Science.gov

Sample records for hydride generation elements

  1. [Investigation of enhancing effect for hydride generation-atomic fluorescence of transition metal elements].

    PubMed

    Sun, Han-Wen; Suo, Ran

    2008-11-01

    A mechanism of hydride generation based on disassembly reaction of hydrogen-transferred interim state [M(BH4)m]* was developed by investigating the effect of reaction medium acidity on hydride generation. The effects of Co2+ and Ni2+, phenanthroline and 8-hydroxyquinoline on hydride generation-atomic fluorescence signals of Zn, Cd, Cu and Ni were studied, respectively, and their enhancing mechnism was discussed. The enhancing effect Co2+ and Ni2+ on the fluorescence signals of Zn and Cd was due to the increase in transmission efficiency of hydride of Zn and Cd. There was a synergic enhancing effect between phenanthroline or 8-hydroxyquinoline and Co2+ on the fluorescence signals of Zn and Cd, however no synergic enhancing effect between phenanthroline and 8-hydroxyquinoline on the fluorescence signals of Zn and Cd. The simulative action of cationic surfactant, anion surfactant and non-ionic surfactant surfactant to hydride generation was investigated. It is shown that both cationic surfactant and non-ionic surfactant have obvious enhancing effect on the fluorescence signals of analytes because of the decrease in surface tension of reaction solution. The release characteristics of hydride from the absorption solution containing surfactant was ulteriorly examined by using graphite furnace atomic absorption spectrometry, and the mechanism of enhancing effect of surfactant on hydride generation and transmission was proposed.

  2. Vanadium hydride deuterium-tritium generator

    DOEpatents

    Christensen, Leslie D.

    1982-01-01

    A pressure controlled vanadium hydride gas generator to provide deuterium-tritium gas in a series of pressure increments. A high pressure chamber filled with vanadium-deuterium-tritium hydride is surrounded by a heater which controls the hydride temperature. The heater is actuated by a power controller which responds to the difference signal between the actual pressure signal and a programmed pressure signal.

  3. Vanadium hydride deuterium-tritium generator

    DOEpatents

    Christensen, L.D.

    1980-03-13

    A pressure controlled vanadium hydride gas generator was designed to provide deuterium-tritium gas in a series of pressure increments. A high pressure chamber filled with vanadium-deuterium-tritium hydride is surrounded by a heater which controls the hydride temperature. The heater is actuated by a power controller which responds to the difference signal between the actual pressure signal and a programmed pressure signal.

  4. [Indirect determination of rare earth elements in Chinese herbal medicines by hydride generation-atomic fluorescence spectrometry].

    PubMed

    Zeng, Chao; Lu, Jian-Ping; Xue, Min-Hua; Tan, Fang-Wei; Wu, Xiao-Yan

    2014-07-01

    Based on their similarity in chemical properties, rare earth elements were able to form stable coordinated compounds with arsenazo III which were extractable into butanol in the presence of diphenylguanidine. The butanol was removed under reduced pressure distillation; the residue was dissolved with diluted hydrochloric acid. As was released with the assistance of KMnO4 and determined by hydrogen generation-atomic fluorescence spectrometry in terms of rare earth elements. When cesium sulfate worked as standard solution, extraction conditions, KMnO4 amount, distillation temperature, arsenazo III amount, interfering ions, etc were optimized. The accuracy and precision of the method were validated using national standard certified materials, showing a good agreement. Under optimum condition, the linear relationship located in 0.2-25 microg x mL(-1) and detection limit was 0.44 microg x mL(-1). After the herbal samples were digested with nitric acid and hydrogen peroxide, the rare earth elements were determined by this method, showing satisfactory results with relative standard deviation of 1.3%-2.5%, and recoveries of 94.4%-106.0%. The method showed the merits of convenience and rapidness, simple instrumentation and high accuracy. With the rare earths enriched into organic phase, the separation of analytes from matrix was accomplished, which eliminated the interference. With the residue dissolved by diluted hydrochloric acid after the solvent was removed, aqueous sample introduction eliminated the impact of organic phase on the tubing connected to pneumatic pump.

  5. Ni/metal hydride secondary element

    DOEpatents

    Bauerlein, Peter

    2005-04-19

    A Ni/metal hydride secondary element having a positive nickel hydroxide electrode, a negative electrode having a hydrogen storage alloy, and an alkaline electrolyte, the positive electrode, provided with a three-dimensional metallic conductive structure, also contains an aluminum compound which is soluble in the electrolyte, in addition to nickel hydroxide and cobalt oxide. The aluminum compound is aluminum hydroxide and/or aluminum oxide, and the mass of the aluminum compound which is present in the positive bulk material mixture is 0.1 to 2% by weight relative to the mass of the nickel hydroxide which is present. In combination with aluminum hydroxide or aluminum oxide, the positive electrode further contains lanthanoid oxidic compounds Y.sub.2 O.sub.3, La.sub.2 O.sub.3 and Ca(OH).sub.2, as well as mixtures of these compounds.

  6. Metal Hydrides for High-Temperature Power Generation

    DOE PAGES

    Ronnebro, Ewa; Whyatt, Greg A.; Powell, Michael R.; ...

    2015-08-10

    Metal hydrides can be utilized for hydrogen storage and for thermal energy storage (TES) applications. By using TES with solar technologies, heat can be stored from sun energy to be used later which enables continuous power generation. We are developing a TES technology based on a dual-bed metal hydride system, which has a high-temperature (HT) metal hydride operating reversibly at 600-800°C to generate heat as well as a low-temperature (LT) hydride near room temperature that is used for hydrogen storage during sun hours until there is a need to produce electricity, such as during night time, a cloudy day, ormore » during peak hours. We proceeded from selecting a high-energy density, low-cost HT-hydride based on performance characterization on gram size samples, to scale-up to kilogram quantities and design, fabrication and testing of a 1.5kWh, 200kWh/m3 bench-scale TES prototype based on a HT-bed of titanium hydride and a hydrogen gas storage instead of a LT-hydride. COMSOL Multiphysics was used to make performance predictions for cylindrical hydride beds with varying diameters and thermal conductivities. Based on experimental and modeling results, a bench-scale prototype was designed and fabricated and we successfully showed feasibility to meet or exceed all performance targets.« less

  7. Metal Hydrides for High-Temperature Power Generation

    SciTech Connect

    Ronnebro, Ewa; Whyatt, Greg A.; Powell, Michael R.; Westman, Matthew P.; Zheng, Feng; Fang, Zhigang Zak

    2015-08-10

    Metal hydrides can be utilized for hydrogen storage and for thermal energy storage (TES) applications. By using TES with solar technologies, heat can be stored from sun energy to be used later which enables continuous power generation. We are developing a TES technology based on a dual-bed metal hydride system, which has a high-temperature (HT) metal hydride operating reversibly at 600-800°C to generate heat as well as a low-temperature (LT) hydride near room temperature that is used for hydrogen storage during sun hours until there is a need to produce electricity, such as during night time, a cloudy day, or during peak hours. We proceeded from selecting a high-energy density, low-cost HT-hydride based on performance characterization on gram size samples, to scale-up to kilogram quantities and design, fabrication and testing of a 1.5kWh, 200kWh/m3 bench-scale TES prototype based on a HT-bed of titanium hydride and a hydrogen gas storage instead of a LT-hydride. COMSOL Multiphysics was used to make performance predictions for cylindrical hydride beds with varying diameters and thermal conductivities. Based on experimental and modeling results, a bench-scale prototype was designed and fabricated and we successfully showed feasibility to meet or exceed all performance targets.

  8. Determination of antimony, arsenic, bismuth, selenium, tellurium and tin by low pressure atomic absorption spectrometry with a quartz tube furnace atomizer and hydride generation with air addition.

    PubMed

    Zhang, B; Wang, Y; Wang, X; Chen, X; Feng, J

    1995-08-01

    A new method has been developed for the determination of antimony, arsenic, bismuth, selenium, tellurium and tin by hydride generation-atomic absorption spectrometry in an electrically heated quartz tube furnace under sub-atmospheric pressure. The hydride generator, operating at a pressure lower than atmospheric, is used to generate and collect the hydrides of these elements. A certain volume (at atmospheric pressure) of air is then added to the generator after the formation of the volatile hydride. The gaseous mixture of the hydride and air is drawn into an evacuated, heated quartz tube by a vacuum pump. The proposed method gives improved sensitivities and detection limits.

  9. Hydride generation from the Exide load-leveling cells

    NASA Astrophysics Data System (ADS)

    Marr, J. J.; Smaga, J. A.

    1987-05-01

    Stibine and arsine evolution from lead-acid cells in a 36-kWh Exide load-leveling module was measured as this module approached 1900 cycles of operation. A gas-collection apparatus enabled us to determine the maximum and average rates for evolution of both toxic hydrides. Hydride generation began once the cell voltage exceeded 2.4 V. The maximum rate for arsine occurred just above 2.5 V and consistently preceded the peak rate for stibine for each sampled cell. The average rates of hydride generation were found to be 175 g/min for stibine and 12.6 g/min for arsine. The former rate proved to be the critical value in determining safe ventilation requirements for cell off-gases. The minimum airflow requirement was calculated to be 340 L/min per cell. Projections for a hypothetical 1-MWh Exide battery without an abatement system indicated that the normal ventilation capacity in the Battery Energy Storage Test facility provides nearly five times the airflow needed for safe hydride removal.

  10. Hydrogen generation from magnesium hydride by using organic acid

    NASA Astrophysics Data System (ADS)

    Ho, Yen-Hsi

    In this paper, the hydrolysis of solid magnesium hydride has been studied with the high concentration of catalyst at the varying temperature. An organic acid (acetic acid, CH3COOH) has been chosen as the catalyst. The study has three objectives: first, using three different weights of MgH 2 react with aqueous solution of acid for the hydrogen generation experiments. Secondly, utilizing acetic acid as the catalyst accelerates hydrogen generation. Third, emphasizing the combination of the three operating conditions (the weight of MgH2, the concentration of acetic acid, and the varying temperature) influence the amount of hydrogen generation. The experiments results show acetic acid truly can increase the rate of hydrogen generation and the weight of MgH2 can affect the amount of hydrogen generation more than the varying temperature.

  11. Interferences in electrochemical hydride generation of hydrogen selenide

    NASA Astrophysics Data System (ADS)

    Bolea, E.; Laborda, F.; Belarra, M. A.; Castillo, J. R.

    2001-12-01

    Interferences from Cu(II), Zn(II), Pt(IV), As(III) and nitrate on electrochemical hydride generation of hydrogen selenide were studied using a tubular flow-through generator, flow injection sample introduction and quartz tube atomic absorption spectrometry. Comparison with conventional chemical generation using tetrahydroborate was also performed. Lead and reticulated vitreous carbon (RVC), both in particulate form, were used as cathode materials. Signal supressions up to 60-75%, depending on the cathode material, were obtained in the presence of up to 200 mg l-1 of nitrate due to the competitive reduction of the anion. Interference from As(III) was similar in electrochemical and chemical generation, being related to the quartz tube atomization process. Zinc did not interfere up to Se/Zn ratios 1:100, whereas copper and platinum showed suppression levels up to 50% for Se/interferent ratios 1:100. Total signal suppression was observed in presence of Se/Cu ratios 1:100 when RVC cathodes were used. No memory effects were observed in any case. Scanning electron microscopy and squared wave voltametry studies supported the interference mechanism based on the decomposition of the hydride on the dispersed particles of the reduced metal.

  12. Process for massively hydriding zirconium--uranium fuel elements

    DOEpatents

    Katz, N.H.

    1973-12-01

    A method is described of hydriding uranium-zirconium alloy by heating the alloy in a vacuum, introducing hydrogen and maintaining an elevated temperature until occurrence of the beta--delta phase transformation and isobarically cooling the composition. (Official Gazette)

  13. Group 14 hydrides with low valent elements for activation of small molecules.

    PubMed

    Mandal, Swadhin K; Roesky, Herbert W

    2012-02-21

    Transition metal compounds are well known as activators of small molecules, and they serve as efficient catalysts for a variety of homogeneous and heterogeneous transformations. In contrast, there is a general feeling that main group compounds cannot act as efficient catalysts because of their inability to activate small molecules. Traditionally, the activation of small molecules is considered one of the key steps during a catalytic cycle with transition metals. As a consequence, researchers have long neglected the full range of possibilities in harnessing main group elements for the design of efficient catalysts. Recent developments, however, have made it possible to synthesize main group compounds with low-valent elements capable of activating small molecules. In particular, the judicious use of sterically appropriate ligands has been successful in preparing and stabilizing a variety of Group 14 hydrides with low-valent elements. In this Account, we discuss recent advances in the synthesis of Group 14 hydrides with low-valent elements and assess their potential as small-molecule activators. Group 14, which comprises the nonmetal C, the semimetals Si and Ge, and the metals Sn and Pb, was for years a source of hydrides with the Group 14 element almost exclusively in tetravalent form. Synthetic difficulties and the low stability of Group 14 hydrides in lower oxidation states were difficult to overcome. But in 2000, a divalent Sn(II) hydride was prepared as a stable compound through the incorporation of sterically encumbered aromatic ligands. More recently, the stabilization of GeH(2) and SnH(2) complexes using an N-heterocyclic carbene (NHC) as a donor and BH(3) or a metal carbonyl complex as an acceptor was reported. A similar strategy was also employed to synthesize the Si(II) hydride. This class of hydrides may be considered coordinatively saturated, with the lone pair of electrons on the Group 14 elements taking part in coordination. We discuss the large

  14. SPECIATION OF ARSENIC COMPOUNDS IN DRINKING WATER BY CAPILLARY ELECTROPHORESIS WITH HYDRODYNAMICALLY MODIFIED ELECTROOSMOTIC FLOW DETECTED THROUGH HYDRIDE GENERATION INDUCTIVELY COUPLED PLASMA MASS..

    EPA Science Inventory

    Capillary electrophoresis (CE) was used to speciate four environmentally significant, toxic forms of arsenic: arsenite, arsenate, monomethylarsonic acid and dimethylarsinic acid. Hydride generation (HG) was used to convert the species into their respective hydrides. The hydride ...

  15. SPECIATION OF ARSENIC COMPOUNDS IN DRINKING WATER BY CAPILLARY ELECTROPHORESIS WITH HYDRODYNAMICALLY MODIFIED ELECTROOSMOTIC FLOW DETECTED THROUGH HYDRIDE GENERATION INDUCTIVELY COUPLED PLASMA MASS...

    EPA Science Inventory

    Capillary electrophoresis (CE) was used to speciate four environmentally significant, toxic forms of arsenic: arsenite, arsenate, monomethylarsonic acid and dimethylarsinic acid. Hydride generation (HG) was used to convert the species into their respective hydrides. The hydride s...

  16. Electrochemical selenium hydride generation with in situ trapping in graphite tube atomizers

    NASA Astrophysics Data System (ADS)

    Šíma, Jan; Rychlovský, Petr

    2003-05-01

    A manifold coupling continuous electrolytic hydride generation of volatile hydrides with atomization in graphite tube atomizers after in situ collection was used for Se(IV) determination. Laboratory-made thin-layer flow-through cells with lead wire (cell I) and granular lead (cell II) as the cathode material were used as the electrolytic generators of volatile selenium hydride. The automatic sampling equipment of the graphite atomizer, with an untreated fused silica capillary, was used both for the introduction of volatile hydride into the atomizer and for pretreatment of the graphite furnace surface with a palladium modifier. The influence of the experimental parameters on the analytical signal was studied and optimum conditions for selenium determination were found. The optimum experimental parameters for hydride generation were: catholyte (1 mol l -1 HCl)/anolyte (2 mol l -1 H 2SO 4) flow rate of 2.0 ml min -1; applied generation current of 1.2 A (cell I) and 0.8 A (cell II); and carrier gas flow rate of 40 (cell I) and 70 ml min -1 (cell II). The hydride generated was collected in the graphite tube (pre-treated with 5 μg of Pd reduced at 800 °C) at a temperature of 400 °C for 30 s. The overall efficiency of H 2Se electrochemical generation, transport and collection was 71±7% for cell I and 80±5% for cell II. The results for electrochemical generation of H 2Se (cell II) (absolute limit of detection 50 pg, 3σ criterion) were compared with the original generation of H 2Se using NaBH 4 as a reduction agent (absolute limit of detection 30 pg) and with conventional liquid sampling. The repeatability at the 1.0 ng ml -1 level was better than 2.4% (relative standard deviation) for electrochemical hydride generation and better than 2.8% for chemical hydride generation.

  17. [Removal of Antimony in Wastewater by Electrochemical Hydride Generation and the Recovery of Antimony].

    PubMed

    Chen, Jing-jing; Zhang, Guo-ping; Li, Hai-xia; Fu, Zhi-ping; Ouyang, Xiao-xue; Wu, Qiong

    2015-04-01

    An electrochemical hydride generation method was developed for the removal of antimony in wastewater. Hydrogen was generated in the electrolysis of water. Hydrogen reacted with Sb and formed stibine, which volatilized from the solution. Then, stibine was heated and decomposed to elemental Sb. Based on these, Sb in wastewater could be removed and recovered. The highest removal of Sb (76.1%) was achieved in acidic solution (pH = 4). The formation of stibine was proven to contribute most significantly (66.2%) to the removal of antimony in the solution, while the electro-deposition and adsorption also made a small contribution. In the treatment, Sb(V) must be pre-reduced to Sb(III) prior to the formation of stibine. Lead, graphite and tungsten were employed as the materials for cathode, and lead electrode was found most suitable for the removal of antimony.

  18. Arsenic in marine tissues — The challenging problems to electrothermal and hydride generation atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Karadjova, Irina B.; Petrov, Panayot K.; Serafimovski, Ivan; Stafilov, Trajče; Tsalev, Dimiter L.

    2007-03-01

    Analytical problems in determination of arsenic in marine tissues are addressed. Procedures for the determination of total As in solubilized or extracted tissues with tetramethylammonium hydroxide and methanol have been elaborated. Several typical lyophilized tissues were used: NIST SRM 1566a 'Oyster Tissue', BCR-60 CRM 'Trace Elements in an Aquatic Plant ( Lagarosiphon major)', BCR-627 'Forms of As in Tuna Fish Tissue', IAEA-140/TM 'Sea Plant Homogenate', NRCC DOLT-1 'Dogfish Liver' and two representatives of the Black Sea biota, Mediterranean mussel ( Mytilus galloprovincialis) and Brown algae ( Cystoseira barbata). Tissues (nominal 0.3 g) were extracted in tetramethylammonium hydroxide (TMAH) 1 ml of 25% m/v TMAH and 2 ml of water) or 5 ml of aqueous 80% v/v methanol (MeOH) in closed vessels in a microwave oven at 50 °C for 30 min. Arsenic in solubilized or extracted tissues was determined by electrothermal atomic absorption spectrometry (ETAAS) after appropriate dilution (nominally to 25 ml, with further dilution as required) under optimal instrumental parameters (pyrolysis temperature 900 °C and atomization temperature 2100 °C) with 1.5 μg Pd as modifier on Zr-Ir treated platform. Platforms have been pre-treated with 2.7 μmol of zirconium and then with 0.10 μmol of iridium which served as a permanent chemical modifier in direct ETAAS measurements and as an efficient hydride sequestration medium in flow injection hydride generation (FI-HG)-ETAAS. TMAH and methanol extract 96-108% and 51-100% of As from CRMs. Various calibration approaches have been considered and critically evaluated. The effect of species-dependent slope of calibration graph or standard additions plot for total As determination in a sample comprising of several individual As species with different ETAAS behavior has been considered as a kind of 'intrinsic element speciation interference' that cannot be completely overcome by standard additions technique. Calibration by means of CRMs has

  19. Hydrogen generation using silicon nanoparticles and their mixtures with alkali metal hydrides

    NASA Astrophysics Data System (ADS)

    Patki, Gauri Dilip

    Hydrogen is a promising energy carrier, for use in fuel cells, engines, and turbines for transportation or mobile applications. Hydrogen is desirable as an energy carrier, because its oxidation by air releases substantial energy (thermally or electrochemically) and produces only water as a product. In contrast, hydrocarbon energy carriers inevitably produce CO2, contributing to global warming. While CO2 capture may prove feasible in large stationary applications, implementing it in transportation and mobile applications is a daunting challenge. Thus a zero-emission energy carrier like hydrogen is especially needed in these cases. Use of H2 as an energy carrier also brings new challenges such as safe handling of compressed hydrogen and implementation of new transport, storage, and delivery processes and infrastructure. With current storage technologies, hydrogen's energy per volume is very low compared to other automobile fuels. High density storage of compressed hydrogen requires combinations of high pressure and/or low temperature that are not very practical. An alternative for storage is use of solid light weight hydrogenous material systems which have long durability, good adsorption properties and high activity. Substantial research has been conducted on carbon materials like activated carbon, carbon nanofibers, and carbon nanotubes due to their high theoretical hydrogen capacities. However, the theoretical values have not been achieved, and hydrogen uptake capacities in these materials are below 10 wt. %. In this thesis we investigated the use of silicon for hydrogen generation. Hydrogen generation via water oxidation of silicon had been ignored due to slow reaction kinetics. We hypothesized that the hydrogen generation rate could be improved by using high surface area silicon nanoparticles. Our laser-pyrolysis-produced nanoparticles showed surprisingly rapid hydrogen generation and high hydrogen yield, exceeding the theoretical maximum of two moles of H2 per

  20. Hydrogen storage and generation using light metal hydrides

    SciTech Connect

    Lynch, F.; Mork, B.J.; Wilkes, J.S.

    1998-07-01

    The storage of hydrogen for use in fuel cells employed as portable electric power sources is important. For many applications pressurized gas or cryogenic liquid storage is not acceptable from weight or safety standpoints. This is particularly true for moderate power systems in the 50--200 watt range. A potentially attractive technology for providing hydrogen for moderately sized fuel cell-based electric power supplies is chemical hydrides. In general, chemical hydrides are materials that store hydrogen that may be released by chemical reactions. The authors report here the use of light metal hydrides, such as lithium aluminum tetrahydride and trilithium aluminum hexahydride to store hydrogen in a very dense form; about four times the density of liquid hydrogen. The hydrogen can be released by reaction with simple chemical reagents, such as water or ammonia, at approximately atmospheric pressure and at modest temperatures. The reaction rate may be controlled to provide hydrogen at a rate appropriate to that needed by a fuel cell operating at the power levels mentioned above. Usually hydrogen is the sole gaseous product, along with several solid products.

  1. COMPREHENSIVE ANALYSIS OF BIOLOGICALLY RELEVANT ARSENICALS BY PH-SELECTIVE HYDRIDE GENERATION-ATOMIC ABSORPTION SPECTROMETRY

    EPA Science Inventory


    A method based on pH-selective generation and separation of arsines is commonly used for analysis of inorganic, methylated, and dimethylated trivalent and pentavalent arsenicals by hydride generation-atomic absorption spectrometry (HG-AAS). We have optimized this method to pe...

  2. Method of generating hydrogen-storing hydride complexes

    DOEpatents

    None, None

    2013-05-14

    A ternary hydrogen storage system having a constant stoichiometric molar ratio of LiNH.sub.2:MgH.sub.2:LiBH.sub.4 of 2:1:1. It was found that the incorporation of MgH.sub.2 particles of approximately 10 nm to 20 nm exhibit a lower initial hydrogen release temperature of 150.degree. C. Furthermore, it is observed that the particle size of LiBNH quaternary hydride has a significant effect on the hydrogen sorption concentration with an optimum size of 28 nm. The as-synthesized hydrides exhibit two main hydrogen release temperatures, one around 160.degree. C. and the other around 300.degree. C., with the main hydrogen release temperature reduced from 310.degree. C. to 270.degree. C., while hydrogen is first reversibly released at temperatures as low as 150.degree. C. with a total hydrogen capacity of 6 wt. % to 8 wt. %. Detailed thermal, capacity, structural and microstructural properties have been demonstrated and correlated with the activation energies of these materials.

  3. Determination of arsenic and selenium in environmental and agricultural samples by hydride generation atomic absorption spectrometry

    SciTech Connect

    Hershey, J.W.; Oostdyk, T.S.; Keliher, P.N.

    1988-11-01

    Agricultural and environmental samples are digested with acid, and arsenic and selenium are determined using hydride generation atomic absorption spectrometry. Interelement interferences are eliminated by high acid concentrations or cation-exchange resins. Agreement with standard reference material is excellent. The technique is also applied to actual samples.

  4. Application of metal hydride paper to simple pressure generator for use in soft actuator systems.

    PubMed

    Ino, Shuichi; Sakaki, Kouji; Hosono, Minako; Doi, Kouki; Shimada, Shigenobu; Chikai, Manabu

    2015-01-01

    Metal hydride (MH) actuators have a simple structure and a number of features that make them attractive for use in rehabilitation engineering and assistive technology. The MH actuator provides a high power-to-weight ratio, high-strain actuation, human-compatible softness, and noiseless operation, while being environmentally benign. On the other hand, there remain technical challenges to be overcome to improve the MH actuator regarding its speed of operation and energy efficiency, given the low heat conductivity of the MH powder that is used as the pressure generator for soft actuation. To overcome the issues of low heat conductivity and the handling of MH powder, we developed an MH paper, which is a special paper incorporating MH powder and carbon fiber, for use as a new pressure-generating element for a soft MH actuator system. In addition, the basic properties and structure of the proposed MH paper were investigated through scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and several thermodynamic experiments. The results of these experiments showed that the hydrogen absorption and desorption rates of the MH paper were significantly higher than those of the MH powder around room temperature.

  5. Spin-Orbit Coupling Effects in Di-Hydrides of Third-Row Transition Elements

    NASA Astrophysics Data System (ADS)

    Koseki, Shiro

    2007-11-01

    Spin-orbit coupling (SOC) effects were investigated for low-lying electronic states in the di-hydrides of third-row transition elements by using MCSCF+MRMP2, +FOCI, and +SOCI methods with the SBKJC basis sets augmented by a set of f functions for transition elements and a set of p functions for hydrogen atoms, where MCSCF, MRMP2, FOCI, and SOCI are abbreviations of multi-configuration self-consistent field, multi-reference second-order Mo/ller-Plesset, first-order configuration interaction, and second-order configuration interaction, respectively. Before the inclusion of SOC effects, six di-hydrides (LaH2, HfH2, TaH2, WH2, OsH2, and IrH2) are lower in energy than the corresponding dissociation limits (transition element and a hydrogen molecule). All of these di-hydrides have bent structures at their energy minima, and the ground states are 2A1, 1A1, 4B1, 5B2, 3B2, and 2A1, respectively. After the inclusion of SOC effects, the ground states are assigned to E1/2, A1, E1/2, A1, A1, and E1/2 in the double-group representation of C2v symmetry. It can be concluded that SOC effects are not so important in LaH2, HfH2, and TaH2, while they become important in describing bending potential energy curves of low-lying electronic states in WH2, OsH2, and IrH2.

  6. Direct generation of oxygen-stabilized radicals by H• transfer from transition metal hydrides.

    PubMed

    Kuo, Jonathan L; Hartung, John; Han, Arthur; Norton, Jack R

    2015-01-28

    Transition-metal hydrides generate α-alkoxy radicals by H• transfer to enol ethers. We have measured the rate constant for transfer from CpCr(CO)3H to n-butyl vinyl ether and have examined the chemistry of radicals generated by such transfers. Radicals from appropriate substrates undergo 5-exo cyclization, with higher diastereoselectivity than the analogous all-carbon radicals. From such radicals it is straightforward to make substituted tetrahydrofurans.

  7. Arsenic speciation in natural water samples by coprecipitation-hydride generation atomic absorption spectrometry combination.

    PubMed

    Tuzen, Mustafa; Citak, Demirhan; Mendil, Durali; Soylak, Mustafa

    2009-04-15

    A speciation procedure for As(III) and As(V) ions in environmental samples has been presented. As(V) was quantitatively recovered on aluminum hydroxide precipitate. After oxidation of As(III) by using dilute KMnO(4), the developed coprecipitation was applied to determination of total arsenic. Arsenic(III) was calculated as the difference between the total arsenic content and As(V) content. The determination of arsenic levels was performed by hydride generation atomic absorption spectrometry (HG-AAS). The analytical conditions for the quantitative recoveries of As(V) including pH, amount of aluminum as carrier element and sample volume, etc. on the presented coprecipitation system were investigated. The effects of some alkaline, earth alkaline, metal ions and also some anions were also examined. Preconcentration factor was calculated as 25. The detection limits (LOD) based on three times sigma of the blank (N: 21) for As(V) was 0.012 microg L(-1). The satisfactory results for the analysis of arsenic in NIST SRM 2711 Montana soil and LGC 6010 Hard drinking water certified reference materials for the validation of the method was obtained. The presented procedure was successfully applied to real samples including natural waters for arsenic speciation.

  8. Determination of Te in soldering tin using continuous flowing electrochemical hydride generation atomic fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Jiang, Xianjuan; Gan, Wuer; Han, Suping; He, Youzhao

    2008-06-01

    An electrochemical hydride generation system was developed for the detection of Te by coupling an electrochemical hydride generator with atomic fluorescence spectrometry. Since TeH 2 is unstable and easily decomposes in solution, a reticular W filament cathode was used in the present system. The TeH 2 generated on the cathode surface was effectively driven out by sweeping gas from the cathode chamber. In addition, a low temperature electrochemical cell (10 °C) was applied to reduce the decomposition of TeH 2 in solution. The limit of detection (LOD) was 2.2 ng ml - 1 and the relative standard deviation (RSD) was 3.9% for nine consecutive measurements of standard solution. This method was successfully employed for determination of Te in soldering tin material.

  9. Rare earth element recycling from waste nickel-metal hydride batteries.

    PubMed

    Yang, Xiuli; Zhang, Junwei; Fang, Xihui

    2014-08-30

    With an increase in number of waste nickel-metal hydride batteries, and because of the importance of rare earth elements, the recycling of rare earth elements is becoming increasingly important. In this paper, we investigate the effects of temperature, hydrochloric acid concentration, and leaching time to optimize leaching conditions and determine leach kinetics. The results indicate that an increase in temperature, hydrochloric acid concentration, and leaching time enhance the leaching rate of rare earth elements. A maximum rare earth elements recovery of 95.16% was achieved at optimal leaching conditions of 70°C, solid/liquid ratio of 1:10, 20% hydrochloric acid concentration, -74μm particle size, and 100min leaching time. The experimental data were best fitted by a chemical reaction-controlled model. The activation energy was 43.98kJ/mol and the reaction order for hydrochloric acid concentration was 0.64. The kinetic equation for the leaching process was found to be: 1-(1-x)(1/3)=A/ρr0[HCl](0.64)exp-439,8008.314Tt. After leaching and filtration, by adding saturated oxalic solution to the filtrate, rare earth element oxalates were obtained. After removing impurities by adding ammonia, filtering, washing with dilute hydrochloric acid, and calcining at 810°C, a final product of 99% pure rare earth oxides was obtained.

  10. Characterization and lifecycle testing of hydride compressor elements for the Planck sorption cryocooler

    NASA Astrophysics Data System (ADS)

    Pearson, D.; Bowman, R. C.; Schmelzel, M. E.; Prina, M.; Bhandari, P.; Paine, C. G.; Wade, L. A.

    2002-05-01

    Continuous 20 K sorption-based coolers are being developed for the European Space Agency (ESA) Planck mission. Sorbent beds containing the hydrogen absorbing Lanthanum-Nickel-Tin alloy LaNi4.78Sn0.22 are being tested to evaluate their performance as compressor elements for unprecedented two years of flight operation thus demonstrating the basic performances of the cooler: namely cold end temperature, input power and cooling power. To provide basic characterization and life cycling data, a test facility was developed to test three prototype compressor elements under all conditions expected for the flight cooler operation. Each compressor element is continuously cycled in concentration and temperature to follow the absorption and desorption process assumed for the flight cooler. We present data on the hydrogen mass flow rates and thermal characteristics for all phases of the compressor cycle, with an emphasis on the controlled absorption of hydrogen. This function of the compressor element is the major driver of the cold end temperature and its stability. We also present data obtained over thousands of temperature cycles from these beds to determine the extent of degradation of the compressor element performance from changes in the hydride properties or other sources.

  11. Pyrometallurgical Extraction of Valuable Elements in Ni-Metal Hydride Battery Electrode Materials

    NASA Astrophysics Data System (ADS)

    Jiang, Yin-ju; Deng, Yong-chun; Bu, Wen-gang

    2015-10-01

    Gas selective reduction-oxidation (redox) and melting separation were consecutively applied to electrode materials of AB5-type Ni-metal hydride batteries leading to the production of a Ni-Co alloy and slag enriched with rare earth oxides (REO). In the selective redox process, electrode materials were treated with H2/H2O at 1073 K and 1173 K (800 °C and 900 °C). Active elements such as REs, Al, and Mn were oxidized whereas relatively inert elements such as Ni and Co were transformed into their elemental states in the treated materials. SiO2 and Al2O3 powders were added into the treated materials as fluxes which were then melted at 1823 K (1550 °C) to yield a Ni-Co alloy and a REO-SiO2-Al2O3-MnO slag. The high-purity Ni-Co alloy produced can be used as a raw material for AB5-type hydrogen-storage alloy. The REO content in slag was very high, i.e., 48.51 pct, therefore it can be used to recycle rare earth oxides.

  12. Determination and interference studies of bismuth by tungsten trap hydride generation atomic absorption spectrometry.

    PubMed

    Kula, Ibrahim; Arslan, Yasin; Bakirdere, Sezgin; Titretir, Serap; Kendüzler, Erdal; Ataman, O Yavuz

    2009-11-15

    The determination of bismuth requires sufficiently sensitive procedures for detection at the microg L(-1) level or lower. W-coil was used for on-line trapping of volatile bismuth species using HGAAS (hydride generation atomic absorption spectrometry); atom trapping using a W-coil consists of three steps. Initially BiH(3) gas is formed by hydride generation procedure. The analyte species in vapor form are transported through the W-coil trap held at 289 degrees C where trapping takes place. Following the preconcentration step, the W-coil is heated to 1348 degrees C; analyte species are released and transported to flame-heated quartz atom cell where the atomic signal is formed. In our study, interferences have been investigated in detail during Bi determination by hydride generation, both with and without trap in the same HGAAS system. Interferent/analyte (mass/mass) ratio was kept at 1, 10 and 100. Experiments were designed for carrier solutions having 1.0M HNO(3). Interferents such as Fe, Mn, Zn, Ni, Cu, As, Se, Cd, Pb, Au, Na, Mg, Ca, chloride, sulfate and phosphate were examined. The calibration plot for an 8.0 mL sampling volume was linear between 0.10 microg L(-1) and 10.0 microg L(-1) of Bi. The detection limit (3s/m) was 25 ng L(-1). The enhancement factor for the characteristic concentration (C(o)) was found to be 21 when compared with the regular system without trap, by using peak height values. The validation of the procedure was performed by the analysis of the certified water reference material and the result was found to be in good agreement with the certified values at the 95% confidence level.

  13. Improving the analytical performance of hydride generation non-dispersive atomic fluorescence spectrometry. Combined effect of additives and optical filters

    NASA Astrophysics Data System (ADS)

    D'Ulivo, Alessandro; Bramanti, Emilia; Lampugnani, Leonardo; Zamboni, Roberto

    2001-10-01

    The effects of tetrahydroborate and acid concentration and the presence of L-cysteine and thiourea were investigated in the determination of As, Bi and Sn using continuous flow hydride generation atomic fluorescence spectrometry (HG AFS). The aim was to find conditions allowing the control of those effects exerting negative influence on the analytical performance of the HG AFS apparatus. The effects taken into account were: (i) the radiation scattering generated by carryover of solution from the gas-liquid separator to the atomizer; (ii) the introduction of molecular species generated by tetrahydroborate decomposition into the atomizer; and (iii) interference effects arising from other elements in the sample matrix and from different acids. The effects (i) and (ii) could be controlled using mild reaction conditions in the HG stage. The effect of HG conditions on carryover was studied by radiation scattering experiments without hydride atomization. Compromised HG conditions were found by studying the effects of tetrahydroborate (0.1-20 g l -1) and acid (0.01-7 mol l -1) concentration, and the addition of L-cysteine (10 g l -1) and thiourea (0.1 mol l -1) on the HG AFS signals. The effect of optical filters was investigated with the aim of improving the signal-to-noise ratio. Optical filters with peak wavelengths of 190 and 220 nm provided an improvement of detection limits by factors of approximately 4 and 2 for As and Te, respectively. Under optimized conditions the detection limits were 6, 5, 3, 2, 2 and 9 ng l -1 for As, Sb, Bi, Sn, Se and Te, respectively. Good tolerance to various acid compositions and sample matrices was obtained by using L-cysteine or thiourea as masking agents. Determination of arsenic in sediment and copper certified reference materials, and of bismuth in steel, sediment, soil and ore certified reference material is reported.

  14. Experimental Hydrogen Plant with Metal Hydrides to Store and Generate Electrical Power

    NASA Astrophysics Data System (ADS)

    Gonzatti, Frank; Nizolli, Vinícius; Ferrigolo, Fredi Zancan; Farret, Felix Alberto; de Mello, Marcos Augusto Silva

    2016-02-01

    Generation of electrical energy with renewable sources is interruptible due to the primary energy characteristics (sun, wind, hydro, etc.). In these cases, it is necessary to use energy storage so increasing penetrability of these sources connected to the distribution system. This paper discusses in details some equipment and accessories of an integrated power plant using fuel cell stack, electrolyzer and metal hydrides. During the plant operation were collected the power consumption data and established the efficiency of each plant component. These data demonstrated an overall efficiency of about 11% due to the low efficiencies of the commercial electrolyzers and power inverters used in the experiments.

  15. Rapid hydrogen gas generation using reactive thermal decomposition of uranium hydride.

    SciTech Connect

    Kanouff, Michael P.; Van Blarigan, Peter; Robinson, David B.; Shugard, Andrew D.; Gharagozloo, Patricia E.; Buffleben, George M.; James, Scott Carlton; Mills, Bernice E.

    2011-09-01

    Oxygen gas injection has been studied as one method for rapidly generating hydrogen gas from a uranium hydride storage system. Small scale reactors, 2.9 g UH{sub 3}, were used to study the process experimentally. Complimentary numerical simulations were used to better characterize and understand the strongly coupled chemical and thermal transport processes controlling hydrogen gas liberation. The results indicate that UH{sub 3} and O{sub 2} are sufficiently reactive to enable a well designed system to release gram quantities of hydrogen in {approx} 2 seconds over a broad temperature range. The major system-design challenge appears to be heat management. In addition to the oxidation tests, H/D isotope exchange experiments were performed. The rate limiting step in the overall gas-to-particle exchange process was found to be hydrogen diffusion in the {approx}0.5 {mu}m hydride particles. The experiments generated a set of high quality experimental data; from which effective intra-particle diffusion coefficients can be inferred.

  16. Integrating hydrogen generation and storage in a novel compact electrochemical system based on metal hydrides

    NASA Astrophysics Data System (ADS)

    Rangel, C. M.; Fernandes, V. R.; Slavkov, Y.; Bozukov, L.

    The development of efficient and reliable energy storage systems based on hydrogen technology represents a challenge to seasonal storage based on renewable hydrogen. State of the art renewable energy generation systems include separate units such as electrolyzer, hydrogen storage vessel and a fuel cell system for the conversion of H 2 back into electricity, when required. In this work, a novel electrochemical system has been developed which integrates hydrogen production, storage and compression in only one device, at relatively low cost and high efficiency. The developed prototype comprises a six-electrode cell assembly using an AB 5-type metal hydride and Ni plates as counter electrodes, in a 35-wt% KOH solution. Metal hydride electrodes with chemical composition LaNi 4.3Co 0.4Al 0.3 were prepared by high frequency vacuum melting followed by high temperature annealing. X-ray phase analysis showed typical hexagonal structure and no traces of other intermetallic compounds belonging to the La-Ni phase diagram. Thermodynamic study has been performed in a Sieverts type of apparatus produced by Labtech Int. During cycling, the charging/discharging process was studied in situ using a gas chromatograph from Agilent. It is anticipated that the device will be integrated as a combined hydrogen generator and storage unit in a stand-alone system associated to a 1-kW fuel cell.

  17. Automated determinations of selenium in thermal power plant wastewater by sequential hydride generation and chemiluminescence detection.

    PubMed

    Ezoe, Kentaro; Ohyama, Seiichi; Hashem, Md Abul; Ohira, Shin-Ichi; Toda, Kei

    2016-02-01

    After the Fukushima disaster, power generation from nuclear power plants in Japan was completely stopped and old coal-based power plants were re-commissioned to compensate for the decrease in power generation capacity. Although coal is a relatively inexpensive fuel for power generation, it contains high levels (mgkg(-1)) of selenium, which could contaminate the wastewater from thermal power plants. In this work, an automated selenium monitoring system was developed based on sequential hydride generation and chemiluminescence detection. This method could be applied to control of wastewater contamination. In this method, selenium is vaporized as H2Se, which reacts with ozone to produce chemiluminescence. However, interference from arsenic is of concern because the ozone-induced chemiluminescence intensity of H2Se is much lower than that of AsH3. This problem was successfully addressed by vaporizing arsenic and selenium individually in a sequential procedure using a syringe pump equipped with an eight-port selection valve and hot and cold reactors. Oxidative decomposition of organoselenium compounds and pre-reduction of the selenium were performed in the hot reactor, and vapor generation of arsenic and selenium were performed separately in the cold reactor. Sample transfers between the reactors were carried out by a pneumatic air operation by switching with three-way solenoid valves. The detection limit for selenium was 0.008 mg L(-1) and calibration curve was linear up to 1.0 mg L(-1), which provided suitable performance for controlling selenium in wastewater to around the allowable limit (0.1 mg L(-1)). This system consumes few chemicals and is stable for more than a month without any maintenance. Wastewater samples from thermal power plants were collected, and data obtained by the proposed method were compared with those from batchwise water treatment followed by hydride generation-atomic fluorescence spectrometry.

  18. [Research on optimization of mathematical model of flow injection-hydride generation-atomic fluorescence spectrometry].

    PubMed

    Cui, Jian; Zhao, Xue-Hong; Wang, Yan; Xiao, Ya-Bing; Jiang, Xue-Hui; Dai, Li

    2014-01-01

    Flow injection-hydride generation-atomic fluorescence spectrometry was a widely used method in the industries of health, environmental, geological and metallurgical fields for the merit of high sensitivity, wide measurement range and fast analytical speed. However, optimization of this method was too difficult as there exist so many parameters affecting the sensitivity and broadening. Generally, the optimal conditions were sought through several experiments. The present paper proposed a mathematical model between the parameters and sensitivity/broadening coefficients using the law of conservation of mass according to the characteristics of hydride chemical reaction and the composition of the system, which was proved to be accurate as comparing the theoretical simulation and experimental results through the test of arsanilic acid standard solution. Finally, this paper has put a relation map between the parameters and sensitivity/broadening coefficients, and summarized that GLS volume, carrier solution flow rate and sample loop volume were the most factors affecting sensitivity and broadening coefficients. Optimizing these three factors with this relation map, the relative sensitivity was advanced by 2.9 times and relative broadening was reduced by 0.76 times. This model can provide a theoretical guidance for the optimization of the experimental conditions.

  19. Gold Nanoparticle-based Colorimetric Assay for Selenium Detection via Hydride Generation.

    PubMed

    Cao, Guoming; Xu, Fujian; Wang, Shan-Ling; Xu, Kailai; Hou, Xiandeng; Wu, Peng

    2017-03-22

    Gold nanoparticles (AuNPs)-based colorimetric assays are of particular interest since molecular events can be easily read out with the color changes of AuNPs by naked eye. However, the molecular recognitions occur almost exclusively in the liquid phase, i.e., the interaction between target analytes and AuNPs is always proceeded in the presence of sample matrix. Since the aggregation of the unmodified AuNPs is prone to be influenced by the ionic strength of the solution, sample matrix will cause undesirable interference. Here, we proposed a new type of AuNP-based colorimetric assay, in which target analyte selenium was first converted to its hydride chemical vapor (H2Se) and then delivered into the solution of AuNPs to induce color change. Therefore, sample matrix (for example, high salinity) were eliminated, leading to excellent selectivity and free of sample matrix. With the aid of hydride generation, the proposed method offered a detection limit of 0.05 μM with UV-vis detection and 1 μM with naked eye. Sucessful application of this method for selenium detection in biological and enviromental samples was demonstrated.

  20. Advanced Metal-Hydrides-Based Thermal Battery: A New Generation of High Density Thermal Battery Based on Advanced Metal Hydrides

    SciTech Connect

    2011-12-01

    HEATS Project: The University of Utah is developing a compact hot-and-cold thermal battery using advanced metal hydrides that could offer efficient climate control system for EVs. The team’s innovative designs of heating and cooling systems for EVs with high energy density, low-cost thermal batteries could significantly reduce the weight and eliminate the space constraint in automobiles. The thermal battery can be charged by plugging it into an electrical outlet while charging the electric battery and it produces heat and cold through a heat exchanger when discharging. The ultimate goal of the project is a climate-controlling thermal battery that can last up to 5,000 charge and discharge cycles while substantially increasing the driving range of EVs, thus reducing the drain on electric batteries.

  1. Spectrophotometric detection of arsenic using flow-injection hydride generation following sorbent extraction preconcentration.

    PubMed

    Neto, J A; Montes, R; Cardoso, A A

    1999-12-06

    An automated system with a C(18) bonded silica gel packed minicolumn is proposed for spectrophotometric detection of arsenic using flow-injection hydride generation following sorbent extraction preconcentration. Complexes formed between arsenic(III) and ammonium diethyl dithiophosphate (ADDP) are retained on a C(18) sorbent. The eluted As-DDP complexes are merged with a 1.5% (w/v) NaBH(4) and the resulting solution is thereafter injected into the hydride generator/gas-liquid separator. The arsine generated is carried out by a stream of N(2) and trapped in an alkaline iodine solution in which the analyte is determined by the arsenomolybdenum blue method. With preconcentration time of 120 s, calibration in the 5.00-50.0 mug As l(-1) range and sampling rate of about 20 samples h(-1) are achieved, corresponding to 36 mg ADDP plus 36 mg ammonium heptamolybdate plus 7 mg hydrazine sulfate plus 0.7 mg stannous chloride and about 7 ml sample consumed per determination. The detection limit is 0.06 mug l(-1) and the relative standard deviation (n=12) for a typical 17.0 mug As l(-1) sample is ca. 6%. The accuracy was checked for arsenic determination in plant materials from the NIST (1572 citrus leaves; 1573 tomato leaves) and the results were in agreement with the certified values at 95% confidence level. Good recoveries (94-104%) of spiked tap waters, sugars and synthetic mixtures of trivalent and pentavalent arsenic were also found.

  2. Determination of selenium in urine by hydride generation atomic absorption spectrometry.

    PubMed

    Navarro, M; Lopez, H; Lopez, M C; Perez, V

    1996-01-01

    A procedure has been developed for determination of total selenium in urine by hydride generation atomic absorption spectrometry. Mineralization was performed with a nitric acid-perchloric acid mixture on a thermostated digestion block. The method was validated by comparison with the method involving mineralization in a microwave acid digestion bomb containing nitric acid and small amounts of vanadium pentoxide. Se(VI) was reduced to Se(IV) by dissolution in 7N HCl. Sample recoveries, precision studies, and analyses of a certified reference material demonstrated the reliability and accuracy of this technique. Urine samples had selenium concentrations ranging from 4.6 to 50.3 micrograms/L. These values correspond to an average of 54.9 micrograms per person per day total ingested and bioavailable Se in the daily diet.

  3. Determination of arsenic in vegetable samples by hydride generation atomic absorption spectrometry

    SciTech Connect

    Navarro, M.; Lopez, M.C.; Lopez, H.; Sanchez, M.

    1992-11-01

    A procedure is described for the determination of arsenic in vegetable samples by hydride generation atomic absorption spectrometry. The samples are mineralized in a microwave acid digestion bomb with nitric acid in the presence of small amounts of vanadium pentoxide. The determination of arsenic is made by the standard addition method. A certified reference sample is analyzed, and the result obtained agreed well with the certified value. The detection limit (dry weight) was about 0.020 {mu}g/g. Reproducibility relative standard deviations ranged from 6.45% at 0.152 {mu}g As/g to 8.31% at 0.059 {mu}g As/g. The concentrations of arsenic in vegetable samples ranged from 0.029 to 0.444 {mu}g/g (fresh weight). 24 refs., 4 tabs.

  4. Determination of tellurium by hydride generation with in situ trapping flame atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Matusiewicz, Henryk; Krawczyk, Magdalena

    2007-03-01

    The analytical performance of coupled hydride generation — integrated atom trap (HG-IAT) atomizer flame atomic absorption spectrometry (FAAS) system was evaluated for determination of Te in reference material (GBW 07302 Stream Sediment), coal fly ash and garlic. Tellurium, using formation of H 2Te vapors, is atomized in air-acetylene flame-heated IAT. A new design HG-IAT-FAAS hyphenated technique that would exceed the operational capabilities of existing arrangements (a water-cooled single silica tube, double-slotted quartz tube or an "integrated trap") was investigated. An improvement in detection limit was achieved compared with using either of the above atom trapping techniques separately. The concentration detection limit, defined as 3 times the blank standard deviation (3 σ), was 0.9 ng mL - 1 for Te. For a 2 min in situ pre-concentration time (sample volume of 2 mL), sensitivity enhancement compared to flame AAS, was 222 fold, using the hydride generation — atom trapping technique. The sensitivity can be further improved by increasing the collection time. The precision, expressed as RSD, was 7.0% ( n = 6) for Te. The designs studied include slotted tube, single silica tube and integrated atom trap-cooled atom traps. The accuracy of the method was verified using a certified reference material (GBW 07302 Stream Sediment) by aqueous standard calibration curves. The measured Te contents of the reference material was in agreement with the information value. The method was successfully applied to the determination of tellurium in coal fly ash and garlic.

  5. Reduced enthalpy of metal hydride formation for Mg-Ti nanocomposites produced by spark discharge generation.

    PubMed

    Anastasopol, Anca; Pfeiffer, Tobias V; Middelkoop, Joost; Lafont, Ugo; Canales-Perez, Roger J; Schmidt-Ott, Andreas; Mulder, Fokko M; Eijt, Stephan W H

    2013-05-29

    Spark discharge generation was used to synthesize Mg-Ti nanocomposites consisting primarily of a metastable body-centered-cubic (bcc) alloy of Mg and Ti. The bcc Mg-Ti alloy transformed upon hydrogenation into the face-centered-cubic fluorite Mg1-yTiyHx phase with favorable hydrogen storage properties. Both metal and metal hydride nanocomposites showed a fractal-like porous morphology, with a primary particle size of 10-20 nm. The metal content of 70 atom % (at %) Mg and 30 at % Ti, consistently determined by XRD, TEM-EDS, and ICP-OES, was distributed uniformly across the as-prepared sample. Pressure-composition isotherms for the Mg-Ti-H nanocomposites revealed large differences in the thermodynamics relative to bulk MgH2, with a much less negative enthalpy of formation of the hydride as small as -45 ± 3 kJ/molH2 as deduced from van't Hoff plots. The plateau pressures of hydrogenation were substantially higher than those for bulk MgH2 in the low temperature range from 150 to 250 °C. The reaction entropy was simultaneously reduced to values down to 84 ± 5 J/K mol H2, following a linear relationship between the enthalpy and entropy. Plausible mechanisms for the modified thermodynamics are discussed, including the effect of lattice strains, the presence of interfaces and hydrogen vacancies, and the formation of excess free volume due to local deformations. These mechanisms all rely on the finely interdispersed nanocomposite character of the samples which is maintained by grain refinement.

  6. Optimization of chemical and instrumental parameters in hydride generation laser-induced breakdown spectrometry for the determination of arsenic, antimony, lead and germanium in aqueous samples.

    PubMed

    Yeşiller, Semira Unal; Yalçın, Serife

    2013-04-03

    A laser induced breakdown spectrometry hyphenated with on-line continuous flow hydride generation sample introduction system, HG-LIBS, has been used for the determination of arsenic, antimony, lead and germanium in aqueous environments. Optimum chemical and instrumental parameters governing chemical hydride generation, laser plasma formation and detection were investigated for each element under argon and nitrogen atmosphere. Arsenic, antimony and germanium have presented strong enhancement in signal strength under argon atmosphere while lead has shown no sensitivity to ambient gas type. Detection limits of 1.1 mg L(-1), 1.0 mg L(-1), 1.3 mg L(-1) and 0.2 mg L(-1) were obtained for As, Sb, Pb and Ge, respectively. Up to 77 times enhancement in detection limit of Pb were obtained, compared to the result obtained from the direct analysis of liquids by LIBS. Applicability of the technique to real water samples was tested through spiking experiments and recoveries higher than 80% were obtained. Results demonstrate that, HG-LIBS approach is suitable for quantitative analysis of toxic elements and sufficiently fast for real time continuous monitoring in aqueous environments.

  7. Studies in hydride generation atomic fluorescence determination of selenium and tellurium. Part 1 — self interference effect in hydrogen telluride generation and the effect of KI

    NASA Astrophysics Data System (ADS)

    D'Ulivo, A.; Marcucci, K.; Bramanti, E.; Lampugnani, L.; Zamboni, R.

    2000-08-01

    The effects of tetrahydroborate (0.02-1%) and iodide (0-3 M) were investigated in determination of tellurium and selenium by hydride generation atomic fluorescence spectrometry. The effect of tetrahydroborate and iodide concentration were tested on the shape of calibration curves in concentration range of 1-1000 ng ml -1 analyte. Reductant deficiency resulted in a moderate sensitivity depression for tellurium but dramatically reduced the useful dynamic range down to 50 ng ml -1. On the contrary, selenium calibration curves retained a linear character even under conditions generating strong sensitivity depression. Curvature and rollover of tellurium calibration curves has been addressed to a self-interference effect caused by the formation of finely dispersed elemental tellurium. Iodide ions were found to have beneficial or no negative effects in the hydrogen telluride generation. Addition of iodide on-line to the sample has been proved effective in the control of the self-interference effect and allows to work in mild reaction conditions. Moreover, it allows a good control of Cu(II) interference and eliminates Ni(II) and Co(II) interferences. The method has been successfully applied to determination of tellurium in copper and lead ores certified reference materials.

  8. Determination of arsenic in a nickel alloy by flow injection hydride generation atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Hanna, C. P.; Tyson, J. F.; Offley, S. G.

    1992-08-01

    The development of a method for the direct determination of trace arsenic quantities in nickel alloy digests, by flow injection hydride generation atomic absorption spectrometry, is described. An optimization study of the manifold and chemical parameters produced system performance, in terms of tolerance of the nickel matrix and sensitivity, such that matrix removal and pre-reduction of As(V) to As (III) prior to arsine generation were eliminated. Full recovery of the As(V) signal from a solution containing 5 ng ml -1 in the presence of 60 μg ml -1 nickel was obtained. Validation of the method was achieved by analyzing a British Chemical Standard (BCS) Certified Reference Material (CRM) #346 IN nickel alloy containing arsenic at a concentration of 50 μg g -1. Following dissolution in nitric and hydrofluoric acids by a microwave assisted procedure, the only subsequent preparation required was dilution by the appropriate factor. Up to 60 injections h -1 may be made, with a detection limit of 0.5 ng ml -1 arsenic (250 pg absolute) as As(V) in a 500 μl sample. The peak height characteristic concentration is 0.46 ng ml -1, with a relative standard deviation of 3.5% for a 10 ng ml -1 As(V) standard ( n = 6).

  9. Continuous flow hydride generation-atomic fluorescence spectrometric determination and speciation of arsenic in wine

    NASA Astrophysics Data System (ADS)

    Karadjova, Irina B.; Lampugnani, Leonardo; Onor, Massimo; D'Ulivo, Alessandro; Tsalev, Dimiter L.

    2005-07-01

    Methods for the atomic fluorescence spectrometric (AFS) determination of total arsenic and arsenic species in wines based on continuous flow hydride generation (HG) with atomization in miniature diffusion flame (MDF) are described. For hydride-forming arsenic, L-cysteine is used as reagent for pre-reduction and complexation of arsenite, arsenate, monomethylarsonate and dimethylarsinate. Concentrations of hydrochloric acid and tetrahydroborate are optimized in order to minimize interference by ethanol. Procedure permits determination of the sum of these four species in 5-10-fold diluted samples with limit of detection (LOD) 0.3 and 0.6 μg l - 1 As in white and red wines, respectively, with precision between 2% and 8% RSD at As levels within 0.5-10 μg l - 1 . Selective arsine generation from different reaction media is used for non-chromatographic determination of arsenic species in wines: citrate buffer at pH 5.1 for As(III); 0.2 mol l - 1 acetic acid for arsenite + dimethylarsinate (DMA); 8 mol l - 1 HCl for total inorganic arsenic [As(III) + As(V)]; and monomethylarsonate (MMA) calculated by difference. Calibration with aqueous and ethanol-matched standard solutions of As(III) is used for 10- and 5-fold diluted samples, respectively. The LODs are 0.4 μg l - 1 for As(III) and 0.3 μg l - 1 for the other three As species and precision is within 4-8% RSDs. Arsenic species in wine were also determined by coupling of ion chromatographic separation on an anion exchange column and HG-flame AFS detection. Methods were validated by means of recovery studies and comparative analyses by HG-AFS and electrothermal atomic absorption spectrometry after microwave digestion. The LODs were 0.12, 0.27, 0.15 and 0.13 μg l - 1 (as As) and RSDs were 2-6%, 5-9%, 3-7% and 2-5% for As(III), As(V), MMA and DMA arsenic species, respectively. Bottled red and white wines from Bulgaria, Republic of Macedonia and Italy were analyzed by non-chromatographic and chromatographic procedures and

  10. Spontaneous Double Hydrometallation Induced by N→M Coordination in Organometallic Hydrides of Group 14 Elements.

    PubMed

    Novák, Miroslav; Dostál, Libor; Turek, Jan; Alonso, Mercedes; De Proft, Frank; Růžička, Aleš; Jambor, Roman

    2016-04-11

    Our attempts to synthesise N→M intramolecularly coordinated diorganometallic hydrides L2MH2 [M=Si (4), Ge (5), Sn (6)] containing the CH=N imine group (in which L is C,N-chelating ligand {2-[(2,6-iPr2C6H3)N=CH]C6 H4}(-)) yielded 1,1'-bis(2,6-diisopropylphenyl)-2,2'-spriobi[benzo[c][1,2]azasilole] (7), 1,1'-bis(2,6-diisopropylphenyl)-2,2'-spriobi[benzo[c][1,2]azagermole] (8) and C,N-chelated homoleptic stannylene L2Sn (10), respectively. Compounds 7 and 8 are an outcome of a spontaneous double hydrometallation of the two CH=N imine moieties induced by N→M intramolecular coordination (M=Si, Ge) in the absence of any catalyst. In contrast, the diorganotin hydride L2SnH2 (6) is redox-unstable and the reduction of the tin centre with the elimination of H2 provided the C,N-chelated homoleptic stannylene L2Sn (10). Compounds 7 and 8 were characterised by NMR spectroscopy and X-ray diffraction analysis. Because the proposed N→M intramolecularly coordinated diorganometallic hydrides L2MH2 [M=Si (4), Ge (5), Sn (6)] revealed two different types of reduction reactions, DFT calculations were performed to gain an insight into the structures and bonding of the non-isolable diorganometallic hydrides as well as the products of their subsequent reactions. Furthermore, the thermodynamic profiles of the different reaction pathways with respect to the central metal atom were also investigated.

  11. A COMPARISON OF URINARY ARSENIC SPECIATION VIA DIRECT NEBULIZATION AND ON-LINE PHOTOOXIDATION-HYDRIDE GENERATION WITH DETECTION BY INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY

    EPA Science Inventory

    Arsenic speciation continues to be important in assessing human and environmental exposure risk. Urinary arsenic analysis provides information on recent arsenic exposure. In this study, two sample introduction pathways: direct nebulization (DN) and hydride generation (HG) were ut...

  12. Speciation analysis of arsenic in biological matrices by automated hydride generation-cryotrapping-atomic absorption spectrometry with multiple microflame quartz tube atomizer (multiatomizer).

    EPA Science Inventory

    This paper describes an automated system for the oxidation state specific speciation of inorganic and methylated arsenicals by selective hydride generation - cryotrapping- gas chromatography - atomic absorption spectrometry with the multiatomizer. The corresponding arsines are ge...

  13. Determination of lead by hydride generation inductively coupled plasma mass spectrometry (HG-ICP-MS): on-line generation of plumbane using potassium hexacyanomanganate(III)

    PubMed Central

    Yilmaz, Vedat; Arslan, Zikri; Rose, LaKeysha

    2012-01-01

    A hydride generation (HG) procedure has been described for determination of Pb by ICP-MS using potassium hexacyanomanganate(III), K3Mn(CN)6, as an additive to facilitate the generation of plumbane (PbH4). Potassium hexacyanomanganate(III) was prepared in acidic medium as it was unstable in water. The stability of hexacyanomanganate(III) was examined in dilute solutions of HCl, HNO3 and H2SO4. The solutions prepared in 1% v/v/ H2SO4 were found to be stable for over a period of 24 h. The least suitable medium was 1% v/v HNO3. For generation of plumbane, acidic hexacyanomanganate(III) and sample solutions were mixed online along a 5-cm long tygon tubing (1.14 mm i.d.) and then reacted with 2% m/v sodium borohydride (NaBH4). A concentration of 0.5% m/v K3Mn(CN)6 facilitated the generation of PbH4 remarkably. In comparison to H2SO4, HCl provided broader working range for which optimum concentration was 1% v/v. No significant interferences were noted from transition metals and hydride forming elements, up to 0.5 μg mL−1 levels, except Cu which depressed the signals severely. The depressive effects in the presence of 0.1 μg mL−1 Cu were alleviated by increasing the concentration of K3Mn(CN)6 to 2% m/v. Under these conditions, the sensitivity was enhanced by a factor of at least 42 to 48. The detection limit (3s) was 0.008 μg L−1 for 208Pb isotope. Average signal-to-noise ratio (S/N) ranged between 18 and 20 for 1.0 μg mL−1 Pb solution. The accuracy of the method was verified by analysis of several certified reference materials, including Nearshore seawater (CASS-4), Bone ash (SRM 1400), and Mussel tissue (SRM 2976). The procedure was also successfully applied to the determination of Pb in coastal seawater samples by ICP-MS. PMID:23312310

  14. Determination of lead by hydride generation inductively coupled plasma mass spectrometry (HG-ICP-MS): on-line generation of plumbane using potassium hexacyanomanganate(III).

    PubMed

    Yilmaz, Vedat; Arslan, Zikri; Rose, LaKeysha

    2013-01-25

    A hydride generation (HG) procedure has been described for determination of Pb by ICP-MS using potassium hexacyanomanganate(III), K(3)Mn(CN)(6), as an additive to facilitate the generation of plumbane (PbH(4)). Potassium hexacyanomanganate(III) was prepared in acidic medium as it was unstable in water. The stability of hexacyanomanganate(III) was examined in dilute solutions of HCl, HNO(3) and H(2)SO(4). The solutions prepared in 1% v/v H(2)SO(4) were found to be stable for over a period of 24h. The least suitable medium was 1% v/v HNO(3). For generation of plumbane, acidic hexacyanomanganate(III) and sample solutions were mixed on-line along a 5-cm long tygon tubing (1.14 mm i.d.) and then reacted with 2% m/v sodium borohydride (NaBH(4)). A concentration of 0.5% m/v K(3)Mn(CN)(6) facilitated the generation of PbH(4) remarkably. In comparison to H(2)SO(4), HCl provided broader working range for which optimum concentration was 1% v/v. No significant interferences were noted from transition metals and hydride forming elements, up to 0.5 μg mL(-1) levels, except Cu which depressed the signals severely. The depressive effects in the presence of 0.1 μg mL(-1) Cu were alleviated by increasing the concentration of K(3)Mn(CN)(6) to 2% m/v. Under these conditions, the sensitivity was enhanced by a factor of at least 42 to 48. The detection limit (3s) was 0.008 μg L(-1) for (208)Pb isotope. Average signal-to-noise ratio (S/N) ranged between 18 and 20 for 1.0 μg mL(-1) Pb solution. The accuracy of the method was verified by analysis of several certified reference materials, including Nearshore seawater (CASS-4), Bone ash (SRM 1400), and Mussel tissue (SRM 2976). The procedure was also successfully applied to the determination of Pb in coastal seawater samples by ICP-MS.

  15. Arsenic and antimony determination in non- and biodegradable materials by hydride generation capacitively coupled plasma microtorch optical emission spectrometry.

    PubMed

    Mihaltan, Alin I; Frentiu, Tiberiu; Ponta, Michaela; Petreus, Dorin; Frentiu, Maria; Darvasi, Eugen; Marutoiu, Constantin

    2013-05-15

    A sensitive method using a miniature analytical system with a capacitively coupled plasma microtorch (25 W, 13.56 MHz, 0.4 l min(-1) Ar) was developed and evaluated for the determination of As and Sb in recyclable plastics and biodegradable materials by hydride generation optical emission spectrometry. Given their toxicity, As and Sb should be subject to monitoring in such materials despite not being included within the scope of Restriction of Hazardous Substances Directive. The advantages of the proposed approach are better detection limits and lower analysis cost relative to conventional systems based on inductively coupled plasma optical emission and flame atomic absorption spectrometry with/without derivatization. Samples were subjected to acidic microwave-assisted digestion in a nitric-sulfuric acid mixture. Chemical hydride generation with 0.5% NaBH4 after the prereduction of As(V) and Sb(V) with 0.3% L-cysteine in 0.01 mol l(-1) HCl (10 min contact time at 90±5°C) was used. Under the optimal hydride generation conditions and analytical system operation the detection limits (mg kg(-1)) were 0.5 (As) and 0.1 (Sb), whereas the precision was 0.4-7.1% for 10.2-46.2 mg kg(-1) As and 0.4-3.2% for 7.1-156 mg kg(-1) Sb. Analysis of two polyethylene CRMs revealed recoveries of 101±2% As and 100±1% Sb.

  16. Evaluation of oxidant media for the determination of lead in food slurries by hydride generation atomic absorption spectrometry.

    PubMed

    Madrid, Y; Bonilla, M; Cámara, C

    1990-05-01

    Several oxidant media were evaluated for the generation of lead hydride from slurry samples and their application to the determination of lead in vegetables and fish by hydride generation atomic absorption spectrometry. Three oxidant - acid media were compared: hydrogen peroxide - nitric acid, ammonium persulphate - nitric acid and potassium dichromate - lactic acid. The powdered samples were suspended in Triton X-100 and shaken with 10.0 g of blown zirconia spheres until a slurry was formed. The potassium dichromate - lactic acid medium was the most satisfactory for the determination of lead in fish and vegetables, providing the lowest detection limits as a result of its high sensitivity and low blank values. The ammonium persulphate - nitric acid medium gave good accuracy, precision and selectivity for vegetables (1-2 p.p.m. of lead); however, with fish (0.1-1 p.p.m. of lead) it was only a semi-quantitative medium for the determination of lead owing to its lack of sensitivity and selectivity. The hydrogen peroxide - nitric acid medium was unsatisfactory for the generation of lead hydride from slurry samples because of decomposition of hydrogen peroxide by the organic matter in the sample.

  17. Dissolution of Uranium Metal Without Hydride Formation or Hydrogen Gas Generation

    SciTech Connect

    Soderquist, Chuck Z.; Oliver, Brian M.; McNamara, Bruce K.

    2008-09-01

    This study shows that metallic uranium will cleanly dissolve in carbonate-peroxide solution without generation of hydrogen gas or uranium hydride. Metallic uranium shot, 0.5 to 1 mm diameter, were reacted with ammonium carbonate - hydrogen peroxide solution ranging in concentration from 0.13M to 1.0M carbonate and 0.50M to 2.0M peroxide. The uranium beads were weighed before and after reacting with the etch solution, and from the weights of the beads, their diameters were calculated, before and after the etch. The etch rate on the beads was then calculated from the reduction in bead diameter, and independently by uranium analysis of the solution. The calculated etch rate ranged from about 4 x 10-4 to 8 x 10-4 cm per hour, dependent primarily on the peroxide concentration. A hydrogen analysis of the etched beads showed that no detectable hydrogen was introduced into the uranium metal by the etching process.

  18. Determination of arsenic and selenium by hydride generation and headspace solid phase microextraction coupled with optical emission spectrometry

    NASA Astrophysics Data System (ADS)

    Tyburska, Anna; Jankowski, Krzysztof; Rodzik, Agnieszka

    2011-07-01

    A hydride generation headspace solid phase microextraction technique has been developed in combination with optical emission spectrometry for determination of total arsenic and selenium. Hydrides were generated in a 10 mL volume septum-sealed vial and subsequently collected onto a polydimethylsiloxane/Carboxen solid phase microextraction fiber from the headspace of sample solution. After completion of the sorption, the fiber was transferred into a thermal desorption unit and the analytes were vaporized and directly introduced into argon inductively coupled plasma or helium microwave induced plasma radiation source. Experimental conditions of hydride formation reaction as well as sorption and desorption of analytes have been optimized showing the significant effect of the type of the solid phase microextraction fiber coating, the sorption time and hydrochloric acid concentration of the sample solution on analytical characteristics of the method developed. The limits of detection of arsenic and selenium were 0.1 and 0.8 ng mL - 1 , respectively. The limit of detection of selenium could be improved further using biosorption with baker's yeast Saccharomyces cerevisiae for analyte preconcentration. The technique was applied for the determination of total As and Se in real samples.

  19. Flow injection on-line solid phase extraction for ultra-trace lead screening with hydride generation atomic fluorescence spectrometry.

    PubMed

    Wan, Zhuo; Xu, Zhangrun; Wang, Jianhua

    2006-01-01

    A flow injection (FI) on-line solid phase extraction (SPE) procedure for ultra-trace lead separation and preconcentration was developed, followed by hydride generation and atomic fluorescence spectrometric (AFS) detection. Lead is retained on an iminodiacetate chelating resin packed microcolumn, and is afterward eluted with 2.5% (v/v) hydrochloric acid to facilitate the hydride generation by reaction with alkaline tetrahydroborate solution with 1% (m/v) potassium ferricyanide as an oxidizing (or sensitizing) reagent. The hydride was separated from the reaction medium in the gas-liquid separator and swept into the atomizer for quantification. The chemical variables and the FI flow parameters were carefully optimized. With a sample loading volume of 4.8 ml, quantitative retention of lead was obtained, along with an enrichment factor of 11.3 and a sampling frequency of 50 h(-1). A detection limit of 4 ng l(-1), defined as 3 times the blank standard deviation (3 sigma), was achieved along with a RSD value of 1.6% at the 0.4 microg l(-1) level. The procedure was validated by determining lead contents in two certified reference materials, and its practical applicability was further demonstrated by analysing a variety of biological and environmental samples.

  20. Boron hydride polymer coated substrates

    DOEpatents

    Pearson, R.K.; Bystroff, R.I.; Miller, D.E.

    1986-08-27

    A method is disclosed for coating a substrate with a uniformly smooth layer of a boron hydride polymer. The method comprises providing a reaction chamber which contains the substrate and the boron hydride plasma. A boron hydride feed stock is introduced into the chamber simultaneously with the generation of a plasma discharge within the chamber. A boron hydride plasma of ions, electrons and free radicals which is generated by the plasma discharge interacts to form a uniformly smooth boron hydride polymer which is deposited on the substrate.

  1. Boron hydride polymer coated substrates

    DOEpatents

    Pearson, Richard K.; Bystroff, Roman I.; Miller, Dale E.

    1987-01-01

    A method is disclosed for coating a substrate with a uniformly smooth layer of a boron hydride polymer. The method comprises providing a reaction chamber which contains the substrate and the boron hydride plasma. A boron hydride feed stock is introduced into the chamber simultaneously with the generation of a plasma discharge within the chamber. A boron hydride plasma of ions, electrons and free radicals which is generated by the plasma discharge interacts to form a uniformly smooth boron hydride polymer which is deposited on the substrate.

  2. Determination of bismuth by dielectric barrier discharge atomic absorption spectrometry coupled with hydride generation: method optimization and evaluation of analytical performance.

    PubMed

    Kratzer, Jan; Boušek, Jaroslav; Sturgeon, Ralph E; Mester, Zoltán; Dědina, Jiří

    2014-10-07

    Atomization of bismuth hydride in a 17 W planar quartz dielectric barrier discharge (DBD) atomizer was optimized and the performance of this device compared to that of a conventional quartz tube atomizer (QTA) for atomic absorption spectrometry (AAS). Modification of the inner surface of the DBD atomizer using dimethyldichlorsilane (DMDCS) was essential since it improved sensitivity by a factor of 2-4. Argon, at a flow rate of 125 mL min(-1), was the best DBD discharge gas. Free Bi atoms were also observed in the DBD with nitrogen, hydrogen, and helium discharge gases but not in air. The detection limit for Bi (1.1 ng mL(-1)) is worse than with the QTA (0.16 ng mL(-1) Bi). A poorer detection limit compared to a QTA is a consequence of the shorter optical path of the DBD. Moreover, the lower atomization efficiency and/or faster decay of free atoms in the DBD has to be considered. The performance of the DBD as an atomizer reflects both effects, i.e., atomization efficiency and free atom decay, was estimated to be 65% of that of the externally heated quartz tube atomizer. Nevertheless, this hydride generation DBD-AAS approach can be used for the routine determination of Bi, providing repeatability and accuracy comparable to that reached with a QTA, as demonstrated by analysis of NIST SRM 1643e (trace elements in water). The potential of in-atomizer preconcentration in a DBD atomizer is outlined.

  3. Simultaneous quantitative analysis of arsenic, bismuth, selenium, and tellurium in soil samples using multi-channel hydride-generation atomic fluorescence spectrometry.

    PubMed

    Wang, Fang; Zhang, Gai

    2011-03-01

    The basic principles and the application of hydride-generation multi-channel atomic fluorescence spectrometry (HG-MC-AFS) in soil analysis are described. It is generally understood that only one or two elements can be simultaneously detected by commonly used one- or two-channel HG-AFS. In this work, a new sample-sensitive and effective method for the analysis of arsenic, bismuth, tellurium, and selenium in soil samples by simultaneous detection using HG-MC-AFS was developed. The method detection limits for arsenic, bismuth, tellurium, and selenium are 0.19 μg/g, 0.10 μg/g, 0.11 μg/g, and 0.08 μg/g, respectively. This method was successfully applied to the simultaneous determination of arsenic, bismuth, tellurium, and selenium in soil samples.

  4. Advanced chemical hydride-based hydrogen generation/storage system for fuel cell vehicles

    SciTech Connect

    Breault, R.W.; Rolfe, J.

    1998-08-01

    Because of the inherent advantages of high efficiency, environmental acceptability, and high modularity, fuel cells are potentially attractive power supplies. Worldwide concerns over clean environments have revitalized research efforts on developing fuel cell vehicles (FCV). As a result of intensive research efforts, most of the subsystem technology for FCV`s are currently well established. These include: high power density PEM fuel cells, control systems, thermal management technology, and secondary power sources for hybrid operation. For mobile applications, however, supply of hydrogen or fuel for fuel cell operation poses a significant logistic problem. To supply high purity hydrogen for FCV operation, Thermo Power`s Advanced Technology Group is developing an advanced hydrogen storage technology. In this approach, a metal hydride/organic slurry is used as the hydrogen carrier and storage media. At the point of use, high purity hydrogen will be produced by reacting the metal hydride/organic slurry with water. In addition, Thermo Power has conceived the paths for recovery and regeneration of the spent hydride (practically metal hydroxide). The fluid-like nature of the spent hydride/organic slurry will provide a unique opportunity for pumping, transporting, and storing these materials. The final product of the program will be a user-friendly and relatively high energy storage density hydrogen supply system for fuel cell operation. In addition, the spent hydride can relatively easily be collected at the pumping station and regenerated utilizing renewable sources, such as biomass, natural, or coal, at the central processing plants. Therefore, the entire process will be economically favorable and environmentally friendly.

  5. Atomic-absorption spectrochemical analysis for ultratrace elements in geological materials by hydride-forming techniques: Selenium.

    PubMed

    Sighinolfi, G P; Gorgoni, C

    1981-03-01

    A method based on hydride generation for the AAS determination of selenium at nanogram levels in geological materials is described. The sample is decomposed by aqua regia attack in a sealed Teflon bomb. After treatment with hydrochloric acid, selenium is converted into hydrogen selenide by reaction with sodium borohydride and determined by AAS. Matrix interference effects have been investigated, but though they are rarely significant, the standard-additions method is recommended. The absolute sensitivity of the method is about 2.0 ng of Se (in 10 ml of solution). Detection limits of about 5-10 ng in a 1.0-g sample have been achieved with the use of "Suprapure" reagents. The selenium content of some USGS, CRPG and ANRT reference samples is reported.

  6. Hydriding process

    DOEpatents

    Raymond, J.W.; Taketani, H.

    1973-12-01

    BS>A method is described for hydriding a body of a Group IV-B metal, preferably zirconium, to produce a crack-free metal-hydride bedy of high hydrogen content by cooling the body at the beta to beta + delta boundary, without further addition of hydrogen, to precipitate a fine-grained delta-phase metal hydride in the beta + delta phase region and then resuming the hydriding, preferably preceded by a reheating step. (Official Gazette)

  7. Speciation of methyl- and butyltin compounds and inorganic tin in oysters by hydride generation atomic absorption spectrometry

    SciTech Connect

    Han, J.S.; Weber, J.H.

    1988-02-15

    Because of the toxicity of tributyltin originating from many antifouling marine paints, there is much concern about its effect on aquatic life and, particularly, on shellfish. This paper describes speciation of inorganic tin, methyltin compounds, and butyltin compounds from oyster samples. The authors validated the hydride generation atomic absorption spectrophotometric technique by demonstrating ca. 100% recovery from spiked samples and by the absence of any organotin decomposition products. Absolute detection limits (3sigma) are 1.1-2.5 ng for 0.1-g oyster samples (wet weight). This method is superior to published techniques because of careful validation, low limits of detection, and minimal sample manipulation.

  8. Electrochemical hydride generation atomic fluorescence spectrometry for detection of tin in canned foods using polyaniline-modified lead cathode.

    PubMed

    Jiang, Xianjuan; Gan, Wuer; Wan, Lingzhong; Deng, Yun; Yang, Qinghua; He, Youzhao

    2010-12-15

    An electrochemical hydride generation system with polyaniline-modified lead cathode was developed for tin determination by coupling with atomic fluorescence spectrometry. The tin fluorescence signal intensity was improved evidently as the polyaniline membrane could facilitate the transformation process from atomic tin to the SnH(4) and prevent the aggradation of Sn atom on Pb electrode surface. The effects of experimental parameters and interferences have been studied. The limit of detection (LOD) was 1.5 ng mL(-1) (3σ) and the relative standard deviation (RSD) was 3.3% for 11 consecutive measurements of 50 ng mL(-1) Sn(IV) standard solution.

  9. Comix, a New Matrix Element Generator

    SciTech Connect

    Gleisberg, Tanju; Hoche, Stefan; /Durham U., IPPP

    2008-09-03

    We present a new tree-level matrix element generator, based on the color dressed Berends-Giele recursive relations. We discuss two new algorithms for phase space integration, dedicated to be used with large multiplicities and color sampling.

  10. Critical evaluation of strategies for single and simultaneous determinations of As, Bi, Sb and Se by hydride generation inductively coupled plasma optical emission spectrometry.

    PubMed

    Welna, Maja; Szymczycha-Madeja, Anna; Pohl, Pawel

    2017-05-15

    A systematic study of hydride generation (HG) of As, Bi, Sb and Se from solutions containing As(III), As(V), Bi(III), Sb(III), Sb(V), Se(IV) and Se(VI) was presented. Hydrides were generated in a gas-liquid phase separation system using a continuous flow vapor generation accessory (VGA) by mixing acidified aqueous sample, HCl and sodium borohydride reductant (NaBH4) solutions on-line. For detection, a simultaneous axially viewed inductively coupled plasma optical emission spectrometer (ICP-OES) was applied. Effects of the HCl concentration (related to sample and additional acid solutions) and type of the pre-reducing agents used for reduction of As(V), Sb(V) and Se(VI) into As(III), Sb(III) and Se(IV) on the analytical responses of As, Bi, Sb and Se were studied and discussed. Two compromised HG reaction conditions for simultaneous measurements of As+Bi+Sb (CC1) or As+Sb+Se (CC2) were established. It was found that choice of the pre-reductant prior to formation of the hydrides is critical in obtaining the dependable results of the analysis. Accordingly, for a As(III)+As(V)+Bi(III)+Sb(III)+Sb(V) mixture and using CC1, thiourea/thiourea-ascorbic acid interfered in Bi determination and hence, total As+Sb could be measured. If L-cysteine/L-cysteine-ascorbic acid were used, measurements of total Bi+Sb was possible in these HG reaction conditions. For a As(III)+As(V)+Sb(III)+Sb(V)+Se(IV)+Se(VI) mixture and using CC2, thiourea/thiourea-ascorbic acid and L-cysteine/L-cysteine-ascorbic acid influenced HG of Se but ensured total As+Sb determination. In contrast, heating a sample solution with HCl, although did not pre-reduce As(V) and Sb(V), assured quantitative reduction of Se(VI) to Se(IV). Finally, considering all favorable pre-reducing and HG conditions, methodologies for reliable determination of total As, Bi, Sb and Se by HG-ICP-OES were proposed. Strategies for single-, two- and three-element measurements were evaluated and validated, obtaining the detection limits

  11. Determination of methylmercury by electrothermal atomic absorption spectrometry using headspace single-drop microextraction with in situ hydride generation

    NASA Astrophysics Data System (ADS)

    Gil, Sandra; Fragueiro, Sandra; Lavilla, Isela; Bendicho, Carlos

    2005-01-01

    A new method is proposed for preconcentration and matrix separation of methylmercury prior to its determination by electrothermal atomic absorption spectrometry (ETAAS). Generation of methylmercury hydride (MeHgH) from a 5-ml solution is carried out in a closed vial and trapped onto an aqueous single drop (3-μl volume) containing Pd(II) or Pt(IV) (50 and 10 mg/l, respectively). The hydrogen evolved in the headspace (HS) after decomposition of sodium tetrahydroborate (III) injected for hydride generation caused the formation of finely dispersed Pd(0) or Pt(0) in the drop, which in turn, were responsible for the sequestration of MeHgH. A preconcentration factor of ca. 40 is achieved with both noble metals used as trapping agents. The limit of detection of methylmercury was 5 and 4 ng/ml (as Hg) with Pd(II) or Pt(IV) as trapping agents, and the precision expressed as relative standard deviation was about 7%. The preconcentration system was fully characterised through optimisation of the following variables: Pd(II) or Pt(IV) concentration in the drop, extraction time, pH of the medium, temperatures of both sample solution and drop, concentration of salt in the sample solution, sodium tetrahydroborate (III) concentration in the drop and stirring rate. The method has been successfully validated against two fish certified reference materials (CRM 464 tuna fish and CRM DORM-2 dogfish muscle) following selective extraction of methylmercury in 2 mol/l HCl medium.

  12. Tellurium speciation analysis using hydride generation in situ trapping electrothermal atomic absorption spectrometry and ruthenium or palladium modified graphite tubes.

    PubMed

    Yildirim, Emrah; Akay, Pınar; Arslan, Yasin; Bakirdere, Sezgin; Ataman, O Yavuz

    2012-12-15

    Speciation of tellurium can be achieved by making use of different kinetic behaviors of Te(IV) and Te(VI) upon their reaction with sodium borohydride using hydride generation. While Te(IV) can form H(2)Te, Te(VI) will not form any volatile species during the course of hydride formation and measurement by atomic absorption spectrometry. Quantitative reduction of Te(VI) was achieved through application of a microwave assisted prereduction of Te(VI) in 6.0 mol/L HCl solution. Enhanced sensitivity was achieved by in situ trapping of the generated H(2)Te species in a previously heated graphite furnace whose surface was modified using Pd or Ru. Overall efficiency for in situ trapping in pyrolytically coated graphite tube surface was found to be 15% when volatile analyte species are trapped for 60s at 300°C. LOD and LOQ values were calculated as 0.086 ng/mL and 0.29 ng/mL, respectively. Efficiency was increased to 46% and 36% when Pd and Ru surface modifiers were used, respectively. With Ru modified graphite tube 173-fold enhancement was obtained over 180 s trapping period with respect to ETAAS; the tubes could be used for 250 cycles. LOD values were 0.0064 and 0.0022 ng/mL for Pd and Ru treated ETAAS systems, respectively, for 180 s collection of 9.6 mL sample solution.

  13. The effect of the presence of volatile organoselenium compounds on the determination of inorganic selenium by hydride generation.

    PubMed

    Moreno, M Eva; Pérez-Conde, Concepción; Cámara, Carmen

    2003-03-01

    As a result of microbiological activity it is possible to find dimethylselenium (DMSe) and dimethyldiselenium (DMDSe) in a wide type of environmental samples, such as soils, sediments, sewage sludges and plants where methylation can take place. Selenium determination by hydride-generation (HG) techniques requires its presence as Se(IV). Consequently, inorganic speciation by hydride generation techniques is done by first determining Se(IV) and then, after reduction of Se (VI) to Se(IV), the total selenium. Therefore, the concentration of Se (VI) is evaluated as the difference between total inorganic selenium and Se(IV). In the present work it could be demonstrated that DMSe and DMDSe are forming other volatile species by reaction with sodium borohydride, applying the same reduction condition as for inorganic selenium. These species are subsequently detected by several atomic techniques (atomic absorption AAS, atomic fluorescence AFS and inductively coupled plasma-mass spectrometry ICP-MS). The error that their presence can cause in determination of inorganic selenium has been evaluated. The magnitude of this error depends on the specific analytical detector used.The coupling of pervaporation-atomic fluorescence is proposed for the identification of these species and pervaporation-gas chromatography-atomic fluorescence for their individual quantification.

  14. Determination of cadmium in leaves by ultrasound-assisted extraction prior to hydride generation, pervaporation and atomic absorption detection.

    PubMed

    Caballo-López, A; Luque de Castro, M D

    2007-03-30

    A flow injection-pervaporation approach, where the samples--beech or olive leaves--were introduced as slurry, has been used for continuous derivatization hydride generation and separation of cadmium prior to determination by atomic absorption spectrometry. The removal of the analyte is achieved with an 1mol/l HCl+16% H(2)O(2) aqueous solution with the help of an ultrasound probe acting for 17 min. Thiourea and cobalt were also added to the slurry for kinetic catalysis of hydride generation. A CRM - beech leaves - where the analyte had not been certified but estimated was used for optimisation of the leaching step. The results obtained using direct calibration against aqueous standards demonstrated the reliability of the method. The linear concentration range of the calibration curve was from pg/ml to ng/ml, with a correlation coefficient, r(2), better than 0.99. The detection and quantification limits were 0.3 and 0.9ng/ml, respectively. The relative standard deviation for within-laboratory reproducibility was 5.7%. Olive leaves CRM was used for validation.

  15. Polar intermetallic compounds of the silicon and arsenic family elements and their ternary hydrides and fluorides

    SciTech Connect

    Leon-Escamilla, E.A.

    1996-10-17

    An investigation has been made on the effects of hydrogen and fluoride in the solid state chemistry of alkaline-earth and divalent rare-earth metal pnictide (Pn) and tetrelide (Tt) phases A{sub 5}(Pn,Tt,){sub 3}Z{sub x}, where A = Ca, Sr, Ba, Sm, Eu, Yb; Pn = As, Sb, Bi; Tt = Si, Ge, Sn, Pb and Z = H, F. Several trivalent rare-earth-metal pnictides, RE{sub 5}Pn{sub 3} (RE = Y, La, Gd, Tb, Dy, Ho, Er, Tm) and alkaline-earth-metal trielides, A{sub 5}Tr{sub 3}Z{sub x} (Tr = Ga, In, Tl) have been included in an effort to complete observed structural trends. Two main experimental techniques were followed throughout this work, (a) reactions in absence of hydrogen or under continuous high vacuum, and (b) reactions with binary metal hydrides, AH{sub x}, in closed containers. The results demonstrate that all the phases reported with the {beta}-Yb{sub 5}Sb{sub 3}-type structure in the A{sub 5}Pn{sub 3} systems are hydrogen-stabilized compounds. Reactions in absence of hydrogen lead to compounds with the Mn{sub 5}Si{sub 3}-type structure. The structure type {beta}-Yb{sub 5}Sb{sub 3} (= Ca{sub 5}SB{sub 3}F) was found to be characteristic of ternary systems and inaccurately associated with phases that form in the Y{sub 5}Bi{sub 3}-type. A new series of isomorphous Zintl compounds with the Ca{sub 16}Sb{sub 11}-type structure were prepared and studied as well. All the alkaline-earth-metal tetrelides, A{sub 5}Tt{sub 3}, that crystallize in the Cr{sub 5}B{sub 3}-type structure can be interstitially derivatized by hydrogen or fluoride. Binary and ternary compounds were characterized by Guinier powder patterns, single crystal X-ray and powder neutron diffraction techniques. In an effort to establish property-structure relationships, electrical resistivity and magnetic measurements were performed on selected systems, and the results were explained in terms of the Zintl concepts, aided by extended Hueckel band calculations.

  16. Proton affinities of maingroup-element hydrides and noble gases: trends across the periodic table, structural effects, and DFT validation.

    PubMed

    Swart, Marcel; Rösler, Ernst; Bickelhaupt, F Matthias

    2006-10-01

    We have carried out an extensive exploration of the gas-phase basicity of archetypal neutral bases across the periodic system using the generalized gradient approximation (GGA) of the density functional theory (DFT) at BP86/QZ4P//BP86/TZ2P. First, we validate DFT as a reliable tool for computing proton affinities and related thermochemical quantities: BP86/QZ4P//BP86/TZ2P is shown to yield a mean absolute deviation of 2.0 kcal/mol for the proton affinity at 298 K with respect to experiment, and 1.2 kcal/mol with high-level ab initio benchmark data. The main purpose of this work is to provide the proton affinities (and corresponding entropies) at 298 K of the neutral bases constituted by all maingroup-element hydrides of groups 15-17 and the noble gases, that is, group 18, and periods 1-6. We have also studied the effect of step-wise methylation of the protophilic center of the second- and third-period bases.

  17. Understanding the effects of potassium ferricyanide on lead hydride formation in tetrahydroborate system and its application for determination of lead in milk using hydride generation inductively coupled plasma optical emission spectrometry.

    PubMed

    Deng, Biyang; Xu, Xiangshu; Xiao, Yan; Zhu, Pingchuan; Wang, Yingzi

    2015-01-01

    To understand the formation of plumbane in the Pb(II)-NaBH4-K3Fe(CN)6 system, the intermediate products produced in the reaction of lead(II) and NaBH4 in the presence of K3Fe(CN)6 were studied. The produced plumbane and elemental lead were measured through continuous flow hydride generation (HG)-inductively coupled plasma optical emission spectrometry (ICP OES) and X-ray diffraction spectrometry techniques, respectively. Based on the experimental results, the explanations can be depicted in the following steps: (1) plumbane and black lead sediment (black Pb) are formed in the reaction of lead(II) and NaBH4; (2) the black Pb is oxidized by K3Fe(CN)6 to form Pb2[Fe(CN)6], which further reacts with NaBH4 to form more plumbane and black Pb; and (3) another round starts in which the produced black Pb from the step 2 is then oxidized continuously by K3Fe(CN)6 to form more Pb2[Fe(CN)6] complex, which would produce more plumbane. In short, the black Pb and Pb2[Fe(CN)6] complex are the key intermediate products for the formation of plumbane in the Pb(II)-NaBH4-K3Fe(CN)6 system. Based on the enhancement effect of potassium ferricyanide and potassium ferrocyanide, a method was developed to analyze lead in milk with HG-ICP OES technique. The detection limit of the method was observed as 0.081 μg L(-1). The linearity range of lead was found between 0.3 and 50,000 μg L(-1) with correlation coefficient of 0.9993. The recovery of lead was determined as 97.6% (n=5) for adding 10 μg L(-1) lead into the milk sample.

  18. Method of producing a chemical hydride

    DOEpatents

    Klingler, Kerry M.; Zollinger, William T.; Wilding, Bruce M.; Bingham, Dennis N.; Wendt, Kraig M.

    2007-11-13

    A method of producing a chemical hydride is described and which includes selecting a composition having chemical bonds and which is capable of forming a chemical hydride; providing a source of a hydrocarbon; and reacting the composition with the source of the hydrocarbon to generate a chemical hydride.

  19. Hydride Generation for Headspace Solid-Phase Extraction with CdTe Quantum Dots Immobilized on Paper for Sensitive Visual Detection of Selenium.

    PubMed

    Huang, Ke; Xu, Kailai; Zhu, Wei; Yang, Lu; Hou, Xiandeng; Zheng, Chengbin

    2016-01-05

    A low-cost, simple, and highly selective analytical method was developed for sensitive visual detection of selenium in human urine both outdoors and at home, by coupling hydride generation with headspace solid-phase extraction using quantum dots (QDs) immobilized on paper. The visible fluorescence from the CdTe QDs immobilized on paper was quenched by H2Se from hydride generation reaction and headspace solid-phase extraction. The potential mechanism was investigated by using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) as well as Density Functional Theory (DFT). Potential interferences from coexisting ions, particularly Ag(+), Cu(2+), and Zn(2+), were eliminated. The selectivity was significantly increased because the selenium hydride was effectively separated from sample matrices by hydride generation. Moreover, due to the high sampling efficiency of hydride generation and headspace solid phase extraction, the sensitivity and the limit of detection (LOD) were significantly improved compared to conventional methods. A LOD of 0.1 μg L(-1) and a relative standard deviation (RSD, n = 7) of 2.4% at a concentration of 20 μg L(-1) were obtained when using a commercial spectrofluorometer as the detector. Furthermore, a visual assay based on the proposed method was developed for the detection of Se, 5 μg L(-1) of selenium in urine can be discriminated from the blank solution with the naked eye. The proposed method was validated by analysis of certified reference materials and human urine samples with satisfactory results.

  20. Influence of uranium hydride oxidation on uranium metal behaviour

    SciTech Connect

    Patel, N.; Hambley, D.; Clarke, S.A.; Simpson, K.

    2013-07-01

    This work addresses concerns that the rapid, exothermic oxidation of active uranium hydride in air could stimulate an exothermic reaction (burning) involving any adjacent uranium metal, so as to increase the potential hazard arising from a hydride reaction. The effect of the thermal reaction of active uranium hydride, especially in contact with uranium metal, does not increase in proportion with hydride mass, particularly when considering large quantities of hydride. Whether uranium metal continues to burn in the long term is a function of the uranium metal and its surroundings. The source of the initial heat input to the uranium, if sufficient to cause ignition, is not important. Sustained burning of uranium requires the rate of heat generation to be sufficient to offset the total rate of heat loss so as to maintain an elevated temperature. For dense uranium, this is very difficult to achieve in naturally occurring circumstances. Areas of the uranium surface can lose heat but not generate heat. Heat can be lost by conduction, through contact with other materials, and by convection and radiation, e.g. from areas where the uranium surface is covered with a layer of oxidised material, such as burned-out hydride or from fuel cladding. These rates of heat loss are highly significant in relation to the rate of heat generation by sustained oxidation of uranium in air. Finite volume modelling has been used to examine the behaviour of a magnesium-clad uranium metal fuel element within a bottle surrounded by other un-bottled fuel elements. In the event that the bottle is breached, suddenly, in air, it can be concluded that the bulk uranium metal oxidation reaction will not reach a self-sustaining level and the mass of uranium oxidised will likely to be small in relation to mass of uranium hydride oxidised. (authors)

  1. The role of group 14 element hydrides in the activation of C-H bonds in cyclic olefins.

    PubMed

    Summerscales, Owen T; Caputo, Christine A; Knapp, Caroline E; Fettinger, James C; Power, Philip P

    2012-09-05

    Formally, triple-bonded dimetallynes ArEEAr [E = Ge (1), Sn (2); Ar = C(6)H(3)-2,6-(C(6)H(3)-2,6-(i)Pr(2))(2)] have been previously shown to activate aliphatic, allylic C-H bonds in cyclic olefins, cyclopentadiene (CpH), cyclopentene (c-C(5)H(8)) and 1,4-cyclohexadiene, with intriguing selectivity. In the case of the five-membered carbocycles, cyclopentadienyl species ArECp [E = Ge (3), Sn (4)] are formed. In this study, we examine the mechanisms for activation of CpH and c-C(5)H(8) using experimental methods and describe a new product found from the reaction between 1 and c-C(5)H(8), an asymmetrically substituted digermene ArGe(H)Ge(c-C(5)H(9))Ar (5), crystallized in 46% yield. This compound contains a hydrogenated cyclopentyl moiety and is found to be produced in a 3:2 ratio with 3, explaining the fate of the liberated H atoms following triple C-H activation. We show that when these C-H activation reactions are carried out in the presence of tert-butyl ethylene (excess), compounds {ArE(CH(2)CH(2)tBu)}(2) [E = Ge(8), Sn(9)] are obtained in addition to ArECp; in the case of CpH, the neohexyl complexes replace the production of H(2) gas, and for c-C(5)H(8) they displace cyclopentyl product 5 and account for all the hydrogen removed in the dehydroaromatization reactions. To confirm the source of 8 and 9, it was demonstrated that these molecules are formed cleanly between the reaction of (ArEH)(2) [E = Ge(6), Sn(7)] and tert-butyl ethylene, new examples of noncatalyzed hydro-germylation and -stannylation. Therefore, the presence of transient hydrides of the type 6 and 7 can be surmised to be reactive intermediates in the production of 3 and 4, along with H(2), from 1 and 2 and CpH (respectively), or the formation of 3 and 5 from 1. The reaction of 6 or 7 with CpH gave 3 or 4, respectively, with concomitant H(2) evolution, demonstrating the basic nature of these low-valent group 14 element hydrides and their key role in the 'cascade' of C-H activation steps

  2. Activated aluminum hydride hydrogen storage compositions and uses thereof

    DOEpatents

    Sandrock, Gary; Reilly, James; Graetz, Jason; Wegrzyn, James E.

    2010-11-23

    In one aspect, the invention relates to activated aluminum hydride hydrogen storage compositions containing aluminum hydride in the presence of, or absence of, hydrogen desorption stimulants. The invention particularly relates to such compositions having one or more hydrogen desorption stimulants selected from metal hydrides and metal aluminum hydrides. In another aspect, the invention relates to methods for generating hydrogen from such hydrogen storage compositions.

  3. Multireference study of spin-orbit coupling in the hydrides of the 6p-block elements using the model core potential method

    NASA Astrophysics Data System (ADS)

    Zeng, Tao; Fedorov, Dmitri G.; Klobukowski, Mariusz

    2010-02-01

    Careful spin-orbit multireference studies were carried out for the late p-block elements Tl, Pb, Bi, Po, At, and Rn and their hydrides using the model core potentials developed in the present work. The model core potentials were designed to treat the scalar-relativistic and spin-orbit coupling effects at the Douglas-Kroll level. The variational stability of the spin-orbit coupling operator was discussed in terms of the relativistic kinematic operators and depicted graphically. A detailed analysis of the spin-orbit multireference dissociation curves of the 6p element hydrides as well as of their atomic spectra allowed to establish the accuracy of the model core potentials with respect to all-electron calculations to be within several mÅ for re, meV (ceV) for De at the correlation level of configuration interaction (multireference perturbation theory), 30 cm-1 for ωe, and about 350 cm-1 for the low-lying atomic and molecular term and level energies. These values are expected to be the maximum error limits for the model core potentials of all the np-block elements (n =2-6). Furthermore, a good agreement with experiment requires that many terms be coupled in the spin-orbit coupling calculations. A timing study of Tl and TlH computations indicates that the model core potentials lead to 20-fold (6-fold) speedup at the level of configuration interaction (multireference perturbation theory) calculations.

  4. Hydride compositions

    DOEpatents

    Lee, Myung, W.

    1994-01-01

    Disclosed are a composition for use in storing hydrogen and a method for making the composition. The composition comprises a mixture of two or more hydrides, each hydride having a different series of hydrogen sorption isotherms that contribute to the overall isotherms of the mixture. The hydrides are chosen so that the isotherms of the mixture have regions wherein the H equilibrium pressure increases with increasing hydrogen, preferably linearly. The isotherms of the mixture can be adjusted by selecting hydrides with different isotherms and by varying the amounts of the individual hydrides, or both. Preferably, the mixture is made up of hydrides that have isotherms with substantially flat plateaus and in nearly equimolar amounts. The composition is activated by degassing, exposing to H, and then heating below the softening temperature of any of the constituents. When the composition is used to store hydrogen, its hydrogen content can be found simply by measuring P{sub H}{sub 2} and determining H/M from the isothermic function of the composition.

  5. Hydride compositions

    DOEpatents

    Lee, Myung W.

    1995-01-01

    A composition for use in storing hydrogen, and a method for making the composition. The composition comprises a mixture of two or more hydrides, each hydride having a different series of hydrogen sorption isotherms that contribute to the overall isotherms of the mixture. The hydrides are chosen so that the isotherms of the mixture have regions wherein the hydrogen equilibrium pressure increases with increasing hydrogen, preferably linearly. The isotherms of the mixture can be adjusted by selecting hydrides with different isotherms and by varying the amounts of the individual hydrides, or both. Preferably, the mixture is made up of hydrides that have isotherms with substantially flat plateaus and in nearly equimolar amounts. The composition is activated by degassing, exposing to hydrogen and then heating at a temperature below the softening temperature of any of the. constituents so that their chemical and structural integrity is preserved. When the composition is used to store hydrogen, its hydrogen content can be found simply by measuring P.sub.H.sbsb.2 and determining H/M from the isothermic function of the composition.

  6. Determination of lead in wine by hydride generation atomic fluorescence spectrometry in the presence of hexacyanoferrate(III).

    PubMed

    Karadjova, Irina B; Lampugnani, Leonardo; D'Ulivo, Alessandro; Onor, Massimo; Tsalev, Dimiter L

    2007-06-01

    A rapid, accurate, and precise method is described for the determination of Pb in wine using continuous-flow hydride generation atomic fluorescence spectrometry (CF-HGAFS). Sample pretreatment consists of ten-fold dilution of wine followed by direct plumbane generation in the presence of 0.1 mol L(-1) HCl and 1% m/v K(3)[Fe(CN)(6)] with 1% m/v NaBH(4) as reducing agent. An aqueous standard calibration curve is recommended for Pb quantification in wine sample. The method provides a limit of detection and a limit of quantification of 0.3 microg L(-1) and 1 microg L(-1), respectively. The relative standard deviation varies between 2-6% (within-run) and 4-11% (between-run) at 3-30 microg L(-1) Pb levels in wine. Good agreement has been demonstrated between results obtained by CF-HGAFS and direct electrothermal atomic absorption spectrometry in analyses of red and white wines within the concentration range of 9.2-25.8 microg L(-1) Pb.

  7. Determination of lead in wine and rum samples by flow injection-hydride generation-atomic absorption spectrometry.

    PubMed

    Elçi, Latif; Arslan, Zikri; Tyson, Julian F

    2009-03-15

    A method for direct determination of lead in wine and rum samples was developed, using a flow injection hydride generation system coupled to an atomic absorption spectrometer with flame-quartz atomizer (FI-HG-AAS). Lead hyride (PbH(4)) was generated using potassium ferricyanide (K(3)Fe(CN)(6)), as oxidant and sodium tetrahydroborate (NaBH(4)) as reductant. Samples were acidified to 0.40% (v/v) HCl for wine and to 0.30% (v/v) HCl for rum, which were then mixed on-line with 3% (m/v) K(3)Fe(CN)(6) solution in 0.03% (v/v) HCl prior to reaction with 0.2% (m/v) alkaline NaBH(4) solution. Lead contents of a rum and two different red wine samples were determined by FI-HG-AAS agreed with those obtained by ICP-MS. The analytical figures of merit of method developed were determined. The calibration curve was linear up to 8.0 microg L(-1) Pb with a regression coefficient of 0.998. The relative error was lower than 4.58%. The relative standard deviation (n=7) was better than 12%. A detection limit of 0.16 microg L(-1) was achieved for a sample volume of 170 microL.

  8. [Determination of trace lead in traditional Chinese herbal medicine Astragalus by microwave digestion-CTAB enhancing-continual flow ingection hydride generation-ICP-AES].

    PubMed

    Liu, Dong-Lian; Ke, Shao-Ying; Ye, Rong; Ding, Ming-Yu

    2007-11-01

    A new method using microwave digestion technique was developed for the determination of lead in Astragalus by CTAB enhancing-continual flow hydride generation-inductively coupled plasma atomic emission spectrometry (HG-ICP-AES). The experimental conditions of microwave digestion and hydride generation were optimized. This method shows a linear range of 0.23-800 microg x L(-1) and the correlation coefficient is 0.999 9. It is satisfactory to apply the microwave digestion procedure to the determination of Pb under the optimized conditions. The detection limit of the method is 0.23 microg x L(-1) and the RSD is 1.02%. The recovery obtained is 98.8%-100.1%. The results show that this method is rapid and simple with low environmental contamination and complete digestion of samples.

  9. Cloud point extraction for trace inorganic arsenic speciation analysis in water samples by hydride generation atomic fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Li, Shan; Wang, Mei; Zhong, Yizhou; Zhang, Zehua; Yang, Bingyi

    2015-09-01

    A new cloud point extraction technique was established and used for the determination of trace inorganic arsenic species in water samples combined with hydride generation atomic fluorescence spectrometry (HGAFS). As(III) and As(V) were complexed with ammonium pyrrolidinedithiocarbamate and molybdate, respectively. The complexes were quantitatively extracted with the non-ionic surfactant (Triton X-114) by centrifugation. After addition of antifoam, the surfactant-rich phase containing As(III) was diluted with 5% HCl for HGAFS determination. For As(V) determination, 50% HCl was added to the surfactant-rich phase, and the mixture was placed in an ultrasonic bath at 70 °C for 30 min. As(V) was reduced to As(III) with thiourea-ascorbic acid solution, followed by HGAFS. Under the optimum conditions, limits of detection of 0.009 and 0.012 μg/L were obtained for As(III) and As(V), respectively. Concentration factors of 9.3 and 7.9, respectively, were obtained for a 50 mL sample. The precisions were 2.1% for As(III) and 2.3% for As(V). The proposed method was successfully used for the determination of trace As(III) and As(V) in water samples, with satisfactory recoveries.

  10. Analysis of metals in marine sediments by microwave extraction and flame, hydride generation and cold vapor atomic-absorption spectrometry

    SciTech Connect

    Martinez-Garcia, M.L.; Zubieta, A.C.; Lorenzo, S.M.; Lopez-Mahia, P.; Rodriguez, D.P.

    1999-01-01

    A simple and fast metal extraction method that combines closed vessels and microwave heating for the simultaneous extraction of ten selected heavy metals (As, Cd, Co, Cr, Hg, Mn, Ni, Pb, Zn) from marine sediments is proposed. Digestion conditions, i.e., power and times microwave irradiation, reagent extractant, sample amount, were optimized to recover the potentially available metallic fraction not bound in silicates. A nitric acid and two step microwave program was established. The resulting solutions were analyzed by flame (FAAS), hydride generation (HG-AAS) and cold vapor (CV-AAS) atomic absorption spectrometry. Quantifications were made using direct calibration with aqueous standards. The recoveries of the spiked samples investigated ranged from 89 to 113%. The results obtained from analyzing the BCR certified reference sediment CRM 277 Estuarine Sediment were in good agreement with the certified values (93--105%), except for low values for chromium (79%). The relative standard deviations for the determination of metals were less than 4%. Finally, the technique designed herein was applied to sediment samples from La Coruna estuary, NW Spain.

  11. On-line pre-reduction of Se(VI) by thiourea for selenium speciation by hydride generation

    NASA Astrophysics Data System (ADS)

    Qiu, Jianhua; Wang, Qiuquan; Ma, Yuning; Yang, Limin; Huang, Benli

    2006-07-01

    In this study, thiourea (TU) was novelly developed as a reduction reagent for on-line pre-reduction of selenium(VI) before conventional hydride generation (HG) by KBH 4/NaOH-HCl. After TU on-line pre-reduction, the HG efficiency of Se(VI) has been greatly improved and because even higher than that of the same amount of Se(IV) obtained in the conventional HG system. The possible pre-reduction mechanism is discussed. The detection limit (DL) of selenate reaches 10 pg mL - 1 when using on-line TU pre-reduction followed by HG atomic fluorescence detection. When TU pre-reduction followed by HG is used as an interface between ion-pair high performance liquid chromatography and atomic fluorescence spectrometry, selenocystine, selenomethionine, selenite and selenate can be measured simultaneously and quantitatively. The DLs of these are 0.06, 0.08, 0.05 and 0.04 ng mL - 1 , respectively, and the relative standard deviations of 9 duplicate runs for all the 4 species are less than 5%. Furthermore, it was successfully applied to Se speciation analysis of cultured garlic samples, and validated by determination of total selenium and selenium species in certified reference material NIST 1946.

  12. Minimization of volatile nitrogen oxides interference in the determination of arsenic by hydride generation atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    de Moraes Flores, Érico Marlon; da Silva, Letícia Longhi Cirne; Barin, Juliano Smanioto; Saidelles, Ana Paula Fleig; Zanella, Renato; Dressler, Valderi Luis; Paniz, José Neri Gottfried

    2001-10-01

    In this study emphasis was given to minimize the interference of volatile nitrogen oxides from digestion procedures with nitric acid on the determination of arsenic by hydride generation atomic absorption spectrometry (HG AAS). Sulfamic acid (SA) is proposed to minimize this interference by employing three procedures for the digestion of hair in closed systems: conventional and microwave (MW) heating in polytetrafluorethylene (PTFE) vessels and by MW heating in glass vials. Hair samples were digested with H 2SO 4+HNO 3 or HNO 3+H 2O 2 mixtures. Concentrated hydrochloric acid was added for the digestion for the procedure in glass vials. The accuracy of the procedures with PTFE vessels was verified by the spike recoveries of organic ( p-aminobenzenearsonic acid and dimethyl arsinic acid, from 92 to 101%) and inorganic (sodium arsenate, from 98 to 102%) arsenic compounds. For the procedure in glass vials the recovery was from 86 to 97% for organic As and from 97 to 102% for inorganic As. The results obtained for a certified hair reference material using the three digestion procedures were well within the 95% confidence interval of the certificate when SA was added to the solutions. However, when SA was not added, recoveries were low and non-reproducible signals and high background levels were observed. Urea, benzoic acid and hydroxylamine hydrochloride were also studied (maximum As recovery of 90% using hydroxylamine hydrochloride) but the best results were obtained with use of SA.

  13. Determination of arsenite, arsenate, monomethylarsonic acid and dimethylarsinic acid in cereals by hydride generation atomic fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Matos Reyes, M. N.; Cervera, M. L.; Campos, R. C.; de la Guardia, M.

    2007-09-01

    A fast, sensitive and simple non-chromatographic analytical method was developed for the speciation analysis of toxic arsenic species in cereal samples, namely rice and wheat semolina. An ultrasound-assisted extraction of the toxic arsenic species was performed with 1 mol L - 1 H 3PO 4 and 0.1% (m/v) Triton XT-114. After extraction, As(III), As(V), dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA) concentrations were determined by hydride generation atomic fluorescence spectrometry using a series of proportional equations corresponding to four different experimental reduction conditions. The detection limits of the method were 1.3, 0.9, 1.5 and 0.6 ng g - 1 for As(III), As(V), DMA and MMA, respectively, expressed in terms of sample dry weight. Recoveries were always greater than 90%, and no species interconversion occurred. The speciation analysis of a rice flour reference material certified for total arsenic led to coherent results, which were also in agreement with other speciation studies made on the same certified reference material.

  14. Determination of arsenic speciation in sulfidic waters by Ion Chromatography Hydride-Generation Atomic Fluorescence Spectrometry (IC-HG-AFS).

    PubMed

    Keller, Nicole S; Stefánsson, Andri; Sigfússon, Bergur

    2014-10-01

    A method for the analysis of arsenic species in aqueous sulfide samples is presented. The method uses an ion chromatography system connected with a Hydride-Generation Atomic Fluorescence Spectrometer (IC-HG-AFS). With this method inorganic As(III) and As(V) species in water samples can be analyzed, including arsenite (HnAs(III)O3(n-3)), thioarsenite (HnAs(III)S3(n-3)), arsenate (HnAs(V)O4(n-3)), monothioarsenate (HnAs(V)SO3(n-3)), dithioarsenate (HnAs(V)S2O2(n-3)), trithioarsenate (HnAs(V)S3O(n-3)) and tetrathioarsenate (HnAs(V)S4(n-3)). The peak identification and retention times were determined based on standard analysis of the various arsenic compounds. The analytical detection limit was ~1-3 µg L(-1) (LOD), depending on the quality of the baseline. This low detection limit makes this method also applicable to discriminate between waters meeting the drinking water standard of max. 10 µg L(-1) As, and waters that do not meet this standard. The new method was successfully applied for on-site determination of arsenic species in natural sulfidic waters, in which seven species were unambiguously identified.

  15. Development of an analytical method for antimony speciation in vegetables by HPLC-hydride generation-atomic fluorescence spectrometry.

    PubMed

    Olivares, David; Bravo, Manuel; Feldmann, Jorg; Raab, Andrea; Neaman, Alexander; Quiroz, Waldo

    2012-01-01

    A new method for antimony speciation in terrestrial edible vegetables (spinach, onions, and carrots) was developed using HPLC with hydride generation-atomic fluorescence spectrometry. Mechanical agitation and ultrasound were tested as extraction techniques. Different extraction reagents were evaluated and optimal conditions were determined using experimental design methodology, where EDTA (10 mmol/L, pH 2.5) was selected because this chelate solution produced the highest extraction yield and exhibited the best compatibility with the mobile phase. The results demonstrated that EDTA prevents oxidation of Sb(III) to Sb(V) and maintains the stability of antimony species during the entire analytical process. The LOD and precision (RSD values obtained) for Sb(V), Sb(III), and trimethyl Sb(V) were 0.08, 0.07, and 0.9 microg/L and 5.0, 5.2, and 4.7%, respectively, for a 100 microL sample volume. The application of this method to real samples allowed extraction of 50% of total antimony content from spinach, while antimony extracted from carrots and onion samples ranged between 50 and 60 and 54 and 70%, respectively. Only Sb(V) was detected in three roots (onion and spinach) that represented 60-70% of the total antimony in the extracts.

  16. Combined passive bearing element/generator motor

    DOEpatents

    Post, Richard F.

    2000-01-01

    An electric machine includes a cylindrical rotor made up of an array of permanent magnets that provide a N-pole magnetic field of even order (where N=4, 6, 8, etc.). This array of permanent magnets has bars of identical permanent magnets made of dipole elements where the bars are assembled in a circle. A stator inserted down the axis of the dipole field is made of two sets of windings that are electrically orthogonal to each other, where one set of windings provides stabilization of the stator and the other set of windings couples to the array of permanent magnets and acts as the windings of a generator/motor. The rotor and the stator are horizontally disposed, and the rotor is on the outside of said stator. The electric machine may also include two rings of ferromagnetic material. One of these rings would be located at each end of the rotor. Two levitator pole assemblies are attached to a support member that is external to the electric machine. These levitator pole assemblies interact attractively with the rings of ferromagnetic material to produce a levitating force upon the rotor.

  17. Precipitate coating on cellulose fibre as sorption medium for selenium preconcentration and speciation with hydride generation atomic fluorescence spectrometry.

    PubMed

    Chen, Mingli; Yang, Ting; Wang, Jianhua

    2009-01-05

    Lanthanum hydroxide precipitate is for the first time coated onto cellulose fibre and serves as a novel sorption medium for separation and speciation of inorganic selenium. A micro-column packed with precipitate-layer-coated cellulose fibre is incorporated into a sequential injection system for selenite retention from a neutral aqueous solution, which is afterwards stripped with a NaBH(4)-NaOH solution as eluent. The hydride generation is actuated by merging the eluate and hydrochloric acid downstream, followed by the detection with atomic fluorescence spectrometry. Total inorganic selenium is derived by pre-reduction of selenate and speciation is estimated by difference. The coated precipitate layer can be used for 150 runs for selenium sorption, offering a clear advantage over the conventional precipitation protocols where a large amount of precipitate is dissolved into a small volume of eluent which might interfere with the detection. With a sample volume of 1.0 mL, an enrichment factor of 9.7 and a detection limit of 9 ng L(-1) are obtained in a linear range of 0.05-2.5 microg L(-1). A sampling frequency of 24 h(-1) is achieved along with a R.S.D. of 1.7% at 0.5 microg L(-1) Se(IV). The procedure is validated by analyzing selenium in a reference material GBW 10010 (rice) and a human hair sample. It is further demonstrated by speciation of inorganic selenium in surface water samples by pre-reduction of selenate.

  18. A study of low level selenium determination by hydride generation atomic fluorescence spectrometry in water soluble protein and peptide fractions.

    PubMed

    Stibilj, V; Mazej, D; Falnoga, I

    2003-12-01

    Development of a method for very low level selenium determination in water soluble protein and peptide fractions, obtained after various separation procedures, is presented. A hydride generation atomic fluorescence spectrometry (HG-AFS) detection system was optimised and the influence of Cu(II), Sb(V), As(III) and HNO3 interferences in the measurement of Se by HG-AFS was investigated. A destruction procedure using HNO3 and H2O2 was also optimised and the average recovery of the digestion of a solution of selenomethioneine was 92 +/- 4% (n=14). Combination of this digestion with the detection system gave reliable results. Accuracy was tested by comparison with two independent methods. A very low detection limit (DL) of 0.2 ng/g of measuring solution was achieved. The whole procedure from weighing to measuring was performed in the same Teflon tube. The addition of HNO3 to the fractions before long term storage at -20 degrees C was necessary to prevent adsorption on the test tubes. Selenium was measured in water soluble protein and peptide fractions obtained after extraction, and Sephadex G-75 chromatography performed on liver samples from: i) hens exposed to As2O3, ii) hens fed with a high fat feed and iii) the certified reference material dogfish liver (CRM DOLT-2). Because of the very low DL we were able to observe the Se distribution in chromatographic fractions of samples of organisms which were not exposed to excess amounts of Se. The presence of selenium associated with metallothioneins was observed.

  19. Simple decomposition procedure for determination of selenium in whole blood, serum and urine by hydride generation atomic absorption spectroscopy.

    PubMed

    Tiran, B; Tiran, A; Rossipal, E; Lorenz, O

    1993-12-01

    A digestion procedure for selenium determination by hydride generation atomic absorption spectroscopy (AAS) in whole blood, serum and urine is described, it employs sulfuric acid, hydrogen peroxide and vanadium (V) sulfuric acid reagent solution. The method is rapid, uses no explosive reagents and can be performed at a constant temperature of 100 degrees C. Therefore, it is easily applicable in a routine clinical laboratory for a large amount of samples. The coefficient of intra-assay variation was 4.3-5.6%, the coefficient for inter-assay variation was 5-5.9% in the medium and high concentration range, and 5.8-8.6% in the low range. In analyzing several commercial reference materials our results showed good agreement with the target values. Analytical recovery by addition of sodium selenite and seleno-DL-methionine to samples ranged between 97 and 104%. The correlation between the described digestion procedure and the nitric, sulfuric and perchloric acid digestion procedure recommended by the International Union of Pure and Applied Chemistry showed good agreement for whole blood, serum and for urine. We determined selenium in serum (n = 58) and whole blood (n = 50) in a collective of healthy children from 1 to 5 years living in Styria, Austria. The low values in serum (35 +/- 11 micrograms/L) and whole blood (42 +/- 6 micrograms/L) at one year of life increased significantly to 48 +/- 13 mu/L (p = 0.033) and 55 +/- 6 micrograms/L (p = 0.004) at three years of life in serum and whole blood, respectively. The selenium concentration showed no further increase up to five years of age.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Optimization of a hydride generation metallic furnace atomic absorption spectrometry (HG-MF-AAS) method for tin determination: analytical and morphological parameters of a metallic atomizer.

    PubMed

    Moretto Galazzi, Rodrigo; Arruda, Marco Aurélio Zezzi

    2013-12-15

    The present work describes a metallic tube as hydride atomizer for atomic absorption spectrometry. Its performance is evaluated through tin determination, and the accuracy of the method assessed through the analysis of sediment and water samples. Some chemical parameters (referring to the generation of the hydride) such as acid, NaOH and THB concentrations, as well as physical parameters (referring to the transport of the hydride) such as carrier, acetylene, air flow-rates, flame composition, coil length, tube hole area, among others, are evaluated for optimization of the method. Scanning electron microscopy is used for evaluating morphological parameters in both new and used (after 150 h) tube atomizers. The method presents linear Sn concentration from 50 to 1000 µg L(-1) (r>0.9995; n=3) and the analytical frequency of ca. 40 h(-1). The limit of detection (LOD) is 7.1 µg L(-1) and the precision, expressed as RSD is less than 4% (200 µg L(-1); n=10). The accuracy is evaluated through reference materials, and the results are similar at 95% confidence level according to the t-test.

  1. Methyl cation affinities of neutral and anionic maingroup-element hydrides: trends across the periodic table and correlation with proton affinities.

    PubMed

    Mulder, R Joshua; Guerra, Célia Fonseca; Bickelhaupt, F Matthias

    2010-07-22

    We have computed the methyl cation affinities in the gas phase of archetypal anionic and neutral bases across the periodic table using ZORA-relativistic density functional theory (DFT) at BP86/QZ4P//BP86/TZ2P. The main purpose of this work is to provide the methyl cation affinities (and corresponding entropies) at 298 K of all anionic (XH(n-1)(-)) and neutral bases (XH(n)) constituted by maingroup-element hydrides of groups 14-17 and the noble gases (i.e., group 18) along the periods 2-6. The cation affinity of the bases decreases from H(+) to CH(3)(+). To understand this trend, we have carried out quantitative bond energy decomposition analyses (EDA). Quantitative correlations are established between the MCA and PA values.

  2. Program Helps Generate Boundary-Element Mathematical Models

    NASA Technical Reports Server (NTRS)

    Goldberg, R. K.

    1995-01-01

    Composite Model Generation-Boundary Element Method (COM-GEN-BEM) computer program significantly reduces time and effort needed to construct boundary-element mathematical models of continuous-fiber composite materials at micro-mechanical (constituent) scale. Generates boundary-element models compatible with BEST-CMS boundary-element code for anlaysis of micromechanics of composite material. Written in PATRAN Command Language (PCL).

  3. Determination of As in tobacco by using electrochemical hydride generation at a Nafion® solid polymer electrolyte cell hyphenated with atomic fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Yang, Qinghua; Gan, Wuer; Deng, Yun; Sun, Huihui

    2011-11-01

    In the present work, a novel solid polymer electrolyte hydride generation (SPE-HG) cell was developed. The home-made SPE-HG cell, mainly composed of three components (Nafion®117 membrane for separating and H + exchanging, a soft graphite felt cathode and a Ti mesh modified by Ir anode), was employed for detecting As by coupling to atomic fluorescence spectrometry (AFS). The H + generated by electrolysis of pure water in anode chamber transferred to cathode chamber through SPE, and immediately reacted with As 3 + to generate AsH 3. The relative mechanisms and operation conditions for hydride generation of As were investigated in detail. The developed cell employed water as an alternative of acid anolyte, with virtues of low-cost, more than 6 months lifetime and environment friendly compared with the conventional cell. Under the optimized conditions, the limit of determination of As 3 + for sample blank solution was 0.12 μg L - 1 , the RSD was 2.9% for 10 consecutive measurements of 5 μg L - 1 As 3 + standard solution. The accuracy of the method was verified by the determination of As in the reference Tea (GBW07605) and the developed method was successfully applied to determine trace amounts of As in tobacco samples with recovery from 97% to 103%.

  4. [Enrichment of triphenyltin in water samples by beta-cyclodextrin cross-linking polymer and determination by hydride-generation atomic fluorescence spectrometry].

    PubMed

    Qiu, Hai-Ou; Yang, Xiao-Qiu; Yang, Ming; Xi, Yong-Qing; Tang, Zhi-Yong

    2007-04-01

    A new method was proposed for the enrichment of triphenyltin in water samples by beta-cyclodextrin cross-linking polymer and the quantitative determination of tin in triphenyltin by hydride-generation atomic fluorescence spectrometry. The chemical conditions and instrumental conditions were investigated and optimized. The method is sensitive and precise. The detection limit is 0.1 ng x mL(-1) and the RSD 2.64% (for 0.04 microg x mL(-1)). The proposed method has been successfully applied to the determination of triphenyltin in various water samples.

  5. SYSTEM OPTIMIZATION FOR THE AUTOMATIC SIMULTANEOUS DETERMINATION OF ARSENIC, SELENIUM, AND ANTIMONY, USING HYDRIDE GENERATION INTRODUCTION TO AN INDUCTIVELY COUPLED PLASMA.

    USGS Publications Warehouse

    Pyen, Grace S.; Browner, Richard F.; Long, Stephen

    1986-01-01

    A fixed-size simplex has been used to determine the optimum conditions for the simultaneous determination of arsenic, selenium, and antimony by hydride generation and inductively coupled plasma emission spectrometry. The variables selected for the simplex were carrier gas flow rate, rf power, viewing height, and reagent conditions. The detection limit for selenium was comparable to the preoptimized case, but there were twofold and fourfold improvements in the detection limits for arsenic and antimony, respectively. Precision of the technique was assessed with the use of artificially prepared water samples.

  6. Rechargeable metal hydrides for spacecraft application

    NASA Astrophysics Data System (ADS)

    Perry, J. L.

    1988-09-01

    Storing hydrogen on board the Space Station presents both safety and logistics problems. Conventional storage using pressurized bottles requires large masses, pressures, and volumes to handle the hydrogen to be used in experiments in the U.S. Laboratory Module and residual hydrogen generated by the ECLSS. Rechargeable metal hydrides may be competitive with conventional storage techniques. The basic theory of hydride behavior is presented and the engineering properties of LaNi5 are discussed to gain a clear understanding of the potential of metal hydrides for handling spacecraft hydrogen resources. Applications to Space Station and the safety of metal hydrides are presented and compared to conventional hydride storage. This comparison indicates that metal hydrides may be safer and require lower pressures, less volume, and less mass to store an equivalent mass of hydrogen.

  7. Rechargeable metal hydrides for spacecraft application

    NASA Technical Reports Server (NTRS)

    Perry, J. L.

    1988-01-01

    Storing hydrogen on board the Space Station presents both safety and logistics problems. Conventional storage using pressurized bottles requires large masses, pressures, and volumes to handle the hydrogen to be used in experiments in the U.S. Laboratory Module and residual hydrogen generated by the ECLSS. Rechargeable metal hydrides may be competitive with conventional storage techniques. The basic theory of hydride behavior is presented and the engineering properties of LaNi5 are discussed to gain a clear understanding of the potential of metal hydrides for handling spacecraft hydrogen resources. Applications to Space Station and the safety of metal hydrides are presented and compared to conventional hydride storage. This comparison indicates that metal hydrides may be safer and require lower pressures, less volume, and less mass to store an equivalent mass of hydrogen.

  8. Quantitation of toxic arsenic species and arsenobetaine in Pacific oysters using an off-line process with hydride generation-atomic absorption spectroscopy.

    PubMed

    Hsiung, Tung-Ming; Huang, Chia-Wei

    2006-04-05

    An off-line process-based speciation technique was devised here to quantitatively determine toxic inorganic arsenic (iAs), methylarsonic acid (MA), dimethylarsinic acid (DMA), and the dominant, albeit virtually nontoxic, arsenobetaine (AB) in Pacific oysters (Crassostrea gigas). Oysters were extracted with fresh methanol-water (8+2), and this was replicated three times. They were then evaporated to near dryness and subsequently redissolved in pure water; defatting was then performed with a C18 cartridge. The trace hydride active arsenic species, that is, iAs, MA, and DMA, in the defatted solutions were determined with a sensitive hydride generation-packed coldfinger trap-atomic absorption spectrometric (HG-PCFT-AAS) coupled system. The arsenicals that were desorbed from the cation-exchange resin (Dowex 50W-X8) in the washings of 4 M NH3 were categorized on the basis of AB + DMA. The total quantity of arsenic in the recovered AB + DMA was determined with a commercial hydride generation-atomic absorption spectrometric (HG-AAS) system, and finally, AB was calculated from (AB + DMA) - DMA. The average concentrations of iAs, MA, DMA, AB, and total arsenic (TAs) in the oysters collected from six aquacultural sites along the west coast of Taiwan were, respectively, 0.15, 0.06, 0.64, 6.93, and 13.74 mg kg(-1) of dry weight. AB was the major species, whereas iAs (arsenite + arsenate) were the most toxic species, although the iAs made up only approximately 1% of the TAs in the oysters. The lifetime target cancer risk, as determined by the concentration of iAs on a fresh weight basis in the oysters, was well below the ordinary health protection criteria (10(-6)).

  9. Application of multivariate techniques in the optimization of a procedure for the determination of bioavailable concentrations of Se and As in estuarine sediments by ICP OES using a concomitant metals analyzer as a hydride generator.

    PubMed

    Lopes, Watson da Luz; Santelli, Ricardo Erthal; Oliveira, Eliane Padua; de Carvalho, Maria de Fátima Batista; Bezerra, Marcos Almeida

    2009-10-15

    A procedure has been developed for the determination of bioavailable concentrations of selenium and arsenic in estuarine sediments employing inductively coupled plasma optical emission spectrometry (ICP OES) using a concomitant metals analyzer device to perform hydride generation. The optimization of hydride generation was done in two steps: using a two-level factorial design for preliminary evaluation of studied factors and a Doehlert design to assess the optimal experimental conditions for analysis. Interferences of transition metallic ions (Cd(2+), Co(2+), Cu(2+), Fe(3+) and Ni(2+)) to selenium and arsenic signals were minimized by using higher hydrochloric acid concentrations. In this way, the procedure allowed the determination of selenium and arsenic in sediments with a detection limit of 25 and 30 microg kg(-1), respectively, assuming a 50-fold sample dilution (0.5 g sample extraction to 25 mL sample final volume). The precision, expressed as a relative standard deviation (% RSD, n=10), was 0.2% for both selenium and arsenic in 200 microg L(-1) solutions, which corresponds to 10 microg g(-1) in sediment samples after acid extraction. Applying the proposed procedure, a linear range of 0.08-10 and 0.10-10 microg g(-1) was obtained for selenium and arsenic, respectively. The developed procedure was validated by the analysis of two certified reference materials: industrial sludge (NIST 2782) and river sediment (NIST 8704). The results were in agreement with the certified values. The developed procedure was applied to evaluate the bioavailability of both elements in four sediment certified reference materials, in which there are not certified values for bioavailable fractions, and also in estuarine sediment samples collected in several sites of Guanabara Bay, an impacted environment in Rio de Janeiro, Brazil.

  10. Generating Finite-Element Models Of Composite Materials

    NASA Technical Reports Server (NTRS)

    Melis, M. E.

    1993-01-01

    Program starts at micromechanical level, from simple inputs supplied by user. COMGEN, COmposite Model GENerator, is interactive FORTRAN program used to create wide variety of finite-element models of continuous-fiber composite materials at micromechanical level. Quickly generates batch or "session files" to be submitted to finite-element preprocessor and postprocessor program, PATRAN. COMGEN requires PATRAN to complete model.

  11. Determination of total arsenic and arsenic(III) in phosphate fertilizers by hydride generation atomic absorption spectrometry after ultrasound-assisted extraction based on a control acid media.

    PubMed

    Rezende, Helen Cristine; Coelho, Nivia Maria Melo

    2014-01-01

    An ultrasound-assisted extraction procedure was developed for determination of inorganic arsenic (As) in phosphate fertilizer by hydride generation atomic absorption spectrometry. The variables that affect the hydride generation step were optimized, including the reducer, acid, sample flow rate, and concentrations of the acid and reducer. The determination of As(lll) was performed through the simple control of solution pH with a 0.5 M citric acid-sodium citrate buffer solution at pH 4.5, and total As was determined after a pre-reduction reaction with 1.0% (w/v) thiourea. Ultrasound-assisted acid extraction was performed, and the parameters sonication time and acid and Triton X-114 concentrations were optimized using a 23 factorial design and central composite design. LODs for As(lll) and total As were 0.029 and 0.022 microg/L, respectively. The accuracy of the method was confirmed with certified reference materials. The method was successfully applied in the determination of inorganic As in phosphate fertilizer samples.

  12. Multivariate optimization of a method for antimony determination by hydride generation atomic fluorescence spectrometry in hair samples of patients undergoing chemotherapy against Leishmaniasis.

    PubMed

    Cardozo, Manuelle C; Cavalcante, Dannuza D; Silva, Daniel L F; Santos, Walter N L Dos; Bezerra, Marcos A

    2016-09-01

    A method was developed for determination of total antimony in hair samples from patients undergoing chemotherapy against Leishmaniasis based on the administration of pentavalent antimonial drugs. The method is based on microwave assisted digestion of the samples in a pressurized system, reduction of Sb5+ to Sb3+ with KI solution (10% w/v) in ascorbic acid (2%, w/v) and its subsequent determination by hydride generation atomic fluorescence spectrometry (HG-AFS). The proportions of each component (HCl, HNO3 and water) used in the digestion were studied applying a constrained mixtures design. The optimal proportions found were 50% water, 25% HNO3 and 25% HCl. Variables involved in the generation of antimony hydride were optimized using a Doehlert design revealing that good sensitivity is found when using 2.0% w/v NaBH4 and 4.4 mol L-1 HCl. Under the optimum experimental conditions, the method allows the determination of antimony in hair samples with detection and quantification limits of 1.4 and 4.6 ng g-1, respectively, and precision expressed as relative standard deviation (RSD) of 2.8% (n = 10 to 10.0 mg L-1). The developed method was applied in the analysis of hair samples from patients who take medication against Leishmaniasis.

  13. G2(+)M study on N-alkylamino cation affinities of neutral main-group element hydrides: trends across the periodic table.

    PubMed

    Geng, Song; Wu, Ding-Lu; Yang, Jing; Wei, Xi-Guang; Zhu, Jun; Zhang, Hai-Bo; Ren, Yi; Lau, Kai-Chung

    2014-05-08

    We have made an extensive theoretical exploration of gas-phase N-alkylamino cation affinities (NAAMCA), including amino cation affinities (AMCA) and N-dimethylamino cation affinities (NDMAMCA), of neutral main-group element hydrides of groups 15-17 and periods 2-4 in the periodic table by using the G2(+)M method. Some similarities and differences are found between NAAMCA and the corresponding alkyl cation affinities (ACA) of H(n)X. Our calculations show that the AMCA and NDMAMCA are systematically lower than the corresponding proton affinities (PA) for H(n)X. In general, there is no linear correlation between NAAMCA and PA of H(n)X. Instead, the correlations exist only within the central elements X in period 2, or periods 3-4, which is significantly different from the reasonable correlations between ACA and PA for all H(n)X. NAAMCA (H(n)X) are weaker than NAAMCA (H(n-1)X(-)) by more than 700 kJ/mol and generally stronger than ACA (H(n)X), with three exceptions: H2ONR2(+)(R = H, Me) and HFNH2(+). These new findings can be rationalized by the negative hyperconjugation and Pauli repulsion.

  14. Thermodynamic Hydricity of Transition Metal Hydrides.

    PubMed

    Wiedner, Eric S; Chambers, Matthew B; Pitman, Catherine L; Bullock, R Morris; Miller, Alexander J M; Appel, Aaron M

    2016-08-10

    Transition metal hydrides play a critical role in stoichiometric and catalytic transformations. Knowledge of free energies for cleaving metal hydride bonds enables the prediction of chemical reactivity, such as for the bond-forming and bond-breaking events that occur in a catalytic reaction. Thermodynamic hydricity is the free energy required to cleave an M-H bond to generate a hydride ion (H(-)). Three primary methods have been developed for hydricity determination: the hydride transfer method establishes hydride transfer equilibrium with a hydride donor/acceptor pair of known hydricity, the H2 heterolysis method involves measuring the equilibrium of heterolytic cleavage of H2 in the presence of a base, and the potential-pKa method considers stepwise transfer of a proton and two electrons to give a net hydride transfer. Using these methods, over 100 thermodynamic hydricity values for transition metal hydrides have been determined in acetonitrile or water. In acetonitrile, the hydricity of metal hydrides spans a range of more than 50 kcal/mol. Methods for using hydricity values to predict chemical reactivity are also discussed, including organic transformations, the reduction of CO2, and the production and oxidation of hydrogen.

  15. Mixed Element Type Unstructured Grid Generation for Viscous Flow Applications

    NASA Technical Reports Server (NTRS)

    Marcum, David L.; Gaither, J. Adam

    2000-01-01

    A procedure is presented for efficient generation of high-quality unstructured grids suitable for CFD simulation of high Reynolds number viscous flow fields. Layers of anisotropic elements are generated by advancing along prescribed normals from solid boundaries. The points are generated such that either pentahedral or tetrahedral elements with an implied connectivity can be be directly recovered. As points are generated they are temporarily attached to a volume triangulation of the boundary points. This triangulation allows efficient local search algorithms to be used when checking merging layers, The existing advancing-front/local-reconnection procedure is used to generate isotropic elements outside of the anisotropic region. Results are presented for a variety of applications. The results demonstrate that high-quality anisotropic unstructured grids can be efficiently and consistently generated for complex configurations.

  16. Hydride compressor

    DOEpatents

    Powell, James R.; Salzano, Francis J.

    1978-01-01

    Method of producing high energy pressurized gas working fluid power from a low energy, low temperature heat source, wherein the compression energy is gained by using the low energy heat source to desorb hydrogen gas from a metal hydride bed and the desorbed hydrogen for producing power is recycled to the bed, where it is re-adsorbed, with the recycling being powered by the low energy heat source. In one embodiment, the adsorption-desorption cycle provides a chemical compressor that is powered by the low energy heat source, and the compressor is connected to a regenerative gas turbine having a high energy, high temperature heat source with the recycling being powered by the low energy heat source.

  17. Fundamental experiments on hydride reorientation in zircaloy

    NASA Astrophysics Data System (ADS)

    Colas, Kimberly B.

    remain constant in the tensile direction during the second precipitation regime. This could be due to the fact that the face of reoriented hydride platelet is in compression once these platelets have grown to a sufficient size. The second goal of this study was to perform a spatially resolved study of the effect of a stress concentration such as a notch or a crack on hydride reorientation. Using SEM and image analysis, it was found that a sharp crack induces a different hydride microstructure than a blunt notch. In the case of sharp crack, hydrides are more localized and align more with the defect than for blunt notches. The hydride connectivity also increases close to a stress concentration which will assist in crack propagation during DHC. Using TEM, the microstructure of hydrides grown near crack tips were observed to be similar to that of circumferential hydrides grown in the bulk. The orientation relationship studied with SEM and micro-X-ray diffraction was found to be in most cases δ(111)// α(0002) for hydrides grown both near and far from stress concentrations. Using the same micro-X-ray diffraction technique local hydride and matrix elastic strains were measured and observed to vary significantly from grain to grain. It was however observed that hydrides grown close to the stress concentration are in tension in the face of the platelet, similar to reoriented hydrides, while those grown far from the stress concentration are in tension, similar to circumferential hydrides. The orders of magnitude of the measured strains in the hydrides and the zirconium matrix compared well to those predicted by finite element models. This study shows that it is possible to study hydride dissolution and precipitation in-situ using time-dependent techniques. It was found that the precipitation temperature is lowered by hydride reorientation. The evolution of hydride strains during precipitation was found to be different for unstressed, stressed and reoriented hydrides. The

  18. SPECIATION OF SELENIUM AND ARSENIC COMPOUNDS BY CAPILLARY ELECTROPHORESIS WITH HYDRODYNAMICALLY MODIFIED ELECTROOSMOTIC FLOW AND ON-LINE REDUCTION OF SELENIUM(VI) TO SELENIUM(IV) WITH HYDRIDE GENERATION INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRIC DETECTION

    EPA Science Inventory

    Capillary electrophoresis (CE) with hydride generation inductively coupled plasma mass spectrometry was used to determine four arsenicals and two selenium species. Selenate (SeVI) was reduced on-line to selenite (SeIV') by mixing the CE effluent with concentrated HCl. A microporo...

  19. Validation of a hydride generation atomic absorption spectrometry methodology for determination of mercury in fish designed for application in the Brazilian national residue control plan.

    PubMed

    Damin, Isabel C F; Santo, Maria A E; Hennigen, Rosmari; Vargas, Denise M

    2013-01-01

    In the present study, a method for the determination of mercury (Hg) in fish was validated according to ISO/IEC 17025, INMETRO (Brazil), and more recent European recommendations (Commission Decision 2007/333/EC and 2002/657/EC) for implementation in the Brazilian Residue Control Plan (NRCP) in routine applications. The parameters evaluated in the validation were investigated in detail. The results obtained for limit of detection and quantification were respectively, 2.36 and 7.88 μg kg(-1) of Hg. While the recovery varies between 90-96%. The coefficient of variation was of 4.06-8.94% for the repeatability. Furthermore, a comparison using an external proficiency testing scheme was realized. The results of method validated for the determination of the mercury in fish by Hydride generation atomic absorption spectrometry were considered suitable for implementation in routine analysis.

  20. Cheaper Hydride-Forming Cathodes

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Blue, Gary

    1990-01-01

    Hydride-forming cathodes for electrochemical experiments made of materials or combinations of materials cheaper and more abundant than pure palladium, according to proposal. Concept prompted by needs of experimenters in now-discredited concept of electrochemical nuclear fusion, cathodes useful in other electrochemical applications involving generation or storage of hydrogen, deuterium, or tritium.

  1. The development of metal hydrides using as concentrating solar thermal storage materials

    NASA Astrophysics Data System (ADS)

    Qu, Xuanhui; Li, Yang; Li, Ping; Wan, Qi; Zhai, Fuqiang

    2015-12-01

    Metal hydrides high temperature thermal heat storage technique has great promising future prospects in solar power generation, industrial waste heat utilization and peak load regulating of power system. This article introduces basic principle of metal hydrides for thermal storage, and summarizes developments in advanced metal hydrides high-temperature thermal storage materials, numerical simulation and thermodynamic calculation in thermal storage systems, and metal hydrides thermal storage prototypes. Finally, the future metal hydrides high temperature thermal heat storage technique is been looked ahead.

  2. High-pressure synthesis of lithium hydride

    NASA Astrophysics Data System (ADS)

    Howie, Ross T.; Narygina, Olga; Guillaume, Christophe L.; Evans, Shaun; Gregoryanz, Eugene

    2012-08-01

    By compressing elemental lithium and hydrogen in a diamond anvil cell, we have synthesized lithium hydride (LiH) at pressures as low as 50 MPa at room temperature. Combined Raman spectroscopy and synchrotron x-ray diffraction measurements reveal that, once synthesized, LiH remains stable at 300 K up to 160 GPa in the presence of molecular hydrogen. The mixture of lithium hydride and molecular hydrogen and application of pressure alone cannot form a higher H2 content hydride (LiHx, x>1) as was suggested from the theoretical ab initio calculations and therefore, cannot be considered as a route to low-pressure hydrogen rich material metallization.

  3. Characterization of hydrides and delayed hydride cracking in zirconium alloys

    NASA Astrophysics Data System (ADS)

    Fang, Qiang

    This thesis tries to fill some of the missing gaps in the study of zirconium hydrides with state-of-art experiments, cutting edge tomographical technique, and a novel numerical algorithm. A new hydriding procedure is proposed. The new anode material and solution combination overcomes many drawbacks of the AECLRTM hydriding method and leads to superior hydriding result compared to the AECL RTM hydriding procedure. The DHC crack growth velocity of as-received Excel alloy and Zr-2.5Nb alloy together with several different heat treated Excel alloy samples are measured. While it already known that the DHC crack growth velocity increases with the increase of base metal strength, the finding that the transverse plane is the weaker plane for fatigue crack growth despite having higher resistance to DHC crack growth was unexpected. The morphologies of hydrides in a coarse grained Zircally-2 sample have been studied using synchrotron x-rays at ESRF with a new technique called Diffraction Contrast Tomography that uses simultaneous collection of tomographic data and diffraction data to determine the crystallographic orientation of crystallites (grains) in 3D. It has been previously limited to light metals such as Al or Mg (due to the use of low energy x-rays). Here we show the first DCT measurements using high energy x-rays (60 keV), allowing measurements in zirconium. A new algorithm of a computationally effcient way to characterize distributions of hydrides - in particular their orientation and/or connectivity - has been proposed. It is a modification of the standard Hough transform, which is an extension of the Hough transform widely used in the line detection of EBSD patterns. Finally, a basic model of hydrogen migration is built using ABAQUS RTM, which is a mature finite element package with tested modeling modules of a variety of physical laws. The coupling of hydrogen diffusion, lattice expansion, matrix deformation and phase transformation is investigated under

  4. METHOD OF FABRICATING A URANIUM-ZIRCONIUM HYDRIDE REACTOR CORE

    DOEpatents

    Weeks, I.F.; Goeddel, W.V.

    1960-03-22

    A method is described of evenly dispersing uranlum metal in a zirconium hydride moderator to produce a fuel element for nuclear reactors. According to the invention enriched uranium hydride and zirconium hydride powders of 200 mesh particle size are thoroughly admixed to form a mixture containing 0.1 to 3% by weight of U/sup 235/ hydride. The mixed powders are placed in a die and pressed at 100 tons per square inch at room temperature. The resultant compacts are heated in a vacuum to 300 deg C, whereby the uranium hydride deoomposes into uranium metal and hydrogen gas. The escaping hydrogen gas forms a porous matrix of zirconium hydride, with uramum metal evenly dispersed therethrough. The advantage of the invention is that the porosity and uranium distribution of the final fuel element can be more closely determined and controlled than was possible using prior methods of producing such fuel ele- ments.

  5. Differential determination of arsenic(III) and arsenic(V), and antimony(III) and antimony-(V) by hydride generation-atomic absorption spectrophotometry, and its application to the determination of these species in sea water

    NASA Astrophysics Data System (ADS)

    Yamamoto, Manabu; Urata, Keiji; Murashige, Kiyoto; Yamamoto, Yuroku

    A method is described for the differential determination of As(III) and As(V). and Sb(III) and Sb(V) by hydride generation-atomic absorption spectrophotometry with hydrogen-nitrogen flame using sodium borohydride solution as a reductant. For the determination of As(III) and Sb(III), most of the elements, other than Ag +, Cu 2+, Sn 2+, Se 4+ and Te 4+, do not interfere in an at least 30,000 fold excess with respect to As(III) or Sb(III). This method was applied to the determination of these species in sea water and it was found that a sample size of only 100 ml is enough to determine them with a precision of 1.5-2.5%. Analytical results for surface sea water of Hiroshima Bay were 0.72 μgl -1, 0.27 μgl -1 and 0.22 μgl -1 for As(total), As(III) and Sb(total), respectively, but Sb(III) was not detected in the present sample. The effect of acidification on storage was also examined.

  6. An evaluation of the bioaccessibility of arsenic in corn and rice samples based on cloud point extraction and hydride generation coupled to atomic fluorescence spectrometry.

    PubMed

    Castor, José Martín Rosas; Portugal, Lindomar; Ferrer, Laura; Hinojosa-Reyes, Laura; Guzmán-Mar, Jorge Luis; Hernández-Ramírez, Aracely; Cerdà, Víctor

    2016-08-01

    A simple, inexpensive and rapid method was proposed for the determination of bioaccessible arsenic in corn and rice samples using an in vitro bioaccessibility assay. The method was based on the preconcentration of arsenic by cloud point extraction (CPE) using o,o-diethyldithiophosphate (DDTP) complex, which was generated from an in vitro extract using polyethylene glycol tert-octylphenyl ether (Triton X-114) as a surfactant prior to its detection by atomic fluorescence spectrometry with a hydride generation system (HG-AFS). The CPE method was optimized by a multivariate approach (two-level full factorial and Doehlert designs). A photo-oxidation step of the organic species prior to HG-AFS detection was included for the accurate quantification of the total As. The limit of detection was 1.34μgkg(-1) and 1.90μgkg(-1) for rice and corn samples, respectively. The accuracy of the method was confirmed by analyzing certified reference material ERM BC-211 (rice powder). The corn and rice samples that were analyzed showed a high bioaccessible arsenic content (72-88% and 54-96%, respectively), indicating a potential human health risk.

  7. Hyphenating multisyringe flow injection lab-on-valve analysis with atomic fluorescence spectrometry for on-line bead injection preconcentration and determination of trace levels of hydride-forming elements in environmental samples.

    PubMed

    Long, Xiangbao; Miró, Manuel; Hansen, Elo Harald; Estela, José Manuel; Cerdà, Víctor

    2006-12-15

    In this work the third generation of flow injection analysis, that is, the so-called micro-lab-on-valve (microLOV) approach, is proposed for the first time for the separation, preconcentration, and monitoring of metalloids as hyphenated with atomic fluorescence spectrometry (AFS). This was made feasible by interfacing the micromachined LOV-module with AFS by a multisyringe flowing stream network for on-line postcolumn derivatization of the eluate aimed at generation of hydride species. The potential of this new hyphenated technique for environmental assays was ascertained via determination of ultratrace level concentrations of total inorganic arsenic in freshwater. Employing quantitative preoxidation of As(III) to As(V) in the samples by means of permanganate, the method involves preconcentration of arsenate at pH 10 on a renewable anion exchanger, namely, Q-Sepharose, packed in a LOV microcolumn. The analyte species is afterward stripped out and concurrently prereduced by a 300 microL eluent plug containing 6 mol L(-)1 HCl and 10% KI. The eluate is downstream merged with a metered volume of sodium tetrahydroborate (0.3% w/v) for generation of arsine, which is subsequently quantified by AFS. The flow system facilitates on-column reduction of the retained arsenic with no need for application of programmable stopped flow. Yet, the high concentration of reductant and extreme pH conditions for elution hinder the sorbent to be reused due to gradual deactivation of the functional moieties, so that maximum benefit can be taken from the application of the bead renewable strategy. The proposed procedure is characterized by a high tolerance to metal species and interfering hydride-forming elements. In fact, ratios of Se(IV) to As < or = 5000 and Sb(V) to As < or = 500 are tolerated at the 10% interference level. Under the optimized experimental conditions, a detection limit (3sigma) of 0.02 ng mL(-1) As, a dynamic linear range of 0.05-2.0 ng mL(-1) As (by tailoring the AFS

  8. Improved microwave-assisted wet digestion procedures for accurate Se determination in fish and shellfish by flow injection-hydride generation-atomic absorption spectrometry.

    PubMed

    Lavilla, I; González-Costas, J M; Bendicho, C

    2007-05-22

    Accurate determination of Se in biological samples, especially fish and shellfish, by hydride generation techniques has generally proven troublesome owing to the presence of organoselenium that cannot readily converted into inorganic selenium under usual oxidising conditions. Further improvements in the oxidation procedures are needed so as to obtain accurate concentration values when this type of samples is analyzed. Microwave-assisted wet digestion (MAWD) procedures of seafood based on HNO3 or the mixture HNO3/H2O2 and further thermal reduction of the Se(VI) formed to Se(IV) were evaluated. These procedures were as follows: (I) without H2O2 and without heating to dryness; (II) without H2O2 and with heating to dryness; (III) with H2O2 and without heating to dryness; (IV) with H2O2 and with heating to dryness. In general, low recoveries of selenium are obtained for several marine species (e.g., crustaceans and cephalopods), which may be ascribed to the presence of Se forms mainly associated with nonpolar proteins and lipids. Post-digestion UV irradiation proved very efficient since not only complete organoselenium decomposition was achieved but also the final step required for prereduction of Se(VI) into Se(IV) (i.e. heating at 90 degrees C for 30 min in 6M HCl) could be avoided. With the MAWD/UV procedure, the use of strong oxidising agents (persuphate, etc.) or acids (e.g. perchloric acid) which are typically applied prior to Se determination by hydride generation techniques is overcome, and as a result, sample pre-treatment is significantly simplified. The method was successfully validated against CRM DOLT-2 (dogfish liver), CRM DORM-2 (dogfish muscle) and CRM TORT-2 (lobster hepatopancreas). Automated ultrasonic slurry sampling with electrothermal atomic absorption spectrometry was also applied for comparison. Total Se contents in ten seafood samples were established. Se levels ranged from 0.7 to 2.9 microg g(-1).

  9. A renewed search for short-lived 126Sn in the early Solar System: Hydride generation MC-ICPMS for high sensitivity Te isotopic analysis

    NASA Astrophysics Data System (ADS)

    Brennecka, Gregory A.; Borg, Lars E.; Romaniello, Stephen J.; Souders, Amanda K.; Shollenberger, Quinn R.; Marks, Naomi E.; Wadhwa, Meenakshi

    2017-03-01

    Although there is limited direct evidence for supernova input into the nascent Solar System, many models suggest it formed by the gravitational collapse of a molecular cloud that was triggered by a nearby supernova. Existing lines of evidence, mostly in the form of short-lived radionuclides present in the early Solar System, are potentially consistent with this hypothesis, but still allow for alternative explanations. Since the natural production of 126Sn is thought to occur only in supernovae and this isotope has a short half-life (126Sn→126Te, t1/2 = 235 ky), the discovery of extant 126Sn would provide unequivocal proof of supernova input to the early Solar System. Previous attempts to quantify the initial abundance of 126Sn by examining Sn-Te systematics in early solids have been hampered by difficulties in precisely measuring Te isotope ratios in these materials. Thus, here we describe a novel technique that uses hydride generation to dramatically increase the ionization efficiency of Te-an approximately 30-fold increase over previous work. This introduction system, when coupled to a MC-ICPMS, enables high-precision Te isotopic analyses on samples with <10 ng of Te. We used this technique to analyze Te from a unique set of calcium-aluminum-rich inclusions (CAIs) that exhibit an exceptionally large range in Sn/Te ratios, facilitating the search for the short-lived isotope 126Sn. This sample set shows no evidence of live 126Sn, implying at most minor input of supernova material during the time at which the CAIs formed. However, based on the petrology of this sample set combined with the higher than expected concentrations of Sn and Te, as well as the lack of nucleosynthetic anomalies in other isotopes of Te suggest that the bulk of the Sn and Te recovered from these particular refractory inclusions is not of primary origin and thus does not represent a primary signature of Sn-Te systematics of the protosolar nebula during condensation of CAIs or their

  10. Ultrasound- and microwave-assisted extractions followed by hydride generation inductively coupled plasma optical emission spectrometry for lead determination in geological samples.

    PubMed

    Welna, Maja; Borkowska-Burnecka, Jolanta; Popko, Malgorzata

    2015-11-01

    Followed the current idea of simplified sample pretratmet before analysis we evaluated the procedure for the determination of Pb in calcium-rich materials such as dolomites after ultrasound- or microwave- assisted extraction with diluted acids using hydride generation inductively coupled plasma optical emission spectrometry (HG-ICP-OES). Corresponding Pb hydride was generated in the reaction of an acidified sample solution with NaBH4 after pre-oxidation of Pb(II) to Pb(IV) by K3[Fe(CN)6]. Several chemical (acidic media: HCl, HNO3 or CH3COOH, concentration of the reductant as well as type and concentration of oxidazing agents) and physical (reagents flow rates, reaction coil length) parameters affecting the efficiency of plumbane formation were optimized in order to improve the detectability of Pb using HG-ICP-OES. Limitation of the method derived from the matrix effects was pointed out. Employing Pb separation by HG technique allows the significant reduction of interferences caused by sample matrix constituents (mainly Ca and Mg), nevertheless they could not be overcame at all, hence calibration based on the standard addition method was recommended for Pb quantification in dolomites. Under the selected conditions, i.e. 0.3 mol L(-1) HCl, HNO3 or CH3COOH, 1.5% NaBH4 and 3.0% K3[Fe(CN)6] the limits of detection (LODs) between 2.3-5.6 μg L(-1) (3.4-6.8 μg L(-1) considering matrix effects) and the precision below 5% were achieved. The accuracy of the procedure was verified by analysis of certified reference materials (NCS DC70308 (Carbonate Rock) and NIST 14000 (Bone Ash)) and recovery test with satisfactory results of Pb recoveries ranging between 94-108% (CRMs analysis) and 92-114% (standard addition method). The applicability of the proposed method was demonstrated by the determination of Pb in dolomites used by different fertiliser factories.

  11. Unconstrained paving and plastering method for generating finite element meshes

    DOEpatents

    Staten, Matthew L.; Owen, Steven J.; Blacker, Teddy D.; Kerr, Robert

    2010-03-02

    Computer software for and a method of generating a conformal all quadrilateral or hexahedral mesh comprising selecting an object with unmeshed boundaries and performing the following while unmeshed voids are larger than twice a desired element size and unrecognizable as either a midpoint subdividable or pave-and-sweepable polyhedra: selecting a front to advance; based on sizes of fronts and angles with adjacent fronts, determining which adjacent fronts should be advanced with the selected front; advancing the fronts; detecting proximities with other nearby fronts; resolving any found proximities; forming quadrilaterals or unconstrained columns of hexahedra where two layers cross; and establishing hexahedral elements where three layers cross.

  12. Metal-hydride energy-technological processing of hydrogen

    NASA Astrophysics Data System (ADS)

    Solovei, V. V.

    1983-03-01

    The external and internal irreversibility of the thermochemical hydrogen compression cycle is analyzed in relation to the efficiency of heat utilization in a metal-hydride energy system. The properties of the working fluid and the design of the metal-hydride elements are shown to have a considerable effect on the thermodynamic performance of a heat-utilizing installation for hydrogen processing.

  13. Measurements of arsenite and arsenate contained in mining river waters and leached from contaminated sediments by sequential hydride generation flow injection analysis.

    PubMed

    Hashem, Md Abul; Takaki, Mari; Jodai, Takuma; Toda, Kei

    2011-06-15

    In this work, a new analytical method for gasifiable compounds based on sequential hydride generation flow injection analysis (SHGFIA) was applied to water analysis and leaching investigation. For water analysis, it was confirmed that 1 μg L(-1) As(III) and As(V) were stable for a few days when EDTA was added in the sample waters. Dissolved As(III) and total arsenic (As(III)+As(V)) were converted to AsH(3) in neutral and acidic medium, respectively, to transfer to a miniature gas scrubber (100 μL in absorber volume). The collected arsenic was successively measured by flow analysis based on molybdenum blue chemistry. With this system, changes in As(III) and As(V) concentrations of water placed with arsenic-contaminated-sediment was monitored in near real time. From these data, kinetic analyses were carried out and kinetic constant was obtained from plot of ln{(C(∞)-C)/C(∞)} where C and C(∞) were leached arsenic concentration and its final concentration, respectively. It was found that rate of As(III) leaching was much faster than that of As(V) while As(V) leached more in amount compared to As(III). In this work, it was demonstrated that kinetic investigation is also one of the important application of flow analysis. The SHGFIA system showed excellent performance for leaching analysis of arsenic with discrimination of As(III) and As(V).

  14. Masking Agents Evaluation for Lead Determination by Flow Injection-Hydride Generation-Atomic Fluorescence Spectrometry Technique: Effect of KI, L-Cysteine, and 1,10-Phenanthroline

    PubMed Central

    Beltrán, Blanca G.; Ferrer, Laura; Cerdà, Víctor

    2016-01-01

    Hydride generation (HG) of lead technique presents interferences from foreign ions of complex matrix samples. In order to minimize these interferences, the effect of masking agents such as KI, L-cysteine, and 1,10-phenanthroline was studied in the absence and in the presence of selected interfering species (As, Cr, Cu, and Fe). Different modes of addition of masking agents were accomplished, that is, to either sample or KBH4 reducing solution. The lead determinations were performed using a flow injection analysis (FIA) system coupled to HG and atomic fluorescence spectrometry (AFS). The linearity of calibration curves (1–10 μg Pb L−1) was not affected by the addition of the masking agents. The use of KI in the reducing solution diminished interferences from concentrations of As and Cu, while 1,10-phenanthroline showed a positive effect on the interference by As. Moreover, Cr and Cu appeared to be the most serious interfering ions for plumbane (PbH4), because they drastically reduced the analytical signal of lead. Fe did not present any interference under the employed experimental conditions, even at high levels. The accuracy was established through the analysis of certified reference material (i.e., BCR-610, groundwater) using KI as masking agent. The detection limit reached by FIA-HG-AFS proposed methodology was 0.03 μg Pb L−1. PMID:27148365

  15. On-line determination of Sb(III) and total Sb using baker's yeast immobilized on polyurethane foam and hydride generation inductively coupled plasma optical emission spectrometry

    NASA Astrophysics Data System (ADS)

    Menegário, Amauri A.; Silva, Ariovaldo José; Pozzi, Eloísa; Durrant, Steven F.; Abreu, Cassio H.

    2006-09-01

    The yeast Saccharomyces cerevisiae was immobilized in cubes of polyurethane foam and the ability of this immobilized material to separate Sb(III) and Sb(V) was investigated. A method based on sequential determination of total Sb (after on-line reduction of Sb(V) to Sb(III) with thiourea) and Sb(III) (after on-line solid-liquid phase extraction) by hydride generation inductively coupled plasma optical emission spectrometry is proposed. A flow system assembled with solenoid valves was used to manage all stages of the process. The effects of pH, sample loading and elution flow rates on solid-liquid phase extraction of Sb(III) were evaluated. Also, the parameters related to on-line pre-reduction (reaction coil and flow rates) were optimized. Detection limits of 0.8 and 0.15 μg L - 1 were obtained for total Sb and Sb(III), respectively. The proposed method was applied to the analysis of river water and effluent samples. The results obtained for the determination of total Sb were in agreement with expected values, including the river water Standard Reference Material 1640 certified by the National Institute of Standards and Technology (NIST). Recoveries of Sb(III) and Sb(V) in spiked samples were between 81 ± 19 and 111 ±15% when 120 s of sample loading were used.

  16. Determination of arsenobetaine, arsenocholine, and tetramethylarsonium cations in seafoods and human urine by high-performance liquid chromatography - thermochemical hydride generation - atomic absorption spectrometry

    SciTech Connect

    Momplaisir, G.M.; Blais, J.S.; Quinteiro, M.; Marshall, W.D. )

    1991-08-01

    A simple method was developed for the determination of arsonium compounds in edible marine tissues (lobster tail muscle, peeled deveined shrimp, cod fillet, and cod liver oil) and human urine. The homogenized marine tissue (5-10 g (or an equivalent weight of freeze-dried powder)) was blended with methanol; the extracts were combined and flash evaporated. Alternatively, urine (5 mL) was diluted with 50 mL of ethanol and placed in a dry ice-acetone bath for 20 min. Supernatant was separated from the resulting precipitate by centrifugation and flash evaporated. Residues from either sample type were resuspended in water, filtered through an anion exchanger, and acidified. The arsonium analytes were partitioned into liquefied phenol, which was diluted with diethyl ether and back extracted with water. The combined water extracts were taken to dryness, redissolved in methanol, concentrated to 1 mL, and separated on a cyanopropyl bonded-phase column using a methanolic mobile phase containing 19% (v/v) diethyl ether, 1% (v/v) acetic acid, 0.12% (v/v) triethylamine, and pricrylsulfonic acid (0.200 g/L). Analytes were detected on-line by thermochemical hydride generation-atomic absorption spectrometry. Recoveries from tissues or from urine which had been spiked at 0.1-3.4 {mu}g of cation/g of fresh weight were 83% or greater from each of the five sample types.

  17. Trace Lead Measurement and Online Removal of Matrix Interference in Geosamples by Ion-Exchange Coupled with Flow Injection and Hydride Generation Atomic Fluorescence Spectrometry

    PubMed Central

    Tan, Chun-Hua; Huang, Xu-Guang

    2009-01-01

    A flow injection method has been developed for the direct determination of free available Pb(II). The method is based on the chemical sorption of Pb(II), from pH7 solutions, on a column packed of chelating resin. The retained complex was afterwards eluted with hydrochloric acid followed by hydride generation with reduction by tetrahydroborate. The preconcentration system proposed in this paper allows the elimination of great part of the saline content in the sample. A thorough scrutiny was made for chemical variables and FI parameters. With a sampling volume of 10.5 mL, quantitative retention of Pb (II) was obtained, along with an enrichment factor of 40 and a sampling frequency of 15 h−1. The detection limit, defined as 3 times the blank standard deviation (3σ), was 0.0031 ngml−1. The precision was characterized by an RSD value of 3.78% (at the 4 ng·ml−1 level, n = 11). The developed method has been applied to the determination of trace Pb in three standard reference materials. Accuracy was assessed through comparing the results with the accepted values. PMID:19746179

  18. A comparative evaluation of different ionic liquids for arsenic species separation and determination in wine varietals by liquid chromatography - hydride generation atomic fluorescence spectrometry.

    PubMed

    Castro Grijalba, Alexander; Fiorentini, Emiliano F; Martinez, Luis D; Wuilloud, Rodolfo G

    2016-09-02

    The application of different ionic liquids (ILs) as modifiers for chromatographic separation and determination of arsenite [As(III)], arsenate [As(V)], dimethylarsonic acid (DMA) and monomethylarsonic acid (MMA) species in wine samples, by reversed-phase high performance liquid chromatography coupled to hydride generation atomic fluorescence spectrometry detection (RP-HPLC-HG-AFS) was studied in this work. Several factors influencing the chromatographic separation of the As species, such as pH of the mobile phase, buffer solution concentration, buffer type, IL concentration and length of alkyl groups in ILs were evaluated. The complete separation of As species was achieved using a C18 column in isocratic mode with a mobile phase composed of 0.5% (v/v) 1-octyl-3-methylimidazolium chloride ([C8mim]Cl) and 5% (v/v) methanol at pH 8.5. A multivariate methodology was used to optimize the variables involved in AFS detection of As species after they were separated by HPLC. The ILs showed remarkable performance for the separation of As species, which was obtained within 18min with a resolution higher than 0.83. The limits of detection for As(III), As(V), MMA and DMA were 0.81, 0.89, 0.62 and 1.00μg As L(-1). The proposed method was applied for As speciation analysis in white and red wine samples originated from different grape varieties.

  19. Masking Agents Evaluation for Lead Determination by Flow Injection-Hydride Generation-Atomic Fluorescence Spectrometry Technique: Effect of KI, L-Cysteine, and 1,10-Phenanthroline.

    PubMed

    Beltrán, Blanca G; Leal, Luz O; Ferrer, Laura; Cerdà, Víctor

    2016-01-01

    Hydride generation (HG) of lead technique presents interferences from foreign ions of complex matrix samples. In order to minimize these interferences, the effect of masking agents such as KI, L-cysteine, and 1,10-phenanthroline was studied in the absence and in the presence of selected interfering species (As, Cr, Cu, and Fe). Different modes of addition of masking agents were accomplished, that is, to either sample or KBH4 reducing solution. The lead determinations were performed using a flow injection analysis (FIA) system coupled to HG and atomic fluorescence spectrometry (AFS). The linearity of calibration curves (1-10 μg Pb L(-1)) was not affected by the addition of the masking agents. The use of KI in the reducing solution diminished interferences from concentrations of As and Cu, while 1,10-phenanthroline showed a positive effect on the interference by As. Moreover, Cr and Cu appeared to be the most serious interfering ions for plumbane (PbH4), because they drastically reduced the analytical signal of lead. Fe did not present any interference under the employed experimental conditions, even at high levels. The accuracy was established through the analysis of certified reference material (i.e., BCR-610, groundwater) using KI as masking agent. The detection limit reached by FIA-HG-AFS proposed methodology was 0.03 μg Pb L(-1).

  20. Synthesis of ruthenium hydride

    NASA Astrophysics Data System (ADS)

    Kuzovnikov, M. A.; Tkacz, M.

    2016-02-01

    Ruthenium hydride was synthesized at a hydrogen pressure of about 14 GPa in a diamond-anvil cell. Energy-dispersive x-ray diffraction was used to monitor the ruthenium crystal structure as a function of hydrogen pressure up to 30 GPa. The hydride formation was accompanied by phase transition from the original hcp structure of the pristine metal to the fcc structure. Our results confirmed the theoretical prediction of ruthenium hydride formation under hydrogen pressure. The standard Gibbs free energy of the ruthenium hydride formation reaction was calculated assuming the pressure of decomposition as the equilibrium pressure.

  1. Generating unaveraged equations of motion in common orbital elements

    NASA Astrophysics Data System (ADS)

    Veras, Dimitri

    2014-05-01

    Cartesian equations of motion must be converted or integrated in order to impart information about the evolution of orbital elements such as the semimajor axis, eccentricity, inclination, longitude of ascending node, argument of pericentre and true anomaly. Alternatively, equations of motion in terms of only these orbital elements can reveal aspects of the motion simply by inspection. I advertise a quick method to generate such equations for perturbed two-body problems, where the perturbation may be arbitrarily large, and where no averaging is involved. I use the method to generate complete unaveraged equations from perturbations due to Poynting-Robertson drag, general relativity, mass loss, Galactic tides, and additional massive bodies under the guise of the general restricted few-body problem.

  2. In situ generated bulky palladium hydride complexes as catalysts for the efficient isomerization of olefins. Selective transformation of terminal alkenes to 2-alkenes.

    PubMed

    Gauthier, Delphine; Lindhardt, Anders T; Olsen, Esben P K; Overgaard, Jacob; Skrydstrup, Troels

    2010-06-16

    Application of an in situ generated bulky palladium(II) hydride catalyst obtained from a 1:1:1 mixture of Pd(dba)(2), P(tBu)(3), and isobutyryl chloride provides an efficient protocol for the isomerization and migration of a variety of olefins. In addition to the isomerization of (Z)- to (E)-olefins, the conjugative migration of allylbenzenes, allyl ethers, and amines was effectively achieved in near-quantitative yields and with excellent functional group tolerance. Catalyst loadings in the range of 0.5-1.0 mol % were typically applied, but even loadings as low as 0.25 mol % could be achieved when the reactions were performed under neat conditions. More interestingly, the investigated catalyst proved to be selective for converting terminal alkenes to 2-alkenes. This one-carbon migration process for monosubstituted olefins provides an alternative catalyst, which bridges the gap between the allylation and propenylation/vinylation protocols. Several substrates, including homoallylic alcohols and amines, were selectively transformed into their corresponding 2-alkenes, and examples using enantiomerically enriched substrates provided products without epimerization at the allylic stereogenic carbon centers. Finally, some mechanistic investigations were undertaken to understand the nature of the active in situ generated Pd-H catalyst. These studies revealed that the catalytic system is highly dependent on the large steric demand of the P(tBu)(3) ligand. The use of an alternative ligand, cataCXium PinCy, also proved effective for generating an active catalyst, and it was demonstrated in some cases to display better selectivity for the one-carbon shifts of terminal olefins. A possible intermediate involved in the preparation of the active catalyst was characterized by its single-crystal X-ray structure, which revealed a monomeric tricoordinated palladium(II) acyl complex, bearing a chloride ligand.

  3. Development of an analytical method for the determination of arsenic in gasoline samples by hydride generation-graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Becker, Emilene M.; Dessuy, Morgana B.; Boschetti, Wiliam; Vale, Maria Goreti R.; Ferreira, Sérgio L. C.; Welz, Bernhard

    2012-05-01

    The purpose of the present work was to optimize the conditions for the determination of arsenic in gasoline with hydride generation-graphite furnace atomic absorption spectrometry after acid digestion using a full two-level factorial design with center point. The arsine was generated in a batch system and collected in a graphite tube coated with 150 μg Ir as a permanent modifier. The sample volume, the pre-reduction conditions, the temperature program and modifier mass were kept fixed for all experiments. The estimated main effects were: reducing agent concentration (negative effect), acid concentration (negative effect) and trapping temperature (positive effect). It was observed that there were interactions between the variables. Moreover, the curvature was significant, indicating that the best conditions were at the center point. The optimized parameters for arsine generation were 2.7 mol L- 1 hydrochloric acid and 1.6% (w/v) sodium tetrahydroborate. The optimized conditions to collect arsine in the graphite furnace were a trapping temperature of 250 °C and a collection time of 30 s. The limit of detection was 6.4 ng L- 1 and the characteristic mass was 24 pg. Two different systems for acid digestion were used: a digester block with cold finger and a microwave oven. The concentration of arsenic found with the proposed method was compared with that obtained using a detergentless microemulsion and direct graphite furnace determination. The results showed that the factorial design is a simple tool that allowed establishing the appropriate conditions for sample preparation and also helped in evaluating the interaction between the factors investigated.

  4. Storage, generation, and use of hydrogen

    DOEpatents

    McClaine, Andrew W.; Rolfe, Jonathan L.; Larsen, Christopher A.; Konduri, Ravi K.

    2006-05-30

    A composition comprising a carrier liquid; a dispersant; and a chemical hydride. The composition can be used in a hydrogen generator to generate hydrogen for use, e.g., as a fuel. A regenerator recovers elemental metal from byproducts of the hydrogen generation process.

  5. Hydride generation coupled to microfunnel-assisted headspace liquid-phase microextraction for the determination of arsenic with UV-Vis spectrophotometry.

    PubMed

    Hashemniaye-Torshizi, Reihaneh; Ashraf, Narges; Arbab-Zavar, Mohammad Hossein

    2014-12-01

    In this research, a microfunnel-assisted headspace liquid-phase microextraction technique has been used in combination with hydride generation to determine arsenic (As) by UV-Vis spectrophotometry. The method is based on the reduction of As to arsine (AsH3) in acidic media by sodium tetrahydroborate (NaBH4) followed by its subsequent reaction with silver diethyldithiocarbamate (AgDDC) to give an absorbing complex at 510 nm. The complexing reagent (AgDDC) has been dissolved in a 1:1 (by the volume ratio) mixture of chloroform/chlorobenzene microdroplet and exposed to the generated gaseous arsine via a reversed microfunnel in the headspace of the sample solution. Several operating parameters affecting the performance of the method have been examined and optimized. Acetonitrile solvent has been added to the working samples as a sensitivity enhancement agent. Under the optimized operating conditions, the detection limit has been measured to be 0.2 ng mL(-1) (based on 3sb/m criterion, n b = 8), and the calibration curve was linear in the range of 0.5-12 ng mL(-1). The relative standard deviation for eight replicate measurements was 1.9 %. Also, the effects of several potential interferences have been studied. The accuracy of the method was validated through the analysis of JR-1 geological standard reference material. The method has been successfully applied for the determination of arsenic in raw and spiked soft drink and water samples with the recoveries that ranged from 91 to 106 %.

  6. Hysteresis in Metal Hydrides.

    ERIC Educational Resources Information Center

    Flanagan, Ted B., And Others

    1987-01-01

    This paper describes a reproducible process where the irreversibility can be readily evaluated and provides a thermodynamic description of the important phenomenon of hysteresis. A metal hydride is used because hysteresis is observed during the formation and decomposition of the hydride phase. (RH)

  7. Hydrogen storage in the form of metal hydrides

    NASA Technical Reports Server (NTRS)

    Zwanziger, M. G.; Santana, C. C.; Santos, S. C.

    1984-01-01

    Reversible reactions between hydrogen and such materials as iron/titanium and magnesium/ nickel alloy may provide a means for storing hydrogen fuel. A demonstration model of an iron/titanium hydride storage bed is described. Hydrogen from the hydride storage bed powers a converted gasoline electric generator.

  8. A novel analytical system involving hydride generation and gold-coated W-coil trapping atomic absorption spectrometry for selenium determination at ng l - 1 level

    NASA Astrophysics Data System (ADS)

    Kula, İ.; Arslan, Y.; Bakırdere, S.; Ataman, O. Y.

    2008-08-01

    A novel analytical technique was developed where gaseous hydrogen selenide formed by sodium tetrahydroborate reduction is transported to and trapped on a resistively heated gold-coated W-coil atom trap for in situ preconcentration. Gold coating on W-coil was prepared by using an organic solution of Au. The atom trap is held at 165 °C during the collection stage and is heated up to 675 °C for revolatilization; analyte species formed are transported to an externally heated quartz T-tube where the atomization takes place and the transient signal is obtained. The carrier gas consisted of 112.5 ml min - 1 Ar with 75 ml min - 1 H 2 during the collection step and 112.5 ml min - 1 Ar with 450 ml min - 1 H 2 in the revolatilization step. The half width of the transient signal obtained is less than 0.5 s. The RSD for the measurements was found to be 3.9% ( n = 11) for 0.10 µg l - 1 Se using peak height measurements. The calibration plot for 27.0 ml of sample collected in 4.0 min using a flow rate of 6.75 ml min - 1 was linear between 0.13 and 2.0 µg l - 1 of Se. The limit of detection (3 s) is 39 ng l - 1 . The enhancement factor for the characteristic concentration ( Co) was found to be 20.1 when compared to conventional hydride generation atomic absorption spectrometry system without trap. In order to check the accuracy of the method, standard reference material, natural water NIST 1640 was employed; the result was found to be in good agreement with the certified value at the 95% confidence level.

  9. Speciation Analysis of Arsenic by Selective Hydride Generation-Cryotrapping-Atomic Fluorescence Spectrometry with Flame-in-Gas-Shield Atomizer: Achieving Extremely Low Detection Limits with Inexpensive Instrumentation

    PubMed Central

    2015-01-01

    This work describes the method of a selective hydride generation-cryotrapping (HG-CT) coupled to an extremely sensitive but simple in-house assembled and designed atomic fluorescence spectrometry (AFS) instrument for determination of toxicologically important As species. Here, an advanced flame-in-gas-shield atomizer (FIGS) was interfaced to HG-CT and its performance was compared to a standard miniature diffusion flame (MDF) atomizer. A significant improvement both in sensitivity and baseline noise was found that was reflected in improved (4 times) limits of detection (LODs). The yielded LODs with the FIGS atomizer were 0.44, 0.74, 0.15, 0.17 and 0.67 ng L–1 for arsenite, total inorganic, mono-, dimethylated As and trimethylarsine oxide, respectively. Moreover, the sensitivities with FIGS and MDF were equal for all As species, allowing for the possibility of single species standardization with arsenate standard for accurate quantification of all other As species. The accuracy of HG-CT-AFS with FIGS was verified by speciation analysis in two samples of bottled drinking water and certified reference materials, NRC CASS-5 (nearshore seawater) and SLRS-5 (river water) that contain traces of methylated As species. As speciation was in agreement with results previously reported and sums of all quantified species corresponded with the certified total As. The feasibility of HG-CT-AFS with FIGS was also demonstrated by the speciation analysis in microsamples of exfoliated bladder epithelial cells isolated from human urine. The results for the sums of trivalent and pentavalent As species corresponded well with the reference results obtained by HG-CT-ICPMS (inductively coupled plasma mass spectrometry). PMID:25300934

  10. Arsenic fractionation in agricultural soil using an automated three-step sequential extraction method coupled to hydride generation-atomic fluorescence spectrometry.

    PubMed

    Rosas-Castor, J M; Portugal, L; Ferrer, L; Guzmán-Mar, J L; Hernández-Ramírez, A; Cerdà, V; Hinojosa-Reyes, L

    2015-05-18

    A fully automated modified three-step BCR flow-through sequential extraction method was developed for the fractionation of the arsenic (As) content from agricultural soil based on a multi-syringe flow injection analysis (MSFIA) system coupled to hydride generation-atomic fluorescence spectrometry (HG-AFS). Critical parameters that affect the performance of the automated system were optimized by exploiting a multivariate approach using a Doehlert design. The validation of the flow-based modified-BCR method was carried out by comparison with the conventional BCR method. Thus, the total As content was determined in the following three fractions: fraction 1 (F1), the acid-soluble or interchangeable fraction; fraction 2 (F2), the reducible fraction; and fraction 3 (F3), the oxidizable fraction. The limits of detection (LOD) were 4.0, 3.4, and 23.6 μg L(-1) for F1, F2, and F3, respectively. A wide working concentration range was obtained for the analysis of each fraction, i.e., 0.013-0.800, 0.011-0.900 and 0.079-1.400 mg L(-1) for F1, F2, and F3, respectively. The precision of the automated MSFIA-HG-AFS system, expressed as the relative standard deviation (RSD), was evaluated for a 200 μg L(-1) As standard solution, and RSD values between 5 and 8% were achieved for the three BCR fractions. The new modified three-step BCR flow-based sequential extraction method was satisfactorily applied for arsenic fractionation in real agricultural soil samples from an arsenic-contaminated mining zone to evaluate its extractability. The frequency of analysis of the proposed method was eight times higher than that of the conventional BCR method (6 vs 48 h), and the kinetics of lixiviation were established for each fraction.

  11. Ionic liquid-assisted separation and determination of selenium species in food and beverage samples by liquid chromatography coupled to hydride generation atomic fluorescence spectrometry.

    PubMed

    Castro Grijalba, Alexander; Fiorentini, Emiliano F; Wuilloud, Rodolfo G

    2017-03-31

    Different ionic liquids (ILs) were assayed as mobile phase modifiers for the separation and determination of selenite [Se(IV)], selenate [Se(VI)], selenomethionine (SeMet) and Se-methylselenocysteine (SeMeSeCys) by reversed-phase high-performance liquid chromatography coupled to hydride generation atomic fluorescence spectrometry (RP-HPLC-HG-AFS). The use of several ILs: 1-butyl-3-methylimidazolium chloride, 1-hexyl-3-methylimidazolium chloride ([C6mim]Cl), 1-octyl-3-methylimidazolium chloride, 1-dodecyl-3-methylimidazolium bromide, 1-hexadecyl-3-methylimidazolium bromide and tributyl(methyl)phosphonium methylsulphate was evaluated. Also, the effect of pH, buffer type and IL concentration on the separation of Se species was studied. Complete separation was attained within 12min using a C8 column and a gradient performed with a mobile phase containing 0.1% (v/v) [C6mim]Cl at pH 6.0. The proposed method allows the separation of inorganic and organic Se species in a single chromatographic run, adding further benefits over already reported methods based on RP-HPLC. In addition, the influence of ILs on the AFS signals of each Se species was evaluated and a multivariate methodology was used for optimization of AFS sensitivity. The limits of detection were 0.92, 0.86, 1.41 and 1.19μgL(-1) for Se(IV), Se(VI), SeMet and SeMeSeCys, respectively. The method was successfully applied for speciation analysis of Se in complex samples, such as wine, beer, yeast and garlic.

  12. Chemistry of intermetallic hydrides

    SciTech Connect

    Reilly, J.J.

    1991-01-01

    Certain intermetallic hydrides are safe, convenient and inexpensive hydrogen storage compounds. A particular advantage of such compounds is the ease with which their properties can be modified by small changes in alloy composition or preparation. This quality can be exploited to optimize their storage properties for particular applications, e.g. as intermetallic hydride electrodes in batteries. We will be concerned herein with the more important aspects of the thermodynamic and structural principles which regulate the behavior of intermetallic hydrogen systems and then illustrate their application using the archetype hydrides of LaNi5, FeTi and Mg alloys. The practical utility of these classes of materials will be briefly noted.

  13. Placing three-dimensional isoparametric elements into NASTRAN. [alterations in matrix assembly to simplify generation of higher order elements

    NASA Technical Reports Server (NTRS)

    Newman, M. B.; Filstrup, A. W.

    1973-01-01

    Linear (8 node), parabolic (20 node), cubic (32 node) and mixed (some edges linear, some parabolic and some cubic) have been inserted into NASTRAN, level 15.1. First the dummy element feature was used to check out the stiffness matrix generation routines for the linear element in NASTRAN. Then, the necessary modules of NASTRAN were modified to include the new family of elements. The matrix assembly was changed so that the stiffness matrix of each isoparametric element is only generated once as the time to generate these higher order elements tends to be much longer than the other elements in NASTRAN. This paper presents some of the experiences and difficulties of inserting a new element or family of elements into NASTRAN.

  14. Regenerative Hydride Heat Pump

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    1992-01-01

    Hydride heat pump features regenerative heating and single circulation loop. Counterflow heat exchangers accommodate different temperatures of FeTi and LaNi4.7Al0.3 subloops. Heating scheme increases efficiency.

  15. Hydride heat pump

    DOEpatents

    Cottingham, James G.

    1977-01-01

    Method and apparatus for the use of hydrides to exhaust heat from one temperature source and deliver the thermal energy extracted for use at a higher temperature, thereby acting as a heat pump. For this purpose there are employed a pair of hydridable metal compounds having different characteristics working together in a closed pressure system employing a high temperature source to upgrade the heat supplied from a low temperature source.

  16. Laboratory Rotational Spectroscopy of the Interstellar Diatomic Hydride Ion SH+ (X 3Σ-)

    NASA Astrophysics Data System (ADS)

    Halfen, DeWayne; Ziurys, Lucy M.

    2016-06-01

    Diatomic hydride are among the most common molecular species in the interstellar medium (ISM). The low molecular mass and thus moments of inertia cause their rotational spectra to lie principally in the submillimeter and far-infrared regions. Diatomic hydrides, both neutral (MH) and ionic (MH+) forms, are also basic building blocks of interstellar chemistry. In ionic form, they may be the “hidden” carriers of refractory elements in dense gas. They are therefore extremely good targets for space-borne and airborne platforms such as Herschel, SOFIA, and SAFIR. However, in order to detect these species in the ISM, their rotational spectra must first be measured in the laboratory. To date, there is very little high resolution data available for many hydride species, in particular the ionic form. Using submillimeter/THz direct absorption methods in the Ziurys laboratory, spectra of the interstellar diatomic hydride SH+ (X 3Σ-) have been recorded. Recent work has concerned measurement of all three fine structure components of the fundamental rotational transition N = 1 ← 0 in the range 345 - 683 GHz. SH+ was generated from H2S and argon in an AC discharge. The data have been analyzed, and spectroscopic constants for this species have been refined. SH+ is found in Photon Dominated Regions (PDRs) and X-ray Dominated Regions (XDRs) and is thought to trace energetic processes in the ISM. These current measurements confirm recent observations of this species at submillimeter/THz wavelengths with ALMA and other ground-based telescopes.

  17. On-line UV-photooxidation with peroxodisulfate for automated flow injection and for high-performance liquid chromatography coupled to hydride generation atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Tsalev, Dimiter L.; Sperling, Michael; Welz, Bernhard

    2000-04-01

    An automated on-line UV photooxidation with peroxodisulfate of some environmentally relevant organoarsenic and organotin compounds in a system built from commercially available modules has been studied and optimised with a view to both species-independent quantification of the total arsenic or tin in samples containing different organic species by flow injection hydride generation atomic absorption spectrometry (FI-HGAAS) and speciation analysis by coupled high-performance liquid chromatography (HPLC) with HGAAS detection. For organoarsenicals, the reaction with alkaline peroxodisulfate in a 10-15-m knotted reactor for >1.5 min insures >90% transformation of inorganic As(III) and six organoarsenic species to arsenate: monomethylarsonate, dimethylarsinate, arsenobetaine, arsenocholine, trimethylarsine oxide and tetramethylarsonium. For organotins, the UV photooxidation with acidic peroxodisulfate at 95-100°C provides recoveries of >80% for the inorganic tin, dimethyltin, trimethyltin, triethyltin, tripropyltin, triphenyltin, monobutyltin, dibutyltin and tributyltin but only approximately 15% for tetrabutyltin. The best characteristic masses in integrated absorbance ( Aint) and peak-height ( Ap) measurements, respectively, are 30 pg and 480 pg for arsenic(V) and 22 pg and 410 pg for tin(IV), employing 100-μl injections. The RSDs are 5.5% and 8.5% at 5 ng As(V) levels and 4.3% and 6.4% at 10 ng Sn(IV) levels in Aint and Ap modes, respectively. The limits of detection (LOD, 3σ) for As are 7 μg l -1 and 4 μg l -1 in FI-UV-HGAAS and HPLC-UV-HGAAS, respectively. The LODs for i-Sn(IV) are 2 μg l -1 in FI-UV-HGAAS, with both Aint and Ap measurements. The sample throughput rates are 20 and 12 samples per hour with 10-m and 15-m knotted reactors (i.d. 0.5 mm), respectively. Urine certified reference materials containing 0.052-0.48 μg ml -1 As have been analysed for their total arsenic content.

  18. Metal interferences and their removal prior to the determination of As(T) and As(III) in acid mine waters by hydride generation atomic absorption spectrometry

    USGS Publications Warehouse

    McCleskey, R. Blaine; Nordstrom, D. Kirk; Ball, James W.

    2003-01-01

    Hydride generation atomic absorption spectrometry (HGAAS) is a sensitive and selective method for the determination of total arsenic (arsenic(III) plus arsenic(V)) and arsenic(III); however, it is subject to metal interferences for acid mine waters. Sodium borohydride is used to produce arsine gas, but high metal concentrations can suppress arsine production. This report investigates interferences of sixteen metal species including aluminum, antimony(III), antimony(V), cadmium, chromium(III), chromium(IV), cobalt, copper(II), iron(III), iron(II), lead, manganese, nickel, selenium(IV), selenium(VI), and zinc ranging in concentration from 0 to 1,000 milligrams per liter and offers a method for removing interfering metal cations with cation exchange resin. The degree of interference for each metal without cation-exchange on the determination of total arsenic and arsenic(III) was evaluated by spiking synthetic samples containing arsenic(III) and arsenic(V) with the potential interfering metal. Total arsenic recoveries ranged from 92 to 102 percent for all metals tested except antimony(III) and antimony(V) which suppressed arsine formation when the antimony(III)/total arsenic molar ratio exceeded 4 or the antimony(V)/total arsenic molar ratio exceeded 2. Arsenic(III) recoveries for samples spiked with aluminum, chromium(III), cobalt, iron(II), lead, manganese, nickel, selenium(VI), and zinc ranged from 84 to 107 percent over the entire concentration range tested. Low arsenic(III) recoveries occurred when the molar ratios of metals to arsenic(III) were copper greater than 120, iron(III) greater than 70, chromium(VI) greater than 2, cadmium greater than 800, antimony(III) greater than 3, antimony(V) greater than 12, or selenium(IV) greater than 1. Low recoveries result when interfering metals compete for available sodium borohydride, causing incomplete arsine production, or when the interfering metal oxidizes arsenic(III). Separation of interfering metal cations using

  19. [Study on Content Determination of Lead and Arsenic in Four Traditional Tibetan Medicine Prescription Preparations by Wet Digestion Flow Injection-Hydride Generation-Atomic Absorption Spectrometry].

    PubMed

    Zheng, Zhi-yuan; Du, Yu-zhi; Zhang, Ming; Yu, Ming-jie; Li, Cen; Yang, Hong-xia; Zhao, Jing; Xia, Zheng-hua; Wei, Li-xin

    2015-04-01

    Four common traditional tibetan medicine prescription preparations "Anzhijinghuasan, Dangzuo, Renqingchangjue and Rannasangpei" in tibetan areas were selected as study objects in the present study. The purpose was to try to establish a kind of wet digestion and flow injection-hydride generation-atomic absorption spectrometry (FI-HAAS) associated analysis method for the content determinations of lead and arsenic in traditional tibetan medicine under optimized digestion and measurement conditions and determine their contents accurately. Under these optimum operating conditions, experimental results were as follows. The detection limits for lead and arsenic were 0.067 and 0.012 µg · mL(-1) respectively. The quantification limits for lead and arsenic were 0.22 and 0.041 µg · mL(-1) respectively. The linear ranges for lead and arsenic were 25-1,600 ng · mL(-1) (r = 0.9995) and 12.5-800 ng · mL(-1) (r = 0.9994) respectively. The degrees of precision(RSD) for lead and arsenic were 2.0% and 3.2% respectively. The recovery rates for lead and arsenic were 98.00%-99.98% and 96.67%-99.87% respectively. The content determination results of lead and arsenic in four traditional tibetan medicine prescription preparations were as fol- lows. The contents of lead and arsenic in Anzhijinghuasan are 0.63-0.67 µg · g(-1) and 0.32-0.33 µg · g(-1) in Anzhijinghua- san, 42.92-43.36 µg · g(-1) and 24.67-25.87 µg · g(-1) in Dangzuo, 1,611. 39-1,631.36 µg · g(-1) and 926.76-956.52 µg- g(-1) in Renqing Changjue, and 1,102.28-1,119.127 µg-g(-1) and 509.96-516.87 µg · g(-1) in Rannasangpei, respectively. This study established a method for content determination of lead and arsenic in traditional tibetan medicine, and determined the content levels of lead and arsenic in four tibetan medicine-prescription preparations accurately. In addition, these results also provide the basis for the safe and effective use of those medicines in clinic.

  20. Extraction and applications of skeletons in finite element mesh generation.

    SciTech Connect

    Quadros, William Roshan

    2010-05-01

    This paper focuses on the extraction of skeletons of CAD models and its applications in finite element (FE) mesh generation. The term 'skeleton of a CAD model' can be visualized as analogous to the 'skeleton of a human body'. The skeletal representations covered in this paper include medial axis transform (MAT), Voronoi diagram (VD), chordal axis transform (CAT), mid surface, digital skeletons, and disconnected skeletons. In the literature, the properties of a skeleton have been utilized in developing various algorithms for extracting skeletons. Three main approaches include: (1) the bisection method where the skeleton exists at equidistant from at least two points on boundary, (2) the grassfire propagation method in which the skeleton exists where the opposing fronts meet, and (3) the duality method where the skeleton is a dual of the object. In the last decade, the author has applied different skeletal representations in all-quad meshing, hex meshing, mid-surface meshing, mesh size function generation, defeaturing, and decomposition. A brief discussion on the related work from other researchers in the area of tri meshing, tet meshing, and anisotropic meshing is also included. This paper concludes by summarizing the strengths and weaknesses of the skeleton-based approaches in solving various geometry-centered problems in FE mesh generation. The skeletons have proved to be a great shape abstraction tool in analyzing the geometric complexity of CAD models as they are symmetric, simpler (reduced dimension), and provide local thickness information. However, skeletons generally require some cleanup, and stability and sensitivity of the skeletons should be controlled during extraction. Also, selecting a suitable application-specific skeleton and a computationally efficient method of extraction is critical.

  1. Uranium Hydride Nucleation and Growth Model FY'16 ESC Annual Report

    SciTech Connect

    Hill, Mary Ann; Richards, Andrew Walter; Holby, Edward F.; Schulze, Roland K.

    2016-12-20

    Uranium hydride corrosion is of great interest to the nuclear industry. Uranium reacts with water and/or hydrogen to form uranium hydride which adversely affects material performance. Hydride nucleation is influenced by thermal history, mechanical defects, oxide thickness, and chemical defects. Information has been gathered from past hydride experiments to formulate a uranium hydride model to be used in a Canned Subassembly (CSA) lifetime prediction model. This multi-scale computer modeling effort started in FY’13 and the fourth generation model is now complete. Additional high resolution experiments will be run to further test the model.

  2. Lightweight hydride storage materials

    SciTech Connect

    Thomas, G.J.; Guthrie, S.E.; Bauer, W.

    1995-09-01

    The need for lightweight hydrides in vehicular applications has prompted considerable research into the use of magnesium and its alloys. Although this earlier work has provided some improved performance in operating temperature and pressure, substantial improvements are needed before these materials will significantly enhance the performance of an engineered system on a vehicle. We are extending the work of previous investigators on Mg alloys to reduce the operating temperature and hydride heat of formation in light weight materials. Two important results will be discussed in this paper: (1) a promising new alloy hydride was found which has better pressure-temperature characteristics than any previous Mg alloy and, (2) a new fabrication process for existing Mg alloys was developed and demonstrated. The new alloy hydride is composed of magnesium, aluminum and nickel. It has an equilibrium hydrogen overpressure of 1.3 atm. at 200{degrees}C and a storage capacity between 3 and 4 wt.% hydrogen. A hydrogen release rate of approximately 5 x 10{sup -4} moles-H{sub 2}/gm-min was measured at 200{degrees}C. The hydride heat of formation was found to be 13.5 - 14 kcal/mole-H{sub 2}, somewhat lower than Mg{sub 2}Ni. The new fabrication method takes advantage of the high vapor transport of magnesium. It was found that Mg{sub 2}Ni produced by our low temperature process was better than conventional materials because it was single phase (no Mg phase) and could be fabricated with very small particle sizes. Hydride measurements on this material showed faster kinetic response than conventional material. The technique could potentially be applied to in-situ hydride bed fabrication with improved packing density, release kinetics, thermal properties and mechanical stability.

  3. Heat-mass flow enhancement system for a metal hydride assembly

    NASA Astrophysics Data System (ADS)

    Argabright, T. A.

    1985-02-01

    Southern California Gas Company and Solar Turbines Incorporated are cooperating in the development and demonstration of a metal hydride/chemical heat pump (MHHP). In the design of the MHHP, heat transfer was considered to be the key technical study area. The goal of this effort is improved heat transfer and reduced thermal mass in a hydride heat exchanger/containment assembly. Phase 1 resulted in the detailed design of an advanced hydride heat exchanger. Phase 2 consisted of the experimental verification of the hydride alloy design data, fabrication of the hydride heat exchanger module components, heat transfer testing of the single heat exchanger element and preliminary performance testing of the entire module. Phase 3 was devoted to the complete characterization of the hydride heat exchanger modules through further operation and testing. A review of other possible hydride heat transfer concepts was also conducted in Phase 2.

  4. Parameter sampling and metamodel generation for nonlinear finite element simulations

    SciTech Connect

    Cundy, A. L.; Schultze, J. F.; Hemez, F. M.; Doebling, S. W.; Hylok, J. E.; Bingham, D.

    2002-01-01

    This research addresses the problem of analyzing the nonlinear transient response of a structural dynamics simulation. A threaded joint assembly's response to impulse loading has been studied. Twelve parameters relating to the input level, preloads of the joint and friction between components are thought to influence the acceleration response of the structure. Due to the high cost of physical testing and large amount of computation time to run numerical models a fastrunning metamodel is being developed. In this case, a metamodel is a statistically developed surrogate to the physics-based finite element model and can be evaluated in minutes on a single processor desktop computer. An unreasonable number of runs is required (312>500,000) to generate a three level full factorial design with 12 parameters for metamodel creation. Some manner of down-selecting or variable screening is needed in order to determine which of the parameters most affect the response and should be retained in subsequent models. A comparision of screening methods to general sensitivity analysis was conducted. A significant effects methodology, which involves a design of experiments technique has been examined. In this method, all parameters were first included in the model and then eliminated on the basis of statistical contributions associated with each parameter. Bayesian variable screening techniques, in which probabilities of effects are generated and updated, have also been explored, Encouraging results have been obtained, as the two methods yield similar sets of statistically significant parameters. Both methods have been compared to general sensitivity analysis (GSA). The resulting compact metamodel can then be explored at more levels to appropriately capture the underlying physics of the threaded assembly with a much smaller set of simulations.

  5. Selective and sensitive determination of As(III) and tAs in Chinese herbal medicine samples using L-cysteine modified carbon paste electrode-based electrolytic hydride generation and AFS analysis.

    PubMed

    Lu, Xiao-Ping; Yang, Xin-An; Liu, Lin; Hu, Hui-Hui; Zhang, Wang-Bing

    2017-04-01

    A novel non-chromatographic speciation technique for ultra-trace arsenite [As(III)] and total arsenic (tAs) in Chinese herbal medicine (CHM) is developed and validated by electrolytic hydride generation (EHG) coupled with atomic fluorescence spectrometry (AFS). The studies show that As(III) can be converted efficiently to AsH3 on an L-cysteine modified carbon paste electrode (CMCPE), which has never been reported before. Significantly, other arsenic species such as arsenate [As(V)], monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) do not form any or only less volatile hydrides at low applied current mode (<1.0 A). The results also demonstrate that L-cysteine and graphite powder play different roles in the electrolytic generation of AsH3. Comparing with the traditional graphite electrode, CMCPE has better stability, sensitivity and interference tolerance. Under the optimal conditions, the limit of detection (LOD) of tAs and As(III) for this method are 0.087µgL(-1) and 0.095µgL(-1) respectively. The accuracy of the method is verified through the analysis of reference materials (CRM 08231 and SRM1568a), and the proposed method has been applied satisfactorily to the determination of As(III) and tAs in several CHM samples.

  6. Solar Electric Generating System II finite element analysis

    SciTech Connect

    Dohner, J.L.; Anderson, J.R.

    1994-04-01

    On June 2, 1992, Landers` earthquake struck the Solar Electric Generating System II, located in Daggett, California. The 30 megawatt power station, operated by the Daggett Leasing Corporation (DLC), suffered substantial damage due to structural failures in the solar farm. These failures consisted of the separation of sliding joints supporting a distribution of parabolic glass mirrors. At separation, the mirrors fell to the ground and broke. It was the desire of the DLC and the Solar Thermal Design Assistance Center (STDAC) of Sandia National Laboratories (SNL) and to redesign these joints so that, in the event of future quakes, costly breakage will be avoided. To accomplish this task, drawings of collector components were developed by the STDAC, from which a detailed finite element computer model of a solar collector was produced. This nonlinear dynamic model, which consisted of over 8,560 degrees of freedom, underwent model reduction to form a low order nonlinear dynamic model containing only 40 degrees of freedom. This model was then used as a design tool to estimate joint dynamics. Using this design tool, joint configurations were modified, and an acceptable joint redesign determined. The results of this analysis showed that the implementation of metal stops welded to support shafts for the purpose of preventing joint separation is a suitable joint redesign. Moreover, it was found that, for quakes of Landers` magnitude, mirror breakage due to enhanced vibration in the trough assembly is unlikely.

  7. ORNL Interim Progress Report on Hydride Reorientation CIRFT Tests

    SciTech Connect

    Wang, Jy-An John; Yan, Yong; Wang, Hong

    2016-10-28

    A systematic study of H. B. Robinson (HBR) high burnup spent nuclear fuel (SNF) vibration integrity was performed in Phase I project under simulated transportation environments, using the Cyclic Integrated Reversible-Bending Fatigue Tester (CIRFT) hot cell testing technology developed at Oak Ridge National Laboratory in 2013–14. The data analysis on the as-irradiated HBR SNF rods demonstrated that the load amplitude is the dominant factor that controls the fatigue life of bending rods. However, previous studies have shown that the hydrogen content and hydride morphology has an important effect on zirconium alloy mechanical properties. To address the effect of radial hydrides in SNF rods, in Phase II a test procedure was developed to simulate the effects of elevated temperatures, pressures, and stresses during transfer-drying operations. Pressurized and sealed fuel segments were heated to the target temperature for a preset hold time and slow-cooled at a controlled rate. The procedure was applied to both non-irradiated/prehydrided and high-burnup Zircaloy-4 fueled cladding segments using the Nuclear Regulatory Commission-recommended 400°C maximum temperature limit at various cooling rates. Before testing high-burnup cladding, four out-of-cell tests were conducted to optimize the hydride reorientation (R) test condition with pre-hydride Zircaloy-4 cladding, which has the same geometry as the high burnup fuel samples. Test HR-HBR#1 was conducted at the maximum hoop stress of 145 MPa, at a 400°C maximum temperature and a 5°C/h cooling rate. On the other hand, thermal cycling was performed for tests HR-HBR#2, HR-HBR#3, and HR-HBR#4 to generate more radial hydrides. It is clear that thermal cycling increases the ratio of the radial hydride to circumferential hydrides. The internal pressure also has a significant effect on the radial hydride morphology. This report describes a procedure and experimental results of the four out-of-cell hydride reorientation tests of

  8. Hydrated hydride anion clusters

    NASA Astrophysics Data System (ADS)

    Lee, Han Myoung; Kim, Dongwook; Singh, N. Jiten; Kołaski, Maciej; Kim, Kwang S.

    2007-10-01

    On the basis of density functional theory (DFT) and high level ab initio theory, we report the structures, binding energies, thermodynamic quantities, IR spectra, and electronic properties of the hydride anion hydrated by up to six water molecules. Ground state DFT molecular dynamics simulations (based on the Born-Oppenheimer potential surface) show that as the temperature increases, the surface-bound hydride anion changes to the internally bound structure. Car-Parrinello molecular dynamics simulations are also carried out for the spectral analysis of the monohydrated hydride. Excited-state ab initio molecular dynamics simulations show that the photoinduced charge-transfer-to-solvent phenomena are accompanied by the formation of the excess electron-water clusters and the detachment of the H radical from the clusters. The dynamics of the detachment process of a hydrogen radical upon the excitation is discussed.

  9. Simultaneous detection of selenium by atomic fluorescence and sulfur by molecular emission by flow-injection hydride generation with on-line reduction for the determination of selenate, sulfate and sulfite.

    PubMed

    Tyson, J F; Palmer, C D

    2009-10-12

    An inductively coupled plasma atomic fluorescence spectrometry (ICP-AFS) instrument, was modified so that it was capable of monitoring transient chromatographic or flow-injection profiles and that sulfur molecular emission and selenium atomic fluorescence could be monitored simultaneously in an argon-hydrogen diffusion flame on a glass burner. The analytes were introduced as hydrogen selenide and hydrogen sulfide, generated on a flow-injection manifold. Selenate was reduced to hydride-forming selenite by microwave-assisted on-line reaction with hydrochloric acid, and sulfate, or sulfite, was reduced to hydride-forming sulfide by a mixture of hydriodic acid, acetic acid and sodium hypophosphite. The effects of the nature of reducing agent, flow rate, microwave power and coil length were studied. The limit of detection (3s) for selenium was 10microgL(-1), and for sulfide was 70microgL(-1) (200-microL injection volume). The calibration was linear for selenium up to 2mgL(-1) and to 10mgL(-1) for sulfide. The throughput was 180h(-1). The three sulfur species could be differentiated on the basis of reactivity at various microwave powers.

  10. Essential Elements for Recruitment and Retention: Generation Y

    ERIC Educational Resources Information Center

    Luscombe, Jenna; Lewis, Ioni; Biggs, Herbert C.

    2013-01-01

    Purpose: Generation Y (Gen Y) is the newest and largest generation entering the workforce. Gen Y may differ from previous generations in work-related characteristics which may have recruitment and retention repercussions. Currently, limited theoretically-based research exists regarding Gen Y's work expectations and goals in relation to…

  11. Lithium hydride - A space age shielding material

    NASA Technical Reports Server (NTRS)

    Welch, F. H.

    1974-01-01

    Men and materials performing in the environment of an operating nuclear reactor require shielding from the escaping neutron particles and gamma rays. For efficient shielding from gamma rays, dense, high atomic number elements such as iron, lead, or tungsten are required, whereas light, low atomic number elements such as hydrogen, lithium, or beryllium are required for efficient neutron shielding. The use of lithium hydride (LiH) as a highly efficient neutron-shielding material is considered. It contains, combined into a single, stable compound, two of the elements most effective in attenuating and absorbing neutrons.

  12. COMGEN-BEM: Boundary element model generation for composite materials micromechanical analysis

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.

    1992-01-01

    Composite Model Generation-Boundary Element Method (COMGEN-BEM) is a program developed in PATRAN command language (PCL) which generates boundary element models of continuous fiber composites at the micromechanical (constituent) scale. Based on the entry of a few simple parameters such as fiber volume fraction and fiber diameter, the model geometry and boundary element model are generated. In addition, various mesh densities, material properties, fiber orientation angles, loads, and boundary conditions can be specified. The generated model can then be translated to a format consistent with a boundary element analysis code such as BEST-CMS.

  13. Examples of finite element mesh generation using SDRC IDEAS

    NASA Technical Reports Server (NTRS)

    Zapp, John; Volakis, John L.

    1990-01-01

    IDEAS (Integrated Design Engineering Analysis Software) offers a comprehensive package for mechanical design engineers. Due to its multifaceted capabilities, however, it can be manipulated to serve the needs of electrical engineers, also. IDEAS can be used to perform the following tasks: system modeling, system assembly, kinematics, finite element pre/post processing, finite element solution, system dynamics, drafting, test data analysis, and project relational database.

  14. Artificial exomuscle investigations for applications--metal hydride.

    PubMed

    Crevier, Marie-Charlotte; Richard, Martin; Rittenhouse, D Matheson; Roy, Pierre-Olivier; Bédard, Stéphane

    2007-03-01

    In pursuing the development of bionic devices, Victhom identified a need for technologies that could replace current motorized systems and be better integrated into the human body motion. The actuators used to obtain large displacements are noisy, heavy, and do not adequately reproduce human muscle behavior. Subsequently, a project at Victhom was devoted to the development of active materials to obtain an artificial exomuscle actuator. An exhaustive literature review was done at Victhom to identify promising active materials for the development of artificial muscles. According to this review, metal hydrides were identified as a promising technology for artificial muscle development. Victhom's investigations focused on determining metal hydride actuator potential in the context of bionics technology. Based on metal hydride properties and artificial muscle requirements such as force, displacement and rise time, an exomuscle was built. In addition, a finite element model, including heat and mass transfer in the metal hydride, was developed and implemented in FEMLAB software.

  15. The Worked Example Effect, the Generation Effect, and Element Interactivity

    ERIC Educational Resources Information Center

    Chen, Ouhao; Kalyuga, Slava; Sweller, John

    2015-01-01

    The worked example effect indicates that examples providing full guidance on how to solve a problem result in better test performance than a problem-solving condition with no guidance. The generation effect occurs when learners generating responses demonstrate better test performance than learners in a presentation condition that provides an…

  16. An improved method for the determination of trace levels of arsenic and antimony in geological materials by automated hydride generation-atomic absorption spectroscopy

    USGS Publications Warehouse

    Crock, J.G.; Lichte, F.E.

    1982-01-01

    An improved, automated method for the determination of arsenic and antimony in geological materials is described. After digestion of the material in sulfuric, nitric, hydrofluoric and perchloric acids, a hydrochloric acid solution of the sample is automatically mixed with reducing agents, acidified with additional hydrochloric acid, and treated with a sodium tetrahydroborate solution to form arsine and stibine. The hydrides are decomposed in a heated quartz tube in the optical path of an atomic absorption spectrometer. The absorbance peak height for arsenic or antimony is measured. Interferences that exist are minimized to the point where most geological materials including coals, soils, coal ashes, rocks and sediments can be analyzed directly without use of standard additions. The relative standard deviation of the digestion and the instrumental procedure is less than 2% at the 50 ??g l-1 As or Sb level. The reagent-blank detection limit is 0.2 ??g l-1 As or Sb. ?? 1982.

  17. Method for preparing porous metal hydride compacts

    DOEpatents

    Ron, Moshe; Gruen, Dieter M.; Mendelsohn, Marshall H.; Sheft, Irving

    1981-01-01

    A method for preparing porous metallic-matrix hydride compacts which can be repeatedly hydrided and dehydrided without disintegration. A mixture of a finely divided metal hydride and a finely divided matrix metal is contacted with a poison which prevents the metal hydride from dehydriding at room temperature and atmospheric pressure. The mixture of matrix metal and poisoned metal hydride is then compacted under pressure at room temperature to form porous metallic-matrix hydride compacts.

  18. Method for preparing porous metal hydride compacts

    DOEpatents

    Ron, M.; Gruen, D.M.; Mendelsohn, M.H.; Sheft, I.

    1980-01-21

    A method for preparing porous metallic-matrix hydride compacts which can be repeatedly hydrided and dehydrided without disintegration. A mixture of a finely divided metal hydride and a finely divided matrix metal is contacted with a poison which prevents the metal hydride from dehydriding at room temperature and atmospheric pressure. The mixture of matrix metal and poisoned metal hydride is then compacted under pressure at room temperature to form porous metallic-matrix hydride compacts.

  19. Materials engineering of metal hydrides

    SciTech Connect

    Gruen, D.M.; Mendelsohn, M.H.

    1981-01-01

    Intermetallic hydrides of the AB/sub 5/ type have enthalpies in the range valid for chemical heat pumps. A scheme for manufacturing hydrides with optimal properties for a chemical heat pump is described, using LaNi/sub 5-x/Al/sub x/ and ZrV/sub 2x/Cr/sub x as examples. The Laves-phase ternary hydrides appear to be good candidates for gettering hydrogen in the Tokamak Fusion Test Reactor. (DLC)

  20. Superstoichiometric hydride of zirconium

    SciTech Connect

    Kupryazhkin, A.Ya.; Shchepetkin, A.A.; Zabolotskaya, E.V.; Pletnev, R.N.; Alyamovskii, S.I.; Kitaev, G.A.

    1987-12-01

    Superstoichiometric hydrides of zirconium have been obtained all the way up to the composition ZrH/sub 2.4/ by additional hydrogenation of ZrH/sub 2/ as a result of redistribution of hydrogen atoms between t- and o-positions. In the preparation of the hydrides the authors used zirconium iodide with an impurity content no greater than 10/sup -2/ to 10/sup -2/ mole %; the hydrogen and helium used in this work had a minimum purity of 99.95%. The content of hydrogen in the specimens was determined by a volumetric method. The x-ray diffraction analysis was performed in a DRON-2.0 unit (CuK/sub ..cap alpha../ radiation). PMR spectra were recorded in a broad-line spectrometer in the temperature interval 150-450 K.

  1. Photodeposited diffractive optical elements of computer generated masks

    NASA Astrophysics Data System (ADS)

    Mirchin, N.; Peled, A.; Baal-Zedaka, I.; Margolin, R.; Zagon, M.; Lapsker, I.; Verdyan, A.; Azoulay, J.

    2005-07-01

    Diffractive optical elements (DOE) were synthesized on plastic substrates using the photodeposition (PD) technique by depositing amorphous selenium (a-Se) films with argon lasers and UV spectra light. The thin films were deposited typically onto polymethylmethacrylate (PMMA) substrates at room temperature. Scanned beam and contact mask modes were employed using computer-designed DOE lenses. Optical and electron micrographs characterize the surface details. The films were typically 200 nm thick.

  2. Hydrogen Outgassing from Lithium Hydride

    SciTech Connect

    Dinh, L N; Schildbach, M A; Smith, R A; Balazs1, B; McLean II, W

    2006-04-20

    Lithium hydride is a nuclear material with a great affinity for moisture. As a result of exposure to water vapor during machining, transportation, storage and assembly, a corrosion layer (oxide and/or hydroxide) always forms on the surface of lithium hydride resulting in the release of hydrogen gas. Thermodynamically, lithium hydride, lithium oxide and lithium hydroxide are all stable. However, lithium hydroxides formed near the lithium hydride substrate (interface hydroxide) and near the sample/vacuum interface (surface hydroxide) are much less thermally stable than their bulk counterpart. In a dry environment, the interface/surface hydroxides slowly degenerate over many years/decades at room temperature into lithium oxide, releasing water vapor and ultimately hydrogen gas through reaction of the water vapor with the lithium hydride substrate. This outgassing can potentially cause metal hydriding and/or compatibility issues elsewhere in the device. In this chapter, the morphology and the chemistry of the corrosion layer grown on lithium hydride (and in some cases, its isotopic cousin, lithium deuteride) as a result of exposure to moisture are investigated. The hydrogen outgassing processes associated with the formation and subsequent degeneration of this corrosion layer are described. Experimental techniques to measure the hydrogen outgassing kinetics from lithium hydride and methods employing the measured kinetics to predict hydrogen outgassing as a function of time and temperature are presented. Finally, practical procedures to mitigate the problem of hydrogen outgassing from lithium hydride are discussed.

  3. Two-Element Generation of Unitary Groups Over Finite Fields

    DTIC Science & Technology

    2013-01-31

    like to praise my Lord and Savior, Jesus Christ , for allowing me this opportunity to work on a Ph.D in mathematics, and for His sustaining grace...Ishibashi’s original result. The paper’s main theorem will show that all unitary groups over finite fields of odd characteristic are generated by only two

  4. 17. VIEW OF HYDRIDING SYSTEM IN BUILDING 881. THE HYDRIDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. VIEW OF HYDRIDING SYSTEM IN BUILDING 881. THE HYDRIDING SYSTEM WAS PART OF THE FAST ENRICHED URANIUM RECOVERY PROCESS. (11/11/59) - Rocky Flats Plant, General Manufacturing, Support, Records-Central Computing, Southern portion of Plant, Golden, Jefferson County, CO

  5. Hydrogenation using hydrides and acid

    DOEpatents

    Bullock, R. Morris

    1990-10-30

    A process for the non-catalytic hydrogenation of organic compounds, which contain at least one reducible functional group, which comprises reacting the organic compound, a hydride complex, preferably a transition metal hydride complex or an organosilane, and a strong acid in a liquid phase.

  6. A nickel metal hydride battery for electric vehicles.

    PubMed

    Ovshinsky, S R; Fetcenko, M A; Ross, J

    1993-04-09

    Widespread use of electric vehicles can have significant impact on urban air quality, national energy independence, and international balance of trade. An efficient battery is the key technological element to the development of practical electric vehicles. The science and technology of a nickel metal hydride battery, which stores hydrogen in the solid hydride phase and has high energy density, high power, long life, tolerance to abuse, a wide range of operating temperature, quick-charge capability, and totally sealed maintenance-free operation, is described. A broad range of multi-element metal hydride materials that use structural and compositional disorder on several scales of length has been engineered for use as the negative electrode in this battery. The battery operates at ambient temperature, is made of nontoxic materials, and is recyclable. Demonstration of the manufacturing technology has been achieved.

  7. Efficient generation of Hermite-Gauss and Ince-Gauss beams through kinoform phase elements.

    PubMed

    Aguirre-Olivas, Dilia; Mellado-Villaseñor, Gabriel; Sánchez-de-la-Llave, David; Arrizón, Victor

    2015-10-01

    We discuss the generation of Hermite-Gauss and Ince-Gauss beams employing phase elements whose transmittances coincide with the phase modulations of such beams. A scaled version of the desired field appears, distorted by marginal optical noise, at the element's Fourier domain. The motivation to perform this study is that, in the context of the proposed approach, the desired beams are generated with the maximum possible efficiency. A disadvantage of the method is the distortion of the desired beams by the influence of several nondesired beam modes generated by the phase elements. We evaluate such distortion employing the root mean square deviation as a figure of merit.

  8. Tellurium Hydrides at High Pressures: High-Temperature Superconductors

    NASA Astrophysics Data System (ADS)

    Zhong, Xin; Wang, Hui; Zhang, Jurong; Liu, Hanyu; Zhang, Shoutao; Song, Hai-Feng; Yang, Guochun; Zhang, Lijun; Ma, Yanming

    2016-02-01

    Observation of high-temperature superconductivity in compressed sulfur hydrides has generated an irresistible wave of searches for new hydrogen-containing superconductors. We herein report the prediction of high-Tc superconductivity in tellurium hydrides stabilized at megabar pressures identified by first-principles calculations in combination with a swarm structure search. Although tellurium is isoelectronic to sulfur or selenium, its heavier atomic mass and weaker electronegativity makes tellurium hydrides fundamentally distinct from sulfur or selenium hydrides in stoichiometries, structures, and chemical bondings. We identify three metallic stoichiometries of H4Te , H5Te2 , and HTe3 , which are not predicted or known stable structures for sulfur or selenium hydrides. The two hydrogen-rich H4Te and H5Te2 phases are primarily ionic and contain exotic quasimolecular H2 and linear H3 units, respectively. Their high-Tc (e.g., 104 K for H4Te at 170 GPa) superconductivity originates from the strong electron-phonon couplings associated with intermediate-frequency H-derived wagging and bending modes, a superconducting mechanism which differs substantially with those in sulfur or selenium hydrides where the high-frequency H-stretching vibrations make considerable contributions.

  9. Measurement and modeling of strain fields in zirconium hydrides precipitated at a stress concentration

    SciTech Connect

    Allen, Gregory B.; Kerr, Matthew; Daymond, Mark R.

    2012-10-23

    Hydrogen adsorption into zirconium, as a result of corrosion in aqueous environments, leads to the precipitation of a secondary brittle hydride phase. These hydrides tend to first form at stress concentrations such as fretting flaws or cracks in engineering components, potentially degrading the structural integrity of the component. One mechanism for component failure is a slow crack growth mechanism known as Delayed Hydride Cracking (DHC), where hydride fracture occurs followed by crack arrest in the ductile zirconium matrix. The current work employs both an experimental and a modeling approach to better characterize the effects and behavior of hydride precipitation at such stress concentrations. Strains around stress concentrations containing hydrides were mapped using High Energy X-ray Diffraction (HEXRD). These studies highlighted important differences in the behavior of the hydride phase and the surrounding zirconium matrix, as well as the strain associated with the precipitation of the hydride. A finite element model was also developed and compared to the X-ray strain mapping results. This model provided greater insight into details that could not be obtained directly from the experimental approaches, as well as providing a framework for future modeling to predict the effects of hydride precipitation under varied conditions.

  10. Insertion of Group 12-16 Hydrides into NHCs: A Theoretical Investigation.

    PubMed

    Iversen, Kalon J; Dutton, Jason L; Wilson, David

    2017-03-06

    The endocyclic ring expansion of N-heterocyclic carbene (NHC) rings by transition metal (Group 12) and main group (Group 13-16) element hydrides has been investigated in a computational study. In addition to previously reported insertion reactivity with Si, B, Be and Zn, similar reactivity is predicted to be feasible for heavier group 13 elements (Al, Ga, In, Tl), with the reaction barriers for Al-Tl calculated to be lower than for boron. Insertion is not expected with group 15-16 element hydrides, as the initial adduct formation is thermodynamically unfavourable. The reaction pathway with group 12 hydrides is calculated to be more favourable with two NHCs rather than a single NHC (analogous to Be), however hydride ring insertion with metal dihydrides is not feasible, but rather a reduced NHC is thermodynamically favoured. For group 14, ring-insertion reactivity is predicted to be feasible with the heavier dihydrides. Trends in reactivity of element hydrides may be related to the protic or hydridic character of the element hydrides.

  11. Dimensionally stable metallic hydride composition

    DOEpatents

    Heung, Leung K.

    1994-01-01

    A stable, metallic hydride composition and a process for making such a composition. The composition comprises a uniformly blended mixture of a metal hydride, kieselguhr, and a ballast metal, all in the form of particles. The composition is made by subjecting a metal hydride to one or more hydrogen absorption/desorption cycles to disintegrate the hydride particles to less than approximately 100 microns in size. The particles are partly oxidized, then blended with the ballast metal and the kieselguhr to form a uniform mixture. The mixture is compressed into pellets and calcined. Preferably, the mixture includes approximately 10 vol. % or more kieselguhr and approximately 50 vol. % or more ballast. Metal hydrides that can be used in the composition include Zr, Ti, V, Nb, Pd, as well as binary, tertiary, and more complex alloys of La, Al, Cu, Ti, Co, Ni, Fe, Zr, Mg, Ca, Mn, and mixtures and other combinations thereof. Ballast metals include Al, Cu and Ni.

  12. Multifunctional diffractive optical elements for the generation of higher order Bessel-like-beams

    NASA Astrophysics Data System (ADS)

    Vijayakumar, A.; Bhattacharya, Shanti

    2015-01-01

    Higher Order Bessel Beams (HOBBs) have many useful applications in optical trapping experiments. The generation of HOBBs is achieved by illuminating an axicon by a Laguerre-Gaussian beam generated by a spiral phase plate. It can also be generated by a Holographic Optical Element (HOE) containing the functions of the Spiral Phase Plate (SPP) and an axicon. However the HOBB's large focal depth reduces the intensity at each plane. In this paper, we propose a multifunctional Diffractive Optical Element (DOE) containing the functions of a SPP, axicon and a Fresnel Zone Lens (FZL) to generate higher efficiency higher order Bessel-like-beams with a reduced focal depth. The functions of a SPP and a FZL were combined by shifting the location of zones of FZL in a spiral fashion. The resulting element is combined with an axicon by modulo-2π phase addition technique. The final composite element contains the functions of SPP, FZL and axicon. The elements were designed with different topological charges and fabricated using electron beam direct writing. The elements were tested and the generation of a higher order Bessel-like-beams is confirmed. Besides, the elements also generated high quality donut beams at two planes equidistant from the focal plane of the FZL.

  13. Finite element analysis and performance study of switched reluctance generator

    NASA Astrophysics Data System (ADS)

    Zhang, Qianhan; Guo, Yingjun; Xu, Qi; Yu, Xiaoying; Guo, Yajie

    2017-03-01

    Analyses a three-phase 12/8 switched reluctance generator (SRG) which is based on its structure and performance principle. The initial size data were calculated by MathCAD, and the simulation model was set up in the ANSOFT software environment with the maximum efficiency and the maximum output power as the main reference parameters. The outer diameter of the stator and the inner diameter of the rotor were parameterized. The static magnetic field distribution, magnetic flux, magnetic energy, torque, inductance characteristics, back electromotive force and phase current waveform of SRG is obtained by analyzing the static magnetic field and the steady state motion of two-dimensional transient magnetic field in ANSOFT environment. Finally, the experimental data of the prototype are compared with the simulation results, which provide a reliable basis for the design and research of SRG wind turbine system.

  14. Techniques for Unifying Disparate Elements in an EOS Instrument's Product Generation System Development Environment

    NASA Technical Reports Server (NTRS)

    Murray, Alex; Eng, Bjorn; Leff, Craig; Schwarz, Arnold

    1997-01-01

    In the development environment for ASTER level II product generation system, techniques have been incorporated to allow automated information sharing among all system elements, and to enable the use of sound software engineering techniques in the scripting languages.

  15. Content-Adaptive Finite Element Mesh Generation of 3-D Complex MR Volumes for Bioelectromagnetic Problems.

    PubMed

    Lee, W; Kim, T-S; Cho, M; Lee, S

    2005-01-01

    In studying bioelectromagnetic problems, finite element method offers several advantages over other conventional methods such as boundary element method. It allows truly volumetric analysis and incorporation of material properties such as anisotropy. Mesh generation is the first requirement in the finite element analysis and there are many different approaches in mesh generation. However conventional approaches offered by commercial packages and various algorithms do not generate content-adaptive meshes, resulting in numerous elements in the smaller volume regions, thereby increasing computational load and demand. In this work, we present an improved content-adaptive mesh generation scheme that is efficient and fast along with options to change the contents of meshes. For demonstration, mesh models of the head from a volume MRI are presented in 2-D and 3-D.

  16. Thermodynamic studies and hydride transfer reactions from a rhodium complex to BX3 compounds.

    PubMed

    Mock, Michael T; Potter, Robert G; Camaioni, Donald M; Li, Jun; Dougherty, William G; Kassel, W Scott; Twamley, Brendan; DuBois, Daniel L

    2009-10-14

    This study examines the use of transition-metal hydride complexes that can be generated by the heterolytic cleavage of H(2) gas to form B-H bonds. Specifically, these studies are focused on providing a reliable and quantitative method for determining when hydride transfer from transition-metal hydrides to three-coordinate BX(3) (X = OR, SPh, F, H; R = Ph, p-C(6)H(4)OMe, C(6)F(5), (t)Bu, Si(Me)(3)) compounds will be favorable. This involves both experimental and theoretical determinations of hydride transfer abilities. Thermodynamic hydride donor abilities (DeltaG(o)(H(-))) were determined for HRh(dmpe)(2) and HRh(depe)(2), where dmpe = 1,2-bis(dimethylphosphinoethane) and depe = 1,2-bis(diethylphosphinoethane), on a previously established scale in acetonitrile. This hydride donor ability was used to determine the hydride donor ability of [HBEt(3)](-) on this scale. Isodesmic reactions between [HBEt(3)](-) and selected BX(3) compounds to form BEt(3) and [HBX(3)](-) were examined computationally to determine their relative hydride affinities. The use of these scales of hydride donor abilities and hydride affinities for transition-metal hydrides and BX(3) compounds is illustrated with a few selected reactions relevant to the regeneration of ammonia borane. Our findings indicate that it is possible to form B-H bonds from B-X bonds, and the extent to which BX(3) compounds are reduced by transition-metal hydride complexes forming species containing multiple B-H bonds depends on the heterolytic B-X bond energy. An example is the reduction of B(SPh)(3) using HRh(dmpe)(2) in the presence of triethylamine to form Et(3)N-BH(3) in high yields.

  17. COMGEN: A computer program for generating finite element models of composite materials at the micro level

    NASA Technical Reports Server (NTRS)

    Melis, Matthew E.

    1990-01-01

    COMGEN (Composite Model Generator) is an interactive FORTRAN program which can be used to create a wide variety of finite element models of continuous fiber composite materials at the micro level. It quickly generates batch or session files to be submitted to the finite element pre- and postprocessor PATRAN based on a few simple user inputs such as fiber diameter and percent fiber volume fraction of the composite to be analyzed. In addition, various mesh densities, boundary conditions, and loads can be assigned easily to the models within COMGEN. PATRAN uses a session file to generate finite element models and their associated loads which can then be translated to virtually any finite element analysis code such as NASTRAN or MARC.

  18. Compact generation of superposed higher-order Bessel beams via composite diffractive optical elements

    NASA Astrophysics Data System (ADS)

    Vijayakumar, Anand; Bhattacharya, Shanti

    2015-11-01

    Binary composite diffractive optical elements with the functions of a spiral phase plate (SPP), an axicon, and a Fresnel zone lens (FZL) were designed with different topological charges. The element was designed in two steps. In the first step, the function of an SPP was combined with that of an axicon by spiraling the periods of the axicon with respect to the phase of the SPP followed by a modulo-2π phase addition with the phase of an FZL in the second step. The higher-order Bessel beams generated by the binary phase spiral axicon are superposed at the FZL's focal plane. Although location of the focal plane is wavelength dependent, the radius of the flower-like beams generated by the element was found to be independent of wavelength. The element was fabricated using electron-beam direct writing. The evaluation results matched well with the simulation results, generating flower-like beams at the focal plane of the FZL.

  19. Isoparametric 3-D Finite Element Mesh Generation Using Interactive Computer Graphics

    NASA Technical Reports Server (NTRS)

    Kayrak, C.; Ozsoy, T.

    1985-01-01

    An isoparametric 3-D finite element mesh generator was developed with direct interface to an interactive geometric modeler program called POLYGON. POLYGON defines the model geometry in terms of boundaries and mesh regions for the mesh generator. The mesh generator controls the mesh flow through the 2-dimensional spans of regions by using the topological data and defines the connectivity between regions. The program is menu driven and the user has a control of element density and biasing through the spans and can also apply boundary conditions, loads interactively.

  20. Hydride development for hydrogen storage

    SciTech Connect

    Thomas, G.J.; Guthrie, S.E.; Bauer, W.; Yang, N.Y.C.; Sandrock, G.

    1996-10-01

    The purpose of this project is to develop and demonstrate improved hydride materials for hydrogen storage. The work currently is organized into four tasks: hydride development, bed fabrication, materials support for engineering systems, and IEA Annex 12 activities. At the present time, hydride development is focused on Mg alloys. These materials generally have higher weight densities for storing hydrogen than rare earth or transition metal alloys, but suffer from high operating temperatures, slow kinetic behavior and material stability. The authors approach is to study bulk alloy additions which increase equilibrium overpressure, in combination with stable surface alloy modification and particle size control to improve kinetic properties. This work attempts to build on the considerable previous research in this area, but examines specific alloy systems in greater detail, with attention to known phase properties and structures. The authors have found that specific phases can be produced which have significantly improved hydride properties compared to previous studies.

  1. Complex Hydrides for Hydrogen Storage

    SciTech Connect

    Slattery, Darlene; Hampton, Michael

    2003-03-10

    This report describes research into the use of complex hydrides for hydrogen storage. The synthesis of a number of alanates, (AIH4) compounds, was investigated. Both wet chemical and mechano-chemical methods were studied.

  2. A simple and sensitive flow-injection on-line preconcentration coupled with hydride generation atomic fluorescence spectrometry for the determination of ultra-trace lead in water, wine, and rice.

    PubMed

    Wu, Hong; Jin, Yan; Luo, Mingbiao; Bi, Shuping

    2007-09-01

    A simple and sensitive flow-injection on-line separation and preconcentration system coupled to hydride generation atomic fluorescence spectrometry (HG-AFS) was developed for ultra-trace lead determination in water, wine, and rice samples, with the salient advantages of its minimization of transition-metal interferences and tolerance to an ethanol matrix. A lead hydroxide precipitate was achieved by the on-line merging of a sample and an ammonium buffer solution and collected onto the inner walls of a knotted reactor (KR). Removal of the residual solution from KR was achieved by air flow, and dissolution of the precipitate was carried out by using 0.2 mol l(-1) HCl. With a sample consumption of 11.7 ml, an enhancement factor of 16 was obtained at a sample throughput of 30 h(-1). The limit of detection (3s) was 16 ng l(-1) and the precision (RSD) for 1.0 microg l(-1) Pb was 3.4%.

  3. Low density metal hydride foams

    DOEpatents

    Maienschein, Jon L.; Barry, Patrick E.

    1991-01-01

    Disclosed is a low density foam having a porosity of from 0 to 98% and a density less than about 0.67 gm/cc, prepared by heating a mixture of powered lithium hydride and beryllium hydride in an inert atmosphere at a temperature ranging from about 455 to about 490 K for a period of time sufficient to cause foaming of said mixture, and cooling the foam thus produced. Also disclosed is the process of making the foam.

  4. Zirconium hydrides and Fe redistribution in Zr-2.5%Nb alloy under ion irradiation

    NASA Astrophysics Data System (ADS)

    Idrees, Y.; Yao, Z.; Cui, J.; Shek, G. K.; Daymond, M. R.

    2016-11-01

    Zr-2.5%Nb alloy is used to fabricate the pressure tubes of the CANDU reactor. The pressure tube is the primary pressure boundary for coolant in the CANDU design and is susceptible to delayed hydride cracking, reduction in fracture toughness upon hydride precipitation and potentially hydride blister formation. The morphology and nature of hydrides in Zr-2.5%Nb with 100 wppm hydrogen has been investigated using transmission electron microscopy. The effect of hydrides on heavy ion irradiation induced decomposition of the β phase has been reported. STEM-EDX mapping was employed to investigate the distribution of alloying elements. The results show that hydrides are present in the form of stacks of different sizes, with length scales from nano- to micro-meters. Heavy ion irradiation experiments at 250 °C on as-received and hydrided Zr-2.5%Nb alloy, show interesting effects of hydrogen on the irradiation induced redistribution of Fe. It was found that Fe is widely redistributed from the β phase into the α phase in the as-received material, however, the loss of Fe from the β phase and subsequent precipitation is retarded in the hydrided material. This preliminary work will further the current understanding of microstructural evolution of Zr based alloys in the presence of hydrogen.

  5. Hydrides and Borohydrides of Light Elements

    DTIC Science & Technology

    1947-12-04

    puriod of thrco minutes. vin~ a e1do arn, qddition flasks to a solution of aluminum bromide dicthylothorato in tnctra hyAroffurcen. Unfortunately the...Hydrido wdith Alicy1 Compounds of the Elomotse-- ’h(; work pri.so-nu uno tis heading rcprosots tho i~rut p~ irt R of 50sytom~tie atudy of the...4.03 nolos wrAe distillod into a reaction flask cont?,ining 6.33 uim9loa of’lithkium aliiminum hy~rido) in othcr solution, The z,,xtur.. w:a nllowad to w

  6. Sodium-based hydrides for thermal energy applications

    NASA Astrophysics Data System (ADS)

    Sheppard, D. A.; Humphries, T. D.; Buckley, C. E.

    2016-04-01

    Concentrating solar-thermal power (CSP) with thermal energy storage (TES) represents an attractive alternative to conventional fossil fuels for base-load power generation. Sodium alanate (NaAlH4) is a well-known sodium-based complex metal hydride but, more recently, high-temperature sodium-based complex metal hydrides have been considered for TES. This review considers the current state of the art for NaH, NaMgH3- x F x , Na-based transition metal hydrides, NaBH4 and Na3AlH6 for TES and heat pumping applications. These metal hydrides have a number of advantages over other classes of heat storage materials such as high thermal energy storage capacity, low volume, relatively low cost and a wide range of operating temperatures (100 °C to more than 650 °C). Potential safety issues associated with the use of high-temperature sodium-based hydrides are also addressed.

  7. Thermal enhancement cartridge heater modified tritium hydride bed development, Part 2 - Experimental validation of key conceptual design features

    SciTech Connect

    Heroux, K.J.; Morgan, G.A.

    2015-03-15

    The Thermal Enhancement Cartridge Heater Modified (TECH Mod) tritium hydride bed is an interim replacement for the first generation (Gen1) process hydride beds currently in service in the Savannah River Site (SRS) Tritium Facilities. 3 new features are implemented in the TECH Mod hydride bed prototype: internal electric cartridge heaters, porous divider plates, and copper foam discs. These modifications will enhance bed performance and reduce costs by improving bed activation and installation processes, in-bed accountability measurements, end-of-life bed removal, and He-3 recovery. A full-scale hydride bed test station was constructed at the Savannah River National Laboratory (SRNL) in order to evaluate the performance of the prototype TECH Mod hydride bed. Controlled hydrogen (H{sub 2}) absorption/ desorption experiments were conducted to validate that the conceptual design changes have no adverse effects on the gas transfer kinetics or H{sub 2} storage/release properties compared to those of the Gen1 bed. Inert gas expansions before, during, and after H{sub 2} flow tests were used to monitor changes in gas transfer rates with repeated hydriding/de-hydriding of the hydride material. The gas flow rates significantly decreased after initial hydriding of the material; however, minimal changes were observed after repeated cycling. The data presented herein confirm that the TECH Mod hydride bed would be a suitable replacement for the Gen1 bed with the added enhancements expected from the advanced design features. (authors)

  8. Generation of perfect vortex and vector beams based on Pancharatnam-Berry phase elements

    NASA Astrophysics Data System (ADS)

    Liu, Yachao; Ke, Yougang; Zhou, Junxiao; Liu, Yuanyuan; Luo, Hailu; Wen, Shuangchun; Fan, Dianyuan

    2017-03-01

    Perfect vortex beams are the orbital angular momentum (OAM)-carrying beams with fixed annular intensities, which provide a better source of OAM than traditional Laguerre-Gaussian beams. However, ordinary schemes to obtain the perfect vortex beams are usually bulky and unstable. We demonstrate here a novel generation scheme by designing planar Pancharatnam-Berry (PB) phase elements to replace all the elements required. Different from the conventional approaches based on reflective or refractive elements, PB phase elements can dramatically reduce the occupying volume of system. Moreover, the PB phase element scheme is easily developed to produce the perfect vector beams. Therefore, our scheme may provide prominent vortex and vector sources for integrated optical communication and micromanipulation systems.

  9. Generation of perfect vortex and vector beams based on Pancharatnam-Berry phase elements

    PubMed Central

    Liu, Yachao; Ke, Yougang; Zhou, Junxiao; Liu, Yuanyuan; Luo, Hailu; Wen, Shuangchun; Fan, Dianyuan

    2017-01-01

    Perfect vortex beams are the orbital angular momentum (OAM)-carrying beams with fixed annular intensities, which provide a better source of OAM than traditional Laguerre-Gaussian beams. However, ordinary schemes to obtain the perfect vortex beams are usually bulky and unstable. We demonstrate here a novel generation scheme by designing planar Pancharatnam-Berry (PB) phase elements to replace all the elements required. Different from the conventional approaches based on reflective or refractive elements, PB phase elements can dramatically reduce the occupying volume of system. Moreover, the PB phase element scheme is easily developed to produce the perfect vector beams. Therefore, our scheme may provide prominent vortex and vector sources for integrated optical communication and micromanipulation systems. PMID:28276524

  10. Assessing nanoparticle size effects on metal hydride thermodynamics using the Wulff construction.

    PubMed

    Kim, Ki Chul; Dai, Bing; Karl Johnson, J; Sholl, David S

    2009-05-20

    The reaction thermodynamics of metal hydrides are crucial to the use of these materials for reversible hydrogen storage. In addition to altering the kinetics of metal hydride reactions, the use of nanoparticles can also change the overall reaction thermodynamics. We use density functional theory to predict the equilibrium crystal shapes of seven metals and their hydrides via the Wulff construction. These calculations allow the impact of nanoparticle size on the thermodynamics of hydrogen release from these metal hydrides to be predicted. Specifically, we study the temperature required for the hydride to generate a H(2) pressure of 1 bar as a function of the radius of the nanoparticle. In most, but not all, cases the hydrogen release temperature increases slightly as the particle size is reduced.

  11. A study of advanced magnesium-based hydride and development of a metal hydride thermal battery system

    NASA Astrophysics Data System (ADS)

    Zhou, Chengshang

    Metal hydrides are a group of important materials known as energy carriers for renewable energy and thermal energy storage. A concept of thermal battery based on advanced metal hydrides is studied for heating and cooling of cabins in electric vehicles. The system utilizes a pair of thermodynamically matched metal hydrides as energy storage media. The hot hydride that is identified and developed is catalyzed MgH2 due to its high energy density and enhanced kinetics. TiV0.62Mn1.5, TiMn2, and LaNi5 alloys are selected as the matching cold hydride. A systematic experimental survey is carried out in this study to compare a wide range of additives including transitions metals, transition metal oxides, hydrides, intermetallic compounds, and carbon materials, with respect to their effects on dehydrogenation properties of MgH2. The results show that additives such as Ti and V-based metals, hydride, and certain intermetallic compounds have strong catalytic effects. Solid solution alloys of magnesium are exploited as a way to destabilize magnesium hydride thermodynamically. Various elements are alloyed with magnesium to form solid solutions, including indium and aluminum. Thermodynamic properties of the reactions between the magnesium solid solution alloys and hydrogen are investigated, showing that all the solid solution alloys that are investigated in this work have higher equilibrium hydrogen pressures than that of pure magnesium. Cyclic stability of catalyzed MgH2 is characterized and analyzed using a PCT Sievert-type apparatus. Three systems, including MgH2-TiH 2, MgH2-TiMn2, and MgH2-VTiCr, are examined. The hydrogenating and dehydrogenating kinetics at 300°C are stable after 100 cycles. However, the low temperature (25°C to 150°C) hydrogenation kinetics suffer a severe degradation during hydrogen cycling. Further experiments confirm that the low temperature kinetic degradation can be mainly related the extended hydrogenation-dehydrogenation reactions. Proof

  12. Finite Element Analysis Generates an Increasing Interest in Dental Research: A Bibliometric Study

    PubMed Central

    Diarra, Abdoulaziz; Mushegyan, Vagan; Naveau, Adrien

    2016-01-01

    Purpose: The purpose was to provide a longitudinal overview of published studies that use finite element analysis in dental research, by using the SCI-expanded database of Web of Science® (Thomson Reuters). Material and Methods: Eighty publications from 1999-2000 and 473 from 2009-2010 were retrieved. This literature grew faster than the overall dental literature. The number of publishing countries doubled. The main journals were American or English, and dealt with implantology. For the top 10 journals publishing dental finite element papers, the mean impact factor increased by 75% during the decade. Results: Finite elements generate an increasing interest from dental authors and publishers worldwide. PMID:27006722

  13. First-principles study of superabundant vacancy formation in metal hydrides.

    PubMed

    Zhang, Changjun; Alavi, Ali

    2005-07-13

    Recent experiments have established the generality of superabundant vacancies (SAV) formation in metal hydrides. Aiming to elucidate this intriguing phenomenon and to clarify previous interpretations, we employ density-functional theory to investigate atomic mechanisms of SAV formation in fcc hydrides of Ni, Cu, Rh, Pd, Ag, Ir, Pt, and Au. We have found that upon H insertion, vacancy formation energies reduce substantially. This is consistent with experimental suggestions. We demonstrate that the entropy effect, which has been proposed to explain SAV formation, is not the main cause. Instead, it is the drastic change of electronic structure induced by the H in the SAV hydrides, which is to a large extent responsible. Interesting trends in systems investigated are also found: ideal hydrides of 5d metals and noble metals are unstable compared to the corresponding pure metals, but the SAV hydrides are more stable than the corresponding ideal hydrides, whereas opposite results exist in the cases of Ni, Rh, and Pd. These trends of stabilities of the SAV hydrides are discussed in detail and a general understanding for SAV formation is provided. Finally, we propose an alternative reaction pathway to generate a SAV hydride from a metal alloy.

  14. Synthesis and hydride transfer reactions of cobalt and nickel hydride complexes to BX3 compounds.

    PubMed

    Mock, Michael T; Potter, Robert G; O'Hagan, Molly J; Camaioni, Donald M; Dougherty, William G; Kassel, W Scott; DuBois, Daniel L

    2011-12-05

    Hydrides of numerous transition metal complexes can be generated by the heterolytic cleavage of H(2) gas such that they offer alternatives to using main group hydrides in the regeneration of ammonia borane, a compound that has been intensely studied for hydrogen storage applications. Previously, we reported that HRh(dmpe)(2) (dmpe = 1,2-bis(dimethylphosphinoethane)) was capable of reducing a variety of BX(3) compounds having a hydride affinity (HA) greater than or equal to the HA of BEt(3). This study examines the reactivity of less expensive cobalt and nickel hydride complexes, HCo(dmpe)(2) and [HNi(dmpe)(2)](+), to form B-H bonds. The hydride donor abilities (ΔG(H(-))°) of HCo(dmpe)(2) and [HNi(dmpe)(2)](+) were positioned on a previously established scale in acetonitrile that is cross-referenced with calculated HAs of BX(3) compounds. The collective data guided our selection of BX(3) compounds to investigate and aided our analysis of factors that determine favorability of hydride transfer. HCo(dmpe)(2) was observed to transfer H(-) to BX(3) compounds with X = H, OC(6)F(5), and SPh. The reaction with B(SPh)(3) is accompanied by the formation of dmpe-(BH(3))(2) and dmpe-(BH(2)(SPh))(2) products that follow from a reduction of multiple B-SPh bonds and a loss of dmpe ligands from cobalt. Reactions between HCo(dmpe)(2) and B(SPh)(3) in the presence of triethylamine result in the formation of Et(3)N-BH(2)SPh and Et(3)N-BH(3) with no loss of a dmpe ligand. Reactions of the cationic complex [HNi(dmpe)(2)](+) with B(SPh)(3) under analogous conditions give Et(3)N-BH(2)SPh as the final product along with the nickel-thiolate complex [Ni(dmpe)(2)(SPh)](+). The synthesis and characterization of HCo(dedpe)(2) (dedpe = Et(2)PCH(2)CH(2)PPh(2)) from H(2) and a base is also discussed, including the formation of an uncommon trans dihydride species, trans-[(H)(2)Co(dedpe)(2)][BF(4)].

  15. Synthesis and Hydride Transfer Reactions of Cobalt and Nickel Hydride Complexes to BX₃ Compounds

    SciTech Connect

    Mock, Michael T.; Potter, Robert G.; O'Hagan, Molly; Camaioni, Donald M.; Dougherty, William G.; Kassel, W. Scott; DuBois, Daniel L.

    2011-10-31

    Hydrides of numerous transition metal complexes can be generated by the heterolytic cleavage of H₂ gas such that they offer alternatives to using main group hydrides in the regeneration of ammonia borane, a compound that has been intensely studied for hydrogen storage applications. Previously, we reported that HRh(dmpe)₂ (dmpe = 1,2-bis(dimethylphosphinoethane)) was capable of reducing a variety of BX₃ compounds having a hydride affinity (HA) greater than or equal to the HA of BEt₃. This study examines the reactivity of less expensive cobalt and nickel hydride complexes, HCo(dmpe)₂ and [HNi(dmpe)₂]+, to form B–H bonds. The hydride donor abilities (ΔGH °) of HCo(dmpe)₂ and [HNi(dmpe)₂]+ were positioned on a previously established scale in acetonitrile that is cross-referenced with calculated HAs of BX₃ compounds. The collective data guided our selection of BX₃ compounds to investigate and aided our analysis of factors that determine favorability of hydride transfer. HCo(dmpe)₂ was observed to transfer H to BX₃ compounds with X = H, OC₆F₅, and SPh. The reaction with B(SPh)₃ is accompanied by the formation of dmpe-(BH₃)₂ and dmpe-(BH₂(SPh))₂ products that follow from a reduction of multiple B–SPh bonds and a loss of dmpe ligands from cobalt. Reactions between HCo(dmpe)₂ and B(SPh)₃ in the presence of triethylamine result in the formation of Et₃N–BH₂SPh and Et₃N–BH₃ with no loss of a dmpe ligand. Reactions of the cationic complex [HNi(dmpe)₂]+ with B(SPh)₃ under analogous conditions give Et₃N–BH₂SPh as the final product along with the nickel–thiolate complex [Ni(dmpe)₂(SPh)]+. The synthesis and characterization of HCo(dedpe)₂ (dedpe = Et₂PCH₂CH₂PPh₂) from H₂ and a base is also discussed, including the formation of an uncommon trans dihydride species, trans-[(H)₂Co(dedpe)₂][BF₄].

  16. Synthesis and Hydride Transfer Reactions of Cobalt and Nickel Hydride Complexes to BX3 Compounds

    SciTech Connect

    Mock, Michael T.; Potter, Robert G.; O'Hagan, Molly J.; Camaioni, Donald M.; Dougherty, William G.; Kassel, W. S.; DuBois, Daniel L.

    2011-12-05

    Hydrides of numerous transition metal complexes can be generated by the heterolytic cleavage of H{sub 2} gas such that they offer alternatives to using main group hydrides in the regeneration of ammonia borane, a compound that has been intensely studied for hydrogen storage applications. Previously, we reported that HRh(dmpe){sub 2}, dmpe = 1,2-bis(dimethylphosphinoethane) was capable of reducing a variety of BX{sub 3} compounds having hydride affinity (HA) greater than or equal to HA of BEt{sub 3}. This study examines the reactivity of less expensive cobalt and nickel hydride complexes, (HCo(dmpe){sub 2} and [HNi(dmpe){sub 2}]{sup +}), to form B-H bonds. The hydride donor abilities ({Delta}G{sub H{sup -}}{sup o}) of HCo(dmpe){sub 2} and [HNi(dmpe){sub 2}]{sup +} were positioned on a previously established scale in acetonitrile that is cross-referenced with calculated HAs of BX{sub 3} compounds. The collective data guided our selection of BX{sub 3} compounds to investigate and aided our analysis of factors that determine favorability of hydride transfer. HCo(dmpe){sub 2} was observed to transfer H{sup -} to BX{sub 3} compounds with X = H, OC{sub 6}F{sub 5} and SPh. The reaction with B(SPh){sub 3} is accompanied by formation of (BH{sub 3}){sub 2}-dmpe and (BH{sub 2}SPh){sub 2}-dmpe products that follow from reduction of multiple BSPh bonds and loss of a dmpe ligand from Co. Reactions between HCo(dmpe){sub 2} and B(SPh){sub 3} in the presence of triethylamine result in formation of Et{sub 3}N-BH{sub 2}SPh and Et{sub 3}N-BH{sub 3} with no loss of dmpe ligand. Reactions of the cationic complex [HNi(dmpe){sub 2}]{sup +} with B(SPh){sub 3} under analogous conditions give Et{sub 3}N-BH{sub 2}SPh as the final product along with the nickel-thiolate complex [Ni(dmpe){sub 2}(SPh)]{sup +}. The synthesis and characterization of HCo(dedpe){sub 2} (dedpe = diethyldiphenyl(phosphino)ethane) from H{sub 2} and a base is also discussed; including the formation of an uncommon trans

  17. Interaction of electrons with light metal hydrides in the transmission electron microscope.

    PubMed

    Wang, Yongming; Wakasugi, Takenobu; Isobe, Shigehito; Hashimoto, Naoyuki; Ohnuki, Somei

    2014-12-01

    Transmission electron microscope (TEM) observation of light metal hydrides is complicated by the instability of these materials under electron irradiation. In this study, the electron kinetic energy dependences of the interactions of incident electrons with lithium, sodium and magnesium hydrides, as well as the constituting element effect on the interactions, were theoretically discussed, and electron irradiation damage to these hydrides was examined using in situ TEM. The results indicate that high incident electron kinetic energy helps alleviate the irradiation damage resulting from inelastic or elastic scattering of the incident electrons in the TEM. Therefore, observations and characterizations of these materials would benefit from increased, instead decreased, TEM operating voltage.

  18. Complex and liquid hydrides for energy storage

    NASA Astrophysics Data System (ADS)

    Callini, Elsa; Atakli, Zuleyha Özlem Kocabas; Hauback, Bjørn C.; Orimo, Shin-ichi; Jensen, Craig; Dornheim, Martin; Grant, David; Cho, Young Whan; Chen, Ping; Hjörvarsson, Bjørgvin; de Jongh, Petra; Weidenthaler, Claudia; Baricco, Marcello; Paskevicius, Mark; Jensen, Torben R.; Bowden, Mark E.; Autrey, Thomas S.; Züttel, Andreas

    2016-04-01

    The research on complex hydrides for hydrogen storage was initiated by the discovery of Ti as a hydrogen sorption catalyst in NaAlH4 by Boris Bogdanovic in 1996. A large number of new complex hydride materials in various forms and combinations have been synthesized and characterized, and the knowledge regarding the properties of complex hydrides and the synthesis methods has grown enormously since then. A significant portion of the research groups active in the field of complex hydrides is collaborators in the International Energy Agreement Task 32. This paper reports about the important issues in the field of complex hydride research, i.e. the synthesis of borohydrides, the thermodynamics of complex hydrides, the effects of size and confinement, the hydrogen sorption mechanism and the complex hydride composites as well as the properties of liquid complex hydrides. This paper is the result of the collaboration of several groups and is an excellent summary of the recent achievements.

  19. Complex and liquid hydrides for energy storage

    SciTech Connect

    Callini, Elsa; Atakli, Zuleyha Özlem Kocabas; Hauback, Bjørn C.; Orimo, Shin-ichi; Jensen, Craig; Dornheim, Martin; Grant, David; Cho, Young Whan; Chen, Ping; Hjörvarsson, Bjørgvin; de Jongh, Petra; Weidenthaler, Claudia; Baricco, Marcello; Paskevicius, Mark; Jensen, Torben R.; Bowden, Mark E.; Autrey, Thomas S.; Züttel, Andreas

    2016-03-10

    The research on complex hydrides for hydrogen storage was imitated by the discovery of Ti as a hydrogen sorption catalyst in NaAlH4 by Boris Bogdanovic in 1996. A large number of new complex hydride materials in various forms and combinations have been synthesized and characterized and the knowledge on the properties of complex hydrides and the synthesis methods has grown enormously since then. A significant part of the research groups active in the field of complex hydrides are collaborators in the IEA task 32. This paper reports about the important issues in the field of the complex hydride research, i.e. the synthesis of borohydrides, the thermodynamics of complex hydrides and their thermodynamic properties, the effects of size and confinement, the hydrogen sorption mechanism and the complex hydride composites as well as the properties of liquid complex hydrides. This paper is the result of the collaboration of several groups and excellent summary of the recent achievements.

  20. A new route to metal hydrides

    SciTech Connect

    Murphy, D.W.; Zahurak, S.M.; Vyas, B.; Thomas, M.; Badding, M.E.; Fang, W.C. )

    1993-06-01

    Aqueous borohydride is shown to be an effective reagent for hydriding metals and intermetallics. It is the hydriding equivalent of 20-30 atm of H[sub 2]. The reaction is a convenient way to screen materials for hydride formation and possible utility in applications such as nickel-metal hydride batteries. The reaction is also a convenient alternative to decrepitation for the production of free flowing powders. 16 refs., 1 fig., 1 tab.

  1. Gas-phase acidities of binary hydrides.

    NASA Technical Reports Server (NTRS)

    Brauman, J. I.; Eyler, J. R.; Blair, L. K.; White, M. J.; Comisarow, M. B.; Smyth, K. C.

    1971-01-01

    The preferred direction of proton transfer in a reaction between a hydride molecule and a hydride ion was studied in order to determine the relative acidities of some binary hydrides. Sufficient data are presented to make clear the periodic trends in acidities and the underlying trends in other fundamental thermochemical quantities which influence acidity. The bond dissociation energies and electron affinities of the hydrides considered are listed in a table.

  2. Photochemistry of Transition Metal Hydrides.

    PubMed

    Perutz, Robin N; Procacci, Barbara

    2016-08-10

    Photochemical reactivity associated with metal-hydrogen bonds is widespread among metal hydride complexes and has played a critical part in opening up C-H bond activation. It has been exploited to design different types of photocatalytic reactions and to obtain NMR spectra of dilute solutions with a single pulse of an NMR spectrometer. Because photolysis can be performed on fast time scales and at low temperature, metal-hydride photochemistry has enabled determination of the molecular structure and rates of reaction of highly reactive intermediates. We identify five characteristic photoprocesses of metal monohydride complexes associated with the M-H bond, of which the most widespread are M-H homolysis and R-H reductive elimination. For metal dihydride complexes, the dominant photoprocess is reductive elimination of H2. Dihydrogen complexes typically lose H2 photochemically. The majority of photochemical reactions are likely to be dissociative, but hydride complexes may be designed with equilibrated excited states that undergo different photochemical reactions, including proton transfer or hydride transfer. The photochemical mechanisms of a few reactions have been analyzed by computational methods, including quantum dynamics. A section on specialist methods (time-resolved spectroscopy, matrix isolation, NMR, and computational methods) and a survey of transition metal hydride photochemistry organized by transition metal group complete the Review.

  3. Orbital Element Generation for an Optical and Laser Tracking Space Object Catalogue

    NASA Astrophysics Data System (ADS)

    Bennett, J.; Smith, C.; Greene, B.; Kucharski, D.; Sang, J.

    In this paper results are presented from an analysis assessing the data requirements for orbit element generation for a new high-accuracy catalogue for the Space Environment Research Centre, Australia. The analysis is dedicated to obtaining a robust set of rules for orbit element generation using orbital data from optical and laser tracking of debris and satellites. Optical and laser tracking data collected from several tracking campaigns carried out by EOS Space Systems, located on Mount Stromlo, Australia, is fitted to provide an updated orbital element. The element accuracy is determined for various data-availability scenarios, including: (1) fitting optical tracking data only; (2) fitting laser range data only; (3) fitting optical and laser tracking data. The orbit predictions from the new orbital element are compared with SGP4 propagation from two-line element data and accuracy is assessed by comparing with high accuracy ephemerides where available or subsequent accurate tracking data. The application of the catalogue to conjunction analyses is also discussed. This work forms part of the collaborative effort of the Space Environment Management Cooperative Research Centre which is developing new technologies and strategies to preserve the space environment (www.serc.org.au).

  4. Automated volumetric grid generation for finite element modeling of human hand joints

    SciTech Connect

    Hollerbach, K.; Underhill, K.; Rainsberger, R.

    1995-02-01

    We are developing techniques for finite element analysis of human joints. These techniques need to provide high quality results rapidly in order to be useful to a physician. The research presented here increases model quality and decreases user input time by automating the volumetric mesh generation step.

  5. Composite axilens-axicon diffractive optical elements for generation of ring patterns with high focal depth

    NASA Astrophysics Data System (ADS)

    Dharmavarapu, Raghu; Vijayakumar, A.; Brunner, R.; Bhattacharya, Shanti

    2016-03-01

    A binary Fresnel Zone Axilens (FZA) is designed for the infinite conjugate mode and the phase profile of a refractive axicon is combined with it to generate a composite Diffractive Optical Element (DOE). The FZA designed for two focal lengths generates a line focus along the propagation direction extending between the two focal planes. The ring pattern generated by the axicon is focused through this distance and the radius of the ring depends on the propagation distance. Hence, the radius of the focused ring pattern can be tuned, during the design process, within the two focal planes. The integration of the two functions was carried out by shifting the location of zones of FZA with respect to the phase profile of the refractive axicon resulting in a binary composite DOE. The FZAs and axicons were designed for different focal depth values and base angles respectively, in order to achieve different ring radii within the focal depth of each element. The elements were simulated using scalar diffraction formula and their focusing characteristics were analyzed. The DOEs were fabricated using electron beam direct writing and evaluated using a fiber coupled diode laser. The tunable ring patterns generated by the DOEs have prospective applications in microdrilling as well as microfabrication of circular diffractive and refractive optical elements.

  6. ESCHER: An interactive mesh-generating editor for preparing finite-element input

    NASA Technical Reports Server (NTRS)

    Oakes, W. R., Jr.

    1984-01-01

    ESCHER is an interactive mesh generation and editing program designed to help the user create a finite-element mesh, create additional input for finite-element analysis, including initial conditions, boundary conditions, and slidelines, and generate a NEUTRAL FILE that can be postprocessed for input into several finite-element codes, including ADINA, ADINAT, DYNA, NIKE, TSAAS, and ABUQUS. Two important ESCHER capabilities, interactive geometry creation and mesh archival storge are described in detail. Also described is the interactive command language and the use of interactive graphics. The archival storage and restart file is a modular, entity-based mesh data file. Modules of this file correspond to separate editing modes in the mesh editor, with data definition syntax preserved between the interactive commands and the archival storage file. Because ESCHER was expected to be highly interactive, extensive user documentation was provided in the form of an interactive HELP package.

  7. Hydrogen, lithium, and lithium hydride production

    DOEpatents

    Brown, Sam W; Spencer, Larry S; Phillips, Michael R; Powell, G. Louis; Campbell, Peggy J

    2014-03-25

    A method of producing high purity lithium metal is provided, where gaseous-phase lithium metal is extracted from lithium hydride and condensed to form solid high purity lithium metal. The high purity lithium metal may be hydrided to provide high purity lithium hydride.

  8. A finite-element mesh generator based on growing neural networks.

    PubMed

    Triantafyllidis, D G; Labridis, D P

    2002-01-01

    A mesh generator for the production of high-quality finite-element meshes is being proposed. The mesh generator uses an artificial neural network, which grows during the training process in order to adapt itself to a prespecified probability distribution. The initial mesh is a constrained Delaunay triangulation of the domain to be triangulated. Two new algorithms to accelerate the location of the best matching unit are introduced. The mesh generator has been found able to produce meshes of high quality in a number of classic cases examined and is highly suited for problems where the mesh density vector can be calculated in advance.

  9. Coupled multiphysics finite element model and experimental testing of a thermo-magnetically triggered piezoelectric generator

    NASA Astrophysics Data System (ADS)

    Rendon-Hernandez, Adrian; Basrour, Skandar

    2016-11-01

    This paper deals with the coupled multiphysics finite element modeling and the experimental testing of a thermo-magnetically triggered piezoelectric generator. The model presented here, which has been developed in ANSYS software and experimentally validated, promotes a better understanding of the dynamic behavior of proposed generator. Special attention was put into the coupled multiphysics interactions, for instance, the thermal-dependent demagnetization of soft magnetic material, the piezoelectric transduction and the output power. In order to characterize the power generator, many finite element simulations were conducted, included modal and transient analysis. To verify the effectiveness of the model, a prototype was built and tested. The findings thus obtained were compared with simulation results. Obtained results describe for the first time a fully coupled model of an innovative approach for thermomagnetic energy harvesting. Moreover, the total volume of our harvester (length × width × height: 20 × 4 × 2 mm) is 85 times lower than that of previous experimental harvester.

  10. Thermoviscoelastic finite element modeling of laser-generated ultrasound in viscoelastic plates

    SciTech Connect

    Sun Hongxiang; Zhang Shuyi

    2010-12-15

    Laser-generated ultrasound in a thin composite plate with thermoviscoelastic property has been studied quantitatively. According to thermoviscoelastic theory, considering the viscoelastic and thermophysical properties of materials, a numerical model for the laser-generated Lamb waves is established in the frequency domain by using a finite element method. It is confirmed that the temperature and displacement fields calculated in the frequency domain coincide well with those obtained in the time domain. In the numerical simulations of thermoviscoelastically generated Lamb waves, the effects of viscoelastic and elastic stiffness moduli, and the thickness of the materials have been taken into account in details. The characteristics of the Lamb waves in the numerical results agree well with the features of the disperse curves. The results show that the finite element method in this paper provides a useful technique to characterize mechanical properties of composite materials.

  11. Metal hydrides for lithium-ion batteries.

    PubMed

    Oumellal, Y; Rougier, A; Nazri, G A; Tarascon, J-M; Aymard, L

    2008-11-01

    Classical electrodes for Li-ion technology operate via an insertion/de-insertion process. Recently, conversion electrodes have shown the capability of greater capacity, but have so far suffered from a marked hysteresis in voltage between charge and discharge, leading to poor energy efficiency and voltages. Here, we present the electrochemical reactivity of MgH(2) with Li that constitutes the first use of a metal-hydride electrode for Li-ion batteries. The MgH(2) electrode shows a large, reversible capacity of 1,480 mAh g(-1) at an average voltage of 0.5 V versus Li(+)/Li(o) which is suitable for the negative electrode. In addition, it shows the lowest polarization for conversion electrodes. The electrochemical reaction results in formation of a composite containing Mg embedded in a LiH matrix, which on charging converts back to MgH(2). Furthermore, the reaction is not specific to MgH(2), as other metal or intermetallic hydrides show similar reactivity towards Li. Equally promising, the reaction produces nanosized Mg and MgH(2), which show enhanced hydrogen sorption/desorption kinetics. We hope that such findings can pave the way for designing nanoscale active metal elements with applications in hydrogen storage and lithium-ion batteries.

  12. MANN: A program to transfer designs for diffractive optical elements to a MANN photolithographic mask generator

    NASA Technical Reports Server (NTRS)

    Matthys, Donald R.

    1994-01-01

    There are two basic areas of interest for diffractive optics. In the first, the property of wavefront division is exploited for achieving optical fanout, analogous to the more familiar electrical fanout of electronic circuitry. The basic problem here is that when using a simple uniform diffraction grating the energy input is divided unevenly among the output beams. The other area of interest is the use of diffractive elements to replace or supplement standard refractive elements such as lenses. Again, local grating variations can be used to control the amount of bending imparted to optical rays, and the efficiency of the diffractive element will depend on how closely the element can be matched to the design requirements. In general, production restrictions limit how closely the element approaches the design, and for the common case of photolithographic production, a series of binary masks is required to achieve high efficiency. The actual design process is much more involved than in the case of elements for optical fanout, as the desired phase of the optical wavefront over some reference plane must be specified and the phase alteration to be introduced at each point by the diffraction element must be known. This generally requires the utilization of a standard optical design program. Two approaches are possible. In the first approach, the diffractive element is treated as a special type of lens and the ordinary optical design equations are used. Optical design programs tend to follow a second approach, namely, using the equations of optical interference derived from holographic theory and then allowing the introduction of phase front corrections in the form of polynomial equations. By using either of these two methods, diffractive elements can be used not only to compensate for distortions such as chromatic or spherical aberration, but also to perform the work of a variety of other optical elements such as null correctors, beam shapers, etc. The main focus of the

  13. Metal Hydrides as hot carrier cell absorber materials

    NASA Astrophysics Data System (ADS)

    Wang, Pei; Wen, Xiaoming; Shrestha, Santosh; Conibeer, Gavin; Aguey-Zinsou, Kondo-Francois

    2016-09-01

    The hot Carrier Solar Cell (HCSC) allows the photon-induced hot carriers (the carriers with energy larger than the band gap) to be collected before they completely thermalise. The absorber of the HCSC should have a large phononic band gap to supress Klemens Decay, which results in a slow carrier cooling speed. In fact, a large phononic band gap likely exists in a binary compound whose constituent elements have a large mass ratio between each other. Binary hydrides with their overwhelming mass ratio of the constituent elements are important absorber candidates. Study on different types of binary hydrides as potential absorber candidates is presented in this paper. Many binary transition metal hydrides have reported theoretical or experimental phonon dispersion charts which show large phononic band gaps. Among these hydrides, the titanium hydride (TiHX) is outstanding because of its low cost, easy fabrication process and is relatively inert to air and water. A TiHX thin film is fabricated by directly hydrogenating an evaporated titanium thin film. Characterisation shows good crystal quality and the hydrogenation process is believed to be successful. Ultrafast transient absorption (TA) spectroscopy is used to study the electron cooling time of TiHX. The result is very noisy due to the low absorption and transmission of the sample. The evolution of the TA curves has been explained by band to band transition using the calculated band structure of TiH2. Though not reliable due to the high noise, decay time fitting at 700nm and 600nm shows a considerably slow carrier cooling speed of the sample.

  14. Graphite furnace and hydride generation atomic absorption spectrometric determination of cadmium, lead, and tin traces in natural surface waters: study of preconcentration technique performance.

    PubMed

    Tsogas, George Z; Giokas, Dimosthenis L; Vlessidis, Athanasios G

    2009-04-30

    In this study three major types of preconcentration methods based upon different principles (cation exchange, physical absorption and hydrophobic extraction) were evaluated and optimized for the extraction and determination of three highly toxic heavy metals namely Cd, Pb and Sn by graphite furnace and hybrid generation atomic absorption spectrometry in real samples. The optimum analytical conditions were examined and the analytical features of each method were revealed and compared. Detection limits as low as 0.003-0.025 microg L(-1) for Cd(2+), 0.05-0.10 microg L(-1) for Pb(2+) and 0.1-0.25 microg L(-1) for Sn(4+) depending on the extraction method were obtained with RSD values between 3.08% and 6.11%. A preliminary assessment of the pollution status of three important natural ecosystems in Epirus region (NW Greece) was performed and some early conclusions were drawn and discussed.

  15. Characteristics and Applications of Metal Hydrides

    NASA Technical Reports Server (NTRS)

    Egan, G. J.; Lynch, F. E.

    1987-01-01

    Report discusses engineering principles of uses of metal hydrides in spacecraft. Metal hydrides absorb, store, pump, compress, and expand hydrogen gas. Additionally, they release or absorb sizeable amounts of heat as they form and decompose - property adapted for thermal-energy management or for propulsion. Describes efforts to: Identify heat sources and sinks suitable for driving metal hydride thermal cycles in spacecraft; develop concepts for hydride subsystems employing available heating and cooling methods; and produce data base on estimated sizes, masses, and performances of hydride devices for spacecraft.

  16. An interface-fitted mesh generator and virtual element methods for elliptic interface problems

    NASA Astrophysics Data System (ADS)

    Chen, Long; Wei, Huayi; Wen, Min

    2017-04-01

    A simple and efficient interface-fitted mesh generation algorithm which can produce a semi-structured interface-fitted mesh in two and three dimensions quickly is developed in this paper. Elements in such interface-fitted meshes are not restricted to simplices but can be polygons or polyhedra. Especially in 3D, the polyhedra instead of tetrahedra can avoid slivers. Virtual element methods are applied to solve elliptic interface problems with solutions and flux jump conditions. Algebraic multigrid solvers are used to solve the resulting linear algebraic system. Numerical results are presented to illustrate the effectiveness of our method.

  17. Methods and evaluations of MRI content-adaptive finite element mesh generation for bioelectromagnetic problems.

    PubMed

    Lee, W H; Kim, T-S; Cho, M H; Ahn, Y B; Lee, S Y

    2006-12-07

    In studying bioelectromagnetic problems, finite element analysis (FEA) offers several advantages over conventional methods such as the boundary element method. It allows truly volumetric analysis and incorporation of material properties such as anisotropic conductivity. For FEA, mesh generation is the first critical requirement and there exist many different approaches. However, conventional approaches offered by commercial packages and various algorithms do not generate content-adaptive meshes (cMeshes), resulting in numerous nodes and elements in modelling the conducting domain, and thereby increasing computational load and demand. In this work, we present efficient content-adaptive mesh generation schemes for complex biological volumes of MR images. The presented methodology is fully automatic and generates FE meshes that are adaptive to the geometrical contents of MR images, allowing optimal representation of conducting domain for FEA. We have also evaluated the effect of cMeshes on FEA in three dimensions by comparing the forward solutions from various cMesh head models to the solutions from the reference FE head model in which fine and equidistant FEs constitute the model. The results show that there is a significant gain in computation time with minor loss in numerical accuracy. We believe that cMeshes should be useful in the FEA of bioelectromagnetic problems.

  18. Methods and evaluations of MRI content-adaptive finite element mesh generation for bioelectromagnetic problems

    NASA Astrophysics Data System (ADS)

    Lee, W. H.; Kim, T.-S.; Cho, M. H.; Ahn, Y. B.; Lee, S. Y.

    2006-12-01

    In studying bioelectromagnetic problems, finite element analysis (FEA) offers several advantages over conventional methods such as the boundary element method. It allows truly volumetric analysis and incorporation of material properties such as anisotropic conductivity. For FEA, mesh generation is the first critical requirement and there exist many different approaches. However, conventional approaches offered by commercial packages and various algorithms do not generate content-adaptive meshes (cMeshes), resulting in numerous nodes and elements in modelling the conducting domain, and thereby increasing computational load and demand. In this work, we present efficient content-adaptive mesh generation schemes for complex biological volumes of MR images. The presented methodology is fully automatic and generates FE meshes that are adaptive to the geometrical contents of MR images, allowing optimal representation of conducting domain for FEA. We have also evaluated the effect of cMeshes on FEA in three dimensions by comparing the forward solutions from various cMesh head models to the solutions from the reference FE head model in which fine and equidistant FEs constitute the model. The results show that there is a significant gain in computation time with minor loss in numerical accuracy. We believe that cMeshes should be useful in the FEA of bioelectromagnetic problems.

  19. Antimony speciation in soils: improving the detection limits using post-column pre-reduction hydride generation atomic fluorescence spectroscopy (HPLC/pre-reduction/HG-AFS).

    PubMed

    Quiroz, Waldo; Olivares, David; Bravo, Manuel; Feldmann, Jorg; Raab, Andrea

    2011-04-15

    HG-AFS is highly sensitive and low cost detection system and its use for antimony chemical speciation coupled to HPLC is gaining popularity. However speciation analysis in soils is strongly hampered because the most efficient extractant reported in the literature (oxalic acid) strongly inhibits the generation of SbH(3) by Sb(V), the major species in this kind of matrix, severely affecting its detection limits. The purpose of this research is to reduce the detection limit of Sb(V), by using a post column on-line reduction system with l-cysteine reagent (HPLC/pre-reduction/HG-AFS). The system was optimized by experimental design, optimum conditions found were 2% (w/v) and 10°C temperature coil. Detection limits of Sb(V) and Sb(III) in oxalic acid (0.25 mol L(-1)) were improved from 0.3 and 0.1 μg L(-1) to 0.07 and 0.07 μg L(-1), respectively. The methodology developed was applied to Chilean soils, where Sb(V) was the predominant species.

  20. Hydride generation in-atomizer collection atomic absorption spectrometry for the determination of antimony in acetic acid leachates from pewter cups.

    PubMed

    Dessuy, Morgana B; Kratzer, Jan; Vale, Maria Goreti R; Welz, Bernhard; Dědina, Jiří

    2011-12-15

    Antimony is one of the constituents of pewter, an alloy composed of a minimum of 90% tin with the balance being made up with copper, antimony and perhaps some bismuth. A method has been developed to determine Sb in acetic acid leachates from pewter cups. The employed instrumentation, an atomic absorption spectrometer, equipped with a quartz trap-and-atomizer device, is simple and relatively inexpensive with low running costs. Interferences due to the presence of tin and ways to control them were investigated in detail. The applied approach made possible to overcome potentially serious interference of Sn leached from the cup material (which was shown to take place in the atomizer), by a combination of (i) high concentration of HCl, which decreases the efficiency of stannane generation and (ii) in-atomizer collection. The resulting Sn tolerance limit was between 10 and 20 mg L(-1). The advantages of the in-atomizer collection are a lower tin interference in the atomizer, and a much better limit of detection (LOD), which makes possible reducing the atomization interference further by working with more diluted sample solutions. Besides the Sn interference, an interference of an unknown volatile compound transported to the atomizer together with stibine was identified in the measured sample solutions. This interference could be controlled using the analyte addition technique. The applicability of the method was tested on solutions containing a wide range of interferents leached from the pewter cups, obtained at leaching times between 1 and 24h. The LOD in the sample solutions was found to be 0.03 μg L(-1) Sb.

  1. Properties of nanoscale metal hydrides.

    PubMed

    Fichtner, Maximilian

    2009-05-20

    Nanoscale hydride particles may exhibit chemical stabilities which differ from those of a macroscopic system. The stabilities are mainly influenced by a surface energy term which contains size-dependent values of the surface tension, the molar volume and an additional term which takes into account a potential reduction of the excess surface energy. Thus, the equilibrium of a nanoparticular hydride system may be shifted to the hydrogenated or to the dehydrogenated side, depending on the size and on the prefix of the surface energy term of the hydrogenated and dehydrogenated material. Additional complexity appears when solid-state reactions of complex hydrides are considered and phase segregation has to be taken into account. In such a case the reversibility of complex hydrides may be reduced if the nanoparticles are free standing on a surface. However, it may be enhanced if the system is enclosed by a nanoscale void which prevents the reaction partners on the dehydrogenated side from diffusing away from each other. Moreover, the generally enhanced diffusivity in nanocrystalline systems may lower the kinetic barriers for the material's transformation and, thus, facilitate hydrogen absorption and desorption.

  2. Effect of mineral elements on physicochemical properties of oxidised starches and generation of free radicals.

    PubMed

    Pietrzyk, Sławomir; Fortuna, Teresa; Królikowska, Karolina; Rogozińska, Ewelina; Labanowska, Maria; Kurdziel, Magdalena

    2013-09-12

    The objective of this study was to determine the effect of enrichment of oxidised starches with mineral compounds on their physicochemical properties and capability for free radical generation. Potato and spelt wheat starches were oxidised with sodium hypochlorite and, afterwards, modified with ions of potassium, magnesium and iron. The modified starches were analysed for: content of mineral elements, colour parameters (L*a*b*), water binding capacity solubility in water at temperature of 50 and 80 °C, and susceptibility to enzymatic hydrolysis with α-amylase. In addition, thermodynamic characteristics of gelatinisation was determined by differential scanning calorimetry (DSC), and the number and character of thermally generated free radicals was assayed using electron paramagnetic resonance (EPR). Based on the results achieved, it was concluded that the quantity of incorporated minerals and changes in the assayed physicochemical parameters depended not only on the botanical type of starch but also on the type of the incorporated mineral element.

  3. Laser generation of Lamb waves for defect detection: experimental methods and finite element modeling.

    PubMed

    Burrows, Susan E; Dutton, Ben; Dixon, Steve

    2012-01-01

    The propagation of Lamb waves generated by a pulsed laser beam in an aluminum sheet is modeled using finite element analysis, and the interaction with defects is studied and compared to experimental results. The ultrasonic Lamb waves are detected by an electromagnetic acoustic transducer (EMAT). The frequency content of the received wave is shown to be enhanced when the generation point is situated directly over the defect in both the modeled and experimental cases. Time-frequency analysis using a Wigner transform has enabled individual modes to be identified.

  4. Development of a used fuel cladding damage model incorporating circumferential and radial hydride responses

    NASA Astrophysics Data System (ADS)

    Chen, Qiushi; Ostien, Jakob T.; Hansen, Glen

    2014-04-01

    At the completion of the fuel drying process, used fuel Zry4 cladding typically exhibits a significant population of δ-hydride inclusions. These inclusions are in the form of small platelets that are generally oriented both circumferentially and radially within the cladding material. There is concern that radially-oriented hydride inclusions may weaken the cladding material and lead to issues during used fuel storage and transportation processes. A high fidelity model of the mechanical behavior of hydrides has utility in both designing fuel cladding to be more resistant to this hydride-induced weakening and also in suggesting modifications to drying, storage, and transport operations to reduce the impact of hydride formation and/or the avoidance of loading scenarios that could overly stress the radial inclusions. We develop a mechanical model for the Zry4-hydride system that, given a particular morphology of hydride inclusions, allows the calculation of the response of the hydrided cladding under various loading scenarios. The model treats the Zry4 matrix material as J2 elastoplastic, and treats the hydrides as platelets oriented in predefined directions (e.g., circumferentially and radially). The model is hosted by the Albany analysis framework, where a finite element approximation of the weak form of the cladding boundary value problem is solved using a preconditioned Newton-Krylov approach. Instead of forming the required system Jacobian operator directly or approximating its action with a differencing operation, Albany leverages the Trilinos Sacado package to form the Jacobian via automatic differentiation. We present results that describe the performance of the model in comparison with as-fabricated Zry4 as well as HB Robinson fuel cladding. Further, we also present performance results that demonstrate the efficacy of the overall solution method employed to host the model.

  5. Extracting More Information from Passive Optical Tracking Observations for Reliable Orbit Element Generation

    NASA Astrophysics Data System (ADS)

    Bennett, J.; Gehly, S.

    2016-09-01

    This paper presents results from a preliminary method for extracting more orbital information from low rate passive optical tracking data. An improvement in the accuracy of the observation data yields more accurate and reliable orbital elements. A comparison between the orbit propagations from the orbital element generated using the new data processing method is compared with the one generated from the raw observation data for several objects. Optical tracking data collected by EOS Space Systems, located on Mount Stromlo, Australia, is fitted to provide a new orbital element. The element accuracy is determined from a comparison between the predicted orbit and subsequent tracking data or reference orbit if available. The new method is shown to result in a better orbit prediction which has important implications in conjunction assessments and the Space Environment Research Centre space object catalogue. The focus is on obtaining reliable orbital solutions from sparse data. This work forms part of the collaborative effort of the Space Environment Management Cooperative Research Centre which is developing new technologies and strategies to preserve the space environment (www.serc.org.au).

  6. Parameter studies of gear cooling using an automatic finites element mesh generator

    NASA Technical Reports Server (NTRS)

    El-Bayoumy, L. E.; Akin, L. S.; Townsend, D. P.

    1984-01-01

    The range of accuracies achieved in the gear tooth temperature using an automatic finite element mesh generator were investigated. Gear web contribution to the gear cooling process was studied by introducing a varying size hole at the center of the gear because of the versatility of program TARG in allowing different heat transfer coefficients in different areas of the gear tooth. A study was carried out to evaluate the contribution of the loaded and unloaded faces as well as the top and bottom lands. A general purpose two-dimensional finite element preprocessor ATOGEN has been developed for automatic generation of a finite element mesh over a pie-shaped sector of a gear. The program was used for facilitating the input to an upgraded version of a previously developed program for the thermal analysis of running gears (TARG). The latter program determined the steady state temperature distribution throughout the specified gear. The automatic mesh generator program includes a band width minimization routine for reducing computer cost.

  7. Hydride encapsulation by molecular alkali-metal clusters.

    PubMed

    Haywood, Joanna; Wheatley, Andrew E H

    2008-07-14

    The sequential treatment of group 12 and 13 Lewis acids with alkali-metal organometallics is well established to yield so-called ''ate' complexes, whereby the Lewis-acid metal undergoes nucleophilic attack to give an anion, at least one group 1 metal acting to counter this charge. However, an alternative, less well recognised, reaction pathway involves the Lewis acid abstracting hydride from the organolithium reagent via a beta-elimination mechanism. It has recently been shown that in the presence of N,N'-bidentate ligands this chemistry can be harnessed to yield a new type of molecular main-group metal cluster in which the abstracted LiH is effectively trapped, with the hydride ion occupying an interstitial site in the cluster core. Discussion focuses on the development of this field, detailing advances in our understanding of the roles of Lewis acid, organolithium, and amine substrates in the syntheses of these compounds. Structure-types are discussed, as are efforts to manipulate cluster geometry and composition as well as hydride-coordination. Embryonic mechanistic studies are reported, as well as attempts to generate hydride-encapsulation clusters under catalytic control.

  8. Microstructure of surface cerium hydride growth sites

    SciTech Connect

    Brierley, Martin; Knowles, John; Montgomery, Neil; Preuss, Michael

    2014-05-15

    Samples of cerium were exposed to hydrogen under controlled conditions causing cerium hydride sites to nucleate and grow on the surface. The hydriding rate was measured in situ, and the hydrides were characterised using secondary ion mass spectrometry, scanning electron microscopy, and optical microscopy. The results show that the hydriding rate proceeded more quickly than earlier studies. Characterisation confirmed that the hydrogen is confined to the sites. The morphology of the hydrides was confirmed to be oblate, and stressed material was observed surrounding the hydride, in a number of cases lathlike features were observed surrounding the hydride sites laterally with cracking in the surface oxide above them. It is proposed that during growth the increased lattice parameter of the CeH{sub 2} induces a lateral compressive stress around the hydride, which relieves by the ca. 16% volume collapse of the γ-Ce to α-Ce pressure induced phase transition. Cracking of the surface oxide above the laths reduces the diffusion barrier to hydrogen reaching the metal/oxide interface surrounding the hydride site and contributes to the anisotropic growth of the hydrides.

  9. Hydride Compressor Sorption Cooler and Surface Contamination Issues

    NASA Astrophysics Data System (ADS)

    Bowman, R. C.; Reiter, J. W.; Prina, M.; Kulleck, J. G.; Lanford, W. A.

    2003-07-01

    A continuous-duty hydrogen sorption cryocooler is being developed for the Planck spacecraft, a mission to map the cosmic microwave background beginning in 2007. This cryocooler uses six individual compressor elements (CEs) filled with the hydriding alloy LaNi4.78Sn0.22 to provide high-pressure (50 bar) hydrogen to a Joule-Thomson (J-T) expander and to absorb low-pressure (˜0.3 bar) gas from liquid hydrogen reservoirs cooled to ˜18K. Quadrupole Mass Spectrometry (QMS) showed methane in these hydride beds after cycling during initial operation of laboratory tests of the Planck engineering breadboard (EBB) cooler. These contaminants have caused problems involving plugged J-T expanders. The contaminants probably come from reactions with residual hydrocarbon species on surfaces inside the hydride bed. The hydride bed in each CE is contained in an annular volume called a "gas-gap heat switch," which serves as a reversible, intermittent thermal path to the spacecraft radiator. The gas-gap is either "off" (i.e., its pressure <1.3 Pa), or "on" (i.e., hydrogen gas at ˜4 kPa). The hydrogen pressure is varied with an independent hydride actuator containing ZrNiHx. Early EBB cooler tests showed increasing parasitic heat losses from the inner beds, suggesting residual pressures in the gas gap during its "off" state. The pressure was shown to be due to hydrogen from outgassing from metallic surfaces in the gas gap and hydrogen permeation through the inner sorbent bed wall. This gas accumulation has serious end-of-life implications, as the ZrNi actuator has limited storage capacity and any excess hydrogen would necessarily affect its operation. This paper summarizes experiments on the behavior of hydrogen in the gas gap switch and formation of methane in the CE sorbent beds.

  10. Pressurization of whole element canister during staging

    SciTech Connect

    Huang, F.F.

    1998-01-27

    An analytical model was developed to estimate the buildup of gas pressure for a single outer element in a hot cell test container for a post cold vacuum drying staging/storage test. This model considers various sources of gas generation and gas consumption as a function of time. In a canister containing spent nuclear fuel, hydrogen is generated from the reactions of uranium with free water or hydrated water, hydride decomposition, and radiolysis. The canister pressurization model predicts a stable pressure and a peak temperature during staging, with an assumption that a fuel element contains 40 gm of corrosion products and a decay heat of 2.07 or 1.06 Watts. Calculations were also performed on constant temperature tests for fuel elements containing varied amounts of sludge tested at 150, 125, 105, and 85 C. The pressurization model will be used to evaluate test results obtained from post-drying testing on whole fuel elements.

  11. Optical emission spectrometric determination of arsenic and antimony by continuous flow chemical hydride generation and a miniaturized microwave microstrip argon plasma operated inside a capillary channel in a sapphire wafer

    NASA Astrophysics Data System (ADS)

    Pohl, Pawel; Zapata, Israel Jimenéz; Bings, Nicolas H.; Voges, Edgar; Broekaert, José A. C.

    2007-05-01

    Continuous flow chemical hydride generation coupled directly to a 40 W, atmospheric pressure, 2.45 GHz microwave microstrip Ar plasma operated inside a capillary channel in a sapphire wafer has been optimized for the emission spectrometric determination of As and Sb. The effect of the NaBH 4 concentration, the concentration of HCl, HNO 3 and H 2SO 4 used for sample acidification, the Ar flow rate, the reagent flow rates, the liquid volume in the separator as well as the presence of interfering metals such as Fe, Cu, Ni, Co, Zn, Cd, Mn, Pb and Cr, was investigated in detail. A considerable influence of Fe(III) (enhancement of up to 50 %) for As(V) and of Fe(III), Cu(II) and Cr(III) (suppression of up to 75%) as well as of Cd(II) and Mn(II) (suppression by up to 25%) for Sb(III) was found to occur, which did not change by more than a factor of 2 in the concentration range of 2-20 μg ml - 1 . The microstrip plasma tolerated the introduction of 4.2 ml min - 1 of H 2 in the Ar working gas, which corresponded to an H 2/Ar ratio of 28%. Under these conditions, the excitation temperature as measured with Ar atom lines and the electron number density as determined from the Stark broadening of the H β line was of the order of 5500 K and 1.50 · 10 14 cm - 3 , respectively. Detection limits (3σ) of 18 ng ml - 1 for As and 31 ng ml - 1 for Sb were found and the calibration curves were linear over 2 orders of magnitude. With the procedure developed As and Sb could be determined at the 45 and 6.4 μg ml - 1 level in a galvanic bath solution containing 2.5% of NiSO 4. Additionally, As was determined in a coal fly ash reference material (NIST SRM 1633a) with a certified concentration of As of 145 ± 15 μg g - 1 and a value of 144 ± 4 μg g - 1 was found.

  12. Future's operation areas: new-generation suppression enemy air defence (SEAD) elements

    NASA Astrophysics Data System (ADS)

    Hazinedar, Ä.°lker

    2015-05-01

    Since air vehicles took place in the theater of operations, they have become the indispensable elements and the strongest attack power of armed forces. In the following period, with technological development, supersonic aircrafts took place in the operation area and this increased effectiveness of air vehicles much more. Air forces have used these aircrafts during important missions like strategic attack and air defense operations. On the other hand, decision makers understood that it was not feasible to intercept fighter aircrafts by executing combat air patrol flight missions. Since there is not enough reaction time to intercept the high speed aircrafts, ground stationed Surface to Air Missiles (SAM) system requirement has emerged. Therefore, SAM systems took place in the operation scene as well. Due to the fact that SAM systems emerged against the attack power, the attack aircrafts are to keep away from the fire of the ground stationed SAM systems. Hence, the requirement of Suppression Enemy Air Defense (SEAD) arose. SEAD elements take under suppression the radar of the SAM systems. In this way, attack aircrafts are able to attack without the risk of SAM systems. The purpose of this study is to find new methods or concepts in order to protect friendly attack aircrafts against ground based surface to air missiles' fires. Modernization of SAM systems and new generation SAM system producing activities have proceeded with positive acceleration. So, current SEAD elements and concepts are not able to cover the requirements due to the increased SAM system ranges. According to the concepts, SEAD weapons` ranges must be longer than the SAM weapons' ranges to protect friendly aircrafts. In this study, new concept was offered to overcome the deficiencies of current SEAD concept. The elements of new concepts were put forward. Classic SEAD concept and new generation concepts were assessed by using SWOT analysis technique. As a result, this study has revealed that, air forces

  13. Finite element modeling for dislocation generation in semiconductor crystals grown from the melt

    NASA Astrophysics Data System (ADS)

    Zhu, Xinai

    Dislocations in Gallium Arsenide (GaAs) and Indium Phosphide (InP) single crystals are generated by excessive stresses that are induced during the crystal growth process, and the fabrication and packaging of microelectronic devices/circuits. The presence of dislocations has adverse effects on the performance, lifetime and reliability of the GaAs and InP-based devices/circuits. It is well known that dislocation density can be significantly reduced by doping impurity atoms into the GaAs and InP crystal and/or decreasing the thermal stresses in these crystals during their growth process. In order to reduce the dislocation density generated in the GaAs and InP crystals, the influence of crystal growth parameters and doping impurity atoms on the dislocations reduction in GaAs and InP crystals has to be understood. Therefore, a transient finite element model was developed to simulate the dislocation generation in GaAs and InP crystals grown from the melt. A viscoplastic constitutive equation that couples a microscopic dislocation density with a macroscopic plastic deformation is employed to formulate this transient finite element model, where the dislocation density is considered as an internal state variable and the doping impurity is represented by a drag-stress in this constitutive model. GaAs and InP single crystals grown by the vertical gradient freeze (VGF) process were adopted as examples to study the influences of doping impurity and growth parameters on dislocations generated in these grown crystal. The calculated results show that doping impurity can significantly reduce dislocation generation and produces low-dislocation-density or dislocation free GaAs and InP single crystals. It also shows that the dislocations generated in GaAs and InP crystals increase as the crystal diameter and imposed temperature gradient increase, but do not change or increase slightly as the crystal growth rate increases. Therefore, this finite element model can be effectively used by

  14. Silica hydride intermediate for octadecylsilica and phenyl bonded phase preparation via heterogeneous hydrosilation in supercritical carbon dioxide.

    PubMed

    Scully, N M; Ashu-Arrah, B A; Nagle, A P; Omamogho, J O; O'Sullivan, G P; Friebolin, V; Dietrich, B; Albert, K; Glennon, J D

    2011-04-15

    Investigations into the preparation of silica hydride intermediate in supercritical carbon dioxide (sc-CO(2)) that avoids the use of organic solvents such as toluene or dioxane are described. The effects of reaction temperature, pressure and time on the surface coverage of the supercritical fluid generated silica hydride intermediate were studied. Under optimised supercritical conditions of 120°C, 483 bar and 3 h reaction time, silica hydride (Si-H) conversion efficiencies of ca. 40% were achieved for the hydride intermediate prepared from a monofunctional silane reagent (dimethylmethoxysilane). Si-H conversion efficiencies (as determined from (29)Si CP-MAS NMR spectral analysis) for the hydride intermediate prepared from triethoxysilane (TES) in sc-CO(2) were found to be comparable to those obtained using a TES silanisation approach in an organic solvent. (13)C and (29)Si CP-MAS-NMR spectroscopy was employed to provide a complete structural assignment of the silica hydride intermediates. Furthermore, supercritical CO(2) was subsequently employed as a reaction medium for the heterogenous hydrosilation of silica hydride with octadecene and with styrene, in the presence of a free radical initiator. These supercritical fluid generated reversed-phase materials were prepared in a substantially reduced reaction time (3 h) compared to organic solvent based methods (100 h reaction time). Silica functionalisation in sc-CO(2) presents an efficient and clean alternative to organic solvent based methods for the preparation of important silica hydride intermediate and silica bonded stationary phases via a hydrosilation approach.

  15. The renaissance of hydrides as energy materials

    NASA Astrophysics Data System (ADS)

    Mohtadi, Rana; Orimo, Shin-Ichi

    2016-12-01

    Materials based on hydrides have been the linchpin in the development of several practical energy storage technologies, of which the most prominent example is nickel-metal hydride batteries. Motivated by the need to meet the future's energy demand, the past decade has witnessed substantial advancements in the research and development of hydrides as media for hydrogen energy storage. More recently, new and rapidly evolving discoveries have positioned hydrides as highly promising materials for future electrochemical energy storage, such as electrolytes for mono- and divalent batteries, and anodes for lithium-ion batteries. In addition, the potential of hydrides in efficient power transmission has been recently revealed. In this Review, we highlight key advances and illustrate how the versatility of hydrides has not only yielded a meaningful past, but also ensures a very bright future.

  16. Wind energy harvesting using a piezo-composite generating element (PCGE)

    NASA Astrophysics Data System (ADS)

    Tien, Cam Minh Tri; Goo, Nam-Seo

    2010-04-01

    Energy can be reclaimed and stored for later use to recharge a battery or power a device through a process called energy harvesting. Piezoelectric is being widely investigated for use in harvesting surrounding energy sources such as sun, wind, tides, indoor lighting, body movement or machine vibration, etc. This paper introduces a wind energy harvesting device using a Piezo-Composite Generating Element (PCGE). The PCGE is composed of layers of carbon/epoxy, PZT ceramic, and glass/epoxy cured at an elevated temperature. In the prototype, The PCGE performs as a secondary beam element. One end of the PCGE is attached on the frame of the device. The fan blade rotates in the direction of the wind and hits the PCGE's tip. When the PCGE is excited, the effects of the beam deformation allow it to generate electric power. In wind tunnel experiments, the PCGE is excited to vibrate at its first natural frequency and generates the power up to 8.5 mW. The prototype can harvest energy in urban regions with minor wind movement.

  17. Use of reversible hydrides for hydrogen storage

    NASA Technical Reports Server (NTRS)

    Darriet, B.; Pezat, M.; Hagenmuller, P.

    1980-01-01

    The addition of metals or alloys whose hydrides have a high dissociation pressure allows a considerable increase in the hydrogenation rate of magnesium. The influence of temperature and hydrogen pressure on the reaction rate were studied. Results concerning the hydriding of magnesium rich alloys such as Mg2Ca, La2Mg17 and CeMg12 are presented. The hydriding mechanism of La2Mg17 and CeMg12 alloys is given.

  18. Hydrogen /Hydride/-air secondary battery

    NASA Technical Reports Server (NTRS)

    Sarradin, J.; Bronoel, G.; Percheron-Guegan, A.; Achard, J. C.

    1979-01-01

    The use of metal hydrides as negative electrodes in a hydrogen-air secondary battery seems promising. However, in an unpressurized cell, more stable hydrides that LaNi5H6 must be selected. Partial substitutions of nickel by aluminium or manganese increase the stability of hydrides. Combined with an air reversible electrode, a specific energy close to 100 Wh/kg can be expected.

  19. Inhibited solid propellant composition containing beryllium hydride

    NASA Technical Reports Server (NTRS)

    Thompson, W. W. (Inventor)

    1978-01-01

    An object of this invention is to provide a composition of beryllium hydride and carboxy-terminated polybutadiene which is stable. Another object of this invention is to provide a method for inhibiting the reactivity of beryllium hydride toward carboxy-terminated polybutadiene. It was found that a small amount of lecithin inhibits the reaction of beryllium hydride with the acid groups in carboxy terminated polybutadiene.

  20. Multi-stage hydride-hydrogen compressor

    NASA Astrophysics Data System (ADS)

    Golben, P. M.

    A 4-stage metal hydride/hydrogen compressor that uses low temperature hot water (75 C) as its energy source has been built and tested. The compressor utilizes a new hydride heat exchanger technique that has achieved fast cycling time (with 20 C cooling water) on the order of 1 min. This refinement substantially decreases the size, weight and cost of the unit when compared to previous hydride compressors or even conventional mechanical diaphragm compressors.

  1. Zirconium Hydride Space Power Reactor design.

    NASA Technical Reports Server (NTRS)

    Asquith, J. G.; Mason, D. G.; Stamp, S.

    1972-01-01

    The Zirconium Hydride Space Power Reactor being designed and fabricated at Atomics International is intended for a wide range of potential applications. Throughout the program a series of reactor designs have been evaluated to establish the unique requirements imposed by coupling with various power conversion systems and for specific applications. Current design and development emphasis is upon a 100 kilowatt thermal reactor for application in a 5 kwe thermoelectric space power generating system, which is scheduled to be fabricated and ground tested in the mid 70s. The reactor design considerations reviewed in this paper will be discussed in the context of this 100 kwt reactor and a 300 kwt reactor previously designed for larger power demand applications.

  2. Far-infrared spectrum of sodium hydride

    NASA Astrophysics Data System (ADS)

    Leopold, K. R.; Zink, L. R.; Evenson, K. M.; Jennings, D. A.

    1987-03-01

    Rotational spectra in the v = 0, 1, 2, and 3 levels of the ground ( 1Σ) state of sodium hydride have been observed using tunable far-infrared radiation generated from the difference frequency between two CO 2 lasers. The Dunham coefficients, which have been determined without the use of optical data or isotopic scaling relations, are Y01 = 146 999.138(38) MHz, Y02 = -10.29481(54) MHz, Y03 = 6.243(49) × 10 -4 MHz, Y11 = -4109.912(68) MHz, Y12 = 0.14695(68) MHz, Y21 = 33.341(34) MHz, Y22 = -2.69(20) × 10 -3 MHz, and Y31 = -1.0517(55) MHz. The constants are typically an order of magnitude more accurate than the best values previously available, and where comparison is possible, agreement is found to be excellent.

  3. Ten degree Kelvin hydride refrigerator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    1987-01-01

    A compact hydride absorption refrigeration system with few moving parts for 10 Kelvin operation is disclosed and comprises liquid hydrogen producing means in combination with means for solidifying and subliming the liquid hydrogen produced. The liquid hydrogen is sublimed at about 10 Kelvin. By using a symmetrical all hydrogen redundant loop system, a 10 Kelvin refrigeration system can be operated for many years with only a fraction of the power required for prior art systems.

  4. Complex hydrides for hydrogen storage

    DOEpatents

    Zidan, Ragaiy

    2006-08-22

    A hydrogen storage material and process of forming the material is provided in which complex hydrides are combined under conditions of elevated temperatures and/or elevated temperature and pressure with a titanium metal such as titanium butoxide. The resulting fused product exhibits hydrogen desorption kinetics having a first hydrogen release point which occurs at normal atmospheres and at a temperature between 50.degree. C. and 90.degree. C.

  5. Coinage Metal Hydrides: Synthesis, Characterization, and Reactivity.

    PubMed

    Jordan, Abraham J; Lalic, Gojko; Sadighi, Joseph P

    2016-08-10

    Hydride complexes of copper, silver, and gold encompass a broad array of structures, and their distinctive reactivity has enabled dramatic recent advances in synthesis and catalysis. This Review summarizes the synthesis, characterization, and key stoichiometric reactions of isolable or observable coinage metal hydrides. It discusses catalytic processes in which coinage metal hydrides are known or probable intermediates, and presents mechanistic studies of selected catalytic reactions. The purpose of this Review is to convey how developments in coinage metal hydride chemistry have led to new organic transformations, and how developments in catalysis have in turn inspired the synthesis of reactive new complexes.

  6. Generation of Bessel Beams at mm- and Sub mm-wavelengths by Binary Optical Elements

    NASA Astrophysics Data System (ADS)

    Yu, Y. Z.; Dou, W. B.

    2008-07-01

    In this paper, binary optical elements (BOE’s) are designed for generating Bessel beams at mm- and sub mm- wavelengths. The design tool is to combine a genetic algorithm (GA) for global optimization with a two-dimension finite-difference time-domain (2-D FDTD) method for rigorous electromagnetic computation. The design process for converting a normally incident Gaussian beam into a Bessel beam is described in detail. Numerical results demonstrate that the designed BOE’s can not only successfully produce arbitrary order Bessel beams, but also have higher diffraction efficiencies when compared with amplitude holograms.

  7. Generation of abnormal trace element abundances in Antarctic eucrites by weathering processes

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David W.; Lindstrom, Marilyn M.

    1991-01-01

    Data were obtained on the trace- and major-element compositions of 16 Antarctic abnormal eucrites, many of which exhibiting positive (but sometimes negative) Ce anomalies, positive Eu anomalies, and low abundances of the remainder of the REEs. The results of data analysis suggest that the unusual REE patterns of abnormal Antarctic eucrites arise from weathering effects generated in or on the Antarctic ice. The suggested scenario involves the formation of melt water and its equilibration with the atmosphere, promoting the dissolution of REE-rich phosphates and the oxidation of Ce. As a result, tetravalent Ce is fractionated from the trivalent REE in solution.

  8. Photoelectron spectroscopic study of carbon aluminum hydride cluster anions

    NASA Astrophysics Data System (ADS)

    Zhang, Xinxing; Wang, Haopeng; Ganteför, Gerd; Eichhorn, Bryan W.; Kiran, Boggavarapu; Bowen, Kit H.

    2016-10-01

    Numerous previously unknown carbon aluminum hydride cluster anions were generated in the gas phase, identified by time-of-flight mass spectrometry and characterized by anion photoelectron spectroscopy, revealing their electronic structure. Density functional theory calculations on the CAl5-9H- and CAl5-7H2- found that several of them possess unusually high carbon atom coordination numbers. These cluster compositions have potential as the basis for new energetic materials.

  9. Photoelectron spectroscopic study of carbon aluminum hydride cluster anions.

    PubMed

    Zhang, Xinxing; Wang, Haopeng; Ganteför, Gerd; Eichhorn, Bryan W; Kiran, Boggavarapu; Bowen, Kit H

    2016-10-21

    Numerous previously unknown carbon aluminum hydride cluster anions were generated in the gas phase, identified by time-of-flight mass spectrometry and characterized by anion photoelectron spectroscopy, revealing their electronic structure. Density functional theory calculations on the CAl5-9H(-) and CAl5-7H2(-) found that several of them possess unusually high carbon atom coordination numbers. These cluster compositions have potential as the basis for new energetic materials.

  10. A flow physics study of flap-mounted vortex generators on a multi-element airfoil

    NASA Astrophysics Data System (ADS)

    Klausmeyer, Steven Michael

    Vortex generators are a commonly used aerodynamic "fix" for flow separation problems. They are typically used to remedy flow separation due to design shortcomings or changes in operating conditions that exceed the original design point. Flow separation is often encountered with high lift systems. Flaps and slats can be difficult to design due to complicated flow phenomena and large Reynolds number effects. Previous research has indicated the effectiveness of vortex generators in correcting flow separation over a flap. In fact, significant aerodynamic performance improvements were predicted for high-lift systems that incorporate vortex generators in the original design. Before this may be attempted, a better understanding of vortex generator flow physics must be obtained for the development of appropriate design tools and analysis methods. The research contained herein is focused on a detailed flow physics study of vortex generators mounted to the flap of a three-element high-lift airfoil. Detailed velocity measurements taken using a three-component laser Doppler velocimeter were used to vortex/boundary layer interactions and global flowfield effects. The full Reynolds stress tensor and mean velocity field was measured in addition to surface pressures. Three basic vortex generator arrangements were studied: upflow, downflow, and corotating. Although not optimized, all three types of vortex generators were effective at eliminating boundary layer separation. The vortices demonstrated a tendency to rise from the flap surface regardless of orientation and decayed rapidly, with cross-stream vorticity dropping below measurable levels by 75% flap chord. However, the embedded vortices produced significant perturbations in the turbulence field and mean flow of the flap boundary layer that persisted to the flap trailing edge.

  11. Design and verification of diffractive optical elements for speckle generation of 3-D range sensors

    NASA Astrophysics Data System (ADS)

    Du, Pei-Qin; Shih, Hsi-Fu; Chen, Jenq-Shyong; Wang, Yi-Shiang

    2016-12-01

    The optical projection using speckles is one of the structured light methods that have been applied to three-dimensional (3-D) range sensors. This paper investigates the design and fabrication of diffractive optical elements (DOEs) for generating the light field with uniformly distributed speckles. Based on the principles of computer generated holograms, the iterative Fourier transform algorithm was adopted for the DOE design. It was used to calculate the phase map for diffracting the incident laser beam into a goal pattern with distributed speckles. Four patterns were designed in the study. Their phase maps were first examined by a spatial light modulator and then fabricated on glass substrates by microfabrication processes. Finally, the diffraction characteristics of the fabricated devices were verified. The experimental results show that the proposed methods are applicable to the DOE design of 3-D range sensors. Furthermore, any expected diffraction area and speckle density could be possibly achieved according to the relations presented in the paper.

  12. High Power, Repetitive, Stacked Blumlein Pulse Generators Commuted by a Single Switching Element

    NASA Astrophysics Data System (ADS)

    Bhawalkar, Jayant Dilip

    In this work, the stacked Blumlein pulsers developed at the University of Texas at Dallas were characterized and shown to be versatile sources of pulse power for a variety of applications. These devices consisted of several triaxial Blumleins stacked in series at one end. The lines were charged in parallel and synchronously commuted repetitively with a single switching element at the other end. In this way, relatively low charging voltages were multiplied to give a high discharge voltage across an arbitrary load without the need for complex Marx bank circuitry. Several pulser parameters such as the number of stacked Blumlein lines, line configuration, type of switching element, and the length of the lines, were varied and the waveform characteristics were observed and analyzed. It was shown that these devices are capable of generating fast rising waveforms with a wide range of peak voltage and current values. The generation of high power waveforms with pulse durations in the range of 80-600 ns was demonstrated without degradation of the voltage gains. The results of this work indicated that unlike generators based on stacked transmission lines, the effects of parasitic modes were not appreciable for the stacked Blumlein pulsers. Opportunities for tactically packaging these pulsers were also investigated and a significant reduction in their size and weight was demonstrated. For this, dielectric lifetime and Blumlein spacing studies were performed on small scale prototypes. In addition to production of intense X-ray pulses, the possible applications for these novel pulsers include driving magnetrons for high power microwave generation, pumping laser media, or powering e-beam diodes. They could also serve as compact, tabletop sources of high power pulses for various research experiments.

  13. Manual for automatic generation of finite element models of spiral bevel gears in mesh

    NASA Technical Reports Server (NTRS)

    Bibel, G. D.; Reddy, S.; Kumar, A.

    1994-01-01

    The goal of this research is to develop computer programs that generate finite element models suitable for doing 3D contact analysis of faced milled spiral bevel gears in mesh. A pinion tooth and a gear tooth are created and put in mesh. There are two programs: Points.f and Pat.f to perform the analysis. Points.f is based on the equation of meshing for spiral bevel gears. It uses machine tool settings to solve for an N x M mesh of points on the four surfaces, pinion concave and convex, and gear concave and convex. Points.f creates the file POINTS.OUT, an ASCI file containing N x M points for each surface. (N is the number of node points along the length of the tooth, and M is nodes along the height.) Pat.f reads POINTS.OUT and creates the file tl.out. Tl.out is a series of PATRAN input commands. In addition to the mesh density on the tooth face, additional user specified variables are the number of finite elements through the thickness, and the number of finite elements along the tooth full fillet. A full fillet is assumed to exist for both the pinion and gear.

  14. Automated Generation of Finite-Element Meshes for Aircraft Conceptual Design

    NASA Technical Reports Server (NTRS)

    Li, Wu; Robinson, Jay

    2016-01-01

    This paper presents a novel approach for automated generation of fully connected finite-element meshes for all internal structural components and skins of a given wing-body geometry model, controlled by a few conceptual-level structural layout parameters. Internal structural components include spars, ribs, frames, and bulkheads. Structural layout parameters include spar/rib locations in wing chordwise/spanwise direction and frame/bulkhead locations in longitudinal direction. A simple shell thickness optimization problem with two load conditions is used to verify versatility and robustness of the automated meshing process. The automation process is implemented in ModelCenter starting from an OpenVSP geometry and ending with a NASTRAN 200 solution. One subsonic configuration and one supersonic configuration are used for numerical verification. Two different structural layouts are constructed for each configuration and five finite-element meshes of different sizes are generated for each layout. The paper includes various comparisons of solutions of 20 thickness optimization problems, as well as discussions on how the optimal solutions are affected by the stress constraint bound and the initial guess of design variables.

  15. Role of electronic, geometric, and surface properties on the mechanism of the electrochemical hydriding/dehydriding reactions

    SciTech Connect

    Srinivasan, S.; Zhang, W.; Kumar, M.P.S.

    1996-03-01

    Since 1990 there has been an ongoing collaboration among the authors to investigate the role of individual elements on the thermodynamics and kinetics of hydriding/dehydriding reactions. This review article presents the electrochemical and physicochemical characteristics of hydriding/dehydriding reactions from the point of view of their dependence on electronic, geometric and surface properties of the hydride materials. X-ray absorption spectroscopy (XAS), x-ray diffraction spectroscopy (XRD) and scanning vibrating electrode technique (SVET) studies were based on AB{sub 5} type alloys, partially substituted by other elements. Expansion of the unit cell volume and a larger Ni d band vacancy are beneficial for increasing the amount of the hydrogen storage. XAS and SVET showed that the Ce substitution for La in an AB{sub 5} alloy enhances the lifetime of hydride electrode.

  16. Erbium hydride thermal desorption : controlling kinetics.

    SciTech Connect

    Ferrizz, Robert Matthew

    2007-08-01

    Thermal desorption spectroscopy (TDS) is used to study the decomposition kinetics of erbium hydride thin films. The TDS results presented in this report show that hydride film processing parameters directly impact thermal stability. Issues to be addressed include desorption kinetics for dihydrides and trihydrides, and the effect of film growth parameters, loading parameters, and substrate selection on desorption kinetics.

  17. High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides

    SciTech Connect

    Daniel A. Mosher; Xia Tang; Ronald J. Brown; Sarah Arsenault; Salvatore Saitta; Bruce L. Laube; Robert H. Dold; Donald L. Anton

    2007-07-27

    This final report describes the motivations, activities and results of the hydrogen storage independent project "High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides" performed by the United Technologies Research Center under the Department of Energy Hydrogen Program, contract # DE-FC36-02AL67610. The objectives of the project were to identify and address the key systems technologies associated with applying complex hydride materials, particularly ones which differ from those for conventional metal hydride based storage. This involved the design, fabrication and testing of two prototype systems based on the hydrogen storage material NaAlH4. Safety testing, catalysis studies, heat exchanger optimization, reaction kinetics modeling, thermochemical finite element analysis, powder densification development and material neutralization were elements included in the effort.

  18. Performance study of a hydrogen powered metal hydride actuator

    NASA Astrophysics Data System (ADS)

    Mainul Hossain Bhuiya, Md; Kim, Kwang J.

    2016-04-01

    A thermally driven hydrogen powered actuator integrating metal hydride hydrogen storage reactor, which is compact, noiseless, and able to generate smooth actuation, is presented in this article. To test the plausibility of a thermally driven actuator, a conventional piston type actuator was integrated with LaNi5 based hydrogen storage system. Copper encapsulation followed by compaction of particles into pellets, were adopted to improve overall thermal conductivity of the reactor. The operation of the actuator was thoroughly investigated for an array of operating temperature ranges. Temperature swing of the hydride reactor triggering smooth and noiseless actuation over several operating temperature ranges were monitored for quantification of actuator efficiency. Overall, the actuator generated smooth and consistent strokes during repeated cycles of operation. The efficiency of the actuator was found to be as high as 13.36% for operating a temperature range of 20 °C-50 °C. Stress-strain characteristics, actuation hysteresis etc were studied experimentally. Comparison of stress-strain characteristics of the proposed actuator with traditional actuators, artificial muscles and so on was made. The study suggests that design modification and use of high pressure hydride may enhance the performance and broaden the application horizon of the proposed actuator in future.

  19. Development of Multi-Scale Finite Element Analysis Codes for High Formability Sheet Metal Generation

    SciTech Connect

    Nnakamachi, Eiji; Kuramae, Hiroyuki; Ngoc Tam, Nguyen; Nakamura, Yasunori; Sakamoto, Hidetoshi; Morimoto, Hideo

    2007-05-17

    In this study, the dynamic- and static-explicit multi-scale finite element (F.E.) codes are developed by employing the homogenization method, the crystalplasticity constitutive equation and SEM-EBSD measurement based polycrystal model. These can predict the crystal morphological change and the hardening evolution at the micro level, and the macroscopic plastic anisotropy evolution. These codes are applied to analyze the asymmetrical rolling process, which is introduced to control the crystal texture of the sheet metal for generating a high formability sheet metal. These codes can predict the yield surface and the sheet formability by analyzing the strain path dependent yield, the simple sheet forming process, such as the limit dome height test and the cylindrical deep drawing problems. It shows that the shear dominant rolling process, such as the asymmetric rolling, generates ''high formability'' textures and eventually the high formability sheet. The texture evolution and the high formability of the newly generated sheet metal experimentally were confirmed by the SEM-EBSD measurement and LDH test. It is concluded that these explicit type crystallographic homogenized multi-scale F.E. code could be a comprehensive tool to predict the plastic induced texture evolution, anisotropy and formability by the rolling process and the limit dome height test analyses.

  20. Sequence capture and next-generation sequencing of ultraconserved elements in a large-genome salamander.

    PubMed

    Newman, Catherine E; Austin, Christopher C

    2016-12-01

    Amidst the rapid advancement in next-generation sequencing (NGS) technology over the last few years, salamanders have been left behind. Salamanders have enormous genomes-up to 40 times the size of the human genome-and this poses challenges to generating NGS data sets of quality and quantity similar to those of other vertebrates. However, optimization of laboratory protocols is time-consuming and often cost prohibitive, and continued omission of salamanders from novel phylogeographic research is detrimental to species facing decline. Here, we use a salamander endemic to the southeastern United States, Plethodon serratus, to test the utility of an established protocol for sequence capture of ultraconserved elements (UCEs) in resolving intraspecific phylogeographic relationships and delimiting cryptic species. Without modifying the standard laboratory protocol, we generated a data set consisting of over 600 million reads for 85 P. serratus samples. Species delimitation analyses support recognition of seven species within P. serratus sensu lato, and all phylogenetic relationships among the seven species are fully resolved under a coalescent model. Results also corroborate previous data suggesting nonmonophyly of the Ouachita and Louisiana regions. Our results demonstrate that established UCE protocols can successfully be used in phylogeographic studies of salamander species, providing a powerful tool for future research on evolutionary history of amphibians and other organisms with large genomes.

  1. T-wave generation and propagation: a comparison between data and spectral element modeling.

    PubMed

    Jamet, Guillaume; Guennou, Claude; Guillon, Laurent; Mazoyer, Camille; Royer, Jean-Yves

    2013-10-01

    T-waves are underwater acoustic waves generated by earthquakes. Modeling of their generation and propagation is a challenging problem. Using a spectral element code-SPECFEM2D, this paper presents the first realistic simulations of T-waves taking into account major aspects of this phenomenon: The radiation pattern of the source, the propagation of seismic waves in the crust, the seismic to acoustic conversion on a non-planar seafloor, and the propagation of acoustic waves in the water column. The simulated signals are compared with data from the mid-Atlantic Ridge recorded by an array of hydrophones. The crust/water interface is defined by the seafloor bathymetry. Different combinations of water sound-speed profiles and sub-seafloor seismic velocities, and frequency content of the source are tested. The relative amplitudes, main arrival-times, and durations of simulated T-phases are in good agreement with the observed data; differences in the spectrograms and early arrivals are likely due to too simplistic source signals and environmental model. These examples demonstrate the abilities of the SPECFEM2D code for modeling earthquake generated T-waves.

  2. Direct synthesis of catalyzed hydride compounds

    DOEpatents

    Gross, Karl J.; Majzoub, Eric

    2004-09-21

    A method is disclosed for directly preparing alkali metal aluminum hydrides such as NaAlH.sub.4 and Na.sub.3 AlH.sub.6 from either the alkali metal or its hydride, and aluminum. The hydride thus prepared is doped with a small portion of a transition metal catalyst compound, such as TiCl.sub.3, TiF.sub.3, or a mixture of these materials, in order to render them reversibly hydridable. The process provides for mechanically mixing the dry reagents under an inert atmosphere followed by charging the mixed materials with high pressure hydrogen while heating the mixture to about 125.degree. C. The method is relatively simple and inexpensive and provides reversible hydride compounds which are free of the usual contamination introduced by prior art wet chemical methods.

  3. Phase Diagram and High-Temperature Superconductivity of Compressed Selenium Hydrides

    PubMed Central

    Zhang, Shoutao; Wang, Yanchao; Zhang, Jurong; Liu, Hanyu; Zhong, Xin; Song, Hai-Feng; Yang, Guochun; Zhang, Lijun; Ma, Yanming

    2015-01-01

    Recent discovery of high-temperature superconductivity (Tc = 190 K) in sulfur hydrides at megabar pressures breaks the traditional belief on the Tc limit of 40 K for conventional superconductors, and opens up the doors in searching new high-temperature superconductors in compounds made up of light elements. Selenium is a sister and isoelectronic element of sulfur, with a larger atomic core and a weaker electronegativity. Whether selenium hydrides share similar high-temperature superconductivity remains elusive, but it is a subject of considerable interest. First-principles swarm structure predictions are performed in an effort to seek for energetically stable and metallic selenium hydrides at high pressures. We find the phase diagram of selenium hydrides is rather different from its sulfur analogy, which is indicated by the emergence of new phases and the change of relative stabilities. Three stable and metallic species with stoichiometries of HSe2, HSe and H3Se are identified above ~120 GPa and they all exhibit superconductive behaviors, of which the hydrogen-rich HSe and H3Se phases show high Tc in the range of 40–110 K. Our simulations established the high-temperature superconductive nature of selenium hydrides and provided useful route for experimental verification. PMID:26490223

  4. Phase Diagram and High-Temperature Superconductivity of Compressed Selenium Hydrides

    NASA Astrophysics Data System (ADS)

    Zhang, Shoutao; Wang, Yanchao; Zhang, Jurong; Liu, Hanyu; Zhong, Xin; Song, Hai-Feng; Yang, Guochun; Zhang, Lijun; Ma, Yanming

    2015-10-01

    Recent discovery of high-temperature superconductivity (Tc = 190 K) in sulfur hydrides at megabar pressures breaks the traditional belief on the Tc limit of 40 K for conventional superconductors, and opens up the doors in searching new high-temperature superconductors in compounds made up of light elements. Selenium is a sister and isoelectronic element of sulfur, with a larger atomic core and a weaker electronegativity. Whether selenium hydrides share similar high-temperature superconductivity remains elusive, but it is a subject of considerable interest. First-principles swarm structure predictions are performed in an effort to seek for energetically stable and metallic selenium hydrides at high pressures. We find the phase diagram of selenium hydrides is rather different from its sulfur analogy, which is indicated by the emergence of new phases and the change of relative stabilities. Three stable and metallic species with stoichiometries of HSe2, HSe and H3Se are identified above ~120 GPa and they all exhibit superconductive behaviors, of which the hydrogen-rich HSe and H3Se phases show high Tc in the range of 40-110 K. Our simulations established the high-temperature superconductive nature of selenium hydrides and provided useful route for experimental verification.

  5. Zirconium hydride containing explosive composition

    DOEpatents

    Walker, Franklin E.; Wasley, Richard J.

    1981-01-01

    An improved explosive composition is disclosed and comprises a major portion of an explosive having a detonation velocity between about 1500 and 10,000 meters per second and a minor amount of a donor additive comprising a non-explosive compound or mixture of non-explosive compounds which when subjected to an energy fluence of 1000 calories/cm.sup.2 or less is capable of releasing free radicals each having a molecular weight between 1 and 120. Exemplary donor additives are dibasic acids, polyamines and metal hydrides.

  6. Experimental validation of an 8 element EMAT phased array probe for longitudinal wave generation

    NASA Astrophysics Data System (ADS)

    Le Bourdais, Florian; Marchand, Benoit

    2015-03-01

    Sodium cooled Fast Reactors (SFR) use liquid sodium as a coolant. Liquid sodium being opaque, optical techniques cannot be applied to reactor vessel inspection. This makes it necessary to develop alternative ways of assessing the state of the structures immersed in the medium. Ultrasonic pressure waves are well suited for inspection tasks in this environment, especially using pulsed electromagnetic acoustic transducers (EMAT) that generate the ultrasound directly in the liquid sodium. The work carried out at CEA LIST is aimed at developing phased array EMAT probes conditioned for reactor use. The present work focuses on the experimental validation of a newly manufactured 8 element probe which was designed for beam forming imaging in a liquid sodium environment. A parametric study is carried out to determine the optimal setup of the magnetic assembly used in this probe. First laboratory tests on an aluminium block show that the probe has the required beam steering capabilities.

  7. Experimental validation of an 8 element EMAT phased array probe for longitudinal wave generation

    SciTech Connect

    Le Bourdais, Florian Marchand, Benoit

    2015-03-31

    Sodium cooled Fast Reactors (SFR) use liquid sodium as a coolant. Liquid sodium being opaque, optical techniques cannot be applied to reactor vessel inspection. This makes it necessary to develop alternative ways of assessing the state of the structures immersed in the medium. Ultrasonic pressure waves are well suited for inspection tasks in this environment, especially using pulsed electromagnetic acoustic transducers (EMAT) that generate the ultrasound directly in the liquid sodium. The work carried out at CEA LIST is aimed at developing phased array EMAT probes conditioned for reactor use. The present work focuses on the experimental validation of a newly manufactured 8 element probe which was designed for beam forming imaging in a liquid sodium environment. A parametric study is carried out to determine the optimal setup of the magnetic assembly used in this probe. First laboratory tests on an aluminium block show that the probe has the required beam steering capabilities.

  8. Laser generated guided waves and finite element modeling for the thickness gauging of thin layers

    SciTech Connect

    Lefevre, F.; Jenot, F.; Ouaftouh, M.; Duquennoy, M.; Ourak, M.

    2010-03-15

    In this paper, nondestructive testing has been performed on a thin gold layer deposited on a 2 in. silicon wafer. Guided waves were generated and studied using a laser ultrasonic setup and a two-dimensional fast Fourier transform technique was employed to obtain the dispersion curves. A gold layer thickness of 1.33 {mu}m has been determined with a {+-}5% margin of error using the shape of the two first propagating modes, assuming for the substrate and the layer an uncertainty on the elastic parameters of {+-}2.5%. A finite element model has been implemented to validate the data post-treatment and the experimental results. A good agreement between the numerical simulation, the analytical modeling and the experimentations has been observed. This method was considered suitable for thickness layer higher than 0.7 {mu}m.

  9. Draft of M2 Report on Integration of the Hybrid Hydride Model into INL's MBM Framework for Review

    SciTech Connect

    Tikare, Veena; Weck, Philippe F.; Schultz, Peter A.; Clark, Blythe; Glazoff, Michael; Homer, Eric

    2014-07-01

    This report documents the development, demonstration and validation of a mesoscale, microstructural evolution model for simulation of zirconium hydride {delta}-ZrH{sub 1.5} precipitation in the cladding of used nuclear fuels that may occur during long-term dry storage. While the Zr-based claddings are manufactured free of any hydrogen, they absorb hydrogen during service, in the reactor by a process commonly termed ‘hydrogen pick-up’. The precipitation and growth of zirconium hydrides during dry storage is one of the most likely fuel rod integrity failure mechanisms either by embrittlement or delayed hydride cracking of the cladding. While the phenomenon is well documented and identified as a potential key failure mechanism during long-term dry storage (NUREG/CR-7116), the ability to actually predict the formation of hydrides is poor. The model being documented in this work is a computational capability for the prediction of hydride formation in different claddings of used nuclear fuels. This work supports the Used Fuel Disposition Research and Development Campaign in assessing the structural engineering performance of the cladding during and after long-term dry storage. This document demonstrates a basic hydride precipitation model that is built on a recently developed hybrid Potts-phase field model that combines elements of Potts-Monte Carlo and the phase-field models. The model capabilities are demonstrated along with the incorporation of the starting microstructure, thermodynamics of the Zr-H system and the hydride formation mechanism.

  10. Explicit discontinuous spectral element method with entropy generation based artificial viscosity for shocked viscous flows

    NASA Astrophysics Data System (ADS)

    Chaudhuri, A.; Jacobs, G. B.; Don, W. S.; Abbassi, H.; Mashayek, F.

    2017-03-01

    A spatio-temporal adaptive artificial viscosity (AV) based shock-capturing scheme is proposed for the solution of both inviscid and viscous compressible flows using a high-order parallel Discontinuous Spectral Element Method (DSEM). The artificial viscosity and artificial thermal conduction coefficients are proportional to the viscous and thermal entropy generating terms, respectively, in the viscous entropy conservation law. The magnitude of AV is limited based on the explicit stable CFL criterion, so that the stable artificial viscous time step size is greater than the convective stable time step size. To further ensure the stability of this explicit approach, an adaptive variable order exponential filter is applied, if necessary, in elements where the AV has been limited. In viscous flow computations a modified Jameson's sensor (Ducros et al., 1999 [61]) limits the AV to small values in viscous shear regions, so as to maintain a high-order resolution in smooth regions and an essentially non-oscillatory behavior near sharp gradients/shocks regions. We have performed a systematic and extensive validation of the algorithm with one-dimensional problems (inviscid moving shock and viscous shock-structure interaction), two-dimensional problems (inviscid steady and unsteady shocked flows and viscous shock-boundary layer interaction), and a three-dimensional supersonic turbulent flow over a ramped cavity. These examples demonstrate that the explicit DSEM scheme with adaptive artificial viscosity terms is stable, accurate and efficient.

  11. Optical element for full spectral purity from IR-generated EUV light sources

    NASA Astrophysics Data System (ADS)

    van den Boogaard, A. J. R.; Louis, E.; van Goor, F. A.; Bijkerk, F.

    2009-03-01

    Laser produced plasma (LLP) sources are generally considered attractive for high power EUV production in next generation lithography equipment. Such plasmas are most efficiently excited by the relatively long, infrared wavelengths of CO2-lasers, but a significant part of the rotational-vibrational excitation lines of the CO2 radiation will be backscattered by the plasma's critical density surface and consequently will be present as parasitic radiation in the spectrum of such sources. Since most optical elements in the EUV collecting and imaging train have a high reflection coefficient for IR radiation, undesirable heating phenomena at the resist level are likely to occur. In this study a completely new principle is employed to obtain full separation of EUV and IR radiation from the source by a single optical component. While the application of a transmission filter would come at the expense of EUV throughput, this technique potentially enables wavelength separation without loosing reflectance compared to a conventional Mo/Si multilayer coated element. As a result this method provides full spectral purity from the source without loss in EUV throughput. Detailed calculations on the principal of functioning are presented.

  12. Automatic finite-element mesh generation using artificial neural networks. Part 1: Prediction of mesh density

    SciTech Connect

    Chedid, R.; Najjar, N.

    1996-09-01

    One of the inconveniences associated with the existing finite-element packages is the need for an educated user to develop a correct mesh at the preprocessing level. Procedures which start with a coarse mesh and attempt serious refinements, as is the case in most adaptive finite-element packages, are time consuming and costly. Hence, it is very important to develop a tool that can provide a mesh that either leads immediately to an acceptable solution, or would require fewer correcting steps to achieve better results. In this paper, the authors present a technique for automatic mesh generation based on artificial neural networks (ANN). The essence of this technique is to predict the mesh density distribution of a given model, and then supply this information to a Kohonen neural network which provides the final mesh. Prediction of mesh density is accomplished by a simple feedforward neural network which has the ability to learn the relationship between mesh density and model geometric features. It will be shown that ANN are able to recognize delicate areas where a sharp variation of the magnetic field is expected. Examples of 2-D models are provided to illustrate the usefulness of the proposed technique.

  13. Investigation of the surface generation mechanism of mechanical polishing engineering ceramics using discrete element method

    NASA Astrophysics Data System (ADS)

    Han, Xuesong

    2014-09-01

    Machining technology about ceramics has been developed very fast over recent years due to the growing industrial demand of higher machining accuracy and better surface quality of ceramic elements, while the nature of hard and brittle ceramics makes it difficult to acquire damage-free and ultra-smooth surface. Ceramic bulk can be treated as an assemblage of discrete particles bonded together randomly as the micro-structure of ceramics consists of crystal particles and pores, and the inter-granular fracture of the ceramics can be naturally represented by the separation of particles due to breakage of bonds. Discrete element method (DEM) provides a promising approach for constructing an effective model to describe the tool-workpiece interaction and can serve as a predicting simulation tool in analyzing the complicated surface generation mechanism and is employed in this research to simulate the mechanical polishing process of ceramics and surface integrity. In this work, a densely packed particle assembly system of the polycrystalline Si3N4 has been generated using bonded-particle model to represent the ceramic workpiece numerically. The simulation results justify that the common critical depth of cut cannot be used as the effective parameters for evaluating brittle to ductile transformation in ceramic polishing process. Therefore, a generalized criterion of defining the range of ductile regime machining has been developed based on the numerical results. Furthermore, different distribution of pressure chain is observed with different depth of cut which ought to have intense relationship with special structure of ceramics. This study also justified the advantage of DEM model in its capability of revealing the mechanical behaviors of ceramics at micro-scale.

  14. Hydrogen-storing hydride complexes

    DOEpatents

    Srinivasan, Sesha S [Tampa, FL; Niemann, Michael U [Venice, FL; Goswami, D Yogi [Tampa, FL; Stefanakos, Elias K [Tampa, FL

    2012-04-10

    A ternary hydrogen storage system having a constant stoichiometric molar ratio of LiNH.sub.2:MgH.sub.2:LiBH.sub.4 of 2:1:1. It was found that the incorporation of MgH.sub.2 particles of approximately 10 nm to 20 nm exhibit a lower initial hydrogen release temperature of 150.degree. C. Furthermore, it is observed that the particle size of LiBNH quaternary hydride has a significant effect on the hydrogen sorption concentration with an optimum size of 28 nm. The as-synthesized hydrides exhibit two main hydrogen release temperatures, one around 160.degree. C. and the other around 300.degree. C., with the main hydrogen release temperature reduced from 310.degree. C. to 270.degree. C., while hydrogen is first reversibly released at temperatures as low as 150.degree. C. with a total hydrogen capacity of 6 wt. % to 8 wt. %. Detailed thermal, capacity, structural and microstructural properties have been demonstrated and correlated with the activation energies of these materials.

  15. Effect of phytate on element bioavailability in the second generation of rats.

    PubMed

    Grases, F; Simonet, B M; Perelló, J; Costa-Bauzá, A; Prieto, R M

    2004-01-01

    In this paper the relation between long term consumption of a high dose of sodium phytate and the mineral status of the organism is evaluated in rats. For this purpose, element concentrations (Ca, Mg, Fe, Zn, Mn) were determined in liver, heart, testicle, bone and urine of a second generation of Wistar rats, treated with a phytate free diet (AIN-76A) and with the same diet plus 1% phytate as sodium salt. The most significant differences were observed between bone zinc contents of male and female rats. The zinc content of rats fed a 1% phytate as sodium salt diet resulted clearly lower than that found in no-phytate treated rats. Hence, it is concluded that when up to 1% of phytate as sodium salt is consumed together with an equilibrated purified diet (free of phytate), no decrease in mineral bioavailability is observed in second generation rats, except for an indication of lower zinc availability by lower zinc concentrations in some organs, mainly bone. However, using this purified diet, the zinc concentration in bone resulted around 10 times higher than found in rats fed with a common non purified rat chow.

  16. Determination of Rolling-Element Fatigue Life From Computer Generated Bearing Tests

    NASA Technical Reports Server (NTRS)

    Vlcek, Brian L.; Hendricks, Robert C.; Zaretsky, Erwin V.

    2003-01-01

    Two types of rolling-element bearings representing radial loaded and thrust loaded bearings were used for this study. Three hundred forty (340) virtual bearing sets totaling 31400 bearings were randomly assembled and tested by Monte Carlo (random) number generation. The Monte Carlo results were compared with endurance data from 51 bearing sets comprising 5321 bearings. A simple algebraic relation was established for the upper and lower L(sub 10) life limits as function of number of bearings failed for any bearing geometry. There is a fifty percent (50 percent) probability that the resultant bearing life will be less than that calculated. The maximum and minimum variation between the bearing resultant life and the calculated life correlate with the 90-percent confidence limits for a Weibull slope of 1.5. The calculated lives for bearings using a load-life exponent p of 4 for ball bearings and 5 for roller bearings correlated with the Monte Carlo generated bearing lives and the bearing data. STLE life factors for bearing steel and processing provide a reasonable accounting for differences between bearing life data and calculated life. Variations in Weibull slope from the Monte Carlo testing and bearing data correlated. There was excellent agreement between percent of individual components failed from Monte Carlo simulation and that predicted.

  17. Liquid suspensions of reversible metal hydrides

    DOEpatents

    Reilly, J.J.; Grohse, E.W.; Winsche, W.E.

    1983-12-08

    The reversibility of the process M + x/2 H/sub 2/ ..-->.. MH/sub x/, where M is a metal hydride former that forms a hydride MH/sub x/ in the presence of H/sub 2/, generally used to store and recall H/sub 2/, is found to proceed under a liquid, thereby to reduce contamination, provide better temperature control and provide in situ mobility of the reactants. Thus, a slurry of particles of a metal hydride former with an inert solvent is subjected to temperature and pressure controlled atmosphere containing H/sub 2/, to store hydrogen (at high pressures) and to release (at low pressures) previously stored hydrogen. The direction of the flow of the H/sub 2/ through the liquid is dependent upon the H/sub 2/ pressure in the gas phase at a given temperature. When the former is above the equilibrium absorption pressure of the respective hydride the reaction proceeds to the right, i.e., the metal hydride is formed and hydrogen is stored in the solid particle. When the H/sub 2/ pressure in the gas phase is below the equilibrium dissociation pressure of the respective hydride the reaction proceeds to the left, the metal hydride is decomposed and hydrogen is released into the gas phase.

  18. Electrochemical process and production of novel complex hydrides

    DOEpatents

    Zidan, Ragaiy

    2013-06-25

    A process of using an electrochemical cell to generate aluminum hydride (AlH.sub.3) is provided. The electrolytic cell uses a polar solvent to solubilize NaAlH.sub.4. The resulting electrochemical process results in the formation of AlH.sub.3. The AlH.sub.3 can be recovered and used as a source of hydrogen for the automotive industry. The resulting spent aluminum can be regenerated into NaAlH.sub.4 as part of a closed loop process of AlH.sub.3 generation.

  19. A density-controlled triangular and quadrilateral element mesh automatic generation system

    NASA Astrophysics Data System (ADS)

    Sun, L.; Yeh, G.; Lin, F.; Zhao, G.

    2013-12-01

    We made an intensive study to develop an automatic mesh generation system based on the theory of Voronoi diagram and front advancing. The objective of this system is to create meshes for numerical modeling of practical engineering problems in the fields of geomechanics, hydrology, hydraulics, and water resources. The input data of the system is a set of given points to form the boundary contour of the analyzed geometry, containing the coordinates, the connections and the point spacing specified by users. Boundary points are generated by recursively inserting midpoints according to the spacing of the input points. For the curved boundaries, B-splines are constructed to interpolate midpoints. For the geometries with concave features and long thin domains, boundary loss problem may occur after generating the Voronoi diagram of boundary points. This problem is resolved by recursively inserting pseudo-points at the midpoints of the missing edges until all the original boundary edges are fully described. In order to ensure the curvature accuracy of curved boundaries, pseudo-points should be eliminated again by corresponding modes. Two criteria for selecting removal modes are employed, the Jacobian and minimum angle. Two methods are used to generate interior points. One is direct method and the other is pre-test method. A comparison of the two methods is also made. Laplacian method is used to smooth the interior points of triangles. For the geometries with several sub-domains, it is required to ensure the conformity of the elements and points on the intersecting boundaries between adjacent sub-domains. We establish corresponding methods to treat the overlapped boundary edges and implement the reasonable distribution and excellent conformity of the triangles and points on the overlapped boundaries. On the basis of the triangular mesh created by Delaunay triangulation, a front-advancing method is used to further generate quadrilateral mesh by combining two connected

  20. The Conversion of Smaller Borane Fragments to Larger Structures. Systematics of Boron Hydride Reactions.

    DTIC Science & Technology

    1984-12-31

    Robert W. Parry and Goji Kodama Contract DAAG-29-8rl-K-Ol0l S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK S Department of...Entered; THE CONVERSION OF SMALLER BORANE FRAGMENTS TO LARGER STRUCTURES - SYSTEMATICS OF BORON HYDRIDE REACTIONS FINAL REPORT ROBERT W. PARRY AND GOJI

  1. Hydride heat pump with heat regenerator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative hydride heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system. A series of at least four canisters containing a lower temperature performing hydride and a series of at least four canisters containing a higher temperature performing hydride is provided. Each canister contains a heat conductive passageway through which a heat transfer fluid is circulated so that sensible heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  2. Ambient air particles: effects on cellular oxidant radical generation in relation to particulate elemental chemistry.

    PubMed

    Prahalad, A K; Soukup, J M; Inmon, J; Willis, R; Ghio, A J; Becker, S; Gallagher, J E

    1999-07-15

    Epidemiologic studies have reported causal relationships between exposures to high concentrations of ambient air particles (AAP) and increased morbidity in individuals with underlying respiratory problems. Polymorphonuclear leukocytes (PMN) are frequently present in the airways of individuals exposed to particles. Upon particulate stimulation the PMN may release reactive oxygen species (ROS), which can result in tissue damage and injury. In this study a wide range of AAP samples from divergent sources (1, natural dust; 2, oil fly ash; 2, coal fly ash; 5, ambient air; and 1, carbon black) were analyzed for elemental content and solubility in relation to their ability to generate ROS. Elemental analyses were carried out in AAP and dH(2)O-washed AAP using energy dispersive x-ray fluorescence (XRF). Percent of sample mass accounted for by XRF-detectable elements was 1.2% (carbon black); 22-29% (natural dust and ambient air particles); 13-22% (oil fly ash particles); 28-49% (coal fly ash particles). The major proportion of elements in most of these particles were aluminosilicates and insoluble iron, except oil-derived fly ash particles in which soluble vanadium and nickel were in highest concentrations, consistent with particle acidity as measured in the supernatants. Human blood-derived monocytes and PMN were exposed to AAP and dH(2)O-washed particles, and generation of ROS was determined using luminol-enhanced chemiluminescence (LCL) assay. All the particles induced chemiluminescence response in the cells, except carbon black. The oxidant response of monocytes induced by AAP (with the exception of oil fly ash particles) was less than the response elicited by PMN. The LCL response of PMN in general increased with all washed particles, with oil fly ash (OFA) and one urban air particle showing statistically significant (p < 0. 05) differences between dH(2)O-washed and unwashed particles. The LCL activity in PMN induced by both particles and dH(2)O-washed particles was

  3. Computational Modeling of Uranium Hydriding and Complexes

    SciTech Connect

    Balasubramanian, K; Siekhaus, W J; McLean, W

    2003-02-03

    Uranium hydriding is one of the most important processes that has received considerable attention over many years. Although many experimental and modeling studies have been carried out concerning thermochemistry, diffusion kinetics and mechanisms of U-hydriding, very little is known about the electronic structure and electronic features that govern the U-hydriding process. Yet it is the electronic feature that controls the activation barrier and thus the rate of hydriding. Moreover the role of impurities and the role of the product UH{sub 3} on hydriding rating are not fully understood. An early study by Condon and Larson concerns with the kinetics of U-hydrogen system and a mathematical model for the U-hydriding process. They proposed that diffusion in the reactant phase by hydrogen before nucleation to form hydride phase and that the reaction is first order for hydriding and zero order for dehydriding. Condon has also calculated and measures the reaction rates of U-hydriding and proposed a diffusion model for the U-hydriding. This model was found to be in excellent agreement with the experimental reaction rates. From the slopes of the Arrhenius plot the activation energy was calculated as 6.35 kcal/mole. In a subsequent study Kirkpatrick formulated a close-form for approximate solution to Condon's equation. Bloch and Mintz have proposed the kinetics and mechanism for the U-H reaction over a wide range of pressures and temperatures. They have discussed their results through two models, one, which considers hydrogen diffusion through a protective UH{sub 3} product layer, and the second where hydride growth occurs at the hydride-metal interface. These authors obtained two-dimensional fits of experimental data to the pressure-temperature reactions. Kirkpatrick and Condon have obtained a linear solution to hydriding of uranium. These authors showed that the calculated reaction rates compared quite well with the experimental data at a hydrogen pressure of 1 atm. Powell

  4. Charging efficiency of metal-hydride electrodes

    NASA Astrophysics Data System (ADS)

    Chen, J.; Dou, S. X.; Bradhurst, D.; Liu, H. K.

    The charging efficiencies of MmNi 5, MmNi 4.5Mn 0.5, MmNi 3.8Co 0.7Mn 0.5, ZrV 0.6Ni 1.4, ZrV 0.6Mn 0.4Ni 1.0, ZrV 0.6Mn 0.4Co 0.2Ni 0.8 allay electrodes (Mm = Mischmetal) are investigated in terms of hydrogen evolution. Experiments are conducted to optimize: (i) elemental composition of the MmNi 5 system and Zr-based Laves-phase hydrogen storage alloys; (ii) additive materials, such as cobalt powder, nickel powder, Teflonized carbons, and acetylene black; (iii) the proportion of the additives in the alloy; (iv) the best percentage of the composite additives in the metal-hydride electrodes. The results show that the electrode activation, charging efficiency and high-rate discharge depend greatly on the active materials, as well as the type and the amount of the additives in the electrodes.

  5. Stabilization and highly metallic properties of heavy group-V hydrides at high pressures

    NASA Astrophysics Data System (ADS)

    Abe, Kazutaka; Ashcroft, N. W.

    2015-12-01

    Compressed hydrides of the heavy group-15 elements Bi and Sb are investigated using ab initio methods. While the hydrides of Bi and Sb are known to be quite unstable at one atmosphere, our calculations predict that they can be stabilized at high pressures. Thus, at the composition of XH 3 (X =Bi or Sb), possible Bi hydrides are BiH2(P n m a ) + H beyond 105 GPa and BiH3(I 41/a m d ) beyond 250 GPa; for Sb hydrides, SbH2 + H hardly appears, and SbH3(P n m a ) is stabilized beyond 150 GPa. All of these hydrides are metallic with very dispersive electronic structures, this being in accordance with the predictions of the Goldhammer-Herzfeld criterion. Superconducting transition temperatures have also been estimated from the extended McMillan equation, and they turn out to be 39 K for BiH2 at 125 GPa, 65 K for BiH3 at 270 GPa, and 68 K for SbH3 at 170 GPa.

  6. Obtention of the constitutive equation of hydride blisters in fuel cladding from nanoindentation tests

    NASA Astrophysics Data System (ADS)

    Martin Rengel, M. A.; Gomez, F. J.; Rico, A.; Ruiz-Hervias, J.; Rodriguez, J.

    2017-04-01

    It is well known that the presence of hydrides in nuclear fuel cladding may reduce its mechanical and fracture properties. This situation may be worsened as a consequence of the formation of hydride blisters. These blisters are zones with an extremely high hydrogen concentration and they are usually associated to the oxide spalling which may occur at the outer surface of the cladding. In this work, a method which allows us to reproduce, in a reliable way, hydride blisters in the laboratory has been devised. Depth-sensing indentation tests with a spherical indenter were conducted on a hydride blister produced in the laboratory with the aim of measuring its mechanical behaviour. The plastic stress-strain curve of the hydride blister was calculated for first time by combining depth-sensing indentation tests results with an iterative algorithm using finite element simulations. The algorithm employed reduces, in each iteration, the differences between the numerical and the experimental results by modifying the stress-strain curve. In this way, an almost perfect adjustment of the experimental data was achieved after several iterations. The calculation of the constitutive equation of the blister from nanoindentation tests, may involve a lack of uniqueness. To evaluate it, a method based on the optimization of parameters of analytical equations has been proposed in this paper. An estimation of the error which involves this method is also provided.

  7. Free Tools and Strategies for the Generation of 3D Finite Element Meshes: Modeling of the Cardiac Structures

    PubMed Central

    Pavarino, E.; Neves, L. A.; Machado, J. M.; de Godoy, M. F.; Shiyou, Y.; Momente, J. C.; Zafalon, G. F. D.; Pinto, A. R.; Valêncio, C. R.

    2013-01-01

    The Finite Element Method is a well-known technique, being extensively applied in different areas. Studies using the Finite Element Method (FEM) are targeted to improve cardiac ablation procedures. For such simulations, the finite element meshes should consider the size and histological features of the target structures. However, it is possible to verify that some methods or tools used to generate meshes of human body structures are still limited, due to nondetailed models, nontrivial preprocessing, or mainly limitation in the use condition. In this paper, alternatives are demonstrated to solid modeling and automatic generation of highly refined tetrahedral meshes, with quality compatible with other studies focused on mesh generation. The innovations presented here are strategies to integrate Open Source Software (OSS). The chosen techniques and strategies are presented and discussed, considering cardiac structures as a first application context. PMID:23762031

  8. Method of forming metal hydride films

    NASA Technical Reports Server (NTRS)

    Steinberg, R.; Alger, D. L.; Cooper, D. W. (Inventor)

    1977-01-01

    The substrate to be coated (which may be of metal, glass or the like) is cleaned, both chemically and by off-sputtering in a vacuum chamber. In an ultra-high vacuum system, vapor deposition by a sublimator or vaporizer coats a cooled shroud disposed around the substrate with a thin film of hydride forming metal which getters any contaminant gas molecules. A shutter is then opened to allow hydride forming metal to be deposited as a film or coating on the substrate. After the hydride forming metal coating is formed, deuterium or other hydrogen isotopes are bled into the vacuum system and diffused into the metal film or coating to form a hydride of metal film. Higher substrate temperatures and pressures may be used if various parameters are appropriately adjusted.

  9. Sealed aerospace metal-hydride batteries

    NASA Technical Reports Server (NTRS)

    Coates, Dwaine

    1992-01-01

    Nickel metal hydride and silver metal hydride batteries are being developed for aerospace applications. There is a growing market for smaller, lower cost satellites which require higher energy density power sources than aerospace nickel-cadmium at a lower cost than space nickel-hydrogen. These include small LEO satellites, tactical military satellites and satellite constellation programs such as Iridium and Brilliant Pebbles. Small satellites typically do not have the spacecraft volume or the budget required for nickel-hydrogen batteries. NiCd's do not have adequate energy density as well as other problems such as overcharge capability and memory effort. Metal hydride batteries provide the ideal solution for these applications. Metal hydride batteries offer a number of advantages over other aerospace battery systems.

  10. A classical but new kinetic equation for hydride transfer reactions.

    PubMed

    Zhu, Xiao-Qing; Deng, Fei-Huang; Yang, Jin-Dong; Li, Xiu-Tao; Chen, Qiang; Lei, Nan-Ping; Meng, Fan-Kun; Zhao, Xiao-Peng; Han, Su-Hui; Hao, Er-Jun; Mu, Yuan-Yuan

    2013-09-28

    A classical but new kinetic equation to estimate activation energies of various hydride transfer reactions was developed according to transition state theory using the Morse-type free energy curves of hydride donors to release a hydride anion and hydride acceptors to capture a hydride anion and by which the activation energies of 187 typical hydride self-exchange reactions and more than thirty thousand hydride cross transfer reactions in acetonitrile were safely estimated in this work. Since the development of the kinetic equation is only on the basis of the related chemical bond changes of the hydride transfer reactants, the kinetic equation should be also suitable for proton transfer reactions, hydrogen atom transfer reactions and all the other chemical reactions involved with breaking and formation of chemical bonds. One of the most important contributions of this work is to have achieved the perfect unity of the kinetic equation and thermodynamic equation for hydride transfer reactions.

  11. Mobile DNA elements in the generation of diversity and complexity in the brain.

    PubMed

    Erwin, Jennifer A; Marchetto, Maria C; Gage, Fred H

    2014-08-01

    Mobile elements are DNA sequences that can change their position (retrotranspose) within the genome. Although its biological function is largely unappreciated, DNA derived from mobile elements comprises nearly half of the human genome. It has long been thought that neuronal genomes are invariable; however, recent studies have demonstrated that mobile elements actively retrotranspose during neurogenesis, thereby creating genomic diversity between neurons. In addition, mounting data demonstrate that mobile elements are misregulated in certain neurological disorders, including Rett syndrome and schizophrenia.

  12. Mobile DNA elements in the generation of diversity and complexity in the brain

    PubMed Central

    Erwin, Jennifer A.; Marchetto, Maria C.; Gage, Fred H.

    2015-01-01

    Mobile elements are DNA sequences that can change their position (retrotranspose) within the genome. Although its biological function is largely unappreciated, DNA derived from mobile elements comprises nearly half of the human genome. It has long been thought that neuronal genomes are invariable; however, recent studies have demonstrated that mobile elements actively retrotranspose during neurogenesis, thereby creating genomic diversity between neurons. In addition, mounting data demonstrate that mobile elements are misregulated in certain neurological disorders, including Rett syndrome and schizophrenia. PMID:25005482

  13. Studies of hydride formation and superconductivity in hydrides of alloys Th-M /M = La, Y, Ce, Zr and Bi/

    NASA Technical Reports Server (NTRS)

    Oesterreicher, H.; Clinton, J.; Misroch, M.

    1977-01-01

    In order to gain a better insight into both the unusual composition of ThH15 and its superconductivity, an experimental study was conducted to assess the influence of partial replacement of Th in Th4H15 by elements which allow for a systematic alteration of spatial and electronic effects. For this purpose, substituent elements with the same number of valence electrons (4) but of smaller size (Zr) as well as elements with a smaller number of valence electrons (3) and either larger (La) or smaller size (Y) were selected. A few data with Ce and Bi as substituent atoms are also included. The matrix alloys for hydriding were obtained by induction melting under Ar in water-cooled Cu boats. Superconducting transition temperatures are found to decrease on substitution for Th in Th4H15. Hydrides derived from LaH3 by substitution for La by Th do not become superconducting. It is suggested that superconductivity in Th4H15 is connected with a deviation from the exact stoichiometry of Th4H15. A model of unsatisfied valencies may be of more general validity in predicting superconductivity.

  14. Experimental and Theoretical Study of CO2 Insertion into Ruthenium Hydride Complexes.

    PubMed

    Ramakrishnan, Srinivasan; Waldie, Kate M; Warnke, Ingolf; De Crisci, Antonio G; Batista, Victor S; Waymouth, Robert M; Chidsey, Christopher E D

    2016-02-15

    The ruthenium hydride [RuH(CNN)(dppb)] (1; CNN = 2-aminomethyl-6-tolylpyridine, dppb = 1,4-bis(diphenylphosphino)butane) reacts rapidly and irreversibly with CO2 under ambient conditions to yield the corresponding Ru formate complex 2. In contrast, the Ru hydride 1 reacts with acetone reversibly to generate the Ru isopropoxide, with the reaction free energy ΔG°(298 K) = -3.1 kcal/mol measured by (1)H NMR in tetrahydrofuran-d8. Density functional theory (DFT), calibrated to the experimentally measured free energies of ketone insertion, was used to evaluate and compare the mechanism and energetics of insertion of acetone and CO2 into the Ru-hydride bond of 1. The calculated reaction coordinate for acetone insertion involves a stepwise outer-sphere dihydrogen transfer to acetone via hydride transfer from the metal and proton transfer from the N-H group on the CNN ligand. In contrast, the lowest energy pathway calculated for CO2 insertion proceeds by an initial Ru-H hydride transfer to CO2 followed by rotation of the resulting N-H-stabilized formate to a Ru-O-bound formate. DFT calculations were used to evaluate the influence of the ancillary ligands on the thermodynamics of CO2 insertion, revealing that increasing the π acidity of the ligand cis to the hydride ligand and increasing the σ basicity of the ligand trans to it decreases the free energy of CO2 insertion, providing a strategy for the design of metal hydride systems capable of reversible, ergoneutral interconversion of CO2 and formate.

  15. Monitoring trace elements generated by automobiles: air pollutants with possible health impacts.

    PubMed

    Anwar, Khaleeq; Ejaz, Sohail; Ashraf, Muhammad; Ahmad, Nisar; Javeed, Aqeel

    2013-07-01

    Major transformations in the environmental composition are principally attributable to the combustion of fuels by automobiles. Motorized gasoline-powered two-stroke auto-rickshaws (TSA) and compressed natural gas (CNG)-powered four-stroke auto-rickshaws (FSA) are potential source of air pollution in south Asia and produce toxic amount of particulate matter (PM) to the environment. In this study, we attempted to characterize elemental pollutants from the PM of TSA and FSA using proton-induced X-ray emission (PIXE) analysis. The observations of the existing investigation recognized significant increase in Al (P < 0.05), P (P < 0.01), and Zn (P < 0.01) from the PM samples of FSA. In addition, the concentrations of Cu, Fe, K, Mg, Na and S were also observed exceeding the recommended National Institute for Environmental Studies limits. On the contrary, increased concentration of Sr and V were observed in the PM samples from TSA. It is generally believed that FSA generates smaller amount of PM but data obtained from FSA are clearly describing that emissions from FSA comprised potentially more toxic substances than TSA. The current research is specific to metropolitan population and has evidently revealed an inconsistent burden of exposure to air pollutants engendered by FSA in urban communities, which could lead to the disruption of several biological activities and may cause severe damage to entire ecological system.

  16. Finite element simulation of non-linear acoustic generation in a horn loudspeaker

    NASA Astrophysics Data System (ADS)

    Tsuchiya, T.; Kagawa, Y.; Doi, M.; Tsuji, T.

    2003-10-01

    The loudspeaker is an electro-acoustic device for sound reproduction which requires the distortion as small as possible. The distortion may arise from the magnetic non-linearity of the york, the uneven magnetic field distribution, the mechanical non-linearity at the diaphragm suspension and the acoustic non-linearity due to the high sound pressure and velocity in the duct-radiation system. A horn is sometimes provided in front of the vibrating diaphragm radiator, which plays an important role to increase the efficiency by matching the acoustic impedance between the radiator and the ambient medium. The horn is in many cases folded twice or three times to shorten the length, which further degrades the reproduction quality. The sound intensity and velocity are apt to attain very high in the small cross-sectional area in the throat and in the folded regions, which may cause the distortion due to the non-linear effect of the medium. The present paper is to investigate the frequency characteristics of the loudspeaker numerically evaluating the generation of the harmonics and sub-harmonics. An axisymmetric folded horn is considered for which the wave equation with the non-linear term retained is solved by the finite element method. The solution is made in time domain in which the sound pressure calculated at the opening end of the horn is Fourier-transformed to the frequency domain to evaluate the distortion, while the wave marching in the horn is visualized.

  17. Generating a Reduced-energy Antiproton beam using Channeling Electrostatic elements (GRACE)

    NASA Astrophysics Data System (ADS)

    Lawler, Gerard; Pacifico, Nicola; Aegis Collaboration

    2016-03-01

    A device was designed for Generating a Reduced-energy Antiproton-beam using Channeling Electrostatic elements (GRACE). A series of einzel lenses and electrodes are used to create a slow beam of antiprotons with tunable mean energy (0 to 16 keV with root mean squared value below 20%) using antiprotons (mean energy of 5 MeV) from the Antiproton Decelerator (AD) at CERN. Degrader foil is in place, so GRACE further deflects the beam bunches away from the annihilation products, focusing them on a 14 mm x 14 mm detector. Manufacturing parameters were found using simulations written in C++. The device is currently in use by the Antihydrogen Experiment: Gravity, Interferometry, Spectroscopy (AEgIS) collaboration at CERN, which seeks to measure the sign of the gravitational constant for antimatter by performing interferometry studies on an antihydrogen beam. GRACE delivers on the order of 10 events per beam bunch from the AD. Antiprotons will eventually be used together with a pulse of positronium atoms to make antihydrogen atoms with horizontal velocity. GRACE is being used to perform intermediary experiments concerning interferometry of antiprotons, an important stepping stone on the way to measuring the sign of gravity. Special thanks to Boston University Undergraduate Research Opportunities Program, Lawrence Sulak, and Michael Doser.

  18. Particle Morphology and Elemental Composition of Smoke Generated by Overheating Common Spacecraft Materials

    NASA Technical Reports Server (NTRS)

    Meyer, Marit E.

    2015-01-01

    Fire safety in the indoor spacecraft environment is concerned with a unique set of fuels which are designed to not combust. Unlike terrestrial flaming fires, which often can consume an abundance of wood, paper and cloth, spacecraft fires are expected to be generated from overheating electronics consisting of flame resistant materials. Therefore, NASA prioritizes fire characterization research for these fuels undergoing oxidative pyrolysis in order to improve spacecraft fire detector design. A thermal precipitator designed and built for spacecraft fire safety test campaigns at the NASA White Sands Test Facility (WSTF) successfully collected an abundance of smoke particles from oxidative pyrolysis. A thorough microscopic characterization has been performed for ten types of smoke from common spacecraft materials or mixed materials heated at multiple temperatures using the following techniques: SEM, TEM, high resolution TEM, high resolution STEM and EDS. Resulting smoke particle morphologies and elemental compositions have been observed which are consistent with known thermal decomposition mechanisms in the literature and chemical make-up of the spacecraft fuels. Some conclusions about particle formation mechanisms are explored based on images of the microstructure of Teflon smoke particles and tar ball-like particles from Nomex fabric smoke.

  19. Three-Dimensional Finite-Element Simulation for a Thermoelectric Generator Module

    NASA Astrophysics Data System (ADS)

    Hu, Xiaokai; Takazawa, Hiroyuki; Nagase, Kazuo; Ohta, Michihiro; Yamamoto, Atsushi

    2015-10-01

    A three-dimensional closed-circuit numerical model of a thermoelectric generator (TEG) module has been constructed with COMSOL® Multiphysics to verify a module test system. The Seebeck, Peltier, and Thomson effects and Joule heating are included in the thermoelectric conversion model. The TEG model is employed to simulate the operation of a 16-leg TEG module based on bismuth telluride with temperature-dependent material properties. The module is mounted on a test platform, and simulated by combining the heat conduction process and thermoelectric conversion process. Simulation results are obtained for the terminal voltage, output power, heat flow, and efficiency as functions of the electric current; the results are compared with measurement data. The Joule and Thomson heats in all the thermoelectric legs, as functions of the electric current, are calculated by finite-element volume integration over the entire legs. The Peltier heat being pumped at the hot side and released at the cold side of the module are also presented in relation to the electric current. The energy balance relations between heat and electricity are verified to support the simulation.

  20. Metastable Metal Hydrides for Hydrogen Storage

    DOE PAGES

    Graetz, Jason

    2012-01-01

    The possibility of using hydrogen as a reliable energy carrier for both stationary and mobile applications has gained renewed interest in recent years due to improvements in high temperature fuel cells and a reduction in hydrogen production costs. However, a number of challenges remain and new media are needed that are capable of safely storing hydrogen with high gravimetric and volumetric densities. Metal hydrides and complex metal hydrides offer some hope of overcoming these challenges; however, many of the high capacity “reversible” hydrides exhibit a large endothermic decomposition enthalpy making it difficult to release the hydrogen at low temperatures. Onmore » the other hand, the metastable hydrides are characterized by a low reaction enthalpy and a decomposition reaction that is thermodynamically favorable under ambient conditions. The rapid, low temperature hydrogen evolution rates that can be achieved with these materials offer much promise for mobile PEM fuel cell applications. However, a critical challenge exists to develop new methods to regenerate these hydrides directly from the reactants and hydrogen gas. This spotlight paper presents an overview of some of the metastable metal hydrides for hydrogen storage and a few new approaches being investigated to address the key challenges associated with these materials.« less

  1. Transition-Metal Hydride Radical Cations.

    PubMed

    Hu, Yue; Shaw, Anthony P; Estes, Deven P; Norton, Jack R

    2016-08-10

    Transition-metal hydride radical cations (TMHRCs) are involved in a variety of chemical and biochemical reactions, making a more thorough understanding of their properties essential for explaining observed reactivity and for the eventual development of new applications. Generally, these species may be treated as the ones formed by one-electron oxidation of diamagnetic analogues that are neutral or cationic. Despite the importance of TMHRCs, the generally sensitive nature of these complexes has hindered their development. However, over the last four decades, many more TMHRCs have been synthesized, characterized, isolated, or hypothesized as reaction intermediates. This comprehensive review focuses on experimental studies of TMHRCs reported through the year 2014, with an emphasis on isolated and observed species. The methods used for the generation or synthesis of TMHRCs are surveyed, followed by a discussion about the stability of these complexes. The fundamental properties of TMHRCs, especially those pertaining to the M-H bond, are described, followed by a detailed treatment of decomposition pathways. Finally, reactions involving TMHRCs as intermediates are described.

  2. Thermodynamic Studies and Hydride Transfer Reactions from a Rhodium Complex to BX3 Compounds

    SciTech Connect

    Mock, Michael T; Potter, Robert G; Camaioni, Donald M; Li, Jun; Dougherty, William G; Kassel, W S; Twamley, Brendan; DuBois, Daniel L

    2009-10-14

    This study examines the use of transition-metal hydride complexes that can be generated by the heterolytic cleavage of H2 gas to form B–H bonds. Specifically, these studies are focused on providing a reliable and quantitative method for determining when hydride transfer from transition-metal hydrides to three-coordinate BX3 compounds will be favorable. This involves both experimental and theoretical determinations of hydride transfer abilities. Thermodynamic hydride donor abilities (ΔG°H-) were determined for HRh(dmpe)2 and HRh(depe)2, where dmpe = 1,2-bis(dimethylphosphinoethane) and depe = 1,2-bis(diethylphosphinoethane), on a previously established scale in acetonitrile. This hydride donor ability was used to determine the hydride donor ability of [HBEt3]⁻ on this scale. Isodesmic reactions between [HBEt3]⁻ and various BX3 complexes to form BEt3 and [HBX3]⁻ were examined computationally to determine the relative hydride affinities of various BX3 compounds. The use of these scales of hydride donor abilities and hydride affinities for transition-metal hydrides and BX3 compounds is illustrated with a few selected reactions relevant to the regeneration of ammonia borane. Our findings indicate that it is possible to form B-H bonds from B-X bonds, and the extent to which BX3 compounds are reduced by transition-metal hydride complexes forming species containing multiple B-H bonds depends on the heterolytic B-X bond energy. An example is the reduction of B(SPh)3 using HRh(dmpe)2 in the presence of triethylamine to form Et3N-BH3 in high yields. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  3. Apparatus and method for heterodyne-generated two-dimensional detector array using a single element detector

    DOEpatents

    Strauss, Charlie E.

    1997-01-01

    Apparatus and method for heterodyne-generated, two-dimensional detector array using a single detector. Synthetic-array heterodyne detection, permits a single-element optical detector to behave as though it were divided into an array of separate heterodyne detector elements. A fifteen-element synthetic array has successfully been experimentally realized on a single-element detector, permitting all of the array elements to be read out continuously and in parallel from one electrical connection. A CO.sub.2 laser and a single-element HgCdTe photodiode are employed. A different heterodyne local oscillator frequency is incident upon the spatially resolvable regions of the detector surface. Thus, different regions are mapped to different heterodyne beat frequencies. One can determine where the photons were incident on the detector surface even though a single electrical connection to the detector is used. This also prevents the destructive interference that occurs when multiple speckles are imaged (similar to spatial diversity), In coherent LIDAR this permits a larger field of view. An acoustooptic modulator generates the local oscillator frequencies and can achieve adequate spatial separation of optical frequencies of the order of a megahertz apart.

  4. Apparatus and method for heterodyne-generated two-dimensional detector array using a single element detector

    DOEpatents

    Strauss, C.E.

    1997-11-18

    Apparatus and method are disclosed for heterodyne-generated, two-dimensional detector array using a single detector. Synthetic-array heterodyne detection, permits a single-element optical detector to behave as though it were divided into an array of separate heterodyne detector elements. A fifteen-element synthetic array has successfully been experimentally realized on a single-element detector, permitting all of the array elements to be read out continuously and in parallel from one electrical connection. A CO{sub 2} laser and a single-element HgCdTe photodiode are employed. A different heterodyne local oscillator frequency is incident upon the spatially resolvable regions of the detector surface. Thus, different regions are mapped to different heterodyne beat frequencies. One can determine where the photons were incident on the detector surface even though a single electrical connection to the detector is used. This also prevents the destructive interference that occurs when multiple speckles are imaged (similar to spatial diversity), In coherent LIDAR this permits a larger field of view. An acoustooptic modulator generates the local oscillator frequencies and can achieve adequate spatial separation of optical frequencies of the order of a megahertz apart. 4 figs.

  5. BatTri: A two-dimensional bathymetry-based unstructured triangular grid generator for finite element circulation modeling

    NASA Astrophysics Data System (ADS)

    Bilgili, Ata; Smith, Keston W.; Lynch, Daniel R.

    2006-06-01

    A brief summary of Delaunay unstructured triangular grid refinement algorithms, including the recent "off-centers" method, is provided and mesh generation requirements that are imperative to meet the criteria of the circulation modeling community are defined. A Matlab public-domain two-dimensional (2-D) mesh generation package (BatTri) based on these requirements is then presented and its efficiency shown through examples. BatTri consists of a graphical mesh editing interface and several bathymetry-based refinement algorithms, complemented by a set of diagnostic utilities to check and improve grid quality. The final output mesh node locations, node depths and element incidence list are obtained starting from only a basic set of bathymetric data. This simple but efficient setup allows fast interactive mesh customization and provides circulation modelers with problem-specific flexibility while satisfying the usual requirements on mesh size and element quality. A test of the "off-centers" method performed on 100 domains with randomly generated coastline and bathymetry shows an overall 25% reduction in the number of elements with only slight decrease in element quality. More importantly, this shows that BatTri is easily upgradeable to meet the future demands by the addition of new grid generation algorithms and Delaunay refinement schemes as they are made available.

  6. Guiding of laser-generated fast electrons by exploiting the resistivity-gradients around a conical guide element

    NASA Astrophysics Data System (ADS)

    Robinson, A. P. L.; Schmitz, H.; Green, J. S.; Ridgers, C. P.; Booth, N.

    2015-06-01

    Previously it has been suggested that the resistivity gradient at the interface between two different Z materials may allow one to guide a laser-generated fast electron beam propagating in a solid density target due to the enhanced growth of resistive self-generation of magnetic field and that this might be employed in an ellipsoidal target to produce a more collimated beam for propagation through homogeneous material. In this paper we show that a low-angle conical element may also have high efficacy in producing a collimated flow. Although the conical element does not have the geometric focussing properties of the ellipsoidal configuration, the conical element will tend to reduce the angular spread of the fast electrons through reducing their propagation angle on each successive bounce

  7. Structural, stability and electronic properties of C15-AB2 (A = Ti, Zr; B = Cr) intermetallic compounds and their hydrides: An ab initio study

    NASA Astrophysics Data System (ADS)

    Sarhaddi, Reza; Arabi, Hadi; Pourarian, Faiz

    2014-05-01

    The structural, stability and electronic properties of C15-AB2 (A = Ti, Zr; B = Cr) isomeric intermetallic compounds were systematically investigated by using density functional theory (DFT) and plane-wave pseudo-potential (PW-PP) method. The macroscopic properties including the lattice constant, bulk modulus and stability for these compounds were studied before and after hydrogenation. For parent compounds, the enthalpy of formation was evaluated with regard to their bulk modules and electronic structures. After hydrogenation of compounds at different interstitial tetrahedral sites (A2B2, A1B3, B4), a volume expansion was found for hydrides. The stability properties of hydrides characterized the A2B2 sites as the site preference of hydrogen atoms for both compounds. The Miedema's "reverse stability" rule is also satisfied in these compounds as lower the enthalpy of formation for the host compound, the more stable the hydride. Analysis of microscopic properties (electronic structures) after hydrogenation at more stable interstitial site (A2B2) shows that the H atoms interact stronger with the weaker (or non) hydride forming element B (Cr) than the hydride forming element A (Ti/Zr). A correlation was also found between the stability of the hydrides and their electronic structure: the deeper the hydrogen band, the less stable the hydride.

  8. Method of and arrangement for generating hydrogen

    SciTech Connect

    Gladstone, E.

    1989-05-09

    A method is described of generating diatomic hydrogen, comprising the steps of: (a) generating diatomic oxygen and hydrogen hydride by subjecting hydroride to cryogenic temperature and subatmospheric pressure conditions; (b) generating diatomic- hydrogen and hydroride by reacting the hydrogen hydride generated in step (a) with water; (c) recycling the hydroride generated in step (b) for use in step (a); and (d) removing the diatomic hydrogen generated in step (b).

  9. Automated finite element modeling of the lumbar spine: Using a statistical shape model to generate a virtual population of models.

    PubMed

    Campbell, J Q; Petrella, A J

    2016-09-06

    Population-based modeling of the lumbar spine has the potential to be a powerful clinical tool. However, developing a fully parameterized model of the lumbar spine with accurate geometry has remained a challenge. The current study used automated methods for landmark identification to create a statistical shape model of the lumbar spine. The shape model was evaluated using compactness, generalization ability, and specificity. The primary shape modes were analyzed visually, quantitatively, and biomechanically. The biomechanical analysis was performed by using the statistical shape model with an automated method for finite element model generation to create a fully parameterized finite element model of the lumbar spine. Functional finite element models of the mean shape and the extreme shapes (±3 standard deviations) of all 17 shape modes were created demonstrating the robust nature of the methods. This study represents an advancement in finite element modeling of the lumbar spine and will allow population-based modeling in the future.

  10. Spin-orbit effects, VSEPR theory, and the electronic structures of heavy and superheavy group IVA hydrides and group VIIIA tetrafluorides. A partial role reversal for elements 114 and 118

    SciTech Connect

    Nash, C.S.; Bursten, B.E.

    1999-01-21

    Relativistic effective core potentials and spin-orbit operators are used in relativistic configuration interaction calculations to explore the effects of spin-orbit coupling on the electronic structures of atoms and molecules of elements 114 and 118. The monohydrides of group IVA and the tetrafluorides of group VIIIA are examined in order to provide examples of trends within families among the various periods. The spin-orbit effect is found to play a dominant role in the determination of atomic and molecular properties. Several nonintuitive consequences of spin-orbit coupling are presented, including the depiction of element 114 as a closed-shell noble atom and the suggestion that the VSEPR theory in inadequate to describe the geometry of the rare gas tetrafluoride, (118)F{sub 4}.

  11. Regulatory Elements in Vectors for Efficient Generation of Cell Lines Producing Target Proteins

    PubMed Central

    Maksimenko, O.; Gasanov, N. B.; Georgiev, P.

    2015-01-01

    To date, there has been an increasing number of drugs produced in mammalian cell cultures. In order to enhance the expression level and stability of target recombinant proteins in cell cultures, various regulatory elements with poorly studied mechanisms of action are used. In this review, we summarize and discuss the potential mechanisms of action of such regulatory elements. PMID:26483956

  12. P-hydrogen-substituted 1,3,2-diazaphospholenes: molecular hydrides.

    PubMed

    Burck, Sebastian; Gudat, Dietrich; Nieger, Martin; Du Mont, Wolf-Walther

    2006-03-29

    P-Hydrogen-substituted 1,3,2-diazaphospholenes 1 were prepared by an improved procedure from diazadienes and were characterized by spectroscopy and in one case by X-ray diffraction. A unique hydride-type reactivity of the P-H bonds was documented by extensive reactivity studies. Aldehydes and ketones were readily reduced to diazaphospholene derivatives of the corresponding alcohols, with alkyl-substituted ketones being converted at much lower rates than aldehydes or diaryl ketones. Reactions with the tetrachlorides of group 14 elements proceeded via hydride/chloride metathesis to give either partially chlorinated derivatives EH(n)Cl(4-n) (n = 0-3 for E = C, Si) or HCl and phosphenium salts 16c[ECl3] (for E = Ge, Sn) which were characterized by spectroscopic and X-ray diffraction studies. Tin dichloride was readily reduced to the element. Reactions of 1c with the P-chloro-diazaphospholene 3c and the salt 16c[OTf] allowed the first experimental detection of intermolecular exchange of a hydride, rather than a proton, between phosphine derivatives. Computational studies indicated that the hydride transfer between 1c and the cation 16c involves a transient H-bridged species with bonding properties similar to those of B2H7-. The preference for the formation of these bridged intermediates over P-P bonded phosphenium-phosphine adducts is attributed to the low electrophilicity of the diazaphospholenium cations and characterizes a novel reaction mode for phosphenium ions.

  13. First-principles screening of complex transition metal hydrides for high temperature applications.

    PubMed

    Nicholson, Kelly M; Sholl, David S

    2014-11-17

    Metal hydrides with enhanced thermodynamic stability with respect to the associated binary hydrides are useful for high temperature applications in which highly stable materials with low hydrogen overpressures are desired. Though several examples of complex transition metal hydrides (CTMHs) with such enhanced stability are known, little thermodynamic or phase stability information is available for this materials class. In this work, we use semiautomated thermodynamic and phase diagram calculations based on density functional theory (DFT) and grand canonical linear programming (GCLP) methods to screen 102 ternary and quaternary CTMHs and 26 ternary saline hydrides in a library of over 260 metals, intermetallics, binary, and higher hydrides to identify materials that release hydrogen at higher temperatures than the associated binary hydrides and at elevated temperatures, T > 1000 K, for 1 bar H2 overpressure. For computational efficiency, we employ a tiered screening approach based first on solid phase ground state energies with temperature effects controlled via H2 gas alone and second on the inclusion of phonon calculations that correct solid phase free energies for temperature-dependent vibrational contributions. We successfully identified 13 candidate CTMHs including Eu2RuH6, Yb2RuH6, Ca2RuH6, Ca2OsH6, Ba2RuH6, Ba3Ir2H12, Li4RhH4, NaPd3H2, Cs2PtH4, K2PtH4, Cs3PtH5, Cs3PdH3, and Rb2PtH4. The most stable CTMHs tend to crystallize in the Sr2RuH6 cubic prototype structure and decompose to the pure elements and hydrogen rather than to intermetallic phases.

  14. Materials for Hydrogen Storage: From Complex Hydrides to Functionalized Nanostructures

    NASA Astrophysics Data System (ADS)

    Das, G. P.

    2011-07-01

    The world wide effort for a transition to renewable and clean (i.e. carbon-free) form of energy has resulted in an upsurge of interest in harnessing and utilizing Hydrogen. Apart from being the most abundant element in the universe, hydrogen offers many advantages over other fuels: it is non-toxic, clean to use, and packs more energy per mass than any other fuel. Hydrogen energy production, storage and distribution constitute a multi-disciplinary area of research. Coming to the material issues for solid state storage of hydrogen, the most desirable criteria are high storage capacity, satisfactory kinetics, and optimal thermodynamics. Complex hydrides involving light metals, such as Alanates, Imides, Borates, Amidoboranes etc. show impressive gravimetric efficiencies, although the hydrogen desorption temperatures turn out to be rather high. Apart from complex hydrides, there are other kinds of novel materials that have been investigated, e.g. carbon based materials activated with nano-catalysts, clathrate hydrates, metal-organic complexes, and more recently nanostructured cages viz. fullerenes and nanotubes decorated with simple or transition metals that serve to attract hydrogen in molecular form. In this talk, after giving a broad overview on hydrogen economy, I shall focus on first-principles design of materials for hydrogen storage, from complex hydrides to various kinds of functinalized nanostructures, and discuss the recent results obtained in our laboratory [1-6]. Some outstanding issues and challenges, like how to circumvent the problem of metal clustering on surface, or how to bring down the hydrogen desorption temperature etc. will be discussed.

  15. Hydride fuel behavior in LWRs

    NASA Astrophysics Data System (ADS)

    Olander, Donald R.; Ng, Marowen

    2005-11-01

    The U-Zr hydride U 0.31ZrH 1.6 offers a number of advantages over oxide fuel for light-water reactors. Fission-gas release appears to be very small (release fraction ˜10 -4) up to 600 °C, which is close to the maximum fuel temperature. Initial irradiation-induced swelling can be as large as 5% for temperatures exceeding 650 °C. Hydrogen redistributes due to the non-uniform temperature in the fuel from the as-fabricated H/Zr of 1.6 to one that is higher at the pellet periphery than at the centerline. Radial redistribution produces 'hydrogen' stresses in the pellet which add to the usual thermal stresses. In a helium-bonded fuel rod, the total stresses are less than the fracture stress; in a liquid-metal-bonded fuel rod, the fracture stress is exceeded in the central portion of the pellet, but the surface remains in compression. Axial redistribution moves substantial quantities of hydrogen from the middle portion of the fuel stack to the ends. The neutronic effect of this displacement of the moderator is unknown.

  16. Thin-film metal hydrides.

    PubMed

    Remhof, Arndt; Borgschulte, Andreas

    2008-12-01

    The goal of the medieval alchemist, the chemical transformation of common metals into nobel metals, will forever be a dream. However, key characteristics of metals, such as their electronic band structure and, consequently, their electric, magnetic and optical properties, can be tailored by controlled hydrogen doping. Due to their morphology and well-defined geometry with flat, coplanar surfaces/interfaces, novel phenomena may be observed in thin films. Prominent examples are the eye-catching hydrogen switchable mirror effect, the visualization of solid-state diffusion and the formation of complex surface morphologies. Thin films do not suffer as much from embrittlement and/or decrepitation as bulk materials, allowing the study of cyclic absorption and desorption. Therefore, thin-metal hydride films are used as model systems to study metal-insulator transitions, for high throughput combinatorial research or they may be used as indicator layers to study hydrogen diffusion. They can be found in technological applications as hydrogen sensors, in electrochromic and thermochromic devices. In this review, we discuss the effect of hydrogen loading of thin niobium and yttrium films as archetypical examples of a transition metal and a rare earth metal, respectively. Our focus thereby lies on the hydrogen induced changes of the electronic structure and the morphology of the thin films, their optical properties, the visualization and the control of hydrogen diffusion and on the study of surface phenomena and catalysis.

  17. Crystal structure of the superconducting phase of sulfur hydride

    NASA Astrophysics Data System (ADS)

    Einaga, Mari; Sakata, Masafumi; Ishikawa, Takahiro; Shimizu, Katsuya; Eremets, Mikhail I.; Drozdov, Alexander P.; Troyan, Ivan A.; Hirao, Naohisa; Ohishi, Yasuo

    2016-09-01

    A superconducting critical temperature above 200 K has recently been discovered in H2S (or D2S) under high hydrostatic pressure. These measurements were interpreted in terms of a decomposition of these materials into elemental sulfur and a hydrogen-rich hydride that is responsible for the superconductivity, although direct experimental evidence for this mechanism has so far been lacking. Here we report the crystal structure of the superconducting phase of hydrogen sulfide (and deuterium sulfide) in the normal and superconducting states obtained by means of synchrotron X-ray diffraction measurements, combined with electrical resistance measurements at both room and low temperatures. We find that the superconducting phase is mostly in good agreement with the theoretically predicted body-centred cubic (bcc) structure for H3S. The presence of elemental sulfur is also manifest in the X-ray diffraction patterns, thus proving the decomposition mechanism of H2S to H3S + S under pressure.

  18. Metal Hydride Heat Storage Technology for Directed Energy Weapon Systems

    DTIC Science & Technology

    2007-11-16

    over time after the pulse operation. A compressor -driven metal hydride heat storage system was developed for efficient, compact heat storage and...principle and heat storage performance results of the compressor -driven metal hydride heat storage system through system modeling and prototype testing. The...hyd/m³] Subscripts A Metal hydride reactor B Hydrogen container C Hydrogen compressor s Hydrogen solid phase in hydride f Hydrogen fluid phase

  19. Users manual for AUTOMESH-2D: A program of automatic mesh generation for two-dimensional scattering analysis by the finite element method

    NASA Technical Reports Server (NTRS)

    Hua, Chongyu; Volakis, John L.

    1990-01-01

    AUTOMESH-2D is a computer program specifically designed as a preprocessor for the scattering analysis of two dimensional bodies by the finite element method. This program was developed due to a need for reproducing the effort required to define and check the geometry data, element topology, and material properties. There are six modules in the program: (1) Parameter Specification; (2) Data Input; (3) Node Generation; (4) Element Generation; (5) Mesh Smoothing; and (5) Data File Generation.

  20. High H- ionic conductivity in barium hydride

    NASA Astrophysics Data System (ADS)

    Verbraeken, Maarten C.; Cheung, Chaksum; Suard, Emmanuelle; Irvine, John T. S.

    2015-01-01

    With hydrogen being seen as a key renewable energy vector, the search for materials exhibiting fast hydrogen transport becomes ever more important. Not only do hydrogen storage materials require high mobility of hydrogen in the solid state, but the efficiency of electrochemical devices is also largely determined by fast ionic transport. Although the heavy alkaline-earth hydrides are of limited interest for their hydrogen storage potential, owing to low gravimetric densities, their ionic nature may prove useful in new electrochemical applications, especially as an ionically conducting electrolyte material. Here we show that barium hydride shows fast pure ionic transport of hydride ions (H-) in the high-temperature, high-symmetry phase. Although some conductivity studies have been reported on related materials previously, the nature of the charge carriers has not been determined. BaH2 gives rise to hydride ion conductivity of 0.2 S cm-1 at 630 °C. This is an order of magnitude larger than that of state-of-the-art proton-conducting perovskites or oxide ion conductors at this temperature. These results suggest that the alkaline-earth hydrides form an important new family of materials, with potential use in a number of applications, such as separation membranes, electrochemical reactors and so on.

  1. Reactivity of yttrium carboxylates toward alkylaluminum hydrides.

    PubMed

    Schädle, Christoph; Fischbach, Andreas; Herdtweck, Eberhardt; Törnroos, Karl W; Anwander, Reiner

    2013-11-25

    Yttrocene-carboxylate complex [Cp*2Y(OOCAr(Me))] (Cp*=C5Me5, Ar(Me) =C6H2Me3-2,4,6) was synthesized as a spectroscopically versatile model system for investigating the reactivity of alkylaluminum hydrides towards rare-earth-metal carboxylates. Equimolar reactions with bis-neosilylaluminum hydride and dimethylaluminum hydride gave adduct complexes of the general formula [Cp*2Y(μ-OOCAr(Me))(μ-H)AlR2] (R=CH2SiMe3, Me). The use of an excess of the respective aluminum hydride led to the formation of product mixtures, from which the yttrium-aluminum-hydride complex [{Cp*2Y(μ-H)AlMe2(μ-H)AlMe2(μ-CH3)}2] could be isolated, which features a 12-membered-ring structure. The adduct complexes [Cp*2Y(μ-OOCAr(Me))(μ-H)AlR2] display identical (1)J(Y,H) coupling constants of 24.5 Hz for the bridging hydrido ligands and similar (89)Y NMR shifts of δ=-88.1 ppm (R=CH2SiMe3) and δ=-86.3 ppm (R=Me) in the (89)Y DEPT45 NMR experiments.

  2. A PROTOTYPE FOUR INCH SHORT HYDRIDE (FISH) BED AS A REPLACEMENT TRITIUM STORAGE BED

    SciTech Connect

    Klein, J.; Estochen, E.; Shanahan, K.; Heung, L.

    2011-02-23

    The Savannah River Site (SRS) tritium facilities have used 1st generation (Gen1) metal hydride storage bed assemblies with process vessels (PVs) fabricated from 3 inch nominal pipe size (NPS) pipe to hold up to 12.6 kg of LaNi{sub 4.25}Al{sub 0.75} metal hydride for tritium gas absorption, storage, and desorption for over 15 years. The 2nd generation (Gen2) of the bed design used the same NPS for the PV, but the added internal components produced a bed nominally 1.2 m long, and presented a significant challenge for heater cartridge replacement in a footprint limited glove-box. A prototype 3rd generation (Gen3) metal hydride storage bed has been designed and fabricated as a replacement candidate for the Gen2 storage bed. The prototype Gen3 bed uses a PV pipe diameter of 4 inch NPS so the bed length can be reduced below 0.7 m to facilitate heater cartridge replacement. For the Gen3 prototype bed, modeling results show increased absorption rates when using hydrides with lower absorption pressures. To improve absorption performance compared to the Gen2 beds, a LaNi{sub 4.15}Al{sub 0.85} material was procured and processed to obtain the desired pressure-composition-temperature (PCT) properties. Other bed design improvements are also presented.

  3. 49 CFR 173.311 - Metal hydride storage systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Metal hydride storage systems. 173.311 Section 173... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.311 Metal hydride storage systems. The following packing instruction is applicable to transportable UN Metal hydride storage...

  4. 49 CFR 173.311 - Metal hydride storage systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Metal hydride storage systems. 173.311 Section 173... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.311 Metal hydride storage systems. The following packing instruction is applicable to transportable UN Metal hydride storage...

  5. 49 CFR 173.311 - Metal hydride storage systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Metal hydride storage systems. 173.311 Section 173... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.311 Metal hydride storage systems. The following packing instruction is applicable to transportable UN Metal hydride storage...

  6. 49 CFR 173.311 - Metal hydride storage systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Metal hydride storage systems. 173.311 Section 173... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.311 Metal hydride storage systems. The following packing instruction is applicable to transportable UN Metal hydride storage...

  7. The sequential addition and migration method to generate representative volume elements for the homogenization of short fiber reinforced plastics

    NASA Astrophysics Data System (ADS)

    Schneider, Matti

    2017-02-01

    We present an algorithm for generating volume elements of short fiber reinforced plastic microstructures for prescribed fourth order fiber orientation tensor, fiber aspect ratio and solid volume fraction. The algorithm inserts fibers randomly into an existing microstructure, and removes the resulting overlap systematically based on a gradient descent method. In contrast to existing methods, large fiber aspect ratios (up to 150) and large volume fractions (60 vol% for isotropic orientation and aspect ratio of 33) can be reached. We study the effective linear elastic properties of the resulting microstructures, depending on fiber orientation, volume fraction as well as aspect ratio, and examine the size of a corresponding representative volume element.

  8. Design and fabricate a metallic hydride heat pump with a cooling capacity of 9000 BTU/H

    NASA Astrophysics Data System (ADS)

    Golben, P. M.; Huston, E. L.

    1989-02-01

    Existing Environmental Control Equipment (ECE) for truck mounted electronic communication shelters are powered by Army generator sets. Fully 50 percent of the generated power is consumed by the ECE. Innovative ECE technology was sought to reduce this electrical load. The heat content of the diesel generator exhaust gas was viewed as a potential waste heat source for thermally driven ECE systems. Metal hydride heat pumps were proposed as for this application. The purpose of this contract was to produce a prototype metal hydride air conditioner of 9000 BTU/H capacity and compare system size, weight, electric power requirements and performance with a standard Army air conditioner of the same capacity.

  9. NASTRAN data generation of helicopter fuselages using interactive graphics. [preprocessor system for finite element analysis using IBM computer

    NASA Technical Reports Server (NTRS)

    Sainsbury-Carter, J. B.; Conaway, J. H.

    1973-01-01

    The development and implementation of a preprocessor system for the finite element analysis of helicopter fuselages is described. The system utilizes interactive graphics for the generation, display, and editing of NASTRAN data for fuselage models. It is operated from an IBM 2250 cathode ray tube (CRT) console driven by an IBM 370/145 computer. Real time interaction plus automatic data generation reduces the nominal 6 to 10 week time for manual generation and checking of data to a few days. The interactive graphics system consists of a series of satellite programs operated from a central NASTRAN Systems Monitor. Fuselage structural models including the outer shell and internal structure may be rapidly generated. All numbering systems are automatically assigned. Hard copy plots of the model labeled with GRID or elements ID's are also available. General purpose programs for displaying and editing NASTRAN data are included in the system. Utilization of the NASTRAN interactive graphics system has made possible the multiple finite element analysis of complex helicopter fuselage structures within design schedules.

  10. Iron Group Hydrides in Noyori Bifunctional Catalysis.

    PubMed

    Morris, Robert H

    2016-12-01

    This is an overview of the hydride-containing catalysts prepared in the Morris group for the efficient hydrogenation of simple ketones, imines, nitriles and esters and the asymmetric hydrogenation and transfer hydrogenation of prochiral ketones and imines. The work was inspired by and makes use of Noyori metal-ligand bifunctional concepts involving the hydride-ruthenium amine-hydrogen HRuNH design. It describes the synthesis and some catalytic properties of hydridochloro, dihydride and amide complexes of ruthenium and in one case, osmium, with monodentate, bidentate and tetradentate phosphorus and nitrogen donor ligands. The iron hydride that has been identified in a very effective asymmetric transfer hydrogenation process is also mentioned. The link between the HMNH structure and the sense of enantioinduction is demonstrated by use of simple transition state models.

  11. A package for 3-D unstructured grid generation, finite-element flow solution and flow field visualization

    NASA Technical Reports Server (NTRS)

    Parikh, Paresh; Pirzadeh, Shahyar; Loehner, Rainald

    1990-01-01

    A set of computer programs for 3-D unstructured grid generation, fluid flow calculations, and flow field visualization was developed. The grid generation program, called VGRID3D, generates grids over complex configurations using the advancing front method. In this method, the point and element generation is accomplished simultaneously, VPLOT3D is an interactive, menudriven pre- and post-processor graphics program for interpolation and display of unstructured grid data. The flow solver, VFLOW3D, is an Euler equation solver based on an explicit, two-step, Taylor-Galerkin algorithm which uses the Flux Corrected Transport (FCT) concept for a wriggle-free solution. Using these programs, increasingly complex 3-D configurations of interest to aerospace community were gridded including a complete Space Transportation System comprised of the space-shuttle orbitor, the solid-rocket boosters, and the external tank. Flow solutions were obtained on various configurations in subsonic, transonic, and supersonic flow regimes.

  12. Design and optimization of a multi-element piezoelectric transducer for mode-selective generation of guided waves

    NASA Astrophysics Data System (ADS)

    Yazdanpanah Moghadam, Peyman; Quaegebeur, Nicolas; Masson, Patrice

    2016-07-01

    A novel multi-element piezoelectric transducers (MEPT) is designed, optimized, machined and experimentally tested to improve structural health monitoring systems for mode-selective generation of guided waves (GW) in an isotropic structure. GW generation using typical piezoceramics makes the signal processing and consequently damage detection very complicated because at any driving frequency at least two fundamental symmetric (S 0) and antisymmetric (A 0) modes are generated. To prevent this, mode selective transducer design is proposed based on MEPT. A numerical method is first developed to extract the interfacial stress between a single piezoceramic element and a host structure and then used as the input of an analytical model to predict the GW propagation through the thickness of an isotropic plate. Two novel objective functions are proposed to optimize the interfacial shear stress for both suppressing unwanted mode(s) and maximizing the desired mode. Simplicity and low manufacturing cost are two main targets driving the design of the MEPT. A prototype MEPT is then manufactured using laser micro-machining. An experimental procedure is presented to validate the performances of the MEPT as a new solution for mode-selective GW generation. Experimental tests illustrate the high capability of the MEPT for mode-selective GW generation, as unwanted mode is suppressed by a factor up to 170 times compared with the results obtained with a single piezoceramic.

  13. 1. VIEW OF A PORTION OF THE HYDRIDE PROCESSING LABORATORY. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OF A PORTION OF THE HYDRIDE PROCESSING LABORATORY. OPERATIONS IN THE GLOVE BOX IN THE BACKGROUND OF THE PHOTOGRAPH INCLUDED HYDRIDING OF PLUTONIUM AND HYDRIDE SEPARATION. IN THE FOREGROUND, THE VACUUM MONITOR CONTROL PANEL MEASURED TEMPERATURES WITHIN THE GLOVEBOX. THE CENTER CONTROL PANEL REGULATED THE FURNACE INSIDE THE GLOVE BOX USED IN THE HYDRIDING PROCESSES. THIS EQUIPMENT WAS ESSENTIAL TO THE HYDRIDING PROCESS, AS WELL AS OTHER GLOVE BOX OPERATIONS. - Rocky Flats Plant, Plutonium Laboratory, North-central section of industrial area at 79 Drive, Golden, Jefferson County, CO

  14. Mobility and Generation of Mosaic Non-Autonomous Transposons by Tn3-Derived Inverted-Repeat Miniature Elements (TIMEs)

    PubMed Central

    Szuplewska, Magdalena; Ludwiczak, Marta; Lyzwa, Katarzyna; Czarnecki, Jakub; Bartosik, Dariusz

    2014-01-01

    Functional transposable elements (TEs) of several Pseudomonas spp. strains isolated from black shale ore of Lubin mine and from post-flotation tailings of Zelazny Most in Poland, were identified using a positive selection trap plasmid strategy. This approach led to the capture and characterization of (i) 13 insertion sequences from 5 IS families (IS3, IS5, ISL3, IS30 and IS1380), (ii) isoforms of two Tn3-family transposons – Tn5563a and Tn4662a (the latter contains a toxin-antitoxin system), as well as (iii) non-autonomous TEs of diverse structure, ranging in size from 262 to 3892 bp. The non-autonomous elements transposed into AT-rich DNA regions and generated 5- or 6-bp sequence duplications at the target site of transposition. Although these TEs lack a transposase gene, they contain homologous 38-bp-long terminal inverted repeat sequences (IRs), highly conserved in Tn5563a and many other Tn3-family transposons. The simplest elements of this type, designated TIMEs (Tn3 family-derived Inverted-repeat Miniature Elements) (262 bp), were identified within two natural plasmids (pZM1P1 and pLM8P2) of Pseudomonas spp. It was demonstrated that TIMEs are able to mobilize segments of plasmid DNA for transposition, which results in the generation of more complex non-autonomous elements, resembling IS-driven composite transposons in structure. Such transposon-like elements may contain different functional genetic modules in their core regions, including plasmid replication systems. Another non-autonomous element “captured” with a trap plasmid was a TIME derivative containing a predicted resolvase gene and a res site typical for many Tn3-family transposons. The identification of a portable site-specific recombination system is another intriguing example confirming the important role of non-autonomous TEs of the TIME family in shuffling genetic information in bacterial genomes. Transposition of such mosaic elements may have a significant impact on diversity and evolution

  15. Mobility and generation of mosaic non-autonomous transposons by Tn3-derived inverted-repeat miniature elements (TIMEs).

    PubMed

    Szuplewska, Magdalena; Ludwiczak, Marta; Lyzwa, Katarzyna; Czarnecki, Jakub; Bartosik, Dariusz

    2014-01-01

    Functional transposable elements (TEs) of several Pseudomonas spp. strains isolated from black shale ore of Lubin mine and from post-flotation tailings of Zelazny Most in Poland, were identified using a positive selection trap plasmid strategy. This approach led to the capture and characterization of (i) 13 insertion sequences from 5 IS families (IS3, IS5, ISL3, IS30 and IS1380), (ii) isoforms of two Tn3-family transposons--Tn5563a and Tn4662a (the latter contains a toxin-antitoxin system), as well as (iii) non-autonomous TEs of diverse structure, ranging in size from 262 to 3892 bp. The non-autonomous elements transposed into AT-rich DNA regions and generated 5- or 6-bp sequence duplications at the target site of transposition. Although these TEs lack a transposase gene, they contain homologous 38-bp-long terminal inverted repeat sequences (IRs), highly conserved in Tn5563a and many other Tn3-family transposons. The simplest elements of this type, designated TIMEs (Tn3 family-derived Inverted-repeat Miniature Elements) (262 bp), were identified within two natural plasmids (pZM1P1 and pLM8P2) of Pseudomonas spp. It was demonstrated that TIMEs are able to mobilize segments of plasmid DNA for transposition, which results in the generation of more complex non-autonomous elements, resembling IS-driven composite transposons in structure. Such transposon-like elements may contain different functional genetic modules in their core regions, including plasmid replication systems. Another non-autonomous element "captured" with a trap plasmid was a TIME derivative containing a predicted resolvase gene and a res site typical for many Tn3-family transposons. The identification of a portable site-specific recombination system is another intriguing example confirming the important role of non-autonomous TEs of the TIME family in shuffling genetic information in bacterial genomes. Transposition of such mosaic elements may have a significant impact on diversity and evolution, not

  16. Automated quadrilateral surface discretization method and apparatus usable to generate mesh in a finite element analysis system

    DOEpatents

    Blacker, Teddy D.

    1994-01-01

    An automatic quadrilateral surface discretization method and apparatus is provided for automatically discretizing a geometric region without decomposing the region. The automated quadrilateral surface discretization method and apparatus automatically generates a mesh of all quadrilateral elements which is particularly useful in finite element analysis. The generated mesh of all quadrilateral elements is boundary sensitive, orientation insensitive and has few irregular nodes on the boundary. A permanent boundary of the geometric region is input and rows are iteratively layered toward the interior of the geometric region. Also, an exterior permanent boundary and an interior permanent boundary for a geometric region may be input and the rows are iteratively layered inward from the exterior boundary in a first counter clockwise direction while the rows are iteratively layered from the interior permanent boundary toward the exterior of the region in a second clockwise direction. As a result, a high quality mesh for an arbitrary geometry may be generated with a technique that is robust and fast for complex geometric regions and extreme mesh gradations.

  17. Three-port impedance model of a piezoelectric bar element: Application to generation and damping of extensional waves

    NASA Astrophysics Data System (ADS)

    Jansson, A.; Lundberg, B.

    2008-09-01

    A straight bar element containing piezoelectric members is viewed as a linear system with one electrical and two mechanical ports where it can interact with external electrical and mechanical devices through voltage, current, forces and velocities. A generalized force vector, with one voltage and two forces as elements, is expressed as the product of an impedance matrix and a generalized velocity vector, with one current and two velocities, as elements. Due to symmetry and reciprocity, this matrix is defined by four of its nine elements. Two applications are considered for a piezoelectric bar element (PBE) that constitutes a part of a long elastic or viscoelastic bar, viz. generation and damping of extensional waves in the bar. In the first, the PBE is driven by a given input voltage or by the output voltage from a linear power amplifier. In the second, the PBE supplies an output voltage to an external load. In numerical simulations carried out for a specific laminated PBE, an elastic bar, a serial RL load and a bell-shaped incident wave, the highest fraction of wave energy dissipated was 8.1%. This is much less than the 50% achievable for a harmonic wave under condition of electrical impedance matching.

  18. Relaxed natural selection alone does not permit transposable element expansion within 4,000 generations in Escherichia coli.

    PubMed

    Plague, Gordon R; Dougherty, Kevin M; Boodram, Krystal S; Boustani, Samantha E; Cao, Huansheng; Manning, Sarah R; McNally, Camille C

    2011-07-01

    Insertion sequences (ISs) are transposable genetic elements in bacterial genomes. IS elements are common among bacteria but are generally rare within free-living species, probably because of the negative fitness effects they have on their hosts. Conversely, ISs frequently proliferate in intracellular symbionts and pathogens that recently transitioned from a free-living lifestyle. IS elements can profoundly influence the genomic evolution of their bacterial hosts, although it is unknown why they often expand in intracellular bacteria. We designed a laboratory evolution experiment with Escherichia coli K-12 to test the hypotheses that IS elements often expand in intracellular bacteria because of relaxed natural selection due to (1) their generally small effective population sizes (N (e)) and thus enhanced genetic drift, and (2) their nutrient rich environment, which makes many biosynthetic genes unnecessary and thus selectively neutral territory for IS insertion. We propagated 12 populations under four experimental conditions: large N (e) versus small N (e), and nutrient rich medium versus minimal medium. We found that relaxed selection over 4,000 generations was not sufficient to permit IS element expansion in any experimental population, thus leading us to hypothesize that IS expansion in intracellular symbionts may often be spurred by enhanced transposition rates, possibly due to environmental stress, coupled with relaxed natural selection.

  19. Model for the Prediction of the Hydriding Thermodynamics of Pd-Rh-Co Ternary Alloys

    SciTech Connect

    Teter, D.F.; Thoma, D.J.

    1999-03-01

    A dilute solution model (with respect to the substitutional alloying elements) has been developed, which accurately predicts the hydride formation and decomposition thermodynamics and the storage capacities of dilute ternary Pd-Rh-Co alloys. The effect of varying the rhodium and cobalt compositions on the thermodynamics of hydride formation and decomposition and hydrogen capacity of several palladium-rhodium-cobalt ternary alloys has been investigated using pressure-composition (PC) isotherms. Alloying in the dilute regime (<10 at.%) causes the enthalpy for hydride formation to linearly decrease with increasing alloying content. Cobalt has a stronger effect on the reduction in enthalpy than rhodium for equivalent alloying amounts. Also, cobalt reduces the hydrogen storage capacity with increasing alloying content. The plateau thermodynamics are strongly linked to the lattice parameters of the alloys. A near-linear dependence of the enthalpy of hydride formation on the lattice parameter was observed for both the binary Pd-Rh and Pd-Co alloys, as well as for the ternary Pd-Rh-Co alloys. The Pd-5Rh-3Co (at. %) alloy was found to have similar plateau thermodynamics as a Pd-10Rh alloy, however, this ternary alloy had a diminished hydrogen storage capacity relative to Pd-10Rh.

  20. Using first principles calculations to identify new destabilized metal hydride reactions for reversible hydrogen storage.

    PubMed

    Alapati, Sudhakar V; Karl Johnson, J; Sholl, David S

    2007-03-28

    Hydrides of period 2 and 3 elements are promising candidates for hydrogen storage, but typically have heats of reaction that are too high to be of use for fuel cell vehicles. Recent experimental work has focused on destabilizing metal hydrides through mixing metal hydrides with other compounds. A very large number of possible destabilized metal hydride reaction schemes exist, but the thermodynamic data required to assess the enthalpies of these reactions are not available in many cases. We have used density functional theory calculations to predict the reaction enthalpies for more than 300 destabilization reactions that have not previously been reported. The large majority of these reactions are predicted not to be useful for reversible hydrogen storage, having calculated reaction enthalpies that are either too high or too low, and hence these reactions need not be investigated experimentally. Our calculations also identify multiple promising reactions that have large enough hydrogen storage capacities to be useful in practical applications and have reaction thermodynamics that appear to be suitable for use in fuel cell vehicles and are therefore promising candidates for experimental work.

  1. Hydride formation on deformation twin in zirconium alloy

    NASA Astrophysics Data System (ADS)

    Kim, Ju-Seong; Kim, Sung-Dae; Yoon, Jonghun

    2016-12-01

    Hydrides deteriorate the mechanical properties of zirconium (Zr) alloys used in nuclear reactors. Intergranular hydrides that form along grain boundaries have been extensively studied due to their detrimental effects on cracking. However, it has been little concerns on formation of Zr hydrides correlated with deformation twins which is distinctive heterogeneous nucleation site in hexagonal close-packed metals. In this paper, the heterogeneous precipitation of Zr hydrides at the twin boundaries was visualized using transmission electron microscopy. It demonstrates that intragranular hydrides in the twinned region precipitates on the rotated habit plane by the twinning and intergranular hydrides precipitate along the coherent low energy twin boundaries independent of the conventional habit planes. Interestingly, dislocations around the twin boundaries play a substantial role in the nucleation of Zr hydrides by reducing the misfit strain energy.

  2. Hydridable material for the negative electrode in a nickel-metal hydride storage battery

    DOEpatents

    Knosp, Bernard; Bouet, Jacques; Jordy, Christian; Mimoun, Michel; Gicquel, Daniel

    1997-01-01

    A monophase hydridable material for the negative electrode of a nickel-metal hydride storage battery with a "Lave's phase" structure of hexagonal C14 type (MgZn.sub.2) has the general formula: Zr.sub.1-x Ti.sub.x Ni.sub.a Mn.sub.b Al.sub.c Co.sub.d V.sub.e where ##EQU1##

  3. Development of an Automatic Grid Generator for Multi-Element High-Lift Wings

    NASA Technical Reports Server (NTRS)

    Eberhardt, Scott; Wibowo, Pratomo; Tu, Eugene

    1996-01-01

    The procedure to generate the grid around a complex wing configuration is presented in this report. The automatic grid generation utilizes the Modified Advancing Front Method as a predictor and an elliptic scheme as a corrector. The scheme will advance the surface grid one cell outward and the newly obtained grid is corrected using the Laplace equation. The predictor-corrector step ensures that the grid produced will be smooth for every configuration. The predictor-corrector scheme is extended for a complex wing configuration. A new technique is developed to deal with the grid generation in the wing-gaps and on the flaps. It will create the grids that fill the gap on the wing surface and the gap created by the flaps. The scheme recognizes these configurations automatically so that minimal user input is required. By utilizing an appropriate sequence in advancing the grid points on a wing surface, the automatic grid generation for complex wing configurations is achieved.

  4. Next Generation Life Support (NGLS): High Performance EVA Glove (HPEG) Technology Development Element

    NASA Technical Reports Server (NTRS)

    Walsh, Sarah; Barta, Daniel; Stephan, Ryan; Gaddis, Stephen

    2015-01-01

    The overall objective is to develop advanced gloves for extra vehicular activity (EVA) for future human space exploration missions and generate corresponding standards by which progress may be quantitatively assessed. The glove prototypes that result from the successful completion of this technology development activity will be delivered to NASA's Human Exploration Operations Mission Directorate (HEOMD) and ultimately to be included in an integrated test with the next generation spacesuit currently under development.

  5. Nanominerals, fullerene aggregates, and hazardous elements in coal and coal combustion-generated aerosols: An environmental and toxicological assessment.

    PubMed

    Saikia, Jyotilima; Narzary, Bardwi; Roy, Sonali; Bordoloi, Manobjyoti; Saikia, Prasenjit; Saikia, Binoy K

    2016-12-01

    Studies on coal-derived nanoparticles as well as nano-minerals are important in the context of the human health and the environment. The coal combustion-generated aerosols also affect human health and environmental quality aspects in any coal-fired station. In this study, the feed coals and their combustion-generated aerosols from coal-fired boilers of two tea industry facilities were investigated for the presence of nanoparticles/nano minerals, fullerene aggregates, and potentially hazardous elements (PHEs). The samples were characterized by using X-ray diffraction (XRD), Time-of-flight secondary ion mass spectroscopy (TOF-SIMS), High resolution-transmission electron microscopy/energy dispersive spectroscopy (HR-TEM/EDS) and Ultra Violet-visible spectroscopy (UV-Vis) to know their extent of environmental risks to the human health when present in coals and aerosols. The feed coals contain mainly clay minerals, whilst glass fragments, spinel, quartz, and other minerals occur in lesser quantities. The PM samples contain potentially hazardous elements (PHEs) like As, Pb, Cd and Hg. Enrichment factor of the trace elements in particulate matters (PMs) was calculated to determine their sources. The aerosol samples were also found to contain nanomaterials and ultrafine particles. The fullerene aggregates along with potentially hazardous elements were also detected in the aerosol samples. The cytotoxicity studies on the coal combustion-generated PM samples show their potential risk to the human health. This detailed investigation on the inter-relationship between the feed coals and their aerosol chemistry will be useful for understanding the extent of environmental hazards and related human health risk.

  6. Evaluating avalanche generation by 2-D finite element analysis at Pico de Orizaba, Mexico

    NASA Astrophysics Data System (ADS)

    Concha Dimas, A.; Watters, R. J.

    2003-04-01

    Pico de Orizaba, at the eastern Mexican Volcanic Belt, has collapse twice during its evolution (250 ka and 20 ka ago). In case of collapse of the present day cone, the run out distance of the moving mass represents a hazard for the surrounding population. We evaluate, by using finite element, two geological aspects that have been recognized in the present cone of Pico de Orizaba as possible triggering mechanisms for avalanches: 1) Extensive hydrothermal alteration (argillic), and 2) normal faulting at the volcano basement. Two dimensional finite element analyses were carried out in a profile trending NE40SW, perpendicular to the trend of dikes and volcanic flank eruptions. We evaluate effects of extension of hydrothermal alteration and amount of fault displacement needed for triggering the avalanche. We compare the shape of failure surface (which reflects the volume of the resulting failing mass) through distribution of velocity contours and displacement vectors.

  7. Ductility Evaluation of As-Hydrided and Hydride Reoriented Zircaloy-4 Cladding under Simulated Dry-Storage Condition

    SciTech Connect

    Yan, Yong; Plummer, Lee K; Ray, Holly B; Cook, Tyler S; Bilheux, Hassina Z

    2014-01-01

    Pre-storage drying-transfer operations and early stage storage expose cladding to higher temperatures and much higher pressure-induced tensile hoop stresses relative to normal operation in-reactor and pool storage under these conditions. Radial hydrides could precipitate during slow cooling and provide an additional embrittlement mechanism as the cladding temperature decreases below the ductile-to-brittle transition temperature. As a means of simulating this behavior, unirradiated hydrided Zircaloy-4 samples were fabricated by a gas charging method to levels that encompass the range of hydrogen concentrations observed in current used fuel. Mechanical testing was carried out by the ring compression test (RCT) method at various temperatures to evaluate the sample s ductility for both as-hydrided and post-hydride reorientation treated specimens. As-hydrided samples with higher hydrogen concentration (>800 ppm) resulted in lower strain before fracture and reduced maximum load. Increasing RCT temperatures resulted in increased ductility of the as-hydrided cladding. A systematic radial hydride treatment was conducted at various pressures and temperatures for the hydrided samples with H content around 200 ppm. Following the radial hydride treatment, RCTs on the hydride reoriented samples were conducted and exhibited lower ductility compared to as-hydrided samples.

  8. On the accuracy and convergence of implicit numerical integration of finite element generated ordinary differential equations

    NASA Technical Reports Server (NTRS)

    Baker, A. J.; Soliman, M. O.

    1978-01-01

    A study of accuracy and convergence of linear functional finite element solution to linear parabolic and hyperbolic partial differential equations is presented. A variable-implicit integration procedure is employed for the resultant system of ordinary differential equations. Accuracy and convergence is compared for the consistent and two lumped assembly procedures for the identified initial-value matrix structure. Truncation error estimation is accomplished using Richardson extrapolation.

  9. A thermokinetically driven metal-hydride actuator

    NASA Astrophysics Data System (ADS)

    Jung, Kwangmok; Kim, Kwang J.

    2008-03-01

    The purpose of this study is to develop a novel thermokinetically-driven actuator technology based on the physics of metal hydrides (MH's). A metal hydride absorbs and desorbs hydrogen due to the imposed temperature swing(s). The MH can also work as an effective thermally-driven hydrogen compressor producing more than 5,000 psia net pressure swing. The MH actuation system can be built in a simple structure, exhibits high power, produces soft actuating, and is essentially noiseless. Moreover, it is much more powerful and compact than conventional pneumatic systems that require bulky auxiliary systems. It is our belief that the MH actuators are useful for many emerging industrial, biorobotic, and civil structural applications. In this paper, we report the recent preliminary experimental results for a laboratory-prototyped MH actuation system. In particular, the dynamic response characteristics, enhanced controllability, thermodynamic performances, and reliability of the metal hydride actuator were studied in order to estimate the actuation capability of the MH actuator. A unique design of the MH actuator was created. It encases a so-called "porous metal hydride (PMH)" in the reactor to effectively achieve desirable performance by improving overall thermal conductance.

  10. X-Ray Topography of Hydride Domains.

    DTIC Science & Technology

    1983-04-01

    boundaries between hydride (deuteride) domains, and the irregular boundaries correspond to incoherent twin boundaries . Trace analysis of the coherent...topographs of the NbHo.78 and NbO 0 .75 crystals. As discussed by Schober and Linke (1976b), the straight boundaries correspond to coherent twin

  11. Metal hydride fuel storage and method thereof

    DOEpatents

    Morse, Jeffrey D.; Jankowski, Alan F.; Yu, Conrad

    2006-10-17

    Disclosed herein is a metal hydride fuel storage cartridge having integrated resistive heaters that can be used in conjunction with fuel cells such as MEMS-based fuel cells. The cartridge is fabricated using micromachining methods and thin/thick film materials synthesis techniques.

  12. Metal hydride fuel storage and method thereof

    DOEpatents

    Morse, Jeffrey D [Martinez, CA; Jankowski, Alan F [Livermore, CA; Yu, Conrad [Antioch, CA

    2009-05-05

    Disclosed herein is a metal hydride fuel storage cartridge having integrated resistive heaters that can be used in conjunction with fuel cells such as MEMS-based fuel cells. The cartridge is fabricated using micromachining methods and thin/thick film materials synthesis techniques.

  13. Metal hydrides as electrode/catalyst materials for oxygen evolution/reduction in electrochemical devices

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V. (Inventor); Halpert, Gerald (Inventor); Fultz, Brent (Inventor); Witham, Charles K. (Inventor); Bowman, Robert C. (Inventor); Hightower, Adrian (Inventor)

    1997-01-01

    An at least ternary metal alloy of the formula, AB.sub.(5-Y)X(.sub.y), is claimed. In this formula, A is selected from the rare earth elements, B is selected from the elements of groups 8, 9, and 10 of the periodic table of the elements, and X includes at least one of the following: antimony, arsenic, and bismuth. Ternary or higher-order substitutions, to the base AB.sub.5 alloys, that form strong kinetic interactions with the predominant metals in the base metal hydride are used to form metal alloys with high structural integrity after multiple cycles of hydrogen sorption.

  14. COMGEN - A PROGRAM FOR GENERATING FINITE ELEMENT MODELS OF COMPOSITE MATERIALS AT THE MICRO LEVEL (SGI IRIS VERSION)

    NASA Technical Reports Server (NTRS)

    Melis, M. E.

    1994-01-01

    A significant percentage of time spent in a typical finite element analysis is taken up in the modeling and assignment of loads and constraints. This process not only requires the analyst to be well-versed in the art of finite element modeling, but also demands familiarity with some sort of preprocessing software in order to complete the task expediently. COMGEN (COmposite Model GENerator) is an interactive FORTRAN program which can be used to create a wide variety of finite element models of continuous fiber composite materials at the micro level. It quickly generates batch or "session files" to be submitted to the finite element pre- and post-processor program, PATRAN. (PDA Engineering, Costa Mesa, CA.) In modeling a composite material, COMGEN assumes that its constituents can be represented by a "unit cell" of a fiber surrounded by matrix material. Two basic cell types are available. The first is a square packing arrangement where the fiber is positioned in the center of a square matrix cell. The second type, hexagonal packing, has the fiber centered in a hexagonal matrix cell. Different models can be created using combinations of square and hexagonal packing schemes. Variations include two- and three- dimensional cases, models with a fiber-matrix interface, and different constructions of unit cells. User inputs include fiber diameter and percent fiber-volume of the composite to be analyzed. In addition, various mesh densities, boundary conditions, and loads can be assigned to the models within COMGEN. The PATRAN program then uses a COMGEN session file to generate finite element models and their associated loads which can then be translated to virtually any finite element analysis code such as NASTRAN or MARC. COMGEN is written in FORTRAN 77 and has been implemented on DEC VAX series computers under VMS and SGI IRIS series workstations under IRIX. If the user has the PATRAN package available, the output can be graphically displayed. Without PATRAN, the output is

  15. COMGEN - A PROGRAM FOR GENERATING FINITE ELEMENT MODELS OF COMPOSITE MATERIALS AT THE MICRO LEVEL (DEC VAX VMS VERSION)

    NASA Technical Reports Server (NTRS)

    Melis, M. E.

    1994-01-01

    A significant percentage of time spent in a typical finite element analysis is taken up in the modeling and assignment of loads and constraints. This process not only requires the analyst to be well-versed in the art of finite element modeling, but also demands familiarity with some sort of preprocessing software in order to complete the task expediently. COMGEN (COmposite Model GENerator) is an interactive FORTRAN program which can be used to create a wide variety of finite element models of continuous fiber composite materials at the micro level. It quickly generates batch or "session files" to be submitted to the finite element pre- and post-processor program, PATRAN. (PDA Engineering, Costa Mesa, CA.) In modeling a composite material, COMGEN assumes that its constituents can be represented by a "unit cell" of a fiber surrounded by matrix material. Two basic cell types are available. The first is a square packing arrangement where the fiber is positioned in the center of a square matrix cell. The second type, hexagonal packing, has the fiber centered in a hexagonal matrix cell. Different models can be created using combinations of square and hexagonal packing schemes. Variations include two- and three- dimensional cases, models with a fiber-matrix interface, and different constructions of unit cells. User inputs include fiber diameter and percent fiber-volume of the composite to be analyzed. In addition, various mesh densities, boundary conditions, and loads can be assigned to the models within COMGEN. The PATRAN program then uses a COMGEN session file to generate finite element models and their associated loads which can then be translated to virtually any finite element analysis code such as NASTRAN or MARC. COMGEN is written in FORTRAN 77 and has been implemented on DEC VAX series computers under VMS and SGI IRIS series workstations under IRIX. If the user has the PATRAN package available, the output can be graphically displayed. Without PATRAN, the output is

  16. Elemental Diffusion and Service Performance of Bi2Te3-Based Thermoelectric Generation Modules with Flexible Connection Electrodes

    NASA Astrophysics Data System (ADS)

    Jiang, Chengpeng; Fan, Xi'an; Rong, Zhenzhou; Zhang, Chengcheng; Li, Guangqiang; Feng, Bo; Hu, Jie; Xiang, Qiusheng

    2017-02-01

    In this work, the elemental diffusion and service performance of Bi2Te3-based thermoelectric generation (TEG) modules with flexible Al electrodes were evaluated at a temperature difference of 240°C and a cold junction temperature of 50°C. The results indicated that while the maximum output power ( P max) and open circuit voltage ( U 0) first increased rapidly and then decreased gradually with service time, the dynamic inner-resistance ( R i) showed the opposite trend. Obvious defects and elemental diffusion across the interfaces were observed and resulted in the performance degradation of the TEG modules. The Ni barrier layer with a thickness of 8-10 μm could not effectively restrain the elemental diffusion for the TEG applications at the high operating temperatures. Al was not suitable as the electrode material for the Bi2Te3-based TEG modules due to its ready absorption of Se from the n-type thermoelectric legs. Encouragingly, we found that the Al electrode could restrain the diffusion of the other elements such as Bi, Te, Sb, Cu, Ni, and I. These results provided insight into the improvement of the service performance of the TEG modules.

  17. Voxel-based approach to generate entire human metacarpal bone with microscopic architecture for finite element analysis.

    PubMed

    Tang, C Y; Tsui, C P; Tang, Y M; Wei, L; Wong, C T; Lam, K W; Ip, W Y; Lu, W W J; Pang, M Y C

    2014-01-01

    With the development of micro-computed tomography (micro-CT) technology, it is possible to construct three-dimensional (3D) models of human bone without destruction of samples and predict mechanical behavior of bone using finite element analysis (FEA). However, due to large number of elements required for constructing the FE models of entire bone, this demands a substantial computational effort and the analysis usually needs a high level of computer. In this article, a voxel-based approach for generation of FE models of entire bone with microscopic architecture from micro-CT image data is proposed. To enable the FE analyses of entire bone to be run even on a general personal computer, grayscale intensity thresholds were adopted to reduce the amount of elements. Human metacarpal bone (MCP) bone was used as an example for demonstrating the applicability of the proposed method. The micro-CT images of the MCP bone were combined and converted into 3D array of pixels. Dual grayscale intensity threshold parameters were used to distinguish the pixels of bone tissues from those of surrounding soft tissues and improve predictive accuracy for the FE analyses with different sizes of elements. The method of selecting an appropriate value of the second grayscale intensity threshold was also suggested to minimize the area error for the reconstructed cross-sections of a FE structure. Experimental results showed that the entire FE MCP bone with microscopic architecture could be modeled and analyzed on a personal computer with reasonable accuracy.

  18. Internal hydriding in irradiated defected Zircaloy fuel rods: A review (LWBR Development Program)

    SciTech Connect

    Clayton, J C

    1987-10-01

    Although not a problem in recent commercial power reactors, including the Shippingport Light Water Breeder Reactor, internal hydriding of Zircaloy cladding was a persistent cause of gross cladding failures during the 1960s. It occurred in the fuel rods of water-cooled nuclear power reactors that had a small cladding defect. This report summarizes the experimental findings, causes, mechanisms, and methods of minimizing internal hydriding in defected Zircaloy-clad fuel rods. Irradiation test data on the different types of defected fuel rods, intentionally fabricated defected and in-pile operationally defected rods, are compared. Significant factors affecting internal hydriding in defected Zircaloy-clad fuel rods (defect hole size, internal and external sources of hydrogen, Zircaloy cladding surface properties, nickel alloy contamination of Zircaloy, the effect of heat flux and fluence) are discussed. Pertinent in-pile and out-of-pile test results from Bettis and other laboratories are used as a data base in constructing a qualitative model which explains hydrogen generation and distribution in Zircaloy cladding of defected water-cooled reactor fuel rods. Techniques for minimizing internal hydride failures in Zircaloy-clad fuel rods are evaluated.

  19. Bridging the Worlds of Entertainment and Space - One Element of the Space Generation Foundation

    NASA Astrophysics Data System (ADS)

    Hildago, L.

    2002-01-01

    Programme on Space Applications, SGSabstracts@unsgac.org/fax +1(281)244-7478 The Space Generation Foundation, founder of ISU, is the current home for Space Rocks!, Yuri's Night, and other space projects focused on education, outreach, and sustainable development worldwide. One particular area of success in 2001/2002 has been the involvement of the entertainment community in space events. Yuri's Night brought together musicians, DJs, artists, and the public to celebrate space. Space Rocks will do the same on a much larger scale, employing film, theatre, poetry, music, art, advertising firms, and other unconventional media to communicate space to the public. We will present about the aims and future plans of the Foundation. The Space Generation Advisory Council in support of the United Nations Programme on Space Applications has as its main focus Space education and outreach. Since the Space Generation Forum in 1999, successful global education and outreach projects have been implemented by young people around the world. These and new ideas are being further developed at the Space Generation Summit (SGS), an event at World Space Congress (WSC) that will unite international students and young professionals to develop a youth vision and strategy for the peaceful uses of space. SGS, endorsed by the United Nations, will take place from October 11-13th, during which the 200 delegates will discuss ongoing youth space activities, particularly those stemming from the UNISPACE- III/SGF and taken forward by the Space Generation Advisory Council. Delegates will address a variety of topics with the goal of devising new recommendations according to the theme, 'Accelerating Our Pace in Space'. The material presented here and in other technical sessions throughout WSC includes the results of these discussions.

  20. Development of high catalytic activity disordered hydrogen-storage alloys for electrochemical application in nickel-metal hydride batterie

    NASA Astrophysics Data System (ADS)

    Ovshinsky, S. R.; Fetcenko, M. A.

    2001-04-01

    Multi-element, multiphase disordered metal hydride alloys have enabled the widespread commercialization of nickel-metal hydride (NiMH) batteries by allowing high capacity and good kinetics while overcoming the crucial barrier of unstable oxidation/corrosion behavior to obtain long cycle life. Alloy-formula optimization and advanced materials processing have been used to promote a high concentration of active hydrogen-storage sites vital for raising NiMH specific energy. New commercial applications demand fundamentally higher specific power and discharge-rate kinetics. Disorder at the metal/electrolyte interface has enabled a surface oxide with less than 70 Å metallic nickel alloy inclusions suspended within the oxide, which provide exceptional catalytic activity to the metal hydride electrode surface.

  1. Rare earth elements--a new generation of growth promoters for pigs?

    PubMed

    He, M L; Rambeck, W A

    2000-01-01

    The present study which includes two feeding experiments was performed to investigate a possible performance enhancing effect of rare earth elements (REF) in piglets. This performance enhancing effect has been described in the Chinese literature for a long time, however, it was never tested under "western conditions". In the first feeding experiment 72 piglets at a mean BW of 7.3 kg were allotted to a control and to 4 REE groups at different levels of lanthanum chloride or an REE mixture containing mainly chlorides of lanthanum, cerium and praseodymium. The experimental period lasted 5 weeks. Positive effects of REE were found on body weight gain as well as on feed conversion ratio of the piglets. Compared to the control group, the daily weight gain was improved by 2 to 5% and feed conversion was better by up to 7%. These effects were, however, not significant. In the second feeding experiment, piglets (mean BW 17.3 kg) were fed for 8 weeks with a similar REE mixture. Significant positive effects of REE were found on both body weight gain and on feed conversion ratio by 19% and 10%, respectively. This is the first time that a performance enhancing effect of REE in pigs under western feeding conditions has been shown. Since the use of antibiotics as growth promoters in animal feed has been restricted in the European Union recently, rare earth elements might be of interest as new, safe and inexpensive alternative performance enhancers.

  2. A novel predictive model for formation enthalpies of Si and Ge hydrides with propane- and butane-like structures.

    PubMed

    Weng, C; Kouvetakis, J; Chizmeshya, A V G

    2011-04-15

    Butane- and propane-like silicon-germanium hydrides and chlorinated derivatives represent a new class of precursors for the fabrication of novel metastable materials at low-temperature regimes compatible with selective growth and commensurate with the emerging demand for the reduced thermal budgets of complementary metal oxide semiconductor integration. However, predictive simulation studies of the growth process and reaction mechanisms of these new compounds, needed to accelerate their deployment and fine-tune the unprecedented low-temperature and low-pressure synthesis protocols, require experimental thermodynamic data, which are currently unavailable. Furthermore, traditional quantum chemistry approaches lack the accuracy needed to treat large molecules containing third-row elements such as Ge. Accordingly, here we develop a method to accurately predict the formation enthalpy of these compounds using atom-wise corrections for Si, Ge, Cl, and H. For a test set of 15 well-known hydrides of Si and Ge and their chlorides, such as Si(3)H(8), Ge(2)H(6), SiGeH(6), SiHCl(3), and GeCl(4), our approach reduces the deviations between the experimental and predicted formation enthalpies obtained from complete basis set (CBS-QB3), G2, and B3LPY thermochemistry to levels of 1-3 kcal/mol, or a factor of ∼5 over the corresponding uncorrected values. We show that our approach yields results comparable or better than those obtained using homodesmic reactions while circumventing the need for thermochemical data of the associated reaction species. Optimized atom-wise corrections are then used to generate accurate enthalpies of formation for 39 pure Si-Ge hydrides and a selected group of 20 chlorinated analogs, of which some have recently been synthesized for the first time. Our corrected enthalpies perfectly reproduce the experimental stability trends of heavy butane-like compounds containing Ge. This is in contrast to the direct application of the CBS-QB3 method, which yields

  3. Optimum design of vortex generator elements using Kriging surrogate modelling and genetic algorithm

    NASA Astrophysics Data System (ADS)

    Neelakantan, Rithwik; Balu, Raman; Saji, Abhinav

    Vortex Generators (VG's) are small angled plates located in a span wise fashion aft of the leading edge of an aircraft wing. They control airflow over the upper surface of the wing by creating vortices which energise the boundary layer. The parameters considered for the optimisation study of the VG's are its height, orientation angle and location along the chord in a low subsonic flow over a NACA0012 airfoil. The objective function to be maximised is the L/D ratio of the airfoil. The design data are generated using the commercially available ANSYS FLUENT software and are modelled using a Kriging based interpolator. This surrogate model is used along with a Generic Algorithm software to arrive at the optimum shape of the VG's. The results of this study will be confirmed with actual wind tunnel tests on scaled models.

  4. Computations and generation of elements on the Hopf algebra of Feynman graphs

    NASA Astrophysics Data System (ADS)

    Borinsky, Michael

    2015-05-01

    Two programs, feyngen and feyncop, were developed. feyngen is designed to generate high loop order Feynman graphs for Yang-Mills, QED and ϕk theories. feyncop can compute the coproduct of these graphs on the underlying Hopf algebra of Feynman graphs. The programs can be validated by exploiting zero dimensional field theory combinatorics and identities on the Hopf algebra which follow from the renormalizability of the theories. A benchmark for both programs was made.

  5. Visualization of spatiotemporal behavior of discrete maps via generation of recursive median elements.

    PubMed

    Daya Sagar, B S

    2010-02-01

    Spatial interpolation is one of the demanding techniques in Geographic Information Science (GISci) to generate interpolated maps in a continuous manner by using two discrete spatial and/or temporal data sets. Noise-free data (thematic layers) depicting a specific theme at varied spatial or temporal resolutions consist of connected components either in aggregated or in disaggregated forms. This short paper provides a simple framework: 1) to categorize the connected components of layered sets of two different time instants through their spatial relationships and the Hausdorff distances between the companion-connected components and 2) to generate sequential maps (interpolations) between the discrete thematic maps. Development of the median set, using Hausdorff erosion and dilation distances to interpolate between temporal frames, is demonstrated on lake geometries mapped at two different times and also on the bubonic plague epidemic spread data available for 11 consecutive years. We documented the significantly fair quality of the median sets generated for epidemic data between alternative years by visually comparing the interpolated maps with actual maps. They can be used to visualize (animate) the spatiotemporal behavior of a specific theme in a continuous sequence.

  6. Bio-inspired transition metal-organic hydride conjugates for catalysis of transfer hydrogenation: experiment and theory.

    PubMed

    McSkimming, Alex; Chan, Bun; Bhadbhade, Mohan M; Ball, Graham E; Colbran, Stephen B

    2015-02-09

    Taking inspiration from yeast alcohol dehydrogenase (yADH), a benzimidazolium (BI(+) ) organic hydride-acceptor domain has been coupled with a 1,10-phenanthroline (phen) metal-binding domain to afford a novel multifunctional ligand (L(BI+) ) with hydride-carrier capacity (L(BI+) +H(-) ⇌L(BI) H). Complexes of the type [Cp*M(L(BI) )Cl][PF6 ]2 (M=Rh, Ir) have been made and fully characterised by cyclic voltammetry, UV/Vis spectroelectrochemistry, and, for the Ir(III) congener, X-ray crystallography. [Cp*Rh(L(BI) )Cl][PF6 ]2 catalyses the transfer hydrogenation of imines by formate ion in very goods yield under conditions where the corresponding [Cp*Ir(L(BI) )Cl][PF6 ] and [Cp*M(phen)Cl][PF6 ] (M=Rh, Ir) complexes are almost inert as catalysts. Possible alternatives for the catalysis pathway are canvassed, and the free energies of intermediates and transition states determined by DFT calculations. The DFT study supports a mechanism involving formate-driven RhH formation (90 kJ mol(-1) free-energy barrier), transfer of hydride between the Rh and BI(+) centres to generate a tethered benzimidazoline (BIH) hydride donor, binding of imine substrate at Rh, back-transfer of hydride from the BIH organic hydride donor to the Rh-activated imine substrate (89 kJ mol(-1) barrier), and exergonic protonation of the metal-bound amide by formic acid with release of amine product to close the catalytic cycle. Parallels with the mechanism of biological hydride transfer in yADH are discussed.

  7. FELIX-1.0: A finite element solver for the time dependent generator coordinate method with the Gaussian overlap approximation

    SciTech Connect

    Regnier, D.; Verriere, M.; Dubray, N.; Schunck, N.

    2015-11-30

    In this study, we describe the software package FELIX that solves the equations of the time-dependent generator coordinate method (TDGCM) in NN-dimensions (N ≥ 1) under the Gaussian overlap approximation. The numerical resolution is based on the Galerkin finite element discretization of the collective space and the Crank–Nicolson scheme for time integration. The TDGCM solver is implemented entirely in C++. Several additional tools written in C++, Python or bash scripting language are also included for convenience. In this paper, the solver is tested with a series of benchmarks calculations. We also demonstrate the ability of our code to handle a realistic calculation of fission dynamics.

  8. Ferrographic analysis of wear debris generated in accelerated rolling element fatigue tests

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Parker, R. J.

    1977-01-01

    The types and quantities of wear particles generated during accelerated ball rolling contact fatigue tests were determined. Ball specimens were made of AMS 5749, a corrosion resistant, high-temperature bearing steel. The lubricant was a super-refined naphthenic mineral oil. Conditions included a maximum Hertz stress of 5.215 times 10 to the 9th power Pa and a shaft speed of 10,000 rpm. Four types of wear particles were observed; normal rubbing wear particles, fatigue spall particles, spheres, and friction polymer.

  9. Ferrographic analysis of wear debris generated in accelerated rolling element fatigue tests

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Parker, R. J.

    1977-01-01

    Ferrographic analysis was used to determine the types and quantities of wear particles generated during accelerated rolling contact fatigue tests. The NASA five-ball rolling contact fatigue tester was used. Ball specimens were made of AMS 5749, a corrosion-resistant high-temperature bearing steel. The lubricant was a super-refined naphthenic mineral oil. Conditions included a maximum Hertz stress of 5.52 billion Pa and a shaft speed of 10,000 rpm. Four types of wear particles were observed: normal rubbing wear particles, fatigue spall particles, spheres, and friction polymer.

  10. Evaluation of hydride compressor elements for the Planck sorption cryocooler

    NASA Technical Reports Server (NTRS)

    Bowman, R. C.; Prina, M.; Barber, D. S.; Bhandari, P.; Crumb, D.; Loc, A. S.; Morgante, G.; Reiter, J. W.; Schmelzel, M. E.

    2002-01-01

    Hydrogen sorption crycoolers are being developed for the European Space Agency Planck mission to provide nominal 19 K cooling to instruments for measuring the temperature anisotropy of the cosmic microwave background with extreme sensitivity and resolution.

  11. Finite element analysis of a pseudoelastic compression-generating intramedullary ankle arthrodesis nail.

    PubMed

    Anderson, Ryan T; Pacaccio, Douglas J; Yakacki, Christopher M; Carpenter, R Dana

    2016-09-01

    Tibio-talo-calcaneal (TTC) arthrodesis is an end-stage treatment for patients with severe degeneration of the ankle joint. This treatment consists of using an intramedullary nail (IM) to fuse the calcaneus, talus, and tibia bones together into one construct. Poor bone quality within the joint prior to surgery is common and thus the procedure has shown complications due to non-union. However, a new FDA-approved IM nail has been released that houses a nickel titanium (NiTi) rod that uses its inherent pseudoelastic material properties to apply active compression across the fusion site. Finite element analysis was performed to model the mechanical response of the NiTi within the device. A bone model was then developed based on a quantitative computed tomography (QCT) image for anatomical geometry and bone material properties. A total bone and device system was modeled to investigate the effect of bone quality change and gather load-sharing properties during gait loading. It was found that during the highest magnitude loading of gait, the load taken by the bone was more than 50% higher than the load taken by the nail. When comparing the load distribution during gait, results from this study would suggest that the device helps to prevent stress shielding by allowing a more even distribution of load between bone and nail. In conditions where bone quality may vary patient-to-patient, the model indicates that a 10% decrease in overall bone modulus (i.e. material stiffness) due to reduced bone mineral density would result in higher stresses in the nail (3.4%) and a marginal decrease in stress for the bone (0.5%). The finite element model presented in this study can be used as a quantitative tool to further understand the stress environment of both bone and device for a TTC fusion. Furthermore, the methodology presented gives insight on how to computationally program and use the unique material properties of NiTi in an active compression state useful for bone fracture healing

  12. Design of new generation femoral prostheses using functionally graded materials: a finite element analysis.

    PubMed

    Oshkour, A A; Abu Osman, N A; Yau, Y H; Tarlochan, F; Abas, W A B Wan

    2013-01-01

    This study aimed to develop a three-dimensional finite element model of a functionally graded femoral prosthesis. The model consisted of a femoral prosthesis created from functionally graded materials (FGMs), cement, and femur. The hip prosthesis was composed of FGMs made of titanium alloy, chrome-cobalt, and hydroxyapatite at volume fraction gradient exponents of 0, 1, and 5, respectively. The stress was measured on the femoral prosthesis, cement, and femur. Stress on the neck of the femoral prosthesis was not sensitive to the properties of the constituent material. However, stress on the stem and cement decreased proportionally as the volume fraction gradient exponent of the FGM increased. Meanwhile, stress became uniform on the cement mantle layer. In addition, stress on the femur in the proximal part increased and a high surface area of the femoral part was involved in absorbing the stress. As such, the stress-shielding area decreased. The results obtained in this study are significant in the design and longevity of new prosthetic devices because FGMs offer the potential to achieve stress distribution that more closely resembles that of the natural bone in the femur.

  13. Using binary optical elements (BOEs) to generate rectangular spots for illumination in micro flow cytometer

    PubMed Central

    Zhao, Jingjing; You, Zheng

    2016-01-01

    This work introduces three rectangular quasi-flat-top spots, which are provided by binary optical elements (BOEs) and utilized for the illumination in a microflow cytometer. The three spots contain, respectively, one, two, and three rectangles (R1, R2, and R3). To test the performance of this mechanism, a microflow cytometer is established by integrating the BOEs and a three-dimensional hydrodynamic focusing chip. Through the experiments of detecting fluorescence microbeads, the three spots present good fluorescence coefficients of variation in comparison with those derived from commercial instruments. Benefiting from a high spatial resolution, when using R1 spot, the micro flow cytometer can perform a throughput as high as 20 000 events per second (eps). Illuminated by R2 or R3 spot, one bead emits fluorescence twice or thrice, thus the velocity can be measured in real time. Besides, the R3 spot provides a long-time exposure, which is conducive to improving fluorescence intensity and the measurement stability. In brief, using the spots shaped and homogenized by BOEs for illumination can increase the performance and the functionality of a micro flow cytometer. PMID:27733892

  14. An assessment of tree health and trace element accumulation near a coal-fired generating station, Manitoba, Canada.

    PubMed

    Boone, R; Westwood, R

    2006-10-01

    A forest health assessment was performed in stands dominated by bur oak and trembling aspen to study the potential effects of airborne emissions from a 132 MW coal-fired station. Forty-two stands were sampled within a 16-km radius of the station for both foliar stress symptoms and trace element toxicology. The concentrations of tracer elements (As, Ba, Sr, and V) in the leaf litter were not spatially congruent with airborne emission deposition models (except Ba, which showed elevated levels immediately SE of the station), nor were they at phytotoxic levels. Elemental concentrations were significantly related to soil parameters including organic matter and texture. No patterns were found in forest health along directional or distance gradients from the generating station. Trembling aspen stands demonstrated little decline in general, but three of the 19 bur oak plots, all located on thin sandy soils developed on calcareous till, demonstrated branch dieback. In addition to poor soil conditions, two of these sites also had high water tables, and exhibited tree mortality. The bur oak decline did not appear to be related to emissions from the station, but is suspected to be a result of poor site quality, with urban development as a confounding factor.

  15. Calculation of thermodynamic hydricities and the design of hydride donors for CO2 reduction

    PubMed Central

    Muckerman, James T.; Achord, Patrick; Creutz, Carol; Polyansky, Dmitry E.; Fujita, Etsuko

    2012-01-01

    We have developed a correlation between experimental and density functional theory-derived results of the hydride-donating power, or “hydricity”, of various ruthenium, rhenium, and organic hydride donors. This approach utilizes the correlation between experimental hydricity values and their corresponding calculated free-energy differences between the hydride donors and their conjugate acceptors in acetonitrile, and leads to an extrapolated value of the absolute free energy of the hydride ion without the necessity to calculate it directly. We then use this correlation to predict, from density functional theory-calculated data, hydricity values of ruthenium and rhenium complexes that incorporate the pbnHH ligand—pbnHH = 1,5-dihydro-2-(2-pyridyl)-benzo[b]-1,5-naphthyridine—to model the function of NADPH. These visible light-generated, photocatalytic complexes produced by disproportionation of a protonated-photoreduced dimer of a metal-pbn complex may be valuable for use in reducing CO2 to fuels such as methanol. The excited-state lifetime of photoexcited [Ru(bpy)2(pbnHH)]2+ is found to be about 70 ns, and this excited state can be reductively quenched by triethylamine or 1,4-diazabicyclo[2.2.2]octane to produce the one-electron-reduced [Ru(bpy)2(pbnHH)]+ species with half-life exceeding 50 μs, thus opening the door to new opportunities for hydride-transfer reactions leading to CO2 reduction by producing a species with much increased hydricity. PMID:22826261

  16. Proton–hydride tautomerism in hydrogen evolution catalysis

    PubMed Central

    Quintana, Luis M. Aguirre; Johnson, Samantha I.; Corona, Sydney L.; Villatoro, Walther; Goddard, William A.; Takase, Michael K.; VanderVelde, David G.; Winkler, Jay R.; Gray, Harry B.; Blakemore, James D.

    2016-01-01

    Efficient generation of hydrogen from renewable resources requires development of catalysts that avoid deep wells and high barriers. Information about the energy landscape for H2 production can be obtained by chemical characterization of catalytic intermediates, but few have been observed to date. We have isolated and characterized a key intermediate in 2e– + 2H+ → H2 catalysis. This intermediate, obtained by treatment of Cp*Rh(bpy) (Cp*, η5-pentamethylcyclopentadienyl; bpy, κ2-2,2′-bipyridyl) with acid, is not a hydride species but rather, bears [η4-Cp*H] as a ligand. Delivery of a second proton to this species leads to evolution of H2 and reformation of η5-Cp* bound to rhodium(III). With suitable choices of acids and bases, the Cp*Rh(bpy) complex catalyzes facile and reversible interconversion of H+ and H2. PMID:27222576

  17. Process and apparatus for generating elemental sulfur and re-usable metal oxide from spent metal sulfide sorbents

    DOEpatents

    Ayala, Raul E.; Gal, Eli

    1995-01-01

    A process and apparatus for generating elemental sulfur and re-usable metal oxide from spent metal-sulfur compound. Spent metal-sulfur compound is regenerated to re-usable metal oxide by moving a bed of spent metal-sulfur compound progressively through a single regeneration vessel having a first and second regeneration stage and a third cooling and purging stage. The regeneration is carried out and elemental sulfur is generated in the first stage by introducing a first gas of sulfur dioxide which contains oxygen at a concentration less than the stoichiometric amount required for complete oxidation of the spent metal-sulfur compound. A second gas containing sulfur dioxide and excess oxygen at a concentration sufficient for complete oxidation of the partially spent metal-sulfur compound, is introduced into the second regeneration stage. Gaseous sulfur formed in the first regeneration stage is removed prior to introducing the second gas into the second regeneration stage. An oxygen-containing gas is introduced into the third cooling and purging stage. Except for the gaseous sulfur removed from the first stage, the combined gases derived from the regeneration stages which are generally rich in sulfur dioxide and lean in oxygen, are removed from the regenerator as an off-gas and recycled as the first and second gas into the regenerator. Oxygen concentration is controlled by adding air, oxygen-enriched air or pure oxygen to the recycled off-gas.

  18. Synthesis and properties of platinum hydride

    NASA Astrophysics Data System (ADS)

    Scheler, Thomas; Degtyareva, Olga; Marqués, Miriam; Guillaume, Christophe L.; Proctor, John E.; Evans, Shaun; Gregoryanz, Eugene

    2011-06-01

    Synchrotron x-ray diffraction experiments on compressed platinum-hydrogen mixtures reveal the formation of platinum hydride at a pressure of 27(1) GPa at room temperature. This compound exhibits two phases, PtH-I and PtH-II, coexisting up to the pressure of 42 GPa, above which the single phase of PtH-II is observed. Pt atoms in the PtH-II phase are shown to form a hexagonal closed-packed structure. This phase exhibits a high bulk modulus of 310 (10) GPa and is stable up to at least 53 GPa. Ab initio calculations show that PtH-II is superconducting with Tc = 12 K at 90 GPa, the highest temperature of superconducting transition among any known metal hydride.

  19. Grid generation by elliptic partial differential equations for a tri-element Augmentor-Wing airfoil

    NASA Technical Reports Server (NTRS)

    Sorenson, R. L.

    1982-01-01

    Two efforts to numerically simulate the flow about the Augmentor-Wing airfoil in the cruise configuration using the GRAPE elliptic partial differential equation grid generator algorithm are discussed. The Augmentor-Wing consists of a main airfoil with a slotted trailing edge for blowing and two smaller airfoils shrouding the blowing jet. The airfoil and the algorithm are described, and the application of GRAPE to an unsteady viscous flow simulation and a transonic full-potential approach is considered. The procedure involves dividing a complicated flow region into an arbitrary number of zones and ensuring continuity of grid lines, their slopes, and their point distributions across the zonal boundaries. The method for distributing the body-surface grid points is discussed.

  20. Characterization of wear debris generated in accelerated rolling-element fatigue tests

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Parker, R. J.

    1978-01-01

    A ferrographic analysis was used to determine the types and quantities of wear debris generated during accelerated rolling contact fatigue tests. The five-ball rolling contact fatigue tester was used. Ball specimens were made of a corrosion resistant, high-temperature bearing steel. The lubricant was a superrefined naphthenic mineral oil. Conditions included a maximum Hertz stress of 5.52 10 to the 9th power Pa and a shaft speed of 10,000 rpm. Four types of wear debris were observed: (1) normal rubbing wear particles, (2) fatigue microspall particles, (3) spheres, and (4) friction polymer deposits. The characterization of wear debris as a function of time was of limited use in predicting fatigue failures in these accelerated tests.

  1. Hydrido copper clusters supported by dithiocarbamates: oxidative hydride removal and neutron diffraction analysis of [Cu7(H){S2C(aza-15-crown-5)}6].

    PubMed

    Liao, Ping-Kuei; Fang, Ching-Shiang; Edwards, Alison J; Kahlal, Samia; Saillard, Jean-Yves; Liu, C W

    2012-06-18

    Reactions of Cu(I) salts with Na(S(2)CR) (R = N(n)Pr(2), NEt(2), aza-15-crown-5), and (Bu(4)N)(BH(4)) in an 8:6:1 ratio in CH(3)CN solution at room temperature yield the monocationic hydride-centered octanuclear Cu(I) clusters, [Cu(8)(H){S(2)CR}(6)](PF(6)) (R = N(n)Pr(2), 1(H); NEt(2), 2(H); aza-15-crown-5, 3(H)). Further reactions of [Cu(8)(H){S(2)CR}(6)](PF(6)) with 1 equiv of (Bu(4)N)(BH(4)) produced neutral heptanuclear copper clusters, [Cu(7)(H){S(2)CR}(6)] (R = N(n)Pr(2), 4(H); NEt(2), 5(H); aza-15-crown-5, 6(H)) and clusters 4-6 can also be generated from the reaction of Cu(BF(4))(2), Na(S(2)CR), and (Bu(4)N)(BH(4)) in a 7:6:8 molar ratio in CH(3)CN. Reformation of cationic Cu(I)(8) clusters by adding 1 equiv of Cu(I) salt to the neutral Cu(7) clusters in solution is observed. Intriguingly, the central hydride in [Cu(8)(H){S(2)CN(n)Pr(2)}(6)](PF(6)) can be oxidatively removed as H(2) by Ce(NO(3))(6)(2-) to yield [Cu(II)(S(2)CN(n)Pr(2))(2)] exploiting the redox-tolerant nature of dithiocarbamates. Regeneration of hydride-centered octanuclear copper clusters from the [Cu(II)(S(2)CN(n)Pr(2))(2)] can be achieved by reaction with Cu(I) ions and borohydride. The hydride release and regeneration of Cu(I)(8) was monitored by UV-visible titration experiments. To our knowledge, this is the first time that hydride encapsulated within a copper cluster can be released as H(2) via chemical means. All complexes have been fully characterized by (1)H NMR, FT-IR, UV-vis, and elemental analysis, and molecular structures of 1(H), 2(H), and 6(H) were clearly established by single-crystal X-ray diffraction. Both 1(H) and 2(H) exhibit a tetracapped tetrahedral Cu(8) skeleton, which is inscribed within a S(12) icosahedron constituted by six dialkyl dithiocarbamate ligands in a tetrametallic-tetraconnective (μ(2), μ(2)) bonding mode. The copper framework of 6(H) is a tricapped distorted tetrahedron in which the four-coordinate hydride is demonstrated to occupy the central site by

  2. Identification of destabilized metal hydrides for hydrogen storage using first principles calculations.

    PubMed

    Alapati, Sudhakar V; Johnson, J Karl; Sholl, David S

    2006-05-04

    Hydrides of period 2 and 3 elements are promising candidates for hydrogen storage but typically have heats of reaction that are too high to be of use for fuel cell vehicles. Recent experimental work has focused on destabilizing metal hydrides through alloying with other elements. A very large number of possible destabilized metal hydride reaction schemes exist. The thermodynamic data required to assess the enthalpies of these reactions, however, are not available in many cases. We have used first principles density functional theory calculations to predict the reaction enthalpies for more than 100 destabilization reactions that have not previously been reported. Many of these reactions are predicted not be useful for reversible hydrogen storage, having calculated reaction enthalpies that are either too high or too low. More importantly, our calculations identify five promising reaction schemes that merit experimental study: 3LiNH(2) + 2LiH + Si --> Li(5)N(3)Si + 4H(2), 4LiBH(4) + MgH(2) --> 4LiH + MgB(4) + 7H(2), 7LiBH(4) + MgH(2) --> 7LiH + MgB(7) + 11.5H(2), CaH(2) + 6LiBH(4) --> CaB(6) + 6LiH + 10H(2), and LiNH(2) + MgH(2) --> LiMgN + 2H(2).

  3. Unoccupied electronic states in cerium hydrides

    NASA Astrophysics Data System (ADS)

    Osterwalder, J.; Schlapbach, L.

    1985-05-01

    We present UV isochromat spectra of polycrystalline CeH 2.1 and CeH 2.9. The intensity at EF is small in CeH 2.1 and vanishes in CeH 2.9 as it is expected from XPS, UPS and conductivity data. In both hydrides broad features (≈2 eV FWHM) appear between 4 and 5 eV above EF. This is in qualitative agreement with bandstructure calculations.

  4. Dissipative hydride precipitates in superconducting niobium cavities

    SciTech Connect

    Romanenko, A.; Cooley, L.D.; Ciovati, G.; Wu, G.; /Argonne

    2011-10-01

    We report the first direct observation of the microstructural features exhibiting RF losses at high surface magnetic fields of above 100 mT in field emission free superconducting niobium cavities. The lossy areas were identified by advanced thermometry. Surface investigations using different techniques were carried out on cutout samples from lossy areas and showed the presence of dendritic niobium hydrides. This finding has possible implications to the mechanisms of RF losses in superconducting niobium at all field levels.

  5. Nickel metal hydride LEO cycle testing

    NASA Technical Reports Server (NTRS)

    Lowery, Eric

    1995-01-01

    The George C. Marshall Space Flight Center is working to characterize aerospace AB5 Nickel Metal Hydride (NiMH) cells. The cells are being evaluated in terms of storage, low earth orbit (LEO) cycling, and response to parametric testing (high rate charge and discharge, charge retention, pulse current ability, etc.). Cells manufactured by Eagle Picher are the subjects of the evaluation. There is speculation that NiMH cells may become direct replacements for current Nickel Cadmium cells in the near future.

  6. Materials compatibility of hydride storage materials with austenitic stainless steels

    SciTech Connect

    Clark, E.A.

    1992-09-21

    This task evaluated the materials compatibility of LaNi[sub 5-x]Al[sub x] (x= 0.3, 0.75) hydrides and palladium coated kieselguhr with austenitic stainless steel in hydrogen and tritium process environments. Based on observations of retired prototype hydride storage beds and materials exposure testing samples designed for this study, no materials compatibility problem was indicated. Scanning electron microscopy observations of features on stainless steel surfaces after exposure to hydrides are also commonly found on as-received materials before hydriding. These features are caused by either normal heat treating and acid cleaning of stainless steel or reflect the final machining operation.

  7. Materials compatibility of hydride storage materials with austenitic stainless steels

    SciTech Connect

    Clark, E.A.

    1992-09-21

    This task evaluated the materials compatibility of LaNi{sub 5-x}Al{sub x} (x= 0.3, 0.75) hydrides and palladium coated kieselguhr with austenitic stainless steel in hydrogen and tritium process environments. Based on observations of retired prototype hydride storage beds and materials exposure testing samples designed for this study, no materials compatibility problem was indicated. Scanning electron microscopy observations of features on stainless steel surfaces after exposure to hydrides are also commonly found on as-received materials before hydriding. These features are caused by either normal heat treating and acid cleaning of stainless steel or reflect the final machining operation.

  8. Storing hydrogen in the form of light alloy hydrides

    NASA Technical Reports Server (NTRS)

    Freund, E.; Gillerm, C.

    1981-01-01

    Different hydrides are investigated to find a system with a sufficiently high storage density (at least 3%). The formation of hydrides with light alloys is examined. Reaction kinetics for hydride formation were defined and applied to the systems Mg-Al-H, Mg-Al-Cu-H, Ti-Al-H, Ti-Al-Cu-H, and Ti-Al-Ni-H. Results indicate that the addition of Al destabilizes MgH2 and TiH2 hydrides while having only a limited effect on the storage density.

  9. METHOD AND APPARATUS FOR MAKING URANIUM-HYDRIDE COMPACTS

    DOEpatents

    Wellborn, W.; Armstrong, J.R.

    1959-03-10

    A method and apparatus are presented for making compacts of pyrophoric hydrides in a continuous operation out of contact with air. It is particularly useful for the preparation of a canned compact of uranium hydride possessing high density and purity. The metallic uranium is enclosed in a container, positioned in a die body evacuated and nvert the uranium to the hydride is admitted and the container sealed. Heat is applied to bring about the formation of the hydride, following which compression is used to form the compact sealed in a container ready for use.

  10. METAL HYDRIDE HYDROGEN COMPRESSORS: A REVIEW

    SciTech Connect

    Bowman Jr, Robert C; Yartys, Dr. Volodymyr A.; Lototskyy, Dr. Michael V; Pollet, Dr. B.G.

    2014-01-01

    Metal hydride (MH) thermal sorption compression is an efficient and reliable method allowing a conversion of energy from heat into a compressed hydrogen gas. The most important component of such a thermal engine the metal hydride material itself should possess several material features in order to achieve an efficient performance in the hydrogen compression. Apart from the hydrogen storage characteristics important for every solid H storage material (e.g. gravimetric and volumetric efficiency of H storage, hydrogen sorption kinetics and effective thermal conductivity), the thermodynamics of the metal-hydrogen systems is of primary importance resulting in a temperature dependence of the absorption/desorption pressures). Several specific features should be optimized to govern the performance of the MH-compressors including synchronisation of the pressure plateaus for multi-stage compressors, reduction of slope of the isotherms and hysteresis, increase of cycling stability and life time, together with challenges in system design associated with volume expansion of the metal matrix during the hydrogenation. The present review summarises numerous papers and patent literature dealing with MH hydrogen compression technology. The review considers (a) fundamental aspects of materials development with a focus on structure and phase equilibria in the metal-hydrogen systems suitable for the hydrogen compression; and (b) applied aspects, including their consideration from the applied thermodynamic viewpoint, system design features and performances of the metal hydride compressors and major applications.

  11. Plasmonic hydrogen sensing with nanostructured metal hydrides.

    PubMed

    Wadell, Carl; Syrenova, Svetlana; Langhammer, Christoph

    2014-12-23

    In this review, we discuss the evolution of localized surface plasmon resonance and surface plasmon resonance hydrogen sensors based on nanostructured metal hydrides, which has accelerated significantly during the past 5 years. We put particular focus on how, conceptually, plasmonic resonances can be used to study metal-hydrogen interactions at the nanoscale, both at the ensemble and at the single-nanoparticle level. Such efforts are motivated by a fundamental interest in understanding the role of nanosizing on metal hydride formation processes in the quest to develop efficient solid-state hydrogen storage materials with fast response times, reasonable thermodynamics, and acceptable long-term stability. Therefore, a brief introduction to the thermodynamics of metal hydride formation is also given. However, plasmonic hydrogen sensors not only are of academic interest as research tool in materials science but also are predicted to find more practical use as all-optical gas detectors in industrial and medical applications, as well as in a future hydrogen economy, where hydrogen is used as a carbon free energy carrier. Therefore, the wide range of different plasmonic hydrogen sensor designs already available is reviewed together with theoretical efforts to understand their fundamentals and optimize their performance in terms of sensitivity. In this context, we also highlight important challenges to be addressed in the future to take plasmonic hydrogen sensors from the laboratory to real applications in devices, including poisoning/deactivation of the active materials, sensor lifetime, and cross-sensitivity toward other gas species.

  12. Delayed hydride crack growth study on irradiated Zr-2.5Nb pressure tube

    NASA Astrophysics Data System (ADS)

    Shah, Priti Kotak; Dubey, J. S.; Kumar, Ashwini; Shriwastaw, R. S.; Rath, B. N.; Pandit, K. M.; Dhotre, M. P.; Mishra, P.; Alur, V. D.; Anantharaman, S.

    2015-05-01

    Delayed hydride crack (DHC) growth study was carried out on irradiated Indian Zr-2.5Nb pressure tube which had seen around 8 effective full power years of operation. Disc compact tension type specimens were used for the DHC tests at 210 °C, 250 °C, 265 °C and 290 °C. This paper discusses the test methodology, results generated and compares it with that obtained on the as-fabricated pressure tube of similar specification.

  13. Advanced Development Projects for Constellation From The Next Generation Launch Technology Program Elements

    NASA Technical Reports Server (NTRS)

    Huebner, Lawrence D.; Saiyed, Naseem H.; Swith, Marion Shayne

    2005-01-01

    When United States President George W. Bush announced the Vision for Space Exploration in January 2004, twelve propulsion and launch system projects were being pursued in the Next Generation Launch Technology (NGLT) Program. These projects underwent a review for near-term relevance to the Vision. Subsequently, five projects were chosen as advanced development projects by NASA s Exploration Systems Mission Directorate (ESMD). These five projects were Auxiliary Propulsion, Integrated Powerhead Demonstrator, Propulsion Technology and Integration, Vehicle Subsystems, and Constellation University Institutes. Recently, an NGLT effort in Vehicle Structures was identified as a gap technology that was executed via the Advanced Development Projects Office within ESMD. For all of these advanced development projects, there is an emphasis on producing specific, near-term technical deliverables related to space transportation that constitute a subset of the promised NGLT capabilities. The purpose of this paper is to provide a brief description of the relevancy review process and provide a status of the aforementioned projects. For each project, the background, objectives, significant technical accomplishments, and future plans will be discussed. In contrast to many of the current ESMD activities, these areas are providing hardware and testing to further develop relevant technologies in support of the Vision for Space Exploration.

  14. Investigation of heat and mass transfer process in metal hydride hydrogen storage reactors, suitable for a solar powered water pump system

    NASA Astrophysics Data System (ADS)

    Coldea, I.; Popeneciu, G.; Lupu, D.; Misan, I.; Blanita, G.; Ardelean, O.

    2012-02-01

    The paper analyzes heat and mass transfer process in metal hydride hydrogen storage systems as key element in the development of a solar powered pump system. Hydrogen storage and compression performance of the developed reactors are investigated according to the type of metal alloys, the metal hydride bed parameters and system operating conditions. To reach the desired goal, some metal hydride from groups AB5 and AB2 were synthesized and characterized using elements substitution for tailoring their properties: reversible hydrogen absorption capacity between the hydrogen absorption and desorption pressures at equilibrium at small temperature differences. For the designed hydrogen storage reactors, a new technical solution which combines the effective increase of the thermal conductivity of MH bed and good permeability to hydrogen gas circulation, was implemented and tested. The results permitted us to develop a heat engine with metal hydride, the main element of the functional model of a heat operated metal hydride based water pumping system using solar energy. This is a free energy system able to deliver water, at a convenience flow and pressure, in remote places without conventional energy access.

  15. Alloys for hydrogen storage in nickel/hydrogen and nickel/metal hydride batteries

    NASA Technical Reports Server (NTRS)

    Anani, Anaba; Visintin, Arnaldo; Petrov, Konstantin; Srinivasan, Supramaniam; Reilly, James J.; Johnson, John R.; Schwarz, Ricardo B.; Desch, Paul B.

    1993-01-01

    Since 1990, there has been an ongoing collaboration among the authors in the three laboratories to (1) prepare alloys of the AB(sub 5) and AB(sub 2) types, using arc-melting/annealing and mechanical alloying/annealing techniques; (2) examine their physico-chemical characteristics (morphology, composition); (3) determine the hydrogen absorption/desorption behavior (pressure-composition isotherms as a function of temperature); and (4) evaluate their performance characteristics as hydride electrodes (charge/discharge, capacity retention, cycle life, high rate capability). The work carried out on representative AB(sub 5) and AB(sub 2) type modified alloys (by partial substitution or with small additives of other elements) is presented. The purpose of the modification was to optimize the thermodynamics and kinetics of the hydriding/dehydriding reactions and enhance the stabilities of the alloys for the desired battery applications. The results of our collaboration, to date, demonstrate that (1) alloys prepared by arc melting/annealing and mechanical alloying/annealing techniques exhibit similar morphology, composition and hydriding/dehydriding characteristics; (2) alloys with the appropriate small amounts of substituent or additive elements: (1) retain the single phase structure, (2) improve the hydriding/dehydriding reactions for the battery applications, and (3) enhance the stability in the battery environment; and (3) the AB(sub 2) type alloys exhibit higher energy densities than the AB(sub 5) type alloys but the state-of-the-art, commercialized batteries are predominantly manufactured using Ab(sub 5) type alloys.

  16. Hydride phase formation in carbon supported palladium hydride nanoparticles by in situ EXAFS and XRD

    NASA Astrophysics Data System (ADS)

    Bugaev, A. L.; Guda, A. A.; Lomachenko, K. A.; Lazzarini, A.; Srabionyan, V. V.; Vitillo, J. G.; Piovano, A.; Groppo, E.; Bugaev, L. A.; Soldatov, A. V.; Dmitriev, V. P.; Pellegrini, R.; van Bokhoven, J. A.; Lamberti, C.

    2016-05-01

    In the current work we present a detailed analysis of the hydride phase formation in industrial Pd/C nanocatalysts by means of combined in situ X-ray absorption spectroscopy (EXAFS), X-ray diffraction (XRD) and volumetric measurements for the temperatures from - 10 to 50 °C in the hydrogen pressure range from 0 to 1000 mbar. α- and β- hydride phases are clearly distinguished in XRD. For the first time, H/Pd atomic ratio were obtained by theoretical fitting of the near-edge region of the absorption spectra (XANES) and compared with volumetric measurements.

  17. Separation/preconcentration of ultra-trace levels of inorganic Sb and Se from different sample matrices by charge transfer sensitized ion-pairing using ultrasonic-assisted cloud point extraction prior to their speciation and determination by hydride generation AAS.

    PubMed

    Altunay, Nail; Gürkan, Ramazan

    2016-10-01

    In the existing study, a new, simple and low cost process for separation/preconcentration of ultra-trace level of inorganic Sb and Se from natural waters, beverages and foods using ultrasonic-assisted cloud point extraction (UA-CPE) prior to their speciation and determination by hydride generation AAS, is proposed. The process is based on charge transfer sensitized complex formations of Sb(III) and Se(IV) with 3-amino-7-dimethylamino-2-methylphenazine hydrochloride (Neutral red, NRH(+)) in presence of pyrogallol and cetyltrimethylammonium bromide (CTAB) as both sensitivity enhancement and counter ion at pH 6.0. Under the optimized reagent conditions, the calibration curves were highly linear in the ranges of 8-300ngL(-1) and 12-250ngL(-1) (r(2)≥0.993) for Se(IV) and Sb(III), respectively. The limits of detection were 2.45 and 3.60ngL(-1) with sensitivity enhancement factors of 155 and 120, respectively. The recovery rate was higher than 96% with a relative standard deviation lower than 5.3% for five replicate measurements of 25, 75 and 150ngL(-1) Se(IV) and Sb(III), respectively. The method was validated by analysis of two certified reference materials (CRMs), and was successfully applied to the accurate and reliable speciation and determination of the contents of total Sb/Sb(III), and total Se/Se(IV) after UA-CPE of the pretreated sample matrices with and without pre-reduction with a mixture of l-cysteine and tartaric acid. Their Sb(V) and Se(VI) contents were calculated from the differences between total Sb and Sb(III) and/or total Se and Se(IV) levels.

  18. A Comprehensive 3D Finite Element Model of a Thermoelectric Module Used in a Power Generator: A Transient Performance Perspective

    NASA Astrophysics Data System (ADS)

    Wu, Guangxi; Yu, Xiong

    2015-06-01

    Thermoelectric power generator has potential for small-scale and distributed power generation because of its high durability and scalability. It is very important to realize that the transient behavior of thermoelectric modules (TEM) affects a thermoelectric generator's response to dynamic working environments. Traditionally, researchers have used simplified models to describe the behavior of thermoelectric modules. In this paper we propose a comprehensive mathematical model that considers the effect of variations of chemical potential and carrier density, which are ignored by traditional models. Finite element models based on this new model are used to simulate the transient behavior of a thermoelectric module subjected to rapid changes in boundary temperature or working load. Simulation results show that transition times of thermoelectric modules affected by temperature change are much longer than those of modules affected by changes in electrical load resistance. Sudden changes in working temperature cause voltage overshoot of the TEM output, which, however, is not observed in responses to sudden changes of load resistance. Comparisons also show there are significant differences between the behavior of TEM predicted by use of this new comprehensive model and that predicted by use of traditional models, particularly for the high-temperature intrinsic ionization region and the low-temperature weak ionization region. This implies that chemical potential and carrier density variations, which are taken into account by this new model but ignored by traditional models, have major effects on the performance of TEM.

  19. Development of the software tool for generation and visualization of the finite element head model with bone conduction sounds

    NASA Astrophysics Data System (ADS)

    Nikolić, Dalibor; Milošević, Žarko; Saveljić, Igor; Filipović, Nenad

    2015-12-01

    Vibration of the skull causes a hearing sensation. We call it Bone Conduction (BC) sound. There are several investigations about transmission properties of bone conducted sound. The aim of this study was to develop a software tool for easy generation of the finite element (FE) model of the human head with different materials based on human head anatomy and to calculate sound conduction through the head. Developed software tool generates a model in a few steps. The first step is to do segmentation of CT medical images (DICOM) and to generate a surface mesh files (STL). Each STL file presents a different layer of human head with different material properties (brain, CSF, different layers of the skull bone, skin, etc.). The next steps are to make tetrahedral mesh from obtained STL files, to define FE model boundary conditions and to solve FE equations. This tool uses PAK solver, which is the open source software implemented in SIFEM FP7 project, for calculations of the head vibration. Purpose of this tool is to show impact of the bone conduction sound of the head on the hearing system and to estimate matching of obtained results with experimental measurements.

  20. An advanced approach for the generation of complex cellular material representative volume elements using distance fields and level sets

    NASA Astrophysics Data System (ADS)

    Sonon, B.; François, B.; Massart, T. J.

    2015-08-01

    A general and widely tunable method for the generation of representative volume elements for cellular materials based on distance and level set functions is presented. The approach is based on random tessellations constructed from random inclusion packings. A general methodology to obtain arbitrary-shaped tessellations to produce disordered foams is presented and illustrated. These tessellations can degenerate either in classical Voronoï tessellations potentially additively weighted depending on properties of the initial inclusion packing used, or in Laguerre tessellations through a simple modification of the formulation. A versatile approach to control the particular morphology of the obtained foam is introduced. Specific local features such as concave triangular Plateau borders and non-constant thickness heterogeneous coatings can be built from the tessellation in a straightforward way and are tuned by a small set of parameters with a clear morphological interpretation.

  1. Characterization of a 61-element bulk-PZT thick film deformable mirror and generation of Zernike polynomials

    NASA Astrophysics Data System (ADS)

    Ma, Jianqiang; Li, Baoqing; Chu, Jiaru

    2010-10-01

    This paper describes the characteristics of a 61 element piezoelectric deformable mirror (DM) based on bulk-PZT thick film and the generation of Zernike polynomials. This device consists of a continue silicon mirror supported by 61 element piezoelectric unimorph actuators which are arranged in a hexagonal grid with spacing of 5mm. Measurements of the displacement using a laser Doppler vibrometer demonstrated that the stroke of DM was 3.8μm at 100 volt with a displacement hysteresis of approximately 9% and the operating bandwidth was greater than 10KHz. A custom phasing-shifting interferometer based on Twyman-Green interferometer was developed to measure the mirror surface shape in response to the applied voltage. The influence function of the mirror measured accorded with Gaussian function with inter-actuator coupling of approximately 5%, which was similar to the traditional piezoelectric DM with stacked actuators. To examine the ability of the mirror to replicate optical aberrations described by the Zernike polynomials, low-order Zernike modes were reproduced by calculating the voltage on each actuator using an influence function matrix. The measurement demonstrated that the deformable mirror could produce the Zernike modes up to the ninth term. Considering the low-voltage actuation as well as the capability for miniaturization of the actuator size, deformable mirror actuated by bulk-PZT thick film has a potential application for low-cost adaptive optics.

  2. Method of making crack-free zirconium hydride

    DOEpatents

    Sullivan, Richard W.

    1980-01-01

    Crack-free hydrides of zirconium and zirconium-uranium alloys are produced by alloying the zirconium or zirconium-uranium alloy with beryllium, or nickel, or beryllium and scandium, or nickel and scandium, or beryllium and nickel, or beryllium, nickel and scandium and thereafter hydriding.

  3. High energy density battery based on complex hydrides

    DOEpatents

    Zidan, Ragaiy

    2016-04-26

    A battery and process of operating a battery system is provided using high hydrogen capacity complex hydrides in an organic non-aqueous solvent that allows the transport of hydride ions such as AlH.sub.4.sup.- and metal ions during respective discharging and charging steps.

  4. GENSURF: A mesh generator for 3D finite element analysis of surface and corner cracks in finite thickness plates subjected to mode-1 loadings

    NASA Technical Reports Server (NTRS)

    Raju, I. S.

    1992-01-01

    A computer program that generates three-dimensional (3D) finite element models for cracked 3D solids was written. This computer program, gensurf, uses minimal input data to generate 3D finite element models for isotropic solids with elliptic or part-elliptic cracks. These models can be used with a 3D finite element program called surf3d. This report documents this mesh generator. In this manual the capabilities, limitations, and organization of gensurf are described. The procedures used to develop 3D finite element models and the input for and the output of gensurf are explained. Several examples are included to illustrate the use of this program. Several input data files are included with this manual so that the users can edit these files to conform to their crack configuration and use them with gensurf.

  5. Hydride morphology and striation formation during delayed hydride cracking in Zr-2.5% Nb

    NASA Astrophysics Data System (ADS)

    Shek, G. K.; Jovanoviċ, M. T.; Seahra, H.; Ma, Y.; Li, D.; Eadie, R. L.

    1996-08-01

    These experiments were designed to study hydride formation at the crack tip, acoustic emission (AE), potential drop (PD) and striation formation during DHC (delayed hydride cracking) in Zr-2.5% Nb. The test material was taken from an especially extrude pressure tube, which showed similar strength properties to normal pressure tube material but somewhat coarser microstructure. In testing at KI below 12 MPa √m at both 200 and 250°C very large striations (> 40 μ at 200 and >50 μm at 250°C) were produced. In simultaneous monitoring with acoustic emission and potential drop, both AE and PD jumps were shown to be monolithic. The number of striations on the fracture surface corresponded to the number of monolithic AE/PD jumps. Tapered shaped hydrides with the thick end adjacent to the crack tip were observed. These hydrides grew in size during the incubation period until they reached the striation length and then fractured monolithically. However, when KI was increased beyond about 12 MPa √m for these same specimens, the striation spacing decreased below 30 μ, the monolithic jumping dissolved into more continuous changes in signals, although the smaller striations were still visible on the fracture surface.

  6. Metal hydrides used as negative electrode materials for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Sartori, Sabrina; Cuevas, Fermin; Latroche, Michel

    2016-02-01

    Energy is a key issue for future generation. Researches are conducted worldwide to develop new efficient means for energy conversion and storage. Electrochemical storage is foreseen as an efficient way to handle intermittent renewable energy production. The most advanced batteries are nowadays based on lithium-ion technology though their specific capacities should be significantly increased to bring solution to mass storage. Conversion reactions are one way to step forward larger capacities at the anode. We here review the possibility to use metallic or complex hydrides as negative electrode using conversion reaction of hydride with lithium. Moreover, promising alloying of lithium with the metallic species might provide additional reversible capacities. Both binary and ternary systems are reviewed and results are compared in the frame of the electrochemical application.

  7. A novel plating process for microencapsulating metal hydrides

    SciTech Connect

    Law, H.H.; Vyas, B.; Zahurak, S.M.; Kammlott, G.W.

    1996-08-01

    One approach to increasing the lifetime of the metal hydride electrode has been the use of conventional electroless plating to produce a coating of copper or nickel on the surface of the metal hydride powders. In this paper, a novel method for microencapsulating the active electrode powders is presented. This new plating technique takes advantage of the reducing power of hydrogen already stored inside the metal hydride to plate a variety of metals onto metal hydride materials. This method greatly simplifies electroless plating for these powders, eliminating the need for stabilizers and additives typically required for conventional electroless plating solutions. Metals that can be electrolessly plated with stored hydrogen have been identified based on thermodynamic considerations. Experimentally, micrometers thick coatings of copper, silver, and nickel have been plated on several metal hydrides.

  8. Porous metal hydride composite and preparation and uses thereof

    DOEpatents

    Steyert, William A.; Olsen, Clayton E.

    1982-01-01

    A composite formed from large pieces of aggregate formed from (1) metal hydride (or hydride-former) powder and (2) either metal powder or plastic powder or both is prepared. The composite has large macroscopic interconnected pores (much larger than the sizes of the powders which are used) and will have a very fast heat transfer rate and low windage loss. It will be useful, for example, in heat engines, hydrogen storage devices, and refrigerator components which depend for their utility upon both a fast rate of hydriding and dehydriding. Additionally, a method of preparing the composite and a method of increasing the rates of hydriding and dehydriding of metal hydrides are also given.

  9. Porous metal hydride composite and preparation and uses thereof

    DOEpatents

    Steyert, W.A.; Olsen, C.E.

    1980-03-12

    A composite formed from large pieces of aggregate formed from (1) metal hydride (or hydride-former) powder and (2) either metal powder or plastic powder or both is prepared. The composite has large macroscopic interconnected pores (much larger than the sizes of the powders which are used) and will have a very fast heat transfer rate and low windage loss. It will be useful, for example, in heat engines, hydrogen storage devices, and refrigerator components which depend for their utility upon both a fast rate of hydriding and dehydriding. Additionally, a method of preparing the composite and a method of increasing the rates of hydriding and dehydriding of metal hydrides are also given.

  10. Metal hydrides for concentrating solar thermal power energy storage

    NASA Astrophysics Data System (ADS)

    Sheppard, D. A.; Paskevicius, M.; Humphries, T. D.; Felderhoff, M.; Capurso, G.; Bellosta von Colbe, J.; Dornheim, M.; Klassen, T.; Ward, P. A.; Teprovich, J. A.; Corgnale, C.; Zidan, R.; Grant, D. M.; Buckley, C. E.

    2016-04-01

    The development of alternative methods for thermal energy storage is important for improving the efficiency and decreasing the cost of concentrating solar thermal power. We focus on the underlying technology that allows metal hydrides to function as thermal energy storage (TES) systems and highlight the current state-of-the-art materials that can operate at temperatures as low as room temperature and as high as 1100 °C. The potential of metal hydrides for thermal storage is explored, while current knowledge gaps about hydride properties, such as hydride thermodynamics, intrinsic kinetics and cyclic stability, are identified. The engineering challenges associated with utilising metal hydrides for high-temperature TES are also addressed.

  11. Recent advances in metal hydrides for clean energy applications

    SciTech Connect

    Ronnebro, Ewa; Majzoub, Eric H.

    2013-06-01

    Metal hydrides are a fascinating class of materials that can be utilized for a surprising variety of clean energy applications, including smart solar collectors, smart windows, sensors, thermal energy storage, and batteries, in addition to their traditional application for hydrogen storage. Over the past decade, research on metal hydrides for hydrogen storage increased due to global governmental incentives and an increased focus on hydrogen storage research for polymer electrolyte membrane fuel cell operation. Tremendous progress has been made in so-called complex metal hydrides for hydrogen storage applications with the discovery of many new hydrides containing covalently bound complex anions. Many of these materials have applications beyond hydrogen storage and are being investigated for lithium-ion battery separator and anode materials. In this issue of MRS Bulletin , we present the state of the art of key evolving metal-hydride-based clean energy technologies with an outlook toward future needs.

  12. Helium trapping at erbium oxide precipitates in erbium hydride

    SciTech Connect

    Foiles, Stephen M.; Battaile, Corbett Chandler

    2016-02-01

    The formation of He bubbles in erbium tritides is a significant process in the aging of these materials. Due to the long-standing uncertainty about the initial nucleation process of these bubbles, there is interest in mechanisms that can lead to the localization of He in erbium hydrides. Previous work has been unable to identify nucleation sites in homogeneous erbium hydride. This work builds on the experimental observation that erbium hydrides have nano- scale erbium oxide precipitates due to the high thermodynamic stability of erbium oxide and the ubiquitous presence of oxygen during materials processing. Fundamental DFT calculations indicate that the He is energetically favored in the oxide relative to the bulk hydride. Activation energies for the motion of He in the oxide and at the oxide-hydride interface indicate that trapping is kinetically feasible. A simple kinetic Monte Carlo model is developed that demonstrates the degree of trapping of He as a function of temperature and oxide fraction.

  13. 3-D diffusion tensor MRI anisotropy content-adaptive finite element head model generation for bioelectromagnetic imaging.

    PubMed

    Lee, W H; Kim, T S; Kim, Andrew T; Lee, S Y

    2008-01-01

    Realistic finite element (FE) head models have been successfully applied to bioelectromagnetic problems due to a realistic representation of arbitrary head geometry with inclusion of anisotropic material properties. In this paper, we propose a new automatic FE mesh generation scheme to generate a diffusion tensor MRI (DT-MRI) white matter anisotropy content-adaptive FE head model. We term this kind of mesh as wMesh. With this meshing technique, the anisotropic electrical conductivities derived from DT-MRIs can be best incorporated into the model. The influence of the white matter anisotropy on the EEG forward solutions has been studied via our wMesh head models. The scalp potentials computed from the anisotropic wMesh models against those of the isotropic models have been compared. The results describe that there are substantial changes in the scalp electrical potentials between the isotropic and anisotropic models, indicating that the inclusion of the white matter anisotropy is critical for accurate computation of E/MEG forward and inverse solutions. This fully automatic anisotropy-adaptive wMesh meshing scheme could be useful for modeling of individual-specific FE head models with better incorporation of the white matter anisotropic property towards bioelectromagnetic imaging.

  14. True boundary for the formation of homoleptic transition-metal hydride complexes.

    PubMed

    Takagi, Shigeyuki; Iijima, Yuki; Sato, Toyoto; Saitoh, Hiroyuki; Ikeda, Kazutaka; Otomo, Toshiya; Miwa, Kazutoshi; Ikeshoji, Tamio; Aoki, Katsutoshi; Orimo, Shin-ichi

    2015-05-04

    Despite many exploratory studies over the past several decades, the presently known transition metals that form homoleptic transition-metal hydride complexes are limited to the Groups 7-12. Here we present evidence for the formation of Mg3 CrH8 , containing the first Group 6 hydride complex [CrH7 ](5-) . Our theoretical calculations reveal that pentagonal-bipyramidal H coordination allows the formation of σ-bonds between H and Cr. The results are strongly supported by neutron diffraction and IR spectroscopic measurements. Given that the Group 3-5 elements favor ionic/metallic bonding with H, along with the current results, the true boundary for the formation of homoleptic transition-metal hydride complexes should be between Group 5 and 6. As the H coordination number generally tends to increase with decreasing atomic number of transition metals, the revised boundary suggests high potential for further discovery of hydrogen-rich materials that are of both technological and fundamental interest.

  15. Results of NDE Technique Evaluation of Clad Hydrides

    SciTech Connect

    Kunerth, Dennis C.

    2014-09-01

    This report fulfills the M4 milestone, M4FT-14IN0805023, Results of NDE Technique Evaluation of Clad Hydrides, under Work Package Number FT-14IN080502. During service, zirconium alloy fuel cladding will degrade via corrosion/oxidation. Hydrogen, a byproduct of the oxidation process, will be absorbed into the cladding and eventually form hydrides due to low hydrogen solubility limits. The hydride phase is detrimental to the mechanical properties of the cladding and therefore it is important to be able to detect and characterize the presence of this constituent within the cladding. Presently, hydrides are evaluated using destructive examination. If nondestructive evaluation techniques can be used to detect and characterize the hydrides, the potential exists to significantly increase test sample coverage while reducing evaluation time and cost. To demonstrate the viability this approach, an initial evaluation of eddy current and ultrasonic techniques were performed to demonstrate the basic ability to these techniques to detect hydrides or their effects on the microstructure. Conventional continuous wave eddy current techniques were applied to zirconium based cladding test samples thermally processed with hydrogen gas to promote the absorption of hydrogen and subsequent formation of hydrides. The results of the evaluation demonstrate that eddy current inspection approaches have the potential to detect both the physical damage induced by hydrides, e.g. blisters and cracking, as well as the combined effects of absorbed hydrogen and hydride precipitates on the electrical properties of the zirconium alloy. Similarly, measurements of ultrasonic wave velocities indicate changes in the elastic properties resulting from the combined effects of absorbed hydrogen and hydride precipitates as well as changes in geometry in regions of severe degradation. However, for both approaches, the signal responses intended to make the desired measurement incorporate a number of contributing

  16. Effect of dissolved oxygen on elemental sulfur generation in sulfide and nitrate removal process: characterization, pathway, and microbial community analysis.

    PubMed

    Wang, Xiaowei; Zhang, Yu; Zhang, Tingting; Zhou, Jiti

    2016-03-01

    Microaerobic bioreactor treatment for enriched sulfide and nitrate has been demonstrated as an effective strategy to improve the efficiencies of elemental sulfur (S(0)) generation, sulfide oxidation, and nitrate reduction. However, there is little detailed information for the effect and mechanism of dissolved oxygen (DO) on the variations of microbial community in sulfur generation, sulfide oxidation, and nitrate reduction systems. Polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE) was employed to evaluate the variations of microbial community structures in a sulfide oxidation and nitrate reduction reactor under different DO conditions (DO 0-0.7 mg · L(-1)). Experimental results revealed that the activity of sulfide-oxidizing bacteria (SOB) and nitrate-reducing bacteria (NRB) could be greatly stimulated in 0.1-0.3 mg-DO · L(-1). However, when the DO concentration was further elevated to more than 0.5 mg · L(-1), the abundance of NRB was markedly decreased, while the heterotrophic microorganisms, especially carbon degradation species, were enriched. The reaction pathways for sulfide and nitrate removal under microaerobic conditions were also deduced by combining batch experiments with functional species analysis. It was likely that the oxidation of sulfide to sulfur could be performed by both aerobic heterotrophic SOB and sulfur-based autotrophic denitrification bacteria with oxygen and nitrate as terminal electron acceptor, respectively. The nitrate could be reduced to nitrite by both autotrophic and heterotrophic denitrification, and then the generated nitrite could be completely converted to nitrogen gas via heterotrophic denitrification. This study provides new insights into the impacts of microaerobic conditions on the microbial community functional structures of sulfide-oxidizing, nitrate-reducing, and sulfur-producing bioreactors, which revealing the potential linkage between functional microbial communities and

  17. Highly Concentrated Palladium Hydrides/Deuterides; Theory

    SciTech Connect

    Papaconstantopoulos, Dimitrios

    2013-11-26

    Accomplishments are reported in these areas: tight-binding molecular dynamics study of palladium; First-principles calculations and tight-binding molecular dynamics simulations of the palladium-hydrogen system; tight-binding studies of bulk properties and hydrogen vacancies in KBH{sub 4}; tight-binding study of boron structures; development of angular dependent potentials for Pd-H; and density functional and tight-binding calculations for the light-hydrides NaAlH4 and NaBH4

  18. Metal hydride fuel storage and method thereof

    DOEpatents

    Morse, Jeffrey D.; Jankowski, Alan F.; Yu, Conrad

    2010-08-10

    An apparatus having a first substrate having (1) a cavity, (2) one or more resistive heaters, and (3) one or more coatings forming a diffusion barrier to hydrogen; a second substrate having (1) an outlet valve comprising a pressure relief structure and (2) one or more coatings forming a diffusion barrier to hydrogen, wherein said second substrate is coupled to said first substrate forming a sealed volume in said cavity; a metal hydride material contained within said cavity; and a gas distribution system formed by coupling a microfluidic interconnect to said pressure relief structure. Additional apparatuses and methods are also disclosed.

  19. Development of nickel-metal hydride cell

    NASA Technical Reports Server (NTRS)

    Kuwajima, Saburo; Kamimori, Nolimits; Nakatani, Kensuke; Yano, Yoshiaki

    1993-01-01

    National Space Development Agency of Japan (NASDA) has conducted the research and development (R&D) of battery cells for space use. A new R&D program about a Nickel-Metal Hydride (Ni-MH) cell for space use from this year, based on good results in evaluations of commercial Ni-MH cells in Tsukuba Space Center (TKSC), was started. The results of those commercial Ni-MH cell's evaluations and recent status about the development of Ni-MH cells for space use are described.

  20. Multiphysics phase field modeling of hydrogen diffusion and delta-hydride precipitation in alpha-zirconium

    NASA Astrophysics Data System (ADS)

    Jokisaari, Andrea M.

    Hydride precipitation in zirconium is a significant factor limiting the lifetime of nuclear fuel cladding, because hydride microstructures play a key role in the degradation of fuel cladding. However, the behavior of hydrogen in zirconium has typically been modeled using mean field approaches, which do not consider microstructural evolution. This thesis describes a quantitative microstructural evolution model for the alpha-zirconium/delta-hydride system and the associated numerical methods and algorithms that were developed. The multiphysics, phase field-based model incorporates CALPHAD free energy descriptions, linear elastic solid mechanics, and classical nucleation theory. A flexible simulation software implementing the model, Hyrax, is built on the Multiphysics Object Oriented Simulation Environment (MOOSE) finite element framework. Hyrax is open-source and freely available; moreover, the numerical methods and algorithms that have been developed are generalizable to other systems. The algorithms are described in detail, and verification studies for each are discussed. In addition, analyses of the sensitivity of the simulation results to the choice of numerical parameters are presented. For example, threshold values for the CALPHAD free energy algorithm and the use of mesh and time adaptivity when employing the nucleation algorithm are studied. Furthermore, preliminary insights into the nucleation behavior of delta-hydrides are described. These include a) the sensitivities of the nucleation rate to temperature, interfacial energy, composition and elastic energy, b) the spatial variation of the nucleation rate around a single precipitate, and c) the effect of interfacial energy and nucleation rate on the precipitate microstructure. Finally, several avenues for future work are discussed. Topics encompass the terminal solid solubility hysteresis of hydrogen in zirconium and the effects of the alpha/delta interfacial energy, as well as thermodiffusion, plasticity

  1. Theoretical study of the ground-state structures and properties of niobium hydrides under pressure

    NASA Astrophysics Data System (ADS)

    Gao, Guoying; Hoffmann, Roald; Ashcroft, N. W.; Liu, Hanyu; Bergara, Aitor; Ma, Yanming

    2013-11-01

    As part of a search for enhanced superconductivity, we explore theoretically the ground-state structures and properties of some hydrides of niobium over a range of pressures and particularly those with significant hydrogen content. A primary motivation originates with the observation that under normal conditions niobium is the element with the highest superconducting transition temperature (Tc), and moreover some of its compounds are metals again with very high Tc's. Accordingly, combinations of niobium with hydrogen, with its high dynamic energy scale, are also of considerable interest. This is reinforced further by the suggestion that close to its insulator-metal transition, hydrogen may be induced to enter the metallic state somewhat prematurely by the addition of a relatively small concentration of a suitable transition metal. Here, the methods used correctly reproduce some ground-state structures of niobium hydrides at even higher concentrations of niobium. Interestingly, the particular stoichiometries represented by NbH4 and NbH6 are stabilized at fairly low pressures when proton zero-point energies are included. While no paired H2 units are found in any of the hydrides we have studied up to 400 GPa, we do find complex and interesting networks of hydrogens around the niobiums in high-pressure NbH6. The Nb-Nb separations in NbHn are consistently larger than those found in Nb metal at the respective pressures. The structures found in the ground states of the high hydrides, many of them metallic, suggest that the coordination number of hydrogens around each niobium atom grows approximately as 4n in NbHn (n = 1-4), and is as high as 20 in NbH6. NbH4 is found to be a plausible candidate to become a superconductor at high pressure, with an estimated Tc ˜ 38 K at 300 GPa.

  2. An evaluation of the influence of orthodontic adhesive on the stresses generated in a bonded bracket finite element model.

    PubMed

    Knox, J; Kralj, B; Hübsch, P F; Middleton, J; Jones, M L

    2001-01-01

    The objective of this study was to evaluate the stresses generated in the bracket-cement-tooth continuum by a tensile load case when the physical and geometric properties of cement are varied. A 2-stage approach was used. In the first stage, a validated 3-dimensional finite element model of the bracket-cement-tooth system was constructed that consisted of 15,324 nodes and 2971 finite elements. Bracket base geometry was held constant; the physical properties (elastic modulus; Poisson's ratio) and geometry (lute thickness) of the cement varied. A simplified 2-dimensional model was then developed to investigate the localized effects of the cement lute thickness and the shape of the lute periphery on the stress distribution in the system. Small increases in stress were recorded under load within the cement as the rigidity of the cement increased. Similarly, Poisson's ratio values above 0.4 appeared to have a small influence on the major principal stresses in the impregnated wire mesh layer when a tensile force was applied. Variation in lute thickness was shown to have an influence on the distribution of major principal stresses within the cement lute. Increased stresses were recorded at the lute periphery as the lute dimensions increased. The morphologic features of the lute periphery also appeared to have had a significant effect on the performance of an orthodontic adhesive. Acute cement-enamel angles resulted in an increased chance of singularity development and attachment failure. The physical properties and thickness of the cement lute and the shape of the cement lute periphery contribute to the stress distribution within the bracket-cement-tooth continuum and, therefore, the quality of orthodontic attachment provided.

  3. Generation of Magmas Within the Southwest Nevada Volcanic Field: Constraints Based on Trace Element Concentrations in Melt Inclusions and Sanidine

    NASA Astrophysics Data System (ADS)

    Tefend, K. S.; Vogel, T. A.; Patino, L. C.

    2004-12-01

    The southwest Nevada volcanic field contains four large compositionally zoned ash-flow tuffs, which are among the best studied in the world. This study presents trace element data from melt inclusions and sanidines in order to evaluate interpretations that the compositional zoning is due to the emplacement of discrete magma batches. The earlier ash-flows are the Topopah Spring (13.4 Ma, 1200 km3) and the Tiva Canyon (12.9 Ma, ~900 km3) tuffs. The later ash-flow tuffs are the Rainier Mesa (11.6 Ma, 1200 km3) and the Ammonia Tanks tuff (11.4 Ma, 900 km3), which erupted following a period of major extension that occurred within this region of the southern Great Basin. Each unit consists of a lower portion, dominated by rhyolitic pumice fragments and an upper portion dominated by more mafic pumice fragments - each of these contain distinct Sr, Nd and δ 18O isotopic compositions. These data are inconsistent with fractional crystallization relating the rhyolitic and mafic portions within each ash-flow tuff. In addition, the compositional variation among ash-flow units cannot be related by fractional crystallization. All melt inclusions within phenocrysts from the more mafic pumice fragments of each tuff have identical trace element concentrations. Furthermore, melt inclusions within the high-silica pumice fragments of each tuff also have identical trace element concentrations, except for a group of high-Rb, high-Nb inclusions from Rainier Mesa. Magma mixing occurred during evolution of each tuff, and is recorded in both the melt inclusions and in the host sanidines. These mixing events are subtle in the Topopah Spring tuff, but extensive mixing produced magmas of intermediate composition within the Tiva Canyon, Rainier Mesa, and Ammonia Tanks tuffs. The chemical analyses of pumice fragments from the Topopah Spring, Tiva Canyon, and Ammonia Tanks tuffs are consistent with their generation from a common source. However, Rainier Mesa magmas are different, having been

  4. Pressure-stabilized superconductive yttrium hydrides

    NASA Astrophysics Data System (ADS)

    Li, Yinwei; Hao, Jian; Liu, Hanyu; Tse, John S.; Wang, Yanchao; Ma, Yanming

    2015-05-01

    The search for high-temperature superconductors has been focused on compounds containing a large fraction of hydrogen, such as SiH4(H2)2, CaH6 and KH6. Through a systematic investigation of yttrium hydrides at different hydrogen contents using an structure prediction method based on the particle swarm optimization algorithm, we have predicted two new yttrium hydrides (YH4 andYH6), which are stable above 110 GPa. Three types of hydrogen species with increased H contents were found, monatomic H in YH3, monatomic H+molecular “H2” in YH4 and hexagonal “H6” unit in YH6. Interestingly, H atoms in YH6 form sodalite-like cage sublattice with centered Y atom. Electron-phonon calculations revealed the superconductive potential of YH4 and YH6 with estimated transition temperatures (Tc) of 84-95 K and 251-264 K at 120 GPa, respectively. These values are higher than the predicted maximal Tc of 40 K in YH3.

  5. Pressure-stabilized superconductive yttrium hydrides.

    PubMed

    Li, Yinwei; Hao, Jian; Liu, Hanyu; Tse, John S; Wang, Yanchao; Ma, Yanming

    2015-05-05

    The search for high-temperature superconductors has been focused on compounds containing a large fraction of hydrogen, such as SiH4(H2)2, CaH6 and KH6. Through a systematic investigation of yttrium hydrides at different hydrogen contents using an structure prediction method based on the particle swarm optimization algorithm, we have predicted two new yttrium hydrides (YH4 andYH6), which are stable above 110 GPa. Three types of hydrogen species with increased H contents were found, monatomic H in YH3, monatomic H+molecular "H2" in YH4 and hexagonal "H6" unit in YH6. Interestingly, H atoms in YH6 form sodalite-like cage sublattice with centered Y atom. Electron-phonon calculations revealed the superconductive potential of YH4 and YH6 with estimated transition temperatures (Tc) of 84-95 K and 251-264 K at 120 GPa, respectively. These values are higher than the predicted maximal Tc of 40 K in YH3.

  6. Pressure-stabilized superconductive yttrium hydrides

    PubMed Central

    Li, Yinwei; Hao, Jian; Liu, Hanyu; Tse, John S.; Wang, Yanchao; Ma, Yanming

    2015-01-01

    The search for high-temperature superconductors has been focused on compounds containing a large fraction of hydrogen, such as SiH4(H2)2, CaH6 and KH6. Through a systematic investigation of yttrium hydrides at different hydrogen contents using an structure prediction method based on the particle swarm optimization algorithm, we have predicted two new yttrium hydrides (YH4 andYH6), which are stable above 110 GPa. Three types of hydrogen species with increased H contents were found, monatomic H in YH3, monatomic H+molecular “H2” in YH4 and hexagonal “H6” unit in YH6. Interestingly, H atoms in YH6 form sodalite-like cage sublattice with centered Y atom. Electron-phonon calculations revealed the superconductive potential of YH4 and YH6 with estimated transition temperatures (Tc) of 84–95 K and 251–264 K at 120 GPa, respectively. These values are higher than the predicted maximal Tc of 40 K in YH3. PMID:25942452

  7. Regeneration of Aluminum Hydride Using Trimethylamine

    SciTech Connect

    D Lacina; J Reilly; Y Celebi; J Wegrzyn; J Johnson; J Graetz

    2011-12-31

    Aluminum hydride is an attractive reducing agent and energy storage compound possessing a low decomposition temperature and a high gravimetric and volumetric hydrogen density. However, it is thermodynamically unstable at room temperature and requires extremely high pressures to form the hydride from aluminum and hydrogen gas. Here, we describe an alternate method of synthesizing AlH{sub 3} using Ti-catalyzed Al powder, H{sub 2}, and trimethylamine (TMA) to form an alane adduct. The formation of trimethylamine alane occurs at modest hydrogen pressures ({approx}100 bar), forming the 2:1 bis complex (2 trimethylamine/AlH{sub 3}). Along with the hydrogenation product, mono (1:1) and bis (2:1) standards of TMA-AlH{sub 3} were prepared and characterized using X-ray diffraction and Raman spectroscopy. X-ray absorption spectroscopy of the reaction products showed that the Ti catalyst remains with the unreacted Al powder after hydrogenation and is not present in the alane adduct. We also demonstrate that TMA can be transaminated with triethylamine to form triethylamine alane, which can easily be separated to recover AlH{sub 3}.

  8. Molecular rare-earth-metal hydrides in non-cyclopentadienyl environments.

    PubMed

    Fegler, Waldemar; Venugopal, Ajay; Kramer, Mathias; Okuda, Jun

    2015-02-02

    Molecular hydrides of the rare-earth metals play an important role as homogeneous catalysts and as counterparts of solid-state interstitial hydrides. Structurally well-characterized non-metallocene-type hydride complexes allow the study of elementary reactions that occur at rare-earth-metal centers and of catalytic reactions involving bonds between rare-earth metals and hydrides. In addition to neutral hydrides, cationic derivatives have now become available.

  9. A study of hydriding kinetics of metal hydrides using a physically based model

    NASA Astrophysics Data System (ADS)

    Voskuilen, Tyler G.

    The reaction of hydrogen with metals to form metal hydrides has numerous potential energy storage and management applications. The metal hydrogen system has a high volumetric energy density and is often reversible with a high cycle life. The stored hydrogen can be used to produce energy through combustion, reaction in a fuel cell, or electrochemically in metal hydride batteries. The high enthalpy of the metal-hydrogen reaction can also be used for rapid heat removal or delivery. However, improving the often poor gravimetric performance of such systems through the use of lightweight metals usually comes at the cost of reduced reaction rates or the requirement of pressure and temperature conditions far from the desired operating conditions. In this work, a 700 bar Sievert system was developed at the Purdue Hydrogen Systems Laboratory to study the kinetic and thermodynamic behavior of high pressure hydrogen absorption under near-ambient temperatures. This system was used to determine the kinetic and thermodynamic properties of TiCrMn, an intermetallic metal hydride of interest due to its ambient temperature performance for vehicular applications. A commonly studied intermetallic hydride, LaNi5, was also characterized as a base case for the phase field model. The analysis of the data obtained from such a system necessitate the use of specialized techniques to decouple the measured reaction rates from experimental conditions. These techniques were also developed as a part of this work. Finally, a phase field model of metal hydride formation in mass-transport limited interstitial solute reactions based on the regular solution model was developed and compared with measured kinetics of LaNi5 and TiCrMn. This model aided in the identification of key reaction features and was used to verify the proposed technique for the analysis of gas-solid reaction rates determined volumetrically. Additionally, the phase field model provided detailed quantitative predictions of the

  10. Hot temperatures line lists for metal hydrides

    NASA Astrophysics Data System (ADS)

    Gorman, M.; Lodi, L.; Leyland, P. pC; Hill, C.; Yurchenko, S. N.; Tennyson, J.

    2013-09-01

    The ExoMol project is an ERC funded project set up with the purpose of calculating high quality theoretical molecular line list data to facilitate the emerging field of exoplanet and cool star atmospheric haracterisation [1]. Metal hydrides are important building blocks of interstellar physical chemistry. For molecular identification and characterisation in astrophysical sources, one requires accurate and complete spectroscopic data including transitional frequencies and intensities in the form of a line list. The ab initio methods offer the best opportunity for detailed theoretical studies of free diatomic metal hydrides and other simple hydride molecules. In this contribution we present progress on theoretical line lists for AlH, CrH, MgH, NiH, NaH and TiH obtained from first principles, applicable for a large range of temperatures up to 3500 K. Among the hydrides, AlH is of special interest because of a relatively high cosmic abundance of aluminium. The presence of AlH has been detected in the spectra of M-type and S-type stars as well as in sunspots (See [2] and references therein). CrH is a molecule of astrophysical interest; under the classification scheme developed by Kirkpatrick et al [3], CrH is of importance in distinguishing L type brown dwarfs. It has been proposed that theoretical line-lists of CrH and CrD could be used to facilitate a 'Deuterium test' for use in distinguishing planets, brown dwarfs and stars [5] and also it has been speculated that CrH exists in sunspots [4] but a higherquality hot-temperature line-list is needed to confirm this finding. The presence of MgH in stellar spectra is well documented through observation of the A2 ! X 2+ and B0 2+ ! X 2+ transitions. Different spectral features of MgH have been used as an indicator for the magnesium isotope abundances in the atmospheres of different stars from giants to dwarfs including the Sun, to measure the temperature of stars, surface gravity, stars' metal abundance, gravitational, as

  11. OPTIMIZATION OF INTERNAL HEAT EXCHANGERS FOR HYDROGEN STORAGE TANKS UTILIZING METAL HYDRIDES

    SciTech Connect

    Garrison, S.; Tamburello, D.; Hardy, B.; Anton, D.; Gorbounov, M.; Cognale, C.; van Hassel, B.; Mosher, D.

    2011-07-14

    Two detailed, unit-cell models, a transverse fin design and a longitudinal fin design, of a combined hydride bed and heat exchanger are developed in COMSOL{reg_sign} Multiphysics incorporating and accounting for heat transfer and reaction kinetic limitations. MatLab{reg_sign} scripts for autonomous model generation are developed and incorporated into (1) a grid-based and (2) a systematic optimization routine based on the Nelder-Mead downhill simplex method to determine the geometrical parameters that lead to the optimal structure for each fin design that maximizes the hydrogen stored within the hydride. The optimal designs for both the transverse and longitudinal fin designs point toward closely-spaced, small cooling fluid tubes. Under the hydrogen feed conditions studied (50 bar), a 25 times improvement or better in the hydrogen storage kinetics will be required to simultaneously meet the Department of Energy technical targets for gravimetric capacity and fill time. These models and methodology can be rapidly applied to other hydrogen storage materials, such as other metal hydrides or to cryoadsorbents, in future work.

  12. Synthesis and some reactions of dibutyltin (S)- and (R)-camphorsulfonyl hydrides.

    PubMed

    Kinart, Wojciech J; Kinart, Cezary M; Kozak, Monika; Kinart, Andrzej; Sendecki, Marcin; Matczak, Piotr

    2009-08-01

    The synthesis and physical properties of dibutyltin (S)-camphorsulfonyl hydride (1) and dibutyltin (R)-camphorsulfonyl hydride (2), and diphenyltin (S)-camphorsulfonyl hydride (3) as well as that of their organotin precursors are described. Their reactivity with different amines as triethylamine, morpholine and pyridine has been compared with other mixed hydrides as dibutyltin chloride hydride, dibutyltin acetate hydride and dibutyltin dihydride. It has been studied also the possibility of using of dibutyltin (R)- or (S)-camphorsulfonyl hydrides for the stereoselective reduction of different ketones as acetophenone, menthon, camphor and cyclopropyl-(4-metoxyphenyl)-methanone. The reduction of acetophenone with studied camphorsulfonyl hydrides carried out in benzene at room temperature afforded 1-phenylethanol with relatively low enantioselectivity. Addition of 10 equiv. of MnCl(2)*4H(2)O or ZnCl(2) to the reduction mixture involving dibutyltin (S)-camphorsulfonyl hydride (1) and acetophenone and carried out in methanol and tetrahydrofuran, respectively, resulted in remarkable increase in enantioselectivity. The comparative kinetic studies of reduction of acetophenone by different hydrides proved that dibutyltin camphorsulfonyl hydride is significantly more reactive in comparison with dibutyltin chloro hydride and dibutyltin acetate hydride. Analogous results have been obtained from kinetic studies for different tin hydrides with chosen amines. The outcome of these studies supported by theoretical calculations led to the conclusion that the order of reactivity of the studied hydrides correlates with the rate of their homolytic decomposition at room temperature.

  13. Triphosphine-Ligated Copper Hydrides for CO2 Hydrogenation: Structure, Reactivity, and Thermodynamic Studies.

    PubMed

    Zall, Christopher M; Linehan, John C; Appel, Aaron M

    2016-08-10

    The copper(I) triphosphine complex LCu(MeCN)PF6 (L = 1,1,1-tris(diphenylphosphinomethyl)ethane), which we recently demonstrated is an active catalyst precursor for hydrogenation of CO2 to formate, reacts with H2 in the presence of a base to form a cationic dicopper hydride, [(LCu)2H]PF6. [(LCu)2H](+) is also an active precursor for catalytic CO2 hydrogenation, with equivalent activity to that of LCu(MeCN)(+), and therefore may be a relevant catalytic intermediate. The thermodynamic hydricity of [(LCu)2H](+) was determined to be 41.0 kcal/mol by measuring the equilibrium constant for this reaction using three different bases. [(LCu)2H](+) and the previously reported dimer (LCuH)2 can be synthesized by the reaction of LCu(MeCN)(+) with 0.5 and 1 equiv of KB(O(i)Pr)3H, respectively. The solid-state structure of [(LCu)2H](+) shows threefold symmetry about a linear Cu-H-Cu axis and significant steric strain imposed by bringing two LCu(+) units together around the small hydride ligand. [(LCu)2H](+) reacts stoichiometrically with CO2 to generate the formate complex LCuO2CH and the solvento complex LCu(MeCN)(+). The rate of the stoichiometric reaction between [(LCu)2H](+) and CO2 is dramatically increased in the presence of bases that coordinate strongly to the copper center, e.g. DBU and TMG. In the absence of CO2, the addition of a large excess of DBU to [(LCu)2H](+) results in an equilibrium that forms LCu(DBU)(+) and also presumably the mononuclear hydride LCuH, which is not directly observed. Due to the significantly enhanced CO2 reactivity of [(LCu)2H](+) under these catalytically relevant conditions, LCuH is proposed to be the catalytically active metal hydride.

  14. Technical and economic aspects of hydrogen storage in metal hydrides

    NASA Technical Reports Server (NTRS)

    Schmitt, R.

    1981-01-01

    The recovery of hydrogen from such metal hydrides as LiH, MgH2, TiH2, CaH2 and FeTiH compounds is studied, with the aim of evaluating the viability of the technique for the storage of hydrogen fuel. The pressure-temperature dependence of the reactions, enthalpies of formation, the kinetics of the hydrogen absorption and desorption, and the mechanical and chemical stability of the metal hydrides are taken into account in the evaluation. Economic aspects are considered. Development of portable metal hydride hydrogen storage reservoirs is also mentioned.

  15. Structural Characterization of Metal Hydrides for Energy Applications

    NASA Astrophysics Data System (ADS)

    George, Lyci

    Hydrogen can be an unlimited source of clean energy for future because of its very high energy density compared to the conventional fuels like gasoline. An efficient and safer way of storing hydrogen is in metals and alloys as hydrides. Light metal hydrides, alanates and borohydrides have very good hydrogen storage capacity, but high operation temperatures hinder their application. Improvement of thermodynamic properties of these hydrides is important for their commercial use as a source of energy. Application of pressure on materials can have influence on their properties favoring hydrogen storage. Hydrogen desorption in many complex hydrides occurs above the transition temperature. Therefore, it is important to study the physical properties of the hydride compounds at ambient and high pressure and/or high temperature conditions, which can assist in the design of suitable storage materials with desired thermodynamic properties. The high pressure-temperature phase diagram, thermal expansion and compressibility have only been evaluated for a limited number of hydrides so far. This situation serves as a main motivation for studying such properties of a number of technologically important hydrides. Focus of this dissertation was on X-ray diffraction and Raman spectroscopy studies of Mg2FeH6, Ca(BH4) 2, Mg(BH4)2, NaBH4, NaAlH4, LiAlH4, LiNH2BH3 and mixture of MgH 2 with AlH3 or Si, at different conditions of pressure and temperature, to obtain their bulk modulus and thermal expansion coefficient. These data are potential source of information regarding inter-atomic forces and also serve as a basis for developing theoretical models. Some high pressure phases were identified for the complex hydrides in this study which may have better hydrogen storage properties than the ambient phase. The results showed that the highly compressible B-H or Al-H bonds and the associated bond disordering under pressure is responsible for phase transitions observed in brorohydrides or

  16. A low cost igniter utilizing an SCB and titanium sub-hydride potassium perchlorate pyrotechnic

    NASA Technical Reports Server (NTRS)

    Bickes, R. W., Jr.; Grubelich, M. C.; Hartman, J. K.; McCampbell, C. B.; Churchill, J. K.

    1994-01-01

    A conventional NSI (NASA Standard Initiator) normally employs a hot-wire ignition element to ignite ZPP (zirconium potassium perchlorate). With minor modifications to the interior of a header similar to an NSI device to accommodate an SCB (semiconductor bridge), a low cost initiator was obtained. In addition, the ZPP was replaced with THKP (titanium sub-hydride potassium perchlorate) to obtain increased overall gas production and reduced static-charge sensitivity. This paper reports on the all-fire and no-fire levels obtained and on a dual mix device that uses THKP as the igniter mix and a thermite as the output mix.

  17. The Oxidation Products of Aluminum Hydride and Boron Aluminum Hydride Clusters

    DTIC Science & Technology

    2016-01-04

    a solid with six crystalline phases. In principle, alane is a promising propellant . The specific impulse of an AP/HTPB propellant mixed with alane...Distribution approved for public release. 2     Introduction Boranes (boron hydrides) were once thought to be promising propellants .1-14 The reasons...diborane, hydrogen, and a white solid . Whatley et al.8 studied the products of diborane oxidation. Roth and co-workers9 found HOBO to be the main

  18. [Determination of trace elements in radix ophiopogonis by HG-ICP-AES].

    PubMed

    Lou, Qi-Zheng; Xu, Run-Sheng

    2007-06-01

    In this paper, a method of microwave digestion technique for the contents determination of trace elements Ni, Zn, Mn, Cu, Mg, Fe, Ca and Pb in radix ophiopogonis by hydride generation inductively coupled plasma atomic emition spectrometry (HG-ICP-AES) was reported. Its recovery ratio obtained by standard addition method ranged between 97.8% and 102.5%, and its RSD was lower than 4.0%. The results of the determination show that radix ophiopogonis is rich in the inorganic elements such as Fe, and the content of Zn in radix ophiopogonis of Zhejiang is much higher in radix ophiopogonis of Sichun. The result will provide scientific data for the study on the elements in radix ophiopogonis and on their relativity of medicine efficacy.

  19. ENVIRONMENTAL REACTIVITY OF SOLID STATE HYDRIDE MATERIALS

    SciTech Connect

    Gray, J; Donald Anton, D

    2009-04-23

    In searching for high gravimetric and volumetric density hydrogen storage systems, it is inevitable that higher energy density materials will be used. In order to make safe and commercially acceptable condensed phase hydrogen storage systems, it is important to understand quantitatively the risks involved in using and handling these materials and to develop appropriate mitigation strategies to handle potential material exposure events. A crucial aspect of the development of risk identification and mitigation strategies is the development of rigorous environmental reactivity testing standards and procedures. This will allow for the identification of potential risks and implementation of risk mitigation strategies. Modified testing procedures for shipping air and/or water sensitive materials, as codified by the United Nations, have been used to evaluate two potential hydrogen storage materials, 2LiBH{sub 4} {center_dot} MgH{sub 2} and NH{sub 3}BH{sub 3}. The modified U.N. procedures include identification of self-reactive substances, pyrophoric substances, and gas-emitting substances with water contact. The results of these tests for air and water contact sensitivity will be compared to the pure material components where appropriate (e.g. LiBH{sub 4} and MgH{sub 2}). The water contact tests are divided into two scenarios dependent on the hydride to water mole ratio and heat transport characteristics. Air contact tests were run to determine whether a substance will spontaneously react with air in a packed or dispersed form. In the case of the 2LiBH{sub 4} {center_dot} MgH{sub 2} material, the results from the hydride mixture compared to the pure materials results showed the MgH{sub 2} to be the least reactive component and LiBH{sub 4} the more reactive. The combined 2LiBH{sub 4} {center_dot} MgH{sub 2} resulted in a material having environmental reactivity between these two materials. Relative to 2LiBH{sub 4} {center_dot} MgH{sub 2}, the chemical hydride NH{sub 3}BH

  20. Use of Solid Hydride Fuel for Improved long-Life LWR Core Designs

    SciTech Connect

    Greenspan, E

    2006-04-30

    The primary objective of this project was to assess the feasibility of improving the performance of PWR and BWR cores by using solid hydride fuels instead of the commonly used oxide fuel. The primary measure of performance considered is the bus-bar cost of electricity (COE). Additional performance measures considered are safety, fuel bundle design simplicity – in particular for BWR’s, and plutonium incineration capability. It was found that hydride fuel can safely operate in PWR’s and BWR’s without restricting the linear heat generation rate of these reactors relative to that attainable with oxide fuel. A couple of promising applications of hydride fuel in PWR’s and BWR’s were identified: (1) Eliminating dedicated water moderator volumes in BWR cores thus enabling to significantly increase the cooled fuel rods surface area as well as the coolant flow cross section area in a given volume fuel bundle while significantly reducing the heterogeneity of BWR fuel bundles thus achieving flatter pin-by-pin power distribution. The net result is a possibility to significantly increase the core power density – on the order of 30% and, possibly, more, while greatly simplifying the fuel bundle design. Implementation of the above modifications is, though, not straightforward; it requires a design of completely different control system that could probably be implemented only in newly designed plants. It also requires increasing the coolant pressure drop across the core. (2) Recycling plutonium in PWR’s more effectively than is possible with oxide fuel by virtue of a couple of unique features of hydride fuel – reduced inventory of U-238 and increased inventory of hydrogen. As a result, the hydride fuelled core achieves nearly double the average discharge burnup and the fraction of the loaded Pu it incinerates in one pass is double that of the MOX fuel. The fissile fraction of the Pu in the discharged hydride fuel is only ~2/3 that of the MOX fuel and the

  1. Synthesis and characterization of metal hydride electrodes. Interim report

    SciTech Connect

    McBreen, J.; Reilly, J.J.

    1995-10-01

    The objective of this project is to elucidate the compositional and structural parameters that affect the thermodynamics, kinetics and stability of alloy hydride electrodes and to use this information in the development of new high capacity long life hydride electrodes for rechargeable batteries. The work focuses on the development of AB{sub 5} alloys and the application of in situ methods, at NSLS, such as x-ray absorption (XAS), to elucidate the role of the alloying elements in hydrogen storage and corrosion inhibition. The most significant results to date are: The decay of electrode capacity on cycling was directly related to alloy corrosion. The rate of corrosion depended in part on both the alloy composition and the partial molar volume of hydrogen, V{sub H}. The corrosion rate depended on the composition of the A component in AB{sub 5} (LaNi{sub 5} type) alloys. Partial substitution of La with Ce in AB{sub 5} alloys substantially inhibits electrode corrosion on cycling. Recent results indicate that Co also greatly inhibits electrode corrosion, possibly by minimizing V{sub H}. The AB{sub 5} alloys investigated included LaNi{sub 5}, ternary alloys (e.g. LaN{sub 4.8}Sn{sub 0.2} and La{sub 0.8}Ce{sub 0.2}Ni{sub 5}), alloys with various substitutions for both La and Ni (e.g. La{sub 0.8}Ce{sub 0.2}Ni{sub 4.8}Sn{sub 0.2}) and mischmetal (Mm) alloys of the type normally used in batteries, such as MmB{sub 5} (B = Ni{sub 3.55}Mn{sub 0.4}A1{sub 0.3}Co{sub 0.75}). A major effort was devoted to the effects of La substitution in the A component. Both in situ and ex situ XAS measurements are used to study the electronic effects that occur on the addition of various metal substitutions and on the ingress of hydrogen.

  2. An assessment of the performance of the Spanwise Iron Magnet rolling moment generating system for magnetic suspension and balance systems using the finite element computer program GFUN

    NASA Technical Reports Server (NTRS)

    Britcher, C. P.

    1982-01-01

    The development of a powerful method of magnetic roll torque generation is essential before construction of a large magnetic suspension and balance system (LMSBS) can be undertaken. Some preliminary computed data concerning a relatively new dc scheme, referred to as the spanwise iron magnet scheme are presented. Computations made using the finite element computer program 'GFUN' indicate that adequate torque is available for at least a first generation LMSBS. Torque capability appears limited principally by current electromagnet technology.

  3. Flow injection sample pretreatment in the determination of trace elements in waters by atomic spectrometry

    SciTech Connect

    Tyson, J.F.

    1995-12-31

    Flow injection (FI) techniques are a way of automating sampling pretreatment procedures with direct coupling to the instrument. For a variety of reasons, flame atomic absorption spectrometry (FAAS) would be the method of choice for the determination of trace elements in water samples were it not for some of the inherent limitations of this technique. These limitations are concerned with the various interferences that arise from matrix components and with the atom number density in the source. This together with the various noise sources sets detection limits which are not low enough for many applications. Thus many FI procedures are devised with the aim of overcoming these limitations and thus solid phase extraction (SPE) as a means of preconcentration features largely in recently published work. Results will be presented for the determination of trace elements in water samples (both fresh and saline) in which SPE procedures were used to (a) remove the potentially interfering sea-water matrix for determinations using ICP-MS and (b) preconcentrate cadmium from surface waters prior to determination by FAAS. Hydride generation methods have been applied for the determination of selenium and arsenic. In highly saline media the elevated recoveries of Se have been investigated and for the determination of As, an evaluation of the claim that the use of surfactants improves the performance of a flow based hydride generation system has critically evaluated.

  4. Relativistic effects on sixth group hydrides

    NASA Astrophysics Data System (ADS)

    Pisani, L.; Clementi, E.

    1994-08-01

    Dirac-Fock (DF) and Hartree-Fock (HF) calculations have been performed for the ground state configuration of the H2O, H2S, H2Se, H2Te, and H2Po molecules. Equilibrium geometries, atomization energies, and molecular orbitals energies are evaluated with both methods, compared and discussed with the help of population analysis and atomic orbital energies. Particular attention has been given to a qualitative understanding of the relativistic effects. Molecular spin-orbits corrections appear to be essential to a description of some in the sixth group hydrides set. A description of the relativistic computer program is presented elsewhere [L. Pisani and E. Clementi, J. Comput. Chem. (in press)].

  5. Process for production of a metal hydride

    SciTech Connect

    Allen, Nathan Tait; Butterick, III, Robert; Chin, Arthur Achhing; Millar, Dean Michael; Molzahn, David Craig

    2014-08-12

    A process for production of a metal hydride compound MH.sub.x, wherein x is one or two and M is an alkali metal, Be or Mg. The process comprises combining a compound of formula (R.sup.1O).sub.xM with aluminum, hydrogen and at least one metal selected from among titanium, zirconium, hafnium, niobium, vanadium, tantalum and iron to produce a compound of formula MH.sub.x. R.sup.1 is phenyl or phenyl substituted by at least one alkyl or alkoxy group. A mole ratio of aluminum to (R.sup.1O).sub.xM is from 0.1:1 to 1:1. The catalyst is present at a level of at least 200 ppm based on weight of aluminum.

  6. Self-Consistent-Field Calculation on Lithium Hydride for Undergraduates.

    ERIC Educational Resources Information Center

    Rioux, Frank; Harriss, Donald K.

    1980-01-01

    Describes a self-consistent-field-linear combination of atomic orbitals-molecular orbital calculation on the valence electrons of lithium hydride using the method of Roothaan. This description is intended for undergraduate physics students.

  7. Thermally unstable hydrides of titanium aluminide Ti3Al

    NASA Astrophysics Data System (ADS)

    Kazantseva, N. V.; Popov, A. G.; Mushnikov, N. V.; Skripov, A. V.; Soloninin, A. V.; Aleksashin, B. A.; Novozhenov, V. I.; Sazonova, V. A.; Kharisova, A. G.

    2011-04-01

    The hydrogen capacity of (Ti, Nb)3Al titanium aluminides subjected to mechanical activation in a hydrogen atmosphere has been studied. It has been shown that the application of this procedure allows one to prepare thermally unstable titanium aluminide (Ti3Al) hydrides with a high hydrogen content (to 2.6 wt %) at room temperature and normal pressure; in this case, no special requirements for the hydrogen purity are placed. The thermally unstable nanostructured Ti3Al hydrides were found to exhibit a higher hydrogen mobility as compared to that of the microcrystalline hydrides. Low niobium additions (to 2.1 at %) have been found to decrease the hydrogen capacity. Experiments on the preparation of bulk samples from the hydride powders obtained were performed.

  8. Life test results of hydride compressors for cryogenic refrigerators

    NASA Astrophysics Data System (ADS)

    Jones, J. A.; Golben, P. M.

    1984-01-01

    A development status assessment is made, from the viewpoint of system durability, for the hydride compressors used in such cryogenic refrigerators as that of the JPL, which has operated at 29 K for 500 hours and at lower temperatures for over 1000. Attention is given to a novel hydride compressor unit which has operated through 35,000 cycles and exhibits negligible degradation of check valves, hydride particle size, and expansion valves. The power requirement for liquid hydrogen cooling can be halved through the use of recuperative hot water heating methods, making this system comparable in power use to liquid hydrogen refrigeration systems operating on electricity. Due to the lack of moving parts in hydride refrigerator designs, potential service lifetimes of many years, and perhaps decades, are being projected.

  9. High-pressure synthesis of noble metal hydrides

    NASA Astrophysics Data System (ADS)

    Donnerer, Christian; Scheler, Thomas; Gregoryanz, Eugene

    2013-04-01

    The formation of hydride phases in the noble metals copper, silver, and gold was investigated by in situ x-ray diffraction at high hydrogen pressures. In the case of copper, a novel hexagonal hydride phase, Cu2H, was synthesised at pressures above 18.6 GPa. This compound exhibits an anti-CdI2-type structure, where hydrogen atoms occupy every second layer of octahedral interstitial sites. In contrast to chemically produced CuH, this phase does not show a change in compressibility compared to pure copper. Furthermore, repeated compression (after decomposition of Cu2H) led to the formation of cubic copper hydride at 12.5 GPa, a phenomenon attributed to an alteration of the microstructure during dehydrogenation. No hydrides of silver (up to 87 GPa) or gold (up to 113 GPa) were found at both room and high temperatures.

  10. The development of lightweight hydride alloys based on magnesium

    SciTech Connect

    Guthrie, S.E.; Thomas, G.J.; Yang, N.Y.C.; Bauer, W.

    1996-02-01

    The development of a magnesium based hydride material is explored for use as a lightweight hydrogen storage medium. It is found that the vapor transport of magnesium during hydrogen uptake greatly influences the surface and hydride reactions in these alloys. This is exploited by purposely forming near-surface phases of Mg{sub 2}Ni on bulk Mg-Al-Zn alloys which result in improved hydrogen adsorption and desorption behavior. Conditions were found where these near-surface reactions yielded a complex and heterogeneous microstructure that coincided with excellent bulk hydride behavior. A Mg-Al alloy hydride is reported with near atmospheric plateau pressures at temperatures below 200{degrees}C. Additionally, a scheme is described for low temperature in-situ fabrication of Mg{sub 2}Ni single phase alloys utilizing the high vapor pressure of Mg.

  11. Metal hydrides as negative electrode materials for Ni- MH batteries

    NASA Astrophysics Data System (ADS)

    Yartys, V.; Noreus, D.; Latroche, M.

    2016-01-01

    Structural, thermodynamical and electrochemical properties of metallic hydrides belonging to the pseudo-binary family A-Mg-Ni ( A: rare earths) are reviewed and compared. Technology aspects of bipolar cells are also discussed.

  12. Nonaqueous actinide hydride dissolution and production of actinide $beta$- diketonates

    DOEpatents

    Crisler, L.R.

    1975-11-11

    Actinide beta-diketonate complex molecular compounds are produced by reacting a beta-diketone compound with a hydride of the actinide material in a mixture of carbon tetrachloride and methanol. (auth)

  13. Bipolar Nickel-Metal Hydride Battery Being Developed

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.

    1998-01-01

    The NASA Lewis Research Center has contracted with Electro Energy, Inc., to develop a bipolar nickel-metal hydride battery design for energy storage on low-Earth-orbit satellites. The objective of the bipolar nickel-metal hydride battery development program is to approach advanced battery development from a systems level while incorporating technology advances from the lightweight nickel electrode field, hydride development, and design developments from nickel-hydrogen systems. This will result in a low-volume, simplified, less-expensive battery system that is ideal for small spacecraft applications. The goals of the program are to develop a 1-kilowatt, 28-volt (V), bipolar nickel-metal hydride battery with a specific energy of 100 watt-hours per kilogram (W-hr/kg), an energy density of 250 W-hr/liter and a 5-year life in low Earth orbit at 40-percent depth-of-discharge.

  14. High-pressure synthesis of noble metal hydrides.

    PubMed

    Donnerer, Christian; Scheler, Thomas; Gregoryanz, Eugene

    2013-04-07

    The formation of hydride phases in the noble metals copper, silver, and gold was investigated by in situ x-ray diffraction at high hydrogen pressures. In the case of copper, a novel hexagonal hydride phase, Cu2H, was synthesised at pressures above 18.6 GPa. This compound exhibits an anti-CdI2-type structure, where hydrogen atoms occupy every second layer of octahedral interstitial sites. In contrast to chemically produced CuH, this phase does not show a change in compressibility compared to pure copper. Furthermore, repeated compression (after decomposition of Cu2H) led to the formation of cubic copper hydride at 12.5 GPa, a phenomenon attributed to an alteration of the microstructure during dehydrogenation. No hydrides of silver (up to 87 GPa) or gold (up to 113 GPa) were found at both room and high temperatures.

  15. Precipitation of hydrides in high purity niobium after different treatments

    SciTech Connect

    Barkov, F.; Romanenko, A.; Trenikhina, Y.; Grassellino, A.

    2013-01-01

    Precipitation of lossy non-superconducting niobium hydrides represents a known problem for high purity niobium in superconducting applications. Using cryogenic optical and laser confocal scanning microscopy we have directly observed surface precipitation and evolution of niobium hydrides in samples after different treatments used for superconducting RF cavities for particle acceleration. Precipitation is shown to occur throughout the sample volume, and the growth of hydrides is well described by the fast diffusion-controlled process in which almost all hydrogen is precipitated at $T=140$~K within $\\sim30$~min. 120$^{\\circ}$C baking and mechanical deformation are found to affect hydride precipitation through their influence on the number of nucleation and trapping centers.

  16. Hydrogen storage in sodium aluminum hydride.

    SciTech Connect

    Ozolins, Vidvuds; Herberg, J.L. (Lawrence Livermore National Laboratories, Livermore, CA); McCarty, Kevin F.; Maxwell, Robert S. (Lawrence Livermore National Laboratories, Livermore, CA); Stumpf, Roland Rudolph; Majzoub, Eric H.

    2005-11-01

    Sodium aluminum hydride, NaAlH{sub 4}, has been studied for use as a hydrogen storage material. The effect of Ti, as a few mol. % dopant in the system to increase kinetics of hydrogen sorption, is studied with respect to changes in lattice structure of the crystal. No Ti substitution is found in the crystal lattice. Electronic structure calculations indicate that the NaAlH{sub 4} and Na{sub 3}AlH{sub 6} structures are complex-ionic hydrides with Na{sup +} cations and AlH{sub 4}{sup -} and AlH{sub 6}{sup 3-} anions, respectively. Compound formation studies indicate the primary Ti-compound formed when doping the material at 33 at. % is TiAl{sub 3} , and likely Ti-Al compounds at lower doping rates. A general study of sorption kinetics of NaAlH{sub 4}, when doped with a variety of Ti-halide compounds, indicates a uniform response with the kinetics similar for all dopants. NMR multiple quantum studies of solution-doped samples indicate solvent interaction with the doped alanate. Raman spectroscopy was used to study the lattice dynamics of NaAlH{sub 4}, and illustrated the molecular ionic nature of the lattice as a separation of vibrational modes between the AlH{sub 4}{sup -} anion-modes and lattice-modes. In-situ Raman measurements indicate a stable AlH{sub 4}{sup -} anion that is stable at the melting temperature of NaAlH{sub 4}, indicating that Ti-dopants must affect the Al-H bond strength.

  17. Ab-Initio Study of the Group 2 Hydride Anions

    NASA Astrophysics Data System (ADS)

    Harris, Joe P.; Wright, Timothy G.; Manship, Daniel R.

    2013-06-01

    The beryllium hydride (BeH)- dimer has recently been shown to be surprisingly strongly bound, with an electronic structure which is highly dependent on internuclear separation. At the equilibrium distance, the negative charge is to be found on the beryllium atom, despite the higher electronegativity of the hydrogen. The current study expands this investigation to the other Group 2 hydrides, and attempts to explain these effects. M. Verdicchio, G. L. Bendazzoli, S. Evangelisti, T. Leininger J. Phys. Chem. A, 117, 192, (2013)

  18. Method of selective reduction of polyhalosilanes with alkyltin hydrides

    DOEpatents

    Sharp, Kenneth G.; D'Errico, John J.

    1989-01-01

    The invention relates to the selective and stepwise reduction of polyhalosilanes by reacting at room temperature or below with alkyltin hydrides without the use of free radical intermediates. Alkyltin hydrides selectively and stepwise reduce the Si--Br, Si--Cl, or Si--I bonds while leaving intact any Si--F bonds. When two or more different halogens are present on the polyhalosilane, the halogen with the highest atomic weight is preferentially reduced.

  19. Development of the Low-Pressure Hydride/Dehydride Process

    SciTech Connect

    Rueben L. Gutierrez

    2001-04-01

    The low-pressure hydride/dehydride process was developed from the need to recover thin-film coatings of plutonium metal from the inner walls of an isotope separation chamber located at Los Alamos and to improve the safety operation of a hydride recovery process using hydrogen at a pressure of 0.7 atm at Rocky Flats. This process is now the heart of the Advanced Recovery and Integrated Extraction System (ARIES) project.

  20. LaNi{sub 5}-based metal hydride electrode in Ni-MH rechargeable cells

    DOEpatents

    Bugga, R.V.; Fultz, B.; Bowman, R.; Surampudi, S.R.; Witham, C.K.; Hightower, A.

    1999-03-30

    An at least ternary metal alloy of the formula AB{sub (Z-Y)}X{sub (Y)} is disclosed. In this formula, A is selected from the rare earth elements, B is selected from the elements of Groups 8, 9, and 10 of the Periodic Table of the Elements, and X includes at least one of the following: antimony, arsenic, germanium, tin or bismuth. Z is greater than or equal to 4.8 and less than or equal to 6.0. Y is greater than 0 and less than 1. Ternary or higher-order substitutions to the base AB{sub 5} alloys that form strong kinetic interactions with the predominant metals in the base metal hydride are used to form metal alloys with high structural integrity after multiple cycles of hydrogen sorption. 16 figs.

  1. A Numerical Method for Microstructure Generation of a Binary Aluminum Alloy and Study of Its Mechanical Properties Using the Finite Element Method

    NASA Astrophysics Data System (ADS)

    Sharifi, Hamid; Larouche, Daniel

    2014-12-01

    A numerical method for the generation of the microstructure of a binary aluminum copper alloy is presented. This method is based on the repeated addition of some basic grain shapes into a representative volume element. Depending of the orientation of adjacent grains, different type of grain boundaries can be formed. The primary and secondary phases are distinguishable in our model and have distinct properties, reflecting the heterogeneous nature of the microstructure. The digital microstructure was then transformed into a finite element model. Using the finite element software ABAQUS, the stress distribution inside our heterogeneous material model has been studied and its mechanical properties have been found. That also makes possible to study and to visualize the cracks generated during the loading of the material where the local stress was sufficiently high. As a result of these analyses, the elastic modulus of such a heterogeneous domain and the effect of crack formation on ductility were evaluated.

  2. Novel fuel cell stack with coupled metal hydride containers

    NASA Astrophysics Data System (ADS)

    Liu, Zhixiang; Li, Yan; Bu, Qingyuan; Guzy, Christopher J.; Li, Qi; Chen, Weirong; Wang, Cheng

    2016-10-01

    Air-cooled, self-humidifying hydrogen fuel cells are often used for backup and portable power sources, with a metal hydride used as the hydrogen storage material. To provide a stable hydrogen flow to the fuel cell stack, heat must be provided to the metal hydride. Conventionally, the heat released from the exothermic reaction of hydrogen and oxygen in the fuel cell stack to the exhaust air is used to heat a separate metal hydride container. In this case, the heat is only partially used instead of being more closely coupled because of the heat transfer resistances in the system. To achieve better heat integration, a novel scheme is proposed whereby hydrogen storage and single fuel cells are more closely coupled. Based on this idea, metal hydride containers in the form of cooling plates were assembled between each pair of cells in the stack so that the heat could be directly transferred to a metal hydride container of much larger surface-to-volume ratio than conventional separate containers. A heat coupled fuel cell portable power source with 10 cells and 11 metal hydride containers was constructed and the experimental results show that this scheme is beneficial for the heat management of fuel cell stack.

  3. Optimization of Hydride Rim Formation in Unirradiated Zr 4 Cladding

    SciTech Connect

    Shimskey, Rick W.; Hanson, Brady D.; MacFarlan, Paul J.

    2013-09-30

    The purpose of this work is to build on the results reported in the M2 milestone M2FT 13PN0805051, document number FCRD-USED-2013-000151 (Hanson, 2013). In that work, it was demonstrated that unirradiated samples of zircaloy-4 cladding could be pre-hydrided at temperatures below 400°C in pure hydrogen gas and that the growth of hydrides on the surface could be controlled by changing the surface condition of the samples and form a desired hydride rim on the outside diameter of the cladding. The work performed at Pacific Northwest National Laboratory since the issuing of the M2 milestone has focused its efforts to optimize the formation of a hydride rim on available zircaloy-4 cladding samples by controlling temperature variation and gas flow control during pre-hydriding treatments. Surface conditioning of the outside surface was also examined as a variable. The results of test indicate that much of the variability in the hydride thickness is due to temperature variation occurring in the furnaces as well as how hydrogen gas flows across the sample surface. Efforts to examine other alloys, gas concentrations, and different surface conditioning plan to be pursed in the next FY as more cladding samples become available

  4. Effect of niobium additions on initial hydriding kinetics of uranium

    NASA Astrophysics Data System (ADS)

    Li, Ruiwen; Wang, Xiaolin

    2014-06-01

    To study the behavior of hydrogen corrosion at the surface of U, U-2.5 wt%Nb alloy and U-5.7 wt%Nb, a gas-solid reaction system with an in situ microscope was designed. The nucleation and growth of the hydride of the alloy were continuously observed and recorded by a computer. The different characteristics of the hydrides on U metal and U-2.5 wt%Nb showed that the later alloy is more susceptible to hydrogen corrosion than the former. The growth rate of hydride of U-2.5 wt%Nb, calculated by measuring the perimeter of the hydride spots recorded by the in situ microscope, exhibited a reaction temperature dependency in the range of 40-160 °C, for pressure of 0.8 × 105 Pa. An Arrhenius plot for growth rate versus temperature yielded activation energy of 24.34 kJ/mol for the hydriding of U-2.5 wt%Nb alloy. The maximum hydriding rate was obtained at 125 °C, whose thermodynamics reason was discussed.

  5. Generations.

    PubMed

    Chambers, David W

    2005-01-01

    Groups naturally promote their strengths and prefer values and rules that give them an identity and an advantage. This shows up as generational tensions across cohorts who share common experiences, including common elders. Dramatic cultural events in America since 1925 can help create an understanding of the differing value structures of the Silents, the Boomers, Gen Xers, and the Millennials. Differences in how these generations see motivation and values, fundamental reality, relations with others, and work are presented, as are some applications of these differences to the dental profession.

  6. Trialkylborane-Assisted CO(2) Reduction by Late Transition Metal Hydrides.

    PubMed

    Miller, Alexander J M; Labinger, Jay A; Bercaw, John E

    2011-01-01

    Trialkylborane additives promote reduction of CO(2) to formate by bis(diphosphine) Ni(II) and Rh(III) hydride complexes. The late transition metal hydrides, which can be formed from dihydrogen, transfer hydride to CO(2) to give a formate-borane adduct. The borane must be of appropriate Lewis acidity: weaker acids do not show significant hydride transfer enhancement, while stronger acids abstract hydride without CO(2) reduction. The mechanism likely involves a pre-equilibrium hydride transfer followed by formation of a stabilizing formate-borane adduct.

  7. Solid State NMR Studies of the Aluminum Hydride Phases

    NASA Technical Reports Server (NTRS)

    Hwang, Son-Jong; Bowman, R. C., Jr.; Graetz, Jason; Reilly, J. J.

    2006-01-01

    Several solid state NMR techniques including magic-angle-spinning (MAS) and multiple-quantum (MQ) MAS experiments have been used to characterize various AlH3 samples. MAS-NMR spectra for the 1H and 27Al nuclei have been obtained on a variety of AlH3 samples that include the (beta)- and (gamma)- phases as well as the most stable (alpha)-phase. While the dominant components in these NMR spectra correspond to the aluminum hydride phases, other species were found that include Al metal, molecular hydrogen (H2), as well as peaks that can be assigned to Al-O species in different configurations. The occurrence and concentration of these extraneous components are dependent upon the initial AlH3 phase composition and preparation procedures. Both the (beta)-AlH3 and (gamma)-AlH3 phases were found to generate substantial amounts of Al metal when the materials were stored at room temperature while the (alpha)-phase materials do not exhibit these changes.

  8. Mechanism of H2 Production by Models for the [NiFe]-Hydrogenases: Role of Reduced Hydrides.

    PubMed

    Ulloa, Olbelina A; Huynh, Mioy T; Richers, Casseday P; Bertke, Jeffery A; Nilges, Mark J; Hammes-Schiffer, Sharon; Rauchfuss, Thomas B

    2016-07-27

    The intermediacy of a reduced nickel-iron hydride in hydrogen evolution catalyzed by Ni-Fe complexes was verified experimentally and computationally. In addition to catalyzing hydrogen evolution, the highly basic and bulky (dppv)Ni(μ-pdt)Fe(CO)(dppv) ([1](0); dppv = cis-C2H2(PPh2)2) and its hydride derivatives have yielded to detailed characterization in terms of spectroscopy, bonding, and reactivity. The protonation of [1](0) initially produces unsym-[H1](+), which converts by a first-order pathway to sym-[H1](+). These species have C1 (unsym) and Cs (sym) symmetries, respectively, depending on the stereochemistry of the octahedral Fe site. Both experimental and computational studies show that [H1](+) protonates at sulfur. The S = 1/2 hydride [H1](0) was generated by reduction of [H1](+) with Cp*2Co. Density functional theory (DFT) calculations indicate that [H1](0) is best described as a Ni(I)-Fe(II) derivative with significant spin density on Ni and some delocalization on S and Fe. EPR spectroscopy reveals both kinetic and thermodynamic isomers of [H1](0). Whereas [H1](+) does not evolve H2 upon protonation, treatment of [H1](0) with acids gives H2. The redox state of the "remote" metal (Ni) modulates the hydridic character of the Fe(II)-H center. As supported by DFT calculations, H2 evolution proceeds either directly from [H1](0) and external acid or from protonation of the Fe-H bond in [H1](0) to give a labile dihydrogen complex. Stoichiometric tests indicate that protonation-induced hydrogen evolution from [H1](0) initially produces [1](+), which is reduced by [H1](0). Our results reconcile the required reductive activation of a metal hydride and the resistance of metal hydrides toward reduction. This dichotomy is resolved by reduction of the remote (non-hydride) metal of the bimetallic unit.

  9. Development of low-cost technology for the next generation of high efficiency solar cells composed of earth abundant elements

    SciTech Connect

    Agrawal, Rakesh

    2014-09-28

    The development of renewable, affordable, and environmentally conscious means of generating energy on a global scale represents a grand challenge of our time. Due to the “permanence” of radiation from the sun, solar energy promises to remain a viable and sustainable power source far into the future. Established single-junction photovoltaic technologies achieve high power conversion efficiencies (pce) near 20% but require complicated manufacturing processes that prohibit the marriage of large-scale throughput (e.g. on the GW scale), profitability, and quality control. Our approach to this problem begins with the synthesis of nanocrystals of semiconductor materials comprising earth abundant elements and characterized by material and optoelectronic properties ideal for photovoltaic applications, namely Cu2ZnSn(S,Se)4 (CZTSSe). Once synthesized, such nanocrystals are formulated into an ink, coated onto substrates, and processed into completed solar cells in such a way that enables scale-up to high throughput, roll-to-roll manufacturing processes. This project aimed to address the major limitation to CZTSSe solar cell pce’s – the low open-circuit voltage (Voc) reported throughout literature for devices comprised of this material. Throughout the project significant advancements have been made in fundamental understanding of the CZTSSe material and device limitations associated with this material system. Additionally, notable improvements have been made to our nanocrystal based processing technique to alleviate performance limitations due to the identified device limitations. Notably, (1) significant improvements have been made in reducing intra- and inter-nanoparticle heterogeneity, (2) improvements in device performance have been realized with novel cation substitution in Ge-alloyed CZTGeSSe absorbers, (3) systematic analysis of absorber sintering has been conducted to optimize the selenization process for large grain CZTSSe absorbers, (4) novel electrical

  10. Feasibility study for the recycling of nickel metal hydride electric vehicle batteries. Final report

    SciTech Connect

    Sabatini, J.C.; Field, E.L.; Wu, I.C.; Cox, M.R.; Barnett, B.M.; Coleman, J.T.

    1994-01-01

    This feasibility study examined three possible recycling processes for two compositions (AB{sub 2} and AB{sub 5}) of nickel metal hydride electric vehicle batteries to determine possible rotes for recovering battery materials. Analysts examined the processes, estimated the costs for capital equipment and operation, and estimated the value of the reclaimed material. They examined the following three processes: (1) a chemical process that leached battery powders using hydrochloric acid, (2) a pyrometallurical process, and (3) a physical separation/chemical process. The economic analysis revealed that the physical separation/chemical process generated the most revenue.

  11. Designing metal hydride complexes for water splitting reactions: a molecular electrostatic potential approach.

    PubMed

    Sandhya, K S; Suresh, Cherumuttathu H

    2014-08-28

    The hydridic character of octahedral metal hydride complexes of groups VI, VII and VIII has been systematically studied using molecular electrostatic potential (MESP) topography. The absolute minimum of MESP at the hydride ligand (Vmin) and the MESP value at the hydride nucleus (VH) are found to be very good measures of the hydridic character of the hydride ligand. The increasing/decreasing electron donating feature of the ligand environment is clearly reflected in the increasing/decreasing negative character of Vmin and VH. The formation of an outer sphere metal hydride-water complex showing the HH dihydrogen interaction is supported by the location and the value of Vmin near the hydride ligand. A higher negative MESP suggested lower activation energy for H2 elimination. Thus, MESP features provided a way to fine-tune the ligand environment of a metal-hydride complex to achieve high hydridicity for the hydride ligand. The applicability of an MESP based hydridic descriptor in designing water splitting reactions is tested for group VI metal hydride model complexes of tungsten.

  12. Chemical Hydride Slurry for Hydrogen Production and Storage

    SciTech Connect

    McClaine, Andrew W

    2008-09-30

    The purpose of this project was to investigate and evaluate the attractiveness of using a magnesium chemical hydride slurry as a hydrogen storage, delivery, and production medium for automobiles. To fully evaluate the potential for magnesium hydride slurry to act as a carrier of hydrogen, potential slurry compositions, potential hydrogen release techniques, and the processes (and their costs) that will be used to recycle the byproducts back to a high hydrogen content slurry were evaluated. A 75% MgH2 slurry was demonstrated, which was just short of the 76% goal. This slurry is pumpable and storable for months at a time at room temperature and pressure conditions and it has the consistency of paint. Two techniques were demonstrated for reacting the slurry with water to release hydrogen. The first technique was a continuous mixing process that was tested for several hours at a time and demonstrated operation without external heat addition. Further work will be required to reduce this design to a reliable, robust system. The second technique was a semi-continuous process. It was demonstrated on a 2 kWh scale. This system operated continuously and reliably for hours at a time, including starts and stops. This process could be readily reduced to practice for commercial applications. The processes and costs associated with recycling the byproducts of the water/slurry reaction were also evaluated. This included recovering and recycling the oils of the slurry, reforming the magnesium hydroxide and magnesium oxide byproduct to magnesium metal, hydriding the magnesium metal with hydrogen to form magnesium hydride, and preparing the slurry. We found that the SOM process, under development by Boston University, offers the lowest cost alternative for producing and recycling the slurry. Using the H2A framework, a total cost of production, delivery, and distribution of $4.50/kg of hydrogen delivered or $4.50/gge was determined. Experiments performed at Boston

  13. Hydrogen storage as a hydride. Citations from the International Aerospace Abstracts data base

    NASA Technical Reports Server (NTRS)

    Zollars, G. F.

    1980-01-01

    These citations from the international literature concern the storage of hydrogen in various metal hydrides. Binary and intermetallic hydrides are considered. Specific alloys discussed are iron titanium, lanthanium nickel, magnesium copper and magnesium nickel among others.

  14. A coupled transport and solid mechanics formulation with improved reaction kinetics parameters for modeling oxidation and decomposition in a uranium hydride bed.

    SciTech Connect

    Salloum, Maher N.; Shugard, Andrew D.; Kanouff, Michael P.; Gharagozloo, Patricia E.

    2013-03-01

    Modeling of reacting flows in porous media has become particularly important with the increased interest in hydrogen solid-storage beds. An advanced type of storage bed has been proposed that utilizes oxidation of uranium hydride to heat and decompose the hydride, releasing the hydrogen. To reduce the cost and time required to develop these systems experimentally, a valid computational model is required that simulates the reaction of uranium hydride and oxygen gas in a hydrogen storage bed using multiphysics finite element modeling. This SAND report discusses the advancements made in FY12 (since our last SAND report SAND2011-6939) to the model developed as a part of an ASC-P&EM project to address the shortcomings of the previous model. The model considers chemical reactions, heat transport, and mass transport within a hydride bed. Previously, the time-varying permeability and porosity were considered uniform. This led to discrepancies between the simulated results and experimental measurements. In this work, the effects of non-uniform changes in permeability and porosity due to phase and thermal expansion are accounted for. These expansions result in mechanical stresses that lead to bed deformation. To describe this, a simplified solid mechanics model for the local variation of permeability and porosity as a function of the local bed deformation is developed. By using this solid mechanics model, the agreement between our reacting bed model and the experimental data is improved. Additionally, more accurate uranium hydride oxidation kinetics parameters are obtained by fitting the experimental results from a pure uranium hydride oxidation measurement to the ones obtained from the coupled transport-solid mechanics model. Finally, the coupled transport-solid mechanics model governing equations and boundary conditions are summarized and recommendations are made for further development of ARIA and other Sandia codes in order for them to sufficiently implement the model.

  15. A copper(I) homocubane collapses to a tetracapped tetrahedron upon hydride insertion.

    PubMed

    Liao, Ping-Kuei; Liu, Kuan-Guan; Fang, Ching-Shiang; Liu, C W; Fackler, John P; Wu, Ying-Yann

    2011-09-05

    The hydrido copper(I) and silver(I) clusters incorporating 1,1-dicyanoethylene-2,2-dithiolate (i-MNT) ligands are presented in this paper. Reactions of M(I) (M = Cu, Ag) salts, [Bu(4)N](2)[S(2)CC(CN)(2)], with the anion sources ([Bu(4)N][BH(4)] for H(-), [Bu(4)N][BD(4)] for D(-)) in an 8:6:1 molar ratio in THF produce octanuclear penta-anionic Cu(I)/Ag(I) clusters, [Bu(4)N](5)[M(8)(X){S(2)CC(CN)(2)}(6)] (M = Cu, X = H, 1(H); X = D, 1(D); M = Ag, X = H, 2(H); X = D, 2(D)). They can also be produced from the stoichiometric reaction of M(8)(i-MNT)(6)(4-) with the ammonium borohydride. All four compounds have been fully characterized spectroscopically ((1)H and (13)C NMR, IR, UV-vis) and by elemental analyses. The deuteride-encapsulated Cu(8)/Ag(8) clusters of 1(D) and 2(D) are also characterized by (2)H NMR. X-ray crystal structures of 1(H) and 2(H) reveal a hydride-centered tetracapped tetrahedral Cu(8)/Ag(8) core, which is inscribed within an S(12) icosahedron formed by six i-MNT ligands, each in a tetrametallic-tetraconnective (μ(2), μ(2)) bonding mode. The encapsulated hydride in 2(H) is unequivocally characterized by both (1)H and (109)Ag NMR spectroscopies, and the results strongly suggest that the hydride is coupled to eight magnetically equivalent silver nuclei on the NMR time scale. Therefore, a fast interchange between the vertex and capping silver atoms in solution gives a plausible explanation for the perceived structural differences between the Ag(8) geometry deduced from the X-ray structure and the NMR spectra.

  16. Raman and photoelectron spectroscopic investigation of high-purity niobium materials: Oxides, hydrides, and hydrocarbons

    NASA Astrophysics Data System (ADS)

    Singh, Nageshwar; Deo, M. N.; Nand, Mangla; Jha, S. N.; Roy, S. B.

    2016-09-01

    We present investigations of the presence of oxides, hydrides, and hydrocarbons in high-purity (residual resistivity ratio, ˜300) niobium (Nb) materials used in fabrication of superconducting radio frequency (SRF) cavities for particle accelerators. Raman spectroscopy of Nb materials (as-received from the vendor as well as after surface chemical- and thermal processing) revealed numerous peaks, which evidently show the presence of oxides (550 cm-1), hydrides (1277 and 1385 cm-1: ˜80 K temperature), and groups of hydrocarbons (1096, 2330, 2710, 2830, 2868, and 3080 cm-1). The present work provides direct spectroscopic evidence of hydrides in the electropolished Nb materials typically used in SRF cavities. Raman spectroscopy thus can provide vital information about the near-surface chemical species in niobium materials and will help in identifying the cause for the performance degradation of SRF cavities. Furthermore, photoelectron spectroscopy was performed on the Nb samples to complement the Raman spectroscopy study. This study reveals the presence of C and O in the Nb samples. Core level spectra of Nb (doublet 3d5/2 and 3d3/2) show peaks near 206.6 and 209.4 eV, which can be attributed to the Nb5+ oxidation state. The core level spectra of C 1 s of the samples are dominated by graphitic carbon (binding energy, 284.6 eV), while the spectra of O 1 s are asymmetrically peaked near binding energy of ˜529 eV, and that indicates the presence of metal-oxide Nb2O5. The valence-band spectra of the Nb samples are dominated by a broad peak similar to O 2p states, but after sputtering (for 10 min) a peak appears at ˜1 eV, which is a feature of the elemental Nb atom.

  17. An alternative model for within plate basalts generation suggested by their major elements, trace elements and Pb-Sr-Nd isotope compositions

    NASA Astrophysics Data System (ADS)

    Mashima, H.

    2003-12-01

    Based on geochemistry, the recent favor model for within-plate basalts (WPB) is plumes with eclogite originally formed by inversion of basaltic oceanic crust into eclogite in subduction zones (e.g. Hauri, 1996). Melting experiments of basalt/peridotie hybrids (Kogiso and Takahashi, 1998), however, have demonstrated that the hybrid source model could not explain major element features of WPB, such as FeO* enrichment and Al2O3 depletion compared with MORB. Melting experiments of peridotites and basalt/peridotite hybrids indicate that the sources of WPB are peridotites abnormally enriched in FeO*. Such Fe-rich sources could not be formed by extraction of basalt melt from typical peridotite or mixing of basalt and typical peridotite. A potential candidate for the abnormally Fe-rich source is Archean peridotitic komatiite (APK) which is enriched in FeO* compared with typical peridotite. Attractive features of the recycled APK melting model are as follows: 1) It explains why within-plate basalts are FeO*-rich and Al2O3-poor relative to MORB because of large proportion of cpx in APK. 2) Moderate partial melting of APK forms LREE-enriched partial melts because of selective fusion of cpx. 3) It explains near bulk earth Nd isotope compositions because of relatively flat REE patterns of APK. 4) Archean age of APK is consistent with Pb isotope ofWPB suggesting their sources have Archean age. 5) Compositional spectrum of Archean komatiite suites ranging from peridotitic komatiite to basalts explains that of WPB from silica-under saturated basalt to silica-oversaturated andesite.

  18. Fatigue crack growth in lithium hydride

    SciTech Connect

    Healy, T.E.

    1993-09-01

    Subcritical fatigue crack growth, from cyclic tensile loading, was demonstrated in warm pressed Polycrystalline lithium hydride. Experiments were performed with cyclic tension-tension crack opening (mode I) loads applied to a pre-cracked compact type specimen in an argon environment at a temperature of 21C (70F). The fatigue crack growth was found to occur between 7.56 {times} 10{sup {minus}ll} M/cycle (2.98 {times} l0{sup {minus}9} in/cycle) and 2.35 {times} l0{sup {minus}8} m/cycle (9.24{times}10{sup {minus}7} in/cycle) for a range of stress intensity factors between 1.04 MPa{center_dot}{radical}m (0.95 ksi{center_dot}{radical}in) and 1.49 MPa{center_dot}{radical}m (1.36 ksi{center_dot}{radical}in). The rate of fatigue crack growth from cyclic tensile loading was found to be in excess of crack growth from sustained loading at an equivalent stress intensity factor. Furthermore, a fatigue threshold was not evident from the acquired data.

  19. Permeation rates for RTF metal hydride vessels

    SciTech Connect

    Klein, J.E.

    1992-05-21

    Contamination rates have been estimated for the RTF nitrogen heating and cooling system (NH and CS) due to tritium permeation through the walls of metal hydride vessels. Tritium contamination of the NH and CS will be seen shortly after start-up of the RTF with the majority of it coming from the TCAP units. Contamination rates of the NH and CS are estimated to exceed 400 Ci/year after three years of operation and will elevate tritium concentrations in the NH and CS above 6 {times} 10{sup {minus}3} {mu}Ci/cc. To reduce tritium activity in the NH and CS, a stripper or ``getter`` bed may need to be installed in the NH and CS. Increasing the purge rate of nitrogen from the NH and CS is shown to be an impractical method for reducing tritium activity due to the high purge rates required. Stripping of the NH and CS nitrogen in the glove box stripper system will give a temporary lowering of tritium activity in the NH and CS, but tritium activity will return to its previous level in approximately two weeks.

  20. Hydrides in Space: Past, Present, and Future

    NASA Astrophysics Data System (ADS)

    Lis, D. C.; Goldsmith, P. F.; Bergin, E. A.; Falgarone, E.; Gerin, M.; Roueff, E.

    2009-12-01

    One of the central questions of modern astrophysics concerns the life cycle of molecules in the Universe—from the diffuse interstellar medium to planetary systems—and the chemical pathways leading from simple atoms and diatomic molecules to complex organic species. In the past two decades, the Caltech Submillimeter Observatory (CSO) has contributed a number of key discoveries on these topics. Light hydrides are of particular interest for astrochemistry, as the basic building blocks of the chemical networks in both diffuse and dense clouds. Ongoing and planned submillimeter wide-field continuum surveys will yield hundreds of potential galactic targets suitable for detailed spectroscopic follow-ups. Recent advances in detector and digital spectrometer technologies promise to truly revolutionize further the field of high-resolution submillimeter spectroscopy and its application to the study of the life cycle of molecules. This will greatly improve our understanding of astrochemistry, astrobiology, the origin of life on Earth, and allow assessing the possibilities of life in other planetary systems.