NASA Astrophysics Data System (ADS)
Grosskopf, M. J.; Drake, R. P.; Trantham, M. R.; Kuranz, C. C.; Keiter, P. A.; Rutter, E. M.; Sweeney, R. M.; Malamud, G.
2012-10-01
The radiation hydrodynamics code developed by the Center for Radiative Shock Hydrodynamics (CRASH) at the University of Michigan has been used to model experimental designs for high-energy-density physics campaigns on OMEGA and other high-energy laser facilities. This code is an Eulerian, block-adaptive AMR hydrodynamics code with implicit multigroup radiation transport and electron heat conduction. CRASH model results have shown good agreement with a experimental results from a variety of applications, including: radiative shock, Kelvin-Helmholtz and Rayleigh-Taylor experiments on the OMEGA laser; as well as laser-driven ablative plumes in experiments by the Astrophysical Collisionless Shocks Experiments with Lasers (ACSEL), collaboration. We report a series of results with the CRASH code in support of design work for upcoming high-energy-density physics experiments, as well as comparison between existing experimental data and simulation results. This work is funded by the Predictive Sciences Academic Alliances Program in NNSA-ASC via grant DEFC52- 08NA28616, by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, grant number DE-FG52-09NA29548, and by the National Laser User Facility Program, grant number DE-NA0000850.
Maestro and Castro: Simulation Codes for Astrophysical Flows
NASA Astrophysics Data System (ADS)
Zingale, Michael; Almgren, Ann; Beckner, Vince; Bell, John; Friesen, Brian; Jacobs, Adam; Katz, Maximilian P.; Malone, Christopher; Nonaka, Andrew; Zhang, Weiqun
2017-01-01
Stellar explosions are multiphysics problems—modeling them requires the coordinated input of gravity solvers, reaction networks, radiation transport, and hydrodynamics together with microphysics recipes to describe the physics of matter under extreme conditions. Furthermore, these models involve following a wide range of spatial and temporal scales, which puts tough demands on simulation codes. We developed the codes Maestro and Castro to meet the computational challenges of these problems. Maestro uses a low Mach number formulation of the hydrodynamics to efficiently model convection. Castro solves the fully compressible radiation hydrodynamics equations to capture the explosive phases of stellar phenomena. Both codes are built upon the BoxLib adaptive mesh refinement library, which prepares them for next-generation exascale computers. Common microphysics shared between the codes allows us to transfer a problem from the low Mach number regime in Maestro to the explosive regime in Castro. Importantly, both codes are freely available (https://github.com/BoxLib-Codes). We will describe the design of the codes and some of their science applications, as well as future development directions.Support for development was provided by NSF award AST-1211563 and DOE/Office of Nuclear Physics grant DE-FG02-87ER40317 to Stony Brook and by the Applied Mathematics Program of the DOE Office of Advance Scientific Computing Research under US DOE contract DE-AC02-05CH11231 to LBNL.
Modeling Laser-Driven Laboratory Astrophysics Experiments Using the CRASH Code
NASA Astrophysics Data System (ADS)
Grosskopf, Michael; Keiter, P.; Kuranz, C. C.; Malamud, G.; Trantham, M.; Drake, R.
2013-06-01
Laser-driven, laboratory astrophysics experiments can provide important insight into the physical processes relevant to astrophysical systems. The radiation hydrodynamics code developed by the Center for Radiative Shock Hydrodynamics (CRASH) at the University of Michigan has been used to model experimental designs for high-energy-density laboratory astrophysics campaigns on OMEGA and other high-energy laser facilities. This code is an Eulerian, block-adaptive AMR hydrodynamics code with implicit multigroup radiation transport and electron heat conduction. The CRASH model has been used on many applications including: radiative shocks, Kelvin-Helmholtz and Rayleigh-Taylor experiments on the OMEGA laser; as well as laser-driven ablative plumes in experiments by the Astrophysical Collisionless Shocks Experiments with Lasers (ACSEL) collaboration. We report a series of results with the CRASH code in support of design work for upcoming high-energy-density physics experiments, as well as comparison between existing experimental data and simulation results. This work is funded by the Predictive Sciences Academic Alliances Program in NNSA-ASC via grant DEFC52- 08NA28616, by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, grant number DE-FG52-09NA29548, and by the National Laser User Facility Program, grant number DE-NA0000850.
Three-Dimensional Hydrodynamic Simulations of OMEGA Implosions
NASA Astrophysics Data System (ADS)
Igumenshchev, I. V.
2016-10-01
The effects of large-scale (with Legendre modes less than 30) asymmetries in OMEGA direct-drive implosions caused by laser illumination nonuniformities (beam-power imbalance and beam mispointing and mistiming) and target offset, mount, and layers nonuniformities were investigated using three-dimensional (3-D) hydrodynamic simulations. Simulations indicate that the performance degradation in cryogenic implosions is caused mainly by the target offsets ( 10 to 20 μm), beampower imbalance (σrms 10 %), and initial target asymmetry ( 5% ρRvariation), which distort implosion cores, resulting in a reduced hot-spot confinement and an increased residual kinetic energy of the stagnated target. The ion temperature inferred from the width of simulated neutron spectra are influenced by bulk fuel motion in the distorted hot spot and can result in up to 2-keV apparent temperature increase. Similar temperature variations along different lines of sight are observed. Simulated x-ray images of implosion cores in the 4- to 8-keV energy range show good agreement with experiments. Demonstrating hydrodynamic equivalence to ignition designs on OMEGA requires reducing large-scale target and laser-imposed nonuniformities, minimizing target offset, and employing high-efficient mid-adiabat (α = 4) implosion designs that mitigate cross-beam energy transfer (CBET) and suppress short-wavelength Rayleigh-Taylor growth. These simulations use a new low-noise 3-D Eulerian hydrodynamic code ASTER. Existing 3-D hydrodynamic codes for direct-drive implosions currently miss CBET and noise-free ray-trace laser deposition algorithms. ASTER overcomes these limitations using a simplified 3-D laser-deposition model, which includes CBET and is capable of simulating the effects of beam-power imbalance, beam mispointing, mistiming, and target offset. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
Simulations of Laboratory Astrophysics Experiments using the CRASH code
NASA Astrophysics Data System (ADS)
Trantham, Matthew; Kuranz, Carolyn; Fein, Jeff; Wan, Willow; Young, Rachel; Keiter, Paul; Drake, R. Paul
2015-11-01
Computer simulations can assist in the design and analysis of laboratory astrophysics experiments. The Center for Radiative Shock Hydrodynamics (CRASH) at the University of Michigan developed a code that has been used to design and analyze high-energy-density experiments on OMEGA, NIF, and other large laser facilities. This Eulerian code uses block-adaptive mesh refinement (AMR) with implicit multigroup radiation transport, electron heat conduction and laser ray tracing. This poster will demonstrate some of the experiments the CRASH code has helped design or analyze including: Kelvin-Helmholtz, Rayleigh-Taylor, magnetized flows, jets, and laser-produced plasmas. This work is funded by the following grants: DEFC52-08NA28616, DE-NA0001840, and DE-NA0002032.
NASA Astrophysics Data System (ADS)
Saenz, Juan; Grinstein, Fernando; Dolence, Joshua; Rauenzahn, Rick; Masser, Thomas; Francois, Marianne; LANL Team
2017-11-01
We report progress in evaluating an unsplit hydrodynamic solver being implemented in the radiation adaptive grid Eulerian (xRAGE) code, and compare to a split scheme. xRage is a Eulerian hydrodynamics code used for implicit large eddy simulations (ILES) of multi-material, multi-physics flows where low and high Mach number (Ma) processes and instabilities interact and co-exist. The hydrodynamic solver in xRAGE uses a directionally split, second order Godunov, finite volume (FV) scheme. However, a standard, unsplit, Godunov-type FV scheme with 2nd and 3rd order reconstruction options, low Ma correction and a variety of Riemann solvers has recently become available. To evaluate the hydrodynamic solvers for turbulent low Ma flows, we use simulations of the Taylor Green Vortex (TGV), where there is a transition to turbulence via vortex stretching and production of small-scale eddies. We also simulate a high-low Ma shock-tube flow, where a shock passing over a perturbed surface generates a baroclinic Richtmyer-Meshkov instability (RMI); after the shock has passed, the turbulence in the accelerated interface region resembles Rayleigh Taylor (RT) instability. We compare turbulence spectra and decay in simulated TGV flows, and we present progress in simulating the high-low Ma RMI-RT flow. LANL is operated by LANS LLC for the U.S. DOE NNSA under Contract No. DE-AC52-06NA25396.
A New Cell-Centered Implicit Numerical Scheme for Ions in the 2-D Axisymmetric Code Hall2de
NASA Technical Reports Server (NTRS)
Lopez Ortega, Alejandro; Mikellides, Ioannis G.
2014-01-01
We present a new algorithm in the Hall2De code to simulate the ion hydrodynamics in the acceleration channel and near plume regions of Hall-effect thrusters. This implementation constitutes an upgrade of the capabilities built in the Hall2De code. The equations of mass conservation and momentum for unmagnetized ions are solved using a conservative, finite-volume, cell-centered scheme on a magnetic-field-aligned grid. Major computational savings are achieved by making use of an implicit predictor/multi-corrector algorithm for time evolution. Inaccuracies in the prediction of the motion of low-energy ions in the near plume in hydrodynamics approaches are addressed by implementing a multi-fluid algorithm that tracks ions of different energies separately. A wide range of comparisons with measurements are performed to validate the new ion algorithms. Several numerical experiments with the location and value of the anomalous collision frequency are also presented. Differences in the plasma properties in the near-plume between the single fluid and multi-fluid approaches are discussed. We complete our validation by comparing predicted erosion rates at the channel walls of the thruster with measurements. Erosion rates predicted by the plasma properties obtained from simulations replicate accurately measured rates of erosion within the uncertainty range of the sputtering models employed.
NASA Astrophysics Data System (ADS)
Shvydky, A.; Radha, P. B.; Rosenberg, M. J.; Anderson, K. S.; Goncharov, V. N.; Marozas, J. A.; Marshall, F. J.; McKenty, P. W.; Regan, S. P.; Sangster, T. C.; Hohenberger, M.; di Nicola, J. M.; Koning, J. M.; Marinak, M. M.; Masse, L.; Karasik, M.
2017-10-01
Control of shell nonuniformities imprinted by the laser and amplified by hydrodynamic instabilities in the imploding target is critical for the success of direct-drive ignition at the National Ignition Facility (NIF). To measure a level of imprint and its reduction by the NIF smoothing by spectral dispersion (SSD), we performed experiments that employed flat CH foils driven with a single NIF beam with either no SSD or the NIF indirect-drive SSD applied to the laser pulse. Face-on x-ray radiography was used to measure optical depth variations, from which the amplitudes of the foil areal-density modulations were obtained. Results of 3-D, radiation-hydrodynamic code HYDRA simulations of the growth of the imprint-seeded perturbations are presented and compared with the experimental data. This work was supported by the U.S. Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract Number DE-AC52-07NA27344.
A hydrodynamic approach to cosmology - Methodology
NASA Technical Reports Server (NTRS)
Cen, Renyue
1992-01-01
The present study describes an accurate and efficient hydrodynamic code for evolving self-gravitating cosmological systems. The hydrodynamic code is a flux-based mesh code originally designed for engineering hydrodynamical applications. A variety of checks were performed which indicate that the resolution of the code is a few cells, providing accuracy for integral energy quantities in the present simulations of 1-3 percent over the whole runs. Six species (H I, H II, He I, He II, He III) are tracked separately, and relevant ionization and recombination processes, as well as line and continuum heating and cooling, are computed. The background radiation field is simultaneously determined in the range 1 eV to 100 keV, allowing for absorption, emission, and cosmological effects. It is shown how the inevitable numerical inaccuracies can be estimated and to some extent overcome.
Shadowfax: Moving mesh hydrodynamical integration code
NASA Astrophysics Data System (ADS)
Vandenbroucke, Bert
2016-05-01
Shadowfax simulates galaxy evolution. Written in object-oriented modular C++, it evolves a mixture of gas, subject to the laws of hydrodynamics and gravity, and any collisionless fluid only subject to gravity, such as cold dark matter or stars. For the hydrodynamical integration, it makes use of a (co-) moving Lagrangian mesh. The code has a 2D and 3D version, contains utility programs to generate initial conditions and visualize simulation snapshots, and its input/output is compatible with a number of other simulation codes, e.g. Gadget2 (ascl:0003.001) and GIZMO (ascl:1410.003).
WEC3: Wave Energy Converter Code Comparison Project: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Combourieu, Adrien; Lawson, Michael; Babarit, Aurelien
This paper describes the recently launched Wave Energy Converter Code Comparison (WEC3) project and present preliminary results from this effort. The objectives of WEC3 are to verify and validate numerical modelling tools that have been developed specifically to simulate wave energy conversion devices and to inform the upcoming IEA OES Annex VI Ocean Energy Modelling Verification and Validation project. WEC3 is divided into two phases. Phase 1 consists of a code-to-code verification and Phase II entails code-to-experiment validation. WEC3 focuses on mid-fidelity codes that simulate WECs using time-domain multibody dynamics methods to model device motions and hydrodynamic coefficients to modelmore » hydrodynamic forces. Consequently, high-fidelity numerical modelling tools, such as Navier-Stokes computational fluid dynamics simulation, and simple frequency domain modelling tools were not included in the WEC3 project.« less
CoCoNuT: General relativistic hydrodynamics code with dynamical space-time evolution
NASA Astrophysics Data System (ADS)
Dimmelmeier, Harald; Novak, Jérôme; Cerdá-Durán, Pablo
2012-02-01
CoCoNuT is a general relativistic hydrodynamics code with dynamical space-time evolution. The main aim of this numerical code is the study of several astrophysical scenarios in which general relativity can play an important role, namely the collapse of rapidly rotating stellar cores and the evolution of isolated neutron stars. The code has two flavors: CoCoA, the axisymmetric (2D) magnetized version, and CoCoNuT, the 3D non-magnetized version.
pF3D Simulations of SBS and SRS in NIF Hohlraum Experiments
NASA Astrophysics Data System (ADS)
Langer, Steven; Strozzi, David; Amendt, Peter; Chapman, Thomas; Hopkins, Laura; Kritcher, Andrea; Sepke, Scott
2016-10-01
We present simulations of stimulated Brillouin scattering (SBS) and stimulated Raman scattering (SRS) for NIF experiments using high foot pulses in cylindrical hohlraums and for low foot pulses in rugby-shaped hohlraums. We use pF3D, a massively-parallel, paraxial-envelope laser plasma interaction code, with plasma profiles obtained from the radiation-hydrodynamics codes Lasnex and HYDRA. We compare the simulations to experimental data for SBS and SRS power and spectrum. We also show simulated SRS and SBS intensities at the target chamber wall and report the fraction of the backscattered light that passes through and misses the lenses. Work performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344. Release number LLNL-ABS-697482.
NASA Astrophysics Data System (ADS)
Larmat, C. S.; Delorey, A.; Rougier, E.; Knight, E. E.; Steedman, D. W.; Bradley, C. R.
2017-12-01
This presentation reports numerical modeling efforts to improve knowledge of the processes that affect seismic wave generation and propagation from underground explosions, with a focus on Rg waves. The numerical model is based on the coupling of hydrodynamic simulation codes (Abaqus, CASH and HOSS), with a 3D full waveform propagation code, SPECFEM3D. Validation datasets are provided by the Source Physics Experiment (SPE) which is a series of highly instrumented chemical explosions at the Nevada National Security Site with yields from 100kg to 5000kg. A first series of explosions in a granite emplacement has just been completed and a second series in alluvium emplacement is planned for 2018. The long-term goal of this research is to review and improve current existing seismic sources models (e.g. Mueller & Murphy, 1971; Denny & Johnson, 1991) by providing first principles calculations provided by the coupled codes capability. The hydrodynamic codes, Abaqus, CASH and HOSS, model the shocked, hydrodynamic region via equations of state for the explosive, borehole stemming and jointed/weathered granite. A new material model for unconsolidated alluvium materials has been developed and validated with past nuclear explosions, including the 10 kT 1965 Merlin event (Perret, 1971) ; Perret and Bass, 1975). We use the efficient Spectral Element Method code, SPECFEM3D (e.g. Komatitsch, 1998; 2002), and Geologic Framework Models to model the evolution of wavefield as it propagates across 3D complex structures. The coupling interface is a series of grid points of the SEM mesh situated at the edge of the hydrodynamic code domain. We will present validation tests and waveforms modeled for several SPE tests which provide evidence that the damage processes happening in the vicinity of the explosions create secondary seismic sources. These sources interfere with the original explosion moment and reduces the apparent seismic moment at the origin of Rg waves up to 20%.
Simulations of Laboratory Astrophysics Experiments using the CRASH code
NASA Astrophysics Data System (ADS)
Trantham, Matthew; Kuranz, Carolyn; Manuel, Mario; Keiter, Paul; Drake, R. P.
2014-10-01
Computer simulations can assist in the design and analysis of laboratory astrophysics experiments. The Center for Radiative Shock Hydrodynamics (CRASH) at the University of Michigan developed a code that has been used to design and analyze high-energy-density experiments on OMEGA, NIF, and other large laser facilities. This Eulerian code uses block-adaptive mesh refinement (AMR) with implicit multigroup radiation transport, electron heat conduction and laser ray tracing. This poster/talk will demonstrate some of the experiments the CRASH code has helped design or analyze including: Kelvin-Helmholtz, Rayleigh-Taylor, imploding bubbles, and interacting jet experiments. This work is funded by the Predictive Sciences Academic Alliances Program in NNSA-ASC via Grant DEFC52-08NA28616, by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0001840, and by the National Laser User Facility Program, Grant Number DE-NA0000850.
CRASH: A BLOCK-ADAPTIVE-MESH CODE FOR RADIATIVE SHOCK HYDRODYNAMICS-IMPLEMENTATION AND VERIFICATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van der Holst, B.; Toth, G.; Sokolov, I. V.
We describe the Center for Radiative Shock Hydrodynamics (CRASH) code, a block-adaptive-mesh code for multi-material radiation hydrodynamics. The implementation solves the radiation diffusion model with a gray or multi-group method and uses a flux-limited diffusion approximation to recover the free-streaming limit. Electrons and ions are allowed to have different temperatures and we include flux-limited electron heat conduction. The radiation hydrodynamic equations are solved in the Eulerian frame by means of a conservative finite-volume discretization in either one-, two-, or three-dimensional slab geometry or in two-dimensional cylindrical symmetry. An operator-split method is used to solve these equations in three substeps: (1)more » an explicit step of a shock-capturing hydrodynamic solver; (2) a linear advection of the radiation in frequency-logarithm space; and (3) an implicit solution of the stiff radiation diffusion, heat conduction, and energy exchange. We present a suite of verification test problems to demonstrate the accuracy and performance of the algorithms. The applications are for astrophysics and laboratory astrophysics. The CRASH code is an extension of the Block-Adaptive Tree Solarwind Roe Upwind Scheme (BATS-R-US) code with a new radiation transfer and heat conduction library and equation-of-state and multi-group opacity solvers. Both CRASH and BATS-R-US are part of the publicly available Space Weather Modeling Framework.« less
A comparison of cosmological hydrodynamic codes
NASA Technical Reports Server (NTRS)
Kang, Hyesung; Ostriker, Jeremiah P.; Cen, Renyue; Ryu, Dongsu; Hernquist, Lars; Evrard, August E.; Bryan, Greg L.; Norman, Michael L.
1994-01-01
We present a detailed comparison of the simulation results of various hydrodynamic codes. Starting with identical initial conditions based on the cold dark matter scenario for the growth of structure, with parameters h = 0.5 Omega = Omega(sub b) = 1, and sigma(sub 8) = 1, we integrate from redshift z = 20 to z = O to determine the physical state within a representative volume of size L(exp 3) where L = 64 h(exp -1) Mpc. Five indenpendent codes are compared: three of them Eulerian mesh-based and two variants of the smooth particle hydrodynamics 'SPH' Lagrangian approach. The Eulerian codes were run at N(exp 3) = (32(exp 3), 64(exp 3), 128(exp 3), and 256(exp 3)) cells, the SPH codes at N(exp 3) = 32(exp 3) and 64(exp 3) particles. Results were then rebinned to a 16(exp 3) grid with the exception that the rebinned data should converge, by all techniques, to a common and correct result as N approaches infinity. We find that global averages of various physical quantities do, as expected, tend to converge in the rebinned model, but that uncertainites in even primitive quantities such as (T), (rho(exp 2))(exp 1/2) persists at the 3%-17% level achieve comparable and satisfactory accuracy for comparable computer time in their treatment of the high-density, high-temeprature regions as measured in the rebinned data; the variance among the five codes (at highest resolution) for the mean temperature (as weighted by rho(exp 2) is only 4.5%. Examined at high resolution we suspect that the density resolution is better in the SPH codes and the thermal accuracy in low-density regions better in the Eulerian codes. In the low-density, low-temperature regions the SPH codes have poor accuracy due to statiscal effects, and the Jameson code gives the temperatures which are too high, due to overuse of artificial viscosity in these high Mach number regions. Overall the comparison allows us to better estimate errors; it points to ways of improving this current generation ofhydrodynamic codes and of suiting their use to problems which exploit their best individual features.
The role of viscosity in TATB hot spot ignition
NASA Astrophysics Data System (ADS)
Fried, Laurence E.; Zepeda-Ruis, Luis; Howard, W. Michael; Najjar, Fady; Reaugh, John E.
2012-03-01
The role of dissipative effects, such as viscosity, in the ignition of high explosive pores is investigated using a coupled chemical, thermal, and hydrodynamic model. Chemical reactions are tracked with the Cheetah thermochemical code coupled to the ALE3D hydrodynamic code. We perform molecular dynamics simulations to determine the viscosity of liquid TATB. We also analyze shock wave experiments to obtain an estimate for the shock viscosity of TATB. Using the lower bound liquid-like viscosities, we find that the pore collapse is hydrodynamic in nature. Using the upper bound viscosity from shock wave experiments, we find that the pore collapse is closest to the viscous limit.
Modeling Laboratory Astrophysics Experiments using the CRASH code
NASA Astrophysics Data System (ADS)
Trantham, Matthew; Drake, R. P.; Grosskopf, Michael; Bauerle, Matthew; Kruanz, Carolyn; Keiter, Paul; Malamud, Guy; Crash Team
2013-10-01
The understanding of high energy density systems can be advanced by laboratory astrophysics experiments. Computer simulations can assist in the design and analysis of these experiments. The Center for Radiative Shock Hydrodynamics (CRASH) at the University of Michigan developed a code that has been used to design and analyze high-energy-density experiments on OMEGA, NIF, and other large laser facilities. This Eulerian code uses block-adaptive mesh refinement (AMR) with implicit multigroup radiation transport and electron heat conduction. This poster/talk will demonstrate some of the experiments the CRASH code has helped design or analyze including: Radiative shocks experiments, Kelvin-Helmholtz experiments, Rayleigh-Taylor experiments, plasma sheet, and interacting jets experiments. This work is funded by the Predictive Sciences Academic Alliances Program in NNSA-ASC via grant DEFC52- 08NA28616, by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, grant number DE-FG52-09NA29548, and by the National Laser User Facility Program, grant number DE-NA0000850.
The Monte Carlo photoionization and moving-mesh radiation hydrodynamics code CMACIONIZE
NASA Astrophysics Data System (ADS)
Vandenbroucke, B.; Wood, K.
2018-04-01
We present the public Monte Carlo photoionization and moving-mesh radiation hydrodynamics code CMACIONIZE, which can be used to simulate the self-consistent evolution of HII regions surrounding young O and B stars, or other sources of ionizing radiation. The code combines a Monte Carlo photoionization algorithm that uses a complex mix of hydrogen, helium and several coolants in order to self-consistently solve for the ionization and temperature balance at any given type, with a standard first order hydrodynamics scheme. The code can be run as a post-processing tool to get the line emission from an existing simulation snapshot, but can also be used to run full radiation hydrodynamical simulations. Both the radiation transfer and the hydrodynamics are implemented in a general way that is independent of the grid structure that is used to discretize the system, allowing it to be run both as a standard fixed grid code, but also as a moving-mesh code.
Multi-dimensional computer simulation of MHD combustor hydrodynamics
NASA Astrophysics Data System (ADS)
Berry, G. F.; Chang, S. L.; Lottes, S. A.; Rimkus, W. A.
1991-04-01
Argonne National Laboratory is investigating the nonreacting jet gas mixing patterns in an MHD second stage combustor by using a 2-D multiphase hydrodynamics computer program and a 3-D single phase hydrodynamics computer program. The computer simulations are intended to enhance the understanding of flow and mixing patterns in the combustor, which in turn may lead to improvement of the downstream MHD channel performance. A 2-D steady state computer model, based on mass and momentum conservation laws for multiple gas species, is used to simulate the hydrodynamics of the combustor in which a jet of oxidizer is injected into an unconfined cross stream gas flow. A 3-D code is used to examine the effects of the side walls and the distributed jet flows on the non-reacting jet gas mixing patterns. The code solves the conservation equations of mass, momentum, and energy, and a transport equation of a turbulence parameter and allows permeable surfaces to be specified for any computational cell.
CRKSPH: A new meshfree hydrodynamics method with applications to astrophysics
NASA Astrophysics Data System (ADS)
Owen, John Michael; Raskin, Cody; Frontiere, Nicholas
2018-01-01
The study of astrophysical phenomena such as supernovae, accretion disks, galaxy formation, and large-scale structure formation requires computational modeling of, at a minimum, hydrodynamics and gravity. Developing numerical methods appropriate for these kinds of problems requires a number of properties: shock-capturing hydrodynamics benefits from rigorous conservation of invariants such as total energy, linear momentum, and mass; lack of obvious symmetries or a simplified spatial geometry to exploit necessitate 3D methods that ideally are Galilean invariant; the dynamic range of mass and spatial scales that need to be resolved can span many orders of magnitude, requiring methods that are highly adaptable in their space and time resolution. We have developed a new Lagrangian meshfree hydrodynamics method called Conservative Reproducing Kernel Smoothed Particle Hydrodynamics, or CRKSPH, in order to meet these goals. CRKSPH is a conservative generalization of the meshfree reproducing kernel method, combining the high-order accuracy of reproducing kernels with the explicit conservation of mass, linear momentum, and energy necessary to study shock-driven hydrodynamics in compressible fluids. CRKSPH's Lagrangian, particle-like nature makes it simple to combine with well-known N-body methods for modeling gravitation, similar to the older Smoothed Particle Hydrodynamics (SPH) method. Indeed, CRKSPH can be substituted for SPH in existing SPH codes due to these similarities. In comparison to SPH, CRKSPH is able to achieve substantially higher accuracy for a given number of points due to the explicitly consistent (and higher-order) interpolation theory of reproducing kernels, while maintaining the same conservation principles (and therefore applicability) as SPH. There are currently two coded implementations of CRKSPH available: one in the open-source research code Spheral, and the other in the high-performance cosmological code HACC. Using these codes we have applied CRKSPH to a number of astrophysical scenarios, such as rotating gaseous disks, supernova remnants, and large-scale cosmological structure formation. In this poster we present an overview of CRKSPH and show examples of these astrophysical applications.
The Role of Viscosity in TATB Hot Spot Ignition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fried, L E; Zepeda-Ruis, L; Howard, W M
2011-08-02
The role of dissipative effects, such as viscosity, in the ignition of high explosive pores is investigated using a coupled chemical, thermal, and hydrodynamic model. Chemical reactions are tracked with the Cheetah thermochemical code coupled to the ALE3D hydrodynamic code. We perform molecular dynamics simulations to determine the viscosity of liquid TATB. We also analyze shock wave experiments to obtain an estimate for the shock viscosity of TATB. Using the lower bound liquid-like viscosities, we find that the pore collapse is hydrodynamic in nature. Using the upper bound viscosity from shock wave experiments, we find that the pore collapse ismore » closest to the viscous limit.« less
The environmental fluid dynamics code (EFDC) was used to study the three dimensional (3D) circulation, water quality, and ecology in Narragansett Bay, RI. Predictions of the Bay hydrodynamics included the behavior of the water surface elevation, currents, salinity, and temperatur...
Anisotropic hydrodynamics for conformal Gubser flow
NASA Astrophysics Data System (ADS)
Nopoush, Mohammad; Ryblewski, Radoslaw; Strickland, Michael
2015-02-01
We derive the equations of motion for a system undergoing boost-invariant longitudinal and azimuthally symmetric transverse "Gubser flow" using leading-order anisotropic hydrodynamics. This is accomplished by assuming that the one-particle distribution function is ellipsoidally symmetric in the momenta conjugate to the de Sitter coordinates used to parametrize the Gubser flow. We then demonstrate that the S O (3 )q symmetry in de Sitter space further constrains the anisotropy tensor to be of spheroidal form. The resulting system of two coupled ordinary differential equations for the de Sitter-space momentum scale and anisotropy parameter are solved numerically and compared to a recently obtained exact solution of the relaxation-time-approximation Boltzmann equation subject to the same flow. We show that anisotropic hydrodynamics describes the spatiotemporal evolution of the system better than all currently known dissipative hydrodynamics approaches. In addition, we prove that anisotropic hydrodynamics gives the exact solution of the relaxation-time approximation Boltzmann equation in the ideal, η /s →0 , and free-streaming, η /s →∞, limits.
Mixing-model Sensitivity to Initial Conditions in Hydrodynamic Predictions
NASA Astrophysics Data System (ADS)
Bigelow, Josiah; Silva, Humberto; Truman, C. Randall; Vorobieff, Peter
2017-11-01
Amagat and Dalton mixing-models were studied to compare their thermodynamic prediction of shock states. Numerical simulations with the Sandia National Laboratories shock hydrodynamic code CTH modeled University of New Mexico (UNM) shock tube laboratory experiments shocking a 1:1 molar mixture of helium (He) and sulfur hexafluoride (SF6) . Five input parameters were varied for sensitivity analysis: driver section pressure, driver section density, test section pressure, test section density, and mixture ratio (mole fraction). We show via incremental Latin hypercube sampling (LHS) analysis that significant differences exist between Amagat and Dalton mixing-model predictions. The differences observed in predicted shock speeds, temperatures, and pressures grow more pronounced with higher shock speeds. Supported by NNSA Grant DE-0002913.
Evaluation of Multi-Vessel Ship Motion Prediction Codes
2008-09-01
each other, and accounting for the hydrodynamic effects between the hulls. The major differences in the capabilities of the codes were in the non...Figure 28. Effects of irregular frequency smoothing has on the resultant pitch transfer function for three meter separation, 135 degree heading, and...and accounting for the hydrodynamic effects between the hulls. The major differences in the capabilities of the codes were in the non-hydrodynamic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molnar, Denes
2016-05-25
The Section below summarizes research activities and achievements during the fifth (last) year of the PI’s Early Career Research Project (ECRP). Unlike the first four years of the project, the last year was not funded under the American Recovery and Reinvestment Act (ARRA). The ECRP advanced two main areas: i) radiative 3 ↔ 2 radiative transport, via development of a new computer code MPC/Grid that solves the Boltzmann transport equation in full 6+1D (3X+3V+time); and ii) application of relativistic hydrodynamics, via development of a self-consistent framework to convert viscous fluids to particles. In Year 5 we finalized thermalization studies withmore » radiative gg ↔ ggg transport (Sec. 1.1.1) and used nonlinear covariant transport to assess the accuracy of fluid-to-particle conversion models (Sec. 1.1.2), calculated observables with self-consistent fluid-to-particle conversion from realistic viscous hydrodynamic evolution (Secs. 1.2.1 and 1.2.2), extended the covariant energy loss formulation to heavy quarks (Sec. 1.4.1) and studied energy loss in small systems (Sec. 1.4.2), and also investigated how much of the elliptic flow could have non-hydrodynamic origin (Sec 1.3). Years 1-4 of the ECRP were ARRA-funded and, therefore, they have their own report document ’Final Technical Report for Years 1-4 of the Early Career Research Project “Viscosity and equation of state of hot and dense QCD matter”’ (same award number DE-SC0004035). The PI’s group was also part of the DOE JET Topical Collaboration, a multi-institution project that overlapped in time significantly with the ECRP. Purdue achievements as part of the JET Top- ical Collaboration are in a separate report “Final Technical Report summarizing Purdue research activities as part of the DOE JET Topical Collaboration” (award DE-SC0004077).« less
NASA Astrophysics Data System (ADS)
Sandalski, Stou
Smooth particle hydrodynamics is an efficient method for modeling the dynamics of fluids. It is commonly used to simulate astrophysical processes such as binary mergers. We present a newly developed GPU accelerated smooth particle hydrodynamics code for astrophysical simulations. The code is named
Parallel processing a real code: A case history
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandell, D.A.; Trease, H.E.
1988-01-01
A three-dimensional, time-dependent Free-Lagrange hydrodynamics code has been multitasked and autotasked on a Cray X-MP/416. The multitasking was done by using the Los Alamos Multitasking Control Library, which is a superset of the Cray multitasking library. Autotasking is done by using constructs which are only comment cards if the source code is not run through a preprocessor. The 3-D algorithm has presented a number of problems that simpler algorithms, such as 1-D hydrodynamics, did not exhibit. Problems in converting the serial code, originally written for a Cray 1, to a multitasking code are discussed, Autotasking of a rewritten version ofmore » the code is discussed. Timing results for subroutines and hot spots in the serial code are presented and suggestions for additional tools and debugging aids are given. Theoretical speedup results obtained from Amdahl's law and actual speedup results obtained on a dedicated machine are presented. Suggestions for designing large parallel codes are given. 8 refs., 13 figs.« less
NASA Astrophysics Data System (ADS)
Young, Christopher; Meezan, Nathan; Landen, Otto
2017-10-01
A cylindrical National Ignition Facility hohlraum irradiated exclusively by NOVA-like outer quads (44 .5° and 50° beams) is proposed to minimize laser plasma interaction (LPI) losses and avoid problems with propagating the inner (23 .5° and 30°) beams. Symmetry and drive are controlled by shortening the hohlraum, using a smaller laser entrance hole (LEH), beam phasing the 44 .5° and 50° beams, and correcting the remaining P4 asymmetry with a capsule shim. Ensembles of time-resolved view factor simulations help narrow the design space of the new configuration, with fine tuning provided by the radiation-hydrodynamic code HYDRA. Prepared by LLNL under Contract DE-AC52-07NA27344.
Coupling hydrodynamic and wave propagation modeling for waveform modeling of SPE.
NASA Astrophysics Data System (ADS)
Larmat, C. S.; Steedman, D. W.; Rougier, E.; Delorey, A.; Bradley, C. R.
2015-12-01
The goal of the Source Physics Experiment (SPE) is to bring empirical and theoretical advances to the problem of detection and identification of underground nuclear explosions. This paper presents effort to improve knowledge of the processes that affect seismic wave propagation from the hydrodynamic/plastic source region to the elastic/anelastic far field thanks to numerical modeling. The challenge is to couple the prompt processes that take place in the near source region to the ones taking place later in time due to wave propagation in complex 3D geologic environments. In this paper, we report on results of first-principles simulations coupling hydrodynamic simulation codes (Abaqus and CASH), with a 3D full waveform propagation code, SPECFEM3D. Abaqus and CASH model the shocked, hydrodynamic region via equations of state for the explosive, borehole stemming and jointed/weathered granite. LANL has been recently employing a Coupled Euler-Lagrange (CEL) modeling capability. This has allowed the testing of a new phenomenological model for modeling stored shear energy in jointed material. This unique modeling capability has enabled highfidelity modeling of the explosive, the weak grout-filled borehole, as well as the surrounding jointed rock. SPECFEM3D is based on the Spectral Element Method, a direct numerical method for full waveform modeling with mathematical accuracy (e.g. Komatitsch, 1998, 2002) thanks to its use of the weak formulation of the wave equation and of high-order polynomial functions. The coupling interface is a series of grid points of the SEM mesh situated at the edge of the hydrodynamic code domain. Displacement time series at these points are computed from output of CASH or Abaqus (by interpolation if needed) and fed into the time marching scheme of SPECFEM3D. We will present validation tests and waveforms modeled for several SPE tests conducted so far, with a special focus on effect of the local topography.
NASA Astrophysics Data System (ADS)
Colvin, Jeff; Larsen, Jon
2013-11-01
Acknowledgements; 1. Extreme environments: what, where, how; 2. Properties of dense and classical plasmas; 3. Laser energy absorption in matter; 4. Hydrodynamic motion; 5. Shocks; 6. Equation of state; 7. Ionization; 8. Thermal energy transport; 9. Radiation energy transport; 10. Magnetohydrodynamics; 11. Considerations for constructing radiation-hydrodynamics computer codes; 12. Numerical simulations; Appendix: units and constants, glossary of symbols; References; Bibliography; Index.
CMacIonize: Monte Carlo photoionisation and moving-mesh radiation hydrodynamics
NASA Astrophysics Data System (ADS)
Vandenbroucke, Bert; Wood, Kenneth
2018-02-01
CMacIonize simulates the self-consistent evolution of HII regions surrounding young O and B stars, or other sources of ionizing radiation. The code combines a Monte Carlo photoionization algorithm that uses a complex mix of hydrogen, helium and several coolants in order to self-consistently solve for the ionization and temperature balance at any given time, with a standard first order hydrodynamics scheme. The code can be run as a post-processing tool to get the line emission from an existing simulation snapshot, but can also be used to run full radiation hydrodynamical simulations. Both the radiation transfer and the hydrodynamics are implemented in a general way that is independent of the grid structure that is used to discretize the system, allowing it to be run both as a standard fixed grid code and also as a moving-mesh code.
Blast Fragmentation Modeling and Analysis
2010-10-31
weapons device containing a multiphase blast explosive (MBX). 1. INTRODUCTION The ARL Survivability Lethality and Analysis Directorate (SLAD) is...velocity. In order to simulate the highly complex phenomenon, the exploding cylinder is modeled with the hydrodynamics code ALE3D , an arbitrary...Lagrangian-Eulerian multiphysics code, developed at Lawrence Livermore National Laboratory. ALE3D includes physical properties, constitutive models for
Assessing the Effects of Data Compression in Simulations Using Physically Motivated Metrics
Laney, Daniel; Langer, Steven; Weber, Christopher; ...
2014-01-01
This paper examines whether lossy compression can be used effectively in physics simulations as a possible strategy to combat the expected data-movement bottleneck in future high performance computing architectures. We show that, for the codes and simulations we tested, compression levels of 3–5X can be applied without causing significant changes to important physical quantities. Rather than applying signal processing error metrics, we utilize physics-based metrics appropriate for each code to assess the impact of compression. We evaluate three different simulation codes: a Lagrangian shock-hydrodynamics code, an Eulerian higher-order hydrodynamics turbulence modeling code, and an Eulerian coupled laser-plasma interaction code. Wemore » compress relevant quantities after each time-step to approximate the effects of tightly coupled compression and study the compression rates to estimate memory and disk-bandwidth reduction. We find that the error characteristics of compression algorithms must be carefully considered in the context of the underlying physics being modeled.« less
Smoothed Particle Hydrodynamic Simulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
2016-10-05
This code is a highly modular framework for developing smoothed particle hydrodynamic (SPH) simulations running on parallel platforms. The compartmentalization of the code allows for rapid development of new SPH applications and modifications of existing algorithms. The compartmentalization also allows changes in one part of the code used by many applications to instantly be made available to all applications.
Progenitors of Core-Collapse Supernovae
NASA Astrophysics Data System (ADS)
Hirschi, R.; Arnett, D.; Cristini, A.; Georgy, C.; Meakin, C.; Walkington, I.
2017-02-01
Massive stars have a strong impact on their surroundings, in particular when they produce a core-collapse supernova at the end of their evolution. In these proceedings, we review the general evolution of massive stars and their properties at collapse as well as the transition between massive and intermediate-mass stars. We also summarise the effects of metallicity and rotation. We then discuss some of the major uncertainties in the modelling of massive stars, with a particular emphasis on the treatment of convection in 1D stellar evolution codes. Finally, we present new 3D hydrodynamic simulations of convection in carbon burning and list key points to take from 3D hydrodynamic studies for the development of new prescriptions for convective boundary mixing in 1D stellar evolution codes.
Hydrodynamic Modeling of the Deep Impact Mission into Comet Tempel 1
NASA Astrophysics Data System (ADS)
Sorli, Kya; Remington, Tané; Bruck Syal, Megan
2018-01-01
Kinetic impact is one of the primary strategies to deflect hazardous objects off of an Earth-impacting trajectory. The only test of a small-body impact is the 2005 Deep Impact mission into comet Tempel 1, where a 366-kg mass impactor collided at ~10 km/s into the comet, liberating an enormous amount of vapor and ejecta. Code comparisons with observations of the event represent an important source of new information about the initial conditions of small bodies and an extraordinary opportunity to test our simulation capabilities on a rare, full-scale experiment. Using the Adaptive Smoothed Particle Hydrodynamics (ASPH) code, Spheral, we explore how variations in target material properties such as strength, composition, porosity, and layering affect impact results, in order to best match the observed crater size and ejecta evolution. Benchmarking against this unique small-body experiment provides an enhanced understanding of our ability to simulate asteroid or comet response to future deflection missions. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-739336-DRAFT.
Shear-Flow Instability Saturation by Stable Modes: Hydrodynamics and Gyrokinetics
NASA Astrophysics Data System (ADS)
Fraser, Adrian; Pueschel, M. J.; Terry, P. W.; Zweibel, E. G.
2017-10-01
We present simulations of shear-driven instabilities, focusing on the impact of nonlinearly excited, large-scale, linearly stable modes on the nonlinear cascade, momentum transport, and secondary instabilities. Stable modes, which have previously been shown to significantly affect instability saturation [Fraser et al. PoP 2017], are investigated in a collisionless, gyrokinetic, periodic zonal flow using the
NASA Astrophysics Data System (ADS)
Ma, K. H.; Lefevre, H. J.; Belancourt, P. X.; MacDonald, M. J.; Doeppner, T.; Keiter, P. A.; Kuranz, C. C.; Johnsen, E.
2017-10-01
Recent experiments at the National Ignition Facility studied the effect of radiation on shock-driven hydrodynamic instability growth. X-ray radiography images from these experiments indicate that perturbation growth is lower in highly radiative shocks compared to shocks with negligible radiation flux. The reduction in instability growth is attributed to ablation from higher temperatures in the foam for highly radiative shocks. The proposed design implements the X-ray Thomson Scattering (XRTS) technique in the radiative shock tube platform to measure electron temperatures and densities in the shocked foam. We model these experiments with CRASH, an Eulerian radiation hydrodynamics code with block-adaptive mesh refinement, multi-group radiation transport and electron heat conduction. Simulations are presented with SiO2 and carbon foams for both the high temperature, radiative shock and the low-temperature, hydrodynamic shock cases. Calculations from CRASH give estimations for shock speed, electron temperature, effective ionization, and other quantities necessary for designing the XRTS diagnostic measurement. This work is funded by the LLNL under subcontract B614207, and was performed under the auspices of the U.S. DOE by LLNL under Contract No. DE-AC52-07NA27344.
Shaped Charge Jet Penetration of Discontinuous Media
1977-07-01
operational at the Ballistic1Research Laboratory. These codes are OIL, 1 TOIL, 2 DORF, 3 and HELP,4 ,5 which are Eulerian formulated, and HEMP ,6 which...ELastic Plastic ) is a FORTRAN code developed by Systems, Science and Software, Inc. It evolved from three major hydrodynamic codes previously developed...introduced into the treatment of moving surfaces. The HELP code, using the von Mises yield condition, treats materials as being elastic- plastic . The input for
TORUS: Radiation transport and hydrodynamics code
NASA Astrophysics Data System (ADS)
Harries, Tim
2014-04-01
TORUS is a flexible radiation transfer and radiation-hydrodynamics code. The code has a basic infrastructure that includes the AMR mesh scheme that is used by several physics modules including atomic line transfer in a moving medium, molecular line transfer, photoionization, radiation hydrodynamics and radiative equilibrium. TORUS is useful for a variety of problems, including magnetospheric accretion onto T Tauri stars, spiral nebulae around Wolf-Rayet stars, discs around Herbig AeBe stars, structured winds of O supergiants and Raman-scattered line formation in symbiotic binaries, and dust emission and molecular line formation in star forming clusters. The code is written in Fortran 2003 and is compiled using a standard Gnu makefile. The code is parallelized using both MPI and OMP, and can use these parallel sections either separately or in a hybrid mode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prasad, M.K.; Kershaw, D.S.; Shaw, M.J.
The authors present detailed features of the ICF3D hydrodynamics code used for inertial fusion simulations. This code is intended to be a state-of-the-art upgrade of the well-known fluid code, LASNEX. ICF3D employs discontinuous finite elements on a discrete unstructured mesh consisting of a variety of 3D polyhedra including tetrahedra, prisms, and hexahedra. The authors discussed details of how the ROE-averaged second-order convection was applied on the discrete elements, and how the C++ coding interface has helped to simplify implementing the many physics and numerics modules within the code package. The author emphasized the virtues of object-oriented design in large scalemore » projects such as ICF3D.« less
Statistical Relations for Yield Degradation in Inertial Confinement Fusion
NASA Astrophysics Data System (ADS)
Woo, K. M.; Betti, R.; Patel, D.; Gopalaswamy, V.
2017-10-01
In inertial confinement fusion (ICF), the yield-over-clean (YOC) is a quantity commonly used to assess the performance of an implosion with respect to the degradation caused by asymmetries. The YOC also determines the Lawson parameter used to identify the onset of ignition and the level of alpha heating in ICF implosions. In this work, we show that the YOC is a unique function of the residual kinetic energy in the compressed shell (with respect to the 1-D case) regardless of the asymmetry spectrum. This result is derived using a simple model of the deceleration phase as well as through an extensive set of 3-D radiation-hydrodynamics simulations using the code DEC3D. The latter has been recently upgraded to include a 3-D spherical moving mesh, the HYPRE solver for 3-D radiation transport and piecewise-parabolic method for robust shock-capturing hydrodynamic simulations. DEC3D is used to build a synthetic single-mode database to study the behavior of yield degradation caused by Rayleigh-Taylor instabilities in the deceleration phase. The relation between YOC and residual kinetic energy is compared with the result in an adiabatic implosion model. The statistical expression of YOC is also applied to the ignition criterion in the presence of multidimensional nonuniformities. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
General Relativistic Smoothed Particle Hydrodynamics code developments: A progress report
NASA Astrophysics Data System (ADS)
Faber, Joshua; Silberman, Zachary; Rizzo, Monica
2017-01-01
We report on our progress in developing a new general relativistic Smoothed Particle Hydrodynamics (SPH) code, which will be appropriate for studying the properties of accretion disks around black holes as well as compact object binary mergers and their ejecta. We will discuss in turn the relativistic formalisms being used to handle the evolution, our techniques for dealing with conservative and primitive variables, as well as those used to ensure proper conservation of various physical quantities. Code tests and performance metrics will be discussed, as will the prospects for including smoothed particle hydrodynamics codes within other numerical relativity codebases, particularly the publicly available Einstein Toolkit. We acknowledge support from NSF award ACI-1550436 and an internal RIT D-RIG grant.
Experiences and results multitasking a hydrodynamics code on global and local memory machines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandell, D.
1987-01-01
A one-dimensional, time-dependent Lagrangian hydrodynamics code using a Godunov solution method has been multitasked for the Cray X-MP/48, the Intel iPSC hypercube, the Alliant FX series and the IBM RP3 computers. Actual multitasking results have been obtained for the Cray, Intel and Alliant computers and simulated results were obtained for the Cray and RP3 machines. The differences in the methods required to multitask on each of the machines is discussed. Results are presented for a sample problem involving a shock wave moving down a channel. Comparisons are made between theoretical speedups, predicted by Amdahl's law, and the actual speedups obtained.more » The problems of debugging on the different machines are also described.« less
GIZMO: Multi-method magneto-hydrodynamics+gravity code
NASA Astrophysics Data System (ADS)
Hopkins, Philip F.
2014-10-01
GIZMO is a flexible, multi-method magneto-hydrodynamics+gravity code that solves the hydrodynamic equations using a variety of different methods. It introduces new Lagrangian Godunov-type methods that allow solving the fluid equations with a moving particle distribution that is automatically adaptive in resolution and avoids the advection errors, angular momentum conservation errors, and excessive diffusion problems that seriously limit the applicability of “adaptive mesh” (AMR) codes, while simultaneously avoiding the low-order errors inherent to simpler methods like smoothed-particle hydrodynamics (SPH). GIZMO also allows the use of SPH either in “traditional” form or “modern” (more accurate) forms, or use of a mesh. Self-gravity is solved quickly with a BH-Tree (optionally a hybrid PM-Tree for periodic boundaries) and on-the-fly adaptive gravitational softenings. The code is descended from P-GADGET, itself descended from GADGET-2 (ascl:0003.001), and many of the naming conventions remain (for the sake of compatibility with the large library of GADGET work and analysis software).
Prototype Mixed Finite Element Hydrodynamics Capability in ARES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rieben, R N
This document describes work on a prototype Mixed Finite Element Method (MFEM) hydrodynamics algorithm in the ARES code, and its application to a set of standard test problems. This work is motivated by the need for improvements to the algorithms used in the Lagrange hydrodynamics step to make them more robust. We begin by identifying the outstanding issues with traditional numerical hydrodynamics algorithms followed by a description of the proposed method and how it may address several of these longstanding issues. We give a theoretical overview of the proposed MFEM algorithm as well as a summary of the coding additionsmore » and modifications that were made to add this capability to the ARES code. We present results obtained with the new method on a set of canonical hydrodynamics test problems and demonstrate significant improvement in comparison to results obtained with traditional methods. We conclude with a summary of the issues still at hand and motivate the need for continued research to develop the proposed method into maturity.« less
Using Pulsed Power for Hydrodynamic Code Validation
2001-06-01
Air Force Research Laboratory ( AFRL ). A...bank at the Air Force Research Laboratory ( AFRL ). A cylindrical aluminum liner that is magnetically imploded onto a central target by self-induced...James Degnan, George Kiuttu Air Force Research Laboratory Albuquerque, NM 87117 Abstract As part of ongoing hydrodynamic code
NASA Astrophysics Data System (ADS)
Angulo, A. A.; Kuranz, C. C.; Drake, R. P.; Huntington, C. M.; Park, H.-S.; Remington, B. A.; Kalantar, D.; MacLaren, S.; Raman, K.; Miles, A.; Trantham, Matthew; Kline, J. L.; Flippo, K.; Doss, F. W.; Shvarts, D.
2016-10-01
This poster will describe simulations based on results from ongoing laboratory astrophysics experiments at the National Ignition Facility (NIF) relevant to the effects of radiative shock on hydrodynamically unstable surfaces. The experiments performed on NIF uniquely provide the necessary conditions required to emulate radiative shock that occurs in astrophysical systems. The core-collapse explosions of red supergiant stars is such an example wherein the interaction between the supernova ejecta and the circumstellar medium creates a region susceptible to Rayleigh-Taylor (R-T) instabilities. Radiative and nonradiative experiments were performed to show that R-T growth should be reduced by the effects of the radiative shocks that occur during this core-collapse. Simulations were performed using the radiation hydrodynamics code Hyades using the experimental conditions to find the mean interface acceleration of the instability and then further analyzed in the buoyancy drag model to observe how the material expansion contributes to the mix-layer growth. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas under Grant Number DE-FG52-09NA29548.
BEARCLAW: Boundary Embedded Adaptive Refinement Conservation LAW package
NASA Astrophysics Data System (ADS)
Mitran, Sorin
2011-04-01
The BEARCLAW package is a multidimensional, Eulerian AMR-capable computational code written in Fortran to solve hyperbolic systems for astrophysical applications. It is part of AstroBEAR, a hydrodynamic & magnetohydrodynamic code environment designed for a variety of astrophysical applications which allows simulations in 2, 2.5 (i.e., cylindrical), and 3 dimensions, in either cartesian or curvilinear coordinates.
Update on 2-D OMEGA Capsule Implosions
NASA Astrophysics Data System (ADS)
Bradley, Paul
2017-10-01
We have an upgraded laser energy deposition package in our AMR-Eulerian radiation-hydrodynamic code called RAGE. As part of our validation effort, we ran 2-D simulations for a series of OMEGA direct drive implosion capsules that have shell thickness ranging from 7.2 to 29.3 μm and different gas fills. These simulations include the effect of surface roughness, laser spot non-uniformity, the mounting stalk, and the glue spot. We examined the sensitivity of our simulated results to mesh resolution and mix model. Our simulated results compare well to the experimental yield, ion temperature, burn width, and x-ray size data. Work performed by Los Alamos National Laboratory under contract DE-AC52-06NA25396 for the National Nuclear Security Administration of the U.S. Department of Energy.
Computer modeling and simulation in inertial confinement fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCrory, R.L.; Verdon, C.P.
1989-03-01
The complex hydrodynamic and transport processes associated with the implosion of an inertial confinement fusion (ICF) pellet place considerable demands on numerical simulation programs. Processes associated with implosion can usually be described using relatively simple models, but their complex interplay requires that programs model most of the relevant physical phenomena accurately. Most hydrodynamic codes used in ICF incorporate a one-fluid, two-temperature model. Electrons and ions are assumed to flow as one fluid (no charge separation). Due to the relatively weak coupling between the ions and electrons, each species is treated separately in terms of its temperature. In this paper wemore » describe some of the major components associated with an ICF hydrodynamics simulation code. To serve as an example we draw heavily on a two-dimensional Lagrangian hydrodynamic code (ORCHID) written at the University of Rochester's Laboratory for Laser Energetics. 46 refs., 19 figs., 1 tab.« less
X-Ray Radiography of Laser-Driven Shocks for Inertial Confinement Fusion
NASA Astrophysics Data System (ADS)
Kar, A.; Radha, P. B.; Edgell, D. H.; Hu, S. X.; Boehly, T. R.; Goncharov, V. N.; Regan, S. P.; Shvydky, A.
2017-10-01
Side-on x-ray radiography of shock waves transiting through the planar plastic ablator and cryogenic fuel layer will be used to study shock timing, shock coalescence, shock breakout, and hydrodynamic mixing at the ablator-fuel interface. The injection of ablator material into the fuel can potentially compromise implosion target performance. The difference in refractive indices of the ablator and the fuel can be exploited to image shocks transiting the interface. An experiment to probe the ablator-fuel interface and a postprocessor to the hydrodynamic code DRACO that uses refraction enhanced imaging to view shocks are presented. The advantages of this technique to view shocks are explored and additional applications such as viewing the spatial location of multiple shocks, or the evolution of nonuniformity on shock fronts are discussed. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
NASA Astrophysics Data System (ADS)
Tóth, Gábor; Keppens, Rony
2012-07-01
The Versatile Advection Code (VAC) is a freely available general hydrodynamic and magnetohydrodynamic simulation software that works in 1, 2 or 3 dimensions on Cartesian and logically Cartesian grids. VAC runs on any Unix/Linux system with a Fortran 90 (or 77) compiler and Perl interpreter. VAC can run on parallel machines using either the Message Passing Interface (MPI) library or a High Performance Fortran (HPF) compiler.
NASA Astrophysics Data System (ADS)
Larmat, C. S.; Rougier, E.; Delorey, A.; Steedman, D. W.; Bradley, C. R.
2016-12-01
The goal of the Source Physics Experiment (SPE) is to bring empirical and theoretical advances to the problem of detection and identification of underground nuclear explosions. For this, the SPE program includes a strong modeling effort based on first principles calculations with the challenge to capture both the source and near-source processes and those taking place later in time as seismic waves propagate within complex 3D geologic environments. In this paper, we report on results of modeling that uses hydrodynamic simulation codes (Abaqus and CASH) coupled with a 3D full waveform propagation code, SPECFEM3D. For modeling the near source region, we employ a fully-coupled Euler-Lagrange (CEL) modeling capability with a new continuum-based visco-plastic fracture model for simulation of damage processes, called AZ_Frac. These capabilities produce high-fidelity models of various factors believed to be key in the generation of seismic waves: the explosion dynamics, a weak grout-filled borehole, the surrounding jointed rock, and damage creation and deformations happening around the source and the free surface. SPECFEM3D, based on the Spectral Element Method (SEM) is a direct numerical method for full wave modeling with mathematical accuracy. The coupling interface consists of a series of grid points of the SEM mesh situated inside of the hydrodynamic code's domain. Displacement time series at these points are computed using output data from CASH or Abaqus (by interpolation if needed) and fed into the time marching scheme of SPECFEM3D. We will present validation tests with the Sharpe's model and comparisons of waveforms modeled with Rg waves (2-8Hz) that were recorded up to 2 km for SPE. We especially show effects of the local topography, velocity structure and spallation. Our models predict smaller amplitudes of Rg waves for the first five SPE shots compared to pure elastic models such as Denny &Johnson (1991).
pF3D Simulations of Large Outer-Beam Brillouin Scattering from NIF Rugby Hohlraums
NASA Astrophysics Data System (ADS)
Langer, Steven; Strozzi, David; Chapman, Thomas; Amendt, Peter
2015-11-01
We assess the cause of large outer-beam stimulated Brillouin scattering (SBS) in a NIF shot with a rugby-shaped hohlraum, which has less wall surface loss and thus higher x-ray drive than a cylindrical hohlraum of the same radius. This shot differed from a prior rugby shot with low SBS in three ways: outer beam pointing, split-pointing of the four beams within each outer-beam quadruplet, and a small amount of neon added to the hohlraum helium fill gas. We use pF3D, a massively-parallel, paraxial-envelope laser plasma interaction code, with plasma profiles from the radiation-hydrodynamics code Lasnex. We determine which change between the two shots increased the SBS by adding them one at a time to the simulations. We compare the simulations to experimental data for total SBS power, its spatial distribution at the lens, and the SBS spectrum. For each shot, we use profiles from Lasnex simulations with and without a model for mix at the hohlraum wall-gas interface. Work performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344. Release number LLNL-ABS-674893.
NASA Technical Reports Server (NTRS)
Myhill, Elizabeth A.; Boss, Alan P.
1993-01-01
In Boss & Myhill (1992) we described the derivation and testing of a spherical coordinate-based scheme for solving the hydrodynamic equations governing the gravitational collapse of nonisothermal, nonmagnetic, inviscid, radiative, three-dimensional protostellar clouds. Here we discuss a Cartesian coordinate-based scheme based on the same set of hydrodynamic equations. As with the spherical coorrdinate-based code, the Cartesian coordinate-based scheme employs explicit Eulerian methods which are both spatially and temporally second-order accurate. We begin by describing the hydrodynamic equations in Cartesian coordinates and the numerical methods used in this particular code. Following Finn & Hawley (1989), we pay special attention to the proper implementations of high-order accuracy, finite difference methods. We evaluate the ability of the Cartesian scheme to handle shock propagation problems, and through convergence testing, we show that the code is indeed second-order accurate. To compare the Cartesian scheme discussed here with the spherical coordinate-based scheme discussed in Boss & Myhill (1992), the two codes are used to calculate the standard isothermal collapse test case described by Bodenheimer & Boss (1981). We find that with the improved codes, the intermediate bar-configuration found previously disappears, and the cloud fragments directly into a binary protostellar system. Finally, we present the results from both codes of a new test for nonisothermal protostellar collapse.
Testing hydrodynamics schemes in galaxy disc simulations
NASA Astrophysics Data System (ADS)
Few, C. G.; Dobbs, C.; Pettitt, A.; Konstandin, L.
2016-08-01
We examine how three fundamentally different numerical hydrodynamics codes follow the evolution of an isothermal galactic disc with an external spiral potential. We compare an adaptive mesh refinement code (RAMSES), a smoothed particle hydrodynamics code (SPHNG), and a volume-discretized mesh-less code (GIZMO). Using standard refinement criteria, we find that RAMSES produces a disc that is less vertically concentrated and does not reach such high densities as the SPHNG or GIZMO runs. The gas surface density in the spiral arms increases at a lower rate for the RAMSES simulations compared to the other codes. There is also a greater degree of substructure in the SPHNG and GIZMO runs and secondary spiral arms are more pronounced. By resolving the Jeans length with a greater number of grid cells, we achieve more similar results to the Lagrangian codes used in this study. Other alterations to the refinement scheme (adding extra levels of refinement and refining based on local density gradients) are less successful in reducing the disparity between RAMSES and SPHNG/GIZMO. Although more similar, SPHNG displays different density distributions and vertical mass profiles to all modes of GIZMO (including the smoothed particle hydrodynamics version). This suggests differences also arise which are not intrinsic to the particular method but rather due to its implementation. The discrepancies between codes (in particular, the densities reached in the spiral arms) could potentially result in differences in the locations and time-scales for gravitational collapse, and therefore impact star formation activity in more complex galaxy disc simulations.
Electromagnetic Gauge Study of Laser-Induced Shock Waves in Aluminium Alloys
NASA Astrophysics Data System (ADS)
Peyre, P.; Fabbro, R.
1995-12-01
The laser-shock behaviour of three industrial aluminum alloys has been analyzed with an Electromagnetic Gauge Method (EMV) for measuring the velocity of the back free surface of thin foils submitted to plane laser irradiation. Surface pressure, shock decay in depth and Hugoniot Elastic Limits (HEL) of the materials were investigated with increasing thicknesses of foils to be shocked. First, surface peak pressures values as a function of laser power density gave a good agreement with conventional piezoelectric quartz measurements. Therefore, comparison of experimental results with computer simulations, using a 1D hydrodynamic Lagrangian finite difference code, were also in good accordance. Lastly, HEL values were compared with static and dynamic compressive tests in order to estimate the effects of a very large range of strain rates (10^{-3} s^{-1} to 10^6 s^{-1}) on the mechanical properties of the alloys. Cet article fait la synthèse d'une étude récente sur la caractérisation du comportement sous choc-laser de trois alliages d'aluminium largement utilisés dans l'industrie à travers la méthode dite de la jauge électromagnétique. Cette méthode permet de mesurer les vitesses matérielles induites en face arrière de plaques d'épaisseurs variables par un impact laser. La mise en vitesse de plaques nous a permis, premièrement, de vérifier la validité des pressions d'impact superficielles obtenues en les comparant avec des résultats antérieurs obtenus par des mesures sur capteurs quartz. Sur des plaques d'épaisseurs croissantes, nous avons caractérisé l'atténuation des ondes de choc en profondeur dans les alliages étudiés et mesuré les limites d'élasticité sous choc (pressions d'Hugoniot) des alliages. Les résultats ont été comparés avec succès à des simulations numériques grâce à un code de calcul monodimensionnel Lagrangien. Enfin, les valeurs des pressions d'Hugoniot mesurées ont permis de tracer l'évolution des contraintes d'écoulement plastique en fonction de la vitesse de déformation pour des valeurs comprises entre 10^{-3} s^{-1} et 10^6 s^{-1}.
Simulating X-ray bursts with a radiation hydrodynamics code
NASA Astrophysics Data System (ADS)
Seong, Gwangeon; Kwak, Kyujin
2018-04-01
Previous simulations of X-ray bursts (XRBs), for example, those performed by MESA (Modules for Experiments in Stellar Astrophysics) could not address the dynamical effects of strong radiation, which are important to explain the photospheric radius expansion (PRE) phenomena seen in many XRBs. In order to study the effects of strong radiation, we propose to use SNEC (the SuperNova Explosion Code), a 1D Lagrangian open source code that is designed to solve hydrodynamics and equilibrium-diffusion radiation transport together. Because SNEC is able to control modules of radiation-hydrodynamics for properly mapped inputs, radiation-dominant pressure occurring in PRE XRBs can be handled. Here we present simulation models for PRE XRBs by applying SNEC together with MESA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sagert, Irina; Even, Wesley Paul; Strother, Terrance Timothy
Here, we perform two-dimensional implosion simulations using a Monte Carlo kinetic particle code. The application of a kinetic transport code is motivated, in part, by the occurrence of nonequilibrium effects in inertial confinement fusion capsule implosions, which cannot be fully captured by hydrodynamic simulations. Kinetic methods, on the other hand, are able to describe both continuum and rarefied flows. We perform simple two-dimensional disk implosion simulations using one-particle species and compare the results to simulations with the hydrodynamics code rage. The impact of the particle mean free path on the implosion is also explored. In a second study, we focusmore » on the formation of fluid instabilities from induced perturbations. We find good agreement with hydrodynamic studies regarding the location of the shock and the implosion dynamics. Differences are found in the evolution of fluid instabilities, originating from the higher resolution of rage and statistical noise in the kinetic studies.« less
Sagert, Irina; Even, Wesley Paul; Strother, Terrance Timothy
2017-05-17
Here, we perform two-dimensional implosion simulations using a Monte Carlo kinetic particle code. The application of a kinetic transport code is motivated, in part, by the occurrence of nonequilibrium effects in inertial confinement fusion capsule implosions, which cannot be fully captured by hydrodynamic simulations. Kinetic methods, on the other hand, are able to describe both continuum and rarefied flows. We perform simple two-dimensional disk implosion simulations using one-particle species and compare the results to simulations with the hydrodynamics code rage. The impact of the particle mean free path on the implosion is also explored. In a second study, we focusmore » on the formation of fluid instabilities from induced perturbations. We find good agreement with hydrodynamic studies regarding the location of the shock and the implosion dynamics. Differences are found in the evolution of fluid instabilities, originating from the higher resolution of rage and statistical noise in the kinetic studies.« less
Hydrodynamic Studies of Turbulent AGN Tori
NASA Astrophysics Data System (ADS)
Schartmann, M.; Meisenheimer, K.; Klahr, H.; Camenzind, M.; Wolf, S.; Henning, Th.; Burkert, A.; Krause, M.
Recently, the MID-infrared Interferometric instrument (MIDI) at the VLTI has shown that dust tori in the two nearby Seyfert galaxies NGC 1068 and the Circinus galaxy are geometrically thick and can be well described by a thin, warm central disk, surrounded by a colder and fluffy torus component. By carrying out hydrodynamical simulations with the help of the TRAMP code (Klahr et al. 1999), we follow the evolution of a young nuclear star cluster in terms of discrete mass-loss and energy injection from stellar processes. This naturally leads to a filamentary large scale torus component, where cold gas is able to flow radially inwards. The filaments join into a dense and very turbulent disk structure. In a post-processing step, we calculate spectral energy distributions and images with the 3D radiative transfer code MC3D Wolf (2003) and compare them to observations. Turbulence in the dense disk component is investigated in a separate project.
Instabilities in a Relativistic Viscous Fluid
NASA Astrophysics Data System (ADS)
Corona-Galindo, M. G.; Klapp, J.; Vazquez, A.
1990-11-01
RESUMEN. Las ecuaciones hidrodinamicas de un fluido imperfecto relativista son resueltas, y los modos hidrodinamicos son analizados con el prop6sito de estabiecer correlaciones con las estructuras cosmol6gicas. ABSTRACT The hydrodynamical equations of a relativistic imperfect fluid are solved, and the hydrodynamical modes are analysed with the aim to establish correlations with cosmological structures. Ke, words: COSMOLOGY - HYDRODYNAMICS - RELATIVITY
VizieR Online Data Catalog: FARGO_THORIN 1.0 hydrodynamic code (Chrenko+, 2017)
NASA Astrophysics Data System (ADS)
Chrenko, O.; Broz, M.; Lambrechts, M.
2017-07-01
This archive contains the source files, documentation and example simulation setups of the FARGO_THORIN 1.0 hydrodynamic code. The program was introduced, described and used for simulations in the paper. It is built on top of the FARGO code (Masset, 2000A&AS..141..165M, Baruteau & Masset, 2008ApJ...672.1054B) and it is also interfaced with the REBOUND integrator package (Rein & Liu, 2012A&A...537A.128R). THORIN stands for Two-fluid HydrOdynamics, the Rebound integrator Interface and Non-isothermal gas physics. The program is designed for self-consistent investigations of protoplanetary systems consisting of a gas disk, a disk of small solid particles (pebbles) and embedded protoplanets. Code features: I) Non-isothermal gas disk with implicit numerical solution of the energy equation. The implemented energy source terms are: Compressional heating, viscous heating, stellar irradiation, vertical escape of radiation, radiative diffusion in the midplane and radiative feedback to accretion heating of protoplanets. II) Planets evolved in 3D, with close encounters allowed. The orbits are integrated using the IAS15 integrator (Rein & Spiegel, 2015MNRAS.446.1424R). The code detects the collisions among planets and resolve them as mergers. III) Refined treatment of the planet-disk gravitational interaction. The code uses a vertical averaging of the gravitational potential, as outlined in Muller & Kley (2012A&A...539A..18M). IV) Pebble disk represented by an Eulerian, presureless and inviscid fluid. The pebble dynamics is affected by the Epstein gas drag and optionally by the diffusive effects. We also implemented the drag back-reaction term into the Navier-Stokes equation for the gas. Archive summary: ------------------------------------------------------------------------- directory/file Explanation ------------------------------------------------------------------------- /in_relax Contains setup of the first example simulation /in_wplanet Contains setup of the second example simulation /srcmain Contains the source files of FARGOTHORIN /src_reb Contains the source files of the REBOUND integrator package to be linked with THORIN GUNGPL3 GNU General Public License, version 3 LICENSE License agreement README Simple user's guide UserGuide.pdf Extended user's guide refman.pdf Programer's guide ----------------------------------------------------------------------------- (1 data file).
Comparing AMR and SPH Cosmological Simulations. I. Dark Matter and Adiabatic Simulations
NASA Astrophysics Data System (ADS)
O'Shea, Brian W.; Nagamine, Kentaro; Springel, Volker; Hernquist, Lars; Norman, Michael L.
2005-09-01
We compare two cosmological hydrodynamic simulation codes in the context of hierarchical galaxy formation: the Lagrangian smoothed particle hydrodynamics (SPH) code GADGET, and the Eulerian adaptive mesh refinement (AMR) code Enzo. Both codes represent dark matter with the N-body method but use different gravity solvers and fundamentally different approaches for baryonic hydrodynamics. The SPH method in GADGET uses a recently developed ``entropy conserving'' formulation of SPH, while for the mesh-based Enzo two different formulations of Eulerian hydrodynamics are employed: the piecewise parabolic method (PPM) extended with a dual energy formulation for cosmology, and the artificial viscosity-based scheme used in the magnetohydrodynamics code ZEUS. In this paper we focus on a comparison of cosmological simulations that follow either only dark matter, or also a nonradiative (``adiabatic'') hydrodynamic gaseous component. We perform multiple simulations using both codes with varying spatial and mass resolution with identical initial conditions. The dark matter-only runs agree generally quite well provided Enzo is run with a comparatively fine root grid and a low overdensity threshold for mesh refinement, otherwise the abundance of low-mass halos is suppressed. This can be readily understood as a consequence of the hierarchical particle-mesh algorithm used by Enzo to compute gravitational forces, which tends to deliver lower force resolution than the tree-algorithm of GADGET at early times before any adaptive mesh refinement takes place. At comparable force resolution we find that the latter offers substantially better performance and lower memory consumption than the present gravity solver in Enzo. In simulations that include adiabatic gasdynamics we find general agreement in the distribution functions of temperature, entropy, and density for gas of moderate to high overdensity, as found inside dark matter halos. However, there are also some significant differences in the same quantities for gas of lower overdensity. For example, at z=3 the fraction of cosmic gas that has temperature logT>0.5 is ~80% for both Enzo ZEUS and GADGET, while it is 40%-60% for Enzo PPM. We argue that these discrepancies are due to differences in the shock-capturing abilities of the different methods. In particular, we find that the ZEUS implementation of artificial viscosity in Enzo leads to some unphysical heating at early times in preshock regions. While this is apparently a significantly weaker effect in GADGET, its use of an artificial viscosity technique may also make it prone to some excess generation of entropy that should be absent in Enzo PPM. Overall, the hydrodynamical results for GADGET are bracketed by those for Enzo ZEUS and Enzo PPM but are closer to Enzo ZEUS.
NASA Astrophysics Data System (ADS)
Fourtakas, G.; Rogers, B. D.
2016-06-01
A two-phase numerical model using Smoothed Particle Hydrodynamics (SPH) is applied to two-phase liquid-sediments flows. The absence of a mesh in SPH is ideal for interfacial and highly non-linear flows with changing fragmentation of the interface, mixing and resuspension. The rheology of sediment induced under rapid flows undergoes several states which are only partially described by previous research in SPH. This paper attempts to bridge the gap between the geotechnics, non-Newtonian and Newtonian flows by proposing a model that combines the yielding, shear and suspension layer which are needed to predict accurately the global erosion phenomena, from a hydrodynamics prospective. The numerical SPH scheme is based on the explicit treatment of both phases using Newtonian and the non-Newtonian Bingham-type Herschel-Bulkley-Papanastasiou constitutive model. This is supplemented by the Drucker-Prager yield criterion to predict the onset of yielding of the sediment surface and a concentration suspension model. The multi-phase model has been compared with experimental and 2-D reference numerical models for scour following a dry-bed dam break yielding satisfactory results and improvements over well-known SPH multi-phase models. With 3-D simulations requiring a large number of particles, the code is accelerated with a graphics processing unit (GPU) in the open-source DualSPHysics code. The implementation and optimisation of the code achieved a speed up of x58 over an optimised single thread serial code. A 3-D dam break over a non-cohesive erodible bed simulation with over 4 million particles yields close agreement with experimental scour and water surface profiles.
Numerical 3D Hydrodynamics Study of Gravitational Instabilities in a Circumbinary Disk
NASA Astrophysics Data System (ADS)
Desai, Karna Mahadev; Steiman-Cameron, Thomas Y.; Michael, Scott; Cai, Kai; Durisen, Richard H.
2016-01-01
We present a 3D hydrodynamical study of gravitational instabilities (GIs) in a circumbinary protoplanetary disk around a Solar mass star and a brown dwarf companion (0.02 M⊙). GIs can play an important, and at times dominant, role in driving the structural evolution of protoplanetary disks. The reported simulations were performed employing CHYMERA, a radiative 3D hydrodynamics code developed by the Indiana University Hydrodynamics Group. The simulations include disk self-gravity and radiative cooling governed by realistic dust opacities. We examine the role of GIs in modulating the thermodynamic state of the disks, and determine the strengths of GI-induced density waves, non-axisymmetric density structures, radial mass transport, and gravitational torques. The principal goal of this study is to determine how the presence of the companion affects the nature and strength of GIs. Results are compared with a parallel simulation of a protoplanetary disk without the presence of the brown dwarf binary companion. We detect no fragmentation in either disk. A persistent vortex forms in the inner region of both disks. The vortex seems to be stabilized by the presence of the binary companion.
SPHYNX: an accurate density-based SPH method for astrophysical applications
NASA Astrophysics Data System (ADS)
Cabezón, R. M.; García-Senz, D.; Figueira, J.
2017-10-01
Aims: Hydrodynamical instabilities and shocks are ubiquitous in astrophysical scenarios. Therefore, an accurate numerical simulation of these phenomena is mandatory to correctly model and understand many astrophysical events, such as supernovas, stellar collisions, or planetary formation. In this work, we attempt to address many of the problems that a commonly used technique, smoothed particle hydrodynamics (SPH), has when dealing with subsonic hydrodynamical instabilities or shocks. To that aim we built a new SPH code named SPHYNX, that includes many of the recent advances in the SPH technique and some other new ones, which we present here. Methods: SPHYNX is of Newtonian type and grounded in the Euler-Lagrange formulation of the smoothed-particle hydrodynamics technique. Its distinctive features are: the use of an integral approach to estimating the gradients; the use of a flexible family of interpolators called sinc kernels, which suppress pairing instability; and the incorporation of a new type of volume element which provides a better partition of the unity. Unlike other modern formulations, which consider volume elements linked to pressure, our volume element choice relies on density. SPHYNX is, therefore, a density-based SPH code. Results: A novel computational hydrodynamic code oriented to Astrophysical applications is described, discussed, and validated in the following pages. The ensuing code conserves mass, linear and angular momentum, energy, entropy, and preserves kernel normalization even in strong shocks. In our proposal, the estimation of gradients is enhanced using an integral approach. Additionally, we introduce a new family of volume elements which reduce the so-called tensile instability. Both features help to suppress the damp which often prevents the growth of hydrodynamic instabilities in regular SPH codes. Conclusions: On the whole, SPHYNX has passed the verification tests described below. For identical particle setting and initial conditions the results were similar (or better in some particular cases) than those obtained with other SPH schemes such as GADGET-2, PSPH or with the recent density-independent formulation (DISPH) and conservative reproducing kernel (CRKSPH) techniques.
Adding kinetics and hydrodynamics to the CHEETAH thermochemical code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fried, L.E., Howard, W.M., Souers, P.C.
1997-01-15
In FY96 we released CHEETAH 1.40, which made extensive improvements on the stability and user friendliness of the code. CHEETAH now has over 175 users in government, academia, and industry. Efforts have also been focused on adding new advanced features to CHEETAH 2.0, which is scheduled for release in FY97. We have added a new chemical kinetics capability to CHEETAH. In the past, CHEETAH assumed complete thermodynamic equilibrium and independence of time. The addition of a chemical kinetic framework will allow for modeling of time-dependent phenomena, such as partial combustion and detonation in composite explosives with large reaction zones. Wemore » have implemented a Wood-Kirkwood detonation framework in CHEETAH, which allows for the treatment of nonideal detonations and explosive failure. A second major effort in the project this year has been linking CHEETAH to hydrodynamic codes to yield an improved HE product equation of state. We have linked CHEETAH to 1- and 2-D hydrodynamic codes, and have compared the code to experimental data. 15 refs., 13 figs., 1 tab.« less
Non-linear hydrodynamical evolution of rotating relativistic stars: numerical methods and code tests
NASA Astrophysics Data System (ADS)
Font, José A.; Stergioulas, Nikolaos; Kokkotas, Kostas D.
2000-04-01
We present numerical hydrodynamical evolutions of rapidly rotating relativistic stars, using an axisymmetric, non-linear relativistic hydrodynamics code. We use four different high-resolution shock-capturing (HRSC) finite-difference schemes (based on approximate Riemann solvers) and compare their accuracy in preserving uniformly rotating stationary initial configurations in long-term evolutions. Among these four schemes, we find that the third-order piecewise parabolic method scheme is superior in maintaining the initial rotation law in long-term evolutions, especially near the surface of the star. It is further shown that HRSC schemes are suitable for the evolution of perturbed neutron stars and for the accurate identification (via Fourier transforms) of normal modes of oscillation. This is demonstrated for radial and quadrupolar pulsations in the non-rotating limit, where we find good agreement with frequencies obtained with a linear perturbation code. The code can be used for studying small-amplitude or non-linear pulsations of differentially rotating neutron stars, while our present results serve as testbed computations for three-dimensional general-relativistic evolution codes.
Developing a Multi-Dimensional Hydrodynamics Code with Astrochemical Reactions
NASA Astrophysics Data System (ADS)
Kwak, Kyujin; Yang, Seungwon
2015-08-01
The Atacama Large Millimeter/submillimeter Array (ALMA) revealed high resolution molecular lines some of which are still unidentified yet. Because formation of these astrochemical molecules has been seldom studied in traditional chemistry, observations of new molecular lines drew a lot of attention from not only astronomers but also chemists both experimental and theoretical. Theoretical calculations for the formation of these astrochemical molecules have been carried out providing reaction rates for some important molecules, and some of theoretical predictions have been measured in laboratories. The reaction rates for the astronomically important molecules are now collected to form databases some of which are publically available. By utilizing these databases, we develop a multi-dimensional hydrodynamics code that includes the reaction rates of astrochemical molecules. Because this type of hydrodynamics code is able to trace the molecular formation in a non-equilibrium fashion, it is useful to study the formation history of these molecules that affects the spatial distribution of some specific molecules. We present the development procedure of this code and some test problems in order to verify and validate the developed code.
Magneto-hydrodynamic simulations of Heavy Ion Collisions with ECHO-QGP
NASA Astrophysics Data System (ADS)
Inghirami, G.; Del Zanna, L.; Beraudo, A.; Haddadi Moghaddam, M.; Becattini, F.; Bleicher, M.
2018-05-01
It is believed that very strong magnetic fields may induce many interesting physical effects in the Quark Gluon Plasma, like the Chiral Magnetic Effect, the Chiral Separation Effect, a modification of the critical temperature or changes in the collective flow of the emitted particles. However, in the hydrodynamic numerical simulations of Heavy Ion Collisions the magnetic fields have been either neglected or considered as external fields which evolve independently from the dynamics of the fluid. To address this issue, we recently modified the ECHO-QGP code, including for the first time the effects of electromagnetic fields in a consistent way, although in the limit of an infinite electrical conductivity of the plasma (ideal magnetohydrodynamics). In this proceedings paper we illustrate the underlying 3+1 formalisms of the current version of the code and we present the results of its basic preliminary application in a simple case. We conclude with a brief discussion of the possible further developments and future uses of the code, from RHIC to FAIR collision energies.
Collisionless stellar hydrodynamics as an efficient alternative to N-body methods
NASA Astrophysics Data System (ADS)
Mitchell, Nigel L.; Vorobyov, Eduard I.; Hensler, Gerhard
2013-01-01
The dominant constituents of the Universe's matter are believed to be collisionless in nature and thus their modelling in any self-consistent simulation is extremely important. For simulations that deal only with dark matter or stellar systems, the conventional N-body technique is fast, memory efficient and relatively simple to implement. However when extending simulations to include the effects of gas physics, mesh codes are at a distinct disadvantage compared to Smooth Particle Hydrodynamics (SPH) codes. Whereas implementing the N-body approach into SPH codes is fairly trivial, the particle-mesh technique used in mesh codes to couple collisionless stars and dark matter to the gas on the mesh has a series of significant scientific and technical limitations. These include spurious entropy generation resulting from discreteness effects, poor load balancing and increased communication overhead which spoil the excellent scaling in massively parallel grid codes. In this paper we propose the use of the collisionless Boltzmann moment equations as a means to model the collisionless material as a fluid on the mesh, implementing it into the massively parallel FLASH Adaptive Mesh Refinement (AMR) code. This approach which we term `collisionless stellar hydrodynamics' enables us to do away with the particle-mesh approach and since the parallelization scheme is identical to that used for the hydrodynamics, it preserves the excellent scaling of the FLASH code already demonstrated on peta-flop machines. We find that the classic hydrodynamic equations and the Boltzmann moment equations can be reconciled under specific conditions, allowing us to generate analytic solutions for collisionless systems using conventional test problems. We confirm the validity of our approach using a suite of demanding test problems, including the use of a modified Sod shock test. By deriving the relevant eigenvalues and eigenvectors of the Boltzmann moment equations, we are able to use high order accurate characteristic tracing methods with Riemann solvers to generate numerical solutions which show excellent agreement with our analytic solutions. We conclude by demonstrating the ability of our code to model complex phenomena by simulating the evolution of a two-armed spiral galaxy whose properties agree with those predicted by the swing amplification theory.
Fluctuating Hydrodynamics Confronts the Rapidity Dependence of Transverse Momentum Fluctuations
NASA Astrophysics Data System (ADS)
Pokharel, Rajendra; Gavin, Sean; Moschelli, George
2012-10-01
Interest in the development of the theory of fluctuating hydrodynamics is growing [1]. Early efforts suggested that viscous diffusion broadens the rapidity dependence of transverse momentum correlations [2]. That work stimulated an experimental analysis by STAR [3]. We attack this new data along two fronts. First, we compute STAR's fluctuation observable using the NeXSPheRIO code, which combines fluctuating initial conditions from a string fragmentation model with deterministic viscosity-free hydrodynamic evolution. We find that NeXSPheRIO produces a longitudinal narrowing, in contrast to the data. Second, we study the hydrodynamic evolution using second order causal viscous hydrodynamics including Langevin noise. We obtain a deterministic evolution equation for the transverse momentum density correlation function. We use the latest theoretical equations of state and transport coefficients to compute STAR's observable. The results are in excellent accord with the measured broadening. In addition, we predict features of the distribution that can distinguish 2nd and 1st order diffusion. [4pt] [1] J. Kapusta, B. Mueller, M. Stephanov, arXiv:1112.6405 [nucl-th].[0pt] [2] S. Gavin and M. Abdel-Aziz, Phys. Rev. Lett. 97, 162302 (2006)[0pt] [3] H. Agakishiev et al., STAR, STAR, Phys. Lett. B704
Large-scale 3D simulations of ICF and HEDP targets
NASA Astrophysics Data System (ADS)
Marinak, Michael M.
2000-10-01
The radiation hydrodynamics code HYDRA continues to be developed and applied to 3D simulations of a variety of targets for both inertial confinement fusion (ICF) and high energy density physics. Several packages have been added enabling this code to perform ICF target simulations with similar accuracy as two-dimensional codes of long-time historical use. These include a laser ray trace and deposition package, a heavy ion deposition package, implicit Monte Carlo photonics, and non-LTE opacities, derived from XSN or the linearized response matrix approach.(R. More, T. Kato, Phys. Rev. Lett. 81, 814 (1998), S. Libby, F. Graziani, R. More, T. Kato, Proceedings of the 13th International Conference on Laser Interactions and Related Plasma Phenomena, (AIP, New York, 1997).) LTE opacities can also be calculated for arbitrary mixtures online by combining tabular values generated by different opacity codes. Thermonuclear burn, charged particle transport, neutron energy deposition, electron-ion coupling and conduction, and multigroup radiation diffusion packages are also installed. HYDRA can employ ALE hydrodynamics; a number of grid motion algorithms are available. Multi-material flows are resolved using material interface reconstruction. Results from large-scale simulations run on up to 1680 processors, using a combination of massively parallel processing and symmetric multiprocessing, will be described. A large solid angle simulation of Rayleigh-Taylor instability growth in a NIF ignition capsule has resolved simultaneously the full spectrum of the most dangerous modes that grow from surface roughness. Simulations of a NIF hohlraum illuminated with the initial 96 beam configuration have also been performed. The effect of the hohlraum’s 3D intrinsic drive asymmetry on the capsule implosion will be considered. We will also discuss results from a Nova experiment in which a copper sphere is crushed by a planar shock. Several interacting hydrodynamic instabilities, including the Widnall instability, cause breakup of the resulting vortex ring.
The moving mesh code SHADOWFAX
NASA Astrophysics Data System (ADS)
Vandenbroucke, B.; De Rijcke, S.
2016-07-01
We introduce the moving mesh code SHADOWFAX, which can be used to evolve a mixture of gas, subject to the laws of hydrodynamics and gravity, and any collisionless fluid only subject to gravity, such as cold dark matter or stars. The code is written in C++ and its source code is made available to the scientific community under the GNU Affero General Public Licence. We outline the algorithm and the design of our implementation, and demonstrate its validity through the results of a set of basic test problems, which are also part of the public version. We also compare SHADOWFAX with a number of other publicly available codes using different hydrodynamical integration schemes, illustrating the advantages and disadvantages of the moving mesh technique.
DRACO development for 3D simulations
NASA Astrophysics Data System (ADS)
Fatenejad, Milad; Moses, Gregory
2006-10-01
The DRACO (r-z) lagrangian radiation-hydrodynamics laser fusion simulation code is being extended to model 3D hydrodynamics in (x-y-z) coordinates with hexahedral cells on a structured grid. The equation of motion is solved with a lagrangian update with optional rezoning. The fluid equations are solved using an explicit scheme based on (Schulz, 1964) while the SALE-3D algorithm (Amsden, 1981) is used as a template for computing cell volumes and other quantities. A second order rezoner has been added which uses linear interpolation of the underlying continuous functions to preserve accuracy (Van Leer, 1976). Artificial restoring force terms and smoothing algorithms are used to avoid grid distortion in high aspect ratio cells. These include alternate node couplers along with a rotational restoring force based on the Tensor Code (Maenchen, 1964). Electron and ion thermal conduction is modeled using an extension of Kershaw's method (Kershaw, 1981) to 3D geometry. Test problem simulations will be presented to demonstrate the applicability of this new version of DRACO to the study of fluid instabilities in three dimensions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benitz, M. A.; Schmidt, D. P.; Lackner, M. A.
Hydrodynamic loads on the platforms of floating offshore wind turbines are often predicted with computer-aided engineering tools that employ Morison's equation and/or potential-flow theory. This work compares results from one such tool, FAST, NREL's wind turbine computer-aided engineering tool, and the computational fluid dynamics package, OpenFOAM, for the OC4-DeepCwind semi-submersible analyzed in the International Energy Agency Wind Task 30 project. Load predictions from HydroDyn, the offshore hydrodynamics module of FAST, are compared with high-fidelity results from OpenFOAM. HydroDyn uses a combination of Morison's equations and potential flow to predict the hydrodynamic forces on the structure. The implications of the assumptionsmore » in HydroDyn are evaluated based on this code-to-code comparison.« less
Modeling Close-In Airblast from ANFO Cylindrical and Box-Shaped Charges
2010-10-01
Eulerian hydrodynamics code [1]. The Jones-Wilkins-Lee (JWL) equation of the state (EOS) [2] of the reacted ANFO was computed using the Cheetah ...thermodynamics code [3]. Cheetah first calculates the detonation state from Chapman-Jouget (C-J) theory and then models the adiabatic expansion from...success modeling a large range of ANFO charge sizes using the Cheetah -generated EOS along with the Ignition and Growth (IG) reactive flow model [6
NASA Astrophysics Data System (ADS)
Wang, Ping; Raman, Kumar; MacLaren, Stephan; Huntington, Channing; Nagel, Sabrina
2016-10-01
We present simulations of recent high-energy-density (HED) re-shock experiments on the National Ignition Facility (NIF). The experiments study the Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instability growth that occurs after successive shocks transit a sinusoidally-perturbed interface between materials of different densities. The shock tube is driven at one or both ends using indirect-drive laser cavities or hohlraums. X-ray area-backlit imaging is used to visualize the growth at different times. Our simulations are done with the three-dimensional, radiation hydrodynamics code ARES, developed at LLNL. We show the instabilitygrowth rate, inferred from the experimental radiographs, agrees well with our 2D and 3D simulations. We also discuss some 3D geometrical effects, suggested by our simulations, which could deteriorate the images at late times, unless properly accounted for in the experiment design. Work supported by U.S. Department of Energy under Contract DE- AC52-06NA27279. LLNL-ABS-680789.
Heating, Hydrodynamics, and Radiation From a Laser Heated Non-LTE High-Z Target
NASA Astrophysics Data System (ADS)
Gray, William; Foord, M. E.; Schneider, M. B.; Barrios, M. A.; Brown, G. V.; Heeter, R. F.; Jarrott, L. C.; Liedahl, D. A.; Marley, E. V.; Mauche, C. W.; Widmann, K.
2016-10-01
We present 2D R-z simulations that model the hydrodynamics and x-ray output of a laser heated, tamped foil, using the rad-hydro code LASNEX. The foil consists of a thin (2400 A) cylindrical disk of iron/vanadium/gold that is embedded in a thicker Be tamper. The simulations utilize a non-LTE detailed configuration (DCA) model, which generates the emission spectra. Simulated pinhole images are compared with data, finding qualitative agreement with the time-history of the face-on emission profiles, and exhibiting an interesting reduction in emission size over a few ns time period. Furthermore, we find that the simulations recover similar burn through times in both the target and Be tamper as measured by a time-dependent filtered x-ray detector (DANTE). Additional results and characterization of the experimental plasma will be presented. This work performed under the auspices of U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Coupled Hydrodynamic Instability Growth on Oblique Interfaces with a Reflected Rarefaction
NASA Astrophysics Data System (ADS)
Rasmus, A. M.; Flippo, K. A.; di Stefano, C. A.; Doss, F. W.; Hager, J. D.; Merritt, E. C.; Cardenas, T.; Schmidt, D. W.; Kline, J. L.; Kuranz, C. C.
2017-10-01
Hydrodynamic instabilities play an important role in the evolution of inertial confinement fusion and astrophysical phenomena. Three of the Omega-EP long pulse beams (10 ns square pulse, 14 kJ total energy, 1.1 mm spot size) drive a supported shock across a heavy-to-light, oblique, interface. Single- and double-mode initial conditions seed coupled Richtmyer-Meshkov (RM), Rayleigh-Taylor (RT), and Kelvin-Helmholtz (KH) growth. At early times, growth is dominated by RM and KH, whereas at late times a rarefaction from laser turn-off reaches the interface, leading to decompression and RT growth. The addition of a thirty degree tilt does not alter mix width to within experimental error bars, even while significantly altering spike and bubble morphology. The results of single and double-mode experiments along with simulations using the multi-physics hydro-code RAGE will be presented. This work performed under the auspices of the U.S. Department of Energy by LANL under contract DE-AC52-06NA25396. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0002956. This material is partially supported by DOE Office of Science Graduate Student Research (SCGSR) program.
NASA Astrophysics Data System (ADS)
Okamoto, Kazuhisa; Nonaka, Chiho
2017-06-01
We construct a new relativistic viscous hydrodynamics code optimized in the Milne coordinates. We split the conservation equations into an ideal part and a viscous part, using the Strang spitting method. In the code a Riemann solver based on the two-shock approximation is utilized for the ideal part and the Piecewise Exact Solution (PES) method is applied for the viscous part. We check the validity of our numerical calculations by comparing analytical solutions, the viscous Bjorken's flow and the Israel-Stewart theory in Gubser flow regime. Using the code, we discuss possible development of the Kelvin-Helmholtz instability in high-energy heavy-ion collisions.
Reactive Flow Modeling of Liquid Explosives via ALE3D/Cheetah Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuo, I W; Bastea, S; Fried, L E
2010-03-10
We carried out reactive flow simulations of liquid explosives such as nitromethane using the hydrodynamic code ALE3D coupled with equations of state and reaction kinetics modeled by the thermochemical code Cheetah. The simulation set-up was chosen to mimic cylinder experiments. For pure unconfined nitromethane we find that the failure diameter and detonation velocity dependence on charge diameter are in agreement with available experimental results. Such simulations are likely to be useful for determining detonability and failure behavior for a wide range of experimental conditions and explosive compounds.
A Comparison of Grid-based and SPH Binary Mass-transfer and Merger Simulations
Motl, Patrick M.; Frank, Juhan; Staff, Jan; ...
2017-03-29
There is currently a great amount of interest in the outcomes and astrophysical implications of mergers of double degenerate binaries. In a commonly adopted approximation, the components of such binaries are represented by polytropes with an index of n = 3/2. We present detailed comparisons of stellar mass-transfer and merger simulations of polytropic binaries that have been carried out using two very different numerical algorithms—a finite-volume "grid" code and a smoothed-particle hydrodynamics (SPH) code. We find that there is agreement in both the ultimate outcomes of the evolutions and the intermediate stages if the initial conditions for each code aremore » chosen to match as closely as possible. We find that even with closely matching initial setups, the time it takes to reach a concordant evolution differs between the two codes because the initial depth of contact cannot be matched exactly. There is a general tendency for SPH to yield higher mass transfer rates and faster evolution to the final outcome. Here, we also present comparisons of simulations calculated from two different energy equations: in one series, we assume a polytropic equation of state and in the other series an ideal gas equation of state. In the latter series of simulations, an atmosphere forms around the accretor, which can exchange angular momentum and cause a more rapid loss of orbital angular momentum. In the simulations presented here, the effect of the ideal equation of state is to de-stabilize the binary in both SPH and grid simulations, but the effect is more pronounced in the grid code.« less
A 3D spectral anelastic hydrodynamic code for shearing, stratified flows
NASA Astrophysics Data System (ADS)
Barranco, Joseph A.; Marcus, Philip S.
2006-11-01
We have developed a three-dimensional (3D) spectral hydrodynamic code to study vortex dynamics in rotating, shearing, stratified systems (e.g., the atmosphere of gas giant planets, protoplanetary disks around newly forming protostars). The time-independent background state is stably stratified in the vertical direction and has a unidirectional linear shear flow aligned with one horizontal axis. Superposed on this background state is an unsteady, subsonic flow that is evolved with the Euler equations subject to the anelastic approximation to filter acoustic phenomena. A Fourier Fourier basis in a set of quasi-Lagrangian coordinates that advect with the background shear is used for spectral expansions in the two horizontal directions. For the vertical direction, two different sets of basis functions have been implemented: (1) Chebyshev polynomials on a truncated, finite domain, and (2) rational Chebyshev functions on an infinite domain. Use of this latter set is equivalent to transforming the infinite domain to a finite one with a cotangent mapping, and using cosine and sine expansions in the mapped coordinate. The nonlinear advection terms are time-integrated explicitly, the pressure/enthalpy terms are integrated semi-implicitly, and the Coriolis force and buoyancy terms are treated semi-analytically. We show that internal gravity waves can be damped by adding new terms to the Euler equations. The code exhibits excellent parallel performance with the message passing interface (MPI). As a demonstration of the code, we simulate the merger of two 3D vortices in the midplane of a protoplanetary disk.
NASA Astrophysics Data System (ADS)
Solodov, A. A.; Rosenberg, M. J.; Myatt, J. F.; Shaw, J. G.; Seka, W.; Epstein, R.; Short, R. W.; Follett, R. K.; Regan, S. P.; Froula, D. H.; Radha, P. B.; Michel, P.; Chapman, T.; Hohenberger, M.
2017-10-01
Laser-plasma interaction (LPI) instabilities, such as stimulated Raman scattering (SRS) and two-plasmon decay, can be detrimental for direct-drive inertial confinement fusion because of target preheat by the high-energy electrons they generate. The radiation-hydrodynamic code DRACO was used to design planar-target experiments at the National Ignition Facility that generated plasma and interaction conditions relevant to ignition direct-drive designs (IL 1015W/cm2 , Te > 3 keV, density gradient scale lengths of Ln 600 μm). Laser-energy conversion efficiency to hot electrons of 0.5% to 2.5% with temperature of 45 to 60 keV was inferred from the experiment when the laser intensity at the quarter-critical surface increased from 6 to 15 ×1014W/cm2 . LPI was dominated by SRS, as indicated by the measured scattered-light spectra. Simulations of SRS using the LPI code LPSE have been performed and compared with predictions of theoretical models. Implications for ignition-scale direct-drive experiments will be discussed. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
NASA Astrophysics Data System (ADS)
Edelmann, P. V. F.; Röpke, F. K.; Hirschi, R.; Georgy, C.; Jones, S.
2017-07-01
Context. The treatment of mixing processes is still one of the major uncertainties in 1D stellar evolution models. This is mostly due to the need to parametrize and approximate aspects of hydrodynamics in hydrostatic codes. In particular, the effect of hydrodynamic instabilities in rotating stars, for example, dynamical shear instability, evades consistent description. Aims: We intend to study the accuracy of the diffusion approximation to dynamical shear in hydrostatic stellar evolution models by comparing 1D models to a first-principle hydrodynamics simulation starting from the same initial conditions. Methods: We chose an initial model calculated with the stellar evolution code GENEC that is just at the onset of a dynamical shear instability but does not show any other instabilities (e.g., convection). This was mapped to the hydrodynamics code SLH to perform a 2D simulation in the equatorial plane. We compare the resulting profiles in the two codes and compute an effective diffusion coefficient for the hydro simulation. Results: Shear instabilities develop in the 2D simulation in the regions predicted by linear theory to become unstable in the 1D stellar evolution model. Angular velocity and chemical composition is redistributed in the unstable region, thereby creating new unstable regions. After a period of time, the system settles in a symmetric, steady state, which is Richardson stable everywhere in the 2D simulation, whereas the instability remains for longer in the 1D model due to the limitations of the current implementation in the 1D code. A spatially resolved diffusion coefficient is extracted by comparing the initial and final profiles of mean atomic mass. Conclusions: The presented simulation gives a first insight on hydrodynamics of shear instabilities in a real stellar environment and even allows us to directly extract an effective diffusion coefficient. We see evidence for a critical Richardson number of 0.25 as regions above this threshold remain stable for the course of the simulation. The movie of the simulation is available at http://www.aanda.org
Dynamic Fracture Simulations of Explosively Loaded Cylinders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arthur, Carly W.; Goto, D. M.
2015-11-30
This report documents the modeling results of high explosive experiments investigating dynamic fracture of steel (AerMet® 100 alloy) cylinders. The experiments were conducted at Lawrence Livermore National Laboratory (LLNL) during 2007 to 2008 [10]. A principal objective of this study was to gain an understanding of dynamic material failure through the analysis of hydrodynamic computer code simulations. Two-dimensional and three-dimensional computational cylinder models were analyzed using the ALE3D multi-physics computer code.
Simulating Coupling Complexity in Space Plasmas: First Results from a new code
NASA Astrophysics Data System (ADS)
Kryukov, I.; Zank, G. P.; Pogorelov, N. V.; Raeder, J.; Ciardo, G.; Florinski, V. A.; Heerikhuisen, J.; Li, G.; Petrini, F.; Shematovich, V. I.; Winske, D.; Shaikh, D.; Webb, G. M.; Yee, H. M.
2005-12-01
The development of codes that embrace 'coupling complexity' via the self-consistent incorporation of multiple physical scales and multiple physical processes in models has been identified by the NRC Decadal Survey in Solar and Space Physics as a crucial necessary development in simulation/modeling technology for the coming decade. The National Science Foundation, through its Information Technology Research (ITR) Program, is supporting our efforts to develop a new class of computational code for plasmas and neutral gases that integrates multiple scales and multiple physical processes and descriptions. We are developing a highly modular, parallelized, scalable code that incorporates multiple scales by synthesizing 3 simulation technologies: 1) Computational fluid dynamics (hydrodynamics or magneto-hydrodynamics-MHD) for the large-scale plasma; 2) direct Monte Carlo simulation of atoms/neutral gas, and 3) transport code solvers to model highly energetic particle distributions. We are constructing the code so that a fourth simulation technology, hybrid simulations for microscale structures and particle distributions, can be incorporated in future work, but for the present, this aspect will be addressed at a test-particle level. This synthesis we will provide a computational tool that will advance our understanding of the physics of neutral and charged gases enormously. Besides making major advances in basic plasma physics and neutral gas problems, this project will address 3 Grand Challenge space physics problems that reflect our research interests: 1) To develop a temporal global heliospheric model which includes the interaction of solar and interstellar plasma with neutral populations (hydrogen, helium, etc., and dust), test-particle kinetic pickup ion acceleration at the termination shock, anomalous cosmic ray production, interaction with galactic cosmic rays, while incorporating the time variability of the solar wind and the solar cycle. 2) To develop a coronal mass ejection and interplanetary shock propagation model for the inner and outer heliosphere, including, at a test-particle level, wave-particle interactions and particle acceleration at traveling shock waves and compression regions. 3) To develop an advanced Geospace General Circulation Model (GGCM) capable of realistically modeling space weather events, in particular the interaction with CMEs and geomagnetic storms. Furthermore, by implementing scalable run-time supports and sophisticated off- and on-line prediction algorithms, we anticipate important advances in the development of automatic and intelligent system software to optimize a wide variety of 'embedded' computations on parallel computers. Finally, public domain MHD and hydrodynamic codes had a transforming effect on space and astrophysics. We expect that our new generation, open source, public domain multi-scale code will have a similar transformational effect in a variety of disciplines, opening up new classes of problems to physicists and engineers alike.
1989-07-01
TECHNICAL REPORT HL-89-14 VERIFICATION OF THE HYDRODYNAMIC AND Si SEDIMENT TRANSPORT HYBRID MODELING SYSTEM FOR CUMBERLAND SOUND AND I’) KINGS BAY...Hydrodynamic and Sediment Transport Hybrid Modeling System for Cumberland Sound and Kings Bay Navigation Channel, Georgia 12 PERSONAL AUTHOR(S) Granat...Hydrodynamic results from RMA-2V were used in the numerical sediment transport code STUDH in modeling the interaction of the flow transport and
Parallel processing a three-dimensional free-lagrange code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandell, D.A.; Trease, H.E.
1989-01-01
A three-dimensional, time-dependent free-Lagrange hydrodynamics code has been multitasked and autotasked on a CRAY X-MP/416. The multitasking was done by using the Los Alamos Multitasking Control Library, which is a superset of the CRAY multitasking library. Autotasking is done by using constructs which are only comment cards if the source code is not run through a preprocessor. The three-dimensional algorithm has presented a number of problems that simpler algorithms, such as those for one-dimensional hydrodynamics, did not exhibit. Problems in converting the serial code, originally written for a CRAY-1, to a multitasking code are discussed. Autotasking of a rewritten versionmore » of the code is discussed. Timing results for subroutines and hot spots in the serial code are presented and suggestions for additional tools and debugging aids are given. Theoretical speedup results obtained from Amdahl's law and actual speedup results obtained on a dedicated machine are presented. Suggestions for designing large parallel codes are given.« less
Nada: A new code for studying self-gravitating tori around black holes
NASA Astrophysics Data System (ADS)
Montero, Pedro J.; Font, José A.; Shibata, Masaru
2008-09-01
We present a new two-dimensional numerical code called Nada designed to solve the full Einstein equations coupled to the general relativistic hydrodynamics equations. The code is mainly intended for studies of self-gravitating accretion disks (or tori) around black holes, although it is also suitable for regular spacetimes. Concerning technical aspects the Einstein equations are formulated and solved in the code using a formulation of the standard 3+1 Arnowitt-Deser-Misner canonical formalism system, the so-called Baumgarte-Shapiro Shibata-Nakamura approach. A key feature of the code is that derivative terms in the spacetime evolution equations are computed using a fourth-order centered finite difference approximation in conjunction with the Cartoon method to impose the axisymmetry condition under Cartesian coordinates (the choice in Nada), and the puncture/moving puncture approach to carry out black hole evolutions. Correspondingly, the general relativistic hydrodynamics equations are written in flux-conservative form and solved with high-resolution, shock-capturing schemes. We perform and discuss a number of tests to assess the accuracy and expected convergence of the code, namely, (single) black hole evolutions, shock tubes, and evolutions of both spherical and rotating relativistic stars in equilibrium, the gravitational collapse of a spherical relativistic star leading to the formation of a black hole. In addition, paving the way for specific applications of the code, we also present results from fully general relativistic numerical simulations of a system formed by a black hole surrounded by a self-gravitating torus in equilibrium.
Improving 1D Stellar Models with 3D Atmospheres
NASA Astrophysics Data System (ADS)
Mosumgaard, Jakob Rørsted; Silva Aguirre, Víctor; Weiss, Achim; Christensen-Dalsgaard, Jørgen; Trampedach, Regner
2017-10-01
Stellar evolution codes play a major role in present-day astrophysics, yet they share common issues. In this work we seek to remedy some of those by the use of results from realistic and highly detailed 3D hydrodynamical simulations of stellar atmospheres. We have implemented a new temperature stratification extracted directly from the 3D simulations into the Garching Stellar Evolution Code to replace the simplified atmosphere normally used. Secondly, we have implemented the use of a variable mixing-length parameter, which changes as a function of the stellar surface gravity and temperature - also derived from the 3D simulations. Furthermore, to make our models consistent, we have calculated new opacity tables to match the atmospheric simulations. Here, we present the modified code and initial results on stellar evolution using it.
GANDALF - Graphical Astrophysics code for N-body Dynamics And Lagrangian Fluids
NASA Astrophysics Data System (ADS)
Hubber, D. A.; Rosotti, G. P.; Booth, R. A.
2018-01-01
GANDALF is a new hydrodynamics and N-body dynamics code designed for investigating planet formation, star formation and star cluster problems. GANDALF is written in C++, parallelized with both OPENMP and MPI and contains a PYTHON library for analysis and visualization. The code has been written with a fully object-oriented approach to easily allow user-defined implementations of physics modules or other algorithms. The code currently contains implementations of smoothed particle hydrodynamics, meshless finite-volume and collisional N-body schemes, but can easily be adapted to include additional particle schemes. We present in this paper the details of its implementation, results from the test suite, serial and parallel performance results and discuss the planned future development. The code is freely available as an open source project on the code-hosting website github at https://github.com/gandalfcode/gandalf and is available under the GPLv2 license.
High-fidelity plasma codes for burn physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooley, James; Graziani, Frank; Marinak, Marty
Accurate predictions of equation of state (EOS), ionic and electronic transport properties are of critical importance for high-energy-density plasma science. Transport coefficients inform radiation-hydrodynamic codes and impact diagnostic interpretation, which in turn impacts our understanding of the development of instabilities, the overall energy balance of burning plasmas, and the efficacy of self-heating from charged-particle stopping. Important processes include thermal and electrical conduction, electron-ion coupling, inter-diffusion, ion viscosity, and charged particle stopping. However, uncertainties in these coefficients are not well established. Fundamental plasma science codes, also called high-fidelity plasma codes, are a relatively recent computational tool that augments both experimental datamore » and theoretical foundations of transport coefficients. This paper addresses the current status of HFPC codes and their future development, and the potential impact they play in improving the predictive capability of the multi-physics hydrodynamic codes used in HED design.« less
Thermonuclear runaways in thick hydrogen rich envelopes of neutron stars
NASA Technical Reports Server (NTRS)
Starrfield, S. G.; Kenyon, S.; Truran, J. W.; Sparks, W. M.
1981-01-01
A Lagrangian, fully implicit, one dimensional hydrodynamic computer code was used to evolve thermonuclear runaways in the accreted hydrogen rich envelopes of 1.0 Msub solar neutron stars with radii of 10 km and 20 km. Simulations produce outbursts which last from about 750 seconds to about one week. Peak effective temeratures and luninosities were 26 million K and 80 thousand Lsub solar for the 10 km study and 5.3 millison and 600 Lsub solar for the 20 km study. Hydrodynamic expansion on the 10 km neutron star produced a precursor lasting about one ten thousandth seconds.
1976-09-01
3 PI TERMS LTV * FlrRCF,**f 1 + R)*LENfiTH**f2*A l TIrlF**17*i? - C) s smn flF EXPH~QSInN soL ~lT!nN FOR Pf TFRn FORCFn l * . innnnnanL 01 AREA... Sol vc tho governing equations implicitly, the same sp:tcr:-staggcrcd schcmc is used. The implicit code employs an alternating-direction tcchniquc...Hansen, W. "Hydrodynamical Methods Applied to Oceano - graphic Problems", Proceedings of the Symposium on Mathematical-Hydrodynamical Methods of
Okamoto, Kazuhisa; Nonaka, Chiho
2017-06-09
Here, we construct a new relativistic viscous hydrodynamics code optimized in the Milne coordinates. We also split the conservation equations into an ideal part and a viscous part, using the Strang spitting method. In the code a Riemann solver based on the two-shock approximation is utilized for the ideal part and the Piecewise Exact Solution (PES) method is applied for the viscous part. Furthemore, we check the validity of our numerical calculations by comparing analytical solutions, the viscous Bjorken’s flow and the Israel–Stewart theory in Gubser flow regime. Using the code, we discuss possible development of the Kelvin–Helmholtz instability inmore » high-energy heavy-ion collisions.« less
Particle Hydrodynamics with Material Strength for Multi-Layer Orbital Debris Shield Design
NASA Technical Reports Server (NTRS)
Fahrenthold, Eric P.
1999-01-01
Three dimensional simulation of oblique hypervelocity impact on orbital debris shielding places extreme demands on computer resources. Research to date has shown that particle models provide the most accurate and efficient means for computer simulation of shield design problems. In order to employ a particle based modeling approach to the wall plate impact portion of the shield design problem, it is essential that particle codes be augmented to represent strength effects. This report describes augmentation of a Lagrangian particle hydrodynamics code developed by the principal investigator, to include strength effects, allowing for the entire shield impact problem to be represented using a single computer code.
BALANCING THE LOAD: A VORONOI BASED SCHEME FOR PARALLEL COMPUTATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinberg, Elad; Yalinewich, Almog; Sari, Re'em
2015-01-01
One of the key issues when running a simulation on multiple CPUs is maintaining a proper load balance throughout the run and minimizing communications between CPUs. We propose a novel method of utilizing a Voronoi diagram to achieve a nearly perfect load balance without the need of any global redistributions of data. As a show case, we implement our method in RICH, a two-dimensional moving mesh hydrodynamical code, but it can be extended trivially to other codes in two or three dimensions. Our tests show that this method is indeed efficient and can be used in a large variety ofmore » existing hydrodynamical codes.« less
Numerical MHD codes for modeling astrophysical flows
NASA Astrophysics Data System (ADS)
Koldoba, A. V.; Ustyugova, G. V.; Lii, P. S.; Comins, M. L.; Dyda, S.; Romanova, M. M.; Lovelace, R. V. E.
2016-05-01
We describe a Godunov-type magnetohydrodynamic (MHD) code based on the Miyoshi and Kusano (2005) solver which can be used to solve various astrophysical hydrodynamic and MHD problems. The energy equation is in the form of entropy conservation. The code has been implemented on several different coordinate systems: 2.5D axisymmetric cylindrical coordinates, 2D Cartesian coordinates, 2D plane polar coordinates, and fully 3D cylindrical coordinates. Viscosity and diffusivity are implemented in the code to control the accretion rate in the disk and the rate of penetration of the disk matter through the magnetic field lines. The code has been utilized for the numerical investigations of a number of different astrophysical problems, several examples of which are shown.
Oxygen spectral line synthesis: 3D non-LTE with CO5BOLD hydrodynamical model atmospheres.
NASA Astrophysics Data System (ADS)
Prakapavičius, D.; Steffen, M.; Kučinskas, A.; Ludwig, H.-G.; Freytag, B.; Caffau, E.; Cayrel, R.
In this work we present first results of our current project aimed at combining the 3D hydrodynamical stellar atmosphere approach with non-LTE (NLTE) spectral line synthesis for a number of key chemical species. We carried out a full 3D-NLTE spectrum synthesis of the oxygen IR 777 nm triplet, using a modified and improved version of our NLTE3D package to calculate departure coefficients for the atomic levels of oxygen in a CO5BOLD 3D hydrodynamical solar model atmosphere. Spectral line synthesis was subsequently performed with the Linfor3D code. In agreement with previous studies, we find that the lines of the oxygen triplet produce deeper cores under NLTE conditions, due to the diminished line source function in the line forming region. This means that the solar oxygen IR 777 nm lines should be stronger in NLTE, leading to negative 3D NLTE-LTE abundance corrections. Qualitatively this result would support previous claims for a relatively low solar oxygen abundance. Finally, we outline several further steps that need to be taken in order to improve the physical realism and numerical accuracy of our current 3D-NLTE calculations.
Implementation of Hydrodynamic Simulation Code in Shock Experiment Design for Alkali Metals
NASA Astrophysics Data System (ADS)
Coleman, A. L.; Briggs, R.; Gorman, M. G.; Ali, S.; Lazicki, A.; Swift, D. C.; Stubley, P. G.; McBride, E. E.; Collins, G.; Wark, J. S.; McMahon, M. I.
2017-10-01
Shock compression techniques enable the investigation of extreme P-T states. In order to probe off-Hugoniot regions of P-T space, target makeup and laser pulse parameters must be carefully designed. HYADES is a hydrodynamic simulation code which has been successfully utilised to simulate shock compression events and refine the experimental parameters required in order to explore new P-T states in alkali metals. Here we describe simulations and experiments on potassium, along with the techniques required to access off-Hugoniot states.
NASA Astrophysics Data System (ADS)
Cardall, Christian Y.; Budiardja, Reuben D.; Endeve, Eirik; Mezzacappa, Anthony
2014-02-01
GenASiS (General Astrophysical Simulation System) is a new code being developed initially and primarily, though by no means exclusively, for the simulation of core-collapse supernovae on the world's leading capability supercomputers. This paper—the first in a series—demonstrates a centrally refined coordinate patch suitable for gravitational collapse and documents methods for compressible nonrelativistic hydrodynamics. We benchmark the hydrodynamics capabilities of GenASiS against many standard test problems; the results illustrate the basic competence of our implementation, demonstrate the strengths and limitations of the HLLC relative to the HLL Riemann solver in a number of interesting cases, and provide preliminary indications of the code's ability to scale and to function with cell-by-cell fixed-mesh refinement.
Using hybrid implicit Monte Carlo diffusion to simulate gray radiation hydrodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cleveland, Mathew A., E-mail: cleveland7@llnl.gov; Gentile, Nick
This work describes how to couple a hybrid Implicit Monte Carlo Diffusion (HIMCD) method with a Lagrangian hydrodynamics code to evaluate the coupled radiation hydrodynamics equations. This HIMCD method dynamically applies Implicit Monte Carlo Diffusion (IMD) [1] to regions of a problem that are opaque and diffusive while applying standard Implicit Monte Carlo (IMC) [2] to regions where the diffusion approximation is invalid. We show that this method significantly improves the computational efficiency as compared to a standard IMC/Hydrodynamics solver, when optically thick diffusive material is present, while maintaining accuracy. Two test cases are used to demonstrate the accuracy andmore » performance of HIMCD as compared to IMC and IMD. The first is the Lowrie semi-analytic diffusive shock [3]. The second is a simple test case where the source radiation streams through optically thin material and heats a thick diffusive region of material causing it to rapidly expand. We found that HIMCD proves to be accurate, robust, and computationally efficient for these test problems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barahona, B.; Jonkman, J.; Damiani, R.
2014-12-01
Coupled dynamic analysis has an important role in the design of offshore wind turbines because the systems are subject to complex operating conditions from the combined action of waves and wind. The aero-hydro-servo-elastic tool FAST v8 is framed in a novel modularization scheme that facilitates such analysis. Here, we present the verification of new capabilities of FAST v8 to model fixed-bottom offshore wind turbines. We analyze a series of load cases with both wind and wave loads and compare the results against those from the previous international code comparison projects-the International Energy Agency (IEA) Wind Task 23 Subtask 2 Offshoremore » Code Comparison Collaboration (OC3) and the IEA Wind Task 30 OC3 Continued (OC4) projects. The verification is performed using the NREL 5-MW reference turbine supported by monopile, tripod, and jacket substructures. The substructure structural-dynamics models are built within the new SubDyn module of FAST v8, which uses a linear finite-element beam model with Craig-Bampton dynamic system reduction. This allows the modal properties of the substructure to be synthesized and coupled to hydrodynamic loads and tower dynamics. The hydrodynamic loads are calculated using a new strip theory approach for multimember substructures in the updated HydroDyn module of FAST v8. These modules are linked to the rest of FAST through the new coupling scheme involving mapping between module-independent spatial discretizations and a numerically rigorous implicit solver. The results show that the new structural dynamics, hydrodynamics, and coupled solutions compare well to the results from the previous code comparison projects.« less
Direct collapse to supermassive black hole seeds: comparing the AMR and SPH approaches.
Luo, Yang; Nagamine, Kentaro; Shlosman, Isaac
2016-07-01
We provide detailed comparison between the adaptive mesh refinement (AMR) code enzo-2.4 and the smoothed particle hydrodynamics (SPH)/ N -body code gadget-3 in the context of isolated or cosmological direct baryonic collapse within dark matter (DM) haloes to form supermassive black holes. Gas flow is examined by following evolution of basic parameters of accretion flows. Both codes show an overall agreement in the general features of the collapse; however, many subtle differences exist. For isolated models, the codes increase their spatial and mass resolutions at different pace, which leads to substantially earlier collapse in SPH than in AMR cases due to higher gravitational resolution in gadget-3. In cosmological runs, the AMR develops a slightly higher baryonic resolution than SPH during halo growth via cold accretion permeated by mergers. Still, both codes agree in the build-up of DM and baryonic structures. However, with the onset of collapse, this difference in mass and spatial resolution is amplified, so evolution of SPH models begins to lag behind. Such a delay can have effect on formation/destruction rate of H 2 due to UV background, and on basic properties of host haloes. Finally, isolated non-cosmological models in spinning haloes, with spin parameter λ ∼ 0.01-0.07, show delayed collapse for greater λ, but pace of this increase is faster for AMR. Within our simulation set-up, gadget-3 requires significantly larger computational resources than enzo-2.4 during collapse, and needs similar resources, during the pre-collapse, cosmological structure formation phase. Yet it benefits from substantially higher gravitational force and hydrodynamic resolutions, except at the end of collapse.
Direct collapse to supermassive black hole seeds: comparing the AMR and SPH approaches
NASA Astrophysics Data System (ADS)
Luo, Yang; Nagamine, Kentaro; Shlosman, Isaac
2016-07-01
We provide detailed comparison between the adaptive mesh refinement (AMR) code ENZO-2.4 and the smoothed particle hydrodynamics (SPH)/N-body code GADGET-3 in the context of isolated or cosmological direct baryonic collapse within dark matter (DM) haloes to form supermassive black holes. Gas flow is examined by following evolution of basic parameters of accretion flows. Both codes show an overall agreement in the general features of the collapse; however, many subtle differences exist. For isolated models, the codes increase their spatial and mass resolutions at different pace, which leads to substantially earlier collapse in SPH than in AMR cases due to higher gravitational resolution in GADGET-3. In cosmological runs, the AMR develops a slightly higher baryonic resolution than SPH during halo growth via cold accretion permeated by mergers. Still, both codes agree in the build-up of DM and baryonic structures. However, with the onset of collapse, this difference in mass and spatial resolution is amplified, so evolution of SPH models begins to lag behind. Such a delay can have effect on formation/destruction rate of H2 due to UV background, and on basic properties of host haloes. Finally, isolated non-cosmological models in spinning haloes, with spin parameter λ ˜ 0.01-0.07, show delayed collapse for greater λ, but pace of this increase is faster for AMR. Within our simulation set-up, GADGET-3 requires significantly larger computational resources than ENZO-2.4 during collapse, and needs similar resources, during the pre-collapse, cosmological structure formation phase. Yet it benefits from substantially higher gravitational force and hydrodynamic resolutions, except at the end of collapse.
The PLUTO code for astrophysical gasdynamics .
NASA Astrophysics Data System (ADS)
Mignone, A.
Present numerical codes appeal to a consolidated theory based on finite difference and Godunov-type schemes. In this context we have developed a versatile numerical code, PLUTO, suitable for the solution of high-mach number flow in 1, 2 and 3 spatial dimensions and different systems of coordinates. Different hydrodynamic modules and algorithms may be independently selected to properly describe Newtonian, relativistic, MHD, or relativistic MHD fluids. The modular structure exploits a general framework for integrating a system of conservation laws, built on modern Godunov-type shock-capturing schemes. The code is freely distributed under the GNU public license and it is available for download to the astrophysical community at the URL http://plutocode.to.astro.it.
Equilibrium Spline Interface (ESI) for magnetic confinement codes
NASA Astrophysics Data System (ADS)
Li, Xujing; Zakharov, Leonid E.
2017-12-01
A compact and comprehensive interface between magneto-hydrodynamic (MHD) equilibrium codes and gyro-kinetic, particle orbit, MHD stability, and transport codes is presented. Its irreducible set of equilibrium data consists of three (in the 2-D case with occasionally one extra in the 3-D case) functions of coordinates and four 1-D radial profiles together with their first and mixed derivatives. The C reconstruction routines, accessible also from FORTRAN, allow the calculation of basis functions and their first derivatives at any position inside the plasma and in its vicinity. After this all vector fields and geometric coefficients, required for the above mentioned types of codes, can be calculated using only algebraic operations with no further interpolation or differentiation.
Particle In Cell Codes on Highly Parallel Architectures
NASA Astrophysics Data System (ADS)
Tableman, Adam
2014-10-01
We describe strategies and examples of Particle-In-Cell Codes running on Nvidia GPU and Intel Phi architectures. This includes basic implementations in skeletons codes and full-scale development versions (encompassing 1D, 2D, and 3D codes) in Osiris. Both the similarities and differences between Intel's and Nvidia's hardware will be examined. Work supported by grants NSF ACI 1339893, DOE DE SC 000849, DOE DE SC 0008316, DOE DE NA 0001833, and DOE DE FC02 04ER 54780.
NASA Astrophysics Data System (ADS)
Donmez, Orhan
We present a general procedure to solve the General Relativistic Hydrodynamical (GRH) equations with Adaptive-Mesh Refinement (AMR) and model of an accretion disk around a black hole. To do this, the GRH equations are written in a conservative form to exploit their hyperbolic character. The numerical solutions of the general relativistic hydrodynamic equations is done by High Resolution Shock Capturing schemes (HRSC), specifically designed to solve non-linear hyperbolic systems of conservation laws. These schemes depend on the characteristic information of the system. We use Marquina fluxes with MUSCL left and right states to solve GRH equations. First, we carry out different test problems with uniform and AMR grids on the special relativistic hydrodynamics equations to verify the second order convergence of the code in 1D, 2 D and 3D. Second, we solve the GRH equations and use the general relativistic test problems to compare the numerical solutions with analytic ones. In order to this, we couple the flux part of general relativistic hydrodynamic equation with a source part using Strang splitting. The coupling of the GRH equations is carried out in a treatment which gives second order accurate solutions in space and time. The test problems examined include shock tubes, geodesic flows, and circular motion of particle around the black hole. Finally, we apply this code to the accretion disk problems around the black hole using the Schwarzschild metric at the background of the computational domain. We find spiral shocks on the accretion disk. They are observationally expected results. We also examine the star-disk interaction near a massive black hole. We find that when stars are grounded down or a hole is punched on the accretion disk, they create shock waves which destroy the accretion disk.
Astrophysical Connections to Collapsing Radiative Shock Experiments
NASA Astrophysics Data System (ADS)
Reighard, A. B.; Hansen, J. F.; Bouquet, S.; Koenig, M.
2005-10-01
Radiative shocks occur in many high-energy density explosions, but prove difficult to create in laboratory experiments or to fully model with astrophysical codes. Low astrophysical densities combined with powerful explosions provide ideal conditions for producing radiative shocks. Here we describe an experiment significant to astrophysical shocks, which produces a driven, planar radiative shock in low density Xe gas. Including radiation effects precludes scaling experiments directly to astrophysical conditions via Euler equations, as can be done in purely hydrodynamic experiments. We use optical depth considerations to make comparisons between the driven shock in xenon and specific astrophysical phenomena. This planar shock may be subject to thin shell instabilities similar to those affecting the evolution of astrophysical shocks. This research was sponsored by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Research Grants DE-FG52-03NA00064, DE-FG53-2005-NA26014, and other grants and contracts.
White Dwarf Mergers On Adaptive Meshes. I. Methodology And Code Verification
Katz, Max P.; Zingale, Michael; Calder, Alan C.; ...
2016-03-02
The Type Ia supernova (SN Ia) progenitor problem is one of the most perplexing and exciting problems in astrophysics, requiring detailed numerical modeling to complement observations of these explosions. One possible progenitor that has merited recent theoretical attention is the white dwarf (WD) merger scenario, which has the potential to naturally explain many of the observed characteristics of SNe Ia. To date there have been relatively few self-consistent simulations of merging WD systems using mesh-based hydrodynamics. This is the first study in a series describing simulations of these systems using a hydrodynamics code with adaptive mesh refinement. In this papermore » we describe our numerical methodology and discuss our implementation in the compressible hydrodynamics code CASTRO, which solves the Euler equations, and the Poisson equation for self-gravity, and couples the gravitational and rotation forces to the hydrodynamics. Standard techniques for coupling gravitation and rotation forces to the hydrodynamics do not adequately conserve the total energy of the system for our problem, but recent advances in the literature allow progress and we discuss our implementation here. We present a set of test problems demonstrating the extent to which our software sufficiently models a system where large amounts of mass are advected on the computational domain over long timescales. Finally, future papers in this series will describe our treatment of the initial conditions of these systems and will examine the early phases of the merger to determine its viability for triggering a thermonuclear detonation.« less
Environmental Flow for Sungai Johor Estuary
NASA Astrophysics Data System (ADS)
Adilah, A. Kadir; Zulkifli, Yusop; Zainura, Z. Noor; Bakhiah, Baharim N.
2018-03-01
Sungai Johor estuary is a vital water body in the south of Johor and greatly affects the water quality in the Johor Straits. In the development of the hydrodynamic and water quality models for Sungai Johor estuary, the Environmental Fluid Dynamics Code (EFDC) model was selected. In this application, the EFDC hydrodynamic model was configured to simulate time varying surface elevation, velocity, salinity, and water temperature. The EFDC water quality model was configured to simulate dissolved oxygen (DO), dissolved organic carbon (DOC), chemical oxygen demand (COD), ammoniacal nitrogen (NH3-N), nitrate nitrogen (NO3-N), phosphate (PO4), and Chlorophyll a. The hydrodynamic and water quality model calibration was performed utilizing a set of site specific data acquired in January 2008. The simulated water temperature, salinity and DO showed good and fairly good agreement with observations. The calculated correlation coefficients between computed and observed temperature and salinity were lower compared with the water level. Sensitivity analysis was performed on hydrodynamic and water quality models input parameters to quantify their impact on modeling results such as water surface elevation, salinity and dissolved oxygen concentration. It is anticipated and recommended that the development of this model be continued to synthesize additional field data into the modeling process.
A full scale hydrodynamic simulation of pyrotechnic combustion
NASA Astrophysics Data System (ADS)
Kim, Bohoon; Jang, Seung-Gyo; Yoh, Jack
2017-06-01
A full scale hydrodynamic simulation that requires an accurate reproduction of shock-induced detonation was conducted for design of an energetic component system. A series of small scale gap tests and detailed hydrodynamic simulations were used to validate the reactive flow model for predicting the shock propagation in a train configuration and to quantify the shock sensitivity of the energetic materials. The energetic component system is composed of four main components, namely a donor unit (HNS + HMX), a bulkhead (STS), an acceptor explosive (RDX), and a propellant (BKNO3) for gas generation. The pressurized gases generated from the burning propellant were purged into a 10 cc release chamber for study of the inherent oscillatory flow induced by the interferences between shock and rarefaction waves. The pressure fluctuations measured from experiment and calculation were investigated to further validate the peculiar peak at specific characteristic frequency (ωc = 8.3 kHz). In this paper, a step-by-step numerical description of detonation of high explosive components, deflagration of propellant component, and deformation of metal component is given in order to facilitate the proper implementation of the outlined formulation into a shock physics code for a full scale hydrodynamic simulation of the energetic component system.
SPAMCART: a code for smoothed particle Monte Carlo radiative transfer
NASA Astrophysics Data System (ADS)
Lomax, O.; Whitworth, A. P.
2016-10-01
We present a code for generating synthetic spectral energy distributions and intensity maps from smoothed particle hydrodynamics simulation snapshots. The code is based on the Lucy Monte Carlo radiative transfer method, I.e. it follows discrete luminosity packets as they propagate through a density field, and then uses their trajectories to compute the radiative equilibrium temperature of the ambient dust. The sources can be extended and/or embedded, and discrete and/or diffuse. The density is not mapped on to a grid, and therefore the calculation is performed at exactly the same resolution as the hydrodynamics. We present two example calculations using this method. First, we demonstrate that the code strictly adheres to Kirchhoff's law of radiation. Secondly, we present synthetic intensity maps and spectra of an embedded protostellar multiple system. The algorithm uses data structures that are already constructed for other purposes in modern particle codes. It is therefore relatively simple to implement.
Experimental design to understand the interaction of stellar radiation with molecular clouds
NASA Astrophysics Data System (ADS)
Vandervort, Robert; Davis, Josh; Trantham, Matt; Klein, Sallee; Frank, Yechiel; Raicher, Erez; Fraenkel, Moshe; Shvarts, Dov; Keiter, Paul; Drake, R. Paul
2016-10-01
Enhanced star formation triggered by local O and B type stars is an astrophysical problem of interest. O and B type stars are massive, hot stars that emit an enormous amount of radiation. This radiation acts to either compress or blow apart clumps of gas in the interstellar media. For example, in the optically thick limit, when the x-ray radiation in the gas clump has a short mean free path length the x-ray radiation is absorbed near the clump edge and compresses the clump. In the optically thin limit, when the mean free path is long, the radiation is absorbed throughout acting to heat the clump. This heating explodes the gas clump. Careful selection of parameters, such as foam density or source temperature, allow the experimental platform to access different hydrodynamic regimes. The stellar radiation source is mimicked by a laser irradiated thin gold foil. This will provide a source of thermal x-rays (around 100 eV). The gas clump is mimicked by a low-density foam around 0.12 g/cc. Simulations were done using radiation hydrodynamics codes to tune the experimental parameters. The experiment will be carried out at the Omega laser facility on OMEGA 60. Funding acknowledgements: This work is funded by the U.S. DOE, through the NNSA-DS and SC-OFES Joint Program in HEDPLP, Grant No. DE-NA0001840, and the NLUF Program, Grant No. DE-NA0000850, and through LLE, University of Rochester by the NNSA/OICF under Agreement No. DE-FC52-08NA28302.
nIFTY galaxy cluster simulations - III. The similarity and diversity of galaxies and subhaloes
NASA Astrophysics Data System (ADS)
Elahi, Pascal J.; Knebe, Alexander; Pearce, Frazer R.; Power, Chris; Yepes, Gustavo; Cui, Weiguang; Cunnama, Daniel; Kay, Scott T.; Sembolini, Federico; Beck, Alexander M.; Davé, Romeel; February, Sean; Huang, Shuiyao; Katz, Neal; McCarthy, Ian G.; Murante, Giuseppe; Perret, Valentin; Puchwein, Ewald; Saro, Alexandro; Teyssier, Romain
2016-05-01
We examine subhaloes and galaxies residing in a simulated Λ cold dark matter galaxy cluster (M^crit_{200}=1.1× 10^{15} h^{-1} M_{⊙}) produced by hydrodynamical codes ranging from classic smooth particle hydrodynamics (SPH), newer SPH codes, adaptive and moving mesh codes. These codes use subgrid models to capture galaxy formation physics. We compare how well these codes reproduce the same subhaloes/galaxies in gravity-only, non-radiative hydrodynamics and full feedback physics runs by looking at the overall subhalo/galaxy distribution and on an individual object basis. We find that the subhalo population is reproduced to within ≲10 per cent for both dark matter only and non-radiative runs, with individual objects showing code-to-code scatter of ≲0.1 dex, although the gas in non-radiative simulations shows significant scatter. Including feedback physics significantly increases the diversity. Subhalo mass and Vmax distributions vary by ≈20 per cent. The galaxy populations also show striking code-to-code variations. Although the Tully-Fisher relation is similar in almost all codes, the number of galaxies with 109 h- 1 M⊙ ≲ M* ≲ 1012 h- 1 M⊙ can differ by a factor of 4. Individual galaxies show code-to-code scatter of ˜0.5 dex in stellar mass. Moreover, systematic differences exist, with some codes producing galaxies 70 per cent smaller than others. The diversity partially arises from the inclusion/absence of active galactic nucleus feedback. Our results combined with our companion papers demonstrate that subgrid physics is not just subject to fine-tuning, but the complexity of building galaxies in all environments remains a challenge. We argue that even basic galaxy properties, such as stellar mass to halo mass, should be treated with errors bars of ˜0.2-0.4 dex.
Revealing the Physics of Galactic Winds Through Massively-Parallel Hydrodynamics Simulations
NASA Astrophysics Data System (ADS)
Schneider, Evan Elizabeth
This thesis documents the hydrodynamics code Cholla and a numerical study of multiphase galactic winds. Cholla is a massively-parallel, GPU-based code designed for astrophysical simulations that is freely available to the astrophysics community. A static-mesh Eulerian code, Cholla is ideally suited to carrying out massive simulations (> 20483 cells) that require very high resolution. The code incorporates state-of-the-art hydrodynamics algorithms including third-order spatial reconstruction, exact and linearized Riemann solvers, and unsplit integration algorithms that account for transverse fluxes on multidimensional grids. Operator-split radiative cooling and a dual-energy formalism for high mach number flows are also included. An extensive test suite demonstrates Cholla's superior ability to model shocks and discontinuities, while the GPU-native design makes the code extremely computationally efficient - speeds of 5-10 million cell updates per GPU-second are typical on current hardware for 3D simulations with all of the aforementioned physics. The latter half of this work comprises a comprehensive study of the mixing between a hot, supernova-driven wind and cooler clouds representative of those observed in multiphase galactic winds. Both adiabatic and radiatively-cooling clouds are investigated. The analytic theory of cloud-crushing is applied to the problem, and adiabatic turbulent clouds are found to be mixed with the hot wind on similar timescales as the classic spherical case (4-5 t cc) with an appropriate rescaling of the cloud-crushing time. Radiatively cooling clouds survive considerably longer, and the differences in evolution between turbulent and spherical clouds cannot be reconciled with a simple rescaling. The rapid incorporation of low-density material into the hot wind implies efficient mass-loading of hot phases of galactic winds. At the same time, the extreme compression of high-density cloud material leads to long-lived but slow-moving clumps that are unlikely to escape the galaxy.
NASA Astrophysics Data System (ADS)
Barranco, Joseph
2006-03-01
We have developed a three-dimensional (3D) spectral hydrodynamic code to study vortex dynamics in rotating, shearing, stratified systems (eg, the atmosphere of gas giant planets, protoplanetary disks around newly forming protostars). The time-independent background state is stably stratified in the vertical direction and has a unidirectional linear shear flow aligned with one horizontal axis. Superposed on this background state is an unsteady, subsonic flow that is evolved with the Euler equations subject to the anelastic approximation to filter acoustic phenomena. A Fourier-Fourier basis in a set of quasi-Lagrangian coordinates that advect with the background shear is used for spectral expansions in the two horizontal directions. For the vertical direction, two different sets of basis functions have been implemented: (1) Chebyshev polynomials on a truncated, finite domain, and (2) rational Chebyshev functions on an infinite domain. Use of this latter set is equivalent to transforming the infinite domain to a finite one with a cotangent mapping, and using cosine and sine expansions in the mapped coordinate. The nonlinear advection terms are time integrated explicitly, whereas the Coriolis force, buoyancy terms, and pressure/enthalpy gradient are integrated semi- implicitly. We show that internal gravity waves can be damped by adding new terms to the Euler equations. The code exhibits excellent parallel performance with the Message Passing Interface (MPI). As a demonstration of the code, we simulate vortex dynamics in protoplanetary disks and the Kelvin-Helmholtz instability in the dusty midplanes of protoplanetary disks.
Hypersonic CFD applications at NASA Langley using CFL3D and CFL3DE
NASA Technical Reports Server (NTRS)
Richardson, Pamela F.
1989-01-01
The CFL3D/CFL3DE CFD codes and the industrial use status of the codes are outlined. Comparison of grid density, pressure, heat transfer, and aerodynamic coefficience are presented. Future plans related to the National Aerospace Plane Program are briefly outlined.
NASA Astrophysics Data System (ADS)
Denicol, Gabriel; Heinz, Ulrich; Martinez, Mauricio; Noronha, Jorge; Strickland, Michael
2014-12-01
We present an exact solution to the Boltzmann equation which describes a system undergoing boost-invariant longitudinal and azimuthally symmetric radial expansion for arbitrary shear viscosity to entropy density ratio. This new solution is constructed by considering the conformal map between Minkowski space and the direct product of three-dimensional de Sitter space with a line. The resulting solution respects S O (3 )q⊗S O (1 ,1 )⊗Z2 symmetry. We compare the exact kinetic solution with exact solutions of the corresponding macroscopic equations that were obtained from the kinetic theory in ideal and second-order viscous hydrodynamic approximations. The macroscopic solutions are obtained in de Sitter space and are subject to the same symmetries used to obtain the exact kinetic solution.
A Comparison of Grid-based and SPH Binary Mass-transfer and Merger Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Motl, Patrick M.; Frank, Juhan; Clayton, Geoffrey C.
2017-04-01
There is currently a great amount of interest in the outcomes and astrophysical implications of mergers of double degenerate binaries. In a commonly adopted approximation, the components of such binaries are represented by polytropes with an index of n = 3/2. We present detailed comparisons of stellar mass-transfer and merger simulations of polytropic binaries that have been carried out using two very different numerical algorithms—a finite-volume “grid” code and a smoothed-particle hydrodynamics (SPH) code. We find that there is agreement in both the ultimate outcomes of the evolutions and the intermediate stages if the initial conditions for each code are chosen to matchmore » as closely as possible. We find that even with closely matching initial setups, the time it takes to reach a concordant evolution differs between the two codes because the initial depth of contact cannot be matched exactly. There is a general tendency for SPH to yield higher mass transfer rates and faster evolution to the final outcome. We also present comparisons of simulations calculated from two different energy equations: in one series, we assume a polytropic equation of state and in the other series an ideal gas equation of state. In the latter series of simulations, an atmosphere forms around the accretor, which can exchange angular momentum and cause a more rapid loss of orbital angular momentum. In the simulations presented here, the effect of the ideal equation of state is to de-stabilize the binary in both SPH and grid simulations, but the effect is more pronounced in the grid code.« less
GASOLINE: Smoothed Particle Hydrodynamics (SPH) code
NASA Astrophysics Data System (ADS)
N-Body Shop
2017-10-01
Gasoline solves the equations of gravity and hydrodynamics in astrophysical problems, including simulations of planets, stars, and galaxies. It uses an SPH method that features correct mixing behavior in multiphase fluids and minimal artificial viscosity. This method is identical to the SPH method used in the ChaNGa code (ascl:1105.005), allowing users to extend results to problems requiring >100,000 cores. Gasoline uses a fast, memory-efficient O(N log N) KD-Tree to solve Poisson's Equation for gravity and avoids artificial viscosity in non-shocking compressive flows.
RADHOT: A Radiation Hydrodynamics Code for Weapon Effects Calculation.
1981-03-01
h4A ( :: [ l), t.110 )" *- 7470 -C - C... C LUMI1LTI A F ’ :: ISUfI ----- --------------- 7480= P2 GM I ’: ;,,l. II 7490C:, A ......... ’ R..E I:I ’ S...AD-AlO 637 AIR FORCE INST OF TECH WRIGHTPATTERSON AFL O SCHOOETC F /8 12/ RADHOT: A RADIATION HYDRODYNAMICS CODE FOR WEAPON EFFECTS CALCU--ETC(U...change of internal energy due to radiation atj rad F monochromatic flux V F -, F inward and outward-going monochromatic fluxes at Va cell boundary F -, F1
Terminal Ballistic Application of Hydrodynamic Computer Code Calculations.
1977-04-01
F1’T.D—AO*I 065 BALLISTIC RESEARCH LABS ABnoflN PR0VIM eRotic j~o NTERMiNAL BALLISIIC APPLICATION OF HYDRODYNAMIC C~I~~U7ER COVE CA—ET C(U) I APR 77...this short- coming of the code, design solutions using a combined calculational and empirical design procedure were tried . 18 --- - -- -- - --- -rn...In this calculation , the exp losive was conf ined on its periphery by a steel casing. The calculated liner shape is shown at 18 m icroseconds af
NASA Astrophysics Data System (ADS)
Nagakura, H.; Richers, S.; Ott, C. D.; Iwakami, W.; Furusawa, S.; Sumiyoshi, K.; Yamada, S.; Matsufuru, H.; Imakura, A.
2016-10-01
We have developed a 7-dimensional Full Boltzmann-neutrino-radiation-hydrodynamical code and carried out ab-initio axisymmetric CCSNe simulations. I will talk about main results of our simulations and also discuss current ongoing projects.
Production code control system for hydrodynamics simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slone, D.M.
1997-08-18
We describe how the Production Code Control System (pCCS), written in Perl, has been used to control and monitor the execution of a large hydrodynamics simulation code in a production environment. We have been able to integrate new, disparate, and often independent, applications into the PCCS framework without the need to modify any of our existing application codes. Both users and code developers see a consistent interface to the simulation code and associated applications regardless of the physical platform, whether an MPP, SMP, server, or desktop workstation. We will also describe our use of Perl to develop a configuration managementmore » system for the simulation code, as well as a code usage database and report generator. We used Perl to write a backplane that allows us plug in preprocessors, the hydrocode, postprocessors, visualization tools, persistent storage requests, and other codes. We need only teach PCCS a minimal amount about any new tool or code to essentially plug it in and make it usable to the hydrocode. PCCS has made it easier to link together disparate codes, since using Perl has removed the need to learn the idiosyncrasies of system or RPC programming. The text handling in Perl makes it easy to teach PCCS about new codes, or changes to existing codes.« less
A nonlocal electron conduction model for multidimensional radiation hydrodynamics codes
NASA Astrophysics Data System (ADS)
Schurtz, G. P.; Nicolaï, Ph. D.; Busquet, M.
2000-10-01
Numerical simulation of laser driven Inertial Confinement Fusion (ICF) related experiments require the use of large multidimensional hydro codes. Though these codes include detailed physics for numerous phenomena, they deal poorly with electron conduction, which is the leading energy transport mechanism of these systems. Electron heat flow is known, since the work of Luciani, Mora, and Virmont (LMV) [Phys. Rev. Lett. 51, 1664 (1983)], to be a nonlocal process, which the local Spitzer-Harm theory, even flux limited, is unable to account for. The present work aims at extending the original formula of LMV to two or three dimensions of space. This multidimensional extension leads to an equivalent transport equation suitable for easy implementation in a two-dimensional radiation-hydrodynamic code. Simulations are presented and compared to Fokker-Planck simulations in one and two dimensions of space.
Modelling for anchovy recruitment studies in the Gulf of Lions (Western Mediterranean Sea)
NASA Astrophysics Data System (ADS)
Nicolle, Amandine; Garreau, Pierre; Liorzou, Bernard
2009-12-01
Anchovy ( Engraulis encrasicolus) is an important commercial species and one of the most abundant pelagic fish in the Gulf of Lions and the Catalan Sea. The factors influencing its recruitment are crucial to fisheries and ecological research. Among those factors transport of larvae by hydrodynamics (currents) is important because it determines whether the organisms can reach areas favourable to recruitment or are dispersed. Therefore, the first step in anchovy recruitment modelling is to simulate North-western Mediterranean Sea circulation. Several years (2001-2008) of hydrodynamics were simulated with the MARS-3D code. The resulting simulated currents and salinity are used by Lagrangian tool, Ichthyop, to transport anchovy eggs and larvae to the Western Mediterranean Sea. The aim of this study is to understand the main hydrodynamic processes that control anchovy transport and the effects of diel vertical migration on the transport and final distribution of anchovy.
Smoothed Particle Hydrodynamics Simulations of Ultrarelativistic Shocks with Artificial Viscosity
NASA Astrophysics Data System (ADS)
Siegler, S.; Riffert, H.
2000-03-01
We present a fully Lagrangian conservation form of the general relativistic hydrodynamic equations for perfect fluids with artificial viscosity in a given arbitrary background spacetime. This conservation formulation is achieved by choosing suitable Lagrangian time evolution variables, from which the generic fluid variables of rest-mass density, 3-velocity, and thermodynamic pressure have to be determined. We present the corresponding equations for an ideal gas and show the existence and uniqueness of the solution. On the basis of the Lagrangian formulation we have developed a three-dimensional general relativistic smoothed particle hydrodynamics (SPH) code using the standard SPH formalism as known from nonrelativistic fluid dynamics. One-dimensional simulations of a shock tube and a wall shock are presented together with a two-dimensional test calculation of an inclined shock tube. With our method we can model ultrarelativistic fluid flows including shocks with Lorentz factors of even 1000.
Integrated modelling framework for short pulse high energy density physics experiments
NASA Astrophysics Data System (ADS)
Sircombe, N. J.; Hughes, S. J.; Ramsay, M. G.
2016-03-01
Modelling experimental campaigns on the Orion laser at AWE, and developing a viable point-design for fast ignition (FI), calls for a multi-scale approach; a complete description of the problem would require an extensive range of physics which cannot realistically be included in a single code. For modelling the laser-plasma interaction (LPI) we need a fine mesh which can capture the dispersion of electromagnetic waves, and a kinetic model for each plasma species. In the dense material of the bulk target, away from the LPI region, collisional physics dominates. The transport of hot particles generated by the action of the laser is dependent on their slowing and stopping in the dense material and their need to draw a return current. These effects will heat the target, which in turn influences transport. On longer timescales, the hydrodynamic response of the target will begin to play a role as the pressure generated from isochoric heating begins to take effect. Recent effort at AWE [1] has focussed on the development of an integrated code suite based on: the particle in cell code EPOCH, to model LPI; the Monte-Carlo electron transport code THOR, to model the onward transport of hot electrons; and the radiation hydrodynamics code CORVUS, to model the hydrodynamic response of the target. We outline the methodology adopted, elucidate on the advantages of a robustly integrated code suite compared to a single code approach, demonstrate the integrated code suite's application to modelling the heating of buried layers on Orion, and assess the potential of such experiments for the validation of modelling capability in advance of more ambitious HEDP experiments, as a step towards a predictive modelling capability for FI.
Flash Galaxy Cluster Merger, Simulated using the Flash Code, Mass Ratio 1:1
None
2018-05-11
Since structure in the universe forms in a bottom-up fashion, with smaller structures merging to form larger ones, modeling the merging process in detail is crucial to our understanding of cosmology. At the current epoch, we observe clusters of galaxies undergoing mergers. It is seen that the two major components of galaxy clusters, the hot intracluster gas and the dark matter, behave very differently during the course of a merger. Using the N-body and hydrodynamics capabilities in the FLASH code, we have simulated a suite of representative galaxy cluster mergers, including the dynamics of both the dark matter, which is collisionless, and the gas, which has the properties of a fluid. 3-D visualizations such as these demonstrate clearly the different behavior of these two components over time. Credits: Science: John Zuhone (Harvard-Smithsonian Center for Astrophysics Visualization: Jonathan Gallagher (Flash Center, University of Chicago) This research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Dept. of Energy (DOE) under contract DE-AC02-06CH11357. This research was supported by the National Nuclear Security Administration's (NNSA) Advanced Simulation and Computing (ASC) Academic Strategic Alliance Program (ASAP).
Flash Galaxy Cluster Merger, Simulated using the Flash Code, Mass Ratio 1:1
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-08-09
Since structure in the universe forms in a bottom-up fashion, with smaller structures merging to form larger ones, modeling the merging process in detail is crucial to our understanding of cosmology. At the current epoch, we observe clusters of galaxies undergoing mergers. It is seen that the two major components of galaxy clusters, the hot intracluster gas and the dark matter, behave very differently during the course of a merger. Using the N-body and hydrodynamics capabilities in the FLASH code, we have simulated a suite of representative galaxy cluster mergers, including the dynamics of both the dark matter, which ismore » collisionless, and the gas, which has the properties of a fluid. 3-D visualizations such as these demonstrate clearly the different behavior of these two components over time. Credits: Science: John Zuhone (Harvard-Smithsonian Center for Astrophysics Visualization: Jonathan Gallagher (Flash Center, University of Chicago) This research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Dept. of Energy (DOE) under contract DE-AC02-06CH11357. This research was supported by the National Nuclear Security Administration's (NNSA) Advanced Simulation and Computing (ASC) Academic Strategic Alliance Program (ASAP).« less
The three-dimensional (3D) finite difference model Environmental Fluid Dynamics Code (EFDC) was used to simulate the hydrodynamics and sediment transport in a partially stratified micro-tidal estuary. The estuary modeled consisted of a 16-km reach of the St. Johns River, Florida,...
Multi-phase SPH modelling of violent hydrodynamics on GPUs
NASA Astrophysics Data System (ADS)
Mokos, Athanasios; Rogers, Benedict D.; Stansby, Peter K.; Domínguez, José M.
2015-11-01
This paper presents the acceleration of multi-phase smoothed particle hydrodynamics (SPH) using a graphics processing unit (GPU) enabling large numbers of particles (10-20 million) to be simulated on just a single GPU card. With novel hardware architectures such as a GPU, the optimum approach to implement a multi-phase scheme presents some new challenges. Many more particles must be included in the calculation and there are very different speeds of sound in each phase with the largest speed of sound determining the time step. This requires efficient computation. To take full advantage of the hardware acceleration provided by a single GPU for a multi-phase simulation, four different algorithms are investigated: conditional statements, binary operators, separate particle lists and an intermediate global function. Runtime results show that the optimum approach needs to employ separate cell and neighbour lists for each phase. The profiler shows that this approach leads to a reduction in both memory transactions and arithmetic operations giving significant runtime gains. The four different algorithms are compared to the efficiency of the optimised single-phase GPU code, DualSPHysics, for 2-D and 3-D simulations which indicate that the multi-phase functionality has a significant computational overhead. A comparison with an optimised CPU code shows a speed up of an order of magnitude over an OpenMP simulation with 8 threads and two orders of magnitude over a single thread simulation. A demonstration of the multi-phase SPH GPU code is provided by a 3-D dam break case impacting an obstacle. This shows better agreement with experimental results than an equivalent single-phase code. The multi-phase GPU code enables a convergence study to be undertaken on a single GPU with a large number of particles that otherwise would have required large high performance computing resources.
Evaporation effects in a shock-driven multiphase instability with a spherical interface
NASA Astrophysics Data System (ADS)
Paudel, Manoj; Dahal, Jeevan; McFarland, Jacob
2017-11-01
This talk presents results from 3D numerical simulations of a shock driven instability of a gas-particle system with a spherical interface. Two cases, one with an evaporating particle cloud and another with a gas only approximation of this particle cloud, were run in the hydrodynamics code FLASH, developed at University of Chicago. It is shown that the gas only approximation, a classical Richtmyer Meshkov instability, cannot replicate effects from particles like, lag, clustering, and evaporation. Instead, both gas hydrodynamics and particle properties influence one another and are coupled. Results are presented to highlight the coupling of interface evolution and particle evaporation. Qualitative and quantitative differences in the RMI and SDMI are presented by studying the change in gas properties like density and vorticity within the interface. Similarly, the effect of gas hydrodynamics on particles distribution and evaporation is studied. Particle evaporation rates are compared with 1D models and show poor agreement. The variation in evaporation rates for similar sized particles and the role of gas hydrodynamics in these variation is explored.
NASA Astrophysics Data System (ADS)
Mosumgaard, Jakob Rørsted; Ball, Warrick H.; Aguirre, Víctor Silva; Weiss, Achim; Christensen-Dalsgaard, Jørgen
2018-06-01
Stellar evolution codes play a major role in present-day astrophysics, yet they share common simplifications related to the outer layers of stars. We seek to improve on this by the use of results from realistic and highly detailed 3D hydrodynamics simulations of stellar convection. We implement a temperature stratification extracted directly from the 3D simulations into two stellar evolution codes to replace the simplified atmosphere normally used. Our implementation also contains a non-constant mixing-length parameter, which varies as a function of the stellar surface gravity and temperature - also derived from the 3D simulations. We give a detailed account of our fully consistent implementation and compare to earlier works, and also provide a freely available MESA-module. The evolution of low-mass stars with different masses is investigated, and we present for the first time an asteroseismic analysis of a standard solar model utilising calibrated convection and temperature stratification from 3D simulations. We show that the inclusion of 3D results have an almost insignificant impact on the evolution and structure of stellar models - the largest effect are changes in effective temperature of order 30 K seen in the pre-main sequence and in the red-giant branch. However, this work provides the first step for producing self-consistent evolutionary calculations using fully incorporated 3D atmospheres from on-the-fly interpolation in grids of simulations.
Benchmarking the SPHINX and CTH shock physics codes for three problems in ballistics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, L.T.; Hertel, E.; Schwalbe, L.
1998-02-01
The CTH Eulerian hydrocode, and the SPHINX smooth particle hydrodynamics (SPH) code were used to model a shock tube, two long rod penetrations into semi-infinite steel targets, and a long rod penetration into a spaced plate array. The results were then compared to experimental data. Both SPHINX and CTH modeled the one-dimensional shock tube problem well. Both codes did a reasonable job in modeling the outcome of the axisymmetric rod impact problem. Neither code correctly reproduced the depth of penetration in both experiments. In the 3-D problem, both codes reasonably replicated the penetration of the rod through the first plate.more » After this, however, the predictions of both codes began to diverge from the results seen in the experiment. In terms of computer resources, the run times are problem dependent, and are discussed in the text.« less
NASA Astrophysics Data System (ADS)
Hirakawa, E. T.; Ezzedine, S. M.; Petersson, A.; Sjogreen, B.; Vorobiev, O.; Pitarka, A.; Antoun, T.; Walter, W. R.
2016-12-01
Motions from underground explosions are governed by non-linear hydrodynamic response of material. However, the numerical calculation of this non-linear constitutive behavior is computationally intensive in contrast to the elastic and acoustic linear wave propagation solvers. Here, we develop a hybrid modeling approach with one-way hydrodynamic-to-elastic coupling in three dimensions in order to propagate explosion generated ground motions from the non-linear near-source region to the far-field. Near source motions are computed using GEODYN-L, a Lagrangian hydrodynamics code for high-energy loading of earth materials. Motions on a dense grid of points sampled on two nested shells located beyond the non-linear damaged zone are saved, and then passed to SW4, an anelastic anisotropic fourth order finite difference code for seismic wave modeling. Our coupling strategy is based on the decomposition and uniqueness theorems where motions are introduced into SW4 as a boundary source and continue to propagate as elastic waves at a much lower computational cost than by using GEODYN-L to cover the entire near- and the far-field domain. The accuracy of the numerical calculations and the coupling strategy is demonstrated in cases with a purely elastic medium as well as non-linear medium. Our hybrid modeling approach is applied to SPE-4' and SPE-5 which are the most recent underground chemical explosions conducted at the Nevada National Security Site (NNSS) where the Source Physics Experiments (SPE) are performed. Our strategy by design is capable of incorporating complex non-linear effects near the source as well as volumetric and topographic material heterogeneity along the propagation path to receiver, and provides new prospects for modeling and understanding explosion generated seismic waveforms. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-698608.
Status of Hydrodynamic Technology as Related to Model Tests of High- Speed Marine Vehicles
1981-07-01
Pennsylvania State University, State College, Pennsylvania, U.S.A. *Bulgarian Ship Hydrodynamics Centre, Varna, Bulgaria Canal de Experiencias Hidrodinamicas...DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER ’h "Bethesda, Maryland 20084 STATUS OF HYDRODYNAMIC TECHNOLOGY AS RELATED TO MODEL TESTS...34Status of Hydrodynamic Technology as related to Model Tests of High Speed Marine Vehicles" documenting the complete findings of the 16th ITTC’s
Eulerian and Lagrangian Plasma Jet Modeling for the Plasma Liner Experiment
NASA Astrophysics Data System (ADS)
Hatcher, Richard; Cassibry, Jason; Stanic, Milos; Loverich, John; Hakim, Ammar
2011-10-01
The Plasma Liner Experiment (PLX) aims to demonstrate the feasibility of using spherically-convergent plasma jets to from an imploding plasma liner. Our group has modified two hydrodynamic simulation codes to include radiative loss, tabular equations of state (EOS), and thermal transport. Nautilus, created by TechX Corporation, is a finite-difference Eulerian code which solves the MHD equations formulated as systems of hyperbolic conservation laws. The other is SPHC, a smoothed particle hydrodynamics code produced by Stellingwerf Consulting. Use of the Lagrangian fluid particle approach of SPH is motivated by the ability to accurately track jet interfaces, the plasma vacuum boundary, and mixing of various layers, but Eulerian codes have been in development for much longer and have better shock capturing. We validate these codes against experimental measurements of jet propagation, expansion, and merging of two jets. Precursor jets are observed to form at the jet interface. Conditions that govern evolution of two and more merging jets are explored.
1991-08-01
SUPPLEMENTARY NOTATION 1 COSA. CODES 18 SUBJECT TERMS (,ontnuo 0 ner of necessary Atdi, block n" mbr ) FIELD GROUP SUB.GROUP Submarine ’hyoroaynamic ’~ aDS...hydrodynamic forces and moments developed on the hull and appendages of a submerged vehicle is required for determining its stability, control, and...an approximate method has been developed to compute the hydrodynamic forces and moments for a submerged vehicle. As discussed in Reference 1, the
Py-SPHViewer: Cosmological simulations using Smoothed Particle Hydrodynamics
NASA Astrophysics Data System (ADS)
Benítez-Llambay, Alejandro
2017-12-01
Py-SPHViewer visualizes and explores N-body + Hydrodynamics simulations. The code interpolates the underlying density field (or any other property) traced by a set of particles, using the Smoothed Particle Hydrodynamics (SPH) interpolation scheme, thus producing not only beautiful but also useful scientific images. Py-SPHViewer enables the user to explore simulated volumes using different projections. Py-SPHViewer also provides a natural way to visualize (in a self-consistent fashion) gas dynamical simulations, which use the same technique to compute the interactions between particles.
Plasma hydrodynamics of the intense laser-cluster interaction*
NASA Astrophysics Data System (ADS)
Milchberg, Howard
2002-11-01
We present a 1D hydrodynamic model of the intense laser-cluster interaction in which the laser field is treated self-consistently. We find that for clusters initially as small as 25Å in radius, for which the hydrodynamic model is appropriate, nonuniform expansion of the heated material results in long-time resonance of the laser field at the critical density plasma layer. A significant result of this is that the ponderomotive force, which is enhanced at the critical density surface, can be large enough to strongly modify the plasma hydrodynamics, even at laser intensities as low as 10^15 W/cm^2 for 800 nm laser pulses. Recent experiments in EUV and x-ray generation as a function of laser pulsewidth [1], and femtosecond time-resolved measurements of cluster transient polarizability [2] provide strong support for the basic physics of this model. Recent results using a 2D hybrid fluid/PIC code show qualitative agreement with the 1D hydrocode [3]. *Work supported by the National Science Foundation and the EUV-LLC. 1. E. Parra, I. Alexeev, J. Fan, K. Kim, S.J. McNaught, and H. M. Milchberg, Phys. Rev. E 62, R5931 (2000). 2. K.Y. Kim, I. Alexeev, E. Parra, and H.M. Milchberg, submitted for publication. 3. T. Taguchi, T. Antonsen, and H.M Milchberg, this meeting.
Chemistry Resolved Kinetic Flow Modeling of TATB Based Explosives
NASA Astrophysics Data System (ADS)
Vitello, Peter; Fried, Lawrence; Howard, Mike; Levesque, George; Souers, Clark
2011-06-01
Detonation waves in insensitive, TATB based explosives are believed to have multi-time scale regimes. The initial burn rate of such explosives has a sub-microsecond time scale. However, significant late-time slow release in energy is believed to occur due to diffusion limited growth of carbon. In the intermediate time scale concentrations of product species likely change from being in equilibrium to being kinetic rate controlled. We use the thermo-chemical code CHEETAH linked to ALE hydrodynamics codes to model detonations. We term our model chemistry resolved kinetic flow as CHEETAH tracks the time dependent concentrations of individual species in the detonation wave and calculate EOS values based on the concentrations. A validation suite of model simulations compared to recent high fidelity metal push experiments at ambient and cold temperatures has been developed. We present here a study of multi-time scale kinetic rate effects for these experiments. Prepared by LLNL under Contract DE-AC52-07NA27344.
Simulations of a Molecular Cloud experiment using CRASH
NASA Astrophysics Data System (ADS)
Trantham, Matthew; Keiter, Paul; Vandervort, Robert; Drake, R. Paul; Shvarts, Dov
2017-10-01
Recent laboratory experiments explore molecular cloud radiation hydrodynamics. The experiment irradiates a gold foil with a laser producing x-rays to drive the implosion or explosion of a foam ball. The CRASH code, an Eulerian code with block-adaptive mesh refinement, multigroup diffusive radiation transport, and electron heat conduction developed at the University of Michigan to design and analyze high-energy-density experiments, is used to perform a parameter search in order to identify optically thick, optically thin and transition regimes suitable for these experiments. Specific design issues addressed by the simulations are the x-ray drive temperature, foam density, distance from the x-ray source to the ball, as well as other complicating issues such as the positioning of the stalk holding the foam ball. We present the results of this study and show ways the simulations helped improve the quality of the experiment. This work is funded by the LLNL under subcontract B614207 and NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0002956.
Rosenberg, M. J.; Rinderknecht, H. G.; Hoffman, N. M.; ...
2014-05-05
Clear evidence of the transition from hydrodynamiclike to strongly kinetic shock-driven implosions is, for the first time, revealed and quantitatively assessed. Implosions with a range of initial equimolar D 3He gas densities show that as the density is decreased, hydrodynamic simulations strongly diverge from and increasingly over-predict the observed nuclear yields, from a factor of ~2 at 3.1 mg/cm 3 to a factor of 100 at 0.14 mg/cm 3. (The corresponding Knudsen number, the ratio of ion mean-free path to minimum shell radius, varied from 0.3 to 9; similarly, the ratio of fusion burn duration to ion diffusion time, anothermore » figure of merit of kinetic effects, varied from 0.3 to 14.) This result is shown to be unrelated to the effects of hydrodynamic mix. As a first step to garner insight into this transition, a reduced ion kinetic (RIK) model that includes gradient-diffusion and loss-term approximations to several transport processes was implemented within the framework of a one-dimensional radiation-transport code. After empirical calibration, the RIK simulations reproduce the observed yield trends, largely as a result of ion diffusion and the depletion of the reacting tail ions.« less
Nyx: Adaptive mesh, massively-parallel, cosmological simulation code
NASA Astrophysics Data System (ADS)
Almgren, Ann; Beckner, Vince; Friesen, Brian; Lukic, Zarija; Zhang, Weiqun
2017-12-01
Nyx code solves equations of compressible hydrodynamics on an adaptive grid hierarchy coupled with an N-body treatment of dark matter. The gas dynamics in Nyx use a finite volume methodology on an adaptive set of 3-D Eulerian grids; dark matter is represented as discrete particles moving under the influence of gravity. Particles are evolved via a particle-mesh method, using Cloud-in-Cell deposition/interpolation scheme. Both baryonic and dark matter contribute to the gravitational field. In addition, Nyx includes physics for accurately modeling the intergalactic medium; in optically thin limits and assuming ionization equilibrium, the code calculates heating and cooling processes of the primordial-composition gas in an ionizing ultraviolet background radiation field.
Probing the pre-PN Mass Loss Histories in the PPN Dust Shells
NASA Astrophysics Data System (ADS)
Ueta, T.
2001-12-01
Proto-planetary nebulae (PPNs) are immediate progenitors of planetary nebulae (PNs) rapidly evolving over a relatively short time scale. Unlike the full-fledged PNs, the circumstellar dust shells of PPNs have neither been photo-ionized nor been swept up by fast winds. Since the PPN shells retain pristine fossil records of mass loss histories of these stars during the pre-PN phases, these dust shells provide ideal astronomical laboratories in which to investigate the origin of complex PN structures that we observe. We have conducted imaging surveys of the PPN shells in mid-infrared and optical wavelengths, probing the dust distribution directly via mid-infrared thermal dust emission arising from the shells and indirectly via dust-scattered stellar optical emission passing through the shells. From these surveys, we have found that (1) the PPN shells are intrinsically axisymmetric due to equatorially-enhanced superwind mass loss that occurred immediately before the beginning of the PPN phase, and (2) the variable degree of equatorial enhancement in the shells, which is probably related to the progenitor mass, has resulted in different optical depths and morphologies. To characterize the PPN shell geometries, we have developed and employed a 2.5 dimensional radiative transfer code that treats dust absorption, reemission, and an/isotropic scattering in any axisymmetric system illuminated by a central energy source. In the code, the dust optical properties are derived from the laboratory-measured refractive index using Mie theory allowing a distribution of sizes for each species in each composition layer in the shell. Our numerical analysis would be able to de-project and recover 3-D geometrical quantities, such as the pole-to-equator density ratio, from the observational data. These model calculations would provide constraining parameters for hydrodynamical models intended to generate equatorial enhancements during dust mass loss as well as initial parameters for magneto-hydrodynamical models aimed to reproduce highly complex PN morphologies.
NASA Astrophysics Data System (ADS)
Solodov, A. A.; Theobald, W.; Anderson, K. S.; Shvydky, A.; Epstein, R.; Betti, R.; Myatt, J. F.; Stoeckl, C.; Jarrott, L. C.; McGuffey, C.; Qiao, B.; Beg, F. N.; Wei, M. S.; Stephens, R. B.
2013-10-01
Integrated fast-ignition experiments on OMEGA benefit from improved performance of the OMEGA EP laser, including higher contrast, higher energy, and a smaller focus. Recent 8-keV, Cu-Kα flash radiography of cone-in-shell implosions and cone-tip breakout measurements showed good agreement with the 2-D radiation-hydrodynamic simulations using the code DRACO. DRACO simulations show that the fuel assembly can be further improved by optimizing the compression laser pulse, evacuating air from the shell, and by adjusting the material of the cone tip. This is found to delay the cone-tip breakout by ~220 ps and increase the core areal density from ~80 mg/cm2 in the current experiments to ~500 mg/cm2 at the time of the OMEGA EP beam arrival before the cone-tip breakout. Simulations using the code LSP of fast-electron transport in the recent integrated OMEGA experiments with Cu-doped shells will be presented. Cu-doping is added to probe the transport of fast electrons via their induced Cu K-shell fluorescent emission. This material is based upon work supported by the Department of Energy National Nuclear Security Administration DE-NA0001944 and the Office of Science under DE-FC02-04ER54789.
Oliva, Eduardo; Zeitoun, Philippe; Velarde, Pedro; Fajardo, Marta; Cassou, Kevin; Ros, David; Sebban, Stephan; Portillo, David; le Pape, Sebastien
2010-11-01
Plasma-based seeded soft-x-ray lasers have the potential to generate high energy and highly coherent short pulse beams. Due to their high density, plasmas created by the interaction of an intense laser with a solid target should store the highest amount of energy density among all plasma amplifiers. Our previous numerical work with a two-dimensional (2D) adaptive mesh refinement hydrodynamic code demonstrated that careful tailoring of plasma shapes leads to a dramatic enhancement of both soft-x-ray laser output energy and pumping efficiency. Benchmarking of our 2D hydrodynamic code in previous experiments demonstrated a high level of confidence, allowing us to perform a full study with the aim of the way for 10-100 μJ seeded soft-x-ray lasers. In this paper, we describe in detail the mechanisms that drive the hydrodynamics of plasma columns. We observed transitions between narrow plasmas, where very strong bidimensional flow prevents them from storing energy, to large plasmas that store a high amount of energy. Millimeter-sized plasmas are outstanding amplifiers, but they have the limitation of transverse lasing. In this paper, we provide a preliminary solution to this problem.
Computational Study of 3-D Hot-Spot Initiation in Shocked Insensitive High-Explosive
NASA Astrophysics Data System (ADS)
Najjar, F. M.; Howard, W. M.; Fried, L. E.
2011-06-01
High explosive shock sensitivity is controlled by a combination of mechanical response, thermal properties, and chemical properties. The interplay of these physical phenomena in realistic condensed energetic materials is currently lacking. A multiscale computational framework is developed investigating hot spot (void) ignition in a single crystal of an insensitive HE, TATB. Atomistic MD simulations are performed to provide the key chemical reactions and these reaction rates are used in 3-D multiphysics simulations. The multiphysics code, ALE3D, is linked to the chemistry software, Cheetah, and a three-way coupled approach is pursued including hydrodynamics, thermal and chemical analyses. A single spherical air bubble is embedded in the insensitive HE and its collapse due to shock initiation is evolved numerically in time; while the ignition processes due chemical reactions are studied. Our current predictions showcase several interesting features regarding hot spot dynamics including the formation of a ``secondary'' jet. Results obtained with hydro-thermo-chemical processes leading to ignition growth will be discussed for various pore sizes and different shock pressures. LLNL-ABS-471438. This work performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.
A GPL Relativistic Hydrodynamical Code
NASA Astrophysics Data System (ADS)
Olvera, D.; Mendoza, S.
We are currently building a free (in the sense of a GNU GPL license) 2DRHD code in order to be used for different astrophysical situations. Our final target will be to include strong gravitational fields and magnetic fields. We intend to form a large group of developers as it is usually done for GPL codes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grove, John W.
2016-08-16
The xRage code supports a variety of hydrodynamic equation of state (EOS) models. In practice these are generally accessed in the executing code via a pressure-temperature based table look up. This document will describe the various models supported by these codes and provide details on the algorithms used to evaluate the equation of state.
NASA Astrophysics Data System (ADS)
Sander, A. A. C.; Hamann, W.-R.; Todt, H.; Hainich, R.; Shenar, T.
2017-07-01
Context. For more than two decades, stellar atmosphere codes have been used to derive the stellar and wind parameters of massive stars. Although they have become a powerful tool and sufficiently reproduce the observed spectral appearance, they can hardly be used for more than measuring parameters. One major obstacle is their inconsistency between the calculated radiation field and the wind stratification due to the usage of prescribed mass-loss rates and wind-velocity fields. Aims: We present the concepts for a new generation of hydrodynamically consistent non-local thermodynamical equilibrium (non-LTE) stellar atmosphere models that allow for detailed studies of radiation-driven stellar winds. As a first demonstration, this new kind of model is applied to a massive O star. Methods: Based on earlier works, the PoWR code has been extended with the option to consistently solve the hydrodynamic equation together with the statistical equations and the radiative transfer in order to obtain a hydrodynamically consistent atmosphere stratification. In these models, the whole velocity field is iteratively updated together with an adjustment of the mass-loss rate. Results: The concepts for obtaining hydrodynamically consistent models using a comoving-frame radiative transfer are outlined. To provide a useful benchmark, we present a demonstration model, which was motivated to describe the well-studied O4 supergiant ζPup. The obtained stellar and wind parameters are within the current range of literature values. Conclusions: For the first time, the PoWR code has been used to obtain a hydrodynamically consistent model for a massive O star. This has been achieved by a profound revision of earlier concepts used for Wolf-Rayet stars. The velocity field is shaped by various elements contributing to the radiative acceleration, especially in the outer wind. The results further indicate that for more dense winds deviations from a standard β-law occur.
Hydrodynamic evolution of plasma waveguides for soft-x-ray amplifiers
NASA Astrophysics Data System (ADS)
Oliva, Eduardo; Depresseux, Adrien; Cotelo, Manuel; Lifschitz, Agustín; Tissandier, Fabien; Gautier, Julien; Maynard, Gilles; Velarde, Pedro; Sebban, Stéphane
2018-02-01
High-density, collisionally pumped plasma-based soft-x-ray lasers have recently delivered hundreds of femtosecond pulses, breaking the longstanding barrier of one picosecond. To pump these amplifiers an intense infrared pulse must propagate focused throughout all the length of the amplifier, which spans several Rayleigh lengths. However, strong nonlinear effects hinder the propagation of the laser beam. The use of a plasma waveguide allows us to overcome these drawbacks provided the hydrodynamic processes that dominate the creation and posterior evolution of the waveguide are controlled and optimized. In this paper we present experimental measurements of the radial density profile and transmittance of such waveguide, and we compare them with numerical calculations using hydrodynamic and particle-in-cell codes. Controlling the properties (electron density value and radial gradient) of the waveguide with the help of numerical codes promises the delivery of ultrashort (tens of femtoseconds), coherent soft-x-ray pulses.
Hydrodynamic models of a cepheid atmosphere. Ph.D. Thesis - Maryland Univ., College Park
NASA Technical Reports Server (NTRS)
Karp, A. H.
1974-01-01
A method for including the solution of the transfer equation in a standard Henyey type hydrodynamic code was developed. This modified Henyey method was used in an implicit hydrodynamic code to compute deep envelope models of a classical Cepheid with a period of 12(d) including radiative transfer effects in the optically thin zones. It was found that the velocity gradients in the atmosphere are not responsible for the large microturbulent velocities observed in Cepheids but may be responsible for the occurrence of supersonic microturbulence. It was found that the splitting of the cores of the strong lines is due to shock induced temperature inversions in the line forming region. The adopted light, color, and velocity curves were used to study three methods frequently used to determine the mean radii of Cepheids. It is concluded that an accuracy of 10% is possible only if high quality observations are used.
Validation of Hydrodynamic Load Models Using CFD for the OC4-DeepCwind Semisubmersible: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benitz, M. A.; Schmidt, D. P.; Lackner, M. A.
Computational fluid dynamics (CFD) simulations were carried out on the OC4-DeepCwind semi-submersible to obtain a better understanding of how to set hydrodynamic coefficients for the structure when using an engineering tool such as FAST to model the system. The focus here was on the drag behavior and the effects of the free-surface, free-ends and multi-member arrangement of the semi-submersible structure. These effects are investigated through code-to-code comparisons and flow visualizations. The implications on mean load predictions from engineering tools are addressed. The work presented here suggests that selection of drag coefficients should take into consideration a variety of geometric factors.more » Furthermore, CFD simulations demonstrate large time-varying loads due to vortex shedding, which FAST's hydrodynamic module, HydroDyn, does not model. The implications of these oscillatory loads on the fatigue life needs to be addressed.« less
NASA Astrophysics Data System (ADS)
Weilacher, F.; Radha, P. B.; Forrest, C.
2018-04-01
Neutron-based diagnostics are typically used to infer compressed core conditions such as areal density and ion temperature in deuterium-tritium (D-T) inertial confinement fusion (ICF) implosions. Asymmetries in the observed neutron-related quantities are important to understanding failure modes in these implosions. Neutrons from fusion reactions and their subsequent interactions including elastic scattering and neutron-induced deuteron breakup reactions are tracked to create spectra. It is shown that background subtraction is important for inferring areal density from backscattered neutrons and is less important for the forward-scattered neutrons. A three-dimensional hydrodynamic simulation of a cryogenic implosion on the OMEGA Laser System [Boehly et al., Opt. Commun. 133, 495 (1997)] using the hydrodynamic code HYDRA [Marinak et al., Phys. Plasmas 8, 2275 (2001)] is post-processed using the tracking code IRIS3D. It is shown that different parts of the neutron spectrum from the view can be mapped into different regions of the implosion, enabling an inference of an areal-density map. It is also shown that the average areal-density and an areal-density map of the compressed target can be reconstructed with a finite number of detectors placed around the target chamber. Ion temperatures are inferred from the width of the D-D and D-T fusion neutron spectra. Backgrounds can significantly alter the inferred ion temperatures from the D-D reaction, whereas they insignificantly influence the inferred D-T ion temperatures for the areal densities typical of OMEGA implosions. Asymmetries resulting in fluid flow in the core are shown to influence the absolute inferred ion temperatures from both reactions, although relative inferred values continue to reflect the underlying asymmetry pattern. The work presented here is part of the wide range of the first set of studies performed with IRIS3D. This code will continue to be used for post-processing detailed hydrodynamic simulations and interpreting observed neutron spectra in ICF implosions.
Comparison of SPHC Hydrocode Results with Penetration Equations and Results of Other Codes
NASA Technical Reports Server (NTRS)
Evans, Steven W.; Stallworth, Roderick; Stellingwerf, Robert F.
2004-01-01
The SPHC hydrodynamic code was used to simulate impacts of spherical aluminum projectiles on a single-wall aluminum plate and on a generic Whipple shield. Simulations were carried out in two and three dimensions. Projectile speeds ranged from 2 kilometers per second to 10 kilometers per second for the single-wall runs, and from 3 kilometers per second to 40 kilometers per second for the Whipple shield runs. Spallation limit results of the single-wall simulations are compared with predictions from five standard penetration equations, and are shown to fall comfortably within the envelope of these analytical relations. Ballistic limit results of the Whipple shield simulations are compared with results from the AUTODYN-2D and PAM-SHOCK-3D codes presented in a paper at the Hypervelocity Impact Symposium 2000 and the Christiansen formulation of 2003.
NASA-VOF3D: A three-dimensional computer program for incompressible flows with free surfaces
NASA Astrophysics Data System (ADS)
Torrey, M. D.; Mjolsness, R. C.; Stein, L. R.
1987-07-01
Presented is the NASA-VOF3D three-dimensional, transient, free-surface hydrodynamics program. This three-dimensional extension of NASA-VOF2D will, in principle, permit treatment in full three-dimensional generality of the wide variety of applications that could be treated by NASA-VOF2D only within the two-dimensional idealization. In particular, it, like NASA-VOF2D, is specifically designed to calculate confined flows in a low g environment. The code is presently restricted to cylindrical geometry. The code is based on the fractional volume-of-fluid method and allows multiple free surfaces with surface tension and wall adhesion. It also has a partial cell treatment that allows curved boundaries and internal obstacles. This report provides a brief discussion of the numerical method, a code listing, and some sample problems.
Calculation of Transport Coefficients in Dense Plasma Mixtures
NASA Astrophysics Data System (ADS)
Haxhimali, T.; Cabot, W. H.; Caspersen, K. J.; Greenough, J.; Miller, P. L.; Rudd, R. E.; Schwegler, E. R.
2011-10-01
We use classical molecular dynamics (MD) to estimate species diffusivity and viscosity in mixed dense plasmas. The Yukawa potential is used to describe the screened Coulomb interaction between the ions. This potential has been used widely, providing the basis for models of dense stellar materials, inertial confined plasmas, and colloidal particles in electrolytes. We calculate transport coefficients in equilibrium simulations using the Green- Kubo relation over a range of thermodynamic conditions including the viscosity and the self - diffusivity for each component of the mixture. The interdiffusivity (or mutual diffusivity) can then be related to the self-diffusivities by using a generalization of the Darken equation. We have also employed non-equilibrium MD to estimate interdiffusivity during the broadening of the interface between two regions each with a high concentration of either species. Here we present results for an asymmetric mixture between Ar and H. These can easily be extended to other plasma mixtures. A main motivation for this study is to develop accurate transport models that can be incorporated into the hydrodynamic codes to study hydrodynamic instabilities. We use classical molecular dynamics (MD) to estimate species diffusivity and viscosity in mixed dense plasmas. The Yukawa potential is used to describe the screened Coulomb interaction between the ions. This potential has been used widely, providing the basis for models of dense stellar materials, inertial confined plasmas, and colloidal particles in electrolytes. We calculate transport coefficients in equilibrium simulations using the Green- Kubo relation over a range of thermodynamic conditions including the viscosity and the self - diffusivity for each component of the mixture. The interdiffusivity (or mutual diffusivity) can then be related to the self-diffusivities by using a generalization of the Darken equation. We have also employed non-equilibrium MD to estimate interdiffusivity during the broadening of the interface between two regions each with a high concentration of either species. Here we present results for an asymmetric mixture between Ar and H. These can easily be extended to other plasma mixtures. A main motivation for this study is to develop accurate transport models that can be incorporated into the hydrodynamic codes to study hydrodynamic instabilities. This work was performed under the auspices of the US Dept. of Energy by Lawrence Livermore National Security, LLC under Contract DE-AC52-07NA27344.
Gas stripping and mixing in galaxy clusters: a numerical comparison study
NASA Astrophysics Data System (ADS)
Heß, Steffen; Springel, Volker
2012-11-01
The ambient hot intrahalo gas in clusters of galaxies is constantly fed and stirred by infalling galaxies, a process that can be studied in detail with cosmological hydrodynamical simulations. However, different numerical methods yield discrepant predictions for crucial hydrodynamical processes, leading for example to different entropy profiles in clusters of galaxies. In particular, the widely used Lagrangian smoothed particle hydrodynamics (SPH) scheme is suspected to strongly damp fluid instabilities and turbulence, which are both crucial to establish the thermodynamic structure of clusters. In this study, we test to which extent our recently developed Voronoi particle hydrodynamics (VPH) scheme yields different results for the stripping of gas out of infalling galaxies and for the bulk gas properties of cluster. We consider both the evolution of isolated galaxy models that are exposed to a stream of intracluster medium or are dropped into cluster models, as well as non-radiative cosmological simulations of cluster formation. We also compare our particle-based method with results obtained with a fundamentally different discretization approach as implemented in the moving-mesh code AREPO. We find that VPH leads to noticeably faster stripping of gas out of galaxies than SPH, in better agreement with the mesh-code than with SPH. We show that despite the fact that VPH in its present form is not as accurate as the moving mesh code in our investigated cases, its improved accuracy of gradient estimates makes VPH an attractive alternative to SPH.
NASA Astrophysics Data System (ADS)
Jost, A.; Violette, S.; Gonçalvès, J.; Ledoux, E.; Guyomard, Y.; Guillocheau, F.; Kageyama, M.; Ramstein, G.; Suc, J.-P.
In the framework of safe underground storage of radioactive waste in low-permeability layers, it is essential to evaluate the mobility of deep groundwaters over timescales of several million years. On these timescales, the environmental evolution of a repository should depend upon a range of natural processes that are primarily driven by climate and geomorphologic variations. In this paper, the response of the Paris basin groundwater system to variations in its hydrodynamic boundary conditions induced by past climate and geodynamic changes over the last five million years is investigated. A three-dimensional transient modelling of the Paris basin aquifer/aquitard system was developed using the code NEWSAM (Ecole des Mines de Paris, ENSMP). The geometry and hydrodynamic parameters of the model originate from a basin model, NEWBAS (ENSMP), built to simulate the geological history of the basin. Geomorphologic evolution is deduced from digital elevation model analysis, which allows to estimate river-valley incision and alpine surrection. Climate forcing results from palaeoclimate modelling experiments using the LMDz atmospheric general circulation model (Institut Pierre Simon Laplace) with a refined spatial resolution, for the present, the Last Glacial Maximum (21 ka) and the Middle Pliocene Warmth (˜3 Ma). The water balance is computed by the distributed hydrological model MODSUR (ENSMP). Results about the simulated evolution of piezometric heads in the system in response to the altered boundary conditions are presented, in particular in the vicinity of ANDRA’s Bure potential repository site within the Callovo-Oxfordian argillaceous layer. For the present, the comparison of head patterns between steady state and time dependent simulation shows little differences for aquifer layers close to the surface but suggests a transient state of the current system in the main aquitards of the basin and in the deep aquifers, characterized by abnormally low fluid potentials. The dependence of the boundary-induced transient effects on the hydraulic diffusivity is illustrated by means of a sensitivity study.
RICH: OPEN-SOURCE HYDRODYNAMIC SIMULATION ON A MOVING VORONOI MESH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yalinewich, Almog; Steinberg, Elad; Sari, Re’em
2015-02-01
We present here RICH, a state-of-the-art two-dimensional hydrodynamic code based on Godunov’s method, on an unstructured moving mesh (the acronym stands for Racah Institute Computational Hydrodynamics). This code is largely based on the code AREPO. It differs from AREPO in the interpolation and time-advancement schemeS as well as a novel parallelization scheme based on Voronoi tessellation. Using our code, we study the pros and cons of a moving mesh (in comparison to a static mesh). We also compare its accuracy to other codes. Specifically, we show that our implementation of external sources and time-advancement scheme is more accurate and robustmore » than is AREPO when the mesh is allowed to move. We performed a parameter study of the cell rounding mechanism (Lloyd iterations) and its effects. We find that in most cases a moving mesh gives better results than a static mesh, but it is not universally true. In the case where matter moves in one way and a sound wave is traveling in the other way (such that relative to the grid the wave is not moving) a static mesh gives better results than a moving mesh. We perform an analytic analysis for finite difference schemes that reveals that a Lagrangian simulation is better than a Eulerian simulation in the case of a highly supersonic flow. Moreover, we show that Voronoi-based moving mesh schemes suffer from an error, which is resolution independent, due to inconsistencies between the flux calculation and the change in the area of a cell. Our code is publicly available as open source and designed in an object-oriented, user-friendly way that facilitates incorporation of new algorithms and physical processes.« less
NASA Astrophysics Data System (ADS)
MacFarlane, J. J.; Golovkin, I. E.; Wang, P.; Woodruff, P. R.; Pereyra, N. A.
2007-05-01
SPECT3D is a multi-dimensional collisional-radiative code used to post-process the output from radiation-hydrodynamics (RH) and particle-in-cell (PIC) codes to generate diagnostic signatures (e.g. images, spectra) that can be compared directly with experimental measurements. This ability to post-process simulation code output plays a pivotal role in assessing the reliability of RH and PIC simulation codes and their physics models. SPECT3D has the capability to operate on plasmas in 1D, 2D, and 3D geometries. It computes a variety of diagnostic signatures that can be compared with experimental measurements, including: time-resolved and time-integrated spectra, space-resolved spectra and streaked spectra; filtered and monochromatic images; and X-ray diode signals. Simulated images and spectra can include the effects of backlighters, as well as the effects of instrumental broadening and time-gating. SPECT3D also includes a drilldown capability that shows where frequency-dependent radiation is emitted and absorbed as it propagates through the plasma towards the detector, thereby providing insights on where the radiation seen by a detector originates within the plasma. SPECT3D has the capability to model a variety of complex atomic and radiative processes that affect the radiation seen by imaging and spectral detectors in high energy density physics (HEDP) experiments. LTE (local thermodynamic equilibrium) or non-LTE atomic level populations can be computed for plasmas. Photoabsorption rates can be computed using either escape probability models or, for selected 1D and 2D geometries, multi-angle radiative transfer models. The effects of non-thermal (i.e. non-Maxwellian) electron distributions can also be included. To study the influence of energetic particles on spectra and images recorded in intense short-pulse laser experiments, the effects of both relativistic electrons and energetic proton beams can be simulated. SPECT3D is a user-friendly software package that runs on Windows, Linux, and Mac platforms. A parallel version of SPECT3D is supported for Linux clusters for large-scale calculations. We will discuss the major features of SPECT3D, and present example results from simulations and comparisons with experimental data.
This technical report describes the new one-dimensional (1D) hydrodynamic and sediment transport model EFDC1D. This model that can be applied to stream networks. The model code and two sample data sets are included on the distribution CD. EFDC1D can simulate bi-directional unstea...
An Exact Integration Scheme for Radiative Cooling in Hydrodynamical Simulations
NASA Astrophysics Data System (ADS)
Townsend, R. H. D.
2009-04-01
A new scheme for incorporating radiative cooling in hydrodynamical codes is presented, centered around exact integration of the governing semidiscrete cooling equation. Using benchmark calculations based on the cooling downstream of a radiative shock, I demonstrate that the new scheme outperforms traditional explicit and implicit approaches in terms of accuracy, while remaining competitive in terms of execution speed.
Improved EOS for describing high-temperature off-hugoniot states in epoxy
NASA Astrophysics Data System (ADS)
Mulford, R. N.; Lanier, N. E.; Swift, D.; Workman, J.; Graham, Peter; Moore, Alastair
2007-06-01
Modeling of off-hugoniot states in an expanding interface subjected to a shock reveals the importance of a chemically complete description of the materials. Hydrodynamic experiments typically rely on pre-shot target characterization to predict how initial perturbations will affect the late-time hydrodynamic mixing. However, it is the condition of these perturbations at the time of shock arrival that dominates their eventual late-time evolution. In some cases these perturbations are heated prior to the arrival of the main shock. Correctly modeling how temperature and density gradients will develop in the pre-heated material requires an understanding of the equation-of-state. In the experiment modelled, an epoxy/foam layered package was subjected to tin L-shell radiation, producing an expanding assembly at a well-defined temperature. This assembly was then subjected to a controlled shock, and the evolution of the epoxy-foam interface imaged with x-ray radiography. Modeling of the data with the hydrodynamics code RAGE is unsuccessful under certain shock conditions, unless condensation of chemical species from the plasma is explicitly included. The EOS code CHEETAH was used to prepare suitable EOS for input into the hydrodynamics modeling.
Improved EOS for Describing High-Temperature Off-Hugoniot States in Epoxy
NASA Astrophysics Data System (ADS)
Mulford, R. N.; Swift, D. C.; Lanier, N. E.; Workman, J.; Holmes, R. L.; Graham, P.; Moore, A.
2007-12-01
Modelling of off-Hugoniot states in an expanding interface subjected to a shock reveals the importance of a chemically complete description of the materials. Hydrodynamic experiments typically rely on pre-shot target characterization to predict how initial perturbations will affect the late-time hydrodynamic mixing. However, it is the condition of these perturbations at the time of shock arrival that dominates their eventual late-time evolution. In some cases these perturbations are heated prior to the arrival of the main shock. Correctly modelling how temperature and density gradients will develop in the pre-heated material requires an understanding of the equation-of-state. In the experiment modelled, an epoxy/foam layered package was subjected to tin L-shell radiation, producing an expanding assembly at a well-defined temperature. This assembly was then subjected to a controlled shock, and the evolution of the epoxy-foam interface imaged with x-ray radiography. Modelling of the data with the hydrodynamics code RAGE was unsuccessful under certain shock conditions, unless condensation of chemical species from the plasma is explicitly included. The EOS code Cheetah was used to prepare suitable EOS for input into the hydrodynamics modelling.
A hydrodynamic treatment of the tilted cold dark matter cosmological scenario
NASA Technical Reports Server (NTRS)
Cen, Renyue; Ostriker, Jeremiah P.
1993-01-01
A standard hydrodynamic code coupled with a particle-mesh code is used to compute the evolution of a tilted cold dark matter (TCDM) model containing both baryonic matter and dark matter. Six baryonic species are followed, with allowance for both collisional and radiative ionization in every cell. The mean final Zel'dovich-Sunyaev y parameter is estimated to be (5.4 +/- 2.7) x 10 exp -7, below currently attainable observations, with an rms fluctuation of about (6.0 +/- 3.0) x 10 exp -7 on arcmin scales. The rate of galaxy formation peaks at a relatively late epoch (z is about 0.5). In the case of mass function, the smallest objects are stabilized against collapse by thermal energy: the mass-weighted mass spectrum peaks in the vicinity of 10 exp 9.1 solar masses, with a reasonable fit to the Schechter luminosity function if the baryon mass to blue light ratio is about 4. It is shown that a bias factor of 2 required for the model to be consistent with COBE DMR signals is probably a natural outcome in the present multiple component simulations.
MUFASA: galaxy formation simulations with meshless hydrodynamics
NASA Astrophysics Data System (ADS)
Davé, Romeel; Thompson, Robert; Hopkins, Philip F.
2016-11-01
We present the MUFASA suite of cosmological hydrodynamic simulations, which employs the GIZMO meshless finite mass (MFM) code including H2-based star formation, nine-element chemical evolution, two-phase kinetic outflows following scalings from the Feedback in Realistic Environments zoom simulations, and evolving halo mass-based quenching. Our fiducial (50 h-1 Mpc)3 volume is evolved to z = 0 with a quarter billion elements. The predicted galaxy stellar mass functions (GSMFs) reproduces observations from z = 4 → 0 to ≲ 1.2σ in cosmic variance, providing an unprecedented match to this key diagnostic. The cosmic star formation history and stellar mass growth show general agreement with data, with a strong archaeological downsizing trend such that dwarf galaxies form the majority of their stars after z ˜ 1. We run 25 and 12.5 h-1 Mpc volumes to z = 2 with identical feedback prescriptions, the latter resolving all hydrogen-cooling haloes, and the three runs display fair resolution convergence. The specific star formation rates broadly agree with data at z = 0, but are underpredicted at z ˜ 2 by a factor of 3, re-emphasizing a longstanding puzzle in galaxy evolution models. We compare runs using MFM and two flavours of smoothed particle hydrodynamics, and show that the GSMF is sensitive to hydrodynamics methodology at the ˜×2 level, which is sub-dominant to choices for parametrizing feedback.
Environmental Fluid Dynamics Code
The Environmental Fluid Dynamics Code (EFDC)is a state-of-the-art hydrodynamic model that can be used to simulate aquatic systems in one, two, and three dimensions. It has evolved over the past two decades to become one of the most widely used and technically defensible hydrodyn...
Doebling, Scott William
2016-10-22
This paper documents the escape of high explosive (HE) products problem. The problem, first presented by Fickett & Rivard, tests the implementation and numerical behavior of a high explosive detonation and energy release model and its interaction with an associated compressible hydrodynamics simulation code. The problem simulates the detonation of a finite-length, one-dimensional piece of HE that is driven by a piston from one end and adjacent to a void at the other end. The HE equation of state is modeled as a polytropic ideal gas. The HE detonation is assumed to be instantaneous with an infinitesimal reaction zone. Viamore » judicious selection of the material specific heat ratio, the problem has an exact solution with linear characteristics, enabling a straightforward calculation of the physical variables as a function of time and space. Lastly, implementation of the exact solution in the Python code ExactPack is discussed, as are verification cases for the exact solution code.« less
Structure of the solar photosphere studied from the radiation hydrodynamics code ANTARES.
Leitner, P; Lemmerer, B; Hanslmeier, A; Zaqarashvili, T; Veronig, A; Grimm-Strele, H; Muthsam, H J
2017-01-01
The ANTARES radiation hydrodynamics code is capable of simulating the solar granulation in detail unequaled by direct observation. We introduce a state-of-the-art numerical tool to the solar physics community and demonstrate its applicability to model the solar granulation. The code is based on the weighted essentially non-oscillatory finite volume method and by its implementation of local mesh refinement is also capable of simulating turbulent fluids. While the ANTARES code already provides promising insights into small-scale dynamical processes occurring in the quiet-Sun photosphere, it will soon be capable of modeling the latter in the scope of radiation magnetohydrodynamics. In this first preliminary study we focus on the vertical photospheric stratification by examining a 3-D model photosphere with an evolution time much larger than the dynamical timescales of the solar granulation and of particular large horizontal extent corresponding to [Formula: see text] on the solar surface to smooth out horizontal spatial inhomogeneities separately for up- and downflows. The highly resolved Cartesian grid thereby covers [Formula: see text] of the upper convection zone and the adjacent photosphere. Correlation analysis, both local and two-point, provides a suitable means to probe the photospheric structure and thereby to identify several layers of characteristic dynamics: The thermal convection zone is found to reach some ten kilometers above the solar surface, while convectively overshooting gas penetrates even higher into the low photosphere. An [Formula: see text] wide transition layer separates the convective from the oscillatory layers in the higher photosphere.
Structure of the solar photosphere studied from the radiation hydrodynamics code ANTARES
NASA Astrophysics Data System (ADS)
Leitner, P.; Lemmerer, B.; Hanslmeier, A.; Zaqarashvili, T.; Veronig, A.; Grimm-Strele, H.; Muthsam, H. J.
2017-09-01
The ANTARES radiation hydrodynamics code is capable of simulating the solar granulation in detail unequaled by direct observation. We introduce a state-of-the-art numerical tool to the solar physics community and demonstrate its applicability to model the solar granulation. The code is based on the weighted essentially non-oscillatory finite volume method and by its implementation of local mesh refinement is also capable of simulating turbulent fluids. While the ANTARES code already provides promising insights into small-scale dynamical processes occurring in the quiet-Sun photosphere, it will soon be capable of modeling the latter in the scope of radiation magnetohydrodynamics. In this first preliminary study we focus on the vertical photospheric stratification by examining a 3-D model photosphere with an evolution time much larger than the dynamical timescales of the solar granulation and of particular large horizontal extent corresponding to 25''×25'' on the solar surface to smooth out horizontal spatial inhomogeneities separately for up- and downflows. The highly resolved Cartesian grid thereby covers ˜4 Mm of the upper convection zone and the adjacent photosphere. Correlation analysis, both local and two-point, provides a suitable means to probe the photospheric structure and thereby to identify several layers of characteristic dynamics: The thermal convection zone is found to reach some ten kilometers above the solar surface, while convectively overshooting gas penetrates even higher into the low photosphere. An ≈145 km wide transition layer separates the convective from the oscillatory layers in the higher photosphere.
The NASA Neutron Star Grand Challenge: The coalescences of Neutron Star Binary System
NASA Astrophysics Data System (ADS)
Suen, Wai-Mo
1998-04-01
NASA funded a Grand Challenge Project (9/1996-1999) for the development of a multi-purpose numerical treatment for relativistic astrophysics and gravitational wave astronomy. The coalescence of binary neutron stars is chosen as the model problem for the code development. The institutes involved in it are the Argonne Lab, Livermore lab, Max-Planck Institute at Potsdam, StonyBrook, U of Illinois and Washington U. We have recently succeeded in constructing a highly optimized parallel code which is capable of solving the full Einstein equations coupled with relativistic hydrodynamics, running at over 50 GFLOPS on a T3E (the second milestone point of the project). We are presently working on the head-on collisions of two neutron stars, and the inclusion of realistic equations of state into the code. The code will be released to the relativity and astrophysics community in April of 1998. With the full dynamics of the spacetime, relativistic hydro and microphysics all combined into a unified 3D code for the first time, many interesting large scale calculations in general relativistic astrophysics can now be carried out on massively parallel computers.
Code Verification Results of an LLNL ASC Code on Some Tri-Lab Verification Test Suite Problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, S R; Bihari, B L; Salari, K
As scientific codes become more complex and involve larger numbers of developers and algorithms, chances for algorithmic implementation mistakes increase. In this environment, code verification becomes essential to building confidence in the code implementation. This paper will present first results of a new code verification effort within LLNL's B Division. In particular, we will show results of code verification of the LLNL ASC ARES code on the test problems: Su Olson non-equilibrium radiation diffusion, Sod shock tube, Sedov point blast modeled with shock hydrodynamics, and Noh implosion.
Neutrino-pair emission from nuclear de-excitation in core-collapse supernova simulations
NASA Astrophysics Data System (ADS)
Fischer, T.; Langanke, K.; Martínez-Pinedo, G.
2013-12-01
We study the impact of neutrino-pair production from the de-excitation of highly excited heavy nuclei on core-collapse supernova simulations, following the evolution up to several 100 ms after core bounce. Our study is based on the agile-boltztransupernova code, which features general relativistic radiation hydrodynamics and accurate three-flavor Boltzmann neutrino transport in spherical symmetry. In our simulations the nuclear de-excitation process is described in two different ways. At first we follow the approach proposed by Fuller and Meyer [Astrophys. J.AJLEEY0004-637X10.1086/170317 376, 701 (1991)], which is based on strength functions derived in the framework of the nuclear Fermi-gas model of noninteracting nucleons. Second, we parametrize the allowed and forbidden strength distributions in accordance with measurements for selected nuclear ground states. We determine the de-excitation strength by applying the Brink hypothesis and detailed balance. For both approaches, we find that nuclear de-excitation has no effect on the supernova dynamics. However, we find that nuclear de-excitation is the leading source for the production of electron antineutrinos as well as heavy-lepton-flavor (anti)neutrinos during the collapse phase. At sufficiently high densities, the associated neutrino spectra are influenced by interactions with the surrounding matter, making proper simulations of neutrino transport important for the determination of the neutrino-energy loss rate. We find that, even including nuclear de-excitations, the energy loss during the collapse phase is overwhelmingly dominated by electron neutrinos produced by electron capture.
NASA Astrophysics Data System (ADS)
Betti, R.
2017-10-01
The 1-D campaign on OMEGA is aimed at validating a novel approach to design cryogenic implosion experiments and provide valuable data to improve the accuracy of 1-D physics models. This new design methodology is being tested first on low-convergence, high-adiabat (α 6 to 7) implosions and will subsequently be applied to implosions with increasing convergence up to the level required for a hydro-equivalent demonstration of ignition. This design procedure assumes that the hydrodynamic codes used in implosion designs lack the necessary physics and that measurements of implosion properties are imperfect. It also assumes that while the measurements may have significant systematic errors, the shot-to-shot variations are small and that cryogenic implosion data are reproducible as observed on OMEGA. One of the goals of the 1-D campaign is to find a mapping of the data to the code results and use the mapping relations to design future implosions. In the 1-D campaign, this predictive methodology was used to design eight implosions using a simple two-shock pulse design, leading to pre-shot predictions of yields within 5% and ion temperatures within 4% of the experimental values. These implosions have also produced the highest neutron yield of 1014 in OMEGA cryogenic implosion experiments with an areal density of 100 mg/cm2. Furthermore, the results from this campaign have been used to test the validity of the 1-D physics models used in the radiation-hydrodynamics codes. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DENA0001944 and LLNL under Contract DE-AC52-07NA27344. * In collaboration with J.P. Knauer, V. Gopalaswamy, D. Patel, K.M. Woo, K.S. Anderson, A. Bose, A.R. Christopherson, V.Yu. Glebov, F.J. Marshall, S.P. Regan, P.B. Radha, C. Stoeckl, and E.M. Campbell.
NASA Astrophysics Data System (ADS)
Minard, Benoit
De nos jours, la problématique du bruit généré par les avions est devenue un point de développement important dans le domaine de l'aéronautique. C'est ainsi que de nombreuses études sont faites dans le domaine et une première approche consiste à modéliser de façon numérique ce bruit de manière à réduire de façon conséquente les coûts lors de la conception. C'est dans ce contexte qu'un motoriste a demandé à l'université de Sherbrooke, et plus particulièrement au groupe d'acoustique de l'Université de Sherbrooke (GAUS), de développer un outil de calcul de la propagation des ondes acoustiques dans les nacelles mais aussi pour l'étude des effets d'installation. Cet outil de prédiction leur permet de réaliser des études afin d'optimiser les traitements acoustiques (« liners »), la géométrie de ces nacelles pour des études portant sur l'intérieur de la nacelle et des études de positionnement des moteurs et de design pour les effets d'installation. L'objectif de ce projet de maîtrise était donc de poursuivre le travail réalisé par [gousset, 2011] sur l'utilisation d'une méthode de lancer de rayons pour l'étude des effets d'installation des moteurs d'avion. L'amélioration du code, sa rapidité, sa fiabilité et sa généralité étaient les objectifs principaux. Le code peut être utilisé avec des traitements acoustiques de surfaces («liners») et peut prendre en compte le phénomène de la diffraction par les arêtes et enfin peut être utilisé pour réaliser des études dans des environnements complexes tels que les nacelles d'avion. Le code développé fonctionne en 3D et procéde en 3 étapes : (1) Calcul des faisceaux initiaux (division d'une sphère, demi-sphère, maillage des surfaces de la géométrie) (2) Propagation des faisceaux dans l'environnement d'étude : calcul de toutes les caractéristiques des rayons convergents (amplitude, phase, nombre de réflexions, ...) (3) Reconstruction du champ de pression en un ou plusieurs points de l'espace à partir de rayons convergents (sommation des contributions de chaque rayon) : sommation cohérente. Le code (GA3DP) permet de prendre en compte les traitements de surface des parois, la directivité de la source, l'atténuation atmosphérique et la diffraction d'ordre 1. Le code a été validé en utilisant différentes méthodes telles que la méthode des sources-images, la méthode d'analyse modale ou encore la méthode des éléments finis de frontière. Un module Matlab a été créé spécialement pour l'étude des effets d'installation et intégré au code existant chez Pratt & Whitney Canada.
DIAPHANE: A portable radiation transport library for astrophysical applications
NASA Astrophysics Data System (ADS)
Reed, Darren S.; Dykes, Tim; Cabezón, Rubén; Gheller, Claudio; Mayer, Lucio
2018-05-01
One of the most computationally demanding aspects of the hydrodynamical modelingof Astrophysical phenomena is the transport of energy by radiation or relativistic particles. Physical processes involving energy transport are ubiquitous and of capital importance in many scenarios ranging from planet formation to cosmic structure evolution, including explosive events like core collapse supernova or gamma-ray bursts. Moreover, the ability to model and hence understand these processes has often been limited by the approximations and incompleteness in the treatment of radiation and relativistic particles. The DIAPHANE project has focused on developing a portable and scalable library that handles the transport of radiation and particles (in particular neutrinos) independently of the underlying hydrodynamic code. In this work, we present the computational framework and the functionalities of the first version of the DIAPHANE library, which has been successfully ported to three different smoothed-particle hydrodynamic codes, GADGET2, GASOLINE and SPHYNX. We also present validation of different modules solving the equations of radiation and neutrino transport using different numerical schemes.
Relativistic low angular momentum accretion: long time evolution of hydrodynamical inviscid flows
NASA Astrophysics Data System (ADS)
Mach, Patryk; Piróg, Michał; Font, José A.
2018-05-01
We investigate relativistic low angular momentum accretion of inviscid perfect fluid onto a Schwarzschild black hole. The simulations are performed with a general-relativistic, high-resolution (second-order), shock-capturing, hydrodynamical numerical code. We use horizon-penetrating Eddington–Finkelstein coordinates to remove inaccuracies in regions of strong gravity near the black hole horizon and show the expected convergence of the code with the Michel solution and stationary Fishbone–Moncrief toroids. We recover, in the framework of relativistic hydrodynamics, the qualitative behavior known from previous Newtonian studies that used a Bondi background flow in a pseudo-relativistic gravitational potential with a latitude-dependent angular momentum at the outer boundary. Our models exhibit characteristic ‘turbulent’ behavior and the attained accretion rates are lower than those of the Bondi–Michel radial flow. For sufficiently low values of the asymptotic sound speed, geometrically thick tori form in the equatorial plane surrounding the black hole horizon while accretion takes place mainly through the poles.
Polarization Rotation Caused by Cross-Beam Energy Transfer in Direct-Drive Implosions
NASA Astrophysics Data System (ADS)
Edgell, D. H.; Follett, R. K.; Katz, J.; Myatt, J. F.; Shaw, J. G.; Turnbull, D.; Froula, D. H.
2017-10-01
The first evidence of polarization rotation caused by cross-beam energy transfer (CBET) during direct-drive implosions has been provided by a new beamlets diagnostic that was fielded on OMEGA. Beamlet images are, in essence, the end points of beamlets of light originating from different regions of each beam profile and following paths determined by refraction through the coronal plasma. The intensity of each beamlet varies because of absorption and many CBET interactions along that path. The new diagnostic records images in two time windows and includes a Wollaston prism to split each beamlet into two orthogonal polarization images recording the polarization of each beamlet. Only the common polarization components couple during CBET so when each beam is linearly polarized, CBET rotates the polarization of each beam. A 3-D CBET postprocessor for hydrodynamics codes was used to model the beamlet images. The predicted images are compared to the images recorded by the new diagnostic. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
Simulation of Deformation, Momentum and Energy Coupling Particles Deformed by Intense Shocks
NASA Astrophysics Data System (ADS)
Lieberthal, B.; Stewart, D. S.; Bdzil, J. B.; Najjar, F. M.; Balachandar, S.; Ling, Y.
2011-11-01
Modern energetic materials have embedded solids and inerts in an explosive matrix. A detonation in condensed phase materials, generates intense shocks that deform particles as the incident shock diffracts around them. The post-shock flow generates a wake behind the particle that is influenced by the shape changes of the particle. The gasdynamic flow in the explosive products and its interaction with the deformation of the particle must be treated simultaneously. Direct numerical simulations are carried out that vary the particle-to-surrounding density and impedance ratios to consider heavier and lighter particle. The vorticity deposited on the interface due to shock interaction with the particle, the resulting particle deformation and the net momentum and energy transferred to the particle, on the acoustic and longer viscous time scale are considered. The LLNL multi-physics hydrodynamic code ALE3D is used to carry out the simulations. BL, DSS and JBB supported by AFRL/RW AF FA8651-10-1-0004 & DTRA, HDTRA1-10-1-0020 Off Campus. FMN's work supported by the U.S. DOE/ LLNL, Contract DE-AC52-07NA27344. LLNL-ABS-491794.
A Study of Fan Stage/Casing Interaction Models
NASA Technical Reports Server (NTRS)
Lawrence, Charles; Carney, Kelly; Gallardo, Vicente
2003-01-01
The purpose of the present study is to investigate the performance of several existing and new, blade-case interactions modeling capabilities that are compatible with the large system simulations used to capture structural response during blade-out events. Three contact models are examined for simulating the interactions between a rotor bladed disk and a case: a radial and linear gap element and a new element based on a hydrodynamic formulation. The first two models are currently available in commercial finite element codes such as NASTRAN and have been showed to perform adequately for simulating rotor-case interactions. The hydrodynamic model, although not readily available in commercial codes, may prove to be better able to characterize rotor-case interactions.
Benefits of Moderate-Z Ablators for Direct-Drive Inertial Confinement Fusion
NASA Astrophysics Data System (ADS)
Lafon, M.; Betti, R.; Anderson, K. S.; Collins, T. J. B.; Skupsky, S.; McKenty, P. W.
2014-10-01
Control of hydrodynamic instabilities and DT-fuel preheating by hot electrons produced by laser-plasma interaction is crucial in inertial confinement fusion. Moderate- Z ablators have been shown to reduce the laser imprinting on target and suppress the generation of hot electrons from the two-plasmon-decay instability. These results have motivated the use of ablators of higher- Z than pure plastic in direct-drive-ignition target designs for the National Ignition Facility (NIF). Two-dimensional radiation-hydrodynamic simulations assess the robustness of these ignition designs to laser imprint and capsule nonuniformities. The complex behavior of the hydrodynamic stability of mid- Z ablators is investigated through single and multimode simulations. A polar-drive configuration is developed within the NIF Laser System specifications for each ablator material. The use of multilayer ablators is also investigated to enhance the hydrodynamic stability. Results indicate that ignition target designs using mid- Z ablators exhibit good hydrodynamic properties, leading to high target gain for direct-drive implosions on the NIF. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and the Office of Fusion Energy Sciences Number DE-FG02-04ER54786.
Improved Solver Settings for 3D Exploding Wire Simulations in ALEGRA
2016-08-01
expanding plasma and shock wave resulting from the wire burst can extend to tens of cen- timeters. The elliptic nature of the magnetic diffusion...such simulations were prohibitively slow due in part to unoptimized (matrix) solver settings. In this report, we address that by varying 6 parameters...distribution is unlimited. simulation code developed by SNL for modeling high-deformation solid dynam- ics, shock -hydrodynamics, magnetohydrodynamics
SPH simulations of high-speed collisions
NASA Astrophysics Data System (ADS)
Rozehnal, Jakub; Broz, Miroslav
2016-10-01
Our work is devoted to a comparison of: i) asteroid-asteroid collisions occurring at lower velocities (about 5 km/s in the Main Belt), and ii) mutual collisions of asteroids and cometary nuclei usually occurring at significantly higher relative velocities (> 10 km/s).We focus on differences in the propagation of the shock wave, ejection of the fragments and possible differences in the resultingsize-frequency distributions of synthetic asteroid families. We also discuss scaling with respect to the "nominal" target diameter D = 100 km, projectile velocity 3-7 km/s, for which a number of simulations were done so far (Durda et al. 2007, Benavidez et al. 2012).In the latter case of asteroid-comet collisions, we simulate the impacts of brittle or pre-damaged impactors onto solid monolithic targets at high velocities, ranging from 10 to 15 km/s. The purpose of this numerical experiment is to better understand impact processes shaping the early Solar System, namely the primordial asteroid belt during during the (late) heavy bombardment (as a continuation of Broz et al. 2013).For all hydrodynamical simulations we use a smoothed-particle hydrodynamics method (SPH), namely the lagrangian SPH3D code (Benz & Asphaug 1994, 1995). The gravitational interactions between fragments (re-accumulation) is simulated with the Pkdgrav tree-code (Richardson et al. 2000).
Theoretical and computer models of detonation in solid explosives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarver, C.M.; Urtiew, P.A.
1997-10-01
Recent experimental and theoretical advances in understanding energy transfer and chemical kinetics have led to improved models of detonation waves in solid explosives. The Nonequilibrium Zeldovich - von Neumann - Doring (NEZND) model is supported by picosecond laser experiments and molecular dynamics simulations of the multiphonon up-pumping and internal vibrational energy redistribution (IVR) processes by which the unreacted explosive molecules are excited to the transition state(s) preceding reaction behind the leading shock front(s). High temperature, high density transition state theory calculates the induction times measured by laser interferometric techniques. Exothermic chain reactions form product gases in highly excited vibrational states,more » which have been demonstrated to rapidly equilibrate via supercollisions. Embedded gauge and Fabry-Perot techniques measure the rates of reaction product expansion as thermal and chemical equilibrium is approached. Detonation reaction zone lengths in carbon-rich condensed phase explosives depend on the relatively slow formation of solid graphite or diamond. The Ignition and Growth reactive flow model based on pressure dependent reaction rates and Jones-Wilkins-Lee (JWL) equations of state has reproduced this nanosecond time resolved experimental data and thus has yielded accurate average reaction zone descriptions in one-, two- and three- dimensional hydrodynamic code calculations. The next generation reactive flow model requires improved equations of state and temperature dependent chemical kinetics. Such a model is being developed for the ALE3D hydrodynamic code, in which heat transfer and Arrhenius kinetics are intimately linked to the hydrodynamics.« less
CHOLLA: A New Massively Parallel Hydrodynamics Code for Astrophysical Simulation
NASA Astrophysics Data System (ADS)
Schneider, Evan E.; Robertson, Brant E.
2015-04-01
We present Computational Hydrodynamics On ParaLLel Architectures (Cholla ), a new three-dimensional hydrodynamics code that harnesses the power of graphics processing units (GPUs) to accelerate astrophysical simulations. Cholla models the Euler equations on a static mesh using state-of-the-art techniques, including the unsplit Corner Transport Upwind algorithm, a variety of exact and approximate Riemann solvers, and multiple spatial reconstruction techniques including the piecewise parabolic method (PPM). Using GPUs, Cholla evolves the fluid properties of thousands of cells simultaneously and can update over 10 million cells per GPU-second while using an exact Riemann solver and PPM reconstruction. Owing to the massively parallel architecture of GPUs and the design of the Cholla code, astrophysical simulations with physically interesting grid resolutions (≳2563) can easily be computed on a single device. We use the Message Passing Interface library to extend calculations onto multiple devices and demonstrate nearly ideal scaling beyond 64 GPUs. A suite of test problems highlights the physical accuracy of our modeling and provides a useful comparison to other codes. We then use Cholla to simulate the interaction of a shock wave with a gas cloud in the interstellar medium, showing that the evolution of the cloud is highly dependent on its density structure. We reconcile the computed mixing time of a turbulent cloud with a realistic density distribution destroyed by a strong shock with the existing analytic theory for spherical cloud destruction by describing the system in terms of its median gas density.
A comparison of hydro-instabilities in CH, HDC, and beryllium ablators on NIF
NASA Astrophysics Data System (ADS)
Smalyuk, V. A.; Robey, H. F.; Ali, S.; Berzak Hopkins, L. F.; Casey, D. T.; Celliers, P. M.; Clark, D. S.; Felker, S. J.; Field, J. E.; Haan, S. W.; Hammel, B. A.; Hsing, W. W.; Kroll, J. J.; Landen, O. L.; Lepape, S.; Macphee, A. G.; Martinez, D.; Milovich, J.; Nikroo, A.; Pickworth, L.; Stadermann, M.; Weber, C. R.; Kline, J.; Loomis, E.; Yi, A.
2017-10-01
A comparison of the hydrodynamic growth in plastic, high-density carbon, and beryllium ablators will be presented in indirect-drive implosions on National Ignition Facility. This comparison is based on experimentally measured instabilities in all phases of implosions for the three ablators. The 2-D and 3-D perturbations were measured at the ablation-surface with the Hydrodynamic Growth Radiography platform. In the deceleration phase of implosions, innovative self-emission and ``self-backlight'' techniques were used. Results of the 3-D perturbation growth including engineering features will also be presented for convergence up to 20 and compared for the three ablators. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
A smooth particle hydrodynamics code to model collisions between solid, self-gravitating objects
NASA Astrophysics Data System (ADS)
Schäfer, C.; Riecker, S.; Maindl, T. I.; Speith, R.; Scherrer, S.; Kley, W.
2016-05-01
Context. Modern graphics processing units (GPUs) lead to a major increase in the performance of the computation of astrophysical simulations. Owing to the different nature of GPU architecture compared to traditional central processing units (CPUs) such as x86 architecture, existing numerical codes cannot be easily migrated to run on GPU. Here, we present a new implementation of the numerical method smooth particle hydrodynamics (SPH) using CUDA and the first astrophysical application of the new code: the collision between Ceres-sized objects. Aims: The new code allows for a tremendous increase in speed of astrophysical simulations with SPH and self-gravity at low costs for new hardware. Methods: We have implemented the SPH equations to model gas, liquids and elastic, and plastic solid bodies and added a fragmentation model for brittle materials. Self-gravity may be optionally included in the simulations and is treated by the use of a Barnes-Hut tree. Results: We find an impressive performance gain using NVIDIA consumer devices compared to our existing OpenMP code. The new code is freely available to the community upon request. If you are interested in our CUDA SPH code miluphCUDA, please write an email to Christoph Schäfer. miluphCUDA is the CUDA port of miluph. miluph is pronounced [maßl2v]. We do not support the use of the code for military purposes.
The simulations of indirect-drive targets for ignition on megajoule lasers.
NASA Astrophysics Data System (ADS)
Lykov, Vladimir; Andreev, Eugene; Ardasheva, Ludmila; Avramenko, Michael; Chernyakov, Valerian; Chizhkov, Maxim; Karlykhanov, Nikalai; Kozmanov, Michael; Lebedev, Serge; Rykovanov, George; Seleznev, Vladimir; Sokolov, Lev; Timakova, Margaret; Shestakov, Alexander; Shushlebin, Aleksander
2013-10-01
The calculations were performed with use of radiation hydrodynamic codes developed in RFNC-VNIITF. The analysis of published calculations of indirect-drive targets to obtain ignition on NIF and LMJ lasers has shown that these targets have very low margins for ignition: according to 1D-ERA code calculations it could not be ignited under decreasing of thermonuclear reaction rate less than in 2 times.The purpose of new calculations is search of indirect-drive targets with the raised margins for ignition. The calculations of compression and thermonuclear burning of targets are carried out for conditions of X-ray flux asymmetry obtained in simulations of Rugby hohlraum that were performed with 2D-SINARA code. The requirements to accuracy of manufacturing and irradiation symmetry of targets were studied with use of 2D-TIGR-OMEGA-3T code. The necessity of performed researches is caused by the construction of magajoule laser in Russia.
A simple model for molecular hydrogen chemistry coupled to radiation hydrodynamics
NASA Astrophysics Data System (ADS)
Nickerson, Sarah; Teyssier, Romain; Rosdahl, Joakim
2018-06-01
We introduce non-equilibrium molecular hydrogen chemistry into the radiation-hydrodynamics code RAMSES-RT. This is an adaptive mesh refinement grid code with radiation hydrodynamics that couples the thermal chemistry of hydrogen and helium to moment-based radiative transfer with the Eddington tensor closure model. The H2 physics that we include are formation on dust grains, gas phase formation, formation by three-body collisions, collisional destruction, photodissociation, photoionisation, cosmic ray ionisation and self-shielding. In particular, we implement the first model for H2 self-shielding that is tied locally to moment-based radiative transfer by enhancing photo-destruction. This self-shielding from Lyman-Werner line overlap is critical to H2 formation and gas cooling. We can now track the non-equilibrium evolution of molecular, atomic, and ionised hydrogen species with their corresponding dissociating and ionising photon groups. Over a series of tests we show that our model works well compared to specialised photodissociation region codes. We successfully reproduce the transition depth between molecular and atomic hydrogen, molecular cooling of the gas, and a realistic Strömgren sphere embedded in a molecular medium. In this paper we focus on test cases to demonstrate the validity of our model on small scales. Our ultimate goal is to implement this in large-scale galactic simulations.
ASTRORAY: General relativistic polarized radiative transfer code
NASA Astrophysics Data System (ADS)
Shcherbakov, Roman V.
2014-07-01
ASTRORAY employs a method of ray tracing and performs polarized radiative transfer of (cyclo-)synchrotron radiation. The radiative transfer is conducted in curved space-time near rotating black holes described by Kerr-Schild metric. Three-dimensional general relativistic magneto hydrodynamic (3D GRMHD) simulations, in particular performed with variations of the HARM code, serve as an input to ASTRORAY. The code has been applied to reproduce the sub-mm synchrotron bump in the spectrum of Sgr A*, and to test the detectability of quasi-periodic oscillations in its light curve. ASTRORAY can be readily applied to model radio/sub-mm polarized spectra of jets and cores of other low-luminosity active galactic nuclei. For example, ASTRORAY is uniquely suitable to self-consistently model Faraday rotation measure and circular polarization fraction in jets.
A 3D smoothed particle hydrodynamics model for erosional dam-break floods
NASA Astrophysics Data System (ADS)
Amicarelli, Andrea; Kocak, Bozhana; Sibilla, Stefano; Grabe, Jürgen
2017-11-01
A mesh-less smoothed particle hydrodynamics (SPH) model for bed-load transport on erosional dam-break floods is presented. This mixture model describes both the liquid phase and the solid granular material. The model is validated on the results from several experiments on erosional dam breaks. A comparison between the present model and a 2-phase SPH model for geotechnical applications (Gadget Soil; TUHH) is performed. A demonstrative 3D erosional dam break on complex topography is investigated. The present 3D mixture model is characterised by: no tuning parameter for the mixture viscosity; consistency with the Kinetic Theory of Granular Flow; ability to reproduce the evolution of the free surface and the bed-load transport layer; applicability to practical problems in civil engineering. The numerical developments of this study are represented by a new SPH scheme for bed-load transport, which is implemented in the SPH code SPHERA v.8.0 (RSE SpA), distributed as FOSS on GitHub.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tentner, A.; Bojanowski, C.; Feldman, E.
An experimental and computational effort was undertaken in order to evaluate the capability of the fluid-structure interaction (FSI) simulation tools to describe the deflection of a Missouri University Research Reactor (MURR) fuel element plate redesigned for conversion to lowenriched uranium (LEU) fuel due to hydrodynamic forces. Experiments involving both flat plates and curved plates were conducted in a water flow test loop located at the University of Missouri (MU), at conditions and geometries that can be related to the MURR LEU fuel element. A wider channel gap on one side of the test plate, and a narrower on the othermore » represent the differences that could be encountered in a MURR element due to allowed fabrication variability. The difference in the channel gaps leads to a pressure differential across the plate, leading to plate deflection. The induced plate deflection the pressure difference induces in the plate was measured at specified locations using a laser measurement technique. High fidelity 3-D simulations of the experiments were performed at MU using the computational fluid dynamics code STAR-CCM+ coupled with the structural mechanics code ABAQUS. Independent simulations of the experiments were performed at Argonne National Laboratory (ANL) using the STAR-CCM+ code and its built-in structural mechanics solver. The simulation results obtained at MU and ANL were compared with the corresponding measured plate deflections.« less
NASA Astrophysics Data System (ADS)
Dönmez, Orhan
2004-09-01
In this paper, the general procedure to solve the general relativistic hydrodynamical (GRH) equations with adaptive-mesh refinement (AMR) is presented. In order to achieve, the GRH equations are written in the conservation form to exploit their hyperbolic character. The numerical solutions of GRH equations are obtained by high resolution shock Capturing schemes (HRSC), specifically designed to solve nonlinear hyperbolic systems of conservation laws. These schemes depend on the characteristic information of the system. The Marquina fluxes with MUSCL left and right states are used to solve GRH equations. First, different test problems with uniform and AMR grids on the special relativistic hydrodynamics equations are carried out to verify the second-order convergence of the code in one, two and three dimensions. Results from uniform and AMR grid are compared. It is found that adaptive grid does a better job when the number of resolution is increased. Second, the GRH equations are tested using two different test problems which are Geodesic flow and Circular motion of particle In order to do this, the flux part of GRH equations is coupled with source part using Strang splitting. The coupling of the GRH equations is carried out in a treatment which gives second order accurate solutions in space and time.
Hernando, Victoria; Sobrino-Vegas, Paz; Burriel, M Carmen; Berenguer, Juan; Navarro, Gemma; Santos, Ignacio; Reparaz, Jesús; Martínez, M Angeles; Antela, Antonio; Gutiérrez, Félix; del Amo, Julia
2012-09-10
To compare causes of death (CoDs) from two independent sources: National Basic Death File (NBDF) and deaths reported to the Spanish HIV Research cohort [Cohort de adultos con infección por VIH de la Red de Investigación en SIDA CoRIS)] and compare the two coding algorithms: International Classification of Diseases, 10th revision (ICD-10) and revised version of Coding Causes of Death in HIV (revised CoDe). Between 2004 and 2008, CoDs were obtained from the cohort records (free text, multiple causes) and also from NBDF (ICD-10). CoDs from CoRIS were coded according to ICD-10 and revised CoDe by a panel. Deaths were compared by 13 disease groups: HIV/AIDS, liver diseases, malignancies, infections, cardiovascular, blood disorders, pulmonary, central nervous system, drug use, external, suicide, other causes and ill defined. There were 160 deaths. Concordance for the 13 groups was observed in 111 (69%) cases for the two sources and in 115 (72%) cases for the two coding algorithms. According to revised CoDe, the commonest CoDs were HIV/AIDS (53%), non-AIDS malignancies (11%) and liver related (9%), these percentages were similar, 57, 10 and 8%, respectively, for NBDF (coded as ICD-10). When using ICD-10 to code deaths in CoRIS, wherein HIV infection was known in everyone, the proportion of non-AIDS malignancies was 13%, liver-related accounted for 3%, while HIV/AIDS reached 70% due to liver-related, infections and ill-defined causes being coded as HIV/AIDS. There is substantial variation in CoDs in HIV-infected persons according to sources and algorithms. ICD-10 in patients known to be HIV-positive overestimates HIV/AIDS-related deaths at the expense of underestimating liver-related diseases, infections and ill defined causes. CoDe seems as the best option for cohort studies.
The Scylla Multi-Code Comparison Project
NASA Astrophysics Data System (ADS)
Maller, Ariyeh; Stewart, Kyle; Bullock, James; Oñorbe, Jose; Scylla Team
2016-01-01
Cosmological hydrodynamical simulations are one of the main techniques used to understand galaxy formation and evolution. However, it is far from clear to what extent different numerical techniques and different implementations of feedback yield different results. The Scylla Multi-Code Comparison Project seeks to address this issue by running idenitical initial condition simulations with different popular hydrodynamic galaxy formation codes. Here we compare simulations of a Milky Way mass halo using the codes enzo, ramses, art, arepo and gizmo-psph. The different runs produce galaxies with a variety of properties. There are many differences, but also many similarities. For example we find that in all runs cold flow disks exist; extended gas structures, far beyond the galactic disk, that show signs of rotation. Also, the angular momentum of warm gas in the halo is much larger than the angular momentum of the dark matter. We also find notable differences between runs. The temperature and density distribution of hot gas can differ by over an order of magnitude between codes and the stellar mass to halo mass relation also varies widely. These results suggest that observations of galaxy gas halos and the stellar mass to halo mass relation can be used to constarin the correct model of feedback.
NASA Astrophysics Data System (ADS)
MacLaren, Steve; Zylstra, A. B.; Yi, A.; Kline, J. L.; Kyrala, G. A.; Kot, L. B.; Loomis, E. N.; Perry, T. S.; Shah, R. C.; Masse, L. P.; Ralph, J. E.; Khan, S. F.
2017-10-01
Typically in indirect-drive inertial confinement fusion (ICF) hohlraums cryogenic helium gas fill is used to impede the motion of the hohlraum wall plasma as it is driven by the laser pulse. A fill of 1 mg/cc He has been used to significantly suppress wall motion in ICF hohlraums at the National Ignition Facility (NIF); however, this level of fill also causes laser-plasma instabilities (LPI) which result in hot electrons, time-dependent symmetry swings and reduction in drive due to increased backscatter. There are currently no adequate models for these phenomena in codes used to simulate integrated ICF experiments. A better compromise is a fill in the range of 0.3 0.6 mg/cc, which has been shown to provide some reduction in wall motion without incurring significant LPI effects. The wall motion in these low-fill hohlraums and the resulting effect on symmetry due to absorption of the inner cone beams by the outer cone plasma can be simulated with some degree of accuracy with the hydrodynamics and inverse Bremsstrahlung models in ICF codes. We describe a series of beryllium capsule implosions in 0.3 mg/cc He fill hohlraums that illustrate the effect of pulse shape on implosion symmetry in the ``low-fill'' regime. In particular, we find the shape of the beginning or ``foot'' of the pulse has significant leverage over the final symmetry of the stagnated implosion. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weilacher, F.; Radha, P. B.; Forrest, C.
Neutron-based diagnostics are typically used to infer compressed core conditions such as areal density and ion temperature in deuterium–tritium (D–T) inertial confinement fusion (ICF) implosions. Asymmetries in the observed neutron-related quantities are important to understanding failure modes in these implosions. Neutrons from fusion reactions and their subsequent interactions including elastic scattering and neutron-induced deuteron breakup reactions are tracked to create spectra. Here, it is shown that background subtraction is important for inferring areal density from backscattered neutrons and is less important for the forward-scattered neutrons. A three-dimensional hydrodynamic simulation of a cryogenic implosion on the OMEGA Laser System [T. R.more » Boehly et al., Opt. Commun. 133, 495 (1997)] using the hydrodynamic code HYDRA [M. M. Marinak et al., Phys. Plasmas 8, 2275 (2001)] is post-processed using the tracking code IRIS3D. It is shown that different parts of the neutron spectrum from the view can be mapped into different regions of the implosion, enabling an inference of an areal-density map. It is also shown that the average areal-density and an areal-density map of the compressed target can be reconstructed with a finite number of detectors placed around the target chamber. Ion temperatures are inferred from the width of the D–D and D–T fusion neutron spectra. Backgrounds can significantly alter the inferred ion temperatures from the D–D reaction, whereas they insignificantly influence the inferred D–T ion temperatures for the areal densities typical of OMEGA implosions. Asymmetries resulting in fluid flow in the core are shown to influence the absolute inferred ion temperatures from both reactions, although relative inferred values continue to reflect the underlying asymmetry pattern. The work presented here is part of the wide range of the first set of studies performed with IRIS3D. Finally, this code will continue to be used for post-processing detailed hydrodynamic simulations and interpreting observed neutron spectra in ICF implosions.« less
Weilacher, F.; Radha, P. B.; Forrest, C.
2018-04-26
Neutron-based diagnostics are typically used to infer compressed core conditions such as areal density and ion temperature in deuterium–tritium (D–T) inertial confinement fusion (ICF) implosions. Asymmetries in the observed neutron-related quantities are important to understanding failure modes in these implosions. Neutrons from fusion reactions and their subsequent interactions including elastic scattering and neutron-induced deuteron breakup reactions are tracked to create spectra. Here, it is shown that background subtraction is important for inferring areal density from backscattered neutrons and is less important for the forward-scattered neutrons. A three-dimensional hydrodynamic simulation of a cryogenic implosion on the OMEGA Laser System [T. R.more » Boehly et al., Opt. Commun. 133, 495 (1997)] using the hydrodynamic code HYDRA [M. M. Marinak et al., Phys. Plasmas 8, 2275 (2001)] is post-processed using the tracking code IRIS3D. It is shown that different parts of the neutron spectrum from the view can be mapped into different regions of the implosion, enabling an inference of an areal-density map. It is also shown that the average areal-density and an areal-density map of the compressed target can be reconstructed with a finite number of detectors placed around the target chamber. Ion temperatures are inferred from the width of the D–D and D–T fusion neutron spectra. Backgrounds can significantly alter the inferred ion temperatures from the D–D reaction, whereas they insignificantly influence the inferred D–T ion temperatures for the areal densities typical of OMEGA implosions. Asymmetries resulting in fluid flow in the core are shown to influence the absolute inferred ion temperatures from both reactions, although relative inferred values continue to reflect the underlying asymmetry pattern. The work presented here is part of the wide range of the first set of studies performed with IRIS3D. Finally, this code will continue to be used for post-processing detailed hydrodynamic simulations and interpreting observed neutron spectra in ICF implosions.« less
Laser targets compensate for limitations in inertial confinement fusion drivers
NASA Astrophysics Data System (ADS)
Kilkenny, J. D.; Alexander, N. B.; Nikroo, A.; Steinman, D. A.; Nobile, A.; Bernat, T.; Cook, R.; Letts, S.; Takagi, M.; Harding, D.
2005-10-01
Success in inertial confinement fusion (ICF) requires sophisticated, characterized targets. The increasing fidelity of three-dimensional (3D), radiation hydrodynamic computer codes has made it possible to design targets for ICF which can compensate for limitations in the existing single shot laser and Z pinch ICF drivers. Developments in ICF target fabrication technology allow more esoteric target designs to be fabricated. At present, requirements require new deterministic nano-material fabrication on micro scale.
2006-07-01
precision of the determination of Rmax, we established a refined method based on the model of bubble formation described above in section 3.6.1 and the...development can be modeled by hydrodynamic codes based on tabulated equation-of-state data . This has previously demonstrated on ps optical breakdown...per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and
DOE Office of Scientific and Technical Information (OSTI.GOV)
2017-05-17
PelePhysics is a suite of physics packages that provides functionality of use to reacting hydrodynamics CFD codes. The initial release includes an interface to reaction rate mechanism evaluation, transport coefficient evaluation, and a generalized equation of state (EOS) facility. Both generic evaluators and interfaces to code from externally available tools (Fuego for chemical rates, EGLib for transport coefficients) are provided.
HUFF, a One-Dimensional Hydrodynamics Code for Strong Shocks
1978-12-01
results for two sample problems. The first problem discussed is a one-kiloton nuclear burst in infinite sea level air. The second problem is the one...of HUFF as an effective first order hydro- dynamic computer code. 1 KT Explosion The one-kiloton nuclear explosion in infinite sea level air was
A soft X-ray source based on a low divergence, high repetition rate ultraviolet laser
NASA Astrophysics Data System (ADS)
Crawford, E. A.; Hoffman, A. L.; Milroy, R. D.; Quimby, D. C.; Albrecht, G. F.
The CORK code is utilized to evaluate the applicability of low divergence ultraviolet lasers for efficient production of soft X-rays. The use of the axial hydrodynamic code wih one ozone radial expansion to estimate radial motion and laser energy is examined. The calculation of ionization levels of the plasma and radiation rates by employing the atomic physics and radiation model included in the CORK code is described. Computations using the hydrodynamic code to determine the effect of laser intensity, spot size, and wavelength on plasma electron temperature are provided. The X-ray conversion efficiencies of the lasers are analyzed. It is observed that for a 1 GW laser power the X-ray conversion efficiency is a function of spot size, only weakly dependent on pulse length for time scales exceeding 100 psec, and better conversion efficiencies are obtained at shorter wavelengths. It is concluded that these small lasers focused to 30 micron spot sizes and 10 to the 14th W/sq cm intensities are useful sources of 1-2 keV radiation.
Simulation and Analysis of Converging Shock Wave Test Problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramsey, Scott D.; Shashkov, Mikhail J.
2012-06-21
Results and analysis pertaining to the simulation of the Guderley converging shock wave test problem (and associated code verification hydrodynamics test problems involving converging shock waves) in the LANL ASC radiation-hydrodynamics code xRAGE are presented. One-dimensional (1D) spherical and two-dimensional (2D) axi-symmetric geometric setups are utilized and evaluated in this study, as is an instantiation of the xRAGE adaptive mesh refinement capability. For the 2D simulations, a 'Surrogate Guderley' test problem is developed and used to obviate subtleties inherent to the true Guderley solution's initialization on a square grid, while still maintaining a high degree of fidelity to the originalmore » problem, and minimally straining the general credibility of associated analysis and conclusions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Andrew F.; Marzari, Francesco
Here, we present two-dimensional hydrodynamic simulations using the Smoothed Particle Hydrodynamic code, VINE, to model a self-gravitating binary system. We model configurations in which a circumbinary torus+disk surrounds a pair of stars in orbit around each other and a circumstellar disk surrounds each star, similar to that observed for the GG Tau A system. We assume that the disks cool as blackbodies, using rates determined independently at each location in the disk by the time dependent temperature of the photosphere there. We assume heating due to hydrodynamical processes and to radiation from the two stars, using rates approximated from amore » measure of the radiation intercepted by the disk at its photosphere.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zakharov, Leonid E.; Li, Xujing
This paper formulates the Tokamak Magneto-Hydrodynamics (TMHD), initially outlined by X. Li and L. E. Zakharov [Plasma Science and Technology 17(2), 97–104 (2015)] for proper simulations of macroscopic plasma dynamics. The simplest set of magneto-hydrodynamics equations, sufficient for disruption modeling and extendable to more refined physics, is explained in detail. First, the TMHD introduces to 3-D simulations the Reference Magnetic Coordinates (RMC), which are aligned with the magnetic field in the best possible way. The numerical implementation of RMC is adaptive grids. Being consistent with the high anisotropy of the tokamak plasma, RMC allow simulations at realistic, very high plasmamore » electric conductivity. Second, the TMHD splits the equation of motion into an equilibrium equation and the plasma advancing equation. This resolves the 4 decade old problem of Courant limitations of the time step in existing, plasma inertia driven numerical codes. The splitting allows disruption simulations on a relatively slow time scale in comparison with the fast time of ideal MHD instabilities. A new, efficient numerical scheme is proposed for TMHD.« less
Three-Dimensional Simulations of the Convective Urca Process in Pre-Supernova White Dwarfs
NASA Astrophysics Data System (ADS)
Willcox, Donald E.; Townsley, Dean; Zingale, Michael; Calder, Alan
2017-01-01
A significant source of uncertainty in modeling the progenitor systems of Type Ia supernovae is the dynamics of the convective Urca process in which beta decay and electron capture reactions remove energy from and decrease the buoyancy of carbon-fueled convection in the progenitor white dwarf. The details of the Urca process during this simmering phase have long remained computationally intractable in three-dimensional simulations because of the very low convective velocities and the associated timestep constraints of compressible hydrodynamics methods. We report on recent work simulating the A=23 (Ne/Na) Urca process in convecting white dwarfs in three dimensions using the low-Mach hydrodynamics code MAESTRO. We simulate white dwarf models inspired by one-dimensional stellar evolution calculations at the stage when the outer edge of the convection zone driven by core carbon burning reaches the A=23 Urca shell. We compare our methods and results to those of previous work in one and two dimensions, discussing the implications of three dimensional turbulence. We also comment on the prospect of our results informing one-dimensional stellar evolution calculations and the Type Ia supernovae progenitor problem.This work was supported in part by the Department of Energy under grant DE-FG02-87ER40317.
Supersonic, shockwave-driven hydrodynamic instability experiments at OMEGA-EP
NASA Astrophysics Data System (ADS)
Wan, Willow
2016-10-01
Hydrodynamic instabilities play a dominant role in the transport of mass, momentum, and energy in nearly every plasma environment, governing the dynamics of natural and engineering systems such as solar convective zones, magnetospheric boundaries, and fusion experiments. In past decades, limitations in our understanding of hydrodynamic instabilities have led to discrepancies between observations and predictions. Since then, significant improvements have been made to our available experimental techniques, diagnostics, and simulation capabilities. Here, we present a novel experimental platform that can sustain a steady, supersonic flow across a precision-machined, well-characterized material interface for unprecedented durations We applied this platform to a series of Kelvin-Helmholtz instability experiments. The Kelvin-Helmholtz instability generates vortical structures and turbulence at an interface with shear flow. In a supersonic flow, the growth rate is inhibited and the instability structure is altered. The data were obtained at the OMEGA-EP facility by firing three laser beams in sequence to produce a 12 kJ, 28 ns stitched laser pulse. The ablation pressure sustained a steady shockwave for 70 ns over a foam-plastic, single-mode or dual-mode interface. A spherical crystal imager was used to measure the evolution of these modulations with high-resolution x-ray radiography using Cu Kα radiation at 8.0 keV. The observed structure was reproduced with 2D hydrodynamic simulations. Supported by the U.S. DOE, through NNSA Grants DE-NA0002956 (SSAA) and DE-NA0002719 (NLUF), by the LLE under DE-NA0001944, and by the LLNL under subcontract B614207 to DE-AC52-07NA27344.
Hydrodynamic Flow Control in Marine Mammals
2008-05-06
body- bound vorticity ( Wolfgang et al. 1999). The vorticity is smoothly propagated along the flexing body toward the tail. This vorticity is eventually...and Reichley 1985; Dolphin 1988; Pauly et al. 1998). Whales lunge toward their prey at 2.6 m/s (Jurasz and Jurasz 1979; Hain et al. 1982). The...unsteady RANS CFD code for ship hydrodynamics. IIHR Hydroscience and Engineering Report 531. Iowa City (IA): The University of Iowa. Pauly D, Trites
Effect of Energetic Electrons Produced by Raman Scattering on Hohlraum Dynamics
NASA Astrophysics Data System (ADS)
Strozzi, D. J.; Bailey, D. S.; Doeppner, T.; Divol, L.; Harte, J. A.; Michel, P.; Thomas, C. A.
2016-10-01
A reduced model of laser-plasma interactions, namely crossed-beam energy transfer and stimulated Raman scattering (SRS), has recently been implemented in a self-consistent or ``inline'' way in radiation-hydrodynamics codes. We extend this work to treat the energetic electrons produced by Langmuir waves (LWs) from SRS by a suprathermal, multigroup diffusion model. This gives less spatially localized heating than depositing the LW energy into the local electron fluid. We compare the resulting hard x-ray production to imaging data on the National Ignition Facility, which indicate significant emission around the laser entrance hole. We assess the effects of energetic electrons, as well as background electron heat flow, on hohlraum dynamics and capsule implosion symmetry. Work performed under the auspices of the U.S. D.O.E. by LLNL under Contract No. DE-AC52-07NA27344.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacFarlane, Joseph J.; Golovkin, I. E.; Woodruff, P. R.
2009-08-07
This Final Report summarizes work performed under DOE STTR Phase II Grant No. DE-FG02-05ER86258 during the project period from August 2006 to August 2009. The project, “Development of Spectral and Atomic Models for Diagnosing Energetic Particle Characteristics in Fast Ignition Experiments,” was led by Prism Computational Sciences (Madison, WI), and involved collaboration with subcontractors University of Nevada-Reno and Voss Scientific (Albuquerque, NM). In this project, we have: Developed and implemented a multi-dimensional, multi-frequency radiation transport model in the LSP hybrid fluid-PIC (particle-in-cell) code [1,2]. Updated the LSP code to support the use of accurate equation-of-state (EOS) tables generated by Prism’smore » PROPACEOS [3] code to compute more accurate temperatures in high energy density physics (HEDP) plasmas. Updated LSP to support the use of Prism’s multi-frequency opacity tables. Generated equation of state and opacity data for LSP simulations for several materials being used in plasma jet experimental studies. Developed and implemented parallel processing techniques for the radiation physics algorithms in LSP. Benchmarked the new radiation transport and radiation physics algorithms in LSP and compared simulation results with analytic solutions and results from numerical radiation-hydrodynamics calculations. Performed simulations using Prism radiation physics codes to address issues related to radiative cooling and ionization dynamics in plasma jet experiments. Performed simulations to study the effects of radiation transport and radiation losses due to electrode contaminants in plasma jet experiments. Updated the LSP code to generate output using NetCDF to provide a better, more flexible interface to SPECT3D [4] in order to post-process LSP output. Updated the SPECT3D code to better support the post-processing of large-scale 2-D and 3-D datasets generated by simulation codes such as LSP. Updated atomic physics modeling to provide for more comprehensive and accurate atomic databases that feed into the radiation physics modeling (spectral simulations and opacity tables). Developed polarization spectroscopy modeling techniques suitable for diagnosing energetic particle characteristics in HEDP experiments. A description of these items is provided in this report. The above efforts lay the groundwork for utilizing the LSP and SPECT3D codes in providing simulation support for DOE-sponsored HEDP experiments, such as plasma jet and fast ignition physics experiments. We believe that taken together, the LSP and SPECT3D codes have unique capabilities for advancing our understanding of the physics of these HEDP plasmas. Based on conversations early in this project with our DOE program manager, Dr. Francis Thio, our efforts emphasized developing radiation physics and atomic modeling capabilities that can be utilized in the LSP PIC code, and performing radiation physics studies for plasma jets. A relatively minor component focused on the development of methods to diagnose energetic particle characteristics in short-pulse laser experiments related to fast ignition physics. The period of performance for the grant was extended by one year to August 2009 with a one-year no-cost extension, at the request of subcontractor University of Nevada-Reno.« less
AX-GADGET: a new code for cosmological simulations of Fuzzy Dark Matter and Axion models
NASA Astrophysics Data System (ADS)
Nori, Matteo; Baldi, Marco
2018-05-01
We present a new module of the parallel N-Body code P-GADGET3 for cosmological simulations of light bosonic non-thermal dark matter, often referred as Fuzzy Dark Matter (FDM). The dynamics of the FDM features a highly non-linear Quantum Potential (QP) that suppresses the growth of structures at small scales. Most of the previous attempts of FDM simulations either evolved suppressed initial conditions, completely neglecting the dynamical effects of QP throughout cosmic evolution, or resorted to numerically challenging full-wave solvers. The code provides an interesting alternative, following the FDM evolution without impairing the overall performance. This is done by computing the QP acceleration through the Smoothed Particle Hydrodynamics (SPH) routines, with improved schemes to ensure precise and stable derivatives. As an extension of the P-GADGET3 code, it inherits all the additional physics modules implemented up to date, opening a wide range of possibilities to constrain FDM models and explore its degeneracies with other physical phenomena. Simulations are compared with analytical predictions and results of other codes, validating the QP as a crucial player in structure formation at small scales.
Application of CHAD hydrodynamics to shock-wave problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trease, H.E.; O`Rourke, P.J.; Sahota, M.S.
1997-12-31
CHAD is the latest in a sequence of continually evolving computer codes written to effectively utilize massively parallel computer architectures and the latest grid generators for unstructured meshes. Its applications range from automotive design issues such as in-cylinder and manifold flows of internal combustion engines, vehicle aerodynamics, underhood cooling and passenger compartment heating, ventilation, and air conditioning to shock hydrodynamics and materials modeling. CHAD solves the full unsteady Navier-Stoke equations with the k-epsilon turbulence model in three space dimensions. The code has four major features that distinguish it from the earlier KIVA code, also developed at Los Alamos. First, itmore » is based on a node-centered, finite-volume method in which, like finite element methods, all fluid variables are located at computational nodes. The computational mesh efficiently and accurately handles all element shapes ranging from tetrahedra to hexahedra. Second, it is written in standard Fortran 90 and relies on automatic domain decomposition and a universal communication library written in standard C and MPI for unstructured grids to effectively exploit distributed-memory parallel architectures. Thus the code is fully portable to a variety of computing platforms such as uniprocessor workstations, symmetric multiprocessors, clusters of workstations, and massively parallel platforms. Third, CHAD utilizes a variable explicit/implicit upwind method for convection that improves computational efficiency in flows that have large velocity Courant number variations due to velocity of mesh size variations. Fourth, CHAD is designed to also simulate shock hydrodynamics involving multimaterial anisotropic behavior under high shear. The authors will discuss CHAD capabilities and show several sample calculations showing the strengths and weaknesses of CHAD.« less
Benchmarking the Multidimensional Stellar Implicit Code MUSIC
NASA Astrophysics Data System (ADS)
Goffrey, T.; Pratt, J.; Viallet, M.; Baraffe, I.; Popov, M. V.; Walder, R.; Folini, D.; Geroux, C.; Constantino, T.
2017-04-01
We present the results of a numerical benchmark study for the MUltidimensional Stellar Implicit Code (MUSIC) based on widely applicable two- and three-dimensional compressible hydrodynamics problems relevant to stellar interiors. MUSIC is an implicit large eddy simulation code that uses implicit time integration, implemented as a Jacobian-free Newton Krylov method. A physics based preconditioning technique which can be adjusted to target varying physics is used to improve the performance of the solver. The problems used for this benchmark study include the Rayleigh-Taylor and Kelvin-Helmholtz instabilities, and the decay of the Taylor-Green vortex. Additionally we show a test of hydrostatic equilibrium, in a stellar environment which is dominated by radiative effects. In this setting the flexibility of the preconditioning technique is demonstrated. This work aims to bridge the gap between the hydrodynamic test problems typically used during development of numerical methods and the complex flows of stellar interiors. A series of multidimensional tests were performed and analysed. Each of these test cases was analysed with a simple, scalar diagnostic, with the aim of enabling direct code comparisons. As the tests performed do not have analytic solutions, we verify MUSIC by comparing it to established codes including ATHENA and the PENCIL code. MUSIC is able to both reproduce behaviour from established and widely-used codes as well as results expected from theoretical predictions. This benchmarking study concludes a series of papers describing the development of the MUSIC code and provides confidence in future applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weeratunga, S K
Ares and Kull are mature code frameworks that support ALE hydrodynamics for a variety of HEDP applications at LLNL, using two widely different meshing approaches. While Ares is based on a 2-D/3-D block-structured mesh data base, Kull is designed to support unstructured, arbitrary polygonal/polyhedral meshes. In addition, both frameworks are capable of running applications on large, distributed-memory parallel machines. Currently, both these frameworks separately support assorted collections of physics packages related to HEDP, including one for the energy deposition by laser/ion-beam ray tracing. This study analyzes the options available for developing a common laser/ion-beam ray tracing package that can bemore » easily shared between these two code frameworks and concludes with a set of recommendations for its development.« less
NASA Astrophysics Data System (ADS)
De Muro, Sandro; Ruju, Andrea; Buosi, Carla; Porta, Marco; Passarella, Marinella; Ibba, Angelo
2017-04-01
Posidonia oceanica meadow is considered to play an important role in the coastal geomorphology of Mediterranean beach systems. In particular, the importance of the meadow in protecting the coastline from erosion is well-recognized. Waves are attenuated by greater friction across seagrass meadows, which have the capacity to reduce water flow and therefore increase sediment deposition and accumulation as well as beach stability. The P. oceanica meadow upper limit usually occurs within the most dynamic zone of the beach system. Considering the great attention paid in the literature to the connection between the growth of P. oceanica and coastal hydrodynamics (Infantes et al., 2009; Vacchi et al., 2014; De Muro et al., 2016, 2017), this study aims at extending the previous work by investigating the combined influence of hydrodynamic parameters (e.g., wave-induced main currents and wave orbital velocity at the bottom) and different types of sea bottom (e.g., soft sediment, rocky substrates) on the position of the upper limit of the P. oceanica meadow. We applied this approach to 4 Mediterranean beach systems located on the Sardinian coastline (3 on the South and 1 on the North) and characterized by a wide range of orientations and incoming wave conditions. On these beaches, the extension of the P. oceanica meadows and the bathymetry have been obtained through detailed surveying campaigns and aerial photo analysis. In addition, high spatial resolution wave hydrodynamics have been reconstructed by running numerical simulations with Delft 3D. Offshore wave climate has been reconstructed by using measured datasets for those beaches that have a nearby buoy whose dataset is representative of the incoming wave conditions for that particular stretch of coast. Whereas, for those beaches with no availability of a representative measured dataset, wave climate has been analyzed from the NOAA hindcast dataset. From the whole range of incoming wave directions in deep waters, we retained for analysis only the most energetic sectors. Successively, we identify extreme wave conditions using a statistical approach. Delft 3D is used to propagate these wave conditions towards the shore and then reconstruct the main hydrodynamic patterns in order to study its effects on the extension of P. oceanica. Preliminary results show that in all investigated beach systems the meadow interruptions were found where intense (rip and longshore) currents occur as a result of all simulated storm directions; and the P. oceanica meadow leaves space for sand-dominated substrate. In conclusion, the new approach presented here is a useful tool to estimate the location of the P. oceanica upper limit induced by hydrodynamics and it has important consequences for coastal zone management, as P. oceanica meadow is protected by EU legislation including the Habitat Directive and the Water Framework Directive. References De Muro et al. (2016). Journal of Maps 12, 558-572. De Muro et al. (2017). Journal of Maps 13(2), 74-85. Infantes et al. (2009). Botanica Marina 52, 419-427. Vacchi et al. (2014). Marine Pollution Bulletin 83, 458-466.
Experimental measurements of hydrodynamic instabilities on NOVA of relevance to astrophysics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Budil, K S; Cherfils, C; Drake, R P
1998-09-11
Large lasers such as Nova allow the possibility of achieving regimes of high energy densities in plasmas of millimeter spatial scales and nanosecond time scales. In those plasmas where thermal conductivity and viscosity do not play a significant role, the hydrodynamic evolution is suitable for benchmarking hydrodynamics modeling in astrophysical codes. Several experiments on Nova examine hydrodynamically unstable interfaces. A typical Nova experiment uses a gold millimeter-scale hohlraum to convert the laser energy to a 200 eV blackbody source lasting about a nanosecond. The x-rays ablate a planar target, generating a series of shocks and accelerating the target. The evolvingmore » area1 density is diagnosed by time-resolved radiography, using a second x-ray source. Data from several experiments are presented and diagnostic techniques are discussed.« less
Enhanced Verification Test Suite for Physics Simulation Codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamm, J R; Brock, J S; Brandon, S T
2008-10-10
This document discusses problems with which to augment, in quantity and in quality, the existing tri-laboratory suite of verification problems used by Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), and Sandia National Laboratories (SNL). The purpose of verification analysis is demonstrate whether the numerical results of the discretization algorithms in physics and engineering simulation codes provide correct solutions of the corresponding continuum equations. The key points of this document are: (1) Verification deals with mathematical correctness of the numerical algorithms in a code, while validation deals with physical correctness of a simulation in a regime of interest.more » This document is about verification. (2) The current seven-problem Tri-Laboratory Verification Test Suite, which has been used for approximately five years at the DOE WP laboratories, is limited. (3) Both the methodology for and technology used in verification analysis have evolved and been improved since the original test suite was proposed. (4) The proposed test problems are in three basic areas: (a) Hydrodynamics; (b) Transport processes; and (c) Dynamic strength-of-materials. (5) For several of the proposed problems we provide a 'strong sense verification benchmark', consisting of (i) a clear mathematical statement of the problem with sufficient information to run a computer simulation, (ii) an explanation of how the code result and benchmark solution are to be evaluated, and (iii) a description of the acceptance criterion for simulation code results. (6) It is proposed that the set of verification test problems with which any particular code be evaluated include some of the problems described in this document. Analysis of the proposed verification test problems constitutes part of a necessary--but not sufficient--step that builds confidence in physics and engineering simulation codes. More complicated test cases, including physics models of greater sophistication or other physics regimes (e.g., energetic material response, magneto-hydrodynamics), would represent a scientifically desirable complement to the fundamental test cases discussed in this report. The authors believe that this document can be used to enhance the verification analyses undertaken at the DOE WP Laboratories and, thus, to improve the quality, credibility, and usefulness of the simulation codes that are analyzed with these problems.« less
On the effect of galactic outflows in cosmological simulations of disc galaxies
NASA Astrophysics Data System (ADS)
Valentini, Milena; Murante, Giuseppe; Borgani, Stefano; Monaco, Pierluigi; Bressan, Alessandro; Beck, Alexander M.
2017-09-01
We investigate the impact of galactic outflow modelling on the formation and evolution of a disc galaxy, by performing a suite of cosmological simulations with zoomed-in initial conditions (ICs) of a Milky Way-sized halo. We verify how sensitive the general properties of the simulated galaxy are to the way in which stellar feedback triggered outflows are implemented, keeping ICs, simulation code and star formation (SF) model all fixed. We present simulations that are based on a version of the gadget3 code where our sub-resolution model is coupled with an advanced implementation of smoothed particle hydrodynamics that ensures a more accurate fluid sampling and an improved description of gas mixing and hydrodynamical instabilities. We quantify the strong interplay between the adopted hydrodynamic scheme and the sub-resolution model describing SF and feedback. We consider four different galactic outflow models, including the one introduced by Dalla Vecchia & Schaye (2012) and a scheme that is inspired by the Springel & Hernquist (2003) model. We find that the sub-resolution prescriptions adopted to generate galactic outflows are the main shaping factor of the stellar disc component at low redshift. The key requirement that a feedback model must have to be successful in producing a disc-dominated galaxy is the ability to regulate the high-redshift SF (responsible for the formation of the bulge component), the cosmological infall of gas from the large-scale environment, and gas fall-back within the galactic radius at low redshift, in order to avoid a too high SF rate at z = 0.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Tingwen; Rabha, Swapna; Verma, Vikrant
Geldart Group A particles are of great importance in various chemical processes because of advantages such as ease of fluidization, large surface area, and many other unique properties. It is very challenging to model the fluidization behavior of such particles as widely reported in the literature. In this study, a pseudo-2D experimental column with a width of 5 cm, a height of 45 cm, and a depth of 0.32 cm was developed for detailed measurements of fluidized bed hydrodynamics of fine particles to facilitate the validation of computational fluid dynamic (CFD) modeling. The hydrodynamics of sieved FCC particles (Sauter meanmore » diameter of 148 µm and density of 1300 kg/m3) and NETL-32D sorbents (Sauter mean diameter of 100 µm and density of 480 kg/m3) were investigated mainly through the visualization by a high-speed camera. Numerical simulations were then conducted by using NETL’s open source code MFIX-DEM. Both qualitative and quantitative information including bed expansion, bubble characteristics, and solid movement were compared between the numerical simulations and the experimental measurement. Furthermore, the cohesive van der Waals force was incorporated in the MFIX-DEM simulations and its influences on the flow hydrodynamics were studied.« less
Li, Tingwen; Rabha, Swapna; Verma, Vikrant; ...
2017-09-19
Geldart Group A particles are of great importance in various chemical processes because of advantages such as ease of fluidization, large surface area, and many other unique properties. It is very challenging to model the fluidization behavior of such particles as widely reported in the literature. In this study, a pseudo-2D experimental column with a width of 5 cm, a height of 45 cm, and a depth of 0.32 cm was developed for detailed measurements of fluidized bed hydrodynamics of fine particles to facilitate the validation of computational fluid dynamic (CFD) modeling. The hydrodynamics of sieved FCC particles (Sauter meanmore » diameter of 148 µm and density of 1300 kg/m3) and NETL-32D sorbents (Sauter mean diameter of 100 µm and density of 480 kg/m3) were investigated mainly through the visualization by a high-speed camera. Numerical simulations were then conducted by using NETL’s open source code MFIX-DEM. Both qualitative and quantitative information including bed expansion, bubble characteristics, and solid movement were compared between the numerical simulations and the experimental measurement. Furthermore, the cohesive van der Waals force was incorporated in the MFIX-DEM simulations and its influences on the flow hydrodynamics were studied.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandell, D.A.; Wingate, C.A.
1994-08-01
The design of many military devices involves numerical predictions of the material strength and fracture of brittle materials. The materials of interest include ceramics, that are used in armor packages; glass that is used in truck and jeep windshields and in helicopters; and rock and concrete that are used in underground bunkers. As part of a program to develop advanced hydrocode design tools, the authors have implemented a brittle fracture model for glass into the SPHINX smooth particle hydrodynamics code. The authors have evaluated this model and the code by predicting data from one-dimensional flyer plate impacts into glass, andmore » data from tungsten rods impacting glass. Since fractured glass properties, which are needed in the model, are not available, the authors did sensitivity studies of these properties, as well as sensitivity studies to determine the number of particles needed in the calculations. The numerical results are in good agreement with the data.« less
2D Implosion Simulations with a Kinetic Particle Code
NASA Astrophysics Data System (ADS)
Sagert, Irina; Even, Wesley; Strother, Terrance
2017-10-01
Many problems in laboratory and plasma physics are subject to flows that move between the continuum and the kinetic regime. We discuss two-dimensional (2D) implosion simulations that were performed using a Monte Carlo kinetic particle code. The application of kinetic transport theory is motivated, in part, by the occurrence of non-equilibrium effects in inertial confinement fusion (ICF) capsule implosions, which cannot be fully captured by hydrodynamics simulations. Kinetic methods, on the other hand, are able to describe both, continuum and rarefied flows. We perform simple 2D disk implosion simulations using one particle species and compare the results to simulations with the hydrodynamics code RAGE. The impact of the particle mean-free-path on the implosion is also explored. In a second study, we focus on the formation of fluid instabilities from induced perturbations. I.S. acknowledges support through the Director's fellowship from Los Alamos National Laboratory. This research used resources provided by the LANL Institutional Computing Program.
Hydrocode and Molecular Dynamics modelling of uniaxial shock wave experiments on Silicon
NASA Astrophysics Data System (ADS)
Stubley, Paul; McGonegle, David; Patel, Shamim; Suggit, Matthew; Wark, Justin; Higginbotham, Andrew; Comley, Andrew; Foster, John; Rothman, Steve; Eggert, Jon; Kalantar, Dan; Smith, Ray
2015-06-01
Recent experiments have provided further evidence that the response of silicon to shock compression has anomalous properties, not described by the usual two-wave elastic-plastic response. A recent experimental campaign on the Orion laser in particular has indicated a complex multi-wave response. While Molecular Dynamics (MD) simulations can offer a detailed insight into the response of crystals to uniaxial compression, they are extremely computationally expensive. For this reason, we are adapting a simple quasi-2D hydrodynamics code to capture phase change under uniaxial compression, and the intervening mixed phase region, keeping track of the stresses and strains in each of the phases. This strain information is of such importance because a large number of shock experiments use diffraction as a key diagnostic, and these diffraction patterns depend solely on the elastic strains in the sample. We present here a comparison of the new hydrodynamics code with MD simulations, and show that the simulated diffraction taken from the code agrees qualitatively with measured diffraction from our recent Orion campaign.
NASA Technical Reports Server (NTRS)
1985-01-01
The concept of a large disturbance bypass mechanism for the initiation of transition is reviewed and studied. This mechanism, or some manifestation thereof, is suspected to be at work in the boundary layers present in a turbine flow passage. Discussion is presented on four relevant subtopics: (1) the effect of upstream disturbances and wakes on transition; (2) transition prediction models, code development, and verification; (3) transition and turbulence measurement techniques; and (4) the hydrodynamic condition of low Reynolds number boundary layers.
Numerical Viscosity and the Survival of Gas Giant Protoplanets in Disk Simulations
NASA Astrophysics Data System (ADS)
Pickett, Megan K.; Durisen, Richard H.
2007-01-01
We present three-dimensional hydrodynamic simulations of a gravitationally unstable protoplanetary disk model under the condition of local isothermality. Ordinarily, local isothermality precludes the need for an artificial viscosity (AV) scheme to mediate shocks. Without AV, the disk evolves violently, shredding into dense (although short-lived) clumps. When we introduce our AV treatment in the momentum equation, but without heating due to irreversible compression, our grid-based simulations begin to resemble smoothed particle hydrodynamics (SPH) calculations, where clumps are more likely to survive many orbits. In fact, the standard SPH viscosity appears comparable in strength to the AV that leads to clump longevity in our code. This sensitivity to one numerical parameter suggests extreme caution in interpreting simulations by any code in which long-lived gaseous protoplanetary bodies appear.
NASA Astrophysics Data System (ADS)
Scopatz, A.; Fatenejad, M.; Flocke, N.; Gregori, G.; Koenig, M.; Lamb, D. Q.; Lee, D.; Meinecke, J.; Ravasio, A.; Tzeferacos, P.; Weide, K.; Yurchak, R.
2013-03-01
We report the results of FLASH hydrodynamic simulations of the experiments conducted by the University of Oxford High Energy Density Laboratory Astrophysics group and its collaborators at the Laboratoire pour l'Utilisation de Lasers Intenses (LULI). In these experiments, a long-pulse laser illuminates a target in a chamber filled with Argon gas, producing shock waves that generate magnetic fields via the Biermann battery mechanism. The simulations show that the result of the laser illuminating the target is a series of complex hydrodynamic phenomena.
Multidimensional simulations of core-collapse supernovae with CHIMERA
NASA Astrophysics Data System (ADS)
Lentz, Eric J.; Bruenn, S. W.; Yakunin, K.; Endeve, E.; Blondin, J. M.; Harris, J. A.; Hix, W. R.; Marronetti, P.; Messer, O. B.; Mezzacappa, A.
2014-01-01
Core-collapse supernovae are driven by a multidimensional neutrino radiation hydrodynamic (RHD) engine, and full simulation requires at least axisymmetric (2D) and ultimately symmetry-free 3D RHD simulation. We present recent and ongoing work with our multidimensional RHD supernova code CHIMERA to understand the nature of the core-collapse explosion mechanism and its consequences. Recently completed simulations of 12-25 solar mass progenitors(Woosley & Heger 2007) in well resolved (0.7 degrees in latitude) 2D simulations exhibit robust explosions meeting the observationally expected explosion energy. We examine the role of hydrodynamic instabilities (standing accretion shock instability, neutrino driven convection, etc.) on the explosion dynamics and the development of the explosion energy. Ongoing 3D and 2D simulations examine the role that simulation resolution and the removal of the imposed axisymmetry have in the triggering and development of an explosion from stellar core collapse. Companion posters will explore the gravitational wave signals (Yakunin et al.) and nucleosynthesis (Harris et al.) of our simulations.
The first target experiments on the National Ignition Facility
NASA Astrophysics Data System (ADS)
Landen, O. L.; Glenzer, S. H.; Froula, D. H.; Dewald, E. L.; Suter, L. J.; Schneider, M. B.; Hinkel, D. E.; Fernandez, J. C.; Kline, J. L.; Goldman, S. R.; Braun, D. G.; Celliers, P. M.; Moon, S. J.; Robey, H. S.; Lanier, N. E.; Glendinning, S. G.; Blue, B. E.; Wilde, B. H.; Jones, O. S.; Schein, J.; Divol, L.; Kalantar, D. H.; Campbell, K. M.; Holder, J. P.; McDonald, J. W.; Niemann, C.; MacKinnon, A. J.; Collins, G. W.; Bradley, D. K.; Eggert, J. H.; Hicks, D. G.; Gregori, G.; Kirkwood, R. K.; Young, B. K.; Foster, J. M.; Hansen, J. F.; Perry, T. S.; Munro, D. H.; Baldis, H. A.; Grim, G. P.; Heeter, R. F.; Hegelich, M. B.; Montgomery, D. S.; Rochau, G. A.; Olson, R. E.; Turner, R. E.; Workman, J. B.; Berger, R. L.; Cohen, B. I.; Kruer, W. L.; Langdon, A. B.; Langer, S. H.; Meezan, N. B.; Rose, H. A.; Still, C. H.; Williams, E. A.; Dodd, E. S.; Edwards, M. J.; Monteil, M.-C.; Stevenson, R. M.; Thomas, B. R.; Coker, R. F.; Magelssen, G. R.; Rosen, P. A.; Stry, P. E.; Woods, D.; Weber, S. V.; Young, P. E.; Alvarez, S.; Armstrong, G.; Bahr, R.; Bourgade, J.-L.; Bower, D.; Celeste, J.; Chrisp, M.; Compton, S.; Cox, J.; Constantin, C.; Costa, R.; Duncan, J.; Ellis, A.; Emig, J.; Gautier, C.; Greenwood, A.; Griffith, R.; Holdner, F.; Holtmeier, G.; Hargrove, D.; James, T.; Kamperschroer, J.; Kimbrough, J.; Landon, M.; Lee, F. D.; Malone, R.; May, M.; Montelongo, S.; Moody, J.; Ng, E.; Nikitin, A.; Pellinen, D.; Piston, K.; Poole, M.; Rekow, V.; Rhodes, M.; Shepherd, R.; Shiromizu, S.; Voloshin, D.; Warrick, A.; Watts, P.; Weber, F.; Young, P.; Arnold, P.; Atherton, L.; Bardsley, G.; Bonanno, R.; Borger, T.; Bowers, M.; Bryant, R.; Buckman, S.; Burkhart, S.; Cooper, F.; Dixit, S. N.; Erbert, G.; Eder, D. C.; Ehrlich, R. E.; Felker, B.; Fornes, J.; Frieders, G.; Gardner, S.; Gates, C.; Gonzalez, M.; Grace, S.; Hall, T.; Haynam, C. A.; Heestand, G.; Henesian, M. A.; Hermann, M.; Hermes, G.; Huber, S.; Jancaitis, K.; Johnson, S.; Kauffman, B.; Kelleher, T.; Kohut, T.; Koniges, A. E.; Labiak, T.; Latray, D.; Lee, A.; Lund, D.; Mahavandi, S.; Manes, K. R.; Marshall, C.; McBride, J.; McCarville, T.; McGrew, L.; Menapace, J.; Mertens, E.; Murray, J.; Neumann, J.; Newton, M.; Opsahl, P.; Padilla, E.; Parham, T.; Parrish, G.; Petty, C.; Polk, M.; Powell, C.; Reinbachs, I.; Rinnert, R.; Riordan, B.; Ross, G.; Robert, V.; Tobin, M.; Sailors, S.; Saunders, R.; Schmitt, M.; Shaw, M.; Singh, M.; Spaeth, M.; Stephens, A.; Tietbohl, G.; Tuck, J.; van Wonterghem, B. M.; Vidal, R.; Wegner, P. J.; Whitman, P.; Williams, K.; Winward, K.; Work, K.; Wallace, R.; Nobile, A.; Bono, M.; Day, B.; Elliott, J.; Hatch, D.; Louis, H.; Manzenares, R.; O'Brien, D.; Papin, P.; Pierce, T.; Rivera, G.; Ruppe, J.; Sandoval, D.; Schmidt, D.; Valdez, L.; Zapata, K.; MacGowan, B. J.; Eckart, M. J.; Hsing, W. W.; Springer, P. T.; Hammel, B. A.; Moses, E. I.; Miller, G. H.
2007-08-01
A first set of shock timing, laser-plasma interaction, hohlraum energetics and hydrodynamic experiments have been performed using the first 4 beams of the National Ignition Facility (NIF), in support of indirect drive Inertial Confinement Fusion (ICF) and High Energy Density Physics (HEDP). In parallel, a robust set of optical and X-ray spectrometers, interferometer, calorimeters and imagers have been activated. The experiments have been undertaken with laser powers and energies of up to 8 TW and 17 kJ in flattop and shaped 1 9 ns pulses focused with various beam smoothing options. The experiments have demonstrated excellent agreement between measured and predicted laser-target coupling in foils and hohlraums, even when extended to a longer pulse regime unattainable at previous laser facilities, validated the predicted effects of beam smoothing on intense laser beam propagation in long scale-length plasmas and begun to test 3D codes by extending the study of laser driven hydrodynamic jets to 3D geometries.
Modeling The Shock Initiation of PBX-9501 in ALE3D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leininger, L; Springer, H K; Mace, J
The SMIS (Specific Munitions Impact Scenario) experimental series performed at Los Alamos National Laboratory has determined the 3-dimensional shock initiation behavior of the HMX-based heterogeneous high explosive, PBX 9501. A series of finite element impact calculations have been performed in the ALE3D [1] hydrodynamic code and compared to the SMIS results to validate the code predictions. The SMIS tests use a powder gun to shoot scaled NATO standard fragments at a cylinder of PBX 9501, which has a PMMA case and a steel impact cover. The SMIS real-world shot scenario creates a unique test-bed because many of the fragments arrivemore » at the impact plate off-center and at an angle of impact. The goal of this model validation experiments is to demonstrate the predictive capability of the Tarver-Lee Ignition and Growth (I&G) reactive flow model [2] in this fully 3-dimensional regime of Shock to Detonation Transition (SDT). The 3-dimensional Arbitrary Lagrange Eulerian hydrodynamic model in ALE3D applies the Ignition and Growth (I&G) reactive flow model with PBX 9501 parameters derived from historical 1-dimensional experimental data. The model includes the off-center and angle of impact variations seen in the experiments. Qualitatively, the ALE3D I&G calculations accurately reproduce the 'Go/No-Go' threshold of the Shock to Detonation Transition (SDT) reaction in the explosive, as well as the case expansion recorded by a high-speed optical camera. Quantitatively, the calculations show good agreement with the shock time of arrival at internal and external diagnostic pins. This exercise demonstrates the utility of the Ignition and Growth model applied in a predictive fashion for the response of heterogeneous high explosives in the SDT regime.« less
NASA Astrophysics Data System (ADS)
Stewart, Cameron; Najjar, Fady; Stewart, D. Scott; Bdzil, John
2012-11-01
Modern-engineered high explosive (HE) materials can consist of a matrix of solid, inert particles embedded into an HE charge. When this charge is detonated, intense shock waves are generated. As these intense shocks interact with the inert particles, large deformations occur in the particles while the incident shock diffracts around the particle interface. We will present results from a series of 3-D DNS of an intense shock interacting with unit-cube configurations of inert particles embedded into nitromethane. The LLNL multi-physics massively parallel hydrodynamics code ALE3D is used to carry out high-resolution (4 million nodes) simulations. Three representative unit-cube configurations are considered: primitive cubic, face-centered and body-centered cubic for two particle material types of varying impedance ratios. Previous work has only looked at in-line particles configurations. We investigate the time evolution of the unit cell configurations, vorticity being generated by the shock interaction, as well as the velocity and acceleration of the particles until they reach the quasi-steady regime. LLNL-ABS-567694. CSS was supported by a summer internship through the HEDP program at LLNL. FMN's work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Solutions of conformal Israel-Stewart relativistic viscous fluid dynamics
NASA Astrophysics Data System (ADS)
Marrochio, Hugo; Noronha, Jorge; Denicol, Gabriel S.; Luzum, Matthew; Jeon, Sangyong; Gale, Charles
2015-01-01
We use symmetry arguments developed by Gubser to construct the first radially expanding explicit solutions of the Israel-Stewart formulation of hydrodynamics. Along with a general semi-analytical solution, an exact analytical solution is given which is valid in the cold plasma limit where viscous effects from shear viscosity and the relaxation time coefficient are important. The radially expanding solutions presented in this paper can be used as nontrivial checks of numerical algorithms employed in hydrodynamic simulations of the quark-gluon plasma formed in ultrarelativistic heavy ion collisions. We show this explicitly by comparing such analytic and semi-analytic solutions with the corresponding numerical solutions obtained using the music viscous hydrodynamics simulation code.
Interplay of Laser-Plasma Interactions and Inertial Fusion Hydrodynamics.
Strozzi, D J; Bailey, D S; Michel, P; Divol, L; Sepke, S M; Kerbel, G D; Thomas, C A; Ralph, J E; Moody, J D; Schneider, M B
2017-01-13
The effects of laser-plasma interactions (LPI) on the dynamics of inertial confinement fusion hohlraums are investigated via a new approach that self-consistently couples reduced LPI models into radiation-hydrodynamics numerical codes. The interplay between hydrodynamics and LPI-specifically stimulated Raman scatter and crossed-beam energy transfer (CBET)-mostly occurs via momentum and energy deposition into Langmuir and ion acoustic waves. This spatially redistributes energy coupling to the target, which affects the background plasma conditions and thus, modifies laser propagation. This model shows reduced CBET and significant laser energy depletion by Langmuir waves, which reduce the discrepancy between modeling and data from hohlraum experiments on wall x-ray emission and capsule implosion shape.
Galactic evolution of oxygen. OH lines in 3D hydrodynamical model atmospheres
NASA Astrophysics Data System (ADS)
González Hernández, J. I.; Bonifacio, P.; Ludwig, H.-G.; Caffau, E.; Behara, N. T.; Freytag, B.
2010-09-01
Context. Oxygen is the third most common element in the Universe. The measurement of oxygen lines in metal-poor unevolved stars, in particular near-UV OH lines, can provide invaluable information about the properties of the Early Galaxy. Aims: Near-UV OH lines constitute an important tool to derive oxygen abundances in metal-poor dwarf stars. Therefore, it is important to correctly model the line formation of OH lines, especially in metal-poor stars, where 3D hydrodynamical models commonly predict cooler temperatures than plane-parallel hydrostatic models in the upper photosphere. Methods: We have made use of a grid of 52 3D hydrodynamical model atmospheres for dwarf stars computed with the code CO5BOLD, extracted from the more extended CIFIST grid. The 52 models cover the effective temperature range 5000-6500 K, the surface gravity range 3.5-4.5 and the metallicity range -3 < [Fe/H] < 0. Results: We determine 3D-LTE abundance corrections in all 52 3D models for several OH lines and ion{Fe}{i} lines of different excitation potentials. These 3D-LTE corrections are generally negative and reach values of roughly -1 dex (for the OH 3167 with excitation potential of approximately 1 eV) for the higher temperatures and surface gravities. Conclusions: We apply these 3D-LTE corrections to the individual O abundances derived from OH lines of a sample the metal-poor dwarf stars reported in Israelian et al. (1998, ApJ, 507, 805), Israelian et al. (2001, ApJ, 551, 833) and Boesgaard et al. (1999, AJ, 117, 492) by interpolating the stellar parameters of the dwarfs in the grid of 3D-LTE corrections. The new 3D-LTE [O/Fe] ratio still keeps a similar trend as the 1D-LTE, i.e., increasing towards lower [Fe/H] values. We applied 1D-NLTE corrections to 3D ion{Fe}{i} abundances and still see an increasing [O/Fe] ratio towards lower metallicites. However, the Galactic [O/Fe] ratio must be revisited once 3D-NLTE corrections become available for OH and Fe lines for a grid of 3D hydrodynamical model atmospheres.
Moving-mesh cosmology: characteristics of galaxies and haloes
NASA Astrophysics Data System (ADS)
Kereš, Dušan; Vogelsberger, Mark; Sijacki, Debora; Springel, Volker; Hernquist, Lars
2012-09-01
We discuss cosmological hydrodynamic simulations of galaxy formation performed with the new moving-mesh code AREPO, which promises higher accuracy compared with the traditional smoothed particle hydrodynamics (SPH) technique that has been widely employed for this problem. In this exploratory study, we deliberately limit the complexity of the physical processes followed by the code for ease of comparison with previous calculations, and include only cooling of gas with a primordial composition, heating by a spatially uniform ultraviolet background, and a simple subresolution model for regulating star formation in the dense interstellar medium. We use an identical set of physics in corresponding simulations carried out with the well-tested SPH code GADGET, adopting also the same high-resolution gravity solver. We are thus able to compare both simulation sets on an object-by-object basis, allowing us to cleanly isolate the impact of different hydrodynamical methods on galaxy and halo properties. In accompanying papers, Vogelsberger et al. and Sijacki et al., we focus on an analysis of the global baryonic statistics predicted by the simulation codes, and complementary idealized simulations that highlight the differences between the hydrodynamical schemes. Here we investigate their influence on the baryonic properties of simulated galaxies and their surrounding haloes. We find that AREPO leads to significantly higher star formation rates for galaxies in massive haloes and to more extended gaseous discs in galaxies, which also feature a thinner and smoother morphology than their GADGET counterparts. Consequently, galaxies formed in AREPO have larger sizes and higher specific angular momentum than their SPH correspondents. Interestingly, the more efficient cooling flows in AREPO yield higher densities and lower entropies in halo centres compared to GADGET, whereas the opposite trend is found in halo outskirts. The cooling differences leading to higher star formation rates of massive galaxies in AREPO also slightly increase the baryon content within the virial radius of massive haloes. We show that these differences persist as a function of numerical resolution. While both codes agree to acceptable accuracy on a number of baryonic properties of cosmic structures, our results thus clearly demonstrate that galaxy formation simulations greatly benefit from the use of more accurate hydrodynamical techniques such as AREPO and call into question the reliability of galaxy formation studies in a cosmological context using traditional standard formulations of SPH, such as the one implemented in GADGET. Our new moving-mesh simulations demonstrate that a population of extended gaseous discs of galaxies in large volume cosmological simulations can be formed even without energetic feedback in the form of galactic winds, although such outflows appear required to obtain realistic stellar masses.
2D and 3D Models of Convective Turbulence and Oscillations in Intermediate-Mass Main-Sequence Stars
NASA Astrophysics Data System (ADS)
Guzik, Joyce Ann; Morgan, Taylor H.; Nelson, Nicholas J.; Lovekin, Catherine; Kitiashvili, Irina N.; Mansour, Nagi N.; Kosovichev, Alexander
2015-08-01
We present multidimensional modeling of convection and oscillations in main-sequence stars somewhat more massive than the sun, using three separate approaches: 1) Applying the spherical 3D MHD ASH (Anelastic Spherical Harmonics) code to simulate the core convection and radiative zone. Our goal is to determine whether core convection can excite low-frequency gravity modes, and thereby explain the presence of low frequencies for some hybrid gamma Dor/delta Sct variables for which the envelope convection zone is too shallow for the convective blocking mechanism to drive g modes; 2) Using the 3D planar ‘StellarBox’ radiation hydrodynamics code to model the envelope convection zone and part of the radiative zone. Our goals are to examine the interaction of stellar pulsations with turbulent convection in the envelope, excitation of acoustic modes, and the role of convective overshooting; 3) Applying the ROTORC 2D stellar evolution and dynamics code to calculate evolution with a variety of initial rotation rates and extents of core convective overshooting. The nonradial adiabatic pulsation frequencies of these nonspherical models will be calculated using the 2D pulsation code NRO of Clement. We will present new insights into gamma Dor and delta Sct pulsations gained by multidimensional modeling compared to 1D model expectations.
Parabolized Navier-Stokes Code for Computing Magneto-Hydrodynamic Flowfields
NASA Technical Reports Server (NTRS)
Mehta, Unmeel B. (Technical Monitor); Tannehill, J. C.
2003-01-01
This report consists of two published papers, 'Computation of Magnetohydrodynamic Flows Using an Iterative PNS Algorithm' and 'Numerical Simulation of Turbulent MHD Flows Using an Iterative PNS Algorithm'.
New methods and astrophysical applications of adaptive mesh fluid simulations
NASA Astrophysics Data System (ADS)
Wang, Peng
The formation of stars, galaxies and supermassive black holes are among the most interesting unsolved problems in astrophysics. Those problems are highly nonlinear and involve enormous dynamical ranges. Thus numerical simulations with spatial adaptivity are crucial in understanding those processes. In this thesis, we discuss the development and application of adaptive mesh refinement (AMR) multi-physics fluid codes to simulate those nonlinear structure formation problems. To simulate the formation of star clusters, we have developed an AMR magnetohydrodynamics (MHD) code, coupled with radiative cooling. We have also developed novel algorithms for sink particle creation, accretion, merging and outflows, all of which are coupled with the fluid algorithms using operator splitting. With this code, we have been able to perform the first AMR-MHD simulation of star cluster formation for several dynamical times, including sink particle and protostellar outflow feedbacks. The results demonstrated that protostellar outflows can drive supersonic turbulence in dense clumps and explain the observed slow and inefficient star formation. We also suggest that global collapse rate is the most important factor in controlling massive star accretion rate. In the topics of galaxy formation, we discuss the results of three projects. In the first project, using cosmological AMR hydrodynamics simulations, we found that isolated massive star still forms in cosmic string wakes even though the mega-parsec scale structure has been perturbed significantly by the cosmic strings. In the second project, we calculated the dynamical heating rate in galaxy formation. We found that by balancing our heating rate with the atomic cooling rate, it gives a critical halo mass which agrees with the result of numerical simulations. This demonstrates that the effect of dynamical heating should be put into semi-analytical works in the future. In the third project, using our AMR-MHD code coupled with radiative cooling module, we performed the first MHD simulations of disk galaxy formation. We find that the initial magnetic fields are quickly amplified to Milky-Way strength in a self-regulated way with amplification rate roughly one e-folding per orbit. This suggests that Milky Way strength magnetic field might be common in high redshift disk galaxies. We have also developed AMR relativistic hydrodynamics code to simulate black hole relativistic jets. We discuss the coupling of the AMR framework with various relativistic solvers and conducted extensive algorithmic comparisons. Via various test problems, we emphasize the importance of resolution studies in relativistic flow simulations because extremely high resolution is required especially when shear flows are present in the problem. Then we present the results of 3D simulations of supermassive black hole jets propagation and gamma ray burst jet breakout. Resolution studies of the two 3D jets simulations further highlight the need of high resolutions to calculate accurately relativistic flow problems. Finally, to push forward the kind of simulations described above, we need faster codes with more physics included. We describe an implementation of compressible inviscid fluid solvers with AMR on Graphics Processing Units (GPU) using NVIDIA's CUDA. We show that the class of high resolution shock capturing schemes can be mapped naturally on this architecture. For both uniform and adaptive simulations, we achieve an overall speedup of approximately 10 times faster execution on one Quadro FX 5600 GPU as compared to a single 3 GHz Intel core on the host computer. Our framework can readily be applied to more general systems of conservation laws and extended to higher order shock capturing schemes. This is shown directly by an implementation of a magneto-hydrodynamic solver and comparing its performance to the pure hydrodynamic case.
Anomalous-hydrodynamic analysis of charge-dependent elliptic flow in heavy-ion collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hongo, Masaru; Hirono, Yuji; Hirano, Tetsufumi
Anomalous hydrodynamics is a low-energy effective theory that captures effects of quantum anomalies. We develop a numerical code of anomalous hydrodynamics and apply it to dynamics of heavy-ion collisions, where anomalous transports are expected to occur. This is the first attempt to perform fully non-linear numerical simulations of anomalous hydrodynamics. We discuss implications of the simulations for possible experimental observations of anomalous transport effects. From analyses of the charge-dependent elliptic flow parameters (vmore » $$±\\atop{2}$$) as a function of the net charge asymmetry A ±, we find that the linear dependence of Δv$$±\\atop{2}$$ ≡ v$$-\\atop{2}$$ - v$$+\\atop{2}$$ on the net charge asymmetry A ± cannot be regarded as a robust signal of anomalous transports, contrary to previous studies. We, however, find that the intercept Δv$$±\\atop{2}$$ (A ± = 0) is sensitive to anomalous transport effects.« less
Anomalous-hydrodynamic analysis of charge-dependent elliptic flow in heavy-ion collisions
Hongo, Masaru; Hirono, Yuji; Hirano, Tetsufumi
2017-12-10
Anomalous hydrodynamics is a low-energy effective theory that captures effects of quantum anomalies. We develop a numerical code of anomalous hydrodynamics and apply it to dynamics of heavy-ion collisions, where anomalous transports are expected to occur. This is the first attempt to perform fully non-linear numerical simulations of anomalous hydrodynamics. We discuss implications of the simulations for possible experimental observations of anomalous transport effects. From analyses of the charge-dependent elliptic flow parameters (vmore » $$±\\atop{2}$$) as a function of the net charge asymmetry A ±, we find that the linear dependence of Δv$$±\\atop{2}$$ ≡ v$$-\\atop{2}$$ - v$$+\\atop{2}$$ on the net charge asymmetry A ± cannot be regarded as a robust signal of anomalous transports, contrary to previous studies. We, however, find that the intercept Δv$$±\\atop{2}$$ (A ± = 0) is sensitive to anomalous transport effects.« less
StarSmasher: Smoothed Particle Hydrodynamics code for smashing stars and planets
NASA Astrophysics Data System (ADS)
Gaburov, Evghenii; Lombardi, James C., Jr.; Portegies Zwart, Simon; Rasio, F. A.
2018-05-01
Smoothed Particle Hydrodynamics (SPH) is a Lagrangian particle method that approximates a continuous fluid as discrete nodes, each carrying various parameters such as mass, position, velocity, pressure, and temperature. In an SPH simulation the resolution scales with the particle density; StarSmasher is able to handle both equal-mass and equal number-density particle models. StarSmasher solves for hydro forces by calculating the pressure for each particle as a function of the particle's properties - density, internal energy, and internal properties (e.g. temperature and mean molecular weight). The code implements variational equations of motion and libraries to calculate the gravitational forces between particles using direct summation on NVIDIA graphics cards. Using a direct summation instead of a tree-based algorithm for gravity increases the accuracy of the gravity calculations at the cost of speed. The code uses a cubic spline for the smoothing kernel and an artificial viscosity prescription coupled with a Balsara Switch to prevent unphysical interparticle penetration. The code also implements an artificial relaxation force to the equations of motion to add a drag term to the calculated accelerations during relaxation integrations. Initially called StarCrash, StarSmasher was developed originally by Rasio.
NASA Astrophysics Data System (ADS)
Ding, Y. H.; Hu, S. X.
2017-10-01
Beryllium has been considered a superior ablator material for inertial confinement fusion target designs. Based on density-functional-theory calculations, we have established a wide-range beryllium equation-of-state (EOS) table of density ρ = 0.001 to ρ = 500 g/cm3 and temperature T = 2000 to 108 K. Our first-principles equation-of-state (FPEOS) table is in better agreement with widely used SESAMEEOS table (SESAME2023) than the average-atom INFERNOmodel and the Purgatoriomodel. For the principal Hugoniot, our FPEOS prediction shows 10% stiffer behavior than the last two models at maximum compression. Comparisons between FPEOS and SESAMEfor off-Hugoniot conditions show that both the pressure and internal energy differences are within 20% between two EOS tables. By implementing the FPEOS table into the 1-D radiation-hydrodynamics code LILAC, we studied the EOS effects on beryllium target-shell implosions. The FPEOS simulation predicts up to an 15% higher neutron yield compared to the simulation using the SESAME2023 EOS table. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
NASA Astrophysics Data System (ADS)
Solodov, A. A.; Rosenberg, M. J.; Myatt, J. F.; Epstein, R.; Seka, W.; Hohenberger, M.; Short, R. W.; Shaw, J. G.; Regan, S. P.; Froula, D. H.; Radha, P. B.; Bates, J. W.; Schmitt, A. J.; Michel, P.; Moody, J. D.; Ralph, J. E.; Turnbull, D. P.; Barrios, M. A.
2016-10-01
Laser-plasma interaction instabilities, such as two-plasmon decay (TPD) and stimulated Raman scattering (SRS), can be detrimental for direct-drive inertial confinement fusion because of target preheat by generated high-energy electrons. The radiation-hydrodynamics code DRACO has been used to design planar-target experiments that generate plasma and interaction conditions relevant to direct-drive-ignition designs (IL 1015 W / cm 2 , Te > 3 KeV density gradient scale lengths of Ln 600 μm) . The hot-electron temperature of 40to50keV and the fraction of laser energy converted to hot electrons of 0.5to were inferred based on comparing the simulated and experimentally observed x-ray emission when the laser intensity at the quarter-critical surface increased from 6 to 15 ×1014 W / cm 2 . The measured SRS energy was sufficient to explain the observed total energy in hot electrons. Implications for ignition-scale direct-drive experiments and hot-electron preheat mitigation using mid- Z ablators will be discussed. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
Multicolour modelling of SN 2013dx associated with GRB 130702A★
NASA Astrophysics Data System (ADS)
Volnova, A. A.; Pruzhinskaya, M. V.; Pozanenko, A. S.; Blinnikov, S. I.; Minaev, P. Yu.; Burkhonov, O. A.; Chernenko, A. M.; Ehgamberdiev, Sh. A.; Inasaridze, R.; Jelinek, M.; Khorunzhev, G. A.; Klunko, E. V.; Krugly, Yu. N.; Mazaeva, E. D.; Rumyantsev, V. V.; Volvach, A. E.
2017-05-01
We present optical observations of SN 2013dx, related to the Fermi burst GRB 130702A, which occurred at red shift z = 0.145. It is the second-best sampled gamma-ray burst (GRB)/supernova (SN) after SN 1998bw. The observational light curves contain more than 280 data points in the uBgrRiz filters until 88 d after the burst, and the data were collected from our observational collaboration (Maidanak Observatory, Abastumani Observatory, Crimean Astrophysical Observatory, Mondy Observatory, National Observatory of Turkey and Observatorio del Roque de los Muchachos) and from the literature. We model numerically the multicolour light curves using the one-dimensional radiation hydrodynamical code stella, previously widely implemented for modelling typical non-GRB SNe. The best-fitting model has the following parameters: pre-SN star mass M = 25 M⊙; mass of the compact remnant MCR = 6 M⊙; total energy of the outburst Eoburst = 3.5 × 1052 erg; pre-supernova star radius R = 100 R⊙; M_^{56Ni} = 0.2 M_{⊙}, which is totally mixed through the ejecta; MO = 16.6 M⊙; MSi = 1.2 M⊙ and MFe = 1.2 M⊙, and the radiative efficiency of the SN is 0.1 per cent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waltz, J., E-mail: jwaltz@lanl.gov; Canfield, T.R.; Morgan, N.R.
2014-06-15
We present a set of manufactured solutions for the three-dimensional (3D) Euler equations. The purpose of these solutions is to allow for code verification against true 3D flows with physical relevance, as opposed to 3D simulations of lower-dimensional problems or manufactured solutions that lack physical relevance. Of particular interest are solutions with relevance to Inertial Confinement Fusion (ICF) capsules. While ICF capsules are designed for spherical symmetry, they are hypothesized to become highly 3D at late time due to phenomena such as Rayleigh–Taylor instability, drive asymmetry, and vortex decay. ICF capsules also involve highly nonlinear coupling between the fluid dynamicsmore » and other physics, such as radiation transport and thermonuclear fusion. The manufactured solutions we present are specifically designed to test the terms and couplings in the Euler equations that are relevant to these phenomena. Example numerical results generated with a 3D Finite Element hydrodynamics code are presented, including mesh convergence studies.« less
Laser x-ray Conversion and Electron Thermal Conductivity
NASA Astrophysics Data System (ADS)
Wang, Guang-yu; Chang, Tie-qiang
2001-02-01
The influence of electron thermal conductivity on the laser x-ray conversion in the coupling of 3ωo laser with Au plane target has been investigated by using a non-LTE radiation hydrodynamic code. The non-local electron thermal conductivity is introduced and compared with the other two kinds of the flux-limited Spitzer-Härm description. The results show that the non-local thermal conductivity causes the increase of the laser x-ray conversion efficiency and important changes of the plasma state and coupling feature.
NASA Astrophysics Data System (ADS)
Thorn, Daniel; Kemp, G. E.; Widmann, K.; Benjamin, R. D.; May, M. J.; Colvin, J. D.; Barrios, M. A.; Fournier, K. B.; Liedahl, D.; Moore, A. S.; Blue, B. E.
2016-10-01
The spectrum of the L-shell (n =2) radiation in mid to high-Z ions is useful for probing plasma conditions in the multi-keV temperature range. Xenon in particular with its L-shell radiation centered around 4.5 keV is copiously produced from plasmas with electron temperatures in the 5-10 keV range. We report on a series of time-resolved L-shell Xe spectra measured with the NIF X-ray Spectrometer (NXS) in high-energy long-pulse (>10 ns) laser produced plasmas at the National Ignition Facility. The resolving power of the NXS is sufficiently high (E/ ∂E >100) in the 4-5 keV spectral band that the emission from different charge states is observed. An analysis of the time resolved L-shell spectrum of Xe is presented along with spectral modeling by detailed radiation transport and atomic physics from the SCRAM code and comparison with predictions from HYDRA a radiation-hydrodynamics code with inline atomic-physics from CRETIN. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.
X-ray Power Increase from Symmetrized Wire-Array z-Pinch Implosions on Saturn.*
NASA Astrophysics Data System (ADS)
Sanford, T. W. L.; Allshouse, G. O.; Marder, B. M.; Nash, T. J.; Mock, R. C.; Douglas, M. R.; Spielman, R. B.; Seaman, J. F.; McGurn, J. S.; Jobe, D.; Gilliland, T. L.; Vargas, M.; Struve, K. W.; Stygar, W. A.; Hammer, J. H.; Degroot, J. S.; Eddleman, J. L.; Peterson, D. L.; Whitney, K. G.; Thornhill, J. W.; Pulsifer, P. E.; Apruzese, J. P.; Mosher, D.; Maron, Y.
1996-11-01
A systematic experimental study of annular aluminum wire z-pinches on the Saturn accelerator at Sandia National Laboratories shows that, for the first time, many of the measured spatial characteristics and x-ray powers can be correlated to 1D and 2D, radiation-magneto-hydrodynamic code (RMHC) simulations when large numbers of wires are used. Calculations show that the implosion begins to transition from that of individual wire plasmas to that of a continuous plasma shell when the circumferential gap between wires in the array is reduced below 1.4 +1.3/-0.7 mm. This calculated gap coincides with the measured transition of 1.4±0.4 mm between the observed regimes of slow and rapid improvement in power output with decreasing gap. In the plasma-shell regime, x-ray power has been more than tripled over that generated in the wire-plasma regime. In the full paper, measured characteristics in the plasma-shell regime are compared with 2D, 1- and 20-mm axial length simulations of the implosion using a multi-photon-group Lagrangian RMHC^1 and a three-temperature Eulerian RMHC,^2 respectively. ^1J.H. Hammer, et al., Phys. Plasmas 3, 2063 (1996). ^2D.L. Peterson, et al., Phys. Plasmas 3, 368 (1996). Work supported by U.S. DOE Contract No. DE-AC04-94AL85000.
Final Report: Ionization chemistry of high temperature molecular fluids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fried, L E
2007-02-26
With the advent of coupled chemical/hydrodynamic reactive flow models for high explosives, understanding detonation chemistry is of increasing importance to DNT. The accuracy of first principles detonation codes, such as CHEETAH, are dependent on an accurate representation of the species present under detonation conditions. Ionic species and non-molecular phases are not currently included coupled chemistry/hydrodynamic simulations. This LDRD will determine the prevalence of such species during high explosive detonations, by carrying out experimental and computational investigation of common detonation products under extreme conditions. We are studying the phase diagram of detonation products such as H{sub 2}O, or NH{sub 3} andmore » mixtures under conditions of extreme pressure (P > 1 GPa) and temperature (T > 1000K). Under these conditions, the neutral molecular form of matter transforms to a phase dominated by ions. The phase boundaries of such a region are unknown.« less
Effects of preheat and mix on the fuel adiabat of an imploding capsule
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, B.; Kwan, T. J. T.; Wang, Y. M.
We demonstrate the effect of preheat, hydrodynamic mix and vorticity on the adiabat of the deuterium-tritium (DT) fuel in fusion capsule experiments. We show that the adiabat of the DT fuel increases resulting from hydrodynamic mixing due to the phenomenon of entropy of mixture. An upper limit of mix, M clean=M DT ≥ 0:98 is found necessary to keep the DT fuel on a low adiabat. We demonstrate in this study that the use of a high adiabat for the DT fuel in theoretical analysis and with the aid of 1D code simulations could explain some aspects of 3D effectsmore » and mix in capsule implosion. Furthermore, we can infer from our physics model and the observed neutron images the adiabat of the DT fuel in the capsule and the amount of mix produced on the hot spot.« less
Effects of preheat and mix on the fuel adiabat of an imploding capsule
Cheng, B.; Kwan, T. J. T.; Wang, Y. M.; ...
2016-12-01
We demonstrate the effect of preheat, hydrodynamic mix and vorticity on the adiabat of the deuterium-tritium (DT) fuel in fusion capsule experiments. We show that the adiabat of the DT fuel increases resulting from hydrodynamic mixing due to the phenomenon of entropy of mixture. An upper limit of mix, M clean=M DT ≥ 0:98 is found necessary to keep the DT fuel on a low adiabat. We demonstrate in this study that the use of a high adiabat for the DT fuel in theoretical analysis and with the aid of 1D code simulations could explain some aspects of 3D effectsmore » and mix in capsule implosion. Furthermore, we can infer from our physics model and the observed neutron images the adiabat of the DT fuel in the capsule and the amount of mix produced on the hot spot.« less
NASA Astrophysics Data System (ADS)
Rahmani, L.; Seghier, O.; Benmoussa, A.; Draoui, B.
2018-06-01
The most of operations of chemical, biochemical or petrochemical industries are carried out in tanks or in reactors which are mechanically-controlled. The optimum mode of operation of these devices requires a finalized knowledge of the thermo-hydrodynamic behavior induced by the agitator. In the present work, the characterization of the incompressible hydrodynamic and thermal fields of a non-Newtonian fluid (Bingham) in a flat, non-baffled cylindrical vessel fitted with anchor agitator was undertaken by numerical simulation, using the CFD code Fluent (6.3.26) based on the finite volume discretization method of the energy equation and the Navier-Stokes equations which are formulated in (U.V.P) variables. We have summarized this simulated system by comparing of the consumed power and the Nusselt number for this type of mobile (Anchor agitator).
Computer Simulation of the VASIMR Engine
NASA Technical Reports Server (NTRS)
Garrison, David
2005-01-01
The goal of this project is to develop a magneto-hydrodynamic (MHD) computer code for simulation of the VASIMR engine. This code is designed be easy to modify and use. We achieve this using the Cactus framework, a system originally developed for research in numerical relativity. Since its release, Cactus has become an extremely powerful and flexible open source framework. The development of the code will be done in stages, starting with a basic fluid dynamic simulation and working towards a more complex MHD code. Once developed, this code can be used by students and researchers in order to further test and improve the VASIMR engine.
NASA Astrophysics Data System (ADS)
Nora, R.; Field, J. E.; Peterson, J. Luc; Spears, B.; Kruse, M.; Humbird, K.; Gaffney, J.; Springer, P. T.; Brandon, S.; Langer, S.
2017-10-01
We present an experimentally corroborated hydrodynamic extrapolation of several recent BigFoot implosions on the National Ignition Facility. An estimate on the value and error of the hydrodynamic scale necessary for ignition (for each individual BigFoot implosion) is found by hydrodynamically scaling a distribution of multi-dimensional HYDRA simulations whose outputs correspond to their experimental observables. The 11-parameter database of simulations, which include arbitrary drive asymmetries, dopant fractions, hydrodynamic scaling parameters, and surface perturbations due to surrogate tent and fill-tube engineering features, was computed on the TRINITY supercomputer at Los Alamos National Laboratory. This simple extrapolation is the first step in providing a rigorous calibration of our workflow to provide an accurate estimate of the efficacy of achieving ignition on the National Ignition Facility. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Butov, R. A.; Drobyshevsky, N. I.; Moiseenko, E. V.; Tokarev, U. N.
2017-11-01
The verification of the FENIA finite element code on some problems and an example of its application are presented in the paper. The code is being developing for 3D modelling of thermal, mechanical and hydrodynamical (THM) problems related to the functioning of deep geological repositories. Verification of the code for two analytical problems has been performed. The first one is point heat source with exponential heat decrease, the second one - linear heat source with similar behavior. Analytical solutions have been obtained by the authors. The problems have been chosen because they reflect the processes influencing the thermal state of deep geological repository of radioactive waste. Verification was performed for several meshes with different resolution. Good convergence between analytical and numerical solutions was achieved. The application of the FENIA code is illustrated by 3D modelling of thermal state of a prototypic deep geological repository of radioactive waste. The repository is designed for disposal of radioactive waste in a rock at depth of several hundred meters with no intention of later retrieval. Vitrified radioactive waste is placed in the containers, which are placed in vertical boreholes. The residual decay heat of radioactive waste leads to containers, engineered safety barriers and host rock heating. Maximum temperatures and corresponding times of their establishment have been determined.
Dynamics of circumstellar disks. III. The case of GG Tau A
Nelson, Andrew F.; Marzari, Francesco
2016-08-11
Here, we present two-dimensional hydrodynamic simulations using the Smoothed Particle Hydrodynamic code, VINE, to model a self-gravitating binary system. We model configurations in which a circumbinary torus+disk surrounds a pair of stars in orbit around each other and a circumstellar disk surrounds each star, similar to that observed for the GG Tau A system. We assume that the disks cool as blackbodies, using rates determined independently at each location in the disk by the time dependent temperature of the photosphere there. We assume heating due to hydrodynamical processes and to radiation from the two stars, using rates approximated from amore » measure of the radiation intercepted by the disk at its photosphere.« less
Interplay of Laser-Plasma Interactions and Inertial Fusion Hydrodynamics
Strozzi, D. J.; Bailey, D. S.; Michel, P.; ...
2017-01-12
The effects of laser-plasma interactions (LPI) on the dynamics of inertial confinement fusion hohlraums are investigated in this work via a new approach that self-consistently couples reduced LPI models into radiation-hydrodynamics numerical codes. The interplay between hydrodynamics and LPI—specifically stimulated Raman scatter and crossed-beam energy transfer (CBET)—mostly occurs via momentum and energy deposition into Langmuir and ion acoustic waves. This spatially redistributes energy coupling to the target, which affects the background plasma conditions and thus, modifies laser propagation. In conclusion, this model shows reduced CBET and significant laser energy depletion by Langmuir waves, which reduce the discrepancy between modeling andmore » data from hohlraum experiments on wall x-ray emission and capsule implosion shape.« less
Coherent dynamic structure factors of strongly coupled plasmas: A generalized hydrodynamic approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Di; Hu, GuangYue; Gong, Tao
2016-05-15
A generalized hydrodynamic fluctuation model is proposed to simplify the calculation of the dynamic structure factor S(ω, k) of non-ideal plasmas using the fluctuation-dissipation theorem. In this model, the kinetic and correlation effects are both included in hydrodynamic coefficients, which are considered as functions of the coupling strength (Γ) and collision parameter (kλ{sub ei}), where λ{sub ei} is the electron-ion mean free path. A particle-particle particle-mesh molecular dynamics simulation code is also developed to simulate the dynamic structure factors, which are used to benchmark the calculation of our model. A good agreement between the two different approaches confirms the reliabilitymore » of our model.« less
Modelling the colliding-wind spectra of the WC8d+O8-9IV binary CV Ser (WR 113)
NASA Astrophysics Data System (ADS)
Hill, G. M.; Moffat, A. F. J.; St-Louis, N.
2018-03-01
Striking profile variations of the C III λ5696 emission line are visible amongst the high signal-to-noise ratio, moderate resolution spectra of the 29.7 d WC8d+O8-9IV binary CV Ser (WR 113) presented here. Using a significantly revised code, we have modelled these variations assuming the emission originates from the undisturbed WR star wind and a colliding wind shock region that partially wraps around the O star. Changes to the modelling code are chiefly in the form of additional parameters, intended to refine the modelling and facilitate comparison with recent predictions arising from theoretical and hydrodynamical work. This modelling provides measurements of crucial parameters such as the orbital inclination (63.5° ± 2.5°) and thus, together with the RV orbits, the stellar masses (11.7 ± 0.9 M⊙ for the WR star and 33.3 ± 2.0 M⊙ for the O star). We find good agreement with expectations based on theoretical studies and hydrodynamical modelling of colliding wind systems. Moreover, it raises the exciting prospect of providing a reliable method to learn more about WR stellar masses and winds, and for studying the physics of colliding winds in massive stars.
A hybrid numerical fluid dynamics code for resistive magnetohydrodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Jeffrey
2006-04-01
Spasmos is a computational fluid dynamics code that uses two numerical methods to solve the equations of resistive magnetohydrodynamic (MHD) flows in compressible, inviscid, conducting media[1]. The code is implemented as a set of libraries for the Python programming language[2]. It represents conducting and non-conducting gases and materials with uncomplicated (analytic) equations of state. It supports calculations in 1D, 2D, and 3D geometry, though only the 1D configuation has received significant testing to date. Because it uses the Python interpreter as a front end, users can easily write test programs to model systems with a variety of different numerical andmore » physical parameters. Currently, the code includes 1D test programs for hydrodynamics (linear acoustic waves, the Sod weak shock[3], the Noh strong shock[4], the Sedov explosion[5], magnetic diffusion (decay of a magnetic pulse[6], a driven oscillatory "wine-cellar" problem[7], magnetic equilibrium), and magnetohydrodynamics (an advected magnetic pulse[8], linear MHD waves, a magnetized shock tube[9]). Spasmos current runs only in a serial configuration. In the future, it will use MPI for parallel computation.« less
The numerical modelling of MHD astrophysical flows with chemistry
NASA Astrophysics Data System (ADS)
Kulikov, I.; Chernykh, I.; Protasov, V.
2017-10-01
The new code for numerical simulation of magnetic hydrodynamical astrophysical flows with consideration of chemical reactions is given in the paper. At the heart of the code - the new original low-dissipation numerical method based on a combination of operator splitting approach and piecewise-parabolic method on the local stencil. The chemodynamics of the hydrogen while the turbulent formation of molecular clouds is modeled.
CAFE: A New Relativistic MHD Code
NASA Astrophysics Data System (ADS)
Lora-Clavijo, F. D.; Cruz-Osorio, A.; Guzmán, F. S.
2015-06-01
We introduce CAFE, a new independent code designed to solve the equations of relativistic ideal magnetohydrodynamics (RMHD) in three dimensions. We present the standard tests for an RMHD code and for the relativistic hydrodynamics regime because we have not reported them before. The tests include the one-dimensional Riemann problems related to blast waves, head-on collisions of streams, and states with transverse velocities, with and without magnetic field, which is aligned or transverse, constant or discontinuous across the initial discontinuity. Among the two-dimensional (2D) and 3D tests without magnetic field, we include the 2D Riemann problem, a one-dimensional shock tube along a diagonal, the high-speed Emery wind tunnel, the Kelvin-Helmholtz (KH) instability, a set of jets, and a 3D spherical blast wave, whereas in the presence of a magnetic field we show the magnetic rotor, the cylindrical explosion, a case of Kelvin-Helmholtz instability, and a 3D magnetic field advection loop. The code uses high-resolution shock-capturing methods, and we present the error analysis for a combination that uses the Harten, Lax, van Leer, and Einfeldt (HLLE) flux formula combined with a linear, piecewise parabolic method and fifth-order weighted essentially nonoscillatory reconstructors. We use the flux-constrained transport and the divergence cleaning methods to control the divergence-free magnetic field constraint.
Larroche, O.; Rinderknecht, H. G.; Rosenberg, M. J.; ...
2016-01-06
Experiments designed to investigate the transition to non-collisional behavior in D 3He-gas inertial confinement fusion target implosions display increasingly large discrepancies with respect to simulations by standard hydrodynamics codes as the expected ion mean-free-paths λ c increase with respect to the target radius R (i.e., when the Knudsen number N K = λ c/R grows). To take properly into account large N K's, multi-ion-species Vlasov-Fokker-Planck computations of the inner gas in the capsules have been performed, for two different values of N K, one moderate and one large. The results, including nuclear yield, reactivity-weighted ion temperatures, nuclear emissivities, and surfacemore » brightness, have been compared with the experimental data and with the results of hydrodynamical simulations, some of which include an ad hocmodeling of kinetic effects. The experimental results are quite accurately rendered by the kinetic calculations in the smaller-N K case, much better than by the hydrodynamical calculations. The kinetic effects at play in this case are thus correctly understood. However, in the higher-N K case, the agreement is much worse. Furthermore, the remaining discrepancies are shown to arise from kinetic phenomena (e.g., inter-species diffusion) occurring at the gas-pusher interface, which should be investigated in the future work.« less
NASA Astrophysics Data System (ADS)
Nagakura, Hiroki; Richers, Sherwood; Ott, Christian; Iwakami, Wakana; Furusawa, Shun; Sumiyoshi, Kohsuke; Yamada, Shoichi
2017-01-01
We have developed a multi-d radiation-hydrodynamic code which solves first-principles Boltzmann equation for neutrino transport. It is currently applicable specifically for core-collapse supernovae (CCSNe), but we will extend their applicability to further extreme phenomena such as black hole formation and coalescence of double neutron stars. In this meeting, I will discuss about two things; (1) detailed comparison with a Monte-Carlo neutrino transport (2) axisymmetric CCSNe simulations. The project (1) gives us confidence of our code. The Monte-Carlo code has been developed by Caltech group and it is specialized to obtain a steady state. Among CCSNe community, this is the first attempt to compare two different methods for multi-d neutrino transport. I will show the result of these comparison. For the project (2), I particularly focus on the property of neutrino distribution function in the semi-transparent region where only first-principle Boltzmann solver can appropriately handle the neutrino transport. In addition to these analyses, I will also discuss the ``explodability'' by neutrino heating mechanism.
Plasma viscosity with mass transport in spherical inertial confinement fusion implosion simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vold, E. L.; Molvig, K.; Joglekar, A. S.
2015-11-15
The effects of viscosity and small-scale atomic-level mixing on plasmas in inertial confinement fusion (ICF) currently represent challenges in ICF research. Many current ICF hydrodynamic codes ignore the effects of viscosity though recent research indicates viscosity and mixing by classical transport processes may have a substantial impact on implosion dynamics. We have implemented a Lagrangian hydrodynamic code in one-dimensional spherical geometry with plasma viscosity and mass transport and including a three temperature model for ions, electrons, and radiation treated in a gray radiation diffusion approximation. The code is used to study ICF implosion differences with and without plasma viscosity andmore » to determine the impacts of viscosity on temperature histories and neutron yield. It was found that plasma viscosity has substantial impacts on ICF shock dynamics characterized by shock burn timing, maximum burn temperatures, convergence ratio, and time history of neutron production rates. Plasma viscosity reduces the need for artificial viscosity to maintain numerical stability in the Lagrangian formulation and also modifies the flux-limiting needed for electron thermal conduction.« less
Plasma viscosity with mass transport in spherical inertial confinement fusion implosion simulations
Vold, Erik Lehman; Joglekar, Archis S.; Ortega, Mario I.; ...
2015-11-20
The effects of viscosity and small-scale atomic-level mixing on plasmas in inertial confinement fusion(ICF) currently represent challenges in ICF research. Many current ICF hydrodynamic codes ignore the effects of viscosity though recent research indicates viscosity and mixing by classical transport processes may have a substantial impact on implosion dynamics. In this paper, we have implemented a Lagrangian hydrodynamic code in one-dimensional spherical geometry with plasmaviscosity and mass transport and including a three temperature model for ions, electrons, and radiation treated in a gray radiation diffusion approximation. The code is used to study ICF implosion differences with and without plasmaviscosity andmore » to determine the impacts of viscosity on temperature histories and neutron yield. It was found that plasmaviscosity has substantial impacts on ICF shock dynamics characterized by shock burn timing, maximum burn temperatures, convergence ratio, and time history of neutron production rates. Finally, plasmaviscosity reduces the need for artificial viscosity to maintain numerical stability in the Lagrangian formulation and also modifies the flux-limiting needed for electron thermal conduction.« less
Crespo, Alejandro C.; Dominguez, Jose M.; Barreiro, Anxo; Gómez-Gesteira, Moncho; Rogers, Benedict D.
2011-01-01
Smoothed Particle Hydrodynamics (SPH) is a numerical method commonly used in Computational Fluid Dynamics (CFD) to simulate complex free-surface flows. Simulations with this mesh-free particle method far exceed the capacity of a single processor. In this paper, as part of a dual-functioning code for either central processing units (CPUs) or Graphics Processor Units (GPUs), a parallelisation using GPUs is presented. The GPU parallelisation technique uses the Compute Unified Device Architecture (CUDA) of nVidia devices. Simulations with more than one million particles on a single GPU card exhibit speedups of up to two orders of magnitude over using a single-core CPU. It is demonstrated that the code achieves different speedups with different CUDA-enabled GPUs. The numerical behaviour of the SPH code is validated with a standard benchmark test case of dam break flow impacting on an obstacle where good agreement with the experimental results is observed. Both the achieved speed-ups and the quantitative agreement with experiments suggest that CUDA-based GPU programming can be used in SPH methods with efficiency and reliability. PMID:21695185
Impact of Stellar Convection Criteria on the Nucleosynthetic Yields of Population III Supernovae.
NASA Astrophysics Data System (ADS)
Teffs, Jacob; Young, Tim; Lawlor, Tim
2018-01-01
A grid of 15-80 solar mass Z=0 stellar models are evolved to pre-core collapse using the stellar evolution code BRAHAMA. Each initial zero-age main sequence mass model star is evolved with two different convection criteria, Ledoux and Schwarzchild. The choice of convection produces significant changes in the evolutionary model tracks on the HR diagram, mass loss, and interior core and envelope structures. At onset of core collapse, a SNe explosion is initiated using a one-dimensional radiation-hydrodynamics code and followed for 400 days. The explosion energy is varied between 1-10 foes depending on the model as there are no observationally determined energies for population III supernovae. Due to structure differences, the Schwarzchild models resemble Type II-P SNe in their lightcurve while the Ledoux models resemble SN1987a, a Type IIpec. The nucleosynthesis is calculated using TORCH, a 3,208 isotope network, in a post process method using the hydrodynamic history. The Ledoux models have, on average, higher yields for elements above Fe compared to the Schwarzchild. Using a Salpeter IMF and other recently published population III IMF’s, the net integrated yields per solar mass are calculated and compared to published theoretical results and to published observations of extremely metal poor halo stars of [Fe/H] < -3. Preliminary results show the lower mass models of both criteria show similar trends to the extremely metal poor halo stars but more work and analysis is required.
NASA Astrophysics Data System (ADS)
Wedemeyer, Sven; Kučinskas, Arūnas; Klevas, Jonas; Ludwig, Hans-Günter
2017-10-01
Aims: Although observational data unequivocally point to the presence of chromospheres in red giant stars, no attempts have been made so far to model them using 3D hydrodynamical model atmospheres. We therefore compute an exploratory 3D hydrodynamical model atmosphere for a cool red giant in order to study the dynamical and thermodynamic properties of its chromosphere, as well as the influence of the chromosphere on its observable properties. Methods: Three-dimensional radiation hydrodynamics simulations are carried out with the CO5BOLD model atmosphere code for a star with the atmospheric parameters (Teff ≈ 4010 K, log g = 1.5, [ M / H ] = 0.0), which are similar to those of the K-type giant star Aldebaran (α Tau). The computational domain extends from the upper convection zone into the chromosphere (7.4 ≥ log τRoss ≥ - 12.8) and covers several granules in each horizontal direction. Using this model atmosphere, we compute the emergent continuum intensity maps at different wavelengths, spectral line profiles of Ca II K, the Ca II infrared triplet line at 854.2 nm, and Hα, as well as the spectral energy distribution (SED) of the emergent radiative flux. Results: The initial model quickly develops a dynamical chromosphere that is characterised by propagating and interacting shock waves. The peak temperatures in the chromospheric shock fronts reach values of up to 5000 K, although the shock fronts remain quite narrow. Similar to the Sun, the gas temperature distribution in the upper layers of red giant stars is composed of a cool component due to adiabatic cooling in the expanding post-shock regions and a hot component due to shock waves. For this red giant model, the hot component is a rather flat high-temperature tail, which nevertheless affects the resulting average temperatures significantly. Conclusions: The simulations show that the atmospheres of red giant stars are dynamic and intermittent. Consequently, many observable properties cannot be reproduced with static 1D models, but require advanced 3D hydrodynamical modelling. Furthermore, including a chromosphere in the models might produce significant contributions to the emergent UV flux.
Computational study of 3-D hot-spot initiation in shocked insensitive high-explosive
NASA Astrophysics Data System (ADS)
Najjar, F. M.; Howard, W. M.; Fried, L. E.; Manaa, M. R.; Nichols, A., III; Levesque, G.
2012-03-01
High-explosive (HE) material consists of large-sized grains with micron-sized embedded impurities and pores. Under various mechanical/thermal insults, these pores collapse generating hightemperature regions leading to ignition. A hydrodynamic study has been performed to investigate the mechanisms of pore collapse and hot spot initiation in TATB crystals, employing a multiphysics code, ALE3D, coupled to the chemistry module, Cheetah. This computational study includes reactive dynamics. Two-dimensional high-resolution large-scale meso-scale simulations have been performed. The parameter space is systematically studied by considering various shock strengths, pore diameters and multiple pore configurations. Preliminary 3-D simulations are undertaken to quantify the 3-D dynamics.
NASA Astrophysics Data System (ADS)
Tahir, N. A.; Sancho, J. Blanco; Shutov, A.; Schmidt, R.; Piriz, A. R.
2012-05-01
The Large Hadron Collider (LHC) is designed to collide two proton beams with unprecedented particle energy of 7 TeV. Each beam comprises 2808 bunches and the separation between two neighboring bunches is 25 ns. The energy stored in each beam is 362 MJ, sufficient to melt 500 kg copper. Safety of operation is very important when working with such powerful beams. An accidental release of even a very small fraction of the beam energy can result in severe damage to the equipment. The machine protection system is essential to handle all types of possible accidental hazards; however, it is important to know about possible consequences of failures. One of the critical failure scenarios is when the entire beam is lost at a single point. In this paper we present detailed numerical simulations of the full impact of one LHC beam on a cylindrical solid carbon target. First, the energy deposition by the protons is calculated with the FLUKA code and this energy deposition is used in the BIG2 code to study the corresponding thermodynamic and the hydrodynamic response of the target that leads to a reduction in the density. The modified density distribution is used in FLUKA to calculate new energy loss distribution and the two codes are thus run iteratively. A suitable iteration step is considered to be the time interval during which the target density along the axis decreases by 15%-20%. Our simulations suggest that the full LHC proton beam penetrates up to 25 m in solid carbon whereas the range of the shower from a single proton in solid carbon is just about 3 m (hydrodynamic tunneling effect). It is planned to perform experiments at the experimental facility HiRadMat (High Radiation Materials) at CERN using the proton beam from the Super Proton Synchrotron (SPS), to compare experimental results with the theoretical predictions. Therefore simulations of the response of a solid copper cylindrical target hit by the SPS beam were performed. The particle energy in the SPS beam is 440 GeV while it has the same bunch structure as the LHC beam, except that it has only up to 288 bunches. Beam focal spot sizes of σ=0.1, 0.2, and 0.5 mm have been considered. The phenomenon of significant hydrodynamic tunneling due to the hydrodynamic effects is also expected for the experiments.
Evaluating nuclear physics inputs in core-collapse supernova models
NASA Astrophysics Data System (ADS)
Lentz, E.; Hix, W. R.; Baird, M. L.; Messer, O. E. B.; Mezzacappa, A.
Core-collapse supernova models depend on the details of the nuclear and weak interaction physics inputs just as they depend on the details of the macroscopic physics (transport, hydrodynamics, etc.), numerical methods, and progenitors. We present preliminary results from our ongoing comparison studies of nuclear and weak interaction physics inputs to core collapse supernova models using the spherically-symmetric, general relativistic, neutrino radiation hydrodynamics code Agile-Boltztran. We focus on comparisons of the effects of the nuclear EoS and the effects of improving the opacities, particularly neutrino--nucleon interactions.
FESTR: Finite-Element Spectral Transfer of Radiation spectroscopic modeling and analysis code
Hakel, Peter
2016-10-01
Here we report on the development of a new spectral postprocessor of hydrodynamic simulations of hot, dense plasmas. Based on given time histories of one-, two-, and three-dimensional spatial distributions of materials, and their local temperature and density conditions, spectroscopically-resolved signals are computed. The effects of radiation emission and absorption by the plasma on the emergent spectra are simultaneously taken into account. This program can also be used independently of hydrodynamic calculations to analyze available experimental data with the goal of inferring plasma conditions.
FESTR: Finite-Element Spectral Transfer of Radiation spectroscopic modeling and analysis code
NASA Astrophysics Data System (ADS)
Hakel, Peter
2016-10-01
We report on the development of a new spectral postprocessor of hydrodynamic simulations of hot, dense plasmas. Based on given time histories of one-, two-, and three-dimensional spatial distributions of materials, and their local temperature and density conditions, spectroscopically-resolved signals are computed. The effects of radiation emission and absorption by the plasma on the emergent spectra are simultaneously taken into account. This program can also be used independently of hydrodynamic calculations to analyze available experimental data with the goal of inferring plasma conditions.
NASA Technical Reports Server (NTRS)
Blanchard, Ulysse J.
1953-01-01
The hydrodynamic characteristics of a preliminary design of the Martin XP6M-1 flying boat have been determined. Longitudinal stability during take-off and landing, resistance of the complete model, and behavior during taxiing and landing in rough water are presented.
Progress Towards a Rad-Hydro Code for Modern Computing Architectures LA-UR-10-02825
NASA Astrophysics Data System (ADS)
Wohlbier, J. G.; Lowrie, R. B.; Bergen, B.; Calef, M.
2010-11-01
We are entering an era of high performance computing where data movement is the overwhelming bottleneck to scalable performance, as opposed to the speed of floating-point operations per processor. All multi-core hardware paradigms, whether heterogeneous or homogeneous, be it the Cell processor, GPGPU, or multi-core x86, share this common trait. In multi-physics applications such as inertial confinement fusion or astrophysics, one may be solving multi-material hydrodynamics with tabular equation of state data lookups, radiation transport, nuclear reactions, and charged particle transport in a single time cycle. The algorithms are intensely data dependent, e.g., EOS, opacity, nuclear data, and multi-core hardware memory restrictions are forcing code developers to rethink code and algorithm design. For the past two years LANL has been funding a small effort referred to as Multi-Physics on Multi-Core to explore ideas for code design as pertaining to inertial confinement fusion and astrophysics applications. The near term goals of this project are to have a multi-material radiation hydrodynamics capability, with tabular equation of state lookups, on cartesian and curvilinear block structured meshes. In the longer term we plan to add fully implicit multi-group radiation diffusion and material heat conduction, and block structured AMR. We will report on our progress to date.
Vectorization, threading, and cache-blocking considerations for hydrocodes on emerging architectures
Fung, J.; Aulwes, R. T.; Bement, M. T.; ...
2015-07-14
This work reports on considerations for improving computational performance in preparation for current and expected changes to computer architecture. The algorithms studied will include increasingly complex prototypes for radiation hydrodynamics codes, such as gradient routines and diffusion matrix assembly (e.g., in [1-6]). The meshes considered for the algorithms are structured or unstructured meshes. The considerations applied for performance improvements are meant to be general in terms of architecture (not specifically graphical processing unit (GPUs) or multi-core machines, for example) and include techniques for vectorization, threading, tiling, and cache blocking. Out of a survey of optimization techniques on applications such asmore » diffusion and hydrodynamics, we make general recommendations with a view toward making these techniques conceptually accessible to the applications code developer. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.« less
Numerical Tests and Properties of Waves in Radiating Fluids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, B M; Klein, R I
2009-09-03
We discuss the properties of an analytical solution for waves in radiating fluids, with a view towards its implementation as a quantitative test of radiation hydrodynamics codes. A homogeneous radiating fluid in local thermodynamic equilibrium is periodically driven at the boundary of a one-dimensional domain, and the solution describes the propagation of the waves thus excited. Two modes are excited for a given driving frequency, generally referred to as a radiative acoustic wave and a radiative diffusion wave. While the analytical solution is well known, several features are highlighted here that require care during its numerical implementation. We compare themore » solution in a wide range of parameter space to a numerical integration with a Lagrangian radiation hydrodynamics code. Our most significant observation is that flux-limited diffusion does not preserve causality for waves on a homogeneous background.« less
Modeling Three-Dimensional Shock Initiation of PBX 9501 in ALE3D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leininger, L; Springer, H K; Mace, J
A recent SMIS (Specific Munitions Impact Scenario) experimental series performed at Los Alamos National Laboratory has provided 3-dimensional shock initiation behavior of the HMX-based heterogeneous high explosive, PBX 9501. A series of finite element impact calculations have been performed in the ALE3D [1] hydrodynamic code and compared to the SMIS results to validate and study code predictions. These SMIS tests used a powder gun to shoot scaled NATO standard fragments into a cylinder of PBX 9501, which has a PMMA case and a steel impact cover. This SMIS real-world shot scenario creates a unique test-bed because (1) SMIS tests facilitatemore » the investigation of 3D Shock to Detonation Transition (SDT) within the context of a considerable suite of diagnostics, and (2) many of the fragments arrive at the impact plate off-center and at an angle of impact. A particular goal of these model validation experiments is to demonstrate the predictive capability of the ALE3D implementation of the Tarver-Lee Ignition and Growth reactive flow model [2] within a fully 3-dimensional regime of SDT. The 3-dimensional Arbitrary Lagrange Eulerian (ALE) hydrodynamic model in ALE3D applies the Ignition and Growth (I&G) reactive flow model with PBX 9501 parameters derived from historical 1-dimensional experimental data. The model includes the off-center and angle of impact variations seen in the experiments. Qualitatively, the ALE3D I&G calculations reproduce observed 'Go/No-Go' 3D Shock to Detonation Transition (SDT) reaction in the explosive, as well as the case expansion recorded by a high-speed optical camera. Quantitatively, the calculations show good agreement with the shock time of arrival at internal and external diagnostic pins. This exercise demonstrates the utility of the Ignition and Growth model applied for the response of heterogeneous high explosives in the SDT regime.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
2017-05-17
PeleC is an adaptive-mesh compressible hydrodynamics code for reacting flows. It solves the compressible Navier-Stokes with multispecies transport in a block structured framework. The resulting algorithm is well suited for flows with localized resolution requirements and robust to discontinuities. User controllable refinement crieteria has the potential to result in extremely small numerical dissipation and dispersion, making this code appropriate for both research and applied usage. The code is built on the AMReX library which facilitates hierarchical parallelism and manages distributed memory parallism. PeleC algorithms are implemented to express shared memory parallelism.
An experimental investigation of hydrodynamic cavitation in micro-Venturis
NASA Astrophysics Data System (ADS)
Mishra, Chandan; Peles, Yoav
2006-10-01
The existence of hydrodynamic cavitation in the flow of de-ionized water through micro-Venturis has been witnessed in the form of traveling bubble cavitation and fully developed streamer bubble/supercavitation, and their mechanisms have been discussed. High-speed photography and flow visualization disclose inchoate cavitation bubbles emerging downstream from the micro-Venturi throat and the presence of a single streamer bubble/supercavity, which is equidistant from the micro device walls. The supercavity initiates inside the diffuser section and extends until the microchannel exit and proceeds to bifurcate the incoming flow. This article strives to provide numerical data and experimental details of hydrodynamic cavitation taking place within micro-Venturis.
Numerical Simulation of Doped Targets for ICF
NASA Astrophysics Data System (ADS)
Phillips, Lee; Gardner, John H.; Bodner, Stephen E.; Colombant, Denis; Klapisch, Marcel; Bar-Shalom, Avraham
1997-11-01
The ablative Rayleigh-Taylor (RT) instability can be reduced by preheating the ablator, thereby reducing the peak density and increasing the mass ablation velocity. The ablator can be preheated with radiation from higher Z dopants.(Gardner, J.H., Bodner, S.E., Dahlburg, J.P., Phys. Fluids 3), 1070 (1991) Dopants also reduce the density gradient at the ablator, which provides a second mechanism to reduce the RT growth rate. We have recently developed a more sophisticated and detailed radiation package that uses opacities generated by an STA code, with non-LTE radiation transport based on the Busquet method. This radiation package has been incorporated into NRL's FAST2D radiation hydrodynamics code, which has been used to evaluate and optimize the use of various dopants that can provide interesting levels of preheat for an ICF target.
Surface tension models for a multi-material ALE code with AMR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wangyi; Koniges, Alice; Gott, Kevin
A number of surface tension models have been implemented in a 3D multi-physics multi-material code, ALE–AMR, which combines Arbitrary Lagrangian Eulerian (ALE) hydrodynamics with Adaptive Mesh Refinement (AMR). ALE–AMR is unique in its ability to model hot radiating plasmas, cold fragmenting solids, and most recently, the deformation of molten material. The surface tension models implemented include a diffuse interface approach with special numerical techniques to remove parasitic flow and a height function approach in conjunction with a volume-fraction interface reconstruction package. These surface tension models are benchmarked with a variety of test problems. In conclusion, based on the results, themore » height function approach using volume fractions was chosen to simulate droplet dynamics associated with extreme ultraviolet (EUV) lithography.« less
Massively parallel simulations of relativistic fluid dynamics on graphics processing units with CUDA
NASA Astrophysics Data System (ADS)
Bazow, Dennis; Heinz, Ulrich; Strickland, Michael
2018-04-01
Relativistic fluid dynamics is a major component in dynamical simulations of the quark-gluon plasma created in relativistic heavy-ion collisions. Simulations of the full three-dimensional dissipative dynamics of the quark-gluon plasma with fluctuating initial conditions are computationally expensive and typically require some degree of parallelization. In this paper, we present a GPU implementation of the Kurganov-Tadmor algorithm which solves the 3 + 1d relativistic viscous hydrodynamics equations including the effects of both bulk and shear viscosities. We demonstrate that the resulting CUDA-based GPU code is approximately two orders of magnitude faster than the corresponding serial implementation of the Kurganov-Tadmor algorithm. We validate the code using (semi-)analytic tests such as the relativistic shock-tube and Gubser flow.
Cosmic Rays and Their Radiative Processes in Numerical Cosmology
NASA Technical Reports Server (NTRS)
Ryu, Dongsu; Miniati, Francesco; Jones, Tom W.; Kang, Hyesung
2000-01-01
A cosmological hydrodynamic code is described, which includes a routine to compute cosmic ray acceleration and transport in a simplified way. The routine was designed to follow explicitly diffusive, acceleration at shocks, and second-order Fermi acceleration and adiabatic loss in smooth flows. Synchrotron cooling of the electron population can also be followed. The updated code is intended to be used to study the properties of nonthermal synchrotron emission and inverse Compton scattering from electron cosmic rays in clusters of galaxies, in addition to the properties of thermal bremsstrahlung emission from hot gas. The results of a test simulation using a grid of 128 (exp 3) cells are presented, where cosmic rays and magnetic field have been treated passively and synchrotron cooling of cosmic ray electrons has not been included.
Surface tension models for a multi-material ALE code with AMR
Liu, Wangyi; Koniges, Alice; Gott, Kevin; ...
2017-06-01
A number of surface tension models have been implemented in a 3D multi-physics multi-material code, ALE–AMR, which combines Arbitrary Lagrangian Eulerian (ALE) hydrodynamics with Adaptive Mesh Refinement (AMR). ALE–AMR is unique in its ability to model hot radiating plasmas, cold fragmenting solids, and most recently, the deformation of molten material. The surface tension models implemented include a diffuse interface approach with special numerical techniques to remove parasitic flow and a height function approach in conjunction with a volume-fraction interface reconstruction package. These surface tension models are benchmarked with a variety of test problems. In conclusion, based on the results, themore » height function approach using volume fractions was chosen to simulate droplet dynamics associated with extreme ultraviolet (EUV) lithography.« less
Simulating the Thermal Response of High Explosives on Time Scales of Days to Microseconds
NASA Astrophysics Data System (ADS)
Yoh, Jack J.; McClelland, Matthew A.
2004-07-01
We present an overview of computational techniques for simulating the thermal cookoff of high explosives using a multi-physics hydrodynamics code, ALE3D. Recent improvements to the code have aided our computational capability in modeling the response of energetic materials systems exposed to extreme thermal environments, such as fires. We consider an idealized model process for a confined explosive involving the transition from slow heating to rapid deflagration in which the time scale changes from days to hundreds of microseconds. The heating stage involves thermal expansion and decomposition according to an Arrhenius kinetics model while a pressure-dependent burn model is employed during the explosive phase. We describe and demonstrate the numerical strategies employed to make the transition from slow to fast dynamics.
Anomalous-hydrodynamic analysis of charge-dependent elliptic flow in heavy-ion collisions
NASA Astrophysics Data System (ADS)
Hongo, Masaru; Hirono, Yuji; Hirano, Tetsufumi
2017-12-01
Anomalous hydrodynamics is a low-energy effective theory that captures effects of quantum anomalies. We develop a numerical code of ideal anomalous hydrodynamics and apply it to dynamics of heavy-ion collisions, where anomalous transports are expected to occur. We discuss implications of the simulations for possible experimental observations of anomalous transport effects. From analyses of the charge-dependent elliptic flow parameters (v2±) as a function of the net charge asymmetry A±, we find that the linear dependence of Δ v2± ≡ v2- - v2+ on the net charge asymmetry A± can come from a mechanism unrelated to anomalous transport effects. Instead, we find that a finite intercept Δ v2± (A± = 0) can come from anomalous effects.
Parametric geometric model and shape optimization of an underwater glider with blended-wing-body
NASA Astrophysics Data System (ADS)
Sun, Chunya; Song, Baowei; Wang, Peng
2015-11-01
Underwater glider, as a new kind of autonomous underwater vehicles, has many merits such as long-range, extended-duration and low costs. The shape of underwater glider is an important factor in determining the hydrodynamic efficiency. In this paper, a high lift to drag ratio configuration, the Blended-Wing-Body (BWB), is used to design a small civilian under water glider. In the parametric geometric model of the BWB underwater glider, the planform is defined with Bezier curve and linear line, and the section is defined with symmetrical airfoil NACA 0012. Computational investigations are carried out to study the hydrodynamic performance of the glider using the commercial Computational Fluid Dynamics (CFD) code Fluent. The Kriging-based genetic algorithm, called Efficient Global Optimization (EGO), is applied to hydrodynamic design optimization. The result demonstrates that the BWB underwater glider has excellent hydrodynamic performance, and the lift to drag ratio of initial design is increased by 7% in the EGO process.
1972-01-01
DESIGN OF AN S3 SEMI-SUBMERGED SHIP 549 Thomas G. Lang, PhD, Naval Undersea Research and Development Center, San Diego, California... Undersea Research and Development Center, San Diego, California DISCUSSION 574 Nils Salvesen, Naval Ship Research and De- velopment Center...Bethesda, Maryland REPLY TO DISCUSSION 576 Thomas G. Lang, Naval Undersea Research and Development Center, San Diego, California
Flexible Inhibitor Fluid-Structure Interaction Simulation in RSRM.
NASA Astrophysics Data System (ADS)
Wasistho, Bono
2005-11-01
We employ our tightly coupled fluid/structure/combustion simulation code 'Rocstar-3' for solid propellant rocket motors to study 3D flows past rigid and flexible inhibitors in the Reusable Solid Rocket Motor (RSRM). We perform high resolution simulations of a section of the rocket near the center joint slot at 100 seconds after ignition, using inflow conditions based on less detailed 3D simulations of the full RSRM. Our simulations include both inviscid and turbulent flows (using LES dynamic subgrid-scale model), and explore the interaction between the inhibitor and the resulting fluid flow. The response of the solid components is computed by an implicit finite element solver. The internal mesh motion scheme in our block-structured fluid solver enables our code to handle significant changes in geometry. We compute turbulent statistics and determine the compound instabilities originated from the natural hydrodynamic instabilities and the inhibitor motion. The ultimate goal is to studdy the effect of inhibitor flexing on the turbulent field.
Hydrodynamic simulations with the Godunov smoothed particle hydrodynamics
NASA Astrophysics Data System (ADS)
Murante, G.; Borgani, S.; Brunino, R.; Cha, S.-H.
2011-10-01
We present results based on an implementation of the Godunov smoothed particle hydrodynamics (GSPH), originally developed by Inutsuka, in the GADGET-3 hydrodynamic code. We first review the derivation of the GSPH discretization of the equations of moment and energy conservation, starting from the convolution of these equations with the interpolating kernel. The two most important aspects of the numerical implementation of these equations are (a) the appearance of fluid velocity and pressure obtained from the solution of the Riemann problem between each pair of particles, and (b) the absence of an artificial viscosity term. We carry out three different controlled hydrodynamical three-dimensional tests, namely the Sod shock tube, the development of Kelvin-Helmholtz instabilities in a shear-flow test and the 'blob' test describing the evolution of a cold cloud moving against a hot wind. The results of our tests confirm and extend in a number of aspects those recently obtained by Cha, Inutsuka & Nayakshin: (i) GSPH provides a much improved description of contact discontinuities, with respect to smoothed particle hydrodynamics (SPH), thus avoiding the appearance of spurious pressure forces; (ii) GSPH is able to follow the development of gas-dynamical instabilities, such as the Kevin-Helmholtz and the Rayleigh-Taylor ones; (iii) as a result, GSPH describes the development of curl structures in the shear-flow test and the dissolution of the cold cloud in the 'blob' test. Besides comparing the results of GSPH with those from standard SPH implementations, we also discuss in detail the effect on the performances of GSPH of changing different aspects of its implementation: choice of the number of neighbours, accuracy of the interpolation procedure to locate the interface between two fluid elements (particles) for the solution of the Riemann problem, order of the reconstruction for the assignment of variables at the interface, choice of the limiter to prevent oscillations of interpolated quantities in the solution of the Riemann Problem. The results of our tests demonstrate that GSPH is in fact a highly promising hydrodynamic scheme, also to be coupled to an N-body solver, for astrophysical and cosmological applications.
Equations of state for detonation products of high energy PBX explosives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, E. L.; Helm, F. H.; Finger, M.
1977-08-01
It has become apparent that the accumulated changes in the analysis of cylinder test data, in the material specifications, and in the hydrodynamic code simulation of the cylinder test necessitated an update of the detonation product EOS description for explosives in common use at LLL. The explosives reviewed are PBX-9404-3, LX-04-1, LX-10-1, LX-14-0 and LX-09-1. In order to maintain the proper relation of predicted performance of these standard explosives, they have been revised as a single set.
NASA Astrophysics Data System (ADS)
Nagakura, Hiroki; Iwakami, Wakana; Furusawa, Shun; Sumiyoshi, Kohsuke; Yamada, Shoichi; Matsufuru, Hideo; Imakura, Akira
2017-04-01
We present a newly developed moving-mesh technique for the multi-dimensional Boltzmann-Hydro code for the simulation of core-collapse supernovae (CCSNe). What makes this technique different from others is the fact that it treats not only hydrodynamics but also neutrino transfer in the language of the 3 + 1 formalism of general relativity (GR), making use of the shift vector to specify the time evolution of the coordinate system. This means that the transport part of our code is essentially general relativistic, although in this paper it is applied only to the moving curvilinear coordinates in the flat Minknowski spacetime, since the gravity part is still Newtonian. The numerical aspect of the implementation is also described in detail. Employing the axisymmetric two-dimensional version of the code, we conduct two test computations: oscillations and runaways of proto-neutron star (PNS). We show that our new method works fine, tracking the motions of PNS correctly. We believe that this is a major advancement toward the realistic simulation of CCSNe.
A Multifluid Numerical Algorithm for Interpenetrating Plasma Dynamics
NASA Astrophysics Data System (ADS)
Ghosh, Debojyoti; Kavouklis, Christos; Berger, Richard; Chapman, Thomas; Hittinger, Jeffrey
2017-10-01
Interpenetrating plasmas occur in situations including inertial confinement fusion experiments, where plasmas ablate off the hohlraum and capsule surfaces and interact with each other, and in high-energy density physics experiments that involve the collision of plasma streams ablating off discs irradiated by laser beams. Single-fluid, multi-species hydrodynamic models are not well-suited to study this interaction because they cannot support more than a single fluid velocity; this results in unphysical solutions. Though kinetic models yield accurate solutions for multi-fluid interactions, they are prohibitively expensive for at-scale three-dimensional (3D) simulations. In this study, we propose a multifluid approach where the compressible fluid equations are solved for each ion species and the electrons. Electrostatic forces and inter-species friction and thermal equilibration couple the species. A high-order finite-volume algorithm with explicit time integration is used to solve on a 3D Cartesian domain, and a high-order Poisson solver is used to compute the electrostatic potential. We present preliminary results for the interpenetration of two plasma streams in vacuum and in the presence of a gas fill. This work was performed under the auspices of the U.S. DOE by Lawrence Livermore National Laboratory under Contract No. DE-AC52- 07NA27344 and funded by the LDRD Program at LLNL under project tracking code 17-ERD-081.
Use of the Coding Causes of Death in HIV in the classification of deaths in Northeastern Brazil.
Alves, Diana Neves; Bresani-Salvi, Cristiane Campello; Batista, Joanna d'Arc Lyra; Ximenes, Ricardo Arraes de Alencar; Miranda-Filho, Demócrito de Barros; Melo, Heloísa Ramos Lacerda de; Albuquerque, Maria de Fátima Pessoa Militão de
2017-01-01
Describe the coding process of death causes for people living with HIV/AIDS, and classify deaths as related or unrelated to immunodeficiency by applying the Coding Causes of Death in HIV (CoDe) system. A cross-sectional study that codifies and classifies the causes of deaths occurring in a cohort of 2,372 people living with HIV/AIDS, monitored between 2007 and 2012, in two specialized HIV care services in Pernambuco. The causes of death already codified according to the International Classification of Diseases were recoded and classified as deaths related and unrelated to immunodeficiency by the CoDe system. We calculated the frequencies of the CoDe codes for the causes of death in each classification category. There were 315 (13%) deaths during the study period; 93 (30%) were caused by an AIDS-defining illness on the Centers for Disease Control and Prevention list. A total of 232 deaths (74%) were related to immunodeficiency after application of the CoDe. Infections were the most common cause, both related (76%) and unrelated (47%) to immunodeficiency, followed by malignancies (5%) in the first group and external causes (16%), malignancies (12 %) and cardiovascular diseases (11%) in the second group. Tuberculosis comprised 70% of the immunodeficiency-defining infections. Opportunistic infections and aging diseases were the most frequent causes of death, adding multiple disease burdens on health services. The CoDe system increases the probability of classifying deaths more accurately in people living with HIV/AIDS. Descrever o processo de codificação das causas de morte em pessoas vivendo com HIV/Aids, e classificar os óbitos como relacionados ou não relacionados à imunodeficiência aplicando o sistema Coding Causes of Death in HIV (CoDe). Estudo transversal, que codifica e classifica as causas dos óbitos ocorridos em uma coorte de 2.372 pessoas vivendo com HIV/Aids acompanhadas entre 2007 e 2012 em dois serviços de atendimento especializado em HIV em Pernambuco. As causas de óbito já codificadas a partir da Classificação Internacional de Doenças foram recodificadas e classificadas como óbitos relacionados e não relacionados à imunodeficiência pelo sistema CoDe. Foram calculadas as frequências dos códigos CoDe das causas do óbito em cada categoria de classificação. Ocorreram 315 (13%) óbitos no período do estudo; 93 (30%) tinham como causa uma doença definidora de Aids da lista do Centers for Disease Control and Prevention. No total 232 óbitos (74%) foram relacionados à imunodeficiência após aplicar o CoDe. As infecções foram as causas mais comuns, tanto nos óbitos relacionados (76%) como não relacionados (47%) à imunodeficiência, seguindo-se de malignidades (5%) no primeiro grupo e de causas externas (16%), malignidades (12%) e doenças cardiovasculares (11%) no segundo. A tuberculose compreendeu 70% das infecções definidoras de imunodeficiência. Infecções oportunistas e doenças do envelhecimento foram as causas mais frequentes de óbito, imprimindo carga múltipla de doenças aos serviços de saúde. O sistema CoDe aumenta a probabilidade de classificar os óbitos com maior precisão em pessoas vivendo com HIV/Aids.
The Formation of a Milky Way-sized Disk Galaxy. I. A Comparison of Numerical Methods
NASA Astrophysics Data System (ADS)
Zhu, Qirong; Li, Yuexing
2016-11-01
The long-standing challenge of creating a Milky Way- (MW-) like disk galaxy from cosmological simulations has motivated significant developments in both numerical methods and physical models. We investigate these two fundamental aspects in a new comparison project using a set of cosmological hydrodynamic simulations of an MW-sized galaxy. In this study, we focus on the comparison of two particle-based hydrodynamics methods: an improved smoothed particle hydrodynamics (SPH) code Gadget, and a Lagrangian Meshless Finite-Mass (MFM) code Gizmo. All the simulations in this paper use the same initial conditions and physical models, which include star formation, “energy-driven” outflows, metal-dependent cooling, stellar evolution, and metal enrichment. We find that both numerical schemes produce a late-type galaxy with extended gaseous and stellar disks. However, notable differences are present in a wide range of galaxy properties and their evolution, including star-formation history, gas content, disk structure, and kinematics. Compared to Gizmo, the Gadget simulation produced a larger fraction of cold, dense gas at high redshift which fuels rapid star formation and results in a higher stellar mass by 20% and a lower gas fraction by 10% at z = 0, and the resulting gas disk is smoother and more coherent in rotation due to damping of turbulent motion by the numerical viscosity in SPH, in contrast to the Gizmo simulation, which shows a more prominent spiral structure. Given its better convergence properties and lower computational cost, we argue that the MFM method is a promising alternative to SPH in cosmological hydrodynamic simulations.
THE FORMATION OF A MILKY WAY-SIZED DISK GALAXY. I. A COMPARISON OF NUMERICAL METHODS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Qirong; Li, Yuexing, E-mail: qxz125@psu.edu
The long-standing challenge of creating a Milky Way- (MW-) like disk galaxy from cosmological simulations has motivated significant developments in both numerical methods and physical models. We investigate these two fundamental aspects in a new comparison project using a set of cosmological hydrodynamic simulations of an MW-sized galaxy. In this study, we focus on the comparison of two particle-based hydrodynamics methods: an improved smoothed particle hydrodynamics (SPH) code Gadget, and a Lagrangian Meshless Finite-Mass (MFM) code Gizmo. All the simulations in this paper use the same initial conditions and physical models, which include star formation, “energy-driven” outflows, metal-dependent cooling, stellarmore » evolution, and metal enrichment. We find that both numerical schemes produce a late-type galaxy with extended gaseous and stellar disks. However, notable differences are present in a wide range of galaxy properties and their evolution, including star-formation history, gas content, disk structure, and kinematics. Compared to Gizmo, the Gadget simulation produced a larger fraction of cold, dense gas at high redshift which fuels rapid star formation and results in a higher stellar mass by 20% and a lower gas fraction by 10% at z = 0, and the resulting gas disk is smoother and more coherent in rotation due to damping of turbulent motion by the numerical viscosity in SPH, in contrast to the Gizmo simulation, which shows a more prominent spiral structure. Given its better convergence properties and lower computational cost, we argue that the MFM method is a promising alternative to SPH in cosmological hydrodynamic simulations.« less
Study on unsteady hydrodynamic performance of propeller in waves
NASA Astrophysics Data System (ADS)
Zhao, Qingxin; Guo, Chunyu; Su, Yumin; Liu, Tian; Meng, Xiangyin
2017-09-01
The speed of a ship sailing in waves always slows down due to the decrease in efficiency of the propeller. So it is necessary and essential to analyze the unsteady hydrodynamic performance of propeller in waves. This paper is based on the numerical simulation and experimental research of hydrodynamics performance when the propeller is under wave conditions. Open-water propeller performance in calm water is calculated by commercial codes and the results are compared to experimental values to evaluate the accuracy of the numerical simulation method. The first-order Volume of Fluid (VOF) wave method in STAR CCM+ is utilized to simulate the three-dimensional numerical wave. According to the above prerequisite, the numerical calculation of hydrodynamic performance of the propeller under wave conditions is conducted, and the results reveal that both thrust and torque of the propeller under wave conditions reveal intense unsteady behavior. With the periodic variation of waves, ventilation, and even an effluent phenomenon appears on the propeller. Calculation results indicate, when ventilation or effluent appears, the numerical calculation model can capture the dynamic characteristics of the propeller accurately, thus providing a significant theory foundation for further studying the hydrodynamic performance of a propeller in waves.
Mass transfer effects in a gasification riser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Breault, Ronald W.; Li, Tingwen; Nicoletti, Phillip
2013-07-01
In the development of multiphase reacting computational fluid dynamics (CFD) codes, a number of simplifications were incorporated into the codes and models. One of these simplifications was the use of a simplistic mass transfer correlation for the faster reactions and omission of mass transfer effects completely on the moderate speed and slow speed reactions such as those in a fluidized bed gasifier. Another problem that has propagated is that the mass transfer correlation used in the codes is not universal and is being used far from its developed bubbling fluidized bed regime when applied to circulating fluidized bed (CFB) risermore » reactors. These problems are true for the major CFD codes. To alleviate this problem, a mechanistic based mass transfer coefficient algorithm has been developed based upon an earlier work by Breault et al. This fundamental approach uses the local hydrodynamics to predict a local, time varying mass transfer coefficient. The predicted mass transfer coefficients and the corresponding Sherwood numbers agree well with literature data and are typically about an order of magnitude lower than the correlation noted above. The incorporation of the new mass transfer model gives the expected behavior for all the gasification reactions evaluated in the paper. At the expected and typical design values for the solid flow rate in a CFB riser gasifier an ANOVA analysis has shown the predictions from the new code to be significantly different from the original code predictions. The new algorithm should be used such that the conversions are not over predicted. Additionally, its behaviors with changes in solid flow rate are consistent with the changes in the hydrodynamics.« less
Sandia’s Current Energy Conversion module for the Flexible-Mesh Delft3D flow solver v. 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chartand, Chris; Jagers, Bert
The DOE has funded Sandia National Labs (SNL) to develop an open-source modeling tool to guide the design and layout of marine hydrokinetic (MHK) arrays to maximize power production while minimizing environmental effects. This modeling framework simulates flows through and around a MHK arrays while quantifying environmental responses. As an augmented version of the Dutch company, Deltares’s, environmental hydrodynamics code, Delft3D, SNL-Delft3D-CEC-FM includes a new module that simulates energy conversion (momentum withdrawal) by MHK current energy conversion devices with commensurate changes in the turbulent kinetic energy and its dissipation rate. SNL-Delft3D-CEC-FM modified the Delft3D flexible mesh flow solver, DFlowFM.
Multi-species ion transport in ICF relevant conditions
NASA Astrophysics Data System (ADS)
Vold, Erik; Kagan, Grigory; Simakov, Andrei; Molvig, Kim; Yin, Lin; Albright, Brian
2017-10-01
Classical transport theory based on Chapman-Enskog methods provides self consistent approximations for kinetic fluxes of mass, heat and momentum for each ion species in a multi-ion plasma characterized with a small Knudsen number. A numerical method for solving the classic forms of multi-ion transport, self-consistently including heat and species mass fluxes relative to the center of mass, is given in [Kagan-Baalrud, arXiv '16] and similar transport coefficients result from recent derivations [Simakov-Molvig, PoP, '16]. We have implemented a combination of these methods in a standalone test code and in xRage, an adaptive-mesh radiation hydrodynamics code, at LANL. Transport mixing is examined between a DT fuel and a CH capsule shell in ICF conditions. The four ion species develop individual self-similar density profiles under the assumption of P-T equilibrium in 1D and show interesting early time transient pressure and center of mass velocity behavior when P-T equilibrium is not enforced. Some 2D results are explored to better understand the transport mix in combination with convective flow driven by macroscopic fluid instabilities at the fuel-capsule interface. Early transient and some 2D behaviors from the fluid transport are compared to kinetic code results. Work performed under the auspices of the U.S. DOE by the LANS, LLC, Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. Funding provided by the Advanced Simulation and Computing (ASC) Program.
2014-05-01
de simulation du Simulateur de Contre- mesures de la Menace Navale afin de pouvoir inclure des leurres et des autodirecteurs de missiles ; 4) Une...sur le littoral ; 2) La détection des petites cibles de surface sur le littoral ; 3) L’amélioration et la validation de la modélisation et du code...amélioration et une validation supplémentaire de la modélisation et du
Failed Collapsar Jets to Explain Low Luminosity GRB Properties
NASA Astrophysics Data System (ADS)
Hamidani, Hamid; Umeda, Hideyuki; Takahashi, Koh
Using the collapsar scenario for long GRBs [1], we present series of numerical simulations to investigate properties of expanding jets, driven by engines deploying the same total energy (1052 erg), differently. We include a wide range of engine durations (Tinj), from 0.1 to 100 s, as well as different initial opening angles (θ0) for the deployed energy. We employ an AMR 2D special relativistic hydrodynamical code, using a 25 solar mass Wolf-Rayet star as the progenitor [2]. We analyze the effect of the engine duration on the jet's hydrodynamic properties, and discuss the implications on GRB and SN emissions. Our results show that the expanding jet's hydrodynamical properties significantly differ, in particular outflow collimation and relativistic acceleration. The implication of this is that brief engines (with Tinj < Tbreakout, either due to a short Tinj or to a large θ0) represent excellent systems to explain the debated low-luminosity GRBs (llGRBs), displaying two of llGRBs peculiar features: i) the estimated llGRBs rate at least about 100 times higher than that of GRBs [3,4,5], and ii) potentially energetic SN emission [6]. We find that these two features only arise from brief engines. The conclusion is that brief engines dominate collapsars, at least at low redshift.
NASA Astrophysics Data System (ADS)
Larmat, C. S.; Rougier, E.; Knight, E.; Yang, X.; Patton, H. J.
2013-12-01
A goal of the Source Physics Experiments (SPE) is to develop explosion source models expanding monitoring capabilities beyond empirical methods. The SPE project combines field experimentation with numerical modelling. The models take into account non-linear processes occurring from the first moment of the explosion as well as complex linear propagation effects of signals reaching far-field recording stations. The hydrodynamic code CASH is used for modelling high-strain rate, non-linear response occurring in the material near the source. Our development efforts focused on incorporating in-situ stress and fracture processes. CASH simulates the material response from the near-source, strong shock zone out to the small-strain and ultimately the elastic regime where a linear code can take over. We developed an interface with the Spectral Element Method code, SPECFEM3D, that is an efficient implementation on parallel computers of a high-order finite element method. SPECFEM3D allows accurate modelling of wave propagation to remote monitoring distance at low cost. We will present CASH-SPECFEM3D results for SPE1, which was a chemical detonation of about 85 kg of TNT at 55 m depth in a granitic geologic unit. Spallation was observed for SPE1. Keeping yield fixed we vary the depth of the source systematically and compute synthetic seismograms to distances where the P and Rg waves are separated, so that analysis can be performed without concern about interference effects due to overlapping energy. We study the time and frequency characteristics of P and Rg waves and analyse them in regard to the impact of free-surface interactions and rock damage resulting from those interactions. We also perform traditional CMT inversions as well as advanced CMT inversions, developed at LANL to take into account the damage. This will allow us to assess the effect of spallation on CMT solutions as well as to validate our inversion procedure. Further work will aim to validate the developed models with the data recorded on SPEs. This long-term goal requires taking into account the 3D structure and thus a comprehensive characterization of the site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagakura, Hiroki; Iwakami, Wakana; Furusawa, Shun
We present a newly developed moving-mesh technique for the multi-dimensional Boltzmann-Hydro code for the simulation of core-collapse supernovae (CCSNe). What makes this technique different from others is the fact that it treats not only hydrodynamics but also neutrino transfer in the language of the 3 + 1 formalism of general relativity (GR), making use of the shift vector to specify the time evolution of the coordinate system. This means that the transport part of our code is essentially general relativistic, although in this paper it is applied only to the moving curvilinear coordinates in the flat Minknowski spacetime, since the gravity partmore » is still Newtonian. The numerical aspect of the implementation is also described in detail. Employing the axisymmetric two-dimensional version of the code, we conduct two test computations: oscillations and runaways of proto-neutron star (PNS). We show that our new method works fine, tracking the motions of PNS correctly. We believe that this is a major advancement toward the realistic simulation of CCSNe.« less
MULTI2D - a computer code for two-dimensional radiation hydrodynamics
NASA Astrophysics Data System (ADS)
Ramis, R.; Meyer-ter-Vehn, J.; Ramírez, J.
2009-06-01
Simulation of radiation hydrodynamics in two spatial dimensions is developed, having in mind, in particular, target design for indirectly driven inertial confinement energy (IFE) and the interpretation of related experiments. Intense radiation pulses by laser or particle beams heat high-Z target configurations of different geometries and lead to a regime which is optically thick in some regions and optically thin in others. A diffusion description is inadequate in this situation. A new numerical code has been developed which describes hydrodynamics in two spatial dimensions (cylindrical R-Z geometry) and radiation transport along rays in three dimensions with the 4 π solid angle discretized in direction. Matter moves on a non-structured mesh composed of trilateral and quadrilateral elements. Radiation flux of a given direction enters on two (one) sides of a triangle and leaves on the opposite side(s) in proportion to the viewing angles depending on the geometry. This scheme allows to propagate sharply edged beams without ray tracing, though at the price of some lateral diffusion. The algorithm treats correctly both the optically thin and optically thick regimes. A symmetric semi-implicit (SSI) method is used to guarantee numerical stability. Program summaryProgram title: MULTI2D Catalogue identifier: AECV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECV_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 151 098 No. of bytes in distributed program, including test data, etc.: 889 622 Distribution format: tar.gz Programming language: C Computer: PC (32 bits architecture) Operating system: Linux/Unix RAM: 2 Mbytes Word size: 32 bits Classification: 19.7 External routines: X-window standard library (libX11.so) and corresponding heading files (X11/*.h) are required. Nature of problem: In inertial confinement fusion and related experiments with lasers and particle beams, energy transport by thermal radiation becomes important. Under these conditions, the radiation field strongly interacts with the hydrodynamic motion through emission and absorption processes. Solution method: The equations of radiation transfer coupled with Lagrangian hydrodynamics, heat diffusion and beam tracing (laser or ions) are solved, in two-dimensional axial-symmetric geometry ( R-Z coordinates) using a fractional step scheme. Radiation transfer is solved with angular resolution. Matter properties are either interpolated from tables (equations-of-state and opacities) or computed by user routines (conductivities and beam attenuation). Restrictions: The code has been designed for typical conditions prevailing in inertial confinement fusion (ns time scale, matter states close to local thermodynamical equilibrium, negligible radiation pressure, …). Although a wider range of situations can be treated, extrapolations to regions beyond this design range need special care. Unusual features: A special computer language, called r94, is used at top levels of the code. These parts have to be converted to standard C by a translation program (supplied as part of the package). Due to the complexity of code (hydro-code, grid generation, user interface, graphic post-processor, translator program, installation scripts) extensive manuals are supplied as part of the package. Running time: 567 seconds for the example supplied.
NASA Astrophysics Data System (ADS)
Wareing, C. J.; Pittard, J. M.; Falle, S. A. E. G.
2017-09-01
We have used the AMR hydrodynamic code, mg, to perform 3D hydrodynamic simulations with self-gravity of stellar feedback in a spherical clumpy molecular cloud formed through the action of thermal instability. We simulate the interaction of the mechanical energy input from 15, 40, 60 and 120 M⊙ stars into a 100 pc diameter 16 500 M⊙ cloud with a roughly spherical morphology with randomly distributed high-density condensations. The stellar winds are introduced using appropriate non-rotating Geneva stellar evolution models. In the 15 M⊙ star case, the wind has very little effect, spreading around a few neighbouring clumps before becoming overwhelmed by the cloud collapse. In contrast, in the 40, 60 and 120 M⊙ star cases, the more powerful stellar winds create large cavities and carve channels through the cloud, breaking out into the surrounding tenuous medium during the wind phase and considerably altering the cloud structure. After 4.97, 3.97 and 3.01 Myr, respectively, the massive stars explode as supernovae (SNe). The wind-sculpted surroundings considerably affect the evolution of these SN events as they both escape the cloud along wind-carved channels and sweep up remaining clumps of cloud/wind material. The 'cloud' as a coherent structure does not survive the SN from any of these stars, but only in the 120 M⊙ case is the cold molecular material completely destabilized and returned to the unstable thermal phase. In the 40 and 60 M⊙ cases, coherent clumps of cold material are ejected from the cloud by the SN, potentially capable of further star formation.
Gravitational Capture of Small Bodies by Gas Drag Developed Using Hydrodynamic Equations
NASA Astrophysics Data System (ADS)
Pereira de Lima, Nicole; Neto, E. V.
2013-05-01
Abstract (2,250 Maximum Characters): The giant planets of the Solar System have two kinds of satellites, the regular and the irregular ones. The irregular ones are supposed to come from other regions were captured by the planet. Using the dynamics of the three-body problem it is possible to explain the gravitational capture of these satellites except for the fact that these captures are only temporary. For this reason it is necessary an additional effect to turn these temporary captures into a permanent ones. In this work we will explore the gas drag mechanism. In the last stage of the giant planets formation a gas envelope formed around each one of them. During the flyby of the satellite this envelope can dissipate energy enough to make it a “prisoner” of the planet. We have made some simulations considering the classical case. In these simulations the classical gas was characterized by ordinary differential equations that describe the velocity and density of it. However this model is a simplified case. To make our model more realistic we use the hydrodynamic model. Thus some modification in the early code were required. One important code changes was the way used to describe the gas. In this new model a region (called cell) and not a point is used to characterize the gas. After making some adjusts we have checked the precision of cells and verified its correlation with other parameters. At this step we have to test the new code trying to reproduce and improve all results obtained before. Meanwhile we are using the software Fargo that creates the hydrodynamic gas to be used as input in the code. After this analysis we will let the gas evolve in time in order to acquire a higher level of realism in this study.
NASA Astrophysics Data System (ADS)
Duarte, Pedro; Alvarez-Salgado, Xosé Antón; Fernández-Reiriz, Maria José; Piedracoba, Silvia; Labarta, Uxío
2014-06-01
The present study suggests that both under upwelling and downwelling winds, the residual circulation of Ria de Ares-Betanzos remains positive with a strong influence from river discharge and a positive feedback from wind, unlike what is generally accepted for Galician rias. Furthermore, mussel cultivation areas may reduce residual velocities by almost 40%, suggesting their potential feedbacks on food replenishment for cultivated mussels. The Ria de Ares-Betanzos is a partially stratified estuary in the NW Iberian upwelling system where blue mussels are extensively cultured on hanging ropes. This type of culture depends to a large extent on water circulation and residence times, since mussels feed on suspended particles. Therefore, understanding the role of tides, continental runoff, and winds on the circulation of this embayment has important practical applications. Furthermore, previous works have emphasized the potential importance of aquaculture leases on water circulation within coastal ecosystems, with potential negative feedbacks on production carrying capacity. Here we implemented and validated a 3D hydrodynamic numerical model for the Ria de Ares-Betanzos to (i) evaluate the relative importance of the forcing agents on the circulation within the ria and (ii) estimate the importance of culture leases on circulation patterns at the scale of the mussel farms from model simulations. The model was successfully validated with empirical current velocity data collected during July and October 2007 using an assortment of efficiency criteria. Model simulations were carried out to isolate the effects of wind and river flows on circulation patterns.
MODA: a new algorithm to compute optical depths in multidimensional hydrodynamic simulations
NASA Astrophysics Data System (ADS)
Perego, Albino; Gafton, Emanuel; Cabezón, Rubén; Rosswog, Stephan; Liebendörfer, Matthias
2014-08-01
Aims: We introduce the multidimensional optical depth algorithm (MODA) for the calculation of optical depths in approximate multidimensional radiative transport schemes, equally applicable to neutrinos and photons. Motivated by (but not limited to) neutrino transport in three-dimensional simulations of core-collapse supernovae and neutron star mergers, our method makes no assumptions about the geometry of the matter distribution, apart from expecting optically transparent boundaries. Methods: Based on local information about opacities, the algorithm figures out an escape route that tends to minimize the optical depth without assuming any predefined paths for radiation. Its adaptivity makes it suitable for a variety of astrophysical settings with complicated geometry (e.g., core-collapse supernovae, compact binary mergers, tidal disruptions, star formation, etc.). We implement the MODA algorithm into both a Eulerian hydrodynamics code with a fixed, uniform grid and into an SPH code where we use a tree structure that is otherwise used for searching neighbors and calculating gravity. Results: In a series of numerical experiments, we compare the MODA results with analytically known solutions. We also use snapshots from actual 3D simulations and compare the results of MODA with those obtained with other methods, such as the global and local ray-by-ray method. It turns out that MODA achieves excellent accuracy at a moderate computational cost. In appendix we also discuss implementation details and parallelization strategies.
Plasma kinetic effects on atomistic mix in one dimension and at structured interfaces (I)
NASA Astrophysics Data System (ADS)
Yin, L.; Albright, B. J.; Vold, E. L.; Taitano, W.; Chacon, L.; Simakov, A.
2017-10-01
Kinetic effects on interfacial mix are examined using VPIC simulations. In 1D, comparisons are made to the results of analytic theory in the small Knudsen number limit. While the bulk mixing properties of interfaces are in general agreement, differences arise near the low-concentration fronts during the early evolution of a sharp interface when the species' perpendicular scattering rate dominates over the slowing down rate. In kinetic simulations, the diffusion velocities can be larger or comparable to the ion thermal speeds, and the Knudsen number can be large. Super-diffusive growth in mix widths (Δx ta where a >=1/2) is seen before transition to the slow diffusive process predicted from theory (a =1/2). Mixing at interfaces leads to persistent, bulk, hydrodynamic features in the center of mass flow profiles as a result of diffusion and momentum conservation. These conclusions are drawn from VPIC results together with simulations from the RAGE hydrodynamics code with an implementation of diffusion and viscosity from theory and an implicit Vlasov-Fokker-Planck code iFP. In perturbed 2D and 3D interfaces, it is found that 1D ambipolarity is still valid and that initial perturbations flatten out on a-few-ps time scale, implying that finite diffusivity and viscosity can slow instability growth in ICF and HED settings. Work supported by the LANL ASC and Science programs.
NASA Astrophysics Data System (ADS)
Granato, Gian Luigi; Ragone-Figueroa, Cinthia; Domínguez-Tenreiro, Rosa; Obreja, Aura; Borgani, Stefano; De Lucia, Gabriella; Murante, Giuseppe
2015-06-01
We compute and study the infrared and sub-mm properties of high-redshift (z ≳ 1) simulated clusters and protoclusters. The results of a large set of hydrodynamical zoom-in simulations including active galactic nuclei (AGN) feedback, have been treated with the recently developed radiative transfer code GRASIL-3D, which accounts for the effect of dust reprocessing in an arbitrary geometry. Here, we have slightly generalized the code to adapt it to the present purpose. Then we have post-processed boxes of physical size 2 Mpc encompassing each of the 24 most massive clusters identified at z = 0, at several redshifts between 0.5 and 3, producing IR and sub-mm mock images of these regions and spectral energy distributions (SEDs) of the radiation coming out from them. While this field is in its infancy from the observational point of view, rapid development is expected in the near future thanks to observations performed in the far-IR and sub-mm bands. Notably, we find that in this spectral regime our prediction are little affected by the assumption required by this post-processing, and the emission is mostly powered by star formation (SF) rather than accretion on to super massive black hole (SMBH). The comparison with the little observational information currently available, highlights that the simulated cluster regions never attain the impressive star formation rates suggested by these observations. This problem becomes more intriguing taking into account that the brightest cluster galaxies (BCGs) in the same simulations turn out to be too massive. It seems that the interplay between the feedback schemes and the star formation model should be revised, possibly incorporating a positive feedback mode.
A conservative MHD scheme on unstructured Lagrangian grids for Z-pinch hydrodynamic simulations
NASA Astrophysics Data System (ADS)
Wu, Fuyuan; Ramis, Rafael; Li, Zhenghong
2018-03-01
A new algorithm to model resistive magnetohydrodynamics (MHD) in Z-pinches has been developed. Two-dimensional axisymmetric geometry with azimuthal magnetic field Bθ is considered. Discretization is carried out using unstructured meshes made up of arbitrarily connected polygons. The algorithm is fully conservative for mass, momentum, and energy. Matter energy and magnetic energy are managed separately. The diffusion of magnetic field is solved using a derivative of the Symmetric-Semi-Implicit scheme, Livne et al. (1985) [23], where unconditional stability is obtained without needing to solve large sparse systems of equations. This MHD package has been integrated into the radiation-hydrodynamics code MULTI-2D, Ramis et al. (2009) [20], that includes hydrodynamics, laser energy deposition, heat conduction, and radiation transport. This setup allows to simulate Z-pinch configurations relevant for Inertial Confinement Fusion.
Hydrodynamic Simulations of Protoplanetary Disks with GIZMO
NASA Astrophysics Data System (ADS)
Rice, Malena; Laughlin, Greg
2018-01-01
Over the past several decades, the field of computational fluid dynamics has rapidly advanced as the range of available numerical algorithms and computationally feasible physical problems has expanded. The development of modern numerical solvers has provided a compelling opportunity to reconsider previously obtained results in search for yet undiscovered effects that may be revealed through longer integration times and more precise numerical approaches. In this study, we compare the results of past hydrodynamic disk simulations with those obtained from modern analytical resources. We focus our study on the GIZMO code (Hopkins 2015), which uses meshless methods to solve the homogeneous Euler equations of hydrodynamics while eliminating problems arising as a result of advection between grid cells. By comparing modern simulations with prior results, we hope to provide an improved understanding of the impact of fluid mechanics upon the evolution of protoplanetary disks.
NASA Technical Reports Server (NTRS)
Braun, M. J.; Steinetz, B. M.; Kudriavtsev, V. V.; Proctor, M. P.; Kiraly, L. James (Technical Monitor)
2002-01-01
The work presented here concerns the numerical development and simulation of the flow, pressure patterns and motion of a pair of fingers arranged behind each other and axially aligned in-line. The fingers represent the basic elemental component of a Finger Seal (FS) and form a tight seal around the rotor. Yet their flexibility allows compliance with rotor motion and in a passive-adaptive mode complies also with the hydrodynamic forces induced by the flowing fluid. While the paper does not treat the actual staggered configuration of a finger seal, the inline arrangement represents a first step towards that final goal. The numerical 2-D (axial-radial) and 3-D results presented herein were obtained using a commercial package (CFD-ACE+). Both models use an integrated numerical approach, which couples the hydrodynamic fluid model (Navier-Stokes based) to the solid mechanics code that models the compliance of the fingers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zakharov, Leonic E.; Li, Xujing
This paper formulates the Tokamak Magneto-Hydrodynamics (TMHD), initially outlined by X. Li and L.E. Zakharov [Plasma Science and Technology, accepted, ID:2013-257 (2013)] for proper simulations of macroscopic plasma dynamics. The simplest set of magneto-hydrodynamics equations, sufficient for disruption modeling and extendable to more refined physics, is explained in detail. First, the TMHD introduces to 3-D simulations the Reference Magnetic Coordinates (RMC), which are aligned with the magnetic field in the best possible way. The numerical implementation of RMC is adaptive grids. Being consistent with the high anisotropy of the tokamak plasma, RMC allow simulations at realistic, very high plasma electricmore » conductivity. Second, the TMHD splits the equation of motion into an equilibrium equation and the plasma advancing equation. This resolves the 4 decade old problem of Courant limitations of the time step in existing, plasma inertia driven numerical codes. The splitting allows disruption simulations on a relatively slow time scale in comparison with the fast time of ideal MHD instabilities. A new, efficient numerical scheme is proposed for TMHD.« less
NASA Astrophysics Data System (ADS)
Kaiser, Bryan E.; Poroseva, Svetlana V.; Canfield, Jesse M.; Sauer, Jeremy A.; Linn, Rodman R.
2013-11-01
The High Gradient hydrodynamics (HIGRAD) code is an atmospheric computational fluid dynamics code created by Los Alamos National Laboratory to accurately represent flows characterized by sharp gradients in velocity, concentration, and temperature. HIGRAD uses a fully compressible finite-volume formulation for explicit Large Eddy Simulation (LES) and features an advection scheme that is second-order accurate in time and space. In the current study, boundary conditions implemented in HIGRAD are varied to find those that better reproduce the reduced physics of a flat plate boundary layer to compare with complex physics of the atmospheric boundary layer. Numerical predictions are compared with available DNS, experimental, and LES data obtained by other researchers. High-order turbulence statistics are collected. The Reynolds number based on the free-stream velocity and the momentum thickness is 120 at the inflow and the Mach number for the flow is 0.2. Results are compared at Reynolds numbers of 670 and 1410. A part of the material is based upon work supported by NASA under award NNX12AJ61A and by the Junior Faculty UNM-LANL Collaborative Research Grant.
X-ray clusters from a high-resolution hydrodynamic PPM simulation of the cold dark matter universe
NASA Technical Reports Server (NTRS)
Bryan, Greg L.; Cen, Renyue; Norman, Michael L.; Ostriker, Jermemiah P.; Stone, James M.
1994-01-01
A new three-dimensional hydrodynamic code based on the piecewise parabolic method (PPM) is utilized to compute the distribution of hot gas in the standard Cosmic Background Explorer (COBE)-normalized cold dark matter (CDM) universe. Utilizing periodic boundary conditions, a box with size 85 h(exp-1) Mpc, having cell size 0.31 h(exp-1) Mpc, is followed in a simulation with 270(exp 3)=10(exp 7.3) cells. Adopting standard parameters determined from COBE and light-element nucleosynthesis, Sigma(sub 8)=1.05, Omega(sub b)=0.06, we find the X-ray-emitting clusters, compute the luminosity function at several wavelengths, the temperature distribution, and estimated sizes, as well as the evolution of these quantities with redshift. The results, which are compared with those obtained in the preceding paper (Kang et al. 1994a), may be used in conjuction with ROSAT and other observational data sets. Overall, the results of the two computations are qualitatively very similar with regard to the trends of cluster properties, i.e., how the number density, radius, and temeprature depend on luminosity and redshift. The total luminosity from clusters is approximately a factor of 2 higher using the PPM code (as compared to the 'total variation diminishing' (TVD) code used in the previous paper) with the number of bright clusters higher by a similar factor. The primary conclusions of the prior paper, with regard to the power spectrum of the primeval density perturbations, are strengthened: the standard CDM model, normalized to the COBE microwave detection, predicts too many bright X-ray emitting clusters, by a factor probably in excess of 5. The comparison between observations and theoretical predictions for the evolution of cluster properties, luminosity functions, and size and temperature distributions should provide an important discriminator among competing scenarios for the development of structure in the universe.
Prediction of Shock-Induced Cavitation in Water
NASA Astrophysics Data System (ADS)
Brundage, Aaron
2013-06-01
Fluid-structure interaction problems that require estimating the response of thin structures within fluids to shock loading has wide applicability. For example, these problems may include underwater explosions and the dynamic response of ships and submarines; and biological applications such as Traumatic Brain Injury (TBI) and wound ballistics. In all of these applications the process of cavitation, where small cavities with dissolved gases or vapor are formed as the local pressure drops below the vapor pressure due to shock hydrodynamics, can cause significant damage to the surrounding thin structures or membranes if these bubbles collapse, generating additional shock loading. Hence, a two-phase equation of state (EOS) with three distinct regions of compression, expansion, and tension was developed to model shock-induced cavitation. This EOS was evaluated by comparing data from pressure and temperature shock Hugoniot measurements for water up to 400 kbar, and data from ultrasonic pressure measurements in tension to -0.3 kbar, to simulated responses from CTH, an Eulerian, finite volume shock code. The new EOS model showed significant improvement over pre-existing CTH models such as the SESAME EOS for capturing cavitation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy/NNSA under contract DE-AC04-94AL85000.
Common Envelope Light Curves. I. Grid-code Module Calibration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galaviz, Pablo; Marco, Orsola De; Staff, Jan E.
The common envelope (CE) binary interaction occurs when a star transfers mass onto a companion that cannot fully accrete it. The interaction can lead to a merger of the two objects or to a close binary. The CE interaction is the gateway of all evolved compact binaries, all stellar mergers, and likely many of the stellar transients witnessed to date. CE simulations are needed to understand this interaction and to interpret stars and binaries thought to be the byproduct of this stage. At this time, simulations are unable to reproduce the few observational data available and several ideas have been putmore » forward to address their shortcomings. The need for more definitive simulation validation is pressing and is already being fulfilled by observations from time-domain surveys. In this article, we present an initial method and its implementation for post-processing grid-based CE simulations to produce the light curve so as to compare simulations with upcoming observations. Here we implemented a zeroth order method to calculate the light emitted from CE hydrodynamic simulations carried out with the 3D hydrodynamic code Enzo used in unigrid mode. The code implements an approach for the computation of luminosity in both optically thick and optically thin regimes and is tested using the first 135 days of the CE simulation of Passy et al., where a 0.8 M {sub ⊙} red giant branch star interacts with a 0.6 M {sub ⊙} companion. This code is used to highlight two large obstacles that need to be overcome before realistic light curves can be calculated. We explain the nature of these problems and the attempted solutions and approximations in full detail to enable the next step to be identified and implemented. We also discuss our simulation in relation to recent data of transients identified as CE interactions.« less
Report from the Integrated Modeling Panel at the Workshop on the Science of Ignition on NIF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marinak, M; Lamb, D
2012-07-03
This section deals with multiphysics radiation hydrodynamics codes used to design and simulate targets in the ignition campaign. These topics encompass all the physical processes they model, and include consideration of any approximations necessary due to finite computer resources. The section focuses on what developments would have the highest impact on reducing uncertainties in modeling most relevant to experimental observations. It considers how the ICF codes should be employed in the ignition campaign. This includes a consideration of how the experiments can be best structured to test the physical models the codes employ.
Thin Shell evolution of NIF capsule with asymmetric drive and the resulting neutron diagnostics
NASA Astrophysics Data System (ADS)
Buchoff, Michael; Hammer, Jim
2015-11-01
One of the major impediments to achieving ignition via ICF is the non-spherical implosion arising from small asymmetries in the drive forcing the collapse of the capsule. Likewise, an experimental diagnostic for quantifying the characteristics of the implosion asymmetry is the final state neutrons, whose number and velocity distributions are not experimentally consistent with the expectation of a spherical implosion. In principle, connecting these initial and final state asymmetries could be solved via hydrodynamic simulations, but due to the multiple scales traversed throughout this process, these calculations are difficult and expensive, leaving much of the potential drive asymmetry profiles unexplored. In this work, we solve the resulting analytic equations from the thin-shell model proposed by Ott et. al. to evolve the capsule over a range of different drive asymmetries from its initial state (when the shell aspect ratio is much greater than 1) to a radius of roughly 250 microns, consisting of a layer of dense CH, a cold layer of dense DT, and a warm core of sparsely distributed DT. At this stage, more tractable hydrodynamical simulations are performed in the ARES code suite, determining the distribution of neutron from thermonuclear yield. These and future results allow for a multitude of tests of asymmetric sources to compare with and potentially guide experiment. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Woo, K. M.; Betti, R.; Shvarts, D.; Bose, A.; Patel, D.; Yan, R.; Chang, P.-Y.; Mannion, O. M.; Epstein, R.; Delettrez, J. A.; Charissis, M.; Anderson, K. S.; Radha, P. B.; Shvydky, A.; Igumenshchev, I. V.; Gopalaswamy, V.; Christopherson, A. R.; Sanz, J.; Aluie, H.
2018-05-01
The study of Rayleigh-Taylor instability in the deceleration phase of inertial confinement fusion implosions is carried out using the three-dimensional (3-D) radiation-hydrodynamic Eulerian parallel code DEC3D. We show that the yield-over-clean is a strong function of the residual kinetic energy (RKE) for low modes. Our analytical models indicate that the behavior of larger hot-spot volumes observed in low modes and the consequential pressure degradation can be explained in terms of increasing the RKE. These results are derived using a simple adiabatic implosion model of the deceleration phase as well as through an extensive set of 3-D single-mode simulations using the code DEC3D. The effect of the bulk velocity broadening on ion temperature asymmetries is analyzed for different mode numbers ℓ=1 -12. The jet observed in low mode ℓ=1 is shown to cause the largest ion temperature variation in the mode spectrum. The vortices of high modes within the cold bubbles are shown to cause lower ion temperature variations than low modes.
Electrostatic streaming instability modes in complex viscoelastic quantum plasmas
NASA Astrophysics Data System (ADS)
Karmakar, P. K.; Goutam, H. P.
2016-11-01
A generalized quantum hydrodynamic model is procedurally developed to investigate the electrostatic streaming instability modes in viscoelastic quantum electron-ion-dust plasma. Compositionally, inertialess electrons are anticipated to be degenerate quantum particles owing to their large de Broglie wavelengths. In contrast, inertial ions and dust particulates are treated in the same classical framework of linear viscoelastic fluids (non-Newtonian). It considers a dimensionality-dependent Bohmian quantum correction prefactor, γ = [(D - 2)/3D], in electron quantum dynamics, with D symbolizing the problem dimensionality. Applying a regular Fourier-formulaic plane-wave analysis around the quasi-neutral hydrodynamic equilibrium, two distinct instabilities are explored to exist. They stem in ion-streaming (relative to electrons and dust) and dust-streaming (relative to electrons and ions). Their stability is numerically illustrated in judicious parametric windows in both the hydrodynamic and kinetic regimes. The non-trivial influential roles by the relative streams, viscoelasticities, and correction prefactor are analyzed. It is seen that γ acts as a stabilizer for the ion-stream case only. The findings alongside new entailments, as special cases of realistic interest, corroborate well with the earlier predictions in plasma situations. Applicability of the analysis relevant in cosmic and astronomical environments of compact dwarf stars is concisely indicated.
NASA Technical Reports Server (NTRS)
Kandula, Max; Pearce, Daniel
1989-01-01
A steady incompressible three-dimensional (3-D) viscous flow analysis was conducted for the Space Shuttle Main Propulsion External Tank (ET)/Orbiter (ORB) propellant feed line quick separable 17-inch disconnect flapper valves for liquid oxygen (LO2) and liquid hydrogen (LH2). The main objectives of the analysis were to predict and correlate the hydrodynamic stability of the flappers and pressure drop with available water test data. Computational Fluid Dynamics (CFD) computer codes were procured at no cost from the public domain, and were modified and extended to carry out the disconnect flow analysis. The grid generator codes SVTGD3D and INGRID were obtained. NASA Ames Research Center supplied the flow solution code INS3D, and the color graphics code PLOT3D. A driver routine was developed to automate the grid generation process. Components such as pipes, elbows, and flappers can be generated with simple commands, and flapper angles can be varied easily. The flow solver INS3D code was modified to treat interior flappers, and other interfacing routines were developed, which include a turbulence model, a force/moment routine, a time-step routine, and initial and boundary conditions. In particular, an under-relaxation scheme was implemented to enhance the solution stability. Major physical assumptions and simplifications made in the analysis include the neglect of linkages, slightly reduced flapper diameter, and smooth solid surfaces. A grid size of 54 x 21 x 25 was employed for both the LO2 and LH2 units. Mixing length theory applied to turbulent shear flow in pipes formed the basis for the simple turbulence model. Results of the analysis are presented for LO2 and LH2 disconnects.
1992-02-24
AVAiLABILITY STATEMENT 12b. DISTRIBUTION CODE Unclassified 1 . %Bsr’RACT , 3’ um . Crl) A detailed examination of the dependence of the a.c. admittance...NUMBER OF PAGES double layer at gold/solution interface, a.c. admittance techniques, constant phase element model 1 . PRCE CODE 17. SECURITY...Chemistry University of California Davis, CA 95616 U.S.A. tOn leave from the Instituto de Fisica e Quimica de Sao Carlos, USP, Sao Carlos, SP 13560
Modeling the Atmosphere of Solar and Other Stars: Radiative Transfer with PHOENIX/3D
NASA Astrophysics Data System (ADS)
Baron, Edward
The chemical composition of stars is an important ingredient in our understanding of the formation, structure, and evolution of both the Galaxy and the Solar System. The composition of the sun itself is an essential reference standard against which the elemental contents of other astronomical objects are compared. Recently, redetermination of the elemental abundances using three-dimensional, time-dependent hydrodynamical models of the solar atmosphere has led to a reduction in the inferred metal abundances, particularly C, N, O, and Ne. However, this reduction in metals reduces the opacity such that models of the Sun no longer agree with the observed results obtained using helioseismology. Three dimensional (3-D) radiative transfer is an important problem in physics, astrophysics, and meteorology. Radiative transfer is extremely computationally complex and it is a natural problem that requires computation on the exascale. We intend to calculate the detailed compositional structure of the Sun and other stars at high resolution with full NLTE, treating the turbulent velocity flows in full detail in order to compare results from hydrodynamics and helioseismology, and understand the nature of the discrepancies found between the two approaches. We propose to perform 3-D high-resolution radiative transfer calculations with the PHOENIX/3D suite of solar and other stars using 3-D hydrodynamic models from different groups. While NLTE radiative transfer has been treated by the groups doing hydrodynamics, they are necessarily limited in their resolution to the consideration of only a few (4-20) frequency bins, whereas we can calculate full NLTE including thousands of wavelength points, resolving the line profiles, and solving the scattering problem with extremely high angular resolution. The code has been used for the analysis of supernova spectra, stellar and planetary spectra, and for time-dependent modeling of transient objects. PHOENIX/3D runs and scales very well on Cray XC-30 and XC-40 machines (tested up to 100,800 CPU cores) and should scale up to several million cores for large simulations. Non-local problems, particularly radiation hydrodynamics problems, are at the forefront of computational astrophysics and we will share our work with the community. Our research program brings a unified modeling strategy to the results of several disparate groups and thus will provide a unifying framework with which to assess the metal abundance of the stars and the chemical evolution of the galaxy. We will bring together 3-D hydrodynamical models, detailed radiative transfer, and astronomical abundance studies. We will also provide results of interest to the atomic physics and plasma physics communities. Our work will use data from NASA telescopes including the Hubble Space Telescope and the James Webb Space telescope. The ability to work with data from the UV to the far IR is crucial from validating our results. Our work will also extend the exascale computational capabilities, which is a national goal.
Taitano, William T.; Simakov, Andrei N.; Chacon, Luis; ...
2018-04-09
Anomalous thermonuclear yield degradation (i.e., that not describable by single-fluid radiation hydrodynamics) in Inertial Confinement Fusion (ICF) implosions is ubiquitously observed in both Omega and National Ignition experiments. Multiple experimental and theoretical studies have been carried out to investigate the origin of such a degradation. Relative concentration changes of fuel-ion species, as well as kinetically enhanced viscous heating, have been among possible explanations proposed for certain classes of ICF experiments. In this study, we investigate the role of such kinetic plasma effects in detail. To this end, we use the iFP code to perform multi-species ion Vlasov-Fokker-Planck simulations of ICFmore » capsule implosions with the fuel comprising various hydrodynamically equivalent mixtures of deuterium (D) and helium-3 (3He), as in the original. We employ the same computational setup as in O. Larroche, which was the first to simulate the experiments kinetically. However, unlike the Larroche study, and in partial agreement with experimental data, we find a systematic yield degradation in multi-species simulations versus averaged-ion simulations when the D-fuel fraction is decreased. This yield degradation originates in the fuel-ion species stratification induced by plasma shocks, which imprints the imploding system and results in the relocation of the D ions from the core of the capsule to its periphery, thereby reducing the yield relative to a non-separable averaged-ion case. By comparing yields from the averaged-ion kinetic simulations and from the hydrodynamic scaling, we also observe yield variations associated with ion kinetic effects other than fuel-ion stratification, such as ion viscous heating, which is typically neglected in hydrodynamic implosions' simulations. Since our kinetic simulations are driven by hydrodynamic boundary conditions at the fuel-ablator interface, they cannot capture the effects of ion viscosity on the capsule compression, or effects associated with the interface, which are expected to be important. As a result, studies of such effects are left for future work.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taitano, William T.; Simakov, Andrei N.; Chacon, Luis
Anomalous thermonuclear yield degradation (i.e., that not describable by single-fluid radiation hydrodynamics) in Inertial Confinement Fusion (ICF) implosions is ubiquitously observed in both Omega and National Ignition experiments. Multiple experimental and theoretical studies have been carried out to investigate the origin of such a degradation. Relative concentration changes of fuel-ion species, as well as kinetically enhanced viscous heating, have been among possible explanations proposed for certain classes of ICF experiments. In this study, we investigate the role of such kinetic plasma effects in detail. To this end, we use the iFP code to perform multi-species ion Vlasov-Fokker-Planck simulations of ICFmore » capsule implosions with the fuel comprising various hydrodynamically equivalent mixtures of deuterium (D) and helium-3 (3He), as in the original. We employ the same computational setup as in O. Larroche, which was the first to simulate the experiments kinetically. However, unlike the Larroche study, and in partial agreement with experimental data, we find a systematic yield degradation in multi-species simulations versus averaged-ion simulations when the D-fuel fraction is decreased. This yield degradation originates in the fuel-ion species stratification induced by plasma shocks, which imprints the imploding system and results in the relocation of the D ions from the core of the capsule to its periphery, thereby reducing the yield relative to a non-separable averaged-ion case. By comparing yields from the averaged-ion kinetic simulations and from the hydrodynamic scaling, we also observe yield variations associated with ion kinetic effects other than fuel-ion stratification, such as ion viscous heating, which is typically neglected in hydrodynamic implosions' simulations. Since our kinetic simulations are driven by hydrodynamic boundary conditions at the fuel-ablator interface, they cannot capture the effects of ion viscosity on the capsule compression, or effects associated with the interface, which are expected to be important. As a result, studies of such effects are left for future work.« less
NASA Astrophysics Data System (ADS)
Taitano, W. T.; Simakov, A. N.; Chacón, L.; Keenan, B.
2018-05-01
Anomalous thermonuclear yield degradation (i.e., that not describable by single-fluid radiation hydrodynamics) in Inertial Confinement Fusion (ICF) implosions is ubiquitously observed in both Omega and National Ignition experiments. Multiple experimental and theoretical studies have been carried out to investigate the origin of such a degradation. Relative concentration changes of fuel-ion species, as well as kinetically enhanced viscous heating, have been among possible explanations proposed for certain classes of ICF experiments. In this study, we investigate the role of such kinetic plasma effects in detail. To this end, we use the iFP code to perform multi-species ion Vlasov-Fokker-Planck simulations of ICF capsule implosions with the fuel comprising various hydrodynamically equivalent mixtures of deuterium (D) and helium-3 (3He), as in the original Rygg experiments [J. R. Rygg et al., Phys. Plasmas 13, 052702 (2006)]. We employ the same computational setup as in O. Larroche [Phys. Plasmas 19, 122706 (2012)], which was the first to simulate the experiments kinetically. However, unlike the Larroche study, and in partial agreement with experimental data, we find a systematic yield degradation in multi-species simulations versus averaged-ion simulations when the D-fuel fraction is decreased. This yield degradation originates in the fuel-ion species stratification induced by plasma shocks, which imprints the imploding system and results in the relocation of the D ions from the core of the capsule to its periphery, thereby reducing the yield relative to a non-separable averaged-ion case. By comparing yields from the averaged-ion kinetic simulations and from the hydrodynamic scaling, we also observe yield variations associated with ion kinetic effects other than fuel-ion stratification, such as ion viscous heating, which is typically neglected in hydrodynamic implosions' simulations. Since our kinetic simulations are driven by hydrodynamic boundary conditions at the fuel-ablator interface, they cannot capture the effects of ion viscosity on the capsule compression, or effects associated with the interface, which are expected to be important. Studies of such effects are left for future work.
Wang, Hongbo; Zhao, Yingchao; Chen, Mingyue; Cui, Jie
2017-01-01
Cervical cancer is the third most common cancer worldwide and the fourth leading cause of cancer-associated mortality in women. Accumulating evidence indicates that long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) may play key roles in the carcinogenesis of different cancers; however, little is known about the mechanisms of lncRNAs and circRNAs in the progression and metastasis of cervical cancer. In this study, we explored the expression profiles of lncRNAs, circRNAs, miRNAs, and mRNAs in HPV16 (human papillomavirus genotype 16) mediated cervical squamous cell carcinoma and matched adjacent non-tumor (ATN) tissues from three patients with high-throughput RNA sequencing (RNA-seq). In total, we identified 19 lncRNAs, 99 circRNAs, 28 miRNAs, and 304 mRNAs that were commonly differentially expressed (DE) in different patients. Among the non-coding RNAs, 3 lncRNAs and 44 circRNAs are novel to our knowledge. Functional enrichment analysis showed that DE lncRNAs, miRNAs, and mRNAs were enriched in pathways crucial to cancer as well as other gene ontology (GO) terms. Furthermore, the co-expression network and function prediction suggested that all 19 DE lncRNAs could play different roles in the carcinogenesis and development of cervical cancer. The competing endogenous RNA (ceRNA) network based on DE coding and non-coding RNAs showed that each miRNA targeted a number of lncRNAs and circRNAs. The link between part of the miRNAs in the network and cervical cancer has been validated in previous studies, and these miRNAs targeted the majority of the novel non-coding RNAs, thus suggesting that these novel non-coding RNAs may be involved in cervical cancer. Taken together, our study shows that DE non-coding RNAs could be further developed as diagnostic and therapeutic biomarkers of cervical cancer. The complex ceRNA network also lays the foundation for future research of the roles of coding and non-coding RNAs in cervical cancer. PMID:28970820
NASA Astrophysics Data System (ADS)
Delettrez, J. A.; Collins, T. J. B.; Shvydky, A.; Moses, G.; Cao, D.; Marinak, M. M.
2012-10-01
A nonlocal, multigroup diffusion model for thermal electron transportfootnotetextG. P. Schurtz, Ph. D. Nicola"i, and M. Busquet, Phys. Plasmas 7, 4238 (2000). has been added to the 2-D hydrodynamic code DRACO. This model has been applied to simulations of polar-drive (PD) NIF ignition designs. Previous simulations were carried out with a constant flux-limiter model in both the radial and transverse directions. Due to the nonsymmetry of PD illumination, these implosions suffer from low-mode nonuniformities that affect their performance. Nonlocal electron transport in both directions is expected to reduce these nonuniformities. The 2-D thermal electron flux from simulations, using either the nonlocal model or the standard flux-limited approach, will be compared and the effect of the nonlocal transport model on the growth of the nonuniformities and on target performance will be presented. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-08NA28302.
DSMC Studies of the Richtmyer-Meshkov Instability
NASA Astrophysics Data System (ADS)
Gallis, M. A.; Koehler, T. P.; Torczynski, J. R.
2014-11-01
A new exascale-capable Direct Simulation Monte Carlo (DSMC) code, SPARTA, developed to be highly efficient on massively parallel computers, has extended the applicability of DSMC to challenging, transient three-dimensional problems in the continuum regime. Because DSMC inherently accounts for compressibility, viscosity, and diffusivity, it has the potential to improve the understanding of the mechanisms responsible for hydrodynamic instabilities. Here, the Richtmyer-Meshkov instability at the interface between two gases was studied parametrically using SPARTA. Simulations performed on Sequoia, an IBM Blue Gene/Q supercomputer at Lawrence Livermore National Laboratory, are used to investigate various Atwood numbers (0.33-0.94) and Mach numbers (1.2-12.0) for two-dimensional and three-dimensional perturbations. Comparisons with theoretical predictions demonstrate that DSMC accurately predicts the early-time growth of the instability. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Constraining heat-transport models by comparison to experimental data in a NIF hohlraum
NASA Astrophysics Data System (ADS)
Farmer, W. A.; Jones, O. S.; Barrios Garcia, M. A.; Koning, J. M.; Kerbel, G. D.; Strozzi, D. J.; Hinkel, D. E.; Moody, J. D.; Suter, L. J.; Liedahl, D. A.; Moore, A. S.; Landen, O. L.
2017-10-01
The accurate simulation of hohlraum plasma conditions is important for predicting the partition of energy and the symmetry of the x-ray field within a hohlraum. Electron heat transport within the hohlraum plasma is difficult to model due to the complex interaction of kinetic plasma effects, magnetic fields, laser-plasma interactions, and microturbulence. Here, we report simulation results using the radiation-hydrodynamic code, HYDRA, utilizing various physics packages (e.g., nonlocal Schurtz model, MHD, flux limiters) and compare to data from hohlraum plasma experiments which contain a Mn-Co tracer dot. In these experiments, the dot is placed in various positions in the hohlraum in order to assess the spatial variation of plasma conditions. Simulated data is compared to a variety of experimental diagnostics. Conclusions are given concerning how the experimental data does and does not constrain the physics models examined. This work was supported by the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Shen, Chun; Heinz, Ulrich; Huovinen, Pasi; Song, Huichao
2010-11-01
Using the (2+1)-dimensional viscous hydrodynamic code vish2+1 [H. Song and U. Heinz, Phys. Lett. BPYLBAJ0370-269310.1016/j.physletb.2007.11.019 658, 279 (2008); H. Song and U. Heinz, Phys. Rev. CPRVCAN0556-281310.1103/PhysRevC.77.064901 77, 064901 (2008); H. Song, Ph. D. thesis, The Ohio State University, 2009], we present systematic studies of the dependence of pion and proton transverse-momentum spectra and their elliptic flow in 200A GeV Au+Au collisions on the parameters of the hydrodynamic model (thermalization time, initial entropy density distribution, decoupling temperature, equation of state, and specific shear viscosity η/s). We identify a tension between the slope of the proton spectra, which (within hydrodynamic simulations that assume a constant shear viscosity to entropy density ratio) prefer larger η/s values, and the slope of the pT dependence of charged hadron elliptic flow, which prefers smaller values of η/s. Changing other model parameters does not appear to permit dissolution of this tension.
NASA Astrophysics Data System (ADS)
Naboka, V. Yu.; Akkelin, S. V.; Karpenko, Iu. A.; Sinyukov, Yu. M.
2015-01-01
A key ingredient of hydrodynamical modeling of relativistic heavy ion collisions is thermal initial conditions, an input that is the consequence of a prethermal dynamics which is not completely understood yet. In the paper we employ a recently developed energy-momentum transport model of the prethermal stage to study influence of the alternative initial states in nucleus-nucleus collisions on flow and energy density distributions of the matter at the starting time of hydrodynamics. In particular, the dependence of the results on isotropic and anisotropic initial states is analyzed. It is found that at the thermalization time the transverse flow is larger and the maximal energy density is higher for the longitudinally squeezed initial momentum distributions. The results are also sensitive to the relaxation time parameter, equation of state at the thermalization time, and transverse profile of initial energy density distribution: Gaussian approximation, Glauber Monte Carlo profiles, etc. Also, test results ensure that the numerical code based on the energy-momentum transport model is capable of providing both averaged and fluctuating initial conditions for the hydrodynamic simulations of relativistic nuclear collisions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen Chun; Heinz, Ulrich; Huovinen, Pasi
2010-11-15
Using the (2+1)-dimensional viscous hydrodynamic code vish2+1[H. Song and U. Heinz, Phys. Lett. B 658, 279 (2008); H. Song and U. Heinz, Phys. Rev. C 77, 064901 (2008); H. Song, Ph. D. thesis, The Ohio State University, 2009], we present systematic studies of the dependence of pion and proton transverse-momentum spectra and their elliptic flow in 200A GeV Au+Au collisions on the parameters of the hydrodynamic model (thermalization time, initial entropy density distribution, decoupling temperature, equation of state, and specific shear viscosity {eta}/s). We identify a tension between the slope of the proton spectra, which (within hydrodynamic simulations that assumemore » a constant shear viscosity to entropy density ratio) prefer larger {eta}/s values, and the slope of the p{sub T} dependence of charged hadron elliptic flow, which prefers smaller values of {eta}/s. Changing other model parameters does not appear to permit dissolution of this tension.« less
Delft3D turbine turbulence module v. 1.0.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chartrand, Chris; Jagers, Bert
2016-08-25
The DOE has funded Sandia National Labs (SNL) to develop an open-source modeling tool to guide the design and layout of marine hydrokinetic (MHK) arrays to maximize power production while minimizing environmental effects. This modeling framework simulates flows through and around a MHK arrays while quantifying environmental responses. As an augmented version of the Dutch company, Deltares’s, environmental hydrodynamics code, Delft3D, Delft3D-CEC includes a new module that simulates energy conversion (momentum withdrawal) by MHK current energy conversion devices with commensurate changes in the turbulent kinetic energy and its dissipation rate. The Following is a description of Deltares’s open-source code Delft3Dmore » from which Delft3D-CEC is built upon. “Delft3D is a world leading 3D modeling suite to investigate hydrodynamics, sediment transport and morphology and water quality for fluvial, estuarine and coastal environments. As per 1 January 2011, the Delft3D flow (FLOW), morphology (MOR) and waves (WAVE) modules are available in open source. The software is used and has proven his capabilities on many places around the world, like the Netherlands, USA, Hong Kong, Singapore, Australia, Venice, etc. The software is continuously improved and developed with innovating advanced modelling techniques as consequence of the research work of our institute and to stay world leading. The FLOW module is the heart of Delft3D and is a multi-dimensional (2D or 3D) hydrodynamic (and transport) simulation programme which calculates non-steady flow and transport phenomena resulting from tidal and meteorological forcing on a curvilinear, boundary fitted grid or sperical coordinates. In 3D simulations, the vertical grid is defined following the so-called sigma coordinate approach or Z-layer approach. The MOR module computes sediment transport (both suspended and bed total load) and morphological changes for an arbitrary number of cohesive and non-cohesive fractions. Both currents and waves act as driving forces and a wide variety of transport formulae have been incorporated. For the suspended load this module connects to the 2D or 3D advection-diffusion solver of the FLOW module; density effects may be taken into account. An essential feature of the MOR module is the dynamic feedback with the FLOW and WAVE modules, which allow the flows and waves to adjust themselves to the local bathymetry and allows for simulations on any time scale from days (storm impact) to centuries (system dynamics). It can keep track of the bed composition to build up a stratigraphic record. The MOR module may be extended to include extensive features to simulate dredging and dumping scenarios. For over 30 years Deltares has been in the forefront of these types of combined morphological simulation techniques.”« less
A Molecular Portrait of De Novo Genes in Yeasts.
Vakirlis, Nikolaos; Hebert, Alex S; Opulente, Dana A; Achaz, Guillaume; Hittinger, Chris Todd; Fischer, Gilles; Coon, Joshua J; Lafontaine, Ingrid
2018-03-01
New genes, with novel protein functions, can evolve "from scratch" out of intergenic sequences. These de novo genes can integrate the cell's genetic network and drive important phenotypic innovations. Therefore, identifying de novo genes and understanding how the transition from noncoding to coding occurs are key problems in evolutionary biology. However, identifying de novo genes is a difficult task, hampered by the presence of remote homologs, fast evolving sequences and erroneously annotated protein coding genes. To overcome these limitations, we developed a procedure that handles the usual pitfalls in de novo gene identification and predicted the emergence of 703 de novo gene candidates in 15 yeast species from 2 genera whose phylogeny spans at least 100 million years of evolution. We validated 85 candidates by proteomic data, providing new translation evidence for 25 of them through mass spectrometry experiments. We also unambiguously identified the mutations that enabled the transition from noncoding to coding for 30 Saccharomyces de novo genes. We established that de novo gene origination is a widespread phenomenon in yeasts, only a few being ultimately maintained by selection. We also found that de novo genes preferentially emerge next to divergent promoters in GC-rich intergenic regions where the probability of finding a fortuitous and transcribed ORF is the highest. Finally, we found a more than 3-fold enrichment of de novo genes at recombination hot spots, which are GC-rich and nucleosome-free regions, suggesting that meiotic recombination contributes to de novo gene emergence in yeasts.
Holtschlag, David J.
2009-01-01
Two-dimensional hydrodynamic and transport models were applied to a 34-mile reach of the Ohio River from Cincinnati, Ohio, upstream to Meldahl Dam near Neville, Ohio. The hydrodynamic model was based on the generalized finite-element hydrodynamic code RMA2 to simulate depth-averaged velocities and flow depths. The generalized water-quality transport code RMA4 was applied to simulate the transport of vertically mixed, water-soluble constituents that have a density similar to that of water. Boundary conditions for hydrodynamic simulations included water levels at the U.S. Geological Survey water-level gaging station near Cincinnati, Ohio, and flow estimates based on a gate rating at Meldahl Dam. Flows estimated on the basis of the gate rating were adjusted with limited flow-measurement data to more nearly reflect current conditions. An initial calibration of the hydrodynamic model was based on data from acoustic Doppler current profiler surveys and water-level information. These data provided flows, horizontal water velocities, water levels, and flow depths needed to estimate hydrodynamic parameters related to channel resistance to flow and eddy viscosity. Similarly, dye concentration measurements from two dye-injection sites on each side of the river were used to develop initial estimates of transport parameters describing mixing and dye-decay characteristics needed for the transport model. A nonlinear regression-based approach was used to estimate parameters in the hydrodynamic and transport models. Parameters describing channel resistance to flow (Manning’s “n”) were estimated in areas of deep and shallow flows as 0.0234, and 0.0275, respectively. The estimated RMA2 Peclet number, which is used to dynamically compute eddy-viscosity coefficients, was 38.3, which is in the range of 15 to 40 that is typically considered appropriate. Resulting hydrodynamic simulations explained 98.8 percent of the variability in depth-averaged flows, 90.0 percent of the variability in water levels, 93.5 percent of the variability in flow depths, and 92.5 percent of the variability in velocities. Estimates of the water-quality-transport-model parameters describing turbulent mixing characteristics converged to different values for the two dye-injection reaches. For the Big Indian Creek dye-injection study, an RMA4 Peclet number of 37.2 was estimated, which was within the recommended range of 15 to 40, and similar to the RMA2 Peclet number. The estimated dye-decay coefficient was 0.323. Simulated dye concentrations explained 90.2 percent of the variations in measured dye concentrations for the Big Indian Creek injection study. For the dye-injection reach starting downstream from Twelvemile Creek, however, an RMA4 Peclet number of 173 was estimated, which is far outside the recommended range. Simulated dye concentrations were similar to measured concentration distributions at the first four transects downstream from the dye-injection site that were considered vertically mixed. Farther downstream, however, simulated concentrations did not match the attenuation of maximum concentrations or cross-channel transport of dye that were measured. The difficulty of determining a consistent RMA4 Peclet was related to the two-dimension model assumption that velocity distributions are closely approximated by their depth-averaged values. Analysis of velocity data showed significant variations in velocity direction with depth in channel reaches with curvature. Channel irregularities (including curvatures, depth irregularities, and shoreline variations) apparently produce transverse currents that affect the distribution of constituents, but are not fully accounted for in a two-dimensional model. The two-dimensional flow model, using channel resistance to flow parameters of 0.0234 and 0.0275 for deep and shallow areas, respectively, and an RMA2 Peclet number of 38.3, and the RMA4 transport model with a Peclet number of 37.2, may have utility for emergency-planning purposes. Emergency-response efforts would be enhanced by continuous streamgaging records downstream from Meldahl Dam, real-time water-quality monitoring, and three-dimensional modeling. Decay coefficients are constituent specific.
Modeling of the illumination driven coma of 67P/Churyumov-Gerasimenko
NASA Astrophysics Data System (ADS)
Bieler, André
2015-04-01
In this paper we present results modeling 67P/Churyumov-Gerasimenko's (C-G) neutral coma properties observed by the Rosetta ROSINA experiment with 3 different model approaches. The basic assumption for all models is the idea that the out-gassing properties of C-G are mainly illumination driven. With this assumption all models are capable of reproducing most features in the neutral coma signature as detected by the ROSINA-COPS instrument over several months. The models include the realistic shape model of the nucleus to calculate the illumination conditions over time which are used to define the boundary conditions for the hydrodynamic (BATS-R-US code) and the Direct Simulation Monte Carlo (AMPS code) simulations. The third model finally computes the projection of the total illumination on the comet surface towards the spacecraft. Our results indicate that at large heliocentric distances (3.5 to 2.8 AU) most gas coma structures observed by the in-situ instruments can be explained by uniformly distributed activity regions spread over the whole nucleus surface.
Unsteady Propeller Hydrodynamics
2001-06-01
coupling routines, making the code more robust while decreasing the computation burden over currect methods. Finally, a higher order quadratic influence ... function technique was implemented within the wake to more accurately define the induction velocity at the trailing edge which has suffered in the past due to lack of discretization.
Environmental Fluid Dynamic Code (EFDC), a numerical estuarine and coastal ocean circulation hydrodynamic model, was used to simulate the distribution of dissolved oxygen (DO), salinity, temperature, nutrients (nitrogen and phosphorus), and chlorophyll a in the Caloosahatchee Riv...
A Proposal for an Australian Hydrodynamics Laboratory.
1981-05-01
SPAIN Cau~al De CDRV C 0.9x0.9 4.7 11.0 1.6 225 yes Experiencias ijidrodinainica Madrid SWEDEN Swedish State C,R,V C 0.5x0.5 2.2 11 2 atm 53 yes...results of research on topics related to ship design. Currently, detailed design informa- tion on ship hydrodynamics available to Naval Architects in... relating to the introduction, continuous up- dating, and improvement of instrumentation and data acquisition and processing systems. 2. The evaluation and
1992-12-01
36 V.33. Coe ncint of De minstioi ........................ 37 V3A. F-Raio .................................... 37 V3.5... de ations. Instructions ae defined as lines of code or card images. Thus, a line containin two or mome souce statements counts as one instruction; a...understand the productivity paradox, recall de concept of virtual machines. When a higher level machine groups ogether many instructm of a lower level
Structural Loads Analysis for Wave Energy Converters
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Rij, Jennifer A; Yu, Yi-Hsiang; Guo, Yi
2017-06-03
This study explores and verifies the generalized body-modes method for evaluating the structural loads on a wave energy converter (WEC). Historically, WEC design methodologies have focused primarily on accurately evaluating hydrodynamic loads, while methodologies for evaluating structural loads have yet to be fully considered and incorporated into the WEC design process. As wave energy technologies continue to advance, however, it has become increasingly evident that an accurate evaluation of the structural loads will enable an optimized structural design, as well as the potential utilization of composites and flexible materials, and hence reduce WEC costs. Although there are many computational fluidmore » dynamics, structural analyses and fluid-structure-interaction (FSI) codes available, the application of these codes is typically too computationally intensive to be practical in the early stages of the WEC design process. The generalized body-modes method, however, is a reduced order, linearized, frequency-domain FSI approach, performed in conjunction with the linear hydrodynamic analysis, with computation times that could realistically be incorporated into the WEC design process.« less
Blast-Wave Generation and Propagation in Rapidly Heated Laser-Irradiated Targets
NASA Astrophysics Data System (ADS)
Ivancic, S. T.; Stillman, C. R.; Nilson, P. M.; Solodov, A. A.; Froula, D. H.
2017-10-01
Time-resolved extreme ultraviolet (XUV) spectroscopy was used to study the creation and propagation of a >100-Mbar blast wave in a target irradiated by an intense (>1018W
NASA Technical Reports Server (NTRS)
Wagner, William (Technical Monitor); Cranmer, Steven R.
2005-01-01
The paper discusses the following: 1. No-cost Extension. The no-cost extension is required to complete the work on the unified model codes (both hydrodynamic and kinetic Monte Carlo) as described in the initial proposal and previous annual reports. 2. Scientific Accomplishments during the Report Period. We completed a comprehensive model of Alfvtn wave reflection that spans the full distance from the photosphere to the distant heliosphere. 3. Comparison of Accomplishments with Proposed Goals. The proposal contained two specific objectives for Year 3: (1) to complete the unified model code, and (2) to apply it to various kinds of coronal holes (and polar plumes within coronal holes). Although the anticipated route toward these two final goals has changed (see accomplishments 2a and 2b above), they remain the major milestones for the extended period of performance. Accomplishments la and IC were necessary prerequisites for the derivation of "physically relevant transport and mode-coupling terms" for the unified model codes (as stated in the proposal Year 3 goals). We have fulfilled the proposed "core work" to study 4 general types of physical processes; in previous years we studied turbulence, mode coupling (Le., non-WKB reflection), and kinetic wave damping, and accomplishment lb provides the fourth topic: nonlinear steepening.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tom, N.; Lawson, M.; Yu, Y. H.
WEC-Sim is a midfidelity numerical tool for modeling wave energy conversion devices. The code uses the MATLAB SimMechanics package to solve multibody dynamics and models wave interactions using hydrodynamic coefficients derived from frequency-domain boundary-element methods. This paper presents the new modeling features introduced in the latest release of WEC-Sim. The first feature discussed conversion of the fluid memory kernel to a state-space form. This enhancement offers a substantial computational benefit after the hydrodynamic body-to-body coefficients are introduced and the number of interactions increases exponentially with each additional body. Additional features include the ability to calculate the wave-excitation forces based onmore » the instantaneous incident wave angle, allowing the device to weathervane, as well as import a user-defined wave elevation time series. A review of the hydrodynamic theory for each feature is provided and the successful implementation is verified using test cases.« less
Fast and accurate Voronoi density gridding from Lagrangian hydrodynamics data
NASA Astrophysics Data System (ADS)
Petkova, Maya A.; Laibe, Guillaume; Bonnell, Ian A.
2018-01-01
Voronoi grids have been successfully used to represent density structures of gas in astronomical hydrodynamics simulations. While some codes are explicitly built around using a Voronoi grid, others, such as Smoothed Particle Hydrodynamics (SPH), use particle-based representations and can benefit from constructing a Voronoi grid for post-processing their output. So far, calculating the density of each Voronoi cell from SPH data has been done numerically, which is both slow and potentially inaccurate. This paper proposes an alternative analytic method, which is fast and accurate. We derive an expression for the integral of a cubic spline kernel over the volume of a Voronoi cell and link it to the density of the cell. Mass conservation is ensured rigorously by the procedure. The method can be applied more broadly to integrate a spherically symmetric polynomial function over the volume of a random polyhedron.
New Equation of State Models for Hydrodynamic Applications
NASA Astrophysics Data System (ADS)
Young, David A.; Barbee, Troy W., III; Rogers, Forrest J.
1997-07-01
Accurate models of the equation of state of matter at high pressures and temperatures are increasingly required for hydrodynamic simulations. We have developed two new approaches to accurate EOS modeling: 1) ab initio phonons from electron band structure theory for condensed matter and 2) the ACTEX dense plasma model for ultrahigh pressure shocks. We have studied the diamond and high pressure phases of carbon with the ab initio model and find good agreement between theory and experiment for shock Hugoniots, isotherms, and isobars. The theory also predicts a comprehensive phase diagram for carbon. For ultrahigh pressure shock states, we have studied the comparison of ACTEX theory with experiments for deuterium, beryllium, polystyrene, water, aluminum, and silicon dioxide. The agreement is good, showing that complex multispecies plasmas are treated adequately by the theory. These models will be useful in improving the numerical EOS tables used by hydrodynamic codes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raskin, Cody; Owen, J. Michael, E-mail: raskin1@llnl.gov, E-mail: mikeowen@llnl.gov
2016-11-01
We discuss a generalization of the classic Keplerian disk test problem allowing for both pressure and rotational support, as a method of testing astrophysical codes incorporating both gravitation and hydrodynamics. We argue for the inclusion of pressure in rotating disk simulations on the grounds that realistic, astrophysical disks exhibit non-negligible pressure support. We then apply this test problem to examine the performance of various smoothed particle hydrodynamics (SPH) methods incorporating a number of improvements proposed over the years to address problems noted in modeling the classical gravitation-only Keplerian disk. We also apply this test to a newly developed extension ofmore » SPH based on reproducing kernels called CRKSPH. Counterintuitively, we find that pressure support worsens the performance of traditional SPH on this problem, causing unphysical collapse away from the steady-state disk solution even more rapidly than the purely gravitational problem, whereas CRKSPH greatly reduces this error.« less
The Vajont disaster: a 3D numerical simulation for the slide and the waves
NASA Astrophysics Data System (ADS)
Rubino, Angelo; Androsov, Alexey; Vacondio, Renato; Zanchettin, Davide; Voltzinger, Naum
2016-04-01
A very high resolution O(5 m), 3D hydrostatic nonlinear numerical model was used to simulate the dynamics of both the slide and the surface waves produced during the Vajont disaster (north Italy, 1963), one of the major landslide-induced tsunamis ever documented. Different simulated wave phenomena like, e.g., maximum run-up on the opposite shore, maximum height, and water velocity were analyzed and compared with data available in literature, including the results of a fully 3D simulation obtained with a Smoothed Particle Hydrodynamic code. The difference between measured and simulated after-slide bathymetries was calculated and used in an attempt to quantify the relative magnitude and extension of rigid and fluid motion components during the event.
Three-dimensional drift kinetic response of high- β plasmas in the DIII-D tokamak
Wang, Zhirui R.; Lanctot, Matthew J.; Liu, Y. Q.; ...
2015-04-07
A quantitative interpretation of the experimentally measured high pressure plasma response to externally applied three-dimensional (3D) magnetic field perturbations, across the no-wall Troyon limit, is achieved. The key to success is the self-consistent inclusion of the drift kinetic resonance effects in numerical modeling using the MARS-K code. This resolves an outstanding issue of ideal magneto-hydrodynamic model, which signi cantly over-predicts the plasma induced field ampli fication near the no-wall limit, as compared to experiments. The self-consistent drift kinetic model leads to quantitative agreement not only for the measured 3D field amplitude and toroidal phase, but also for the measured internalmore » 3D displacement of the plasma.« less
Comparisons of CTH simulations with measured wave profiles for simple flyer plate experiments
Thomas, S. A.; Veeser, L. R.; Turley, W. D.; ...
2016-06-13
We conducted detailed 2-dimensional hydrodynamics calculations to assess the quality of simulations commonly used to design and analyze simple shock compression experiments. Such simple shock experiments also contain data where dynamic properties of materials are integrated together. We wished to assess how well the chosen computer hydrodynamic code could do at capturing both the simple parts of the experiments and the integral parts. We began with very simple shock experiments, in which we examined the effects of the equation of state and the compressional and tensile strength models. We increased complexity to include spallation in copper and iron and amore » solid-solid phase transformation in iron to assess the quality of the damage and phase transformation simulations. For experiments with a window, the response of both the sample and the window are integrated together, providing a good test of the material models. While CTH physics models are not perfect and do not reproduce all experimental details well, we find the models are useful; the simulations are adequate for understanding much of the dynamic process and for planning experiments. However, higher complexity in the simulations, such as adding in spall, led to greater differences between simulation and experiment. Lastly, this comparison of simulation to experiment may help guide future development of hydrodynamics codes so that they better capture the underlying physics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strozzi, David J.; Perkins, L. J.; Marinak, M. M.
The effects of an imposed, axial magnetic fieldmore » $$B_{z0}$$ on hydrodynamics and energetic electrons in inertial confinement fusion indirect-drive hohlraums are studied. We present simulations from the radiation-hydrodynamics code HYDRA of a low-adiabat ignition design for the National Ignition Facility, with and without $$B_{z0}=70~\\text{T}$$. The field’s main hydrodynamic effect is to significantly reduce electron thermal conduction perpendicular to the field. This results in hotter and less dense plasma on the equator between the capsule and hohlraum wall. The inner laser beams experience less inverse bremsstrahlung absorption before reaching the wall. The X-ray drive is thus stronger from the equator with the imposed field. We study superthermal, or ‘hot’, electron dynamics with the particle-in-cell code ZUMA, using plasma conditions from HYDRA. During the early-time laser picket, hot electrons based on two-plasmon decay in the laser entrance hole (Regan et al., Phys. Plasmas, vol. 17(2), 2010, 020703) are guided to the capsule by a 70 T field. Twelve times more energy deposits in the deuterium–tritium fuel. For plasma conditions early in peak laser power, we present mono-energetic test-case studies with ZUMA as well as sources based on inner-beam stimulated Raman scattering. Furthermore, the effect of the field on deuterium–tritium deposition depends strongly on the source location, namely whether hot electrons are generated on field lines that connect to the capsule.« less
AN OPEN-SOURCE NEUTRINO RADIATION HYDRODYNAMICS CODE FOR CORE-COLLAPSE SUPERNOVAE
DOE Office of Scientific and Technical Information (OSTI.GOV)
O’Connor, Evan, E-mail: evanoconnor@ncsu.edu; CITA, Canadian Institute for Theoretical Astrophysics, Toronto, M5S 3H8
2015-08-15
We present an open-source update to the spherically symmetric, general-relativistic hydrodynamics, core-collapse supernova (CCSN) code GR1D. The source code is available at http://www.GR1Dcode.org. We extend its capabilities to include a general-relativistic treatment of neutrino transport based on the moment formalisms of Shibata et al. and Cardall et al. We pay special attention to implementing and testing numerical methods and approximations that lessen the computational demand of the transport scheme by removing the need to invert large matrices. This is especially important for the implementation and development of moment-like transport methods in two and three dimensions. A critical component of neutrinomore » transport calculations is the neutrino–matter interaction coefficients that describe the production, absorption, scattering, and annihilation of neutrinos. In this article we also describe our open-source neutrino interaction library NuLib (available at http://www.nulib.org). We believe that an open-source approach to describing these interactions is one of the major steps needed to progress toward robust models of CCSNe and robust predictions of the neutrino signal. We show, via comparisons to full Boltzmann neutrino-transport simulations of CCSNe, that our neutrino transport code performs remarkably well. Furthermore, we show that the methods and approximations we employ to increase efficiency do not decrease the fidelity of our results. We also test the ability of our general-relativistic transport code to model failed CCSNe by evolving a 40-solar-mass progenitor to the onset of collapse to a black hole.« less
Numerical study of core formation of asymmetrically driven cone-guided targets
Sawada, Hiroshi; Sakagami, Hitoshi
2017-09-22
Compression of a directly driven fast ignition cone-sphere target with a finite number of laser beams is numerically studied using a three-dimensional hydrodynamics code IMPACT-3D. The formation of a dense plasma core is simulated for 12-, 9-, 6-, and 4-beam configurations of the GEKKO XII laser. The complex 3D shapes of the cores are analyzed by elucidating synthetic 2D x-ray radiographic images in two orthogonal directions. Finally, the simulated x-ray images show significant differences in the core shape between the two viewing directions and rotation of the stagnating core axis in the top view for the axisymmetric 9- and 6-beammore » configurations.« less
Numerical study of core formation of asymmetrically driven cone-guided targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sawada, Hiroshi; Sakagami, Hitoshi
Compression of a directly driven fast ignition cone-sphere target with a finite number of laser beams is numerically studied using a three-dimensional hydrodynamics code IMPACT-3D. The formation of a dense plasma core is simulated for 12-, 9-, 6-, and 4-beam configurations of the GEKKO XII laser. The complex 3D shapes of the cores are analyzed by elucidating synthetic 2D x-ray radiographic images in two orthogonal directions. Finally, the simulated x-ray images show significant differences in the core shape between the two viewing directions and rotation of the stagnating core axis in the top view for the axisymmetric 9- and 6-beammore » configurations.« less
Radiative-hydrodynamic Modeling of the SL-9 Plume Infall
NASA Astrophysics Data System (ADS)
Deming, D.; Harrington, J.
1998-09-01
We are developing a model for the plume-infall phase of the SL-9/Jupiter collision. The modeling takes place in two steps. The first step is a ballistic Monte-Carlo simulation of the ejecta from the collision, based on a power-law distribution of ejecta velocities. Parameters from this simulation are adjusted to best reproduce the appearance of the ejecta plume above the jovian limb, and the debris patterns on the disk, as seen by HST. Results of those calculations are reported in a paper by Harrington and Deming (this meeting). In this paper we report results from the second step, wherein the ballistic Monte-Carlo plume simulations are coupled to the Zeus-3D hydrodynamic code. Zeus is used in a 2-D mode to follow both the radial and z-component motions of the infalling plume material, and model the resultant shock-heating of the ambient atmosphere. Zeus was modified to include radiative transport in the gray approximation. We discuss the results as concerns: 1) the temperatures and other physical conditions in the radiating upper atmospheric shocks, 2) the morphology of the light curve, including the nature of secondary maxima, and 3) the structure of the post-collision jovian atmosphere.
1986-03-01
attempted to analyze in detail the 3 hydrodynamic problem defined above (Kerr and Babu, 1970; 5 15 U DePietio and Cox, 1979; and Foda and Cox, 1980...coefficient ET can be related to the magnitude of V’ by the random walk analysis (Fischer, et al., 1979), whereI V’ = (4E T/6t)2 (27) 3 in which 5t = time...Water Management and Planning Branch.. Foda , M. and R.G. Cox, (1980). "The spreading of thin liquid films on a water-air interface," Journal of Fluid
Introducing DeBRa: a detailed breast model for radiological studies
NASA Astrophysics Data System (ADS)
Ma, Andy K. W.; Gunn, Spencer; Darambara, Dimitra G.
2009-07-01
Currently, x-ray mammography is the method of choice in breast cancer screening programmes. As the mammography technology moves from 2D imaging modalities to 3D, conventional computational phantoms do not have sufficient detail to support the studies of these advanced imaging systems. Studies of these 3D imaging systems call for a realistic and sophisticated computational model of the breast. DeBRa (Detailed Breast model for Radiological studies) is the most advanced, detailed, 3D computational model of the breast developed recently for breast imaging studies. A DeBRa phantom can be constructed to model a compressed breast, as in film/screen, digital mammography and digital breast tomosynthesis studies, or a non-compressed breast as in positron emission mammography and breast CT studies. Both the cranial-caudal and mediolateral oblique views can be modelled. The anatomical details inside the phantom include the lactiferous duct system, the Cooper ligaments and the pectoral muscle. The fibroglandular tissues are also modelled realistically. In addition, abnormalities such as microcalcifications, irregular tumours and spiculated tumours are inserted into the phantom. Existing sophisticated breast models require specialized simulation codes. Unlike its predecessors, DeBRa has elemental compositions and densities incorporated into its voxels including those of the explicitly modelled anatomical structures and the noise-like fibroglandular tissues. The voxel dimensions are specified as needed by any study and the microcalcifications are embedded into the voxels so that the microcalcification sizes are not limited by the voxel dimensions. Therefore, DeBRa works with general-purpose Monte Carlo codes. Furthermore, general-purpose Monte Carlo codes allow different types of imaging modalities and detector characteristics to be simulated with ease. DeBRa is a versatile and multipurpose model specifically designed for both x-ray and γ-ray imaging studies.
Numerical Simulation of Salinity and Dissolved Oxygen at Perdido Bay and Adjacent Coastal Ocean
Environmental Fluid Dynamic Code (EFDC), a numerical estuarine and coastal ocean circulation hydrodynamic model, was used to simulate the distribution of the salinity, temperature, nutrients and dissolved oxygen (DO) in Perdido Bay and adjacent Gulf of Mexico. External forcing fa...
Numerical comparison of Riemann solvers for astrophysical hydrodynamics
NASA Astrophysics Data System (ADS)
Klingenberg, Christian; Schmidt, Wolfram; Waagan, Knut
2007-11-01
The idea of this work is to compare a new positive and entropy stable approximate Riemann solver by Francois Bouchut with a state-of the-art algorithm for astrophysical fluid dynamics. We implemented the new Riemann solver into an astrophysical PPM-code, the Prometheus code, and also made a version with a different, more theoretically grounded higher order algorithm than PPM. We present shock tube tests, two-dimensional instability tests and forced turbulence simulations in three dimensions. We find subtle differences between the codes in the shock tube tests, and in the statistics of the turbulence simulations. The new Riemann solver increases the computational speed without significant loss of accuracy.
The Los Alamos Supernova Light Curve Project: Current Projects and Future Directions
NASA Astrophysics Data System (ADS)
Wiggins, Brandon Kerry; Los Alamos Supernovae Research Group
2015-01-01
The Los Alamos Supernova Light Curve Project models supernovae in the ancient and modern universe to determine the luminosities of observability of certain supernovae events and to explore the physics of supernovae in the local universe. The project utilizes RAGE, Los Alamos' radiation hydrodynamics code to evolve the explosions of progenitors prepared in well-established stellar evolution codes. RAGE allows us to capture events such as shock breakout and collisions of ejecta with shells of material which cannot be modeled well in other codes. RAGE's dumps are then ported to LANL's SPECTRUM code which uses LANL's OPLIB opacities database to calculate light curves and spectra. In this paper, we summarize our recent work in modeling supernovae.
NASA Astrophysics Data System (ADS)
Alekseenko, Elena; Kuznetsov, Konstantin; Roux, Bernard
2016-04-01
Wind stress on the free surface is the main driving force behind the circulation of the upper part of the ocean, which in hydrodynamic models are usually defined in terms of the coefficient of surface tension (Zhang et al., 2009, Davies et al., 2003). Moreover, wave motion impacts local currents and changes sea level, impacts the transport and the stratification of the entire water column. Influence of surface waves at the bottom currents is particularly pronounced in the shallow coastal systems. However, existing methods of parameterization of the surface tension have significant limits, especially in strong wind waves (Young et al., 2001, Jones et al., 2004) due to the difficulties of measuring the characteristics of surface waves in stormy conditions. Thus, the formula for calculating the coefficient of surface tension in our day is the actual problem in modeling fluid dynamics, particularly in the context of strong surface waves. In the hydrodynamic models usually a coefficient of surface tension is calculated once at the beginning of computation as a constant that depends on the averaged wind waves characteristic. Usually cases of strongly nonlinear wind waves are not taken into account, what significantly reduces the accuracy of the calculation of the flow structures and further calculation of the other processes in water basins, such as the spread of suspended matter and pollutants. Thus, wave motion influencing the pressure on the free surface and at the bottom must be considered in hydrodynamic models particularly in shallow coastal systems. A method of reconstruction of a free-surface drag coefficient based on the measured in-situ bottom pressure fluctuations is developed and applied in a three-dimensional hydrodynamic model MARS3D, developed by the French laboratory of IFREMER (IFREMER - French Research Institute for Marine Dynamics). MARS3D solves the Navier-Stokes equations for incompressible fluid in the Boussinesq approximation and with the hydrostatic assumption (Lazure and Dumas, 2008, Blumberg et al., 1986). Precisely, we introduce a formulation of the surface drag coefficient as a logarithmic function of the sea surface roughness (Zhang et al., 2009), which in turn can be predicted from the height and steepness of the waves (Taylor and Yelland, 2000), measured by the bottom pressure sensors. Using numerous field data, Taylor and Yelland (2000) showed that the surface drag coefficient values in lakes and sheltered waters are typically significantly higher than is observed in the open ocean. In particular, the effect of limited water depth is very significant in the case of the strong wind forcing. Wind waves propagating into shoaling water begin to be limited by bottom friction and become "younger". This kind of approach is used to predict a more relevant surface drag coefficient for the coastal areas of the Mediterranean Berre lagoon (France) for which experimental data of pressure measurements under storm conditions are available (Paquier, 2014). This is important to better understand the development problematics of the nearshore submerged aquatic vegetation (Alekseenko et al., 2013). *This work is supported by grant of Russian Foundation for Basic Research (RFBR) n°16-35-00526 and by the French Water Agency (Agence de l'Eau-RMC - convention n°2010-0042). References 1. E. Alekseenko E., Roux B., Sukhinov A., Kotarba R., Fougere D.: Near shoreline hydrodynamics in a Mediterranean lagoon. Nonlinear Processes in Geophysics, 20, 189-198, 2013. 2. Blumberg A.F. and Mellor G.L.: A description of a Tree-Dimensional Coastal Ocean Circulation Model, Geophysical Fluid Dynamics Program, Princeton Univ., Princeton, New Jersey, 1-16, 1986. 3. Davies A., Xing M., Jiuxing I.: Processes influencing wind-induced current profiles in near coastal stratified regions. Continental Shelf Research 23 (14-15): 1379-1400, 2003. 4. Jones, I.S.F. and Toba Y. (Eds.): Wind Stress over the Ocean. Cambridge Univ. Press, 307pp, 2001. 5. Lazure P. and Dumas F.: An external-internal mode coupling for a 3D hydrodynamical model for applications at regional scale (MARS). Adv. Wat. Res. 31: 233-250, 2008. 6. Paquier A-E.: - Interactions de la dynamique hydro-sédimentaire avec les herbiers de phanérogames, Étang de Berre ; PhD thesis Aix-Marseille University; 27 Nov. 2014. 7. Taylor P. and Yelland M.: The Dependence of Sea Surface Roughness on the Height and Steepness of the Waves, Physical Oceanography, 2000. 8. Young I.R., Banner M.L., Donelan M.A., Babanin A.V., Melville W.K., Veron F., and McCormic C.: An Integrated Study of the Wind Wave Source Term Balance in Finite Depth Water, J. Atmos. Oceanic Technol. 22: 814-831, 2004. 9. Zhang H, Sannasiraj S.A., and Chan E.S.: Wind Wave Effects on Hydrodynamic Modeling of Ocean Circulation in the South China Sea, The Open Civil Engineering Journal, 3, 48-61, 2009.
Review of hydrodynamic tunneling issues in high power particle accelerators
NASA Astrophysics Data System (ADS)
Tahir, N. A.; Burkart, F.; Schmidt, R.; Shutov, A.; Piriz, A. R.
2018-07-01
Full impact of one Large Hadron Collider (LHC) 7 TeV proton beam on solid targets made of different materials including copper and carbon, was simulated using an energy deposition code, FLUKA and a two-dimensional hydrodynamic code, BIG2, iteratively. These studies showed that the penetration depth of the entire beam comprised of 2808 proton bunches significantly increases due to a phenomenon named hydrodynamic tunneling of the protons and the shower. For example, the static range of a single 7 TeV proton and its shower is about 1 m in solid copper, but the full LHC beam will penetrate up to about 35 m in the target, if the hydrodynamic effects were included. Due to the potential implications of this result on the machine protection considerations, it was decided to have an experimental verification of the hydrodynamic tunneling effect. For this purpose, experiments were carried out at the CERN HiRadMat (High Radiation to Materials) facility in which extended solid copper cylindrical targets were irradiated with the 440 GeV proton beam generated by the Super Proton Synchrotron (SPS). Simulations of beam-target heating considering the same beam parameters that were used in the experiments, were also performed. These experiments not only confirmed the existence of the hydrodynamic tunneling, but the experimental measurements showed very good agreement with the experimental results as well. This provided confidence in the work on LHC related beam-matter heating simulations. Currently, a design study is being carried out by the international community (with CERN taking the leading role) for a post LHC collider named, the Future Circular Collider (FCC) which will accelerate two counter rotating proton beams up to a particle energy of 50 TeV. Simulations of the full impact of one FCC beam comprised of 10,600 proton bunches with a solid copper target have also been done. These simulations have shown that although the static range of a single 50 TeV proton and its shower in solid copper is around 1.8 m, the entire beam will penetrate up to about 350 m in the target. Feasibility studies of developing a water beam dump for the FCC have also been carried out. A review of this work and its implications on machine protection system are presented in this paper.
1994-08-01
c S c o I -2 b I c 5 ^ A9-I0 Kfc 0) >% 3 .« W) o w O OJ a) 5. u > o ^a 5 ~ ^ o ra to *- w 0 " ro d) iO II...12). The technique was modified to calculate the drag %*<• 4 «.c* A12-II using ihc ncin-minjsivc LUV and sidewall pressure measure- menu rather
Particle-in-cell simulations with charge-conserving current deposition on graphic processing units
NASA Astrophysics Data System (ADS)
Ren, Chuang; Kong, Xianglong; Huang, Michael; Decyk, Viktor; Mori, Warren
2011-10-01
Recently using CUDA, we have developed an electromagnetic Particle-in-Cell (PIC) code with charge-conserving current deposition for Nvidia graphic processing units (GPU's) (Kong et al., Journal of Computational Physics 230, 1676 (2011). On a Tesla M2050 (Fermi) card, the GPU PIC code can achieve a one-particle-step process time of 1.2 - 3.2 ns in 2D and 2.3 - 7.2 ns in 3D, depending on plasma temperatures. In this talk we will discuss novel algorithms for GPU-PIC including charge-conserving current deposition scheme with few branching and parallel particle sorting. These algorithms have made efficient use of the GPU shared memory. We will also discuss how to replace the computation kernels of existing parallel CPU codes while keeping their parallel structures. This work was supported by U.S. Department of Energy under Grant Nos. DE-FG02-06ER54879 and DE-FC02-04ER54789 and by NSF under Grant Nos. PHY-0903797 and CCF-0747324.
FY2012 summary of tasks completed on PROTEUS-thermal work.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, C.H.; Smith, M.A.
2012-06-06
PROTEUS is a suite of the neutronics codes, both old and new, that can be used within the SHARP codes being developed under the NEAMS program. Discussion here is focused on updates and verification and validation activities of the SHARP neutronics code, DeCART, for application to thermal reactor analysis. As part of the development of SHARP tools, the different versions of the DeCART code created for PWR, BWR, and VHTR analysis were integrated. Verification and validation tests for the integrated version were started, and the generation of cross section libraries based on the subgroup method was revisited for the targetedmore » reactor types. The DeCART code has been reorganized in preparation for an efficient integration of the different versions for PWR, BWR, and VHTR analysis. In DeCART, the old-fashioned common blocks and header files have been replaced by advanced memory structures. However, the changing of variable names was minimized in order to limit problems with the code integration. Since the remaining stability problems of DeCART were mostly caused by the CMFD methodology and modules, significant work was performed to determine whether they could be replaced by more stable methods and routines. The cross section library is a key element to obtain accurate solutions. Thus, the procedure for generating cross section libraries was revisited to provide libraries tailored for the targeted reactor types. To improve accuracy in the cross section library, an attempt was made to replace the CENTRM code by the MCNP Monte Carlo code as a tool obtaining reference resonance integrals. The use of the Monte Carlo code allows us to minimize problems or approximations that CENTRM introduces since the accuracy of the subgroup data is limited by that of the reference solutions. The use of MCNP requires an additional set of libraries without resonance cross sections so that reference calculations can be performed for a unit cell in which only one isotope of interest includes resonance cross sections, among the isotopes in the composition. The OECD MHTGR-350 benchmark core was simulated using DeCART as initial focus of the verification/validation efforts. Among the benchmark problems, Exercise 1 of Phase 1 is a steady-state benchmark case for the neutronics calculation for which block-wise cross sections were provided in 26 energy groups. This type of problem was designed for a homogenized geometry solver like DIF3D rather than the high-fidelity code DeCART. Instead of the homogenized block cross sections given in the benchmark, the VHTR-specific 238-group ENDF/B-VII.0 library of DeCART was directly used for preliminary calculations. Initial results showed that the multiplication factors of a fuel pin and a fuel block with or without a control rod hole were off by 6, -362, and -183 pcm Dk from comparable MCNP solutions, respectively. The 2-D and 3-D one-third core calculations were also conducted for the all-rods-out (ARO) and all-rods-in (ARI) configurations, producing reasonable results. Figure 1 illustrates the intermediate (1.5 eV - 17 keV) and thermal (below 1.5 eV) group flux distributions. As seen from VHTR cores with annular fuels, the intermediate group fluxes are relatively high in the fuel region, but the thermal group fluxes are higher in the inner and outer graphite reflector regions than in the fuel region. To support the current project, a new three-year I-NERI collaboration involving ANL and KAERI was started in November 2011, focused on performing in-depth verification and validation of high-fidelity multi-physics simulation codes for LWR and VHTR. The work scope includes generating improved cross section libraries for the targeted reactor types, developing benchmark models for verification and validation of the neutronics code with or without thermo-fluid feedback, and performing detailed comparisons of predicted reactor parameters against both Monte Carlo solutions and experimental measurements. The following list summarizes the work conducted so far for PROTEUS-Thermal Tasks: Unification of different versions of DeCART was initiated, and at the same time code modernization was conducted to make code unification efficient; (2) Regeneration of cross section libraries was attempted for the targeted reactor types, and the procedure for generating cross section libraries was updated by replacing CENTRM with MCNP for reference resonance integrals; (3) The MHTGR-350 benchmark core was simulated using DeCART with VHTR-specific 238-group ENDF/B-VII.0 library, and MCNP calculations were performed for comparison; and (4) Benchmark problems for PWR and BWR analysis were prepared for the DeCART verification/validation effort. In the coming months, the work listed above will be completed. Cross section libraries will be generated with optimized group structures for specific reactor types.« less
TESS: A RELATIVISTIC HYDRODYNAMICS CODE ON A MOVING VORONOI MESH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duffell, Paul C.; MacFadyen, Andrew I., E-mail: pcd233@nyu.edu, E-mail: macfadyen@nyu.edu
2011-12-01
We have generalized a method for the numerical solution of hyperbolic systems of equations using a dynamic Voronoi tessellation of the computational domain. The Voronoi tessellation is used to generate moving computational meshes for the solution of multidimensional systems of conservation laws in finite-volume form. The mesh-generating points are free to move with arbitrary velocity, with the choice of zero velocity resulting in an Eulerian formulation. Moving the points at the local fluid velocity makes the formulation effectively Lagrangian. We have written the TESS code to solve the equations of compressible hydrodynamics and magnetohydrodynamics for both relativistic and non-relativistic fluidsmore » on a dynamic Voronoi mesh. When run in Lagrangian mode, TESS is significantly less diffusive than fixed mesh codes and thus preserves contact discontinuities to high precision while also accurately capturing strong shock waves. TESS is written for Cartesian, spherical, and cylindrical coordinates and is modular so that auxiliary physics solvers are readily integrated into the TESS framework and so that this can be readily adapted to solve general systems of equations. We present results from a series of test problems to demonstrate the performance of TESS and to highlight some of the advantages of the dynamic tessellation method for solving challenging problems in astrophysical fluid dynamics.« less
Second-order hydrodynamics and universality in non-conformal holographic fluids
NASA Astrophysics Data System (ADS)
Kleinert, Philipp; Probst, Jonas
2016-12-01
We study second-order hydrodynamic transport in strongly coupled non-conformal field theories with holographic gravity duals in asymptotically anti-de Sitter space. We first derive new Kubo formulae for five second-order transport coefficients in non-conformal fluids in (3 + 1) dimensions. We then apply them to holographic RG flows induced by scalar operators of dimension Δ = 3. For general background solutions of the dual bulk geometry, we find explicit expressions for the five transport coefficients at infinite coupling and show that a specific combination, tilde{H}=2η {τ}_{π }-2(κ -{κ}^{ast})-{λ}_2 , always vanishes. We prove analytically that the Haack-Yarom identity H = 2 ητ π - 4λ1 - λ2 = 0, which is known to be true for conformal holographic fluids at infinite coupling, also holds when taking into account leading non-conformal corrections. The numerical results we obtain for two specific families of RG flows suggest that H vanishes regardless of conformal symmetry. Our work provides further evidence that the Haack-Yarom identity H = 0 may be universally satisfied by strongly coupled fluids.
Smooth Particle Hydrodynamics for Surf Zone Waves
2009-01-01
2010.) The GPU-SPHysics code, initiated by Dr. Alexis Hérault at the Istituto Nazionale di Geofisica e Vulcanologia in Sicily, has been applied to... Geofisica e Vulcanologia, sezione di Catania, for the development of GPU-SPHysics. Drs. Hérault and Bilotta were in residence at JHU during January of
Hydrodynamic instabilities at an oblique interface: Experiments and Simulations
NASA Astrophysics Data System (ADS)
Douglas-Mann, E.; Fiedler Kawaguchi, C.; Trantham, M. A.; Malamud, G.; Wan, W. C.; Klein, S. R.; Kuranz, C. C.
2017-10-01
Hydrodynamic instabilities are important phenomena that occur in high-energy-density systems, such as astrophysical systems and inertial confinement fusion experiments, where pressure, density, and velocity gradients are present. Using a 30 ns laser pulse from the Omega EP laser system, a steady shock wave is driven into a target. A Spherical Crystal Imager provides high-resolution x-ray radiographs to study the evolution of complex hydrodynamic structures. This experiment has a light-to-heavy interface at an oblique angle with a precision-machined perturbation. The incident shock wave deposits shear and vorticity at the interface causing the perturbation to grow via Richtmyer-Meshkov and Kelvin-Helmholtz processes. We present results from analysis of radiographic data and hydrodynamics simulations showing the evolution of the shock and unstable structure. This work is supported by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0002956 and the National Science Foundation through the Basic Plasma Science and Engineering program and LILAC.
The CRONOS Code for Astrophysical Magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Kissmann, R.; Kleimann, J.; Krebl, B.; Wiengarten, T.
2018-06-01
We describe the magnetohydrodynamics (MHD) code CRONOS, which has been used in astrophysics and space-physics studies in recent years. CRONOS has been designed to be easily adaptable to the problem in hand, where the user can expand or exchange core modules or add new functionality to the code. This modularity comes about through its implementation using a C++ class structure. The core components of the code include solvers for both hydrodynamical (HD) and MHD problems. These problems are solved on different rectangular grids, which currently support Cartesian, spherical, and cylindrical coordinates. CRONOS uses a finite-volume description with different approximate Riemann solvers that can be chosen at runtime. Here, we describe the implementation of the code with a view toward its ongoing development. We illustrate the code’s potential through several (M)HD test problems and some astrophysical applications.
2010-01-01
Ruth H. Preller, 7300 Security, Code 1226 Office of Counsel.Code 1008.3 ADOR/Director NCST E. R. Franchi , 7000 Public Affairs (Unclassified...Ruth H. Prellcr. 7300 Security. Code 1226 Office nl Cot nsal.Co’de’""" 10OB.3 ADORfOireMO,’ NCST. E. R. Franchi , 7000 Public Affairs ftMCl»SS/»d...over the global ocean. Similarly, the monthly mean MODAS SST climatology is based on Advanced Very-High Resolution Radiometer (AVHRR) Multi
Dispersive shock waves and modulation theory
NASA Astrophysics Data System (ADS)
El, G. A.; Hoefer, M. A.
2016-10-01
There is growing physical and mathematical interest in the hydrodynamics of dissipationless/dispersive media. Since G.B. Whitham's seminal publication fifty years ago that ushered in the mathematical study of dispersive hydrodynamics, there has been a significant body of work in this area. However, there has been no comprehensive survey of the field of dispersive hydrodynamics. Utilizing Whitham's averaging theory as the primary mathematical tool, we review the rich mathematical developments over the past fifty years with an emphasis on physical applications. The fundamental, large scale, coherent excitation in dispersive hydrodynamic systems is an expanding, oscillatory dispersive shock wave or DSW. Both the macroscopic and microscopic properties of DSWs are analyzed in detail within the context of the universal, integrable, and foundational models for uni-directional (Korteweg-de Vries equation) and bi-directional (Nonlinear Schrödinger equation) dispersive hydrodynamics. A DSW fitting procedure that does not rely upon integrable structure yet reveals important macroscopic DSW properties is described. DSW theory is then applied to a number of physical applications: superfluids, nonlinear optics, geophysics, and fluid dynamics. Finally, we survey some of the more recent developments including non-classical DSWs, DSW interactions, DSWs in perturbed and inhomogeneous environments, and two-dimensional, oblique DSWs.
Quantitative analysis of vacuum-ultraviolet radiation from nanosecond laser-zinc interaction
NASA Astrophysics Data System (ADS)
Parchamy, Homaira; Szilagyi, John; Masnavi, Majid; Richardson, Martin
2018-07-01
The paper reports measurements of the vacuum-ultraviolet spectral irradiances of a flat zinc target over a wavelength region of 124-164 nm generated by 10 and 60 ns duration low-intensities, 5 ×109 - 3 ×1010 W cm-2, 1.06 μm wavelength laser pulses. Maximum radiation conversion efficiencies of 2.5%/2πsr and 0.8%/2πsr were measured for 60 and 10 ns laser pulses at the intensities of 5 ×109 and 1.4 ×1010 W cm-2, respectively. Atomic structure calculations using a relativistic configuration-interaction, flexible atomic code and a developed non-local thermodynamic equilibrium population kinetics model in comparison to the experimental spectra detected by the Seya-Namioka type monochromator reveal the strong broadband experimental emission originates mainly from 3d94p-3d94s, 3d94d-3d94p and 3d84p-3d84s, 3d84d-3d84p unresolved-transition arrays of double and triple ionized zinc, respectively. Two-dimensional radiation-hydrodynamics code is used to investigate time-space plasma evolution and spectral radiation of a 10 ns full-width-at-half-maximum Gaussian laser pulse-zinc interaction.
Fully dynamical simulation of central nuclear collisions.
van der Schee, Wilke; Romatschke, Paul; Pratt, Scott
2013-11-27
We present a fully dynamical simulation of central nuclear collisions around midrapidity at LHC energies. Unlike previous treatments, we simulate all phases of the collision, including the equilibration of the system. For the simulation, we use numerical relativity solutions to anti-de Sitter space/conformal field theory for the preequilibrium stage, viscous hydrodynamics for the plasma equilibrium stage, and kinetic theory for the low-density hadronic stage. Our preequilibrium stage provides initial conditions for hydrodynamics, resulting in sizable radial flow. The resulting light particle spectra reproduce the measurements from the ALICE experiment at all transverse momenta.
Migration of Gas Giant Planets in a Gravitationally Unstable Disk
NASA Astrophysics Data System (ADS)
Desai, Karna Mahadev; Steiman-Cameron, Thomas Y.; Michael, Scott; Durisen, Richard H.
2017-01-01
Understanding the migration of giant planets in gravitationally unstable protoplanetary disks is important for understanding planetary system architecture, especially the existence of planets orbiting close to and at large distances from their stars. Migration rates can determine the efficiency of planet formation and survival rates of planets. We present results from simulations of 0.3, 1, and 3 Jupiter-mass planets in a 0.14 M⊙ protoplanetary disk around a 1 M⊙ star, where the disk is marginally unstable to gravitational instabilities (GIs). Each planet is simulated separately. We use CHYMERA, a radiative 3D hydrodynamics code developed by the Indiana University Hydrodynamics Group. The simulations include radiative cooling governed by realistic dust opacities. The planets are inserted into the disk, once the disk has settled into its quasi-steady GI-active phase. We simulate each of the 0.3, 1, and 3 Jupiter-mass planets by inserting it at three different locations in the disk, at the corotation radius and at the inner and outer Lindblad resonances. No matter where placed, the 3 Jupiter-mass planets tend to drift inexorably inward but with a rate that slows after many orbital periods. The 1 Jupiter-mass planets migrate mostly inward, but their motion can be delayed or reversed near the corotation of the two-armed wave. The 0.3 Jupiter-mass planets are much less predictable and frequently migrate outward. We analyze how the density of matter and waves in the disk at different azimuthal locations affect the migration.
Phase equilibria computations of multicomponent mixtures at specified internal energy and volume
NASA Astrophysics Data System (ADS)
Myint, Philip C.; Nichols, Albert L., III; Springer, H. Keo
2017-06-01
Hydrodynamic simulation codes for high-energy density science applications often use internal energy and volume as their working variables. As a result, the codes must determine the thermodynamic state that corresponds to the specified energy and volume by finding the global maximum in entropy. This task is referred to as the isoenergetic-isochoric flash. Solving it for multicomponent mixtures is difficult because one must find not only the temperature and pressure consistent with the energy and volume, but also the number of phases present and the composition of the phases. The few studies on isoenergetic-isochoric flash that currently exist all require the evaluation of many derivatives that can be tedious to implement. We present an alternative approach that is based on a derivative-free method: particle swarm optimization. The global entropy maximum is found by running several instances of particle swarm optimization over different sets of randomly selected points in the search space. For verification, we compare the predicted temperature and pressure to results from the related, but simpler problem of isothermal-isobaric flash. All of our examples involve the equation of state we have recently developed for multiphase mixtures of the energetic materials HMX, RDX, and TNT. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Harrison, T. W.; Polagye, B. L.
2016-02-01
Coastal ecosystems are characterized by spatially and temporally varying hydrodynamics. In marine renewable energy applications, these variations strongly influence project economics and in oceanographic studies, they impact accuracy of biological transport and pollutant dispersion models. While stationary point or profile measurements are relatively straight forward, spatial representativeness of point measurements can be poor due to strong gradients. Moving platforms, such as AUVs or surface vessels, offer better coverage, but suffer from energetic constraints (AUVs) and resolvable scales (vessels). A system of sub-surface, drifting sensor packages is being developed to provide spatially distributed, synoptic data sets of coastal hydrodynamics with meter-scale resolution over a regional extent of a kilometer. Computational investigation has informed system parameters such as drifter size and shape, necessary position accuracy, number of drifters, and deployment methods. A hydrodynamic domain with complex flow features was created using a computational fluid dynamics code. A simple model of drifter dynamics propagate the drifters through the domain in post-processing. System parameters are evaluated relative to their ability to accurately recreate domain hydrodynamics. Implications of these results for an inexpensive, depth-controlled Lagrangian drifter system is presented.
Modeling of laser induced air plasma and shock wave dynamics using 2D-hydrodynamic simulations
NASA Astrophysics Data System (ADS)
Paturi, Prem Kiran; S, Sai Shiva; Chelikani, Leela; Ikkurthi, Venkata Ramana; C. D., Sijoy; Chaturvedi, Shashank; Acrhem, University Of Hyderabad Team; Computational Analysis Division, Bhabha Atomic Research Centre, Visakhapatnam Team
2017-06-01
The laser induced air plasma dynamics and the SW evolution modeled using the two dimensional hydrodynamic code by considering two different EOS: ideal gas EOS with charge state effects taken into consideration and Chemical Equilibrium applications (CEA) EOS considering the chemical kinetics of different species will be presented. The inverse bremsstrahlung absorption process due to electron-ion and electron-neutrals is considered for the laser-air interaction process for both the models. The numerical results obtained with the two models were compared with that of the experimental observations over the time scales of 200 - 4000 ns at an input laser intensity of 2.3 ×1010 W/cm2. The comparison shows that the plasma and shock dynamics differ significantly for two EOS considered. With the ideas gas EOS the asymmetric expansion and the subsequent plasma dynamics have been well reproduced as observed in the experiments, whereas with the CEA model these processes were not reproduced due to the laser energy absorption occurring mostly at the focal volume. ACRHEM team thank DRDO, India for funding.
Why hasn't a seawater intrusion yet happened in the Kaluvelli-Pondicherry basin, Tamil Nadu, India?
NASA Astrophysics Data System (ADS)
Vincent, Aude; Violette, Sophie
2016-04-01
Worldwide, coastal aquifers are threatened by seawater intrusion. The threat is even bigger when those aquifers are overexploited, for example for irrigation, or when their recharge is low due to a semi-arid or arid climate. The sedimentary basin studied here presents both this characteristics, and water level records in the main aquifer can be as low as 30m below MSL. Though, no seawater intrusion has been monitored yet. To understand why, and because a good knowledge of a system hydrodynamic is a necessary step to an efficient water management strategy, hydrogeological numerical modelling of this multi-layered system has been conducted. Existing and acquired geological and hydrodynamic data have been implemented into a quasi-3D hydrogeological model performed with NEWSAM code. Recharge had been previously quantified through the intercomparison of hydrological models, based on surface flow field measurements. During the hydrogeological modelling, sensitivity tests on parameters, and on the nature of the boundary condition with the sea, led to the hypothesis of an offshore freshwater stock. Extension of this fresh groundwater stock has been calculated thanks to Groen approximation.
On the fragmentation boundary in magnetized self-gravitating discs
NASA Astrophysics Data System (ADS)
Forgan, Duncan; Price, Daniel J.; Bonnell, Ian
2017-04-01
We investigate the role of magnetic fields in the fragmentation of self-gravitating discs using 3D global ideal magnetohydrodynamic simulations performed with the PHANTOM smoothed particle hydrodynamics code. For initially toroidal fields, we find two regimes. In the first, where the cooling time is greater than five times the dynamical time, magnetic fields reduce spiral density wave amplitudes, which in turn suppresses fragmentation. This is the case even if the magnetic pressure is only a 10th of the thermal pressure. The second regime occurs when the cooling time is sufficiently short that magnetic fields cannot halt fragmentation. We find that magnetized discs produce more massive fragments, due to both the additional pressure exerted by the magnetic field and the additional angular momentum transport induced by Maxwell stresses. The fragments are confined to a narrower range of initial semimajor axes than those in unmagnetized discs. The orbital eccentricity and inclination distributions of unmagnetized and magnetized disc fragments are similar. Our results suggest that the fragmentation boundary could be at cooling times a factor of 2 lower than predicted by purely hydrodynamical models.
The CERN Large Hadron Collider as a tool to study high-energy density matter.
Tahir, N A; Kain, V; Schmidt, R; Shutov, A; Lomonosov, I V; Gryaznov, V; Piriz, A R; Temporal, M; Hoffmann, D H H; Fortov, V E
2005-04-08
The Large Hadron Collider (LHC) at CERN will generate two extremely powerful 7 TeV proton beams. Each beam will consist of 2808 bunches with an intensity per bunch of 1.15x10(11) protons so that the total number of protons in one beam will be about 3x10(14) and the total energy will be 362 MJ. Each bunch will have a duration of 0.5 ns and two successive bunches will be separated by 25 ns, while the power distribution in the radial direction will be Gaussian with a standard deviation, sigma=0.2 mm. The total duration of the beam will be about 89 mus. Using a 2D hydrodynamic code, we have carried out numerical simulations of the thermodynamic and hydrodynamic response of a solid copper target that is irradiated with one of the LHC beams. These calculations show that only the first few hundred proton bunches will deposit a high specific energy of 400 kJ/g that will induce exotic states of high energy density in matter.
Effects of waves on water dispersion in a semi-enclosed estuarine bay
NASA Astrophysics Data System (ADS)
Delpey, M. T.; Ardhuin, F.; Otheguy, P.
2012-04-01
The bay of Saint Jean de Luz - Ciboure is a touristic destination located in the south west of France on the Basque coast. This small bay is 1.5km wide for 1km long. It is semi-enclosed by breakwaters, so that the area is mostly protected from waves except in its eastern part, where wave breaking is regularly observed over a shallow rock shelf. In the rest of the area the currents are generally weak. The bay receives fresh water inflows from two rivers. During intense raining events, the rivers can introduce pollutants in the bay. The input of pollutants combined with the low level dynamic of the area can affect the water quality for several days. To study such a phenomenon, mechanisms of water dispersion in the bay are investigated. The present paper focuses on the effects of waves on bay dynamics. Several field experiments were conducted in the area, combining wave and current measurements from a set of ADCP and ADV, lagrangian difter experiments in the surfzone, salinity and temperature profile measurements. An analysis of this set of various data is provided. It reveals that the bay combines remarkable density stratification due to fresh water inflows and occasionally intense wave-induced currents in the surfzone. These currents have a strong influence on river plume dynamics when the sea state is energetic. Moreover, modifications of hydrodynamics in the bay passes are found to be remarkably correlated with sea state evolutions. This result suggests a significant impact of waves on the bay flushing. To further analyse these phenomena, a three dimensional numerical model of bay hydrodynamics is developed. The model aims at reproducing fresh water inflows combined with wind-, tide- and wave-induced currents and mixing. The model of the bay is implemented using the code MOHID , which has been modified to allow the three dimensional representation of wave-current interactions proposed by Ardhuin et al. [2008b] . The circulation is forced by the wave field modelled with the code WAVEWATCHIII . A first confrontation between model results and in situ observations is provided, showing a reasonable agreement. ----------------------------------------------------------- 1 Braunschweig, F., Chamble, P., Fernandes, L., Pina, P., Neves, R., The object-oriented design of the integrated modelling system MOHID, Computational Methods in Water Resources International Conference (North Carolina, USA: Chapel Hill). 2 Ardhuin, F., Rascle, N., Belibassakis, K. A., 2008b. Explicit wave-averaged primitive equations using a generalized Lagrangian mean. Ocean Modelling 20, 35-60. 3 Tolman, H. L., 2009. User manual and system documentation of WAVEWATCHIIITM version3.14. Tech. Rep. 276, NOAA/NWS/NCEP/MMAB.
NASA Astrophysics Data System (ADS)
De Lucia, Marco; Kempka, Thomas; Afanasyev, Andrey; Melnik, Oleg; Kühn, Michael
2016-04-01
Coupled reactive transport simulations, especially in heterogeneous settings considering multiphase flow, are extremely time consuming and suffer from significant numerical issues compared to purely hydrodynamic simulations. This represents a major hurdle in the assessment of geological subsurface utilization, since it constrains the practical application of reactive transport modelling to coarse spatial discretization or oversimplified geological settings. In order to overcome such limitations, De Lucia et al. [1] developed and validated a one-way coupling approach between geochemistry and hydrodynamics, which is particularly well suited for CO2 storage simulations, while being of general validity. In the present study, the models used for the validation of the one-way coupling approach introduced by De Lucia et al. (2015), and originally performed with the TOUGHREACT simulator, are transferred to and benchmarked against the multiphase reservoir simulator MUFITS [2]. The geological model is loosely inspired by an existing CO2 storage site. Its grid comprises 2,950 elements enclosed in a single layer, but reflecting a realistic three-dimensional anticline geometry. For the purpose of this comparison, homogeneous and heterogeneous scenarios in terms of porosity and permeability were investigated. In both cases, the results of the MUFITS simulator are in excellent agreement with those produced with the fully-coupled TOUGHREACT simulator, while profiting from significantly higher computational performance. This study demonstrates how a computationally efficient simulator such as MUFITS can be successfully included in a coupled process simulation framework, and also suggests ameliorations and specific strategies for the coupling of chemical processes with hydrodynamics and heat transport, aiming at tackling geoscientific problems beyond the storage of CO2. References [1] De Lucia, M., Kempka, T., and Kühn, M. A coupling alternative to reactive transport simulations for long-term prediction of chemical reactions in heterogeneous CO2 storage systems, Geosci. Model Dev., 8, 279-294, 2015, doi:10.5194/gmd-8-279-2015 [2] Afanasyev, A.A. Application of the reservoir simulator MUFITS for 3D modeling of CO2 storage in geological formations, Energy Procedia, 40, 365-374, 2013, doi:10.1016/j.egypro.2013.08.042
Star and Planet Formation through Cosmic Time
NASA Astrophysics Data System (ADS)
Lee, Aaron Thomas
The computational advances of the past several decades have allowed theoretical astrophysics to proceed at a dramatic pace. Numerical simulations can now simulate the formation of individual molecules all the way up to the evolution of the entire universe. Observational astrophysics is producing data at a prodigious rate, and sophisticated analysis techniques of large data sets continue to be developed. It is now possible for terabytes of data to be effectively turned into stunning astrophysical results. This is especially true for the field of star and planet formation. Theorists are now simulating the formation of individual planets and stars, and observing facilities are finally capturing snapshots of these processes within the Milky Way galaxy and other galaxies. While a coherent theory remains incomplete, great strides have been made toward this goal. This dissertation discusses several projects that develop models of star and planet forma- tion. This work spans large spatial and temporal scales: from the AU-scale of protoplanetary disks all the way up to the parsec-scale of star-forming clouds, and taking place in both contemporary environments like the Milky Way galaxy and primordial environments at redshifts of z 20. Particularly, I show that planet formation need not proceed in incremental stages, where planets grow from millimeter-sized dust grains all the way up to planets, but instead can proceed directly from small dust grains to large kilometer-sized boulders. The requirements for this model to operate effectively are supported by observations. Additionally, I draw suspicion toward one model for how you form high mass stars (stars with masses exceeding 8 Msun), which postulates that high-mass stars are built up from the gradual accretion of mass from the cloud onto low-mass stars. I show that magnetic fields in star forming clouds thwart this transfer of mass, and instead it is likely that high mass stars are created from the gravitational collapse of large clouds. This work also provides a sub-grid model for computational codes that employ sink particles accreting from magnetized gas. Finally, I analyze the role that radiation plays in determining the final masses of the first stars to ever form in the universe. These stars formed in starkly different environments than stars form in today, and the role of the direct radiation from these stars turns out to be a crucial component of primordial star formation theory. These projects use a variety of computational tools, including the use of spectral hydrodynamics codes, magneto-hydrodynamics grid codes that employ adaptive mesh refinement techniques, and long characteristic ray tracing methods. I develop and describe a long characteristic ray tracing method for modeling hydrogen-ionizing radiation from stars. Additionally, I have developed Monte Carlo routines that convert hydrodynamic data used in smoothed particle hydrodynamics codes for use in grid-based codes. Both of these advances will find use beyond simulations of star and planet formation and benefit the astronomical community at large.
Woo, K. M.; Betti, R.; Shvarts, D.; ...
2018-05-09
Tmore » he study of Rayleigh–aylor instability in the deceleration phase of inertial confinement fusion implosions is carried out using the three-dimensional (3-D) radiation-hydrodynamic Eulerian parallel code DEC3D. In this paper, we show that the yield-over-clean is a strong function of the residual kinetic energy (RKE) for low modes. Our analytical models indicate that the behavior of larger hot-spot volumes observed in low modes and the consequential pressure degradation can be explained in terms of increasing the RKE. hese results are derived using a simple adiabatic implosion model of the deceleration phase as well as through an extensive set of 3-D single-mode simulations using the code DEC3D. he effect of the bulk velocity broadening on ion temperature asymmetries is analyzed for different mode numbers ℓ = 1 -12. he jet observed in low mode ℓ = 1 is shown to cause the largest ion temperature variation in the mode spectrum. Finally, the vortices of high modes within the cold bubbles are shown to cause lower ion temperature variations than low modes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woo, K. M.; Betti, R.; Shvarts, D.
Tmore » he study of Rayleigh–aylor instability in the deceleration phase of inertial confinement fusion implosions is carried out using the three-dimensional (3-D) radiation-hydrodynamic Eulerian parallel code DEC3D. In this paper, we show that the yield-over-clean is a strong function of the residual kinetic energy (RKE) for low modes. Our analytical models indicate that the behavior of larger hot-spot volumes observed in low modes and the consequential pressure degradation can be explained in terms of increasing the RKE. hese results are derived using a simple adiabatic implosion model of the deceleration phase as well as through an extensive set of 3-D single-mode simulations using the code DEC3D. he effect of the bulk velocity broadening on ion temperature asymmetries is analyzed for different mode numbers ℓ = 1 -12. he jet observed in low mode ℓ = 1 is shown to cause the largest ion temperature variation in the mode spectrum. Finally, the vortices of high modes within the cold bubbles are shown to cause lower ion temperature variations than low modes.« less
Seddiki, Khawla; Godart, François; Aiese Cigliano, Riccardo; Sanseverino, Walter; Barakat, Mohamed; Ortet, Philippe; Rébeillé, Fabrice; Maréchal, Eric
2018-01-01
ABSTRACT Thraustochytrids are ecologically and biotechnologically relevant marine species. We report here the de novo assembly and annotation of the whole-genome sequence of a new thraustochytrid strain, CCAP_4062/3. The genome size was estimated at 38.7 Mb with 11,853 predicted coding sequences, and the GC content was scored at 57%. PMID:29545303
Computing NLTE Opacities -- Node Level Parallel Calculation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holladay, Daniel
Presentation. The goal: to produce a robust library capable of computing reasonably accurate opacities inline with the assumption of LTE relaxed (non-LTE). Near term: demonstrate acceleration of non-LTE opacity computation. Far term (if funded): connect to application codes with in-line capability and compute opacities. Study science problems. Use efficient algorithms that expose many levels of parallelism and utilize good memory access patterns for use on advanced architectures. Portability to multiple types of hardware including multicore processors, manycore processors such as KNL, GPUs, etc. Easily coupled to radiation hydrodynamics and thermal radiative transfer codes.
Hydrodynamic model of cells for designing systems of urban groundwater drainage
NASA Astrophysics Data System (ADS)
Zimmermann, Eric; Riccardi, Gerardo
2000-08-01
An improved mathematical hydrodynamic quasi-two-dimensional model of cells, CELSUB3, is presented for simulating drainage systems that consist of pumping well fields or subsurface drains. The CELSUB3 model is composed of an assemblage of algorithms that have been developed and tested previously and that simulate saturated flow in porous media, closed conduit flow, and flow through pumping stations. A new type of link between aquifer cells and drainage conduits is proposed. This link is verified in simple problems with well known analytical solutions. The correlation between results from analytical and mathematical solutions was considered satisfactory in all cases. To simulate more complex situations, the new proposed version, CELSUB3, was applied in a project designed to control the water-table level within a sewer system in Chañar Ladeado Town, Santa Fe Province, Argentina. Alternative drainage designs, which were evaluated under conditions of dynamic recharge caused by rainfall in a critical year (wettest year for the period of record) and a typical year, are briefly described. After analyzing ten alternative designs, the best technical-economic solution is a subsurface drainage system of closed conduits with pumping stations and evacuation channels. Résumé. Un modèle hydrodynamique perfectionné de cellules en quasi 2D, CELSUB3, est présenté dans le but de simuler des systèmes de drainage qui consistent en des champs de puits de pompage ou de drains souterrains. Le modèle CELSUB3 est composé d'un assemblage d'algorithmes développés et testés précédemment et qui simulent des écoulements en milieu poreux saturé, en conduites et dans des stations de pompage. Un nouveau type de lien entre des cellules d'aquifères et des drains est proposé. Ce lien est vérifié dans des problèmes simples dont les solutions analytiques sont bien connues. La corrélation entre les résultats des solutions analytiques et des solutions mathématiques a été considérée comme satisfaisante dans tous les cas. Afin de simuler des situations plus complexes, la nouvelle version proposée, CELSUB3, a été mise en œuvre dans un projet destiné à contrôler le niveau de la nappe à l'intérieur d'un système d'égouts, dans la ville de Chaar Ladeado (province de Santa Fe, Argentine). Différentes organisations du projet de drainage, qui ont été testées pour des conditions de recharge dynamique causées par la pluie au cours d'une année critique (la plus humide de la chronique disponible) et une année typique, sont brièvement décrites. Après analyse de dix organisations différentes, la meilleure solution technico-économique retenue est un système de drainage souterrain de conduites avec des stations de pompage et des canaux d'évacuation. Resumen. Se presenta un modelo matemático hidrodinámico cuasi-bidimensional de celdas, CELSUB3, apto para la simulación integral de sistemas de drenaje subterráneo basados en campos de bombeo o drenes subsuperficiales. El modelo de simulación presenta un ensamble de algoritmos, previamente desarrollados y testeados, que representan al escurrimiento a través del medio poroso saturado, escurrimiento en conducciones cerradas, estaciones de bombeo, etc. En la estructura del modelo se propone un nuevo tipo de vinculación entre celdas acuíferas y conductos de drenaje, la cual es verificada en problemas simples con solución analítica conocida arrojando, en todos los casos, resultados satisfactorios. Abordando situaciones más complejas, la nueva versión propuesta fue aplicada en un proyecto de control de niveles freáticos que acompaña un sistema de conductos cloacales, en la localidad de Chañar Ladeado, Santa Fe, Argentina. Se describen las alternativas de drenaje consideradas las cuales fueron evaluadas bajo recargas dinámicas provocadas por años críticamente lluviosos y en situaciones típicas. Los resultados derivados permitieron definir, tras analizar una decena de proyectos alternativos, la mejor solución técnico-económica consistente en un sistema de drenes subterráneos, estaciones de bombeo y canales de evacuación.
Tidal disruptions by rotating black holes: relativistic hydrodynamics with Newtonian codes
NASA Astrophysics Data System (ADS)
Tejeda, Emilio; Gafton, Emanuel; Rosswog, Stephan; Miller, John C.
2017-08-01
We propose an approximate approach for studying the relativistic regime of stellar tidal disruptions by rotating massive black holes. It combines an exact relativistic description of the hydrodynamical evolution of a test fluid in a fixed curved space-time with a Newtonian treatment of the fluid's self-gravity. Explicit expressions for the equations of motion are derived for Kerr space-time using two different coordinate systems. We implement the new methodology within an existing Newtonian smoothed particle hydrodynamics code and show that including the additional physics involves very little extra computational cost. We carefully explore the validity of the novel approach by first testing its ability to recover geodesic motion, and then by comparing the outcome of tidal disruption simulations against previous relativistic studies. We further compare simulations in Boyer-Lindquist and Kerr-Schild coordinates and conclude that our approach allows accurate simulation even of tidal disruption events where the star penetrates deeply inside the tidal radius of a rotating black hole. Finally, we use the new method to study the effect of the black hole spin on the morphology and fallback rate of the debris streams resulting from tidal disruptions, finding that while the spin has little effect on the fallback rate, it does imprint heavily on the stream morphology, and can even be a determining factor in the survival or disruption of the star itself. Our methodology is discussed in detail as a reference for future astrophysical applications.
Imposed magnetic field and hot electron propagation in inertial fusion hohlraums
Strozzi, David J.; Perkins, L. J.; Marinak, M. M.; ...
2015-12-02
The effects of an imposed, axial magnetic fieldmore » $$B_{z0}$$ on hydrodynamics and energetic electrons in inertial confinement fusion indirect-drive hohlraums are studied. We present simulations from the radiation-hydrodynamics code HYDRA of a low-adiabat ignition design for the National Ignition Facility, with and without $$B_{z0}=70~\\text{T}$$. The field’s main hydrodynamic effect is to significantly reduce electron thermal conduction perpendicular to the field. This results in hotter and less dense plasma on the equator between the capsule and hohlraum wall. The inner laser beams experience less inverse bremsstrahlung absorption before reaching the wall. The X-ray drive is thus stronger from the equator with the imposed field. We study superthermal, or ‘hot’, electron dynamics with the particle-in-cell code ZUMA, using plasma conditions from HYDRA. During the early-time laser picket, hot electrons based on two-plasmon decay in the laser entrance hole (Regan et al., Phys. Plasmas, vol. 17(2), 2010, 020703) are guided to the capsule by a 70 T field. Twelve times more energy deposits in the deuterium–tritium fuel. For plasma conditions early in peak laser power, we present mono-energetic test-case studies with ZUMA as well as sources based on inner-beam stimulated Raman scattering. Furthermore, the effect of the field on deuterium–tritium deposition depends strongly on the source location, namely whether hot electrons are generated on field lines that connect to the capsule.« less
Jet-torus connection in radio galaxies. Relativistic hydrodynamics and synthetic emission
NASA Astrophysics Data System (ADS)
Fromm, C. M.; Perucho, M.; Porth, O.; Younsi, Z.; Ros, E.; Mizuno, Y.; Zensus, J. A.; Rezzolla, L.
2018-01-01
Context. High resolution very long baseline interferometry observations of active galactic nuclei have revealed asymmetric structures in the jets of radio galaxies. These asymmetric structures may be due to internal asymmetries in the jets or they may be induced by the different conditions in the surrounding ambient medium, including the obscuring torus, or a combination of the two. Aims: In this paper we investigate the influence of the ambient medium, including the obscuring torus, on the observed properties of jets from radio galaxies. Methods: We performed special-relativistic hydrodynamic (SRHD) simulations of over-pressured and pressure-matched jets using the special-relativistic hydrodynamics code Ratpenat, which is based on a second-order accurate finite-volume method and an approximate Riemann solver. Using a newly developed radiative transfer code to compute the electromagnetic radiation, we modelled several jets embedded in various ambient medium and torus configurations and subsequently computed the non-thermal emission produced by the jet and thermal absorption from the torus. To better compare the emission simulations with observations we produced synthetic radio maps, taking into account the properties of the observatory. Results: The detailed analysis of our simulations shows that the observed properties such as core shift could be used to distinguish between over-pressured and pressure matched jets. In addition to the properties of the jets, insights into the extent and density of the obscuring torus can be obtained from analyses of the single-dish spectrum and spectral index maps.
Validating Hydrodynamic Growth in National Ignition Facility Implosions
NASA Astrophysics Data System (ADS)
Peterson, J. Luc
2014-10-01
The hydrodynamic growth of capsule imperfections can threaten the success of inertial confinement fusion implosions. Therefore, it is important to design implosions that are robust to hydrodynamic instabilities. However, the numerical simulation of interacting Rayleigh-Taylor and Richtmyer-Meshkov growth in these implosions is sensitive to modeling uncertainties such as radiation drive and material equations of state, the effects of which are especially apparent at high mode number (small perturbation wavelength) and high convergence ratio (small capsule radius). A series of validation experiments were conducted at the National Ignition Facility to test the ability to model hydrodynamic growth in spherically converging ignition-relevant implosions. These experiments on the Hydro-Growth Radiography platform constituted direct measurements of the growth of pre-imposed imperfections up to Legendre mode 160 and a convergence ratio of greater than four using two different laser drives: a ``low-foot'' drive used during the National Ignition Campaign and a larger adiabat ``high-foot'' drive that is modeled to be relatively more robust to ablation front hydrodynamic growth. We will discuss these experiments and how their results compare to numerical simulations and analytic theories of hydrodynamic growth, as well as their implications for the modeling of future designs. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medin, Stanislav A.; Basko, Mikhail M.; Orlov, Yurii N.
2012-07-11
Radiation hydrodynamics 1D simulations were performed with two concurrent codes, DEIRA and RAMPHY. The DEIRA code was used for DT capsule implosion and burn, and the RAMPHY code was used for computation of X-ray and fast ions deposition in the first wall liquid film of the reactor chamber. The simulations were run for 740 MJ direct drive DT capsule and Pb thin liquid wall reactor chamber of 10 m diameter. Temporal profiles for DT capsule leaking power of X-rays, neutrons and fast {sup 4}He ions were obtained and spatial profiles of the liquid film flow parameter were computed and analyzed.
Study of shock waves and related phenomena motivated by astrophysics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drake, R. P.; Keiter, P. A.; Kuranz, C. C.
This study discusses the recent research in High-Energy-Density Physics at our Center. Our work in complex hydrodynamics is now focused on mode coupling in the Richtmyer-Meshkov process and on the supersonic Kelvin-Helmholtz instability. These processes are believed to occur in a wide range of astrophysical circumstances. In radiation hydrodynamics, we are studying radiative reverse shocks relevant to cataclysmic variable stars. Our work on magnetized flows seeks to produce magnetized jets and study their interactions. We build the targets for all these experiments, and simulate them using our CRASH code. We also conduct diagnostic research, focused primarily on imaging x-ray spectroscopymore » and its applications to scattering and fluorescence.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strozzi, D. J.; Bailey, D. S.; Michel, P.
The effects of laser-plasma interactions (LPI) on the dynamics of inertial confinement fusion hohlraums are investigated in this work via a new approach that self-consistently couples reduced LPI models into radiation-hydrodynamics numerical codes. The interplay between hydrodynamics and LPI—specifically stimulated Raman scatter and crossed-beam energy transfer (CBET)—mostly occurs via momentum and energy deposition into Langmuir and ion acoustic waves. This spatially redistributes energy coupling to the target, which affects the background plasma conditions and thus, modifies laser propagation. In conclusion, this model shows reduced CBET and significant laser energy depletion by Langmuir waves, which reduce the discrepancy between modeling andmore » data from hohlraum experiments on wall x-ray emission and capsule implosion shape.« less
Study of shock waves and related phenomena motivated by astrophysics
Drake, R. P.; Keiter, P. A.; Kuranz, C. C.; ...
2016-04-01
This study discusses the recent research in High-Energy-Density Physics at our Center. Our work in complex hydrodynamics is now focused on mode coupling in the Richtmyer-Meshkov process and on the supersonic Kelvin-Helmholtz instability. These processes are believed to occur in a wide range of astrophysical circumstances. In radiation hydrodynamics, we are studying radiative reverse shocks relevant to cataclysmic variable stars. Our work on magnetized flows seeks to produce magnetized jets and study their interactions. We build the targets for all these experiments, and simulate them using our CRASH code. We also conduct diagnostic research, focused primarily on imaging x-ray spectroscopymore » and its applications to scattering and fluorescence.« less
Reinhardt, Josephine A.; Wanjiru, Betty M.; Brant, Alicia T.; Saelao, Perot; Begun, David J.; Jones, Corbin D.
2013-01-01
How non-coding DNA gives rise to new protein-coding genes (de novo genes) is not well understood. Recent work has revealed the origins and functions of a few de novo genes, but common principles governing the evolution or biological roles of these genes are unknown. To better define these principles, we performed a parallel analysis of the evolution and function of six putatively protein-coding de novo genes described in Drosophila melanogaster. Reconstruction of the transcriptional history of de novo genes shows that two de novo genes emerged from novel long non-coding RNAs that arose at least 5 MY prior to evolution of an open reading frame. In contrast, four other de novo genes evolved a translated open reading frame and transcription within the same evolutionary interval suggesting that nascent open reading frames (proto-ORFs), while not required, can contribute to the emergence of a new de novo gene. However, none of the genes arose from proto-ORFs that existed long before expression evolved. Sequence and structural evolution of de novo genes was rapid compared to nearby genes and the structural complexity of de novo genes steadily increases over evolutionary time. Despite the fact that these genes are transcribed at a higher level in males than females, and are most strongly expressed in testes, RNAi experiments show that most of these genes are essential in both sexes during metamorphosis. This lethality suggests that protein coding de novo genes in Drosophila quickly become functionally important. PMID:24146629
The application of interactive graphics to large time-dependent hydrodynamics problems
NASA Technical Reports Server (NTRS)
Gama-Lobo, F.; Maas, L. D.
1975-01-01
A written companion of a movie entitled "Interactive Graphics at Los Alamos Scientific Laboratory" was presented. While the movie presents the actual graphics terminal and the functions performed on it, the paper attempts to put in perspective the complexity of the application code and the complexity of the interaction that is possible.
Gold emissivities for hydrocode applications
NASA Astrophysics Data System (ADS)
Bowen, C.; Wagon, F.; Galmiche, D.; Loiseau, P.; Dattolo, E.; Babonneau, D.
2004-10-01
The Radiom model [M. Busquet, Phys Fluids B 5, 4191 (1993)] is designed to provide a radiative-hydrodynamic code with non-local thermodynamic equilibrium (non-LTE) data efficiently by using LTE tables. Comparison with benchmark data [M. Klapisch and A. Bar-Shalom, J. Quant. Spectrosc. Radiat. Transf. 58, 687 (1997)] has shown Radiom to be inaccurate far from LTE and for heavy ions. In particular, the emissivity was found to be strongly underestimated. A recent algorithm, Gondor [C. Bowen and P. Kaiser, J. Quant. Spectrosc. Radiat. Transf. 81, 85 (2003)], was introduced to improve the gold non-LTE ionization and corresponding opacity. It relies on fitting the collisional ionization rate to reproduce benchmark data given by the Averroès superconfiguration code [O. Peyrusse, J. Phys. B 33, 4303 (2000)]. Gondor is extended here to gold emissivity calculations, with two simple modifications of the two-level atom line source function used by Radiom: (a) a larger collisional excitation rate and (b) the addition of a Planckian source term, fitted to spectrally integrated Averroès emissivity data. This approach improves the agreement between experiments and hydrodynamic simulations.
Numerical Study of AGN Jet Propagation with Two Dimensional Relativistic Hydrodynamic Code
NASA Astrophysics Data System (ADS)
Mizuta, Akira; Yamada, Shoichi; Takabe, Hideaki
2001-12-01
We investigate the morphology of Active Galactic Nuclei(AGN) jets. AGN jets propagate over kpc ~ Mpc and their beam velocities are close to the speed of light. The reason why many jets propagate over so long a distance and sustain a very collimated structure is not well understood. It is argued taht some dimensionless parameters, the density and the pressure ratio of the jet beam and the ambient gas, the Mach number of the beam, and relative speed of the beam compared to the speed of light, are very useful to understand the morphology of jets namely, bow shocks, cocoons, nodes etc. The role of each parameters has been studied by numerical simulations. But more research is necessary to understand it systematically. We have developed 2D relativistic hydrodynamic code to analyze relativistic jets. We pay attention to the propagation velocity which is derived from 1D momentum balance in the frame of the working surface. We show some of our models and discuss the dependence of the morphology of jets on the parameter.
NASA Astrophysics Data System (ADS)
Durand, Olivier; Soulard, Laurent; Jaouen, Stephane; Heuze, Olivier; Colombet, Laurent; Cieren, Emmanuel
2017-06-01
We compare, at similar scales, the processes of microjetting and ejecta production from shocked roughened metal surfaces by using atomistic and continuous approaches. The atomistic approach is based on very large scale molecular dynamics (MD) simulations. The continuous approach is based on Eulerian hydrodynamics simulations with adaptive mesh refinement; the simulations take into account the effects of viscosity and surface tension, and they use an equation of state calculated from the MD simulations. The microjetting is generated by shock-loading above its fusion point a three-dimensional tin crystal with an initial sinusoidal free surface perturbation, the crystal being set in contact with a vacuum. Several samples with homothetic wavelengths and amplitudes of defect are simulated in order to investigate the influence of the viscosity and surface tension of the metal. The simulations show that the hydrodynamic code reproduces with a very good agreement the distributions, calculated from the MD simulations, of the ejected mass and velocity along the jet. Both codes exhibit also a similar phenomenology of fragmentation of the metallic liquid sheets ejected.
Methodes iteratives paralleles: Applications en neutronique et en mecanique des fluides
NASA Astrophysics Data System (ADS)
Qaddouri, Abdessamad
Dans cette these, le calcul parallele est applique successivement a la neutronique et a la mecanique des fluides. Dans chacune de ces deux applications, des methodes iteratives sont utilisees pour resoudre le systeme d'equations algebriques resultant de la discretisation des equations du probleme physique. Dans le probleme de neutronique, le calcul des matrices des probabilites de collision (PC) ainsi qu'un schema iteratif multigroupe utilisant une methode inverse de puissance sont parallelises. Dans le probleme de mecanique des fluides, un code d'elements finis utilisant un algorithme iteratif du type GMRES preconditionne est parallelise. Cette these est presentee sous forme de six articles suivis d'une conclusion. Les cinq premiers articles traitent des applications en neutronique, articles qui representent l'evolution de notre travail dans ce domaine. Cette evolution passe par un calcul parallele des matrices des PC et un algorithme multigroupe parallele teste sur un probleme unidimensionnel (article 1), puis par deux algorithmes paralleles l'un mutiregion l'autre multigroupe, testes sur des problemes bidimensionnels (articles 2--3). Ces deux premieres etapes sont suivies par l'application de deux techniques d'acceleration, le rebalancement neutronique et la minimisation du residu aux deux algorithmes paralleles (article 4). Finalement, on a mis en oeuvre l'algorithme multigroupe et le calcul parallele des matrices des PC sur un code de production DRAGON ou les tests sont plus realistes et peuvent etre tridimensionnels (article 5). Le sixieme article (article 6), consacre a l'application a la mecanique des fluides, traite la parallelisation d'un code d'elements finis FES ou le partitionneur de graphe METIS et la librairie PSPARSLIB sont utilises.
De novo mutations in regulatory elements in neurodevelopmental disorders
Short, Patrick J.; McRae, Jeremy F.; Gallone, Giuseppe; Sifrim, Alejandro; Won, Hyejung; Geschwind, Daniel H.; Wright, Caroline F.; Firth, Helen V; FitzPatrick, David R.; Barrett, Jeffrey C.; Hurles, Matthew E.
2018-01-01
We previously estimated that 42% of patients with severe developmental disorders carry pathogenic de novo mutations in coding sequences. The role of de novo mutations in regulatory elements affecting genes associated with developmental disorders, or other genes, has been essentially unexplored. We identified de novo mutations in three classes of putative regulatory elements in almost 8,000 patients with developmental disorders. Here we show that de novo mutations in highly evolutionarily conserved fetal brain-active elements are significantly and specifically enriched in neurodevelopmental disorders. We identified a significant twofold enrichment of recurrently mutated elements. We estimate that, genome-wide, 1-3% of patients without a diagnostic coding variant carry pathogenic de novo mutations in fetal brain-active regulatory elements and that only 0.15% of all possible mutations within highly conserved fetal brain-active elements cause neurodevelopmental disorders with a dominant mechanism. Our findings represent a robust estimate of the contribution of de novo mutations in regulatory elements to this genetically heterogeneous set of disorders, and emphasize the importance of combining functional and evolutionary evidence to identify regulatory causes of genetic disorders. PMID:29562236
Verification of low-Mach number combustion codes using the method of manufactured solutions
NASA Astrophysics Data System (ADS)
Shunn, Lee; Ham, Frank; Knupp, Patrick; Moin, Parviz
2007-11-01
Many computational combustion models rely on tabulated constitutive relations to close the system of equations. As these reactive state-equations are typically multi-dimensional and highly non-linear, their implications on the convergence and accuracy of simulation codes are not well understood. In this presentation, the effects of tabulated state-relationships on the computational performance of low-Mach number combustion codes are explored using the method of manufactured solutions (MMS). Several MMS examples are developed and applied, progressing from simple one-dimensional configurations to problems involving higher dimensionality and solution-complexity. The manufactured solutions are implemented in two multi-physics hydrodynamics codes: CDP developed at Stanford University and FUEGO developed at Sandia National Laboratories. In addition to verifying the order-of-accuracy of the codes, the MMS problems help highlight certain robustness issues in existing variable-density flow-solvers. Strategies to overcome these issues are briefly discussed.
Hypersonic simulations using open-source CFD and DSMC solvers
NASA Astrophysics Data System (ADS)
Casseau, V.; Scanlon, T. J.; John, B.; Emerson, D. R.; Brown, R. E.
2016-11-01
Hypersonic hybrid hydrodynamic-molecular gas flow solvers are required to satisfy the two essential requirements of any high-speed reacting code, these being physical accuracy and computational efficiency. The James Weir Fluids Laboratory at the University of Strathclyde is currently developing an open-source hybrid code which will eventually reconcile the direct simulation Monte-Carlo method, making use of the OpenFOAM application called dsmcFoam, and the newly coded open-source two-temperature computational fluid dynamics solver named hy2Foam. In conjunction with employing the CVDV chemistry-vibration model in hy2Foam, novel use is made of the QK rates in a CFD solver. In this paper, further testing is performed, in particular with the CFD solver, to ensure its efficacy before considering more advanced test cases. The hy2Foam and dsmcFoam codes have shown to compare reasonably well, thus providing a useful basis for other codes to compare against.
Program optimizations: The interplay between power, performance, and energy
Leon, Edgar A.; Karlin, Ian; Grant, Ryan E.; ...
2016-05-16
Practical considerations for future supercomputer designs will impose limits on both instantaneous power consumption and total energy consumption. Working within these constraints while providing the maximum possible performance, application developers will need to optimize their code for speed alongside power and energy concerns. This paper analyzes the effectiveness of several code optimizations including loop fusion, data structure transformations, and global allocations. A per component measurement and analysis of different architectures is performed, enabling the examination of code optimizations on different compute subsystems. Using an explicit hydrodynamics proxy application from the U.S. Department of Energy, LULESH, we show how code optimizationsmore » impact different computational phases of the simulation. This provides insight for simulation developers into the best optimizations to use during particular simulation compute phases when optimizing code for future supercomputing platforms. Here, we examine and contrast both x86 and Blue Gene architectures with respect to these optimizations.« less
Raskin, Cody; Owen, J. Michael
2016-10-24
Here, we discuss a generalization of the classic Keplerian disk test problem allowing for both pressure and rotational support, as a method of testing astrophysical codes incorporating both gravitation and hydrodynamics. We argue for the inclusion of pressure in rotating disk simulations on the grounds that realistic, astrophysical disks exhibit non-negligible pressure support. We then apply this test problem to examine the performance of various smoothed particle hydrodynamics (SPH) methods incorporating a number of improvements proposed over the years to address problems noted in modeling the classical gravitation-only Keplerian disk. We also apply this test to a newly developed extensionmore » of SPH based on reproducing kernels called CRKSPH. Counterintuitively, we find that pressure support worsens the performance of traditional SPH on this problem, causing unphysical collapse away from the steady-state disk solution even more rapidly than the purely gravitational problem, whereas CRKSPH greatly reduces this error.« less
Proceedings of the 2004 NASA/ONR Circulation Control Workshop, Part 1
NASA Technical Reports Server (NTRS)
Jones, Gregory S. (Editor); Joslin, Ronald D. (Editor)
2005-01-01
As technological advances influence the efficiency and effectiveness of aerodynamic and hydrodynamic applications, designs and operations, this workshop was intended to address the technologies, systems, challenges and successes specific to Coanda driven circulation control in aerodynamics and hydrodynamics. A major goal of this workshop was to determine the 2004 state-of-the-art in circulation control and understand the roadblocks to its application. The workshop addressed applications, CFD, and experiments related to circulation control, emphasizing fundamental physics, systems analysis, and applied research. The workshop consisted of 34 single session oral presentations and written papers that focused on Naval hydrodynamic vehicles (e.g. submarines), Fixed Wing Aviation, V/STOL platforms, propulsion systems (including wind turbine systems), ground vehicles (automotive and trucks) and miscellaneous applications (e.g., poultry exhaust systems and vacuum systems). Several advanced CFD codes were benchmarked using a two-dimensional NCCR circulation control airfoil. The CFD efforts highlighted inconsistencies in turbulence modeling, separation and performance predictions.
Hydrodynamical simulations of the stream-core interaction in the slow merger of massive stars
NASA Astrophysics Data System (ADS)
Ivanova, N.; Podsiadlowski, Ph.; Spruit, H.
2002-08-01
We present detailed simulations of the interaction of a stream emanating from a mass-losing secondary with the core of a massive supergiant in the slow merger of two stars inside a common envelope. The dynamics of the stream can be divided into a ballistic phase, starting at the L1 point, and a hydrodynamical phase, where the stream interacts strongly with the core. Considering the merger of a 1- and 5-Msolar star with a 20-Msolar evolved supergiant, we present two-dimensional hydrodynamical simulations using the PROMETHEUS code to demonstrate how the penetration depth and post-impact conditions depend on the initial properties of the stream material (e.g. entropy, angular momentum, stream width) and the properties of the core (e.g. density structure and rotation rate). Using these results, we present a fitting formula for the entropy generated in the stream-core interaction and a recipe for the determination of the penetration depth based on a modified Bernoulli integral.
Hydrodynamics of the Polyakov line in SU(N c) Yang-Mills
Liu, Yizhuang; Warchoł, Piotr; Zahed, Ismail
2015-12-08
We discuss a hydrodynamical description of the eigenvalues of the Polyakov line at large but finite N c for Yang-Mills theory in even and odd space-time dimensions. The hydro-static solutions for the eigenvalue densities are shown to interpolate between a uniform distribution in the confined phase and a localized distribution in the de-confined phase. The resulting critical temperatures are in overall agreement with those measured on the lattice over a broad range of N c, and are consistent with the string model results at N c = ∞. The stochastic relaxation of the eigenvalues of the Polyakov line out ofmore » equilibrium is captured by a hydrodynamical instanton. An estimate of the probability of formation of a Z(N c)bubble using a piece-wise sound wave is suggested.« less
NASA Astrophysics Data System (ADS)
Nitzsche, O.; Merkel, B.
Knowledge of the transport behavior of radionuclides in groundwater is needed for both groundwater protection and remediation of abandoned uranium mines and milling sites. Dispersion, diffusion, mixing, recharge to the aquifer, and chemical interactions, as well as radioactive decay, should be taken into account to obtain reliable predictions on transport of primordial nuclides in groundwater. This paper demonstrates the need for carrying out rehabilitation strategies before closure of the Königstein in-situ leaching uranium mine near Dresden, Germany. Column experiments on drilling cores with uranium-enriched tap water provided data about the exchange behavior of uranium. Uranium breakthrough was observed after more than 20 pore volumes. This strong retardation is due to the exchange of positively charged uranium ions. The code TReAC is a 1-D, 2-D, and 3-D reactive transport code that was modified to take into account the radioactive decay of uranium and the most important daughter nuclides, and to include double-porosity flow. TReAC satisfactorily simulated the breakthrough curves of the column experiments and provided a first approximation of exchange parameters. Groundwater flow in the region of the Königstein mine was simulated using the FLOWPATH code. Reactive transport behavior was simulated with TReAC in one dimension along a 6000-m path line. Results show that uranium migration is relatively slow, but that due to decay of uranium, the concentration of radium along the flow path increases. Results are highly sensitive to the influence of double-porosity flow. Résumé La protection des eaux souterraines et la restauration des sites miniers et de prétraitement d'uranium abandonnés nécessitent de connaître le comportement des radionucléides au cours de leur transport dans les eaux souterraines. La dispersion, la diffusion, le mélange, la recharge de l'aquifère et les interactions chimiques, de même que la décroissance radioactive, doivent être prises en compte pour obtenir des prédictions fiables concernant le transport des nucléides primaires dans les eaux souterraines. Ce papier montre la nécessité d'établir des stratégies de réhabilitation avant la fermeture de la mine d'uranium de Knigstein, près de Dresde (Allemagne). Des expériences de lessivage en colonne sur des carottes avec de l'eau enrichie en uranium fournissent des données sur le comportement de l'échange de l'uranium. La restitution de l'uranium a été observée après un lessivage par un volume supérieur à 20 fois celui des pores. Ce fort retard est dûà l'échange d'ions uranium positifs. Le code TReAC est un code de transport réactif en 1D, 2D et 3D, qui a été modifié pour prendre en compte la décroissance radioactive de l'uranium et les principaux nucléides descendants, et pour introduire l'écoulement dans un milieu à double porosité. TReAC a simulé de façon satisfaisante les courbes de restitution des expériences sur colonne et a fourni une première approche des paramètres de l'échange. L'écoulement souterrain dans la région de la mine de Knigstein a été simulé au moyen du code FLOWPATH. Le comportement du transport réactif a été simulé avec TReAC en une dimension, le long d'un axe d'écoulement long de 6000 m. Les résultats montrent que la migration de l'uranium est relativement lente ; mais du fait de la décroissance radioactive de l'uranium, la concentration en radium le long de cet axe augmente. Les résultats sont très sensibles à l'influence de l'écoulement en milieu à double porosité.
NASA Astrophysics Data System (ADS)
Kennedy, Lynn W.; Schneider, Kenneth D.
1990-07-01
A large-sclae test of the detonation of 20,000 kilograms of high explosive inside a shallow underground tunnel/chamber complex, simulating an ammunition storage magazine, was carried out in August, 1988, at the Naval Weapons Center, China Lake, California. The test was jointly sponsored by the U.S. Department of Defense Explosives Safety Board; the Safety Services Organisation of the Ministry of Defence, United Kingdom; and the Norwegian Defence Construction Service. The overall objective of the test was to determine the hazardous effects (debris, airblast, and ground motion) produced in this configuration. Actual storage magazines have considerably more overburden and are expected to contain and accidental detonation. The test configuration, on the other hand, was expected to rupture, and to scatter a significant amount of rocks, dirt and debris. Among the observations and measurements made in this test was study of airblast propagation within the storage chamber, in the access tunnel, and outside, on the tunnel ramp, prior to overburden venting. The results of these observations are being used to evaluate and validate current quantity-distance standards for the underground storage of munitions near inabited structures. As part of the prediction effort for this test, to assist with transducer ranging in the access tunnel and with post-test interpretation of the results, S-CUBED was asked to perform two-dimensional inviscid hydrodynamic code calculations of the explosive detonation and subsequent blastwave propagation in the interior chamber and access tunnel. This was accomplished using the S-CUBED Hydrodynamic Advanced Research Code (SHARC). In this paper, details of the calculations configuration will be presented. These will be compared to the actual as-built internal configuration of the tunnel/chamber complex. Results from the calculations, including contour plots and airblast waveforms, will be shown. The latter will be compared with experimental records obtained at several points within the tunnel.
Coding pulmonary sepsis and mortality statistics in Rio de Janeiro, RJ.
Cardoso, Bruno Baptista; Kale, Pauline Lorena
2016-01-01
This study aimed to describe "pulmonary sepsis" reported as a cause of death, measure its association to pneumonia, and the significance of the coding rules in mortality statistics, including the diagnosis of pneumonia on death certificates (DC) with the mention of pulmonary sepsis in Rio de Janeiro, Brazil, in 2011. DC with mention of pulmonary sepsis was identified, regardless of the underlying cause of death. Medical records related to the certificates with reference to "pulmonary sepsis" were reviewed and physicians were interviewed to measure the association between pulmonary sepsis and pneumonia. A simulation was performed in the mortality data by inserting the International Classification of Diseases (ICD-10) code for pneumonia in the certificates with pulmonary sepsis. "Pulmonary sepsis" constituted 30.9% of reported sepsis and pneumonia was not reported in 51.3% of these DC. Pneumonia was registered in 82.8% of the sample of the medical records. Among physicians interviewed, 93.3% declared pneumonia as the most common cause of "pulmonary sepsis." The simulation of the coding process resulted in a different underlying cause of death for 7.8% of the deaths with sepsis reported and 2.4% of all deaths, regardless the original cause. The conclusion is that "pulmonary sepsis" is frequently associated to pneumonia and that the addition of the ICD-10 code for pneumonia in DC could affect the mortality statistics, highlighting the need to improve mortality coding rules.
NASA Astrophysics Data System (ADS)
Schartmann, M.; Meisenheimer, K.; Klahr, H.; Camenzind, M.; Wolf, S.; Henning, Th.
Recently, the MID-infrared Interferometric instrument (MIDI) at the VLTI has shown that dust tori in the two nearby Seyfert galaxies NGC 1068 and the Circinus galaxy are geometrically thick and can be well described by a thin, warm central disk, surrounded by a colder and fluffy torus component. By carrying out hydrodynamical simulations with the help of the TRAMP code \\citep{schartmann_Klahr_99}, we follow the evolution of a young nuclear star cluster in terms of discrete mass-loss and energy injection from stellar processes. This naturally leads to a filamentary large scale torus component, where cold gas is able to flow radially inwards. The filaments open out into a dense and very turbulent disk structure. In a post-processing step, we calculate observable quantities like spectral energy distributions or images with the help of the 3D radiative transfer code MC3D \\citep{schartmann_Wolf_03}. Good agreement is found in comparisons with data due to the existence of almost dust-free lines of sight through the large scale component and the large column densities caused by the dense disk.
The Beginnings of Aeromedical Acceleration Research
1981-09-30
matiere qui sera la limite des per- formance acrobatique de I’oiseau artificiel , mais bien la resistance physiologique de I’homme qui en est le...3. Bauer, L. H. 1926. Aviation Medizin. Publisher Williams and Wilkins, Baltimore. 4. Bleriot, L, 1922. L’oiseau artificiel . L’Aerophile 19:20, 15...Director, Defense Intelligence Agency, (Code DR), Washington, DC 20301 3 Commander, Naval Air Test Center, Patuxent River, MD 20670 2
FORCE2: A state-of-the-art two-phase code for hydrodynamic calculations
NASA Astrophysics Data System (ADS)
Ding, Jianmin; Lyczkowski, R. W.; Burge, S. W.
1993-02-01
A three-dimensional computer code for two-phase flow named FORCE2 has been developed by Babcock and Wilcox (B & W) in close collaboration with Argonne National Laboratory (ANL). FORCE2 is capable of both transient as well as steady-state simulations. This Cartesian coordinates computer program is a finite control volume, industrial grade and quality embodiment of the pilot-scale FLUFIX/MOD2 code and contains features such as three-dimensional blockages, volume and surface porosities to account for various obstructions in the flow field, and distributed resistance modeling to account for pressure drops caused by baffles, distributor plates and large tube banks. Recently computed results demonstrated the significance of and necessity for three-dimensional models of hydrodynamics and erosion. This paper describes the process whereby ANL's pilot-scale FLUFIX/MOD2 models and numerics were implemented into FORCE2. A description of the quality control to assess the accuracy of the new code and the validation using some of the measured data from Illinois Institute of Technology (UT) and the University of Illinois at Urbana-Champaign (UIUC) are given. It is envisioned that one day, FORCE2 with additional modules such as radiation heat transfer, combustion kinetics and multi-solids together with user-friendly pre- and post-processor software and tailored for massively parallel multiprocessor shared memory computational platforms will be used by industry and researchers to assist in reducing and/or eliminating the environmental and economic barriers which limit full consideration of coal, shale and biomass as energy sources, to retain energy security, and to remediate waste and ecological problems.
Applicability of causal dissipative hydrodynamics to relativistic heavy ion collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huovinen, Pasi; Molnar, Denes; Physics Department, Purdue University, West Lafayette, Indiana 47907, USA and RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973
2009-01-15
We utilize nonequilibrium covariant transport theory to determine the region of validity of causal Israel-Stewart (IS) dissipative hydrodynamics and Navier-Stokes (NS) theory for relativistic heavy ion physics applications. A massless ideal gas with 2{yields}2 interactions is considered in a Bjorken scenario in 0 + 1 dimension (D) appropriate for the early longitudinal expansion stage of the collision. In the scale-invariant case of a constant shear viscosity to entropy density ratio {eta}/s{approx_equal}const, we find that IS theory is accurate within 10% in calculating dissipative effects if initially the expansion time scale exceeds half the transport mean free path {tau}{sub 0}/{lambda}{sub tr,0}more » > or approx. 2. The same accuracy with NS requires three times larger {tau}{sub 0}/{lambda}{sub tr,0} > or approx. 6. For dynamics driven by a constant cross section, on the other hand, about 50% larger {tau}{sub 0}/{lambda}{sub tr,0} > or approx. 3 (IS) and 9 (NS) are needed. For typical applications at energies currently available at the BNL Relativistic Heavy Ion Collider (RHIC), i.e., {radical}(s{sub NN}){approx}100-200 GeV, these limits imply that even the IS approach becomes marginal when {eta}/s > or approx. 0.15. In addition, we find that the 'naive' approximation to IS theory, which neglects products of gradients and dissipative quantities, has an even smaller range of applicability than Navier-Stokes. We also obtain analytic IS and NS solutions in 0 + 1D, and present further tests for numerical dissipative hydrodynamics codes in 1 + 1, 2 + 1, and 3 + 1D based on generalized conservation laws.« less
Viscous plasma evolution from gravity using anti-de sitter/conformal-field-theory correspondence.
Janik, Romuald A
2007-01-12
We analyze the anti-de Sitter/conformal-field-theory dual geometry of an expanding boost-invariant plasma. We show that the requirement of nonsingularity of the dual geometry for leading and subasymptotic times predicts, without any further assumptions about gauge theory dynamics, hydrodynamic expansion of the plasma with viscosity coefficient exactly matching the one obtained earlier in the static case by Policastro, Son, and Starinets.
NASA Astrophysics Data System (ADS)
Nishiura, Daisuke; Furuichi, Mikito; Sakaguchi, Hide
2015-09-01
The computational performance of a smoothed particle hydrodynamics (SPH) simulation is investigated for three types of current shared-memory parallel computer devices: many integrated core (MIC) processors, graphics processing units (GPUs), and multi-core CPUs. We are especially interested in efficient shared-memory allocation methods for each chipset, because the efficient data access patterns differ between compute unified device architecture (CUDA) programming for GPUs and OpenMP programming for MIC processors and multi-core CPUs. We first introduce several parallel implementation techniques for the SPH code, and then examine these on our target computer architectures to determine the most effective algorithms for each processor unit. In addition, we evaluate the effective computing performance and power efficiency of the SPH simulation on each architecture, as these are critical metrics for overall performance in a multi-device environment. In our benchmark test, the GPU is found to produce the best arithmetic performance as a standalone device unit, and gives the most efficient power consumption. The multi-core CPU obtains the most effective computing performance. The computational speed of the MIC processor on Xeon Phi approached that of two Xeon CPUs. This indicates that using MICs is an attractive choice for existing SPH codes on multi-core CPUs parallelized by OpenMP, as it gains computational acceleration without the need for significant changes to the source code.
Thermonuclear targets for direct-drive ignition by a megajoule laser pulse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bel’kov, S. A.; Bondarenko, S. V.; Vergunova, G. A.
2015-10-15
Central ignition of a thin two-layer-shell fusion target that is directly driven by a 2-MJ profiled pulse of Nd laser second-harmonic radiation has been studied. The parameters of the target were selected so as to provide effective acceleration of the shell toward the center, which was sufficient for the onset of ignition under conditions of increased hydrodynamic stability of the ablator acceleration and compression. The aspect ratio of the inner deuterium-tritium layer of the shell does not exceed 15, provided that a major part (above 75%) of the outer layer (plastic ablator) is evaporated by the instant of maximum compression.more » The investigation is based on two series of numerical calculations that were performed using one-dimensional (1D) hydrodynamic codes. The first 1D code was used to calculate the absorption of the profiled laser-radiation pulse (including calculation of the total absorption coefficient with allowance for the inverse bremsstrahlung and resonance mechanisms) and the spatial distribution of target heating for a real geometry of irradiation using 192 laser beams in a scheme of focusing with a cubo-octahedral symmetry. The second 1D code was used for simulating the total cycle of target evolution under the action of absorbed laser radiation and for determining the thermonuclear gain that was achieved with a given target.« less
NASA Technical Reports Server (NTRS)
Land, Norman S.; Elliott, John M.; Christopher, Kenneth W.
1949-01-01
An investigation was made to evaluate the hydrodynamic qualities of a 0.425-scale model of the Navy XP5M-1 hull, which was installed on a modified Navy J4F-2 amphibian. Longitudinal and directional stability during take-off and landing, low-speed maneuverability, spray characteristics, and take-off performance were investigated. The behavior of the airplane in moderately rough water was also observed. The opinions of three pilots have been correlated with the data.
Determining Acceptable Limits of Fast-Electron Preheat in Polar-Drive-Ignition Designs
NASA Astrophysics Data System (ADS)
Delettrez, J. A.; Collins, T. J. B.; Ye, C.
2014-10-01
In direct-drive-ignition designs, preheat by fast electrons created by the two-plasmon-decay instability at the quarter-critical density surface can increase the adiabat in the fuel layer and prevent ignition. Since eliminating the preheat entirely is not possible, it is necessary to understand the levels of preheat our targets can withstand before ignition is precluded. The current polar-drive point design is used as the basis for examining the effects of increasing the levels of fast electrons using the one-dimensional, radiation-hydrodynamics code LILAC. Once ignition failure is obtained, the design is then reoptimized using Telios, a downhill simplex method program, to recover ignition. This cycle is repeated until the design can no longer be reoptimized to produce ignition. Mappings of these final results provide insight into ignition failure caused by preheat and what specific target parameters serve to best stave off the effects of the preheat. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
ARES Simulations of a Double Shell Surrogate Target
NASA Astrophysics Data System (ADS)
Sacks, Ryan; Tipton, Robert; Graziani, Frank
2015-11-01
Double shell targets provide an alternative path to ignition that allows for a less robust laser profile and non-cryogenic initial temperatures. The target designs call for a high-Z material to abut the gas/liquid DT fuel which is cause for concern due to possible mix of the inner shell with the fuel. This research concentrates on developing a surrogate target for a double shell capsule that can be fielded in a current NIF two-shock hohlraum. Through pressure-density scaling the hydrodynamic behavior of the high-Z pusher of a double shell can be approximated allowing for studies of performance and mix. Use of the ARES code allows for investigation of mix in one and two dimensions and analysis of instabilities in two dimensions. Development of a shell material that will allow for experiments similar to CD Mix is also discussed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344, Lawrence Livermore National Security, LLC. Information Management release number LLNL-ABS-675098.
High resolution modelling and observation of wind-driven surface currents in a semi-enclosed estuary
NASA Astrophysics Data System (ADS)
Nash, S.; Hartnett, M.; McKinstry, A.; Ragnoli, E.; Nagle, D.
2012-04-01
Hydrodynamic circulation in estuaries is primarily driven by tides, river inflows and surface winds. While tidal and river data can be quite easily obtained for input to hydrodynamic models, sourcing accurate surface wind data is problematic. Firstly, the wind data used in hydrodynamic models is usually measured on land and can be quite different in magnitude and direction from offshore winds. Secondly, surface winds are spatially-varying but due to a lack of data it is common practice to specify a non-varying wind speed and direction across the full extents of a model domain. These problems can lead to inaccuracies in the surface currents computed by three-dimensional hydrodynamic models. In the present research, a wind forecast model is coupled with a three-dimensional numerical model of Galway Bay, a semi-enclosed estuary on the west coast of Ireland, to investigate the effect of surface wind data resolution on model accuracy. High resolution and low resolution wind fields are specified to the model and the computed surface currents are compared with high resolution surface current measurements obtained from two high frequency SeaSonde-type Coastal Ocean Dynamics Applications Radars (CODAR). The wind forecast models used for the research are Harmonie cy361.3, running on 2.5 and 0.5km spatial grids for the low resolution and high resolution models respectively. The low-resolution model runs over an Irish domain on 540x500 grid points with 60 vertical levels and a 60s timestep and is driven by ECMWF boundary conditions. The nested high-resolution model uses 300x300 grid points on 60 vertical levels and a 12s timestep. EFDC (Environmental Fluid Dynamics Code) is used for the hydrodynamic model. The Galway Bay model has ten vertical layers and is resolved spatially and temporally at 150m and 4 sec respectively. The hydrodynamic model is run for selected hindcast dates when wind fields were highly energetic. Spatially- and temporally-varying wind data is provided by offline coupling with the wind forecast models. Modelled surface currents show good correlation with CODAR observed currents and the resolution of the surface wind data is shown to be important for model accuracy.
De Novo Origin of Human Protein-Coding Genes
Wu, Dong-Dong; Irwin, David M.; Zhang, Ya-Ping
2011-01-01
The de novo origin of a new protein-coding gene from non-coding DNA is considered to be a very rare occurrence in genomes. Here we identify 60 new protein-coding genes that originated de novo on the human lineage since divergence from the chimpanzee. The functionality of these genes is supported by both transcriptional and proteomic evidence. RNA–seq data indicate that these genes have their highest expression levels in the cerebral cortex and testes, which might suggest that these genes contribute to phenotypic traits that are unique to humans, such as improved cognitive ability. Our results are inconsistent with the traditional view that the de novo origin of new genes is very rare, thus there should be greater appreciation of the importance of the de novo origination of genes. PMID:22102831
Return on Investment (ROI) Framework Case Study: CTH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corro, Janna L.
CTH is a Eulerian code developed at Sandia National Laboratories capable of modeling the hydrodynamic response of explosives, liquids, gases, and solids. The code solves complex multi-dimensional problems characterized by large deformations and strong shocks that are composed of various material configurations. CTH includes models for material strength, fracture, porosity, and high explosive detonation and initiation. The code is an acronym for a complex series of names relating to its origin. A full explanation can be seen in Appendix A. The software breaks penetration simulations into millions of grid-like “cells”. As a modeled projectile impacts and penetrates a target, progressivelymore » smaller blocks of cells are placed around the projectile, which show in detail deformations and breakups. Additionally, the code is uniquely suited to modeling blunt impact and blast loading leading to human body injury.« less
An investigation of water production rates by irregularly shaped cometary nuclei.
NASA Astrophysics Data System (ADS)
Gutierrez, P. J.; Ortiz, J. L.; Rodrigo, R.; Lopez-Moreno, J. J.
1999-09-01
A computer code has been developed to derive water production rates for rotating irregularly shaped nuclei with topography (both craters and mountains) as a function of heliocentric distance. The code solves the surface energy balance equation including heat diffusion in the normal direction and taking into account shadowing effects, for any combination of orbital parameters, spin axis orientation, rotation period, and physical properties of the nucleus (geometric albedo, emissivity, thermodynamical properties). Preliminary results are presented for several representative objects. The research described in this abstract is being carried out at the Instituto de Astrofísica de Andalucía and is supported by the Comision Interministerial de Ciencia y Tecnología under contracts ESP96-0623 and ESP97-1773-CO3-01.
Hydrodynamics simulations of 2{omega} laser propagation in underdense gasbag plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meezan, N.B.; Divol, L.; Marinak, M.M.
2004-12-01
Recent 2{omega} laser propagation and stimulated Raman backscatter (SRS) experiments performed on the Helen laser have been analyzed using the radiation-hydrodynamics code HYDRA [M. M. Marinak, G. D. Kerbel, N. A. Gentile, O. Jones, D. Munro, S. Pollaine, T. R. Dittrich, and S. W. Haan, Phys. Plasmas 8, 2275 (2001)]. These experiments utilized two diagnostics sensitive to the hydrodynamics of gasbag targets: a fast x-ray framing camera (FXI) and a SRS streak spectrometer. With a newly implemented nonlocal thermal transport model, HYDRA is able to reproduce many features seen in the FXI images and the SRS streak spectra. Experimental andmore » simulated side-on FXI images suggest that propagation can be explained by classical laser absorption and the resulting hydrodynamics. Synthetic SRS spectra generated from the HYDRA results reproduce the details of the experimental SRS streak spectra. Most features in the synthetic spectra can be explained solely by axial density and temperature gradients. The total SRS backscatter increases with initial gasbag fill density up to {approx_equal}0.08 times the critical density, then decreases. Data from a near-backscatter imaging camera show that severe beam spray is not responsible for the trend in total backscatter. Filamentation does not appear to be a significant factor in gasbag hydrodynamics. The simulation and analysis techniques established here can be used in ongoing experimental campaigns on the Omega laser facility and the National Ignition Facility.« less
NASA Astrophysics Data System (ADS)
De Lucia, Marco; Kempka, Thomas; Kühn, Michael
2014-05-01
Fully-coupled reactive transport simulations involving multiphase hydrodynamics and chemical reactions in heterogeneous settings are extremely challenging from a computational point of view. This often leads to oversimplification of the investigated system: coarse spatial discretization, to keep the number of elements in the order of few thousands; simplified chemistry, disregarding many potentially important reactions. A novel approach for coupling non-reactive hydrodynamic simulations with the outcome of single batch geochemical simulations was therefore introduced to assess the potential long-term mineral trapping at the Ketzin pilot site for underground CO2 storage in Germany [1],[2]. The advantage of the coupling is the ability to use multi-million grid non-reactive hydrodynamics simulations on one side and few batch 0D geochemical simulations on the other, so that the complexity of both systems does not need to be reduced. This contribution shows the approach which was taken to validate this simplified coupling scheme. The procedure involved batch simulations of the reference geochemical model, then performing both non-reactive and fully coupled 1D and 3D reactive transport simulations and finally applying the simplified coupling scheme based on the non-reactive and geochemical batch model. The TOUGHREACT/ECO2N [3] simulator was adopted for the validation. The degree of refinement of the spatial grid and the complexity and velocity of the mineral reactions, along with a cut-off value for the minimum concentration of dissolved CO2 allowed to originate precipitates in the simplified approach were found out to be the governing parameters for the convergence of the two schemes. Systematic discrepancies between the approaches are not reducible, simply because there is no feedback between chemistry and hydrodynamics, and can reach 20 % - 30 % in unfavourable cases. However, even such discrepancy is completely acceptable, in our opinion, given the amount of uncertainty underlying the geochemical models. References [1] Klein, E., De Lucia, M., Kempka, T. Kühn, M. 2013. Evaluation of longterm mineral trapping at the Ketzin pilot site for CO2 storage: an integrative approach using geochemical modelling and reservoir simulation. International Journal of Greenhouse Gas Control 19: 720-730, doi:10.1016/j.ijggc.2013.05.014 [2] Kempka, T., Klein, E., De Lucia, M., Tillner, E. Kühn, M. 2013. Assessment of Long-term CO2 Trapping Mechanisms at the Ketzin Pilot Site (Germany) by Coupled Numerical Modelling. Energy Procedia 37: 5419-5426, doi:10.1016/j.egypro.2013.06.460 [3] Xu, T., Spycher, N., Sonnenthal, E., Zhang, G., Zheng, L., Pruess, K. 2010. TOUGHREACT Version 2.0: A simulator for subsurface reactive transport under non-isothermal multiphase flow conditions, Computers & Geosciences 37(6), doi:10.1016/j.cageo.2010.10.007
Application of a GPU-Assisted Maxwell Code to Electromagnetic Wave Propagation in ITER
NASA Astrophysics Data System (ADS)
Kubota, S.; Peebles, W. A.; Woodbury, D.; Johnson, I.; Zolfaghari, A.
2014-10-01
The Low Field Side Reflectometer (LSFR) on ITER is envisioned to provide capabilities for electron density profile and fluctuations measurements in both the plasma core and edge. The current design for the Equatorial Port Plug 11 (EPP11) employs seven monostatic antennas for use with both fixed-frequency and swept-frequency systems. The present work examines the characteristics of this layout using the 3-D version of the GPU-Assisted Maxwell Code (GAMC-3D). Previous studies in this area were performed with either 2-D full wave codes or 3-D ray- and beam-tracing. GAMC-3D is based on the FDTD method and can be run with either a fixed-frequency or modulated (e.g. FMCW) source, and with either a stationary or moving target (e.g. Doppler backscattering). The code is designed to run on a single NVIDIA Tesla GPU accelerator, and utilizes a technique based on the moving window method to overcome the size limitation of the onboard memory. Effects such as beam drift, linear mode conversion, and diffraction/scattering will be examined. Comparisons will be made with beam-tracing calculations using the complex eikonal method. Supported by U.S. DoE Grants DE-FG02-99ER54527 and DE-AC02-09CH11466, and the DoE SULI Program at PPPL.
NASA Astrophysics Data System (ADS)
Font, J. A.; Ibanez, J. M.; Marti, J. M.
1993-04-01
Some numerical solutions via local characteristic approach have been obtained describing multidimensional flows. These solutions have been used as tests of a two- dimensional code which extends some high-resolution shock-captunng methods, designed recently to solve nonlinear hyperbolic systems of conservation laws. K words: HYDRODYNAMICS - BLACK HOLE - RELATIVITY - SHOCK WAVES
Modelling of RR Lyrae instability strips
NASA Astrophysics Data System (ADS)
Szabo, Robert; Csubry, Zoltan
2001-02-01
Recent studies indicates that the slope of the empirical blue edge of the RR Lyrae fundamental mode instability strip is irreconcilable with the theoretical blue edges. Nonlinear hydrodynamical pulsational code involving turbulent convection was used to follow fundamental/first overtone mode selection mechanism. This method combined with the results of horizontal branch evolutionary computations was applied to rethink the problem.
Planetary Torque in 3D Isentropic Disks
NASA Astrophysics Data System (ADS)
Fung, Jeffrey; Masset, Frédéric; Lega, Elena; Velasco, David
2017-03-01
Planetary migration is inherently a three-dimensional (3D) problem, because Earth-size planetary cores are deeply embedded in protoplanetary disks. Simulations of these 3D disks remain challenging due to the steep resolution requirements. Using two different hydrodynamics codes, FARGO3D and PEnGUIn, we simulate disk-planet interaction for a one to five Earth-mass planet embedded in an isentropic disk. We measure the torque on the planet and ensure that the measurements are converged both in resolution and between the two codes. We find that the torque is independent of the smoothing length of the planet’s potential (r s), and that it has a weak dependence on the adiabatic index of the gaseous disk (γ). The torque values correspond to an inward migration rate qualitatively similar to previous linear calculations. We perform additional simulations with explicit radiative transfer using FARGOCA, and again find agreement between 3D simulations and existing torque formulae. We also present the flow pattern around the planets that show active flow is present within the planet’s Hill sphere, and meridional vortices are shed downstream. The vertical flow speed near the planet is faster for a smaller r s or γ, up to supersonic speeds for the smallest r s and γ in our study.
Establishing Baseline Subsurface Light Fields for the Flower Garden Banks National Marine Sancturay
2011-04-12
Code 1226 Office of Counsel,Code 1008.3 ADOR/Director NCST E. R. Franchi , 7000 Public Affairs (Unclassified/ Unlimited Only). Code 7030 4...deRada et al., 2009), which receives boundary information from the operational Global NCOM system (Kara et al., 2006; http://www7320.nrlssc.navy.mil...Gulf of Mexico. OCEANS 2009, MTS/IEEE Biloxi - Marine Technology for Our Future: Global and Local Challenges, ISBN: 978-1-4244-4960-6, pp. 1-7, 26-29
Hydrodynamic Fluid Film Bearings and Their Effect on the Stability of Rotating Machinery
2006-11-01
6) As a constraint, the hydrodynamic pressure needs to be greater than the liquid cavitation pressure everywhere in the flow domain, i.e. P...supply of the lubricant into the bearing. A more detailed discussion on lubricant cavitation and its physical model can be found in [3]. Hydrodynamic ...Hemisphere Pubs, 1980. Hydrodynamic Fluid Film Bearings and Their Effect on the Stability of Rotating Machinery 10 - 36 RTO-EN-AVT-143 [3] Cavitation
Heat pipe design handbook, part 2. [digital computer code specifications
NASA Technical Reports Server (NTRS)
Skrabek, E. A.
1972-01-01
The utilization of a digital computer code for heat pipe analysis and design (HPAD) is described which calculates the steady state hydrodynamic heat transport capability of a heat pipe with a particular wick configuration, the working fluid being a function of wick cross-sectional area. Heat load, orientation, operating temperature, and heat pipe geometry are specified. Both one 'g' and zero 'g' environments are considered, and, at the user's option, the code will also perform a weight analysis and will calculate heat pipe temperature drops. The central porous slab, circumferential porous wick, arterial wick, annular wick, and axial rectangular grooves are the wick configurations which HPAD has the capability of analyzing. For Vol. 1, see N74-22569.
Morison, K R; Hutchinson, C A
2009-01-01
The Weissler reaction in which iodide is oxidised to a tri-iodide complex (I(3)(-)) has been widely used for measurement of the intensity of ultrasonic and hydrodynamic cavitation. It was used in this work to compare ultrasonic cavitation at 24 kHz with hydrodynamic cavitation using two different devices, one a venturi and the other a sudden expansion, operated up to 8.7 bar. Hydrodynamic cavitation had a maximum efficiency of about 5 x 10(-11) moles of I(3)(-) per joule of energy compared with the maximum of almost 8 x 10(-11) mol J(-1) for ultrasonic cavitation. Hydrodynamic cavitation was found to be most effective at 10 degrees C compared with 20 degrees C and 30 degrees C and at higher upstream pressures. However, it was found that in hydrodynamic conditions, even without cavitation, I(3)(-) was consumed at a rapid rate leading to an equilibrium concentration. It was concluded that the Weissler reaction was not a good model reaction for the assessment of the effectiveness of hydrodynamic cavitation.
Solution of a large hydrodynamic problem using the STAR-100 computer
NASA Technical Reports Server (NTRS)
Weilmuenster, K. J.; Howser, L. M.
1976-01-01
A representative hydrodynamics problem, the shock initiated flow over a flat plate, was used for exploring data organizations and program structures needed to exploit the STAR-100 vector processing computer. A brief description of the problem is followed by a discussion of how each portion of the computational process was vectorized. Finally, timings of different portions of the program are compared with equivalent operations on serial machines. The speed up of the STAR-100 over the CDC 6600 program is shown to increase as the problem size increases. All computations were carried out on a CDC 6600 and a CDC STAR 100, with code written in FORTRAN for the 6600 and in STAR FORTRAN for the STAR 100.
Dimensional scaling for impact cratering and perforation
NASA Technical Reports Server (NTRS)
Watts, Alan J.; Atkinson, Dale
1995-01-01
POD Associates have revisited the issue of generic scaling laws able to adequately predict (within better than 20 percent) cratering in semi-infinite targets and perforations through finite thickness targets. The approach used was to apply physical logic for hydrodynamics in a consistent manner able to account for chunky-body impacts such that the only variables needed are those directly related to known material properties for both the impactor and target. The analyses were compared and verified versus CTH hydrodynamic code calculations and existing data. Comparisons with previous scaling laws were also performed to identify which (if any) were good for generic purposes. This paper is a short synopsis of the full report available through the NASA Langley Research Center, LDEF Science Office.
NASA Astrophysics Data System (ADS)
Magelssen, G. R.; Bradley, P. A.; Tregillis, I. L.; Schmitt, M. J.; Dodd, E. S.; Wysocki, F. J.; Hsu, S. C.; Cobble, J.; Batha, S. H.; Defriend Obrey, K. A.
2010-11-01
Small capsule perturbations may impact our ability to achieve high yields on NIF. Diagnosing the hydrodynamic development and the effect of defects on burn will be difficult. Los Alamos is developing a program to better understand the hydrodynamics of defects and how they influence burn. Our first effort to study the effects of defects was on Omega. Both thin-shelled (exploding pusher) and thick-shelled capsules were shot and the results published [1]. In this work we add experimental shots done recently on Omega. These shots were to complete the study of how the width and depth of the defect affects DT yield. Our AMR code is used to predict the yield. Comparisons between capsule and experimental yields will be given. Experiments are also being designed for Polar direct drive. Our first experiments are being designed to understand the zero-order hydrodynamics with Polar direct drive. Capsules about a millimeter in radius are being designed with one to two dopants in the CH shell for radiograph and MMI usage. Also, to minimize the effect of mix on the radius versus time trajectory, some capsules will replace the DT with Xe.[0pt] [1] Magelssen G. R. et al., to be published in the 2009 IFSA proceedings.
Decomposition of fluctuating initial conditions and flow harmonics
NASA Astrophysics Data System (ADS)
Qian, Wei-Liang; Mota, Philipe; Andrade, Rone; Gardim, Fernando; Grassi, Frédérique; Hama, Yogiro; Kodama, Takeshi
2014-01-01
Collective flow observed in heavy-ion collisions is largely attributed to initial geometrical fluctuations, and it is the hydrodynamic evolution of the system that transforms those initial spatial irregularities into final state momentum anisotropies. Cumulant analysis provides a mathematical tool to decompose those initial fluctuations in terms of radial and azimuthal components. It is usually thought that a specified order of azimuthal cumulant, for the most part, linearly produces flow harmonics of the same order. In this work, by considering the most central collisions (0%-5%), we carry out a systematic study on the connection between cumulants and flow harmonics using a hydrodynamic code called NeXSPheRIO. We conduct three types of calculation, by explicitly decomposing the initial conditions into components corresponding to a given eccentricity and studying the out-coming flow through hydrodynamic evolution. It is found that for initial conditions deviating significantly from Gaussian, such as those from NeXuS, the linearity between eccentricities and flow harmonics partially breaks down. Combined with the effect of coupling between cumulants of different orders, it causes the production of extra flow harmonics of higher orders. We argue that these results can be seen as a natural consequence of the non-linear nature of hydrodynamics, and they can be understood intuitively in terms of the peripheral-tube model.
FSFE: Fake Spectra Flux Extractor
NASA Astrophysics Data System (ADS)
Bird, Simeon
2017-10-01
The fake spectra flux extractor generates simulated quasar absorption spectra from a particle or adaptive mesh-based hydrodynamic simulation. It is implemented as a python module. It can produce both hydrogen and metal line spectra, if the simulation includes metals. The cloudy table for metal ionization fractions is included. Unlike earlier spectral generation codes, it produces absorption from each particle close to the sight-line individually, rather than first producing an average density in each spectral pixel, thus substantially preserving more of the small-scale velocity structure of the gas. The code supports both Gadget (ascl:0003.001) and AREPO.
Beam Induced Hydrodynamic Tunneling in the Future Circular Collider Components
NASA Astrophysics Data System (ADS)
Tahir, N. A.; Burkart, F.; Schmidt, R.; Shutov, A.; Wollmann, D.; Piriz, A. R.
2016-08-01
A future circular collider (FCC) has been proposed as a post-Large Hadron Collider accelerator, to explore particle physics in unprecedented energy ranges. The FCC is a circular collider in a tunnel with a circumference of 80-100 km. The FCC study puts an emphasis on proton-proton high-energy and electron-positron high-intensity frontier machines. A proton-electron interaction scenario is also examined. According to the nominal FCC parameters, each of the 50 TeV proton beams will carry an amount of 8.5 GJ energy that is equivalent to the kinetic energy of an Airbus A380 (560 t) at a typical speed of 850 km /h . Safety of operation with such extremely energetic beams is an important issue, as off-nominal beam loss can cause serious damage to the accelerator and detector components with a severe impact on the accelerator environment. In order to estimate the consequences of an accident with the full beam accidently deflected into equipment, we have carried out numerical simulations of interaction of a FCC beam with a solid copper target using an energy-deposition code (fluka) and a 2D hydrodynamic code (big2) iteratively. These simulations show that, although the penetration length of a single FCC proton and its shower in solid copper is about 1.5 m, the full FCC beam will penetrate up to about 350 m into the target because of the "hydrodynamic tunneling." These simulations also show that a significant part of the target is converted into high-energy-density matter. We also discuss this interesting aspect of this study.
NASA Astrophysics Data System (ADS)
Baraffe, I.; Pratt, J.; Goffrey, T.; Constantino, T.; Folini, D.; Popov, M. V.; Walder, R.; Viallet, M.
2017-08-01
We study lithium depletion in low-mass and solar-like stars as a function of time, using a new diffusion coefficient describing extra-mixing taking place at the bottom of a convective envelope. This new form is motivated by multi-dimensional fully compressible, time-implicit hydrodynamic simulations performed with the MUSIC code. Intermittent convective mixing at the convective boundary in a star can be modeled using extreme value theory, a statistical analysis frequently used for finance, meteorology, and environmental science. In this Letter, we implement this statistical diffusion coefficient in a one-dimensional stellar evolution code, using parameters calibrated from multi-dimensional hydrodynamic simulations of a young low-mass star. We propose a new scenario that can explain observations of the surface abundance of lithium in the Sun and in clusters covering a wide range of ages, from ˜50 Myr to ˜4 Gyr. Because it relies on our physical model of convective penetration, this scenario has a limited number of assumptions. It can explain the observed trend between rotation and depletion, based on a single additional assumption, namely, that rotation affects the mixing efficiency at the convective boundary. We suggest the existence of a threshold in stellar rotation rate above which rotation strongly prevents the vertical penetration of plumes and below which rotation has small effects. In addition to providing a possible explanation for the long-standing problem of lithium depletion in pre-main-sequence and main-sequence stars, the strength of our scenario is that its basic assumptions can be tested by future hydrodynamic simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baraffe, I.; Pratt, J.; Goffrey, T.
We study lithium depletion in low-mass and solar-like stars as a function of time, using a new diffusion coefficient describing extra-mixing taking place at the bottom of a convective envelope. This new form is motivated by multi-dimensional fully compressible, time-implicit hydrodynamic simulations performed with the MUSIC code. Intermittent convective mixing at the convective boundary in a star can be modeled using extreme value theory, a statistical analysis frequently used for finance, meteorology, and environmental science. In this Letter, we implement this statistical diffusion coefficient in a one-dimensional stellar evolution code, using parameters calibrated from multi-dimensional hydrodynamic simulations of a youngmore » low-mass star. We propose a new scenario that can explain observations of the surface abundance of lithium in the Sun and in clusters covering a wide range of ages, from ∼50 Myr to ∼4 Gyr. Because it relies on our physical model of convective penetration, this scenario has a limited number of assumptions. It can explain the observed trend between rotation and depletion, based on a single additional assumption, namely, that rotation affects the mixing efficiency at the convective boundary. We suggest the existence of a threshold in stellar rotation rate above which rotation strongly prevents the vertical penetration of plumes and below which rotation has small effects. In addition to providing a possible explanation for the long-standing problem of lithium depletion in pre-main-sequence and main-sequence stars, the strength of our scenario is that its basic assumptions can be tested by future hydrodynamic simulations.« less
1987-06-01
devrait lu assurer encore de beaux jours A notre 6poque marqu6e par is diffusion universelle de l’image couleur imprim6e et tlfivise ; c-est tout au... allocation of staff for such purposes as supplementing local staff for a period of time or educating staff in relation to techniques not available in
Comparison of a 3-D GPU-Assisted Maxwell Code and Ray Tracing for Reflectometry on ITER
NASA Astrophysics Data System (ADS)
Gady, Sarah; Kubota, Shigeyuki; Johnson, Irena
2015-11-01
Electromagnetic wave propagation and scattering in magnetized plasmas are important diagnostics for high temperature plasmas. 1-D and 2-D full-wave codes are standard tools for measurements of the electron density profile and fluctuations; however, ray tracing results have shown that beam propagation in tokamak plasmas is inherently a 3-D problem. The GPU-Assisted Maxwell Code utilizes the FDTD (Finite-Difference Time-Domain) method for solving the Maxwell equations with the cold plasma approximation in a 3-D geometry. Parallel processing with GPGPU (General-Purpose computing on Graphics Processing Units) is used to accelerate the computation. Previously, we reported on initial comparisons of the code results to 1-D numerical and analytical solutions, where the size of the computational grid was limited by the on-board memory of the GPU. In the current study, this limitation is overcome by using domain decomposition and an additional GPU. As a practical application, this code is used to study the current design of the ITER Low Field Side Reflectometer (LSFR) for the Equatorial Port Plug 11 (EPP11). A detailed examination of Gaussian beam propagation in the ITER edge plasma will be presented, as well as comparisons with ray tracing. This work was made possible by funding from the Department of Energy for the Summer Undergraduate Laboratory Internship (SULI) program. This work is supported by the US DOE Contract No.DE-AC02-09CH11466 and DE-FG02-99-ER54527.
3D MHD Simulations of Radial Wire Array Z-pinches
NASA Astrophysics Data System (ADS)
Niasse, N.; Chittenden, J. P.; Bland, S. N.; Suzuki-Vidal, F. A.; Hall, G. N.; Lebedev, S. V.; Calamy, H.; Zucchini, F.; Lassalle, F.; Bedoch, J. P.
2009-01-01
Recent experiments carried out on the MAGPIE (1 MA, 250 ns), OEDIPE (730 kA, 1.5 μs) and SPHINX (4 MA, 700 ns)[1] facilities have shown the relatively high level of scalability of the Radial Wire Array Z-pinches. These configurations where the wires stretch radially outwards from a central cathode offer numerous advantages over standard cylindrical arrays. In particular, imploding in a very stable and compact way, they seem suitable for coupling to small scale hohlraums. Making use of the 3D resistive magneto-hydrodynamic code GORGON[2] developed at Imperial College, the dynamic of the radial wire arrays is investigated. Influence of the cathode hotspots and wires angle on the x-ray emissions is also discussed. Comparison with experiments is offered to validate the numerical studies.
NASA Technical Reports Server (NTRS)
Kandula, M.; Pearce, D. G.
1991-01-01
A steady incompressible three-dimensional viscous flow analysis has been conducted for the Space Shuttle external tank/orbiter propellant feed line disconnect flapper valves with upstream elbows. The Navier-Stokes code, INS3D, is modified to handle interior obstacles and a simple turbulence model. The flow solver is tested for stability and convergence in the presence of interior flappers. An under-relaxation scheme has been incorporated to improve the solution stability. Important flow characteristics such as secondary flows, recirculation, vortex and wake regions, and separated flows are observed. Computed values for forces, moments, and pressure drop are in satisfactory agreement with water flow test data covering a maximum tube Reynolds number of 3.5 million. The predicted hydrodynamical stability of the flappers correlates well with the measurements.
Shock-driven fluid-structure interaction for civil design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, Stephen L; Deiterding, Ralf
The multiphysics fluid-structure interaction simulation of shock-loaded structures requires the dynamic coupling of a shock-capturing flow solver to a solid mechanics solver for large deformations. The Virtual Test Facility combines a Cartesian embedded boundary approach with dynamic mesh adaptation in a generic software framework of flow solvers using hydrodynamic finite volume upwind schemes that are coupled to various explicit finite element solid dynamics solvers (Deiterding et al., 2006). This paper gives a brief overview of the computational approach and presents first simulations that utilize the general purpose solid dynamics code DYNA3D for complex 3D structures of interest in civil engineering.more » Results from simulations of a reinforced column, highway bridge, multistory building, and nuclear reactor building are presented.« less
Fast evolving pair-instability supernovae
Kozyreva, Alexandra; Gilmer, Matthew; Hirschi, Raphael; ...
2016-10-06
With an increasing number of superluminous supernovae (SLSNe) discovered the ques- tion of their origin remains open and causes heated debates in the supernova commu- nity. Currently, there are three proposed mechanisms for SLSNe: (1) pair-instability supernovae (PISN), (2) magnetar-driven supernovae, and (3) models in which the su- pernova ejecta interacts with a circumstellar material ejected before the explosion. Based on current observations of SLSNe, the PISN origin has been disfavoured for a number of reasons. Many PISN models provide overly broad light curves and too reddened spectra, because of massive ejecta and a high amount of nickel. In themore » cur- rent study we re-examine PISN properties using progenitor models computed with the GENEC code. We calculate supernova explosions with FLASH and light curve evolu- tion with the radiation hydrodynamics code STELLA. We find that high-mass models (200 M⊙ and 250 M⊙) at relatively high metallicity (Z=0.001) do not retain hydro- gen in the outer layers and produce relatively fast evolving PISNe Type I and might be suitable to explain some SLSNe. We also investigate uncertainties in light curve modelling due to codes, opacities, the nickel-bubble effect and progenitor structure and composition.« less
ICF Implosions, Space-Charge Electric Fields, and Their Impact on Mix and Compression
NASA Astrophysics Data System (ADS)
Knoll, Dana; Chacon, Luis; Simakov, Andrei
2013-10-01
The single-fluid, quasi-neutral, radiation hydrodynamics codes, used to design the NIF targets, predict thermonuclear ignition for the conditions that have been achieved experimentally. A logical conclusion is that the physics model used in these codes is missing one, or more, key phenomena. Two key model-experiment inconsistencies on NIF are: 1) a lower implosion velocity than predicted by the design codes, and 2) transport of pusher material deep into the hot spot. We hypothesize that both of these model-experiment inconsistencies may be a result of a large, space-charge, electric field residing on the distinct interfaces in a NIF target. Large space-charge fields have been experimentally observed in Omega experiments. Given our hypothesis, this presentation will: 1) Develop a more complete physics picture of initiation, sustainment, and dissipation of a current-driven plasma sheath / double-layer at the Fuel-Pusher interface of an ablating plastic shell implosion on Omega, 2) Characterize the mix that can result from a double-layer field at the Fuel-Pusher interface, prior to the onset of fluid instabilities, and 3) Quantify the impact of the double-layer induced surface tension at the Fuel-Pusher interface on the peak observed implosion velocity in Omega.
Multi-dimensional Core-Collapse Supernova Simulations with Neutrino Transport
NASA Astrophysics Data System (ADS)
Pan, Kuo-Chuan; Liebendörfer, Matthias; Hempel, Matthias; Thielemann, Friedrich-Karl
We present multi-dimensional core-collapse supernova simulations using the Isotropic Diffusion Source Approximation (IDSA) for the neutrino transport and a modified potential for general relativity in two different supernova codes: FLASH and ELEPHANT. Due to the complexity of the core-collapse supernova explosion mechanism, simulations require not only high-performance computers and the exploitation of GPUs, but also sophisticated approximations to capture the essential microphysics. We demonstrate that the IDSA is an elegant and efficient neutrino radiation transfer scheme, which is portable to multiple hydrodynamics codes and fast enough to investigate long-term evolutions in two and three dimensions. Simulations with a 40 solar mass progenitor are presented in both FLASH (1D and 2D) and ELEPHANT (3D) as an extreme test condition. It is found that the black hole formation time is delayed in multiple dimensions and we argue that the strong standing accretion shock instability before black hole formation will lead to strong gravitational waves.
2-3D nonlocal transport model in magnetized laser plasmas.
NASA Astrophysics Data System (ADS)
Nicolaï, Philippe; Feugeas, Jean-Luc; Schurtz, Guy
2004-11-01
We present a model of nonlocal transport for multidimensional radiation magneto-hydrodynamics codes. This model, based on simplified Fokker-Planck equations, aims at extending the formulae of G Schurtz,Ph.Nicolaï and M. Busquet [Phys. Plasmas,7,4238 (2000)] to magnetized plasmas.The improvements concern various points as the electric field effects on nonlocal transport or conversely the kinetic effects on E field. However the main purpose of this work is to generalize the previous model by including magnetic field effects. A complete system of nonlocal equations is derived from kinetic equations with self-consistent E and B fields. These equations are analyzed and simplified in order to be implemented into large laser fusion codes and coupled to other relevent physics. Finally, our model allows to obtain the deformation of the electron distribution function due to nonlocal effects. This deformation leads to a non-maxwellian function which could be used to compute the influence on other physical processes.
Direct measurement of the image displacement instability in a linear induction accelerator
NASA Astrophysics Data System (ADS)
Burris-Mog, T. J.; Ekdahl, C. A.; Moir, D. C.
2017-06-01
The image displacement instability (IDI) has been measured on the 20 MeV Axis I of the dual axis radiographic hydrodynamic test facility and compared to theory. A 0.23 kA electron beam was accelerated across 64 gaps in a low solenoid focusing field, and the position of the beam centroid was measured to 34.3 meters downstream from the cathode. One beam dynamics code was used to model the IDI from first principles, while another code characterized the effects of the resistive wall instability and the beam break-up (BBU) instability. Although the BBU instability was not found to influence the IDI, it appears that the IDI influences the BBU. Because the BBU theory does not fully account for the dependence on beam position for coupling to cavity transverse magnetic modes, the effect of the IDI is missing from the BBU theory. This becomes of particular concern to users of linear induction accelerators operating in or near low magnetic guide fields tunes.
Direct measurement of the image displacement instability in a linear induction accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burris-Mog, T. J.; Ekdahl, C. A.; Moir, D. C.
The image displacement instability (IDI) has been measured on the 20 MeV Axis I of the dual axis radiographic hydrodynamic test facility and compared to theory. A 0.23 kA electron beam was accelerated across 64 gaps in a low solenoid focusing field, and the position of the beam centroid was measured to 34.3 meters downstream from the cathode. One beam dynamics code was used to model the IDI from first principles, while another code characterized the effects of the resistive wall instability and the beam break-up (BBU) instability. Although the BBU instability was not found to influence the IDI, itmore » appears that the IDI influences the BBU. Because the BBU theory does not fully account for the dependence on beam position for coupling to cavity transverse magnetic modes, the effect of the IDI is missing from the BBU theory. Finally, this becomes of particular concern to users of linear induction accelerators operating in or near low magnetic guide fields tunes.« less
Direct measurement of the image displacement instability in a linear induction accelerator
Burris-Mog, T. J.; Ekdahl, C. A.; Moir, D. C.
2017-06-19
The image displacement instability (IDI) has been measured on the 20 MeV Axis I of the dual axis radiographic hydrodynamic test facility and compared to theory. A 0.23 kA electron beam was accelerated across 64 gaps in a low solenoid focusing field, and the position of the beam centroid was measured to 34.3 meters downstream from the cathode. One beam dynamics code was used to model the IDI from first principles, while another code characterized the effects of the resistive wall instability and the beam break-up (BBU) instability. Although the BBU instability was not found to influence the IDI, itmore » appears that the IDI influences the BBU. Because the BBU theory does not fully account for the dependence on beam position for coupling to cavity transverse magnetic modes, the effect of the IDI is missing from the BBU theory. Finally, this becomes of particular concern to users of linear induction accelerators operating in or near low magnetic guide fields tunes.« less
[Comparative study of three Western models of deontological codes for dentists].
Macpherson Mayol, Ignacio; Roqué Sánchez, María Victoria; Gonzalvo-Cirac, Margarita; de Ribot, Eduard
2013-01-01
We performed a comparative analysis of the codes of ethics of three official organizations in Dentistry professional ethics: Code of Ethics for Dentists in the European Union, drawn up by the Council of European Dentists (CED); Código Español de Ética y Deontología Dental, published by the Consejo General de Colegios de Odontólogos y Estomatólogos de España (CGCOE); and Principles of Ethics and Code of Professional Conduct, of the American Dental Association (ADA). The analysis of the structure of the codes allows the discovery of different approaches governing professional ethics according to the ethical and legislative tradition from which they derive. While there are common elements inherent in Western culture, there are nuances in the grounds, the layout and wording of articles that allows to deduce the ethical foundations that underlie each code, and reflects the real problems encountered by dentists in the practice of their profession.
Simulation of the main physical processes in remote laser penetration with large laser spot size
Khairallah, S. A.; Anderson, A.; Rubenchik, A. M.; ...
2015-04-10
A 3D model is developed to simulate remote laser penetration of a 1mm Aluminum metal sheet with large laser spot size (~3x3cm²), using the ALE3D multi-physics code. The model deals with the laser-induced melting of the plate and the mechanical interaction between the solid and the melted part through plate elastic-plastic response. The effect of plate oscillations and other forces on plate rupture, the droplet formation mechanism and the influence of gravity and high laser power in further breaking the single melt droplet into many more fragments are analyzed. In the limit of low laser power, the numerical results matchmore » the available experiments. The numerical approach couples mechanical and thermal diffusion to hydrodynamics melt flow and accounts for temperature dependent material properties, surface tension, gravity and vapor recoil pressure.« less
Hydrodynamic Simulations of the Consequences of Accretion onto ONe White Dwarfs
NASA Astrophysics Data System (ADS)
Starrfield, Sumner; Bose, Maitrayee; Iliadis, Christian; Hix, William Raphael; Woodward, Charles E.; Wagner, Robert M.; José, Jordi; Hernanz, Margarita; Feng, Wanda
2018-06-01
Mass and luminosity variations of the white dwarf, combined with changes in the mass accretion rate and composition of the accreted material affect the evolution of the thermonuclear runaway (TNR) in classical and recurrent novae. Here we highlight continued investigations of these effects on accreting Oxygen-Neon (ONe) white dwarfs. We now use the results of the multi-dimensional studies of TNRs in white dwarfs, accreting only solar matter, which show that sufficient core material is dredged-up during the TNR to agree with the measurements of ejecta abundances in classical nova explosions. Therefore, we first accrete solar material and follow the evolution until a TNR is ongoing. We then switch the composition to a mixture with either 25% core material or 50% core material (plus accreted material) and follow the resulting evolution of the TNR through peak nuclear burning and decline. We use our 1D, Lagrangian, hydrodynamic code: NOVA. We will report on the results of these new simulations and compare the ejecta abundances to those measured in pre-solar grains that are thought to arise from classical nova explosions. We will also compare these results to our companion studies, done in a similar fashion, where we have followed the consequences of accretion onto Carbon-Oxygen white dwarfs. This work was supported in part by NASA under the Astrophysics Theory Program grant 14-ATP14-0007 and the U.S. DOE under Contract No. DE-FG02- 97ER41041. SS acknowledges partial support from NASA, NSF, and HST grants to ASU and WRH is supported by the U.S. Department of Energy, Office of Nuclear Physics.
Hydrodynamic Simulations of Classical Novae: Accretion onto CO White Dwarfs as SN Ia Progenitors
NASA Astrophysics Data System (ADS)
Starrfield, Sumner; Bose, Maitrayee; Iliadis, Christian; Hix, William R.; José, Jordi; Hernanz, Margarita
2017-06-01
We have continued our studies of accretion onto white dwarfs by following the evolution of thermonuclear runaways on Carbon Oxygen (CO) white dwarfs. We have varied the mass of the white dwarf and the composition of the accreted material but chosen to keep the mass accretion rate at 2 x 10^{-10} solar masses per year to obtain the largest amount of accreted material possible with rates near to those observed. We assume either 25% core material or 50% core material has been mixed into the accreting material prior to the explosion. We use our 1D, lagrangian, hydrodynamic code: NOVA. We will report on the results of these simulations and compare the ejecta abundances to those measured in pre-solar grains that are thought to arise from classical nova explosions. These results will also be compared to recent results with SHIVA (Jose and Hernanz). We find that in all cases and for all white dwarf masses that less mass is ejected than accreted and, therefore, the white dwarf is growing in mass as a result of the accretion and resulting explosion.This work was supported in part by NASA under the Astrophysics Theory Program grant 14-ATP14-0007 and the U.S. DOE under Contract No. DE-FG02- 97ER41041. SS acknowledges partial support from NASA, NSF, and HST grants to ASU and WRH is supported by the U.S. Department of Energy, Office of Nuclear Physics. The results reported herein benefitted from collaborations and/or information exchange within NASA’s Nexus for Exoplanet System Science (NExSS) research coordination network sponsored by NASA’s Science Mission Directorate.
Wang, Ping; Zhou, Ye; MacLaren, Stephan A.; ...
2015-11-06
Three- and two-dimensional numerical studies have been carried out to simulate recent counter-propagating shear flow experiments on the National Ignition Facility. A multi-physics three-dimensional, time-dependent radiation hydrodynamics simulation code is used. Using a Reynolds Averaging Navier-Stokes model, we show that the evolution of the mixing layer width obtained from the simulations agrees well with that measured from the experiments. A sensitivity study is conducted to illustrate a 3D geometrical effect that could confuse the measurement at late times, if the energy drives from the two ends of the shock tube are asymmetric. Implications for future experiments are discussed.
Evaluation of LVA Full-Scale Hydrodynamic Vehicle Motion Effects on Personnel Performance
1979-04-01
by F. A. Muckler 041 so"i C3 Approved by ""loAIoI James .. Regan fl ific" JSIIV IM............... "’"" ’.Technical Director i MAY ]7 i• ! s ...34, ~~Dizdibtfiob Uliý:m Navy Personnel Research and Development Center San Diego, California 92152 Best Available Copy U S avy CLA51"FiCATION OF THIS PAGW lR De...force ships, the LVJ viii1 transnort troops a-t relatively high spoked (25 mph or more) to beach or inland combat sp* s otios. The LVA will eventually
Assessment of MSIV full closure for Santa Maria de Garona Nuclear Power Plant using TRAC-BF1 (G1J1)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crespo, J.L.; Fernandez, R.A.
1993-06-01
This document presents a spurious Main Steam Isolation Value (MSIV) closure analysis for Santa Maria de Garorta Nuclear Power Plan describing the problems found when comparing calculated and real data. The plant is a General Electric Boiling Water Reactor 3, containment type Mark 1. It is operated by NUCLENOR, S.A. and was connected to the grid in 1971. The analysis has been performed by the Apphed Physics Department from the University of Cantabria and the Analysis and Operation Section from NUCLENOR, S.A. as a part of an agreement for developing an engineering simulator of operational transients and accidents for Santamore » Maria de Gamma Power Plant. The analysis was performed using the frozen version of TRAC-BFI (GlJl) code and is the second of two NUCLENOR contributions to the International Code Applications and Assessment Program (ICAP). The code was run in a Cyber 932 with operating system NOS/VE, property of NUCLENOR, S.A.. A programming effort was carried out in order to provide suitable graphics from the output file.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fung, Jeffrey; Masset, Frédéric; Velasco, David
Planetary migration is inherently a three-dimensional (3D) problem, because Earth-size planetary cores are deeply embedded in protoplanetary disks. Simulations of these 3D disks remain challenging due to the steep resolution requirements. Using two different hydrodynamics codes, FARGO3D and PEnGUIn, we simulate disk–planet interaction for a one to five Earth-mass planet embedded in an isentropic disk. We measure the torque on the planet and ensure that the measurements are converged both in resolution and between the two codes. We find that the torque is independent of the smoothing length of the planet’s potential ( r {sub s}), and that it hasmore » a weak dependence on the adiabatic index of the gaseous disk ( γ ). The torque values correspond to an inward migration rate qualitatively similar to previous linear calculations. We perform additional simulations with explicit radiative transfer using FARGOCA, and again find agreement between 3D simulations and existing torque formulae. We also present the flow pattern around the planets that show active flow is present within the planet’s Hill sphere, and meridional vortices are shed downstream. The vertical flow speed near the planet is faster for a smaller r {sub s} or γ , up to supersonic speeds for the smallest r {sub s} and γ in our study.« less
Flippo, K. A.; Doss, F. W.; Merritt, E. C.; ...
2018-05-30
The LANL Shear Campaign uses millimeter-scale initially solid shock tubes on the National Ignition Facility to conduct high-energy-density hydrodynamic plasma experiments, capable of reaching energy densities exceeding 100 kJ/cm 3. These shock-tube experiments have for the first time reproduced spontaneously emergent coherent structures due to shear-based fluid instabilities [i.e., Kelvin-Helmholtz (KH)], demonstrating hydrodynamic scaling over 8 orders of magnitude in time and velocity. The KH vortices, referred to as “rollers,” and the secondary instabilities, referred to as “ribs,” are used to understand the turbulent kinetic energy contained in the system. Their evolution is used to understand the transition to turbulencemore » and that transition's dependence on initial conditions. Experimental results from these studies are well modeled by the RAGE (Radiation Adaptive Grid Eulerian) hydro-code using the Besnard-Harlow-Rauenzahn turbulent mix model. Information inferred from both the experimental data and the mix model allows us to demonstrate that the specific Turbulent Kinetic Energy (sTKE) in the layer, as calculated from the plan-view structure data, is consistent with the mixing width growth and the RAGE simulations of sTKE.« less
NASA Astrophysics Data System (ADS)
Kim, Jeong-Gyu; Kim, Woong-Tae; Ostriker, Eve C.; Skinner, M. Aaron
2017-12-01
We present an implementation of an adaptive ray-tracing (ART) module in the Athena hydrodynamics code that accurately and efficiently handles the radiative transfer involving multiple point sources on a three-dimensional Cartesian grid. We adopt a recently proposed parallel algorithm that uses nonblocking, asynchronous MPI communications to accelerate transport of rays across the computational domain. We validate our implementation through several standard test problems, including the propagation of radiation in vacuum and the expansions of various types of H II regions. Additionally, scaling tests show that the cost of a full ray trace per source remains comparable to that of the hydrodynamics update on up to ∼ {10}3 processors. To demonstrate application of our ART implementation, we perform a simulation of star cluster formation in a marginally bound, turbulent cloud, finding that its star formation efficiency is 12% when both radiation pressure forces and photoionization by UV radiation are treated. We directly compare the radiation forces computed from the ART scheme with those from the M1 closure relation. Although the ART and M1 schemes yield similar results on large scales, the latter is unable to resolve the radiation field accurately near individual point sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flippo, K. A.; Doss, F. W.; Merritt, E. C.
The LANL Shear Campaign uses millimeter-scale initially solid shock tubes on the National Ignition Facility to conduct high-energy-density hydrodynamic plasma experiments, capable of reaching energy densities exceeding 100 kJ/cm 3. These shock-tube experiments have for the first time reproduced spontaneously emergent coherent structures due to shear-based fluid instabilities [i.e., Kelvin-Helmholtz (KH)], demonstrating hydrodynamic scaling over 8 orders of magnitude in time and velocity. The KH vortices, referred to as “rollers,” and the secondary instabilities, referred to as “ribs,” are used to understand the turbulent kinetic energy contained in the system. Their evolution is used to understand the transition to turbulencemore » and that transition's dependence on initial conditions. Experimental results from these studies are well modeled by the RAGE (Radiation Adaptive Grid Eulerian) hydro-code using the Besnard-Harlow-Rauenzahn turbulent mix model. Information inferred from both the experimental data and the mix model allows us to demonstrate that the specific Turbulent Kinetic Energy (sTKE) in the layer, as calculated from the plan-view structure data, is consistent with the mixing width growth and the RAGE simulations of sTKE.« less
Tang, Gula; Zhu, Yunqiang; Wu, Guozheng; Li, Jing; Li, Zhao-Liang; Sun, Jiulin
2016-01-01
In this study, the Mudan River, which is the most typical river in the northern cold region of China was selected as the research object; Environmental Fluid Dynamics Code (EFDC) was adopted to construct a new two-dimensional water quality model for the urban sections of the Mudan River, and concentrations of CODCr and NH3N during ice-covered and open-water periods were simulated and analyzed. Results indicated that roughness coefficient and comprehensive pollutant decay rate were significantly different in those periods. To be specific, the roughness coefficient in the ice-covered period was larger than that of the open-water period, while the decay rate within the former period was smaller than that in the latter. In addition, according to the analysis of the simulated results, the main reasons for the decay rate reduction during the ice-covered period are temperature drop, upstream inflow decrease and ice layer cover; among them, ice sheet is the major contributor of roughness increase. These aspects were discussed in more detail in this work. The model could be generalized to hydrodynamic water quality process simulation researches on rivers in other cold regions as well. PMID:27070631
Studies of hydrodynamic events in stellar evolution. 3: Ejection of planetary nebulae
NASA Technical Reports Server (NTRS)
Sparks, W. M.; Kutter, G. S.
1973-01-01
The dynamic behavior of the H-rich envelope (0.101 solar mass) of an evolved star (1.1 solar mass) as the luminosity rises to 19000 solar luminosity during the second ascent of the red giant branch. For luminosities in the range 3100 L 19000 solar luminosity the H-rich envelope pulsates like a long-period variable (LPV) with periods of the order of a year. As L reaches 19000 solar luminosity, the entire H-rich envelope is ejected as a shell with speeds of a few 10 km/s. The ejection occurs on a timescale of a few LPV pulsation periods. This ejection is associated with the formation of a planetary nebula. The computations are based on an implicit hydrodynamic computer code. T- and RHO-dependent opacities and excitation and ionization energies are included. As the H-rich envelope is accelerated off the stellar core, the gap between envelope and core is approximated by a vacuum, filled with radiation. Across the vacuum, the luminosity is conserved and the anisotropy of the radiation is considered as well as the solid angle subtended by the remnant star at the inner surface of the H-rich envelope. Spherical symmetry and the diffusion approximation are assumed.
A comparison of models for supernova remnants including cosmic rays
NASA Astrophysics Data System (ADS)
Kang, Hyesung; Drury, L. O'C.
1992-11-01
A simplified model which can follow the dynamical evolution of a supernova remnant including the acceleration of cosmic rays without carrying out full numerical simulations has been proposed by Drury, Markiewicz, & Voelk in 1989. To explore the accuracy and the merits of using such a model, we have recalculated with the simplified code the evolution of the supernova remnants considered in Jones & Kang, in which more detailed and accurate numerical simulations were done using a full hydrodynamic code based on the two-fluid approximation. For the total energy transferred to cosmic rays the two codes are in good agreement, the acceleration efficiency being the same within a factor of 2 or so. The dependence of the results of the two codes on the closure parameters for the two-fluid approximation is also qualitatively similar. The agreement is somewhat degraded in those cases where the shock is smoothed out by the cosmic rays.
Numerical optimization of perturbative coils for tokamaks
NASA Astrophysics Data System (ADS)
Lazerson, Samuel; Park, Jong-Kyu; Logan, Nikolas; Boozer, Allen; NSTX-U Research Team
2014-10-01
Numerical optimization of coils which apply three dimensional (3D) perturbative fields to tokamaks is presented. The application of perturbative 3D magnetic fields in tokamaks is now commonplace for control of error fields, resistive wall modes, resonant field drive, and neoclassical toroidal viscosity (NTV) torques. The design of such systems has focused on control of toroidal mode number, with coil shapes based on simple window-pane designs. In this work, a numerical optimization suite based on the STELLOPT 3D equilibrium optimization code is presented. The new code, IPECOPT, replaces the VMEC equilibrium code with the IPEC perturbed equilibrium code, and targets NTV torque by coupling to the PENT code. Fixed boundary optimizations of the 3D fields for the NSTX-U experiment are underway. Initial results suggest NTV torques can be driven by normal field spectrums which are not pitch-resonant with the magnetic field lines. Work has focused on driving core torque with n = 1 and edge torques with n = 3 fields. Optimizations of the coil currents for the planned NSTX-U NCC coils highlight the code's free boundary capability. This manuscript has been authored by Princeton University under Contract Number DE-AC02-09CH11466 with the U.S. Department of Energy.
Dynamic fisheye grids for binary black hole simulations
NASA Astrophysics Data System (ADS)
Zilhão, Miguel; Noble, Scott C.
2014-03-01
We present a new warped gridding scheme adapted to simulating gas dynamics in binary black hole spacetimes. The grid concentrates grid points in the vicinity of each black hole to resolve the smaller scale structures there, and rarefies grid points away from each black hole to keep the overall problem size at a practical level. In this respect, our system can be thought of as a ‘double’ version of the fisheye coordinate system, used before in numerical relativity codes for evolving binary black holes. The gridding scheme is constructed as a mapping between a uniform coordinate system—in which the equations of motion are solved—to the distorted system representing the spatial locations of our grid points. Since we are motivated to eventually use this system for circumbinary disc calculations, we demonstrate how the distorted system can be constructed to asymptote to the typical spherical polar coordinate system, amenable to efficiently simulating orbiting gas flows about central objects with little numerical diffusion. We discuss its implementation in the Harm3d code, tailored to evolve the magnetohydrodynamics equations in curved spacetimes. We evaluate the performance of the system’s implementation in Harm3d with a series of tests, such as the advected magnetic field loop test, magnetized Bondi accretion, and evolutions of hydrodynamic discs about a single black hole and about a binary black hole. Like we have done with Harm3d, this gridding scheme can be implemented in other unigrid codes as a (possibly) simpler alternative to adaptive mesh refinement.
HERO - A 3D general relativistic radiative post-processor for accretion discs around black holes
NASA Astrophysics Data System (ADS)
Zhu, Yucong; Narayan, Ramesh; Sadowski, Aleksander; Psaltis, Dimitrios
2015-08-01
HERO (Hybrid Evaluator for Radiative Objects) is a 3D general relativistic radiative transfer code which has been tailored to the problem of analysing radiation from simulations of relativistic accretion discs around black holes. HERO is designed to be used as a post-processor. Given some fixed fluid structure for the disc (i.e. density and velocity as a function of position from a hydrodynamic or magnetohydrodynamic simulation), the code obtains a self-consistent solution for the radiation field and for the gas temperatures using the condition of radiative equilibrium. The novel aspect of HERO is that it combines two techniques: (1) a short-characteristics (SC) solver that quickly converges to a self-consistent disc temperature and radiation field, with (2) a long-characteristics (LC) solver that provides a more accurate solution for the radiation near the photosphere and in the optically thin regions. By combining these two techniques, we gain both the computational speed of SC and the high accuracy of LC. We present tests of HERO on a range of 1D, 2D, and 3D problems in flat space and show that the results agree well with both analytical and benchmark solutions. We also test the ability of the code to handle relativistic problems in curved space. Finally, we discuss the important topic of ray defects, a major limitation of the SC method, and describe our strategy for minimizing the induced error.
A hydrodynamic treatment of the cold dark matter cosmological scenario
NASA Technical Reports Server (NTRS)
Cen, Renyue; Ostriker, Jeremiah
1992-01-01
The evolution of structure in a postrecombination Friedmann-Robertson-Walker universe containing both gaseous baryons and cold dark matter (CDM) is studied by means of an Eulerian code coupled with a standard particle-mesh code. Ionization state and radiative opacity are calculated in detail, and the hydrodynamic simulations make it possible to compute properties of gas distribution on scales larger than three cell sizes. The model yields a soft X-ray background consistent with the latest cosmic nucleosynthesis values, and can accurately reproduce the galaxy-galaxy two-point correlation. The rate of galaxy formation peaks at a relatively late epoch. With regard to mass function, the smallest objects are stabilized against collapse by thermal energy: the mass-weighted mass spectrum peaks in the vicinity of m(b) = 10 exp 9.2 solar masses with a reasonable fit to the Schecter luminosity function if the baryon mass to blue light ratio is approximately 4. Overall, the simulations provide strong support for the CMD scenario. Of particular interest is that, while the baryons are not biased on scales greater than 1/h Mpc, the galaxies are, and that the 'galaxies' have a correlation function of the required slope and the correct amplitude.
Simulating Hadronic-to-Quark-Matter with Burn-UD: Recent work and astrophysical applications
NASA Astrophysics Data System (ADS)
Welbanks, Luis; Ouyed, Amir; Koning, Nico; Ouyed, Rachid
2017-06-01
We present the new developments in Burn-UD, our in-house hydrodynamic combustion code used to model the phase transition of hadronic-to-quark matter. Our two new modules add neutrino transport and the time evolution of a (u, d, s) quark star (QS). Preliminary simulations show that the inclusion of neutrino transport points towards new hydrodynamic instabilities that increase the burning speed. A higher burning speed could elicit the deflagration to detonation of a neutron star (NS) into a QS. We propose that a Quark-Nova (QN: the explosive transition of a NS to a QS) could help us explain the most energetic astronomical events to this day: superluminous supernovae (SLSNe). Our models consider a QN occurring in a massive binary, experiencing two common envelope stages and a QN occurring after the supernova explosion of a Wolf-Rayet (WO) star. Both models have been successful in explaining the double humped light curves of over half a dozen SLSNe. We also introduce SiRop our r-process simulation code and propose that a QN site has the hot temperatures and neutron densities required to make it an ideal site for the r-process.
NASA Astrophysics Data System (ADS)
Bates, Jason; Schmitt, Andrew; Karasik, Max; Obenschain, Steve
2012-10-01
Using the FAST code, we present numerical studies of the effect of thin metallic layers with high atomic number (high-Z) on the hydrodynamics of directly-driven inertial-confinement-fusion (ICF) targets. Previous experimental work on the NIKE Laser Facility at the U.S. Naval Research Laboratory demonstrated that the use of high-Z layers may be efficacious in reducing laser non-uniformities imprinted on the target during the start-up phase of the implosion. Such a reduction is highly desirable in a direct-drive ICF scenario because laser non-uniformities seed hydrodynamic instabilities that can amplify during the implosion process, prevent uniform compression and spoil high gain. One of the main objectives of the present work is to assess the utility of high-Z layers for achieving greater laser uniformity in polar-drive target designs planned for the National Ignition Facility. To address this problem, new numerical routines have recently been incorporated in the FAST code, including an improved radiation-transfer package and a three-dimensional ray-tracing algorithm. We will discuss these topics, and present initial simulation results for high-Z planar-target experiments planned on the NIKE Laser Facility later this year.
Non-local features of a hydrodynamic pilot-wave system
NASA Astrophysics Data System (ADS)
Nachbin, Andre; Couchman, Miles; Bush, John
2016-11-01
A droplet walking on the surface of a vibrating fluid bath constitutes a pilot-wave system of the form envisaged for quantum dynamics by Louis de Broglie: a particle moves in resonance with its guiding wave field. We here present an examination of pilot-wave hydrodynamics in a confined domain. Specifically, we present a one-dimensional water wave model that describes droplets walking in single and multiple cavities. The cavities are separated by a submerged barrier, and so allow for the study of tunneling. They also highlight the non-local dynamical features arising due to the spatially-extended wave field. Results from computational simulations are complemented by laboratory experiments.
The application of single particle hydrodynamics in continuum models of multiphase flow
NASA Technical Reports Server (NTRS)
Decker, Rand
1988-01-01
A review of the application of single particle hydrodynamics in models for the exchange of interphase momentum in continuum models of multiphase flow is presented. Considered are the equations of motion for a laminar, mechanical two phase flow. Inherent to this theory is a model for the interphase exchange of momentum due to drag between the dispersed particulate and continuous fluid phases. In addition, applications of two phase flow theory to de-mixing flows require the modeling of interphase momentum exchange due to lift forces. The applications of single particle analysis in deriving models for drag and lift are examined.
2D and 3D Simulations of Exploding Pusher Capsules
NASA Astrophysics Data System (ADS)
Pino, Jesse; Smith, Andrew; Miles, Aaron
2011-10-01
A research campaign is underway at the National Ignition Facility (NIF) at LLNL to study rapidly evolving, non-LTE, inertial fusion plasmas. The goal is to field thin-shelled, gas filled ``Exploding Pusher'' capsules in a Polar Direct Drive (PDD) configuration. Ion temperatures of > 15 keV and electron temperatures of > 5 keV are reached. A small convergence ratio and rapidly ablated shell reduce susceptibility to hydrodynamic instabilities. Using 1D simulations, most favorable configurations were found to be thin SiO2 or Be shells containing 10 atm of D2-He3 in a 2:1 ratio. This poster describes the 2D and 3D ARES Radiation Hydrodynamics simulations of these capsules. 2D simulations are essential because the PDD configuration requires that each of the beams be ``repointed'' away from their nominal angles. Each beam can also have a separate power profile and focal length. Large ensembles of simulations were run to probe the parameter space and find the optimal pointing resulting in the most spherical implosions. Response surfaces were constructed to ascertain the susceptibility to shot-time fluctuations. We also discuss resolution convergence and present preliminary results of 3D modeling. This work performed under the auspices of the U.S. DoE by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farmer, M. T.
MELTSPREAD3 is a transient one-dimensional computer code that has been developed to predict the gravity-driven flow and freezing behavior of molten reactor core materials (corium) in containment geometries. Predictions can be made for corium flowing across surfaces under either dry or wet cavity conditions. The spreading surfaces that can be selected are steel, concrete, a user-specified material (e.g., a ceramic), or an arbitrary combination thereof. The corium can have a wide range of compositions of reactor core materials that includes distinct oxide phases (predominantly Zr, and steel oxides) plus metallic phases (predominantly Zr and steel). The code requires input thatmore » describes the containment geometry, melt “pour” conditions, and cavity atmospheric conditions (i.e., pressure, temperature, and cavity flooding information). For cases in which the cavity contains a preexisting water layer at the time of RPV failure, melt jet breakup and particle bed formation can be calculated mechanistically given the time-dependent melt pour conditions (input data) as well as the heatup and boiloff of water in the melt impingement zone (calculated). For core debris impacting either the containment floor or previously spread material, the code calculates the transient hydrodynamics and heat transfer which determine the spreading and freezing behavior of the melt. The code predicts conditions at the end of the spreading stage, including melt relocation distance, depth and material composition profiles, substrate ablation profile, and wall heatup. Code output can be used as input to other models such as CORQUENCH that evaluate long term core-concrete interaction behavior following the transient spreading stage. MELTSPREAD3 was originally developed to investigate BWR Mark I liner vulnerability, but has been substantially upgraded and applied to other reactor designs (e.g., the EPR), and more recently to the plant accidents at Fukushima Daiichi. The most recent round of improvements that are documented in this report have been specifically implemented to support industry in developing Severe Accident Water Management (SAWM) strategies for Boiling Water Reactors.« less