the dynamic test, we confirmed this sensor can realize high frequency flow detection by a 7 piston-pump.

  7. Research on MEMS sensor in hydraulic system flow detection

    NASA Astrophysics Data System (ADS)

    Zhang, Hongpeng; Zhang, Yindong; Liu, Dong; Ji, Yulong; Jiang, Jihai; Sun, Yuqing

    2011-05-01

    With the development of mechatronics technology and fault diagnosis theory, people regard flow information much more than before. Cheap, fast and accurate flow sensors are urgently needed by hydraulic industry. So MEMS sensor, which is small, low cost, well performed and easy to integrate, will surely play an important role in this field. Based on the new method of flow measurement which was put forward by our research group, this paper completed the measurement of flow rate in hydraulic system by setting up the mathematical model, using numerical simulation method and doing physical experiment. Based on viscous fluid flow equations we deduced differential pressure-velocity model of this new sensor and did optimization on parameters. Then, we designed and manufactured the throttle and studied the velocity and pressure field inside the sensor by FLUENT. Also in simulation we get the differential pressure-velocity curve .The model machine was simulated too to direct experiment. In the static experiments we calibrated the MEMS sensing element and built some sample sensors. Then in a hydraulic testing system we compared the sensor signal with a turbine meter. It presented good linearity and could meet general hydraulic system use. Based on the CFD curves, we analyzed the error reasons and made some suggestion to improve. In the dynamic test, we confirmed this sensor can realize high frequency flow detection by a 7 piston-pump.

  8. Stirling engine with improved piston ring assembly

    SciTech Connect

    Meijer, R.J.

    1986-10-07

    This patent describes an engine having a reciprocating piston axially stroking within a walled cylinder by a pressure differential acting on opposite axial sides of the piston and an annular piston ring disposed in an annular piston ring groove around the piston for sealing between the piston and the wall of the cylinder to resist leakage past the piston. The improvement described here is in the piston ring. This piston ring is endowed with a flat radially outwardly facing annular axial surface confronting the cylinder wall, temperature responsive means arranged within the groove for coaction with the piston ring to forcefully urge the piston ring radially outwardly when the engine is cold such that the flat radially outwardly facing annular axial surface of the piston ring is urged flat against the cylinder wall but to relax from urging the piston ring outwardly when the engine becomes warm. The piston ring groove has two contiguous axial portions one of which extends radially deeper into the piston than the other, the piston ring being of generally L-shape in cross section so that it has two leg portions consisting of a radially extending leg portion and an axially extending leg portion. The radially extended leg portion is disposed in cooperative association with the one axial portion of the groove and the axially extending leg portion being disposed in cooperative association with the other axial portion of the groove. The temperature responsive means is disposed within the one axial portion of the piston ring groove to be coactive on the radially extending leg portion of the piston ring, and annular sealing means disposed within the groove for sealing between the piston ring and piston to resist leakage between the piston ring and piston.

  9. High-pressure magnetostrictive pump development: a comparison of prototype and modeled performance

    NASA Astrophysics Data System (ADS)

    Bridger, Keith; Sewell, John M.; Cooke, Arthur V.; Lutian, Joseph L.; Kohlhafer, Dennis; Small, George E.; Kuhn, Philip M.

    2004-07-01

    Current efforts to extend the mission profile of Unmanned Aerial Vehicles (UAVs) have highlighted the need for scalable linear actuators. Typically, electrical power and control are specified for their high specific performance and ease of maintenance and replacement. Electro-Hydraulic Actuators (EHAs) provide the advantages of electrical power and control along with the proven reliability, robustness and graceful failure modes of hydraulic actuation. Current EHA technology, however, is not scalable to the degree required for projected UAVs and extension to other markets and applications. This paper will describe the measured and theoretical performance of a magnetostrictive hydraulic pump developed for one such EHA as part of the DARPA Compact Hybrid Actuator Program (CHAP). This work will focus on prototype pump designs utilizing a resonant magnetostrictive piston driver. The numerous design and operational parameters that have been tested and studied in an effort to produce an optimized pump design will be discussed. In particular, the measured and predicted performance of the resonant structure and fluidics will be compared and contrasted for several pump designs. The paper will also examine the interdependence of pump parameters and the balance required to produce a viable design with the required performance characteristics.

  10. Rotating and positive-displacement pumps for low-thrust rocket engines. Volume 1: Pump Evaluation and design. [of centrifugal pumps

    NASA Technical Reports Server (NTRS)

    Macgregor, C.; Csomor, A.

    1974-01-01

    Rotating and positive displacement pumps of various types were studied for pumping liquid fluorine for low-thrust, high-performance rocket engines. Included in the analysis were: centrifugal, pitot, Barske, Tesla, drag, gear, vane, axial piston, radial piston, diaphragm, and helirotor pump concepts. The centrifugal pump and the gear pump were selected and these were carried through detailed design and fabrication. Mechanical difficulties were encountered with the gear pump during the preliminary tests in Freon-12. Further testing and development was therefore limited to the centrifugal pump. Tests on the centrifugal pump were conducted in Freon-12 to determine the hydrodynamic performance and in liquid fluorine to demonstrate chemical compatibility.

  11. Carbon-Carbon Piston Architectures

    NASA Technical Reports Server (NTRS)

    Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor); Schwind, Francis A. (Inventor)

    1999-01-01

    An improved structure for carbon-carbon composite piston architectures consists of replacing the knitted fiber, three-dimensional piston preform architecture described in U.S. Pat. No. 4.909,133 (Taylor et al.) with a two-dimensional lay-up or molding of carbon fiber fabric or tape. Initially. the carbon fabric or tape layers are prepregged with carbonaceous organic resins and/or pitches and are laid up or molded about a mandrel. to form a carbon-fiber reinforced organic-matrix composite part shaped like a "U" channel, a "T"-bar. or a combination of the two. The molded carbon-fiber reinforced organic-matrix composite part is then pyrolized in an inert atmosphere, to convert the organic matrix materials to carbon. At this point, cylindrical piston blanks are cored from the "U" channel, "T"-bar, or combination part. These blanks are then densified by reimpregnation with resins or pitches which are subsequently carbonized. Densification is also be accomplished by direct infiltration with carbon by vapor deposition processes. Once the desired density has been achieved, the piston billets are machined to final piston dimensions; coated with oxidation sealants; and/or coated with a catalyst. When compared to conventional steel or aluminum-alloy pistons, the use of carbon-carbon composite pistons reduces the overall weight of the engine; allows for operation at higher temperatures without a loss of strength; allows for quieter operation; reduces the heat loss; and reduces the level of hydrocarbon emissions.

  12. Electrokinetic high pressure hydraulic system

    DOEpatents

    Paul, Phillip H.; Rakestraw, David J.

    2000-01-01

    A compact high pressure hydraulic pump having no moving mechanical parts for converting electric potential to hydraulic force. The electrokinetic pump, which can generate hydraulic pressures greater than 2500 psi, can be employed to compress a fluid, either liquid or gas, and manipulate fluid flow. The pump is particularly useful for capillary-base systems. By combining the electrokinetic pump with a housing having chambers separated by a flexible member, fluid flow, including high pressure fluids, is controlled by the application of an electric potential, that can vary with time.

  13. Use of time-subsidence data during pumping to characterize specific storage and hydraulic conductivity of semi-confining units

    NASA Astrophysics Data System (ADS)

    Burbey, T. J.

    2003-09-01

    A new graphical technique is developed that takes advantage of time-subsidence data collected from either traditional extensometer installations or from newer technologies such as fixed-station global positioning systems or interferometric synthetic aperture radar imagery, to accurately estimate storage properties of the aquifer and vertical hydraulic conductivity of semi-confining units. Semi-log plots of time-compaction data are highly diagnostic with the straight-line portion of the plot reflecting the specific storage of the semi-confining unit. Calculation of compaction during one-log cycle of time from these plots can be used in a simple analytical expression based on the Cooper-Jacob technique to accurately calculate specific storage of the semi-confining units. In addition, these semi-log plots can be used to identify when the pressure transient has migrated through the confining layer into the unpumped aquifer, precluding the need for additional piezometers within the unpumped aquifer or within the semi-confining units as is necessary in the Neuman and Witherspoon method. Numerical simulations are used to evaluate the accuracy of the new technique. The technique was applied to time-drawdown and time-compaction data collected near Franklin Virginia, within the Potomac aquifers of the Coastal Plain, and shows that the method can be easily applied to estimate the inelastic skeletal specific storage of this aquifer system.

  14. Integral Ring Carbon-Carbon Piston

    NASA Technical Reports Server (NTRS)

    Northam, G. Burton (Inventor)

    1999-01-01

    An improved structure for a reciprocating internal combustion engine or compressor piston fabricate from carbon-carbon composite materials is disclosed. An integral ring carbon-carbon composite piston, disclosed herein, reduces the need for piston rings and for small clearances by providing a small flexible, integral component around the piston that allows for variation in clearance due to manufacturing tolerances, distortion due to pressure and thermal loads, and variations in thermal expansion differences between the piston and cylinder liner.

  15. Researches on the Piston Ring

    NASA Technical Reports Server (NTRS)

    Ehihara, Keikiti

    1944-01-01

    In internal combustion engines, steam engines, air compressors, and so forth, the piston ring plays an important role. Especially, the recent development of Diesel engines which require a high compression pressure for their working, makes, nowadays, the packing action of the piston ring far more important than ever. Though a number of papers have been published in regard to researches on the problem of the piston ring, none has yet dealt with an exact measurement of pressure exerted on the cylinder wall at any given point of the ring. The only paper that can be traced on this subject so far is Mr. Nakagawa's report on the determination of the relative distribution of pressure on the cylinder wall, but the measuring method adopted therein appears to need further consideration. No exact idea has yet been obtained as to how the obturation of gas between the piston and cylinder, the frictional resistance of the piston, and the wear of the cylinder wall are affected by the intensity and the distribution of the radial pressure of the piston ring. Consequently, the author has endeavored, by employing an apparatus of his own invention, to get an exact determination of the pressure distribution of the piston ring. By means of a newly devised ring tester, to which piezoelectricity of quartz was applied, the distribution of the radial pressure of many sample rings on the market was accurately determined. Since many famous piston rings show very irregular pressure distribution, the author investigated and achieved a manufacturing process of the piston ring which will exert uniform pressure on the cylinder wall. Temperature effects on the configuration and on the mean spring power have also been studied. Further, the tests were performed to ascertain how the gas tightness of the piston ring may be affected by the number or spring power. The researches as to the frictional resistance between the piston ring and the cylinder wall were carried out, too. The procedure of study, and

  16. Magnetic-flux pump

    NASA Technical Reports Server (NTRS)

    Hildebrandt, A. F.; Elleman, D. D.; Whitmore, F. C. (Inventor)

    1966-01-01

    A magnetic flux pump is described for increasing the intensity of a magnetic field by transferring flux from one location to the magnetic field. The device includes a pair of communicating cavities formed in a block of superconducting material, and a piston for displacing the trapped magnetic flux into the secondary cavity producing a field having an intense flux density.

  17. Nanocoatings for High-Efficiency Industrial Hydraulic and Tooling Systems

    SciTech Connect

    Clifton B. Higdon III

    2011-01-07

    energy conservation. In mobile hydraulic systems, efficiency gains through low friction would translate into improved fuel economy and fewer greenhouse gas emissions. Stationary hydraulic systems, accordingly, would consume less electrical power. Reduced tooling wear in machining operations would translate to greater operating yields, while lowering the energy consumed during processing. The AlMgB14 nanocoatings technology progressed beyond baseline laboratory tests into measurable energy savings and enhancements to product durability. Three key hydraulic markets were identified over the course of the project that will benefit from implementation: industrial vane pumps, orbiting valve-in-star hydraulic motors, and variable displacement piston pumps. In the vane pump application, the overall product efficiency was improved by as much as 11%. Similar results were observed with the hydraulic motors tested, where efficiency gains of over 10% were noted. For variable displacement piston pumps, overall efficiency was improved by 5%. For cutting tools, the most significant gains in productivity (and, accordingly, the efficiency of the machining process as a whole) were associated with the roughing and finishing of titanium components for aerospace systems. Use of the AlMgB14 nanocoating in customer field tests has shown that the coated tools were able to withstand machining rates as high as 500sfm (limited only by the substrate material), with relatively low flank wear when compared to other industrial offerings. AlMgB14 coated tools exhibited a 60% improvement over similarly applied TiAlN thin films. Furthermore, AlMgB14-based coatings in these particular tests lasted twice as long than their TiAlN counterparts at the 500sfm feed rates. Full implementation of the technology into the industrial hydraulic and cutting tool markets equates to a worldwide energy savings of 46 trillion BTU/year by 2030. U.S.-based GHG emissions associated with the markets identified would fall

  18. Carbon-Carbon Piston Architectures

    NASA Technical Reports Server (NTRS)

    Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor); Schwind, Francis A. (Inventor)

    2000-01-01

    An improved structure for carbon-carbon composite piston architectures is disclosed. The improvement consists of replacing the knitted fiber, three-dimensional piston preform architecture described in U.S. Pat.No. 4,909,133 (Taylor et al.) with a two-dimensional lay-up or molding of carbon fiber fabric or tape. Initially, the carbon fabric of tape layers are prepregged with carbonaceous organic resins and/or pitches and are laid up or molded about a mandrel, to form a carbon-fiber reinforced organic-matrix composite part shaped like a "U" channel, a "T"-bar, or a combination of the two. The molded carbon-fiber reinforced organic-matrix composite part is then pyrolized in an inert atmosphere, to convert the organic matrix materials to carbon. At this point, cylindrical piston blanks are cored from the "U"-channel, "T"-bar, or combination part. These blanks are then densified by reimpregnation with resins or pitches which are subsequently carbonized. Densification is also accomplished by direct infiltration with carbon by vapor deposition processes. Once the desired density has been achieved, the piston billets are machined to final piston dimensions; coated with oxidation sealants; and/or coated with a catalyst. When compared to conventional steel or aluminum alloy pistons, the use of carbon-carbon composite pistons reduces the overall weight of the engine; allows for operation at higher temperatures without a loss of strength; allows for quieter operation; reduces the heat loss; and reduces the level of hydrocarbon emissions.

  19. Hydraulic wind energy conversion system

    NASA Astrophysics Data System (ADS)

    1981-07-01

    The purpose of this reseach was to design, build and test a hydraulic wind energy system. This design used a three bladed turbine, which drove a hydraulic pump. The energy is transmitted from the pump through a long hose and into a hydraulic motor, where the energy is used. This wind system was built and tested during the winter of 1980-1981. The power train included a five meter, three bladed wind turbine, a 9.8:1 ratio gearbox, a 1.44 cubic inch displacement pump with a small supercharge gear pump attached. The hydraulic fluid was pumped through a 70 ft, 3/4 in. I-D-high pressure flexhose, then through a volume control valve and into a 1.44 cubic inch displacement motor. The fluid was returned through a 7 ft, 1 in. I-D-flexhose.

  20. Subsurface well safety valve with hydraulic strainer

    SciTech Connect

    Morris, A.J.; Knieriemen, J.L.

    1988-12-20

    This patent describes in combination with a subsurface safety valve for controlling fluid flow through a well conduit and including a housing having a bore and a valve closure member moving between open and closed positions for controlling fluid flow through the bore, a flow tube telescopically moving in the housing for controlling the movement of the valve closure member, biasing means for moving the tubular member in a direction to close the valve and a hydraulic piston and cylinder assembly for actuating the valve closure member, of a hydraulic strainer comprising, means defining a closed chamber positioned above the hydraulic piston and cylinder assembly, means defining an inlet fluid passageway having first and second ends, the first end adapted to receive hydraulic control fluid through a control line from the well surface, the second end extending into the chamber, means defining an outlet fluid passageway having first and second ends. The first end of the outlet fluid passageway extending into the chamber, and the second end of the outlet fluid passageway connected in fluid communication to the top of the hydraulic piston and cylinder assembly, the second end of the inlet fluid passageway being positioned away from the first end of the outlet fluid passageway for allowing debris to accumulate in the chamber and protect the piston and cylinder assembly.

  1. Piston reciprocating compressed air engine

    SciTech Connect

    Cestero, L.G.

    1987-03-24

    A compressed air engine is described comprising: (a). a reservoir of compressed air, (b). two power cylinders each containing a reciprocating piston connected to a crankshaft and flywheel, (c). a transfer cylinder which communicates with each power cylinder and the reservoir, and contains a reciprocating piston connected to the crankshaft, (d). valve means controlled by rotation of the crankshaft for supplying compressed air from the reservoir to each power cylinder and for exhausting compressed air from each power cylinder to the transfer cylinder, (e). valve means controlled by rotation of the crankshaft for supplying from the transfer cylinder to the reservoir compressed air supplied to the transfer cylinder on the exhaust strokes of the pistons of the power cylinders, and (f). an externally powered fan for assisting the exhaust of compressed air from each power cylinder to the transfer cylinder and from there to the compressed air reservoir.

  2. Hydraulic catworks system

    SciTech Connect

    Walker, J.L.

    1981-03-03

    A hydraulic catworks system is described for use on a well drilling rig for making up and breaking out a drill string which includes a hydraulic makeup piston and cylinder assembly for actuating a makeup line connected to the makeup tongs, and a breakout piston and cylinder assembly connected to a breakout line for actuating the breakout tongs. A makeup hydraulic control valve controls hydraulic fluid to first and second lines connected to the makeup assembly with the first line connected for extending the makeup line and the second line connected for retracting the makeup line. A breakout hydraulic control valve controls fluid to third and fourth lines with the third line connected for extending the breakout line and the fourth line connected for retracting the breakout line. Manual air control means are provided for selectively actuating the makeup and breakout control valves. A variable pressure control is connected to the second line for controlling the makeup torque. Preferably, the makeup and breakout assemblies are vertically connected to the legs of the drilling rig and rollers are positioned horizontally with the makeup and breakout tongs and connected to the breakout and makeup lines. Preferably, a sheave is connected to the makeup assembly and the makeup line passes over the sheave with its free end fixedly secured. A re-generative system is provided on the makeup assembly for increasing the speed of the makeup line extension. Preferably the makeup and breakout cylinders are of the same cross-sectional area with the stroke of the breakout cylinder being less than the stroke of the makeup cylinder.

  3. Solar powered free-piston stirling engine

    SciTech Connect

    Benson, G.M.

    1988-05-24

    A method of controlling the operation of a free piston Stirling engine including a displacer piston having an integral electrical linear driver, an alternator piston driven by the displacer piston and including means for generating an electric current and variable volume gas springs in the cylinders for the displacer and alternator piston is described comprising the steps of: sensing the output voltage if the generated electric current; controlling the movement of the displacer piston by varying the volume of the gas spring in the displacer cylinder and the status of linear driver responsively to the sensed output voltage; sensing the frequency of the linear driver responsively to the sensed output voltage; sensing the frequency of the alternator piston; and controlling the frequency of the alternator piston by varying the volume of the gas spring of the alternator cylinder responsive to the sensed frequency.

  4. 49 CFR 230.76 - Piston travel.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and...) Maximum piston travel. The maximum piston travel when steam locomotive is standing shall be as follows... Driving Wheel Brake 6 Engine Truck Brake 8 Tender Brake 9...

  5. 49 CFR 230.76 - Piston travel.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and...) Maximum piston travel. The maximum piston travel when steam locomotive is standing shall be as follows... Driving Wheel Brake 6 Engine Truck Brake 8 Tender Brake 9...

  6. 49 CFR 230.76 - Piston travel.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and...) Maximum piston travel. The maximum piston travel when steam locomotive is standing shall be as follows... Driving Wheel Brake 6 Engine Truck Brake 8 Tender Brake 9...

  7. 49 CFR 230.76 - Piston travel.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and...) Maximum piston travel. The maximum piston travel when steam locomotive is standing shall be as follows... Driving Wheel Brake 6 Engine Truck Brake 8 Tender Brake 9...

  8. 49 CFR 230.76 - Piston travel.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and...) Maximum piston travel. The maximum piston travel when steam locomotive is standing shall be as follows... Driving Wheel Brake 6 Engine Truck Brake 8 Tender Brake 9...

  9. Pump assembly comprising gas spring means

    SciTech Connect

    Akkerman, N.H.

    1981-10-27

    A pressure actuated, rodless pump is described for pumping fluid, preferably, from a well through a tubing string and comprises a chamber and a check valved movable piston which define a pump cavity. The chamber has a check valved outlet to the tubing string on the cavity side of the piston and a fluid inlet on the other side of the piston. The piston is connected to a spring assembly by a pull rod. The spring assembly includes a cylinder having an elastomeric bladder separating a gas filled chamber from an upper fluid chamber which is separated from a lower fluid chamber by a wall having a fluid passageway formed therein. The lower fluid chamber encloses a stationary piston and both the lower and upper fluid chambers are in fluid communication with the tubing string through a charge valve. Cyclic pressure applied to the fluid in the tubing string forces the cylinder and movable piston downward to draw fluid into the pump cavity and to force fluid from the lower fluid chamber into the upper fluid chamber to compress the gas. The charged valve functions during the pressure cycles to replace fluid lost from the lower fluid chamber past the stationary piston. 28 claims.

  10. Open Loop Heat Pipe Radiator Having a Free-Piston for Wiping Condensed Working Fluid

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard M. (Inventor)

    2015-01-01

    An open loop heat pipe radiator comprises a radiator tube and a free-piston. The radiator tube has a first end, a second end, and a tube wall, and the tube wall has an inner surface and an outer surface. The free-piston is enclosed within the radiator tube and is capable of movement within the radiator tube between the first and second ends. The free-piston defines a first space between the free-piston, the first end, and the tube wall, and further defines a second space between the free-piston, the second end, and the tube wall. A gaseous-state working fluid, which was evaporated to remove waste heat, alternately enters the first and second spaces, and the free-piston wipes condensed working fluid from the inner surface of the tube wall as the free-piston alternately moves between the first and second ends. The condensed working fluid is then pumped back to the heat source.

  11. Two piston V-type Stirling engine

    DOEpatents

    Corey, John A.

    1987-01-01

    A two piston Stirling engine which includes a heat exchanger arrangement placing the cooler and regenerator directly adjacent the compression space for minimal cold duct volume; a sealing arrangement which eliminates the need for piston seals, crossheads and piston rods; and a simplified power control system.

  12. Dynamical aspects of an adiabatic piston.

    PubMed

    Munakata, T; Ogawa, H

    2001-09-01

    Dynamical aspects of an adiabatic piston are investigated, based on the mass ratio expansion of the master equation for the piston velocity distribution function. Simple theory for piston motion and relaxation of an ideal gas in a cylinder turns out to reproduce our numerical experiments quantitatively.

  13. Dynamical aspects of an adiabatic piston

    NASA Astrophysics Data System (ADS)

    Munakata, Toyonori; Ogawa, Hideki

    2001-09-01

    Dynamical aspects of an adiabatic piston are investigated, based on the mass ratio expansion of the master equation for the piston velocity distribution function. Simple theory for piston motion and relaxation of an ideal gas in a cylinder turns out to reproduce our numerical experiments quantitatively.

  14. Sibling cycle piston and valving method

    NASA Technical Reports Server (NTRS)

    Mitchell, Matthew P. (Inventor); Bauwens, Luc (Inventor)

    1990-01-01

    A double-acting, rotating piston reciprocating in a cylinder with the motion of the piston providing the valving action of the Sibling Cycle through the medium of passages between the piston and cylinder wall. The rotating piston contains regenerators ported to the walls of the piston. The piston fits closely in the cylinder at each end of the cylinder except in areas where the wall of the cylinder is relieved to provide passages between the cylinder wall and the piston leading to the expansion and compression spaces, respectively. The piston reciprocates as it rotates. The cylinder and piston together comprise an integral valve that seqentially opens and closes the ports at the ends of the regenerators alternately allowing them to communicate with the expansion space and compression space and blocking that communication. The relieved passages in the cylinder and the ports in the piston are so arranged that each regenerator is sequentially (1) charged with compressed working gas from the compression space; (2) isolated from both expansion and compression spaces; (3) discharged of working gas into the expansion space; and (4) simultaneously charged with working gas from the expansion space while being discharged of working gas into the compression space, in the manner of the Sibling Cycle. In an alterate embodiment, heat exchangers are external to the cylinder and ports in the cylinder wall are alternately closed by the wall of the piston and opened to the expansion and compression spaces through relieved passages in the wall of the reciprocating, rotating piston.

  15. Double acting stirling engine piston ring

    SciTech Connect

    Howarth, R.B.

    1986-04-15

    A pressure balanced piston ring is described for limiting the leakage of a high pressure region on one side of the piston ring to a region of low pressure on the opposite side of the piston ring along a cylinder wall. The piston ring apparatus consists of: a piston ring of low elastic modulus material maintained in a circumferential groove in the reciprocating piston; two elastomeric seals, positioned on opposite axial sides of the piston ring so as to isolate an inner surface from the high and low pressure regions; means for balancing the pressure on the inner surface of the piston ring with the average pressure in a leak path between the piston ring and the cylinder wall, thereby rendering friction and wear of the piston ring independent of the high and low pressures; and means for exerting a predetermined force on the piston ring to maintain contact with the cylinder wall and control the friction between the piston ring and the cylinder wall and leakage between the high and low pressure regions.

  16. Effect of some piston variables on piston and ring assembly friction

    SciTech Connect

    Uras, H.M.; Patterson, D.J.

    1987-01-01

    The piston and ring assembly friction of a lightweight piston with lower compression height has been compared to that of a production assembly. Additional weight was added to the lightweight piston to study the effect of that variable alone. The lightweight piston reduced friction, especially in motoring tests. Within the speed range tested (up to 1640 rpm) the friction reduction of the lightweight piston could not be attributed to the lower mass itself.

  17. Model-Following Controller Based on Neural Network for Variable Displacement Pump

    NASA Astrophysics Data System (ADS)

    Chu, Ming-Hui; Kang, Yuan; Chang, Yih-Fong; Liu, Yuan-Liang; Chang, Chuan-Wei

    The variable displacement axial piston pump (VDAPP) is inherently nonlinear, time variant and subjected to load disturbance. The controls of flow and pressure of VDAPP are achieved by changing the swashplate angle. The swashplate actuators are controlled by an electro-hydraulic proportional valve (EHPV). It is reasonable for swashplate angle of a VDAPP to employ neural network based on adaptive control. In this study, the nonlinear model of the VDAPP with a three-way electro-hydraulic proportional valve is proposed, and a neural network model-following controller is designed to control the swashplate swivel angle. The time response for the swashplate angle is analyzed by simulation and experiment, and a favorable model-following characteristic is achieved. The proposed neural controller can conduct nonlinear control in VDAPP, enhance adaptability and robustness, and improve the performance of the control system.

  18. Linear Motor Free Piston Compressor

    NASA Astrophysics Data System (ADS)

    Bloomfield, David P.

    1995-02-01

    A Linear Motor Free Piston Compressor (LMFPC), a free piston pressure recovery system for fuel cell powerplants was developed. The LMFPC consists of a reciprocating compressor and a reciprocating expander which are separated by a piston. In the past energy efficient turbochargers have been used for pressure large (over 50 kW) fuel cell powerplants by recovering pressure energy from the powerplant exhaust. A free piston compressor allows pressurizing 3 - 5 kW sized fuel cell powerplants. The motivation for pressurizing PEM fuel cell powerplants is to improve fuel cell performance. Pressurization of direct methanol fuel cells will be required if PEM membranes are to be used Direct methanol oxidation anode catalysts require high temperatures to operate at reasonable power densities. The elevated temperatures above 80 C will cause high water loss from conventional PEM membranes unless pressurization is employed. Because pressurization is an energy intensive process, recovery of the pressure energy is required to permit high efficiency in fuel cell powerplants. A complete LMFPC which can pressurize a 3 kW fuel cell stack was built. This unit is one of several that were constructed during the course of the program.

  19. Method for reducing piston deposits

    SciTech Connect

    Brownawell, D.W.; Thaler, W.A.; Bannister, E.; Ladwig, P.K.

    1990-03-06

    This patent describes a method for reducing piston deposits in an internal combustion engine lubricated with a lubricating oil containing a soluble weak base and circulating within the lubrication system of the engine. It comprises: circulating the lubricating oil to the piston ring zone of the engine where fuel combustion acids are introduced into the oil, contacting, at the piston ring zone, the combustion acids with the weak base such that at lest a portio of the acids are neutralized to form a soluble neutral salt containing the weak base and the combustion acids, circulating the lubricating oil containing the soluble neutral salt to a heterogenous strong base immobilized within the lubrication system of the engine downstream of the piston ring zone, and contacting the soluble neutral salt with the heterogeneous strong base, thereby causing at least a portion of the weak base in the salt to be displaced into the lubricating oil and resulting in the formation of a strong base/combustion acid salt which is immobilized with the heterogenous strong base.

  20. Test Results for a Reciprocating Pump Powered by Decomposed Hydrogen

    SciTech Connect

    Whitehead, J C

    2001-06-13

    A four-chamber piston pump has been tested in several evolving configurations. A significant improvement over an earlier hyadrazine pump is the elimination of warm gas leakage in the powerhead. This has been achieved through the used of soft seals for the power piston and intake-exhaust valves, with gas temperatures approaching 800 K (980 F). The pumped fluid serves as a coolant, and the cylinder walls and heads are made of aluminum for high thermal conductivity, low mass, and affordability.

  1. Buoyancy engine utilizing pistons and crankshaft

    SciTech Connect

    De Shon, D.A.

    1987-08-04

    This patent describes a buoyancy engine utilizing pistons and crankshaft, comprising: cylinders, disposed in a vessel contained liquid; the vessel sitting on a base and having an air exhaust orifice at its top; hydrodynamically designed pistons, disposed within the cylinders, designed with air holding spaces to hold injected air, and attached by connecting rods to a hydrodynamically designed crankshaft; sealed connecting rod bearings which connect the piston rods to the crankshaft; wrist pins which connected the piston rods to the pistons, the crankshaft supported on sealed bearing in the vessel walls, and which is rotated by the upward motion of the relatively buoyant pistons which are attached; the crankshaft designed so that its lobes to which the pistons are attached are at angles which insure that power developed by pistons in their lift cycle is successively converted into continuing rotational force on the crankshaft; computer-controlled air injectors, programmed to crankshaft rotational speed, positioned to inject air, compressed by a compressor, into the pistons at the bottom of each piston's stroke, the pistons having pistons rings to retain the air in the piston during its upward power stroke; and vents incorporated into their design for the release of air at the top of their power stroke. An exhaust port in each cylinder conducts air released from pistons to be released into the ambient liquid; a flywheel attached to the crankshaft, stores a part of the mechanical energy produced, provides continuity to the series of energy developing cycles of the pistons; a generator attached to the crankshaft, produces electric power from the rotation of the crankshaft.

  2. Hydraulically actuated gas exchange valve assembly and engine using same

    DOEpatents

    Carroll, Thomas S.; Taylor, Gregory O.

    2002-09-03

    An engine comprises a housing that defines a hollow piston cavity that is separated from a gas passage by a valve seat. The housing further defines a biasing hydraulic cavity and a control hydraulic cavity. A gas valve member is also included in the engine and is movable relative to the valve seat between an open position at which the hollow piston cavity is open to the gas passage and a closed position in which the hollow piston cavity is blocked from the gas passage. The gas valve member includes a ring mounted on a valve piece and a retainer positioned between the ring and the valve piece. A closing hydraulic surface is included on the gas valve member and is exposed to liquid pressure in the biasing hydraulic cavity.

  3. A Method of Measuring Piston Temperatures

    NASA Technical Reports Server (NTRS)

    Pinkel, Benjamin; Mangniello, Eugene J

    1940-01-01

    A method that makes use of thermocouples has been developed to measure the temperature of engine pistons operating at high speeds. The thermocouples installed on the moving piston are connected with a potentiometer outside the engine by means of pneumatically operated plungers, which make contact with the piston thermocouples for about 10 crankshaft degrees at the bottom of the piston stroke. The equipment is operated satisfactory at engine speeds of 2,400 r.p.m. and shows promise of successful operation at higher engine speeds. Measurements of piston temperatures in a liquid-cooled compression-ignition engine and in an air-cooled spark-ignition are presented.

  4. Pump jack

    SciTech Connect

    Stanton, G. E.

    1985-02-26

    A pump jack of the type comprising a rocker arm pivotably mounted intermediate its ends on a support member, said rocker arm being divided by said pivot mounting into a sucker-rod limb and a drive limb wherein the improvement comprises a pneumatic motor pivotably attached to the drive support member and further pivotably attached to the mounting base of the pump jack to provide the power to reciprocate the pump jack. The working fluid of said pneumatic motor being natural gas which is available from the well casing of the well without any interference with the flow of the oil in the oil tube of the well thereby making use of an energy source available at any oil well without having to provide gasoline to drive a rotating type gasoline engine or electricity to drive an electric motor usually of the rotating variety. Also the stroke of a pneumatic cylinder inherently smooths out and eliminates the shock loading at the extremes of motion at the piston mounted to the sucker rods of such pump jack at the bottom of the well.

  5. Systematic Method for Evaluating Extraction and Injection Flow Rates for 100-KR-4 and 100-HR-3 Groundwater Operable Unit Pump-and-Treat Interim Actions for Hydraulic Containment

    SciTech Connect

    Spiliotopoulos, Alexandros A.

    2013-03-20

    This document describes a systematic method to develop flow rate recommendations for Pump-and-Treat (P&T) extraction and injection wells in 100-KR-4 and 100-HR-3 Groundwater Operable Units (OU) of the Hanford Site. Flow rate recommendations are developed as part of ongoing performance monitoring and remedy optimization of the P&T interim actions to develop hydraulic contairnnent of the dissolved chromium plume in groundwater and protect the Columbia River from further discharges of groundwater from inland. This document details the methodology and data required to infer the influence of individual wells near the shoreline on hydraulic containment and river protection and develop flow rate recommendations to improve system performance and mitigate potential shortcomings of the system configuration in place.

  6. Iron piston having selectively hardened ring groove

    SciTech Connect

    Brann, D.E.; Lindsay, J.E.

    1987-02-17

    This patent describes a long-lasting cast iron piston body for an internal combustion engine, the piston body comprising a generally cylindrical sidewall and having an annular groove in the wall encircling the body for receiving a piston ring. The groove is defined by opposed faces that intersect the wall, the piston body being composed predominantly of gray iron characterized by an as-cast pearlitic microstructure, the groove face comprising an integrally cast, selectively hardened iron band adjacent the piston sidewall and encircling the piston body. The band is characterized by a martensitic microstructure substantially harder than the pearlitic microstructure and is effective to reduce wear resulting from a piston ring seated within the groove.

  7. 110. TUBING FOR HYDRAULIC FLUID AT BACK OF HYDRAULIC CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    110. TUBING FOR HYDRAULIC FLUID AT BACK OF HYDRAULIC CONTROL PANEL IN UMBILICAL MAST PUMP ROOM (109), LSB (BLDG. 770) ACCUMULATOR FOR MAST RETRACTION ON LEFT. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  8. Vehicle hydraulic cooling fan system

    SciTech Connect

    Nilson, C.A.

    1993-06-08

    A hydraulic cooling system for vehicles having an internal combustion engine cooled by a radiator and a coolant is described, comprising, in combination, a shroud adapted to be mounted adjacent the radiator having a wall forming an air passage and defining a first port disposed adjacent the radiator and a second port spaced from the first port, a fan located within the second port, a hydraulic fan motor operatively connected to the fan, a hydraulic pump operatively connected to the engine for producing a pressurized hydraulic fluid flow, a hydraulic circuit interconnecting the pump to the fan motor, the circuit including a control valve, a hydraulic fluid reservoir and a heat exchanger, the heat exchanger being mounted within the shroud air passage.

  9. Electrokinetic high pressure hydraulic system

    DOEpatents

    Paul, Phillip H.; Rakestraw, David J.; Arnold, Don W.; Hencken, Kenneth R.; Schoeniger, Joseph S.; Neyer, David W.

    2003-06-03

    An electrokinetic high pressure hydraulic pump for manipulating fluids in capillary-based system. The pump uses electro-osmotic flow to provide a high pressure hydraulic system, having no moving mechanical parts, for pumping and/or compressing fluids, for providing valve means and means for opening and closing valves, for controlling fluid flow rate, and manipulating fluid flow generally and in capillary-based systems (microsystems), in particular. The compact nature of the inventive high pressure hydraulic pump provides the ability to construct a micro-scale or capillary-based HPLC system that fulfills the desire for small sample quantity, low solvent consumption, improved efficiency, the ability to run samples in parallel, and field portability. Control of pressure and solvent flow rate is achieved by controlling the voltage applied to an electrokinetic pump.

  10. Electrokinetic high pressure hydraulic system

    DOEpatents

    Paul, Phillip H.; Rakestraw, David J.; Arnold, Don W.; Hencken, Kenneth R.; Schoeniger, Joseph S.; Neyer, David W.

    2001-01-01

    An electrokinetic high pressure hydraulic pump for manipulating fluids in capillary-based systems. The pump uses electro-osmotic flow to provide a high pressure hydraulic system, having no moving mechanical parts, for pumping and/or compressing fluids, for providing valve means and means for opening and closing valves, for controlling fluid flow rate, and manipulating fluid flow generally and in capillary-based systems (Microsystems), in particular. The compact nature of the inventive high pressure hydraulic pump provides the ability to construct a micro-scale or capillary-based HPLC system that fulfills the desire for small sample quantity, low solvent consumption, improved efficiency, the ability to run samples in parallel, and field portability. Control of pressure and solvent flow rate is achieved by controlling the voltage applied to an electrokinetic pump.

  11. Tractor Hydraulics. A Teaching Reference.

    ERIC Educational Resources Information Center

    American Association for Vocational Instructional Materials, Athens, GA.

    The manual was developed to help provide a better understanding of how and why hydraulic principles serve the purposes of weight reduction, increase of physical effort, and more precise control to machines of all types. The four components that are necessary to have a workable hydraulic system--a reservoir, a pump, a valve, and a motor (cylinder)…

  12. Aircraft hydraulic systems. Third edition

    SciTech Connect

    Neese, W.A.

    1991-12-31

    The first nine chapters concern hydraulic components including: tubing, hoses, fittings, seals, pumps, valves, cylinders, and motors. General hydraulic system considerations are included in chapters five and nine, while pneumatic systems are covered in chapter ten. Chapters eleven through fifteen are devoted to aircraft-specific systems such as: landing gear, flight controls, brakes, etc. The material is rounded out with excerpts from the Canadair Challenger 601 training guide to illustrate the use of hydraulic systems in a specific aircraft application.

  13. The Friction of Piston Rings

    NASA Technical Reports Server (NTRS)

    Tischbein, Hans W

    1945-01-01

    The coefficient of friction between piston ring and cylinder liner was measured in relation to gliding acceleration, pressure, temperature, quantity of oil and quality of oil. Comparing former lubrication-technical tests, conclusions were drawn as to the state of friction. The coefficients of friction as figured out according to the hydrodynamic theory were compared with those measured by tests. Special tests were made on "oiliness." The highest permissible pressure was measured and the ratio of pressure discussed.

  14. Simulated dynamic response of a servovalve controlled hydraulic actuator

    NASA Technical Reports Server (NTRS)

    Babcock, Dale A.

    1990-01-01

    A general purpose math model of a servovalve controlled hydraulic actuator system is derived. The system consists of a linear actuator with unequal piston areas, a single stage servovalve, a gas charged hydraulic accumulator, and the interconnecting piping. The state equations are integrated using the Advanced Continuous Simulation Language (ACSL) for determining the system's dynamic response characteristics. Using this generalized hydraulic actuator system model, response characteristics were determined for various servovalve commands.

  15. Piston and spring powered engine

    SciTech Connect

    Samodovitz, A. J.

    1985-12-10

    The invention is an improved piston engine, either two stroke or four stroke. In one, two stroke, one cylinder embodiment, the improvement comprises two springs connecting between the piston and the base of the piston. These springs are relatively relaxed when the crank is at top dead center. Then during the power/intake stroke, some of the fuel's energy is delivered to the crankshaft and some is used to compress the springs. The stored energy in the springs is delivered to the crankshaft during the exhaust/compression stroke while the springs return to their relatively relaxed condition. As a result, energy is delivered to the crankshaft during both strokes of the cycle, and the engine runs smooth. In one, four stroke, two cylinder embodiment, each cylinder has springs as described above, the cranks of each cylinder are aligned, and the cam sets one cylinder in the power stroke while the other is in the intake stroke. As a result, the engine runs smooth because energy is delivered to the crankshaft during all four strokes of the cycle, during two of the strokes by the burning fuel and during the other two by the release of energy in the springs. In both embodiments, a heavy crankshaft is not needed because of the more uniform power delivery.

  16. On-Shore Central Hydraulic Power Generation for Wind and Tidal Energy

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Bruce, Allan; Lim, Steven; Murray, Luke; Armstrong, Richard; Kimbrall, Richard; Cook-Chenault, Kimberly; DeGennaro, Sean

    2012-01-01

    Tidal energy, offshore wind energy, and onshore wind energy can be converted to electricity at a central ground location by means of converting their respective energies into high-pressure hydraulic flows that are transmitted to a system of generators by high-pressure pipelines. The high-pressure flows are then efficiently converted to electricity by a central power plant, and the low-pressure outlet flow is returned. The Department of Energy (DOE) is presently supporting a project led by Sunlight Photonics to demonstrate a 15 kW tidal hydraulic power generation system in the laboratory and possibly later submerged in the ocean. All gears and submerged electronics are completely eliminated. A second portion of this DOE project involves sizing and costing a 15 MW tidal energy system for a commercial tidal energy plant. For this task, Atlantis Resources Corporation s 18-m diameter demonstrated tidal blades are rated to operate in a nominal 2.6 m/sec tidal flow to produce approximately one MW per set of tidal blades. Fifteen units would be submerged in a deep tidal area, such as in Maine s Western Passage. All would be connected to a high-pressure (20 MPa, 2900 psi) line that is 35 cm ID. The high-pressure HEPG fluid flow is transported 500-m to on-shore hydraulic generators. HEPG is an environmentally-friendly, biodegradable, watermiscible fluid. Hydraulic adaptations to ORPC s cross-flow turbines are also discussed. For 15 MW of wind energy that is onshore or offshore, a gearless, high efficiency, radial piston pump can replace each set of top-mounted gear-generators. The fluid is then pumped to a central, easily serviceable generator location. Total hydraulic/electrical efficiency is 0.81 at full rated wind or tidal velocities and increases to 0.86 at 1/3 rated velocities.

  17. On-Shore Central Hydraulic Power Generation for Wind and Tidal Energy

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Bruce, Allan; Lim, Steven; Murray, Luke; Armstrong, Richard; Kimball, Richard; Cook-Chenault, Kimberly; DeGennaro, Sean

    2012-01-01

    Tidal energy, offshore wind energy, and onshore wind energy can be converted to electricity at a central ground location by means of converting their respective energies into high-pressure hydraulic flows that are transmitted to a system of generators by high-pressure pipelines. The high-pressure flows are then efficiently converted to electricity by a central power plant, and the low-pressure outlet flow is returned. The Department of Energy (DOE) is presently supporting a project led by Sunlight Photonics to demonstrate a 15 kilowatt tidal hydraulic power generation system in the laboratory and possibly later submerged in the ocean. All gears and submerged electronics are completely eliminated.A second portion of this DOE project involves sizing and costing a 15 megawatt tidal energy system for a commercial tidal energy plant. For this task, Atlantis Resources Corporation's 18-m diameter demonstrated tidal blades are rated to operate in a nominal 2.6 m/sec tidal flow to produce approximately one megawatt per set of tidal blades. Fifteen units would be submerged in a deep tidal area, such as in Maine's Western Passage. All would be connected to a high-pressure (20 megapascals, 2900 pounds per square inch) line that is 35 cm ID. The high-pressure HEPG fluid flow is transported 500-m to on-shore hydraulic generators. HEPG is an environmentally-friendly, biodegradable, water-miscible fluid. Hydraulic adaptations to ORPC's cross-flow turbines are also discussed.For 15 megawatt of wind energy that is onshore or offshore, a gearless, high efficiency, radial piston pump can replace each set of top-mounted gear-generators. The fluid is then pumped to a central, easily serviceable generator location. Total hydraulic/electrical efficiency is 0.81 at full rated wind or tidal velocities and increases to 0.86 at 1/3 rated velocities.

  18. Control system for a hydraulic transmission to prevent vehicle creep

    SciTech Connect

    Nishikawa, M.; Aoki, T.; Sato, Y.; Yoshizawa, H.

    1987-02-17

    This patent describes a hydraulic shift transmission for a vehicle including a hydraulic torque converter for transmitting a torque from an engine to a road driving system, comprising: a plurality of gear trains interposed between the hydraulic torque converter and the road wheel driving system; the gear trains being different in the gear ratio; the gear trains including a first speed gear train adapted for the running at relatively low speeds; a plurality of clutch mechanism alternatively installed in the gear trains; the clutch mechanisms being each hydraulically connectable and disconnectable; the clutch mechanisms including a first speed clutch mechanism installed in the first speed gear train having a spring with a preset load; a hydraulic control system for selectively supplying a hydraulic pressure to the clutch mechanisms in accordance with shift operations; an oil supply line connecting the hydraulic control mechanism to the first speed clutch mechanism; a release valve means, provided in the oil supply line, for releasing the hydraulic pressure while the vehicle speed is lower than a preset reference value with the engine idling; an oil return port open relative to the oil supply line and releasing the hydraulic pressure while opened; a piston member having an axis and being slidable axially for closing the return port; and a resilient member normally biasing the piston member in one axial direction such that the piston member closes the return port.

  19. Carbon/Carbon Pistons for Internal Combustion Engines

    NASA Technical Reports Server (NTRS)

    Taylor, A. H.

    1986-01-01

    Carbon/carbon piston performs same function as aluminum pistons in reciprocating internal combustion engines while reducing weight and increasing mechanical and thermal efficiencies of engine. Carbon/carbon piston concept features low piston-to-cylinder wall clearance - so low piston rings and skirts unnecessary. Advantages possible by negligible coefficient of thermal expansion of carbon/carbon.

  20. Pneumatic pump actuator for oil wells

    SciTech Connect

    Klaeger, J.H.

    1991-07-16

    This patent describes a pneumatic pump actuator. It comprises a power cylinder having a sucker rod passing therethrough; a piston mounted to the sucker rod for reciprocation inside the power cylinder; means for selectively routing relatively high pressure air or gas into the power cylinder on a first and both the first and a second side of the piston; a floating piston bleeder valve shiftable from a first to a second piston and back to the first position for supplying air or gas to the routing means and on to the first or the first and second sides of the piston; first and second pivot arms mounted near the ends of the bleeder valve; first and second activator buttons on the ends of the bleeder valve for shifting the bleeder valve when engaged by the respective first and second pivot arms from the first position to the second position and back to the first position; first and second contactors.

  1. 21 CFR 880.5725 - Infusion pump.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... fluids into a patient in a controlled manner. The device may use a piston pump, a roller pump, or a... force to propel the fluid through a narrow tube which determines the flow rate. The device may include... alarm. (b) Classification. Class II (performance standards)....

  2. 21 CFR 880.5725 - Infusion pump.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... fluids into a patient in a controlled manner. The device may use a piston pump, a roller pump, or a... force to propel the fluid through a narrow tube which determines the flow rate. The device may include... alarm. (b) Classification. Class II (performance standards)....

  3. Spool valve and piston power plant

    SciTech Connect

    Landon, H.A.

    1992-01-21

    This patent describes an engine. It comprises cylinders each containing a piston disposed therein for reciprocating movement, a crankshaft connected to one end of each piston, a drive shaft connected to an end of the crankshaft, a source of pressurized fluid connected by conduits to each cylinder, each piston comprising: a first sealing member acting as the piston head, a second sealing member acting as the bottom of the piston, an arm connected at one end thereof to the bottom of the piston and connected at the other end thereof to the crankshaft, a lower fluid chamber formed by the bottom of the piston and a housing surrounding the arm and the crankshaft, a first port associated with each cylinder for delivering pressurized fluid to the head of the piston, a second port associated with each cylinder for removing pressurized fluid selectively from the upper chamber or delivering pressurized fluid to the lower chamber, a third port for removing pressurized fluid from the lower chamber, and a fourth part connected to the source of pressurized fluid and associated with each cylinder for delivering pressurized fluid to the upper chamber whereby the reciprocating movement of each piston is translated into rotary movement of the drive shaft through the crankshaft.

  4. Piston for an internal combustion engine

    SciTech Connect

    Tokoro, N.

    1988-11-22

    This patent describes a piston for an internal combustion engine comprising: a crown having a circumferentially extending oil-ring groove in an outer portion of the crown, the oil-ring groove having slits on thrust and thurst-opposing sides of the piston; a skirt integrally connected to the crown and extending downward, the skirt having a circumferentially extending faucet rib on an inside surface of a lower portion of the skirt; a pair of opposed bosses protruding inward from an inside surface of the piston and extending in a direction perpendicular with a thrust and thurst-opposing direction of the piston, the bosses being opposed to each other.

  5. Stirling engines and irrigation pumping

    SciTech Connect

    West, C.D.

    1988-01-01

    A brief outline is given of the performance that might be achievable from various kinds of Stirling engine driven irrigation pumps. Some emphasis is placed on the very simple liquid piston engines, suitable for low technology manufacture, that have been the recent subject of research. 5 refs., 3 figs., 3 tabs.

  6. Instantaneous engine frictional torque, its components and piston assembly friction

    SciTech Connect

    Nichols, F.A. ); Henein, N.A. . Center for Automotive Research)

    1992-05-01

    The overall goal of this report is to document the work done to determine the instantaneous frictional torque of internal combustion engine by using a new approach known as (P-[omega]) method developed at Wayne State University. The emphasis has been to improve the accuracy of the method, and apply it to both diesel and gasoline engines under different operating conditions. Also work included an investigation to determine the effect of using advanced materials and techniques to coat the piston rings on the instantaneous engine frictional torque and the piston assembly friction. The errors in measuring the angular velocity, [omega], have been determined and found to be caused by variations in the divisions within one encoder, encoder-to-encoder variations, misalignment within the encoder itself and misalignment between the encoder and crankshaft. The errors in measuring the cylinder gas pressure, P, have been determined and found to be caused by transducer-to-transducer variations, zero drift, thermal stresses and lack of linearity. The ability of the (P-[omega]) method in determining the frictional torque of many engine components has been demonstrated. These components include valve train, fuel injection pump with and without fuel injection, and piston with and without different ring combinations. The emphasis in this part of the research program has been on the piston-ring assembly friction. The effects of load and other operating variables on IFT have been determined. The motoring test, which is widely used in industry to measure engine friction has been found to be inaccurate. The errors have been determined at different loads.

  7. Pump control system for windmills

    SciTech Connect

    Avery, D.E.

    1983-07-12

    A windmill control system is disclosed having lever means, for varying length of stroke of the pump piston, and a control means, responsive to the velocity of the wind to operate the lever means to vary the length of stroke and hence the effective displacement of the pump in accordance with available wind energy, with the control means having a sensing member separate from the windmill disposed in the wind and displaceable thereby in accordance with wind velocity.

  8. Pump control system for windmills

    DOEpatents

    Avery, Don E.

    1983-01-01

    A windmill control system having lever means, for varying length of stroke of the pump piston, and a control means, responsive to the velocity of the wind to operate the lever means to vary the length of stroke and hence the effective displacement of the pump in accordance with available wind energy, with the control means having a sensing member separate from the windmill disposed in the wind and displaceable thereby in accordance with wind velocity.

  9. Pump isolation valve

    DOEpatents

    Kinney, Calvin L.; Wetherill, Todd M.

    1983-08-02

    The pump isolation valve provides a means by which the pump may be selectively isolated from the remainder of the coolant system while being compatible with the internal hydraulic arrangement of the pump during normal operation of the pump. The valve comprises a valve cylinder disposed around the pump and adjacent to the last pump diffuser with a turning vane attached to the lower end of the valve cylinder in a manner so as to hydraulically match with the discharge diffuser. The valve cylinder is connected to a drive means for sliding the valve cylinder relative to the diffuser support cylinder so as to block flow in either direction through the discharge diffuser when the valve is in the closed position and to aid in the flow of the coolant from the discharge diffuser by means of the turning vane when the valve is in the open position.

  10. 40 CFR 65.116 - Quality improvement program for pumps.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (for example, piston, horizontal or vertical centrifugal, gear, bellows); pump manufacturer; seal type... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Quality improvement program for pumps... pumps. (a) Criteria. If, on a 6-month rolling average, at least the greater of either 10 percent of...

  11. High speed hydraulically-actuated operating system for an electric circuit breaker

    DOEpatents

    Iman, Imdad

    1983-06-07

    This hydraulically-actuated operating system comprises a cylinder, a piston movable therein in an opening direction to open a circuit breaker, and an accumulator for supplying pressurized liquid to a breaker-opening piston-actuating space within the cylinder. A normally-closed valve between the accumulator and the actuating space is openable to allow pressurized liquid from the accumulator to flow through the valve into the actuating space to drive the piston in an opening direction. A dashpotting mechanism operating separately from the hydraulic actuating system is provided, thereby reducing flow restriction interference with breaker opening.

  12. High speed hydraulically-actuated operating system for an electric circuit breaker

    DOEpatents

    Iman, I.

    1983-06-07

    This hydraulically-actuated operating system comprises a cylinder, a piston movable therein in an opening direction to open a circuit breaker, and an accumulator for supplying pressurized liquid to a breaker-opening piston-actuating space within the cylinder. A normally-closed valve between the accumulator and the actuating space is openable to allow pressurized liquid from the accumulator to flow through the valve into the actuating space to drive the piston in an opening direction. A dashpotting mechanism operating separately from the hydraulic actuating system is provided, thereby reducing flow restriction interference with breaker opening. 3 figs.

  13. Overview of the 1986 free-piston Stirling activities at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Alger, Donald L.

    1986-01-01

    An overview of the NASA Lewis Research Center's free-piston Stirling engine research is presented, including efforts to improve and advance its design for use in specific space power applications. These efforts are a part of the SP-100 program being conducted to support the Department of Defense (DOD), Department of Energy (DOE) and NASA. Such efforts include: (1) the testing and improvement of 25 kWe Stirling Space Power Demonstrator Engine (SPDE); (2) the preliminary design of 25 kWe single-cylinder Experimental stirling Space Engine (ESSE); and, (3) a study to determine the feasibility of scaling a single-cylinder free-piston Stirling engine/linear alternator to 150 kWe. Other NASA Lewis free-piston Stirling engine activities will be described, directed toward the advancement of general free-piston Stirling engine technology and its application in specific terrestrial applications. One such effort, supported by DOE/Oak Ridge National Laboratory (DRNL), is the development of a free-piston Stirling engine which produces hydraulic power. Finally, a terrestrial solar application involving a conceptual design of a 25 kWe Solar Advanced Stirling Conversion System (ASCS) capable of delivering power to an electric utility grid will be discussed. The latter work is supported by DOE/Sandia National Laboratory (SNLA).

  14. Double acting stirling engine piston ring

    DOEpatents

    Howarth, Roy B.

    1986-01-01

    A piston ring design for a Stirling engine wherein the contact pressure between the piston and the cylinder is maintained at a uniform level, independent of engine conditions through a balancing of the pressure exerted upon the ring's surface and thereby allowing the contact pressure on the ring to be predetermined through the use of a preloaded expander ring.

  15. Improved piston rings for a stirling engine

    NASA Technical Reports Server (NTRS)

    Mcdougal, A. R.

    1980-01-01

    Cast-iron piston rings coated with commercially-available antifriction materials improves cylinder life of high-performance Stirling engine. Ring is efficient heat conductor between piston and cylinder. Device has low thermal expansion which maintains minimum gap in ring, good radial force characteristics, and essentially indefinite life.

  16. Wear reduction systems liquid piston ring

    SciTech Connect

    Raymond, R.J.; Chen, T.N.; DiNanno, L.

    1990-09-01

    The overall objective of the program was to demonstrate the technical feasibility of achieving an acceptable wear rate for the cylinder liner, piston, and piston rings in a coal/water-slurry-fueled engine that utilized the concept of a liquid piston ring above the conventional piston rings and to identify technical barriers and required research and development. The study included analytical modeling of the system, a bench study of the fluid motion in the liquid piston ring, and a single-cylinder test rig for wear comparison. A system analysis made on the different variations of the liquid supply system showed the desirability of the once-through version from the standpoint of system simplicity. The dynamics of the liquid ring were modeled to determine the important design parameters that influence the pressure fluctuation in the liquid ring during a complete engine cycle and the integrity of the liquid ring. This analysis indicated the importance of controlling heat transfer to the liquid ring through piston and liner to avoid boiling the liquid. A conceptual piston design for minimizing heat transfer is presented in this report. Results showed that the liquid piston ring effectively reduced the solid particles on the wall by scrubbing, especially in the case where a surfactant was added to the water. The wear rates were reduced by a factor of 2 with the liquid ring. However, leakage of the contaminated liquid ring material past the top ring limited the effectiveness of the liquid ring concept. 8 refs., 33 figs., 1 tab.

  17. Predictive optimization of piston and ring stability

    SciTech Connect

    Knowland, C.G.; Russell, C.J.

    1996-09-01

    A fundamental aspect of the engine development process involves the determination of acceptable piston and ring profiles. There exists a fine balance between the requirements of the piston skirt or ring profile to resist scuffing together with the overall product objectives of reduced oil consumption, blow-by and engine noise. Taking into account these varying and often conflicting considerations, in addition to the time and cost implications of repetitive development testing, drives them towards the necessity for some form of predictive optimization scheme. Benefits from the application of such a predictive tool include: development of piston skirt profiles for adequate running clearance under operating conditions; optimization of piston stability as a function of such parameters as piston pin offset; enhanced bore reaction forces for improved NVH predictions; reduced levels of blow-by and improved oil control.

  18. A two ring piston for gasoline engines

    SciTech Connect

    Holt, J.W.; Murray, E.J.

    1986-01-01

    Low mass, low friction and low compression height pistons are vital in order to sustain the drive to obtain utmost fuel economy and design refinement in reciprocating piston engines. Much has already been done and a further step forward in the attainment of the objectives is the introduction of a fully durable two ring piston. Developments at Hepworth and Grandage have led to a successful design which meets the present requirements of engine manufacturers in terms of performance and durability and has the potential to reduce weight and compresion height and probably to reduce friction. The compression ring of the two ring piston system can be used with advantage as the top compression ring of an orthodox three ring piston.

  19. GAS METERING PUMP

    DOEpatents

    George, C.M.

    1957-12-31

    A liquid piston gas pump is described, capable of pumping minute amounts of gas in accurately measurable quantities. The pump consists of a flanged cylindrical regulating chamber and a mercury filled bellows. Sealed to the ABSTRACTS regulating chamber is a value and having a gas inlet and outlet, the inlet being connected by a helical channel to the bellows. A gravity check valve is in the gas outlet, so the gas passes through the inlet and the helical channel to the bellows where the pumping action as well as the metering is accomplished by the actuation of the mercury filled bellows. The gas then flows through the check valve and outlet to any associated apparatus.

  20. 46 CFR 64.89 - Cargo pump unit.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... with the product to be pumped. (d) A diesel engine that is used to drive a cargo pump must have a spark...) The cargo pump power unit must be— (1) Diesel; (2) Hydraulic; (3) Pneumatic; or (4) Electric. (c)...

  1. 46 CFR 64.89 - Cargo pump unit.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... with the product to be pumped. (d) A diesel engine that is used to drive a cargo pump must have a spark...) The cargo pump power unit must be— (1) Diesel; (2) Hydraulic; (3) Pneumatic; or (4) Electric. (c)...

  2. 46 CFR 64.89 - Cargo pump unit.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... with the product to be pumped. (d) A diesel engine that is used to drive a cargo pump must have a spark...) The cargo pump power unit must be— (1) Diesel; (2) Hydraulic; (3) Pneumatic; or (4) Electric. (c)...

  3. 22. TEMPORARY CENTRIFIGAL PUMP. NOTE CHAPMAN HYDRAULICOPERATED VALVE FOR LATER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. TEMPORARY CENTRIFIGAL PUMP. NOTE CHAPMAN HYDRAULIC-OPERATED VALVE FOR LATER CONNECTION OF ENGINE PUMP END TO DISCHARGE HEADER. - Lakeview Pumping Station, Clarendon & Montrose Avenues, Chicago, Cook County, IL

  4. 23. TEMPORARY CENTRIFUGAL PUMP. NOTE CHAPMAN HYDRAULICOPERATED VALVE FOR LATER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. TEMPORARY CENTRIFUGAL PUMP. NOTE CHAPMAN HYDRAULIC-OPERATED VALVE FOR LATER CONNECTION OF ENGINE PUMP ENG TO DISCHARGE HEADER. - Lakeview Pumping Station, Clarendon & Montrose Avenues, Chicago, Cook County, IL

  5. ENVIRONMENTAL HYDRAULICS

    EPA Science Inventory

    The thermal, chemical, and biological quality of water in rivers, lakes, reservoirs, and near coastal areas is inseparable from a consideration of hydraulic engineering principles: therefore, the term environmental hydraulics. In this chapter we discuss the basic principles of w...

  6. Oil well pump driving unit

    SciTech Connect

    Gilbertson, T.A.

    1984-02-21

    An oil well pump driving unit with a horizontally disposed hydraulic cylinder having a cylinder rod coupled to a drive rope extending into a pumping tee-stuffing box arrangement for driving the sucker rod string leading to a conventional oil well reciprocating pump. The drive rope extends over a first rotating sheave mounted near the wellhead and passes over a second rotating sheave mounted on a carriage which traverses a carriage channel in a draw works on which the hydraulic cylinder is mounted. A hydraulic drive/control system utilizing limit switches on the draw works provides control over the stroke position, the stroke length, and the stroke rate.

  7. Method for directional hydraulic fracturing

    DOEpatents

    Swanson, David E.; Daly, Daniel W.

    1994-01-01

    A method for directional hydraulic fracturing using borehole seals to confine pressurized fluid in planar permeable regions, comprising: placing a sealant in the hole of a structure selected from geologic or cemented formations to fill the space between a permeable planar component and the geologic or cemented formation in the vicinity of the permeable planar component; making a hydraulic connection between the permeable planar component and a pump; permitting the sealant to cure and thereby provide both mechanical and hydraulic confinement to the permeable planar component; and pumping a fluid from the pump into the permeable planar component to internally pressurize the permeable planar component to initiate a fracture in the formation, the fracture being disposed in the same orientation as the permeable planar component.

  8. Hydraulic induced instability on a vertical service

    NASA Technical Reports Server (NTRS)

    Bosmans, R. F.

    1985-01-01

    The case history contained provides insight toward the mechanical and hydraulic behavior of a vertical pump. It clearly demonstrates the need for measurements on the rotor at or near the impeller area. The results are reported of an analysis on a service water pump. This pump is typical of the water pumps used throughout the power generation industry. Although little is known of the mechanical behavior of vertical pumps because of difficulty in modeling the rotor system, recent developments in the application of submersible proximity transducers have made possible the measurement of pump dynamics under operating conditions. The purpose of this study was to determine the proper selection and installation of vibration-monitoring transducers as well as to measure the effects of imbalance, misalignment, and hydraulics on the performance and reliability of vertical pumps. In addition, the cause of shaft failures on this pump was to be determined.

  9. The hydraulic windmill

    NASA Technical Reports Server (NTRS)

    Browing, J. A.

    1981-01-01

    An hydraulic windmill is described. It pumps pressurized oil from rotor shaft level to the ground where a motor generator produces electricity. Alternatively, the useful output may be heat. Rotor speed is governed by a flow valve. Over pressure, the result of high wind velocity, rotates the tail to move the rotor blades out-of-the-wind. Loss of oil pressure causes a brake to close as well as to swing the tail to its maximum distance from the rotor plane.

  10. The hydraulic windmill

    NASA Astrophysics Data System (ADS)

    Browing, J. A.

    1981-05-01

    An hydraulic windmill is described. It pumps pressurized oil from rotor shaft level to the ground where a motor generator produces electricity. Alternatively, the useful output may be heat. Rotor speed is governed by a flow valve. Over pressure, the result of high wind velocity, rotates the tail to move the rotor blades out-of-the-wind. Loss of oil pressure causes a brake to close as well as to swing the tail to its maximum distance from the rotor plane.

  11. Phasing piston error in segmented telescopes.

    PubMed

    Jiang, Junlun; Zhao, Weirui

    2016-08-22

    To achieve a diffraction-limited imaging, the piston errors between the segments of the segmented primary mirror telescope should be reduced to λ/40 RMS. We propose a method to detect the piston error by analyzing the intensity distribution on the image plane according to the Fourier optics principle, which can capture segments with the piston errors as large as the coherence length of the input light and reduce these to 0.026λ RMS (λ = 633nm). This method is adaptable to any segmented and deployable primary mirror telescope. Experiments have been carried out to validate the feasibility of the method. PMID:27557192

  12. Adjustable expandable cryogenic piston and ring

    DOEpatents

    Mazur, Peter O.; Pallaver, Carl B.

    1980-01-01

    The operation of a reciprocating expansion engine for cryogenic refrigeration is improved by changing the pistons and rings so that the piston can be operated from outside the engine to vary the groove in which the piston ring is located. This causes the ring, which is of a flexible material, to be squeezed so that its contact with the wall is subject to external control. This control may be made manually or it may be made automatically in response to instruments that sense the amount of blow-by of the cryogenic fluid and adjust for an optimum blow-by.

  13. Phasing piston error in segmented telescopes.

    PubMed

    Jiang, Junlun; Zhao, Weirui

    2016-08-22

    To achieve a diffraction-limited imaging, the piston errors between the segments of the segmented primary mirror telescope should be reduced to λ/40 RMS. We propose a method to detect the piston error by analyzing the intensity distribution on the image plane according to the Fourier optics principle, which can capture segments with the piston errors as large as the coherence length of the input light and reduce these to 0.026λ RMS (λ = 633nm). This method is adaptable to any segmented and deployable primary mirror telescope. Experiments have been carried out to validate the feasibility of the method.

  14. Design and Fabrication of a 5-kWe Free-Piston Stirling Power Conversion System

    NASA Technical Reports Server (NTRS)

    Chapman, Peter A.; Walter, Thomas J.; Brandhorst, Henry W., Jr.

    2008-01-01

    Progress in the design and fabrication of a 5-kWe free-piston Stirling power conversion system is described. A scaled-down version of the successful 12.5-kWe Component Test Power Converter (CTPC) developed under NAS3-25463, this single cylinder prototype incorporates cost effective and readily available materials (steel versus beryllium) and components (a commercial linear alternator). The design consists of a displacer suspended on internally pumped gas bearings and a power piston/alternator supported on flexures. Non-contacting clearance seals are used between internal volumes. Heat to and from the prototype is supplied via pumped liquid loops passing through shell and tube heat exchangers. The control system incorporates several novel ideas such as a pulse start capability and a piston stroke set point control strategy that provides the ability to throttle the engine to match the required output power. It also ensures stable response to various disturbances such as electrical load variations while providing useful data regarding the position of both power piston and displacer. All design and analysis activities are complete and fabrication is underway. Prototype test is planned for summer 2008 at Foster-Miller to characterize the dynamics and steady-state operation of the prototype and determine maximum power output and system efficiency. Further tests will then be performed at Auburn University to determine start-up and shutdown characteristics and assess transient response to temperature and load variations.

  15. Reduced energy and volume air pump for a seat cushion

    DOEpatents

    Vaughn, M.R.; Constantineau, E.J.; Groves, G.E.

    1997-08-19

    An efficient pump system is described for transferring air between sets of bladders in a cushion. The pump system utilizes a reversible piston within a cylinder in conjunction with an equalizing valve in the piston which opens when the piston reaches the end of travel in one direction. The weight of a seated user then forces air back across the piston from an inflated bladder to the previously deflated bladder until the pressure is equalized. In this fashion the work done by the pump is cut in half. The inflation and deflation of the different bladders is controlled to vary the pressure on the several pressure points of a seated user. A principal application is for wheel chair use to prevent pressure ulcers. 12 figs.

  16. Reduced energy and volume air pump for a seat cushion

    DOEpatents

    Vaughn, Mark R.; Constantineau, Edward J.; Groves, Gordon E.

    1997-01-01

    An efficient pump system for transferring air between sets of bladders in a cushion. The pump system utilizes a reversible piston within a cylinder in conjunction with an equalizing valve in the piston which opens when the piston reaches the end of travel in one direction. The weight of a seated user then forces air back across the piston from an inflated bladder to the previously deflated bladder until the pressure is equalized. In this fashion the work done by the pump is cut in half. The inflation and deflation of the different bladders is controlled to vary the pressure on the several pressure points of a seated user. A principal application is for wheel chair use to prevent pressure ulcers.

  17. Ground-water system, estimation of aquifer hydraulic properties, and effects of pumping on ground-water flow in Triassic sedimentary rocks in and near Lansdale, Pennsylvania

    USGS Publications Warehouse

    Senior, Lisa A.; Goode, Daniel J.

    1999-01-01

    Ground water in Triassic-age sedimentary fractured-rock aquifers in the area of Lansdale, Pa., is used as drinking water and for industrial supply. In 1979, ground water in the Lansdale area was found to be contaminated with trichloroethylene, tetrachloroethylene, and other man-made organic compounds, and in 1989, the area was placed on the U.S. Environmental Protection Agency's (USEPA) National Priority List as the North Penn Area 6 site. To assist the USEPA in the hydrogeological assessment of the site, the U.S. Geological Survey began a study in 1995 to describe the ground-water system and to determine the effects of changes in the well pumping patterns on the direction of ground-water flow in the Lansdale area. This determination is based on hydrologic and geophysical data collected from 1995-98 and on results of the simulation of the regional ground-water-flow system by use of a numerical model.Correlation of natural-gamma logs indicate that the sedimentary rock beds strike generally northeast and dip at angles less than 30 degrees to the northwest. The ground-water system is confined or semi-confined, even at shallow depths; depth to bedrock commonly is less than 20 feet (6 meters); and depth to water commonly is about 15 to 60 feet (5 to 18 meters) below land surface. Single-well, aquifer-interval-isolation (packer) tests indicate that vertical permeability of the sedimentary rocks is low. Multiple-well aquifer tests indicate that the system is heterogeneous and that flow appears primarily in discrete zones parallel to bedding. Preferred horizontal flow along strike was not observed in the aquifer tests for wells open to the pumped interval. Water levels in wells that are open to the pumped interval, as projected along the dipping stratigraphy, are drawn down more than water levels in wells that do not intersect the pumped interval. A regional potentiometric map based on measured water levels indicates that ground water flows from Lansdale towards discharge

  18. Hydraulic assist turbocharger system

    SciTech Connect

    Kobayashi, R.J.

    1992-05-19

    This patent describes a turbocharger system for supplying charge air to a combustion engine. It comprises a pair of turbochargers each having a first turbine and compressor mounted on a common shaft for concurrent rotation, the first turbine being adapted to be rotatably driven by exhaust gases from the combustion engine to rotatably drive the compressor to produce charge air for supply to the engine, the turbocharger further including a second turbine mounted on the shaft, the second turbine comprising an hydraulic turbine for rotatably driving the common shaft to rotatably drive the compressor; pump means for producing a supply of hydraulic fluid under pressure; conduit means for delivering the hydraulic fluid under pressure to the second turbine to rotatably drive the second turbine; electrohydraulic control valve means for regulating passage of the hydraulic fluid through the conduit means to selectively control rotatable driving of the shaft by the second turbine in accordance with engine operating parameters; and a common support frame having the pair of turbochargers and the control valve means and the pump means mounted thereon to define a substantially unitary package adapted for facilitated mounting onto the engine.

  19. Tests of oil scraper piston ring and piston fitted with oil drain holes

    NASA Technical Reports Server (NTRS)

    Mcdewell, H S

    1922-01-01

    Tests were conducted to determine whether or not a properly located and properly designed oil scraper piston ring, installed on a piston provided with oil drain holes of sufficient area, would prevent the excessive oiling of the Liberty engine, particularly with the engine running at idling speed with full oil pressure. Results showed that excessive oiling was in fact prevented. It is strongly recommended that scraper rings and pistons be adopted for aircraft engines.

  20. Hand-Operated Hydraulic Tube Expander

    NASA Technical Reports Server (NTRS)

    Hagan, David W.; Wolff, Edwin D.

    1995-01-01

    Hand-operated tool expands end portion of narrow metal or plastic tube to slightly larger diameter. Used on tubes with original inner diameters as small as 0.060 in. Includes replaceable tip comprising ferrule and tubular expansion sleeve sized for sliding fit into tube to be expanded. Expansion sleeve swells in response to internal hydraulic pressure generated by turning handle and thereby advancing piston.

  1. Drift stabilizer for reciprocating free-piston devices

    DOEpatents

    Ward, William C.; Corey, John A.; Swift, Gregory W.

    2003-05-20

    A free-piston device has a stabilized piston drift. A piston having a frequency of reciprocation over a stroke length and with first and second sides facing first and second variable volumes, respectively, for containing a working fluid defining an acoustic wavelength at the frequency of reciprocation. A bypass tube waveguide connects the first and second variable volumes at all times during reciprocation of the piston. The waveguide has a relatively low impedance for steady flow and a relatively high impedance for oscillating flow at the frequency of reciprocation of the piston, so that steady flow returns fluid leakage from about the piston between the first and second volumes while oscillating flow is not diverted through the waveguide. Thus, net leakage about the piston is returned during each stroke of the piston while oscillating leakage is not allowed and pressure buildup on either the first or second side of the piston is avoided to provide a stable piston location.

  2. Stirling engine with improved sealing piston ring assembly

    SciTech Connect

    Meijer, R.J.

    1987-06-02

    This patent describes an engine having a reciprocating piston axially stroking within a walled cylinder by a pressure differential of a working fluid acting on opposite first and second axial sides of the piston. An annular sealing piston ring assembly is disposed in an annular piston ring groove around the piston having a cylindrical inner wall. The piston ring assembly for seals between the piston and the wall of the cylinder to resist leakage of the working fluid past the piston, wherein the sealing piston ring assembly comprises a main piston ring member formed of metal and having oppositely axially facing generally flat annular end surfaces. A radially outwardly facing generally cylindrical surface confronts the cylinder wall and a radially inwardly facing generally cylindrical surface.

  3. Comparison of Nitinol Stapes Pistons with Conventional Stapes Pistons: A Cadaver Study

    PubMed Central

    Spear, Samuel A.; Crawford, James V.

    2011-01-01

    Objective. To visually compare the Nitinol “smart” stapes prosthesis to conventional manual crimping stapes pistons in temporal bone cadaver specimens. Main Outcome Measures. 10 otolaryngologists were given a photograph of the randomly ordered stapes pistons and asked to use the pictures to answer questions about each stapes piston. The answers to the survey were then recorded for analysis. Results. 8 of 9 Nitinol pistons were described as circular, and 3 of 9 manual crimped pistons were described as circular (P < .05). 6 of 9 Nitinol pistons were considered to be in contact with >66% of the incus and 3 of 9 to be in contact with 34–66% of the incus. 3 of 9 manually crimped pistons were considered to be in contact with >66% of the incus, 3 with 34–66% contact and 3 with less than 34% contact. Conclusions. The Nitinol “smart” stapes pistons were considered to provide a more circular and circumferential crimping and to have greater contact with the long process of the incus than conventional stapes pistons. PMID:23724262

  4. Linkage arms for minimizing piston wobble

    SciTech Connect

    Langstroth, S.W.

    1992-07-28

    This patent describes an internal combustion engine having a block within which at least one piston is attached to a crankshaft by a connecting rod between the crankpin of the crankshaft and the wrist pin of the piston. This patent describes improvement in a fixed gear concentric with the axis of the crankshaft and coupled to the block; a follower gear concentric with the crankpin; at least one intermediate gear coupling the fixed gear to the follower gear; wherein the ratio of the gears is such that the follower gear orbits the fixed gear and does not rotate; and linkage arms interconnecting the follower gear and the piston for preventing the rotation of the piston about the wrist pin.

  5. Spherical Joint Piston and Connecting Rod Developed

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Under an interagency agreement with the Department of Energy, the NASA Lewis Research Center manages a Heavy-Duty Diesel Engine Technology (HDET) research program. The overall program objectives are to reduce fuel consumption through increased engine efficiency, reduce engine exhaust emissions, and provide options for the use of alternative fuels. The program is administered with a balance of research contracts, university research grants, and focused in-house research. The Cummins Engine Company participates in the HDET program under a cost-sharing research contract. Cummins is researching and developing in-cylinder component technologies for heavy-duty diesel engines. An objective of the Cummins research is to develop technologies for a low-emissions, 55-percent thermal efficiency (LE-55) engine. The best current-production engines in this class achieve about 46-percent thermal efficiency. Federal emissions regulations are driving this technology. Regulations for heavy duty diesel engines were tightened in 1994, more demanding emissions regulations are scheduled for 1998, and another step is planned for 2002. The LE-55 engine emissions goal is set at half of the 1998 regulation level and is consistent with plans for 2002 emissions regulations. LE-55 engine design requirements to meet the efficiency target dictate a need to operate at higher peak cylinder pressures. A key technology being developed and evaluated under the Cummins Engine Company LE-55 engine concept is the spherical joint piston and connecting rod. Unlike conventional piston and connecting rod arrangements which are joined by a pin forming a hinged joint, the spherical joint piston and connecting rod use a ball-and-socket joint. The ball-and-socket arrangement enables the piston to have an axisymmetric design allowing rotation within the cylinder. The potential benefits of piston symmetry and rotation are reduced scuffing, improved piston ring sealing, improved lubrication, mechanical and thermal

  6. Hydraulic engine valve actuation system including independent feedback control

    DOEpatents

    Marriott, Craig D

    2013-06-04

    A hydraulic valve actuation assembly may include a housing, a piston, a supply control valve, a closing control valve, and an opening control valve. The housing may define a first fluid chamber, a second fluid chamber, and a third fluid chamber. The piston may be axially secured to an engine valve and located within the first, second and third fluid chambers. The supply control valve may control a hydraulic fluid supply to the piston. The closing control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the second fluid chamber to the supply control valve. The opening control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the supply control valve to the second fluid chamber.

  7. Free-piston Stirling Engine system considerations for various space power applications

    NASA Technical Reports Server (NTRS)

    Dochat, George R.; Dhar, Manmohan

    1991-01-01

    Free-Piston Stirling Engines (FPSE) have the potential to provide high reliability, long life, and efficient operation. Therefore, they are excellent candidates for the dynamic power conversion module of a space-based, power-generating system. FPSE can be coupled with many potential heat sources (radioisotope, solar, or nuclear reactor), various heat input systems (pumped loop, heat pipe), heat rejection (pumped loop or heat pipe), and various power management and distribution systems (ac, dc, high or low voltage, and fixed or variable load). This paper reviews potential space missions that can be met using free-piston Stirling engines and discusses options of various system integration approaches. This paper briefly outlines the program and recent progress.

  8. Free-Piston Stirling Power Conversion Unit for Fission Surface Power, Phase I Final Report

    NASA Technical Reports Server (NTRS)

    Wood, J. Gary; Buffalino, Andrew; Holliday, Ezekiel; Penswick, Barry; Gedeon, David

    2010-01-01

    This report summarizes the design of a 12 kW dual opposed free-piston Stirling convertor and controller for potential future use in space missions. The convertor is heated via a pumped NaK loop and cooling is provided by a pumped water circuit. Convertor efficiency is projected at 27 percent (AC electrical out/heat in). The controller converts the AC electrical output to 120 Vdc and is projected at 91 percent efficiency. A mechanically simple arrangement, based on proven technology, was selected in which the piston is resonated almost entirely by the working space pressure swing, while the displacer is resonated by planar mechanical springs in the bounce space.

  9. Tilt/Tip/Piston Manipulator with Base-Mounted Actuators

    NASA Technical Reports Server (NTRS)

    Tahmasebi, Farhad

    2006-01-01

    A proposed three-degree-of-freedom (tilt/tip/piston) manipulator, suitable for aligning an optical or mechanical component, would offer several advantages over prior such manipulators: Unlike in some other manipulators, no actuator would support the weight of another actuator: All of the actuators would be mounted on a base. Hence, there would be less manipulated weight. The basic geometry of the manipulator would afford mechanical advantage: that is, actuator motions would be larger than the motions they produce in the manipulated object. Mechanical advantage inherently increases the accuracy and resolution of manipulation. Unlike in some other manipulators, it would not be necessary to route power and/or data lines through manipulator joints. The proposed manipulator (see figure) would include three prismatic actuators (T1N1, T2N2, and T3N3) mounted on the base and operating in the same plane. Examples of suitable prismatic actuators include lead-screw mechanisms, linear hydraulic motors, piezoelectric linear drives, inchworm-movement linear stepping motors, and linear flexure drives. The actuators would control the lengths of links R1T1, R2T2, and R3T3. Three spherical joints (P1, P2, and P3) would be located at the corners of an equilateral triangle of side length q on the platform holding the object to be manipulated. Three inextensible limbs (R1P1, R2P2, and R3P3) having length r would connect the spherical joints on the platform to revolute joints (R1, R2, and R3) at the ends of the actuator-controlled links R1T1, R2T2, and R3T3. By varying the lengths of these links, one could control the tilt, tip, and piston coordinates of the platform. Closed-form equations for direct or forward kinematics of the manipulator (given the lengths of the variable links, find the tilt, tip, and piston coordinates) have been derived. The equations of inverse kinematics (find the variable link lengths needed to obtain the desired tilt, tip, and piston coordinates) have also

  10. Accumulator isolator prevents malfunctioning of faulty hydraulic system

    NASA Technical Reports Server (NTRS)

    Walsh, G. D.

    1967-01-01

    Special isolator valve prevents malfunction of a closed hydraulic system by converting the initial accumulator-reservoir to a reservoir function only when the system loses oil, or gaseous nitrogen precharge, or has a jammed piston. This permits near-normal operation until the defect is corrected.

  11. Integrated two-cylinder liquid piston Stirling engine

    NASA Astrophysics Data System (ADS)

    Yang, Ning; Rickard, Robert; Pluckter, Kevin; Sulchek, Todd

    2014-10-01

    Heat engines utilizing the Stirling cycle may run on low temperature differentials with the capacity to function at high efficiency due to their near-reversible operation. However, current approaches to building Stirling engines are laborious and costly. Typically the components are assembled by hand and additional components require a corresponding increase in manufacturing complexity, akin to electronics before the integrated circuit. We present a simple and integrated approach to fabricating Stirling engines with precisely designed cylinders. We utilize computer aided design and one-step, planar machining to form all components of the engine. The engine utilizes liquid pistons and displacers to harness useful work from heat absorption and rejection. As a proof of principle of the integrated design, a two-cylinder engine is produced and characterized and liquid pumping is demonstrated.

  12. Integrated two-cylinder liquid piston Stirling engine

    SciTech Connect

    Yang, Ning; Rickard, Robert; Pluckter, Kevin; Sulchek, Todd

    2014-10-06

    Heat engines utilizing the Stirling cycle may run on low temperature differentials with the capacity to function at high efficiency due to their near-reversible operation. However, current approaches to building Stirling engines are laborious and costly. Typically the components are assembled by hand and additional components require a corresponding increase in manufacturing complexity, akin to electronics before the integrated circuit. We present a simple and integrated approach to fabricating Stirling engines with precisely designed cylinders. We utilize computer aided design and one-step, planar machining to form all components of the engine. The engine utilizes liquid pistons and displacers to harness useful work from heat absorption and rejection. As a proof of principle of the integrated design, a two-cylinder engine is produced and characterized and liquid pumping is demonstrated.

  13. Laser initiated piston actuator X51-8284-1

    SciTech Connect

    Spomer, E.

    1993-04-27

    This contract is a follow on effort in the development of a laser initiated piston actuator. During the previous contract a miniature piston actuator was developed which had two system related problems. First, during operation of the actuator, combustion gases would escape past the piston shank, overheating the surrounding materials. Secondly, the function of the device seemed to be overly brisant. The purpose of this contract was to improve the performance of the laser initiated piston actuator by developing a means of sealing the device, and to reduce the velocity of the piston. Three sealing concepts were tested; a silicone pad placed on the powder side of the piston, a stainless steel cup placed on the powder side of the piston, and copper plating on the shank of the piston. Piston velocity was to be reduced by changing the powder charge to BCTK or reducing the amount of Ti/KClO{sub 4}.

  14. Drive piston assembly for a valve actuator assembly

    DOEpatents

    Sun, Zongxuan

    2010-02-23

    A drive piston assembly is provided that is operable to selectively open a poppet valve. The drive piston assembly includes a cartridge defining a generally stepped bore. A drive piston is movable within the generally stepped bore and a boost sleeve is coaxially disposed with respect to the drive piston. A main fluid chamber is at least partially defined by the generally stepped bore, drive piston, and boost sleeve. First and second feedback chambers are at least partially defined by the drive piston and each are disposed at opposite ends of the drive piston. At least one of the drive piston and the boost sleeve is sufficiently configured to move within the generally stepped bore in response to fluid pressure within the main fluid chamber to selectively open the poppet valve. A valve actuator assembly and engine are also provided incorporating the disclosed drive piston assembly.

  15. 5-kWe Free-piston Stirling Engine Convertor

    NASA Technical Reports Server (NTRS)

    Chapman, Peter A.; Vitale, Nicholas A.; Walter, Thomas J.

    2008-01-01

    The high reliability, long life, and efficient operation of Free-Piston Stirling Engines (FPSEs) make them an attractive power system to meet future space power requirements with less mass, better efficiency, and less total heat exchanger area than other power convertor options. FPSEs are also flexible in configuration as they can be coupled with many potential heat sources and various heat input systems, heat rejection systems, and power management and distribution systems. Development of a 5-kWe Stirling Convertor Assembly (SCA) is underway to demonstrate the viability of an FPSE for space power. The design is a scaled-down version of the successful 12.5-kWe Component Test Power Converter (CTPC) developed under NAS3-25463. The ultimate efficiency target is 25% overall convertor efficiency (electrical power out over heat in). For the single cylinder prototype now in development, cost and time constraints required use of economical and readily available materials (steel versus beryllium) and components (a commercially available linear alternator) and thus lower efficiency. The working gas is helium at 150 bar mean pressure. The design consists of a displacer suspended on internally pumped gas bearings and a power piston/alternator supported on flexures. Non-contacting clearance seals are used between internal volumes. Heat to and from the prototype convertor is done via pumped liquid loops passing through shell and tube heat exchangers. The preliminary and detail designs of the convertor, controller, and support systems (heating loop, cooling loop, and helium supply system) are complete and all hardware is on order. Assembly and test of the prototype at Foster- Miller is planned for early 2008, when work will focus on characterizing convertor dynamics and steady-state operation to determine maximum power output and system efficiency. The device will then be delivered to Auburn University where assessments will include start-up and shutdown characterization and

  16. Detection of pump degradation

    SciTech Connect

    Greene, R.H.; Casada, D.A.; Ayers, C.W.

    1995-08-01

    This Phase II Nuclear Plant Aging Research study examines the methods of detecting pump degradation that are currently employed in domestic and overseas nuclear facilities. This report evaluates the criteria mandated by required pump testing at U.S. nuclear power plants and compares them to those features characteristic of state-of-the-art diagnostic programs and practices currently implemented by other major industries. Since the working condition of the pump driver is crucial to pump operability, a brief review of new applications of motor diagnostics is provided that highlights recent developments in this technology. The routine collection and analysis of spectral data is superior to all other technologies in its ability to accurately detect numerous types and causes of pump degradation. Existing ASME Code testing criteria do not require the evaluation of pump vibration spectra but instead overall vibration amplitude. The mechanical information discernible from vibration amplitude analysis is limited, and several cases of pump failure were not detected in their early stages by vibration monitoring. Since spectral analysis can provide a wealth of pertinent information concerning the mechanical condition of rotating machinery, its incorporation into ASME testing criteria could merit a relaxation in the monthly-to-quarterly testing schedules that seek to verify and assure pump operability. Pump drivers are not included in the current battery of testing. Operational problems thought to be caused by pump degradation were found to be the result of motor degradation. Recent advances in nonintrusive monitoring techniques have made motor diagnostics a viable technology for assessing motor operability. Motor current/power analysis can detect rotor bar degradation and ascertain ranges of hydraulically unstable operation for a particular pump and motor set. The concept of using motor current or power fluctuations as an indicator of pump hydraulic load stability is presented.

  17. Sealing system for piston rod of hot gas engine

    SciTech Connect

    Lundholm, S.G.; Ringqvist, S.A.

    1980-11-25

    An improvement to a sealing system for restricting fluid flow around a piston rod between a piston cylinder and crankshaft space in a hot gas engine where a seal element is secured around the piston rod in an intermediate chamber, the improvement including a link in the crankshaft space connecting, and permitting relative radial motion between, the piston rod and the crosshead and an o-ring having a diameter substantially greater than that of the piston rod and being secured between a lower ring securing the seal element in place around the piston rod and a wall of the intermediate chamber for frictionally restricting radial movement of the lower ring.

  18. Afterbay, showing four discharge channels and four hydraulic gate check ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Afterbay, showing four discharge channels and four hydraulic gate check cylinders, one for each discharge pipe opening. The fifth bay at the left without a hydraulic cylinder is the outlet for the regulatory pumps added in 1972. The still well is visible at right - Wellton-Mohawk Irrigation System, Pumping Plant No. 3, South of Interstate 8, Wellton, Yuma County, AZ

  19. Design of hydraulic recuperation unit

    NASA Astrophysics Data System (ADS)

    Jandourek, Pavel; Habán, Vladimír; Hudec, Martin; Dobšáková, Lenka; Štefan, David

    2016-03-01

    This article deals with design and measurement of hydraulic recuperation unit. Recuperation unit consist of radial turbine and axial pump, which are coupled on the same shaft. Speed of shaft with impellers are 6000 1/min. For economic reasons, is design of recuperation unit performed using commercially manufactured propellers.

  20. 123. UMBILICAL MAST PUMP ROOM (209), LSB (BLDG. 751). PUMP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    123. UMBILICAL MAST PUMP ROOM (209), LSB (BLDG. 751). PUMP ON LEFT; HYDRAULIC CONTROL PANEL FOR UMBILICAL MAST AND TRENCH DOORS IN CENTER OF ROOM, FACING WEST. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  1. Hydraulic lifting device

    NASA Technical Reports Server (NTRS)

    Terrell, Kyle (Inventor)

    1990-01-01

    A piston and cylinder assembly is disclosed which is constructed of polyvinyl chloride that uses local water pressure to perform small lifting tasks. The chamber is either pressurized to extend the piston or depressurized to retract the piston. The present invention is best utilized for raising and lowering toilet seats.

  2. Nutating spider crank reciprocating piston machine

    SciTech Connect

    Shaffer, J.E.

    1991-07-02

    This patent describes reciprocating piston apparatus. It comprises a housing; a shaft journalled on the housing for rotation about a shaft axis; a plurality of cylinders each having a central longitudinal axis and disposed parallel to the shaft axis and located on the housing at positions angularly-spaced circumferentially about the shaft; a plurality of double-acting pistons having piston axes and centers, each the piston having a transverse bore therein and being respectively mounted for reciprocation within corresponding ones of the cylinders, each the bore having a longitudinal central axis normal to the respective cylinder axis; a mutating spider having a central hub portion mounted on the shaft obliquely of the shaft axis, and having a plurality of branches extending radially outward from the hub portion and terminating at terminal ends; and means directly connecting the terminal ends centrally to corresponding ones of the bores for transferring motion between reciprocation of the pistons and rotation of the shaft, and for restraining the spider from rotating with the shaft.

  3. Hydraulically-actuated operating system for an electric circuit breaker

    DOEpatents

    Barkan, Philip; Imam, Imdad

    1978-01-01

    This hydraulically-actuated operating system comprises a cylinder, a piston movable therein in an opening direction to open a circuit breaker, and an accumulator for supplying pressurized liquid to a piston-actuating space within the cylinder. A normally-closed valve between the accumulator and the actuating space is openable to allow pressurized liquid from the accumulator to flow through the valve into the actuating space to drive the piston in an opening direction. A vent is located hydraulically between the actuating space and the valve for affording communication between said actuating space and a low pressure region. Flow control means is provided for restricting leakage through said vent to a rate that prevents said leakage from substantially detracting from the development of pressure within said actuatng space during the period from initial opening of the valve to the time when said piston has moved through most of its opening stroke. Following such period and while the valve is still open, said flow control means allows effective leakage through said vent. The accumulator has a limited capacity that results in the pressure within said actuating space decaying promptly to a low value as a result of effective leakage through said vent after the piston has moved through a circuit-breaker opening stroke and while the valve is in its open state. Means is provided for resetting the valve to its closed state in response to said pressure decay in the actuating space.

  4. Downhole electro-hydraulic vertical shear wave seismic source

    SciTech Connect

    Cole, J.H.

    1993-07-20

    A downhole electro-hydraulic vertical shear wave seismic source to be lowered into a wellbore is described comprising: a source cylindrical housing; a reaction mass means for generating seismic shear waves, said reaction mass means having an actuator with an actuator piston and actuator cylinder and located internal to said source cylindrical housing to isolate said actuator from wellbore fluid and pressure, said reaction mass including transversely formed holes through which hydraulic cylinders connected to contact pads pass, said holes having a significantly larger diameter than said hydraulic cylinders; a clamping means to clamp said source cylindrical housing to the wellbore, said clamping means including two serrated pads radiused to match an inside diameter of casing located in said wellbore and hydraulic cylinders having internal compact stacks of spring washers for retraction for actuating said serrated pads; a compact and soft urethane spring for suspending said reaction mass; and a threaded guide rod passing vertically through said urethane spring to allow spring compression to be adjusted until said actuator piston is precisely centered with no differential hydraulic pressure across said actuator piston.

  5. Insulated Piston Heads for Diesel Engines

    NASA Astrophysics Data System (ADS)

    Tricoire, A.; Kjellman, B.; Wigren, J.; Vanvolsem, M.; Aixala, L.

    2009-06-01

    Widely studied in the 1980s, the insulation of pistons in engines aimed at reducing the heat losses and thus increasing the indicated efficiency. However, those studies stopped in the beginning of the 1990s because of NO x emission legislation and also because of lower oil prices. Currently, with the improvement of exhaust after treatment systems (diesel particulate filter, selective catalytic reduction, and diesel oxidation catalyst) and engine technologies (exhaust gas recirculation), there are more trade-offs for NO x reduction. In addition, the fast rise of the oil prices tends to lead back to insulation technologies in order to save fuel. A 1 mm thick plasma sprayed thermal barrier coating with a graded transition between the topcoat and the bondcoat was deposited on top of a serial piston for heavy-duty truck engines. The effects of the insulated pistons on the engine performance are also discussed, and the coating microstructure is analyzed after engine test.

  6. Balancing mechanism for reciprocating piston engine

    SciTech Connect

    Murata, N.; Ogino, T.

    1987-04-14

    This patent describes a balancing mechanism for a reciprocating piston internal combustion engine which includes a cylinder, a piston reciprocatable in the cylinder, a crankcase, a crankshaft mounted in the crankshaft, a crankpin connected to the piston, and a pair of crank arms bridging the crankshaft and crankpin. The crank arms and crankpin rotate with the crankshaft during operation and form a rotating mass. The balancing mechanism comprises at least one rotating counterweight attached to and rotating with the crankshaft, and eccentric journal means on the crankshaft adjacent the crank arms, rotating with the crankshaft. The journal means has an axis spaced to the side of the crankshaft axis which is opposite from the crankpin. The rotating counterweight and the eccentric journal means counterbalancing the rotating mass.

  7. Supercritical waste oxidation pump investigation

    SciTech Connect

    Thurston, G.; Garcia, K.

    1993-02-01

    This report investigates the pumping techniques and pumping equipment that would be appropriate for a 5,000 gallon per day supercritical water oxidation waste disposal facility. The pumps must boost water, waste, and additives from atmospheric pressure to approximately 27.6 MPa (4,000 psia). The required flow ranges from 10 gpm to less than 0.1 gpm. For the higher flows, many commercial piston pumps are available. These pumps have packing and check-valves that will require periodic maintenance; probably at 2 to 6 month intervals. Several commercial diaphragm pumps were also discovered that could pump the higher flow rates. Diaphragm pumps have the advantage of not requiring dynamic seals. For the lower flows associated with the waste and additive materials, commercial diaphragm pumps. are available. Difficult to pump materials that are sticky, radioactive, or contain solids, could be injected with an accumulator using an inert gas as the driving mechanism. The information presented in this report serves as a spring board for trade studies and the development of equipment specifications.

  8. The ABCs of pump selection for mine dewatering

    SciTech Connect

    Morgan, S.E.

    2008-10-15

    Choosing the right type of pump for removing water from mine operations can provide significant benefits in overall performance and cost of operation. The article describes the types of pump most commonly used: vertical turbine pumps, electric and hydraulic submersible pumps, horizontal multistage centrifugal pumps and horizontal single-stage centrifugal pumps. It gives points to consider when selecting a suitable pump, including solids handling capacity and acid content, portability, automatic operation, easy maintenance and parts availability. 1 photo.

  9. Internal combustion engine having opposed pistons

    SciTech Connect

    Puzio, E.T.

    1993-07-20

    An internal combustion apparatus is described having opposed sets of pistons comprising: (a) an inner crankcase means defining an inner chamber means therein, the inner crankcase means further defining a first connecting arm aperture means and a second connecting arm aperture means therein; (b) a crankshaft means rotatably mounted within the inner chamber means of the inner crankcase means and defining a crankshaft axis means extending axially there through, the crankshaft means defining a driving means peripherally therearound to facilitate distribution of driving power therefrom; (c) a first outer crankcase means defining a first outer chamber means in fluid flow communication with respect to the inner chamber means through the first connecting arm aperture means; (d) a second outer crankcase means defining a second outer chamber means in fluid flow communication with respect to the inner chamber means through the second connecting arm aperture means, the second outer crankcase means defining a second piston bore means extending longitudinally therein; (e) a crank pin means positioned extending through the crank pin aperture in the crankshaft means, the crank pin means being rotatable with respect to the crank pin aperture means; (f) a first connecting arm means fixedly secured with respect to one end of the crank pin means and extending through the first connecting arm aperture means into the first outer crankcase means; (g) a second connecting arm means fixedly secured with respect to the other end of the crank pin means and extending through the second connecting arm aperture means into the second outer crankcase means; (h) a first piston assembly means positioned extending through the first piston bore means to be reciprocally axially movable therein; (i) a second piston assembly means positioned extending through the second piston bore means to be reciprocally axially movable therein.

  10. Pump Flow Analysis

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Ingersoll-Rand Research, Inc.'s use of COSMIC's computer program MERIDL permits designers to evaluate performance and efficiency characteristics to be expected from the pump's impeller. It also provides information that enables a trained hydraulic engineer to make design improvements. Company was able to avoid the cost of developing new software and to improve some product design features.

  11. Low-thrust chemical propulsion system pump technology

    NASA Technical Reports Server (NTRS)

    Meadville, J. W.

    1980-01-01

    A study was conducted within the thrust range 450 to 9000 N (100 to 2000 pounds). Performance analyses were made on centrifugal, pitot, Barske, drag, Tesla, gear, piston, lobe, and vane pumps with liquid hydrogen, liquid methane, and liquid oxygen as propellants. Gaseous methane and hydrogen driven axial impulse turbines, vane expanders, piston expanders, and electric motors were studied as drivers. Data are presented on performance, sizes, weights, and estimated service lives and costs.

  12. Engine piston having an insulating air gap

    DOEpatents

    Jarrett, Mark Wayne; Hunold,Brent Michael

    2010-02-02

    A piston for an internal combustion engine has an upper crown with a top and a bottom surface, and a lower crown with a top and a bottom surface. The upper crown and the lower crown are fixedly attached to each other using welds, with the bottom surface of the upper crown and the top surface of the lower crown forming a mating surface. The piston also has at least one centrally located air gap formed on the mating surface. The air gap is sealed to prevent substantial airflow into or out of the air gap.

  13. Piston ring designs for reduced friction

    SciTech Connect

    Hill, S.H.; Newman, B.A.

    1984-01-01

    To reduce parasitic losses, a project was initiated to design, develop and bring to production a piston ring set which reduces engine friction while maintaining ring performance. In this paper, theoretical considerations affecting piston ring friction, and their implication in ring design, are discussed. An estimate of friction reduction and fuel economy improvement which can be achieved is calculated. Features of the resulting designs are reviewed, and friction, dynamometer, and vehicle test results are presented. Future ring design changes for reduced friction are reviewed.

  14. CFD analysis of a diaphragm free-piston Stirling cryocooler

    NASA Astrophysics Data System (ADS)

    Caughley, Alan; Sellier, Mathieu; Gschwendtner, Michael; Tucker, Alan

    2016-10-01

    This paper presents a Computational Fluid Dynamics (CFD) analysis of a novel free-piston Stirling cryocooler that uses a pair of metal diaphragms to seal and suspend the displacer. The diaphragms allow the displacer to move without rubbing or moving seals. When coupled to a metal diaphragm pressure wave generator, the system produces a complete Stirling cryocooler with no rubbing parts in the working gas space. Initial modelling of this concept using the Sage modelling tool indicated the potential for a useful cryocooler. A proof-of-concept prototype was constructed and achieved cryogenic temperatures. A second prototype was designed and constructed using the experience gained from the first. The prototype produced 29 W of cooling at 77 K and reached a no-load temperature of 56 K. The diaphragm's large diameter and short stroke produces a significant radial component to the oscillating flow fields inside the cryocooler which were not modelled in the one-dimensional analysis tool Sage that was used to design the prototypes. Compared with standard pistons, the diaphragm geometry increases the gas-to-wall heat transfer due to the higher velocities and smaller hydraulic diameters. A Computational Fluid Dynamics (CFD) model of the cryocooler was constructed to understand the underlying fluid-dynamics and heat transfer mechanisms with the aim of further improving performance. The CFD modelling of the heat transfer in the radial flow fields created by the diaphragms shows the possibility of utilizing the flat geometry for heat transfer, reducing the need for, and the size of, expensive heat exchangers. This paper presents details of a CFD analysis used to model the flow and gas-to-wall heat transfer inside the second prototype cryocooler, including experimental validation of the CFD to produce a robust analysis.

  15. Oil well pump driving unit

    SciTech Connect

    Gilbertson, T.A.

    1982-03-23

    An oil well pumping apparatus which includes a submerged reciprocating pump mounted in a tubing arrangement communicating with the well head, a sucker rod string extending through the tubing arrangement and connected in driving relation with the pump, and a pumping tee and stuffing box arrangement mounted on the casing of the well at the well head and including a sealed drive rod arrangement in the stuffing box connected in driving relation to said sucker rod string, and a pump driving unit. The pump driving unit includes a hydraulic cylinder and support means for supporting the hydraulic cylinder over the stuffing box with the axis of the cylinder rod aligned with the axis of said stuffing box. A coupling means is provided for coupling the cylinder rod to the seal drive rod arrangement. A hydraulic drive -control unit is coupled to said in-out fluid line for operating the hydraulic cylinder to produce an operating cycle consisting of a hydraulic power upstroke and a gravity power downstroke.

  16. Staged combustion with piston engine and turbine engine supercharger

    DOEpatents

    Fischer, Larry E.; Anderson, Brian L.; O'Brien, Kevin C.

    2011-11-01

    A combustion engine method and system provides increased fuel efficiency and reduces polluting exhaust emissions by burning fuel in a two-stage combustion system. Fuel is combusted in a piston engine in a first stage producing piston engine exhaust gases. Fuel contained in the piston engine exhaust gases is combusted in a second stage turbine engine. Turbine engine exhaust gases are used to supercharge the piston engine.

  17. Staged combustion with piston engine and turbine engine supercharger

    DOEpatents

    Fischer, Larry E.; Anderson, Brian L.; O'Brien, Kevin C.

    2006-05-09

    A combustion engine method and system provides increased fuel efficiency and reduces polluting exhaust emissions by burning fuel in a two-stage combustion system. Fuel is combusted in a piston engine in a first stage producing piston engine exhaust gases. Fuel contained in the piston engine exhaust gases is combusted in a second stage turbine engine. Turbine engine exhaust gases are used to supercharge the piston engine.

  18. Ringless piston experiments. Natural gas engine technology advancements

    NASA Astrophysics Data System (ADS)

    Cole, J. J.

    1991-12-01

    A two stroke 250 cc test engine was designed to experimentally evaluate ringless piston operation. The test engine had a crosshead to minimize the side loads on the ringless piston. The crankcase was sealed and it was possible to eliminate oil in the combustion chamber. A ringless molybdenum piston with labyrinth seals was designed and tested. Ringed-to-ringless power ratios greater than 90 percent were achieved by controlling piston-to-liner clearance via cylinder cooling.

  19. Hydraulic power plant

    SciTech Connect

    Ueda, T.

    1980-01-08

    A hydraulic power plant has a reservoir with a dam wall, a water turbine connected to a generator, a penstock extending from the reservoir to the water turbine and passing over the dam wall without passing through the dam wall to supply water from the reservoir to the turbine, and a vacuum pump adapted to fill at least a portion of the penstock with water by a siphon effect and being connected at a substantially uppermost portion of the penstock which is located on the top of the dam wall.

  20. Hydraulic mining method

    DOEpatents

    Huffman, Lester H.; Knoke, Gerald S.

    1985-08-20

    A method of hydraulically mining an underground pitched mineral vein comprising drilling a vertical borehole through the earth's lithosphere into the vein and drilling a slant borehole along the footwall of the vein to intersect the vertical borehole. Material is removed from the mineral vein by directing a high pressure water jet thereagainst. The resulting slurry of mineral fragments and water flows along the slant borehole into the lower end of the vertical borehole from where it is pumped upwardly through the vertical borehole to the surface.

  1. Axial reciprocation of rotating impeller: a new concept of antithrombogenecity in centrifugal pump.

    PubMed

    Qian, K X; Zeng, P; Ru, W M; Yuan, H Y; Feng, Z G; Li, L

    2001-01-01

    For long-term application, rotary pumps have to solve the problems of bearing wear and thrombosis along the bearing. Most investigators choose the magnetic bearing to realize zero-friction and no contact between the rotor and stator; the former avoids the mechanical wear and the latter eliminates the possibility of thrombus formation. The authors have tried and found, however, that it is difficult to apply a magnetic bearing to the rotary pump without disturbing its simplicity, reliability and implantability, and have therefor developed a much simpler and much more creative approach to achieve the same results. Instead of using a sliding bearing, a rolling bearing has been devised for the pump, and its friction is about 1/15 of the sliding bearing. Furthermore, a wear-proof material of ultra-high-molecular weight polythene has been adopted to make the rollers, and its anti-wear property is 8 times better than metal. Thereby, the service life of the bearing has been prolonged to ten years according to the documents provided by the producer. In order to prevent the thrombus formation along the bearing, the impeller reciprocates axiallly as the impeller changes its rotating speed periodically to produce a pulsatile flow. The reciprocation is the result of the effects of a magnetic force between the motor rotor and stator, and a hydraulic force between the blood flow and the impeller. Similar to a piston pump, the oscillating impeller can make the blood flow in and out of the bearing, resulting in wash-out once a circle. This obviously helps to prevent thombosis along the bearing and in the pump. The endurance tests with saline of this novel pump demonstrated the durabililty of the device. It promises to be able to assist the circulation of patients permanently, and to be able to replace heart transplantation in the future. PMID:11345097

  2. Production optimization of sucker rod pumping wells producing viscous oil in Boscan field, Venezuela

    SciTech Connect

    Guirados, C.; Sandoval, J.; Rivas, O.; Troconis, H.

    1995-12-31

    Boscan field is located in the western coast of Maracaibo lake and is operated by Maraven S.A., affiliate of Petroleos de Venezuela S.A. It has 315 active wells, 252 of which are produced with sucker rod pumping. Other artificial lift methods currently applied in this field are hydraulic (piston) pumping (39 wells) and ESP (24 wells). This paper presents the results of the production optimization of two sucker rod pumping wells of Boscan field producing viscous oil. This optimization has been possible due to the development of a new production scheme and the application of system analysis in completion design. The new production scheme involves the utilization of a subsurface stuffing box assembly and a slotted housing, both designed and patented by Intevep S.A., affiliate of Petroleos de Venezuela S.A. The completion design method and software used in the optimization study were also developed by Intevep S.A. The new production scheme and design method proved to be effective in preventing the causes of the above mentioned problems, allowing the increase of oil production under better operating conditions.

  3. Practical issues in imaging hydraulic conductivity through hydraulic tomography.

    PubMed

    Illman, Walter A; Craig, Andrew J; Liu, Xiaoyi

    2008-01-01

    Hydraulic tomography has been developed as an alternative to traditional geostatistical methods to delineate heterogeneity patterns in parameters such as hydraulic conductivity (K) and specific storage (S(s)). During hydraulic tomography surveys, a large number of hydraulic head data are collected from a series of cross-hole tests in the subsurface. These head data are then used to interpret the spatial distribution of K and S(s) using inverse modeling. Here, we use the Sequential Successive Linear Estimator (SSLE) of Yeh and Liu (2000) to interpret synthetic pumping test data created through numerical simulations and real data generated in a laboratory sandbox aquifer to obtain the K tomograms. Here, we define "K tomogram" as an image of K distribution of the subsurface (or the inverse results) obtained via hydraulic tomography. We examine the influence of signal-to-noise ratio and biases on results using inverse modeling of synthetic and real cross-hole pumping test data. To accomplish this, we first show that the pumping rate, which affects the signal-to-noise ratio, and the order of data included into the SSLE algorithm both have large impacts on the quality of the K tomograms. We then examine the role of conditioning on the K tomogram and find that conditioning can improve the quality of the K tomogram, but can also impair it, if the data are of poor quality and conditioning data have a larger support volume than the numerical grid used to conduct the inversion. Overall, these results show that the quality of the K tomogram depends on the design of pumping tests, their conduct, the order in which they are included in the inverse code, and the quality as well as the support volume of additional data that are used in its computation.

  4. Control rod drive hydraulic system

    DOEpatents

    Ose, Richard A.

    1992-01-01

    A hydraulic system for a control rod drive (CRD) includes a variable output-pressure CR pump operable in a charging mode for providing pressurized fluid at a charging pressure, and in a normal mode for providing the pressurized fluid at a purge pressure, less than the charging pressure. Charging and purge lines are disposed in parallel flow between the CRD pump and the CRD. A hydraulic control unit is disposed in flow communication in the charging line and includes a scram accumulator. An isolation valve is provided in the charging line between the CRD pump and the scram accumulator. A controller is operatively connected to the CRD pump and the isolation valve and is effective for opening the isolation valve and operating the CRD pump in a charging mode for charging the scram accumulator, and closing the isolation valve and operating the CRD pump in a normal mode for providing to the CRD through the purge line the pressurized fluid at a purge pressure lower than the charging pressure.

  5. Aircraft Piston Engine Exhaust Emission Symposium

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A 2-day symposium on the reduction of exhaust emissions from aircraft piston engines was held on September 14 and 15, 1976, at the Lewis Research Center in Cleveland, Ohio. Papers were presented by both government organizations and the general aviation industry on the status of government contracts, emission measurement problems, data reduction procedures, flight testing, and emission reduction techniques.

  6. Piston rod seal for a Stirling engine

    DOEpatents

    Shapiro, Wilbur

    1984-01-01

    In a piston rod seal for a Stirling engine, a hydrostatic bearing and differential pressure regulating valve are utilized to provide for a low pressure differential across a rubbing seal between the hydrogen and oil so as to reduce wear on the seal.

  7. Engine makers tap carbon-carbon pistons

    SciTech Connect

    Ashley, S.

    1994-05-01

    This article describes the use of a carbon-carbon composite, developed for nose cones and rocket nozzles, for pistons in modern internal combustion engines. The topics of the article include the carbon-carbon composite mechanical and physical characteristics, initial research, manufacturing methods, fabrication techniques, initial testing in 2 stroke and 4 stroke engines, and current research.

  8. How Hot Can a Fire Piston Get?

    ERIC Educational Resources Information Center

    Scott-Brown, J. A.; Cunningham, O. A.; Goad, B. C.

    2010-01-01

    The fire piston is just a sealed syringe containing a small amount of tinder. When the plunger is forced downwards, the air inside is compressed and heats up, setting fire to the tinder. It has been used as a convenient and portable way of starting fires "over a wide area from northern Burma and Siam through the Malay Peninsula and the Malayan…

  9. Stabilizing gas bearing in free piston machines

    NASA Technical Reports Server (NTRS)

    Dhar, Manmohan (Inventor)

    1992-01-01

    In a free piston engine, to reduce dynamic loads on the reciprocating elements caused by a time varying pressure gradient across the gas bearing and close clearance seals provided therein, drain galleries are incorporated at the ends of the gas bearings to isolate the same, and circumferentially spaced grooves are incorporated in the close clearance seal region.

  10. Fluid pump having magnetic drive

    DOEpatents

    Phillips, Benjamin A.; Roeder, Jr., John; Harvey, Michael N.

    1996-10-15

    A pump includes a housing defining a cavity, an axial bore coaxially communicating with the cavity, at least one radial bore radially extending between the cavity and an outlet, and an inlet communicating with the radial bore intermediate to the cavity and the outlet. A crankshaft having a longitudinal axis is disposed in the axial bore for rotation about the axis and includes an eccentric portion disposed in the cavity. A piston having a base is disposed in the cavity, and has a head disposed in the radial bore for slidable reciprocation between a discharge position proximate the outlet and an intake position at the inlet between the cavity and the outlet. A cage structure including a cage and a slider block connects the piston base to the eccentric portion of the crankshaft for transforming rotation of the eccentric portion in the cavity to reciprocation of the piston in the radial bore. A valve structure opens and closes the outlet in response to movement of the piston head between the discharge position to the intake position.

  11. Fluid pump having magnetic drive

    SciTech Connect

    Phillips, B.A.; Roeder, J. Jr.; Harvey, M.N.

    1996-10-15

    A pump includes a housing defining a cavity, an axial bore coaxially communicating with the cavity, at least one radial bore radially extending between the cavity and an outlet, and an inlet communicating with the radial bore intermediate to the cavity and the outlet. A crankshaft having a longitudinal axis is disposed in the axial bore for rotation about the axis and includes an eccentric portion disposed in the cavity. A piston having a base is disposed in the cavity, and has a head disposed in the radial bore for slidable reciprocation between a discharge position proximate the outlet and an intake position at the inlet between the cavity and the outlet. A cage structure including a cage and a slider block connects the piston base to the eccentric portion of the crankshaft for transforming rotation of the eccentric portion in the cavity to reciprocation of the piston in the radial bore. A valve structure opens and closes the outlet in response to movement of the piston head between the discharge position to the intake position. 22 figs.

  12. Laser light stripe measurements assure correct piston assembly

    NASA Astrophysics Data System (ADS)

    Stein, Norbert; Frohn, Heiko

    1993-12-01

    Two VIKON-3D optical inspection systems assure the correct assembly of piston rings and guard rings in a new Volkswagen piston/rod assembly line. Both systems use laser light stripe measurements to locate and identify the relevant parts with high accuracy. The piston ring assembly is checked dynamically in video real time using laser light stripe and parallel projection techniques. In addition structured light is used to verify the correct piston/rod assembly. Both inspection systems are fully integrated into the manufacturing line. All types of pistons assembled can be checked without any mechanical changes to the measurement setup.

  13. A spherical joint piston design for high speed diesel engines

    SciTech Connect

    Wiczynski, P.D.; Mielke, S.; Conrow, R.

    1996-09-01

    A spherical joint piston and connecting rod have been developed through design proof-of-concept. The spherical joint allows piston rotation. The benefits of a rotating, symmetrical piston are: mechanical and thermal load symmetry, improved ring sealing and lubrication, and reduced bearing loads, scuffing, clearances and oil consumption. The assembly includes a squeeze cast, fiber reinforced aluminum spherical joint piston. Reinforcement is located in the piston bowl and skirt. The connecting rod consists of a spherical small end positioned on an elliptical cross-sectioned shank blended into a conventional big end. The assembly has operated at cylinder pressures exceeding of 24 MPa.

  14. Method of making and apparatus for composite pistons

    SciTech Connect

    Hartsock, D.L.

    1986-06-03

    A method is described of making a composite piston for a reciprocating engine, comprising: (a) forming members to constitute the composite piston, including: (i) a piston member comprised of a material selected from plastic and metal having a density of less than about 0.15 lb/in/sup 3/, the piston member having a top, a side, and a cast in place metallic ring in the side of the piston member, the ring presenting an annular grooved wall disposed at a location radially opposite a depending portion of the carrier member when the latter is in the wrapped position, (ii) a ceramic facing member adapted to extend over the top of the piston, (iii) a carrier member effective to separate the facing member from the piston member while securing the facing member and piston member together for conjoint movement, the carrier member having one side adapted to wrap over the top of the piston with a portion depending along at least a portion of the piston side, (b) assembling the members by securing the ceramic facing member to the opposite side of the carrier member and wrapping the one side of the carrier member over the piston top with the portion depending along at least a portion of the piston side; and (c) with the carrier member wrapped about the piston, directing a high energy beam across a zone of the carrier member radially aligned with the grooved wall and effective to melt the portion of the carrier member intersected by the beam, causing the melted material to flow into the groove to fill the same and lock the piston member to the carrier member upon solidification.

  15. Rotating and positive-displacement pumps for low-thrust rocket engines. Volume 2: Fabrication and testing

    NASA Technical Reports Server (NTRS)

    Csomor, A.

    1974-01-01

    Rotating and positive displacement pumps of various types were studied for pumping liquid fluorine for low thrust high performance rocket engines. Included in the analysis were: centrifugal, pitot, Barske, Tesla, drag, gear, vane, axial piston, radial piston, diaphragm and helirotor pump concepts. The centrifugal and gear pumps were carried through detail design and fabrication. After preliminary testing in Freon 12, the centrifugal pump was selected for further testing and development. It was tested in Freon 12 to obtain the hydrodynamic performance. Tests were also conducted in liquid fluorine to demonstrate chemical compatibility.

  16. Oil well pump driving unit

    SciTech Connect

    Gilbertson, T. A.

    1984-11-06

    An oil well pumping apparatus which includes a submerged reciprocating pump mounted in a tubing arrangement communicating with the wellhead, a sucker rod string extending through the tubing arrangement and connected in driving relation with the pump, and a pumping tee and stuffing box arrangement mounted on the casing of the well at the wellhead and including a sealed drive rod arrangement in the stuffing box connected in driving relation to said sucker rod string, and a pump driving unit. The pump driving unit includes a hydraulic cylinder and support means including a gimbal arrangement for supporting the hydraulic cylinder over the stuffing box with the axis of the cylinder rod aligned with the axis of said stuffing box. A coupling means is provided for coupling the cylinder rod to the sealed drive rod arrangement. A hydraulic drive/control unit is coupled to said in/out fluid line for operating cycle consisting of a hydraulic power upstroke and a gravity power downstroke. An assist cylinder and accumulator combination are provided to counteract part of the weight of the rod string and thus reduce the workload on t

  17. Electric versus hydraulics versus pneumatics

    SciTech Connect

    Not Available

    1985-01-01

    This book presents a collection of papers from a conference which considered the advantages and disadvantages of electric, hydraulic and pneumatic drives and actuators. The volume follows on the success of the 1983 conference on electric and hydraulic drives. Topics considered include fork lift trucks - an ideal application for regenerative transmissions; a hybrid-electric power system with hydrostatic transmission; electrics and hydraulics on roadheader machinery; hydraulic, electrical, pneumatic control - which way to go. an electrically-powered servo to drive the two axes of a missile launching platform - pros and cons when compared with the traditional hydraulic solution; the encapsulation of a novel intrinsically safe displacement transducer; mobile cryogenic pumping systems; automation of a wood-turning machine, hydraulic or electric. The choice of a servo motor for a specific application; developments in the design and control of pneumatic linear actuators; compressed air purification for instrumentation in the high technology industries; trends in prime mover choice for powered hand tools; and choosing the drive system for the right application.

  18. Overview of NASA Lewis Research Center free-piston Stirling engine technology activities applicable to space power systems

    NASA Technical Reports Server (NTRS)

    Slaby, Jack G.

    1987-01-01

    A brief overview is presented of the development and technological activities of the free-piston Stirling engine. The engine started as a small scale fractional horsepower engine which demonstrated basic engine operating principles and the advantages of being hermetically sealed, highly efficient, and simple. It eventually developed into the free piston Stirling engine driven heat pump, and then into the SP-100 Space Reactor Power Program from which came the Space Power Demonstrator Engine (SPDE). The SPDE successfully operated for over 300 hr and delivered 20 kW of PV power to an alternator plunger. The SPDE demonstrated that a dynamic power conversion system can, with proper design, be balanced; and the engine performed well with externally pumped hydrostatic gas bearings.

  19. Axial reciprocation of rotating impeller: a novel approach to preventing thrombosis in centrifugal pump.

    PubMed

    Qian, K X; Zeng, P; Ru, W M; Yuan, H Y

    2002-01-01

    For long-term application, rotary pumps have to solve the problems of bearing wear and thrombosis along the bearing. Some investigators choose the magnetic bearing for zero friction and to provide no contact between the rotor and stator; the former avoids the mechanical wear and the latter eliminates the possibility of thrombus formation. The authors have tried and have found, however, that it is difficult to apply a magnetic bearing to the rotary pump without disturbing its simplicity, reliability, and implantability, and have therefore developed a much simpler approach to achieve the same results. Instead of using a sliding bearing, a rolling bearing has been devised, and its friction is about 1/15 that of the sliding bearing. Furthermore, a wearproof material of ultra high molecular weight polythene has been adopted to make the rollers, and its antiwear property is eight times better than metal. The service life of the bearing has thus been prolonged. To prevent thrombus formation along the bearing, the impeller reciprocates axially as the impeller changes its rotating speed periodically to produce a pulsatile flow. The reciprocation is the result of the effects of a magnetic force between the motor rotor and stator and a hydraulic force between the blood flow and the impeller. Similar to a piston pump, the oscillating impeller can make the blood flow in and out of the bearing, resulting in washout with fresh blood once a cycle. This obviously helps to prevent thrombosis along the bearing and in the pump. Endurance tests with saline of this novel pump demonstrated device durability, promising long-term assisted circulation. PMID:12296579

  20. Partially stabilized zirconia piston bowl reliability

    SciTech Connect

    Hartsock, D.L.

    1987-10-01

    The Weibull based ''Simplified Structural Ceramic Design Technique'' was used to calculate the reliability of a partially stabilized zirconia (PSZ) piston bowl design. The details of the method and a set of sample calculations are presented. Test results of the piston bowl showed cracks in regions which had a high calculated probability of failure. In addition cracks developed in a region of high compressive/shear stress. Since Weibull reliability analysis only uses tensile stresses this area did not have a high calculated probability of failure. Several hypotheses are presented for the mode of failure in this region. The simplified technique was used to predict what the necessary material properties would have to be for successful PSZ insert of the design shown.

  1. Piezohydraulic Pump Development

    NASA Technical Reports Server (NTRS)

    Lynch, Christopher S.

    2005-01-01

    Reciprocating piston piezohydraulic pumps were developed originally under the Smart Wing Phase II program (Lynch) and later under the CHAP program (CSA, Kinetic Ceramics). These pumps focused on 10 cm scale stack actuators operating below resonance and, more recently, at resonance. A survey of commercially available linear actuators indicates that obtaining power density and specific power greater than electromagnetic linear actuators requires driving the stacks at frequencies greater than 1 KHz at high fields. In the case of 10 cm scale actuators the power supply signal conditioning becomes large and heavy and the soft PZT stack actuators generate a lot of heat due to internal losses. Reciprocation frequencies can be increased and material losses significantly decreased through use of millimeter scale single crystal stack actuators. We are presently targeting the design of pumps that utilize stacks at the 1-10 mm length scale and run at reciprocating frequencies of 20kHz or greater. This offers significant advantages over current approaches including eliminating audible noise and significantly increasing the power density and specific power of the system (including electronics). The pump currently under development will comprise an LC resonant drive of a resonant crystal and head mass operating against a resonant fluid column. Each of these resonant systems are high Q and together should produce a single high Q second order system.

  2. Compression ratio control in reciprocating piston engines

    SciTech Connect

    Doundoulakis, G.J.

    1989-08-29

    The patent describes compression ratio control for reciprocating piston engines. It comprises: a reciprocating engine crankcase; a plurality of compression/expansion cylinders rigidly attached to the crankcase; each of the cylinders including a curved surface and a cylinder head; a fuel mixture in-taken in the cylinders; a piston reciprocating along each cylinder's curved surface for providing compression/expansion to the fuel mixture; a crank mechanism including a crankshaft rotating about an axial line that is substantially equidistant from the heads, crankcheek lobes radially extending from the crankshaft, crankpins inside and in contact with crankpin bearings, axially extending between the crankcheek lobes, and crankshaft journal bearings for providing low frictional support to the crankshaft; a connecting rod for each of the cylinders connecting the piston with the crankpin; crankshaft positioning; a first transmission gear, a crankshaft gear for meshing with the transmission gear, and a slot cut on the crankcase; wherein the constraint in the displacement of the crankshaft in the horizontal sense is provided by the vertical edges of the slot, and wherein the vertical edges of the slot are preferably being curved with a radius of curvature substantially equal to the average pitch diameter of the crankshaft gear and thee first transmission gear for accurate meshing of the gears.

  3. Hydraulic servo for friction coupling element of automatic transmission

    SciTech Connect

    Sumiya, K.; Kano, T.; Kubo, S.; Watanabe, K.

    1987-07-28

    A hydraulic servo is described for a friction coupling element in an automatic transmission including a casing, the hydraulic servo, comprising: an annular drum having a first cylinder, a second cylinder, and a side wall connecting the first and second cylinders all integrally formed together as a single piece by press forming, the first cylinder having splines on its outer cylindrical surface and fixed to the interior of the casing through the splines and the second cylinder having splines on its inner cylindrical surface; a press-formed third cylinder joined to the side wall of the annular drum by a fully encircling weld; a piston fitted between the first cylinder and the third cylinder; and biasing means provided between the third cylinder and the second cylinder for returning the piston.

  4. Analysis of Variation of Piston Temperature with Piston Dimensions and Undercrown Cooling

    NASA Technical Reports Server (NTRS)

    Sanders, J C; Schramm, W B

    1948-01-01

    A theoretical analysis is presented that permits estimation of the changes in piston-temperature distribution induced by variations in the crown thickness, the ring-groove-pad thickness, and the undercrown surface heat-transfer coefficient. The analysis consists of the calculation of operating temperatures at various points in the piston body on the basis of the experimentally determined surface heat-transfer coefficients and boundary-region temperatures, as well as arbitrarily selected surface coefficients. Surface heat-transfer coefficients were estimated from the internal temperature gradients obtained by hardness surveys of aluminum pistons that had been operated under severe conditions in a liquid-cooled, single-cylinder, 5 1/2 by 6-inch test engine.

  5. Velocity pump reaction turbine

    DOEpatents

    House, P.A.

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  6. Velocity pump reaction turbine

    DOEpatents

    House, Palmer A.

    1984-01-01

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  7. Velocity pump reaction turbine

    DOEpatents

    House, Palmer A.

    1982-01-01

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  8. Measuring axial pump thrust

    DOEpatents

    Suchoza, B.P.; Becse, I.

    1988-11-08

    An apparatus for measuring the hydraulic axial thrust of a pump under operation conditions is disclosed. The axial thrust is determined by forcing the rotating impeller off of an associated thrust bearing by use of an elongate rod extending coaxially with the pump shaft. The elongate rod contacts an impeller retainer bolt where a bearing is provided. Suitable measuring devices measure when the rod moves to force the impeller off of the associated thrust bearing and the axial force exerted on the rod at that time. The elongate rod is preferably provided in a housing with a heat dissipation mechanism whereby the hot fluid does not affect the measuring devices. 1 fig.

  9. Measuring axial pump thrust

    DOEpatents

    Suchoza, Bernard P.; Becse, Imre

    1988-01-01

    An apparatus for measuring the hydraulic axial thrust of a pump under operation conditions is disclosed. The axial thrust is determined by forcing the rotating impeller off of an associated thrust bearing by use of an elongate rod extending coaxially with the pump shaft. The elongate rod contacts an impeller retainer bolt where a bearing is provided. Suitable measuring devices measure when the rod moves to force the impeller off of the associated thrust bearing and the axial force exerted on the rod at that time. The elongate rod is preferably provided in a housing with a heat dissipation mechanism whereby the hot fluid does not affect the measuring devices.

  10. Improving Free-Piston Stirling Engine Power Density

    NASA Technical Reports Server (NTRS)

    Briggs, Maxwell H.

    2016-01-01

    Analyses and experiments demonstrate the potential benefits of optimizing piston and displacer motion in a free piston Stirling Engine. Isothermal analysis shows the theoretical limits of power density improvement due to ideal motion in ideal Stirling engines. More realistic models based on nodal analysis show that ideal piston and displacer waveforms are not optimal, often producing less power than engines that use sinusoidal piston and displacer motion. Constrained optimization using nodal analysis predicts that Stirling engine power density can be increased by as much as 58% using optimized higher harmonic piston and displacer motion. An experiment is conducted in which an engine designed for sinusoidal motion is forced to operate with both second and third harmonics, resulting in a maximum piston power increase of 14%. Analytical predictions are compared to experimental data showing close agreement with indirect thermodynamic power calculations, but poor agreement with direct electrical power measurements.

  11. Overview of Multi-kilowatt Free-Piston Stirling Power Conversion Research at GRC

    NASA Technical Reports Server (NTRS)

    Geng, Steven M.; Mason, Lee S.; Dyson, Rodger W.; Penswick, L. Barry

    2008-01-01

    As a step towards development of Stirling power conversion for potential use in Fission Surface Power (FSP) systems, a pair of commercially available 1 kW class free-piston Stirling convertors and a pair of commercially available pressure wave generators (which will be plumbed together to create a high power Stirling linear alternator test rig) have been procured for in-house testing at Glenn Research Center. Delivery of both the Stirling convertors and the linear alternator test rig is expected by October, 2007. The 1 kW class free-piston Stirling convertors will be tested at GRC to map and verify performance. The convertors will later be modified to operate with a NaK liquid metal pumped loop for thermal energy input. The high power linear alternator test rig will be used to map and verify high power Stirling linear alternator performance and to develop power management and distribution (PMAD) methods and techniques. This paper provides an overview of the multi-kilowatt free-piston Stirling power conversion work being performed at GRC.

  12. Overview of Multi-Kilowatt Free-Piston Stirling Power Conversion Research at Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Geng, Steven M.; Mason, Lee S.; Dyson, Rodger W.; Penswick, L. Barry

    2008-01-01

    As a step towards development of Stirling power conversion for potential use in Fission Surface Power (FSP) systems, a pair of commercially available 1 kW class free-piston Stirling convertors and a pair of commercially available pressure wave generators (which will be plumbed together to create a high power Stirling linear alternator test rig) have been procured for in-house testing at Glenn Research Center (GRC). Delivery of both the Stirling convertors and the linear alternator test rig is expected by October 2007. The 1 kW class free-piston Stirling convertors will be tested at GRC to map and verify performance. The convertors will later be modified to operate with a NaK liquid metal pumped loop for thermal energy input. The high power linear alternator test rig will be used to map and verify high power Stirling linear alternator performance and to develop power management and distribution (PMAD) methods and techniques. This paper provides an overview of the multi-kilowatt free-piston Stirling power conversion work being performed at GRC.

  13. Overview of Multi-Kilowatt Free-Piston Stirling Power Conversion Research at GRC

    SciTech Connect

    Geng, Steven M.; Mason, Lee S.; Dyson, Rodger W.; Penswick, L. Barry

    2008-01-21

    As a step towards development of Stirling power conversion for potential use in Fission Surface Power (FSP) systems, a pair of commercially available 1 kW class free-piston Stirling convertors and a pair of commercially available pressure wave generators (which will be plumbed together to create a high power Stirling linear alternator test rig) have been procured for in-house testing at Glenn Research Center. Delivery of both the Stirling convertors and the linear alternator test rig is expected by October, 2007. The 1 kW class free-piston Stirling convertors will be tested at GRC to map and verify performance. The convertors will later be modified to operate with a NaK liquid metal pumped loop for thermal energy input. The high power linear alternator test rig will be used to map and verify high power Stirling linear alternator performance and to develop power management and distribution (PMAD) methods and techniques. This paper provides an overview of the multi-kilowatt free-piston Stirling power conversion work being performed at GRC.

  14. Hydraulic control for automatic transmission wherein sequential clutch engagement is controlled by an accumulator

    SciTech Connect

    Oguri, K.

    1987-05-19

    A hydraulic control is described for an automatic transmission which comprises, in combination: a source of operating fluid; and an accumulator having a working chamber fluid-connected with the first fluid passage. The accumulator comprises a piston and a spring for urging the piston in one direction, the piston comprising a switching member which controls the supply of operating fluid to the second fluid passage. The switching member is operable to establish the second fluid passage when the operating fluid supplied into the working chamber attains a predetermined value required to displace the piston against the spring to regulate the pressure of the operating fluid for minimizing a shock which would result when one of the first and second friction coupling members is brought into the coupled position.

  15. Improving Free-Piston Stirling Engine Specific Power

    NASA Technical Reports Server (NTRS)

    Briggs, Maxwell Henry

    2014-01-01

    This work uses analytical methods to demonstrate the potential benefits of optimizing piston and/or displacer motion in a Stirling Engine. Isothermal analysis was used to show the potential benefits of ideal motion in ideal Stirling engines. Nodal analysis is used to show that ideal piston and displacer waveforms are not optimal in real Stirling engines. Constrained optimization was used to identify piston and displacer waveforms that increase Stirling engine specific power.

  16. Improving Free-Piston Stirling Engine Specific Power

    NASA Technical Reports Server (NTRS)

    Briggs, Maxwell H.

    2015-01-01

    This work uses analytical methods to demonstrate the potential benefits of optimizing piston and/or displacer motion in a Stirling engine. Isothermal analysis was used to show the potential benefits of ideal motion in ideal Stirling engines. Nodal analysis is used to show that ideal piston and displacer waveforms are not optimal in real Stirling engines. Constrained optimization was used to identify piston and displacer waveforms that increase Stirling engine specific power.

  17. Internal position and limit sensor for free piston machines

    NASA Technical Reports Server (NTRS)

    Holliday, Ezekiel S. (Inventor); Wood, James Gary (Inventor)

    2012-01-01

    A sensor for sensing the position of a reciprocating free piston in a free piston Stirling machine. The sensor has a disk mounted to an end face of the power piston coaxially with its cylinder and reciprocating with the piston The disk includes a rim around its outer perimeter formed of an electrically conductive material A coil is wound coaxially with the cylinder, spaced outwardly from the outer perimeter of the disk and mounted in fixed position relative to the pressure vessel, preferably on the exterior of the pressure vessel wall.

  18. PIFFO -- Piston friction force measurements during engine operation

    SciTech Connect

    Koch, F.; Geiger, U.; Hermsen, F.G.

    1996-09-01

    Fuel consumption of a modern combustion engine is significantly influenced by the mechanical friction losses. Particularly in typical city driving, the reduction of the engine friction losses offers a remarkable potential in emission and fuel consumption reduction. The analysis of the engine friction distribution of modern engines shows that the piston group has a high share at total engine friction. This offers a high potential to optimize piston group friction. The paper presents results of recent research and development work in the field of the tribological system piston/piston ring/cylinder bore.

  19. Studies of a heat-pipe cooled piston crown

    SciTech Connect

    Wang, Q.; Cao, Y.; Wang, R.; Mignano, F.; Chen, G.

    2000-01-01

    Designing pistons with effective cooling is crucial to preventing piston failure and improving engine service life. A piston design that incorporates the heat-pipe cooling technology may provide a new approach that could improve the thermal-tribological performance of heavy-duty diesel engine pistons. A simplified piston crown with an annular reciprocating heat pipe is constructed to demonstrate this concept. The piston crown is experimentally tested on a specially designed reciprocating apparatus. Experimental data indicate that the annular heat-pipe cooling can greatly assist in reducing the temperature gradient and peak temperature along the ring bank. In order to predict the performance in a more realistic piston working condition, a three-dimensional finite element modeling is used to analyze the thermal performance of this annular heat-pipe cooled crown (AHPCC). The heat-transfer coefficient under the reciprocal environment of the experimental apparatus and the effective thermal conductance of the heat pipe are determined by correlating the numerical calculations with the experimental measurements. The results indicate that the heat-pipe-cooling concept presented in this paper can provide an effective means for piston temperature control under real piston operating conditions.

  20. Instantaneous engine frictional torque, its components and piston assembly friction. Final report

    SciTech Connect

    Nichols, F.A.; Henein, N.A.

    1992-05-01

    The overall goal of this report is to document the work done to determine the instantaneous frictional torque of internal combustion engine by using a new approach known as (P-{omega}) method developed at Wayne State University. The emphasis has been to improve the accuracy of the method, and apply it to both diesel and gasoline engines under different operating conditions. Also work included an investigation to determine the effect of using advanced materials and techniques to coat the piston rings on the instantaneous engine frictional torque and the piston assembly friction. The errors in measuring the angular velocity, {omega}, have been determined and found to be caused by variations in the divisions within one encoder, encoder-to-encoder variations, misalignment within the encoder itself and misalignment between the encoder and crankshaft. The errors in measuring the cylinder gas pressure, P, have been determined and found to be caused by transducer-to-transducer variations, zero drift, thermal stresses and lack of linearity. The ability of the (P-{omega}) method in determining the frictional torque of many engine components has been demonstrated. These components include valve train, fuel injection pump with and without fuel injection, and piston with and without different ring combinations. The emphasis in this part of the research program has been on the piston-ring assembly friction. The effects of load and other operating variables on IFT have been determined. The motoring test, which is widely used in industry to measure engine friction has been found to be inaccurate. The errors have been determined at different loads.

  1. Design and Operation of a Borehole Straddle Packer for Ground-Water Sampling and Hydraulic Testing of Discrete Intervals at U.S. Air Force Plant 6, Marietta, Georgia

    USGS Publications Warehouse

    Holloway, Owen G.; Waddell, Jonathan P.

    2008-01-01

    A borehole straddle packer was developed and tested by the U.S. Geological Survey to characterize the vertical distribution of contaminants, head, and hydraulic properties in open-borehole wells as part of an ongoing investigation of ground-water contamination at U.S. Air Force Plant 6 (AFP6) in Marietta, Georgia. To better understand contaminant fate and transport in a crystalline bedrock setting and to support remedial activities at AFP6, numerous wells have been constructed that include long open-hole intervals in the crystalline bedrock. These wells can include several discontinuities that produce water, which may contain contaminants. Because of the complexity of ground-water flow and contaminant movement in the crystalline bedrock, it is important to characterize the hydraulic and water-quality characteristics of discrete intervals in these wells. The straddle packer facilitates ground-water sampling and hydraulic testing of discrete intervals, and delivery of fluids including tracer suites and remedial agents into these discontinuities. The straddle packer consists of two inflatable packers, a dual-pump system, a pressure-sensing system, and an aqueous injection system. Tests were conducted to assess the accuracy of the pressure-sensing systems, and water samples were collected for analysis of volatile organic compound (VOCs) concentrations. Pressure-transducer readings matched computed water-column height, with a coefficient of determination of greater than 0.99. The straddle packer incorporates both an air-driven piston pump and a variable-frequency, electronic, submersible pump. Only slight differences were observed between VOC concentrations in samples collected using the two different types of sampling pumps during two sampling events in July and August 2005. A test conducted to assess the effect of stagnation on VOC concentrations in water trapped in the system's pump-tubing reel showed that concentrations were not affected. A comparison was conducted

  2. Lubrication and friction of piston and piston rings in internal combustion engines

    SciTech Connect

    Miltsios, G.K.

    1987-01-01

    A model was developed for determining the lubrication regime under which the piston and piston rings operate in the internal combustion engine, and for calculating the friction force of each component at each crank angle. The ring is assumed to have a circular profile in the direction of motion. The profile changes in time because tilting of the ring is taken into account. In the circumferential direction, two cases are examined. In the first, the ring is assumed to be a perfect circle, and the bore cross-section elliptic. The finite-element method is used to solve the two-dimensional Reynolds equation. In the second, the clearance between ring and bore is assumed to be constant, and the one-dimensional Reynolds equation is used. The ring is treated as infinitely long, and an integration of the Reynolds equation is performed. The piston is treated like the one-dimensional case of the ring, except that a correction factor is used to take care of the fact that the piston skirt has dimensions of the same magnitude in both direction. For all cases, mixed lubrication is considered when the oil film thickness becomes lower than a specified value.

  3. Fluorocarbon seal replaces metal piston ring in low density gas environment

    NASA Technical Reports Server (NTRS)

    Morath, W. D.; Morgan, N. E.

    1967-01-01

    Reinforced fluorocarbon cupseal, which provides an integral lip-type seal, replaces the metal piston rings in piston-cylinder configurations used in the compression of low density gases. The fluorocarbon seal may be used as cryogenic compressor piston seals.

  4. Stability analysis of free piston Stirling engines

    NASA Astrophysics Data System (ADS)

    Bégot, Sylvie; Layes, Guillaume; Lanzetta, François; Nika, Philippe

    2013-03-01

    This paper presents a stability analysis of a free piston Stirling engine. The model and the detailed calculation of pressures losses are exposed. Stability of the machine is studied by the observation of the eigenvalues of the model matrix. Model validation based on the comparison with NASA experimental results is described. The influence of operational and construction parameters on performance and stability issues is exposed. The results show that most parameters that are beneficial for machine power seem to induce irregular mechanical characteristics with load, suggesting that self-sustained oscillations could be difficult to maintain and control.

  5. Analysis of reciprocating compressor piston rod failures

    SciTech Connect

    Tripp, H.A.; Drosjack, M.J.

    1984-02-01

    This report presents the analysis of five piston rod failures which occurred on reciprocating compressors. Calculations are shown for rod stress which includes nominal rod loading sources as well as additional loads due to unusual pressure losses in the compressor valves, flexure of the rods due to misalignment, and manufacturing errors. The additional loads were incorporated on the basis of field measurements. The stress values are used with Baquin's equation to produce fatigue life curves for the rods. Based on the calculations, recommendations for modified rods were made. The calculation procedures are described in a manner which will permit their application to other reciprocating compressors.

  6. Afterbay, looking west at the discharge channels and hydraulic gate ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Afterbay, looking west at the discharge channels and hydraulic gate check cylinders. The outlet at left without a hydraulic cylinder is the outlet for the ca. 1974-1975 outdoor regulatory pumps. The gate box for the spillback is visible at the far left on the west side of the canal - Wellton-Mohawk Irrigation System, Pumping Plant No. 1, Bounded by Gila River & Union Pacific Railroad, Wellton, Yuma County, AZ

  7. Hydrogen Peroxide Gas Generator Cycle with a Reciprocating Pump

    SciTech Connect

    Whitehead, J C

    2002-06-11

    A four-chamber piston pump is powered by decomposed 85% hydrogen peroxide. The performance envelope of the evolving 400 gram pump has been expanded to 172 cc/s water flow at discharge pressures near 5 MPa. A gas generator cycle system using the pump has been tested under similar conditions of pressure and flow. The powerhead gas is derived from a small fraction of the pumped hydrogen peroxide, and the system starts from tank pressures as low as 0.2 MPa. The effects of steam condensation on performance have been evaluated.

  8. 92. STARBOARD CATAPULT HYDRAULIC MANIFOLD FORWARD LOOKING AFT SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    92. STARBOARD CATAPULT HYDRAULIC MANIFOLD - FORWARD LOOKING AFT SHOWING THE SEVEN (7) DISCHARGE LINES FROM THE SEVEN (7) HYDRAULIC PUMPS THROUGH SHUT-OFF VALVES TO ACCUMULATOR TANKS. - U.S.S. HORNET, Puget Sound Naval Shipyard, Sinclair Inlet, Bremerton, Kitsap County, WA

  9. 40. HYDRAULIC OIL LINES, VALVES AND GAUGE FOR SLIDE GATE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. HYDRAULIC OIL LINES, VALVES AND GAUGE FOR SLIDE GATE HOISTS IN MACHINERY CHAMBER FOR SLUICE GATE WORKS ON GALLERY 1. NOTE HYDRAULIC OIL TANK AT UPPER RIGHT AND SCHEMATIC DRAWING OF PUMPING SYSTEM AT LEFT. VIEW TO NORTHWEST. - Owyhee Dam, Across Owyhee River, Nyssa, Malheur County, OR

  10. 69. (Credit JTL) View beneath marble meter bench showing hydraulic ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    69. (Credit JTL) View beneath marble meter bench showing hydraulic lines leading to water valve hydraulic control cylinders from control handles in bench; strings and pulleys activate meters. - McNeil Street Pumping Station, McNeil Street & Cross Bayou, Shreveport, Caddo Parish, LA

  11. Symmetry of the Adiabatic Condition in the Piston Problem

    ERIC Educational Resources Information Center

    Anacleto, Joaquim; Ferreira, J. M.

    2011-01-01

    This study addresses a controversial issue in the adiabatic piston problem, namely that of the piston being adiabatic when it is fixed but no longer so when it can move freely. It is shown that this apparent contradiction arises from the usual definition of adiabatic condition. The issue is addressed here by requiring the adiabatic condition to be…

  12. External combustion engine with improved piston and crankshaft linkage

    SciTech Connect

    Lopez, F.

    1991-03-12

    This patent describes improvement in an external heat engine having a piston mounted for movement between a first position and a second position, means for forcibly moving the piston from the first position to the second position (power stroke), a crankshaft rotatable about a main axis, and means for linking the piston and crankshaft so that linear movement of the piston from the first position to the second position during the power stroke is transformed into rotational movement of the crankshaft, the power stroke corresponding to a first portion of one rotation of the crankshaft about the main axis, the piston moving from the second position to the first position during a second portion of one rotation of the crankshaft (compression stroke). The improvement comprises: means for linking the piston and crankshaft comprises a rotatable member; means connected to the piston for rotatably supporting the rotatable member, the rotatable member being rotatable about a first point and being connected to the crankshaft at a second point offset from the first point, for rotation about the first point in response to rotation of the crankshaft about its main axis, the first point being disposed so that when the piston is in the first position, the first point is substantially aligned with the main axis of the crankshaft during a third portion of one rotation of the crankshaft about the main axis.

  13. Fluid powered linear piston motor with harmonic coupling

    DOEpatents

    Raymond, David W.

    2016-09-20

    A motor is disclosed that includes a module assembly including a piston that is axially cycled. The piston axial motion is coupled to torque couplers that convert the axial motion into rotary motion. The torque couplers are coupled to a rotor to rotate the rotor.

  14. CNC grinding of valve housing piston holes

    SciTech Connect

    Ashbaugh, F.A.

    1991-11-01

    Grinding has traditionally been used for machining operations requiring close dimensional tolerances and better surface finishes than can be obtained from other metal removal techniques. Using a grinding process for the last metal removal operation, the close tolerances and surface finishes can be easily held while eliminating the adverse conditions from the current metal removal processes. Pre-machined test parts were sent to a machine tool supplier to have the critical inside features of a typical piston bore finish machined using an internal CNC grinder equipped with high-frequency spindles. The piston bore and sealing angle were ground using a standard 120-grit silicon carbide wheel. The wafer step was machined using a solid carbide tool designed and built at Allied-Signal Inc., Kansas City Division (KCD). Six consecutive parts were machined for evaluation. The repeatability on all six parts was within print requirements. The inside corner radii was less than 0.002 in. and the surface finish was 8.2 arithmetical average or better as defined by ANSI B46.1, Surface Texture. Machining parts by this grinding process would eliminate bellmouth, chatter, waviness, and traveler polishing operations. It would produce a superior surface finish, small inside radii, and small easily removable burrs. It would also hold tolerances closer and significantly reduce scrap, rework, rejects, and deviations. 1 fig.

  15. Piston ring conformability in a distorted bore

    SciTech Connect

    Tomanik, E.

    1996-09-01

    Some different equations to calculate the maximum deformation that a given ring can conform to, are found in the bibliography. These equations do not consider the ring end gap and ovality, gas pressure acting on it, nor the actual bore shape, but only the maximum amplitude for a given term (from a fourier Series that describes the bore shape). A more exact prediction can be done with Finite Element tools or specific codes for piston ring simulation; those approaches are not usually carried out, except in special cases or in more fundamental studies. Experimental measurements were carried out to verify the simple conformability criteria. Deformed shapes were produced in a static jig and areas of non contact, between ring and the deformed bore shapes, were measured. Based on these measurements, a semi-empirical equation is proposed to calculate the limit of piston ring conformability. The proposed equation is simple enough to be calculated in the initial engine design phases (where the required inputs to more detailed methods are not available) or on a day-by-day basis. If bore deformation surpasses the ring conformability, the percentage of ring periphery contacting the bore can be estimated, in a first approximation, by the linear regression empirically found in the experiments.

  16. A Hydraulic Blowdown Servo System For Launch Vehicle

    NASA Astrophysics Data System (ADS)

    Chen, Anping; Deng, Tao

    2016-07-01

    This paper introduced a hydraulic blowdown servo system developed for a solid launch vehicle of the family of Chinese Long March Vehicles. It's the thrust vector control (TVC) system for the first stage. This system is a cold gas blowdown hydraulic servo system and consist of gas vessel, hydraulic reservoir, servo actuator, digital control unit (DCU), electric explosion valve, and pressure regulator etc. A brief description of the main assemblies and characteristics follows. a) Gas vessel is a resin/carbon fiber composite over wrapped pressure vessel with a titanium liner, The volume of the vessel is about 30 liters. b) Hydraulic reservoir is a titanium alloy piston type reservoir with a magnetostrictive sensor as the fluid level indicator. The volume of the reservoir is about 30 liters. c) Servo actuator is a equal area linear piston actuator with a 2-stage low null leakage servo valve and a linear variable differential transducer (LVDT) feedback the piston position, Its stall force is about 120kN. d) Digital control unit (DCU) is a compact digital controller based on digital signal processor (DSP), and deployed dual redundant 1553B digital busses to communicate with the on board computer. e) Electric explosion valve is a normally closed valve to confine the high pressure helium gas. f) Pressure regulator is a spring-loaded poppet pressure valve, and regulates the gas pressure from about 60MPa to about 24MPa. g) The whole system is mounted in the aft skirt of the vehicle. h) This system delivers approximately 40kW hydraulic power, by contrast, the total mass is less than 190kg. the power mass ratio is about 0.21. Have finished the development and the system test. Bench and motor static firing tests verified that all of the performances have met the design requirements. This servo system is complaint to use of the solid launch vehicle.

  17. Differential piston and valving system for detonation device

    SciTech Connect

    Adams, J.S.

    1988-07-26

    A method of producing repeated detonations in a detonation chamber is described comprising: a. arranging a movable differential piston in a differential cylinder around a fixed wall of the detonation chamber so as to form a fluid flow passageway between the detonation chamber wall and the piston; and b. arranging valves to cooperate with the differential piston so that a power stroke of the differential piston draws cooling and purging air into contact with the detonation chamber wall and compresses recharging air and so that a return stroke of the differential piston forces the cooling and purging air through the passageway into the detonation chamber to purge exhaust gas from the detonation chamber and subsequently admits compressed recharging air through the passageway and into the detonation chamber.

  18. Piston ring microwelding: Field/lab correlation and prevention

    SciTech Connect

    Shuster, M.; Mahler, F.; Deis, M.; Macy, D.; Frame, R.

    1996-12-31

    This paper will discuss the microwelding phenomenon between aluminum pistons and iron piston rings in internal combustion engines. The mechanism of microwelding as observed on field run engine hardware has been correlated with the microwelding mechanism generated in an accelerated laboratory bench test. Hardness distribution measurements, metallography, scanning electron microscopy, and EDS spectrometer have been used in the analysis of this surface damage mechanism. In this work, the metallurgical parameters were formulated which describe the microwelding phenomenon after field usage and after accelerated testing. It was demonstrated that the high output water-cooled two-stroke engine accelerated bench test reproduces the field run engine microwelding phenomenon in 30 minutes. It was shown that the best prevention of the microwelding phenomenon was provided when the piston and piston ring surfaces were separated by a soft, wear and heat resistant coating, integrally bonded to the piston ring.

  19. Powder-lubricant piston ring for diesel engines

    SciTech Connect

    Heshmat, H.

    1992-02-04

    This patent describes a diesel engine fueled by coal-water slurry. It comprises: a distal end including a piston head impinging upon a combustion chamber formed between the piston and a cylinder of the diesel engine; a proximal end including means for attaching the piston to a reciprocating arm means; a heat dam between the distal end and the proximal end, the heat dam including a portion of substantially decreased diameter thereby forming a debris chamber within the piston; the distal portion including a particulate return valve communicating from the debris chamber to the combustion chamber wherein residue from the coal-water slurry is returned from the debris chamber to the combustion chamber; and at least one powder-lubricated ring circumferentially extending around the piston head wherein lubricant powder is disposed between the powder-lubricant powder is disposed between the powder-lubricant ring and a wall of the cylinder.

  20. Design optimization of flow channel and performance analysis for a new-type centrifugal blood pump

    NASA Astrophysics Data System (ADS)

    Ji, J. J.; Luo, X. W.; Y Wu, Q.

    2013-12-01

    In this paper, a new-type centrifugal blood pump, whose impeller is suspended inside a pump chamber with hydraulic bearings, is presented. In order to improve the hydraulic performance of the pump, an internal flow simulation is conducted to compare the effects of different geometrical parameters of pump flow passage. Based on the numerical results, the pumps can satisfy the operation parameters and be free of hemolysis. It is noted that for the pump with a column-type supporter at its inlet, the pump head and hydraulic efficiency decreases compared to the pump with a step-type support structure. The performance drop is caused by the disturbed flow upstream impeller inlet. Further, the unfavorable flow features such as reverse flow and low velocity in the pump may increases the possibility of thrombus. It is also confirmed that the casing shape can little influence pump performance. Those results are helpful for design optimization in blood pump development.

  1. The environmental pluses of diaphragm pumps

    SciTech Connect

    Blair, H. )

    1993-05-01

    When it comes to environmental safety, pump design has an important role to play. While most types of pumps can be made safer, by adding such items as better seals, some designs offer inherent safety. A primary example of this is the hydraulically actuated diaphragm pump. This pump has been used extensively in metering applications where accuracy and controlled flow are required. One of the main features of this positive-displacement device is its sealless, leaktight design. The pumped fluid is confined between the pump's liquid end and its diaphragm, obviating seals or packings. Process-type diaphragm pumps have similar designs, but are built to handle larger flows. With the current and future limitations on emissions from pumps handling hazardous fluids, process-type diaphragm pumps offer a significant alternative for certain processes. This is especially true in low-flow, high-head applications with clean fluids or slurries. However, before making the decision to use diaphragm pumps the engineer needs to know their limitations and to give special attention to the pump piping configuration. The paper discusses the following: confining the fluid; working under pressure; the flow fingerprint; delivering high flowrates; and design features (pumping head or liquid end, diaphragm, diaphragm materials, check valves, hydraulic system, power end, and driver).

  2. Engine having a high pressure hydraulic system and low pressure lubricating system

    DOEpatents

    Bartley, Bradley E.; Blass, James R.; Gibson, Dennis H.

    2000-01-01

    An engine includes a high pressure hydraulic system having a high pressure pump and at least one hydraulically-actuated device attached to an engine housing. A low pressure engine lubricating system is attached to the engine housing and includes a circulation conduit fluidly connected to an outlet from the high pressure pump.

  3. Spiral groove seal. [for hydraulic rotating shaft

    NASA Technical Reports Server (NTRS)

    Ludwig, L. P. (Inventor)

    1973-01-01

    Mating flat surfaces inhibit leakage of a fluid around a stationary shaft. A spiral groove pattern produces a pumping action toward the fluid when the shaft rotates which prevents leakage while a generated hydraulic lifting force separates the mating surfaces to minimize wear.

  4. Ocean thermal gradient hydraulic power plant.

    PubMed

    Beck, E J

    1975-07-25

    Solar energy stored in the oceans may be used to generate power by exploiting ploiting thermal gradients. A proposed open-cycle system uses low-pressure steam to elevate vate water, which is then run through a hydraulic turbine to generate power. The device is analogous to an air lift pump. PMID:17813707

  5. Rotating-Pump Design Code

    NASA Technical Reports Server (NTRS)

    Walker, James F.; Chen, Shu-Cheng; Scheer, Dean D.

    2006-01-01

    Pump Design (PUMPDES) is a computer program for designing a rotating pump for liquid hydrogen, liquid oxygen, liquid nitrogen, water, methane, or ethane. Using realistic properties of these fluids provided by another program called GASPAK, this code performs a station-by-station, mean-line analysis along the pump flow path, obtaining thermodynamic properties of the pumped fluid at each station and evaluating hydraulic losses along the flow path. The variables at each station are obtained under constraints that are consistent with the underlying physical principles. The code evaluates the performance of each stage and the overall pump. In addition, by judiciously choosing the givens and the unknowns, the code can perform a geometric inverse design function: that is, it can compute a pump geometry that yields a closest approximation of given design point. The code contains two major parts: one for an axial-rotor/inducer and one for a multistage centrifugal pump. The inducer and the centrifugal pump are functionally integrated. The code can be used in designing and/or evaluating the inducer/centrifugal-pump combination or the centrifugal pump alone. The code is written in standard Fortran 77.

  6. Space Shuttle Upgrades Advanced Hydraulic Power System

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Three Auxiliary Power Units (APU) on the Space Shuttle Orbiter each provide 145 hp shaft power to a hydraulic pump which outputs 3000 psi hydraulic fluid to 41 hydraulic actuators. A hydrazine fuel powered APU utilized throughout the Shuttle program has undergone many improvements, but concerns remain with flight safety, operational cost, critical failure modes, and hydrazine related hazards. The advanced hydraulic power system (AHPS), also known as the electric APU, is being evaluated as an upgrade to replace the hydrazine APU. The AHPS replaces the high-speed turbine and hydrazine fuel supply system with a battery power supply and electric motor/pump that converts 300 volt electrical power to 3000 psi hydraulic power. AHPS upgrade benefits include elimination of toxic hydrazine propellant to improve flight safety, reduction in hazardous ground processing operations, and improved reliability. Development of this upgrade provides many interesting challenges and includes development of four hardware elements that comprise the AHPS system: Battery - The battery provides a high voltage supply of power using lithium ion cells. This is a large battery that must provide 28 kilowatt hours of energy over 99 minutes of operation at 300 volts with a peak power of 130 kilowatts for three seconds. High Voltage Power Distribution and Control (PD&C) - The PD&C distributes electric power from the battery to the EHDU. This 300 volt system includes wiring and components necessary to distribute power and provide fault current protection. Electro-Hydraulic Drive Unit (EHDU) - The EHDU converts electric input power to hydraulic output power. The EHDU must provide over 90 kilowatts of stable, output hydraulic power at 3000 psi with high efficiency and rapid response time. Cooling System - The cooling system provides thermal control of the Orbiter hydraulic fluid and EHDU electronic components. Symposium presentation will provide an overview of the AHPS upgrade, descriptions of the four

  7. PUMP CONSTRUCTION

    DOEpatents

    Strickland, G.; Horn, F.L.; White, H.T.

    1960-09-27

    A pump which utilizes the fluid being pumped through it as its lubricating fluid is described. This is achieved by means of an improved bearing construction in a pump of the enclosed or canned rotor type. At the outlet end of the pump, adjacent to an impeller mechanism, there is a bypass which conveys some of the pumped fluid to a chamber at the inlet end of the pump. After this chamber becomes full, the pumped fluid passes through fixed orifices in the top of the chamber and exerts a thrust on the inlet end of the pump rotor. Lubrication of the rotor shaft is accomplished by passing the pumped fluid through a bypass at the outlet end of the rotor shaft. This bypass conveys Pumped fluid to a cooling means and then to grooves on the surface of the rotor shait, thus lubricating the shaft.

  8. Design of a smart material electro-hydraulic actuator with improved frequency bandwidth

    NASA Astrophysics Data System (ADS)

    Larson, John P.; Dapino, Marcelo J.

    2012-04-01

    Smart material electro-hydraulic actuators utilize fluid rectification by one-way valves to convert the small, high-frequency, high-force motions of smart materials such as piezoelectrics and magnetostrictives into useful motions of a hydraulic cylinder. These actuators have potential to replace centralized hydraulic pumps and lines with lightweight, compact, power-by-wire systems. This paper presents the design and testing of an improved actuator system. To increase the frequency bandwidth of operation, a lumped-parameter model is developed and validated based on experimental study of a pump with a performance capacity of 18.4 W. The critical parameters for pump performance are identified and their effect on pump performance assessed. The geometry of the hydraulic manifold that integrates the smart material pump and the output hydraulic cylinder is found to be critical for determining the effective system bandwidth.

  9. Afterbay, looking north at hydraulic gate check cylinders and lamps. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Afterbay, looking north at hydraulic gate check cylinders and lamps. The gate lift in the foreground is an addition associated with the ca. 1974-1975 regulatory pumps - Wellton-Mohawk Irrigation System, Pumping Plant No. 2, Bounded by Interstate 8 to south, Wellton, Yuma County, AZ

  10. Afterbay, showing the six discharge channels and six hydraulic gate ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Afterbay, showing the six discharge channels and six hydraulic gate check cylinders, one for each of the discharge pipes. A stilling well is in the right foreground, and the Pumping Plant is visible in the background. View to the north - Wellton-Mohawk Irrigation System, Pumping Plant No. 1, Bounded by Gila River & Union Pacific Railroad, Wellton, Yuma County, AZ

  11. 46 CFR 111.97-5 - Electric and hydraulic power supply.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... and hydraulic power supply. (a) Each electric motor-driven door operating system must have the same... lighting and power system. (d) The motor-driven hydraulic pumps must automatically maintain the accumulator... hydraulic system for each door operator must meet paragraphs (a) and (b) of this section. (g) The...

  12. 46 CFR 64.89 - Cargo pump unit.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) The cargo pump power unit must be— (1) Diesel; (2) Hydraulic; (3) Pneumatic; or (4) Electric. (c) The starting system for a cargo pump power unit must be designed to be compatible with the hazard associated... 46 Shipping 2 2011-10-01 2011-10-01 false Cargo pump unit. 64.89 Section 64.89 Shipping...

  13. 46 CFR 64.89 - Cargo pump unit.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) The cargo pump power unit must be— (1) Diesel; (2) Hydraulic; (3) Pneumatic; or (4) Electric. (c) The starting system for a cargo pump power unit must be designed to be compatible with the hazard associated... 46 Shipping 2 2010-10-01 2010-10-01 false Cargo pump unit. 64.89 Section 64.89 Shipping...

  14. Pumping test evaluation of stream depletion parameters.

    PubMed

    Lough, Hilary K; Hunt, Bruce

    2006-01-01

    Descriptions are given of a pumping test and a corresponding analysis that permit calculation of all five hydrogeological parameters appearing in the Hunt (2003) solution for stream depletion caused by ground water abstraction from a well beside a stream. This solution assumes that flow in the pumped aquifer is horizontal, flow in the overlying aquitard or system of aquitards is vertical, and the free surface in the top aquitard is allowed to draw down. The definition of an aquitard in this paper is any layer with a vertical hydraulic conductivity much lower than the horizontal hydraulic conductivity of the pumped aquifer. These "aquitards" may be reasonably permeable layers but are distinguished from the pumped aquifer by their hydraulic conductivity contrast. The pumping test requires a complete set of drawdown measurements from at least one observation well. This well must be deep enough to penetrate the pumped aquifer, and pumping must continue for a sufficient time to ensure that depleted streamflow becomes a significant portion of the well abstraction rate. Furthermore, two of the five parameters characterize an aquitard that overlies the pumped aquifer, and values for these parameters are seen to be dependent upon the initial water table elevation in the aquitard. The field test analyzed herein used a total of eight observation wells screened in the pumped aquifer, and measurements from these wells gave eight sets of parameters that are used in a sensitivity analysis to determine the relative importance of each parameter in the stream depletion calculations. PMID:16857031

  15. Simulation and control of an electro-hydraulic actuated clutch

    NASA Astrophysics Data System (ADS)

    Balau, Andreea-Elena; Caruntu, Constantin-Florin; Lazar, Corneliu

    2011-08-01

    The basic function of any type of automotive transmission is to transfer the engine torque to the vehicle with the desired ratio smoothly and efficiently and the most common control devices inside the transmission are clutches and hydraulic pistons. The automatic control of the clutch engagement plays a crucial role in Automatic Manual Transmission (AMT) vehicles, being seen as an increasingly important enabling technology for the automotive industry. It has a major role in automatic gear shifting and traction control for improved safety, drivability and comfort and, at the same time, for fuel economy. In this paper, a model for a wet clutch actuated by an electro-hydraulic valve used by Volkswagen for automatic transmissions is presented. Starting from the developed model, a simulator was implemented in Matlab/Simulink and the model was validated against data obtained from a test-bench provided by Continental Automotive Romania, which includes the Volkswagen wet clutch actuated by the electro-hydraulic valve. Then, a predictive control strategy is applied to the model of the electro-hydraulic actuated clutch with the aims of controlling the clutch piston displacement and decreasing the influence of the network-induced delays on the control performances. The simulation results obtained with the proposed method are compared with the ones obtained with different networked controllers and it is shown that the strategy proposed in this paper can indeed improve the performances of the control system.

  16. Ultralean combustion in general aviation piston engines

    NASA Technical Reports Server (NTRS)

    Chirivella, J. E.

    1979-01-01

    The role of ultralean combustion in achieving fuel economy in general aviation piston engines was investigated. The aircraft internal combustion engine was reviewed with regard to general aviation requirements, engine thermodynamics and systems. Factors affecting fuel economy such as those connected with an ideal leanout to near the gasoline lean flammability limit (ultralean operation) were analyzed. A Lycoming T10-541E engine was tested in that program (both in the test cell and in flight). Test results indicate that hydrogen addition is not necessary to operate the engine ultralean. A 17 percent improvement in fuel economy was demonstrated in flight with the Beechcraft Duke B60 by simply leaning the engine at constant cruiser power and adjusting the ignition for best timing. No detonation was encountered, and a 25,000 ft ceiling was available. Engine roughness was shown to be the limiting factor in the leanout.

  17. TCM aircraft piston engine emission reduction program

    NASA Technical Reports Server (NTRS)

    Rezy, B. J.

    1976-01-01

    The technology necessary to safely reduce general aviation piston engine exhaust emissions to meet the EPA 1980 Emission Standards with minimum adverse effects on cost, weight, fuel economy, and performance was demonstrated. A screening and assessment of promising emission reduction concepts was provided, and the preliminary design and development of those concepts was established. A system analysis study and a decision making procedure were used by TCM to evaluate, trade off, and rank the candidate concepts from a list of 14 alternatives. Cost, emissions, and 13 other design criteria considerations were defined and traded off against each candidate concept to establish its merit and emission reduction usefulness. A computer program was used to aid the evaluators in making the final choice of three concepts.

  18. Powder-lubricated piston ring development

    NASA Astrophysics Data System (ADS)

    Heshmat, H.

    1991-06-01

    The overall objective of this program was to demonstrate the feasibility of a new particulate lubrication concept for reducing piston ring/cylinder liner wear in coal-water slurry-fueled diesels by replacing the present oil-lubricated system with powder lubrication that would utilize coal ash, either alone or in combination with another powder. The feasibility of this particular lubrication concept for reducing ring/liner wear was demonstrated in a series of experiments utilizing redesigned and properly selected components. Wear performance for suitable ring/liner materials lubricated with a powder that incorporates the abrasive ash particles was evaluated in terms of load capacity, friction, and rate of wear for the best combination of ring design, ring and liner materials, and powder constituents. In addition, the use of a powder-lubricated system in the upper portion of the cylinder isolated the particulates from the lower portions of the engine, thus further reducing engine wear.

  19. Powder-lubricated piston ring development

    SciTech Connect

    Heshmat, H.

    1991-06-01

    The overall objective of this program was to demonstrate the feasibility of a new particulate lubrication concept for reducing piston ring/cylinder liner wear in coal-water slurry-fueled diesels by replacing the present oil-lubricated system with powder lubrication that would utilize coal ash, either alone or in combination with another powder. The feasibility of this particular lubrication concept for reducing ring/liner wear was demonstrated in a series of experiments utilizing redesigned and properly selected components. Wear performance for suitable ring/liner materials lubricated with a powder that incorporates the abrasive ash particles was evaluated in terms of load capacity, friction, and rate of wear for the best combination of ring design, ring and liner materials, and powder constituents. In addition, the use of a powder-lubricated system in the upper portion of the cylinder isolated the particulates from the lower portions of the engine, thus further reducing engine wear. (VC)

  20. Thermo-optical piston in gases

    SciTech Connect

    Chermyaninov, I. V.; Chernyak, V. G.

    2014-12-09

    The new steady state of the gas – thermo-optical pressure difference is considered. This condition occurs in the gas that is in a closed capillary in the field of resonant laser radiation and a temperature gradient. The pressure difference at the ends of the capillary is determined by the interaction of three fluxes – thermal creep, the light-induced drift and Poiseuille flux. Laser radiation and the temperature gradient play the role of thermo-optical piston (TOP) which compresses the gas in different ends of the capillary. The problem is solved based on the linearized Boltzmann kinetic equations that take into account the induced and spontaneous transitions in atoms or molecules. Expressions for the kinetic coefficients defining TOP-effect are obtained in the case of a nearly free-molecular regime. Numerical estimates of the TOP-effect are given for sodium vapor.

  1. New Outboard Motor Firing on All Pistons

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Seven years ago, NASA was in the planning stages of producing an aluminum alloy with higher strength and resistance at elevated temperatures for aerospace applications. At that time, a major automobile manufacturer happened to approach NASA for solutions to lowering engine emissions and the costs associated with developing aluminum engine pistons. The Space Agency realized the answers to the manufacturer's problems could lie within the proposed alloy. Jonathan Lee, a structural materials engineer at Marshall Space Flight Center s Materials, Processes, and Manufacturing Department, and PoShou Chen, a scientist with Huntsville, Alabama-based Morgan Research Corporation, partook in the development project as the inventors. The resulting NASA High-Strength Aluminum Alloy, or "MSFC-398," was capable of casting metal components at both high volume and low cost, making it extremely attractive for commercial application, not just in automotives, but in a variety of other industries, as well. NASA patented the technology and introduced it for public licensing in 2001.

  2. Piston core properties and disturbance effects.

    USGS Publications Warehouse

    Olsen, H.W.; Rice, T.L.; Mayne, P.W.; Singh, R.D.

    1986-01-01

    Laboratory geotechnical data on piston cores for 31 sites on the mid-Atlantic Upper Continental Slope show the near-surface sediments vary from normally consolidated to somewhat overconsolidated clayey silts and silty clays of low to high plasticity. They also exhibit normalized behavior and their index property correlations with the effective-stress friction angle, the undrained strength ratio, and the compression index are reasonably consistent with existing knowledge. Because existing knowledge concerning disturbance effect suggests that in-situ preconsolidation stress values should lie between those derived from the triaxial and laboratory vane data, the preconsolidation stress values obtained from the consolidation data appear to be appreciably smaller than in-situ values. -from ASCE Publications Information

  3. Stirling Engines and Irrigation Pumping

    SciTech Connect

    West, C.D.

    1987-01-01

    This report was prepared in support of the Renewable Energy Applications and Training Project that is sponsored by the U.S. Agency for International Development for which ORNL provides technical assistance. It briefly outlines the performance that might be achievable from various kinds of Stirling-engine-driven irrigation pumps. Some emphasis is placed on the very simple liquid-piston engines that have been the subject of research in recent years and are suitable for manufacture in less well-developed countries. In addition to the results quoted here (possible limits on M4 and pumping head for different-size engines and various operating conditions), the method of calculation is described in sufficient detail for engineers to apply the techniques to other Stirling engine designs for comparison.

  4. Hydraulic servo for friction coupling element of automatic transmission

    SciTech Connect

    Sumiya, K.; Watanabe, K.; Kubo, S.

    1987-09-01

    A hydraulic servo is described for a friction coupling element in an automatic transmission including a casing, comprising: an annular drum fixed to the automatic transmission casing and having an outer cylinder, as in inner cylinder, a sidewall connecting the outer and inner cylinders, and an intermediate cylinder connected to the sidewall between the outer and inner cylinders to divide the interior of the drum into outer and inner annular spaces; a piston slidably mounted within the outer annular space, between the outer and intermediate cylinders, the piston having a terminal axially extending guide sleeve portion; and return biasing means including: a connecting member having one end fixed to the piston and abutting the guide sleeve portion and the other end located in the inner annular space, between the inner cylinder and the intermediate cylinder; a retainer fixed to the inner cylinder, at a position axially inward of the guide sleeve with respect to the sidewall when the piston is fully retracted, and; return springs interposed within the inner annular space between the other end of the connecting member and the retainer.

  5. Hydraulically actuated valve train for an internal combustion engine

    SciTech Connect

    Brisko, F.S.

    1986-09-23

    A hydraulically actuated valve train is described for an internal combustion engine comprising a poppet valve supported for reciprocation for controlling the communication of a port with a chamber of the engine, a fluid actuated piston associated with the poppet valve for operating the poppet valve, and a remotely positioned actuator device for supplying fluid under pressure to the fluid piston. The actuator device comprises a housing defining a fluid chamber and having a bore, means for delivering fluid under pressure to the chamber, the bore communicating with the fluid piston for delivering fluid thereto. A plunger is supported in the bore for pressurizing the fluid in the bore, valve means comprising a sleeve slidably supported on the plunger and within the bore for selectively communicating a chamber formed in the bore above the valve sleeve and the plunger with the fluid chamber and for isolating the bore from the fluid chamber. A means for cyclically and sequentially closing the valve for isolating the bore from the fluid chamber and for moving the plunger in the bore for pressurizing the fluid piston and actuating the poppet valve, comprises a first relatively light spring means interposed between the plunger and the valve sleeve for urging the valve sleeve toward a closed position. A second relatively heavier valve spring means acts on the plunger for urging the plunger into engagement with an actuating member for effecting reciprocation of the plunger and the valve sleeve.

  6. Cam drive diesel engine utilizing double acting pistons

    SciTech Connect

    Gassman, W.J.

    1991-05-21

    This patent describes a improved double acting piston internal combustion engine. It comprises: a least one double acting piston positioned in an internal combustion engine cylinder having first and second combustion chambers located at opposed ends thereof, the at least one double acting piston having first and second piston heads on opposed ends thereof, the first and second piston heads communicating with the first and second combustion chambers respectively, and cam drive means operably associated with the at least one double acting piston, the cam drive means operably converting a combustion actuated reciprocable movement of the at least one double acting piston into a rotational drive movement, thereby to effect a rotation movement of a drive shaft means so that the drive shaft means functions as a power takeoff for the internal combustion engine, and further including cam groove means positioned in the cam drive means, the follower means operably engaging the cam groove means to effect the rotational drive movement, and wherein the follower means comprises a radially extending pin orthogonally positioned relative to a reciprocable movement axis of the at least one double acting position, and further including a drive ring means slidably movable over a circumferential surface of the cam drive means, the drive ring means retaining the follower means therein and directing the follower means into the cam groove means.

  7. Hot piston ring/cylinder liner materials: Selection and evaluation

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.

    1988-01-01

    In current designs of the automotive (kinematic) Stirling engine, the piston rings are made of a reinforced polymer and are located below the pistons because they cannot withstand the high temperatures in the upper cylinder area. Theoretically, efficiency could be improved if hot piston rings were located near the top of the pistons. Described is a program to select piston ring and cylinder coating materials to test this theory. Candidate materials were screened, then subjected to a pin or disk friction and wear test machine. Tests were performed in hydrogen at specimen temperatures up to 760 C to simulate environmental conditions in the region of the hot piston ring reversal. Based on the results of these tests, a cobalt based alloy, Stellite 6B, was chosen for the piston rings and PS200, which consists of a metal-bonded chromium carbide matrix with dispersed solid lubricants, was chosen as the cylinder coating. Tests of a modified engine and a baseline engine showed that the hot ring reduced specific fuel consumption by up to 7 percent for some operating conditions and averaged about 3 percent for all conditions evaluated. Related applications of high-temperature coatings for shaft seals and as back-up lubricants are also described.

  8. Performance of a New Lightweight Reciprocating Pump

    SciTech Connect

    Whitehead, J C

    2005-06-09

    A new four-chamber piston pump design has been fabricated and tested. The small-scale propellant pump is intended to be powered by gas at elevated temperatures, e.g. in a gas-generator cycle rocket propulsion system. Two key features are combined for the first time: leak-tight liquid-cooled seals, and a high throughput per unit hardware mass. Measured performance curves quantify flows, pressures, leakage, volumetric efficiency, and tank pressure requirements. A pair of 300-gram pumps operating with significant margin could deliver fuel and oxidizer at 5 MPa to a compact lightweight 1000-N engine, while tank pressure remains at 0.35 MPa. Pump weight is well below one percent of thrust, as is typical for launch vehicle engines. Applications include small upper stages, aggressive maneuvers in space, and miniature launch vehicles for Mars ascent.

  9. Trouble-free hydraulic valve package for crane winches

    SciTech Connect

    DeLamatyr, G.

    1983-12-01

    Baker Marine Corporation has been producing hydraulically powered pedestal type cranes for the offshore industry for approximately three years. The original hydraulic system cranes was of the open loop type with multiple gear pumps driven by a single diesel engine. One pump in the stack serviced the main and auxiliary hook winches, while another worked the boom winch, and a third pump sent oil to the crane swing motor. For reasons of economy and simplicity, it was decided that this scheme would be kept as part of the new design.

  10. Loss terms in free-piston Stirling engine models

    NASA Technical Reports Server (NTRS)

    Gordon, Lloyd B.

    1992-01-01

    Various models for free piston Stirling engines are reviewed. Initial models were developed primarily for design purposes and to predict operating parameters, especially efficiency. More recently, however, such models have been used to predict engine stability. Free piston Stirling engines have no kinematic constraints and stability may not only be sensitive to the load, but also to various nonlinear loss and spring constraints. The present understanding is reviewed of various loss mechanisms for free piston Stirling engines and how they have been incorporated into engine models is discussed.

  11. Sampled data observer based inter-sample output predictor for Electro-Hydraulic Actuators.

    PubMed

    Sofiane, Ahmed Ali

    2015-09-01

    In this paper, a Sampled Data Disturbance Observer which simultaneously estimates the unmeasurable states and the uncertainties for the Electro-Hydraulic Actuators systems are presented. The novelty of our approach is the use of an inter-sample output predictor which allows the user to increase the frequency acquisition of the piston position sensor without affecting the convergence performance. The stability analysis of the proposed observer is proved using the Lyapunov function adapted to hybrid systems. To show the efficiency of the proposed observer, numerical simulations of a control application which combine the proposed observer and a Proportional Integral controller for the purpose of piston position tracking problem are presented.

  12. Engine including a piston member having a high top ring groove

    SciTech Connect

    Weber, R.L.; Kamman, K.R.; Ballheimer, B.; Shoup, S.G.

    1990-07-17

    This patent describes an improvement in an engine. It is of the type having a block defining an upper bore, a cylinder liner located in the block bore and defining a piston bore, a cylinder head connected to the block, and a piston assembly including a steel piston member disposed for reciprocation in the piston bore.

  13. COSTING MODELS FOR WATER SUPPLY DISTRIBUTION: PART III- PUMPS, TANKS, AND RESERVOIRS

    EPA Science Inventory

    Distribution systems are generally designed to ensure hydraulic reliability. Storage tanks, reservoirs and pumps are critical in maintaining this reliability. Although storage tanks, reservoirs and pumps are necessary for maintaining adequate pressure, they may also have a negati...

  14. Thermal Hydraulic Computer Code System.

    1999-07-16

    Version 00 RELAP5 was developed to describe the behavior of a light water reactor (LWR) subjected to postulated transients such as loss of coolant from large or small pipe breaks, pump failures, etc. RELAP5 calculates fluid conditions such as velocities, pressures, densities, qualities, temperatures; thermal conditions such as surface temperatures, temperature distributions, heat fluxes; pump conditions; trip conditions; reactor power and reactivity from point reactor kinetics; and control system variables. In addition to reactor applications,more » the program can be applied to transient analysis of other thermal‑hydraulic systems with water as the fluid. This package contains RELAP5/MOD1/029 for CDC computers and RELAP5/MOD1/025 for VAX or IBM mainframe computers.« less

  15. Magnetocaloric pump

    NASA Technical Reports Server (NTRS)

    Brown, G. V.

    1973-01-01

    Very cold liquids and gases such as helium, neon, and nitrogen can be pumped by using magnetocaloric effect. Adiabatic magnetization and demagnetization are used to alternately heat and cool slug of pumped fluid contained in closed chamber.

  16. Casing pump

    SciTech Connect

    Bass, H.E.; Bass, R.E.

    1987-09-29

    A natural gas operated pump is described for use in the casing of an oil well, comprising: a tubular pump body having an open lower end for admitting well fluids to the interior of the pump body and an open upper end, wherein a downwardly facing seating surface is formed on the inner periphery of the pump body adjacent the upper end thereof; means for forming a seal between the pump body and the casing of the well; a rod extending longitudinally through the seating surface formed in the pump body and protruding from the upper end of the pump body; a valve member mounted on the rod below the seating surface and shaped to mate with the seating surface; and means for vertically positioning the rod in proportion to fluid pressure within the pump body.

  17. 13. View of disassembled steam engine showing cylinder, piston rod, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. View of disassembled steam engine showing cylinder, piston rod, parallel motion links and steam chest. - Hacienda Azucarera La Esperanza, Steam Engine & Mill, 2.65 Mi. N of PR Rt. 2 Bridge over Manati River, Manati, Manati Municipio, PR

  18. Experimental Evaluation of the Free Piston Engine - Linear Alternator (FPLA).

    SciTech Connect

    Leick, Michael T.; Moses, Ronald W.

    2015-03-01

    This report describes the experimental evaluation of a prototype free piston engine - linear alternator (FPLA) system developed at Sandia National Laboratories. The opposed piston design wa developed to investigate its potential for use in hybrid electric vehicles (HEVs). The system is mechanically simple with two - stroke uniflow scavenging for gas exchange and timed port fuel injection for fuel delivery, i.e. no complex valving. Electrical power is extracted from piston motion through linear alternators wh ich also provide a means for passive piston synchronization through electromagnetic coupling. In an HEV application, this electrical power would be used to charge the batteries. The engine - alternator system was designed, assembled and operated over a 2 - year period at Sandia National Laboratories in Livermore, CA. This report primarily contains a description of the as - built system, modifications to the system to enable better performance, and experimental results from start - up, motoring, and hydrogen combus tion tests.

  19. Turbocharger with sliding piston, and having vanes and leakage dams

    DOEpatents

    Roberts, Quentin; Alnega, Ahmed

    2011-12-06

    A turbocharger having a sliding piston for regulating exhaust gas flow into the turbine wheel includes a set of first vanes mounted on a fixed first wall of the turbine nozzle and projecting axially toward an opposite second wall of the nozzle, and/or a set of second vanes mounted on the end of the piston and projecting in an opposite axial direction toward the first wall of the nozzle. For the/each set of vanes, there are leakage dams formed on the wall that is adjacent the vane tips when the piston is closed. The leakage dams are closely adjacent the vane tips and discourage exhaust gas from leaking in a generally radial direction past the vane tips as the piston just begins to open from its fully closed position.

  20. A micro surface tension pump (MISPU) in a glass microchip.

    PubMed

    Peng, Xing Yue Larry

    2011-01-01

    A non-membrane micro surface tension pump (MISPU) was fabricated on a glass microchip by one-step glass etching. It needs no material other than glass and is driven by digital gas pressure. The MISPU can be seen working like a piston pump inside the glass microchip under a microscope. The design of the valves (MISVA) and pistons (MISTON) was based on the surface tension theory of the micro surface tension alveolus (MISTA). The digital gas pressure controls the moving gas-liquid interface to open or close the input and output MISVAs to refill or drive the MISTON for pumping a liquid. Without any moving parts, a MISPU is a kind of long-lasting micro pump for micro chips that does not lose its water pumping efficiency over a 20-day period. The volumetric pump output varied from 0 to 10 nl s(-1) when the pump cycle time decreased from 5 min to 15 s. The pump head pressure was 1 kPa.

  1. Method for hydraulic fracturing cased wellbores

    SciTech Connect

    Schmidt, J.H.

    1991-12-24

    This patent describes a method of hydraulically fracturing a cased wellbore in an earth formation. It comprises determining the angle with respect to the wellbore axis and a reference point on the circumference of the wellbore which will provide for initiation of a hydraulic fracture in the formation which will turn with the largest radius of curvature into a fracture plane normal to the minimum in situ stress in the formation; perforating the wellbore casing at the angle with respect to the reference point; initiating a hydraulic fracture in the formation by pumping a liquid through the perforation and into the formation to force the initiation of a fracture in the formation at a point which develops the highest tensile stress in the formation in relation to increasing the hydraulic pressure in the wellbore; extending the fracture by pumping a relatively proppant-free quantities of proppant per unit volume of pumped fluid and in successive discrete stages of increasing proppant density to provide a propped portion of increasing proppant density to provide a propped portion of the fracture in the near wellbore region of the fracture which will prevent reclosing of the fracture in the near wellbore region.

  2. Self-contained hydraulic lash adjuster with pressurizing diaphragm

    SciTech Connect

    Cuatt, D.R.; Shost, M.A.

    1992-07-14

    This patent describes a hydraulic lash adjusted of the self-contained type including a body defining a cylinder with a closed end, a hollow plunger internally defining a fluid reservoir, the plunger having side walls slidable fitted in the cylinder and an end wall cooperating with the cylinder closed end to define a chamber for fluid in thrust transmitting relation between the cylinder and plunger. This patent describes an improvement in a flexible diaphragm extending across the hollow plunger between the piston and the reservoir and sealingly mounted in the side walls to define a sealing wall with a central portion movable to vary the volume of the reservoir, the piston engaging the central portion of the diaphragm and being shaped to partially support the diaphragm against the force of pressure in the reservoir.

  3. ELECTROMAGNETIC PUMP

    DOEpatents

    Pulley, O.O.

    1954-08-17

    This patent reiates to electromagnetic pumps for electricity-conducting fluids and, in particular, describes several modifications for a linear conduction type electromagnetic interaction pump. The invention resides in passing the return conductor for the current traversing the fiuid in the duct back through the gap in the iron circuit of the pump. Both the maximum allowable pressure and the efficiency of a linear conduction electromagnetic pump are increased by incorporation of the present invention.

  4. A contribution to film coefficient estimation in piston cooling galleries

    SciTech Connect

    Torregrosa, A.J.; Broatch, A.; Olmeda, P.; Martin, J.

    2010-02-15

    The need to reduce fuel consumption and exhaust emissions in internal combustion engines has been drastically increased during last years. One of the most important processes affecting these parameters is heat transfer from the in-cylinder gas to the surrounding walls, as this mechanism has a direct influence on the combustion process. Regarding the different walls (liner, cylinder head and piston surfaces), heat flow to the piston is especially important, as it is essential to avoid excessively high temperatures that could result in material damage and/or oil cracking. With this purpose different cooling strategies are used, among which the improvement of the piston cooling system by using oil galleries is preferred. In this work, the heat flow through the oil gallery in a Diesel piston was investigated on a dedicated test bench. This bench consists of a controlled heat source and a piston oil cooling system in which different test conditions were evaluated in order to obtain a correlation for the film coefficient associated with piston oil cooling. These experimental results were then incorporated into a lumped model for engine heat transfer. Finally, in order to evaluate the accuracy of this model and the effects of the correlation for oil gallery coefficient on engine heat flows, results obtained on a conventional engine test bench equipped with a Diesel engine, in which two piston temperatures had been measured, were used. The results show an improvement in piston temperature predictions when compared with those obtained using a previously reported expression for the calculation of the oil film coefficient. (author)

  5. [Cytotoxicity evaluation of the disposable medical syringe piston].

    PubMed

    He, Huahong; Li, Wei; Wu, Ting

    2010-03-01

    When some testing institutions performed biological evaluation to the disposable medical syringe piston, cytotoxicity was found. According to the biological evaluation testing Selection Guide proposed by Ministry of Health and the Comments of Sample Provider, We performed biological evaluation to one sample by using 5 tests of basic biological evaluation. Cytotoxicity was found, which was probably caused by the residue of the lotion. This research provides reference for objective evaluation of disposable medical syringe piston and safe guarantee of the product.

  6. Structural design of Stirling engine with free pistons

    NASA Astrophysics Data System (ADS)

    Matusov, Jozef; Gavlas, Stanislav; Malcho, Milan

    2014-08-01

    Stirling engine is a device that converts thermal energy to mechanical work, which is mostly used to drive a generator of electricity. Advantage of Stirling engine is that it works with closed-cycle, where working medium is regularly cooled and heated, which acts on the working piston. This engine can be made in three modifications - alpha, beta, gamma. This paper discusses the design of the gamma Stirling engine with free pistons.

  7. Preliminary design of a Primary Loop Pump Assembly (PLPA), using electromagnetic pumps

    NASA Technical Reports Server (NTRS)

    Moss, T. A.; Matlin, G.; Donelan, L.; Johnson, J. L.; Rowe, I.

    1972-01-01

    A preliminary design study of flight-type dc conduction-permanent magnetic, ac helical induction, and ac linear induction pumps for circulating 883 K (1130 F) NaK at 9.1 kg/sec (20 lb/sec) is described. Various electromagnetic pump geometrics are evaluated against hydraulic performance, and the effects of multiple windings and numbers of pumps per assembly on overall reliability were determined. The methods used in the electrical-hydraulic, stress, and thermal analysis are discussed, and the high temperature electrical materials selected for the application are listed.

  8. Mathematic Modeling of Complex Hydraulic Machinery Systems When Evaluating Reliability Using Graph Theory

    NASA Astrophysics Data System (ADS)

    Zemenkova, M. Yu; Shipovalov, A. N.; Zemenkov, Yu D.

    2016-04-01

    The main technological equipment of pipeline transport of hydrocarbons are hydraulic machines. During transportation of oil mainly used of centrifugal pumps, designed to work in the “pumping station-pipeline” system. Composition of a standard pumping station consists of several pumps, complex hydraulic piping. The authors have developed a set of models and algorithms for calculating system reliability of pumps. It is based on the theory of reliability. As an example, considered one of the estimation methods with the application of graph theory.

  9. The problems of piston skirt microgeometry in combustion engines

    NASA Astrophysics Data System (ADS)

    Iskra, A.; Babiak, M.; Wróblewski, E.

    2016-09-01

    Geometry of the slot between piston bearing surface and cylinder bore affects the friction losses of the IC engine to the far extent. It appears that these losses depend more on the area covered with oil than the thickness of oil layer separating collaborating parts. Barrel-shaped or stepwise piston bearing surface is the way to reduce the oil covered area. Turns out that the referred to friction losses contributes more to area covered by the oil film than the film thickness of the separation elements cooperating. The method to reduce the area covered by the oil film is a modification of the bearing surface of the piston by adjusting the profile. This paper presents the results of simulation leading to the reduction in friction losses and abrasive wear of piston bearing surface and cylinder bore. Covering the piston bearing surface with a thin layer of graphite one can get an extremely advantageous tribological properties of the piston assembly which means the expected parameters of oil film and in a case of film rupture-an ignorable abrasive wear of the graphite layer and/or cylinder bore.

  10. Method of Fabricating Chopped-Fiber Composite Piston

    NASA Technical Reports Server (NTRS)

    Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor)

    1999-01-01

    A three-dimensional piston molding is fabricated from a mixture of chopped, carbon tow filaments of variable length, which are prepregged with carbonaceous organic resins and/or pitches and molded by conventional molding processes into a near net shape, to form a carbon-fiber reinforced organic-matrix composite part. Continuous reinforcement in the form of carbon-carbon composite tapes or pieces of fabric can be also laid in the mold before or during the charging of the mold with the chopped-fiber mixture, to enhance the strength in the crown and wrist-pin areas. The molded chopped-fiber reinforced organic-matrix composite parts are then pyrolized in an inert atmosphere, to convert the organic matrix materials to carbon. These pyrolized parts are then densified by reimpregnation with resins or pitches, which are subsequently carbonized. Densification is also accomplished by direct infiltration with carbon by vapor deposition processes. Once the desired density has been achieved, the piston molds are machined to final piston dimensions, and piston ring grooves are added. To prevent oxidation and/or to seal the piston surface or near surface, the chopped-fiber piston is coated with ceramic and/or metallic sealants: and/or coated with a catalyst.

  11. Piston designs keep pace with increased engine performance

    SciTech Connect

    Mullins, P.

    1996-12-01

    Piston technology for medium-speed diesel engines is having to keep pace with steadily increasing engine performance criteria. Specific output of medium-speed diesel engines has increased some 50% since 1970, according to Walter Griffiths, chief engineer at the UK-based AE Geotze Special Products Ltd. To satisfy the higher performance now required, a two-piece piston has been developed and went into production in 1995. This type still uses an aluminum alloy forged body, but incorporates a steel crown. The composite piston can carry higher engine ratings and resists the abrasive deposits formed by heavy fuel operation. It has become well established for bore sizes above 300 mm and is becoming increasingly specified for engines down to 200 mm. The latest solution to the carbon deposits on the top of the piston that has gained widespread acceptance within the industry is to reduce the diameter of the bore above the top ring and cut back the top land to maintain the normal operating clearance. This requires an insert to be fitted into the liner after the piston has been assembled. The effect is to limit the carbon build-up on the top land to a specific diameter, which is always less than the bore diameter. Thus there is no possibility of top land contact with the bore over the effective stroke of the piston rings. 2 figs.

  12. The axial motion of a piston ring in the piston ring groove

    SciTech Connect

    Brownawell, M E

    1983-06-01

    The piston ring axial motion model developed by Furuhama, Dowson and Hoult was modified using the parallel plate squeeze equation to account for oil in the ring grooves. The improved model was used to predict ring motion and the ring transition time from one ring land to the other. The ring axial motion was measured in detail on an engine with a clear plexiglas cylinder using a high-speed motion picture camera. The observed ring motion and transit times were compared to those predicted by the new model. The model was found to correctly predict the motion of the rings and the scaling with lubricant viscosity and engine speed.

  13. FOREWORD: 26th IAHR Symposium on Hydraulic Machinery and Systems

    NASA Astrophysics Data System (ADS)

    Wu, Yulin; Wang, Zhengwei; Liu, Shuhong; Yuan, Shouqi; Luo, Xingqi; Wang, Fujun

    2012-11-01

    The 26th IAHR Symposium on Hydraulic Machinery and Systems, will be held in Beijing, China, 19-23 August 2012. It is jointly organized by Tsinghua University, State Key Laboratory of Hydro Science and Hydraulic Engineering, China, Jiangsu University, Xi'an University of Technology, China Agricultural University, National Engineering Research Center of Hydropower Equipment and Dongfang Electric Machinery Co., Ltd. It is the second time that China hosts such a symposium. By the end of 2011, the China electrical power system had a total of 1 050 GW installed power, out of which 220 GW was in hydropower plants. The energy produced in hydropower facilities was 662.6 TWh from a total of 4,720 TWh electrical energy production in 2011. Moreover, in 2020, new hydropower capacities are going to be developed, with a total of 180 GW installed power and an estimated 708 TWh/year energy production. And in 2011, the installed power of pumped storage stations was about 25GW. In 2020, the data will be 70GW. At the same time, the number of pumps used in China is increasing rapidly. China produces about 29,000,000 pumps with more than 220 series per year. By the end of 2011, the Chinese pumping system has a total of 950 GW installed power. The energy consumed in pumping facilities was 530 TWh in 2011. The pump energy consumption accounted for about 12% of the national electrical energy production. Therefore, there is a large market in the field of hydraulic machinery including water turbines, pump turbines and a variety of pumps in China. There are also many research projects in this field. For example, we have conducted National Key Research Projects on 1000 MW hydraulic turbine, and on the pump turbines with high head, as well as on the large capacity pumps for water supply. Tsinghua University of Beijing is proud to host the 26th IAHR Symposium on Hydraulic Machinery and Systems. Tsinghua University was established in 1911, after the founding of the People's Republic of China. It

  14. Low head, high volume pump apparatus

    DOEpatents

    Avery, Don E.; Young, Bryan F.

    1989-01-01

    An inner cylinder and a substantially larger outer cylinder are joined as two verticle concentric cylinders. Verticle partitions between the cylinders divide the space between the cylinders into an inlet chamber and an outlet chamber which is substantially larger in volume than the inner chamber. The inner cylinder has a central pumping section positioned between upper and lower valve sections. In the valve section ports extend through the inner cylinder wall to the inlet and outlet chambers. Spring loaded valves close the ports. Tension springs extend across the inlet chamber and compression springs extend across the inner cylinder to close the inlet valves. Tension springs extend across the inner cylinder the close the outlet valves. The elastomeric valve flaps have rigid curved backing members. A piston rod extends through one end cover to move a piston in the central section. An inlet is connected to the inlet chamber and an outlet is connected to the outlet chamber.

  15. Space Power Free-Piston Stirling Engine Scaling Study

    NASA Technical Reports Server (NTRS)

    Jones, D.

    1989-01-01

    The design feasibility study is documented of a single cylinder, free piston Stirling engine/linear alternator (FPSE/LA) power module generating 150 kW-electric (kW sub e), and the determination of the module's maximum feasible power level. The power module configuration was specified to be a single cylinder (single piston, single displacer) FPSE/LA, with tuning capacitors if required. The design requirements were as follows: (1) Maximum electrical power output; (2) Power module thermal efficiency equal to or greater than 20 percent at a specific mass of 5 to 8 kg/kW(sub e); (3) Heater wall temperature/cooler wall temperature = 1050 K/525 K; (4) Sodium heat-pipe heat transport system, pumped loop NaK (sodium-potassium eutectic mixture) rejection system; (5) Maximum power module vibration amplitude = 0.0038 cm; and (6) Design life = 7 years (60,000 hr). The results show that a single cylinder FPSE/LA is capable of meeting program goals and has attractive scaling attributes over the power range from 25 to 150 kW(sub e). Scaling beyond the 150 kW(sub e) power level, the power module efficiency falls and the power module specific mass reaches 10 kg/kW(sub e) at a power output of 500 kW(sub e). A discussion of scaling rules for the engine, alternator, and heat transport systems is presented, along with a detailed description of the conceptual design of a 150 kW(sub e) power module that meets the requirements. Included is a discussion of the design of a dynamic balance system. A parametric study of power module performance conducted over the power output range of 25 to 150 kW(sub e) for temperature ratios of 1.7, 2.0, 2.5, and 3.0 is presented and discussed. The results show that as the temperature ratio decreases, the efficiency falls and specific mass increases. At a temperature ratio of 1.7, the 150 kW(sub e) power module cannot satisfy both efficiency and specific mass goals. As the power level increases from 25 to 150 kW(sub e) at a fixed temperature ratio, power

  16. Grout pump selection process for the Transportable Grout Facility

    SciTech Connect

    McCarthy, D.; Treat, R.L.

    1985-01-01

    Selected low-level radioactive liquid wastes at Hanford will be disposed by grouting. Grout is formed by mixing the liquid wastes with solid materials, including Portland cement, fly ash, and clay. The mixed grouts will be pumped to disposal sites (e.g., trenches and buried structures) where the grout will be allowed to harden and, thereby, immobilize the wastes. A Transportable Grout Facility (TGF) will be constructed and operated by Rockwell Hanford Operations to perform the grouting function. A critical component of the TGF is the grout pump. A preliminary review of pumping requirements identified reciprocating pumps and progressive cavity pumps as the two classes of pumps best suited for the application. The advantages and disadvantages of specific types of pumps within these two classes were subsequently investigated. As a result of this study, the single-screw, rotary positive displacement pump was identified as the best choice for the TGF application. This pump has a simple design, is easy to operate, is rugged, and is suitable for a radioactive environment. It produces a steady, uniform flow that simplifies suction and discharge piping requirements. This pump will likely require less maintenance than reciprocating pumps and can be disassembled rapidly and decontaminated easily. If the TGF should eventually require discharge pressures in excess of 500 psi, a double-acting duplex piston pump is recommended because it can operate at low speed, with only moderate flow rate fluctuations. However, the check valves, stuffing box, piston, suction, and discharge piping must be designed carefully to allow trouble-free operations.

  17. 18. YAZOO BACKWATER PUMPING STATION MODEL, YAZOO RIVER BASIN. CIVIL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. YAZOO BACKWATER PUMPING STATION MODEL, YAZOO RIVER BASIN. CIVIL ENGINEERING AIDE AT CONTROL BOX. - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  18. 19. YAZOO BACKWATER PUMPING STATION MODEL, YAZOO RIVER BASIN. ELECTRONICS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. YAZOO BACKWATER PUMPING STATION MODEL, YAZOO RIVER BASIN. ELECTRONICS ENGINEER AT DATA COLLECTION COMPUTER ROOM. - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  19. Variable speed pumping: A guide to successful applications - Executive summary

    SciTech Connect

    None, None

    2004-05-01

    This document is the result of a collaboration between the Hydraulic Institute, Europump, and the U.S. DOE Industrial Technologies Program, and describes the cost and energy savings potential of pumping applications with variable duty requirements.

  20. Stochastic analysis of the hydraulic conductivity estimated for a heterogeneous aquifer via numerical modelling

    NASA Astrophysics Data System (ADS)

    Lu, C.; Zhang, Y.; Shu, L.; Chen, X.; Chen, S.; Li, S.; Wang, G.; Li, J.

    2015-05-01

    The paper aims to evaluate the impacts of the average hydraulic conductivity of the heterogeneous aquifer on the estimated hydraulic conductivity using the observations from pumping tests. The results of aquifer tests conducted at a karst aquifer are first introduced. A MODFLOW groundwater flow model was developed to perform numerical pumping tests, and the heterogeneous hydraulic conductivity (K) field was generated using the Monte Carlo method. The K was estimated by the Theis solution for an unconfined aquifer. The effective hydraulic conductivity (Ke) was calculated to represent the hydraulic conductivity of a heterogeneous aquifer. The results of numerical simulations demonstrate that Ke increase with the mean of hydraulic conductivity (EK), and decrease with the coefficient of variation of the hydraulic conductivity (Cv). The impact of spatial variability of K on the estimated Ke at two observation wells with smaller EK is less significant compared to the cases with larger EK.

  1. Development of high pressure-high vacuum-high conductance piston valve for gas-filled radiation detectors

    NASA Astrophysics Data System (ADS)

    Prasad, D. N.; Ayyappan, R.; Kamble, L. P.; Singh, J. P.; Muralikrishna, L. V.; Alex, M.; Balagi, V.; Mukhopadhyay, P. K.

    2008-05-01

    Gas-filled radiation detectors need gas filling at pressures that range from few cms of mercury to as high as 25kg/cm2 at room temperature. Before gas-filling these detectors require evacuation to a vacuum of the order of ~1 × 10-5 mbar. For these operations of evacuation and gas filling a system consisting of a vacuum pump with a high vacuum gauge, gas cylinder with a pressure gauge and a valve is used. The valve has to meet the three requirements of compatibility with high-pressure and high vacuum and high conductance. A piston valve suitable for the evacuation and gas filling of radiation detectors has been designed and fabricated to meet the above requirements. The stainless steel body (80mm×160mm overall dimensions) valve with a piston arrangement has a 1/2 inch inlet/outlet opening, neoprene/viton O-ring at piston face & diameter for sealing and a knob for opening and closing the valve. The piston movement mechanism is designed to have minimum wear of sealing O-rings. The valve has been hydrostatic pressure tested up to 75bars and has Helium leak rate of less than 9.6×10-9 m bar ltr/sec in vacuum mode and 2×10-7 mbar ltr/sec in pressure mode. As compared to a commercial diaphragm valve, which needed 3 hours to evacuate a 7 litre chamber to 2.5×10-5 mbar, the new valve achieved vacuum 7.4×10-6mbar in the same time under the same conditions.

  2. Nonlinear mathematical modeling and sensitivity analysis of hydraulic drive unit

    NASA Astrophysics Data System (ADS)

    Kong, Xiangdong; Yu, Bin; Quan, Lingxiao; Ba, Kaixian; Wu, Liujie

    2015-09-01

    The previous sensitivity analysis researches are not accurate enough and also have the limited reference value, because those mathematical models are relatively simple and the change of the load and the initial displacement changes of the piston are ignored, even experiment verification is not conducted. Therefore, in view of deficiencies above, a nonlinear mathematical model is established in this paper, including dynamic characteristics of servo valve, nonlinear characteristics of pressure-flow, initial displacement of servo cylinder piston and friction nonlinearity. The transfer function block diagram is built for the hydraulic drive unit closed loop position control, as well as the state equations. Through deriving the time-varying coefficient items matrix and time-varying free items matrix of sensitivity equations respectively, the expression of sensitivity equations based on the nonlinear mathematical model are obtained. According to structure parameters of hydraulic drive unit, working parameters, fluid transmission characteristics and measured friction-velocity curves, the simulation analysis of hydraulic drive unit is completed on the MATLAB/Simulink simulation platform with the displacement step 2 mm, 5 mm and 10 mm, respectively. The simulation results indicate that the developed nonlinear mathematical model is sufficient by comparing the characteristic curves of experimental step response and simulation step response under different constant load. Then, the sensitivity function time-history curves of seventeen parameters are obtained, basing on each state vector time-history curve of step response characteristic. The maximum value of displacement variation percentage and the sum of displacement variation absolute values in the sampling time are both taken as sensitivity indexes. The sensitivity indexes values above are calculated and shown visually in histograms under different working conditions, and change rules are analyzed. Then the sensitivity

  3. Insulin pumps.

    PubMed

    Pickup, J

    2010-02-01

    Insulin pump therapy is now more than 30 years old, and is an established part of the routine care of selected people with type 1 diabetes. Nevertheless, there are still significant areas of concern, particularly how pumps compare with modern injection therapy, whether the increasingly sophisticated pump technologies like onboard calculators and facility for computer download offer any real benefit, and whether we have a consensus on the clinical indications. The following papers offer some insight into these and other current questions.

  4. Hydraulic assist turbocharger system and method of operation

    SciTech Connect

    Kobayashi, R.J.

    1986-11-18

    This patent describes a hydraulic assist turbocharger system for supplying charge air to a combustion engine, comprising: an hydraulic assist turbocharger having a first turbine driven by engine exhaust gases, a compressor rotatably driven by the first turbine for supplying charge air to the engine, and an hydraulic turbine for selective supplemental driving of the compressor; hydraulic fluid supply means for selectively supplying an hydraulic fluid under pressure into rotatable driving communicating with the hydraulic turbine, the fluid supply means including at least two nozzles for passage of the fluid under pressure into driving communication with the hydraulic turbine; means for selectively preventing passage of the fluid under pressure through at least one of the nozzles and for permitting passage of the fluid under pressure through at least one other of the nozzles during an engine starting procedure. This is to decrease the available nozzle flow area open to fluid passage and thereby increase the pressure of hydraulic fluid during the engine starting procedure to correspondingly increase supplemental driving of the compressor resulting in increased supply of charge air to the engine; and means for selectively decreasing the viscosity of the hydraulic fluid during a starting procedure of increase the flow rate of the hydraulic fluid into driving communication with the hydraulic turbine during the starting procedure to correspondingly increase supplemental driving of the compressor resulting in increased supply of charge air to the engine. The hydraulic fluid supply means comprises pump means for providing the hydraulic fluid under pressure for flow through the nozzles into driving communication with the hydraulic turbine.

  5. Transtibial prosthetic suspension: less pistoning versus easy donning and doffing.

    PubMed

    Gholizadeh, Hossein; Abu Osman, Noor Azuan; Eshraghi, Arezoo; Ali, Sadeeq; Sævarsson, Stefan Karl; Wan Abas, Wan Abu Bakar; Pirouzi, Gholam Hossein

    2012-01-01

    Poor suspension increases slippage of the residual limb inside the socket during ambulation. The main purpose of this article is to evaluate the pistoning at the prosthetic liner-socket interface during gait and assess patients' satisfaction with two different liners. Two prostheses with seal-in and locking liners were fabricated for each of the 10 subjects with transtibial amputation. The Vicon motion system was used to measure the pistoning during gait. The subjects were also asked to complete a Prosthesis Evaluation Questionnaire. The results revealed higher pistoning inside the socket during gait with the locking liner than with the seal-in liner (p < 0.05). The overall satisfaction with the locking liner was higher (p < 0.05) because of the relative ease with which the patients could don and doff the device. As such, pistoning may not be the main factor that determines patients' overall satisfaction with the prosthesis and other factors may also contribute to comfort and satisfaction with prostheses. The article also verifies the feasibility of the Vicon motion system for measuring pistoning during gait.

  6. Numerical and semiclassical analysis of some generalized Casimir pistons

    SciTech Connect

    Schaden, M.

    2009-05-15

    The Casimir force due to a scalar field in a cylinder of radius r with a spherical cap of radius R>r is computed numerically in the world-line approach. A geometrical subtraction scheme gives the finite interaction energy that determines the Casimir force. The spectral function of convex domains is obtained from a probability measure on convex surfaces that is induced by the Wiener measure on Brownian bridges the convex surfaces are the hulls of. Due to reflection positivity, the vacuum force on the piston by a scalar field satisfying Dirichlet boundary conditions is attractive in these geometries, but the strength and short-distance behavior of the force depend strongly on the shape of the piston casing. For a cylindrical casing with a hemispherical head, the force on the piston does not depend on the dimension of the casing at small piston elevation a<piston near its periphery. A semiclassical estimate reproduces the numerical results for the small-distance behavior of the force within statistical errors, whereas the proximity force approximation is off by one order of magnitude when R{approx}r.

  7. Magnetic bearings for free-piston Stirling engines

    NASA Technical Reports Server (NTRS)

    Curwen, P. W.; Flemig, D. P.; Rao, D. K.; Wilson, D. S.

    1992-01-01

    The feasibility and efficiency of applying magnetic bearings to free-piston Stirling-cycle power conversion machinery currently being developed for long-term space missions are assessed. The study was performed for a 50-kWe Reference Stirling Space Power Converter (RSSPC) which currently uses hydrostatic gas bearings to support the reciprocating displacer and power piston assemblies. Active magnetic bearings of the attractive electromagnetic type are feasible for the RSSPC power piston. Magnetic support of the displacer assembly would require unacceptable changes to the design of the current RSSPC. However, magnetic suspension of both displacer and power piston is feasible for a relative-displacer version of the RSSPC. Magnetic suspension of the RSSPC power piston can potentially increase overall efficiency by 0.5 to 1 percent (0.1 to 0.3 efficieny points). Magnetic bearings will also overcome several operational concerns associated with hydrostatic gas bearing systems. These advantages, however, are accompanied by a 5 percent increase in specific mass of the RSSPC.

  8. Magnetic bearings for free-piston Stirling engines

    NASA Technical Reports Server (NTRS)

    Curwen, P. W.; Fleming, D. P.; Rao, D. K.; Wilson, D. S.

    1992-01-01

    The feasibility and efficacy of applying magnetic bearings to free-piston Stirling-cycle power conversion machinery currently being developed for long-term space missions are assessed. The study was performed for a 50-kWe Reference Stirling Space Power Converter (RSSPC) which currently uses hydrostatic gas bearings to support the reciprocating displacer and power piston assemblies. Active magnetic bearings of the attractive electromagnetic type are feasible for the RSSPC power piston. Magnetic support of the displacer assembly would require unacceptable changes to the design of the current RSSPC. However, magnetic suspension of both displacer and power piston is feasible for a relative-displacer version of the RSSPC. Magnetic suspension of the RSSPC power piston can potentially increase overall efficiency by 0.5 to 1 percent (0.1 to 0.3 efficiency points). Magnetic bearings will also overcome several operational concerns associated with hydrostatic gas bearing systems. These advantages, however, are accompanied by a 5 percent increase in specific mass of the RSSPC.

  9. MAXIMIZE THE EFFICIENCY OF PUMP AND TREAT SYSTEMS

    EPA Science Inventory

    This paper focuses on methodology for determing extent of hydraulic control and remediation effectiveness of site specific pump and treat systems. Maximum potential well yield is estimated on the basis of hydraulic characteristics described by the cooper and Jacob Equation. A ma...

  10. Nano-electro-mechanical pump: Giant pumping of water in carbon nanotubes

    PubMed Central

    Farimani, Amir Barati; Heiranian, Mohammad; Aluru, Narayana R.

    2016-01-01

    A fully controllable nano-electro-mechanical device that can pump fluids at nanoscale is proposed. Using molecular dynamics simulations, we show that an applied electric field to an ion@C60 inside a water-filled carbon nanotube can pump water with excellent efficiency. The key physical mechanism governing the fluid pumping is the conversion of electrical energy into hydrodynamic flow with efficiencies as high as 64%. Our results show that water can be compressed up to 7% higher than its bulk value by applying electric fields. High flux of water (up to 13,000 molecules/ns) is obtained by the electro-mechanical, piston-cylinder-like moving mechanism of the ion@C60 in the CNT. This large flux results from the piston-like mechanism, compressibility of water (increase in density of water due to molecular ordering), orienting dipole along the electric field and efficient electrical to mechanical energy conversion. Our findings can pave the way towards efficient energy conversion, pumping of fluids at nanoscale, and drug delivery. PMID:27193507

  11. Nano-electro-mechanical pump: Giant pumping of water in carbon nanotubes.

    PubMed

    Farimani, Amir Barati; Heiranian, Mohammad; Aluru, Narayana R

    2016-05-19

    A fully controllable nano-electro-mechanical device that can pump fluids at nanoscale is proposed. Using molecular dynamics simulations, we show that an applied electric field to an ion@C60 inside a water-filled carbon nanotube can pump water with excellent efficiency. The key physical mechanism governing the fluid pumping is the conversion of electrical energy into hydrodynamic flow with efficiencies as high as 64%. Our results show that water can be compressed up to 7% higher than its bulk value by applying electric fields. High flux of water (up to 13,000 molecules/ns) is obtained by the electro-mechanical, piston-cylinder-like moving mechanism of the ion@C60 in the CNT. This large flux results from the piston-like mechanism, compressibility of water (increase in density of water due to molecular ordering), orienting dipole along the electric field and efficient electrical to mechanical energy conversion. Our findings can pave the way towards efficient energy conversion, pumping of fluids at nanoscale, and drug delivery.

  12. Nano-electro-mechanical pump: Giant pumping of water in carbon nanotubes.

    PubMed

    Farimani, Amir Barati; Heiranian, Mohammad; Aluru, Narayana R

    2016-01-01

    A fully controllable nano-electro-mechanical device that can pump fluids at nanoscale is proposed. Using molecular dynamics simulations, we show that an applied electric field to an ion@C60 inside a water-filled carbon nanotube can pump water with excellent efficiency. The key physical mechanism governing the fluid pumping is the conversion of electrical energy into hydrodynamic flow with efficiencies as high as 64%. Our results show that water can be compressed up to 7% higher than its bulk value by applying electric fields. High flux of water (up to 13,000 molecules/ns) is obtained by the electro-mechanical, piston-cylinder-like moving mechanism of the ion@C60 in the CNT. This large flux results from the piston-like mechanism, compressibility of water (increase in density of water due to molecular ordering), orienting dipole along the electric field and efficient electrical to mechanical energy conversion. Our findings can pave the way towards efficient energy conversion, pumping of fluids at nanoscale, and drug delivery. PMID:27193507

  13. Nano-electro-mechanical pump: Giant pumping of water in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Farimani, Amir Barati; Heiranian, Mohammad; Aluru, Narayana R.

    2016-05-01

    A fully controllable nano-electro-mechanical device that can pump fluids at nanoscale is proposed. Using molecular dynamics simulations, we show that an applied electric field to an ion@C60 inside a water-filled carbon nanotube can pump water with excellent efficiency. The key physical mechanism governing the fluid pumping is the conversion of electrical energy into hydrodynamic flow with efficiencies as high as 64%. Our results show that water can be compressed up to 7% higher than its bulk value by applying electric fields. High flux of water (up to 13,000 molecules/ns) is obtained by the electro-mechanical, piston-cylinder-like moving mechanism of the ion@C60 in the CNT. This large flux results from the piston-like mechanism, compressibility of water (increase in density of water due to molecular ordering), orienting dipole along the electric field and efficient electrical to mechanical energy conversion. Our findings can pave the way towards efficient energy conversion, pumping of fluids at nanoscale, and drug delivery.

  14. Experimental investigation of cavitation in pump inlet

    NASA Astrophysics Data System (ADS)

    Sikora, Roman; Bureček, Adam; Hružík, Lumír; Vašina, Martin

    2015-05-01

    The article deals with experimental research of cavitation development in inlet tube of hydraulic pump. The pressures in inlet and outlet tube of the pump and flow rate were measured. Mineral oil was used as working fluid. The cavitation was visually evaluated in transparent inlet tube. The inlet tube underpressure was achieved by throttle valve. The relationship between the generation of bubbles and the inlet pressure is evaluated.

  15. Oil well pumping apparatus

    SciTech Connect

    Whatley, D. L.; Chaviers, W. M.

    1985-07-23

    The present system and apparatus for pumping an oil well damps out the stretch and over travel in sucker rod over travel particularly when the rod string approaches its point of reversal of direction either up or down. This is accomplished by decelerating the rate of travel of the rod string and at its end of travel pausing for a time period sufficient to allow rod string oscillations to damp out prior to reversal of rod string direction which due to the long length of the rod string, its weight and the weight of the trapped oil avoids breaking the rod string and the time loss occasioned thereby in both loss of well production and costly replacement of equipment and the time loss resulting therefrom. The present invention also achieves substantial recovery of hi-viscosity oil not recoverable at present by standard recovery procedures. This is accomplished with a sensor positioned to be actuated by the ram of the hydraulic drive. When the sensor is actuated, it energizes a time delay relay which holds the sucker rod string in the upper most raised position allowing the suction to be maintained on the bottom hole pump with the standing valve open. This allows the hi-viscus oil to enter the bottom hole pump barrel. When the time delay relay is released, the sucker rod string starts its downward movement closing the bottom hole standing valve. This traps the hi-viscus oil in the pump barrel which is then displaced by the downward-movement of the plunger in the bottom hole pump.

  16. High pressure rotary piston coal feeder for coal gasification applications

    DOEpatents

    Gencsoy, Hasan T.

    1977-05-24

    The subject development is directed to an apparatus for feeding pulverized coal into a coal gasifier operating at relatively high pressures and elevated temperatures. This apparatus is a rotary piston feeder which comprises a circular casing having a coal loading opening therein diametrically opposed from a coal discharge and contains a rotatable discoid rotor having a cylinder in which a reciprocateable piston is disposed. The reciprocation of the piston within the cylinder is provided by a stationary conjugate cam arrangement whereby the pulverized coal from a coal hopper at atmospheric pressure can be introduced into the cylinder cavity and then discharged therefrom into the high-pressure gasifier without the loss of high pressure gases from within the latter.

  17. Effect of piston second land shape on oil consumption

    SciTech Connect

    Yoshida, Hideki; Kusama, Kazunori; Sugihara, Hiroyuki; Ariga, Susumu

    1996-12-31

    Focusing on the oil flow characteristics in piston land areas, the authors measured variables affecting oil flow in an actual engine and conducted computer-aided analysis in order to develop a technique to reduce oil consumption. Since volume of the second land influences piston ring behavior, the volume has to be determined so that blow-up gas flow is reduced. As a means of sizing the second land volume, a V-shaped groove may be made in the second land. This particular groove shape made it possible to prevent the flow of oil into the combustion chamber. The behavior of oil on the piston land was observed through a glass cylinder installed on the engine. The effect of the land design on the oil flow was analyzed by using a computational-fluid-dynamics (CFD) code.

  18. Hot piston ring/cylinder liner materials - Selection and evaluation

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.

    1988-01-01

    A materials testing program to determine whether automotive Stirling engine efficiency can be improved by locating 'hot piston rings' near the top of the pistons is described. Candidate materials were screened theoretically and experimentally by friction and wear tests. Based on the test results, a cobalt-based alloy, Stellite 6B, was chosen for the piston rings and PS200, which consists of a metal-bonded chromium carbide matrix with dispersed solid lubricants, was chosen as the cylinder coating. Tests of a modified engine and a baseline engine showed that the hot ring did reduce specific fuel consumption by up to 7 percent for some operating conditions and averaged about three percent for all conditions evaluated. Related applications of high-temperature coatings for shaft seals and as backup lubricants for gas bearings are also described.

  19. Ferroelectric Pump

    NASA Technical Reports Server (NTRS)

    Jalink, Antony, Jr. (Inventor); Hellbaum, Richard F. (Inventor); Rohrbach, Wayne W. (Inventor)

    2000-01-01

    A ferroelectric pump has one or more variable volume pumping chambers internal to a housing. Each chamber has at least one wall comprising a dome shaped internally prestressed ferroelectric actuator having a curvature and a dome height that varies with an electric voltage applied between an inside and outside surface of the actuator. A pumped medium flows into and out of each pumping chamber in response to displacement of the ferroelectric actuator. The ferroelectric actuator is mounted within each wall and isolates each ferroelectric actuator from the pumped medium, supplies a path for voltage to be applied to each ferroelectric actuator, and provides for positive containment of each ferroelectric actuator while allowing displacement of the entirety of each ferroelectric actuator in response to the applied voltage.

  20. Axial Pump

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor); Akkerman, James W. (Inventor); Aber, Gregory S. (Inventor); VanDamm, George Arthur (Inventor); Bacak, James W. (Inventor); Svejkovsky, Paul A. (Inventor); Benkowski, Robert J. (Inventor)

    1997-01-01

    A rotary blood pump includes a pump housing for receiving a flow straightener, a rotor mounted on rotor bearings and having an inducer portion and an impeller portion, and a diffuser. The entrance angle, outlet angle, axial and radial clearances of blades associated with the flow straightener, inducer portion, impeller portion and diffuser are optimized to minimize hemolysis while maintaining pump efficiency. The rotor bearing includes a bearing chamber that is filled with cross-linked blood or other bio-compatible material. A back emf integrated circuit regulates rotor operation and a microcomputer may be used to control one or more back emf integrated circuits. A plurality of magnets are disposed in each of a plurality of impeller blades with a small air gap. A stator may be axially adjusted on the pump housing to absorb bearing load and maximize pump efficiency.

  1. Analytical and experimental investigation of ringless-piston concept. Interim report, September 1986-December 1987

    SciTech Connect

    Dickey, D.W.; Wood, C.D.

    1987-12-01

    The purpose of this project was to analytically and experimentally investigate the concept of a ringless-piston internal-combustion engine. A joint objective was to design, build, and test a ringless piston to improve ringless-piston engine performance. A computer model was developed to predict ringed and ringless-piston engine performance. Experimental performance data were then collected by operating a small, liquid-cooled, two-stroke gasoline engine with and without the piston ring on the stock aluminum and Southwest Research Institute prototype steel piston. The experimental performance data were then compared with the results of the computer model. The results showed that a piston engine can operate without piston rings.

  2. Lightweight piston-rod assembly for a reciprocating machine

    DOEpatents

    Corey, John A.; Walsh, Michael M.

    1986-01-01

    In a reciprocating machine, there is provided a hollow piston including a dome portion on one end and a base portion on the opposite end. The base portion includes a central bore into which a rod is hermetically fixed in radial and angular alignment. The extending end of the rod has a reduced diameter portion adapted to fit into the central bore of a second member such as a cross-head assembly, and to be secured thereto in radial and axial alignment with the piston.

  3. Continuing Development for Free-Piston Stirling Space Power Systems

    NASA Astrophysics Data System (ADS)

    Peterson, Allen A.; Qiu, Songgang; Redinger, Darin L.; Augenblick, John E.; Petersen, Stephen L.

    2004-02-01

    Long-life radioisotope power generators based on free-piston Stirling engines are an energy-conversion solution for future space applications. The high efficiency of Stirling machines makes them more attractive than the thermoelectric generators currently used in space. Stirling Technology Company (STC) has been developing free-piston Stirling machines for over 30 years, and its family of Stirling generators is ideally suited for reliable, maintenance-free operation. This paper describes recent progress and status of the STC RemoteGen™ 55 W-class Stirling generator (RG-55), presents an overview of recent testing, and discusses how the technology demonstration design has evolved toward space-qualified hardware.

  4. Homogeneous Charge Compression Ignition Free Piston Linear Alternator

    SciTech Connect

    Janson Wu; Nicholas Paradiso; Peter Van Blarigan; Scott Goldsborough

    1998-11-01

    An experimental and theoretical investigation of a homogeneous charge compression ignition (HCCI) free piston powered linear alternator has been conducted to determine if improvements can be made in the thermal and conversion efficiencies of modern electrical generator systems. Performance of a free piston engine was investigated using a rapid compression expansion machine and a full cycle thermodynamic model. Linear alternator performance was investigated with a computer model. In addition linear alternator testing and permanent magnet characterization hardware were developed. The development of the two-stroke cycle scavenging process has begun.

  5. Assembly for electrical conductivity measurements in the piston cylinder device

    DOEpatents

    Watson, Heather Christine; Roberts, Jeffrey James

    2012-06-05

    An assembly apparatus for measurement of electrical conductivity or other properties of a sample in a piston cylinder device wherein pressure and heat are applied to the sample by the piston cylinder device. The assembly apparatus includes a body, a first electrode in the body, the first electrode operatively connected to the sample, a first electrical conductor connected to the first electrode, a washer constructed of a hard conducting material, the washer surrounding the first electrical conductor in the body, a second electrode in the body, the second electrode operatively connected to the sample, and a second electrical conductor connected to the second electrode.

  6. FOREWORD: 26th IAHR Symposium on Hydraulic Machinery and Systems

    NASA Astrophysics Data System (ADS)

    Wu, Yulin; Wang, Zhengwei; Liu, Shuhong; Yuan, Shouqi; Luo, Xingqi; Wang, Fujun

    2012-11-01

    The 26th IAHR Symposium on Hydraulic Machinery and Systems, will be held in Beijing, China, 19-23 August 2012. It is jointly organized by Tsinghua University, State Key Laboratory of Hydro Science and Hydraulic Engineering, China, Jiangsu University, Xi'an University of Technology, China Agricultural University, National Engineering Research Center of Hydropower Equipment and Dongfang Electric Machinery Co., Ltd. It is the second time that China hosts such a symposium. By the end of 2011, the China electrical power system had a total of 1 050 GW installed power, out of which 220 GW was in hydropower plants. The energy produced in hydropower facilities was 662.6 TWh from a total of 4,720 TWh electrical energy production in 2011. Moreover, in 2020, new hydropower capacities are going to be developed, with a total of 180 GW installed power and an estimated 708 TWh/year energy production. And in 2011, the installed power of pumped storage stations was about 25GW. In 2020, the data will be 70GW. At the same time, the number of pumps used in China is increasing rapidly. China produces about 29,000,000 pumps with more than 220 series per year. By the end of 2011, the Chinese pumping system has a total of 950 GW installed power. The energy consumed in pumping facilities was 530 TWh in 2011. The pump energy consumption accounted for about 12% of the national electrical energy production. Therefore, there is a large market in the field of hydraulic machinery including water turbines, pump turbines and a variety of pumps in China. There are also many research projects in this field. For example, we have conducted National Key Research Projects on 1000 MW hydraulic turbine, and on the pump turbines with high head, as well as on the large capacity pumps for water supply. Tsinghua University of Beijing is proud to host the 26th IAHR Symposium on Hydraulic Machinery and Systems. Tsinghua University was established in 1911, after the founding of the People's Republic of China. It

  7. Nonlinear stability research on the hydraulic system of double-side rolling shear.

    PubMed

    Wang, Jun; Huang, Qingxue; An, Gaocheng; Qi, Qisong; Sun, Binyu

    2015-10-01

    This paper researches the stability of the nonlinear system taking the hydraulic system of double-side rolling shear as an example. The hydraulic system of double-side rolling shear uses unsymmetrical electro-hydraulic proportional servo valve to control the cylinder with single piston rod, which can make best use of the space and reduce reversing shock. It is a typical nonlinear structure. The nonlinear state-space equations of the unsymmetrical valve controlling cylinder system are built first, and the second Lyapunov method is used to evaluate its stability. Second, the software AMEsim is applied to simulate the nonlinear system, and the results indicate that the system is stable. At last, the experimental results show that the system unsymmetrical valve controlling the cylinder with single piston rod is stable and conforms to what is deduced by theoretical analysis and simulation. The construction and application of Lyapunov function not only provide the theoretical basis for using of unsymmetrical valve controlling cylinder with single piston rod but also develop a new thought for nonlinear stability evaluation. PMID:26520981

  8. Nonlinear stability research on the hydraulic system of double-side rolling shear

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Huang, Qingxue; An, Gaocheng; Qi, Qisong; Sun, Binyu

    2015-10-01

    This paper researches the stability of the nonlinear system taking the hydraulic system of double-side rolling shear as an example. The hydraulic system of double-side rolling shear uses unsymmetrical electro-hydraulic proportional servo valve to control the cylinder with single piston rod, which can make best use of the space and reduce reversing shock. It is a typical nonlinear structure. The nonlinear state-space equations of the unsymmetrical valve controlling cylinder system are built first, and the second Lyapunov method is used to evaluate its stability. Second, the software AMEsim is applied to simulate the nonlinear system, and the results indicate that the system is stable. At last, the experimental results show that the system unsymmetrical valve controlling the cylinder with single piston rod is stable and conforms to what is deduced by theoretical analysis and simulation. The construction and application of Lyapunov function not only provide the theoretical basis for using of unsymmetrical valve controlling cylinder with single piston rod but also develop a new thought for nonlinear stability evaluation.

  9. DEVELOPMENT OF A LINEAR COMPRESSOR FOR AIR CONDITIONERS AND HEAT PUMPS

    EPA Science Inventory

    The report discusses the design, building, testing, and delivering to the Environmental Protection Agency of a linear compressor for operation in a 3.0- ton (10.5 kW) residential air-conditioning and heat pumping system. The compressor design evolved from a linear resonant piston...

  10. High density ash slurry pumping and disposal: An environmentally safe and economical alternative

    SciTech Connect

    Broek, B. van den

    1999-07-01

    The paper describes conventional ash disposal systems; high density slurry transportation and disposal systems, including the design, disposal site, technical features, sloped disposal site operating parameters, slurry quality and deposit management; typical operational questions; specific advantages of the proposed GEHO system; and GEHO piston diaphragm pumps.

  11. Specific storage and hydraulic conductivity tomography through the joint inversion of hydraulic heads and self-potential data

    NASA Astrophysics Data System (ADS)

    Ahmed, A. Soueid; Jardani, A.; Revil, A.; Dupont, J. P.

    2016-03-01

    Transient hydraulic tomography is used to image the heterogeneous hydraulic conductivity and specific storage fields of shallow aquifers using time series of hydraulic head data. Such ill-posed and non-unique inverse problem can be regularized using some spatial geostatistical characteristic of the two fields. In addition to hydraulic heads changes, the flow of water, during pumping tests, generates an electrical field of electrokinetic nature. These electrical field fluctuations can be passively recorded at the ground surface using a network of non-polarizing electrodes connected to a high impedance (> 10 MOhm) and sensitive (0.1 mV) voltmeter, a method known in geophysics as the self-potential method. We perform a joint inversion of the self-potential and hydraulic head data to image the hydraulic conductivity and specific storage fields. We work on a 3D synthetic confined aquifer and we use the adjoint state method to compute the sensitivities of the hydraulic parameters to the hydraulic head and self-potential data in both steady-state and transient conditions. The inverse problem is solved using the geostatistical quasi-linear algorithm framework of Kitanidis. When the number of piezometers is small, the record of the transient self-potential signals provides useful information to characterize the hydraulic conductivity and specific storage fields. These results show that the self-potential method reveals the heterogeneities of some areas of the aquifer, which could not been captured by the tomography based on the hydraulic heads alone. In our analysis, the improvement on the hydraulic conductivity and specific storage estimations were based on perfect knowledge of electrical resistivity field. This implies that electrical resistivity will need to be jointly inverted with the hydraulic parameters in future studies and the impact of its uncertainty assessed with respect to the final tomograms of the hydraulic parameters.

  12. Gas-lubricated seal for sealing between a piston and a cylinder wall

    DOEpatents

    Hoult, D.P.

    1985-09-10

    A piston-cylinder seal uses gas for a lubricant and has a runner supported on a gapless structure and placed in the space between the piston and the cylinder wall. The runner is deformed elastically under the influence of the operating pressures to follow and compensate for variations in the piston-cylinder fit and maintain a seal. 4 figs.

  13. Gas-lubricated seal for sealing between a piston and a cylinder wall

    DOEpatents

    Hoult, David P.

    1985-01-01

    A piston-cylinder seal uses gas for a lubricant and has a runner supported on a gapless structure and placed in the space between the piston and the cylinder wall. The runner is deformed elastically under the influence of the operating pressures to follow and compensate for variations in the piston-cylinder fit and maintain a seal.

  14. The 25 kWe solar thermal Stirling hydraulic engine system: Conceptual design

    NASA Technical Reports Server (NTRS)

    White, Maurice; Emigh, Grant; Noble, Jack; Riggle, Peter; Sorenson, Torvald

    1988-01-01

    The conceptual design and analysis of a solar thermal free-piston Stirling hydraulic engine system designed to deliver 25 kWe when coupled to a 11 meter test bed concentrator is documented. A manufacturing cost assessment for 10,000 units per year was made. The design meets all program objectives including a 60,000 hr design life, dynamic balancing, fully automated control, more than 33.3 percent overall system efficiency, properly conditioned power, maximum utilization of annualized insolation, and projected production costs. The system incorporates a simple, rugged, reliable pool boiler reflux heat pipe to transfer heat from the solar receiver to the Stirling engine. The free-piston engine produces high pressure hydraulic flow which powers a commercial hydraulic motor that, in turn, drives a commercial rotary induction generator. The Stirling hydraulic engine uses hermetic bellows seals to separate helium working gas from hydraulic fluid which provides hydrodynamic lubrication to all moving parts. Maximum utilization of highly refined, field proven commercial components for electric power generation minimizes development cost and risk.

  15. Minutes of the meeting - pennsylvania electric association, engineering section, structures and hydraulics committee, spring, 1981

    SciTech Connect

    Not Available

    1981-01-01

    The minutes contains 6 papers dealing with structures and hydraulics. Topics include: rehabilitation of small hydro projects; enviromental impact of hydroelectric projects; and pumped storage. 5 papers are indexed separately.

  16. Containment wells to form hydraulic barriers along site boundaries.

    PubMed

    Vo, D; Ramamurthy, A S; Qu, J; Zhao, X P

    2008-12-15

    In the field, aquifer remediation methods include pump and treat procedures based on hydraulic control systems. They are used to reduce the level of residual contamination present in the soil and soil pores of aquifers. Often, physical barriers are erected along the boundaries of the target (aquifer) site to reduce the leakage of the released soil contaminant to the surrounding regions. Physical barriers are expensive to build and dismantle. Alternatively, based on simple hydraulic principles, containment wells or image wells injecting clear water can be designed and built to provide hydraulic barriers along the contaminated site boundaries. For brevity, only one pattern of containment well system that is very effective is presented in detail. The study briefly reports about the method of erecting a hydraulic barrier around a contaminated region based on the simple hydraulic principle of images. During the clean-up period, hydraulic barriers can considerably reduce the leakage of the released contaminant from the target site to surrounding pristine regions. Containment wells facilitate the formation of hydraulic barriers. Hence, they control the movement of contaminants away from the site that is being remedied. However, these wells come into play, only when the pumping operation for cleaning up the site is active. After operation, they can be filled with soil to permit the natural ground water movement. They can also be used as monitoring wells.

  17. Submersible pump

    SciTech Connect

    Todd, D. B.

    1985-08-27

    A method and apparatus for using a submersible pump to lift reservoir fluids in a well while having the tubing/casing annulus isolated from the produced fluids. The apparatus allows the submersible pump to be positioned above the annular packoff device. The apparatus comprises an outer shield that encloses the pump and can be attached to the production tubing. The lower end of the shield attaches to a short tubing section that seals with the annular packoff device or a receptacle above the annular packoff device.

  18. A straight path centrifugal blood pump concept in the Capiox centrifugal pump.

    PubMed

    Kijima, T; Oshiyama, H; Horiuchi, K; Nogawa, A; Hamasaki, H; Amano, N; Nojiri, C; Fukasawa, H; Akutsu, T

    1993-07-01

    This article describes comparative studies of a newly developed "straight path" centrifugal pump (Capiox centrifugal pump) targeted for open-heart surgery and circulatory support. A unique straight path design of the rotor was very effective in reducing the pump's rotational speed and prime volume. This pump was evaluated for hydraulics, hemolysis, depriming characteristics, cavitation, and heat generation. Two commercially available centrifugal pumps, the Biomedicus cone-type pump and the Sarns 3M impeller-type pump, were used as controls. The new pump required the lowest pump speed to produce the same flow rates under the same pressure loads and demonstrated the lowest hemolysis and the lowest temperature rise with the outlet clamped. The air volume required to deprime the new pump was one-third to one-half that for the other pumps, and no sign of cavitation was observed even if a small amount of air was introduced to the pump inlet under a negative pressure of 200 mm Hg.

  19. Long stroke pumping unit. Final technical report

    SciTech Connect

    Not Available

    1985-01-01

    The Long Stroke Pumping unit (LSP) is designed to replace the current beam pumping unit being used widely in the oil fields. The LSP unit uses fixed top and bottom reservoirs and a moving shuttle dump bucket. a continuously running centrifugal pump transfers hydraulic fluids from the bottom reservior to the top. The static head between the two reservoirs provides the necessary potential energy for sucker rod force and stroke. Details of the LSP unit and its operation are provided, as well as test procedures. (LEW)

  20. Improved piston ring materials for 650 deg C service

    NASA Technical Reports Server (NTRS)

    Bjorndahl, W. D.

    1986-01-01

    A program to develop piston ring material systems which will operate at 650C was performed. In this program, two candidate high temperature piston ring substrate materials, Carpenter 709-2 and 440B, were hot formed into the piston ring shape and subsequently evaluated. In a parallel development effort ceramic and metallic piston ring coating materials were applied to cast iron rings by various processing techniques and then subjected to thermal shock and wear evaluation. Finally, promising candidate coatings were applied to the most thermally stable hot formed substrate. The results of evaluation tests of the hot formed substrate show that Carpenter 709-2 has greater thermal stability than 440B. Of the candidate coatings, plasma transferred arc (PTA) applied tungsten carbide and molybdenum based systems exhibit the greatest resistance to thermal shock. For the ceramic based systems, thermal shock resistance was improved by bond coat grading. Wear testing was conducted to 650C (1202F). For ceramic systems, the alumina/titania/zirconia/yttria composition showed highest wear resistance. For the PTA applied systems, the tungsten carbide based system showed highest wear resistance.