Sample records for hydraulics

  1. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT III, AUTOMATIC TRANSMISSIONS--HYDRAULICS (PART I).

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO INTRODUCE BASIC HYDRAULIC PRINCIPLES AND PROVIDE AN UNDERSTANDING OF HYDRAULIC TRANSMISSIONS USED IN DIESEL POWERED VEHICLES. TOPICS ARE WHY USE HYDRAULICS, REVIEWING BASIC PHYSICS LAWS IN RELATION TO HYDRAULICS, UNDERSTANDING THE HYDRAULIC SYSTEM, AND DEVELOPING A BASIC HYDRAULIC SYSTEM. THE MODULE…

  2. Hydraulic manipulator design, analysis, and control at Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kress, R.L.; Jansen, J.F.; Love, L.J.

    1996-09-01

    To meet the increased payload capacities demanded by present-day tasks, manipulator designers have turned to hydraulics as a means of actuation. Hydraulics have always been the actuator of choice when designing heavy-life construction and mining equipment such as bulldozers, backhoes, and tunneling devices. In order to successfully design, build, and deploy a new hydraulic manipulator (or subsystem) sophisticated modeling, analysis, and control experiments are usually needed. To support the development and deployment of new hydraulic manipulators Oak Ridge National Laboratory (ORNL) has outfitted a significant experimental laboratory and has developed the software capability for research into hydraulic manipulators, hydraulic actuators,more » hydraulic systems, modeling of hydraulic systems, and hydraulic controls. The hydraulics laboratory at ORNL has three different manipulators. First is a 6-Degree-of-Freedom (6-DoF), multi-planer, teleoperated, flexible controls test bed used for the development of waste tank clean-up manipulator controls, thermal studies, system characterization, and manipulator tracking. Finally, is a human amplifier test bed used for the development of an entire new class of teleoperated systems. To compliment the hardware in the hydraulics laboratory, ORNL has developed a hydraulics simulation capability including a custom package to model the hydraulic systems and manipulators for performance studies and control development. This paper outlines the history of hydraulic manipulator developments at ORNL, describes the hydraulics laboratory, discusses the use of the equipment within the laboratory, and presents some of the initial results from experiments and modeling associated with these hydraulic manipulators. Included are some of the results from the development of the human amplifier/de-amplifier concepts, the characterization of the thermal sensitivity of hydraulic systems, and end-point tracking accuracy studies. Experimental and analytical results are included.« less

  3. 77 FR 8181 - Airworthiness Directives; Fokker Services B.V. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-14

    ... hydraulic system and accompanying alerts for ``hydraulic system 1 low quantity'' and ``hydraulic system 2... of the hydraulic system and accompanying alerts for ``hydraulic system 1 low quantity'' and... for these alerts may give the false impression that the stabiliser is still hydraulically controllable...

  4. Fluid Power/Basic Hydraulics. Instructor's Guide.

    ERIC Educational Resources Information Center

    Stanbery, Richard

    This guide is designed to assist industrial vocational instructors in teaching a course on fluid power and basic hydraulics. Covered in the unit on the basics of fluid power and hydraulics are the following topics: the fundamentals of fluid power and hydraulics, basic hydraulic circuits, and servicing a hydraulic jack. The second unit, consisting…

  5. Hydraulic Hybrid Fleet Vehicle Testing | Transportation Research | NREL

    Science.gov Websites

    Hydraulic Hybrid Fleet Vehicle Evaluations Hydraulic Hybrid Fleet Vehicle Evaluations How Hydraulic Hybrid Vehicles Work Hydraulic hybrid systems can capture up to 70% of the kinetic energy that would otherwise be lost during braking. This energy drives a pump, which transfers hydraulic fluid from a low

  6. Phase 1 Feasibility Study: Seawater Hydraulic Transfer Pump

    DTIC Science & Technology

    1996-11-01

    2442532 3408040 M/ DIRECT HYDRAULIC DRIVE FOR LARGE FLOTATION CELLS 2440714 3406737 A-5 M/ COMBINED ANTISKID AND TRACTION CONTROL ELECTRONIC BRAKE SYSTEM ...HYDRAULIC PRESSURE 2449168 3412870 M/ POWER STEERING PUMP WITH BALANCED PORTING 2446911 3411257 M/ HYDRAULIC BRAKE SYSTEM INCLUDING SLIP CONTROL ...2440401 3406424 M/ HYDRAULIC CIRCUIT FOR RUNNING A CRAWLER VEHICLE 2434313 3402015 M/ HYDRAULICALLY ACTUATED AIRCRAFT ENGINE CONTROL SYSTEM 2425918

  7. Hydraulic manipulator research at ORNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kress, R.L.; Jansen, J.F.; Love, L.J.

    1997-03-01

    Recently, task requirements have dictated that manipulator payload capacity increase to accommodate greater payloads, greater manipulator length, and larger environmental interaction forces. General tasks such as waste storage tank cleanup and facility dismantlement and decommissioning require manipulator life capacities in the range of hundreds of pounds rather than tens of pounds. To meet the increased payload capacities demanded by present-day tasks, manipulator designers have turned once again to hydraulics as a means of actuation. In order to successfully design, build, and deploy a new hydraulic manipulator (or subsystem), sophisticated modeling, analysis, and control experiments are usually needed. Oak Ridge Nationalmore » Laboratory (ORNL) has a history of projects that incorporate hydraulics technology, including mobile robots, teleoperated manipulators, and full-scale construction equipment. In addition, to support the development and deployment of new hydraulic manipulators, ORNL has outfitted a significant experimental laboratory and has developed the software capability for research into hydraulic manipulators, hydraulic actuators, hydraulic systems, modeling of hydraulic systems, and hydraulic controls. The purpose of this article is to describe the past hydraulic manipulator developments and current hydraulic manipulator research capabilities at ORNL. Included are example experimental results from ORNL`s flexible/prismatic test stand.« less

  8. Energy-Saving Control of a Novel Hydraulic Drive System for Field Walking Robot

    NASA Astrophysics Data System (ADS)

    Fang, Delei; Shang, Jianzhong; Xue, Yong; Yang, Junhong; Wang, Zhuo

    2018-01-01

    To improve the efficiency of the hydraulic drive system in field walking robot, this paper proposed a novel hydraulic system based on two-stage pressure source. Based on the analysis of low efficiency of robot single-stage hydraulic system, the paper firstly introduces the concept and design of two-stage pressure source drive system. Then, the new hydraulic system energy-saving control is planned according to the characteristics of walking robot. The feasibility of the new hydraulic system is proved by the simulation of the walking robot squatting. Finally, the efficiencies of two types hydraulic system are calculated, indicating that the novel hydraulic system can increase the efficiency by 41.5%, which can contribute to enhance knowledge about hydraulic drive system for field walking robot.

  9. Hydraulic Hybrid Vehicle Publications | Transportation Research | NREL

    Science.gov Websites

    Hydraulic Hybrid Vehicle Publications Hydraulic Hybrid Vehicle Publications The following technical papers and fact sheets provide information about NREL's hydraulic hybrid fleet vehicle evaluations . Refuse Trucks Project Startup: Evaluating the Performance of Hydraulic Hybrid Refuse Vehicles. Bob

  10. Parameter Prediction of Hydraulic Fracture for Tight Reservoir Based on Micro-Seismic and History Matching

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Ma, Xiaopeng; Li, Yanlai; Wu, Haiyang; Cui, Chenyu; Zhang, Xiaoming; Zhang, Hao; Yao, Jun

    Hydraulic fracturing is an important measure for the development of tight reservoirs. In order to describe the distribution of hydraulic fractures, micro-seismic diagnostic was introduced into petroleum fields. Micro-seismic events may reveal important information about static characteristics of hydraulic fracturing. However, this method is limited to reflect the distribution area of the hydraulic fractures and fails to provide specific parameters. Therefore, micro-seismic technology is integrated with history matching to predict the hydraulic fracture parameters in this paper. Micro-seismic source location is used to describe the basic shape of hydraulic fractures. After that, secondary modeling is considered to calibrate the parameters information of hydraulic fractures by using DFM (discrete fracture model) and history matching method. In consideration of fractal feature of hydraulic fracture, fractal fracture network model is established to evaluate this method in numerical experiment. The results clearly show the effectiveness of the proposed approach to estimate the parameters of hydraulic fractures.

  11. Derivation of site-specific relationships between hydraulic parameters and p-wave velocities based on hydraulic and seismic tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brauchler, R.; Doetsch, J.; Dietrich, P.

    2012-01-10

    In this study, hydraulic and seismic tomographic measurements were used to derive a site-specific relationship between the geophysical parameter p-wave velocity and the hydraulic parameters, diffusivity and specific storage. Our field study includes diffusivity tomograms derived from hydraulic travel time tomography, specific storage tomograms, derived from hydraulic attenuation tomography, and p-wave velocity tomograms, derived from seismic tomography. The tomographic inversion was performed in all three cases with the SIRT (Simultaneous Iterative Reconstruction Technique) algorithm, using a ray tracing technique with curved trajectories. The experimental set-up was designed such that the p-wave velocity tomogram overlaps the hydraulic tomograms by half. Themore » experiments were performed at a wellcharacterized sand and gravel aquifer, located in the Leine River valley near Göttingen, Germany. Access to the shallow subsurface was provided by direct-push technology. The high spatial resolution of hydraulic and seismic tomography was exploited to derive representative site-specific relationships between the hydraulic and geophysical parameters, based on the area where geophysical and hydraulic tests were performed. The transformation of the p-wave velocities into hydraulic properties was undertaken using a k-means cluster analysis. Results demonstrate that the combination of hydraulic and geophysical tomographic data is a promising approach to improve hydrogeophysical site characterization.« less

  12. 46 CFR 28.405 - Hydraulic equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... than four times the system maximum operating pressure. (c) Each hydraulic system must be equipped with... 46 Shipping 1 2013-10-01 2013-10-01 false Hydraulic equipment. 28.405 Section 28.405 Shipping... Operate With More Than 16 Individuals on Board § 28.405 Hydraulic equipment. (a) Each hydraulic system...

  13. 14 CFR 23.1435 - Hydraulic systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... addition to hydraulic loads. (2) A means to indicate the pressure in each hydraulic system which supplies... maximum operating pressure of that system. (c) Accumulators. A hydraulic accumulator or reservoir may be... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Hydraulic systems. 23.1435 Section 23.1435...

  14. 14 CFR 23.1435 - Hydraulic systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... addition to hydraulic loads. (2) A means to indicate the pressure in each hydraulic system which supplies... maximum operating pressure of that system. (c) Accumulators. A hydraulic accumulator or reservoir may be... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hydraulic systems. 23.1435 Section 23.1435...

  15. 14 CFR 23.1435 - Hydraulic systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... addition to hydraulic loads. (2) A means to indicate the pressure in each hydraulic system which supplies... maximum operating pressure of that system. (c) Accumulators. A hydraulic accumulator or reservoir may be... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Hydraulic systems. 23.1435 Section 23.1435...

  16. 14 CFR 23.1435 - Hydraulic systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... addition to hydraulic loads. (2) A means to indicate the pressure in each hydraulic system which supplies... maximum operating pressure of that system. (c) Accumulators. A hydraulic accumulator or reservoir may be... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Hydraulic systems. 23.1435 Section 23.1435...

  17. 14 CFR 23.1435 - Hydraulic systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... addition to hydraulic loads. (2) A means to indicate the pressure in each hydraulic system which supplies... maximum operating pressure of that system. (c) Accumulators. A hydraulic accumulator or reservoir may be... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Hydraulic systems. 23.1435 Section 23.1435...

  18. 46 CFR 28.405 - Hydraulic equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... than four times the system maximum operating pressure. (c) Each hydraulic system must be equipped with... 46 Shipping 1 2010-10-01 2010-10-01 false Hydraulic equipment. 28.405 Section 28.405 Shipping... Operate With More Than 16 Individuals on Board § 28.405 Hydraulic equipment. (a) Each hydraulic system...

  19. 46 CFR 28.405 - Hydraulic equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... than four times the system maximum operating pressure. (c) Each hydraulic system must be equipped with... 46 Shipping 1 2014-10-01 2014-10-01 false Hydraulic equipment. 28.405 Section 28.405 Shipping... Operate With More Than 16 Individuals on Board § 28.405 Hydraulic equipment. (a) Each hydraulic system...

  20. 46 CFR 28.405 - Hydraulic equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... than four times the system maximum operating pressure. (c) Each hydraulic system must be equipped with... 46 Shipping 1 2011-10-01 2011-10-01 false Hydraulic equipment. 28.405 Section 28.405 Shipping... Operate With More Than 16 Individuals on Board § 28.405 Hydraulic equipment. (a) Each hydraulic system...

  1. 46 CFR 28.405 - Hydraulic equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... than four times the system maximum operating pressure. (c) Each hydraulic system must be equipped with... 46 Shipping 1 2012-10-01 2012-10-01 false Hydraulic equipment. 28.405 Section 28.405 Shipping... Operate With More Than 16 Individuals on Board § 28.405 Hydraulic equipment. (a) Each hydraulic system...

  2. Promoting water hydraulics in Malaysia: A green educational approach

    NASA Astrophysics Data System (ADS)

    Yusof, Ahmad Anas; Zaili, Zarin Syukri; Hassan, Siti Nor Habibah; Tuan, Tee Boon; Saadun, Mohd Noor Asril; Ibrahim, Mohd Qadafie

    2014-10-01

    In promoting water hydraulics in Malaysia, this paper presents research development of water hydraulics educational training system for secondary and tertiary levels in Malaysia. Water hydraulics trainer with robotic attachment has been studied in order to promote the usefulness of such educational tools in promoting sustainability and green technology in the country. The trainer is being developed in order to allow constructive curriculum development and continuous marketing research for the effectiveness and usefulness of using water in hydraulic power trainer. The research on water-based hydraulic trainer is now possible with the current development in water hydraulics technology.

  3. 14 CFR 29.1435 - Hydraulic systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... hydraulic system must be designed to withstand pressures sufficiently greater than those prescribed in... system. (c) Fire protection. Each hydraulic system using flammable hydraulic fluid must meet the...

  4. 14 CFR 29.1435 - Hydraulic systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... hydraulic system must be designed to withstand pressures sufficiently greater than those prescribed in... system. (c) Fire protection. Each hydraulic system using flammable hydraulic fluid must meet the...

  5. 14 CFR 29.1435 - Hydraulic systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... hydraulic system must be designed to withstand pressures sufficiently greater than those prescribed in... system. (c) Fire protection. Each hydraulic system using flammable hydraulic fluid must meet the...

  6. Non-destructive testing principles and accurate evaluation of the hydraulic measure impact range using the DC method

    NASA Astrophysics Data System (ADS)

    Qiu, Liming; Shen, Rongxi; Song, Dazhao; Wang, Enyuan; Liu, Zhentang; Niu, Yue; Jia, Haishan; Xia, Shankui; Zheng, Xiangxin

    2017-12-01

    An accurate and non-destructive evaluation method for the hydraulic measure impact range in coal seams is urgently needed. Aiming at the application demands, a theoretical study and field test are presented using the direct current (DC) method to evaluate the impact range of coal seam hydraulic measures. We firstly analyzed the law of the apparent resistivity response of an abnormal conductive zone in a coal seam, and then investigated the principle of non-destructive testing of the coal seam hydraulic measure impact range using the DC method, and used an accurate evaluation method based on the apparent resistivity cloud chart. Finally, taking hydraulic fracturing and hydraulic flushing as examples, field experiments were carried out in coal mines to evaluate the impact ranges. The results showed that: (1) in the process of hydraulic fracturing, coal conductivity was enhanced by high-pressure water in the coal seam, and after hydraulic fracturing, the boundary of the apparent resistivity decrease area was the boundary impact range. (2) In the process of hydraulic flushing, coal conductivity was reduced by holes and cracks in the coal seam, and after hydraulic flushing, the boundary of the apparent resistivity increase area was the boundary impact range. (3) After the implementation of the hydraulic measures, there may be some blind zones in the coal seam; in hydraulic fracturing blind zones, the apparent resistivity increased or stayed constant, while in hydraulic flushing blind zones, the apparent resistivity decreased or stayed constant. The DC method realized a comprehensive and non-destructive evaluation of the impact range of the hydraulic measures, and greatly reduced the time and cost of evaluation.

  7. 46 CFR 112.50-3 - Hydraulic starting.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Hydraulic starting. 112.50-3 Section 112.50-3 Shipping... POWER SYSTEMS Emergency Diesel and Gas Turbine Engine Driven Generator Sets § 112.50-3 Hydraulic starting. A hydraulic starting system must meet the following: (a) The hydraulic starting system must be a...

  8. 46 CFR 112.50-3 - Hydraulic starting.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Hydraulic starting. 112.50-3 Section 112.50-3 Shipping... POWER SYSTEMS Emergency Diesel and Gas Turbine Engine Driven Generator Sets § 112.50-3 Hydraulic starting. A hydraulic starting system must meet the following: (a) The hydraulic starting system must be a...

  9. 46 CFR 112.50-3 - Hydraulic starting.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Hydraulic starting. 112.50-3 Section 112.50-3 Shipping... POWER SYSTEMS Emergency Diesel and Gas Turbine Engine Driven Generator Sets § 112.50-3 Hydraulic starting. A hydraulic starting system must meet the following: (a) The hydraulic starting system must be a...

  10. 75 FR 60010 - Airworthiness Directives; Airbus Model A330-200 and -300 Series Airplanes and Model A340-200...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-29

    ... hydraulic pump electrical motor connector internal arcing, resulting in: --Either false hydraulic system... uncontrolled fire. In order to protect the hydraulic pump electrical motor connectors against fluid ingress... hydraulic pump electrical motor malfunction, this AD requires modification of the three hydraulic pump...

  11. 76 FR 10230 - Airworthiness Directives; Airbus Model A330-200 and -300 Series Airplanes and Model A340-200...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-24

    ... hydraulic pump electrical motor connector internal arcing, resulting in: --Either false hydraulic system... uncontrolled fire. In order to protect the hydraulic pump electrical motor connectors against fluid ingress... hydraulic pump electrical motor malfunction, this AD requires modification of the three hydraulic pump...

  12. Phase Change Material Thermal Power Generator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Chao, Yi (Inventor); Valdez, Thomas I. (Inventor)

    2014-01-01

    An energy producing device, for example a submersible vehicle for descending or ascending to different depths within water or ocean, is disclosed. The vehicle comprises a temperature-responsive material to which a hydraulic fluid is associated. A pressurized storage compartment stores the fluid as soon as the temperature-responsive material changes density. The storage compartment is connected with a hydraulic motor, and a valve allows fluid passage from the storage compartment to the hydraulic motor. An energy storage component, e.g. a battery, is connected with the hydraulic motor and is charged by the hydraulic motor when the hydraulic fluid passes through the hydraulic motor. Upon passage in the hydraulic motor, the fluid is stored in a further storage compartment and is then sent back to the area of the temperature-responsive material.

  13. Phase change material thermal power generator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Chao, Yi (Inventor); Valdez, Thomas I. (Inventor)

    2011-01-01

    An energy producing device, for example a submersible vehicle for descending or ascending to different depths within water or ocean, is disclosed. The vehicle comprises a temperature-responsive material to which a hydraulic fluid is associated. A pressurized storage compartment stores the fluid as soon as the temperature-responsive material changes density. The storage compartment is connected with a hydraulic motor, and a valve allows fluid passage from the storage compartment to the hydraulic motor. An energy storage component, e.g. a battery, is connected with the hydraulic motor and is charged by the hydraulic motor when the hydraulic fluid passes through the hydraulic motor. Upon passage in the hydraulic motor, the fluid is stored in a further storage compartment and is then sent back to the area of the temperature-responsive material.

  14. Linking hydraulic traits to tropical forest function in a size-structured and trait-driven model (TFS v.1-Hydro)

    NASA Astrophysics Data System (ADS)

    Christoffersen, Bradley O.; Gloor, Manuel; Fauset, Sophie; Fyllas, Nikolaos M.; Galbraith, David R.; Baker, Timothy R.; Kruijt, Bart; Rowland, Lucy; Fisher, Rosie A.; Binks, Oliver J.; Sevanto, Sanna; Xu, Chonggang; Jansen, Steven; Choat, Brendan; Mencuccini, Maurizio; McDowell, Nate G.; Meir, Patrick

    2016-11-01

    Forest ecosystem models based on heuristic water stress functions poorly predict tropical forest response to drought partly because they do not capture the diversity of hydraulic traits (including variation in tree size) observed in tropical forests. We developed a continuous porous media approach to modeling plant hydraulics in which all parameters of the constitutive equations are biologically interpretable and measurable plant hydraulic traits (e.g., turgor loss point πtlp, bulk elastic modulus ɛ, hydraulic capacitance Cft, xylem hydraulic conductivity ks,max, water potential at 50 % loss of conductivity for both xylem (P50,x) and stomata (P50,gs), and the leaf : sapwood area ratio Al : As). We embedded this plant hydraulics model within a trait forest simulator (TFS) that models light environments of individual trees and their upper boundary conditions (transpiration), as well as providing a means for parameterizing variation in hydraulic traits among individuals. We synthesized literature and existing databases to parameterize all hydraulic traits as a function of stem and leaf traits, including wood density (WD), leaf mass per area (LMA), and photosynthetic capacity (Amax), and evaluated the coupled model (called TFS v.1-Hydro) predictions, against observed diurnal and seasonal variability in stem and leaf water potential as well as stand-scaled sap flux. Our hydraulic trait synthesis revealed coordination among leaf and xylem hydraulic traits and statistically significant relationships of most hydraulic traits with more easily measured plant traits. Using the most informative empirical trait-trait relationships derived from this synthesis, TFS v.1-Hydro successfully captured individual variation in leaf and stem water potential due to increasing tree size and light environment, with model representation of hydraulic architecture and plant traits exerting primary and secondary controls, respectively, on the fidelity of model predictions. The plant hydraulics model made substantial improvements to simulations of total ecosystem transpiration. Remaining uncertainties and limitations of the trait paradigm for plant hydraulics modeling are highlighted.

  15. Trade-offs between xylem hydraulic properties, wood anatomy and yield in Populus.

    PubMed

    Hajek, Peter; Leuschner, Christoph; Hertel, Dietrich; Delzon, Sylvain; Schuldt, Bernhard

    2014-07-01

    Trees face the dilemma that achieving high plant productivity is accompanied by a risk of drought-induced hydraulic failure due to a trade-off in the trees' vascular system between hydraulic efficiency and safety. By investigating the xylem anatomy of branches and coarse roots, and measuring branch axial hydraulic conductivity and vulnerability to cavitation in 4-year-old field-grown aspen plants of five demes (Populus tremula L. and Populus tremuloides Michx.) differing in growth rate, we tested the hypotheses that (i) demes differ in wood anatomical and hydraulic properties, (ii) hydraulic efficiency and safety are related to xylem anatomical traits, and (iii) aboveground productivity and hydraulic efficiency are negatively correlated to cavitation resistance. Significant deme differences existed in seven of the nine investigated branch-related anatomical and hydraulic traits but only in one of the four coarse-root-related anatomical traits; this likely is a consequence of high intra-plant variation in root morphology and the occurrence of a few 'high-conductivity roots'. Growth rate was positively related to branch hydraulic efficiency (xylem-specific conductivity) but not to cavitation resistance; this indicates that no marked trade-off exists between cavitation resistance and growth. Both branch hydraulic safety and hydraulic efficiency significantly depended on vessel size and were related to the genetic distance between the demes, while the xylem pressure causing 88% loss of hydraulic conductivity (P88 value) was more closely related to hydraulic efficiency than the commonly used P50 value. Deme-specific variation in the pit membrane structure may explain why vessel size was not directly linked to growth rate. We conclude that branch hydraulic efficiency is an important growth-influencing trait in aspen, while the assumed trade-off between productivity and hydraulic safety is weak. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Specific storage and hydraulic conductivity tomography through the joint inversion of hydraulic heads and self-potential data

    NASA Astrophysics Data System (ADS)

    Ahmed, A. Soueid; Jardani, A.; Revil, A.; Dupont, J. P.

    2016-03-01

    Transient hydraulic tomography is used to image the heterogeneous hydraulic conductivity and specific storage fields of shallow aquifers using time series of hydraulic head data. Such ill-posed and non-unique inverse problem can be regularized using some spatial geostatistical characteristic of the two fields. In addition to hydraulic heads changes, the flow of water, during pumping tests, generates an electrical field of electrokinetic nature. These electrical field fluctuations can be passively recorded at the ground surface using a network of non-polarizing electrodes connected to a high impedance (> 10 MOhm) and sensitive (0.1 mV) voltmeter, a method known in geophysics as the self-potential method. We perform a joint inversion of the self-potential and hydraulic head data to image the hydraulic conductivity and specific storage fields. We work on a 3D synthetic confined aquifer and we use the adjoint state method to compute the sensitivities of the hydraulic parameters to the hydraulic head and self-potential data in both steady-state and transient conditions. The inverse problem is solved using the geostatistical quasi-linear algorithm framework of Kitanidis. When the number of piezometers is small, the record of the transient self-potential signals provides useful information to characterize the hydraulic conductivity and specific storage fields. These results show that the self-potential method reveals the heterogeneities of some areas of the aquifer, which could not been captured by the tomography based on the hydraulic heads alone. In our analysis, the improvement on the hydraulic conductivity and specific storage estimations were based on perfect knowledge of electrical resistivity field. This implies that electrical resistivity will need to be jointly inverted with the hydraulic parameters in future studies and the impact of its uncertainty assessed with respect to the final tomograms of the hydraulic parameters.

  17. Modeling and stability of electro-hydraulic servo of hydraulic excavator

    NASA Astrophysics Data System (ADS)

    Jia, Wenhua; Yin, Chenbo; Li, Guo; Sun, Menghui

    2017-11-01

    The condition of the hydraulic excavator is complicated and the working environment is bad. The safety and stability of the control system is influenced by the external factors. This paper selects hydraulic excavator electro-hydraulic servo system as the research object. A mathematical model and simulation model using AMESIM of servo system is established. Then the pressure and flow characteristics are analyzed. The design and optimization of electro-hydraulic servo system and its application in engineering machinery is provided.

  18. Thermally Actuated Hydraulic Pumps

    NASA Technical Reports Server (NTRS)

    Jones, Jack; Ross, Ronald; Chao, Yi

    2008-01-01

    Thermally actuated hydraulic pumps have been proposed for diverse applications in which direct electrical or mechanical actuation is undesirable and the relative slowness of thermal actuation can be tolerated. The proposed pumps would not contain any sliding (wearing) parts in their compressors and, hence, could have long operational lifetimes. The basic principle of a pump according to the proposal is to utilize the thermal expansion and contraction of a wax or other phase-change material in contact with a hydraulic fluid in a rigid chamber. Heating the chamber and its contents from below to above the melting temperature of the phase-change material would cause the material to expand significantly, thus causing a substantial increase in hydraulic pressure and/or a substantial displacement of hydraulic fluid out of the chamber. Similarly, cooling the chamber and its contents from above to below the melting temperature of the phase-change material would cause the material to contract significantly, thus causing a substantial decrease in hydraulic pressure and/or a substantial displacement of hydraulic fluid into the chamber. The displacement of the hydraulic fluid could be used to drive a piston. The figure illustrates a simple example of a hydraulic jack driven by a thermally actuated hydraulic pump. The pump chamber would be a cylinder containing encapsulated wax pellets and containing radial fins to facilitate transfer of heat to and from the wax. The plastic encapsulation would serve as an oil/wax barrier and the remaining interior space could be filled with hydraulic oil. A filter would retain the encapsulated wax particles in the pump chamber while allowing the hydraulic oil to flow into and out of the chamber. In one important class of potential applications, thermally actuated hydraulic pumps, exploiting vertical ocean temperature gradients for heating and cooling as needed, would be used to vary hydraulic pressures to control buoyancy in undersea research vessels. Heretofore, electrically actuated hydraulic pumps have been used for this purpose. By eliminating the demand for electrical energy for pumping, the use of the thermally actuated hydraulic pumps could prolong the intervals between battery charges, thus making it possible to greatly increase the durations of undersea exploratory missions.

  19. Constant-Pressure Hydraulic Pump

    NASA Technical Reports Server (NTRS)

    Galloway, C. W.

    1982-01-01

    Constant output pressure in gas-driven hydraulic pump would be assured in new design for gas-to-hydraulic power converter. With a force-multiplying ring attached to gas piston, expanding gas would apply constant force on hydraulic piston even though gas pressure drops. As a result, pressure of hydraulic fluid remains steady, and power output of the pump does not vary.

  20. Bud development and hydraulics

    PubMed Central

    Cochard, Hervé

    2008-01-01

    The distal zone of one-year-old apple (Malus domestica) shoots was studied on five cultivars for bud size and composition (number of appendages) and hydraulic conductance before bud burst. Our hypothesis was that bud development was related to hydraulic conductance of the sap pathway to the bud independent of an acrotonic (proximal vs. distal) effect. Bud size and composition, and hydraulic conductance, were highly variable for all cultivars. A positive correlation was demonstrated between both the number of cataphylls and green-leaf primordia and hydraulic conductance. Cultivar and bud size affected the intercept of these relationships more than the slope suggesting similar scaling between these variables but different hydraulic efficiencies. A great proportion of small buds were also characterized by null values of hydraulic conductance. Our study suggests that hydraulically mediated competitions exist between adjacent buds within a same branching zone prefiguring the variability of lateral types in the following growing season. It is hypothesized that this developmental patterning is driven by hydraulic characteristics of the whole-metamer, including the subtending leaf, during bud development. PMID:19704779

  1. Efficiency limit factor analysis for the Francis-99 hydraulic turbine

    NASA Astrophysics Data System (ADS)

    Zeng, Y.; Zhang, L. X.; Guo, J. P.; Guo, Y. K.; Pan, Q. L.; Qian, J.

    2017-01-01

    The energy loss in hydraulic turbine is the most direct factor that affects the efficiency of the hydraulic turbine. Based on the analysis theory of inner energy loss of hydraulic turbine, combining the measurement data of the Francis-99, this paper calculates characteristic parameters of inner energy loss of the hydraulic turbine, and establishes the calculation model of the hydraulic turbine power. Taken the start-up test conditions given by Francis-99 as case, characteristics of the inner energy of the hydraulic turbine in transient and transformation law are researched. Further, analyzing mechanical friction in hydraulic turbine, we think that main ingredients of mechanical friction loss is the rotation friction loss between rotating runner and water body, and defined as the inner mechanical friction loss. The calculation method of the inner mechanical friction loss is given roughly. Our purpose is that explore and research the method and way increasing transformation efficiency of water flow by means of analysis energy losses in hydraulic turbine.

  2. Recent development in preparation of European soil hydraulic maps

    NASA Astrophysics Data System (ADS)

    Toth, B.; Weynants, M.; Pasztor, L.; Hengl, T.

    2017-12-01

    Reliable quantitative information on soil hydraulic properties is crucial for modelling hydrological, meteorological, ecological and biological processes of the Critical Zone. Most of the Earth system models need information on soil moisture retention capacity and hydraulic conductivity in the full matric potential range. These soil hydraulic properties can be quantified, but their measurement is expensive and time consuming, therefore measurement-based catchment scale mapping of these soil properties is not possible. The increasing availability of soil information and methods describing relationships between simple soil characteristics and soil hydraulic properties provide the possibility to derive soil hydraulic maps based on spatial soil datasets and pedotransfer functions (PTFs). Over the last decade there has been a significant development in preparation of soil hydraulic maps. Spatial datasets on model parameters describing the soil hydraulic processes have become available for countries, continents and even for the whole globe. Our aim is to present European soil hydraulic maps, show their performance, highlight their advantages and drawbacks, and propose possible ways to further improve the performance of those.

  3. Hydraulic safety margins and embolism reversal in stems and leaves: Why are conifers and angiosperms so different?

    Treesearch

    Daniel M. Johnson; Katherine A. McCulloh; David R. Woodruff; Frederick C. Meinzer

    2012-01-01

    Angiosperm and coniferous tree species utilize a continuum of hydraulic strategies. Hydraulic safety margins (defined as differences between naturally occurring xylem pressures and pressures that would cause hydraulic dysfunction, or differences between pressures resulting in loss of hydraulic function in adjacent organs (e.g., stems vs. leaves) tend to be much greater...

  4. Hydraulic Fracturing for Oil and Gas: Impacts from the ...

    EPA Pesticide Factsheets

    This final report provides a review and synthesis of available scientific information concerning the relationship between hydraulic fracturing activities and drinking water resources in the United States. The report is organized around activities in the hydraulic fracturing water cycle and their potential to impact drinking water resources.  The stages include: (1) acquiring water to be used for hydraulic fracturing (Water Acquisition), (2) mixing the water with chemical additives to prepare hydraulic fracturing fluids (Chemical Mixing), (3) injecting the hydraulic fracturing fluids into the production well to create fractures in the targeted production zone (Well Injection), (4) collecting the wastewater that returns through the well after injection (Produced Water Handling), and (5) managing the wastewater via disposal or reuse methods (Wastewater Disposal and Reuse). EPA found scientific evidence that hydraulic fracturing activities can impact drinking water resources under some circumstances. The report identifies certain conditions under which impacts from hydraulic fracturing activities can be more frequent or severe: Water withdrawals for hydraulic fracturing in times or areas of low water availability, particularly in areas with limited or declining groundwater resources; Spills during the handling of hydraulic fracturing fluids and chemicals or produced water that result in large volumes or high concentrations of chem

  5. User Guide for HUFPrint, A Tabulation and Visualization Utility for the Hydrogeologic-Unit Flow (HUF) Package of MODFLOW

    USGS Publications Warehouse

    Banta, Edward R.; Provost, Alden M.

    2008-01-01

    This report documents HUFPrint, a computer program that extracts and displays information about model structure and hydraulic properties from the input data for a model built using the Hydrogeologic-Unit Flow (HUF) Package of the U.S. Geological Survey's MODFLOW program for modeling ground-water flow. HUFPrint reads the HUF Package and other MODFLOW input files, processes the data by hydrogeologic unit and by model layer, and generates text and graphics files useful for visualizing the data or for further processing. For hydrogeologic units, HUFPrint outputs such hydraulic properties as horizontal hydraulic conductivity along rows, horizontal hydraulic conductivity along columns, horizontal anisotropy, vertical hydraulic conductivity or anisotropy, specific storage, specific yield, and hydraulic-conductivity depth-dependence coefficient. For model layers, HUFPrint outputs such effective hydraulic properties as horizontal hydraulic conductivity along rows, horizontal hydraulic conductivity along columns, horizontal anisotropy, specific storage, primary direction of anisotropy, and vertical conductance. Text files tabulating hydraulic properties by hydrogeologic unit, by model layer, or in a specified vertical section may be generated. Graphics showing two-dimensional cross sections and one-dimensional vertical sections at specified locations also may be generated. HUFPrint reads input files designed for MODFLOW-2000 or MODFLOW-2005.

  6. Stem and leaf hydraulic properties are finely coordinated in three tropical rain forest tree species.

    PubMed

    Nolf, Markus; Creek, Danielle; Duursma, Remko; Holtum, Joseph; Mayr, Stefan; Choat, Brendan

    2015-12-01

    Coordination of stem and leaf hydraulic traits allows terrestrial plants to maintain safe water status under limited water supply. Tropical rain forests, one of the world's most productive biomes, are vulnerable to drought and potentially threatened by increased aridity due to global climate change. However, the relationship of stem and leaf traits within the plant hydraulic continuum remains understudied, particularly in tropical species. We studied within-plant hydraulic coordination between stems and leaves in three tropical lowland rain forest tree species by analyses of hydraulic vulnerability [hydraulic methods and ultrasonic emission (UE) analysis], pressure-volume relations and in situ pre-dawn and midday water potentials (Ψ). We found finely coordinated stem and leaf hydraulic features, with a strategy of sacrificing leaves in favour of stems. Fifty percent of hydraulic conductivity (P50 ) was lost at -2.1 to -3.1 MPa in stems and at -1.7 to -2.2 MPa in leaves. UE analysis corresponded to hydraulic measurements. Safety margins (leaf P50 - stem P50 ) were very narrow at -0.4 to -1.4 MPa. Pressure-volume analysis and in situ Ψ indicated safe water status in stems but risk of hydraulic failure in leaves. Our study shows that stem and leaf hydraulics were finely tuned to avoid embolism formation in the xylem. © 2015 John Wiley & Sons Ltd.

  7. Effect of physical property of supporting media and variable hydraulic loading on hydraulic characteristics of advanced onsite wastewater treatment system.

    PubMed

    Sharma, Meena Kumari; Kazmi, Absar Ahmad

    2015-01-01

    A laboratory-scale study was carried out to investigate the effects of physical properties of the supporting media and variable hydraulic shock loads on the hydraulic characteristics of an advanced onsite wastewater treatment system. The system consisted of two upflow anaerobic reactors (a septic tank and an anaerobic filter) accommodated within a single unit. The study was divided into three phases on the basis of three different supporting media (Aqwise carriers, corrugated ring and baked clay) used in the anaerobic filter. Hydraulic loadings were based on peak flow factor (PFF), varying from one to six, to simulate the actual conditions during onsite wastewater treatment. Hydraulic characteristics of the system were identified on the basis of residence time distribution analyses. The system showed a very good hydraulic efficiency, between 0.86 and 0.93, with the media of highest porosity at the hydraulic loading of PFF≤4. At the higher hydraulic loading of PFF 6 also, an appreciable hydraulic efficiency of 0.74 was observed. The system also showed good chemical oxygen demand and total suspended solids removal efficiency of 80.5% and 82.3%, respectively at the higher hydraulic loading of PFF 6. Plug-flow dispersion model was found to be the most appropriate one to describe the mixing pattern of the system, with different supporting media at variable loading, during the tracer study.

  8. A novel energy recovery system for parallel hybrid hydraulic excavator.

    PubMed

    Li, Wei; Cao, Baoyu; Zhu, Zhencai; Chen, Guoan

    2014-01-01

    Hydraulic excavator energy saving is important to relieve source shortage and protect environment. This paper mainly discusses the energy saving for the hybrid hydraulic excavator. By analyzing the excess energy of three hydraulic cylinders in the conventional hydraulic excavator, a new boom potential energy recovery system is proposed. The mathematical models of the main components including boom cylinder, hydraulic motor, and hydraulic accumulator are built. The natural frequency of the proposed energy recovery system is calculated based on the mathematical models. Meanwhile, the simulation models of the proposed system and a conventional energy recovery system are built by AMESim software. The results show that the proposed system is more effective than the conventional energy saving system. At last, the main components of the proposed energy recovery system including accumulator and hydraulic motor are analyzed for improving the energy recovery efficiency. The measures to improve the energy recovery efficiency of the proposed system are presented.

  9. Experimental investigation of the hydraulic and heat-transfer properties of artificially fractured granite.

    PubMed

    Luo, Jin; Zhu, Yongqiang; Guo, Qinghai; Tan, Long; Zhuang, Yaqin; Liu, Mingliang; Zhang, Canhai; Xiang, Wei; Rohn, Joachim

    2017-01-05

    In this paper, the hydraulic and heat-transfer properties of two sets of artificially fractured granite samples are investigated. First, the morphological information is determined using 3D modelling technology. The area ratio is used to describe the roughness of the fracture surface. Second, the hydraulic properties of fractured granite are tested by exposing samples to different confining pressures and temperatures. The results show that the hydraulic properties of the fractures are affected mainly by the area ratio, with a larger area ratio producing a larger fracture aperture and higher hydraulic conductivity. Both the hydraulic apertureand the hydraulic conductivity decrease with an increase in the confining pressure. Furthermore, the fracture aperture decreases with increasing rock temperature, but the hydraulic conductivity increases owing to a reduction of the viscosity of the fluid flowing through. Finally, the heat-transfer efficiency of the samples under coupled hydro-thermal-mechanical conditions is analysed and discussed.

  10. Experimental investigation of the hydraulic and heat-transfer properties of artificially fractured granite

    PubMed Central

    Luo, Jin; Zhu, Yongqiang; Guo, Qinghai; Tan, Long; Zhuang, Yaqin; Liu, Mingliang; Zhang, Canhai; Xiang, Wei; Rohn, Joachim

    2017-01-01

    In this paper, the hydraulic and heat-transfer properties of two sets of artificially fractured granite samples are investigated. First, the morphological information is determined using 3D modelling technology. The area ratio is used to describe the roughness of the fracture surface. Second, the hydraulic properties of fractured granite are tested by exposing samples to different confining pressures and temperatures. The results show that the hydraulic properties of the fractures are affected mainly by the area ratio, with a larger area ratio producing a larger fracture aperture and higher hydraulic conductivity. Both the hydraulic apertureand the hydraulic conductivity decrease with an increase in the confining pressure. Furthermore, the fracture aperture decreases with increasing rock temperature, but the hydraulic conductivity increases owing to a reduction of the viscosity of the fluid flowing through. Finally, the heat-transfer efficiency of the samples under coupled hydro-thermal-mechanical conditions is analysed and discussed. PMID:28054594

  11. A Novel Energy Recovery System for Parallel Hybrid Hydraulic Excavator

    PubMed Central

    Li, Wei; Cao, Baoyu; Zhu, Zhencai; Chen, Guoan

    2014-01-01

    Hydraulic excavator energy saving is important to relieve source shortage and protect environment. This paper mainly discusses the energy saving for the hybrid hydraulic excavator. By analyzing the excess energy of three hydraulic cylinders in the conventional hydraulic excavator, a new boom potential energy recovery system is proposed. The mathematical models of the main components including boom cylinder, hydraulic motor, and hydraulic accumulator are built. The natural frequency of the proposed energy recovery system is calculated based on the mathematical models. Meanwhile, the simulation models of the proposed system and a conventional energy recovery system are built by AMESim software. The results show that the proposed system is more effective than the conventional energy saving system. At last, the main components of the proposed energy recovery system including accumulator and hydraulic motor are analyzed for improving the energy recovery efficiency. The measures to improve the energy recovery efficiency of the proposed system are presented. PMID:25405215

  12. Linking hydraulic traits to tropical forest function in a size-structured and trait-driven model (TFS v.1-Hydro)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christoffersen, Bradley O.; Gloor, Manuel; Fauset, Sophie

    Forest ecosystem models based on heuristic water stress functions poorly predict tropical forest response to drought partly because they do not capture the diversity of hydraulic traits (including variation in tree size) observed in tropical forests. We developed a continuous porous media approach to modeling plant hydraulics in which all parameters of the constitutive equations are biologically interpretable and measurable plant hydraulic traits (e.g., turgor loss point π tlp, bulk elastic modulus ε, hydraulic capacitance C ft, xylem hydraulic conductivity k s,max, water potential at 50 % loss of conductivity for both xylem ( P 50,x) and stomata ( Pmore » 50,gs), and the leaf : sapwood area ratio A l: A s). We embedded this plant hydraulics model within a trait forest simulator (TFS) that models light environments of individual trees and their upper boundary conditions (transpiration), as well as providing a means for parameterizing variation in hydraulic traits among individuals. We synthesized literature and existing databases to parameterize all hydraulic traits as a function of stem and leaf traits, including wood density (WD), leaf mass per area (LMA), and photosynthetic capacity ( A max ), and evaluated the coupled model (called TFS v.1-Hydro) predictions, against observed diurnal and seasonal variability in stem and leaf water potential as well as stand-scaled sap flux. Our hydraulic trait synthesis revealed coordination among leaf and xylem hydraulic traits and statistically significant relationships of most hydraulic traits with more easily measured plant traits. Using the most informative empirical trait–trait relationships derived from this synthesis, TFS v.1-Hydro successfully captured individual variation in leaf and stem water potential due to increasing tree size and light environment, with model representation of hydraulic architecture and plant traits exerting primary and secondary controls, respectively, on the fidelity of model predictions. The plant hydraulics model made substantial improvements to simulations of total ecosystem transpiration. As a result, remaining uncertainties and limitations of the trait paradigm for plant hydraulics modeling are highlighted.« less

  13. Linking hydraulic traits to tropical forest function in a size-structured and trait-driven model (TFS v.1-Hydro)

    DOE PAGES

    Christoffersen, Bradley O.; Gloor, Manuel; Fauset, Sophie; ...

    2016-11-24

    Forest ecosystem models based on heuristic water stress functions poorly predict tropical forest response to drought partly because they do not capture the diversity of hydraulic traits (including variation in tree size) observed in tropical forests. We developed a continuous porous media approach to modeling plant hydraulics in which all parameters of the constitutive equations are biologically interpretable and measurable plant hydraulic traits (e.g., turgor loss point π tlp, bulk elastic modulus ε, hydraulic capacitance C ft, xylem hydraulic conductivity k s,max, water potential at 50 % loss of conductivity for both xylem ( P 50,x) and stomata ( Pmore » 50,gs), and the leaf : sapwood area ratio A l: A s). We embedded this plant hydraulics model within a trait forest simulator (TFS) that models light environments of individual trees and their upper boundary conditions (transpiration), as well as providing a means for parameterizing variation in hydraulic traits among individuals. We synthesized literature and existing databases to parameterize all hydraulic traits as a function of stem and leaf traits, including wood density (WD), leaf mass per area (LMA), and photosynthetic capacity ( A max ), and evaluated the coupled model (called TFS v.1-Hydro) predictions, against observed diurnal and seasonal variability in stem and leaf water potential as well as stand-scaled sap flux. Our hydraulic trait synthesis revealed coordination among leaf and xylem hydraulic traits and statistically significant relationships of most hydraulic traits with more easily measured plant traits. Using the most informative empirical trait–trait relationships derived from this synthesis, TFS v.1-Hydro successfully captured individual variation in leaf and stem water potential due to increasing tree size and light environment, with model representation of hydraulic architecture and plant traits exerting primary and secondary controls, respectively, on the fidelity of model predictions. The plant hydraulics model made substantial improvements to simulations of total ecosystem transpiration. As a result, remaining uncertainties and limitations of the trait paradigm for plant hydraulics modeling are highlighted.« less

  14. 3D Hydraulic tomography from joint inversion of the hydraulic heads and self-potential data. (Invited)

    NASA Astrophysics Data System (ADS)

    Jardani, A.; Soueid Ahmed, A.; Revil, A.; Dupont, J.

    2013-12-01

    Pumping tests are usually employed to predict the hydraulic conductivity filed from the inversion of the head measurements. Nevertheless, the inverse problem is strongly underdetermined and a reliable imaging requires a considerable number of wells. We propose to add more information to the inversion of the heads by adding (non-intrusive) streaming potentials (SP) data. The SP corresponds to perturbations in the local electrical field caused directly by the fow of the ground water. These SP are obtained with a set of the non-polarising electrodes installed at the ground surface. We developed a geostatistical method for the estimation of the hydraulic conductivity field from measurements of hydraulic heads and SP during pumping and injection experiments. We use the adjoint state method and a recent petrophysical formulation of the streaming potential problem in which the streaming coupling coefficient is derived from the hydraulic conductivity allowed reducing of the unknown parameters. The geostatistical inverse framework is applied to three synthetic case studies with different number of the wells and electrodes used to measure the hydraulic heads and the streaming potentials. To evaluate the benefits of the incorporating of the streaming potential to the hydraulic data, we compared the cases in which the data are coupled or not to map the hydraulic conductivity. The results of the inversion revealed that a dense distribution of electrodes can be used to infer the heterogeneities in the hydraulic conductivity field. Incorporating the streaming potential information to the hydraulic head data improves the estimate of hydraulic conductivity field especially when the number of piezometers is limited.

  15. Gas exchange and hydraulics in seedlings of Hevea brasiliensis during water stress and recovery.

    PubMed

    Chen, Jun-Wen; Zhang, Qiang; Li, Xiao-Shuang; Cao, Kun-Fang

    2010-07-01

    The response of plants to drought has received significant attention, but far less attention has been given to the dynamic response of plants during recovery from drought. Photosynthetic performance and hydraulic capacity were monitored in seedlings of Hevea brasiliensis under water stress and during recovery following rewatering. Leaf water relation, gas exchange rate and hydraulic conductivity decreased gradually after water stress fell below a threshold, whereas instantaneous water use efficiency and osmolytes increased significantly. After 5 days of rewatering, leaf water relation, maximum stomatal conductance (g(s-max)) and plant hydraulic conductivity had recovered to the control levels except for sapwood area-specific hydraulic conductivity, photosynthetic assimilation rate and osmolytes. During the phase of water stress, stomata were almost completely closed before water transport efficiency decreased substantially, and moreover, the leaf hydraulic pathway was more vulnerable to water stress-induced embolism than the stem hydraulic pathway. Meanwhile, g(s-max) was linearly correlated with hydraulic capacity when water stress exceeded a threshold. In addition, a positive relationship was shown to occur between the recovery of g(s-max) and of hydraulic capacity during the phase of rewatering. Our results suggest (i) that stomatal closure effectively reduces the risk of xylem dysfunction in water-stressed plants at the cost of gas exchange, (ii) that the leaf functions as a safety valve to protect the hydraulic pathway from water stress-induced dysfunction to a larger extent than does the stem and (iii) that the full drought recovery of gas exchange is restricted by not only hydraulic factors but also non-hydraulic factors.

  16. Failure Prevention of Hydraulic System Based on Oil Contamination

    NASA Astrophysics Data System (ADS)

    Singh, M.; Lathkar, G. S.; Basu, S. K.

    2012-07-01

    Oil contamination is the major source of failure and wear of hydraulic system components. As per literature survey, approximately 70 % of hydraulic system failures are caused by oil contamination. Hence, to operate the hydraulic system reliably, the hydraulic oil should be of perfect condition. This requires a proper `Contamination Management System' which involves monitoring of various parameters like oil viscosity, oil temperature, contamination level etc. A study has been carried out on vehicle mounted hydraulically operated system used for articulation of heavy article, after making the platform levelled with outrigger cylinders. It is observed that by proper monitoring of contamination level, there is considerably increase in reliability, economy in operation and long service life. This also prevents the frequent failure of hydraulic system.

  17. Static and dynamic bending has minor effects on xylem hydraulics of conifer branches (Picea abies, Pinus sylvestris)

    PubMed Central

    Mayr, Stefan; Bertel, Clara; Dämon, Birgit; Beikircher, Barbara

    2014-01-01

    The xylem hydraulic efficiency and safety is usually measured on mechanically unstressed samples, although trees may be exposed to combined hydraulic and mechanical stress in the field. We analysed changes in hydraulic conductivity and vulnerability to drought-induced embolism during static bending of Picea abies and Pinus sylvestris branches as well as the effect of dynamic bending on the vulnerability. We hypothesized this mechanical stress to substantially impair xylem hydraulics. Intense static bending caused an only small decrease in hydraulic conductance (−19.5 ± 2.4% in P. abies) but no shift in vulnerability thresholds. Dynamic bending caused a 0.4 and 0.8 MPa decrease of the water potential at 50 and 88% loss of conductivity in P. sylvestris, but did not affect vulnerability thresholds in P. abies. With respect to applied extreme bending radii, effects on plant hydraulics were surprisingly small and are thus probably of minor eco-physiological importance. More importantly, results indicate that available xylem hydraulic analyses (of conifers) sufficiently reflect plant hydraulics under field conditions. PMID:24697679

  18. Hydraulic dynamic analysis

    NASA Technical Reports Server (NTRS)

    Gale, R. L.; Nease, A. W.; Nelson, D. J.

    1978-01-01

    Computer program mathematically describes complete hydraulic systems to study their dynamic performance. Program employs subroutines that simulate components of hydraulic system, which are then controlled by main program. Program is useful to engineers working with detailed performance results of aircraft, spacecraft, or similar hydraulic systems.

  19. Review of fluid and control technology of hydraulic wind turbines

    NASA Astrophysics Data System (ADS)

    Cai, Maolin; Wang, Yixuan; Jiao, Zongxia; Shi, Yan

    2017-09-01

    This study examines the development of the fluid and control technology of hydraulic wind turbines. The current state of hydraulic wind turbines as a new technology is described, and its basic fluid model and typical control method are expounded by comparing various study results. Finally, the advantages of hydraulic wind turbines are enumerated. Hydraulic wind turbines are expected to become the main development direction of wind turbines.

  20. Heating Analysis in Constant-pressure Hydraulic System based on Energy Analysis

    NASA Astrophysics Data System (ADS)

    Wu, Chao; Xu, Cong; Mao, Xuyao; Li, Bin; Hu, Junhua; Liu, Yiou

    2017-12-01

    Hydraulic systems are widely used in industrial applications, but the problem of heating has become an important reason to restrict the promotion of hydraulic technology. The high temperature, will seriously affect the operation of the hydraulic system, even cause stuck and other serious failure. Based on the analysis of the heat damage of the hydraulic system, this paper gives the reasons for this problem, and it is showed by the application that the energy analysis can accurately locate the main reasons for the heating of the hydraulic system, which can give strong practical guidance.

  1. Influence of Groundwater Hydraulic Gradient on Bank Storage Metrics.

    PubMed

    Welch, Chani; Harrington, Glenn A; Cook, Peter G

    2015-01-01

    The hydraulic gradient between aquifers and rivers is one of the most variable properties in a river/aquifer system. Detailed process understanding of bank storage under hydraulic gradients is obtained from a two-dimensional numerical model of a variably saturated aquifer slice perpendicular to a river. Exchange between the river and the aquifer occurs first at the interface with the unsaturated zone. The proportion of total water exchanged through the river bank compared to the river bed is a function of aquifer hydraulic conductivity, partial penetration, and hydraulic gradient. Total exchange may be estimated to within 50% using existing analytical solutions provided that unsaturated zone processes do not strongly influence exchange. Model-calculated bank storage is at a maximum when no hydraulic gradient is present and increases as the hydraulic conductivity increases. However, in the presence of a hydraulic gradient, the largest exchange flux or distance of penetration does not necessarily correspond to the highest hydraulic conductivity, as high hydraulic conductivity increases the components of exchange both into and out of an aquifer. Flood wave characteristics do not influence ambient groundwater discharge, and so in large floods, hydraulic gradients must be high to reduce the volume of bank storage. Practical measurement of bank storage metrics is problematic due to the limitations of available measurement technologies and the nested processes of exchange that occur at the river-aquifer interface. Proxies, such as time series concentration data in rivers and groundwater, require further development to be representative and quantitative. © 2014, National GroundWater Association.

  2. Interstitial hydraulic conductivity and interstitial fluid pressure for avascular or poorly vascularized tumors.

    PubMed

    Liu, L J; Schlesinger, M

    2015-09-07

    A correct description of the hydraulic conductivity is essential for determining the actual tumor interstitial fluid pressure (TIFP) distribution. Traditionally, it has been assumed that the hydraulic conductivities both in a tumor and normal tissue are constant, and that a tumor has a much larger interstitial hydraulic conductivity than normal tissue. The abrupt transition of the hydraulic conductivity at the tumor surface leads to non-physical results (the hydraulic conductivity and the slope of the TIFP are not continuous at tumor surface). For the sake of simplicity and the need to represent reality, we focus our analysis on avascular or poorly vascularized tumors, which have a necrosis that is mostly in the center and vascularization that is mostly on the periphery. We suggest that there is an intermediary region between the tumor surface and normal tissue. Through this region, the interstitium (including the structure and composition of solid components and interstitial fluid) transitions from tumor to normal tissue. This process also causes the hydraulic conductivity to do the same. We introduce a continuous variation of the hydraulic conductivity, and show that the interstitial hydraulic conductivity in the intermediary region should be monotonically increasing up to the value of hydraulic conductivity in the normal tissue in order for the model to correspond to the actual TIFP distribution. The value of the hydraulic conductivity at the tumor surface should be the lowest in value. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Hydraulics.

    ERIC Educational Resources Information Center

    Engelbrecht, Nancy; And Others

    These instructional materials provide an orientation to hydraulics for use at the postsecondary level. The first of 12 sections presents an introduction to hydraulics, including discussion of principles of liquids, definitions, liquid flow, the two types of hydraulic fluids, pressure gauges, and strainers and filters. The second section identifies…

  4. 14 CFR 35.43 - Propeller hydraulic components.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Propeller hydraulic components. 35.43... AIRWORTHINESS STANDARDS: PROPELLERS Tests and Inspections § 35.43 Propeller hydraulic components. Applicants must show by test, validated analysis, or both, that propeller components that contain hydraulic...

  5. 14 CFR 35.43 - Propeller hydraulic components.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Propeller hydraulic components. 35.43... AIRWORTHINESS STANDARDS: PROPELLERS Tests and Inspections § 35.43 Propeller hydraulic components. Applicants must show by test, validated analysis, or both, that propeller components that contain hydraulic...

  6. 14 CFR 35.43 - Propeller hydraulic components.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Propeller hydraulic components. 35.43... AIRWORTHINESS STANDARDS: PROPELLERS Tests and Inspections § 35.43 Propeller hydraulic components. Applicants must show by test, validated analysis, or both, that propeller components that contain hydraulic...

  7. 14 CFR 35.43 - Propeller hydraulic components.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Propeller hydraulic components. 35.43... AIRWORTHINESS STANDARDS: PROPELLERS Tests and Inspections § 35.43 Propeller hydraulic components. Applicants must show by test, validated analysis, or both, that propeller components that contain hydraulic...

  8. 14 CFR 35.43 - Propeller hydraulic components.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Propeller hydraulic components. 35.43... AIRWORTHINESS STANDARDS: PROPELLERS Tests and Inspections § 35.43 Propeller hydraulic components. Applicants must show by test, validated analysis, or both, that propeller components that contain hydraulic...

  9. A physiologically-based plant hydraulics scheme for ESMs: impacts of hydraulic trait variability for tropical forests under drought

    NASA Astrophysics Data System (ADS)

    Christoffersen, B. O.; Xu, C.; Fisher, R.; Fyllas, N.; Gloor, M.; Fauset, S.; Galbraith, D.; Koven, C.; Knox, R. G.; Kueppers, L. M.; Chambers, J. Q.; Meir, P.; McDowell, N. G.

    2016-12-01

    A major challenge of Earth System Models (ESMs) is to capture the diversity of individual-level responses to changes in water availability. Yet, decades of research in plant physiological ecology have given us a means to quantify central tendencies and variances of plant hydraulic traits. If ESMs possessed the relevant hydrodynamic process structure, these traits could be incorporated into improved predictions of community- and ecosystem-level processes such as tree mortality. We present a model of plant hydraulics in which all parameters are biologically-interpretable and measurable traits, such as turgor loss point πtlp, bulk elastic modulus ɛ, hydraulic capacitance Cft, xylem hydraulic conductivity ks,max, water potential at 50 % loss of conductivity for both xylem (P50,x) and stomata (P50,gs). We applied this scheme to tropical forests by incorporating it into both an individual-based model `Trait Forest Simulator' (TFS) and the `Functionally Assembled Terrestrial Ecosystem Simulator' (FATES; derived from CLM(ED)), and explore the consequences of variability in plant hydraulic traits on simulated leaf water potential, a potentially powerful predictor of tree mortality. We show that, independent of the difference between P50,gs and P50,x, or the hydraulic safety margin (HSM), diversity in hydraulic traits can increase or decrease whole-ecosystem resistance to hydraulic failure, and thus ecosystem-level responses to drought. Key uncertainties remaining concern how coordination and trade-offs in hydraulic traits are parameterized. We conclude that inclusion of such a physiologically-based plant hydraulics scheme in ESMs will greatly improve the capability of ESMs to predict functional trait filtering within ecosystems in responding to environmental change.

  10. Hydraulic efficiency and coordination with xylem resistance to cavitation, leaf function, and growth performance among eight unrelated Populus deltoidesxPopulus nigra hybrids.

    PubMed

    Fichot, Régis; Chamaillard, Sylvain; Depardieu, Claire; Le Thiec, Didier; Cochard, Hervé; Barigah, Têtè S; Brignolas, Franck

    2011-03-01

    Tests were carried out to determine whether variations in the hydraulic architecture of eight Populus deltoides×Populus nigra genotypes could be related to variations in leaf function and growth performance. Measurements were performed in a coppice plantation on 1-year-old shoots under optimal irrigation. Hydraulic architecture was characterized through estimates of hydraulic efficiency (the ratio of conducting sapwood area to leaf area, A(X):A(L); leaf- and xylem-specific hydraulic conductance of defoliated shoots, k(SL) and k(SS), respectively; apparent whole-plant leaf-specific hydraulic conductance, k(plant)) and xylem safety (water potential inducing 50% loss in hydraulic conductance). The eight genotypes spanned a significant range of k(SL) from 2.63  kg s(-1) m(-2) MPa(-1) to 4.18  kg s(-1) m(-2) MPa(-1), variations being mostly driven by k(SS) rather than A(X):A(L). There was a strong trade-off between hydraulic efficiency and xylem safety. Values of k(SL) correlated positively with k(plant), indicating that high-pressure flowmeter (HPFM) measurements of stem hydraulic efficiency accurately reflected whole-plant water transport efficiency of field-grown plants at maximum transpiration rate. No clear relationship could be found between hydraulic efficiency and either net CO(2) assimilation rates, water-use efficiency estimates (intrinsic water-use efficiency and carbon isotope discrimination against (13)C), or stomatal characteristics (stomatal density and stomatal pore area index). Estimates of hydraulic efficiency were negatively associated with relative growth rate. This unusual pattern, combined with the trade-off observed between hydraulic efficiency and xylem safety, provides the rationale for the positive link already reported between relative growth rate and xylem safety among the same eight P. deltoides×P. nigra genotypes.

  11. Engine having hydraulic and fan drive systems using a single high pressure pump

    DOEpatents

    Bartley, Bradley E.; Blass, James R.; Gibson, Dennis H.

    2000-01-01

    An engine comprises a hydraulic system attached to an engine housing that includes a high pressure pump and a hydraulic fluid flowing through at least one passageway. A fan drive system is also attached to the engine housing and includes a hydraulic motor and a fan which can move air over the engine. The hydraulic motor includes an inlet fluidly connected to the at least one passageway.

  12. Survey of less-inflammable hydraulic fluids for aircraft

    NASA Technical Reports Server (NTRS)

    Drake, Wray V; Drell, I L

    1950-01-01

    A survey of current information on civil and military development of less-inflammable hydraulic fluids for aircraft is presented. Types of less-inflammable fluid reported include: glycol derivative, water base, silicone, ester, and halogenated compound. Specification requirements, physical and chemical properties, hydraulic-system test results, and advantages and disadvantages of various hydraulic fluids are discussed. For completely satisfactory service, some modification of currently available fluids or of present hydraulic-system parts still appears necessary.

  13. A test of the hydraulic vulnerability segmentation hypothesis in angiosperm and conifer tree species

    DOE PAGES

    Johnson, Daniel M.; Wortemann, Remi; McCulloh, Katherine A.; ...

    2016-05-04

    Water transport from soils to the atmosphere is critical for plant growth and survival. However, we have a limited understanding about many portions of the whole-tree hydraulic pathway, because the vast majority of published information is on terminal branches. Our understanding of mature tree trunk hydraulic physiology, in particular, is limited. The hydraulic vulnerability segmentation hypothesis (HVSH) stipulates that distal portions of the plant (leaves, branches and roots) should be more vulnerable to embolism than trunks, which are non-redundant organs that require a massive carbon investment. In the current study, we compared vulnerability to loss of hydraulic function, leaf andmore » xylem water potentials and the resulting hydraulic safety margins (in relation to the water potential causing 50% loss of hydraulic conductivity) in leaves, branches, trunks and roots of four angiosperms and four conifer tree species. Across all species, our results supported strongly the HVSH as leaves and roots were less resistant to embolism than branches or trunks. However, branches were consistently more resistant to embolism than any other portion of the plant, including trunks. Also, calculated whole-tree vulnerability to hydraulic dysfunction was much greater than vulnerability in branches. This was due to hydraulic dysfunction in roots and leaves at less negative water potentials than those causing branch or trunk dysfunction. Leaves and roots had narrow or negative hydraulic safety margins, but trunks and branches maintained positive safety margins. By using branch-based hydraulic information as a proxy for entire plants, much research has potentially overestimated embolism resistance, and possibly drought tolerance, for many species. This study highlights the necessity to reconsider past conclusions made about plant resistance to drought based on branch xylem only. As a result, this study also highlights the necessity for more research of whole-plant hydraulic physiology to better understand strategies of plant drought tolerance and the critical control points within the hydraulic pathway.« less

  14. Characterization of shallow aquifers using hydraulic traveltime tomography based on crosswell pumping and recovery tests

    NASA Astrophysics Data System (ADS)

    Hu, Rui; Hu, Linwei; Brauchler, Ralf

    2017-04-01

    Hydraulic tomography (HT) has been developed for more than twenty years, which is mainly used for providing the spatial information of hydraulic parameters in the subsurface. Similar to geophysical tomography, HT utilizes hydraulic tests as the sources, and head measurements in different locations (receivers) are recorded for inverting hydraulic parameters. Among various inversion algrithoms, hydraulic traveltime based method is comparably efficient, as the inversion does not require complete head readings. However, in the practical aspect, to find out traveltime diagnostics can be readily hampered by data noise during the in-situ hydraulic tests, such as pumping tests. In this study, we use the data from recovery tests to complement and improve the original method. In order to examine hydraulic traveltimes derived from both pumping and recovery tests, we first simulate multilevel pumping and recovery tests in several three-dimensional synthetic models with different heterogeneity degree. Simulation results show that hydraulic traveltimes obtained from pumping tests are equal to which from recovery tests, in the case that pumping reaches to quasi-steady/steady state. Sebquentially, we derive hydraulic traveltimes from the crosswell pumping and recovery tests in a real field site, Stegemühle, in Göttingen, Germany, and then invert these traveltimes to deplict the distribution of hydraulic conductivity and specific storage in the aquifer. Results with and without traveltimes from recovery tests imply that adding more traveltimes from recovery tests into the inversion procedure could improve the resolution and reduce result uncertainty. Finally, we compare the HT results with several previous electrical resistance tomography (ERT) results. Comparison indicates that, in general, the aquifer structures from HT and ERT are similar. Nevertheless, HT has higher resolution due to the denser tomographic arrays. Moreover, values of hydraulic conductivity and specific storage derived from HT are more accurate than ERT, as HT directly relates to these hydraulic parameters.

  15. A test of the hydraulic vulnerability segmentation hypothesis in angiosperm and conifer tree species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Daniel M.; Wortemann, Remi; McCulloh, Katherine A.

    Water transport from soils to the atmosphere is critical for plant growth and survival. However, we have a limited understanding about many portions of the whole-tree hydraulic pathway, because the vast majority of published information is on terminal branches. Our understanding of mature tree trunk hydraulic physiology, in particular, is limited. The hydraulic vulnerability segmentation hypothesis (HVSH) stipulates that distal portions of the plant (leaves, branches and roots) should be more vulnerable to embolism than trunks, which are non-redundant organs that require a massive carbon investment. In the current study, we compared vulnerability to loss of hydraulic function, leaf andmore » xylem water potentials and the resulting hydraulic safety margins (in relation to the water potential causing 50% loss of hydraulic conductivity) in leaves, branches, trunks and roots of four angiosperms and four conifer tree species. Across all species, our results supported strongly the HVSH as leaves and roots were less resistant to embolism than branches or trunks. However, branches were consistently more resistant to embolism than any other portion of the plant, including trunks. Also, calculated whole-tree vulnerability to hydraulic dysfunction was much greater than vulnerability in branches. This was due to hydraulic dysfunction in roots and leaves at less negative water potentials than those causing branch or trunk dysfunction. Leaves and roots had narrow or negative hydraulic safety margins, but trunks and branches maintained positive safety margins. By using branch-based hydraulic information as a proxy for entire plants, much research has potentially overestimated embolism resistance, and possibly drought tolerance, for many species. This study highlights the necessity to reconsider past conclusions made about plant resistance to drought based on branch xylem only. As a result, this study also highlights the necessity for more research of whole-plant hydraulic physiology to better understand strategies of plant drought tolerance and the critical control points within the hydraulic pathway.« less

  16. 21 CFR 876.5280 - Implanted mechanical/hydraulic urinary continence device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Implanted mechanical/hydraulic urinary continence....5280 Implanted mechanical/hydraulic urinary continence device. (a) Identification. An implanted mechanical/hydraulic urinary continence device is a device used to treat urinary incontinence by the...

  17. 21 CFR 876.5280 - Implanted mechanical/hydraulic urinary continence device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Implanted mechanical/hydraulic urinary continence....5280 Implanted mechanical/hydraulic urinary continence device. (a) Identification. An implanted mechanical/hydraulic urinary continence device is a device used to treat urinary incontinence by the...

  18. 21 CFR 876.5280 - Implanted mechanical/hydraulic urinary continence device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Implanted mechanical/hydraulic urinary continence....5280 Implanted mechanical/hydraulic urinary continence device. (a) Identification. An implanted mechanical/hydraulic urinary continence device is a device used to treat urinary incontinence by the...

  19. 21 CFR 876.5280 - Implanted mechanical/hydraulic urinary continence device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Implanted mechanical/hydraulic urinary continence....5280 Implanted mechanical/hydraulic urinary continence device. (a) Identification. An implanted mechanical/hydraulic urinary continence device is a device used to treat urinary incontinence by the...

  20. 21 CFR 876.5280 - Implanted mechanical/hydraulic urinary continence device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Implanted mechanical/hydraulic urinary continence....5280 Implanted mechanical/hydraulic urinary continence device. (a) Identification. An implanted mechanical/hydraulic urinary continence device is a device used to treat urinary incontinence by the...

  1. 14 CFR 29.1435 - Hydraulic systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... hydraulic system must be designed to withstand pressures sufficiently greater than those prescribed in... must be means to indicate the pressure in each main hydraulic power system. (4) There must be means to... detrimental transient (surge) pressures during operation must be considered. (5) Each hydraulic line, fitting...

  2. 14 CFR 29.1435 - Hydraulic systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... hydraulic system must be designed to withstand pressures sufficiently greater than those prescribed in... must be means to indicate the pressure in each main hydraulic power system. (4) There must be means to... detrimental transient (surge) pressures during operation must be considered. (5) Each hydraulic line, fitting...

  3. Turbulent Motion of Liquids in Hydraulic Resistances with a Linear Cylindrical Slide-Valve

    PubMed Central

    Velescu, C.; Popa, N. C.

    2015-01-01

    We analyze the motion of viscous and incompressible liquids in the annular space of controllable hydraulic resistances with a cylindrical linear slide-valve. This theoretical study focuses on the turbulent and steady-state motion regimes. The hydraulic resistances mentioned above are the most frequent type of hydraulic resistances used in hydraulic actuators and automation systems. To study the liquids' motion in the controllable hydraulic resistances with a linear cylindrical slide-valve, the report proposes an original analytic method. This study can similarly be applied to any other type of hydraulic resistance. Another purpose of this study is to determine certain mathematical relationships useful to approach the theoretical functionality of hydraulic resistances with magnetic controllable fluids as incompressible fluids in the presence of a controllable magnetic field. In this report, we established general analytic equations to calculate (i) velocity and pressure distributions, (ii) average velocity, (iii) volume flow rate of the liquid, (iv) pressures difference, and (v) radial clearance. PMID:26167532

  4. Effect of hydraulic hysteresis on the stability of infinite slopes under steady infiltration

    USGS Publications Warehouse

    Chen, Pan; Mirus, Benjamin B.; Lu, Ning; Godt, Jonathan W.

    2017-01-01

    Hydraulic hysteresis, including capillary soil water retention (SWR), air entrapment SWR, and hydraulic conductivity, is a common phenomenon in unsaturated soils. However, the influence of hydraulic hysteresis on suction stress, and subsequently slope stability, is generally ignored. This paper examines the influence of each of these three types of hysteresis on slope stability using an infinite slope stability analysis under steady infiltration conditions. First, hypothetical slopes for representative silty and sandy soils are examined. Then a monitored hillslope in the San Francisco Bay Area, California is assessed, using observed rainfall conditions and measured hydraulic and geotechnical properties of the colluvial soil. Results show that profiles of suction stress and the corresponding factor of safety are generally strongly affected by hydraulic hysteresis. Results suggest that each of the three types of hydraulic hysteresis may play a major role in the occurrence of slope failure, indicating that ignoring hydraulic hysteresis will likely lead to underestimates of failure potential and hence to inaccurate slope stability analysis.

  5. Turbulent Motion of Liquids in Hydraulic Resistances with a Linear Cylindrical Slide-Valve.

    PubMed

    Velescu, C; Popa, N C

    2015-01-01

    We analyze the motion of viscous and incompressible liquids in the annular space of controllable hydraulic resistances with a cylindrical linear slide-valve. This theoretical study focuses on the turbulent and steady-state motion regimes. The hydraulic resistances mentioned above are the most frequent type of hydraulic resistances used in hydraulic actuators and automation systems. To study the liquids' motion in the controllable hydraulic resistances with a linear cylindrical slide-valve, the report proposes an original analytic method. This study can similarly be applied to any other type of hydraulic resistance. Another purpose of this study is to determine certain mathematical relationships useful to approach the theoretical functionality of hydraulic resistances with magnetic controllable fluids as incompressible fluids in the presence of a controllable magnetic field. In this report, we established general analytic equations to calculate (i) velocity and pressure distributions, (ii) average velocity, (iii) volume flow rate of the liquid, (iv) pressures difference, and (v) radial clearance.

  6. A transient laboratory method for determining the hydraulic properties of 'tight' rocks-II. Application

    USGS Publications Warehouse

    Neuzil, C.E.; Cooley, C.; Silliman, Stephen E.; Bredehoeft, J.D.; Hsieh, P.A.

    1981-01-01

    In Part I a general analytical solution for the transient pulse test was presented. Part II presents a graphical method for analyzing data from a test to obtain the hydraulic properties of the sample. The general solution depends on both hydraulic conductivity and specific storage and, in theory, analysis of the data can provide values for both of these hydraulic properties. However, in practice, one of two limiting cases may apply in which case it is possible to calculate only hydraulic conductivity or the product of hydraulic conductivity times specific storage. In this paper we examine the conditions when both hydraulic parameters can be calculated. The analyses of data from two tests are presented. In Appendix I the general solution presented in Part I is compared with an earlier analysis, in which compressive storage in the sample is assumed negligible, and the error in calculated hydraulic conductivity due to this simplifying assumption is examined. ?? 1981.

  7. Effect of Hydraulic Pressure on Warm Hydro Mechanical Deep Drawing of Magnesium Alloy Sheet

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Wu, Linzhi; Yuan, Shijian

    The uniaxial tensile test and hydraulic bulging test of AZ31 magnesium alloy sheets were applied to study the influence of temperature on the material properties and obtain the forming limit curves at different temperatures. Numerical simulations of warm hydro mechanical deep drawing were carried out to investigate the effect of hydraulic pressure on the formability of a cylindrical cup, and the simplified hydraulic pressure profiles were used to simulate the loading procedure of hydraulic pressure. The optimal hydraulic pressure at different temperatures were given and verified by experimental studies at temperature 100°C and 170V.

  8. Design of hydraulic output Stirling engine

    NASA Technical Reports Server (NTRS)

    Toscano, W. M.; Harvey, A. C.; Lee, K.

    1983-01-01

    A hydraulic output system for the RE-1000 free piston stirling engine (FPSE) was designed. The hydraulic output system can be readily integrated with the existing hot section of RE-1000 FPSE. The system has two simply supported diaphragms which separate the engine gas from the hydraulic fluid, a dynamic balance mechanism, and a novel, null center band hydraulic pump. The diaphragms are designed to endure more than 10 billion cycles, and to withstand the differential pressure load as high as 14 MPa. The projected thermodynamic performance of the hydraulic output version of RE-1000 FPSE is 1.87 kW at 29/7 percent brake efficiency.

  9. Design of An Energy Efficient Hydraulic Regenerative circuit

    NASA Astrophysics Data System (ADS)

    Ramesh, S.; Ashok, S. Denis; Nagaraj, Shanmukha; Adithyakumar, C. R.; Reddy, M. Lohith Kumar; Naulakha, Niranjan Kumar

    2018-02-01

    Increasing cost and power demand, leads to evaluation of new method to increase through productivity and help to solve the power demands. Many researchers have break through to increase the efficiency of a hydraulic power pack, one of the promising methods is the concept of regenerative. The objective of this research work is to increase the efficiency of a hydraulic circuit by introducing a concept of regenerative circuit. A Regenerative circuit is a system that is used to speed up the extension stroke of the double acting single rod hydraulic cylinder. The output is connected to the input in the directional control value. By this concept, increase in velocity of the piston and decrease the cycle time. For the research, a basic hydraulic circuit and a regenerative circuit are designated and compared both with their results. The analysis was based on their time taken for extension and retraction of the piston. From the detailed analysis of both the hydraulic circuits, it is found that the efficiency by introducing hydraulic regenerative circuit increased by is 5.3%. The obtained results conclude that, implementing hydraulic regenerative circuit in a hydraulic power pack decreases power consumption, reduces cycle time and increases productivity in a longer run.

  10. Static and dynamic bending has minor effects on xylem hydraulics of conifer branches (Picea abies, Pinus sylvestris).

    PubMed

    Mayr, Stefan; Bertel, Clara; Dämon, Birgit; Beikircher, Barbara

    2014-09-01

    The xylem hydraulic efficiency and safety is usually measured on mechanically unstressed samples, although trees may be exposed to combined hydraulic and mechanical stress in the field. We analysed changes in hydraulic conductivity and vulnerability to drought-induced embolism during static bending of Picea abies and Pinus sylvestris branches as well as the effect of dynamic bending on the vulnerability. We hypothesized this mechanical stress to substantially impair xylem hydraulics. Intense static bending caused an only small decrease in hydraulic conductance (-19.5 ± 2.4% in P. abies) but no shift in vulnerability thresholds. Dynamic bending caused a 0.4 and 0.8 MPa decrease of the water potential at 50 and 88% loss of conductivity in P. sylvestris, but did not affect vulnerability thresholds in P. abies. With respect to applied extreme bending radii, effects on plant hydraulics were surprisingly small and are thus probably of minor eco-physiological importance. More importantly, results indicate that available xylem hydraulic analyses (of conifers) sufficiently reflect plant hydraulics under field conditions. © 2014 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

  11. 78 FR 26716 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-08

    ... currently requires a repetitive inspection program on certain check valves in the hydraulic systems that... hydraulic systems on airplanes that have had a certain modification embodied during production or in-service... hydraulic leaks, possibly leading to the loss of all three hydraulic systems and consequent loss of control...

  12. 78 FR 55253 - Notification of Public Teleconference of the Hydraulic Fracturing Research Advisory Panel

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-10

    ... research described in ORD's Study of the Potential Impacts of Hydraulic Fracturing on Drinking Water... Hydraulic Fracturing Research Advisory Panel AGENCY: Environmental Protection Agency (EPA). ACTION: Notice... public teleconference of the Hydraulic Fracturing Research Advisory Panel to receive written and oral...

  13. 14 CFR 27.1435 - Hydraulic systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... in addition to hydraulic loads. (b) Tests. Each system must be substantiated by proof pressure tests... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Hydraulic systems. 27.1435 Section 27.1435... STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Safety Equipment § 27.1435 Hydraulic systems. (a) Design...

  14. 14 CFR 27.1435 - Hydraulic systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... in addition to hydraulic loads. (b) Tests. Each system must be substantiated by proof pressure tests... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Hydraulic systems. 27.1435 Section 27.1435... STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Safety Equipment § 27.1435 Hydraulic systems. (a) Design...

  15. 14 CFR 27.1435 - Hydraulic systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... in addition to hydraulic loads. (b) Tests. Each system must be substantiated by proof pressure tests... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hydraulic systems. 27.1435 Section 27.1435... STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Safety Equipment § 27.1435 Hydraulic systems. (a) Design...

  16. 77 FR 26158 - Airworthiness Directives; Saab AB, Saab Aerosystems Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-03

    ... of hydraulic accumulator failure. This AD requires replacing certain hydraulic accumulators with stainless steel hydraulic accumulators, and structural modifications in the nose landing gear bay. We are issuing this AD to prevent failure of hydraulic accumulators, which may result in damage to the airplane...

  17. 46 CFR 28.880 - Hydraulic equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... times the system's maximum operating pressure. (c) Each hydraulic system must be equipped with at least... sudden loss of control due to loss of hydraulic system pressure. A system is considered to be fail-safe... catalog number and maximum allowable working pressure. (k) Existing hydraulic piping, nonmetallic hose...

  18. 46 CFR 28.880 - Hydraulic equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... times the system's maximum operating pressure. (c) Each hydraulic system must be equipped with at least... sudden loss of control due to loss of hydraulic system pressure. A system is considered to be fail-safe... catalog number and maximum allowable working pressure. (k) Existing hydraulic piping, nonmetallic hose...

  19. 46 CFR 28.880 - Hydraulic equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... times the system's maximum operating pressure. (c) Each hydraulic system must be equipped with at least... sudden loss of control due to loss of hydraulic system pressure. A system is considered to be fail-safe... catalog number and maximum allowable working pressure. (k) Existing hydraulic piping, nonmetallic hose...

  20. 14 CFR 27.1435 - Hydraulic systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... in addition to hydraulic loads. (b) Tests. Each system must be substantiated by proof pressure tests... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Hydraulic systems. 27.1435 Section 27.1435... STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Safety Equipment § 27.1435 Hydraulic systems. (a) Design...

  1. 14 CFR 27.1435 - Hydraulic systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... in addition to hydraulic loads. (b) Tests. Each system must be substantiated by proof pressure tests... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Hydraulic systems. 27.1435 Section 27.1435... STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Safety Equipment § 27.1435 Hydraulic systems. (a) Design...

  2. 46 CFR 28.880 - Hydraulic equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... times the system's maximum operating pressure. (c) Each hydraulic system must be equipped with at least... sudden loss of control due to loss of hydraulic system pressure. A system is considered to be fail-safe... catalog number and maximum allowable working pressure. (k) Existing hydraulic piping, nonmetallic hose...

  3. Overview of Chronic Oral Toxicity Values for Chemicals Present in Hydraulic Fracturing Fluids, Flowback and Produced Waters

    EPA Pesticide Factsheets

    as part of EPA's Hydraulic Fracturing Drinking Water Assessment, EPA is summarizing existing toxicity data for chemicals reported to be used in hydraulic fracturing fluids and/or found in flowback or produced waters from hydraulically fractured wells

  4. DOE-EPSCOR SPONSORED PROJECT FINAL REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Jianting

    Concern over the quality of environmental management and restoration has motivated the model development for predicting water and solute transport in the vadose zone. Soil hydraulic properties are required inputs to subsurface models of water flow and contaminant transport in the vadose zone. Computer models are now routinely used in research and management to predict the movement of water and solutes into and through the vadose zone of soils. Such models can be used successfully only if reliable estimates of the soil hydraulic parameters are available. The hydraulic parameters considered in this project consist of the saturated hydraulic conductivity andmore » four parameters of the water retention curves. To quantify hydraulic parameters for heterogeneous soils is both difficult and time consuming. The overall objective of this project was to better quantify soil hydraulic parameters which are critical in predicting water flows and contaminant transport in the vadose zone through a comprehensive and quantitative study to predict heterogeneous soil hydraulic properties and the associated uncertainties. Systematic and quantitative consideration of the parametric heterogeneity and uncertainty can properly address and further reduce predictive uncertainty for contamination characterization and environmental restoration at DOE-managed sites. We conducted a comprehensive study to assess soil hydraulic parameter heterogeneity and uncertainty. We have addressed a number of important issues related to the soil hydraulic property characterizations. The main focus centered on new methods to characterize anisotropy of unsaturated hydraulic property typical of layered soil formations, uncertainty updating method, and artificial neural network base pedo-transfer functions to predict hydraulic parameters from easily available data. The work also involved upscaling of hydraulic properties applicable to large scale flow and contaminant transport modeling in the vadose zone and geostatistical characterization of hydraulic parameter heterogeneity. The project also examined the validity of the some simple average schemes for unsaturated hydraulic properties widely used in previous studies. A new suite of pedo-transfer functions were developed to improve the predictability of hydraulic parameters. We also explored the concept of tension-dependent hydraulic conductivity anisotropy of unsaturated layered soils. This project strengthens collaboration between researchers at the Desert Research Institute in the EPSCoR State of Nevada and their colleagues at the Pacific Northwest National Laboratory. The results of numerical simulations of a field injection experiment at Hanford site in this project could be used to provide insights to the DOE mission of appropriate contamination characterization and environmental remediation.« less

  5. Vehicle hydraulic system that provides heat for passenger compartment

    DOEpatents

    Bartley, Bradley E.; Blass, James R.; Gibson, Dennis H.

    2001-01-01

    A vehicle includes a vehicle housing which defines a passenger compartment. Attached to the vehicle housing is a hydraulic system, that includes a hydraulic fluid which flows through at least one passageway within the hydraulic system. Also attached to the vehicle housing is a passenger compartment heating system. The passenger compartment heating system includes a heat exchanger, wherein a portion of the heat exchanger is a segment of the at least one passageway of the hydraulic system.

  6. Hydraulic Fracturing of Soils; A Literature Review.

    DTIC Science & Technology

    1977-03-01

    best case, or worst case. The study reported herein is an overview of one such test or technique, hydraulic fracturing , which is defined as the...formation of cracks, in soil by the application of hydraulic pressure greater than the minor principal stress at that point. Hydraulic fracturing , as a... hydraulic fracturing as a means for determination of lateral stresses, the technique can still be used for determining in situ total stress and permeability at a point in a cohesive soil.

  7. Impacts of Glutaraldehyde on Microbial Community Structure and Degradation Potential in Streams Impacted by Hydraulic Fracturing.

    PubMed

    Campa, Maria Fernanda; Techtmann, Stephen M; Gibson, Caleb M; Zhu, Xiaojuan; Patterson, Megan; Garcia de Matos Amaral, Amanda; Ulrich, Nikea; Campagna, Shawn R; Grant, Christopher J; Lamendella, Regina; Hazen, Terry C

    2018-05-15

    The environmental impacts of hydraulic fracturing, particularly those of surface spills in aquatic ecosystems, are not fully understood. The goals of this study were to (1) understand the effect of previous exposure to hydraulic fracturing fluids on aquatic microbial community structure and (2) examine the impacts exposure has on biodegradation potential of the biocide glutaraldehyde. Microcosms were constructed from hydraulic fracturing-impacted and nonhydraulic fracturing-impacted streamwater within the Marcellus shale region in Pennsylvania. Microcosms were amended with glutaraldehyde and incubated aerobically for 56 days. Microbial community adaptation to glutaraldehyde was monitored using 16S rRNA gene amplicon sequencing and quantification by qPCR. Abiotic and biotic glutaraldehyde degradation was measured using ultra-performance liquid chromatography--high resolution mass spectrometry and total organic carbon. It was found that nonhydraulic fracturing-impacted microcosms biodegraded glutaraldehyde faster than the hydraulic fracturing-impacted microcosms, showing a decrease in degradation potential after exposure to hydraulic fracturing activity. Hydraulic fracturing-impacted microcosms showed higher richness after glutaraldehyde exposure compared to unimpacted streams, indicating an increased tolerance to glutaraldehyde in hydraulic fracturing impacted streams. Beta diversity and differential abundance analysis of sequence count data showed different bacterial enrichment for hydraulic fracturing-impacted and nonhydraulic fracturing-impacted microcosms after glutaraldehyde addition. These findings demonstrated a lasting effect on microbial community structure and glutaraldehyde degradation potential in streams impacted by hydraulic fracturing operations.

  8. Combined hydraulic and regenerative braking system

    DOEpatents

    Venkataperumal, R.R.; Mericle, G.E.

    1979-08-09

    A combined hydraulic and regenerative braking system and method for an electric vehicle is disclosed. The braking system is responsive to the applied hydraulic pressure in a brake line to control the braking of the vehicle to be completely hydraulic up to a first level of brake line pressure, to be partially hydraulic at a constant braking force and partially regenerative at a linearly increasing braking force from the first level of applied brake line pressure to a higher second level of brake line pressure, to be partially hydraulic at a linearly increasing braking force and partially regenerative at a linearly decreasing braking force from the second level of applied line pressure to a third and higher level of applied line pressure, and to be completely hydraulic at a linearly increasing braking force from the third level to all higher applied levels of line pressure.

  9. Combined hydraulic and regenerative braking system

    DOEpatents

    Venkataperumal, Rama R.; Mericle, Gerald E.

    1981-06-02

    A combined hydraulic and regenerative braking system and method for an electric vehicle, with the braking system being responsive to the applied hydraulic pressure in a brake line to control the braking of the vehicle to be completely hydraulic up to a first level of brake line pressure, to be partially hydraulic at a constant braking force and partially regenerative at a linearly increasing braking force from the first level of applied brake line pressure to a higher second level of brake line pressure, to be partially hydraulic at a linearly increasing braking force and partially regenerative at a linearly decreasing braking force from the second level of applied line pressure to a third and higher level of applied line pressure, and to be completely hydraulic at a linearly increasing braking force from the third level to all higher applied levels of line pressure.

  10. Influence of the Redundant Verification and the Non-Redundant Verification on the Hydraulic Tomography

    NASA Astrophysics Data System (ADS)

    Wei, T. B.; Chen, Y. L.; Lin, H. R.; Huang, S. Y.; Yeh, T. C. J.; Wen, J. C.

    2016-12-01

    In the groundwater study, it estimated the heterogeneous spatial distribution of hydraulic Properties, there were many scholars use to hydraulic tomography (HT) from field site pumping tests to estimate inverse of heterogeneous spatial distribution of hydraulic Properties, to prove the most of most field site aquifer was heterogeneous hydrogeological parameters spatial distribution field. Many scholars had proposed a method of hydraulic tomography to estimate heterogeneous spatial distribution of hydraulic Properties of aquifer, the Huang et al. [2011] was used the non-redundant verification analysis of pumping wells changed, observation wells fixed on the inverse and the forward, to reflect the feasibility of the heterogeneous spatial distribution of hydraulic Properties of field site aquifer of the non-redundant verification analysis on steady-state model.From post literature, finding only in steady state, non-redundant verification analysis of pumping well changed location and observation wells fixed location for inverse and forward. But the studies had not yet pumping wells fixed or changed location, and observation wells fixed location for redundant verification or observation wells change location for non-redundant verification of the various combinations may to explore of influences of hydraulic tomography method. In this study, it carried out redundant verification method and non-redundant verification method for forward to influences of hydraulic tomography method in transient. And it discuss above mentioned in NYUST campus sites the actual case, to prove the effectiveness of hydraulic tomography methods, and confirmed the feasibility on inverse and forward analysis from analysis results.Keywords: Hydraulic Tomography, Redundant Verification, Heterogeneous, Inverse, Forward

  11. Shallow Aquifer Vulnerability From Subsurface Fluid Injection at a Proposed Shale Gas Hydraulic Fracturing Site

    NASA Astrophysics Data System (ADS)

    Wilson, M. P.; Worrall, F.; Davies, R. J.; Hart, A.

    2017-11-01

    Groundwater flow resulting from a proposed hydraulic fracturing (fracking) operation was numerically modeled using 91 scenarios. Scenarios were chosen to be a combination of hydrogeological factors that a priori would control the long-term migration of fracking fluids to the shallow subsurface. These factors were induced fracture extent, cross-basin groundwater flow, deep low hydraulic conductivity strata, deep high hydraulic conductivity strata, fault hydraulic conductivity, and overpressure. The study considered the Bowland Basin, northwest England, with fracking of the Bowland Shale at ˜2,000 m depth and the shallow aquifer being the Sherwood Sandstone at ˜300-500 m depth. Of the 91 scenarios, 73 scenarios resulted in tracked particles not reaching the shallow aquifer within 10,000 years and 18 resulted in travel times less than 10,000 years. Four factors proved to have a statistically significant impact on reducing travel time to the aquifer: increased induced fracture extent, absence of deep high hydraulic conductivity strata, relatively low fault hydraulic conductivity, and magnitude of overpressure. Modeling suggests that high hydraulic conductivity formations can be more effective barriers to vertical flow than low hydraulic conductivity formations. Furthermore, low hydraulic conductivity faults can result in subsurface pressure compartmentalization, reducing horizontal groundwater flow, and encouraging vertical fluid migration. The modeled worst-case scenario, using unlikely geology and induced fracture lengths, maximum values for strata hydraulic conductivity and with conservative tracer behavior had a particle travel time of 130 years to the base of the shallow aquifer. This study has identified hydrogeological factors which lead to aquifer vulnerability from shale exploitation.

  12. 77 FR 37340 - Airworthiness Directives; BAE SYSTEMS (OPERATIONS) LIMITED Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-21

    ... was prompted by hydraulic pipe ruptures in the center of the cabin resulting in passengers being contaminated with hydraulic fluid. This proposed AD would require installing a hydraulic fluid containment system. We are proposing this AD to prevent harmful or hazardous concentrations of hydraulic fluid or...

  13. 77 FR 67361 - Request for Information To Inform Hydraulic Fracturing Research Related to Drinking Water Resources

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-09

    ... Inform Hydraulic Fracturing Research Related to Drinking Water Resources AGENCY: Environmental Protection... specific to inform EPA's research study on the potential impacts of hydraulic fracturing on drinking water... scientific literature to inform EPA's research on the potential impacts of hydraulic fracturing on drinking...

  14. 78 FR 20637 - Notification of Public Meeting and a Public Teleconference of the Hydraulic Fracturing Research...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-05

    ... on EPA's ongoing research on the potential impacts of hydraulic fracturing on drinking water... Teleconference of the Hydraulic Fracturing Research Advisory Panel AGENCY: Environmental Protection Agency (EPA... Office announces a public meeting and public teleconference of the Hydraulic Fracturing Research Advisory...

  15. 110. TUBING FOR HYDRAULIC FLUID AT BACK OF HYDRAULIC CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    110. TUBING FOR HYDRAULIC FLUID AT BACK OF HYDRAULIC CONTROL PANEL IN UMBILICAL MAST PUMP ROOM (109), LSB (BLDG. 770) ACCUMULATOR FOR MAST RETRACTION ON LEFT. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  16. 128. TUBING FOR HYDRAULIC FLUID AT BACK OF HYDRAULIC CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    128. TUBING FOR HYDRAULIC FLUID AT BACK OF HYDRAULIC CONTROL PANEL IN UMBILICAL MAST PUMP ROOM (209), LSB (BLDG. 751). PUMP ON RIGHT; ACCUMULATOR FOR MAST RETRACTION ON LEFT. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  17. 77 FR 29861 - Airworthiness Directives; Fokker Services B.V. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-21

    ... an in-flight failure of the hydraulic control panel, which resulted in the absence of pressure and... absence of pressure and quantity indication of the hydraulic system and accompanying alerts for... shut-off of the engine driven hydraulic pumps, resulting in complete absence of hydraulic pressure...

  18. Linking nonstructural carbohydrate dynamics to gas exchange and leaf hydraulic behavior in Pinus edulis and Juniperus monosperma

    Treesearch

    David R. Woodruff; Frederick C. Meinzer; Danielle E. Marias; Sanna Sevanto; Michael W. Jenkins; Nate G. McDowell

    2014-01-01

    Leaf hydraulics, gas exchange and carbon storage in Pinus edulis and Juniperus monosperma, two tree species on opposite ends of the isohydry–anisohydry spectrum, were analyzed to examine relationships between hydraulic function and carbohydrate dynamics.Leaf hydraulic vulnerability,...

  19. Design of a Novel Electro-hydraulic Drive Downhole Tractor

    NASA Astrophysics Data System (ADS)

    Fang, Delei; Shang, Jianzhong; Yang, Junhong; Wang, Zhuo; Wu, Wei

    2018-02-01

    In order to improve the traction ability and the work efficiency of downhole tractor in oil field, a novel electro-hydraulic drive downhole tractor was designed. The tractor’s supporting mechanism and moving mechanism were analyzed based on the tractor mechanical structure. Through the introduction of hydraulic system, the hydraulic drive mechanism and the implementation process were researched. Based on software, analysis of tractor hydraulic drive characteristic and movement performance were simulated, which provide theoretical basis for the development of tractor prototype.

  20. Environmentally safe fluids for hydraulics used in civil engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wirzberger, E.; Rexroth, M.

    1995-12-31

    The majority of hydraulic units used in civil engineering are operated with pressure fluids based on mineral oil. Most civil engineering projects are installed near or immediately next to bodies of water, therefore, any leakage signifies danger for the environment. We try to avert this danger with increasingly safe hydraulic drives. However, growing environmental awareness and stricter laws are demanding more and more environmentally safe hydraulic fluids. Today, the manufacturers of fluids and hydraulic drives have to accept this challenge. What exactly is an environmentally safe hydraulic fluid? The major objectives are: (1) they have to be biodegradable, (2) nomore » fish toxicity, (3) no water pollution, and (4) food compatibility.« less

  1. Pulsed thermography detection of water and hydraulic oil intrusion in the honeycomb sandwich structure composite

    NASA Astrophysics Data System (ADS)

    Zhao, Shi-bin; Zhang, Cun-lin; Wu, Nai-ming

    2011-08-01

    Water and hydraulic oil intrusion inside honeycomb sandwich Structure Composite during service has been linked to in-flight failure in some aircraft. There is an ongoing effort to develop nondestructive testing methods to detect the presence of water and hydraulic oil within the sandwich panels. Pulsed thermography(PT) represents an attractive approach in that it is sensitive to the change of thermal properties. Using a flash lamp PT, testing can be applied directly to the surface of the panel. The viability of PT is demonstrated through laboratory imaging of both water and hydraulic oil within sandwich panels. The detection of water and hydraulic oil intrusion using a one-sided flash lamp PT is presented. It is shown that simple detection, as well as spatial localization of water and hydraulic oil within sandwich panels, and assign the quantity of water and hydraulic oil is possible.

  2. Identification of groundwater parameters at Columbus, Mississippi, using a 3D inverse flow and transport model

    USGS Publications Warehouse

    Barlebo, H.C.; Rosbjerg, D.; Hill, M.C.

    1996-01-01

    An extensive amount of data including hydraulic heads, hydraulic conductivities and concentrations of several solutes from controlled injections have been collected during the MADE 1 and MADE 2 experiments at a heterogeneous site near Columbus, Mississippi. In this paper the use of three-dimensional inverse groundwater models including simultaneous estimation of flow and transport parameters is proposed to help identify the dominant characteristics at the site. Simulations show that using a hydraulic conductivity distribution obtained from 2187 borehole flowmeter tests directly in the model produces poor matches to the measured hydraulic heads and tritium concentrations. Alternatively, time averaged hydraulic head maps are used to define zones of constant hydraulic conductivity to be estimated. Preliminary simulations suggest that in the case of conservative transport many, but not all, of the major plume characteristics can be explained by large-scale heterogeneity in recharge and hydraulic conductivity.

  3. An Integrated View of Whole-Tree Hydraulic Architecture. Does Stomatal or Hydraulic Conductance Determine Whole Tree Transpiration?

    PubMed Central

    Rodríguez-Gamir, Juan; Primo-Millo, Eduardo; Forner-Giner, María Ángeles

    2016-01-01

    Hydraulic conductance exerts a strong influence on many aspects of plant physiology, namely: transpiration, CO2 assimilation, growth, productivity or stress response. However we lack full understanding of the contribution of root or shoot water transport capacity to the total water balance, something which is difficult to study in trees. Here we tested the hypothesis that whole plant hydraulic conductance modulates plant transpiration using two different seedlings of citrus rootstocks, Poncirus trifoliata (L.) Raf. and Cleopatra mandarin (Citrus reshni Hort ex Tan.). The two genotypes presented important differences in their root or shoot hydraulic conductance contribution to whole plant hydraulic conductance but, even so, water balance proved highly dependent on whole plant conductance. Further, we propose there is a possible equilibrium between root and shoot hydraulic conductance, similar to that between shoot and root biomass production, which could be related with xylem anatomy. PMID:27223695

  4. Variable-Displacement Hydraulic Drive Unit

    NASA Technical Reports Server (NTRS)

    Lang, D. J.; Linton, D. J.; Markunas, A.

    1986-01-01

    Hydraulic power controlled through multiple feedback loops. In hydraulic drive unit, power closely matched to demand, thereby saving energy. Hydraulic flow to and from motor adjusted by motor-control valve connected to wobbler. Wobbler angle determines motor-control-valve position, which in turn determines motor displacement. Concept applicable to machine tools, aircraft controls, and marine controls.

  5. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT IX, AUTOMATIC TRANSMISSIONS--HYDRAULIC SYSTEM (PART I).

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OIL FLOW WITHIN HYDRAULIC TRANSMISSIONS USED ON DIESEL POWERED VEHICLES. TOPICS ARE GENERAL DESCRIPTION, HYDRAULIC CIRCUITS, AND BRAKE HYDRAULIC CIRCUIT AND OPERATION. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL PROGRAMED TRAINING FILM "LEARNING ABOUT THE ALLISON…

  6. Hydraulic Fracturing for Oil and Gas: Impacts from the Hydraulic Fracturing Water Cycle on Drinking Water Resources in the United States (Final Report)

    EPA Science Inventory

    This final report provides a review and synthesis of available scientific information concerning the relationship between hydraulic fracturing activities and drinking water resources in the United States.

    The report is organized around activities in the hydraulic...

  7. Use a Log Splitter to Demonstrate Two-Stage Hydraulic Pump

    ERIC Educational Resources Information Center

    Dell, Timothy W.

    2012-01-01

    The two-stage hydraulic pump is commonly used in many high school and college courses to demonstrate hydraulic systems. Unfortunately, many textbooks do not provide a good explanation of how the technology works. Another challenge that instructors run into with teaching hydraulic systems is the cost of procuring an expensive real-world machine…

  8. 49 CFR 173.172 - Aircraft hydraulic power unit fuel tank.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Aircraft hydraulic power unit fuel tank. 173.172... Class 1 and Class 7 § 173.172 Aircraft hydraulic power unit fuel tank. Aircraft hydraulic power unit... consist of an aluminum pressure vessel made from tubing and having welded heads. Primary containment of...

  9. 49 CFR 173.172 - Aircraft hydraulic power unit fuel tank.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Aircraft hydraulic power unit fuel tank. 173.172... Class 1 and Class 7 § 173.172 Aircraft hydraulic power unit fuel tank. Aircraft hydraulic power unit... consist of an aluminum pressure vessel made from tubing and having welded heads. Primary containment of...

  10. 49 CFR 173.172 - Aircraft hydraulic power unit fuel tank.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Aircraft hydraulic power unit fuel tank. 173.172... Class 1 and Class 7 § 173.172 Aircraft hydraulic power unit fuel tank. Aircraft hydraulic power unit... consist of an aluminum pressure vessel made from tubing and having welded heads. Primary containment of...

  11. 49 CFR 173.172 - Aircraft hydraulic power unit fuel tank.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Aircraft hydraulic power unit fuel tank. 173.172... Class 1 and Class 7 § 173.172 Aircraft hydraulic power unit fuel tank. Aircraft hydraulic power unit... consist of an aluminum pressure vessel made from tubing and having welded heads. Primary containment of...

  12. 49 CFR 173.172 - Aircraft hydraulic power unit fuel tank.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Aircraft hydraulic power unit fuel tank. 173.172... Class 1 and Class 7 § 173.172 Aircraft hydraulic power unit fuel tank. Aircraft hydraulic power unit... consist of an aluminum pressure vessel made from tubing and having welded heads. Primary containment of...

  13. Miami-Dade County Hydraulic Hybrid Refuse Truck Testing | Transportation

    Science.gov Websites

    Research | NREL Miami-Dade County Hydraulic Hybrid Refuse Truck Evaluation Miami-Dade County Hydraulic Hybrid Refuse Truck Evaluation Photo of garbage truck with view of lake and city in background. As hydraulic hybrid refuse vehicles, with 29 more on order. Photo courtesy of Parker Hannifin NREL is

  14. Alternative Fuels Data Center: Hydraulic Hybrid Pressed into Service in

    Science.gov Websites

    Refuse Collection Hydraulic Hybrid Pressed into Service in Refuse Collection to someone by E -mail Share Alternative Fuels Data Center: Hydraulic Hybrid Pressed into Service in Refuse Collection on Facebook Tweet about Alternative Fuels Data Center: Hydraulic Hybrid Pressed into Service in Refuse

  15. Hydraulic conductivity of the streambed, east branch Grand Calumet River, northern Lake County, Indiana

    USGS Publications Warehouse

    Duwelius, R.F.

    1996-01-01

    The hydraulic conductivity of the streambed generally was dependant on the type of sediments in the part of the streambed that was tested. Although most of the streambed contained soft, fine-grained sediments, parts of the streambed also contained fill materials including coal, cinders, and concrete and asphalt rubble. The highest values of horizontal hydraulic conductivity generally were calculated from data collected at locations where the streambed contained fill materials, particularly concrete and asphalt rubble. Horizontal hydraulic conductivities determined for 11 hydraulic tests in predominantly fill materials ranged from 1.2x1O+1 to 1.2x1O+3 feet per day and averaged 5.6x1O+2 feet per day. The lowest values of horizontal hydraulic conductivity were calculated from data collected at locations where the streambed contained fine-grained sediments. Horizontal hydraulic conductivities determined for 36 hydraulic tests in predominantly fine-grained sediments ranged from 1.Ox1O-2 to 2.4x1O+2 feet per day and averaged 1.5x1O+1 feet per day.

  16. Plant hydraulic diversity buffers forest ecosystem responses to drought

    NASA Astrophysics Data System (ADS)

    Anderegg, W.; Konings, A. G.; Trugman, A. T.; Pacala, S. W.; Yu, K.; Sulman, B. N.; Sperry, J.; Bowling, D. R.

    2017-12-01

    Drought impacts carbon, water, and energy cycles in forests and may pose a fundamental threat to forests in future climates. Plant hydraulic transport of water is central to tree drought responses, including curtailing of water loss and the risk of mortality during drought. The effect of biodiversity on ecosystem function has typically been examined in grasslands, yet the diversity of plant hydraulic strategies may influence forests' response to drought. In a combined analysis of eddy covariance measurements, remote-sensing data of plant water content variation, model simulations, and plant hydraulic trait data, we test the degree to which plant water stress schemes influence the carbon cycle and how hydraulic diversity within and across ecosystems affects large-scale drought responses. We find that current plant functional types are not well-suited to capture hydraulic variation and that higher hydraulic diversity buffers ecosystem variation during drought. Our results demonstrate that tree functional diversity, particularly hydraulic diversity, may be critical to simulate in plant functional types in current land surface model projections of future vegetation's response to climate extremes.

  17. Optimization of hydraulic shear parameters and reactor configuration in the aerobic granular sludge process.

    PubMed

    Zhu, Liang; Zhou, Jiaheng; Yu, Haitian; Xu, Xiangyang

    2015-01-01

    The hydraulic shear acts as an important selection pressure in aerobic sludge granulation. The effects of the hydraulic shear rate and reactor configuration on structural characteristics of aerobic granule in view of the hydromechanics. The hydraulic shear analysis was proposed to overcome the limitation of using superficial gas velocity (SGV) to express the hydraulic shear stress. Results showed that the stronger hydraulic shear stress with SGV above 2.4 cm s(-1) promoted the microbial aggregation, and favoured the structural stability of the granular sludge. According to the hydraulic shear analysis, the total shear rate reached (0.56-2.31)×10(5) s(-1) in the granular reactor with a larger ratio of height to diameter (H/D), and was higher than that in the reactor with smaller H/D, where the sequencing airlift bioreactor with smaller H/D had a high total shear rate under the same SGV. Results demonstrated that the granular reactor could provide a stronger hydraulic shear stress which promotes the formation and structural stability of aerobic granules.

  18. Space shuttle orbiter auxiliary power unit development challenges

    NASA Technical Reports Server (NTRS)

    Lance, R.; Weary, D.

    1985-01-01

    When the flying spacecraft was approved for development, a power unit for the hydraulic system had to be developed. Unlike other systems on the orbiter, there was no precedent in earlier spacecraft for a hydraulic system nor for the power unit to drive the hydraulic pumps. The only prototypes available were airplane auxiliary power units (APU), which were not required to operate in the severe environments of a spacecraft nor to have the longevity of an orbiter hydraulic power unit. The challenge was to build a hydraulic power unit which could operate in 0g or 3g, in a vacuum or at sea level pressure, and at -65 F or 225 F, which would be capable of restarting while hot, and which would be capable of sustaining the hydraulic loads for the life of the orbiter. The basic approach to providing hydraulic power for the orbiter was to use a small, high speed, monopropellant fueled turbine power unit to drive a conventional aircraft type hydraulic pump. The stringent requirements imposed on the orbiter APU quickly made this machine different from existing aircraft APUs.

  19. Water transport through tall trees: A vertically-explicit, analytical model of xylem hydraulic conductance in stems.

    PubMed

    Couvreur, Valentin; Ledder, Glenn; Manzoni, Stefano; Way, Danielle A; Muller, Erik B; Russo, Sabrina E

    2018-05-08

    Trees grow by vertically extending their stems, so accurate stem hydraulic models are fundamental to understanding the hydraulic challenges faced by tall trees. Using a literature survey, we showed that many tree species exhibit continuous vertical variation in hydraulic traits. To examine the effects of this variation on hydraulic function, we developed a spatially-explicit, analytical water transport model for stems. Our model allows Huber ratio, stem-saturated conductivity, pressure at 50% loss of conductivity, leaf area, and transpiration rate to vary continuously along the hydraulic path. Predictions from our model differ from a matric flux potential model parameterized with uniform traits. Analyses show that cavitation is a whole-stem emergent property resulting from nonlinear pressure-conductivity feedbacks that, with gravity, cause impaired water transport to accumulate along the path. Because of the compounding effects of vertical trait variation on hydraulic function, growing proportionally more sapwood and building tapered xylem with height, as well as reducing xylem vulnerability only at branch tips while maintaining transport capacity at the stem base, can compensate for these effects. We therefore conclude that the adaptive significance of vertical variation in stem hydraulic traits is to allow trees to grow tall and tolerate operating near their hydraulic limits. This article is protected by copyright. All rights reserved.

  20. Stomatal control and hydraulic conductance, with special reference to tall trees.

    PubMed

    Franks, Peter J

    2004-08-01

    A better understanding of the mechanistic basis of stomatal control is necessary to understand why modes of stomatal response differ among individual trees, and to improve the theoretical foundation for predictive models and manipulative experiments. Current understanding of the mechanistic basis of stomatal control is reviewed here and discussed in relation to the plant hydraulic system. Analysis focused on: (1) the relative role of hydraulic conductance in the vicinity of the stomatal apparatus versus whole-plant hydraulic conductance; (2) the influence of guard cell inflation characteristics and the mechanical interaction between guard cells and epidermal cells; and (3) the system requirements for moderate versus dramatic reductions in stomatal conductance with increasing evaporation potential. Special consideration was given to the potential effect of changes in hydraulic properties as trees grow taller. Stomatal control of leaf gas exchange is coupled to the entire plant hydraulic system and the basis of this coupling is the interdependence of guard cell water potential and transpiration rate. This hydraulic feedback loop is always present, but its dynamic properties may be altered by growth or cavitation-induced changes in hydraulic conductance, and may vary with genetically related differences in hydraulic conductances. Mechanistic models should include this feedback loop. Plants vary in their ability to control transpiration rate sufficiently to maintain constant leaf water potential. Limited control may be achieved through the hydraulic feedback loop alone, but for tighter control, an additional element linking transpiration rate to guard cell osmotic pressure may be needed.

  1. Hydraulic performance of compacted clay liners under simulated daily thermal cycles.

    PubMed

    Aldaeef, A A; Rayhani, M T

    2015-10-01

    Compacted clay liners (CCLs) are commonly used as hydraulic barriers in several landfill applications to isolate contaminants from the surrounding environment and minimize the escape of leachate from the landfill. Prior to waste placement in landfills, CCLs are often exposed to temperature fluctuations which can affect the hydraulic performance of the liner. Experimental research was carried out to evaluate the effects of daily thermal cycles on the hydraulic performance of CCLs under simulated landfill conditions. Hydraulic conductivity tests were conducted on different soil specimens after being exposed to various thermal and dehydration cycles. An increase in the CCL hydraulic conductivity of up to one order of magnitude was recorded after 30 thermal cycles for soils with low plasticity index (PI = 9.5%). However, medium (PI = 25%) and high (PI = 37.2%) plasticity soils did not show significant hydraulic deviation due to their self-healing potential. Overlaying the CCL with a cover layer minimized the effects of daily thermal cycles, and maintained stable hydraulic performance in the CCLs even after exposure to 60 thermal cycles. Wet-dry cycles had a significant impact on the hydraulic aspect of low plasticity CCLs. However, medium and high plasticity CCLs maintained constant hydraulic performance throughout the test intervals. The study underscores the importance of protecting the CCL from exposure to atmosphere through covering it by a layer of geomembrane or an interim soil layer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Geologic Controls of Hydraulic Conductivity in the Snake River Plain Aquifer At and Near the Idaho National Engineering and Environmental Laboratory, Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. R. Anderson; M. A. Kuntz; L. C. Davis

    1999-02-01

    The effective hydraulic conductivity of basalt and interbedded sediment that compose the Snake River Plain aquifer at and near the Idaho National Engineering and Environmental Laboratory (INEEL) ranges from about 1.0x10 -2 to 3.2x10 4 feet per day (ft/d). This six-order-of-magnitude range of hydraulic conductivity was estimated from single-well aquifer tests in 114 wells, and is attributed mainly to the physical characteristics and distribution of basalt flows and dikes. Hydraulic conductivity is greatest in thin pahoehoe flows and near-vent volcanic deposits. Hydraulic conductivity is least in flows and deposits cut by dikes. Estimates of hydraulic conductivity at and near themore » INEEL are similar to those measured in similar volcanic settings in Hawaii. The largest variety of rock types and the greatest range of hydraulic conductivity are in volcanic rift zones, which are characterized by numerous aligned volcanic vents and fissures related to underlying dikes. Three broad categories of hydraulic conductivity corresponding to six general types of geologic controls can be inferred from the distribution of wells and vent corridors. Hydraulic conductivity of basalt flows probably is increased by localized fissures and coarse mixtures of interbedded sediment, scoria, and basalt rubble. Hydraulic conductivity of basalt flows is decreased locally by abundant alteration minerals of probable hydrothermal origin. Hydraulic conductivity varies as much as six orders of magnitude in a single vent corridor and varies from three to five orders of magnitude within distances of 500 to 1,000 feet. Abrupt changes in hydraulic conductivity over short distances suggest the presence of preferential pathways and local barriers that may greatly affect the movement of ground water and the dispersion of radioactive and chemical wastes downgradient from points of waste disposal.« less

  3. Characterization of a rice variety with high hydraulic conductance and identification of the chromosome region responsible using chromosome segment substitution lines

    PubMed Central

    Adachi, Shunsuke; Tsuru, Yukiko; Kondo, Motohiko; Yamamoto, Toshio; Arai-Sanoh, Yumiko; Ando, Tsuyu; Ookawa, Taiichiro; Yano, Masahiro; Hirasawa, Tadashi

    2010-01-01

    Background and Aims The rate of photosynthesis in paddy rice often decreases at noon on sunny days because of water stress, even under submerged conditions. Maintenance of higher rates of photosynthesis during the day might improve both yield and dry matter production in paddy rice. A high-yielding indica variety, ‘Habataki’, maintains a high rate of leaf photosynthesis during the daytime because of the higher hydraulic conductance from roots to leaves than in the standard japonica variety ‘Sasanishiki’. This research was conducted to characterize the trait responsible for the higher hydraulic conductance in ‘Habataki’ and identified a chromosome region for the high hydraulic conductance. Methods Hydraulic conductance to passive water transport and to osmotic water transport was determined for plants under intense transpiration and for plants without transpiration, respectively. The varietal difference in hydraulic conductance was examined with respect to root surface area and hydraulic conductivity (hydraulic conductance per root surface area, Lp). To identify the chromosome region responsible for higher hydraulic conductance, chromosome segment substitution lines (CSSLs) derived from a cross between ‘Sasanishiki’ and ‘Habataki’ were used. Key Results The significantly higher hydraulic conductance resulted from the larger root surface area not from Lp in ‘Habataki’. A chromosome region associated with the elevated hydraulic conductance was detected between RM3916 and RM2431 on the long arm of chromosome 4. The CSSL, in which this region was substituted with the ‘Habataki’ chromosome segment in the ‘Sasanishiki’ background, had a larger root mass than ‘Sasanishiki’. Conclusions The trait for increasing plant hydraulic conductance and, therefore, maintaining the higher rate of leaf photosynthesis under the conditions of intense transpiration in ‘Habataki’ was identified, and it was estimated that there is at least one chromosome region for the trait located on chromosome 4. PMID:20810742

  4. Geomorphological and hydrological implications of a given hydraulic geometry relationship, beyond the power-law

    NASA Astrophysics Data System (ADS)

    Kim, JongChun; Paik, Kyungrock

    2015-04-01

    Channel geometry and hydraulic characteristics of a given river network, i.e., spatio-temporal variability of width, depth, and velocity, can be described as power functional relationships of flow discharge, named 'hydraulic geometry' (Leopold and Maddock, 1953). Many studies have focused on the implication of this power-law itself, i.e., self-similarity, and accordingly its exponents. Coefficients of the power functional relationships, on the contrary, have received little attention. They are often regarded as empirical constants, determined by 'best fitting' to the power-law without significant scientific implications. Here, we investigate and claim that power-law coefficients of hydraulic geometry relationships carry vital information of a given river system. We approach the given problem on the basis of 'basin hydraulic geometry' formulation (Stall and Fok, 1968) which decomposes power-law coefficients into more elementary constants. The linkage between classical power-law relationship (Leopold and Maddock, 1953) and the basin hydraulic geometry is provided by Paik and Kumar (2004). On the basis of this earlier study, it can be shown that coefficients and exponents of power-law hydraulic geometry are interrelated. In this sense, we argue that more elementary constants that constitute both exponents and coefficients carry important messages. In this presentation, we will demonstrate how these elementary constants vary over a wide range of catchments provided from Stall and Fok (1968) and Stall and Yang (1970). Findings of this study can provide new insights on fundamental understanding about hydraulic geometry relationships. Further, we expect that this understanding can help interpretation of hydraulic geometry relationship in the context of flood propagation through a river system as well. Keywords: Hydraulic geometry; Power-law; River network References Leopold, L. B., & Maddock, T. J. (1953). The hydraulic geometry of stream channels and some physiographic implications. U. S. Geological Survey Professional Paper, 252. Paik, K., & Kumar, P. (2004). Hydraulic geometry and the nonlinearity of the network instantaneous response, Water Resource Research, 40, W03602. Stall, J. B., & Fok, Y. S. (1968). Hydraulic geometry of Illinois streams. University of Illinois Water Resources Center Research Report, 15. Stall, J. B., & Yang, C. T. (1970). Hydraulic geometry of 12 selected stream systems of the United States. University of Illinois Water Resources Center Research Report, 32.

  5. Hydraulic Fracturing in Zoned Earth and Rockfill Dams: A Report of an Investigation.

    DTIC Science & Technology

    The investigation involves two parts: first, an experimental investigation to study the phenomenon of hydraulic fracturing under carefully...be reduced sufficiently by arching so that hydraulic fracturing can occur. Analyses were also performed to examine the effectiveness of various countermeasures which can reduce the arching and the likelihood of hydraulic fracturing .

  6. Hydraulic integration and shrub growth form linked across continental aridity gradients

    Treesearch

    H. Jochen Schenk; Christine M. Goedhart; Marisa Nordenstahl; Hugo I. Martinez Cabrera; Cynthia S. Jones

    2008-01-01

    Both engineered hydraulic systems and plant hydraulic systems are protected against failure by resistance, reparability, and redundancy. A basic rule of reliability engineering is that the level of independent redundancy should increase with increasing risk of fatal system failure. Here we show that hydraulic systems of plants function as predicted by this engineering...

  7. Downhole hydraulic seismic generator

    DOEpatents

    Gregory, Danny L.; Hardee, Harry C.; Smallwood, David O.

    1992-01-01

    A downhole hydraulic seismic generator system for transmitting energy wave vibrations into earth strata surrounding a borehole. The system contains an elongated, unitary housing operably connected to a well head aboveground by support and electrical cabling, and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a hydraulic oscillator containing a double-actuating piston whose movement is controlled by an electro-servovalve regulating a high pressure hydraulic fluid flow into and out of upper and lower chambers surrounding the piston. The spent hydraulic fluid from the hydraulic oscillator is stored and pumped back into the system to provide high pressure fluid for conducting another run at the same, or a different location within the borehole.

  8. Servo-hydraulic actuator in controllable canonical form: Identification and experimental validation

    NASA Astrophysics Data System (ADS)

    Maghareh, Amin; Silva, Christian E.; Dyke, Shirley J.

    2018-02-01

    Hydraulic actuators have been widely used to experimentally examine structural behavior at multiple scales. Real-time hybrid simulation (RTHS) is one innovative testing method that largely relies on such servo-hydraulic actuators. In RTHS, interface conditions must be enforced in real time, and controllers are often used to achieve tracking of the desired displacements. Thus, neglecting the dynamics of hydraulic transfer system may result either in system instability or sub-optimal performance. Herein, we propose a nonlinear dynamical model for a servo-hydraulic actuator (a.k.a. hydraulic transfer system) coupled with a nonlinear physical specimen. The nonlinear dynamical model is transformed into controllable canonical form for further tracking control design purposes. Through a number of experiments, the controllable canonical model is validated.

  9. An analytical model for hydraulic fracturing in shallow bedrock formations.

    PubMed

    dos Santos, José Sérgio; Ballestero, Thomas Paul; Pitombeira, Ernesto da Silva

    2011-01-01

    A theoretical method is proposed to estimate post-fracturing fracture size and transmissivity, and as a test of the methodology, data collected from two wells were used for verification. This method can be employed before hydrofracturing in order to obtain estimates of the potential hydraulic benefits of hydraulic fracturing. Five different pumping test analysis methods were used to evaluate the well hydraulic data. The most effective methods were the Papadopulos-Cooper model (1967), which includes wellbore storage effects, and the Gringarten-Ramey model (1974), known as the single horizontal fracture model. The hydraulic parameters resulting from fitting these models to the field data revealed that as a result of hydraulic fracturing, the transmissivity increased more than 46 times in one well and increased 285 times in the other well. The model developed by dos Santos (2008), which considers horizontal radial fracture propagation from the hydraulically fractured well, was used to estimate potential fracture geometry after hydrofracturing. For the two studied wells, their fractures could have propagated to distances of almost 175 m or more and developed maximum apertures of about 2.20 mm and hydraulic apertures close to 0.30 mm. Fracturing at this site appears to have expanded and propagated existing fractures and not created new fractures. Hydraulic apertures calculated from pumping test analyses closely matched the results obtained from the hydraulic fracturing model. As a result of this model, post-fracturing geometry and resulting post-fracturing well yield can be estimated before the actual hydrofracturing. Copyright © 2010 The Author(s). Journal compilation © 2010 National Ground Water Association.

  10. Natural variation of root hydraulics in Arabidopsis grown in normal and salt-stressed conditions.

    PubMed

    Sutka, Moira; Li, Guowei; Boudet, Julie; Boursiac, Yann; Doumas, Patrick; Maurel, Christophe

    2011-03-01

    To gain insights into the natural variation of root hydraulics and its molecular components, genotypic differences related to root water transport and plasma membrane intrinsic protein (PIP) aquaporin expression were investigated in 13 natural accessions of Arabidopsis (Arabidopsis thaliana). The hydraulic conductivity of excised root systems (Lpr) showed a 2-fold variation among accessions. The contribution of aquaporins to water uptake was characterized using as inhibitors mercury, propionic acid, and azide. The aquaporin-dependent and -independent paths of water transport made variable contributions to the total hydraulic conductivity in the different accessions. The distinct suberization patterns observed among accessions were not correlated with their root hydraulic properties. Real-time reverse transcription-polymerase chain reaction revealed, by contrast, a positive overall correlation between Lpr and certain highly expressed PIP transcripts. Root hydraulic responses to salt stress were characterized in a subset of five accessions (Bulhary-1, Catania-1, Columbia-0, Dijon-M, and Monte-Tosso-0 [Mr-0]). Lpr was down-regulated in all accessions except Mr-0. In Mr-0 and Catania-1, cortical cell hydraulic conductivity was unresponsive to salt, whereas it was down-regulated in the three other accessions. By contrast, the five accessions showed qualitatively similar aquaporin transcriptional profiles in response to salt. The overall work provides clues on how hydraulic regulation allows plant adaptation to salt stress. It also shows that a wide range of root hydraulic profiles, as previously reported in various species, can be observed in a single model species. This work paves the way for a quantitative genetics analysis of root hydraulics.

  11. Natural Variation of Root Hydraulics in Arabidopsis Grown in Normal and Salt-Stressed Conditions1[C][W

    PubMed Central

    Sutka, Moira; Li, Guowei; Boudet, Julie; Boursiac, Yann; Doumas, Patrick; Maurel, Christophe

    2011-01-01

    To gain insights into the natural variation of root hydraulics and its molecular components, genotypic differences related to root water transport and plasma membrane intrinsic protein (PIP) aquaporin expression were investigated in 13 natural accessions of Arabidopsis (Arabidopsis thaliana). The hydraulic conductivity of excised root systems (Lpr) showed a 2-fold variation among accessions. The contribution of aquaporins to water uptake was characterized using as inhibitors mercury, propionic acid, and azide. The aquaporin-dependent and -independent paths of water transport made variable contributions to the total hydraulic conductivity in the different accessions. The distinct suberization patterns observed among accessions were not correlated with their root hydraulic properties. Real-time reverse transcription-polymerase chain reaction revealed, by contrast, a positive overall correlation between Lpr and certain highly expressed PIP transcripts. Root hydraulic responses to salt stress were characterized in a subset of five accessions (Bulhary-1, Catania-1, Columbia-0, Dijon-M, and Monte-Tosso-0 [Mr-0]). Lpr was down-regulated in all accessions except Mr-0. In Mr-0 and Catania-1, cortical cell hydraulic conductivity was unresponsive to salt, whereas it was down-regulated in the three other accessions. By contrast, the five accessions showed qualitatively similar aquaporin transcriptional profiles in response to salt. The overall work provides clues on how hydraulic regulation allows plant adaptation to salt stress. It also shows that a wide range of root hydraulic profiles, as previously reported in various species, can be observed in a single model species. This work paves the way for a quantitative genetics analysis of root hydraulics. PMID:21212301

  12. Effects of hydraulic pressure on the performance of single chamber air-cathode microbial fuel cells.

    PubMed

    Cheng, Shaoan; Liu, Weifeng; Guo, Jian; Sun, Dan; Pan, Bin; Ye, Yaoli; Ding, Weijun; Huang, Haobin; Li, Fujian

    2014-06-15

    Scaling up of microbial fuel cells (MFCs) without losing power density requires a thorough understanding of the effect of hydraulic pressure on MFC performance. In this work, the performance of an activated carbon air-cathode MFC was evaluated under different hydraulic pressures. The MFC under 100 mmH2O hydraulic pressure produced a maximum power density of 1260 ± 24 mW m(-2), while the power density decreased by 24.4% and 44.7% as the hydraulic pressure increased to 500 mmH2O and 2000 mmH2O, respectively. Notably, the performance of both the anode and the cathode had decreased under high hydraulic pressures. Electrochemical impedance spectroscopy tests of the cathode indicated that both charge transfer resistance and diffusion transfer resistance increased with the increase in hydraulic pressure. Denaturing gradient gel electrophoresis of PCR-amplified partial 16S rRNA genes demonstrated that the similarity among anodic biofilm communities under different hydraulic pressures was ≥ 90%, and the communities of all MFCs were dominated by Geobacter sp. These results suggested that the reduction in power output of the single chamber air-cathode MFC under high hydraulic pressures can be attributed to water flooding of the cathode and suppression the metabolism of anodic exoelectrogenic bacteria. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Hydraulic fracturing water use variability in the United States and potential environmental implications

    PubMed Central

    Varela, Brian A.; Haines, Seth S.; Engle, Mark A.

    2015-01-01

    Abstract Until now, up‐to‐date, comprehensive, spatial, national‐scale data on hydraulic fracturing water volumes have been lacking. Water volumes used (injected) to hydraulically fracture over 263,859 oil and gas wells drilled between 2000 and 2014 were compiled and used to create the first U.S. map of hydraulic fracturing water use. Although median annual volumes of 15,275 m3 and 19,425 m3 of water per well was used to hydraulically fracture individual horizontal oil and gas wells, respectively, in 2014, about 42% of wells were actually either vertical or directional, which required less than 2600 m3 water per well. The highest average hydraulic fracturing water usage (10,000−36,620 m3 per well) in watersheds across the United States generally correlated with shale‐gas areas (versus coalbed methane, tight oil, or tight gas) where the greatest proportion of hydraulically fractured wells were horizontally drilled, reflecting that the natural reservoir properties influence water use. This analysis also demonstrates that many oil and gas resources within a given basin are developed using a mix of horizontal, vertical, and some directional wells, explaining why large volume hydraulic fracturing water usage is not widespread. This spatial variability in hydraulic fracturing water use relates to the potential for environmental impacts such as water availability, water quality, wastewater disposal, and possible wastewater injection‐induced earthquakes. PMID:26937056

  14. Hydraulic efficiency compromises compression strength perpendicular to the grain in Norway spruce trunkwood

    PubMed Central

    2011-01-01

    The aim of this study was to investigate bending stiffness and compression strength perpendicular to the grain of Norway spruce (Picea abies (L.) Karst.) trunkwood with different anatomical and hydraulic properties. Hydraulically less safe mature sapwood had bigger hydraulic lumen diameters and higher specific hydraulic conductivities than hydraulically safer juvenile wood. Bending stiffness (MOE) was higher, whereas radial compression strength lower in mature than in juvenile wood. A density-based tradeoff between MOE and hydraulic efficiency was apparent in mature wood only. Across cambial age, bending stiffness did not compromise hydraulic efficiency due to variation in latewood percent and because of the structural demands of the tree top (e.g. high flexibility). Radial compression strength compromised, however, hydraulic efficiency because it was extremely dependent on the characteristics of the “weakest” wood part, the highly conductive earlywood. An increase in conduit wall reinforcement of earlywood tracheids would be too costly for the tree. Increasing radial compression strength by modification of microfibril angles or ray cell number could result in a decrease of MOE, which would negatively affect the trunk’s capability to support the crown. We propose that radial compression strength could be an easily assessable and highly predictive parameter for the resistance against implosion or vulnerability to cavitation across conifer species, which should be topic of further studies. PMID:22058609

  15. Hydraulic conductivity of fly ash-sewage sludge mixes for use in landfill cover liners.

    PubMed

    Herrmann, Inga; Svensson, Malin; Ecke, Holger; Kumpiene, Jurate; Maurice, Christian; Andreas, Lale; Lagerkvist, Anders

    2009-08-01

    Secondary materials could help meeting the increasing demand of landfill cover liner materials. In this study, the effect of compaction energy, water content, ash ratio, freezing, drying and biological activity on the hydraulic conductivity of two fly ash-sewage sludge mixes was investigated using a 2(7-1) fractional factorial design. The aim was to identify the factors that influence hydraulic conductivity, to quantify their effects and to assess how a sufficiently low hydraulic conductivity can be achieved. The factors compaction energy and drying, as well as the factor interactions material x ash ratio and ash ratio x compaction energy affected hydraulic conductivity significantly (alpha=0.05). Freezing on five freeze-thaw cycles did not affect hydraulic conductivity. Water content affected hydraulic conductivity only initially. The hydraulic conductivity data were modelled using multiple linear regression. The derived models were reliable as indicated by R(adjusted)(2) values between 0.75 and 0.86. Independent on the ash ratio and the material, hydraulic conductivity was predicted to be between 1.7 x 10(-11)m s(-1) and 8.9 x 10(-10)m s(-1) if the compaction energy was 2.4 J cm(-3), the ash ratio between 20% and 75% and drying did not occur. Thus, the investigated materials met the limit value for non-hazardous waste landfills of 10(-9)m s(-1).

  16. Hydraulic fracturing water use variability in the United States and potential environmental implications

    USGS Publications Warehouse

    Gallegos, Tanya J.; Varela, Brian A.; Haines, Seth S.; Engle, Mark A.

    2015-01-01

    Until now, up-to-date, comprehensive, spatial, national-scale data on hydraulic fracturing water volumes have been lacking. Water volumes used (injected) to hydraulically fracture over 263,859 oil and gas wells drilled between 2000 and 2014 were compiled and used to create the first U.S. map of hydraulic fracturing water use. Although median annual volumes of 15,275 m3 and 19,425 m3 of water per well was used to hydraulically fracture individual horizontal oil and gas wells, respectively, in 2014, about 42% of wells were actually either vertical or directional, which required less than 2600 m3 water per well. The highest average hydraulic fracturing water usage (10,000−36,620 m3 per well) in watersheds across the United States generally correlated with shale-gas areas (versus coalbed methane, tight oil, or tight gas) where the greatest proportion of hydraulically fractured wells were horizontally drilled, reflecting that the natural reservoir properties influence water use. This analysis also demonstrates that many oil and gas resources within a given basin are developed using a mix of horizontal, vertical, and some directional wells, explaining why large volume hydraulic fracturing water usage is not widespread. This spatial variability in hydraulic fracturing water use relates to the potential for environmental impacts such as water availability, water quality, wastewater disposal, and possible wastewater injection-induced earthquakes.

  17. Hydraulic fracturing near domestic groundwater wells.

    PubMed

    Jasechko, Scott; Perrone, Debra

    2017-12-12

    Hydraulic fracturing operations are generating considerable discussion about their potential to contaminate aquifers tapped by domestic groundwater wells. Groundwater wells located closer to hydraulically fractured wells are more likely to be exposed to contaminants derived from on-site spills and well-bore failures, should they occur. Nevertheless, the proximity of hydraulic fracturing operations to domestic groundwater wells is unknown. Here, we analyze the distance between domestic groundwater wells (public and self-supply) constructed between 2000 and 2014 and hydraulically fractured wells stimulated in 2014 in 14 states. We show that 37% of all recorded hydraulically fractured wells stimulated during 2014 exist within 2 km of at least one recently constructed (2000-2014) domestic groundwater well. Furthermore, we identify 11 counties where most ([Formula: see text]50%) recorded domestic groundwater wells exist within 2 km of one or more hydraulically fractured wells stimulated during 2014. Our findings suggest that understanding how frequently hydraulic fracturing operations impact groundwater quality is of widespread importance to drinking water safety in many areas where hydraulic fracturing is common. We also identify 236 counties where most recorded domestic groundwater wells exist within 2 km of one or more recorded oil and gas wells producing during 2014. Our analysis identifies hotspots where both conventional and unconventional oil and gas wells frequently exist near recorded domestic groundwater wells that may be targeted for further water-quality monitoring.

  18. Coordination and trade-offs among hydraulic safety, efficiency and drought avoidance traits in Amazonian rainforest canopy tree species.

    PubMed

    Santiago, Louis S; De Guzman, Mark E; Baraloto, Christopher; Vogenberg, Jacob E; Brodie, Max; Hérault, Bruno; Fortunel, Claire; Bonal, Damien

    2018-05-01

    Predicting responses of tropical forests to climate change-type drought is challenging because of high species diversity. Detailed characterization of tropical tree hydraulic physiology is necessary to evaluate community drought vulnerability and improve model parameterization. Here, we measured xylem hydraulic conductivity (hydraulic efficiency), xylem vulnerability curves (hydraulic safety), sapwood pressure-volume curves (drought avoidance) and wood density on emergent branches of 14 common species of Eastern Amazonian canopy trees in Paracou, French Guiana across species with the densest and lightest wood in the plot. Our objectives were to evaluate relationships among hydraulic traits to identify strategies and test the ability of easy-to-measure traits as proxies for hard-to-measure hydraulic traits. Xylem efficiency was related to capacitance, sapwood water content and turgor loss point, and other drought avoidance traits, but not to xylem safety (P 50 ). Wood density was correlated (r = -0.57 to -0.97) with sapwood pressure-volume traits, forming an axis of hydraulic strategy variation. In contrast to drier sites where hydraulic safety plays a greater role, tropical trees in this humid tropical site varied along an axis with low wood density, high xylem efficiency and high capacitance at one end of the spectrum, and high wood density and low turgor loss point at the other. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  19. Hydraulic fracturing near domestic groundwater wells

    PubMed Central

    Jasechko, Scott; Perrone, Debra

    2017-01-01

    Hydraulic fracturing operations are generating considerable discussion about their potential to contaminate aquifers tapped by domestic groundwater wells. Groundwater wells located closer to hydraulically fractured wells are more likely to be exposed to contaminants derived from on-site spills and well-bore failures, should they occur. Nevertheless, the proximity of hydraulic fracturing operations to domestic groundwater wells is unknown. Here, we analyze the distance between domestic groundwater wells (public and self-supply) constructed between 2000 and 2014 and hydraulically fractured wells stimulated in 2014 in 14 states. We show that 37% of all recorded hydraulically fractured wells stimulated during 2014 exist within 2 km of at least one recently constructed (2000–2014) domestic groundwater well. Furthermore, we identify 11 counties where most (>50%) recorded domestic groundwater wells exist within 2 km of one or more hydraulically fractured wells stimulated during 2014. Our findings suggest that understanding how frequently hydraulic fracturing operations impact groundwater quality is of widespread importance to drinking water safety in many areas where hydraulic fracturing is common. We also identify 236 counties where most recorded domestic groundwater wells exist within 2 km of one or more recorded oil and gas wells producing during 2014. Our analysis identifies hotspots where both conventional and unconventional oil and gas wells frequently exist near recorded domestic groundwater wells that may be targeted for further water-quality monitoring. PMID:29180405

  20. Characteristics of Air Entrainment in Hydraulic Jump

    NASA Astrophysics Data System (ADS)

    Albarkani, M. S. S.; Tan, L. W.; Al-Gheethi, A.

    2018-04-01

    The characteristics of hydraulic jump, especially the air entrainment within jump is still not properly understood. Therefore, the current work aimed to determine the size and number of air entrainment formed in hydraulic jump at three different Froude numbers and to obtain the relationship between Froude number with the size and number of air entrainment in hydraulic jump. Experiments of hydraulic jump were conducted in a 10 m long and 0.3 m wide Armfield S6MKII glass-sided tilting flume. Hydraulic jumps were produced by flow under sluice gate with varying Froude number. The air entrainment of the hydraulic jump was captured with a Canon Power Shot SX40 HS digital camera in video format at 24 frames per second. Three discharges have been considered, i.e. 0.010 m3/s, 0.011 m3/s, and 0.013 m3/s. For hydraulic jump formed in each discharge, 32 frames were selected for the purpose of analysing the size and number of air entrainment in hydraulic jump. The results revealed that that there is a tendency to have greater range in sizes of air bubbles as Fr1 increases. Experiments with Fr1 = 7.547. 7.707, and 7.924 shown that the number of air bubbles increases exponentially with Fr1 at a relationship of N = 1.3814 e 0.9795Fr1.

  1. Hydraulic Hybrid Vehicles

    EPA Pesticide Factsheets

    EPA and the United Parcel Service (UPS) have developed a hydraulic hybrid delivery vehicle to explore and demonstrate the environmental benefits of the hydraulic hybrid for urban pick-up and delivery fleets.

  2. Xylem recovery from drought-induced embolism: Where is the hydraulic point of no return?

    Treesearch

    Frederick C. Meinzer; Katherine A. McCulloh

    2013-01-01

    The hydraulic resilience of a species is determined by multiple physiological and structural traits. Understanding how these traits are integrated at the organismal level to yield adequate hydraulic fitness in a given environment would be a fertile area for future research. This type of information is essential for realistic predictions of species hydraulic limits...

  3. 49 CFR 570.57 - Air brake system and air-over-hydraulic brake subsystem.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... pressure drop in psi per minute with brakes released and with brakes fully applied. (d) Air-over-hydraulic... 49 Transportation 6 2014-10-01 2014-10-01 false Air brake system and air-over-hydraulic brake... STANDARDS Vehicles With GVWR of More Than 10,000 Pounds § 570.57 Air brake system and air-over-hydraulic...

  4. 49 CFR 570.57 - Air brake system and air-over-hydraulic brake subsystem.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... pressure drop in psi per minute with brakes released and with brakes fully applied. (d) Air-over-hydraulic... 49 Transportation 6 2010-10-01 2010-10-01 false Air brake system and air-over-hydraulic brake... STANDARDS Vehicles With GVWR of More Than 10,000 Pounds § 570.57 Air brake system and air-over-hydraulic...

  5. 49 CFR 570.57 - Air brake system and air-over-hydraulic brake subsystem.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... pressure drop in psi per minute with brakes released and with brakes fully applied. (d) Air-over-hydraulic... 49 Transportation 6 2012-10-01 2012-10-01 false Air brake system and air-over-hydraulic brake... STANDARDS Vehicles With GVWR of More Than 10,000 Pounds § 570.57 Air brake system and air-over-hydraulic...

  6. 49 CFR 570.57 - Air brake system and air-over-hydraulic brake subsystem.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... pressure drop in psi per minute with brakes released and with brakes fully applied. (d) Air-over-hydraulic... 49 Transportation 6 2013-10-01 2013-10-01 false Air brake system and air-over-hydraulic brake... STANDARDS Vehicles With GVWR of More Than 10,000 Pounds § 570.57 Air brake system and air-over-hydraulic...

  7. Evaluating the Longevity and Hydraulic Performance of Permeable Reactive Barriers at Department of Defense Sites

    DTIC Science & Technology

    2001-10-01

    Draft Final Report Evaluating the Longevity and Hydraulic Performance of Permeable Reactive Barriers at Department of Defense Sites Prepared for...AND SUBTITLE Evaluating the Longevity and Hydraulic Performance of Permeable Reactive Barriers at Department of Defense Sites 5a. CONTRACT NUMBER...34 4.3.2 Hydraulic Performance Evaluation .................................................................... 38 4.3.2.1 Water-Level

  8. Hydraulic performance of Compacted Clay Liners (CCLs) under combined temperature and leachate exposures.

    PubMed

    Aldaeef, A A; Rayhani, M T

    2014-12-01

    Experimental investigations were carried out to investigate the effect of thermo-chemical exposures on the hydraulic performance of Compacted Clay Liners (CCLs) in landfills. Hydraulic conductivity of most CCL specimens was increased by two to three times their initial values when exposed to 55 °C for 75 days. CCL specimens also experienced increases in their hydraulic conductivities when exposed to leachate at room temperature. This behaviour could be due to the decrease in viscosity when the permeant was changed from tap water to leachate. However, as the leachate exposure time exceeded the first 15 days, hydraulic conductivity readings decreased to as much as one order of magnitude after 75 days of leachate permeation at room temperature. The gradual decrease in the CCLs hydraulic conductivities was most likely due to chemical precipitation and clogging of pore voids within the soils which seemed to reduce the effective pore volume. The rate of hydraulic conductivity reduction due to leachate permeation was slower at higher temperatures, which was attributed to the lower permeant viscosity and lower clogging occurrence. The observed hydraulic behaviours were correlated to the physical, mineral, and chemical properties of the CCLs and described below. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. A quantitative analysis of hydraulic interaction processes in stream-aquifer systems

    PubMed Central

    Wang, Wenke; Dai, Zhenxue; Zhao, Yaqian; Li, Junting; Duan, Lei; Wang, Zhoufeng; Zhu, Lin

    2016-01-01

    The hydraulic relationship between the stream and aquifer can be altered from hydraulic connection to disconnection when the pumping rate exceeds the maximum seepage flux of the streambed. This study proposes to quantitatively analyze the physical processes of stream-aquifer systems from connection to disconnection. A free water table equation is adopted to clarify under what conditions a stream starts to separate hydraulically from an aquifer. Both the theoretical analysis and laboratory tests have demonstrated that the hydraulic connectedness of the stream-aquifer system can reach a critical disconnection state when the horizontal hydraulic gradient at the free water surface is equal to zero and the vertical is equal to 1. A boundary-value problem for movement of the critical point of disconnection is established for an analytical solution of the inverted water table movement beneath the stream. The result indicates that the maximum distance or thickness of the inverted water table is equal to the water depth in the stream, and at a steady state of disconnection, the maximum hydraulic gradient at the streambed center is 2. This study helps us to understand the hydraulic phenomena of water flow near streams and accurately assess surface water and groundwater resources. PMID:26818442

  10. Hydraulic conductivity of compacted zeolites.

    PubMed

    Oren, A Hakan; Ozdamar, Tuğçe

    2013-06-01

    Hydraulic conductivities of compacted zeolites were investigated as a function of compaction water content and zeolite particle size. Initially, the compaction characteristics of zeolites were determined. The compaction test results showed that maximum dry unit weight (γ(dmax)) of fine zeolite was greater than that of granular zeolites. The γ(dmax) of compacted zeolites was between 1.01 and 1.17 Mg m(-3) and optimum water content (w(opt)) was between 38% and 53%. Regardless of zeolite particle size, compacted zeolites had low γ(dmax) and high w(opt) when compared with compacted natural soils. Then, hydraulic conductivity tests were run on compacted zeolites. The hydraulic conductivity values were within the range of 2.0 × 10(-3) cm s(-1) to 1.1 × 10(-7) cm s(-1). Hydraulic conductivity of all compacted zeolites decreased almost 50 times as the water content increased. It is noteworthy that hydraulic conductivity of compacted zeolite was strongly dependent on the zeolite particle size. The hydraulic conductivity decreased almost three orders of magnitude up to 39% fine content; then, it remained almost unchanged beyond 39%. Only one report was found in the literature on the hydraulic conductivity of compacted zeolite, which is in agreement with the findings of this study.

  11. Hydraulic elements in reduction of vibrations in mechanical systems

    NASA Astrophysics Data System (ADS)

    Białas, K.; Buchacz, A.

    2017-08-01

    This work presents non-classical method of design of mechanic systems with subsystem reducing vibrations. The purpose of this paper is also introduces synthesis of mechanic system with reducing vibrations understand as design of this type of systems. The synthesis may be applied to modify the already existing systems in order to achieve a desired result. Elements which reduce vibrations can be constructed with passive, semi-active or active components. These considerations systems have selected active items. A hallmark of active elements it is possible to change the parameters on time of these elements and their power from an external source. The implementation of active elements is very broad. These elements can be implemented through the use of components of electrical, pneumatic, hydraulic, etc. The system was consisted from mechanical and hydraulic elements. Hydraulic elements were used as subsystem reducing unwanted vibration of mechanical system. Hydraulic elements can be realized in the form of hydraulic cylinder. In the case of an active vibration reduction in the form of hydraulic cylinder it is very important to find the corresponding values of hydraulic components. The values of these elements affect the frequency of vibrations of this sub-system which is related to the effective vibration reduction [7,11].

  12. Dynamics of the process boom machine working equipment under the real law of the hydraulic distributor electric spool control

    NASA Astrophysics Data System (ADS)

    Tarasov, V. N.; Boyarkina, I. V.

    2017-06-01

    Analytical calculation methods of dynamic processes of the self-propelled boom hydraulic machines working equipment are more preferable in comparison with numerical methods. The analytical research method of dynamic processes of the boom hydraulic machines working equipment by means of differential equations of acceleration and braking of the working equipment is proposed. The real control law of a hydraulic distributor electric spool is considered containing the linear law of the electric spool activation and stepped law of the electric spool deactivation. Dependences of dynamic processes of the working equipment on reduced mass, stiffness of hydraulic power cylinder, viscous drag coefficient, piston acceleration, pressure in hydraulic cylinders, inertia force are obtained. Definite recommendations relative to the reduction of dynamic loads, appearing during the working equipment control are considered as the research result. The nature and rate of parameter variations of the speed and piston acceleration dynamic process depend on the law of the ports opening and closure of the hydraulic distributor electric spool. Dynamic loads in the working equipment are decreased during a smooth linear activation of the hydraulic distributor electric spool.

  13. The numerical simulation based on CFD of hydraulic turbine pump

    NASA Astrophysics Data System (ADS)

    Duan, X. H.; Kong, F. Y.; Liu, Y. Y.; Zhao, R. J.; Hu, Q. L.

    2016-05-01

    As the functions of hydraulic turbine pump including self-adjusting and compensation with each other, it is far-reaching to analyze its internal flow by the numerical simulation based on CFD, mainly including the pressure field and the velocity field in hydraulic turbine and pump.The three-dimensional models of hydraulic turbine pump are made by Pro/Engineer software;the internal flow fields in hydraulic turbine and pump are simulated numerically by CFX ANSYS software. According to the results of the numerical simulation in design condition, the pressure field and the velocity field in hydraulic turbine and pump are analyzed respectively .The findings show that the static pressure decreases systematically and the pressure gradient is obvious in flow area of hydraulic turbine; the static pressure increases gradually in pump. The flow trace is regular in suction chamber and flume without spiral trace. However, there are irregular traces in the turbine runner channels which contrary to that in flow area of impeller. Most of traces in the flow area of draft tube are spiral.

  14. Theory and application of drilling fluid hydraulics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whittaker, A.

    1985-01-01

    The objectives of this book are (1) to serve as a reasonably comprehensive text on the subject of drilling hydraulics and (2) to provide the field geologist with a quick reference to drilling hydraulics calculations. Chapter 1 introduces the basic principles of fluid properties, and Chapter 2 presents the general principles of fluid hydraulics. Chapters 3 through 10 analyze specific hydraulic considerations of the drilling process, such as viscometric measurements, pressure losses, swab and surge pressures, cuttings transport and hydraulic optimization. The units and nomenclature are consistent throughout the manual. Equations are given generally in consistent S.I. units; some commonmore » expressions are also given in oilfield units. Nomenclature is explained after every equation when necessary, and a comprehensive list of the nomenclature used is given in Appendix A. Units are listed in Appendix B. In Appendix C, all the important equations are given in both S.I. and oilfield units. Appendix D contains example hydraulics calculations.« less

  15. From the Kinetic Energy Recovery System to the Thermo-Hydraulic Hybrid Motor Vehicle

    NASA Astrophysics Data System (ADS)

    Cristescu, Corneliu; Drumea, Petrin; Guta, Dragos; Dumitrescu, Catalin

    2011-12-01

    The paper presents some theoretical and experimental results obtained by the Hydraulics and Pneumatics Research Institute INOE 2000-IHP with its partners, regarding the creating of one hydraulic system able to recovering the kinetic energy of the motor vehicles, in the braking phases, and use this recovered energy in the starting and accelerating phases. Also, in the article is presented a testing stand, which was especially designed for testing the hydraulic system for recovery the kinetic energy. Through mounting of the kinetic energy recovering hydraulic system, on one motor vehicle, this vehicle became a thermo-hydraulic hybrid vehicle. Therefore, the dynamic behavior was analyzed for the whole hybrid motor vehicle, which includes the energy recovery system. The theoretical and experimental results demonstrate the possible performances of the hybrid vehicle and that the kinetic energy recovery hydraulic systems are good means to increase energy efficiency of the road motor vehicles and to decrease of the fuel consumption.

  16. Robust Hinfinity position control synthesis of an electro-hydraulic servo system.

    PubMed

    Milić, Vladimir; Situm, Zeljko; Essert, Mario

    2010-10-01

    This paper focuses on the use of the techniques based on linear matrix inequalities for robust H(infinity) position control synthesis of an electro-hydraulic servo system. A nonlinear dynamic model of the hydraulic cylindrical actuator with a proportional valve has been developed. For the purpose of the feedback control an uncertain linearized mathematical model of the system has been derived. The structured (parametric) perturbations in the electro-hydraulic coefficients are taken into account. H(infinity) controller extended with an integral action is proposed. To estimate internal states of the electro-hydraulic servo system an observer is designed. Developed control algorithms have been tested experimentally in the laboratory model of an electro-hydraulic servo system. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  17. How do trees die? A test of the hydraulic failure and carbon starvation hypotheses

    PubMed Central

    Sevanto, Sanna; Mcdowell, Nate G; Dickman, L Turin; Pangle, Robert; Pockman, William T

    2014-01-01

    Despite decades of research on plant drought tolerance, the physiological mechanisms by which trees succumb to drought are still under debate. We report results from an experiment designed to separate and test the current leading hypotheses of tree mortality. We show that piñon pine (Pinus edulis) trees can die of both hydraulic failure and carbon starvation, and that during drought, the loss of conductivity and carbohydrate reserves can also co-occur. Hydraulic constraints on plant carbohydrate use determined survival time: turgor loss in the phloem limited access to carbohydrate reserves, but hydraulic control of respiration prolonged survival. Our data also demonstrate that hydraulic failure may be associated with loss of adequate tissue carbohydrate content required for osmoregulation, which then promotes failure to maintain hydraulic integrity. PMID:23730972

  18. 3D Modeling and Characterization of Hydraulic Fracture Efficiency Integrated with 4D/9C Time-Lapse Seismic Interpretations in the Niobrara Formation, Wattenberg Field, Denver Basin

    NASA Astrophysics Data System (ADS)

    Alfataierge, Ahmed

    Hydrocarbon recovery rates within the Niobrara Shale are estimated as low as 2-8%. These recovery rates are controlled by the ability to effectively hydraulic fracture stimulate the reservoir using multistage horizontal wells. Subsequent to any mechanical issues that affect production from lateral wells, the variability in production performance and reserve recovery along multistage lateral shale wells is controlled by the reservoir heterogeneity and its consequent effect on hydraulic fracture stimulation efficiency. Using identical stimulation designs on a number of wells that are as close as 600ft apart can yield variable production and recovery rates due to inefficiencies in hydraulic fracture stimulation that result from the variability in elastic rock properties and in-situ stress conditions. As a means for examining the effect of the geological heterogeneity on hydraulic fracturing and production within the Niobrara Formation, a 3D geomechanical model is derived using geostatistical methods and volumetric calculations as an input to hydraulic fracture stimulation. The 3D geomechanical model incorporates the faults, lithological facies changes and lateral variation in reservoir properties and elastic rock properties that best represent the static reservoir conditions pre-hydraulic fracturing. Using a 3D numerical reservoir simulator, a hydraulic fracture predictive model is generated and calibrated to field diagnostic measurements (DFIT) and observations (microseismic and 4D/9C multicomponent time-lapse seismic). By incorporating the geological heterogeneity into the 3D hydraulic fracture simulation, a more representative response is generated that demonstrate the variability in hydraulic fracturing efficiency along the lateral wells that will inevitability influence production performance. Based on the 3D hydraulic fracture simulation results, integrated with microseismic observations and 4D/9C time-lapse seismic analysis (post-hydraulic fracturing & post production), the variability in production performance within the Niobrara Shale wells is shown to significantly be affected by the lateral variability in reservoir quality, well and stage positioning relative to the target interval, and the relative completion efficiency. The variation in reservoir properties, faults, rock strength parameters, and in-situ stress conditions are shown to influence and control the hydraulic fracturing geometry and stimulation efficiency resulting in complex and isolated induced fracture geometries to form within the reservoir. This consequently impacts the effective drainage areas, production performance and recovery rates from inefficiently stimulated horizontal wells. The 3D simulation results coupled with the 4D seismic interpretations illustrate that there is still room for improvement to be made in optimizing well spacing and hydraulic fracturing efficiency within the Niobrara Formation. Integrated analysis show that the Niobrara reservoir is not uniformly stimulated. The vertical and lateral variability in rock properties control the hydraulic fracturing efficiency and geometry. Better production is also correlated to higher fracture conductivity. 4D seismic interpretation is also shown to be essential for the validation and calibration hydraulic fracture simulation models. The hydraulic fracture modeling also demonstrations that there is bypassed pay in the Niobrara B chalk resulting from initial Niobrara C chalk stimulation treatments. Forward modeling also shows that low pressure intervals within the Niobrara reservoir influence hydraulic fracturing and infill drilling during field development.

  19. Optimization of hydraulic turbine governor parameters based on WPA

    NASA Astrophysics Data System (ADS)

    Gao, Chunyang; Yu, Xiangyang; Zhu, Yong; Feng, Baohao

    2018-01-01

    The parameters of hydraulic turbine governor directly affect the dynamic characteristics of the hydraulic unit, thus affecting the regulation capacity and the power quality of power grid. The governor of conventional hydropower unit is mainly PID governor with three adjustable parameters, which are difficult to set up. In order to optimize the hydraulic turbine governor, this paper proposes wolf pack algorithm (WPA) for intelligent tuning since the good global optimization capability of WPA. Compared with the traditional optimization method and PSO algorithm, the results show that the PID controller designed by WPA achieves a dynamic quality of hydraulic system and inhibits overshoot.

  20. Virtual Design of a Controller for a Hydraulic Cam Phasing System

    NASA Astrophysics Data System (ADS)

    Schneider, Markus; Ulbrich, Heinz

    2010-09-01

    Hydraulic vane cam phasing systems are nowadays widely used for improving the performance of combustion engines. At stationary operation, these systems should achieve a constant phasing angle, which however is badly disturbed by the alternating torque generated by the valve actuation. As the hydraulic system shows a non-linear characteristic over the full operation range and the inductivity of the hydraulic pipes generates a significant time delay, a full model based control emerges very complex. Therefore a simple feed-forward controller is designed, bridging the time delay of the hydraulic system and improving the system behaviour significantly.

  1. Modeling hydraulic regenerative hybrid vehicles using AMESim and Matlab/Simulink

    NASA Astrophysics Data System (ADS)

    Lynn, Alfred; Smid, Edzko; Eshraghi, Moji; Caldwell, Niall; Woody, Dan

    2005-05-01

    This paper presents the overview of the simulation modeling of a hydraulic system with regenerative braking used to improve vehicle emissions and fuel economy. Two simulation software packages were used together to enhance the simulation capability for fuel economy results and development of vehicle and hybrid control strategy. AMESim, a hydraulic simulation software package modeled the complex hydraulic circuit and component hardware and was interlinked with a Matlab/Simulink model of the vehicle, engine and the control strategy required to operate the vehicle and the hydraulic hybrid system through various North American and European drive cycles.

  2. 23 CFR 650.111 - Location hydraulic studies.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... BRIDGES, STRUCTURES, AND HYDRAULICS Location and Hydraulic Design of Encroachments on Flood Plains § 650... part 771. (f) Local, State, and Federal water resources and flood-plain management agencies should be...

  3. 23 CFR 650.111 - Location hydraulic studies.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... BRIDGES, STRUCTURES, AND HYDRAULICS Location and Hydraulic Design of Encroachments on Flood Plains § 650... part 771. (f) Local, State, and Federal water resources and flood-plain management agencies should be...

  4. 23 CFR 650.111 - Location hydraulic studies.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... BRIDGES, STRUCTURES, AND HYDRAULICS Location and Hydraulic Design of Encroachments on Flood Plains § 650... part 771. (f) Local, State, and Federal water resources and flood-plain management agencies should be...

  5. 23 CFR 650.111 - Location hydraulic studies.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... BRIDGES, STRUCTURES, AND HYDRAULICS Location and Hydraulic Design of Encroachments on Flood Plains § 650... part 771. (f) Local, State, and Federal water resources and flood-plain management agencies should be...

  6. 23 CFR 650.111 - Location hydraulic studies.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... BRIDGES, STRUCTURES, AND HYDRAULICS Location and Hydraulic Design of Encroachments on Flood Plains § 650... part 771. (f) Local, State, and Federal water resources and flood-plain management agencies should be...

  7. The blind men and the elephant: the impact of context and scale in evaluating conflicts between plant hydraulic safety and efficiency

    Treesearch

    Frederick C. Meinzer; Katherine A. McCulloh; Barbara Lachenbruch; David R. Woodruff; Daniel M. Johnson

    2010-01-01

    Given the fundamental importance of xylem safety and efficiency for plant survival and fitness, it is not surprising that these are among the most commonly studied features of hydraulic architecture. However, much remains to be learned about the nature and universality of conflicts between hydraulic safety and efficiency. Although selection for suites of hydraulic...

  8. Automated System of Diagnostic Monitoring at Bureya HPP Hydraulic Engineering Installations: a New Level of Safety

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musyurka, A. V., E-mail: musyurkaav@burges.rushydro.ru

    This article presents the design, hardware, and software solutions developed and placed in service for the automated system of diagnostic monitoring (ASDM) for hydraulic engineering installations at the Bureya HPP, and assuring a reliable process for monitoring hydraulic engineering installations. Project implementation represents a timely solution of problems addressed by the hydraulic engineering installation diagnostics section.

  9. Technical Information/Website Preservation

    NASA Technical Reports Server (NTRS)

    PintoRey, Christian R.

    2010-01-01

    This document reviews the work of the author in NASA's Motivating Undergraduates in Science and Technology (MUST) internship. The intern worked on the Space Shuttles hydraulic systems (i.e., Auxiliary Power Units (APU's) and Hydraulic Pump Units (HPU's)), and website preservation of the hydraulic technology captured in websites relating to the coming.the Space Shuttle Retirement. Several figures and pictures show an overview of the orbiter's hydraulic systems

  10. Engine with hydraulic fuel injection and ABS circuit using a single high pressure pump

    DOEpatents

    Bartley, Bradley E.; Blass, James R.; Gibson, Dennis H.

    2001-01-01

    An engine system comprises a hydraulically actuated fuel injection system and an ABS circuit connected via a fluid flow passage that provides hydraulic fluid to both the fuel injection system and to the ABS circuit. The hydraulically actuated system includes a high pressure pump. The fluid control passage is in fluid communication with an outlet from the high pressure pump.

  11. Hydraulics for Royal Gardens: Water Art as a Challenge for 18th Century Science and 21st Century Physics Teaching

    ERIC Educational Resources Information Center

    Eckert, Michael

    2007-01-01

    Hydraulics is an engineering specialty and largely neglected as a topic in physics teaching. But the history of hydraulics from the Renaissance to the Baroque, merits our attention because hydraulics was then more broadly conceived as a practical "and" theoretical science; it served as a constant bone of contention for mechanics and…

  12. Assimilation of temperature and hydraulic gradients for quantifying the spatial variability of streambed hydraulics

    NASA Astrophysics Data System (ADS)

    Huang, Xiang; Andrews, Charles B.; Liu, Jie; Yao, Yingying; Liu, Chuankun; Tyler, Scott W.; Selker, John S.; Zheng, Chunmiao

    2016-08-01

    Understanding the spatial and temporal characteristics of water flux into or out of shallow aquifers is imperative for water resources management and eco-environmental conservation. In this study, the spatial variability in the vertical specific fluxes and hydraulic conductivities in a streambed were evaluated by integrating distributed temperature sensing (DTS) data and vertical hydraulic gradients into an ensemble Kalman filter (EnKF) and smoother (EnKS) and an empirical thermal-mixing model. The formulation of the EnKF/EnKS assimilation scheme is based on a discretized 1D advection-conduction equation of heat transfer in the streambed. We first systematically tested a synthetic case and performed quantitative and statistical analyses to evaluate the performance of the assimilation schemes. Then a real-world case was evaluated to calculate assimilated specific flux. An initial estimate of the spatial distributions of the vertical hydraulic gradients was obtained from an empirical thermal-mixing model under steady-state conditions using a constant vertical hydraulic conductivity. Then, this initial estimate was updated by repeatedly dividing the assimilated specific flux by estimates of the vertical hydraulic gradients to obtain a refined spatial distribution of vertical hydraulic gradients and vertical hydraulic conductivities. Our results indicate that optimal parameters can be derived with fewer iterations but greater simulation effort using the EnKS compared with the EnKF. For the field application in a stream segment of the Heihe River Basin in northwest China, the average vertical hydraulic conductivities in the streambed varied over three orders of magnitude (5 × 10-1 to 5 × 102 m/d). The specific fluxes ranged from near zero (qz < ±0.05 m/d) to ±1.0 m/d, while the vertical hydraulic gradients were within the range of -0.2 to 0.15 m/m. The highest and most variable fluxes occurred adjacent to a debris-dam and bridge pier. This phenomenon is very likely the result of heterogeneous streambed hydraulic characteristics in these areas. Our results have significant implications for hyporheic micro-habitats, fish spawning and other wildlife incubation, regional flow and hyporheic solute transport models in the Heihe River Basin, as well as in other similar hydrologic settings.

  13. Vegetation-zonation patterns across a temperate mountain cloud forest ecotone are not explained by variation in hydraulic functioning or water relations.

    PubMed

    Berry, Z Carter; Johnson, Daniel M; Reinhardt, Keith

    2015-09-01

    Many studies have demonstrated linkages between the occurrence of fog and ecophysiological functioning in cloud forests, but few have investigated hydraulic functioning as a determining factor that explains sharp changes in vegetation. The objective of this study was to compare the plant water status during cloud-immersed and non-immersed conditions and hydraulic vulnerability in branches and roots of species across a temperate, mountain fog ecotone. Because cloud forests are often dark, cool and very moist, we expected cloud forest species to have less drought-tolerant characteristics (i.e., lower Pe and P50-the pressures required to induce a 12 and 50% loss in hydraulic conductivity, respectively) relative to non-cloud forest species in adjacent (lower elevation) forests. Additionally, due to the ability of cloud forest species to absorb cloud-fog water, we predicted greater improvements in hydraulic functioning during fog in cloud forest species relative to non-cloud forest species. Across the cloud forest ecotone, most species measured were very resistant to losses in conductivity with branch P50 values from -4.5 to -6.0 MPa, hydraulic safety margins (Ψmin - P50) >1.5 MPa and low calculated hydraulic conductivity losses. Roots had greater vulnerabilities, with P50 values ranging from -1.4 to -2.5 MPa, leading to greater predicted losses in conductivity (∼20%). Calculated values suggested strong losses of midday leaf hydraulic conductance in three of the four species, supporting the hydraulic segmentation hypothesis. In both cloud forest and hardwood species, Ψs were greater on foggy days than sunny days, demonstrating the importance of fog periods to plant water balance across fog regimes. Thus, frequent fog did not result in systemic changes in hydraulic functioning or vulnerability to embolism across our temperate cloud forest ecotone. Finally, roots functioned with lower hydraulic conductivity than branches, suggesting that they may serve as more sensitive indicators of hydraulic functioning in these mesic, foggy ecosystems. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Interpretation of Flow Logs from Nevada Test Site Boreholes to Estimate Hydraulic Conductivity Using Numerical Simulations Constrained by Single-Well Aquifer Tests

    USGS Publications Warehouse

    Garcia, C. Amanda; Halford, Keith J.; Laczniak, Randell J.

    2010-01-01

    Hydraulic conductivities of volcanic and carbonate lithologic units at the Nevada Test Site were estimated from flow logs and aquifer-test data. Borehole flow and drawdown were integrated and interpreted using a radial, axisymmetric flow model, AnalyzeHOLE. This integrated approach is used because complex well completions and heterogeneous aquifers and confining units produce vertical flow in the annular space and aquifers adjacent to the wellbore. AnalyzeHOLE simulates vertical flow, in addition to horizontal flow, which accounts for converging flow toward screen ends and diverging flow toward transmissive intervals. Simulated aquifers and confining units uniformly are subdivided by depth into intervals in which the hydraulic conductivity is estimated with the Parameter ESTimation (PEST) software. Between 50 and 150 hydraulic-conductivity parameters were estimated by minimizing weighted differences between simulated and measured flow and drawdown. Transmissivity estimates from single-well or multiple-well aquifer tests were used to constrain estimates of hydraulic conductivity. The distribution of hydraulic conductivity within each lithology had a minimum variance because estimates were constrained with Tikhonov regularization. AnalyzeHOLE simulated hydraulic-conductivity estimates for lithologic units across screened and cased intervals are as much as 100 times less than those estimated using proportional flow-log analyses applied across screened intervals only. Smaller estimates of hydraulic conductivity for individual lithologic units are simulated because sections of the unit behind cased intervals of the wellbore are not assumed to be impermeable, and therefore, can contribute flow to the wellbore. Simulated hydraulic-conductivity estimates vary by more than three orders of magnitude across a lithologic unit, indicating a high degree of heterogeneity in volcanic and carbonate-rock units. The higher water transmitting potential of carbonate-rock units relative to volcanic-rock units is exemplified by the large difference in their estimated maximum hydraulic conductivity; 4,000 and 400 feet per day, respectively. Simulated minimum estimates of hydraulic conductivity are inexact and represent the lower detection limit of the method. Minimum thicknesses of lithologic intervals also were defined for comparing AnalyzeHOLE results to hydraulic properties in regional ground-water flow models.

  15. Divergent Hydraulic Safety Strategies in Three Co-occurring Anacardiaceae Tree Species in a Chinese Savanna.

    PubMed

    Zhang, Shu-Bin; Zhang, Jiao-Lin; Cao, Kun-Fang

    2016-01-01

    Vulnerability segmentation, the condition under which plant leaves are more vulnerable to drought-induced cavitation than stems, may act as a "safety valve" to protect stems from hydraulic failure. Evergreen, winter-deciduous, and drought-deciduous tree species co-occur in tropical savannas, but there have been no direct studies on the role of vulnerability segmentation and stomatal regulation in maintaining hydraulic safety in trees with these three leaf phenologies. To this end, we selected three Anacardiaceae tree species co-occurring in a Chinese savanna, evergreen Pistacia weinmanniifolia , drought-deciduous Terminthia paniculata , and winter-deciduous Lannea coromandelica , to study inter-species differentiation in leaf and stem hydraulic safety. We found that the two deciduous species had significantly higher sapwood-specific hydraulic conductivity and leaf-specific hydraulic conductance than the evergreen species. Moreover, two deciduous species were more vulnerable to stem cavitation than the evergreen species, although both drought-deciduous species and evergreen species had drought-resistance leaves. The evergreen species maintained a wide hydraulic safety margin (HSM) in stems and leaves; which was achieved by embolism resistance of both stems and leaves and isohydric stomatal control. Both deciduous species had limited HSMs in stems and leaves, being isohydric in the winter-deciduous species and anisohydric in drought-deciduous species. The difference in water potential at 50% loss of hydraulic conductivity between the leaves and the terminal stems (P50 leaf-stem ) was positive in P. weinmanniifolia and L. coromandelica , whereas, T. paniculata exhibited a lack of vulnerability segmentation. In addition, differences in hydraulic architecture were found to be closely related to other structural traits, i.e., leaf mass per area, wood density, and sapwood anatomy. Overall, the winter-deciduous species exhibits a drought-avoidance strategy that maintains the hydraulic safety of the more carbon-costly stems by sacrificing cheaper and more vulnerable leaves, while the evergreen species exhibits a hydraulic strategy of drought tolerance with strong stomatal regulation. In contrast, the drought-deciduous species lacks vulnerability segmentation and sheds leaves at the expense of top shoots during peak drought. This study demonstrates that even sympatric tree species that differ in leaf phenology can exhibit divergent adaptive hydraulic safety strategies.

  16. Towards improved estimation of the unsaturated soil hydraulic conductivity in the near saturated range by a fully automated, pressure controlled unit gradient experiment.

    NASA Astrophysics Data System (ADS)

    Werisch, Stefan; Müller, Marius

    2017-04-01

    Determination of soil hydraulic properties has always been an important part of soil physical research and model applications. While several experiments are available to measure the water retention of soil samples, the determination of the unsaturated hydraulic conductivity is often more complicated, bound to strong assumption and time consuming. Although, the application of unit gradient experiments is recommended since the middle of the last century, as one method towards a (assumption free) direct measurement of the unsaturated hydraulic conductivity, data from unit gradient experiments is seldom to never reported in literature. We developed and build a fully automated, pressure controlled, unit gradient experiment, which allows a precise determination of the unsaturated soil hydraulic conductivity K(h) and water retention VWC(h), especially in the highly dynamic near saturated range. The measurement apparatus applies the concept of hanging water columns and imposes the required soil water pressure by dual porous plates. This concepts allows the simultaneous and direct measurement of water retention and hydraulic conductivity. Moreover, this approach results in a technically less demanding experiment than related flux controlled experiments, and virtually any flux can be measured. Thus, both soil properties can be measured in mm resolution, for wetting and drying processes, between saturation and field capacity for all soil types. Our results show, that it is important to establish separate measurements of the unsaturated hydraulic conductivity in the near saturated range, as the shape of the retention function and hydraulic conductivity curve do not necessarily match. Consequently, the prediction of the hydraulic conductivity curve from measurements of the water retention behavior in combination with a value for the saturated hydraulic conductivity can be misleading. Thus, separate parameterizations of the individual functions might be necessary and are possible with this approach. Furthermore, the apparatus allows a convenient quantification of temperature effects on both hydraulic properties and first results demonstrate impressively the important role of temperature on hydraulic conductivity, which is notoriously underestimated.

  17. Environmental and management influences on temporal variability of near saturated soil hydraulic properties.

    PubMed

    Bodner, G; Scholl, P; Loiskandl, W; Kaul, H-P

    2013-08-01

    Structural porosity is a decisive property for soil productivity and soil environmental functions. Hydraulic properties in the structural range vary over time in response to management and environmental influences. Although this is widely recognized, there are few field studies that determine dominant driving forces underlying hydraulic property dynamics. During a three year field experiment we measured temporal variability of soil hydraulic properties by tension infiltrometry. Soil properties were characterized by hydraulic conductivity, effective macroporosity and Kosugi's lognormal pore size distribution model. Management related influences comprised three soil cover treatment (mustard and rye vs. fallow) and an initial mechanical soil disturbance with a rotary harrow. Environmental driving forces were derived from meteorological and soil moisture data. Soil hydraulic parameters varied over time by around one order of magnitude. The coefficient of variation of soil hydraulic conductivity K(h) decreased from 69.5% at saturation to 42.1% in the more unsaturated range (- 10 cm pressure head). A slight increase in the Kosugi parameter showing pore heterogeneity was observed under the rye cover crop, reflecting an enhanced structural porosity. The other hydraulic parameters were not significantly influenced by the soil cover treatments. Seedbed preparation with a rotary harrow resulted in a fourfold increase in macroporosity and hydraulic conductivity next to saturation, and homogenized the pore radius distribution. Re-consolidation after mechanical loosening lasted over 18 months until the soil returned to its initial state. The post-tillage trend of soil settlement could be approximated by an exponential decay function. Among environmental factors, wetting-drying cycles were identified as dominant driving force explaining short term hydraulic property changes within the season (r 2  = 0.43 to 0.59). Our results suggested that beside considering average management induced changes in soil properties (e.g. cover crop introduction), a dynamic approach to hydrological modeling is required to capture over-seasonal (tillage driven) and short term (environmental driven) variability in hydraulic parameters.

  18. Predicting Impact of Biochar Addition on Soil Hydraulic Properties

    NASA Astrophysics Data System (ADS)

    Nakhli, S. A. A.; Yudi, Y.; Imhoff, P. T.

    2017-12-01

    Biochar has been proposed as a soil amendment to improve soil hydraulic properties, including water retention and saturated and unsaturated hydraulic conductivity, for agricultural and environmental applications. However, its effect on hydraulic properties is difficult to predict and often with mixed results: in some cases biochar enhances soil hydraulic properties, while in other cases it degrades them. Despite several published observational studies, there are no models that can reliably predict biochar's impact on soil hydraulic properties. In this project we developed models to describe the effect of addition of a commercial wood biochar pyrolyzed at 550° on soil hydraulic properties in laboratory-scale experiments. The effects of biochar addition at 2% and 6% (w/w) on water retention and saturated and unsaturated hydraulic conductivity were evaluated for silt loam, sandy loam, and loamy sand. The addition of 6% (w/w) biochar increased the available water content of silt loam, sandy loam and loamy sand by 25, 20 and 70%, respectively. The impact of biochar addition on water retention was predicted reasonably well using information on the intra particle pore volume of biochar (mercury porosimetry, N2 and CO2 sorption) and the particle size distribution of the soil/biochar mixture. When amended with 6% biochar, saturated hydraulic conductivity increased 17% for loamy sand, but decreased 30% and 54% for silt loam and sandy loam, respectively. The Kozeny-Carman equation modified to account for changes in inter pore volume predicted saturated hydraulic conductivities of the biochar-amended soils reasonably well, with RMSE ranging from 0.06 to 5.06 cm h-1 for silt loam and loamy sand, respectively. While intra particle pore volume of biochar contributed significantly to higher water retention, changes in hydraulic conductivity were correlated instead with changes in inter pore volume - the large pores between biochar and soil particles.

  19. Characteristic Length Scales in Fracture Networks: Hydraulic Connectivity through Periodic Hydraulic Tests

    NASA Astrophysics Data System (ADS)

    Becker, M.; Bour, O.; Le Borgne, T.; Longuevergne, L.; Lavenant, N.; Cole, M. C.; Guiheneuf, N.

    2017-12-01

    Determining hydraulic and transport connectivity in fractured bedrock has long been an important objective in contaminant hydrogeology, petroleum engineering, and geothermal operations. A persistent obstacle to making this determination is that the characteristic length scale is nearly impossible to determine in sparsely fractured networks. Both flow and transport occur through an unknown structure of interconnected fracture and/or fracture zones making the actual length that water or solutes travel undetermined. This poses difficulties for flow and transport models. For, example, hydraulic equations require a separation distance between pumping and observation well to determine hydraulic parameters. When wells pairs are close, the structure of the network can influence the interpretation of well separation and the flow dimension of the tested system. This issue is explored using hydraulic tests conducted in a shallow fractured crystalline rock. Periodic (oscillatory) slug tests were performed at the Ploemeur fractured rock test site located in Brittany, France. Hydraulic connectivity was examined between three zones in one well and four zones in another, located 6 m apart in map view. The wells are sufficiently close, however, that the tangential distance between the tested zones ranges between 6 and 30 m. Using standard periodic formulations of radial flow, estimates of storativity scale inversely with the square of the separation distance and hydraulic diffusivity directly with the square of the separation distance. Uncertainty in the connection paths between the two wells leads to an order of magnitude uncertainty in estimates of storativity and hydraulic diffusivity, although estimates of transmissivity are unaffected. The assumed flow dimension results in alternative estimates of hydraulic parameters. In general, one is faced with the prospect of assuming the hydraulic parameter and inverting the separation distance, or vice versa. Similar uncertainties exist, for instance, when trying to invert transport parameters from tracer mean residence time. This field test illustrates that when dealing with fracture networks, there is a need for analytic methods of complexity that lie between simple radial solutions and discrete fracture network models.

  20. Environmental and management influences on temporal variability of near saturated soil hydraulic properties☆

    PubMed Central

    Bodner, G.; Scholl, P.; Loiskandl, W.; Kaul, H.-P.

    2013-01-01

    Structural porosity is a decisive property for soil productivity and soil environmental functions. Hydraulic properties in the structural range vary over time in response to management and environmental influences. Although this is widely recognized, there are few field studies that determine dominant driving forces underlying hydraulic property dynamics. During a three year field experiment we measured temporal variability of soil hydraulic properties by tension infiltrometry. Soil properties were characterized by hydraulic conductivity, effective macroporosity and Kosugi's lognormal pore size distribution model. Management related influences comprised three soil cover treatment (mustard and rye vs. fallow) and an initial mechanical soil disturbance with a rotary harrow. Environmental driving forces were derived from meteorological and soil moisture data. Soil hydraulic parameters varied over time by around one order of magnitude. The coefficient of variation of soil hydraulic conductivity K(h) decreased from 69.5% at saturation to 42.1% in the more unsaturated range (− 10 cm pressure head). A slight increase in the Kosugi parameter showing pore heterogeneity was observed under the rye cover crop, reflecting an enhanced structural porosity. The other hydraulic parameters were not significantly influenced by the soil cover treatments. Seedbed preparation with a rotary harrow resulted in a fourfold increase in macroporosity and hydraulic conductivity next to saturation, and homogenized the pore radius distribution. Re-consolidation after mechanical loosening lasted over 18 months until the soil returned to its initial state. The post-tillage trend of soil settlement could be approximated by an exponential decay function. Among environmental factors, wetting-drying cycles were identified as dominant driving force explaining short term hydraulic property changes within the season (r2 = 0.43 to 0.59). Our results suggested that beside considering average management induced changes in soil properties (e.g. cover crop introduction), a dynamic approach to hydrological modeling is required to capture over-seasonal (tillage driven) and short term (environmental driven) variability in hydraulic parameters. PMID:24748683

  1. Contrasting Hydraulic Architectures of Scots Pine and Sessile Oak at Their Southernmost Distribution Limits

    PubMed Central

    Martínez-Sancho, Elisabet; Dorado-Liñán, Isabel; Hacke, Uwe G.; Seidel, Hannes; Menzel, Annette

    2017-01-01

    Many temperate European tree species have their southernmost distribution limits in the Mediterranean Basin. The projected climatic conditions, particularly an increase in dryness, might induce an altitudinal and latitudinal retreat at their southernmost distribution limit. Therefore, characterizing the morphological and physiological variability of temperate tree species under dry conditions is essential to understand species’ responses to expected climate change. In this study, we compared branch-level hydraulic traits of four Scots pine and four sessile oak natural stands located at the western and central Mediterranean Basin to assess their adjustment to water limiting conditions. Hydraulic traits such as xylem- and leaf-specific maximum hydraulic conductivity (KS-MAX and KL-MAX), leaf-to-xylem area ratio (AL:AX) and functional xylem fraction (FX) were measured in July 2015 during a long and exceptionally dry summer. Additionally, xylem-specific native hydraulic conductivity (KS-N) and native percentage of loss of hydraulic conductivity (PLC) were measured for Scots pine. Interspecific differences in these hydraulic traits as well as intraspecific variability between sites were assessed. The influence of annual, summer and growing season site climatic aridity (P/PET) on intraspecific variability was investigated. Sessile oak displayed higher values of KS-MAX, KL-MAX, AL:AX but a smaller percentage of FX than Scots pines. Scots pine did not vary in any of the measured hydraulic traits across the sites, and PLC values were low for all sites, even during one of the warmest summers in the region. In contrast, sessile oak showed significant differences in KS-MAX, KL-MAX, and FX across sites, which were significantly related to site aridity. The striking similarity in the hydraulic traits across Scots pine sites suggests that no adjustment in hydraulic architecture was needed, likely as a consequence of a drought-avoidance strategy. In contrast, sessile oak displayed adjustments in the hydraulic architecture along an aridity gradient, pointing to a drought-tolerance strategy. PMID:28473841

  2. VIEW WEST, 1ST FLOOR, EAST ROOM, HYDRAULIC COTTON PRESS, DETAIL, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW WEST, 1ST FLOOR, EAST ROOM, HYDRAULIC COTTON PRESS, DETAIL, CONTINENTAL GIN COMPANY HYDRAULIC TANK - Magnolia Plantation, Cotton Gins & Presses, LA Route 119, Natchitoches, Natchitoches Parish, LA

  3. Hydraulic integration and shrub growth form linked across continental aridity gradients.

    Treesearch

    H. Jochen Schenk; Susana Espino; Christine M. Goedhart; Marisa Nordenstahl; Hugo I. Martinez Cabrera; Cynthia S. Jones

    2009-01-01

    Both engineered hydraulic systems and plant hydraulic systems are protected against failure by resistance, reparability, and redundancy. A basic rule of reliability engineering is that the level of...

  4. Role of hydraulic and chemical signals in leaves, stems and roots in the stomatal behaviour of olive trees under water stress and recovery conditions.

    PubMed

    Torres-Ruiz, Jose M; Diaz-Espejo, Antonio; Perez-Martin, Alfonso; Hernandez-Santana, Virginia

    2015-04-01

    The control of plant transpiration by stomata under water stress and recovery conditions is of paramount importance for plant performance and survival. Although both chemical and hydraulic signals emitted within a plant are considered to play a major role in controlling stomatal dynamics, they have rarely been assessed together. The aims of this study were to evaluate (i) the dynamics of chemical and hydraulic signals at leaf, stem and root level, and (ii) their effect on the regulation of stomatal conductance (gs) during water stress and recovery. Measurements of gs, water potential, abscisic acid (ABA) content and loss of hydraulic functioning at leaf, stem and root level were conducted during a water stress and recovery period imposed on 1-year-old olive plants (Olea europaea L.). Results showed a strong hydraulic segmentation in olive plants, with higher hydraulic functioning losses in roots and leaves than in stems. The dynamics of hydraulic conductance of roots and leaves observed as water stress developed could explain both a protection of the hydraulic functionality of larger organs of the plant (i.e., branches, etc.) and a role in the down-regulation of gs. On the other hand, ABA also increased, showing a similar pattern to gs dynamics, and thus its effect on gs in response to water stress cannot be ruled out. However, neither hydraulic nor non-hydraulic factors were able to explain the delay in the full recovery of gs after soil water availability was restored. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Optimal traits of plant hydraulic capacitance as an adaptation to hydroclimatic variability

    NASA Astrophysics Data System (ADS)

    Hartzell, S. R.; Bartlett, M. S., Jr.; Porporato, A. M.

    2016-12-01

    Hydraulic capacitance allows plants to uptake and store water when it is abundant. This stored water is utilized during periods of water stress, decreasing tissue damage and increasing carbon assimilation. By providing a more consistent and readily accessible water supply, it buffers water stress variability across daily and seasonal timescales. The rate of plant water storage and withdrawal varies widely between plant species and is principally governed by several plant hydraulic parameters, principally the hydraulic capacitance, the total water storage capacity, and the conductance between xylem and water storage tissue. The timescale of the plant response to changes in environmental conditions may be related to the timescale of relevant environmental variability. For example, the Baobab tree (Adansonia), which grows in an environment with very strong seasonal rainfall variability, has a relatively long timescale of hydraulic response, while an evergreen tree such as Pinus taeda, which mainly contends with daily and inter-rainfall moisture variability, has a much shorter timescale of hydraulic response. Here a model of hydraulic capacitance is coupled to a resistance model of soil-plant-atmosphere continuum. We force this model with stochastic rainfall and examine plant responses to moisture variability at various timescales. Optimal plant hydraulic properties are examined as a function of mean soil moisture (daily variability), mean period between rainfall events (inter-rainfall variability), and seasonal rainfall variability, and the relative importance of each type of variability in shaping plant water use strategies is assessed. Results are compared to typical hydraulic parameters of plants growing under specific environmental conditions. Values of hydraulic traits which optimize carbon assimilation and water use efficiency are found; these values are dependent on mean environmental conditions as well as the timescale of environmental variability.

  6. Acclimation of branch and leaf hydraulics in adult Fagus sylvatica and Picea abies in a forest through-fall exclusion experiment.

    PubMed

    Tomasella, Martina; Beikircher, Barbara; Häberle, Karl-Heinz; Hesse, Benjamin; Kallenbach, Christian; Matyssek, Rainer; Mayr, Stefan

    2018-02-01

    Decreasing water availability due to climate change poses the question of whether and to what extent tree species are able to hydraulically acclimate and how hydraulic traits of stems and leaves are coordinated under drought. In a through-fall exclusion experiment, hydraulic acclimation was analyzed in a mixed forest stand of Fagus sylvatica L. and Picea abies (L.) Karst. In drought-stressed (TE, through-fall exclusion over 2 years) and control (CO) trees, hydraulic vulnerability was studied in branches as well as in leaves (F. sylvatica) and end-twigs (P. abies, entirely formed during the drought period) sampled at the same height in sun-exposed portions of the tree crown. In addition, relevant xylem anatomical traits and leaf pressure-volume relations were analyzed. The TE trees reached pre-dawn water potentials down to -1.6 MPa. In both species, water potentials at 50% loss of xylem hydraulic conductivity were ~0.4 MPa more negative in TE than in CO branches. Foliage hydraulic vulnerability (expressed as water potential at 50% loss of leaf/end-twig hydraulic conductance) and water potential at turgor loss point were also, respectively, 0.4 and 0.5 MPa lower in TE trees. Minor differences were observed in conduit mean hydraulic diameter and cell wall reinforcement. Our findings indicate significant and fast hydraulic acclimation under relatively mild drought in both tree species. Acclimation was well coordinated between branches and foliage, which might be essential for survival and productivity of mature trees under future drought periods. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Free-piston regenerative hot gas hydraulic engine

    NASA Technical Reports Server (NTRS)

    Beremand, D. G. (Inventor)

    1980-01-01

    A displacer piston which is driven pneumatically by a high-pressure or low-pressure gas is included in a free-piston regenerative hydraulic engine. Actuation of the displacer piston circulates the working fluid through a heater, a regenerator and a cooler. The present invention includes an inertial mass such as a piston or a hydraulic fluid column to effectively store and supply energy during portions of the cycle. Power is transmitted from the working fluid to a hydraulic fluid across a diaphragm or lightweight piston to achieve a hydraulic power out-put. The displacer piston of the present invention may be driven pneumatically, hydraulically or electromagnetically. In addition, the displacer piston and the inertial mass of the present invention may be positioned on the same side of the diaphragm member or may be separated by the diaphragm member.

  8. Using electrical impedance tomography to map subsurface hydraulic conductivity

    DOEpatents

    Berryman, James G.; Daily, William D.; Ramirez, Abelardo L.; Roberts, Jeffery J.

    2000-01-01

    The use of Electrical Impedance Tomography (EIT) to map subsurface hydraulic conductivity. EIT can be used to map hydraulic conductivity in the subsurface where measurements of both amplitude and phase are made. Hydraulic conductivity depends on at least two parameters: porosity and a length scale parameter. Electrical Resistance Tomography (ERT) measures and maps electrical conductivity (which can be related to porosity) in three dimensions. By introducing phase measurements along with amplitude, the desired additional measurement of a pertinent length scale can be achieved. Hydraulic conductivity controls the ability to flush unwanted fluid contaminants from the surface. Thus inexpensive maps of hydraulic conductivity would improve planning strategies for subsequent remediation efforts. Fluid permeability is also of importance for oil field exploitation and thus detailed knowledge of fluid permeability distribution in three-dimension (3-D) would be a great boon to petroleum reservoir analysts.

  9. Evaluation of hydraulic conductivities calculated from multi-port permeameter measurements

    USGS Publications Warehouse

    Wolf, Steven H.; Celia, Michael A.; Hess, Kathryn M.

    1991-01-01

    A multiport permeameter was developed for use in estimating hydraulic conductivity over intact sections of aquifer core using the core liner as the permeameter body. Six cores obtained from one borehole through the upper 9 m of a stratified glacial-outwash aquifer were used to evaluate the reliability of the permeameter. Radiographs of the cores were used to assess core integrity and to locate 5- to 10-cm sections of similar grain size for estimation of hydraulic conductivity. After extensive testing of the permeameter, hydraulic conductivities were determined for 83 sections of the six cores. Other measurement techniques included permeameter measurements on repacked sections of core, estimates based on grain-size analyses, and estimates based on borehole flowmeter measurements. Permeameter measurements of 33 sections of core that had been extruded, homogenized, and repacked did not differ significantly from the original measurements. Hydraulic conductivities estimated from grain-size distributions were slightly higher than those calculated from permeameter measurements; the significance of the difference depended on the estimating equation used. Hydraulic conductivities calculated from field measurements, using a borehole flowmeter in the borehole from which the cores were extracted, were significantly higher than those calculated from laboratory measurements and more closely agreed with independent estimates of hydraulic conductivity based on tracer movement near the borehole. This indicates that hydraulic conductivities based on laboratory measurements of core samples may underestimate actual field hydraulic conductivities in this type of stratified glacial-outwash aquifer.

  10. [Acidity and temperature effect on the fluorescence characteristics of hydraulic oils and lubricants].

    PubMed

    Deng, Hu; Zhou, Xun; Shang, Li-ping; Zhang, Ze-lin; Wang, Shun-li

    2014-12-01

    By analyzing HyJet V phosphate ester hydraulic oil environmental impacts (oil, etc.) and confounding factors (pH, temperature, etc.), the feasibility was studied for the fluorescence detection of aircraft hydraulic oil leaks. By using the fluorescence spectrophotometer at various acidities and temperatures, the fluorescence properties of HyJet V phosphate ester hydraulic oil, Jet Oil II lubricant and 2197 lubricant were gained. The experimental results are shown as following: The fluorescence peaks of HyJet V phosphate ester hydraulic oil, Jet Oil II lubricant and 2197 lubricant are at 362, 405 and 456 nm, respectively. The impact of temperature on HyJet V phosphate ester hydraulic oil is less effective; Jet Oil II lubricant and 2197 lubricant fluorescence intensity decreases with increasing temperature. When acidity increases, the fluorescence peak of HyJet V phosphate ester hydraulic oil gradient shifts from 370 to 362 nm, and the fluorescence intensity decreases; the fluorescence peak of Jet Oil II lubricant is always 405 nm, while the fluorescence intensity decreases; the fluorescence peak of 2197 lubricant at 456 nm red shifts to 523 nm, and double fluorescence peaks appeare. The results are shown as following: under the influence of the environment and interference factors, the fluorescence characteristics of HyJet V phosphate ester hydraulic oil remain unchanged, and distinguish from Jet Oil II lubricant and 2197 lubricant. Therefore, the experiments indicate that the detection of HyJet V phosphate ester hydraulic oil leak is feasible by using fluorescence method.

  11. Dwarf shrub hydraulics: two Vaccinium species (Vaccinium myrtillus, Vaccinium vitis-idaea) of the European Alps compared.

    PubMed

    Ganthaler, Andrea; Mayr, Stefan

    2015-12-01

    Vaccinium myrtillus and Vaccinium vitis-idaea are two dwarf shrubs widespread in the European Alps. We studied the hydraulics of these species hypothesizing that (1) the hydraulic architecture of dwarf shrubs differs from trees, (2) hydraulic properties reflect the species' ecological amplitude and (3) hydraulic properties vary spatially and seasonally. Key hydraulic parameters (osmotic potential, turgor loss point, xylem hydraulic conductivity, vulnerability to drought-induced embolism, stomata closure, drought-induced cell damage and embolism repair) and related wood anatomical traits (conduit diameter and conduit wall reinforcement) were analyzed at four sites in Tyrol, Austria. Both species exhibited low hydraulic safety as well as low hydraulic efficiency. Fifty percentage embolism accumulated at -2.08 (V. myrtillus) and -1.97 MPa (V. vitis-idaea), 88% stomata closure was at -2.19 and -2.35 MPa, respectively. After drought, both species showed embolism repair on re-watering. Site-specific variation within species was low, while seasonal changes in embolism resistance and turgor loss point were observed. Results indicate that studied Vaccinium species have a high risk for embolism formation. This is balanced by refilling capacities, which are probably based on the small growth height of dwarf shrubs. V. vitis-idaea, which occurs on drier sites, showed more efficient repair and a lower turgor loss point than V. myrtillus. © 2015 The Authors. Physiologia Plantarum published by John Wiley & Sons Ltd on behalf of Scandinavian Plant Physiology Society.

  12. HYDRAULIC SERVO

    DOEpatents

    Wiegand, D.E.

    1962-05-01

    A hydraulic servo is designed in which a small pressure difference produced at two orifices by an electrically operated flapper arm in a constantly flowing hydraulic loop is hydraulically amplified by two constant flow pumps, two additional orifices, and three unconnected ball pistons. Two of the pistons are of one size and operate against the additional orifices, and the third piston is of a different size and operates between and against the first two pistons. (AEC)

  13. Scale and Time Effects in Hydraulic Fracturing.

    DTIC Science & Technology

    1984-07-01

    An experimental study was conducted to determine the effects of scale and time on hydraulic fracturing in compacted samples of Teton Dam silt and...occurrence of hydraulic fracturing . Finite element analyses were used to investigate the possible effects of nonlinear soil behavior. Both experimental and...theoretical studies show that hydraulic fracturing can be initiated by seepage-induced forces without the presence of a preexisting flaw in the soil. (Author)

  14. Hydraulic Excavation System. Phase 2

    DTIC Science & Technology

    1988-09-01

    excavation techniques. Hydraulic fracturing has been particulary attractive in past work. The tensile strength of most rock is less than 20 MPa, which...Fairhurst, C. (1970) "In-situ Stress Determination at Great Depth by Means of Hydraulic Fracturing ," Proceedings of the 11th Symposium on Rock...Technique for Controlled Small-scale Hydraulic Fracturing ," First International Symposium on Rock Fragmentation bY Blasting, Vol. 3, A. Rustan and R

  15. Hydraulic resistance of a plant root to water-uptake: A slender-body theory.

    PubMed

    Chen, Kang Ping

    2016-05-07

    A slender-body theory for calculating the hydraulic resistance of a single plant root is developed. The work provides an in-depth discussion on the procedure and the assumptions involved in calculating a root׳s internal hydraulic resistance as well as the physical and the mathematical aspects of the external three-dimensional flow around the tip of a root in a saturated soil and how this flow pattern enhances uptake and reduces hydraulic resistance. Analytical solutions for the flux density distribution on the stele-cortex interface, local water-uptake profile inside the stele core, the overall water-uptake at the base of the stele, and the total hydraulic resistance of a root are obtained in the slender-body limit. It is shown that a key parameter controlling a root's hydraulic resistance is the dimensionless axial conductivity in the stele, which depends on the permeabilities of the stele and the cortex as well as the root's radial and axial dimensions. Three-dimensional tip effect reduces a root's hydraulic resistance by as much as 36% when compared to the radial flow theory of Landsberg and Fowkes. In addition, the total hydraulic resistance cannot be generally decomposed into the direct sum of a radial resistance and an axial resistance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Hydraulic forces contribute to left ventricular diastolic filling

    PubMed Central

    Maksuti, Elira; Carlsson, Marcus; Arheden, Håkan; Kovács, Sándor J.; Broomé, Michael; Ugander, Martin

    2017-01-01

    Myocardial active relaxation and restoring forces are known determinants of left ventricular (LV) diastolic function. We hypothesize the existence of an additional mechanism involved in LV filling, namely, a hydraulic force contributing to the longitudinal motion of the atrioventricular (AV) plane. A prerequisite for the presence of a net hydraulic force during diastole is that the atrial short-axis area (ASA) is smaller than the ventricular short-axis area (VSA). We aimed (a) to illustrate this mechanism in an analogous physical model, (b) to measure the ASA and VSA throughout the cardiac cycle in healthy volunteers using cardiovascular magnetic resonance imaging, and (c) to calculate the magnitude of the hydraulic force. The physical model illustrated that the anatomical difference between ASA and VSA provides the basis for generating a hydraulic force during diastole. In volunteers, VSA was greater than ASA during 75–100% of diastole. The hydraulic force was estimated to be 10–60% of the peak driving force of LV filling (1–3 N vs 5–10 N). Hydraulic forces are a consequence of left heart anatomy and aid LV diastolic filling. These findings suggest that the relationship between ASA and VSA, and the associated hydraulic force, should be considered when characterizing diastolic function and dysfunction. PMID:28256604

  17. An investigation of hydraulic conductivity estimation in a ground-water flow study of Northern Long Valley, New Jersey

    USGS Publications Warehouse

    Hill, Mary C.

    1985-01-01

    The purpose of this study was to develop a methodology to be used to investigate the aquifer characteristics and water supply potential of an aquifer system. In particular, the geohydrology of northern Long Valley, New Jersey, was investigated. Geohydrologic data were collected and analyzed to characterize the site. Analysis was accomplished by interpreting the available data and by using a numerical simulation of the watertable aquifer. Special attention was given to the estimation of hydraulic conductivity values and hydraulic conductivity structure which together define the hydraulic conductivity of the modeled aquifer. Hydraulic conductivity and all other aspects of the system were first estimated using the trial-and-error method of calibration. The estimation of hydraulic conductivity was improved using a least squares method to estimate hydraulic conductivity values and by improvements in the parameter structure. These efforts improved the calibration of the model far more than a preceding period of similar effort using the trial-and-error method of calibration. In addition, the proposed method provides statistical information on the reliability of estimated hydraulic conductivity values, calculated heads, and calculated flows. The methodology developed and applied in this work proved to be of substantial value in the evaluation of the aquifer considered.

  18. Rock Content Influence on Soil Hydraulic Properties

    NASA Astrophysics Data System (ADS)

    Parajuli, K.; Sadeghi, M.; Jones, S. B.

    2015-12-01

    Soil hydraulic properties including the soil water retention curve (SWRC) and hydraulic conductivity function are important characteristics of soil affecting a variety of soil properties and processes. The hydraulic properties are commonly measured for seived soils (i.e. particles < 2 mm), but many natural soils include rock fragments of varying size that alter bulk hydraulic properties. Relatively few studies have addressed this important problem using physically-based concepts. Motivated by this knowledge gap, we set out to describe soil hydraulic properties using binary mixtures (i.e. rock fragment inclusions in a soil matrix) based on individual properties of the rock and soil. As a first step of this study, special attention was devoted to the SWRC, where the impact of rock content on the SWRC was quantified using laboratory experiments for six different mixing ratios of soil matrix and rock. The SWRC for each mixture was obtained from water mass and water potential measurements. The resulting data for the studied mixtures yielded a family of SWRC indicating how the SWRC of the mixture is related to that of the individual media, i.e., soil and rock. A consistent model was also developed to describe the hydraulic properties of the mixture as a function of the individual properties of the rock and soil matrix. Key words: Soil hydraulic properties, rock content, binary mixture, experimental data.

  19. Estimating hydraulic properties from tidal attenuation in the Northern Guam Lens Aquifer, territory of Guam, USA

    USGS Publications Warehouse

    Rotzoll, Kolja; Gingerich, Stephen B.; Jenson, John W.; El-Kadi, Aly I.

    2013-01-01

    Tidal-signal attenuations are analyzed to compute hydraulic diffusivities and estimate regional hydraulic conductivities of the Northern Guam Lens Aquifer, Territory of Guam (Pacific Ocean), USA. The results indicate a significant tidal-damping effect at the coastal boundary. Hydraulic diffusivities computed using a simple analytical solution for well responses to tidal forcings near the periphery of the island are two orders of magnitude lower than for wells in the island’s interior. Based on assigned specific yields of ~0.01–0.4, estimated hydraulic conductivities are ~20–800 m/day for peripheral wells, and ~2,000–90,000 m/day for interior wells. The lower conductivity of the peripheral rocks relative to the interior rocks may best be explained by the effects of karst evolution: (1) dissolutional enhancement of horizontal hydraulic conductivity in the interior; (2) case-hardening and concurrent reduction of local hydraulic conductivity in the cliffs and steeply inclined rocks of the periphery; and (3) the stronger influence of higher-conductivity regional-scale features in the interior relative to the periphery. A simple numerical model calibrated with measured water levels and tidal response estimates values for hydraulic conductivity and storage parameters consistent with the analytical solution. The study demonstrates how simple techniques can be useful for characterizing regional aquifer properties.

  20. A quantitative analysis of hydraulic interaction processes in stream-aquifer systems

    DOE PAGES

    Wang, Wenke; Dai, Zhenxue; Zhao, Yaqian; ...

    2016-01-28

    The hydraulic relationship between the stream and aquifer can be altered from hydraulic connection to disconnection when the pumping rate exceeds the maximum seepage flux of the streambed. This study proposes to quantitatively analyze the physical processes of stream-aquifer systems from connection to disconnection. A free water table equation is adopted to clarify under what conditions a stream starts to separate hydraulically from an aquifer. Both the theoretical analysis and laboratory tests have demonstrated that the hydraulic connectedness of the stream-aquifer system can reach a critical disconnection state when the horizontal hydraulic gradient at the free water surface is equalmore » to zero and the vertical is equal to 1. A boundary-value problem for movement of the critical point of disconnection is established for an analytical solution of the inverted water table movement beneath the stream. The result indicates that the maximum distance or thickness of the inverted water table is equal to the water depth in the stream, and at a steady state of disconnection, the maximum hydraulic gradient at the streambed center is 2. In conclusion, this study helps us to understand the hydraulic phenomena of water flow near streams and accurately assess surface water and groundwater resources.« less

  1. Hydraulic head applications of flow logs in the study of heterogeneous aquifers

    USGS Publications Warehouse

    Paillet, Frederick L.

    2001-01-01

    Permeability profiles derived from high-resolution flow logs in heterogeneous aquifers provide a limited sample of the most permeable beds or fractures determining the hydraulic properties of those aquifers. This paper demonstrates that flow logs can also be used to infer the large-scale properties of aquifers surrounding boreholes. The analysis is based on the interpretation of the hydraulic head values estimated from the flow log analysis. Pairs of quasi-steady flow profiles obtained under ambient conditions and while either pumping or injecting are used to estimate the hydraulic head in each water-producing zone. Although the analysis yields localized estimates of transmissivity for a few water-producing zones, the hydraulic head estimates apply to the farfield aquifers to which these zones are connected. The hydraulic head data are combined with information from other sources to identify the large-scale structure of heterogeneous aquifers. More complicated cross-borehole flow experiments are used to characterize the pattern of connection between large-scale aquifer units inferred from the hydraulic head estimates. The interpretation of hydraulic heads in situ under steady and transient conditions is illustrated by several case studies, including an example with heterogeneous permeable beds in an unconsolidated aquifer, and four examples with heterogeneous distributions of bedding planes and/or fractures in bedrock aquifers.

  2. Fluid power network for centralized electricity generation in offshore wind farms

    NASA Astrophysics Data System (ADS)

    Jarquin-Laguna, A.

    2014-06-01

    An innovative and completely different wind-energy conversion system is studied where a centralized electricity generation within a wind farm is proposed by means of a hydraulic network. This paper presents the dynamic interaction of two turbines when they are coupled to the same hydraulic network. Due to the stochastic nature of the wind and wake interaction effects between turbines, the operating parameters (i.e. pitch angle, rotor speed) of each turbine are different. Time domain simulations, including the main turbine dynamics and laminar transient flow in pipelines, are used to evaluate the efficiency and rotor speed stability of the hydraulic system. It is shown that a passive control of the rotor speed, as proposed in previous work for a single hydraulic turbine, has strong limitations in terms of performance for more than one turbine coupled to the same hydraulic network. It is concluded that in order to connect several turbines, a passive control strategy of the rotor speed is not sufficient and a hydraulic network with constant pressure is suggested. However, a constant pressure network requires the addition of active control at the hydraulic motors and spear valves, increasing the complexity of the initial concept. Further work needs to be done to incorporate an active control strategy and evaluate the feasibility of the constant pressure hydraulic network.

  3. Integration of Flex Nozzle System and Electro Hydraulic Actuators to Solid Rocket Motors

    NASA Astrophysics Data System (ADS)

    Nayani, Kishore Nath; Bajaj, Dinesh Kumar

    2017-10-01

    A rocket motor assembly comprised of solid rocket motor and flex nozzle system. Integration of flex nozzle system and hydraulic actuators to the solid rocket motors are done after transportation to the required place where integration occurred. The flex nozzle system is integrated to the rocket motor in horizontal condition and the electro hydraulic actuators are assembled to the flex nozzle systems. The electro hydraulic actuators are connected to the hydraulic power pack to operate the actuators. The nozzle-motor critical interface are insulation diametrical compression, inhibition resin-28, insulation facial compression, shaft seal `O' ring compression and face seal `O' ring compression.

  4. Chronic toxicity of Pydraul 50E to lake trout

    USGS Publications Warehouse

    Mayer, Foster L.; Woodward, Daniel F.; Adams, William J.

    1993-01-01

    Industrial phosphate esters, both triaryl and alkyl aryl phosphate esters, are used as fire resistant hydraulic fluids and as fire retardant plasticizers (Lapp 1976). Hydraulic fluids probably represent the largest contribution of phosphate ester compounds released into the environment. Lapp (1976) estimated that 65 to 70 percent of all phosphate ester hydraulic fluids were utilized in automotive and steel industries. He also estimated that 80 percent of the annual consumption of hydraulic fluids in 1976 was the result of leaks in industrial hydraulic systems. These data suggest phosphate esters are likely to be constituents of industrial effluents and, consequently, could be in point source discharges.

  5. A hydraulic tomography approach coupling travel time inversion with steady shape analysis based on aquifer analogue study in coarsely clastic fluvial glacial deposit

    NASA Astrophysics Data System (ADS)

    Hu, R.; Brauchler, R.; Herold, M.; Bayer, P.; Sauter, M.

    2009-04-01

    Rarely is it possible to draw a significant conclusion about the geometry and the properties of geological structures of the underground using the information which is typically obtained from boreholes, since soil exploration is only representative of the position where the soil sample is taken from. Conventional aquifer investigation methods like pumping tests can provide hydraulic properties of a larger area; however, they lead to integral information. This information is insufficient to develop groundwater models, especially contaminant transport models, which require information about the spatial distribution of the hydraulic properties of the subsurface. Hydraulic tomography is an innovative method which has the potential to spatially resolve three dimensional structures of natural aquifer bodies. The method employs hydraulic short term tests performed between two or more wells, whereby the pumped intervals (sources) and the observation points (receivers) are separated by double packer systems. In order to optimize the computationally intensive tomographic inversion of transient hydraulic data we have decided to couple two inversion approaches (a) hydraulic travel time inversion and (b) steady shape inversion. (a) Hydraulic travel time inversion is based on the solution of the travel time integral, which describes the relationship between travel time of maximum signal variation of a transient hydraulic signal and the diffusivity between source and receiver. The travel time inversion is computationally extremely effective and robust, however, it is limited to the determination of diffusivity. In order to overcome this shortcoming we use the estimated diffusivity distribution as starting model for the steady shape inversion with the goal to separate the estimated diffusivity distribution into its components, hydraulic conductivity and specific storage. (b) The steady shape inversion utilizes the fact that at steady shape conditions, drawdown varies with time but the hydraulic gradient does not. By this trick, transient data can be analyzed with the computational efficiency of a steady state model, which proceeds hundreds of times faster than transient models. Finally, a specific storage distribution can be calculated from the diffusivity and hydraulic conductivity reconstructions derived from travel time and steady shape inversion. The groundwork of this study is the aquifer-analogue study from BAYER (1999), in which six parallel profiles of a natural sedimentary body with a size of 16m x 10m x 7m were mapped in high resolution with respect to structural and hydraulic parameters. Based on these results and using geostatistical interpolation methods, MAJI (2005) designed a three dimensional hydraulic model with a resolution of 5cm x 5cm x 5cm. This hydraulic model was used to simulate a large number of short term pumping tests in a tomographical array. The high resolution parameter reconstructions gained from the inversion of simulated pumping test data demonstrate that the proposed inversion scheme allows reconstructing the individual architectural elements and their hydraulic properties with a higher resolution compared to conventional hydraulic and geological investigation methods. Bayer P (1999) Aquifer-Analog-Studium in grobklastischen braided river Ablagerungen: Sedimentäre/hydrogeologische Wandkartierung und Kalibrierung von Georadarmessungen, Diplomkartierung am Lehrstuhl für Angewandte Geologie, Universität Tübingen, 25 pp. Maji, R. (2005) Conditional Stochastic Modelling of DNAPL Migration and Dissolution in a High-resolution Aquifer Analog, Ph.D. thesis at the University of Waterloo, 187 pp.

  6. Removing freon gas from hydraulic fluid

    NASA Technical Reports Server (NTRS)

    Williams, B. B.; Mitchell, S. M.; State, T. S.

    1981-01-01

    Dissolved freon gas is removed from hydraulic fluid by raising temperature to 150 F and bubbling dry nitrogen gas through it, even while fluid circulates through hydraulic system. Procedure reduces parts corrosion, sludge formation, and contamination.

  7. ENVIRONMENTAL HYDRAULICS

    EPA Science Inventory

    The thermal, chemical, and biological quality of water in rivers, lakes, reservoirs, and near coastal areas is inseparable from a consideration of hydraulic engineering principles: therefore, the term environmental hydraulics. In this chapter we discuss the basic principles of w...

  8. A hydraulically driven colonoscope.

    PubMed

    Coleman, Stuart A; Tapia-Siles, Silvia C; Pakleppa, Markus; Vorstius, Jan B; Keatch, Robert P; Tang, Benjie; Cuschieri, Alfred

    2016-10-01

    Conventional colonoscopy requires a high degree of operator skill and is often painful for the patient. We present a preliminary feasibility study of an alternative approach where a self-propelled colonoscope is hydraulically driven through the colon. A hydraulic colonoscope which could be controlled manually or automatically was developed and assessed in a test bed modelled on the anatomy of the human colon. A conventional colonoscope was used by an experienced colonoscopist in the same test bed for comparison. Pressures and forces on the colon were measured during the test. The hydraulic colonoscope was able to successfully advance through the test bed in a comparable time to the conventional colonoscope. The hydraulic colonoscope reduces measured loads on artificial mesenteries, but increases intraluminal pressure compared to the colonoscope. Both manual and automatically controlled modes were able to successfully advance the hydraulic colonoscope through the colon. However, the automatic controller mode required lower pressures than manual control, but took longer to reach the caecum. The hydraulic colonoscope appears to be a viable device for further development as forces and pressures observed during use are comparable to those used in current clinical practice.

  9. Hydraulic fracturing: paving the way for a sustainable future?

    PubMed

    Chen, Jiangang; Al-Wadei, Mohammed H; Kennedy, Rebekah C M; Terry, Paul D

    2014-01-01

    With the introduction of hydraulic fracturing technology, the United States has become the largest natural gas producer in the world with a substantial portion of the production coming from shale plays. In this review, we examined current hydraulic fracturing literature including associated wastewater management on quantity and quality of groundwater. We conclude that proper documentation/reporting systems for wastewater discharge and spills need to be enforced at the federal, state, and industrial level. Furthermore, Underground Injection Control (UIC) requirements under SDWA should be extended to hydraulic fracturing operations regardless if diesel fuel is used as a fracturing fluid or not. One of the biggest barriers that hinder the advancement of our knowledge on the hydraulic fracturing process is the lack of transparency of chemicals used in the practice. Federal laws mandating hydraulic companies to disclose fracturing fluid composition and concentration not only to federal and state regulatory agencies but also to health care professionals would encourage this practice. The full disclosure of fracturing chemicals will allow future research to fill knowledge gaps for a better understanding of the impacts of hydraulic fracturing on human health and the environment.

  10. 3D Simulation of Multiple Simultaneous Hydraulic Fractures with Different Initial Lengths in Rock

    NASA Astrophysics Data System (ADS)

    Tang, X.; Rayudu, N. M.; Singh, G.

    2017-12-01

    Hydraulic fracturing is widely used technique for extracting shale gas. During this process, fractures with various initial lengths are induced in rock mass with hydraulic pressure. Understanding the mechanism of propagation and interaction between these induced hydraulic cracks is critical for optimizing the fracking process. In this work, numerical results are presented for investigating the effect of in-situ parameters and fluid properties on growth and interaction of multi simultaneous hydraulic fractures. A fully coupled 3D fracture simulator, TOUGH- GFEM is used for simulating the effect of different vital parameters, including in-situ stress, initial fracture length, fracture spacing, fluid viscosity and flow rate on induced hydraulic fractures growth. This TOUGH-GFEM simulator is based on 3D finite volume method (FVM) and partition of unity element method (PUM). Displacement correlation method (DCM) is used for calculating multi - mode (Mode I, II, III) stress intensity factors. Maximum principal stress criteria is used for crack propagation. Key words: hydraulic fracturing, TOUGH, partition of unity element method , displacement correlation method, 3D fracturing simulator

  11. Hydraulic Fracturing: Paving the Way for a Sustainable Future?

    PubMed Central

    Chen, Jiangang; Al-Wadei, Mohammed H.; Kennedy, Rebekah C. M.; Terry, Paul D.

    2014-01-01

    With the introduction of hydraulic fracturing technology, the United States has become the largest natural gas producer in the world with a substantial portion of the production coming from shale plays. In this review, we examined current hydraulic fracturing literature including associated wastewater management on quantity and quality of groundwater. We conclude that proper documentation/reporting systems for wastewater discharge and spills need to be enforced at the federal, state, and industrial level. Furthermore, Underground Injection Control (UIC) requirements under SDWA should be extended to hydraulic fracturing operations regardless if diesel fuel is used as a fracturing fluid or not. One of the biggest barriers that hinder the advancement of our knowledge on the hydraulic fracturing process is the lack of transparency of chemicals used in the practice. Federal laws mandating hydraulic companies to disclose fracturing fluid composition and concentration not only to federal and state regulatory agencies but also to health care professionals would encourage this practice. The full disclosure of fracturing chemicals will allow future research to fill knowledge gaps for a better understanding of the impacts of hydraulic fracturing on human health and the environment. PMID:24790614

  12. Quantifying the Effects of Biofilm on the Hydraulic Properties of Unsaturated Soils

    NASA Astrophysics Data System (ADS)

    Volk, E.; Iden, S.; Furman, A.; Durner, W.; Rosenzweig, R.

    2017-12-01

    Quantifying the effects of biofilms on hydraulic properties of unsaturated soils is necessary for predicting water and solute flow in soil with extensive microbial presence. This can be relevant to bioremediation processes, soil aquifer treatment and effluent irrigation. Previous works showed a reduction in the hydraulic conductivity and an increase in water content due to the addition of biofilm analogue materials. The objective of this research is to quantify soil hydraulic properties of unsaturated soil (water retention and hydraulic conductivity) using real soil biofilm. In this work, Hamra soil was incubated with Luria Broth (LB) and biofilm-producing bacteria (Pseudomonas Putida F1). Hydraulic conductivity and water retention were measured by the evaporation method, Dewpoint method and a constant head permeameter. Biofilm was quantified using viable counts and the deficit of TOC. The results show that the presence of biofilms increases soil retention in the `dry' range of the curve and reduces the hydraulic conductivity (see figure). This research shows that biofilms may have a non-negligible effect on flow and transport in unsaturated soils. These findings contribute to modeling water flow in biofilm amended soil.

  13. Attached biofilms and suspended aggregates are distinct microbial lifestyles emanating from differing hydraulics.

    PubMed

    Niederdorfer, Robert; Peter, Hannes; Battin, Tom J

    2016-10-03

    Small-scale hydraulics affects microbial behaviour at the cell level 1 , trophic interactions in marine aggregates 2 and the physical structure and function of stream biofilms 3,4 . However, it remains unclear how hydraulics, predictably changing from small streams to large rivers, impacts the structure and biodiversity of complex microbial communities in these ecosystems. Here, we present experimental evidence unveiling hydraulics as a hitherto poorly recognized control of microbial lifestyle differentiation in fluvial ecosystems. Exposing planktonic source communities from stream and floodplain ecosystems to different hydraulic environments revealed strong selective hydraulic pressures but only minor founder effects on the differentiation of attached biofilms and suspended aggregates and their biodiversity dynamics. Key taxa with a coherent phylogenetic underpinning drove this differentiation. Only a few resident and phylogenetically related taxa formed the backbone of biofilm communities, whereas numerous resident taxa characterized aggregate communities. Our findings unveil fundamental differences between biofilms and aggregates and build the basis for a mechanistic understanding of how hydraulics drives the distribution of microbial diversity along the fluvial continuum 5-7 .

  14. Rapid hydraulic recovery in Eucalyptus pauciflora after drought: linkages between stem hydraulics and leaf gas exchange.

    PubMed

    Martorell, Sebastià; Diaz-Espejo, Antonio; Medrano, Hipólito; Ball, Marilyn C; Choat, Brendan

    2014-03-01

    In woody plants, photosynthetic capacity is closely linked to rates at which the plant hydraulic system can supply water to the leaf surface. Drought-induced embolism can cause sharp declines in xylem hydraulic conductivity that coincide with stomatal closure and reduced photosynthesis. Recovery of photosynthetic capacity after drought is dependent on restored xylem function, although few data exist to elucidate this coordination. We examined the dynamics of leaf gas exchange and xylem function in Eucalyptus pauciflora seedlings exposed to a cycle of severe water stress and recovery after re-watering. Stomatal closure and leaf turgor loss occurred at water potentials that delayed the extensive spread of embolism through the stem xylem. Stem hydraulic conductance recovered to control levels within 6 h after re-watering despite a severe drought treatment, suggesting an active mechanism embolism repair. However, stomatal conductance did not recover after 10 d of re-watering, effecting tighter control of transpiration post drought. The dynamics of recovery suggest that a combination of hydraulic and non-hydraulic factors influenced stomatal behaviour post drought. © 2013 John Wiley & Sons Ltd.

  15. Analysis of INDOT current hydraulic policies.

    DOT National Transportation Integrated Search

    2011-01-01

    Hydraulic design often tends to be on a conservative side for safety reasons. Hydraulic structures are : typically oversized with the goal being reduced future maintenance costs, and to reduce the risk of : property owner complaints. This approach le...

  16. Analysis of INDOT current hydraulic policies : [spreadsheet].

    DOT National Transportation Integrated Search

    2011-01-01

    Hydraulic design often tends to be on a conservative side for safety reasons. Hydraulic structures are typically oversized with the goal being reduced future maintenance costs, and to reduce the risk of property owner complaints. This approach leads ...

  17. Method and tool for contracting tubular members by electro-hydraulic forming before hydroforming

    DOEpatents

    Golovashchenko, Sergey Fedorovich [Beverly Hills, MI

    2011-03-15

    A tubular preform is contracted in an electro-hydraulic forming operation. The tubular preform is wrapped with one or more coils of wire and placed in a chamber of an electro-hydraulic forming tool. The electro-hydraulic forming tool is discharged to form a compressed area on a portion of the tube. The tube is then placed in a hydroforming tool that expands the tubular preform to form a part.

  18. Fault Detection and Isolation for Hydraulic Control

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Pressure sensors and isolation valves act to shut down defective servochannel. Redundant hydraulic system indirectly senses failure in any of its electrical control channels and mechanically isolates hydraulic channel controlled by faulty electrical channel so flat it cannot participate in operating system. With failure-detection and isolation technique, system can sustains two failed channels and still functions at full performance levels. Scheme useful on aircraft or other systems with hydraulic servovalves where failure cannot be tolerated.

  19. HYDRAULIC FRACTURING IN PORUS AND NONPORUS ROCK AND ITS POTENTIAL FOR DETERMINING IN-SITU STRESSES AT GREAT DEPTH.

    DTIC Science & Technology

    The process of Hydraulic Fracturing as a method of determining in-situ stresses in brittle elastic formations at great depth is analyzed both...theoretically and experimentally. Theoretically, it is found that in attempting to relate the recorded hydraulic fracturing pressures to tectonic stresses...at great depth. The experimental results show that hydraulic fracturing occurred when the internal pressure achieved a critical value that could

  20. Determination of In-Situ Stresses Around Underground Excavations by Means of Hydraulic Fracturing

    DTIC Science & Technology

    inhomogeneous, precracked variable rock is suitable for hydraulic fracturing as a method of in-situ stress measurement. It was found that basically the Coeur...d’Alene quartzite is amenable to hydraulic fracturing testing. The rock has no consistent anisotropy, but is inhomogeneous with physical property...horizontal stress notwithstanding rock condition. Field stress measurements in the Coeur d’Alene mines using the hydraulic fracturing technique are recommended.

  1. The design and use of a hydraulic potentiomanometer for direct measurement of differences in hydraulic head between groundwater and surface water

    USGS Publications Warehouse

    Winter, T.C.; LaBaugh, J.W.; Rosenberry, P.O.

    1988-01-01

    The hydraulic potentiomanometer described herein consists of a potentiometer connected to a manometer by a flexible tube. The device is used to directly measure the direction of seepage as well as the hydraulic-head difference between groundwater and surface water. The device works most effectively in sandy materials. For accurate measurements the device must be free of air leaks. -Authors

  2. The design and use of a hydraulic potentiomanometer for direct measurement of differences in hydraulic head between groundwater and surface water

    USGS Publications Warehouse

    Winter, Thomas C.; LaBaugh, James W.; Rosenberry, Donald O.

    1988-01-01

    The hydraulic potentiomanometer described herein consists of a potentiometer connected to a manometer by a flexible tube. The device is used to directly measure the direction of seepage as well as the hydraulic-head difference between groundwater and surface water. The device works most effectively in sandy materials. For accurate measurements the device must be free of air leaks.

  3. Evaluating the Longevity and Hydraulic Performance of Permeable Reactive Barriers at Department of Defense Sites

    DTIC Science & Technology

    2002-04-24

    F inal Repor t Evaluating the Longevity and Hydraulic Performance of Permeable Reactive Barriers at Department of Defense Sites P1·epared for... Hydraulic Performance of Permeable Reactive Barriers at Department of Defense Sites Prepared for Project Officer: Charles Reeter Naval Facilities...SUBTITLE 5a. CONTRACT NUMBER Evaluating the Longevity and Hydraulic Performance of Permeable Reactive N4 7408-95-D-0730/0087 Barriers at Department of

  4. A Method to Estimate the Hydraulic Conductivity of the Ground by TRT Analysis.

    PubMed

    Liuzzo Scorpo, Alberto; Nordell, Bo; Gehlin, Signhild

    2017-01-01

    The knowledge of hydraulic properties of aquifers is important in many engineering applications. Careful design of ground-coupled heat exchangers requires that the hydraulic characteristics and thermal properties of the aquifer must be well understood. Knowledge of groundwater flow rate and aquifer thermal properties is the basis for proper design of such plants. Different methods have been developed in order to estimate hydraulic conductivity by evaluating the transport of various tracers (chemical, heat etc.); thermal response testing (TRT) is a specific type of heat tracer that allows including the hydraulic properties in an effective thermal conductivity value. Starting from these considerations, an expeditious, graphical method was proposed to estimate the hydraulic conductivity of the aquifer, using TRT data and plausible assumption. Suggested method, which is not yet verified or proven to be reliable, should be encouraging further studies and development in this direction. © 2016, National Ground Water Association.

  5. Stability analysis for a delay differential equations model of a hydraulic turbine speed governor

    NASA Astrophysics Data System (ADS)

    Halanay, Andrei; Safta, Carmen A.; Dragoi, Constantin; Piraianu, Vlad F.

    2017-01-01

    The paper aims to study the dynamic behavior of a speed governor for a hydraulic turbine using a mathematical model. The nonlinear mathematical model proposed consists in a system of delay differential equations (DDE) to be compared with already established mathematical models of ordinary differential equations (ODE). A new kind of nonlinearity is introduced as a time delay. The delays can characterize different running conditions of the speed governor. For example, it is considered that spool displacement of hydraulic amplifier might be blocked due to oil impurities in the oil supply system and so the hydraulic amplifier has a time delay in comparison to the time control. Numerical simulations are presented in a comparative manner. A stability analysis of the hydraulic control system is performed, too. Conclusions of the dynamic behavior using the DDE model of a hydraulic turbine speed governor are useful in modeling and controlling hydropower plants.

  6. The Technique for CFD-Simulation of Fuel Valve from Pneumatic-Hydraulic System of Liquid-Propellant Rocket Engine

    NASA Astrophysics Data System (ADS)

    Shabliy, L. S.; Malov, D. V.; Bratchinin, D. S.

    2018-01-01

    In the article the description of technique for simulation of valves for pneumatic-hydraulic system of liquid-propellant rocket engine (LPRE) is given. Technique is based on approach of computational hydrodynamics (Computational Fluid Dynamics - CFD). The simulation of a differential valve used in closed circuit LPRE supply pipes of fuel components is performed to show technique abilities. A schematic and operation algorithm of this valve type is described in detail. Also assumptions made in the construction of the geometric model of the hydraulic path of the valve are described in detail. The calculation procedure for determining valve hydraulic characteristics is given. Based on these calculations certain hydraulic characteristics of the valve are given. Some ways of usage of the described simulation technique for research the static and dynamic characteristics of the elements of the pneumatic-hydraulic system of LPRE are proposed.

  7. Disclosure of hydraulic fracturing fluid chemical additives: analysis of regulations.

    PubMed

    Maule, Alexis L; Makey, Colleen M; Benson, Eugene B; Burrows, Isaac J; Scammell, Madeleine K

    2013-01-01

    Hydraulic fracturing is used to extract natural gas from shale formations. The process involves injecting into the ground fracturing fluids that contain thousands of gallons of chemical additives. Companies are not mandated by federal regulations to disclose the identities or quantities of chemicals used during hydraulic fracturing operations on private or public lands. States have begun to regulate hydraulic fracturing fluids by mandating chemical disclosure. These laws have shortcomings including nondisclosure of proprietary or "trade secret" mixtures, insufficient penalties for reporting inaccurate or incomplete information, and timelines that allow for after-the-fact reporting. These limitations leave lawmakers, regulators, public safety officers, and the public uninformed and ill-prepared to anticipate and respond to possible environmental and human health hazards associated with hydraulic fracturing fluids. We explore hydraulic fracturing exemptions from federal regulations, as well as current and future efforts to mandate chemical disclosure at the federal and state level.

  8. CFD Aided Design and Production of Hydraulic Turbines

    NASA Astrophysics Data System (ADS)

    Kaplan, Alper; Cetinturk, Huseyin; Demirel, Gizem; Ayli, Ece; Celebioglu, Kutay; Aradag, Selin; ETU Hydro Research Center Team

    2014-11-01

    Hydraulic turbines are turbo machines which produce electricity from hydraulic energy. Francis type turbines are the most common one in use today. The design of these turbines requires high engineering effort since each turbine is tailor made due to different head and discharge. Therefore each component of the turbine is designed specifically. During the last decades, Computational Fluid Dynamics (CFD) has become very useful tool to predict hydraulic machinery performance and save time and money for designers. This paper describes a design methodology to optimize a Francis turbine by integrating theoretical and experimental fundamentals of hydraulic machines and commercial CFD codes. Specific turbines are designed and manufactured with the help of a collaborative CFD/CAD/CAM methodology based on computational fluid dynamics and five-axis machining for hydraulic electric power plants. The details are presented in this study. This study is financially supported by Turkish Ministry of Development.

  9. Hydraulically actuated fuel injector including a pilot operated spool valve assembly and hydraulic system using same

    DOEpatents

    Shafer, Scott F.

    2002-01-01

    The present invention relates to hydraulic systems including hydraulically actuated fuel injectors that have a pilot operated spool valve assembly. One class of hydraulically actuated fuel injectors includes a solenoid driven pilot valve that controls the initiation of the injection event. However, during cold start conditions, hydraulic fluid, typically engine lubricating oil, is particularly viscous and is often difficult to displace through the relatively small drain path that is defined past the pilot valve member. Because the spool valve typically responds slower than expected during cold start due to the difficulty in displacing the relatively viscous oil, accurate start of injection timing can be difficult to achieve. There also exists a greater difficulty in reaching the higher end of the cold operating speed range. Therefore, the present invention utilizes a fluid evacuation valve to aid in displacement of the relatively viscous oil during cold start conditions.

  10. Design and Performance Evaluation of an Electro-Hydraulic Camless Engine Valve Actuator for Future Vehicle Applications

    PubMed Central

    Nam, Kanghyun; Cho, Kwanghyun; Park, Sang-Shin; Choi, Seibum B.

    2017-01-01

    This paper details the new design and dynamic simulation of an electro-hydraulic camless engine valve actuator (EH-CEVA) and experimental verification with lift position sensors. In general, camless engine technologies have been known for improving fuel efficiency, enhancing power output, and reducing emissions of internal combustion engines. Electro-hydraulic valve actuators are used to eliminate the camshaft of an existing internal combustion engines and used to control the valve timing and valve duration independently. This paper presents novel electro-hydraulic actuator design, dynamic simulations, and analysis based on design specifications required to satisfy the operation performances. An EH-CEVA has initially been designed and modeled by means of a powerful hydraulic simulation software, AMESim, which is useful for the dynamic simulations and analysis of hydraulic systems. Fundamental functions and performances of the EH-CEVA have been validated through comparisons with experimental results obtained in a prototype test bench. PMID:29258270

  11. Design and Performance Evaluation of an Electro-Hydraulic Camless Engine Valve Actuator for Future Vehicle Applications.

    PubMed

    Nam, Kanghyun; Cho, Kwanghyun; Park, Sang-Shin; Choi, Seibum B

    2017-12-18

    This paper details the new design and dynamic simulation of an electro-hydraulic camless engine valve actuator (EH-CEVA) and experimental verification with lift position sensors. In general, camless engine technologies have been known for improving fuel efficiency, enhancing power output, and reducing emissions of internal combustion engines. Electro-hydraulic valve actuators are used to eliminate the camshaft of an existing internal combustion engines and used to control the valve timing and valve duration independently. This paper presents novel electro-hydraulic actuator design, dynamic simulations, and analysis based on design specifications required to satisfy the operation performances. An EH-CEVA has initially been designed and modeled by means of a powerful hydraulic simulation software, AMESim, which is useful for the dynamic simulations and analysis of hydraulic systems. Fundamental functions and performances of the EH-CEVA have been validated through comparisons with experimental results obtained in a prototype test bench.

  12. 3D Numerical Modeling of the Propagation of Hydraulic Fracture at Its Intersection with Natural (Pre-existing) Fracture

    NASA Astrophysics Data System (ADS)

    Dehghan, Ali Naghi; Goshtasbi, Kamran; Ahangari, Kaveh; Jin, Yan; Bahmani, Aram

    2017-02-01

    A variety of 3D numerical models were developed based on hydraulic fracture experiments to simulate the propagation of hydraulic fracture at its intersection with natural (pre-existing) fracture. Since the interaction between hydraulic and pre-existing fractures is a key condition that causes complex fracture patterns, the extended finite element method was employed in ABAQUS software to simulate the problem. The propagation of hydraulic fracture in a fractured medium was modeled in two horizontal differential stresses (Δ σ) of 5e6 and 10e6 Pa considering different strike and dip angles of pre-existing fracture. The rate of energy release was calculated in the directions of hydraulic and pre-existing fractures (G_{{frac}} /G_{{rock}}) at their intersection point to determine the fracture behavior. Opening and crossing were two dominant fracture behaviors during the hydraulic and pre-existing fracture interaction at low and high differential stress conditions, respectively. The results of numerical studies were compared with those of experimental models, showing a good agreement between the two to validate the accuracy of the models. Besides the horizontal differential stress, strike and dip angles of the natural (pre-existing) fracture, the key finding of this research was the significant effect of the energy release rate on the propagation behavior of the hydraulic fracture. This effect was more prominent under the influence of strike and dip angles, as well as differential stress. The obtained results can be used to predict and interpret the generation of complex hydraulic fracture patterns in field conditions.

  13. The Influence of Hydraulic Fracturing on Carbon Storage Performance

    NASA Astrophysics Data System (ADS)

    Fu, Pengcheng; Settgast, Randolph R.; Hao, Yue; Morris, Joseph P.; Ryerson, Frederick J.

    2017-12-01

    Conventional principles of the design and operation of geologic carbon storage (GCS) require injecting CO2 below the caprock fracturing pressure to ensure the integrity of the storage complex. In nonideal storage reservoirs with relatively low permeability, pressure buildup can lead to hydraulic fracturing of the reservoir and caprock. While the GCS community has generally viewed hydraulic fractures as a key risk to storage integrity, a carefully designed stimulation treatment under appropriate geologic conditions could provide improved injectivity while maintaining overall seal integrity. A vertically contained hydraulic fracture, either in the reservoir rock or extending a limited height into the caprock, provides an effective means to access reservoir volume far from the injection well. Employing a fully coupled numerical model of hydraulic fracturing, solid deformation, and matrix fluid flow, we study the enabling conditions, processes, and mechanisms of hydraulic fracturing during CO2 injection. A hydraulic fracture's pressure-limiting behavior dictates that the near-well fluid pressure is only slightly higher than the fracturing pressure of the rock and is insensitive to injection rate and mechanical properties of the formation. Although a fracture contained solely within the reservoir rock with no caprock penetration, would be an ideal scenario, poroelastic principles dictate that sustaining such a fracture could lead to continuously increasing pressure until the caprock fractures. We also investigate the propagation pattern and injection pressure responses of a hydraulic fracture propagating in a caprock subjected to heterogeneous in situ stress. The results have important implications for the use of hydraulic fracturing as a tool for managing storage performance.

  14. Influence of Hydraulic Fracturing on Overlying Aquifers in the Presence of Leaky Abandoned Wells.

    PubMed

    Brownlow, Joshua W; James, Scott C; Yelderman, Joe C

    2016-11-01

    The association between hydrocarbon-rich reservoirs and organic-rich source rocks means unconventional oil and gas plays usually occur in mature sedimentary basins-where large-scale conventional development has already taken place. Abandoned wells in proximity to hydraulic fracturing could be affected by increased fluid pressures and corresponding newly generated fractures that directly connect (frac hit) to an abandoned well or to existing fractures intersecting an abandoned well. If contaminants migrate to a pathway hydraulically connected to an abandoned well, upward leakage may occur. Potential effects of hydraulic fracturing on upward flow through a particular type of leaky abandoned well-abandoned oil and gas wells converted into water wells were investigated using numerical modeling. Several factors that affect flow to leaky wells were considered including proximity of a leaky well to hydraulic fracturing, flowback, production, and leaky well abandonment methods. The numerical model used historical records and available industry data for the Eagle Ford Shale play in south Texas. Numerical simulations indicate that upward contaminant migration could occur through leaky converted wells if certain spatial and hydraulic conditions exist. Upward flow through leaky converted wells increased with proximity to hydraulic fracturing, but decreased when flowback and production occurred. Volumetric flow rates ranged between 0 and 0.086 m 3 /d for hydraulic-fracturing scenarios. Potential groundwater impacts should be paired with plausible transport mechanisms, and upward flow through leaky abandoned wells could be unrelated to hydraulic fracturing. The results also underscore the need to evaluate historical activities. © 2016, National Ground Water Association.

  15. Hydraulics of high-yield orchard trees: a case study of three Malus domestica cultivars.

    PubMed

    Beikircher, Barbara; De Cesare, Chiara; Mayr, Stefan

    2013-12-01

    The drought tolerance of three economically important apple cultivars, Golden Delicious, Braeburn and Red Delicious, was analysed. The work offers insights into the hydraulics of these high-yield trees and indicates a possible hydraulic limitation of carbon gain. The hydraulic safety and efficiency of branch xylem and leaves were quantified, drought tolerance of living tissues was measured and stomatal regulation, turgor-loss point and osmotic potential at full turgor were analysed. Physiological measurements were correlated with anatomical parameters, such as conduit diameter, cell-wall reinforcement, stomatal density and stomatal pore length. Hydraulic safety differed considerably between the three cultivars with Golden Delicious being significantly less vulnerable to drought-induced embolism than Braeburn and Red Delicious. In Golden Delicious, leaves were less resistant than branch xylem, while in the other cultivars leaves were more resistant than branch xylem. Hydraulic efficiency and xylem anatomical measurements indicate differences in pit properties, which may also be responsible for variations in hydraulic safety. In all three cultivars, full stomatal closure occurred at water potentials where turgor had already been lost and severe loss of hydraulic conductivity as well as damage to living cells had been induced. The consequential negative safety margins pose a risk for hydraulic failure but facilitate carbon gain, which is further improved by the observed high stomatal conductance. Maximal stomatal conductance was clearly seen to be related to stomatal density and size. Based on our results, these three high-yield Malus domestica Borkh. cultivars span a wide range of drought tolerances, appear optimized for maximal carbon gain and, thus, all perform best under well-managed growing conditions.

  16. Herb Hydraulics: Inter- and Intraspecific Variation in Three Ranunculus Species.

    PubMed

    Nolf, Markus; Rosani, Andrea; Ganthaler, Andrea; Beikircher, Barbara; Mayr, Stefan

    2016-04-01

    The requirements of the water transport system of small herbaceous species differ considerably from those of woody species. Despite their ecological importance for many biomes, knowledge regarding herb hydraulics remains very limited. We compared key hydraulic features (vulnerability to drought-induced hydraulic decline, pressure-volume relations, onset of cellular damage, in situ variation of water potential, and stomatal conductance) of three Ranunculus species differing in their soil humidity preferences and ecological amplitude. All species were very vulnerable to water stress (50% reduction in whole-leaf hydraulic conductance [kleaf] at -0.2 to -0.8 MPa). In species with narrow ecological amplitude, the drought-exposed Ranunculus bulbosus was less vulnerable to desiccation (analyzed via loss of kleaf and turgor loss point) than the humid-habitat Ranunculus lanuginosus Accordingly, water stress-exposed plants from the broad-amplitude Ranunculus acris revealed tendencies toward lower vulnerability to water stress (e.g. osmotic potential at full turgor, cell damage, and stomatal closure) than conspecific plants from the humid site. We show that small herbs can adjust to their habitat conditions on interspecific and intraspecific levels in various hydraulic parameters. The coordination of hydraulic thresholds (50% and 88% loss of kleaf, turgor loss point, and minimum in situ water potential) enabled the study species to avoid hydraulic failure and damage to living cells. Reversible recovery of hydraulic conductance, desiccation-tolerant seeds, or rhizomes may allow them to prioritize toward a more efficient but vulnerable water transport system while avoiding the severe effects that water stress poses on woody species. © 2016 American Society of Plant Biologists. All Rights Reserved.

  17. Herb Hydraulics: Inter- and Intraspecific Variation in Three Ranunculus Species1[OPEN

    PubMed Central

    Ganthaler, Andrea; Beikircher, Barbara

    2016-01-01

    The requirements of the water transport system of small herbaceous species differ considerably from those of woody species. Despite their ecological importance for many biomes, knowledge regarding herb hydraulics remains very limited. We compared key hydraulic features (vulnerability to drought-induced hydraulic decline, pressure-volume relations, onset of cellular damage, in situ variation of water potential, and stomatal conductance) of three Ranunculus species differing in their soil humidity preferences and ecological amplitude. All species were very vulnerable to water stress (50% reduction in whole-leaf hydraulic conductance [kleaf] at −0.2 to −0.8 MPa). In species with narrow ecological amplitude, the drought-exposed Ranunculus bulbosus was less vulnerable to desiccation (analyzed via loss of kleaf and turgor loss point) than the humid-habitat Ranunculus lanuginosus. Accordingly, water stress-exposed plants from the broad-amplitude Ranunculus acris revealed tendencies toward lower vulnerability to water stress (e.g. osmotic potential at full turgor, cell damage, and stomatal closure) than conspecific plants from the humid site. We show that small herbs can adjust to their habitat conditions on interspecific and intraspecific levels in various hydraulic parameters. The coordination of hydraulic thresholds (50% and 88% loss of kleaf, turgor loss point, and minimum in situ water potential) enabled the study species to avoid hydraulic failure and damage to living cells. Reversible recovery of hydraulic conductance, desiccation-tolerant seeds, or rhizomes may allow them to prioritize toward a more efficient but vulnerable water transport system while avoiding the severe effects that water stress poses on woody species. PMID:26896395

  18. ENHANCING HYDROLOGICAL SIMULATION PROGRAM - FORTRAN MODEL CHANNEL HYDRAULIC REPRESENTATION

    EPA Science Inventory

    The Hydrological Simulation Program– FORTRAN (HSPF) is a comprehensive watershed model that employs depth-area - volume - flow relationships known as the hydraulic function table (FTABLE) to represent the hydraulic characteristics of stream channel cross-sections and reservoirs. ...

  19. Analysis of INDOT current hydraulic policies : [technical summary].

    DOT National Transportation Integrated Search

    2011-01-01

    Hydraulic design often tends to be on a conservative side for safety reasons. Hydraulic structures are typically oversized with the goal being reduced future maintenance costs, and to reduce the risk of property owner complaints. This approach leads ...

  20. Multimodel Simulation of Water Flow: Uncertainty Analysis

    USDA-ARS?s Scientific Manuscript database

    Simulations of soil water flow require measurements of soil hydraulic properties which are particularly difficult at the field scale. Laboratory measurements provide hydraulic properties at scales finer than the field scale, whereas pedotransfer functions (PTFs) integrate information on hydraulic pr...

  1. Divergent Hydraulic Safety Strategies in Three Co-occurring Anacardiaceae Tree Species in a Chinese Savanna

    PubMed Central

    Zhang, Shu-Bin; Zhang, Jiao-Lin; Cao, Kun-Fang

    2017-01-01

    Vulnerability segmentation, the condition under which plant leaves are more vulnerable to drought-induced cavitation than stems, may act as a “safety valve” to protect stems from hydraulic failure. Evergreen, winter-deciduous, and drought-deciduous tree species co-occur in tropical savannas, but there have been no direct studies on the role of vulnerability segmentation and stomatal regulation in maintaining hydraulic safety in trees with these three leaf phenologies. To this end, we selected three Anacardiaceae tree species co-occurring in a Chinese savanna, evergreen Pistacia weinmanniifolia, drought-deciduous Terminthia paniculata, and winter-deciduous Lannea coromandelica, to study inter-species differentiation in leaf and stem hydraulic safety. We found that the two deciduous species had significantly higher sapwood-specific hydraulic conductivity and leaf-specific hydraulic conductance than the evergreen species. Moreover, two deciduous species were more vulnerable to stem cavitation than the evergreen species, although both drought-deciduous species and evergreen species had drought-resistance leaves. The evergreen species maintained a wide hydraulic safety margin (HSM) in stems and leaves; which was achieved by embolism resistance of both stems and leaves and isohydric stomatal control. Both deciduous species had limited HSMs in stems and leaves, being isohydric in the winter-deciduous species and anisohydric in drought-deciduous species. The difference in water potential at 50% loss of hydraulic conductivity between the leaves and the terminal stems (P50leaf−stem) was positive in P. weinmanniifolia and L. coromandelica, whereas, T. paniculata exhibited a lack of vulnerability segmentation. In addition, differences in hydraulic architecture were found to be closely related to other structural traits, i.e., leaf mass per area, wood density, and sapwood anatomy. Overall, the winter-deciduous species exhibits a drought-avoidance strategy that maintains the hydraulic safety of the more carbon-costly stems by sacrificing cheaper and more vulnerable leaves, while the evergreen species exhibits a hydraulic strategy of drought tolerance with strong stomatal regulation. In contrast, the drought-deciduous species lacks vulnerability segmentation and sheds leaves at the expense of top shoots during peak drought. This study demonstrates that even sympatric tree species that differ in leaf phenology can exhibit divergent adaptive hydraulic safety strategies. PMID:28149302

  2. Geologic and hydraulic characteristics of selected shaly geologic units in Oklahoma

    USGS Publications Warehouse

    Becker, C.J.; Overton, M.D.; Johnson, K.S.; Luza, K.V.

    1997-01-01

    Information was collected on the geologic and hydraulic characteristics of three shale-dominated units in Oklahoma-the Dog Creek Shale and Chickasha Formation in Canadian County, Hennessey Group in Oklahoma County, and the Boggy Formation in Pittsburg County. The purpose of this project was to gain insight into the characteristics controlling fluid flow in shaly units that could be targeted for confinement of hazardous waste in the State and to evaluate methods of measuring hydraulic characteristics of shales. Permeameter results may not indicate in-place small-scale hydraulic characteristics, due to pretest disturbance and deterioration of core samples. The Dog Creek Shale and Chickasha Formation hydraulic conductivities measured by permeameter methods ranged from 2.8 times 10 to the negative 11 to 3.0 times 10 to the negative 7 meter per second in nine samples and specific storage from 3.3 times 10 to the negative 4 to 1.6 times 10 to the negative 3 per meter in four samples. Hennessey Group hydraulic conductivities ranged from 4.0 times 10 to the negative 12 to 4.0 times 10 to the negative 10 meter per second in eight samples. Hydraulic conductivity in the Boggy Formation ranged from 1.7 times 10 to the negative 12 to 1.0 times 10 to the negative 8 meter per second in 17 samples. The hydraulic properties of isolated borehole intervals of average length of 4.5 meters in the Hennessey Group and the Boggy Formation were evaluated by a pressurized slug-test method. Hydraulic conductivities obtained with this method tend to be low because intervals with features that transmitted large volumes of water were not tested. Hennessey Group hydraulic conductivities measured by this method ranged from 3.0 times 10 to the negative 13 to 1.1 times 10 to the negative 9 meter per second; the specific storage values are small and may be unreliable. Boggy Formation hydraulic conductivities ranged from 2.0 times 10 to the negative 13 to 2.7 times 10 to the negative 10 meter per second and specific storage values in these tests also are small and may be unreliable. A substantially higher hydraulic conductivity of 3.0 times 10 to the negative 8 meter per second was measured in one borehole 30 meters deep in the Boggy Formation using an open hole slug-test method.

  3. Does reintroducing large wood influence the hydraulic landscape of a lowland river system?

    NASA Astrophysics Data System (ADS)

    Matheson, Adrian; Thoms, Martin; Reid, Michael

    2017-09-01

    Our understanding of the effectiveness of reintroduced large wood for restoration is largely based on studies from high energy river systems. By contrast, few studies of the effectiveness of reintroducing large wood have been undertaken on large, low energy, lowland river systems: river systems where large wood is a significant physical feature on the in-channel environment. This study investigated the effect of reintroduced large wood on the hydraulic landscape of the Barwon-Darling River, Australia, at low flows. To achieve this, the study compared three hydraulic landscapes of replicated reference (naturally wooded), control (unwooded,) and managed (wood reintroduced) treatments on three low flow periods. These time periods were prior to the reintroduction of large wood to managed reaches; several months after the reintroduction of large wood into the managed reaches; and then more than four years after wood reintroduction following several large flood events. Hydraulic landscapes of reaches were characterised using a range of spatial measures calculated from velocity measurements taken with a boat-mounted Acoustic Doppler Profiler. We hypothesised that reintroduced large wood would increase the diversity of the hydraulic landscape at low flows and that managed reaches would be more similar to the reference reaches. Our results suggest that the reintroduction of large wood did not significantly change the character of the hydraulic landscape at the reach scale after several months (p = 0.16) or several years (p = 0.29). Overall, the character of the hydraulic landscape in the managed reaches was more similar to the hydraulic landscape of the control reaches than the hydraulic landscape of the reference reaches, at low flows. Some variability in the hydraulic landscapes was detected over time, and this may reflect reworking of riverbed sediments and sensitivity to variation in discharge. The lack of a response in the low flow hydraulic landscape to the reintroduction of large wood is inferred because the character (the size and complexity of individual pieces) and positioning of large wood in managed reaches did not mimic that of reference reaches effectively despite the abundance of wood pieces being similar in the reference and managed reaches. The results of this study highlight the importance of understanding the natural character and distribution of large wood on hydraulic landscapes in large low energy lowland river systems, especially when reintroducing large wood for river management purposes.

  4. Repair, Evaluation, Maintenance, and Rehabilitation Research Program: The Effects of Vegetation on these Structural Integrity of Sandy Levees.

    DTIC Science & Technology

    1991-08-01

    cracking in earth dams commonly occurs by hydraulic fracturing . Hydraulic fracturing is a tensile separation along an internal surface in a 25 soil mass...stress. This hydraulic fracturing is facilitated by differential settle- ment and internal stress transfer in an earthen structure. Sherard also showed...the hydraulic fracturing . 42. BioLic activity, i.e., the actions of plant roots and burrowing animals, has provided a popular explanation for pipe

  5. Cost and Performance Report - Evaluating the Longevity and Hydraulic Performance of Permeable Reactive Barriers at Department of Defense Sites

    DTIC Science & Technology

    2002-12-01

    methods, such as jetting, hydraulic fracturing , and vibratory beam, have been demonstrated at some sites, as they offer some cost advantages at deep sites...while still keeping the implementation cost relatively low. Beyond these depths, innovative methods (such as jetting and hydraulic fracturing ) can...type excavator and a trench-type barrier. For sites where the affected aquifer is deeper, innovative methods, such as jetting and hydraulic

  6. Evaluating the Longevity and Hydraulic Performance of Permeable Reactive Barriers at Department of Defense Sites

    DTIC Science & Technology

    2003-01-01

    Army Ammunitions Plant) PRBs have become feasible with trenching. Other construction 5 methods, such as jetting, hydraulic fracturing , and vibratory...where the affected aquifer is deeper, innovative methods, such as jetting and hydraulic fracturing , are available, but there is not as much widespread...such as jetting and hydraulic fracturing ) can be used at relatively higher cost. The cost comparison of a PRB versus an active remedy, such as a

  7. A HISTORICAL PERSPECTIVE OF NUCLEAR THERMAL HYDRAULICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D’Auria, F; Rohatgi, Upendra S.

    The nuclear thermal-hydraulics discipline was developed following the needs for nuclear power plants (NPPs) and, to a more limited extent, research reactors (RR) design and safety. As in all other fields where analytical methods are involved, nuclear thermal-hydraulics took benefit of the development of computers. Thermodynamics, rather than fluid dynamics, is at the basis of the development of nuclear thermal-hydraulics together with the experiments in complex two-phase situations, namely, geometry, high thermal density, and pressure.

  8. Combining 3D Hydraulic Tomography with Tracer Tests for Improved Transport Characterization.

    PubMed

    Sanchez-León, E; Leven, C; Haslauer, C P; Cirpka, O A

    2016-07-01

    Hydraulic tomography (HT) is a method for resolving the spatial distribution of hydraulic parameters to some extent, but many details important for solute transport usually remain unresolved. We present a methodology to improve solute transport predictions by combining data from HT with the breakthrough curve (BTC) of a single forced-gradient tracer test. We estimated the three dimensional (3D) hydraulic-conductivity field in an alluvial aquifer by inverting tomographic pumping tests performed at the Hydrogeological Research Site Lauswiesen close to Tübingen, Germany, using a regularized pilot-point method. We compared the estimated parameter field to available profiles of hydraulic-conductivity variations from direct-push injection logging (DPIL), and validated the hydraulic-conductivity field with hydraulic-head measurements of tests not used in the inversion. After validation, spatially uniform parameters for dual-domain transport were estimated by fitting tracer data collected during a forced-gradient tracer test. The dual-domain assumption was used to parameterize effects of the unresolved heterogeneity of the aquifer and deemed necessary to fit the shape of the BTC using reasonable parameter values. The estimated hydraulic-conductivity field and transport parameters were subsequently used to successfully predict a second independent tracer test. Our work provides an efficient and practical approach to predict solute transport in heterogeneous aquifers without performing elaborate field tracer tests with a tomographic layout. © 2015, National Ground Water Association.

  9. Statistical and simulation analysis of hydraulic-conductivity data for Bear Creek and Melton Valleys, Oak Ridge Reservation, Tennessee

    USGS Publications Warehouse

    Connell, J.F.; Bailey, Z.C.

    1989-01-01

    A total of 338 single-well aquifer tests from Bear Creek and Melton Valley, Tennessee were statistically grouped to estimate hydraulic conductivities for the geologic formations in the valleys. A cross-sectional simulation model linked to a regression model was used to further refine the statistical estimates for each of the formations and to improve understanding of ground-water flow in Bear Creek Valley. Median hydraulic-conductivity values were used as initial values in the model. Model-calculated estimates of hydraulic conductivity were generally lower than the statistical estimates. Simulations indicate that (1) the Pumpkin Valley Shale controls groundwater flow between Pine Ridge and Bear Creek; (2) all the recharge on Chestnut Ridge discharges to the Maynardville Limestone; (3) the formations having smaller hydraulic gradients may have a greater tendency for flow along strike; (4) local hydraulic conditions in the Maynardville Limestone cause inaccurate model-calculated estimates of hydraulic conductivity; and (5) the conductivity of deep bedrock neither affects the results of the model nor does it add information on the flow system. Improved model performance would require: (1) more water level data for the Copper Ridge Dolomite; (2) improved estimates of hydraulic conductivity in the Copper Ridge Dolomite and Maynardville Limestone; and (3) more water level data and aquifer tests in deep bedrock. (USGS)

  10. Research of performance prediction to energy on hydraulic turbine

    NASA Astrophysics Data System (ADS)

    Quan, H.; Li, R. N.; Li, Q. F.; Han, W.; Su, Q. M.

    2012-11-01

    Refer to the low specific speed Francis turbine blade design principle and double-suction pump structure. Then, design a horizontal double-channel hydraulic turbine Francis. Through adding different guide vane airfoil and and no guide vane airfoil on the hydraulic conductivity components to predict hydraulic turbine energy and using Fluent software to numerical simulation that the operating conditions and point. The results show that the blade pressure surface and suction surface pressure is low when the hydraulic turbine installation is added standard positive curvature of the guide vane and modified positive curvature of guide vane. Therefore, the efficiency of energy recovery is low. However, the pressure of negative curvature guide vane and symmetric guide vane added on hydraulic turbine installations is larger than that of the former ones, and it is conducive to working of runner. With the decreasing of guide vane opening, increasing of inlet angle, flow state gets significantly worse. Then, others obvious phenomena are that the reflux and horizontal flow appeared in blade pressure surface. At the same time, the vortex was formed in Leaf Road, leading to the loss of energy. Through analyzing the distribution of pressure, velocity, flow lines of over-current flow in the the back hydraulic conductivity components in above programs we can known that the hydraulic turbine installation added guide vane is more reasonable than without guide vanes, it is conducive to improve efficiency of energy conversion.

  11. Optimizing the Hydrological and Biogeochemical Simulations on a Hillslope with Stony Soil

    NASA Astrophysics Data System (ADS)

    Zhu, Q.

    2017-12-01

    Stony soils are widely distributed in the hilly area. However, traditional pedotransfer functions are not reliable in predicting the soil hydraulic parameters for these soils due to the impacts of rock fragments. Therefore, large uncertainties and errors may exist in the hillslope hydrological and biogeochemical simulations in stony soils due to poor estimations of soil hydraulic parameters. In addition, homogenous soil hydraulic parameters are usually used in traditional hillslope simulations. However, soil hydraulic parameters are spatially heterogeneous on the hillslope. This may also cause the unreliable simulations. In this study, we obtained soil hydraulic parameters using five different approaches on a tea hillslope in Taihu Lake basin, China. These five approaches included (1) Rossetta predicted and spatially homogenous, (2) Rossetta predicted and spatially heterogeneous), (3) Rossetta predicted, rock fragment corrected and spatially homogenous, (4) Rossetta predicted, rock fragment corrected and spatially heterogeneous, and (5) extracted from observed soil-water retention curves fitted by dual-pore function and spatially heterogeneous (observed). These five sets of soil hydraulic properties were then input into Hydrus-3D and DNDC to simulate the soil hydrological and biogeochemical processes. The aim of this study is testing two hypotheses. First, considering the spatial heterogeneity of soil hydraulic parameters will improve the simulations. Second, considering the impact of rock fragment on soil hydraulic parameters will improve the simulations.

  12. The effect of hydraulic bed movement on the quality of chest compressions.

    PubMed

    Park, Maeng Real; Lee, Dae Sup; In Kim, Yong; Ryu, Ji Ho; Cho, Young Mo; Kim, Hyung Bin; Yeom, Seok Ran; Min, Mun Ki

    2017-08-01

    The hydraulic height control systems of hospital beds provide convenience and shock absorption. However, movements in a hydraulic bed may reduce the effectiveness of chest compressions. This study investigated the effects of hydraulic bed movement on chest compressions. Twenty-eight participants were recruited for this study. All participants performed chest compressions for 2min on a manikin and three surfaces: the floor (Day 1), a firm plywood bed (Day 2), and a hydraulic bed (Day 3). We considered 28 participants of Day 1 as control and each 28 participants of Day 2 and Day 3 as study subjects. The compression rates, depths, and good compression ratios (>5-cm compressions/all compressions) were compared between the three surfaces. When we compared the three surfaces, we did not detect a significant difference in the speed of chest compressions (p=0.582). However, significantly lower values were observed on the hydraulic bed in terms of compression depth (p=0.001) and the good compression ratio (p=0.003) compared to floor compressions. When we compared the plywood and hydraulic beds, we did not detect significant differences in compression depth (p=0.351) and the good compression ratio (p=0.391). These results indicate that the movements in our hydraulic bed were associated with a non-statistically significant trend towards lower-quality chest compressions. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Divergent hydraulic strategies to cope with freezing in co-occurring temperate tree species with special reference to root and stem pressure generation.

    PubMed

    Yin, Xiao-Han; Sterck, Frank; Hao, Guang-You

    2018-04-23

    Some temperate tree species mitigate the negative impacts of frost-induced xylem cavitation by restoring impaired hydraulic function via positive pressures, and may therefore be more resistant to frost fatigue (the phenomenon that post-freezing xylem becomes more susceptible to hydraulic dysfunction) than nonpressure-generating species. We test this hypothesis and investigate underlying anatomical/physiological mechanisms. Using a common garden experiment, we studied key hydraulic traits and detailed xylem anatomical characteristics of 18 sympatric tree species. These species belong to three functional groups, that is, one generating both root and stem pressures (RSP), one generating only root pressure (RP), and one unable to generate such pressures (NP). The three functional groups diverged substantially in hydraulic efficiency, resistance to drought-induced cavitation, and frost fatigue resistance. Most notably, RSP and RP were more resistant to frost fatigue than NP, but this was at the cost of reduced hydraulic conductivity for RSP and reduced resistance to drought-induced cavitation for RP. Our results show that, in environments with strong frost stress: these groups diverge in hydraulic functioning following multiple trade-offs between hydraulic efficiency, resistance to drought and resistance to frost fatigue; and how differences in anatomical characteristics drive such divergence across species. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  14. [Hydraulic limitation on photosynthetic rate of old Populus simonii trees in sandy soil of north Shaanxi Province].

    PubMed

    Zuo, Li-Xiang; Li, Yang-Yang; Chen, Jia-Cun

    2014-06-01

    'Old and dwarf trees' on the loess plateau region mainly occurred among mature trees rather than among small trees. To elucidate the mechanism of tree age on 'old and dwarf trees' formation, taking Populus simonii, a tree species that accounted for the largest portion of 'old and dwarf trees' on the loess plateau, as an example, the growth, photosynthesis and hydraulic traits of P. simonii trees with different ages (young: 13-15 years, mid-aged: 31-34 years, and old: 49-54 years) were measured. The results showed that the dieback length increased, and net photosynthetic rate, stomatal conductance, transpiration rate, and whole plant hydraulic conductance decreased significantly with the increasing tree age. Both net photosynthetic rate and stomatal conductance measured at different dates were significantly and positively related to the whole plant hydraulic conductance, suggesting that the decreasing photosynthetic rate of old trees was possibly caused by the declined hydraulic conductance. Although the resistance to cavitation in stems and leaves was stronger in old trees than in young and mid-aged trees, there were no differences in midday native stem embolization degree and leaf hydraulic conductance based on the vulnerability curve estimation, suggesting that the increased hydraulic resistance of the soil-root system is probably the most important reason for decreasing the whole plant hydraulic conductance of old trees.

  15. Assessment of the Potential Impacts of Hydraulic Fracturing for ...

    EPA Pesticide Factsheets

    This assessment provides a review and synthesis of available scientific literature and data to assess the potential for hydraulic fracturing for oil and gas to impact the quality or quantity of drinking water resources, and identifies factors affecting the frequency or severity of any potential impacts. The scope of this assessment is defined by the hydraulic fracturing water cycle which includes five main activities: Water acquisition – the withdrawal of ground or surface water needed for hydraulic fracturing fluids;Chemical mixing – the mixing of water, chemicals, and proppant on the well pad to create the hydraulic fracturing fluid;Well injection – the injection of hydraulic fracturing fluids into the well to fracture the geologic formation; Flowback and Produced water – the return of injected fluid and water produced from the formation to the surface, and subsequent transport for reuse, treatment, or disposal; andWastewater treatment and waste disposal – the reuse, treatment and release, or disposal of wastewater generated at the well pad, including produced water. This report can be used by federal, tribal, state, and local officials; industry; and the public to better understand and address vulnerabilities of drinking water resources to hydraulic fracturing activities. To assess the potential impacts of hydraulic fracturing on drinking water resources, if any, and to identify the driving factors that may affect the severity and frequency of s

  16. Crack deflection in brittle media with heterogeneous interfaces and its application in shale fracking

    NASA Astrophysics Data System (ADS)

    Zeng, Xiaguang; Wei, Yujie

    Driven by the rapid progress in exploiting unconventional energy resources such as shale gas, there is growing interest in hydraulic fracture of brittle yet heterogeneous shales. In particular, how hydraulic cracks interact with natural weak zones in sedimentary rocks to form permeable cracking networks is of significance in engineering practice. Such a process is typically influenced by crack deflection, material anisotropy, crack-surface friction, crustal stresses, and so on. In this work, we extend the He-Hutchinson theory (He and Hutchinson, 1989) to give the closed-form formulae of the strain energy release rate of a hydraulic crack with arbitrary angles with respect to the crustal stress. The critical conditions in which the hydraulic crack deflects into weak interfaces and exhibits a dependence on crack-surface friction and crustal stress anisotropy are given in explicit formulae. We reveal analytically that, with increasing pressure, hydraulic fracture in shales may sequentially undergo friction locking, mode II fracture, and mixed mode fracture. Mode II fracture dominates the hydraulic fracturing process and the impinging angle between the hydraulic crack and the weak interface is the determining factor that accounts for crack deflection; the lower friction coefficient between cracked planes and the greater crustal stress difference favor hydraulic fracturing. In addition to shale fracking, the analytical solution of crack deflection could be used in failure analysis of other brittle media.

  17. Overview of Chronic Oral Toxicity Values for Chemicals Present in Hydraulic Fracturing Fluids, Flowback, and Produced Waters.

    PubMed

    Yost, Erin E; Stanek, John; DeWoskin, Robert S; Burgoon, Lyle D

    2016-05-03

    Concerns have been raised about potential public health effects that may arise if hydraulic fracturing-related chemicals were to impact drinking water resources. This study presents an overview of the chronic oral toxicity values-specifically, chronic oral reference values (RfVs) for noncancer effects, and oral slope factors (OSFs) for cancer-that are available for a list of 1173 chemicals that the United States (U.S.) Environmental Protection Agency (EPA) identified as being associated with hydraulic fracturing, including 1076 chemicals used in hydraulic fracturing fluids and 134 chemicals detected in flowback or produced waters from hydraulically fractured wells. The EPA compiled RfVs and OSFs using six governmental and intergovernmental data sources. Ninety (8%) of the 1076 chemicals reported in hydraulic fracturing fluids and 83 (62%) of the 134 chemicals reported in flowback/produced water had a chronic oral RfV or OSF available from one or more of the six sources. Furthermore, of the 36 chemicals reported in hydraulic fracturing fluids in at least 10% of wells nationwide (identified from EPA's analysis of the FracFocus Chemical Disclosure Registry 1.0), 8 chemicals (22%) had an available chronic oral RfV. The lack of chronic oral RfVs and OSFs for the majority of these chemicals highlights the significant knowledge gap that exists to assess the potential human health hazards associated with hydraulic fracturing.

  18. Hydraulic limits preceding mortality in a piñon-juniper woodland under experimental drought.

    PubMed

    Plaut, Jennifer A; Yepez, Enrico A; Hill, Judson; Pangle, Robert; Sperry, John S; Pockman, William T; McDowell, Nate G

    2012-09-01

    Drought-related tree mortality occurs globally and may increase in the future, but we lack sufficient mechanistic understanding to accurately predict it. Here we present the first field assessment of the physiological mechanisms leading to mortality in an ecosystem-scale rainfall manipulation of a piñon-juniper (Pinus edulis-Juniperus monosperma) woodland. We measured transpiration (E) and modelled the transpiration rate initiating hydraulic failure (E(crit) ). We predicted that isohydric piñon would experience mortality after prolonged periods of severely limited gas exchange as required to avoid hydraulic failure; anisohydric juniper would also avoid hydraulic failure, but sustain gas exchange due to its greater cavitation resistance. After 1 year of treatment, 67% of droughted mature piñon died with concomitant infestation by bark beetles (Ips confusus) and bluestain fungus (Ophiostoma spp.); no mortality occurred in juniper or in control piñon. As predicted, both species avoided hydraulic failure, but safety margins from E(crit) were much smaller in piñon, especially droughted piñon, which also experienced chronically low hydraulic conductance. The defining characteristic of trees that died was a 7 month period of near-zero gas exchange, versus 2 months for surviving piñon. Hydraulic limits to gas exchange, not hydraulic failure per se, promoted drought-related mortality in piñon pine. © 2012 Blackwell Publishing Ltd.

  19. Stem hydraulic capacitance decreases with drought stress: implications for modelling tree hydraulics in the Mediterranean oak Quercus ilex.

    PubMed

    Salomón, Roberto L; Limousin, Jean-Marc; Ourcival, Jean-Marc; Rodríguez-Calcerrada, Jesús; Steppe, Kathy

    2017-08-01

    Hydraulic modelling is a primary tool to predict plant performance in future drier scenarios. However, as most tree models are validated under non-stress conditions, they may fail when water becomes limiting. To simulate tree hydraulic functioning under moist and dry conditions, the current version of a water flow and storage mechanistic model was further developed by implementing equations that describe variation in xylem hydraulic resistance (R X ) and stem hydraulic capacitance (C S ) with predawn water potential (Ψ PD ). The model was applied in a Mediterranean forest experiencing intense summer drought, where six Quercus ilex trees were instrumented to monitor stem diameter variations and sap flow, concurrently with measurements of predawn and midday leaf water potential. Best model performance was observed when C S was allowed to decrease with decreasing Ψ PD . Hydraulic capacitance decreased from 62 to 25 kg m -3  MPa -1 across the growing season. In parallel, tree transpiration decreased to a greater extent than the capacitive water release and the contribution of stored water to transpiration increased from 2.0 to 5.1%. Our results demonstrate the importance of stored water and seasonality in C S for tree hydraulic functioning, and they suggest that C S should be considered to predict the drought response of trees with models. © 2017 John Wiley & Sons Ltd.

  20. Hydraulics and life history of tropical dry forest tree species: coordination of species' drought and shade tolerance.

    PubMed

    Markesteijn, Lars; Poorter, Lourens; Bongers, Frans; Paz, Horacio; Sack, Lawren

    2011-07-01

    Plant hydraulic architecture has been studied extensively, yet we know little about how hydraulic properties relate to species' life history strategies, such as drought and shade tolerance. The prevailing theories seem contradictory. We measured the sapwood (K(s) ) and leaf (K(l) ) hydraulic conductivities of 40 coexisting tree species in a Bolivian dry forest, and examined associations with functional stem and leaf traits and indices of species' drought (dry-season leaf water potential) and shade (juvenile crown exposure) tolerance. Hydraulic properties varied across species and between life-history groups (pioneers vs shade-tolerant, and deciduous vs evergreen species). In addition to the expected negative correlation of K(l) with drought tolerance, we found a strong, negative correlation between K(l) and species' shade tolerance. Across species, K(s) and K(l) were negatively correlated with wood density and positively with maximum vessel length. Consequently, drought and shade tolerance scaled similarly with hydraulic properties, wood density and leaf dry matter content. We found that deciduous species also had traits conferring efficient water transport relative to evergreen species. Hydraulic properties varied across species, corresponding to the classical trade-off between hydraulic efficiency and safety, which for these dry forest trees resulted in coordinated drought and shade tolerance across species rather than the frequently hypothesized trade-off. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  1. Containment wells to form hydraulic barriers along site boundaries.

    PubMed

    Vo, D; Ramamurthy, A S; Qu, J; Zhao, X P

    2008-12-15

    In the field, aquifer remediation methods include pump and treat procedures based on hydraulic control systems. They are used to reduce the level of residual contamination present in the soil and soil pores of aquifers. Often, physical barriers are erected along the boundaries of the target (aquifer) site to reduce the leakage of the released soil contaminant to the surrounding regions. Physical barriers are expensive to build and dismantle. Alternatively, based on simple hydraulic principles, containment wells or image wells injecting clear water can be designed and built to provide hydraulic barriers along the contaminated site boundaries. For brevity, only one pattern of containment well system that is very effective is presented in detail. The study briefly reports about the method of erecting a hydraulic barrier around a contaminated region based on the simple hydraulic principle of images. During the clean-up period, hydraulic barriers can considerably reduce the leakage of the released contaminant from the target site to surrounding pristine regions. Containment wells facilitate the formation of hydraulic barriers. Hence, they control the movement of contaminants away from the site that is being remedied. However, these wells come into play, only when the pumping operation for cleaning up the site is active. After operation, they can be filled with soil to permit the natural ground water movement. They can also be used as monitoring wells.

  2. Elevational trends in hydraulic efficiency and safety of Pinus cembra roots.

    PubMed

    Losso, Adriano; Nardini, Andrea; Nolf, Markus; Mayr, Stefan

    2016-04-01

    In alpine regions, elevational gradients in environmental parameters are reflected by structural and functional changes in plant traits. Elevational changes in plant water relations have also been demonstrated, but comparable information on root hydraulics is generally lacking. We analyzed the hydraulic efficiency (specific hydraulic conductivity k s, entire root system conductance K R) and vulnerability to drought-induced embolism (water potential at 50 % loss of conductivity Ψ 50) of the roots of Pinus cembra trees growing along an elevational transect of 600 m. Hydraulic parameters of the roots were compared with those of the stem and related to anatomical traits {mean conduit diameter (d), wall reinforcement [(t/b)(2)]}. We hypothesized that temperature-related restrictions in root function would cause a progressive limitation of hydraulic efficiency and safety with increasing elevation. We found that both root k s and K R decreased from low (1600 m a.s.l.: k s 5.6 ± 0.7 kg m(-1) s(-1) MPa(-1), K R 0.049 ± 0.005 kg m(-2) s (-1) MPa(-1)) to high elevation (2100 m a.s.l.: k s 4.2 ± 0.6 kg m(-1) s(-1) MPa(-1), K R 0.035 ± 0.006 kg m(-2) s(-1) MPa(-1)), with small trees showing higher K R than large trees. k s was higher in roots than in stems (0.5 ± 0.05 kg m(-1)s(-1)MPa(-1)). Ψ 50 values were similar across elevations and overall less negative in roots (Ψ 50 -3.6 ± 0.1 MPa) than in stems (Ψ 50 -3.9 ± 0.1 MPa). In roots, large-diameter tracheids were lacking at high elevation and (t/b)(2) increased, while d did not change. The elevational decrease in root hydraulic efficiency reflects a limitation in timberline tree hydraulics. In contrast, hydraulic safety was similar across elevations, indicating that avoidance of hydraulic failure is important for timberline trees. As hydraulic patterns can only partly be explained by the anatomical parameters studied, limitations and/or adaptations at the pit level are likely.

  3. Coordination of xylem hydraulics and stomatal regulation in keeping the integrity of xylem water transport in shoots of two compound-leaved tree species.

    PubMed

    Liu, Yan-Yan; Song, Jia; Wang, Miao; Li, Na; Niu, Cun-Yang; Hao, Guang-You

    2015-12-01

    Hydraulic segmentation between proximal and distal organs has been hypothesized to be an important protective mechanism for plants to minimize the detrimental effects of drought-induced hydraulic failure. Uncertainties still exist regarding the degree of segmentation and the role of stomatal regulation in keeping hydraulic integrity of organs at different hierarchies. In the present study, we measured hydraulic conductivity and vulnerability in stems, compound leaf petioles and leaflet laminas of Fraxinus mandshurica Rupr. and Juglans mandshurica Maxim. growing in Changbai Mountain of Northeast China to identify the main locality where hydraulic segmentation occurs along the shoot water transport pathway. Stomatal conductance in response to leaf water potential change was also measured to investigate the role of stomatal regulation in avoiding extensive transpiration-induced embolism. No major contrasts were found between stems and compound leaf petioles in either hydraulic conductivity or vulnerability to drought-induced embolism, whereas a large difference in hydraulic vulnerability exists between compound leaf petioles and leaflet laminas. Furthermore, in contrast to the relatively large safety margins in stems (4.13 and 2.04 MPa) and compound leaf petioles (1.33 and 1.93 MPa), leaflet lamina hydraulic systems have substantially smaller or even negative safety margins (-0.17 and 0.47 MPa) in F. mandshurica and J. mandshurica. Under unstressed water conditions, gas exchange may be better optimized by allowing leaflet vascular system function with small safety margins. In the meantime, hydraulic safety of compound leaf petioles and stems are guaranteed by their large safety margins. In facing severe drought stress, larger safety margins in stems than in compound leaf petioles would allow plants to minimize the risk of catastrophic embolism in stems by sacrificing the whole compound leaves. A strong coordination between hydraulic and stomatal regulation appears to play a critical role in balancing the competing efficiency and safety requirements for xylem water transport and use in plants. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. UNSODA UNSATURATED SOIL HYDRAULIC DATABASE USER'S MANUAL VERSION 1.0

    EPA Science Inventory

    This report contains general documentation and serves as a user manual of the UNSODA program. UNSODA is a database of unsaturated soil hydraulic properties (water retention, hydraulic conductivity, and soil water diffusivity), basic soil properties (particle-size distribution, b...

  5. 75 FR 36387 - Informational Public Meetings for Hydraulic Fracturing Research Study; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-25

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9168-2] Informational Public Meetings for Hydraulic Fracturing Research Study; Correction AGENCY: Environmental Protection Agency (EPA). ACTION: Notice... of June 21, 2010, announcing public meetings for the Hydraulic Fracturing Research Study. The...

  6. 10. Floor Layout of Thermal Hydraulics Laboratory, from The Thermal ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Floor Layout of Thermal Hydraulics Laboratory, from The Thermal Hydraulics Laboratory at Hanford. General Electric Company, Hanford Atomic Products Operation, Richland, Washington, 1961. - D-Reactor Complex, Deaeration Plant-Refrigeration Buildings, Area 100-D, Richland, Benton County, WA

  7. Hydraulic Performance of Set-Back Curb Inlets

    DOT National Transportation Integrated Search

    1998-06-01

    The objective of this study was to develop hydraulic design charts for the location and sizing of set-back curb inlets. An extensive program of hydraulic model testing was conducted to evaluate the performance of various inlet opening sizes. The grad...

  8. Characterization of riverbed sediments hydraulic conductivity using slug tests and electrical resistivity tomography and induced polarization tomogrpahy.

    NASA Astrophysics Data System (ADS)

    Nguyen, F.; Benoit, S.; Gommers, K.; Ghysels, G.; Hermans, T.; Huysmans, M.

    2017-12-01

    Hydraulic conductivity of river sediments ranges from values smaller than 10-9 m/s to values higher than 10-2 m/s, with a dominance in values between 10-7 m/s and 10-3 m/s. Both horizontal hydraulic conductivity and vertical hydraulic conductivity show spatial variation in a riverbed. The spatial variation in hydraulic conductivity is due to the influence of the sedimentary and geomorphological environment as well as the method of determination, including scale, size and imprecision of the applied method. The characterization of the spatial variability of hydraulic conductivity in riverbeds is important because of its effect on the interaction between river and groundwater. These river - groundwater interactions influence water resource management, water quality and functioning of the riparian ecosystem. It is necessary in the simulation of 3D flow between river and aquifer near the interface and thus, it also determines contaminant transport and biogeochemical modelling in this riparian or hyporheic zone. Different processes occur in this specific zone such as transport, degradation, transformation, precipitation and sorption of substances, all dependent on hydraulic conductivity. Several methods exist to determine the hydraulic conductivity in river beds, both direct and indirect methods, from field to laboratory experiments or numerical modelling, but the uncertainty on obtained K values is often large because of the large variability of K. In the recent years, research has been performed on the usefulness of geophysical methods on rivers, in particular Electrical Resistivity Tomography (ERT) and Induced Polarization (IP). The implementation of ERT and IP in rivers provides a continuous image of the resistivity and chargeability of the subsurface, respectively, and can be used in several applications as proxies for hydraulic conductivity. This work reports and investigate a correlation between hydraulic conductivity measured by slug tests at an experimental site, and electrical resistivity, chargeability and normalized chargeability for riverbeds sediments.

  9. Tradeoffs between hydraulic and mechanical stress responses of mature Norway spruce trunk wood.

    PubMed

    Rosner, Sabine; Klein, Andrea; Müller, Ulrich; Karlsson, Bo

    2008-08-01

    We tested the effects of growth characteristics and basic density on hydraulic and mechanical properties of mature Norway spruce (Picea abies (L.) Karst.) wood from six 24-year-old clones, grown on two sites in southern Sweden differing in water availability. Hydraulic parameters assessed were specific hydraulic conductivity at full saturation (ks100) and vulnerability to cavitation (Psi50), mechanical parameters included bending strength (sigma b), modulus of elasticity (MOE), compression strength (sigma a) and Young's modulus (E). Basic density, diameter at breast height, tree height, and hydraulic and mechanical parameters varied considerably among clones. Clonal means of hydraulic and mechanical properties were strongly related to basic density and to growth parameters across sites, especially to diameter at breast height. Compared with stem wood of slower growing clones, stem wood of rapidly growing clones had significantly lower basic density, lower sigma b, MOE, sigma a and E, was more vulnerable to cavitation, but had higher ks100. Basic density was negatively correlated to Psi50 and ks100. We therefore found a tradeoff between Psi50 and ks100. Clones with high basic density had significantly lower hydraulic vulnerability, but also lower hydraulic conductivity at full saturation and thus less rapid growth than clones with low basic density. This tradeoff involved a negative relationship between Psi50 and sigma b as well as MOE, and between ks100 and sigma b, MOE and sigma a. Basic density and Psi50 showed no site-specific differences, but tree height, diameter at breast height, ks100 and mechanical strength and stiffness were significantly lower at the drier site. Basic density had no influence on the site-dependent differences in hydraulic and mechanical properties, but was strongly negatively related to diameter at breast height. Selecting for growth may thus lead not only to a reduction in mechanical strength and stiffness but also to a reduction in hydraulic safety.

  10. Consequences of hydraulic trait coordination and their associated uncertainties for tropical forest function

    NASA Astrophysics Data System (ADS)

    Christoffersen, B. O.; Xu, C.; Koven, C.; Fisher, R.; Knox, R. G.; Kueppers, L. M.; Chambers, J. Q.; McDowell, N.

    2017-12-01

    Recent syntheses of variation in woody plant traits have emphasized how hydraulic traits - those related to the acquisition, transport and retention of water across roots, stems and leaves - are coordinated along a limited set of dimensions or sequence of responses (Reich 2014, Bartlett et al. 2016). However, in many hydraulic trait-trait relationships, there is considerable residual variation, despite the fact that many bivariate relationships are statistically significant. In other instances, such as the relationship between root-stem-leaf vulnerability to embolism, data are so limited that testing the trait coordination hypothesis is not yet possible. The impacts on plant hydraulic function of competing hypotheses regarding trait coordination (or the lack thereof) and residual trait variation have not yet been comprehensively tested and thus remain unknown. We addressed this knowledge gap with a parameter sensitivity analysis using a plant hydraulics model in which all parameters are biologically-interpretable and measurable plant hydraulic traits, as embedded within a size- and demographically-structured ecosystem model, the `Functionally Assembled Terrestrial Ecosystem Simulator' (FATES). We focused on tropical forests, where co-existing species have been observed to possess large variability in their hydraulic traits. Assembling 10 distinct datasets of hydraulic traits of stomata, leaves, stems, and roots, we determined the best-fit theoretical distribution for each trait and quantified interspecific (between-species) trait-trait coordination in tropical forests as a rank correlation matrix. We imputed missing correlations with values based on competing hypotheses of trait coordination, such as coordinated shifts in embolism vulnerability from roots to shoots (the hydraulic fuse hypothesis). Based on the Fourier Amplitude Sensitivity Test and our correlation matrix, we generated thousands of parameter sets for an ensemble of hydraulics model simulations at a tropical forest site in central Amazonia. We explore the sensitivity of simulated leaf water potential and stem sap flux in the context of hypotheses of trait-trait coordination and their associated uncertainties.

  11. Coupling Hydraulic Fracturing Propagation and Gas Well Performance for Simulation of Production in Unconventional Shale Gas Reservoirs

    NASA Astrophysics Data System (ADS)

    Wang, C.; Winterfeld, P. H.; Wu, Y. S.; Wang, Y.; Chen, D.; Yin, C.; Pan, Z.

    2014-12-01

    Hydraulic fracturing combined with horizontal drilling has made it possible to economically produce natural gas from unconventional shale gas reservoirs. An efficient methodology for evaluating hydraulic fracturing operation parameters, such as fluid and proppant properties, injection rates, and wellhead pressure, is essential for the evaluation and efficient design of these processes. Traditional numerical evaluation and optimization approaches are usually based on simulated fracture properties such as the fracture area. In our opinion, a methodology based on simulated production data is better, because production is the goal of hydraulic fracturing and we can calibrate this approach with production data that is already known. This numerical methodology requires a fully-coupled hydraulic fracture propagation and multi-phase flow model. In this paper, we present a general fully-coupled numerical framework to simulate hydraulic fracturing and post-fracture gas well performance. This three-dimensional, multi-phase simulator focuses on: (1) fracture width increase and fracture propagation that occurs as slurry is injected into the fracture, (2) erosion caused by fracture fluids and leakoff, (3) proppant subsidence and flowback, and (4) multi-phase fluid flow through various-scaled anisotropic natural and man-made fractures. Mathematical and numerical details on how to fully couple the fracture propagation and fluid flow parts are discussed. Hydraulic fracturing and production operation parameters, and properties of the reservoir, fluids, and proppants, are taken into account. The well may be horizontal, vertical, or deviated, as well as open-hole or cemented. The simulator is verified based on benchmarks from the literature and we show its application by simulating fracture network (hydraulic and natural fractures) propagation and production data history matching of a field in China. We also conduct a series of real-data modeling studies with different combinations of hydraulic fracturing parameters and present the methodology to design these operations with feedback of simulated production data. The unified model aids in the optimization of hydraulic fracturing design, operations, and production.

  12. Constraints to hydraulic acclimation under reduced light in two contrasting Phaseolus vulgaris cultivars.

    PubMed

    Matzner, Steven L; Rettedal, David D; Harmon, Derek A; Beukelman, MacKenzie R

    2014-08-01

    Two cultivars of Phaseolus vulgaris L. were grown under three light levels to determine if hydraulic acclimation to light occurs in herbaceous annuals and whether intraspecific trade-offs constrain hydraulic traits. Acclimation occurred in response to reduced light and included decreased stomatal density (SD) and increased specific leaf area (SLA). Reduced light resulted in lower wood density (WD); decreased cavitation resistance, measured as the xylem pressure causing a 50 % reduction in stem conductivity (P50); and increased hydraulic capacity, measured as average leaf mass specific transpiration (E(LM)). Significant or marginally significant trade-offs between P50 and WD, WD and E(LM), and E(LM) and P50 reflected variation due to both genotype and environmental effects. A trade-off between WD and P50 within one cultivar indicated that morphological adjustment was constrained. Coordinated changes in WD, P50, and E(LM) within each cultivar in response to light were consistent with trade-offs constraining plasticity. A water-use efficiency (WUE, measured as δ(13)C) versus hydraulic capacity (E(LM)) trade-off was observed within each cultivar, further indicating that hydraulic trade-offs can constrain acclimation. Larger plants had lower hydraulic capacity (E(LM)) but greater cavitation resistance, WD, and WUE. Distinct hydraulic strategies were observed with the cultivar adapted to irrigated conditions having higher stomatal conductance and stem flow rates. The cultivar adapted to rain-fed conditions had higher leaf area and greater cavitation resistance. Hydraulic trade-offs were observed within the herbaceous P. vulgaris resulting from both genotype and environmental effects. Trade-offs within a cultivar reflected constraints to hydraulic acclimation in response to changing light. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. Crimping and deployment of balloon-expandable valved stents are responsible for the increase in the hydraulic conductance of leaflets.

    PubMed

    Convelbo, Channing; Guetat, Pierre; Cambillau, Michèle; Allam, Bachir; Bruneval, Patrick; Lafont, Antoine; Zegdi, Rachid

    2013-12-01

    Leaflet injury has been documented to occur during the deployment of valved stents (VSs). The pathological aspects, however, of this injury are difficult to quantify. Conversely, the hydraulic conductance of a (pericardial) membrane may be easily determined. The impact of crimping and deployment of VS on this parameter was therefore investigated. Bovine pericardial square (25 × 25 mm) patches were placed within a pressure chamber and their hydraulic conductance was determined. The influence of the pressure gradient and tissue thickness on this parameter was analysed. Six balloon-expandable VS were constructed. The hydraulic conductance of their bovine pericardial leaflets was determined before and after VS crimping and deployment in four of them. Pericardial leaflets of non-crimped VS were used as controls. Hydraulic conductance increased insignificantly with the pressure level within the chamber: from 128 ± 26.9 ml/h/m(2)/mmHg at a pressure of 50 mmHg to 232.3 ± 51.9 ml/h/m(2)/mmHg at a pressure of 250 mmHg (P = 0.117). Hydraulic conductance was not correlated to pericardial thickness, for thickness measurements ranging from 0.34 to 0.76 mm. The hydraulic conductance of VS leaflets significantly increased immediately after crimping from 45.2 ± 7.6 to 667.9.0 ± 527.2 ml/h/m(2)/mmHg (P < 0.001). This increase was still observed 24 h after VS deployment. No change in hydraulic conductance occurred in the control group. The determination of the hydraulic conductance of pericardial patches was easy to perform, reproducible and not influenced by tissue thickness. The hydraulic conductance of pericardial leaflets dramatically increased after VS crimping and deployment. This parameter might be, in the future, a useful noninvasive tool in studying leaflet trauma.

  14. Comparison of hydraulic conductivities for a sand and gravel aquifer in southeastern Massachusetts, estimated by three methods

    USGS Publications Warehouse

    Warren, L.P.; Church, P.E.; Turtora, Michael

    1996-01-01

    Hydraulic conductivities of a sand and gravel aquifer were estimated by three methods: constant- head multiport-permeameter tests, grain-size analyses (with the Hazen approximation method), and slug tests. Sediment cores from 45 boreholes were undivided or divided into two or three vertical sections to estimate hydraulic conductivity based on permeameter tests and grain-size analyses. The cores were collected from depth intervals in the screened zone of the aquifer in each observation well. Slug tests were performed on 29 observation wells installed in the boreholes. Hydraulic conductivities of 35 sediment cores estimated by use of permeameter tests ranged from 0.9 to 86 meters per day, with a mean of 22.8 meters per day. Hydraulic conductivities of 45 sediment cores estimated by use of grain-size analyses ranged from 0.5 to 206 meters per day, with a mean of 40.7 meters per day. Hydraulic conductivities of aquifer material at 29 observation wells estimated by use of slug tests ranged from 0.6 to 79 meters per day, with a mean of 32.9 meters per day. The repeatability of estimated hydraulic conductivities were estimated to be within 30 percent for the permeameter method, 12 percent for the grain-size method, and 9.5 percent for the slug test method. Statistical tests determined that the medians of estimates resulting from the slug tests and grain-size analyses were not significantly different but were significantly higher than the median of estimates resulting from the permeameter tests. Because the permeameter test is the only method considered which estimates vertical hydraulic conductivity, the difference in estimates may be attributed to vertical or horizontal anisotropy. The difference in the average hydraulic conductivities estimated by use of each method was less than 55 percent when compared to the estimated hydraulic conductivity determined from an aquifer test conducted near the study area.

  15. Integrated analysis and interpretation of microseismic monitoring of hydraulic fracturing in the Marcellus Shale

    NASA Astrophysics Data System (ADS)

    Zorn, Erich Victor

    In 2012 and 2013, hydraulic fracturing was performed at two Marcellus Shale well pads, under the supervision of the Energy Corporation of America. Six lateral wells were hydraulically fractured in Greene County in southwestern Pennsylvania and one lateral well was fractured in Clearfield County in north-central Pennsylvania. During hydraulic fracturing operations, microseismic monitoring by strings of downhole geophones detected a combination of >16,000 microseismic events at the two sites. High quality traditional and geomechanical well logs were acquired at Clearfield County, as well as tomographic velocity profiles before and after stimulation. In partnership with the US Department of Energy's National Energy Technology Laboratory, I completed detailed analysis of these geophysical datasets to maximize the understanding of the engineering and geological conditions in the reservoir, the connection between hydraulic input and microseismic expression, and the geomechanical factors that control microseismic properties. Additionally, one broad-band surface seismometer was deployed at Greene County and left to passively monitor site acoustics for the duration of hydraulic fracturing. Data from this instrument shows the presence of slow-slip or long period/long duration (LPLD) seismicity. In years prior to our investigation, lab-scale fracturing studies and broadband seismic monitoring of hydraulic fracturing had been completed by other researchers in unconventional shale and tight sand in Texas and Canada. This is the first study of LPLD seismicity in the Marcellus Shale and reveals aseismic deformation during hydraulic fracturing that could account for a large portion of "lost" hydraulic energy input. Key accomplishments of the studies contained in this dissertation include interpreting microseismic data in terms of hydraulic pumping data and vice versa, verifying the presence of LPLD seismicity during fracturing, establishing important geomechanical controls on the character of induced microseismicity, and extensive data integration toward locating a previously unmapped fault that appears to have exhibited significant control over well stimulation efforts at Clearfield.

  16. Space Shuttle Upgrades Advanced Hydraulic Power System

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Three Auxiliary Power Units (APU) on the Space Shuttle Orbiter each provide 145 hp shaft power to a hydraulic pump which outputs 3000 psi hydraulic fluid to 41 hydraulic actuators. A hydrazine fuel powered APU utilized throughout the Shuttle program has undergone many improvements, but concerns remain with flight safety, operational cost, critical failure modes, and hydrazine related hazards. The advanced hydraulic power system (AHPS), also known as the electric APU, is being evaluated as an upgrade to replace the hydrazine APU. The AHPS replaces the high-speed turbine and hydrazine fuel supply system with a battery power supply and electric motor/pump that converts 300 volt electrical power to 3000 psi hydraulic power. AHPS upgrade benefits include elimination of toxic hydrazine propellant to improve flight safety, reduction in hazardous ground processing operations, and improved reliability. Development of this upgrade provides many interesting challenges and includes development of four hardware elements that comprise the AHPS system: Battery - The battery provides a high voltage supply of power using lithium ion cells. This is a large battery that must provide 28 kilowatt hours of energy over 99 minutes of operation at 300 volts with a peak power of 130 kilowatts for three seconds. High Voltage Power Distribution and Control (PD&C) - The PD&C distributes electric power from the battery to the EHDU. This 300 volt system includes wiring and components necessary to distribute power and provide fault current protection. Electro-Hydraulic Drive Unit (EHDU) - The EHDU converts electric input power to hydraulic output power. The EHDU must provide over 90 kilowatts of stable, output hydraulic power at 3000 psi with high efficiency and rapid response time. Cooling System - The cooling system provides thermal control of the Orbiter hydraulic fluid and EHDU electronic components. Symposium presentation will provide an overview of the AHPS upgrade, descriptions of the four hardware elements, and a summary of development results to date.

  17. Effects of hydraulic roughness on surface textures of gravel‐bed rivers

    USGS Publications Warehouse

    Buffington, John M.; Montgomery, David R.

    1999-01-01

    Field studies of forest gravel‐bed rivers in northwestern Washington and southeastern Alaska demonstrate that bed‐surface grain size is responsive to hydraulic roughness caused by bank irregularities, bars, and wood debris. We evaluate textural response by comparing reach‐average median grain size (D50) to that predicted from the total bank‐full boundary shear stress (т0bf), representing a hypothetical reference condition of low hydraulic roughness. For a given т0bf, channels with progressively greater hydraulic roughness have systematically finer bed surfaces, presumably due to reduced bed shear stress, resulting in lower channel competence and diminished bed load transport capacity, both of which promote textural fining. In channels with significant hydraulic roughness, observed values D50 can be up to 90% smaller than those predicted from т0bf. We find that wood debris plays an important role at our study sites, not only providing hydraulic roughness but also influencing pool spacing, frequency of textural patches, and the amplitude and wavelength of bank and bar topography and their consequent roughness. Our observations also have biological implications. We find that textural fining due to hydraulic roughness can create usable salmonid spawning gravels in channels that otherwise would be too coarse.

  18. Economic and hydraulic divergences underpin ecological differentiation in the Bromeliaceae.

    PubMed

    Males, Jamie; Griffiths, Howard

    2018-01-01

    Leaf economic and hydraulic theories have rarely been applied to the ecological differentiation of speciose herbaceous plant radiations. The role of character trait divergences and network reorganization in the differentiation of the functional types in the megadiverse Neotropical Bromeliaceae was explored by quantifying a range of leaf economic and hydraulic traits in 50 diverse species. Functional types, which are defined by combinations of C 3 or Crassulacean acid metabolism (CAM) photosynthesis, terrestrial or epiphytic habits, and non-specialized, tank-forming or atmospheric morphologies, segregated clearly in trait space. Most classical leaf economic relationships were supported, but they were weakened by the presence of succulence. Functional types differed in trait-network architecture, suggesting that rewiring of trait-networks caused by innovations in habit and photosynthetic pathway is an important aspect of ecological differentiation. The hydraulic data supported the coupling of leaf hydraulics and gas exchange, but not the hydraulic safety versus efficiency hypothesis, and hinted at an important role for the extra-xylary compartment in the control of bromeliad leaf hydraulics. Overall, our findings highlight the fundamental importance of structure-function relationships in the generation and maintenance of ecological diversity. © 2017 The Authors Plant, Cell & Environment Published by John Wiley & Sons Ltd.

  19. A potential role for xylem-phloem interactions in the hydraulic architecture of trees: effects of phloem girdling on xylem hydraulic conductance.

    PubMed

    Zwieniecki, Maciej A; Melcher, Peter J; Feild, Taylor S; Holbrook, N Michele

    2004-08-01

    We investigated phloem-xylem interactions in Acer rubrum L. and Acer saccharum Marsh. Our experimental method allowed us to determine xylem conductance of an intact branch by measuring the flow rate of water supplied at two delivery pressures to the cut end of a small side branch. We found that removal of bark tissue (phloem girdling) upstream of the point at which deionized water was delivered to the branch resulted in a decrease (24% for A. rubrum and 15% for A. saccharum) in branch xylem hydraulic conductance. Declines in hydraulic conductance with girdling were accompanied by a decrease in the osmotic concentration of xylem sap. The decrease in xylem sap concentration following phloem girdling suggests that ion redistribution from the phloem was responsible for the observed decline in hydraulic conductance. When the same measurements were made on branches perfused with KCl solution (approximately 140 mOsm kg(-1)), phloem girdling had no effect on xylem hydraulic conductance. These results suggest a functional link between phloem and xylem hydraulic systems that is mediated by changes in the ionic content of the cell sap.

  20. A field assessment of the value of steady shape hydraulic tomography for characterization of aquifer heterogeneities

    USGS Publications Warehouse

    Bohling, Geoffrey C.; Butler, James J.; Zhan, Xiaoyong; Knoll, Michael D.

    2007-01-01

    Hydraulic tomography is a promising approach for obtaining information on variations in hydraulic conductivity on the scale of relevance for contaminant transport investigations. This approach involves performing a series of pumping tests in a format similar to tomography. We present a field‐scale assessment of hydraulic tomography in a porous aquifer, with an emphasis on the steady shape analysis methodology. The hydraulic conductivity (K) estimates from steady shape and transient analyses of the tomographic data compare well with those from a tracer test and direct‐push permeameter tests, providing a field validation of the method. Zonations based on equal‐thickness layers and cross‐hole radar surveys are used to regularize the inverse problem. The results indicate that the radar surveys provide some useful information regarding the geometry of the K field. The steady shape analysis provides results similar to the transient analysis at a fraction of the computational burden. This study clearly demonstrates the advantages of hydraulic tomography over conventional pumping tests, which provide only large‐scale averages, and small‐scale hydraulic tests (e.g., slug tests), which cannot assess strata connectivity and may fail to sample the most important pathways or barriers to flow.

  1. Pressure variable orifice for hydraulic control valve

    NASA Technical Reports Server (NTRS)

    Ammerman, R. L.

    1968-01-01

    Hydraulic valve absorbs impact energy generated in docking or joining of two large bodies by controlling energy release to avoid jarring shock. The area of exit porting presented to the hydraulic control fluid is directly proportional to the pressure acting on the fluid.

  2. 14 CFR 33.72 - Hydraulic actuating systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Hydraulic actuating systems. 33.72 Section 33.72 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.72 Hydraulic...

  3. 14 CFR 33.72 - Hydraulic actuating systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Hydraulic actuating systems. 33.72 Section 33.72 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.72 Hydraulic...

  4. 14 CFR 33.72 - Hydraulic actuating systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Hydraulic actuating systems. 33.72 Section 33.72 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.72 Hydraulic...

  5. Review of Well Operator Files for Hydraulically Fractured Oil and Gas Production Wells: Hydraulic Fracturing Operations

    EPA Pesticide Factsheets

    EPA conducted a survey of oil and gas production wells hydraulically fractured by nine oil and gas service companies in the United States during 2009 and 2010. This is the second well file review report.

  6. Comparative Studies of the Short-Term Toxicity of the Hydraulic Fluids MIL-H-19457C, MIL-H-19457B, and MIL-H-22072B.

    DTIC Science & Technology

    1986-07-09

    way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise, as in any manner licensing the holder...Chemistry Tests Performed on Rats and Rabbits Exposed to Hydraulic Fluid ------------------------ 11 3 Tissues Collected for Histopathologic Examination of...hydraulic fluids are necessary to properly compare the health risks associated with the various hydraulic fluids. The Naval Medical Research Institute

  7. Cost And Performance Report Evaluating the Longevity and Hydraulic Performance of Permeable Reactive Barriers at Department of Defense Sites

    DTIC Science & Technology

    2003-12-01

    construction methods, such as jetting, hydraulic fracturing , and vibratory beam, have been demonstrated at some sites, as they offer some cost... hydraulic fracturing , are available, but there is not as much widespread experience yet with these techniques for PRBs. Also, these innovative... hydraulic fracturing ) can be used at relatively higher cost. The cost comparison of a PRB versus an active remedy, such as a pump-and-treat system, often

  8. Mathematical modeling of bent-axis hydraulic piston motors

    NASA Technical Reports Server (NTRS)

    Bartos, R. D.

    1992-01-01

    Each of the DSN 70-m antennas uses 16 bent-axis hydraulic piston motors as part of the antenna drive system. On each of the two antenna axes, four motors are used to drive the antenna and four motors provide counter torque to remove the backlash in the antenna drive train. This article presents a mathematical model for bent-axis hydraulic piston motors. The model was developed to understand the influence of the hydraulic motors on the performance of the DSN 70-m antennas' servo control system.

  9. Electrokinetic high pressure hydraulic system

    DOEpatents

    Paul, Phillip H.; Rakestraw, David J.

    2000-01-01

    A compact high pressure hydraulic pump having no moving mechanical parts for converting electric potential to hydraulic force. The electrokinetic pump, which can generate hydraulic pressures greater than 2500 psi, can be employed to compress a fluid, either liquid or gas, and manipulate fluid flow. The pump is particularly useful for capillary-base systems. By combining the electrokinetic pump with a housing having chambers separated by a flexible member, fluid flow, including high pressure fluids, is controlled by the application of an electric potential, that can vary with time.

  10. Hydraulic efficiency and safety of vascular and non-vascular components in Pinus pinaster leaves.

    PubMed

    Charra-Vaskou, Katline; Badel, Eric; Burlett, Régis; Cochard, Hervé; Delzon, Sylvain; Mayr, Stefan

    2012-09-01

    Leaves, the distal section of the soil-plant-atmosphere continuum, exhibit the lowest water potentials in a plant. In contrast to angiosperm leaves, knowledge of the hydraulic architecture of conifer needles is scant. We investigated the hydraulic efficiency and safety of Pinus pinaster needles, comparing different techniques. The xylem hydraulic conductivity (k(s)) and embolism vulnerability (P(50)) of both needle and stem were measured using the cavitron technique. The conductance and vulnerability of whole needles were measured via rehydration kinetics, and Cryo-SEM and 3D X-ray microtomographic observations were used as reference tools to validate physical measurements. The needle xylem of P. pinaster had lower hydraulic efficiency (k(s) = 2.0 × 10(-4) m(2) MPa(-1) s(-1)) and safety (P(50) = - 1.5 MPa) than stem xylem (k(s) = 7.7 × 10(-4) m(2) MPa(-1) s(-1); P(50) = - 3.6 to - 3.2 MPa). P(50) of whole needles (both extra-vascular and vascular pathways) was - 0.5 MPa, suggesting that non-vascular tissues were more vulnerable than the xylem. During dehydration to - 3.5 MPa, collapse and embolism in xylem tracheids, and gap formation in surrounding tissues were observed. However, a discrepancy in hydraulic and acoustic results appeared compared with visualizations, arguing for greater caution with these techniques when applied to needles. Our results indicate that the most distal parts of the water transport pathway are limiting for hydraulics of P. pinaster. Needle tissues exhibit a low hydraulic efficiency and low hydraulic safety, but may also act to buffer short-term water deficits, thus preventing xylem embolism.

  11. Decoupling analysis for a powertrain mounting system with a combination of hydraulic mounts

    NASA Astrophysics Data System (ADS)

    Hu, Jinfang; Chen, Wuwei; Huang, He

    2013-07-01

    The existing torque roll axis(TRA) decoupling theories for a powertrain mounting system assume that the stiffness and viscous damping properties are constant. However, real-life mounts exhibit considerable spectrally varying stiffness and damping characteristics, and the influence of the spectrally-varying properties of the hydraulic mounts on the powertrain system cannot be ignored. To overcome the deficiency, an analytical quasi-linear model of the hydraulic mount and the coupled properties of the powertrain and hydraulic mounts system are formulated. The influence of the hydraulic mounts on the TRA decoupling of a powertrain system is analytically examined in terms of eigensolutions, frequency, and impulse responses, and then a new analytical axiom is proposed based on the TRA decoupling indices. With the experimental setup of a fixed decoupler hydraulic mount in the context of non-resonant dynamic stiffness testing procedure, the quasi-linear model of the hydraulic mount is verified by comparing the predictions with the measurement. And the quasi-linear formulation of the coupled system is also verified by comparing the frequency responses with the numerical results obtained by the direct inversion method. Finally, the mounting system with a combination of hydraulic mounts is redesigned in terms of the stiffness, damping and mount locations by satisfying the new axiom. The frequency and time domain results of the redesigned system demonstrate that the torque roll axis of the redesigned powertrain mounting system is indeed decoupled in the presence of hydraulic mounts (given oscillating torque or impulsive torque excitation). The proposed research provides an important basis and method for the research on a powertrain system with spectrally-varying mount properties, especially for the TRA decoupling.

  12. Estimating biozone hydraulic conductivity in wastewater soil-infiltration systems using inverse numerical modeling.

    PubMed

    Bumgarner, Johnathan R; McCray, John E

    2007-06-01

    During operation of an onsite wastewater treatment system, a low-permeability biozone develops at the infiltrative surface (IS) during application of wastewater to soil. Inverse numerical-model simulations were used to estimate the biozone saturated hydraulic conductivity (K(biozone)) under variably saturated conditions for 29 wastewater infiltration test cells installed in a sandy loam field soil. Test cells employed two loading rates (4 and 8cm/day) and 3 IS designs: open chamber, gravel, and synthetic bundles. The ratio of K(biozone) to the saturated hydraulic conductivity of the natural soil (K(s)) was used to quantify the reductions in the IS hydraulic conductivity. A smaller value of K(biozone)/K(s,) reflects a greater reduction in hydraulic conductivity. The IS hydraulic conductivity was reduced by 1-3 orders of magnitude. The reduction in IS hydraulic conductivity was primarily influenced by wastewater loading rate and IS type and not by the K(s) of the native soil. The higher loading rate yielded greater reductions in IS hydraulic conductivity than the lower loading rate for bundle and gravel cells, but the difference was not statistically significant for chamber cells. Bundle and gravel cells exhibited a greater reduction in IS hydraulic conductivity than chamber cells at the higher loading rates, while the difference between gravel and bundle systems was not statistically significant. At the lower rate, bundle cells exhibited generally lower K(biozone)/K(s) values, but not at a statistically significant level, while gravel and chamber cells were statistically similar. Gravel cells exhibited the greatest variability in measured values, which may complicate design efforts based on K(biozone) evaluations for these systems. These results suggest that chamber systems may provide for a more robust design, particularly for high or variable wastewater infiltration rates.

  13. Predicting the hydraulic forces on submerged macrophytes from current velocity, biomass and morphology.

    PubMed

    Schutten, J; Davy, A J

    2000-06-01

    Aquatic macrophytes are important in stabilising moderately eutrophic, shallow freshwater lakes in the clear-water state. The failure of macrophyte recovery in lakes with very soft, highly organic sediments that have been restored to clear water by biomanipulation (e.g. in the Norfolk Broads, UK) has suggested that the physical stability of the sediment may limit plant establishment. Hydraulic forces from water currents may be sufficient to break or remove plants. Our aim was to develop a simple model that could predict these forces from plant biomass, current velocity and plant form. We used an experimental flume to measure the hydraulic forces acting on shoots of 18 species of aquatic macrophyte of varying size and morphology. The hydraulic drag on the shoots was regressed on a theoretically derived predictor (shoot biomass × current velocity 1.5 ). Such linear regressions proved to be highly significant for most species. The slopes of these lines represent species-specific, hydraulic roughness factors that are analogous to classical drag coefficients. Shoot architecture parameters describing leaf and shoot shape had significant effects on the hydraulic roughness factor. Leaf width and shoot stiffness individually did not have a significant influence, but in combination with shoot shape they were significant. This hydraulic model was validated for a subset of species using measurements from an independent set of shoots. When measured and predicted hydraulic forces were compared, the fit was generally very good, except for two species with morphological variations. This simple model, together with the plant-specific factors, provides a basis for predicting the hydraulic forces acting on the root systems of macrophytes under field conditions. This information should allow prediction of the physical stability of individual plants, as an aid to shallow-lake management.

  14. Trends in hydraulic fracturing distributions and treatment fluids, additives, proppants, and water volumes applied to wells drilled in the United States from 1947 through 2010: data analysis and comparison to the literature

    USGS Publications Warehouse

    Gallegos, Tanya J.; Varela, Brian A.

    2015-01-01

    Hydraulic fracturing is presently the primary stimulation technique for oil and gas production in low-permeability, unconventional reservoirs. Comprehensive, published, and publicly available information regarding the extent, location, and character of hydraulic fracturing in the United States is scarce. This national spatial and temporal analysis of data on nearly 1 million hydraulically fractured wells and 1.8 million fracturing treatment records from 1947 through 2010 (aggregated in Data Series 868) is used to identify hydraulic fracturing trends in drilling methods and use of proppants, treatment fluids, additives, and water in the United States. These trends are compared to the literature in an effort to establish a common understanding of the differences in drilling methods, treatment fluids, and chemical additives and of how the newer technology has affected the water use volumes and areal distribution of hydraulic fracturing. Historically, Texas has had the highest number of records of hydraulic fracturing treatments and associated wells in the United States documented in the datasets described herein. Water-intensive horizontal/directional drilling has also increased from 6 percent of new hydraulically fractured wells drilled in the United States in 2000 to 42 percent of new wells drilled in 2010. Increases in horizontal drilling also coincided with the emergence of water-based “slick water” fracturing fluids. As such, the most current hydraulic fracturing materials and methods are notably different from those used in previous decades and have contributed to the development of previously inaccessible unconventional oil and gas production target areas, namely in shale and tight-sand reservoirs. Publicly available derivative datasets and locations developed from these analyses are described.

  15. [Spatial variation characteristics of surface soil water content, bulk density and saturated hydraulic conductivity on Karst slopes].

    PubMed

    Zhang, Chuan; Chen, Hong-Song; Zhang, Wei; Nie, Yun-Peng; Ye, Ying-Ying; Wang, Ke-Lin

    2014-06-01

    Surface soil water-physical properties play a decisive role in the dynamics of deep soil water. Knowledge of their spatial variation is helpful in understanding the processes of rainfall infiltration and runoff generation, which will contribute to the reasonable utilization of soil water resources in mountainous areas. Based on a grid sampling scheme (10 m x 10 m) and geostatistical methods, this paper aimed to study the spatial variability of surface (0-10 cm) soil water content, soil bulk density and saturated hydraulic conductivity on a typical shrub slope (90 m x 120 m, projected length) in Karst area of northwest Guangxi, southwest China. The results showed that the surface soil water content, bulk density and saturated hydraulic conductivity had different spatial dependence and spatial structure. Sample variogram of the soil water content was fitted well by Gaussian models with the nugget effect, while soil bulk density and saturated hydraulic conductivity were fitted well by exponential models with the nugget effect. Variability of soil water content showed strong spatial dependence, while the soil bulk density and saturated hydraulic conductivity showed moderate spatial dependence. The spatial ranges of the soil water content and saturated hydraulic conductivity were small, while that of the soil bulk density was much bigger. In general, the soil water content increased with the increase of altitude while it was opposite for the soil bulk densi- ty. However, the soil saturated hydraulic conductivity had a random distribution of large amounts of small patches, showing high spatial heterogeneity. Soil water content negatively (P < 0.01) correlated with the bulk density and saturated hydraulic conductivity, while there was no significant correlation between the soil bulk density and saturated hydraulic conductivity.

  16. Active control system for high speed windmills

    DOEpatents

    Avery, D.E.

    1988-01-12

    A pump stroke is matched to the operating speed of a high speed windmill. The windmill drives a hydraulic pump for a control. Changes in speed of a wind driven shaft open supply and exhaust valves to opposite ends of a hydraulic actuator to lengthen and shorten an oscillating arm thereby lengthening and shortening the stroke of an output pump. Diminishing wind to a stall speed causes the valves to operate the hydraulic cylinder to shorten the oscillating arm to zero. A pressure accumulator in the hydraulic system provides the force necessary to supply the hydraulic fluid under pressure to drive the actuator into and out of the zero position in response to the windmill shaft speed approaching and exceeding windmill stall speed. 4 figs.

  17. Active control system for high speed windmills

    DOEpatents

    Avery, Don E.

    1988-01-01

    A pump stroke is matched to the operating speed of a high speed windmill. The windmill drives a hydraulic pump for a control. Changes in speed of a wind driven shaft open supply and exhaust valves to opposite ends of a hydraulic actuator to lengthen and shorten an oscillating arm thereby lengthening and shortening the stroke of an output pump. Diminishing wind to a stall speed causes the valves to operate the hydraulic cylinder to shorten the oscillating arm to zero. A pressure accumulator in the hydraulic system provides the force necessary to supply the hydraulic fluid under pressure to drive the actuator into and out of the zero position in response to the windmill shaft speed approaching and exceeding windmill stall speed.

  18. Hydraulically controlled discrete sampling from open boreholes

    USGS Publications Warehouse

    Harte, Philip T.

    2013-01-01

    Groundwater sampling from open boreholes in fractured-rock aquifers is particularly challenging because of mixing and dilution of fluid within the borehole from multiple fractures. This note presents an alternative to traditional sampling in open boreholes with packer assemblies. The alternative system called ZONFLO (zonal flow) is based on hydraulic control of borehole flow conditions. Fluid from discrete fractures zones are hydraulically isolated allowing for the collection of representative samples. In rough-faced open boreholes and formations with less competent rock, hydraulic containment may offer an attractive alternative to physical containment with packers. Preliminary test results indicate a discrete zone can be effectively hydraulically isolated from other zones within a borehole for the purpose of groundwater sampling using this new method.

  19. Determination of Material Strengths by Hydraulic Bulge Test.

    PubMed

    Wang, Hankui; Xu, Tong; Shou, Binan

    2016-12-30

    The hydraulic bulge test (HBT) method is proposed to determine material tensile strengths. The basic idea of HBT is similar to the small punch test (SPT), but inspired by the manufacturing process of rupture discs-high-pressure hydraulic oil is used instead of punch to cause specimen deformation. Compared with SPT method, the HBT method can avoid some of influence factors, such as punch dimension, punch material, and the friction between punch and specimen. A calculation procedure that is entirely based on theoretical derivation is proposed for estimate yield strength and ultimate tensile strength. Both conventional tensile tests and hydraulic bulge tests were carried out for several ferrous alloys, and the results showed that hydraulic bulge test results are reliable and accurate.

  20. Hydraulic hoisting and backfilling

    NASA Astrophysics Data System (ADS)

    Sauermann, H. B.

    In a country such as South Africa, with its large deep level mining industry, improvements in mining and hoisting techniques could result in substantial savings. Hoisting techniques, for example, may be improved by the introduction of hydraulic hoisting. The following are some of the advantages of hydraulic hoisting as against conventional skip hoisting: (1) smaller shafts are required because the pipes to hoist the same quantity of ore hydraulically require less space in the shaft than does skip hoisting equipment; (2) the hoisting capacity of a mine can easily be increased without the necessity of sinking new shafts. Large savings in capital costs can thus be made; (3) fully automatic control is possible with hydraulic hoisting and therefore less manpower is required; and (4) health and safety conditions will be improved.

  1. Transmissivity Changes and Microseismicity Induced by Small-Scale Hydraulic Fracturing Tests in Crystalline Rock

    NASA Astrophysics Data System (ADS)

    Jalali, Mohammadreza; Gischig, Valentin; Doetsch, Joseph; Näf, Rico; Krietsch, Hannes; Klepikova, Maria; Amann, Florian; Giardini, Domenico

    2018-03-01

    Multiple meter-scale hydraulic fracturing (HF) experiments were executed in the crystalline rock at the Grimsel Test Site, Switzerland. The effect of the HF on the rock transmissivity has been quantified with hydraulic tests before and after each HF experiment. We observe transmissivity enhancement of 2 to 3 orders of magnitude and a change in the dominant flow regime after most of the HF tests. From microseismicity induced by the HF, we do not observe a systematic correlation between transmissivity enhancement and event numbers, frequency-magnitude distribution, or maximum magnitude. However, the radii of hydraulic fractures inferred independently from seismicity clouds and hydraulic responses coincide, implying that slip along fractures is the common underlying mechanism for transmissivity increase and seismicity.

  2. Tribology of hydraulic pumps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamaguchi, A.

    To obtain much higher performance than that of alternative power transmission systems, hydraulic systems have been continuously evolving to use high-pressure. Adoption of positive displacement pumps and motors is based on this reason. Therefore, tribology is a key terminology for hydraulic pumps and motors to obtain excellent performance and durability. In this paper the following topics are investigated: (1) the special feature of tribology of hydraulic pumps and motors; (2) indication of the important bearing/sealing parts in piston pumps and effects of the frictional force and leakage flow to performance; (3) the methods to break through the tribological limitation ofmore » hydraulic equipment; and (4) optimum design of the bearing/sealing parts used in the fluid to mixed lubrication regions.« less

  3. 44 CFR 72.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... or hydraulic characteristics of a flooding source and thus result in the modification of the existing... hydrologic or hydraulic characteristics of a flooding source and thus result in the modification of the... generally based on physical measures that affect the hydrologic or hydraulic characteristics of a flooding...

  4. 44 CFR 72.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... or hydraulic characteristics of a flooding source and thus result in the modification of the existing... hydrologic or hydraulic characteristics of a flooding source and thus result in the modification of the... generally based on physical measures that affect the hydrologic or hydraulic characteristics of a flooding...

  5. 44 CFR 72.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... or hydraulic characteristics of a flooding source and thus result in the modification of the existing... hydrologic or hydraulic characteristics of a flooding source and thus result in the modification of the... generally based on physical measures that affect the hydrologic or hydraulic characteristics of a flooding...

  6. 44 CFR 72.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... or hydraulic characteristics of a flooding source and thus result in the modification of the existing... hydrologic or hydraulic characteristics of a flooding source and thus result in the modification of the... generally based on physical measures that affect the hydrologic or hydraulic characteristics of a flooding...

  7. 44 CFR 72.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... or hydraulic characteristics of a flooding source and thus result in the modification of the existing... hydrologic or hydraulic characteristics of a flooding source and thus result in the modification of the... generally based on physical measures that affect the hydrologic or hydraulic characteristics of a flooding...

  8. 69. (Credit JTL) View beneath marble meter bench showing hydraulic ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    69. (Credit JTL) View beneath marble meter bench showing hydraulic lines leading to water valve hydraulic control cylinders from control handles in bench; strings and pulleys activate meters. - McNeil Street Pumping Station, McNeil Street & Cross Bayou, Shreveport, Caddo Parish, LA

  9. 125. HYDRAULIC CONTROLS FOR MAST TRENCH DOORS ON LEFT SIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    125. HYDRAULIC CONTROLS FOR MAST TRENCH DOORS ON LEFT SIDE OF HYDRAULIC CONTROL PANEL IN UMBILICAL MAST PUMP ROOM (209), LSB (BLDG. 751) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  10. Repair and protection of hydraulic cement concrete bridge decks.

    DOT National Transportation Integrated Search

    1994-01-01

    The report is an updated version of "A Manual for the Repair and Protection of Hydraulic Cement Concrete Bridge Decks" (VTRC 90-TAR2). The report was prepared for Chapter 2 of the Hydraulic Cement Concrete Construction School Study Guide which is dis...

  11. THE RETC CODE FOR QUANTIFYING THE HYDRAULIC FUNCTIONS OF UNSATURATED SOILS

    EPA Science Inventory

    This report describes the RETC computer code for analyzing the soil water retention and hydraulic conductivity functions of unsaturated soils. These hydraulic properties are key parameters in any quantitative description of water flow into and through the unsaturated zone of soil...

  12. ESTIMATING STREAMFLOW AND ASSOCIATED HYDRAULIC GEOMETRY, THE MID-ATLANTIC REGION, USA

    EPA Science Inventory

    Methods to estimate streamflow and channel hydraulic geometry were developed for ungaged streams in the Mid-Atlantic Region. Observed mean annual streamflow and associated hydraulic geometry data from 75 gaging stations located in the Appalachian Plateau, the Ridge and Valley, an...

  13. FEASIBILITY OF HYDRAULIC FRACTURING OF SOILS TO IMPROVE REMEDIAL ACTIONS

    EPA Science Inventory

    Hydraulic fracturing, a technique commonly used to increase the yields of oil wells, could improve the effectiveness of several methods of in situ remediation. This project consisted of laboratory and field tests in which hydraulic fractures were created in soil. Laboratory te...

  14. 46 CFR 58.25-5 - General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... tanker's hydraulic steering gear. Auxiliary steering gear means the equipment, other than any part of the...; (2) Receivers; (3) Feedback devices; (4) Hydraulic servo-control pumps, with associated motors and... the hydraulic equipment for applying torque to the rudder stock. It includes, but is not limited to...

  15. 46 CFR 58.25-5 - General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... tanker's hydraulic steering gear. Auxiliary steering gear means the equipment, other than any part of the...; (2) Receivers; (3) Feedback devices; (4) Hydraulic servo-control pumps, with associated motors and... the hydraulic equipment for applying torque to the rudder stock. It includes, but is not limited to...

  16. EFFECTS OF ELECTROOSMOSIS ON SOIL TEMPERATURE AND HYDRAULIC HEAD: II. NUMERICAL SIMULATION

    EPA Science Inventory

    A numerical model to simulate the distributions of voltage, soil temperature, and hydraulic head during the field test of electroosmosis was developed. The two-dimensional governing equations for the distributions of voltage, soil temperature, and hydraulic head within a cylindri...

  17. Hydraulics.

    ERIC Educational Resources Information Center

    Decker, Robert L.

    Designed for use in courses where students are expected to become proficient in the area of hydraulics, including diesel engine mechanic programs, this curriculum guide is comprised of fourteen units of instruction. Unit titles include (1) Introduction, (2) Fundamentals of Hydraulics, (3) Reservoirs, (4) Lines, Fittings, and Couplers, (5) Seals,…

  18. Obtaining soil hydraulic parameters from data assimilation under different climatic/soil conditions

    USDA-ARS?s Scientific Manuscript database

    Obtaining reliable soil hydraulic properties is essential to correctly simulating soil water content (SWC), which is a key component of countless applications such as agricultural management, soil remediation, aquifer protection, etc. Soil hydraulic properties can be measured in the laboratory; howe...

  19. Using well casing as an electrical source to monitor hydraulic fracture fluid injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilt, Michael; Nieuwenhuis, Greg; MacLennan, Kris

    2016-03-09

    The depth to surface resistivity (DSR) method transmits current from a source located in a cased or openhole well to a distant surface return electrode while electric field measurements are made at the surface over the target of interest. This paper presents both numerical modelling results and measured data from a hydraulic fracturing field test where conductive water was injected into a resistive shale reservoir during a hydraulic fracturing operation. Modelling experiments show that anomalies due to hydraulic fracturing are small but measureable with highly sensitive sensor technology. The field measurements confirm the model results,showing that measured differences in themore » surface fields due to hydraulic fracturing have been detected above the noise floor. Our results show that the DSR method is sensitive to the injection of frac fluids; they are detectable above the noise floor in a commercially active hydraulic fracturing operation, and therefore this method can be used for monitoring fracture fluid movement.« less

  20. Hydraulic Experiments for Determination of In-situ Hydraulic Conductivity of Submerged Sediments

    PubMed Central

    Lee, Bong-Joo; Lee, Ji-Hoon; Yoon, Heesung; Lee, Eunhee

    2015-01-01

    A new type of in-situ hydraulic permeameter was developed to determine vertical hydraulic conductivity (VHC) of saturated sediments from hydraulic experiments using Darcy's law. The system allows water to move upward through the porous media filled in the permeameter chamber driven into sediments at water-sediment interface. Darcy flux and hydraulic gradient can be measured using the system, and the VHC can be determined from the relationship between them using Darcy's law. Evaluations in laboratory and in field conditions were performed to see if the proposed permeameter give reliable and valid measures of the VHC even where the vertical flow at water-sediment interface and fluctuation of water stage exist without reducing the accuracy of the derived VHC. Results from the evaluation tests indicate that the permeameter proposed in this study can be used to measure VHC of saturated sandy sediments at water-sediment interface in stream and marine environment with high accuracy. PMID:25604984

  1. Motion control of multi-actuator hydraulic systems for mobile machineries: Recent advancements and future trends

    NASA Astrophysics Data System (ADS)

    Xu, Bing; Cheng, Min

    2018-06-01

    This paper presents a survey of recent advancements and upcoming trends in motion control technologies employed in designing multi-actuator hydraulic systems for mobile machineries. Hydraulic systems have been extensively used in mobile machineries due to their superior power density and robustness. However, motion control technologies of multi-actuator hydraulic systems have faced increasing challenges due to stringent emission regulations. In this study, an overview of the evolution of existing throttling control technologies is presented, including open-center and load sensing controls. Recent advancements in energy-saving hydraulic technologies, such as individual metering, displacement, and hybrid controls, are briefly summarized. The impact of energy-saving hydraulic technologies on dynamic performance and control solutions are also discussed. Then, the advanced operation methods of multi-actuator mobile machineries are reviewed, including coordinated and haptic controls. Finally, challenges and opportunities of advanced motion control technologies are presented by providing an overall consideration of energy efficiency, controllability, cost, reliability, and other aspects.

  2. The 25 kWe solar thermal Stirling hydraulic engine system: Conceptual design

    NASA Technical Reports Server (NTRS)

    White, Maurice; Emigh, Grant; Noble, Jack; Riggle, Peter; Sorenson, Torvald

    1988-01-01

    The conceptual design and analysis of a solar thermal free-piston Stirling hydraulic engine system designed to deliver 25 kWe when coupled to a 11 meter test bed concentrator is documented. A manufacturing cost assessment for 10,000 units per year was made. The design meets all program objectives including a 60,000 hr design life, dynamic balancing, fully automated control, more than 33.3 percent overall system efficiency, properly conditioned power, maximum utilization of annualized insolation, and projected production costs. The system incorporates a simple, rugged, reliable pool boiler reflux heat pipe to transfer heat from the solar receiver to the Stirling engine. The free-piston engine produces high pressure hydraulic flow which powers a commercial hydraulic motor that, in turn, drives a commercial rotary induction generator. The Stirling hydraulic engine uses hermetic bellows seals to separate helium working gas from hydraulic fluid which provides hydrodynamic lubrication to all moving parts. Maximum utilization of highly refined, field proven commercial components for electric power generation minimizes development cost and risk.

  3. SMITHERS: An object-oriented modular mapping methodology for MCNP-based neutronic–thermal hydraulic multiphysics

    DOE PAGES

    Richard, Joshua; Galloway, Jack; Fensin, Michael; ...

    2015-04-04

    A novel object-oriented modular mapping methodology for externally coupled neutronics–thermal hydraulics multiphysics simulations was developed. The Simulator using MCNP with Integrated Thermal-Hydraulics for Exploratory Reactor Studies (SMITHERS) code performs on-the-fly mapping of material-wise power distribution tallies implemented by MCNP-based neutron transport/depletion solvers for use in estimating coolant temperature and density distributions with a separate thermal-hydraulic solver. The key development of SMITHERS is that it reconstructs the hierarchical geometry structure of the material-wise power generation tallies from the depletion solver automatically, with only a modicum of additional information required from the user. In addition, it performs the basis mapping from themore » combinatorial geometry of the depletion solver to the required geometry of the thermal-hydraulic solver in a generalizable manner, such that it can transparently accommodate varying levels of thermal-hydraulic solver geometric fidelity, from the nodal geometry of multi-channel analysis solvers to the pin-cell level of discretization for sub-channel analysis solvers.« less

  4. Micro-hydromechanical deep drawing of metal cups with hydraulic pressure effects

    NASA Astrophysics Data System (ADS)

    Luo, Liang; Jiang, Zhengyi; Wei, Dongbin; Wang, Xiaogang; Zhou, Cunlong; Huang, Qingxue

    2018-03-01

    Micro-metal products have recently enjoyed high demand. In addition, metal microforming has drawn increasing attention due to its net-forming capability, batch manufacturing potential, high product quality, and relatively low equipment cost. Micro-hydromechanical deep drawing (MHDD), a typical microforming method, has been developed to take advantage of hydraulic force. With reduced dimensions, the hydraulic pressure development changes; accordingly, the lubrication condition changes from the macroscale to the microscale. A Voronoi-based finite element model is proposed in this paper to consider the change in lubrication in MHDD according to open and closed lubricant pocket theory. Simulation results agree with experimental results concerning drawing force. Changes in friction significantly affect the drawing process and the drawn cups. Moreover, defined wrinkle indexes have been shown to have a complex relationship with hydraulic pressure. High hydraulic pressure can increase the maximum drawing ratio (drawn cup height), whereas the surface finish represented by the wear is not linearly dependent on the hydraulic pressure due to the wrinkles.

  5. High bulk modulus of ionic liquid and effects on performance of hydraulic system.

    PubMed

    Kambic, Milan; Kalb, Roland; Tasner, Tadej; Lovrec, Darko

    2014-01-01

    Over recent years ionic liquids have gained in importance, causing a growing number of scientists and engineers to investigate possible applications for these liquids because of their unique physical and chemical properties. Their outstanding advantages such as nonflammable liquid within a broad liquid range, high thermal, mechanical, and chemical stabilities, low solubility for gases, attractive tribological properties (lubrication), and very low compressibility, and so forth, make them more interesting for applications in mechanical engineering, offering great potential for new innovative processes, and also as a novel hydraulic fluid. This paper focuses on the outstanding compressibility properties of ionic liquid EMIM-EtSO4, a very important physical chemically property when IL is used as a hydraulic fluid. This very low compressibility (respectively, very high Bulk modulus), compared to the classical hydraulic mineral oils or the non-flammable HFDU type of hydraulic fluids, opens up new possibilities regarding its usage within hydraulic systems with increased dynamics, respectively, systems' dynamic responses.

  6. Combined use of flowmeter and time-drawdown data to estimate hydraulic conductivities in layered aquifer systems

    USGS Publications Warehouse

    Hanson, R.T.; Nishikawa, T.

    1996-01-01

    The vertical distribution of hydraulic conductivity in layered aquifer systems commonly is needed for model simulations of ground-water flow and transport. In previous studies, time-drawdown data or flowmeter data were used individually, but not in combination, to estimate hydraulic conductivity. In this study, flowmeter data and time-drawdown data collected from a long-screened production well and nearby monitoring wells are combined to estimate the vertical distribution of hydraulic conductivity in a complex multilayer coastal aquifer system. Flowmeter measurements recorded as a function of depth delineate nonuniform inflow to the wellbore, and this information is used to better discretize the vertical distribution of hydraulic conductivity using analytical and numerical methods. The time-drawdown data complement the flowmeter data by giving insight into the hydraulic response of aquitards when flow rates within the wellbore are below the detection limit of the flowmeter. The combination of these field data allows for the testing of alternative conceptual models of radial flow to the wellbore.

  7. Influence of Elevation Data Source on 2D Hydraulic Modelling

    NASA Astrophysics Data System (ADS)

    Bakuła, Krzysztof; StĘpnik, Mateusz; Kurczyński, Zdzisław

    2016-08-01

    The aim of this paper is to analyse the influence of the source of various elevation data on hydraulic modelling in open channels. In the research, digital terrain models from different datasets were evaluated and used in two-dimensional hydraulic models. The following aerial and satellite elevation data were used to create the representation of terrain-digital terrain model: airborne laser scanning, image matching, elevation data collected in the LPIS, EuroDEM, and ASTER GDEM. From the results of five 2D hydrodynamic models with different input elevation data, the maximum depth and flow velocity of water were derived and compared with the results of the most accurate ALS data. For such an analysis a statistical evaluation and differences between hydraulic modelling results were prepared. The presented research proved the importance of the quality of elevation data in hydraulic modelling and showed that only ALS and photogrammetric data can be the most reliable elevation data source in accurate 2D hydraulic modelling.

  8. Field study comparing the effect of hydraulic mixing on septic tank performance and sludge accumulation.

    PubMed

    Almomani, Fares

    2016-01-01

    This study investigates the effect of hydraulic mixing on anaerobic digestion and sludge accumulation in a septic tank. The performance of a septic tank equipped with a hydraulic mixer was compared with that of a similar standard septic tank over a period of 10 months. The study was conducted in two phases: Phase-I--from May to November 2013 (6 months); Phase-II--from January to May 2014 (4 months). Hydraulic mixing effectively reduced the effluent biological oxygen demand (BOD) and total suspended solids, and reduced the sludge accumulation rate in the septic tank. The BOD removal efficiencies during Phase-II were 65% and 75% in the standard septic tank and a septic tank equipped with hydraulic mixer (Smart Digester™), respectively. The effect of hydraulic mixing reduced the rate of sludge accumulation from 0.64 cm/day to 0.27 cm/day, and increased the pump-out interval by a factor of 3.

  9. Stochastic Spectral Analysis for Characterizing Hydraulic Diffusivity in an Alluvial Fan Aquifer with River Stimulus

    NASA Astrophysics Data System (ADS)

    Wang, Y. L.; Zha, Y.; Yeh, T. C. J.; Wen, J. C.

    2015-12-01

    Estimation of subsurface hydraulic diffusivity was carried out to understand the characteristics of Zhuoshui River alluvial fan, Taiwan. The fan, an important agricultural and industrial region with high water demand, is located at middle Taiwan with an area of 1800 km2. The prior geo-investigations suggest that the main recharge region of the fan is at an apex along the river. The distribution of soil hydraulic diffusivity was estimated by fusing naturally recurring stimulus provided by river and groundwater head. Specifically, the variance and power spectrum provided by temporal and spatial change of groundwater head in response to river stage variations are analyzed to estimate hydraulic diffusivity distribution. It is found that the hydraulic diffusivity of the fan is at the range from 0.08 to 16 m2/s. The average hydraulic diffusivity at the apex, middle, and tail of the fan along the river is about 0.4, 0.6, and 1.0 m2/s, respectively.

  10. FOREWORD: The XXV IAHR Symposium on Hydraulic Machinery and Systems marks half a century tradition

    NASA Astrophysics Data System (ADS)

    Susan-Resiga, Romeo

    2010-05-01

    IAHR75_logoUPT90_logoARFT_logo International Association of Hydro-Environment Engineering and Research'Politehnica' University of TimisoaraRomanian Academy - Timisoara Branch The 25th edition of the IAHR Symposium on Hydraulic Machinery and Systems, held in Timisoara, Romania, 20-24 September 2010, jointly organized by the 'Politehnica' University of Timisoara and the Romanian Academy - Timisoara Branch, marks a half century tradition of these prestigious symposia. However, it is the first time that Romania hosts such a symposium, and for good reasons. The Romanian electrical power system has a total of 20,630 MW installed power, out of which 6,422 MW in hydropower plants. The energy produced in hydropower facilities was in 2008 of 17,105 GWh from a total of 64,772 GWh electrical energy production. Moreover, for the period 2009-2015, new hydropower capacities are going to be developed, with a total of 2,157 MW installed power and an estimated 5,770 GWh/year energy production. Within the same period of time, the refurbishment, modernization and repair programs will increase the actual hydropower production with an estimated 349 GWh/year. The 'Politehnica' University of Timisoara is proud to host the 25th IAHR Symposium on Hydraulic Machinery and Systems, in the year of its 90th anniversary. The 'Politehnica' University of Timisoara is one of the largest and most well-known technical universities from Central and Eastern Europe. It was founded in 1920, a short time after the union into one state of all the Romanian territories, following the end of the First World War, in order to respond to the need engineers felt by the Romanian society at that time, within the economical development framework. During its 90 years of existence, 'Politehnica' University of Timisoara educated over 100,000 engineers, greatly appreciated both in Romania and abroad, for their competence and seriousness. King Ferdinand I of Romania said while visiting the recently established 'Politehnica' of Timisoara in 1923 'It is not the walls that make a school, but the spirit living inside'. A particular trademark of the 'Politehnica' of Timisoara was the continuous effort to answer industrial problems by training the students not only on theoretical aspects but also in design and manufacturing, as well as in laboratory works. Developing modern laboratories, where students can observe and understand first hand the engineering applications along the years a priority for Timisoara 'Politehnica' University. The School of Hydraulic Machinery within the 'Politehnica' University of Timisoara was established in early 1930 by Professor Aurel Barglazan (1905-1960), and further developed by Professor Ioan Anton (born 1924), both members of the Romanian Academy. The Laboratory of Hydraulic Machines from Timisoara (LMHT) started back in 1928 in a small hut, with a test rig for Francis and Kaplan turbines manufactured by J M Voith. LMHT was continuously developed and was officially recognized in 1959 as being one of the leading research and developing laboratories in Romania. It was the foundation of the Romanian efforts of designing and manufacturing hydraulic turbines starting in 1960 at the Resita Machine Building Factory. Under the leadership of Professor Ioan Anton, the Timisoara School in Hydraulic Machinery has focused the basic and development research activities on the following main topics: (i) Turbine Hydrodynamics, (ii) Hydrofoil Cascade Hydrodynamics, (iii) Cavitation in Hydraulic Machines and Equipments, (iv) Scale-up Effects in Hydraulic Machines. With the establishment in the year 2000 of the National Center for Engineering of Systems with Complex Fluids, within the 'Politehnica' University of Timisoara, the research in turbomachinery hydrodynamics and cavitation included high performance computing for flows in hydraulic machines, as well as the development of novel technologies to mitigate the self-induced flow instabilities in hydraulic turbines operated far from the best efficiency regime. The traditional partnership with the Romanian Academy - Timisoara Branch, Laboratory for Hydrodynamics and Cavitation, led to complex projects that combine both basic theoretical developments with advanced experimental investigations leading to practical engineering solutions for modern hydraulic machines. The International Association of Hydro-Environment Engineering and Research (IAHR) celebrates its 75th anniversary this year. IAHR particularly promotes the advancement and exchange of knowledge through working groups, specialty symposia, congresses, and publications on water resources, river and coastal hydraulics, risk analysis, energy, environment, disaster prevention, industrial processes. The IAHR - Committee on Hydraulic Machinery and Systems deals with the advancement of technology associated with the understanding of steady and unsteady flow characteristics in hydraulic machinery and conduit systems connected to the machinery. The technology elements include the fluid behaviour within machine components, hydro-elastic behaviour of machine components, cavitation, and two phase flow in turbines and pumps, hydraulic machine and plant control systems, the use of hydraulic machines to improve water quality, and even considerations to improve fish survival in their passage through hydro plants. The main emphases of the IAHR Committee on Hydraulic Machinery and Systems are to stimulate research and understanding of the technologies associated with hydraulic machinery and to promote interaction between the machine designers, machine users, the academic community, and the community at large. Hydraulic machinery is both cost effective and environmentally responsible. The increasing atmospheric content of carbon dioxide related to pollution from thermal power plants, is one of the most significant threats to our global ecology. The problem is exacerbated by the need for increased energy production in third world countries. This results in rising global temperatures and dramatic changes in climate which may also result in flooding in parts of our globe. Energy conservation together with replacement of coal and oil-fired power plants are, therefore, needed. The development and installation of more efficient hydroelectric power plants which work hand in hand with water storage and flood protection is part of this strategy. Waterpower is the most significant 'renewable resource'. The goals of this IAHR - Committee on Hydraulic Machinery and Systems are to improve the value of hydraulic machinery to the end user and to society and to improve society's understanding and appreciation of that value. The series of IAHR Symposia on Hydraulic Machinery and Cavitation started with the 1st edition in Nice in 1960 in France. Within the past decade, all the symposia were focused on an extended portfolio of topics under the name of 'Hydraulic Machinery and Systems', such as the 20th edition in 2000, Charlotte, USA, the 21st in 2002, Lausanne, Switzerland, the 22nd in 2004, Stockholm, Sweden, the 23rd in 2006, Yokohama, Japan, and the 24th in 2008, Foz do Iguassu, Brasil. The 25th IAHR Symposium on Hydraulic Machinery and Systems brings together more than 150 scientists and researchers from 24 countries, affiliated with universities , technology centres and industry to debate topics related to advanced technologies for hydraulic machinery and systems, which will enhance the sustainable development of water resources and hydropower production. The Scientific Committee has selected 118 papers, out of 238 abstracts submitted, on the following topics: (i) Hydraulic Turbines and Pumps, (ii) Sustainable hydropower, (iii) Hydraulic Systems, (iv) Advances in Computational and Experimental Techniques, (v) Innovative Technology, to be presented at the symposium and to be included in the proceedings. All papers published in this Volume 12 of IOP Conference Series: Earth and Environmental Science have been peer reviewed through processes administered by the editors of the 25th IAHR Symposium on Hydraulic Machinery and Systems proceedings, Professor Romeo Susan-Resiga, Dr Sebastian Muntean and Dr Sandor Bernad. We hope that this anniversary edition of the series of symposia on Hydraulic Machinery and Systems will be a significant step forward in the worldwide efforts to address the present challenges facing the modern hydraulic machines. Professor Romeo Susan-Resiga Chairman of the Organizing Committee 25th IAHR Symposium on Hydraulic Machinery and Systems

  11. Hydraulic Fracturing Mineback Experiment in Complex Media

    NASA Astrophysics Data System (ADS)

    Green, S. J.; McLennan, J. D.

    2012-12-01

    Hydraulic fracturing (or "fracking") for the recovery of gas and liquids from tight shale formations has gained much attention. This operation which involves horizontal well drilling and massive hydraulic fracturing has been developed over the last decade to produce fluids from extremely low permeability mudstone and siltstone rocks with high organic content. Nearly thirteen thousand wells and about one hundred and fifty thousand stages within the wells were fractured in the US in 2011. This operation has proven to be successful, causing hundreds of billions of dollars to be invested and has produced an abundance of natural gas and is making billions of barrels of hydrocarbon liquids available for the US. But, even with this commercial success, relatively little is clearly known about the complexity--or lack of complexity--of the hydraulic fracture, the extent that the newly created surface area contacts the high Reservoir Quality rock, nor the connectivity and conductivity of the hydraulic fractures created. To better understand this phenomena in order to improve efficiency, a large-scale mine-back experiment is progressing. The mine-back experiment is a full-scale hydraulic fracture carried out in a well-characterized environment, with comprehensive instrumentation deployed to measure fracture growth. A tight shale mudstone rock geologic setting is selected, near the edge of a formation where one to two thousand feet difference in elevation occurs. From the top of the formation, drilling, well logging, and hydraulic fracture pumping will occur. From the bottom of the formation a horizontal tunnel will be mined using conventional mining techniques into the rock formation towards the drilled well. Certain instrumentation will be located within this tunnel for observations during the hydraulic fracturing. After the hydraulic fracturing, the tunnel will be extended toward the well, with careful mapping of the created hydraulic fracture. Fracturing fluid will be traceable, as will injected proppant, in order to demarcate in-situ fracture paths and fluid and proppant progression. This underground experiment is referred to as a "mine-back experiment". Several mine-back experiments have been conducted in the past, and have demonstrated complex, diffuse fracture systems in coals and bundled fracture systems in some sandstones. No mine-back experiment has been conducted in the tight shales; but, economics and environmental considerations dictate that more definitive measurements will be extremely helpful to establish fracture growth patterns and to validate monitoring methods such as micro-seismic measurements. This presentation discusses the mine-back experiment and presents details of geologic setting, hydraulic fracturing, and the excavation required before and after the hydraulic fracture. The mine-back experiment will provide ground-truth assessment of hydraulic fracturing, geologic forecasting, micro-seismicity, and other information.

  12. Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought?

    USGS Publications Warehouse

    McDowell, Nate G.; Pockman, William T.; Allen, Craig D.; Breshears, David D.; Cobb, Neil; Kolb, Thomas; Plaut, Jennifer; Sperry, John; West, Adam; Williams, David G.; Yepez, Enrico A.

    2008-01-01

    Severe droughts have been associated with regional-scale forest mortality worldwide. Climate change is expected to exacerbate regional mortality events; however, prediction remains difficult because the physiological mechanisms underlying drought survival and mortality are poorly understood. We developed a hydraulically based theory considering carbon balance and insect resistance that allowed development and examination of hypotheses regarding survival and mortality. Multiple mechanisms may cause mortality during drought. A common mechanism for plants with isohydric regulation of water status results from avoidance of drought-induced hydraulic failure via stomatal closure, resulting in carbon starvation and a cascade of downstream effects such as reduced resistance to biotic agents. Mortality by hydraulic failure per se may occur for isohydric seedlings or trees near their maximum height. Although anisohydric plants are relatively drought-tolerant, they are predisposed to hydraulic failure because they operate with narrower hydraulic safety margins during drought. Elevated temperatures should exacerbate carbon starvation and hydraulic failure. Biotic agents may amplify and be amplified by drought-induced plant stress. Wet multidecadal climate oscillations may increase plant susceptibility to drought-induced mortality by stimulating shifts in hydraulic architecture, effectively predisposing plants to water stress. Climate warming and increased frequency of extreme events will probably cause increased regional mortality episodes. Isohydric and anisohydric water potential regulation may partition species between survival and mortality, and, as such, incorporating this hydraulic framework may be effective for modeling plant survival and mortality under future climate conditions.

  13. Influence of Drought on the Hydraulic Efficiency and the Hydraulic Safety of the Xylem - Case of a Semi-arid Conifer.

    NASA Astrophysics Data System (ADS)

    Gentine, P.; Guerin, M. F.; von Arx, G.; Martin-Benito, D.; Griffin, K. L.; McDowell, N.; Pockman, W.; Andreu-Hayles, L.

    2017-12-01

    Recent droughts in the Southwest US have resulted in extensive mortality in the pinion pine population (Pinus Edulis). An important factor for resiliency is the ability of a plant to maintain a functional continuum between soil and leaves, allowing water's motion to be sustained or resumed. During droughts, loss of functional tracheids happens through embolism, which can be partially mitigated by increasing the hydraulic safety of the xylem. However, higher hydraulic safety is usually achieved by building narrower tracheids with thicker walls, resulting in a reduction of the hydraulic efficiency of the xylem (conductivity per unit area). Reduced efficiency constrains water transport, limits photosynthesis and might delay recovery after the drought. Supporting existing research on safety-efficiency tradeoff, we test the hypothesis that under dry conditions, isohydric pinions grow xylem that favor efficiency over safety. Using a seven-year experiment with three watering treatments (drought, control, irrigated) in New Mexico, we investigate the effect of drought on the xylem anatomy of pinions' branches. We also compare the treatment effect with interannual variations in xylem structure. We measure anatomical variables - conductivities, cell wall thicknesses, hydraulic diameter, cell reinforcement and density - and preliminarily conclude that treatment has little effect on hydraulic efficiency while hydraulic safety is significantly reduced under dry conditions. Taking advantage of an extremely dry year occurrence during the experiment, we find a sharp increase in vulnerability for xylem tissues built the same year.

  14. Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics

    NASA Astrophysics Data System (ADS)

    Wösten, J. H. M.; Pachepsky, Ya. A.; Rawls, W. J.

    2001-10-01

    Water retention and hydraulic conductivity are crucial input parameters in any modelling study on water flow and solute transport in soils. Due to inherent temporal and spatial variability in these hydraulic characteristics, large numbers of samples are required to properly characterise areas of land. Hydraulic characteristics can be obtained from direct laboratory and field measurements. However, these measurements are time consuming which makes it costly to characterise an area of land. As an alternative, analysis of existing databases of measured soil hydraulic data may result in pedotransfer functions. In practise, these functions often prove to be good predictors for missing soil hydraulic characteristics. Examples are presented of different equations describing hydraulic characteristics and of pedotransfer functions used to predict parameters in these equations. Grouping of data prior to pedotransfer function development is discussed as well as the use of different soil properties as predictors. In addition to regression analysis, new techniques such as artificial neural networks, group methods of data handling, and classification and regression trees are increasingly being used for pedotransfer function development. Actual development of pedotransfer functions is demonstrated by describing a practical case study. Examples are presented of pedotransfer function for predicting other than hydraulic characteristics. Accuracy and reliability of pedotransfer functions are demonstrated and discussed. In this respect, functional evaluation of pedotransfer functions proves to be a good tool to assess the desired accuracy of a pedotransfer function for a specific application.

  15. Interpretation of hydraulic tests performed at a carbonate rock site for CO2 storage

    NASA Astrophysics Data System (ADS)

    María Gómez Castro, Berta; Fernández López, Sheila; Carrera, Jesús; de Simone, Silvia; Martínez, Lurdes; Roetting, Tobias; Soler, Joaquim; Ortiz, Gema; de Dios, Carlos; Huber, Christophe

    2014-05-01

    Interpretation of hydraulic tests performed at a carbonate rock site for CO2 storage Berta Gómez, Sheila Fernández, Tobias Roetting, Lurdes Martínez, Silvia de Simone, Joaquim Soler, Jesus Carrera, Gema Ortiz, Christophe Huber, Carlos de Dios Proper design of CO2 geological storage facilities requires knowledge of the reservoir hydraulic parameters. Specifically, permeability controls the flux of CO2, the rate at which it dissolves, local and regional pressure buildup and the likelihood of induced seismicity. Permeability is obtained from hydraulic tests, which may yield local permeability, which controls injectivity, and large scale permeability, which controls pressure buildup at the large scale. If pressure response measurements are obtained at different elevations, hydraulic tests may also yield vertical permeability, which controls the rate at which CO2 dissolves. The objective of this work is to discuss the interpretation of hydraulic tests at deep reservoirs and the conditions under which these permeabilities can be obtained. To achieve this objective, we have built a radially symmetric model, including a skin and radial as well as vertical heterogeneity. We use this model to simulate hydraulic tests with increasing degrees of complexity about the medium response. We start by assuming Darcy flow, then add coupled mechanical effects (fractures opening) and, finally, we add thermal effects. We discuss how these affect the conventional interpretation of the tests and how to identify their presence. We apply these findings to the interpretation of hydraulic tests at Hontomin.

  16. Coordination of stem and leaf hydraulic conductance in southern California shrubs: a test of the hydraulic segmentation hypothesis.

    PubMed

    Pivovaroff, Alexandria L; Sack, Lawren; Santiago, Louis S

    2014-08-01

    Coordination of water movement among plant organs is important for understanding plant water use strategies. The hydraulic segmentation hypothesis (HSH) proposes that hydraulic conductance in shorter lived, 'expendable' organs such as leaves and longer lived, more 'expensive' organs such as stems may be decoupled, with resistance in leaves acting as a bottleneck or 'safety valve'. We tested the HSH in woody species from a Mediterranean-type ecosystem by measuring leaf hydraulic conductance (Kleaf) and stem hydraulic conductivity (KS). We also investigated whether leaves function as safety valves by relating Kleaf and the hydraulic safety margin (stem water potential minus the water potential at which 50% of conductivity is lost (Ψstem-Ψ50)). We also examined related plant traits including the operating range of water potentials, wood density, leaf mass per area, and leaf area to sapwood area ratio to provide insight into whole-plant water use strategies. For hydrated shoots, Kleaf was negatively correlated with KS , supporting the HSH. Additionally, Kleaf was positively correlated with the hydraulic safety margin and negatively correlated with the leaf area to sapwood area ratio. Consistent with the HSH, our data indicate that leaves may act as control valves for species with high KS , or a low safety margin. This critical role of leaves appears to contribute importantly to plant ecological specialization in a drought-prone environment. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  17. Biochemical passive reactors for treatment of acid mine drainage: Effect of hydraulic retention time on changes in efficiency, composition of reactive mixture, and microbial activity.

    PubMed

    Vasquez, Yaneth; Escobar, Maria C; Neculita, Carmen M; Arbeli, Ziv; Roldan, Fabio

    2016-06-01

    Biochemical passive treatment represents a promising option for the remediation of acid mine drainage. This study determined the effect of three hydraulic retention times (1, 2, and 4 days) on changes in system efficiency, reactive mixture, and microbial activity in bioreactors under upward flow conditions. Bioreactors were sacrificed in the weeks 8, 17 and 36, and the reactive mixture was sampled at the bottom, middle, and top layers. Physicochemical analyses were performed on reactive mixture post-treatment and correlated with sulfate-reducing bacteria and cellulolytic and dehydrogenase activity. All hydraulic retention times were efficient at increasing pH and alkalinity and removing sulfate (>60%) and metals (85-99% for Fe(2+) and 70-100% for Zn(2+)), except for Mn(2+). The longest hydraulic retention time (4 days) increased residual sulfides, deteriorated the quality of treated effluent and negatively impacted sulfate-reducing bacteria. Shortest hydraulic retention time (1 day) washed out biomass and increased input of dissolved oxygen in the reactors, leading to higher redox potential and decreasing metal removal efficiency. Concentrations of iron, zinc and metal sulfides were high in the bottom layer, especially with 2 day of hydraulic retention time. Sulfate-reducing bacteria, cellulolytic and dehydrogenase activity were higher in the middle layer at 4 days of hydraulic retention time. Hydraulic retention time had a strong influence on overall performance of passive reactors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. A decision-analytic approach to predict state regulation of hydraulic fracturing.

    PubMed

    Linkov, Igor; Trump, Benjamin; Jin, David; Mazurczak, Marcin; Schreurs, Miranda

    2014-01-01

    The development of horizontal drilling and hydraulic fracturing methods has dramatically increased the potential for the extraction of previously unrecoverable natural gas. Nonetheless, the potential risks and hazards associated with such technologies are not without controversy and are compounded by frequently changing information and an uncertain landscape of international politics and laws. Where each nation has its own energy policies and laws, predicting how a state with natural gas reserves that require hydraulic fracturing will regulate the industry is of paramount importance for potential developers and extractors. We present a method for predicting hydraulic fracturing decisions using multiple-criteria decision analysis. The case study evaluates the decisions of five hypothetical countries with differing political, social, environmental, and economic priorities, choosing among four policy alternatives: open hydraulic fracturing, limited hydraulic fracturing, completely banned hydraulic fracturing, and a cap and trade program. The result is a model that identifies the preferred policy alternative for each archetypal country and demonstrates the sensitivity the decision to particular metrics. Armed with such information, observers can predict each country's likely decisions related to natural gas exploration as more data become available or political situations change. Decision analysis provides a method to manage uncertainty and address forecasting concerns where rich and objective data may be lacking. For the case of hydraulic fracturing, the various political pressures and extreme uncertainty regarding the technology's risks and benefits serve as a prime platform to demonstrate how decision analysis can be used to predict future behaviors.

  19. Physico-chemical characterization of mortars as a tool in studying specific hydraulic components: application to the study of ancient Naxos aqueduct

    NASA Astrophysics Data System (ADS)

    Maravelaki-Kalaitzaki, P.; Galanos, A.; Doganis, I.; Kallithrakas-Kontos, N.

    2011-07-01

    Mortars and plasters from the ancient aqueduct on the island of Naxos, Greece, were studied with regard to mineralogical and chemical composition, grain size distribution, raw materials and hydraulic properties, in order to assess their characteristics and design compatible repair mortars. The authentic materials contained lime, crushed-brick, siliceous and calcitic aggregates, in different proportions according to mortar type. Crushed-bricks fired at low temperatures and lightweight volcanic aggregates contained amorphous phases, which upon reaction with lime yielded hydraulic components capable of protecting the construction from the continuous presence of water. Hydraulic calcium silicate/aluminate hydrates, the proportions and the perfect packing of the raw materials, along with the diligent application justify the longevity and durability of the studied samples. The hydraulic properties of samples were pointed out through (a) the well-established CO2/H2O ratio derived from the thermogravimetric analysis and (b) by introducing two powerful indices issued from the chemical analysis, namely CaOhydr and soluble SiO2 hydr. These indices improved the clustering of hydraulic mortars and provided better correlation between mortars, plasters and their binders. By comparing grain size distribution and hydraulicity indices it was possible to distinguish among the construction phases. Based on this study, repair mortars were formulated by hydraulic lime, siliceous sand, calcareous and crushed-brick aggregates, with the optimal water content, ensuring optimum workability and compatible appearance with the authentic ones.

  20. Evaluation of Fish Passage at Whitewater Parks Using 2D and 3D Hydraulic Modeling

    NASA Astrophysics Data System (ADS)

    Hardee, T.; Nelson, P. A.; Kondratieff, M.; Bledsoe, B. P.

    2016-12-01

    In-stream whitewater parks (WWPs) are increasingly popular recreational amenities that typically create waves by constricting flow through a chute to increase velocities and form a hydraulic jump. However, the hydraulic conditions these structures create can limit longitudinal habitat connectivity and potentially inhibit upstream fish migration, especially of native fishes. An improved understanding of the fundamental hydraulic processes and potential environmental effects of whitewater parks is needed to inform management decisions about Recreational In-Channel Diversions (RICDs). Here, we use hydraulic models to compute a continuous and spatially explicit description of velocity and depth along potential fish swimming paths in the flow field, and the ensemble of potential paths are compared to fish swimming performance data to predict fish passage via logistic regression analysis. While 3d models have been shown to accurately predict trout movement through WWP structures, 2d methods can provide a more cost-effective and manager-friendly approach to assessing the effects of similar hydraulic structures on fish passage when 3d analysis in not feasible. Here, we use 2d models to examine the hydraulics in several WWP structures on the North Fork of the St. Vrain River at Lyons, Colorado, and we compare these model results to fish passage predictions from a 3d model. Our analysis establishes a foundation for a practical, transferable and physically-rigorous 2d modeling approach for mechanistically evaluating the effects of hydraulic structures on fish passage.

  1. Fertilization with urea, ammonium and nitrate produce different effects on growth, hydraulic traits and drought tolerance in Pinus taeda seedlings.

    PubMed

    Faustino, Laura I; Moretti, Ana P; Graciano, Corina

    2015-10-01

    Urea fertilization decreases Pinus taeda L. growth in clay soils of subtropical areas. The negative effect of urea is related to changes in some hydraulic traits, similar to those observed in plants growing under drought. The aims of this work were (i) to determine whether different sources of nitrogen applied as fertilizers produce similar changes in growth and hydraulic traits to those observed by urea fertilization and (ii) to analyze the impact of those changes in plant drought tolerance. Plants fertilized with urea, nitrate [Formula: see text] or ammonium [Formula: see text] were grown well watered or with reduced water supply. Urea and [Formula: see text] fertilization reduced plant growth and increased root hydraulic conductance scaled by root dry weight (DW). [Formula: see text] fertilization did not reduce plant growth and increased shoot hydraulic conductance and stem hydraulic conductivity. We conclude that [Formula: see text] is the ion involved in the changes linked to the negative effect of urea fertilization on P. taeda growth. [Formula: see text] fertilization does not change drought susceptibility and it produces changes in shoot hydraulic traits, therefore plants avoid the depressive effect of fertilization. Urea and [Formula: see text] fertilizers induce changes in DW and root hydraulic conductance and consequently plants are less affected by drought. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Spool-type control valve assembly with reduced spool stroke for hydraulic belt-and-pulley type continuously variable transmission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Itoh, H.; Akashi, T.; Takada, M.

    1987-03-31

    This patent describes a hydraulic control system for controlling a speed ratio of a hydraulically-operated continuously variable transmission of belt-and-pulley type having a variable-diameter pulley and a hydraulic cylinder for changing an effective diameter of the variable diameter-pulley of the transmission. The hydraulic control system includes a speed-ratio control valve assembly for controlling the supply and discharge of a pressurized fluid to and from the hydraulic cylinder to thereby change the speed ratio of the transmission. The speed-ratio control valve assembly comprises: a shift-direction switching valve unit disposed in fluid supply and discharge conduits communicating with the hydraulic cylinder, formore » controlling a direction in which the speed ratio of the transmission is varied; a shift-speed control valve unit of spool-valve type connected to the shift-direction switching valve unit. The shift-speed control valve unit is selectively placed in a first state in which the fluid supply and discharge flows to and from the hydraulic cylinder through the conduits are permitted, or in a second state in which the fluid supply flow is restricted while the fluid discharge flow is inhibited; an actuator means for placing the shift speed control valve unit alternately in the first and second states to control a rate of variation in the speed ratio of the transmission in the direction established by the shift-direction switching valve unit.« less

  3. Relationship of stream ecological conditions to simulated hydraulic metrics across a gradient of basin urbanization

    USGS Publications Warehouse

    Steuer, J.J.; Bales, J.D.; Giddings, E.M.P.

    2009-01-01

    The relationships among urbanization, stream hydraulics, and aquatic biology were investigated across a gradient of urbanization in 30 small basins in eastern Wisconsin, USA. Simulation of hydraulic metrics with 1-dimensional unsteady flow models was an effective means for mechanistically coupling the effects of urbanization with stream ecological conditions (i.e., algae, invertebrates, and fish). Urbanization, characterized by household, road, and urban land density, was positively correlated with the lowest shear stress for 2 adjacent transects in a reach for the low-flow summer (p < 0.001) and autumn (p < 0.01) periods. Urbanization also was positively correlated with Reynolds number and % exposed stream bed during months with moderate to low flows. Our study demonstrated the value of temporally and spatially explicit hydraulic models for providing mechanistic insight into the relationships between hydraulic variables and biological responses. For example, the positive correlation between filter-feeding invertebrate richness and minimum 2-transect shear stress observed in our study is consistent with a higher concentration of water-column particulates available for filtration. The strength of correlations between hydraulic and biological metrics is related to the time period (annual, seasonal, or monthly) considered. The hydraulic modeling approach, whether based on hourly or daily flow data, allowed documentation of the effects of a spatially variable response within a reach, and the results suggest that stream response to urbanization varies with hydraulic habitat type. ?? North American Benthological Society.

  4. Identifying Flow Networks in a Karstified Aquifer by Application of the Cellular Automata-Based Deterministic Inversion Method (Lez Aquifer, France)

    NASA Astrophysics Data System (ADS)

    Fischer, P.; Jardani, A.; Wang, X.; Jourde, H.; Lecoq, N.

    2017-12-01

    The distributed modeling of flow paths within karstic and fractured fields remains a complex task because of the high dependence of the hydraulic responses to the relative locations between observational boreholes and interconnected fractures and karstic conduits that control the main flow of the hydrosystem. The inverse problem in a distributed model is one alternative approach to interpret the hydraulic test data by mapping the karstic networks and fractured areas. In this work, we developed a Bayesian inversion approach, the Cellular Automata-based Deterministic Inversion (CADI) algorithm to infer the spatial distribution of hydraulic properties in a structurally constrained model. This method distributes hydraulic properties along linear structures (i.e., flow conduits) and iteratively modifies the structural geometry of this conduit network to progressively match the observed hydraulic data to the modeled ones. As a result, this method produces a conductivity model that is composed of a discrete conduit network embedded in the background matrix, capable of producing the same flow behavior as the investigated hydrologic system. The method is applied to invert a set of multiborehole hydraulic tests collected from a hydraulic tomography experiment conducted at the Terrieu field site in the Lez aquifer, Southern France. The emergent model shows a high consistency to field observation of hydraulic connections between boreholes. Furthermore, it provides a geologically realistic pattern of flow conduits. This method is therefore of considerable value toward an enhanced distributed modeling of the fractured and karstified aquifers.

  5. 76 FR 81889 - Airworthiness Directives; Saab AB, Saab Aerosystems Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-29

    ... Aerosystems Model SAAB 2000 airplanes. This proposed AD was prompted by reports of hydraulic accumulator failure. This proposed AD would require replacing certain hydraulic accumulators with stainless steel hydraulic accumulators, and structural modifications in the nose landing gear bay. We are proposing this AD...

  6. Saturated hydraulic conductivity of US soils grouped according to textural class and bulk density

    USDA-ARS?s Scientific Manuscript database

    Importance of the saturated hydraulic conductivity as soil hydraulic property led to the development of multiple pedotransfer functions for estimating it. One approach to estimating Ksat was using textural classes rather than specific textural fraction contents as pedotransfer inputs. The objective...

  7. Saturated hydraulic conductivity of US soils grouped according textural class and bulk density

    USDA-ARS?s Scientific Manuscript database

    Importance of the saturated hydraulic conductivity as soil hydraulic property led to the development of multiple pedotransfer functions for estimating it. One approach to estimating Ksat was using textural classes rather than specific textural fraction contents as pedotransfer inputs. The objective...

  8. Project Summary. THE RETC CODE FOR QUANTIFYING THE HYDRAULIC FUNCTIONS OF UNSATURATED SOILS

    EPA Science Inventory

    This summary describes the RETC computer code for analyzing the soil water retention and hydraulic conductivity functions of unsaturated soils. These hydraulic properties are key parameters in any quantitative description of water flow into and through the unsaturated zone of soi...

  9. Estimation of infiltration and hydraulic resistance in furrow irrigation, with infiltration dependent on flow depth

    USDA-ARS?s Scientific Manuscript database

    The estimation of parameters of a flow-depth dependent furrow infiltration model and of hydraulic resistance, using irrigation evaluation data, was investigated. The estimated infiltration parameters are the saturated hydraulic conductivity and the macropore volume per unit area. Infiltration throu...

  10. 46 CFR 160.062-2 - Types.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... APPROVAL LIFESAVING EQUIPMENT Releases. Lifesaving Equipment, Hydraulic and Manual § 160.062-2 Types. (a) The hydraulic releases referred to under § 160.062-1(a)(1) are of the diaphram-spring plunger type, which releases a buoyant load under hydrostatic pressure. (b) All hydraulic releases given an approval...

  11. 46 CFR 160.062-2 - Types.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... APPROVAL LIFESAVING EQUIPMENT Releases. Lifesaving Equipment, Hydraulic and Manual § 160.062-2 Types. (a) The hydraulic releases referred to under § 160.062-1(a)(1) are of the diaphram-spring plunger type, which releases a buoyant load under hydrostatic pressure. (b) All hydraulic releases given an approval...

  12. 46 CFR 160.062-2 - Types.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... APPROVAL LIFESAVING EQUIPMENT Releases. Lifesaving Equipment, Hydraulic and Manual § 160.062-2 Types. (a) The hydraulic releases referred to under § 160.062-1(a)(1) are of the diaphram-spring plunger type, which releases a buoyant load under hydrostatic pressure. (b) All hydraulic releases given an approval...

  13. 46 CFR 160.062-2 - Types.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... APPROVAL LIFESAVING EQUIPMENT Releases. Lifesaving Equipment, Hydraulic and Manual § 160.062-2 Types. (a) The hydraulic releases referred to under § 160.062-1(a)(1) are of the diaphram-spring plunger type, which releases a buoyant load under hydrostatic pressure. (b) All hydraulic releases given an approval...

  14. 46 CFR 160.062-2 - Types.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... APPROVAL LIFESAVING EQUIPMENT Releases. Lifesaving Equipment, Hydraulic and Manual § 160.062-2 Types. (a) The hydraulic releases referred to under § 160.062-1(a)(1) are of the diaphram-spring plunger type, which releases a buoyant load under hydrostatic pressure. (b) All hydraulic releases given an approval...

  15. MEASURING VERTICAL PROFILES OF HYDRAULIC CONDUCTIVITY WITH IN SITU DIRECT-PUSH METHODS

    EPA Science Inventory

    U.S. EPA (Environmental Protection Agency) staff developed a field procedure to measure hydraulic conductivity using a direct-push system to obtain vertical profiles of hydraulic conductivity. Vertical profiles were obtained using an in situ field device-composed of a
    Geopr...

  16. 76 FR 68366 - Airworthiness Directives; The Boeing Company Model 777-200 and -300 Series Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-04

    ...-induced currents and subsequent damage to composite structures, hydraulic tubes, and actuator control... and could subsequently damage composite structures, hydraulic tubes, and actuator control electronics... subsequent damage to composite structures, hydraulic tubes, and actuator control electronics. In the event of...

  17. 46 CFR 28.880 - Hydraulic equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... hydraulic equipment and the adjacent work area. Protection shall be afforded to the operator of hydraulic... personnel. (h) Nonmetallic flexible hose assemblies must only be used between two points of relative motion... (method). (j) Nonmetallic flexible hose shall be marked with the manufacturer's name or trademark, type or...

  18. Soil Systems for Upscaling Saturated Hydraulic Conductivity (Ksat) for Hydrological Modeling in the Critical Zone

    USDA-ARS?s Scientific Manuscript database

    Successful hydrological model predictions depend on appropriate framing of scale and the spatial-temporal accuracy of input parameters describing soil hydraulic properties. Saturated soil hydraulic conductivity (Ksat) is one of the most important properties influencing water movement through soil un...

  19. 46 CFR 112.50-3 - Hydraulic starting.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Hydraulic starting. 112.50-3 Section 112.50-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Diesel and Gas Turbine Engine Driven Generator Sets § 112.50-3 Hydraulic...

  20. 46 CFR 112.50-3 - Hydraulic starting.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Hydraulic starting. 112.50-3 Section 112.50-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Diesel and Gas Turbine Engine Driven Generator Sets § 112.50-3 Hydraulic...

  1. Identification of optimal soil hydraulic functions and parameters for predicting soil moisture

    EPA Science Inventory

    We examined the accuracy of several commonly used soil hydraulic functions and associated parameters for predicting observed soil moisture data. We used six combined methods formed by three commonly used soil hydraulic functions – i.e., Brooks and Corey (1964) (BC), Campbell (19...

  2. Full equations utilities (FEQUTL) model for the approximation of hydraulic characteristics of open channels and control structures during unsteady flow

    USGS Publications Warehouse

    Franz, Delbert D.; Melching, Charles S.

    1997-01-01

    The Full EQuations UTiLities (FEQUTL) model is a computer program for computation of tables that list the hydraulic characteristics of open channels and control structures as a function of upstream and downstream depths; these tables facilitate the simulation of unsteady flow in a stream system with the Full Equations (FEQ) model. Simulation of unsteady flow requires many iterations for each time period computed. Thus, computation of hydraulic characteristics during the simulations is impractical, and preparation of function tables and application of table look-up procedures facilitates simulation of unsteady flow. Three general types of function tables are computed: one-dimensional tables that relate hydraulic characteristics to upstream flow depth, two-dimensional tables that relate flow through control structures to upstream and downstream flow depth, and three-dimensional tables that relate flow through gated structures to upstream and downstream flow depth and gate setting. For open-channel reaches, six types of one-dimensional function tables contain different combinations of the top width of flow, area, first moment of area with respect to the water surface, conveyance, flux coefficients, and correction coefficients for channel curvilinearity. For hydraulic control structures, one type of one-dimensional function table contains relations between flow and upstream depth, and two types of two-dimensional function tables contain relations among flow and upstream and downstream flow depths. For hydraulic control structures with gates, a three-dimensional function table lists the system of two-dimensional tables that contain the relations among flow and upstream and downstream flow depths that correspond to different gate openings. Hydraulic control structures for which function tables containing flow relations are prepared in FEQUTL include expansions, contractions, bridges, culverts, embankments, weirs, closed conduits (circular, rectangular, and pipe-arch shapes), dam failures, floodways, and underflow gates (sluice and tainter gates). The theory for computation of the hydraulic characteristics is presented for open channels and for each hydraulic control structure. For the hydraulic control structures, the theory is developed from the results of experimental tests of flow through the structure for different upstream and downstream flow depths. These tests were done to describe flow hydraulics for a single, steady-flow design condition and, thus, do not provide complete information on flow transitions (for example, between free- and submerged-weir flow) that may result in simulation of unsteady flow. Therefore, new procedures are developed to approximate the hydraulics of flow transitions for culverts, embankments, weirs, and underflow gates.

  3. FOREWORD: 26th IAHR Symposium on Hydraulic Machinery and Systems

    NASA Astrophysics Data System (ADS)

    Wu, Yulin; Wang, Zhengwei; Liu, Shuhong; Yuan, Shouqi; Luo, Xingqi; Wang, Fujun

    2012-11-01

    The 26th IAHR Symposium on Hydraulic Machinery and Systems, will be held in Beijing, China, 19-23 August 2012. It is jointly organized by Tsinghua University, State Key Laboratory of Hydro Science and Hydraulic Engineering, China, Jiangsu University, Xi'an University of Technology, China Agricultural University, National Engineering Research Center of Hydropower Equipment and Dongfang Electric Machinery Co., Ltd. It is the second time that China hosts such a symposium. By the end of 2011, the China electrical power system had a total of 1 050 GW installed power, out of which 220 GW was in hydropower plants. The energy produced in hydropower facilities was 662.6 TWh from a total of 4,720 TWh electrical energy production in 2011. Moreover, in 2020, new hydropower capacities are going to be developed, with a total of 180 GW installed power and an estimated 708 TWh/year energy production. And in 2011, the installed power of pumped storage stations was about 25GW. In 2020, the data will be 70GW. At the same time, the number of pumps used in China is increasing rapidly. China produces about 29,000,000 pumps with more than 220 series per year. By the end of 2011, the Chinese pumping system has a total of 950 GW installed power. The energy consumed in pumping facilities was 530 TWh in 2011. The pump energy consumption accounted for about 12% of the national electrical energy production. Therefore, there is a large market in the field of hydraulic machinery including water turbines, pump turbines and a variety of pumps in China. There are also many research projects in this field. For example, we have conducted National Key Research Projects on 1000 MW hydraulic turbine, and on the pump turbines with high head, as well as on the large capacity pumps for water supply. Tsinghua University of Beijing is proud to host the 26th IAHR Symposium on Hydraulic Machinery and Systems. Tsinghua University was established in 1911, after the founding of the People's Republic of China. It was molded into a polytechnic institute focusing on engineering in the nationwide restructuring of universities and colleges undertaken in 1952. At present, the university has 14 schools and 56 departments with faculties in science, engineering, humanities, law, medicine, history, philosophy, economics, management, education and art. The University now has over 25 900 students, including 13 100 undergraduates and 12 800 graduate students. As one of China's most renowned universities, Tsinghua has become an important institution for fostering talents and scientific research. The International Association of Hydro-Environment Engineering and Research (IAHR) particularly promotes the advancement and exchange of knowledge through working groups, specialty symposia, congresses, and publications on water resources, river and coastal hydraulics, risk analysis, energy, environment, disaster prevention, and industrial processes. The IAHR Committee on Hydraulic Machinery and Systems deals with the advancement of technology associated with the understanding of steady and unsteady flow characteristics in hydraulic machinery and conduit systems connected to the machinery. The technology elements include the fluid behaviour within machine components, hydro-elastic behaviour of machine components, cavitation and two phase flow in turbines and pumps, hydraulic machine and plant control systems, the use of hydraulic machines to improve water quality, and even considerations to improve fish survival in their passage through hydro plants. The main emphases of the IAHR Committee on Hydraulic Machinery and Systems are to stimulate research and understanding of the technologies associated with hydraulic machinery and to promote interaction between the machine designers, machine users, the academic community, and the community as a whole. Hydraulic machinery is both cost effective and environmentally friendly. The goals of the IAHR Committee on Hydraulic Machinery and Systems are to improve the value of hydraulic machinery to the end user, to the societies, and to improve societies understanding and appreciation of that value. The series of IAHR Symposia on Hydraulic Machinery and Cavitation started with the 1st edition in Nice, France, 1960. For the past decade, all the symposia have focused on an extended portfolio of topics under the name of 'Hydraulic Machinery and Systems', such as the 20th edition in Charlotte, USA, 2000, the 21st in Lausanne, Switzerland, 2002, the 22nd in Stockholm, Sweden, 2004, the 23rd in Yokohama, Japan, 2006, the 24th in Foz do Iguassu, Brasil, 2008, and the 25th in Timisoara, Romania, 2010. The 26th IAHR Symposium on Hydraulic Machinery and Systems brings together more than 250 scientists and researchers from 25 countries, affiliated with universities, technology centers and industrial firms to debate topics related to advanced technologies for hydraulic machinery and systems, which will enhance the sustainable development of water resources and hydropower production. The Scientific Committee has selected 268 papers, out of 430 abstracts submitted, on the following topics: (i) Hydraulic Turbines and Pumps, (ii) Sustainable Hydropower, (iii) Hydraulic Systems, (iv) Advances in Computational and Experimental Techniques, (v) Application in Industries and in Special Conditions, to be presented at the symposium and to be included in the proceedings. All the papers, published in this Volume 15 of IOP Conference Series: Earth and Environmental Science, have been peer reviewed through processes administered by the editors of the 26th IAHR Symposium on Hydraulic Machinery and Systems proceedings, those are Yulin Wu, Zhengwei Wang, Shuhong Liu, Shouqi Yuan, Xingqi Luo and Fujun Wang. We sincerely hope that this edition of the symposium will be a significant step forward in the worldwide efforts to address the present challenges facing the modern Hydraulic Machinery and Systems. Professor Yulin Wu Chairman of the Organizing Committee 26th IAHR Symposium on Hydraulic Machinery and Systems

  4. 77 FR 23420 - Airworthiness Directives; Bombardier, Inc. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-19

    ...-2010-24, dated August 3, 2010, does not require replacement of the reducer of the hydraulic system No... of the times specified in paragraph (n)(1) or (n)(2) of this AD: Replace the reducer of the hydraulic... requires revising certain sections of a certain airplane flight manual, deactivating certain hydraulic...

  5. Compilation of Physicochemical and Toxicological Information About Hydraulic Fracturing-Related Chemicals (Draft Database)

    EPA Science Inventory

    The purpose of this product is to make accessible the information about the 1,173 hydraulic fracturing-related chemicals that were listed in the external review draft of the Hydraulic Fracturing Drinking Water Assessment that was released recently. The product consists of a serie...

  6. 127. HYDRAULIC CONTROLS AND GAUGES FOR THE UMBILICAL MAST ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    127. HYDRAULIC CONTROLS AND GAUGES FOR THE UMBILICAL MAST ON UPPER RIGHT SIDE OF HYDRAULIC CONTROL PANEL IN UMBILICAL MAST PUMP ROOM (209), LSB (BLDG. 751) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  7. Overview of Chronic Oral Toxicity Values for Chemicals Present in Hydraulic Fracturing Fluids, Flowback and Produced Waters

    EPA Science Inventory

    As the use of hydraulic fracturing has increased, concerns have been raised about potential public health effects that may arise if hydraulic fracturing-related chemicals were to impact drinking water resources. This study presents an overview of the chronic oral toxicity values—...

  8. 77 FR 9707 - Advisory Committee on Reactor Safeguards Meeting of the ACRS Subcommittee on Thermal-Hydraulics...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-17

    ... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards Meeting of the ACRS Subcommittee on Thermal-Hydraulics Phenomena; Revision to February 22, 2012, ACRS Meeting Federal Register Notice The Federal Register Notice for the ACRS Subcommittee meeting on Thermal-Hydraulics Phenomena...

  9. 78 FR 25267 - Request for Information To Inform Hydraulic Fracturing Research Related to Drinking Water Resources

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-30

    ... Inform Hydraulic Fracturing Research Related to Drinking Water Resources AGENCY: Environmental Protection... to submit data and scientific literature to inform EPA's research on the potential impacts of hydraulic fracturing on drinking water resources from April 30, 2013 until November 15, 2013. EPA is...

  10. Plan to Study the Potential Impacts of Hydraulic Fracturing on Drinking Water Resources (Monterey, CA)

    EPA Science Inventory

    A summary of EPA's research relating to potential impacts of hydraulic fracturing on drinking water resources will be presented. Background about the study plan development will be presented along with an analysis of the water cycle as it relates to hydraulic fracturing processe...

  11. 46 CFR 58.30-10 - Hydraulic fluid.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Hydraulic fluid. 58.30-10 Section 58.30-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY....03-1), Cleveland “Open Cup” test method. (c) The chemical and physical properties of the hydraulic...

  12. A flexible system for the estimation of infiltration and hydraulic resistance parameters in surface irrigation

    USDA-ARS?s Scientific Manuscript database

    Critical to the use of modeling tools for the hydraulic analysis of surface irrigation systems is characterizing the infiltration and hydraulic resistance process. Since those processes are still not well understood, various formulations are currently used to represent them. A software component h...

  13. Modified hydraulic braking system limits angular deceleration to safe values

    NASA Technical Reports Server (NTRS)

    Briggs, R. S.; Council, M.; Green, P. M.

    1966-01-01

    Conventional spring actuated, hydraulically released, fail-safe disk braking system is modified to control the angular deceleration of a massive antenna. The hydraulic system provides an immediate preset pressure to the spring-loaded brake shoes and holds it at this value to decelerate the antenna at the desired rate.

  14. 46 CFR 58.25-85 - Special requirements for tank vessels.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...” in paragraph (g) of this section refers to the pressure-containing components in hydraulic or electro... least two identical hydraulic-power actuating systems, which, acting simultaneously in normal operation... hydraulic fluid from one system must be capable of being detected, and the defective system automatically...

  15. 46 CFR 58.25-85 - Special requirements for tank vessels.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...” in paragraph (g) of this section refers to the pressure-containing components in hydraulic or electro... least two identical hydraulic-power actuating systems, which, acting simultaneously in normal operation... hydraulic fluid from one system must be capable of being detected, and the defective system automatically...

  16. 46 CFR 58.30-10 - Hydraulic fluid.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Hydraulic fluid. 58.30-10 Section 58.30-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY....03-1), Cleveland “Open Cup” test method. (c) The chemical and physical properties of the hydraulic...

  17. 46 CFR 58.30-10 - Hydraulic fluid.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Hydraulic fluid. 58.30-10 Section 58.30-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY....03-1), Cleveland “Open Cup” test method. (c) The chemical and physical properties of the hydraulic...

  18. 46 CFR 58.30-10 - Hydraulic fluid.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Hydraulic fluid. 58.30-10 Section 58.30-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY....03-1), Cleveland “Open Cup” test method. (c) The chemical and physical properties of the hydraulic...

  19. 46 CFR 58.30-10 - Hydraulic fluid.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Hydraulic fluid. 58.30-10 Section 58.30-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY....03-1), Cleveland “Open Cup” test method. (c) The chemical and physical properties of the hydraulic...

  20. 46 CFR 111.97-5 - Electric and hydraulic power supply.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Watertight Door Systems § 111.97-5 Electric and hydraulic power supply. (a) Each electric motor-driven door operating system must have the same.... (f) The source of power for each hydraulically operated watertight door system using an independent...

  1. 46 CFR 111.97-5 - Electric and hydraulic power supply.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Watertight Door Systems § 111.97-5 Electric and hydraulic power supply. (a) Each electric motor-driven door operating system must have the same.... (f) The source of power for each hydraulically operated watertight door system using an independent...

  2. 46 CFR 111.97-5 - Electric and hydraulic power supply.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Watertight Door Systems § 111.97-5 Electric and hydraulic power supply. (a) Each electric motor-driven door operating system must have the same.... (f) The source of power for each hydraulically operated watertight door system using an independent...

  3. 46 CFR 111.97-5 - Electric and hydraulic power supply.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Watertight Door Systems § 111.97-5 Electric and hydraulic power supply. (a) Each electric motor-driven door operating system must have the same.... (f) The source of power for each hydraulically operated watertight door system using an independent...

  4. 46 CFR 111.97-5 - Electric and hydraulic power supply.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Power-Operated Watertight Door Systems § 111.97-5 Electric and hydraulic power supply. (a) Each electric motor-driven door operating system must have the same.... (f) The source of power for each hydraulically operated watertight door system using an independent...

  5. Sample dimensions effect on prediction of soil water retention curve and saturated hydraulic conductivity

    USDA-ARS?s Scientific Manuscript database

    Soil water retention curve (SWRC) and saturated hydraulic conductivity (SHC) are key hydraulic properties for unsaturated zone hydrology and groundwater. Not only are the SWRC and SHC measurements time-consuming, their results are scale dependent. Although prediction of the SWRC and SHC from availab...

  6. 78 FR 8052 - Airworthiness Directives; DASSAULT AVIATION Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-05

    ... the tail strobe power supply and a hydraulic line. This proposed AD would require modifying the tail strobe power supply wire routing. We are proposing this AD to prevent chafing between the tail strobe power supply and a hydraulic line, which could result in hydraulic fluid leakage and possible fire due...

  7. 40. HYDRAULIC OIL LINES, VALVES AND GAUGE FOR SLIDE GATE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. HYDRAULIC OIL LINES, VALVES AND GAUGE FOR SLIDE GATE HOISTS IN MACHINERY CHAMBER FOR SLUICE GATE WORKS ON GALLERY 1. NOTE HYDRAULIC OIL TANK AT UPPER RIGHT AND SCHEMATIC DRAWING OF PUMPING SYSTEM AT LEFT. VIEW TO NORTHWEST. - Owyhee Dam, Across Owyhee River, Nyssa, Malheur County, OR

  8. 75 FR 55628 - National Highway Traffic Safety Administration Reports, Forms and Record Keeping Requirements...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-13

    ... vehicle brake fluid or hydraulic system mineral oil is permanently attached, clearly states the contents... motor vehicle brake fluid and hydraulic mineral oil containers as specified in FMVSS No. 116, Motor..., specifies performance and design requirements for motor vehicle brake fluids and hydraulic system mineral...

  9. Hydraulic Fracturing and Drinking Water Resources: Update on EPA Hydraulic Fracturing Study

    EPA Science Inventory

    Natural gas plays a key role in our nation's energy future and the process known as hydraulic fracturing (HF) is one way of accessing that resource. Over the past few years, several key technical, economic, and energy developments have spurred increased use of HF for gas extracti...

  10. 75 FR 69140 - NUREG-1953, Confirmatory Thermal-Hydraulic Analysis To Support Specific Success Criteria in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-10

    ... To Support Specific Success Criteria in the Standardized Plant Analysis Risk Models--Surry and Peach... INFORMATION: NUREG-1953, ``Confirmatory Thermal-Hydraulic Analysis to Support Specific Success Criteria in the... document entitled: NUREG-1953, ``Confirmatory Thermal- Hydraulic Analysis to Support Specific Success...

  11. Impact of surface coal mining on soil hydraulic properties

    Treesearch

    X. Liu; J. Q. Wu; P. W. Conrad; S. Dun; C. S. Todd; R. L. McNearny; William Elliot; H. Rhee; P. Clark

    2016-01-01

    Soil erosion is strongly related to soil hydraulic properties. Understanding how surface coal mining affects these properties is therefore important in developing effective management practices to control erosion during reclamation. To determine the impact of mining activities on soil hydraulic properties, soils from undisturbed areas, areas of roughly graded mine...

  12. Final Plan to Study the Potential Impacts of Hydraulic Fracturing on Drinking Water Resources (02-24-2012)

    EPA Science Inventory

    The overall purpose of this study is to elucidate the relationship, if any, between hydraulic fracturing and drinking water resources. More specifically, the study has been designed to assess the potential impacts of hydraulic fracturing on drinking water resources and to identif...

  13. Final Plan to Study the Potential Impacts of Hydraulic Fracturing on Drinking Water Resources

    EPA Science Inventory

    The overall purpose of this study is to elucidate the relationship, if any, between hydraulic fracturing and drinking water resources. More specifically, the study has been designed to assess the potential impacts of hydraulic fracturing on drinking water resources and to identif...

  14. Hydraulic lift in a neotropical savanna.

    Treesearch

    M.Z. Moreira; F.G. Scholz; S.J. Bucci; L.S. Sternberg; G. Goldstein; F.C. Meinzer; A.C. Franco

    2003-01-01

    We report hydraulic lift in the sawmlia vegetation of central Brazil (Cerrado). Both heat-pulse measurements and isotopic (deuterium) labelling were used to determine whether hydraulic lift occurred in two common species, and whether neighbouring small shrubs and trees were utilizing this water.Both techniques showed water uptake by tap-...

  15. Powered orthosis and attachable power-assist device with Hydraulic Bilateral Servo System.

    PubMed

    Ohnishi, Kengo; Saito, Yukio; Oshima, Toru; Higashihara, Takanori

    2013-01-01

    This paper discusses the developments and control strategies of exoskeleton-type robot systems for the application of an upper limb powered orthosis and an attachable power-assist device for care-givers. Hydraulic Bilateral Servo System, which consist of a computer controlled motor, parallel connected hydraulic actuators, position sensors, and pressure sensors, are installed in the system to derive the joint motion of the exoskeleton arm. The types of hydraulic component structure and the control strategy are discussed in relation to the design philosophy and target joints motions.

  16. Hydraulically actuated gas exchange valve assembly and engine using same

    DOEpatents

    Carroll, Thomas S.; Taylor, Gregory O.

    2002-09-03

    An engine comprises a housing that defines a hollow piston cavity that is separated from a gas passage by a valve seat. The housing further defines a biasing hydraulic cavity and a control hydraulic cavity. A gas valve member is also included in the engine and is movable relative to the valve seat between an open position at which the hollow piston cavity is open to the gas passage and a closed position in which the hollow piston cavity is blocked from the gas passage. The gas valve member includes a ring mounted on a valve piece and a retainer positioned between the ring and the valve piece. A closing hydraulic surface is included on the gas valve member and is exposed to liquid pressure in the biasing hydraulic cavity.

  17. Computational open-channel hydraulics for movable-bed problems

    USGS Publications Warehouse

    Lai, Chintu; ,

    1990-01-01

    As a major branch of computational hydraulics, notable advances have been made in numerical modeling of unsteady open-channel flow since the beginning of the computer age. According to the broader definition and scope of 'computational hydraulics,' the basic concepts and technology of modeling unsteady open-channel flow have been systematically studied previously. As a natural extension, computational open-channel hydraulics for movable-bed problems are addressed in this paper. The introduction of the multimode method of characteristics (MMOC) has made the modeling of this class of unsteady flows both practical and effective. New modeling techniques are developed, thereby shedding light on several aspects of computational hydraulics. Some special features of movable-bed channel-flow simulation are discussed here in the same order as given by the author in the fixed-bed case.

  18. Implementation of diverse tree hydraulics in a land surface model

    NASA Astrophysics Data System (ADS)

    Wolf, A.; Shevliakova, E.; Malyshev, S.; Weng, E.; Pacala, S. W.

    2013-12-01

    Increasing attention has been devoted to the occurence of drought kill in forests worldwide. These mortality events are significant disruptions to the terrestrial carbon cycle, but the mechanisms required to represent drought kill are not represented in terrestrial carbon cycle models. In part, this is due to the challenge of representing the diversity of hydraulic strategies, which include stomatal sensitivity to water deficit and woody tissue vulnerability to cavitation at low water potential. In part, this is due to the challenge of representing this boundary value problem numerically, because the hydraulic components determine water potential at the leaf, but the stomatal conductance on the leaf also determines the hydraulic gradients within the plant. This poster will describe the development of a land surface model parameterization of diverse tree hydraulic strategies.

  19. Hydraulic lift as a determinant of tree-grass coexistence on savannas.

    PubMed

    Yu, Kailiang; D'Odorico, Paolo

    2015-09-01

    The coexistence of woody plants and grasses in savannas is determined by a complex set of interacting factors that determine access to resources and demographic dynamics, under the control of external drivers and vegetation feedbacks with the physical environment. Existing theories explain coexistence mainly as an effect of competitive relations and/or disturbances. However, theoretical studies on the way facilitative interactions resulting from hydraulic lift affect tree-grass coexistence and the range of environmental conditions in which savannas are stable are still lacking. We investigated the role of hydraulic lift in the stability of tree-grass coexistence in savannas. To that end, we developed a new mechanistic model that accounts for both competition for soil water in the shallow soil and fire-induced disturbance. We found that hydraulic lift favors grasses, which scavenge the water lifted by woody plants. Thus, hydraulic lift expands (at the expenses of woodlands) the range of environmental conditions in which savannas are stable. These results indicate that hydraulic lift can be an important mechanism responsible for the coexistence of woody plants and grasses in savannas. Grass facilitation by trees through the process of hydraulic lift could allow savannas to persist stably in mesic regions that would otherwise exhibit a forest cover. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  20. Smoothing analysis of slug tests data for aquifer characterization at laboratory scale

    NASA Astrophysics Data System (ADS)

    Aristodemo, Francesco; Ianchello, Mario; Fallico, Carmine

    2018-07-01

    The present paper proposes a smoothing analysis of hydraulic head data sets obtained by means of different slug tests introduced in a confined aquifer. Laboratory experiments were performed through a 3D large-scale physical model built at the University of Calabria. The hydraulic head data were obtained by a pressure transducer placed in the injection well and subjected to a processing operation to smooth out the high-frequency noise occurring in the recorded signals. The adopted smoothing techniques working in time, frequency and time-frequency domain are the Savitzky-Golay filter modeled by third-order polynomial, the Fourier Transform and two types of Wavelet Transform (Mexican hat and Morlet). The performances of the filtered time series of the hydraulic heads for different slug volumes and measurement frequencies were statistically analyzed in terms of optimal fitting of the classical Cooper's equation. For practical purposes, the hydraulic heads smoothed by the involved techniques were used to determine the hydraulic conductivity of the aquifer. The energy contents and the frequency oscillations of the hydraulic head variations in the aquifer were exploited in the time-frequency domain by means of Wavelet Transform as well as the non-linear features of the observed hydraulic head oscillations around the theoretical Cooper's equation.

  1. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality

    USGS Publications Warehouse

    Adams, Henry D.; Zeppel, Melanie; Anderegg, William R.L.; Hartmann, Henrik; Landhäusser, Simon M.; Tissue, David T.; Huxman, Travis E.; Hudson, Patrick J.; Franz, Trenton E.; Allen, Craig D.; Anderegg, Leander D. L.; Barron-Gafford, Greg A.; Beerling, David; Breshears, David D.; Brodribb, Timothy J.; Bugmann, Harald; Cobb, Richard C.; Collins, Adam D.; Dickman, L. Turin; Duan, Honglang; Ewers, Brent E.; Galiano, Lucia; Galvez, David A.; Garcia-Forner, Núria; Gaylord, Monica L.; Germino, Matthew J.; Gessler, Arthur; Hacke, Uwe G.; Hakamada, Rodrigo; Hector, Andy; Jenkins, Michael W.; Kane, Jeffrey M.; Kolb, Thomas E.; Law, Darin J.; Lewis, James D.; Limousin, Jean-Marc; Love, David; Macalady, Alison K.; Martinez-Vilalta, Jordi; Mencuccini, Maurizio; Mitchell, Patrick J.; Muss, Jordan D.; O'Brien, Michael J.; O'Grady, Anthony P.; Pangle, Robert E.; Pinkard, Elizabeth A.; Piper, Frida I.; Plaut, Jennifer; Pockman, William T.; Quirk, Joe; Reinhardt, Keith; Ripullone, Francesco; Ryan, Michael G.; Sala, Anna; Sevanto, Sanna; Sperry, John S.; Vargas, Rodrigo; Vennetier, Michel; Way, Danielle A.; Wu, Chonggang; Yepez, Enrico A.; McDowell, Nate G.

    2017-01-01

    Widespread tree mortality associated with drought has been observed on all forested continents and global change is expected to exacerbate vegetation vulnerability. Forest mortality has implications for future biosphere–atmosphere interactions of carbon, water and energy balance, and is poorly represented in dynamic vegetation models. Reducing uncertainty requires improved mortality projections founded on robust physiological processes. However, the proposed mechanisms of drought-induced mortality, including hydraulic failure and carbon starvation, are unresolved. A growing number of empirical studies have investigated these mechanisms, but data have not been consistently analysed across species and biomes using a standardized physiological framework. Here, we show that xylem hydraulic failure was ubiquitous across multiple tree taxa at drought-induced mortality. All species assessed had 60% or higher loss of xylem hydraulic conductivity, consistent with proposed theoretical and modelled survival thresholds. We found diverse responses in non-structural carbohydrate reserves at mortality, indicating that evidence supporting carbon starvation was not universal. Reduced non-structural carbohydrates were more common for gymnosperms than angiosperms, associated with xylem hydraulic vulnerability, and may have a role in reducing hydraulic function. Our finding that hydraulic failure at drought-induced mortality was persistent across species indicates that substantial improvement in vegetation modelling can be achieved using thresholds in hydraulic function.

  2. Model-based nonlinear control of hydraulic servo systems: Challenges, developments and perspectives

    NASA Astrophysics Data System (ADS)

    Yao, Jianyong

    2018-06-01

    Hydraulic servo system plays a significant role in industries, and usually acts as a core point in control and power transmission. Although linear theory-based control methods have been well established, advanced controller design methods for hydraulic servo system to achieve high performance is still an unending pursuit along with the development of modern industry. Essential nonlinearity is a unique feature and makes model-based nonlinear control more attractive, due to benefit from prior knowledge of the servo valve controlled hydraulic system. In this paper, a discussion for challenges in model-based nonlinear control, latest developments and brief perspectives of hydraulic servo systems are presented: Modelling uncertainty in hydraulic system is a major challenge, which includes parametric uncertainty and time-varying disturbance; some specific requirements also arise ad hoc difficulties such as nonlinear friction during low velocity tracking, severe disturbance, periodic disturbance, etc.; to handle various challenges, nonlinear solutions including parameter adaptation, nonlinear robust control, state and disturbance observation, backstepping design and so on, are proposed and integrated, theoretical analysis and lots of applications reveal their powerful capability to solve pertinent problems; and at the end, some perspectives and associated research topics (measurement noise, constraints, inner valve dynamics, input nonlinearity, etc.) in nonlinear hydraulic servo control are briefly explored and discussed.

  3. Spatial and temporal variation in plant hydraulic traits and their relevance for climate change impacts on vegetation.

    PubMed

    Anderegg, William R L

    2015-02-01

    Plant hydraulics mediate terrestrial woody plant productivity, influencing global water, carbon, and biogeochemical cycles, as well as ecosystem vulnerability to drought and climate change. While inter-specific differences in hydraulic traits are widely documented, intra-specific hydraulic variability is less well known and is important for predicting climate change impacts. Here, I present a conceptual framework for this intra-specific hydraulic trait variability, reviewing the mechanisms that drive variability and the consequences for vegetation response to climate change. I performed a meta-analysis on published studies (n = 33) of intra-specific variation in a prominent hydraulic trait - water potential at which 50% stem conductivity is lost (P50) - and compared this variation to inter-specific variability within genera and plant functional types used by a dynamic global vegetation model. I found that intra-specific variability is of ecologically relevant magnitudes, equivalent to c. 33% of the inter-specific variability within a genus, and is larger in angiosperms than gymnosperms, although the limited number of studies highlights that more research is greatly needed. Furthermore, plant functional types were poorly situated to capture key differences in hydraulic traits across species, indicating a need to approach prediction of drought impacts from a trait-based, rather than functional type-based perspective.

  4. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality.

    PubMed

    Adams, Henry D; Zeppel, Melanie J B; Anderegg, William R L; Hartmann, Henrik; Landhäusser, Simon M; Tissue, David T; Huxman, Travis E; Hudson, Patrick J; Franz, Trenton E; Allen, Craig D; Anderegg, Leander D L; Barron-Gafford, Greg A; Beerling, David J; Breshears, David D; Brodribb, Timothy J; Bugmann, Harald; Cobb, Richard C; Collins, Adam D; Dickman, L Turin; Duan, Honglang; Ewers, Brent E; Galiano, Lucía; Galvez, David A; Garcia-Forner, Núria; Gaylord, Monica L; Germino, Matthew J; Gessler, Arthur; Hacke, Uwe G; Hakamada, Rodrigo; Hector, Andy; Jenkins, Michael W; Kane, Jeffrey M; Kolb, Thomas E; Law, Darin J; Lewis, James D; Limousin, Jean-Marc; Love, David M; Macalady, Alison K; Martínez-Vilalta, Jordi; Mencuccini, Maurizio; Mitchell, Patrick J; Muss, Jordan D; O'Brien, Michael J; O'Grady, Anthony P; Pangle, Robert E; Pinkard, Elizabeth A; Piper, Frida I; Plaut, Jennifer A; Pockman, William T; Quirk, Joe; Reinhardt, Keith; Ripullone, Francesco; Ryan, Michael G; Sala, Anna; Sevanto, Sanna; Sperry, John S; Vargas, Rodrigo; Vennetier, Michel; Way, Danielle A; Xu, Chonggang; Yepez, Enrico A; McDowell, Nate G

    2017-09-01

    Widespread tree mortality associated with drought has been observed on all forested continents and global change is expected to exacerbate vegetation vulnerability. Forest mortality has implications for future biosphere-atmosphere interactions of carbon, water and energy balance, and is poorly represented in dynamic vegetation models. Reducing uncertainty requires improved mortality projections founded on robust physiological processes. However, the proposed mechanisms of drought-induced mortality, including hydraulic failure and carbon starvation, are unresolved. A growing number of empirical studies have investigated these mechanisms, but data have not been consistently analysed across species and biomes using a standardized physiological framework. Here, we show that xylem hydraulic failure was ubiquitous across multiple tree taxa at drought-induced mortality. All species assessed had 60% or higher loss of xylem hydraulic conductivity, consistent with proposed theoretical and modelled survival thresholds. We found diverse responses in non-structural carbohydrate reserves at mortality, indicating that evidence supporting carbon starvation was not universal. Reduced non-structural carbohydrates were more common for gymnosperms than angiosperms, associated with xylem hydraulic vulnerability, and may have a role in reducing hydraulic function. Our finding that hydraulic failure at drought-induced mortality was persistent across species indicates that substantial improvement in vegetation modelling can be achieved using thresholds in hydraulic function.

  5. Linking physiological processes with mangrove forest structure: phosphorus deficiency limits canopy development, hydraulic conductivity and photosynthetic carbon gain in dwarf Rhizophora mangle.

    PubMed

    Lovelock, Catherine E; Ball, Marilyn C; Choat, Brendan; Engelbrecht, Bettina M J; Holbrook, N Michelle; Feller, Ilka C

    2006-05-01

    Spatial gradients in mangrove tree height in barrier islands of Belize are associated with nutrient deficiency and sustained flooding in the absence of a salinity gradient. While nutrient deficiency is likely to affect many parameters, here we show that addition of phosphorus (P) to dwarf mangroves stimulated increases in diameters of xylem vessels, area of conductive xylem tissue and leaf area index (LAI) of the canopy. These changes in structure were consistent with related changes in function, as addition of P also increased hydraulic conductivity (Ks), stomatal conductance and photosynthetic assimilation rates to the same levels measured in taller trees fringing the seaward margin of the mangrove. Increased xylem vessel size and corresponding enhancements in stem hydraulic conductivity in P fertilized dwarf trees came at the cost of enhanced mid-day loss of hydraulic conductivity and was associated with decreased assimilation rates in the afternoon. Analysis of trait plasticity identifies hydraulic properties of trees as more plastic than those of leaf structural and physiological characteristics, implying that hydraulic properties are key in controlling growth in mangroves. Alleviation of P deficiency, which released trees from hydraulic limitations, reduced the structural and functional distinctions between dwarf and taller fringing tree forms of Rhizophora mangle.

  6. Spatio-temporal evolution of apparent resistivity during coal-seam hydraulic flushing

    NASA Astrophysics Data System (ADS)

    Li, Dexing; Wang, Enyuan; Song, Dazhao; Qiu, Liming; Kong, Xiangguo

    2018-06-01

    Hydraulic flushing in gas predrainage is widely used, but the hydraulic-flushing effect is evaluated in a traditional way, by determining the desorption volume, moisture content, gas drainage rate and other conventional indices. To verify the rationality and feasibility of the multielectrode resistivity method in the evaluation of coal-seam hydraulic flushing and to research the spatio-temporal evolution of apparent resistivity during hydraulic flushing, a field test was conducted in 17# coal seam at Nuodong Mine, Guizhou. During hydraulic flushing, four stages were defined according to the variation in coal rock resistivity with time, namely, the preparation stage, the sharply decreasing stage, the rapidly increasing stage and the steady stage. The apparent resistivity of the coal rock mass is affected mainly by its own degree of fragmentation and flushing volume. A more serious rupture and a greater flushing volume yield a smaller apparent resistivity during the sharply decreasing stage and a higher resistivity during the stable stage. After three months of gas predrainage, the residual gas content and the gas pressure at different points in the expected affected area decrease below the critical value. Changes in the residual gas content and gas pressure at these points are consistent with the apparent resistivity, which validates the rationality and feasibility of the multielectrode resistivity method in evaluating coal-seam hydraulic flushing.

  7. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Henry D.; Zeppel, Melanie J. B.; Anderegg, William R. L.

    Widespread tree mortality associated with drought has been observed on all forested continents, and global change is expected to exacerbate vegetation vulnerability. Forest mortality has implications for future biosphere-atmosphere interactions of carbon, water, and energy balance, and is poorly represented in dynamic vegetation models. Reducing uncertainty requires improved mortality projections founded on robust physiological processes. However, the proposed mechanisms of drought-induced mortality, including hydraulic failure and carbon starvation, are unresolved. A growing number of empirical studies have investigated these mechanisms, but data have not been consistently analyzed across species and biomes using a standardized physiological framework. Here we show thatmore » xylem hydraulic failure was ubiquitous across multiple tree taxa at drought-induced mortality. All species assessed had 60% or greater loss of xylem hydraulic conductivity, consistent with proposed theoretical and modelled survival thresholds. We found diverse responses in non-structural carbohydrates at mortality, indicating that evidence supporting carbon starvation was not universal. Reduced non-structural carbohydrates were more common for gymnosperms than angiosperms, associated with xylem hydraulic vulnerability, and may have a role in hydraulic deterioration. The consistent Our finding that across species of hydraulic failure at drought-induced mortality was persistent across species indicates that substantial improvement in vegetation modelling can be achieved using thresholds in hydraulic function.« less

  8. Network hydraulics inclusion in water quality event detection using multiple sensor stations data.

    PubMed

    Oliker, Nurit; Ostfeld, Avi

    2015-09-01

    Event detection is one of the current most challenging topics in water distribution systems analysis: how regular on-line hydraulic (e.g., pressure, flow) and water quality (e.g., pH, residual chlorine, turbidity) measurements at different network locations can be efficiently utilized to detect water quality contamination events. This study describes an integrated event detection model which combines multiple sensor stations data with network hydraulics. To date event detection modelling is likely limited to single sensor station location and dataset. Single sensor station models are detached from network hydraulics insights and as a result might be significantly exposed to false positive alarms. This work is aimed at decreasing this limitation through integrating local and spatial hydraulic data understanding into an event detection model. The spatial analysis complements the local event detection effort through discovering events with lower signatures by exploring the sensors mutual hydraulic influences. The unique contribution of this study is in incorporating hydraulic simulation information into the overall event detection process of spatially distributed sensors. The methodology is demonstrated on two example applications using base runs and sensitivity analyses. Results show a clear advantage of the suggested model over single-sensor event detection schemes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Hydraulics play an important role in causing low growth rate and dieback of aging Pinus sylvestris var. mongolica trees in plantations of Northeast China.

    PubMed

    Liu, Yan-Yan; Wang, Ai-Ying; An, Yu-Ning; Lian, Pei-Yong; Wu, De-Dong; Zhu, Jiao-Jun; Meinzer, Frederick C; Hao, Guang-You

    2018-07-01

    The frequently observed forest decline in water-limited regions may be associated with impaired tree hydraulics, but the precise physiological mechanisms remain poorly understood. We compared hydraulic architecture of Mongolian pine (Pinus sylvestris var. mongolica) trees of different size classes from a plantation and a natural forest site to test whether greater hydraulic limitation with increasing size plays an important role in tree decline observed in the more water-limited plantation site. We found that trees from plantations overall showed significantly lower stem hydraulic efficiency. More importantly, plantation-grown trees showed significant declines in stem hydraulic conductivity and hydraulic safety margins as well as syndromes of stronger drought stress with increasing size, whereas no such trends were observed at the natural forest site. Most notably, the leaf to sapwood area ratio (LA/SA) showed a strong linear decline with increasing tree size at the plantation site. Although compensatory adjustments in LA/SA may mitigate the effect of increased water stress in larger trees, they may result in greater risk of carbon imbalance, eventually limiting tree growth at the plantation site. Our results provide a potential mechanistic explanation for the widespread decline of Mongolian pine trees in plantations of Northern China. © 2018 John Wiley & Sons Ltd.

  10. Plant hydraulics improves and topography mediates prediction of aspen mortality in southwestern USA.

    PubMed

    Tai, Xiaonan; Mackay, D Scott; Anderegg, William R L; Sperry, John S; Brooks, Paul D

    2017-01-01

    Elevated forest mortality has been attributed to climate change-induced droughts, but prediction of spatial mortality patterns remains challenging. We evaluated whether introducing plant hydraulics and topographic convergence-induced soil moisture variation to land surface models (LSM) can help explain spatial patterns of mortality. A scheme predicting plant hydraulic safety loss from soil moisture was developed using field measurements and a plant physiology-hydraulics model, TREES. The scheme was upscaled to Populus tremuloides forests across Colorado, USA, using LSM-modeled and topography-mediated soil moisture, respectively. The spatial patterns of hydraulic safety loss were compared against aerial surveyed mortality. Incorporating hydraulic safety loss raised the explanatory power of mortality by 40% compared to LSM-modeled soil moisture. Topographic convergence was mostly influential in suppressing mortality in low and concave areas, explaining an additional 10% of the variations in mortality for those regions. Plant hydraulics integrated water stress along the soil-plant continuum and was more closely tied to plant physiological response to drought. In addition to the well-recognized topo-climate influence due to elevation and aspect, we found evidence that topographic convergence mediates tree mortality in certain parts of the landscape that are low and convergent, likely through influences on plant-available water. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  11. Use of tandem circulation wells to measure hydraulic conductivity without groundwater extraction

    NASA Astrophysics Data System (ADS)

    Goltz, Mark N.; Huang, Junqi; Close, Murray E.; Flintoft, Mark J.; Pang, Liping

    2008-09-01

    Conventional methods to measure the hydraulic conductivity of an aquifer on a relatively large scale (10-100 m) require extraction of significant quantities of groundwater. This can be expensive, and otherwise problematic, when investigating a contaminated aquifer. In this study, innovative approaches that make use of tandem circulation wells to measure hydraulic conductivity are proposed. These approaches measure conductivity on a relatively large scale, but do not require extraction of groundwater. Two basic approaches for using circulation wells to measure hydraulic conductivity are presented; one approach is based upon the dipole-flow test method, while the other approach relies on a tracer test to measure the flow of water between two recirculating wells. The approaches are tested in a relatively homogeneous and isotropic artificial aquifer, where the conductivities measured by both approaches are compared to each other and to the previously measured hydraulic conductivity of the aquifer. It was shown that both approaches have the potential to accurately measure horizontal and vertical hydraulic conductivity for a relatively large subsurface volume without the need to pump groundwater to the surface. Future work is recommended to evaluate the ability of these tandem circulation wells to accurately measure hydraulic conductivity when anisotropy and heterogeneity are greater than in the artificial aquifer used for these studies.

  12. Evolution of Neural Networks for the Prediction of Hydraulic Conductivity as a Function of Borehole Geophysical Logs: Shobasama Site, Japan

    NASA Astrophysics Data System (ADS)

    Reeves, P.; McKenna, S. A.; Takeuchi, S.; Saegusa, H.

    2003-12-01

    In situ measurements of hydraulic conductivity in fractured rocks are expensive to acquire. Borehole geophysical measurements are relatively inexpensive to acquire but do not provide direct information on hydraulic conductivity. These geophysical measurements quantify properties of the rock that influence the hydraulic conductivity and it may be possible to employ a non-linear combination of these measurements to estimate hydraulic conductivity. Geophysical measurements collected in fractured granite at the Shobasama site in central Japan were used as the input to a feed-forward neural network. A simple genetic algorithm was used to simultaneously evolve the architecture and parameters of the neural network as well as determine an optimal subset of geophysical measurements for the prediction of hydraulic conductivity. The initial estimation procedure focused on predicting the class of the hydraulic conductivity, high, medium or low, from the geophysical measurements. This estimation was done while using the genetic algorithm to simultaneously determine the most important geophysical logs and optimize the architecture of the neural network. Results show that certain geophysical logs provide more information than others- most notably the short-normal resistivity, micro-resistivity, porosity and sonic logs provided the most information on hydraulic conductivity. The neural network produced excellent training results with accuracy of 90 percent or greater, but was unable to produce accurate predictions of the hydraulic conductivity class In the second phase of calculations, the selection of geophysical measurements is limited to only those that provide significant information. Additionally, this second phase predicts transmissivity instead of hydraulic conductivity in order to account for the differences in the length of the hydraulic test zones. Resulting predictions of transmissivity exhibit conditional bias with maximum prediction errors of three orders of magnitude occurring at the extreme measurement values. Results of these simulations indicate that the most informative geophysical measurements for the prediction of transmissivity are depth and sonic velocity. The long normal resistivity and self potential geophysical measurements are moderately informative. In addition, it was found that porosity and crack counts (clear, open, or hairline) do not inform predictions of transmissivity. This work was funded by the Japan Nuclear Cycle Development Institute. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94-AL-85000

  13. Hydrodynamic Trait Coordination and Cost-Benefit Tradeoffs throughout the Isohydric-Anisohydric Continuum in Trees

    NASA Astrophysics Data System (ADS)

    Mirfenderesgi, G.; Matheny, A. M.; Bohrer, G.

    2017-12-01

    Whole-plant hydraulic performance depends on the integrated function of complexes of traits, such as embolism resistance and xylem anatomy, stomatal closure mechanisms, hydraulic architecture, and root properties. The diversity of such traits produces a wide range of response strategies to both short-term variation of soil moisture and VPD, and to long-term changes to climate and hydrological cycles which affect water availability. This study aims to assess the role of different hydraulic trait combinations in trees' vulnerability to limitations in soil water availability. We use a quantitative hydrodynamic modeling framework which allows studying the influence of each suits of plant hydraulic traits independently, and assess how the different trait groups interact with each other to form viable hydraulic strategies in response to reduced soil moisture availability. We utilize the advanced plant hydrodynamic model, FETCH2, which resolves plant functional hydrodynamics, using parameters that represent emergent physiological traits at the root, stem and leaf levels. FETCH2 simulates the integrated plant-level transpiration and water capacitance, provided hydraulic traits and environmental forcing. We define a multi-dimensional hydraulic "trait space" by considering a broad continuum of hydraulic traits at each of the leaf, stem, and root levels. We test the consequences of different strategies under a range of environmental conditions, representing typical wet, intermediate, and dry conditions, based on as observations in a research forest in Northern Michigan, USA. We evaluate the degree to which simulated trees suffer hydraulic failure due to cavitation, resulting in loss of xylem conductivity, or carbon starvation, through leaf water-potential-driven reduction of stomatal conductance. Our result demonstrated that risk-prone leaf strategy when combined with risk-adverse xylem traits may expose plant to the risk of hydraulic failure due to declining water potential during period of low soil moisture and high VPD. However, if this strategy is coupled with deep roots, the plant is less likely to experience water stress even during periods of low soil water availability and high evaporative demand.

  14. Responses of Woody Plant Functional Traits to Nitrogen Addition: A Meta-Analysis of Leaf Economics, Gas Exchange, and Hydraulic Traits.

    PubMed

    Zhang, Hongxia; Li, Weibin; Adams, Henry D; Wang, Anzhi; Wu, Jiabing; Jin, Changjie; Guan, Dexin; Yuan, Fenghui

    2018-01-01

    Atmospheric nitrogen (N) deposition has been found to significantly affect plant growth and physiological performance in terrestrial ecosystems. Many individual studies have investigated how N addition influences plant functional traits, however these investigations have usually been limited to a single species, and thereby do not allow derivation of general patterns or underlying mechanisms. We synthesized data from 56 papers and conducted a meta-analysis to assess the general responses of 15 variables related to leaf economics, gas exchange, and hydraulic traits to N addition among 61 woody plant species, primarily from temperate and subtropical regions. Results showed that under N addition, leaf area index (+10.3%), foliar N content (+7.3%), intrinsic water-use efficiency (+3.1%) and net photosynthetic rate (+16.1%) significantly increased, while specific leaf area, stomatal conductance, and transpiration rate did not change. For plant hydraulics, N addition significantly increased vessel diameter (+7.0%), hydraulic conductance in stems/shoots (+6.7%), and water potential corresponding to 50% loss of hydraulic conductivity ( P 50 , +21.5%; i.e., P 50 became less negative), while water potential in leaves (-6.7%) decreased (became more negative). N addition had little effect on vessel density, hydraulic conductance in leaves and roots, or water potential in stems/shoots. N addition had greater effects on gymnosperms than angiosperms and ammonium nitrate fertilization had larger effects than fertilization with urea, and high levels of N addition affected more traits than low levels. Our results demonstrate that N addition has coupled effects on both carbon and water dynamics of woody plants. Increased leaf N, likely fixed in photosynthetic enzymes and pigments leads to higher photosynthesis and water use efficiency, which may increase leaf growth, as reflected in LAI results. These changes appear to have downstream effects on hydraulic function through increases in vessel diameter, which leads to higher hydraulic conductance, but lower water potential and increased vulnerability to embolism. Overall, our results suggest that N addition will shift plant function along a tradeoff between C and hydraulic economies by enhancing C uptake while simultaneously increasing the risk of hydraulic dysfunction.

  15. Borehole characterization of hydraulic properties and groundwater flow in a crystalline fractured aquifer of a headwater mountain watershed, Laramie Range, Wyoming

    NASA Astrophysics Data System (ADS)

    Ren, Shuangpo; Gragg, Samuel; Zhang, Ye; Carr, Bradley J.; Yao, Guangqing

    2018-06-01

    Fractured crystalline aquifers of mountain watersheds may host a significant portion of the world's freshwater supply. To effectively utilize water resources in these environments, it is important to understand the hydraulic properties, groundwater storage, and flow processes in crystalline aquifers and field-derived insights are critically needed. Based on borehole hydraulic characterization and monitoring data, this study inferred hydraulic properties and groundwater flow of a crystalline fractured aquifer in Laramie Range, Wyoming. At three open holes completed in a fractured granite aquifer, both slug tests and FLUTe liner profiling were performed to obtain estimates of horizontal hydraulic conductivity (Kh). Televiewer (i.e., optical and acoustic) and flowmeter logs were then jointly interpreted to identify the number of flowing fractures and fracture zones. Based on these data, hydraulic apertures were obtained for each borehole. Average groundwater velocity was then computed using Kh, aperture, and water level monitoring data. Finally, based on all available data, including cores, borehole logs, LIDAR topography, and a seismic P-wave velocity model, a three dimensional geological model of the site was built. In this fractured aquifer, (1) borehole Kh varies over ∼4 orders of magnitude (10-8-10-5 m/s). Kh is consistently higher near the top of the bedrock that is interpreted as the weathering front. Using a cutoff Kh of 10-10 m/s, the hydraulically significant zone extends to ∼40-53 m depth. (2) FLUTe-estimated hydraulic apertures of fractures vary over 1 order of magnitude, and at each borehole, the average hydraulic aperture by FLUTe is very close to that obtained from slug tests. Thus, slug test can be used to provide a reliable estimate of the average fracture hydraulic aperture. (3) Estimated average effective fracture porosity is 4.0 × 10-4, therefore this fractured aquifer can host significant quantity of water. (4) Natural groundwater velocity is estimated to range from 0.4 to 81.0 m/day, implying rapid pathways of fracture flow. (5) The average ambient water table position follows the boundary between saprolite and fractured bedrock. Groundwater flow at the site appears topography driven.

  16. Characterization of the Oriskany and Berea Sandstones: Evaluating Biogeochemical Reactions of Potential Sandstone–Hydraulic Fracturing Fluid Interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verba, Circe; Harris, Aubrey

    The Marcellus shale, located in the mid-Atlantic Appalachian Basin, has been identified as a source for natural gas and targeted for hydraulic fracturing recovery methods. Hydraulic fracturing is a technique used by the oil and gas industry to access petroleum reserves in geologic formations that cannot be accessed with conventional drilling techniques (Capo et al., 2014). This unconventional technique fractures rock formations that have low permeability by pumping pressurized hydraulic fracturing fluids into the subsurface. Although the major components of hydraulic fracturing fluid are water and sand, chemicals, such as recalcitrant biocides and polyacrylamide, are also used (Frac Focus, 2015).more » There is domestic concern that the chemicals could reach groundwater or surface water during transport, storage, or the fracturing process (Chapman et al., 2012). In the event of a surface spill, understanding the natural attenuation of the chemicals in hydraulic fracturing fluid, as well as the physical and chemical properties of the aquifers surrounding the spill site, will help mitigate potential dangers to drinking water. However, reports on the degradation pathways of these chemicals are limited in existing literature. The Appalachian Basin Marcellus shale and its surrounding sandstones host diverse mineralogical suites. During the hydraulic fracturing process, the hydraulic fracturing fluids come into contact with variable mineral compositions. The reactions between the fracturing fluid chemicals and the minerals are very diverse. This report: 1) describes common minerals (e.g. quartz, clay, pyrite, and carbonates) present in the Marcellus shale, as well as the Oriskany and Berea sandstones, which are located stratigraphically below and above the Marcellus shale; 2) summarizes the existing literature of the degradation pathways for common hydraulic fracturing fluid chemicals [polyacrylamide, ethylene glycol, poly(diallyldimethylammonium chloride), glutaraldehyde, guar gum, and isopropanol]; 3) reviews the known research about the interactions between several hydraulic fracturing chemicals [e.g. polyacrylamide, ethylene glycol, poly(diallyldimethylammonium chloride), and glutaraldehyde] with the minerals (quartz, clay, pyrite, and carbonates) common to the lithologies of the Marcellus shale and its surrounding sandstones; and 4) characterizes the Berea sandstone and analyzes the physical and chemical effects of flowing guar gum through a Berea sandstone core.« less

  17. Intraspecific Variation in Wood Anatomical, Hydraulic, and Foliar Traits in Ten European Beech Provenances Differing in Growth Yield

    PubMed Central

    Hajek, Peter; Kurjak, Daniel; von Wühlisch, Georg; Delzon, Sylvain; Schuldt, Bernhard

    2016-01-01

    In angiosperms, many studies have described the inter-specific variability of hydraulic-related traits and little is known at the intra-specific level. This information is however mandatory to assess the adaptive capacities of tree populations in the context of increasing drought frequency and severity. Ten 20-year old European beech (Fagus sylvatica L.) provenances representing the entire distribution range throughout Europe and differing significantly in aboveground biomass increment (ABI) by a factor of up to four were investigated for branch wood anatomical, hydraulic, and foliar traits in a provenance trial located in Northern Europe. We quantified to which extend xylem hydraulic and leaf traits are under genetic control and tested whether the xylem hydraulic properties (hydraulic efficiency and safety) trades off with yield and wood anatomical and leaf traits. Our results showed that only three out of 22 investigated ecophysiological traits showed significant genetic differentiations between provenances, namely vessel density (VD), the xylem pressure causing 88% loss of hydraulic conductance and mean leaf size. Depending of the ecophysiological traits measured, genetic differentiation between populations explained 0–14% of total phenotypic variation, while intra-population variability was higher than inter-population variability. Most wood anatomical traits and some foliar traits were additionally related to the climate of provenance origin. The lumen to sapwood area ratio, vessel diameter, theoretical specific conductivity and theoretical leaf-specific conductivity as well as the C:N-ratio increased with climatic aridity at the place of origin while the carbon isotope signature (δ13C) decreased. Contrary to our assumption, none of the wood anatomical traits were related to embolism resistance but were strong determinants of hydraulic efficiency. Although ABI was associated with both VD and δ13C, both hydraulic efficiency and embolism resistance were unrelated, disproving the assumed trade-off between hydraulic efficiency and safety. European beech seems to compensate increasing water stress with growing size mainly by adjusting vessel number and not vessel diameter. In conclusion, European beech has a high potential capacity to cope with climate change due to the high degree of intra-population genetic variability. PMID:27379112

  18. Intraspecific Variation in Wood Anatomical, Hydraulic, and Foliar Traits in Ten European Beech Provenances Differing in Growth Yield.

    PubMed

    Hajek, Peter; Kurjak, Daniel; von Wühlisch, Georg; Delzon, Sylvain; Schuldt, Bernhard

    2016-01-01

    In angiosperms, many studies have described the inter-specific variability of hydraulic-related traits and little is known at the intra-specific level. This information is however mandatory to assess the adaptive capacities of tree populations in the context of increasing drought frequency and severity. Ten 20-year old European beech (Fagus sylvatica L.) provenances representing the entire distribution range throughout Europe and differing significantly in aboveground biomass increment (ABI) by a factor of up to four were investigated for branch wood anatomical, hydraulic, and foliar traits in a provenance trial located in Northern Europe. We quantified to which extend xylem hydraulic and leaf traits are under genetic control and tested whether the xylem hydraulic properties (hydraulic efficiency and safety) trades off with yield and wood anatomical and leaf traits. Our results showed that only three out of 22 investigated ecophysiological traits showed significant genetic differentiations between provenances, namely vessel density (VD), the xylem pressure causing 88% loss of hydraulic conductance and mean leaf size. Depending of the ecophysiological traits measured, genetic differentiation between populations explained 0-14% of total phenotypic variation, while intra-population variability was higher than inter-population variability. Most wood anatomical traits and some foliar traits were additionally related to the climate of provenance origin. The lumen to sapwood area ratio, vessel diameter, theoretical specific conductivity and theoretical leaf-specific conductivity as well as the C:N-ratio increased with climatic aridity at the place of origin while the carbon isotope signature (δ(13)C) decreased. Contrary to our assumption, none of the wood anatomical traits were related to embolism resistance but were strong determinants of hydraulic efficiency. Although ABI was associated with both VD and δ(13)C, both hydraulic efficiency and embolism resistance were unrelated, disproving the assumed trade-off between hydraulic efficiency and safety. European beech seems to compensate increasing water stress with growing size mainly by adjusting vessel number and not vessel diameter. In conclusion, European beech has a high potential capacity to cope with climate change due to the high degree of intra-population genetic variability.

  19. Hydraulic characterization of volcanic rocks in Pahute Mesa using an integrated analysis of 16 multiple-well aquifer tests, Nevada National Security Site, 2009–14

    USGS Publications Warehouse

    Garcia, C. Amanda; Jackson, Tracie R.; Halford, Keith J.; Sweetkind, Donald S.; Damar, Nancy A.; Fenelon, Joseph M.; Reiner, Steven R.

    2017-01-20

    An improved understanding of groundwater flow and radionuclide migration downgradient from underground nuclear-testing areas at Pahute Mesa, Nevada National Security Site, requires accurate subsurface hydraulic characterization. To improve conceptual models of flow and transport in the complex hydrogeologic system beneath Pahute Mesa, the U.S. Geological Survey characterized bulk hydraulic properties of volcanic rocks using an integrated analysis of 16 multiple-well aquifer tests. Single-well aquifer-test analyses provided transmissivity estimates at pumped wells. Transmissivity estimates ranged from less than 1 to about 100,000 square feet per day in Pahute Mesa and the vicinity. Drawdown from multiple-well aquifer testing was estimated and distinguished from natural fluctuations in more than 200 pumping and observation wells using analytical water-level models. Drawdown was detected at distances greater than 3 miles from pumping wells and propagated across hydrostratigraphic units and major structures, indicating that neither faults nor structural blocks noticeably impede or divert groundwater flow in the study area.Consistent hydraulic properties were estimated by simultaneously interpreting drawdown from the 16 multiple-well aquifer tests with an integrated groundwater-flow model composed of 11 well-site models—1 for each aquifer test site. Hydraulic properties were distributed across volcanic rocks with the Phase II Pahute Mesa-Oasis Valley Hydrostratigraphic Framework Model. Estimated hydraulic-conductivity distributions spanned more than two orders of magnitude in hydrostratigraphic units. Overlapping hydraulic conductivity ranges among units indicated that most Phase II Hydrostratigraphic Framework Model units were not hydraulically distinct. Simulated total transmissivity ranged from 1,600 to 68,000 square feet per day for all pumping wells analyzed. High-transmissivity zones exceeding 10,000 square feet per day exist near caldera margins and extend along the northern and eastern Pahute Mesa study area and near the southwestern edge of the study area. The estimated hydraulic-property distributions and observed hydraulic connections among geologic structures improved the characterization and representation of groundwater flow at Pahute Mesa.

  20. Responses of hydraulics at the whole-plant level to simulated nitrogen deposition of different levels in Fraxinus mandshurica.

    PubMed

    Wang, Ai-Ying; Wang, Miao; Yang, Da; Song, Jia; Zhang, Wei-Wei; Han, Shi-Jie; Hao, Guang-You

    2016-08-01

    Nitrogen (N) deposition is expected to have great impact on forest ecosystems by affecting many aspects of plant-environmental interactions, one of which involves its influences on plant water relations through modifications of plant hydraulic architecture. However, there is a surprising lack of integrative study on tree hydraulic architecture responses to N deposition, especially at the whole-plant level. In the present study, we used a 5-year N addition experiment to simulate the effects of six different levels of N deposition (20-120 kg ha(-1) year(-1)) on growth and whole-plant hydraulic conductance of a dominant tree species (Fraxinus mandshurica Rupr.) from the typical temperate forest of NE China. The results showed that alleviation of N limitation by moderate concentrations of fertilization (20-80 kg ha(-1) year(-1)) promoted plant growth, but further N additions on top of the threshold level showed negative effects on plant growth. Growth responses of F. mandshurica seedlings to N addition of different concentrations were accompanied by corresponding changes in whole-plant hydraulic conductance; higher growth rate was accompanied by reduced whole-plant hydraulic conductance (Kplant) and higher leaf water-use efficiency. A detailed analysis on hydraulic conductance of different components of the whole-plant water transport pathway revealed that changes in root and leaf hydraulic conductance, rather than that of the stem, were responsible for Kplant responses to N fertilization. Both plant growth and hydraulic architecture responses to increasing levels of N addition were not linear, i.e., the correlation between measured parameters and N availability exhibited bell-shaped curves with peak values observed at medium levels of N fertilization. Changes in hydraulic architecture in response to fertilization found in the present study may represent an important underlying mechanism for the commonly observed changes in water-related tree performances in response to N deposition. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. The Effect of Hydraulic Gradient and Pattern of Conduit Systems on Tracing Tests: Bench-Scale Modeling.

    PubMed

    Mohammadi, Zargham; Gharaat, Mohammad Javad; Field, Malcolm

    2018-03-13

    Tracer breakthrough curves provide valuable information about the traced media, especially in inherently heterogeneous karst aquifers. In order to study the effect of variations in hydraulic gradient and conduit systems on breakthrough curves, a bench scale karst model was constructed. The bench scale karst model contains both matrix and a conduit. Eight tracing tests were conducted under a wide range of hydraulic gradients from 1 to greater than 5 for branchwork and network-conduit systems. Sampling points at varying distances from the injection point were utilized. Results demonstrate that mean tracer velocities, tracer mass recovery and linear rising slope of the breakthrough curves were directly controlled by hydraulic gradient. As hydraulic gradient increased, both one half the time for peak concentration and one fifth the time for peak concentration decreased. The results demonstrate the variations in one half the time for peak concentration and one fifth the time for peak concentration of the descending limb for different sampling points under differing hydraulic gradients are mainly controlled by the interactions of advection with dispersion. The results are discussed from three perspectives: different conduit systems, different hydraulic-gradient conditions, and different sampling points. The research confirmed the undeniable role of hydrogeological setting (i.e., hydraulic gradient and conduit system) on the shape of the breakthrough curve. The extracted parameters (mobile-fluid velocity, tracer-mass recovery, linear rising limb, one half the time for peak concentration, and one fifth the time for peak concentration) allow for differentiating hydrogeological settings and enhance interpretations the tracing tests in karst aquifers. © 2018, National Ground Water Association.

  2. Electrical and Magnetic Imaging of Proppants in Shallow Hydraulic Fractures

    NASA Astrophysics Data System (ADS)

    Denison, J. L. S.; Murdoch, L. C.; LaBrecque, D. J.; Slack, W. W.

    2015-12-01

    Hydraulic fracturing is an important tool to increase the productivity of wells used for oil and gas production, water resources, and environmental remediation. Currently there are relatively few tools available to monitor the distribution of proppants within a hydraulic fracture, or the propagation of the fracture itself. We have been developing techniques for monitoring hydraulic fractures by injecting electrically conductive, dielectric, or magnetically permeable proppants. We then use the resulting contrast with the enveloping rock to image the proppants using geophysical methods. Based on coupled laboratory and numerical modeling studies, three types of proppants were selected for field evaluation. Eight hydraulic fractures were created near Clemson, SC in May of 2015 by injecting specialized proppants at a depth of 1.5 m. The injections created shallow sub-horizontal fractures extending several meters from the injection point.Each cell had a dense array of electrodes and magnetic sensors on the surface and four shallow vertical electrode arrays that were used to obtain data before and after hydraulic fracturing. Net vertical displacement and transient tilts were also measured. Cores from 130 boreholes were used to characterize the general geometries, and trenching was used to characterize the forms of two of the fractures in detail. Hydraulic fracture geometries were estimated by inverting pre- and post-injection geophysical data. Data from cores and trenching show that the hydraulic fractures were saucer-shaped with a preferred propagation direction. The geophysical inversions generated images that were remarkably similar in form, size, and location to the ground truth from direct observation. Displacement and tilt data appear promising as a constraint on fracture geometry.

  3. Biofilm effect on soil hydraulic properties: Experimental investigation using soil-grown real biofilm

    NASA Astrophysics Data System (ADS)

    Volk, Elazar; Iden, Sascha C.; Furman, Alex; Durner, Wolfgang; Rosenzweig, Ravid

    2016-08-01

    Understanding the influence of attached microbial biomass on water flow in variably saturated soils is crucial for many engineered flow systems. So far, the investigation of the effects of microbial biomass has been mainly limited to water-saturated systems. We have assessed the influence of biofilms on the soil hydraulic properties under variably saturated conditions. A sandy soil was incubated with Pseudomonas Putida and the hydraulic properties of the incubated soil were determined by a combination of methods. Our results show a stronger soil water retention in the inoculated soil as compared to the control. The increase in volumetric water content reaches approximately 0.015 cm3 cm-3 but is only moderately correlated with the carbon deficit, a proxy for biofilm quantity, and less with the cell viable counts. The presence of biofilm reduced the saturated hydraulic conductivity of the soil by up to one order of magnitude. Under unsaturated conditions, the hydraulic conductivity was only reduced by a factor of four. This means that relative water conductance in biofilm-affected soils is higher compared to the clean soil at low water contents, and that the unsaturated hydraulic conductivity curve of biofilm-affected soil cannot be predicted by simply scaling the saturated hydraulic conductivity. A flexible parameterization of the soil hydraulic functions accounting for capillary and noncapillary flow was needed to adequately describe the observed properties over the entire wetness range. More research is needed to address the exact flow mechanisms in biofilm-affected, unsaturated soil and how they are related to effective system properties.

  4. Tree shoot bending generates hydraulic pressure pulses: a new long-distance signal?

    PubMed Central

    Lopez, Rosana; Badel, Eric

    2014-01-01

    When tree stems are mechanically stimulated, a rapid long-distance signal is induced that slows down primary growth. An investigation was carried out to determine whether the signal might be borne by a mechanically induced pressure pulse in the xylem. Coupling xylem flow meters and pressure sensors with a mechanical testing device, the hydraulic effects of mechanical deformation of tree stem and branches were measured. Organs of several tree species were studied, including gymnosperms and angiosperms with different wood densities and anatomies. Bending had a negligible effect on xylem conductivity, even when deformations were sustained or were larger than would be encountered in nature. It was found that bending caused transient variation in the hydraulic pressure within the xylem of branch segments. This local transient increase in pressure in the xylem was rapidly propagated along the vascular system in planta to the upper and lower regions of the stem. It was shown that this hydraulic pulse originates from the apoplast. Water that was mobilized in the hydraulic pulses came from the saturated porous material of the conduits and their walls, suggesting that the poroelastic behaviour of xylem might be a key factor. Although likely to be a generic mechanical response, quantitative differences in the hydraulic pulse were found in different species, possibly related to differences in xylem anatomy. Importantly the hydraulic pulse was proportional to the strained volume, similar to known thigmomorphogenetic responses. It is hypothesized that the hydraulic pulse may be the signal that rapidly transmits mechanobiological information to leaves, roots, and apices. PMID:24558073

  5. Interpretation of hydraulic conductivity in a fractured-rock aquifer over increasingly larger length dimensions

    USGS Publications Warehouse

    Shapiro, Allen M.; Ladderud, Jeffery; Yager, Richard M.

    2015-01-01

    A comparison of the hydraulic conductivity over increasingly larger volumes of crystalline rock was conducted in the Piedmont physiographic region near Bethesda, Maryland, USA. Fluid-injection tests were conducted on intervals of boreholes isolating closely spaced fractures. Single-hole tests were conducted by pumping in open boreholes for approximately 30 min, and an interference test was conducted by pumping a single borehole over 3 days while monitoring nearby boreholes. An estimate of the hydraulic conductivity of the rock over hundreds of meters was inferred from simulating groundwater inflow into a kilometer-long section of a Washington Metropolitan Area Transit Authority tunnel in the study area, and a groundwater modeling investigation over the Rock Creek watershed provided an estimate of the hydraulic conductivity over kilometers. The majority of groundwater flow is confined to relatively few fractures at a given location. Boreholes installed to depths of approximately 50 m have one or two highly transmissive fractures; the transmissivity of the remaining fractures ranges over five orders of magnitude. Estimates of hydraulic conductivity over increasingly larger rock volumes varied by less than half an order of magnitude. While many investigations point to increasing hydraulic conductivity as a function of the measurement scale, a comparison with selected investigations shows that the effective hydraulic conductivity estimated over larger volumes of rock can either increase, decrease, or remain stable as a function of the measurement scale. Caution needs to be exhibited in characterizing effective hydraulic properties in fractured rock for the purposes of groundwater management.

  6. Tree shoot bending generates hydraulic pressure pulses: a new long-distance signal?

    PubMed

    Lopez, Rosana; Badel, Eric; Peraudeau, Sebastien; Leblanc-Fournier, Nathalie; Beaujard, François; Julien, Jean-Louis; Cochard, Hervé; Moulia, Bruno

    2014-05-01

    When tree stems are mechanically stimulated, a rapid long-distance signal is induced that slows down primary growth. An investigation was carried out to determine whether the signal might be borne by a mechanically induced pressure pulse in the xylem. Coupling xylem flow meters and pressure sensors with a mechanical testing device, the hydraulic effects of mechanical deformation of tree stem and branches were measured. Organs of several tree species were studied, including gymnosperms and angiosperms with different wood densities and anatomies. Bending had a negligible effect on xylem conductivity, even when deformations were sustained or were larger than would be encountered in nature. It was found that bending caused transient variation in the hydraulic pressure within the xylem of branch segments. This local transient increase in pressure in the xylem was rapidly propagated along the vascular system in planta to the upper and lower regions of the stem. It was shown that this hydraulic pulse originates from the apoplast. Water that was mobilized in the hydraulic pulses came from the saturated porous material of the conduits and their walls, suggesting that the poroelastic behaviour of xylem might be a key factor. Although likely to be a generic mechanical response, quantitative differences in the hydraulic pulse were found in different species, possibly related to differences in xylem anatomy. Importantly the hydraulic pulse was proportional to the strained volume, similar to known thigmomorphogenetic responses. It is hypothesized that the hydraulic pulse may be the signal that rapidly transmits mechanobiological information to leaves, roots, and apices.

  7. Hydrologic and hydraulic analyses of Great Meadow wetland, Acadia National Park, Maine

    USGS Publications Warehouse

    Lombard, Pamela J.

    2017-01-26

    The U.S. Geological Survey completed hydrologic and hydraulic analyses of Cromwell Brook and the Sieur de Monts tributary in Acadia National Park, Maine, to better understand causes of flooding in complex hydrologic and hydraulic environments, like those in the Great Meadow wetland and Sieur de Monts Spring area. Regional regression equations were used to compute peak flows with from 2 to 100-year recurrence intervals at seven locations. Light detection and ranging data were adjusted for bias caused by dense vegetation in the Great Meadow wetland; and then combined with local ground surveys used to define the underwater topography and hydraulic structures in the study area. Hydraulic modeling was used to evaluate flood response in the study area to a variety of hydrologic and hydraulic scenarios.Hydraulic modeling indicates that enlarging the culvert at Park Loop Road could help mitigate flooding near the Sieur de Monts Nature Center that is caused by streamflows with large recurrence intervals; however, hydraulic modeling also indicates that the Park Loop Road culvert does not aggravate flooding near the Nature Center caused by the more frequent high intensity rainstorms. That flooding is likely associated with overland flow resulting from (1) quick runoff from the steep Dorr Mountain hitting the lower gradient Great Meadow wetland area and (2) poor drainage aggravated by beaver dams holding water in the wetland.Rapid geomorphic assessment data collected in June 2015 and again in April 2016 indicate that Cromwell Brook has evidence of aggradation, degradation, and channel widening throughout the drainage basin. Two of five reference cross sections developed for this report also indicate channel aggradation.

  8. Assessment the effect of homogenized soil on soil hydraulic properties and soil water transport

    NASA Astrophysics Data System (ADS)

    Mohawesh, O.; Janssen, M.; Maaitah, O.; Lennartz, B.

    2017-09-01

    Soil hydraulic properties play a crucial role in simulating water flow and contaminant transport. Soil hydraulic properties are commonly measured using homogenized soil samples. However, soil structure has a significant effect on the soil ability to retain and to conduct water, particularly in aggregated soils. In order to determine the effect of soil homogenization on soil hydraulic properties and soil water transport, undisturbed soil samples were carefully collected. Five different soil structures were identified: Angular-blocky, Crumble, Angular-blocky (different soil texture), Granular, and subangular-blocky. The soil hydraulic properties were determined for undisturbed and homogenized soil samples for each soil structure. The soil hydraulic properties were used to model soil water transport using HYDRUS-1D.The homogenized soil samples showed a significant increase in wide pores (wCP) and a decrease in narrow pores (nCP). The wCP increased by 95.6, 141.2, 391.6, 3.9, 261.3%, and nCP decreased by 69.5, 10.5, 33.8, 72.7, and 39.3% for homogenized soil samples compared to undisturbed soil samples. The soil water retention curves exhibited a significant decrease in water holding capacity for homogenized soil samples compared with the undisturbed soil samples. The homogenized soil samples showed also a decrease in soil hydraulic conductivity. The simulated results showed that water movement and distribution were affected by soil homogenizing. Moreover, soil homogenizing affected soil hydraulic properties and soil water transport. However, field studies are being needed to find the effect of these differences on water, chemical, and pollutant transport under several scenarios.

  9. Hydraulic Conductivity of Geosynthetic Clay Liners to Low-Level Radioactive Waste Leachate

    DOE PAGES

    Tian, Kuo; Benson, Craig H.; Likos, William J.

    2016-04-25

    Hydraulic conductivity was evaluated for eight commercially available geosynthetic clay liners (GCLs) permeated with leachate characteristic of low-level radioactive waste (LLW) disposal facilities operated by the U.S. Department of Energy (DOE). Two of the GCLs (CS and GS) contained conventional sodium bentonite (Na-B). The others contained a bentonite–polymer mixture (CPL, CPH, GPL1, GPL2, and GPH) or bentonite–polymer composite (BPC). All GCLs (except GPL2 and GPH) were permeated directly with two synthetic LLW leachates that are essentially identical, except one has no radionuclides (nonradioactive synthetic leachate, or NSL) and the other has radionuclides (radioactive synthetic leachate, or RSL). Hydraulic conductivities tomore » RSL and NSL were identical. For the CS and GS GCLs, the hydraulic conductivity gradually increased by a factor of 5–25 because divalent cations in the leachate replaced native sodium cations bound to the bentonite. The CPL, GPL1, and GPL2 GCLs with low polymer loading (1.2–3.3%) had hydraulic conductivities similar to the conventional GCLs. In contrast, hydraulic conductivity of the CPH, GPH, and BPC GCLs with high polymer loading (≥5%) to RSL or NSL was comparable to, or lower than, the hydraulic conductivity to deionized water. Permeation with leachate reduced the swell index of the bentonite in all of the GCLs. A conceptual model featuring pore blocking by polymer hydrogel is proposed to explain why the hydraulic conductivity of bentonite–polymer GCLs to LLW leachates remains low even though the leachate inhibits bentonite swelling.« less

  10. Hydraulic Conductivity of Geosynthetic Clay Liners to Low-Level Radioactive Waste Leachate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Kuo; Benson, Craig H.; Likos, William J.

    Hydraulic conductivity was evaluated for eight commercially available geosynthetic clay liners (GCLs) permeated with leachate characteristic of low-level radioactive waste (LLW) disposal facilities operated by the U.S. Department of Energy (DOE). Two of the GCLs (CS and GS) contained conventional sodium bentonite (Na-B). The others contained a bentonite–polymer mixture (CPL, CPH, GPL1, GPL2, and GPH) or bentonite–polymer composite (BPC). All GCLs (except GPL2 and GPH) were permeated directly with two synthetic LLW leachates that are essentially identical, except one has no radionuclides (nonradioactive synthetic leachate, or NSL) and the other has radionuclides (radioactive synthetic leachate, or RSL). Hydraulic conductivities tomore » RSL and NSL were identical. For the CS and GS GCLs, the hydraulic conductivity gradually increased by a factor of 5–25 because divalent cations in the leachate replaced native sodium cations bound to the bentonite. The CPL, GPL1, and GPL2 GCLs with low polymer loading (1.2–3.3%) had hydraulic conductivities similar to the conventional GCLs. In contrast, hydraulic conductivity of the CPH, GPH, and BPC GCLs with high polymer loading (≥5%) to RSL or NSL was comparable to, or lower than, the hydraulic conductivity to deionized water. Permeation with leachate reduced the swell index of the bentonite in all of the GCLs. A conceptual model featuring pore blocking by polymer hydrogel is proposed to explain why the hydraulic conductivity of bentonite–polymer GCLs to LLW leachates remains low even though the leachate inhibits bentonite swelling.« less

  11. 40 CFR 147.52 - State-administered program-Hydraulic Fracturing of Coal Beds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Fracturing of Coal Beds. 147.52 Section 147.52 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... PROGRAMS Alabama § 147.52 State-administered program—Hydraulic Fracturing of Coal Beds. The UIC program for hydraulic fracturing of coal beds in the State of Alabama, except those on Indian lands, is the program...

  12. 40 CFR 147.52 - State-administered program-Hydraulic Fracturing of Coal Beds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Fracturing of Coal Beds. 147.52 Section 147.52 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... PROGRAMS Alabama § 147.52 State-administered program—Hydraulic Fracturing of Coal Beds. The UIC program for hydraulic fracturing of coal beds in the State of Alabama, except those on Indian lands, is the program...

  13. 40 CFR 147.52 - State-administered program-Hydraulic Fracturing of Coal Beds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Fracturing of Coal Beds. 147.52 Section 147.52 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... PROGRAMS Alabama § 147.52 State-administered program—Hydraulic Fracturing of Coal Beds. The UIC program for hydraulic fracturing of coal beds in the State of Alabama, except those on Indian lands, is the program...

  14. 40 CFR 147.52 - State-administered program-Hydraulic Fracturing of Coal Beds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Fracturing of Coal Beds. 147.52 Section 147.52 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... PROGRAMS Alabama § 147.52 State-administered program—Hydraulic Fracturing of Coal Beds. The UIC program for hydraulic fracturing of coal beds in the State of Alabama, except those on Indian lands, is the program...

  15. 76 FR 34971 - City of Dover, NH; Notice of Declaration of Intention and Soliciting Comments, Protests, and/or...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-15

    ... Hydraulic Energy Harvester Project (Outfall Project). f. Location: The Effluent Outfall Hydraulic Energy... hydraulic energy harvester, placed on the outfall pipe that discharges treated effluence from the city's... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. DI11-8-000] City of Dover...

  16. 77 FR 54846 - Airworthiness Directives; Bombardier, Inc. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-06

    ... end cap of the auxiliary hydraulic system accumulator while on the ground, which resulted in loss of use of that hydraulic system and high-energy impact damage to adjacent systems and structures. This... experienced on CL-600-2B19 aeroplanes, resulting in loss of the associated hydraulic system and high-energy...

  17. 78 FR 33206 - Airworthiness Directives; Bombardier, Inc. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-04

    ... by reports of failure of a screw cap or end cap of the hydraulic system accumulator while on the ground, which resulted in loss of use of that hydraulic system and high-energy impact damage to adjacent..., resulting in loss of the associated hydraulic system and high-energy impact damage to adjacent systems and...

  18. Tractor Hydraulics. A Teaching Reference.

    ERIC Educational Resources Information Center

    American Association for Vocational Instructional Materials, Athens, GA.

    The manual was developed to help provide a better understanding of how and why hydraulic principles serve the purposes of weight reduction, increase of physical effort, and more precise control to machines of all types. The four components that are necessary to have a workable hydraulic system--a reservoir, a pump, a valve, and a motor (cylinder)…

  19. Curriculum Development--Post-Secondary Electro-Mechanical Technology. Parts I-IV.

    ERIC Educational Resources Information Center

    Texas State Technical Inst., Sweetwater.

    This curriculum guide consists of materials for use in teaching a four-part course in electromechanical technical technology. The first part contains nine units dealing with hydraulics and nine units on pneumatics. Addressed in the individual units are the following topics: an introduction to hydraulics; control of hydraulic energy; check valves…

  20. Effects of age-related increases in sapwood area, leaf area, and xylem conductivity on height-related hydraulic costs in two contrasting coniferous species

    Treesearch

    Jean-Christophe Domec; Barbara Lachenbruch; Michele L. Pruyn; Rachel Spicer

    2012-01-01

    Introduction: Knowledge of vertical variation in hydraulic parameters would improve our understanding of individual trunk functioning and likely have important implications for modeling water movement to the leaves. Specifically, understanding how foliage area (Al), sapwood area (As), and hydraulic specific...

  1. 46 CFR 58.25-60 - Non-duplicated hydraulic rudder actuators.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Non-duplicated hydraulic rudder actuators. 58.25-60... actuators. Non-duplicated hydraulic rudder actuators may be installed in the steering-gear control systems on each vessel of less than 100,000 deadweight tons. These actuators must meet IMO A.467(XII...

  2. 46 CFR 128.240 - Hydraulic or pneumatic power and control-materials and pressure design.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Hydraulic or pneumatic power and control—materials and pressure design. (a) Each standard piping component... 46 Shipping 4 2014-10-01 2014-10-01 false Hydraulic or pneumatic power and control-materials and pressure design. 128.240 Section 128.240 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED...

  3. 46 CFR 128.240 - Hydraulic or pneumatic power and control-materials and pressure design.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Hydraulic or pneumatic power and control—materials and pressure design. (a) Each standard piping component... 46 Shipping 4 2011-10-01 2011-10-01 false Hydraulic or pneumatic power and control-materials and pressure design. 128.240 Section 128.240 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED...

  4. 46 CFR 128.240 - Hydraulic or pneumatic power and control-materials and pressure design.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Hydraulic or pneumatic power and control—materials and pressure design. (a) Each standard piping component... 46 Shipping 4 2012-10-01 2012-10-01 false Hydraulic or pneumatic power and control-materials and pressure design. 128.240 Section 128.240 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED...

  5. 46 CFR 128.240 - Hydraulic or pneumatic power and control-materials and pressure design.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Hydraulic or pneumatic power and control—materials and pressure design. (a) Each standard piping component... 46 Shipping 4 2013-10-01 2013-10-01 false Hydraulic or pneumatic power and control-materials and pressure design. 128.240 Section 128.240 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED...

  6. 46 CFR 128.240 - Hydraulic or pneumatic power and control-materials and pressure design.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Hydraulic or pneumatic power and control—materials and pressure design. (a) Each standard piping component... 46 Shipping 4 2010-10-01 2010-10-01 false Hydraulic or pneumatic power and control-materials and pressure design. 128.240 Section 128.240 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED...

  7. 78 FR 33199 - Airworthiness Directives; Dassault Aviation Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-04

    ... prompted by reports of chafing between the tail strobe power supply and a hydraulic line. This AD requires modifying the tail strobe power supply wire routing. We are issuing this AD to prevent chafing between the tail strobe power supply and a hydraulic line, which could result in hydraulic fluid leakage and...

  8. Navigation Lock and Dam Inspection and Emergency Repairs Workshop Summary

    DTIC Science & Technology

    2006-09-01

    Inspection and Emergency Repairs Workshop Summary John E. Hite, Jr., James E. Clausner, and Dinah N. McComas, editors Coastal and Hydraulics Laboratory...Engineer Research and Development Center (ERDC) Coastal and Hydraulics Laboratory hosted a “Navigation Lock and Dam Inspection and Emergency Repairs...applications ..............................................................................12 Current inspection policies for hydraulic steel structures

  9. Rapid Execution of an Analysis of Alternatives for NATO Special Operations HQ: A Smart Defence Approach

    DTIC Science & Technology

    2012-12-01

    2012) ..............................................................................57 Figure 14. Crane Wheel MTD: Hydraulic Light 7-1/2 Ton With Cab...73 Figure 19. Jack Hydraulic Hand: 10 Ton Self-Contained...Aviation Ground Support Equipment Product Management Office, AGSE Product List, 2012) .............74 Figure 20. Jack Hydraulic Tripod: 3 Ton Capacity

  10. Digital switched hydraulics

    NASA Astrophysics Data System (ADS)

    Pan, Min; Plummer, Andrew

    2018-06-01

    This paper reviews recent developments in digital switched hydraulics particularly the switched inertance hydraulic systems (SIHSs). The performance of SIHSs is presented in brief with a discussion of several possible configurations and control strategies. The soft switching technology and high-speed switching valve design techniques are discussed. Challenges and recommendations are given based on the current research achievements.

  11. 2. CHANNEL DIMENSIONS AND ALIGNMENT RESEARCH INSTRUMENTATION. HYDRAULIC ENGINEER PILOTING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. CHANNEL DIMENSIONS AND ALIGNMENT RESEARCH INSTRUMENTATION. HYDRAULIC ENGINEER PILOTING VIDEO-CONTROLED BOAT MODEL FROM CONTROL TRAILER. NOTE VIEW FROM BOAT-MOUNTED VIDEO CAMERA SHOWN ON MONITOR, AND MODEL WATERWAY VISIBLE THROUGH WINDOW AT LEFT. - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  12. Hydraulics. FOS: Fundamentals of Service.

    ERIC Educational Resources Information Center

    John Deere Co., Moline, IL.

    This manual on hydraulics is one of a series of power mechanics texts and visual aids for training in the servicing of agricultural and industrial machinery. Focus is on oil hydraulics. Materials provide basic information and illustrations for use by vocational students and teachers as well as shop servicemen and laymen. The twelve chapters focus…

  13. A Plumber's-Eye View of Xylem Water Transport in Woody Plants

    ERIC Educational Resources Information Center

    Martinez-Vilalta, Jordi; Pinol, Josep

    2004-01-01

    We present a practical for university-level students aimed at measuring and comparing xylem hydraulic properties of co-existing plant species. After sampling branches of several woody species in the field, their main hydraulic properties were measured using a simple set-up. Hydraulic conductivity ("K[subscript h]") was calculated as the ratio…

  14. Riparian hydraulic gradient and stream-groundwater exchange dynamics in steep headwater valleys

    Treesearch

    T.J. Voltz; M.N. Gooseff; A.S. Ward; K. Singha; M. Fitzgerald; T. Wagener

    2013-01-01

    Patterns of riparian hydraulic gradients and stream-groundwater exchange in headwater catchments provide the hydrologic context for important ecological processes. Although the controls are relatively well understood, their dynamics during periods of hydrologic change is not. We investigate riparian hydraulic gradients over three different time scales in two steep,...

  15. Representing Plant Hydraulics in a Global Model: Updates to the Community Land Model

    NASA Astrophysics Data System (ADS)

    Kennedy, D.; Swenson, S. C.; Oleson, K. W.; Lawrence, D. M.; Fisher, R.; Gentine, P.

    2017-12-01

    In previous versions, the Community Land Model has used soil moisture to stand in for plant water status, with transpiration and photosynthesis driven directly by soil water potential. This eschews significant literature demonstrating the importance of plant hydraulic traits in the dynamics of water flow through the soil-plant-atmosphere continuum and in the regulation of stomatal aperture. In this study we install a simplified hydraulic framework to represent vegetation water potential and to regulate root water uptake and turbulent fluxes. Plant hydraulics allow for a more explicit representation of plant water status, which improves the physical basis for many processes represented in CLM. This includes root water uptake and the attenuation of photosynthesis and transpiration with drought. Model description is accompanied by results from a point simulation based at the Caxiuanã flux tower site in Eastern Amazonia, covering a throughfall exclusion experiment from 2001-2003. Including plant hydraulics improves the response to drought forcing compared to previous versions of CLM. Parameter sensitivity is examined at the same site and presented in the context of estimating hydraulic parameters in a global model.

  16. Quantifying in situ phenotypic variability in the hydraulic properties of four tree species across their distribution range in Europe

    PubMed Central

    Sterck, F.; Torres-Ruiz, J. M.; Petit, G.; Cochard, H.; von Arx, G.; Lintunen, A.; Caldeira, M. C.; Capdeville, G.; Copini, P.; Gebauer, R.; Grönlund, L.; Hölttä, T.; Lobo-do-Vale, R.; Peltoniemi, M.; Stritih, A.; Urban, J.; Delzon, S.

    2018-01-01

    Many studies have reported that hydraulic properties vary considerably between tree species, but little is known about their intraspecific variation and, therefore, their capacity to adapt to a warmer and drier climate. Here, we quantify phenotypic divergence and clinal variation for embolism resistance, hydraulic conductivity and branch growth, in four tree species, two angiosperms (Betula pendula, Populus tremula) and two conifers (Picea abies, Pinus sylvestris), across their latitudinal distribution in Europe. Growth and hydraulic efficiency varied widely within species and between populations. The variability of embolism resistance was in general weaker than that of growth and hydraulic efficiency, and very low for all species but Populus tremula. In addition, no and weak support for a safety vs. efficiency trade-off was observed for the angiosperm and conifer species, respectively. The limited variability of embolism resistance observed here for all species except Populus tremula, suggests that forest populations will unlikely be able to adapt hydraulically to drier conditions through the evolution of embolism resistance. PMID:29715289

  17. Slope instability caused by small variations in hydraulic conductivity

    USGS Publications Warehouse

    Reid, M.E.

    1997-01-01

    Variations in hydraulic conductivity can greatly modify hillslope ground-water flow fields, effective-stress fields, and slope stability. In materials with uniform texture, hydraulic conductivities can vary over one to two orders of magnitude, yet small variations can be difficult to determine. The destabilizing effects caused by small (one order of magnitude or less) hydraulic conductivity variations using ground-water flow modeling, finite-element deformation analysis, and limit-equilibrium analysis are examined here. Low hydraulic conductivity materials that impede downslope ground-water flow can create unstable areas with locally elevated pore-water pressures. The destabilizing effects of small hydraulic heterogeneities can be as great as those induced by typical variations in the frictional strength (approximately 4??-8??) of texturally similar materials. Common "worst-case" assumptions about ground-water flow, such as a completely saturated "hydrostatic" pore-pressure distribution, do not account for locally elevated pore-water pressures and may not provide a conservative slope stability analysis. In site characterization, special attention should be paid to any materials that might impede downslope ground-water flow and create unstable regions.

  18. Birth of a hydraulic jump

    NASA Astrophysics Data System (ADS)

    Duchesne, Alexis; Bohr, Tomas; Andersen, Anders

    2017-11-01

    The hydraulic jump, i.e., the sharp transition between a supercritical and a subcritical free-surface flow, has been extensively studied in the past centuries. However, ever since Leonardo da Vinci asked it for the first time, an important question has been left unanswered: How does a hydraulic jump form? We present an experimental and theoretical study of the formation of stationary hydraulic jumps in centimeter wide channels. Two starting situations are considered: The channel is, respectively, empty or filled with liquid, the liquid level being fixed by the wetting properties and the boundary conditions. We then change the flow-rate abruptly from zero to a constant value. In an empty channel, we observe the formation of a stationary hydraulic jump in a two-stage process: First, the channel fills by the advancing liquid front, which undergoes a transition from supercritical to subcritical at some position in the channel. Later the influence of the downstream boundary conditions makes the jump move slowly upstream to its final position. In the pre-filled channel, the hydraulic jump forms at the injector edge and then moves downstream to its final position.

  19. Geophysical data integration and conditional uncertainty analysis on hydraulic conductivity estimation

    USGS Publications Warehouse

    Rahman, A.; Tsai, F.T.-C.; White, C.D.; Carlson, D.A.; Willson, C.S.

    2007-01-01

    Integration of various geophysical data is essential to better understand aquifer heterogeneity. However, data integration is challenging because there are different levels of support between primary and secondary data needed to be correlated in various ways. This study proposes a geostatistical method to integrate the hydraulic conductivity measurements and electrical resistivity data to better estimate the hydraulic conductivity (K) distribution. The K measurements are obtained from the pumping tests and represent the primary data (hard data). The borehole electrical resistivity data from electrical logs are regarded as the secondary data (soft data). The electrical resistivity data is used to infer hydraulic conductivity values through the Archie law and Kozeny-Carman equation. A pseudo cross-semivariogram is developed to cope with the resistivity data non-collocation. Uncertainty in the auto-semivariograms and pseudo cross-semivariogram is quantified. The methodology is demonstrated by a real-world case study where the hydraulic conductivity is estimated in the Upper Chicot aquifer of Southwestern Louisiana. The groundwater responses by the cokriging and cosimulation of hydraulic conductivity are compared using analysis of variance (ANOVA). ?? 2007 ASCE.

  20. Extraction of features from ultrasound acoustic emissions: a tool to assess the hydraulic vulnerability of Norway spruce trunkwood?

    PubMed Central

    Rosner, Sabine; Klein, Andrea; Wimmer, Rupert; Karlsson, Bo

    2011-01-01

    Summary • The aim of this study was to assess the hydraulic vulnerability of Norway spruce (Picea abies) trunkwood by extraction of selected features of acoustic emissions (AEs) detected during dehydration of standard size samples. • The hydraulic method was used as the reference method to assess the hydraulic vulnerability of trunkwood of different cambial ages. Vulnerability curves were constructed by plotting the percentage loss of conductivity vs an overpressure of compressed air. • Differences in hydraulic vulnerability were very pronounced between juvenile and mature wood samples; therefore, useful AE features, such as peak amplitude, duration and relative energy, could be filtered out. The AE rates of signals clustered by amplitude and duration ranges and the AE energies differed greatly between juvenile and mature wood at identical relative water losses. • Vulnerability curves could be constructed by relating the cumulated amount of relative AE energy to the relative loss of water and to xylem tension. AE testing in combination with feature extraction offers a readily automated and easy to use alternative to the hydraulic method. PMID:16771986

  1. A study on the optimal hydraulic loading rate and plant ratios in recirculation aquaponic system.

    PubMed

    Endut, Azizah; Jusoh, A; Ali, N; Wan Nik, W B; Hassan, A

    2010-03-01

    The growths of the African catfish (Clarias gariepinus) and water spinach (Ipomoea aquatica) were evaluated in recirculation aquaponic system (RAS). Fish production performance, plant growth and nutrient removal were measured and their dependence on hydraulic loading rate (HLR) was assessed. Fish production did not differ significantly between hydraulic loading rates. In contrast to the fish production, the water spinach yield was significantly higher in the lower hydraulic loading rate. Fish production, plant growth and percentage nutrient removal were highest at hydraulic loading rate of 1.28 m/day. The ratio of fish to plant production has been calculated to balance nutrient generation from fish with nutrient removal by plants and the optimum ratio was 15-42 gram of fish feed/m(2) of plant growing area. Each unit in RAS was evaluated in terms of oxygen demand. Using specified feeding regime, mass balance equations were applied to quantify the waste discharges from rearing tanks and treatment units. The waste discharged was found to be strongly dependent on hydraulic loading rate. 2009 Elsevier Ltd. All rights reserved.

  2. Conducting Slug Tests in Mini-Piezometers: B.G. Fritz Ground Water xx, no. x: x-xx

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fritz, Bradley G.; Mackley, Rob D.; Arntzen, Evan V.

    Slug tests performed using mini-piezometers with diameters as small as 0.43 cm can provide a cost effective tool for hydraulic characterization. We evaluated the hydraulic properties of the apparatus in an infinite hydraulic conductivity environment and compared those results with field tests of mini-piezometers installed into locations with varying hydraulic properties. Based on our evaluation, slug tests conducted in mini-piezometers using the fabrication and installation approach described here are effective within formations where the hydraulic conductivity is less than 1 x 10-3 cm/s. While these constraints limit the potential application of this method, the benefits to this approach are thatmore » the installation, measurement and analysis is extremely cost effective, and the installation can be completed in areas where other (larger diameter) methods might not be possible. Additionally, this methodology could be applied to existing mini-piezometers previously installed for other purposes. Such analysis of existing installations could be beneficial in interpreting previously collected data (e.g. water quality data or hydraulic head data).« less

  3. Current and anticipated uses of thermal hydraulic codes in Korea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kyung-Doo; Chang, Won-Pyo

    1997-07-01

    In Korea, the current uses of thermal hydraulic codes are categorized into 3 areas. The first application is in designing both nuclear fuel and NSSS. The codes have usually been introduced based on the technology transfer programs agreed between KAERI and the foreign vendors. Another area is in the supporting of the plant operations and licensing by the utility. The third category is research purposes. In this area assessments and some applications to the safety issue resolutions are major activities using the best estimate thermal hydraulic codes such as RELAP5/MOD3 and CATHARE2. Recently KEPCO plans to couple thermal hydraulic codesmore » with a neutronics code for the design of the evolutionary type reactor by 2004. KAERI also plans to develop its own best estimate thermal hydraulic code, however, application range is different from KEPCO developing code. Considering these activities, it is anticipated that use of the best estimate hydraulic analysis code developed in Korea may be possible in the area of safety evaluation within 10 years.« less

  4. Hydraulic Function in Australian Tree Species during Drought-Induced Mortality

    NASA Astrophysics Data System (ADS)

    Tissue, D.; Maier, C.; Creek, D.; Choat, B.

    2016-12-01

    Drought induced tree mortality and decline are key issues facing forest ecology and management. Here, we primarily investigated the hydraulic limitations underpinning drought-induced mortality in three Australian tree species. Using field-based large rainout shelters, three angiosperm species (Casuarina cunninghamiana, Eucalyptus sideroxylon, Eucalyptus tereticornis) were subjected to two successive drought and recovery cycles, prior to a subsequent long and extreme drought to mortality; total duration of experiment was 2.5 years. Leaf gas exchange, leaf and stem hydraulics, and carbon reserves were monitored during the experiment. Trees died as a result of failure in the hydraulic transport system, primarily related to water stress induced embolism. Stomatal closure occurred prior to the induction of significant embolism in the stem xylem of all species. Nonetheless, trees suffered a rapid decline in xylem water potential and increase in embolism during the severe drought treatment. Trees died at water potentials causing greater than 90% loss of hydraulic conductivity in the stem, providing support for the theory that lethal water potential is correlated with complete loss of hydraulic function in the stem xylem of angiosperms.

  5. Engine including hydraulically actuated valvetrain and method of valve overlap control

    DOEpatents

    Cowgill, Joel [White Lake, MI

    2012-05-08

    An exhaust valve control method may include displacing an exhaust valve in communication with the combustion chamber of an engine to an open position using a hydraulic exhaust valve actuation system and returning the exhaust valve to a closed position using the hydraulic exhaust valve actuation assembly. During closing, the exhaust valve may be displaced for a first duration from the open position to an intermediate closing position at a first velocity by operating the hydraulic exhaust valve actuation assembly in a first mode. The exhaust valve may be displaced for a second duration greater than the first duration from the intermediate closing position to a fully closed position at a second velocity at least eighty percent less than the first velocity by operating the hydraulic exhaust valve actuation assembly in a second mode.

  6. Oil well pump drive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanford, G.A.

    1980-02-12

    An oil well pump drive is disclosed including a drive unit that is hydraulically actuated by a double-acting hydraulic cylinder to reciprocate vertically. An endless chain is entrained over vertically spaced sprockets carried by the unit, with one flight of the chain anchored against vertical movement and the other flight is secured to the pump polish rod so that the vertical motion imparted to the polish rod is double that hydraulically imparted to the drive unit. The polish rod load on the chain is opposed by a counterweight connected thereto by a chain extending over an elevated pulley. The outputmore » of the hydraulic pump supplying the hydraulic cylinder is cam controlled so that the motion of the drive unit is smoothly decelerated and accelerated as the unit approaches and moves from the upper and lower limits of its movement.« less

  7. Current evaluation of hydraulics to replace the cable force transmission system for body-powered upper-limb prostheses.

    PubMed

    LeBlanc, M

    1990-01-01

    Present body-powered upper-limb prostheses use a cable control system employing World War II aircraft technology to transmit force from the body to the prosthesis for operation. The cable and associated hardware are located outside the prosthesis. Because individuals with arm amputations want prostheses that are natural looking with a smooth, soft outer surface, a design and development project was undertaken to replace the cable system with hydraulics located inside the prosthesis. Three different hydraulic transmission systems were built for evaluation, and other possibilities were explored. Results indicate that a hydraulic force transmission system remains an unmet challenge as a practical replacement for the cable system. The author was unable to develop a hydraulic system that meets the necessary dynamic requirements and is acceptable in size and appearance.

  8. Influence of spatial variability of hydraulic characteristics of soils on surface parameters obtained from remote sensing data in infrared and microwaves

    NASA Technical Reports Server (NTRS)

    Brunet, Y.; Vauclin, M.

    1985-01-01

    The correct interpretation of thermal and hydraulic soil parameters infrared from remotely sensed data (thermal infrared, microwaves) implies a good understanding of the causes of their temporal and spatial variability. Given this necessity, the sensitivity of the surface variables (temperature, moisture) to the spatial variability of hydraulic soil properties is tested with a numerical model of heat and mass transfer between bare soil and atmosphere. The spatial variability of hydraulic soil properties is taken into account in terms of the scaling factor. For a given soil, the knowledge of its frequency distribution allows a stochastic use of the model. The results are treated statistically, and the part of the variability of soil surface parameters due to that of soil hydraulic properties is evaluated quantitatively.

  9. Screening for heat transport by groundwater in closed geothermal systems.

    PubMed

    Ferguson, Grant

    2015-01-01

    Heat transfer due to groundwater flow can significantly affect closed geothermal systems. Here, a screening method is developed, based on Peclet numbers for these systems and Darcy's law. Conduction-only conditions should not be expected where specific discharges exceed 10(-8)  m/s. Constraints on hydraulic gradients allow for preliminary screening for advection based on rock or soil types. Identification of materials with very low hydraulic conductivity, such as shale and intact igneous and metamorphic rock, allow for analysis with considering conduction only. Variability in known hydraulic conductivity allows for the possibility of advection in most other rocks and soil types. Further screening relies on refinement of estimates of hydraulic gradients and hydraulic conductivity through site investigations and modeling until the presence or absence of conduction can be confirmed. © 2014, National Ground Water Association.

  10. Estimating the hydraulic parameters of a confined aquifer based on the response of groundwater levels to seismic Rayleigh waves

    NASA Astrophysics Data System (ADS)

    Sun, Xiaolong; Xiang, Yang; Shi, Zheming

    2018-05-01

    Groundwater flow models implemented to manage regional water resources require aquifer hydraulic parameters. Traditional methods for obtaining these parameters include laboratory experiments, field tests and model inversions, and each are potentially hindered by their unique limitations. Here, we propose a methodology for estimating hydraulic conductivity and storage coefficients using the spectral characteristics of the coseismic groundwater-level oscillations and seismic Rayleigh waves. The results from Well X10 are consistent with the variations and spectral characteristics of the water-level oscillations and seismic waves and present an estimated hydraulic conductivity of approximately 1 × 10-3 m s-1 and storativity of 15 × 10-6. The proposed methodology for estimating hydraulic parameters in confined aquifers is a practical and novel approach for groundwater management and seismic precursor anomaly analyses.

  11. Hydraulic Hybrid Parcel Delivery Truck Deployment, Testing & Demonstration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallo, Jean-Baptiste

    2014-03-07

    Although hydraulic hybrid systems have shown promise over the last few years, commercial deployment of these systems has primarily been limited to Class 8 refuse trucks. In 2005, the Hybrid Truck Users Forum initiated the Parcel Delivery Working Group including the largest parcel delivery fleets in North America. The goal of the working group was to evaluate and accelerate commercialization of hydraulic hybrid technology for parcel delivery vehicles. FedEx Ground, Purolator and United Parcel Service (UPS) took delivery of the world’s first commercially available hydraulic hybrid parcel delivery trucks in early 2012. The vehicle chassis includes a Parker Hannifin hydraulicmore » hybrid drive system, integrated and assembled by Freightliner Custom Chassis Corp., with a body installed by Morgan Olson. With funding from the U.S. Department of Energy, CALSTART and its project partners assessed the performance, reliability, maintainability and fleet acceptance of three pre-production Class 6 hydraulic hybrid parcel delivery vehicles using information and data from in-use data collection and on-road testing. This document reports on the deployment of these vehicles operated by FedEx Ground, Purolator and UPS. The results presented provide a comprehensive overview of the performance of commercial hydraulic hybrid vehicles in parcel delivery applications. This project also informs fleets and manufacturers on the overall performance of hydraulic hybrid vehicles, provides insights on how the technology can be both improved and more effectively used. The key findings and recommendations of this project fall into four major categories: -Performance, -Fleet deployment, -Maintenance, -Business case. Hydraulic hybrid technology is relatively new to the market, as commercial vehicles have been introduced only in the past few years in refuse and parcel delivery applications. Successful demonstration could pave the way for additional purchases of hydraulic hybrid vehicles throughout the trucking industry. By providing unbiased, third-party assessment of this “hybrid without batteries” technology, this report offers relevant, timely and valuable information to the industry.« less

  12. Insight into the hydraulics and resilience of Ponderosa pine seedlings using a mechanistic ecohydrologic model

    NASA Astrophysics Data System (ADS)

    Maneta, M. P.; Simeone, C.; Dobrowski, S.; Holden, Z.; Sapes, G.; Sala, A.; Begueria, S.

    2017-12-01

    In semiarid regions, drought-induced seedling mortality is considered to be caused by failure in the tree hydraulic column. Understanding the mechanisms that cause hydraulic failure and death in seedlings is important, among other things, to diagnose where some tree species may fail to regenerate, triggering demographic imbalances in the forest that could result in climate-driven shifts of tree species. Ponderosa pine is a common lower tree line species in the western US. Seedlings of ponderosa pine are often subject to low soil water potentials, which require lower water potentials in the xylem and leaves to maintain the negative pressure gradient that drives water upward. The resilience of the hydraulic column to hydraulic tension is species dependent, but from greenhouse experiments, we have identified general tension thresholds beyond which loss of xylem conductivity becomes critical, and mortality in Ponderosa pine seedlings start to occur. We describe this hydraulic behavior of plants using a mechanistic soil-vegetation-atmosphere transfer model. Before we use this models to understand water-stress induced seedling mortality at the landscape scale, we perform a modeling analysis of the dynamics of soil moisture, transpiration, leaf water potential and loss of plant water conductivity using detailed data from our green house experiments. The analysis is done using a spatially distributed model that simulates water fluxes, energy exchanges and water potentials in the soil-vegetation-atmosphere continuum. Plant hydraulic and physiological parameters of this model were calibrated using Monte Carlo methods against information on soil moisture, soil hydraulic potential, transpiration, leaf water potential and percent loss of conductivity in the xylem. This analysis permits us to construct a full portrait of the parameter space for Ponderosa pine seedling and generate posterior predictive distributions of tree response to understand the sensitivity of transpiration, hydraulic tension in the plant, and percent loss of conductivity to environmental stresses.

  13. Hydraulic permeability of bentonite-polymer composites for application in landfill technology

    NASA Astrophysics Data System (ADS)

    Dehn, Hanna; Haase, Hanna; Schanz, Tom

    2015-04-01

    Bentonites are often used as barrier materials in landfill technology to prevent infiltration of leachates to the natural environment. Since decades, geoenvironmental engineering aims at improving the hydro-mechanical performance of landfill liners. Various studies on the permeability performance of geosynthetic clay liners (GCLs) show effects of non-standard liquids on behaviour of Na+-bentonite regarding its sealing capacity. With increasing concentration of chemical aggressive solutions the sealing capacity decreases (Shackelford et al. 2000). An opportunity to improve the hydraulic permeability of the bentonites is the addition of polymers. The changes in hydraulic permeability performance of polymer treated and untreated bentonites while adding chemical aggressive solutions were studied by several authors. Results obtained by Scalia et al. (2014) illustrate that an increase in permeability can be prevented by adding polymer to Na+-bentonite. On the other hand, Ashmawy et al. (2002) presented results on the incapability of several commercial bentonite-polymer-products. The objective of this study is to characterize the influence of polymer addition on hydraulic performance of Na+-bentonite systematically. Therefore, the influence of 1% polymer addition of cationic and anionic polyacrylamide on the swelling pressure and hydraulic permeability of MX 80 bentonite was investigated. Preparation of bentonite-polymer composites was conducted (1) in dry conditions and (2) using solution-intercalation method. Experiments on hydraulic permeability were carried out using distilled water as well as CaCl2-solution. References Ashmawy, A. K., El-Hajji, D., Sotelo, N. & Muhammad, N. (2002), `Hydraulic Performance of Untreated and Polymer-treated Bentonite in Inorganic Landfill Leachates', Clays and Clay Minerals 50(5), 546-552. Scalia, J., Benson, C., Bohnhoff, G., Edil, T. & Shackelford, C. (2014), 'Long-Term Hydraulic Conductivity of a Bentonite-Polymer Composite Permeated with Aggressive Inorganic Solutions', Journal of Geotechnical and Geoenvironmental Engineering 140(3). Shackelford, C. D., Benson, C. H., Katsumi, T., Edil, T. B. & Lin, L. (2000), 'Evaluating the hydraulic conductivity of GCLs permeated with non-standard liquids', Geotextiles and Geomembranes 18, 133-161.

  14. A 6-DOF vibration isolation system for hydraulic hybrid vehicles

    NASA Astrophysics Data System (ADS)

    Nguyen, The; Elahinia, Mohammad; Olson, Walter W.; Fontaine, Paul

    2006-03-01

    This paper presents the results of vibration isolation analysis for the pump/motor component of hydraulic hybrid vehicles (HHVs). The HHVs are designed to combine gasoline/diesel engine and hydraulic power in order to improve the fuel efficiency and reduce the pollution. Electric hybrid technology is being applied to passenger cars with small and medium engines to improve the fuel economy. However, for heavy duty vehicles such as large SUVs, trucks, and buses, which require more power, the hydraulic hybridization is a more efficient choice. In function, the hydraulic hybrid subsystem improves the fuel efficiency of the vehicle by recovering some of the energy that is otherwise wasted in friction brakes. Since the operation of the main component of HHVs involves with rotating parts and moving fluid, noise and vibration are an issue that affects both passengers (ride comfort) as well as surrounding people (drive-by noise). This study looks into the possibility of reducing the transmitted noise and vibration from the hydraulic subsystem to the vehicle's chassis by using magnetorheological (MR) fluid mounts. To this end, the hydraulic subsystem is modeled as a six degree of freedom (6-DOF) rigid body. A 6-DOF isolation system, consisting of five mounts connected to the pump/motor at five different locations, is modeled and simulated. The mounts are designed by combining regular elastomer components with MR fluids. In the simulation, the real loading and working conditions of the hydraulic subsystem are considered and the effects of both shock and vibration are analyzed. The transmissibility of the isolation system is monitored in a wide range of frequencies. The geometry of the isolation system is considered in order to sustain the weight of the hydraulic system without affecting the design of the chassis and the effectiveness of the vibration isolating ability. The simulation results shows reduction in the transmitted vibration force for different working cycles of the regenerative system.

  15. Stem hydraulic traits and leaf water-stress tolerance are co-ordinated with the leaf phenology of angiosperm trees in an Asian tropical dry karst forest

    PubMed Central

    Fu, Pei-Li; Jiang, Yan-Juan; Wang, Ai-Ying; Brodribb, Tim J.; Zhang, Jiao-Lin; Zhu, Shi-Dan; Cao, Kun-Fang

    2012-01-01

    Background and Aims The co-occurring of evergreen and deciduous angiosperm trees in Asian tropical dry forests on karst substrates suggests the existence of different water-use strategies among species. In this study it is hypothesized that the co-occurring evergreen and deciduous trees differ in stem hydraulic traits and leaf water relationships, and there will be correlated evolution in drought tolerance between leaves and stems. Methods A comparison was made of stem hydraulic conductivity, vulnerability curves, wood anatomy, leaf life span, leaf pressure–volume characteristics and photosynthetic capacity of six evergreen and six deciduous tree species co-occurring in a tropical dry karst forest in south-west China. The correlated evolution of leaf and stem traits was examined using both traditional and phylogenetic independent contrasts correlations. Key Results It was found that the deciduous trees had higher stem hydraulic efficiency, greater hydraulically weighted vessel diameter (Dh) and higher mass-based photosynthetic rate (Am); while the evergreen species had greater xylem-cavitation resistance, lower leaf turgor-loss point water potential (π0) and higher bulk modulus of elasticity. There were evolutionary correlations between leaf life span and stem hydraulic efficiency, Am, and dry season π0. Xylem-cavitation resistance was evolutionarily correlated with stem hydraulic efficiency, Dh, as well as dry season π0. Both wood density and leaf density were closely correlated with leaf water-stress tolerance and Am. Conclusions The results reveal the clear distinctions in stem hydraulic traits and leaf water-stress tolerance between the co-occurring evergreen and deciduous angiosperm trees in an Asian dry karst forest. A novel pattern was demonstrated linking leaf longevity with stem hydraulic efficiency and leaf water-stress tolerance. The results show the correlated evolution in drought tolerance between stems and leaves. PMID:22585930

  16. Environmental and physiological effects on grouping of drought-tolerant and susceptible rice varieties related to rice (Oryza sativa) root hydraulics under drought

    PubMed Central

    Henry, Amelia; Wehler, Regina; Grondin, Alexandre; Franke, Rochus; Quintana, Marinell

    2016-01-01

    Background and Aims Root hydraulic limitations (i.e. intra-plant restrictions to water movement) may be related to crop performance under drought, and groupings in the hydraulic function of drought-tolerant and drought-susceptible rice (Oryza sativa) varieties have been previously reported. This study aimed to better understand the environmental and physiological relationships with rice root hydraulics under drought. Methods Xylem sap bleeding rates in the field (gsap g–1 shoot) were measured on seasonal and diurnal time frames, during which time environmental conditions were monitored and physiological measurements were conducted. Complementary experiments on the effects of vapour pressure deficit (VPD) on root hydraulic conductivity and on transpiration rates of de-rooted tillers were conducted in growth chambers. Key Results The diurnal effects on bleeding rate were more closely related to irradiance than VPD, and VPD effects on root hydraulic conductivity measured on 21-day-old plants were due to effects on plant growth including root surface area, maximum root depth and root:shoot ratio. Leaf osmotic potential was related to the grouping of drought-tolerant and drought-susceptible varieties in rice root hydraulics, and these groupings were independent of differences in phenology. Low single-tiller bleeding rates were observed under high evapo-transpirational demand, higher bleeding rates were observed at more negative leaf osmotic potentials in drought-susceptible varieties, and drought-tolerant and susceptible varieties differed in the VPD-induced increase in transpiration rates of de-rooted tillers. Low root suberin amounts in some of the drought-susceptible varieties may have resulted in higher ion transport, as evidenced by higher sap K+ concentration and higher bleeding rates in those varieties. Conclusions These results provide evidence of the environmental effects on shoots that can influence root hydraulics. The consistent groupings of drought-tolerant and susceptible varieties suggest that traits affecting plant osmotic status may regulate root hydraulic response to drought in rice. PMID:27192712

  17. Simulation of parameters of hydraulic drive with volumetric type controller

    NASA Astrophysics Data System (ADS)

    Mulyukin, V. L.; Boldyrev, A. V.; Karelin, D. L.; Belousov, A. M.

    2017-09-01

    The article presents a mathematical model of volumetric type hydraulic drive controller that allows to calculate the parameters of forward and reverse motion. According to the results of simulation static characteristics of rod’s speed and the force of the hydraulic cylinder rod were built and the influence of the angle of swash plate of the controller at the characteristics profile is shown. The results analysis showed that the proposed controller allows steplessly adjust the speed□ц of hydraulic cylinder’s rod motion and the force developed on the rod without the use of flow throttling.

  18. Study on the Tribological Properties of MC Nylon Composites Filled with Hydraulic Oil

    NASA Astrophysics Data System (ADS)

    Yuan, S.; Li, Y.; Wen, J.; Yin, L.; Zhang, Q.

    2018-03-01

    Mechanical parts utilized in machinery, such as nylon slider and pulley, should have certain mechanical properties and good tribological properties, so that equipments’ stability and smoothness can be assured. A kind of MC nylon (monomer cast nylon) composites filled with hydraulic oil was studied in this paper. The addition of hydraulic oil changed nylon’s mechanical properties and tribological properties significantly, and improved the material’s toughness and coefficient of friction. The composites have excellent strength, toughness and relatively low coefficient of friction when the content of the hydraulic oil is 4wt%.

  19. Estimation of hydraulic jump characteristics of channels with sudden diverging side walls via SVM.

    PubMed

    Roushangar, Kiyoumars; Valizadeh, Reyhaneh; Ghasempour, Roghayeh

    2017-10-01

    Sudden diverging channels are one of the energy dissipaters which can dissipate most of the kinetic energy of the flow through a hydraulic jump. An accurate prediction of hydraulic jump characteristics is an important step in designing hydraulic structures. This paper focuses on the capability of the support vector machine (SVM) as a meta-model approach for predicting hydraulic jump characteristics in different sudden diverging stilling basins (i.e. basins with and without appurtenances). In this regard, different models were developed and tested using 1,018 experimental data. The obtained results proved the capability of the SVM technique in predicting hydraulic jump characteristics and it was found that the developed models for a channel with a central block performed more successfully than models for channels without appurtenances or with a negative step. The superior performance for the length of hydraulic jump was obtained for the model with parameters F 1 (Froude number) and (h 2- h 1 )/h 1 (h 1 and h 2 are sequent depth of upstream and downstream respectively). Concerning the relative energy dissipation and sequent depth ratio, the model with parameters F 1 and h 1 /B (B is expansion ratio) led to the best results. According to the outcome of sensitivity analysis, Froude number had the most significant effect on the modeling. Also comparison between SVM and empirical equations indicated the great performance of the SVM.

  20. Physical simulation study on the hydraulic fracture propagation of coalbed methane well

    NASA Astrophysics Data System (ADS)

    Wu, Caifang; Zhang, Xiaoyang; Wang, Meng; Zhou, Longgang; Jiang, Wei

    2018-03-01

    As the most widely used technique to modify reservoirs in the exploitation of unconventional natural gas, hydraulic fracturing could effectively raise the production of CBM wells. To study the propagation rules of hydraulic fractures, analyze the fracture morphology, and obtain the controlling factors, a physical simulation experiment was conducted with a tri-axial hydraulic fracturing test system. In this experiment, the fracturing sample - including the roof, the floor, and the surrounding rock - was prepared from coal and similar materials, and the whole fracturing process was monitored by an acoustic emission instrument. The results demonstrated that the number of hydraulic fractures in coal is considerably higher than that observed in other parts, and the fracture morphology was complex. Vertical fractures were interwoven with horizontal fractures, forming a connected network. With the injection of fracturing fluid, a new hydraulic fracture was produced and it extended along the preexisting fractures. The fracture propagation was a discontinuous, dynamic process. Furthermore, in-situ stress plays a key role in fracture propagation, causing the fractures to extend in a direction perpendicular to the minimum principal stress. To a certain extent, the different mechanical properties of the coal and the other components inhibited the vertical propagation of hydraulic fractures. Nonetheless, the vertical stress and the interfacial property are the major factors to influence the formation of the "T" shaped and "工" shaped fractures.

Top