HYDRODYNAMIC SIMULATIONS OF H ENTRAINMENT AT THE TOP OF He-SHELL FLASH CONVECTION
Woodward, Paul R.; Lin, Pei-Hung; Herwig, Falk E-mail: fherwig@uvic.ca
2015-01-01
We present the first three-dimensional, fully compressible gas-dynamics simulations in 4π geometry of He-shell flash convection with proton-rich fuel entrainment at the upper boundary. This work is motivated by the insufficiently understood observed consequences of the H-ingestion flash in post-asymptotic giant branch (post-AGB) stars (Sakurai's object) and metal-poor AGB stars. Our investigation is focused on the entrainment process at the top convection boundary and on the subsequent advection of H-rich material into deeper layers, and we therefore ignore the burning of the proton-rich fuel in this study. We find that for our deep convection zone, coherent convective motions of near global scale appear to dominate the flow. At the top boundary convective shear flows are stable against Kelvin-Helmholtz instabilities. However, such shear instabilities are induced by the boundary-layer separation in large-scale, opposing flows. This links the global nature of thick shell convection with the entrainment process. We establish the quantitative dependence of the entrainment rate on grid resolution. With our numerical technique, simulations with 1024{sup 3} cells or more are required to reach a numerical fidelity appropriate for this problem. However, only the result from the 1536{sup 3} simulation provides a clear indication that we approach convergence with regard to the entrainment rate. Our results demonstrate that our method, which is described in detail, can provide quantitative results related to entrainment and convective boundary mixing in deep stellar interior environments with very stiff convective boundaries. For the representative case we study in detail, we find an entrainment rate of 4.38 ± 1.48 × 10{sup –13} M {sub ☉} s{sup –1}.
Spherical-shell boundaries for two-dimensional compressible convection in a star
NASA Astrophysics Data System (ADS)
Pratt, J.; Baraffe, I.; Goffrey, T.; Geroux, C.; Viallet, M.; Folini, D.; Constantino, T.; Popov, M.; Walder, R.
2016-10-01
Context. Studies of stellar convection typically use a spherical-shell geometry. The radial extent of the shell and the boundary conditions applied are based on the model of the star investigated. We study the impact of different two-dimensional spherical shells on compressible convection. Realistic profiles for density and temperature from an established one-dimensional stellar evolution code are used to produce a model of a large stellar convection zone representative of a young low-mass star, like our sun at 106 years of age. Aims: We analyze how the radial extent of the spherical shell changes the convective dynamics that result in the deep interior of the young sun model, far from the surface. In the near-surface layers, simple small-scale convection develops from the profiles of temperature and density. A central radiative zone below the convection zone provides a lower boundary on the convection zone. The inclusion of either of these physically distinct layers in the spherical shell can potentially affect the characteristics of deep convection. Methods: We perform hydrodynamic implicit large eddy simulations of compressible convection using the MUltidimensional Stellar Implicit Code (MUSIC). Because MUSIC has been designed to use realistic stellar models produced from one-dimensional stellar evolution calculations, MUSIC simulations are capable of seamlessly modeling a whole star. Simulations in two-dimensional spherical shells that have different radial extents are performed over tens or even hundreds of convective turnover times, permitting the collection of well-converged statistics. Results: To measure the impact of the spherical-shell geometry and our treatment of boundaries, we evaluate basic statistics of the convective turnover time, the convective velocity, and the overshooting layer. These quantities are selected for their relevance to one-dimensional stellar evolution calculations, so that our results are focused toward studies exploiting the so
Overlimiting current through ion concentration polarization layer: hydrodynamic convection effects.
Cho, Inhee; Sung, Gun Yong; Kim, Sung Jae
2014-05-01
In this work, we experimentally investigated an effect of the hydrodynamic convective flow on ion transport through a nanoporous membrane in a micro/nanofluidic modeled system. The convective motion of ions in an ion concentration polarization (ICP) layer was controlled by external hydrodynamic inflows adjacent to the nanoporous membrane. The ion depletion region, which is regarded as a high electrical resistance, was spatially confined to a triangular shape with the additional hydrodynamic convective flow, resulting in a significant alteration in the classical ohmic-limiting-overlimiting current characteristics. Furthermore, the extreme spatial confinement can completely eliminate the limiting current region at a higher flow rate, while the ICP layer still exists. The presented results enable one to obtain a high current value which turns out to be a high electrical power efficiency. Therefore, this mechanism could be utilized as an optimizing power consumption strategy for various electrochemical membrane systems such as fuel-cells, electro-desalination systems and nanofluidic preconcentrators, etc.
Off-shell hydrodynamics from holography
Crossley, Michael; Glorioso, Paolo; Liu, Hong; Wang, Yifan
2016-02-18
In this article, we outline a program for obtaining an action principle for dissipative fluid dynamics by considering the holographic Wilsonian renormalization group applied to systems with a gravity dual. As a first step, in this paper we restrict to systems with a non-dissipative horizon. By integrating out gapped degrees of freedom in the bulk gravitational system between an asymptotic boundary and a horizon, we are led to a formulation of hydrodynamics where the dynamical variables are not standard velocity and temperature fields, but the relative embedding of the boundary and horizon hypersurfaces. At zeroth order, this action reduces tomore » that proposed by Dubovsky et al. as an off-shell formulation of ideal fluid dynamics.« less
Off-shell hydrodynamics from holography
NASA Astrophysics Data System (ADS)
Crossley, Michael; Glorioso, Paolo; Liu, Hong; Wang, Yifan
2016-02-01
We outline a program for obtaining an action principle for dissipative fluid dynamics by considering the holographic Wilsonian renormalization group applied to systems with a gravity dual. As a first step, in this paper we restrict to systems with a non-dissipative horizon. By integrating out gapped degrees of freedom in the bulk gravitational system between an asymptotic boundary and a horizon, we are led to a formulation of hydrodynamics where the dynamical variables are not standard velocity and temperature fields, but the relative embedding of the boundary and horizon hypersurfaces. At zeroth order, this action reduces to that proposed by Dubovsky et al. as an off-shell formulation of ideal fluid dynamics.
Angular Momentum Fluctuations in the Convective Helium Shell of Massive Stars
NASA Astrophysics Data System (ADS)
Gilkis, Avishai; Soker, Noam
2016-08-01
We find significant fluctuations of angular momentum within the convective helium shell of a pre-collapse massive star—a core-collapse supernova progenitor—that may facilitate the formation of accretion disks and jets that can explode the star. The convective flow in our model of an evolved {M}{ZAMS}=15{M}⊙ star, computed using the subsonic hydrodynamic solver MAESTRO, contains entire shells with net angular momentum in different directions. This phenomenon may have important implications for the late evolutionary stages of massive stars and for the dynamics of core collapse.
Angular Momentum Fluctuations in the Convective Helium Shell of Massive Stars
NASA Astrophysics Data System (ADS)
Gilkis, Avishai; Soker, Noam
2016-08-01
We find significant fluctuations of angular momentum within the convective helium shell of a pre-collapse massive star—a core-collapse supernova progenitor—that may facilitate the formation of accretion disks and jets that can explode the star. The convective flow in our model of an evolved {M}{ZAMS}=15{M}ȯ star, computed using the subsonic hydrodynamic solver MAESTRO, contains entire shells with net angular momentum in different directions. This phenomenon may have important implications for the late evolutionary stages of massive stars and for the dynamics of core collapse.
Critical stability of almost adiabatic convection in a rapidly rotating thick spherical shell
Starchenko, S. V.; Kotelnikova, M. S.
2013-02-15
In this work, the convection equations in the almost adiabatic approximation is studied for which the choice of physical parameters is primarily based on possible applications to the hydrodynamics of the deep interiors of the Earth and planets and moons of the terrestrial group. The initial system of partial differential equations (PDEs) was simplified to a single second-order ordinary differential equation for the pressure or vertical velocity component to investigate the linear stability of convection. The critical frequencies, modified Rayleigh numbers, and distributions of convection are obtained at various possible Prandtl numbers and in different thick fluid shells. An analytical WKB-type solution was obtained for the case when the inner radius of the shell is much smaller than the outer radius and convective sources are concentrated along the inner boundary.
Spatial symmetry breaking in rapidly rotating convective spherical shells
NASA Technical Reports Server (NTRS)
Zhang, Keke; Schubert, Gerald
1995-01-01
Many problems in geophysical and astrophysical convection systems are characterized by fast rotation and spherical shell geometry. The combined effects of Coriolis forces and spherical shell geometry produce a unique spatial symmetry for the convection pattern in a rapidly rotating spherical shell. In this paper, we first discuss the general spatial symmetries for rotating spherical shell convection. A special model, a spherical shell heated from below, is then used to illustrate how and when the spatial symmetries are broken. Symmetry breaking occurs via a sequence of spatial transitions from the primary conducting state to the complex multiple-layered columnar structure. It is argued that, because of the dominant effects of rotation, the sequence of spatial transitions identified from this particular model is likely to be generally valid. Applications of the spatial symmetry breaking to planetary convection problems are also discussed.
Onset and Cessation of Thermal Convection within Titan's Ice Shell
NASA Astrophysics Data System (ADS)
Mitri, G.; Tobie, G.; Choblet, G.
2015-12-01
The onset of thermal convection within the outer ice shell of Titan is believed to be at the origin of methane outgassing on Titan (Tobie et al., 2006), a possible factor in Titan's resurfacing processes (Mitri et al., 2008), and to have a major role in the evolution and tectonic activity of this Saturnian icy satellite (Tobie et al., 2005; Mitri and Showman, 2008; Mitri et al., 2010). Recent measurements of the gravity field (Iess et al., 2010, 2012) and the modeling of the shape and topography (Zebker et al., 2009; Mitri et al., 2014) have recently improved our knowledge of the thermal state and structure of Titan's outer ice shell. Mitri et al. (2014) found that Titan's surface topography is consistent with an isostatically compensated ice shell of variable thickness, likely at the present in a thermally conductive state (see also Nimmo and Bills, 2010; Hemingway et al., 2013), overlying a relatively dense (~1200-1350 kg m-3) subsurface ocean. As Titan's ice shell is not currently experiencing thermal convection it is likely that the ice shell could have experienced during its history both the onset and the cessation of thermal convection; thermal convection could be present within the ice shell for limited times or in fact be episodic. We investigate the evolution of Titan's outer ice shell from the crystallization of the underlying ocean with a focus on the onset and cessation of thermal convection. To simulate convection in a growing ice shell, we numerically solve the thermal convection equations for a Newtonian rheology in a two dimensional Cartesian domain using finite element method, with a moving bottom boundary to ocean crystallization. We discuss how the crystallization process affects the onset of convection and in which conditions the cessation of thermal convection may occur. The geological consequences of the changes of the thermal state and structure of the outer ice shell will also be discussed.
Zingale, M.; Orvedahl, R. J.; Nonaka, A.; Almgren, A. S.; Bell, J. B.; Malone, C. M.
2013-02-10
We assess the robustness of a low Mach number hydrodynamics algorithm for modeling helium shell convection on the surface of a white dwarf in the context of the sub-Chandrasekhar model for Type Ia supernovae. We use the low Mach number stellar hydrodynamics code, MAESTRO, to perform three-dimensional, spatially adaptive simulations of convection leading up to the point of the ignition of a burning front. We show that the low Mach number hydrodynamics model provides a robust description of the system.
The influence of subsurface hydrodynamics on convective precipitation
NASA Astrophysics Data System (ADS)
Rahman, A. S. M. M.; Sulis, M.; Kollet, S. J.
2014-12-01
The terrestrial hydrological cycle comprises complex processes in the subsurface, land surface, and atmosphere, which are connected via complex non-linear feedback mechanisms. The influence of subsurface hydrodynamics on land surface mass and energy fluxes has been the subject of previous studies. Several studies have also investigated the soil moisture-precipitation feedback, neglecting however the connection with groundwater dynamics. The objective of this study is to examine the impact of subsurface hydrodynamics on convective precipitation events via shallow soil moisture and land surface processes. A scale-consistent Terrestrial System Modeling Platform (TerrSysMP) that consists of an atmospheric model (COSMO), a land surface model (CLM), and a three-dimensional variably saturated groundwater-surface water flow model (ParFlow), is used to simulate hourly mass and energy fluxes over days with convective rainfall events over the Rur catchment, Germany. In order to isolate the effect of groundwater dynamics on convective precipitation, two different model configurations with identical initial conditions are considered. The first configuration allows the groundwater table to evolve through time, while a spatially distributed, temporally constant groundwater table is prescribed as a lower boundary condition in the second configuration. The simulation results suggest that groundwater dynamics influence land surface soil moisture, which in turn affects the atmospheric boundary layer (ABL) height by modifying atmospheric thermals. It is demonstrated that because of this sensitivity of ABL height to soil moisture-temperature feedback, the onset and magnitude of convective precipitation is influenced by subsurface hydrodynamics. Thus, the results provide insight into the soil moisture-precipitation feedback including groundwater dynamics in a physically consistent manner by closing the water cycle from aquifers to the atmosphere.
Chiral Symmetry Breaking in Crystal Growth: Is Hydrodynamic Convection Relevant?
NASA Technical Reports Server (NTRS)
Martin, B.; Tharrington, A.; Wu, Xiao-Lun
1996-01-01
The effects of mechanical stirring on nucleation and chiral symmetry breaking have been investigated for a simple inorganic molecule, sodium chlorate (NaClO3). In contrast to earlier findings, our experiment suggests that the symmetry breaking may have little to do with hydrodynamic convection. Rather the effect can be reasonably accounted for by mechanical damage to incipient crystals. The catastrophic events, creating numerous small 'secondary' crystals, produce statistical domination of one chiral species over the other. Our conclusion is supported by a number of observations using different mixing mechanisms.
Thermo-Chemical Convection in Europa's Icy Shell with Salinity
NASA Technical Reports Server (NTRS)
Han, L.; Showman, A. P.
2005-01-01
Europa's icy surface displays numerous pits, uplifts, and chaos terrains that have been suggested to result from solid-state thermal convection in the ice shell, perhaps aided by partial melting. However, numerical simulations of thermal convection show that plumes have insufficient buoyancy to produce surface deformation. Here we present numerical simulations of thermochemical convection to test the hypothesis that convection with salinity can produce Europa's pits and domes. Our simulations show that domes (200-300 m) and pits (300-400 m) comparable to the observations can be produced in an ice shell of 15 km thick with 5-10% compositional density variation if the maximum viscosity is less than 10(exp 18) Pa sec. Additional information is included in the original extended abstract.
NASA Astrophysics Data System (ADS)
Wang, Junfeng; Liang, Chunlei; Miesch, Mark S.
2015-06-01
We present a novel and powerful Compressible High-ORder Unstructured Spectral-difference (CHORUS) code for simulating thermal convection and related fluid dynamics in the interiors of stars and planets. The computational geometries are treated as rotating spherical shells filled with stratified gas. The hydrodynamic equations are discretized by a robust and efficient high-order Spectral Difference Method (SDM) on unstructured meshes. The computational stencil of the spectral difference method is compact and advantageous for parallel processing. CHORUS demonstrates excellent parallel performance for all test cases reported in this paper, scaling up to 12 000 cores on the Yellowstone High-Performance Computing cluster at NCAR. The code is verified by defining two benchmark cases for global convection in Jupiter and the Sun. CHORUS results are compared with results from the ASH code and good agreement is found. The CHORUS code creates new opportunities for simulating such varied phenomena as multi-scale solar convection, core convection, and convection in rapidly-rotating, oblate stars.
Thermochemically driven convection in a rotating spherical shell
NASA Astrophysics Data System (ADS)
Breuer, M.; Manglik, A.; Wicht, J.; Trümper, T.; Harder, H.; Hansen, U.
2010-10-01
We present a numerical study on convection in a rotating spherical shell that explores the influence of the two possible driving sources in planetary iron cores: temperature differences exceeding the adiabatic gradient and compositional differences that arise from the rejection of light elements at the inner core freezing front. Similarly, both effects play an important role in driving convection in Earth's outer core but their individual contribution remains uncertain. Dynamically, both components significantly differ in terms of their diffusion timescales since heat diffuses much faster than chemical elements. To investigate the influence of the driving mechanisms on the convective flow pattern, we consider different scenarios including the two extreme cases of purely thermally and purely compositionally driven convection and the more likely situation of a joint action of both sources. We solely focus on implications resulting from the given difference in the thermal and chemical diffusivity. For the present, we disregard the effects that might arise from the more realistic case of distinct thermal and chemical boundary conditions. We show that the driving mechanism strongly affects the resulting flow pattern, for example, differential rotation and global quantities such as mean energy and transport efficiencies. Additionally, we use a selected case for a specific comparison of two different codes based on a pseudospectral and a finite volume formulation, respectively.
NASA Astrophysics Data System (ADS)
Jacobs, A. M.; Zingale, M.; Nonaka, A.; Almgren, A. S.; Bell, J. B.
2016-08-01
The dynamics of helium shell convection driven by nuclear burning establish the conditions for runaway in the sub-Chandrasekhar-mass, double-detonation model for SNe Ia, as well as for a variety of other explosive phenomena. We explore these convection dynamics for a range of white dwarf core and helium shell masses in three dimensions using the low Mach number hydrodynamics code MAESTRO. We present calculations of the bulk properties of this evolution, including time-series evolution of global diagnostics, lateral averages of the 3D state, and the global 3D state. We find a variety of outcomes, including quasi-equilibrium, localized runaway, and convective runaway. Our results suggest that the double-detonation progenitor model is promising and that 3D dynamic convection plays a key role.
NASA Technical Reports Server (NTRS)
Machetel, Philippe; Yuen, David
1986-01-01
This work presents a detailed numerical study of the dynamical behavior of convection in a spherical shell, as applied to mantle convection. From both two-dimensional (120 radial and 360 tangential points) and three-dimensional (60 radial levels and spherical harmonics up to order and degree L = 33, m = 33), it is shown that for a spherical shell (with inner-to-outer radii ratio eta = 0.62) convection becomes time-dependent, with l = 2 dominating, at a Rayleigh number of about 31 times supercritical for a constant-viscosity, base-heated configuration. This secondary instability is characterized by oscillatory time dependence, with higher frequencies involved, at slightly higher Rayleigh numbers. In illustrating the onset of time dependence, the analysis is extended to show that the onset of weak turbulence in spherical-shell convection takes place at about 60 times the critical Rayleigh number via a quasi-periodic mode.
Time-implicit hydrodynamical simulations of stellar interiors: Application to turbulent convection
NASA Astrophysics Data System (ADS)
Viallet, M.
2012-12-01
The talk described the first results on turbulent convection in the envelope of a red giant star obtained with the MUSIC code, a new multi-dimensional time-implicit code devoted to stellar interiors (Viallet, Baraffe & Walder, A&A, 2011). Currently, most of our physical understanding of stellar interiors and evolution largely relies on one-dimensional calculations. The description of complex physical processes like time-dependent turbulent convection, rotation or MHD processes mostly relies on simplified, phenomenological approaches, with a predictive power hampered by the use of several free parameters. These approaches have now reached their limits in the understanding of stellar structure and evolution. The development of multi-dimensional hydrodynamical simulations becomes crucial to progress in the field of stellar physics and to meet the enormous observational efforts aimed at producing data of unprecedented quality (COROT, Kepler GAIA). The MUSIC code solves the hydrodynamical equations in spherical geometry and is based on the finite volume method. The talk presented implicit large eddy simulations of the turbulent convection in a cold giant envelope both in 2D and 3D and covering 80% in radius of the stellar structure. The computational domain includes both the convective envelope and a significant fraction of the radiative zone, allowing for convective penetration. These simulations provide valuable insight to improve the description of turbulent convection in 1D models
NASA Astrophysics Data System (ADS)
Liang, Y.; DiCarlo, D. A.; Hesse, M. A.
2015-12-01
Carbon capture and storage in deep geological formations has the potential to reduce anthropogenic CO2 emissions from industrial point sources. Dissolution of CO2 into the brine, resulting in stable stratification, has been identified as the key to long-term storage security. Here we present new analogue laboratory experiment method, advanced image processing method and optimized simulation method to characterize CO2 convective dissolution trapping process and gravitational finger behaviors, in order to study the effect of hydrodynamic dispersion on the CO2 convective dissolution process, as well as to study the effect of control physical parameters on the gravitational finger dynamics. Figure 1 shows the image processing method to analyze the finger dynamics. Understanding the effect of hydrodynamic dispersion and the finger dynamics are essential to evaluate whether convective dissolution occurs, as well as to predict how fast it occurs at the geological CO2 storage field scale. The effect of hydrodynamics dispersion and the finger dynamics can be applied to estimate the security of geological CO2 storage fields, in turn. Optimiezed simulation work is conducted to predict the CO2 dissolution rate at geological CO2 storage field. The large experimental assembly will allow us to quantify in detail for the first time the relationship between convective dissolution rate and the controlling factors of the system, including permeability and driven force, which could be essential to trapping process at Bravo Dome geological CO2 storage field. We complement the homogeneous experiments with a detailed study of the scaling law of the convective flux with dispersion effect. The advanced image processing method with Fourier's transform method allow us to understand the finger dynamics and corresponding control factors in porous media, for the first time. By applying the dispersion effect and finger dynamics we found from the experimental study, we optimize the simulation
A NEW STELLAR MIXING PROCESS OPERATING BELOW SHELL CONVECTION ZONES FOLLOWING OFF-CENTER IGNITION
Mocak, M.; Siess, L.; Meakin, Casey A.; Mueller, E.
2011-12-10
During most stages of stellar evolution the nuclear burning of lighter to heavier elements results in a radial composition profile which is stabilizing against buoyant acceleration, with light material residing above heavier material. However, under some circumstances, such as off-center ignition, the composition profile resulting from nuclear burning can be destabilizing and characterized by an outwardly increasing mean molecular weight. The potential for instabilities under these circumstances and the consequences that they may have on stellar structural evolution remain largely unexplored. In this paper we study the development and evolution of instabilities associated with unstable composition gradients in regions that are initially stable according to linear Schwarzschild and Ledoux criteria. In particular, we study the development of turbulent flow under a variety of stellar evolution conditions with multi-dimensional hydrodynamic simulation; the phases studied include the core helium flash in a 1.25 M{sub Sun} star, the core carbon flash in a 9.3 M{sub Sun} star, and oxygen shell burning in a 23 M{sub Sun} star. The results of our simulations reveal a mixing process associated with regions having outwardly increasing mean molecular weight that reside below convection zones. The mixing is not due to overshooting from the convection zone, nor is it due directly to thermohaline mixing which operates on a timescale several orders of magnitude larger than the simulated flows. Instead, the mixing appears to be due to the presence of a wave field induced in the stable layers residing beneath the convection zone which enhances the mixing rate by many orders of magnitude and allows a thermohaline type mixing process to operate on a dynamical, rather than thermal, timescale. The mixing manifests itself in the form of overdense and cold blob-like structures originating from density fluctuations at the lower boundary of convective shell and 'shooting' down into the core
AN AZIMUTHAL DYNAMO WAVE IN SPHERICAL SHELL CONVECTION
Cole, Elizabeth; Käpylä, Petri J.; Mantere, Maarit J.; Brandenburg, Axel
2014-01-10
We report the discovery of an azimuthal dynamo wave of a low-order (m = 1) mode in direct numerical simulations (DNS) of turbulent convection in spherical shells. Such waves are predicted by mean-field dynamo theory and have been obtained previously in mean-field models. An azimuthal dynamo wave has been proposed as a possible explanation for the persistent drifts of spots observed on several rapidly rotating stars, as revealed through photometry and Doppler imaging. However, this has been judged unlikely because evidence for such waves from DNS has been lacking. Here we present DNS of large-scale magnetic fields showing a retrograde m = 1 mode. Its pattern speed is nearly independent of latitude and does not reflect the speed of the differential rotation at any depth. The extrema of magnetic m = 1 structures coincide reasonably well with the maxima of m = 2 structures of the temperature. These results provide direct support for the observed drifts being due to an azimuthal dynamo wave.
NASA Astrophysics Data System (ADS)
Abdul Rehman, Nidhil Mohamed; Shukla, Ratnesh
2015-11-01
Introduction of a slip in the tangential surface velocity suppresses vorticity production in a typical bluff body flow while simultaneously enhancing vorticity convection downstream and into the wake region. As a result the flow characteristics are altered significantly and the hydrodynamic loads are reduced considerably. In this work we investigate the effect of the hydrodynamic slip on the convective heat transfer from the surface of a heated isothermal circular cylinder placed in the uniform cross flow of a viscous incompressible fluid through numerical simulations. We find that for fixed Reynolds and Prandtl numbers an increase in the Knudsen number or equivalently the hydrodynamic slip length results in a substantial augmentation of the heat transfer coefficient. We establish the dependence of the Nusselt number on the Knudsen, Reynolds and Prandtl numbers over a wide range of these parameters. We find that for given Reynolds and Prandtl numbers the Nusselt number undergoes a sharp transition between the low and high asymptotic limits that correspond to zero (no-slip) and infinite (shear-free perfect slip) Knudsen numbers. We establish that the high asymptotic limit corresponding to the shear-free perfect slip cylinder boundary scales as Nu ~ Re 0 . 5 Pr 0 . 5 .
Bifurcations of rotating waves in rotating spherical shell convection.
Feudel, F; Tuckerman, L S; Gellert, M; Seehafer, N
2015-11-01
The dynamics and bifurcations of convective waves in rotating and buoyancy-driven spherical Rayleigh-Bénard convection are investigated numerically. The solution branches that arise as rotating waves (RWs) are traced by means of path-following methods, by varying the Rayleigh number as a control parameter for different rotation rates. The dependence of the azimuthal drift frequency of the RWs on the Ekman and Rayleigh numbers is determined and discussed. The influence of the rotation rate on the generation and stability of secondary branches is demonstrated. Multistability is typical in the parameter range considered.
Impact of tidal heating on the onset of convection in Enceladus' ice shell
NASA Astrophysics Data System (ADS)
Behounkova, Marie; Tobie, Gabriel; Choblet, Gael; Cadek, Ondrej
2013-04-01
Observations of Enceladus by the Cassini spacecraft indicated that its south pole is very active, with jets of water vapor and ice emanating from warm tectonic ridges. Convective processes in the ice shell are commonly advocated to explain the enhanced activity at the south pole. The conditions under which convection may occur on Enceladus are, however, still puzzling. According to the estimation of Barr and McKinnon (2007) based on scaling laws, convection may initiate in Enceladus' ice shell only for grain size smaller than 0.3 mm, which is very small compared to the grain size observed on Earth in polar ice sheets for similar temperature and stress conditions (2-4mm). Moreover, Bahounková et al. (2012) showed that such enhanced activity periods associated with thermal convection and internal melting should be brief (~ 1 - 10Myrs) and should be followed by relatively long periods of inactivity (~ 100Myrs), with a probable cessation of thermal convection. In order to constrain the likelihood and periodicity of enhanced activity periods, the conditions under which thermal convection may restart are needed to be investigated. In particular, the goal is to understand how tidal heating, especially during periods of elevated eccentricity, may influence the onset of convection. To answer this question, 3D simulations of thermal convection including a self-consistent computation of tidal dissipation using the code Antigone (Bahounková et al., 2010, 2012) were performed, a composite non-Newtonian rheology (Goldsby and Kohlstedt, 2001) and Maxwell-like rheology mimicking Andrade model were considered. Our simulations show that the onset of convection may occur in Enceladus' ice shell only for ice grain size smaller or equal than 0.5 mm in absence of tidal heating. Tidal dissipation shifts the critical grain size for convection up to values of 1-1.5 mm. The convection is initiated in the polar region due to enhanced tidal dissipation in this area and remains in the
NASA Astrophysics Data System (ADS)
Takehiro, S.; Sasaki, Y.; Hayashi, Y.-Y.; Yamada, M.
2013-12-01
We investigate generation mechanisms of differential rotation and angular momentum transport caused by Boussinesq thermal convection in a rotating spherical shell based on weakly nonlinear numerical calculations for various values of the Prandtl and Ekman numbers under a setup similar to the solar convection layer. When the Prandtl number is of order unity or less and the rotation rate of the system is small (the Ekman number is larger than O(10-2)), the structure of thermal convection is not governed by the Taylor-Proudman theorem; banana-type convection cells emerge which follow the spherical shell boundaries rather than the rotation axis. Due to the Coriolis effect, the velocity field associated with those types of convection cells accompanies the Reynolds stress which transports angular momentum from high-latitudes to the equatorial region horizontally, and equatorial prograde flows are produced. The surface and internal distributions of differential rotation realized in this regime are quite similar to those observed in the Sun with helioseismology. These results may suggest that we should apply larger values of the eddy diffusivities than those believed so far when we use a low resolution numerical model for thermal convection in the solar interior.
Electrical Resistivity Imaging and Hydrodynamic Modeling of Convective Fingering in a Sabkha Aquifer
NASA Astrophysics Data System (ADS)
Van Dam, Remke; Eustice, Brian; Hyndman, David; Wood, Warren; Simmons, Craig
2014-05-01
Free convection, or fluid motion driven by density differences, is an important groundwater flow mechanism that can enhance transport and mixing of heat and solutes in the subsurface. Various issues of environmental and societal relevance are exacerbated convective mixing; it has been studied in the context of dense contaminant plumes, nuclear waste disposal, greenhouse gas sequestration, the impacts of sea level rise and saline intrusion on drinking water resources. The basic theory behind convective flow in porous media is well understood, but important questions regarding this process in natural systems remain unanswered. Most previous research on this topic has focused on theory and modeling, with only limited attention to experimental studies and field measurements. The few published studies present single snapshots, making it difficult to quantify transient changes in these systems. Non-invasive electrical methods have the potential to exploit the relation between solute concentrations and electrical conductance of a fluid, and thereby estimate fluid salinity differences in time and space. We present the results of a two-year experimental study at a shallow sabkha aquifer in the United Arab Emirates, about 50 km southwest of the city of Abu Dhabi along the coast of the Arabian Gulf, that was designed to explore the transient nature of free convection. Electrical resistivity tomography (ERT) data documented the presence of convective fingers following a significant rainfall event. One year later, the complex fingering pattern had completely disappeared. This observation is supported by analysis of the aquifer solute budget as well as hydrodynamic modeling of the system. The transient dynamics of the gravitational instabilities in the modeling results are in agreement with the timing observed in the time-lapse ERT data. Our experimental observations and modeling are consistent with the hypothesis that the instabilities arose from a dense brine that infiltrated
2016-01-01
We present a new methodology for efficient and high-quality patterning of biological reagents for surface-based biological assays. The method relies on hydrodynamically confined nanoliter volumes of reagents to interact with the substrate at the micrometer-length scale. We study the interplay between diffusion, advection, and surface chemistry and present the design of a noncontact scanning microfluidic device to efficiently present reagents on surfaces. By leveraging convective flows, recirculation, and mixing of a processing liquid, this device overcomes limitations of existing biopatterning approaches, such as passive diffusion of analytes, uncontrolled wetting, and drying artifacts. We demonstrate the deposition of analytes, showing a 2- to 5-fold increase in deposition rate together with a 10-fold reduction in analyte consumption while ensuring less than 6% variation in pattern homogeneity on a standard biological substrate. In addition, we demonstrate the recirculation of a processing liquid using a microfluidic probe (MFP) in the context of a surface assay for (i) probing 12 independent areas with a single microliter of processing liquid and (ii) processing a 2 mm2 surface to create 170 antibody spots of 50 × 100 μm2 area using 1.6 μL of liquid. We observe high pattern quality, conservative usage of reagents, micrometer precision of localization and convection-enhanced fast deposition. Such a device and method may facilitate quantitative biological assays and spur the development of the next generation of protein microarrays. PMID:26837532
Autebert, Julien; Cors, Julien F; Taylor, David P; Kaigala, Govind V
2016-03-15
We present a new methodology for efficient and high-quality patterning of biological reagents for surface-based biological assays. The method relies on hydrodynamically confined nanoliter volumes of reagents to interact with the substrate at the micrometer-length scale. We study the interplay between diffusion, advection, and surface chemistry and present the design of a noncontact scanning microfluidic device to efficiently present reagents on surfaces. By leveraging convective flows, recirculation, and mixing of a processing liquid, this device overcomes limitations of existing biopatterning approaches, such as passive diffusion of analytes, uncontrolled wetting, and drying artifacts. We demonstrate the deposition of analytes, showing a 2- to 5-fold increase in deposition rate together with a 10-fold reduction in analyte consumption while ensuring less than 6% variation in pattern homogeneity on a standard biological substrate. In addition, we demonstrate the recirculation of a processing liquid using a microfluidic probe (MFP) in the context of a surface assay for (i) probing 12 independent areas with a single microliter of processing liquid and (ii) processing a 2 mm(2) surface to create 170 antibody spots of 50 × 100 μm(2) area using 1.6 μL of liquid. We observe high pattern quality, conservative usage of reagents, micrometer precision of localization and convection-enhanced fast deposition. Such a device and method may facilitate quantitative biological assays and spur the development of the next generation of protein microarrays. PMID:26837532
Inertial Effects on Thermochemically Driven Convection and Hydromagnetic Dynamos in Spherical Shells
NASA Astrophysics Data System (ADS)
Simkanin, J.; Kyselica, J.; Guba, P.
2015-12-01
Mechanisms of rotating convection play a fundamental role in the generation of the Earth's magnetic field. In order to get a better understanding of these mechanisms, we investigate the isolated problems of rotating thermal,chemical and thermochemical convection, and then thermally, chemically and thermochemically driven hydromagnetic dynamos in spherical shells. The underlying model equations describe the evolution of the flow, thermal and compositional fields in the first case, and flow, thermal, compositional and magnetic fields in the second case within the Boussinesq approximation. A uniform distribution of heat sources within the shell are assumed. The effects of solidification at the inner core boundary are accounted for by prescribing the latent heat and solutal fluxes at the bottom of the shell. In the limit of small Ekman and Prandtl numbers, we provide asymptotic results for the onset of convection and dynamos, in which case the system can be approximated to leading order by an inertial-wave convection and dynamos. The full set of governing equations is then solved numerically.
Deformation of the core-mantle boundary induced by spherical-shell, compressible convection
NASA Technical Reports Server (NTRS)
Zhang, Shuxia; Yuen, David A.
1987-01-01
Single-mode, mean-field equations, for spherical-shell convection are derived, with variable viscosity and compressibility included. Core-mantle boundary (CMB) topography produced by whole mantle convection is computed for various rheologies and different thermal boundary conditions at CMB. Results for long-wavelength undulations show the extreme sensitivity of these signatures to rheological and equation of state parameters. In order to obtain excess ellipticity of about 1 km, the activation energy and volume in the lower mantle should be low, and the temperatures at CMB should be around 4500 K, in accord with recent experimental findings.
Impact of tidal heating on the onset of convection in Enceladus’s ice shell
NASA Astrophysics Data System (ADS)
Běhounková, Marie; Tobie, Gabriel; Choblet, Gaël; Čadek, Ondřej
2013-09-01
By performing 3D simulations of thermal convection and tidal dissipation, we investigated the effect of tidal heating on the onset of convection in Enceladus’s ice shell. We considered a composite non-Newtonian rheology including diffusion, grain-size-sensitive and dislocation creeps, and we defined an effective tidal viscosity reproducing the dissipation function as predicted by the Andrade rheology. For simulations with no or moderate tidal heating, the onset of convection requires ice grain sizes smaller than or equal to 0.5-0.6 mm. For simulations including significant tidal heating (>10-6 W m-3), the critical grain size for the onset of convection is shifted up to values of 1-1.5 mm. Whatever the width of the internal ocean, convection is initiated in the polar region due to enhanced tidal dissipation at high latitudes. For a given eccentricity value, the onset of convection depends on the ocean width, as tidal flexing and hence tidal heat production is controlled by the ocean width. For heating rates larger than 5-9 × 10-7 W m-3, we systematically observe the occurrence of melting in our simulations, whatever the grain size and for both convecting and non-convecting cases. Grain sizes smaller than 1.5 mm, required to initiate convection, may be obtained either by the presence of a few percent of impurities limiting the grain growth by pinning effects or by the increase of stress and hence dynamic recrystallization associated with tidally-induced melting events.
Magneto-Hydrodynamic Damping of Convection During Vertical Bridgman-Stockbarger Growth of HgCdTe
NASA Technical Reports Server (NTRS)
Watring, D. A.; Lehoczky, S. L.
1996-01-01
In order to quantify the effects of convection on segregation, Hg(0.8)Cd(0.2)Te crystals were grown by the vertical Bridgman-Stockbarger method in the presence of an applied axial magnetic field of 50 kG. The influence of convection, by magneto-hydrodynamic damping, on mass transfer in the melt and segregation at the solid-liquid interface was investigated by measuring the axial and radial compositional variations in the grown samples. The reduction of convective mixing in the melt through the application of the magnetic field is found to decrease radial segregation to the diffusion-limited regime. It was also found that the suppression of the convective cell near the solid-liquid interface results in an increase in the slope of the diffusion-controlled solute boundary layer, which can lead to constitutional supercooling.
On Convection in Ice I Shells of Outer Solar System Bodies--Application to Callisto and Titan
NASA Astrophysics Data System (ADS)
McKinnon, W. B.
2005-03-01
Convection in Callisto's floating ice I shell is possible for reasonable grain sizes. Diffusion creep is the key. Not only possible, but probably required throughout much of Solar System history. For Titan, it depends on grain size and composition.
NASA Astrophysics Data System (ADS)
Stemmer, K.; Harder, H.; Hansen, U.
2004-12-01
The style of convection in planetary mantles is presumably dominated by the strong dependence of the viscosity of the mantle material on temperature and pressure. While several efforts have been undertaken in cartesian geometry to investigate convection in media with strong temperature dependent viscosity, spherical models are still in their infancy and still limited to modest parameters. Spectral approaches are usually employed for spherical convection models which do not allow to take into account lateral variations, like temperature dependent viscosity. We have developed a scheme, based on a finite volume discretization, to treat convection in a spherical shell with strong temperature dependent viscosity. Our approach has been particularly tailored to run efficiently on parallel computers. The spherical shell is topologically divided into six cubes. The equations are formulated in primitive variables, and are treated in the cartesian cubes. In order to ensure mass conservation a SIMPLER pressure correction procedure is applied and to handle strong viscosity variations up to Δ η =106 and high Rayleigh-numbers up to Ra=108 the pressure correction algorithm is combined with a pressure weighted interpolation method to satisfy the incompressibility condition and to avoid oscillations. We study thermal convection in a basal and mixed-mode heated shell with stress free and isothermal boundary conditions, as a function of the Rayleigh-number and viscosity contrast. Besides the temperature dependence we have further explored the effects of pressure on the viscosity. As a general result we observe the existence of three regimes (mobile, sluggish and stagnant lid), characterized by the type of surface motion. Laterally averaged depth-profiles of velocity, temperature and viscosity exhibit significant deviations from the isoviscous case. As compared to cartesian geometries, convection in a spherical shell possesses strong memory for the initial state. At strong
Hydrodynamic theory for nematic shells: The interplay among curvature, flow, and alignment
NASA Astrophysics Data System (ADS)
Napoli, Gaetano; Vergori, Luigi
2016-08-01
We derive the hydrodynamic equations for nematic liquid crystals lying on curved substrates. We invoke the Lagrange-Rayleigh variational principle to adapt the Ericksen-Leslie theory to two-dimensional nematics in which a degenerate anchoring of the molecules on the substrate is enforced. The only constitutive assumptions in this scheme concern the free-energy density, given by the two-dimensional Frank potential, and the density of dissipation which is required to satisfy appropriate invariance requirements. The resulting equations of motion couple the velocity field, the director alignment, and the curvature of the shell. To illustrate our findings, we consider the effect of a simple shear flow on the alignment of a nematic lying on a cylindrical shell.
Hydrodynamic theory for nematic shells: The interplay among curvature, flow, and alignment.
Napoli, Gaetano; Vergori, Luigi
2016-08-01
We derive the hydrodynamic equations for nematic liquid crystals lying on curved substrates. We invoke the Lagrange-Rayleigh variational principle to adapt the Ericksen-Leslie theory to two-dimensional nematics in which a degenerate anchoring of the molecules on the substrate is enforced. The only constitutive assumptions in this scheme concern the free-energy density, given by the two-dimensional Frank potential, and the density of dissipation which is required to satisfy appropriate invariance requirements. The resulting equations of motion couple the velocity field, the director alignment, and the curvature of the shell. To illustrate our findings, we consider the effect of a simple shear flow on the alignment of a nematic lying on a cylindrical shell. PMID:27627231
Hydrodynamics Studies of Direct-Drive Cone-in-Shell, Fast-Ignitor Targets on OMEGA
Stoeckl, C.; Boehly, T.R.; Delettrez, J.A.; Hatchett, S.P.; Frenje, J.A.; Glebov, V.Yu.; Li, C.K.; Miller, J.E.; Petrasso, R.D.; Seguin, F.H.; Smalyuk, V.A.; Stephens, R.B.; Theobald, W.; Yaakobi, B.; Sangster, T.C.
2007-12-12
Experiments have been performed on the OMEGA Laser Facility to study the hydrodynamics of directly driven cone-in-shell, fast-ignitor targets. A 35 degree or 70 degree opening-angle gold cone was inserted into spherical plastic shells of ~24-um thickness and ~870-um diameter, which were imploded with up to 21 kJ of 351-nm laser light. A backlighter was used on some experiments to compare the fuel assembly of targets with or without a high-pressure fill gas. The shock breakthrough to the inside of the cone, where the ultrafast laser propagates in integrated fast-ignitor experiments, was studied using a streaked optical pyrometer. No plasma was seen inside the cone before the assembled core reached peak compression.
NASA Astrophysics Data System (ADS)
Dong, Tianyu; Shi, Yi; Lu, Lizhen; Chen, Feng; Ma, Xikui; Mittra, Raj
2016-09-01
In this work, we generalize the cascading scattering matrix algorithm for calculating the optical response of concentric multilayered structures comprised of either plasmonic metal or dielectric, within the framework of hydrodynamic convection-diffusion model of electrodynamics. Two additional boundary conditions, namely, the continuity of first order pressure of free electron density and the continuity of normal components of free charge velocity, respectively, are adopted in order to handle the behaviour at interfaces involving metals. Scattering matrices at interfaces can be readily obtained and cascaded to obtain the modal coefficients in each layer by expanding electromagnetic waves in harmonic modes with cylindrical vector wave functions. We have validated the proposed method by analyzing the optical responses of several configurations of nanostructures, including a bi-metallic nanocylinder and a hyperlens. We found that nonlocal effects can be important for small structures, when the characteristic size is comparable to the Fermi wavelength. The proposed method shows its capability and flexibility to solve hybrid metal-dielectric multilayer structures even when the number of layers is large. Although we have discussed our method in the context of the retarded radiation regime, it can be applied in quasi-static scenarios without any difficulties. Furthermore, it may be extended to solve similar problems in other areas of physics, such as acoustics.
NASA Technical Reports Server (NTRS)
Hart, John E.
1996-01-01
Experiments designed to study the fluid dynamics of buoyancy driven circulations in rotating spherical shells were conducted on the United States Microgravity Laboratory 2 spacelab mission. These experiments address several aspects of prototypical global convection relevant to large scale motions on the Sun, Earth, and on the giant planets. The key feature is the consistent modeling of radially directed gravity in spherical geometry by using dielectric polarization forces. Imagery of the planforms of thermally driven flows for rapidly-rotating regimes shows an initial separation and eventual merger of equatorial and polar convection as the heating (i.e. the Rayleigh number) is increased. At low rotation rates, multiple-states of motion for the same external parameters were observed.
Feldman, M.R.
1995-11-01
Several experiments were performed in an attempt to determine the effects of both convection and oxygen levels during hypothetical thermal accident testing of thin-shelled Celotex{trademark}-based packages in furnaces. Obsolete DT-22 packages were used and experiments were performed in two separate furnaces, one gas-fired and one electric, each of which has previously been used for this type of testing. Oxygen levels were varied and measured in the gas-fired furnace, while the electric furnace was operated in a standard manner. The gas-fired furnace is constructed so as to induce a very strong convective field within. After testing, the packages were evaluated by several methods to determine the effects of the thermal testing on the package. In general, there were no differences found for the packages tested in the two different furnaces or for packages tested in the same furnace under different conditions. Therefore, after careful consideration, it is concluded that thermal testing can still be performed in electric furnaces in which the oxygen supply is not refurbished and there is no forced convection heat transfer.
NASA Astrophysics Data System (ADS)
Takahashi, F.; Matsushima, M.; Honkura, Y.
2004-12-01
We have carried out 3D numerical simulations of MHD dynamo in a rotating spherical shell to investigate behavior of the convection structure and the generated magnetic field. Here, we focus on Rayleigh number (Ra) dependence of numerical dynamos to make extrapolation to the geodynamo regime, and thus, performed parameter survey varying Ra up to about 53 times the critical value, Rac. To make wider parameter survey, we use moderate value of the Ekman number (10-4). Using the other fixed parameters, the Prandtl number Pr=1, the magnetic Prandtl number Pm=2, and radius ratio ri/r_o=0.35, dynamos undergo a series of bifurcations with increasing Ra from well known dipolar dynamos without convection inside the tangent cylinder (TC), DP1, to the ones with active convection inside TC generating the toroidal magnetic field through the ω -effect, DP2, non-dipolar dynamos, NDP, and then TC-dominating dynamos, TCD. Between DP2 and NDP transition, the magnetic energy shows a dramatic reduction, and then increases again, whereas the kinetic energy monotonically increases. TCD dynamos are also found in Glatzmaier and Roberts dynamo model using hyperdiffusivity. In this regime, advection term in the momentum equation plays a role in momentum balance, while other dynamos at lower Ra are essentially in geostrophic state. The Lorentz force counteracts the advection term to inhibit disturbance in convection structure due to vortex stretching. It seems that viscous effects still play a role in momentum balance. Using the results obtained in this study, it is suggested that the magnetic Reynolds number similar to the Earth's core would be achieved at Ra ˜ 80Rac.
Continuation and stability of convective modulated rotating waves in spherical shells
NASA Astrophysics Data System (ADS)
Garcia, F.; Net, M.; Sánchez, J.
2016-01-01
Modulated rotating waves (MRW), bifurcated from the thermal-Rossby waves that arise at the onset of convection of a fluid contained in a rotating spherical shell, and their stability, are studied. For this purpose, Newton-Krylov continuation techniques are applied. Nonslip boundary conditions, an Ekman number E =10-4 , and a low Prandtl number fluid Pr=0.1 in a moderately thick shell of radius ratio η =0.35 , differentially heated, are considered. The MRW are obtained as periodic orbits by rewriting the equations of motion in the rotating frame of reference where the rotating waves become steady states. Newton-Krylov continuation allows us to obtain unstable MRW that cannot be found by using only time integrations, and identify regions of multistability. For instance, unstable MRW without any azimuthal symmetry have been computed. It is shown how they become stable in a small Rayleigh-number interval, in which two branches of traveling waves are also stable. The study of the stability of the MRW helps to locate and classify the large sequence of bifurcations, which takes place in the range analyzed. In particular, tertiary Hopf bifurcations giving rise to three-frequency stable solutions are accurately determined.
Mantle convection and the distribution of geochemical reservoirs in the silicate shell of the Earth
NASA Astrophysics Data System (ADS)
Walzer, Uwe; Hendel, Roland
2010-05-01
We present a dynamic 3-D spherical-shell model of mantle convection and the evolution of the chemical reservoirs of the Earth`s silicate shell. Chemical differentiation, convection, stirring and thermal evolution constitute an inseparable dynamic system. Our model is based on the solution of the balance equations of mass, momentum, energy, angular momentum, and four sums of the number of atoms of the pairs 238U-206Pb, 235U-207Pb, 232Th-208Pb, and 40K-40Ar. Similar to the present model, the continental crust of the real Earth was not produced entirely at the start of the evolution but developed episodically in batches [1-7]. The details of the continental distribution of the model are largely stochastic, but the spectral properties are quite similar to the present real Earth. The calculated Figures reveal that the modeled present-day mantle has no chemical stratification but we find a marble-cake structure. If we compare the observational results of the present-day proportion of depleted MORB mantle with the model then we find a similar order of magnitude. The MORB source dominates under the lithosphere. In our model, there are nowhere pure unblended reservoirs in the mantle. It is, however, remarkable that, in spite of 4500 Ma of solid-state mantle convection, certain strong concentrations of distributed chemical reservoirs continue to persist in certain volumes, although without sharp abundance boundaries. We deal with the question of predictable and stochastic portions of the phenomena. Although the convective flow patterns and the chemical differentiation of oceanic plateaus are coupled, the evolution of time-dependent Rayleigh number, Rat , is relatively well predictable and the stochastic parts of the Rat(t)-curves are small. Regarding the juvenile growth rates of the total mass of the continents, predictions are possible only in the first epoch of the evolution. Later on, the distribution of the continental-growth episodes is increasingly stochastic
NASA Astrophysics Data System (ADS)
Munshi, M. Jahirul Haque; Alim, M. A.; Bhuiyan, A. H.
2016-07-01
The problem of Magneto-hydrodynamic (MHD) field on buoyancy-driven free convection heat transfer in a square cavity with heated elliptic block at the centre has been investigated in this work. The governing differential equations are solved by using finite element method (Galerkin weighted residual method). The lower wall is adiabatic. The left wall is kept at heated Th. The right and upper wall is kept at cold Tc respectively. Also all the wall are assumed to be no-slip condition. The study is performed for different Rayleigh and Hartmann numbers. A heated elliptic block is located at the centre of the cavity. The object of this study is to describe the effects of MHD on the field of buoyancy-driven and flow in presence of such heated block by visualization of graph. The results are illustrated with the streamlines, isotherms, velocity and temperature fields as well as local Nusselt number.
Kimura, Keiji; Takehiro, Shin-ichi; Yamada, Michio
2014-08-15
We investigate properties of convective solutions of the Boussinesq thermal convection in a moderately rotating spherical shell allowing the respective rotation of the inner and outer spheres due to the viscous torque of the fluid. The ratio of the inner and outer radii of the spheres, the Prandtl number, and the Taylor number are fixed to 0.4, 1, and 500{sup 2}, respectively. The Rayleigh number is varied from 2.6 × 10{sup 4} to 3.4 × 10{sup 4}. In this parameter range, the behaviours of obtained asymptotic convective solutions are almost similar to those in the system whose inner and outer spheres are restricted to rotate with the same constant angular velocity, although the difference is found in the transition process to chaotic solutions. The convective solution changes from an equatorially symmetric quasi-periodic one to an equatorially symmetric chaotic one, and further to an equatorially asymmetric chaotic one, as the Rayleigh number is increased. This is in contrast to the transition in the system whose inner and outer spheres are assumed to rotate with the same constant angular velocity, where the convective solution changes from an equatorially symmetric quasi-periodic one, to an equatorially asymmetric quasi-periodic one, and to equatorially asymmetric chaotic one. The inner sphere rotates in the retrograde direction on average in the parameter range; however, it sometimes undergoes the prograde rotation when the convective solution becomes chaotic.
Geological evidence for solid-state convection in Europa's ice shell.
Pappalardo, R T; Head, J W; Greeley, R; Sullivan, R J; Pilcher, C; Schubert, G; Moore, W B; Carr, M H; Moore, J M; Belton, M J; Goldsby, D L
1998-01-22
The ice-rich surface of the jovian satellite Europa is sparsely cratered, suggesting that this moon might be geologically active today. Moreover, models of the satellite's interior indicate that tidal interactions with Jupiter might produce enough heat to maintain a subsurface liquid water layer. But the mechanisms of interior heat loss and resurfacing are currently unclear, as is the question of whether Europa has (or had at one time) a liquid water ocean. Here we report on the morphology and geological interpretation of distinct surface features-pits, domes and spots-discovered in high-resolution images of Europa obtained by the Galileo spacecraft. The features are interpreted as the surface manifestation of diapirs, relatively warm localized ice masses that have risen buoyantly through the subsurface. We find that the formation of the features can be explained by thermally induced solid-state convection within an ice shell, possibly overlying a liquid water layer. Our results are consistent with the possibility that Europa has a liquid water ocean beneath a surface layer of ice, but further tests and observations are needed to demonstrate this conclusively. PMID:9450750
Pulsating and traveling wave modes of natural convection in spherical shells
NASA Astrophysics Data System (ADS)
Scurtu, N.; Futterer, B.; Egbers, C.
2010-11-01
A numerical study is made of the natural convective fluid motion in the spherical shell geometry, i.e., the gap between two concentric spheres. The case of homogeneously heated inner sphere and cooled outer sphere is considered for the radius ratio η =0.714 and Prandtl number Pr=0.7. Patterns of fluid flow are established by the variation of the Rayleigh number Ra and its heat transfer is characterized by the Nusselt number Nu. For small values of the Rayleigh number, a crescent shaped axisymmetric vortex is formed and is regarded as the basic flow. By increasing the Rayleigh number, two transitions occur to a fully developed three-dimensional irregular flow. On the first bifurcation branch, a pulsating wave flow was found with petal-like formations pulsating in meridional direction. On the second branch, a traveling wave flow exists with an azimuthal rotation of the spirally distributed petal patterns. Various characteristics of the flow patterns are investigated as well as their transition to chaos. Both branches conjoin in the very supercritical domain, where the traveling wave dominates.
Geological evidence for solid-state convection in Europa's ice shell
Pappalardo, R.T.; Head, J.W.; Greeley, R.; Sullivan, R.J.; Pilcher, C.; Schubert, G.; Moore, W.B.; Carr, M.H.; Moore, Johnnie N.; Belton, M.J.S.; Goldsby, D.L.
1998-01-01
The ice-rich surface of the jovian satellite Europa is sparsely cratered, suggesting that this moon might be geologically active today. Moreover, models of the satellite's interior indicate that tidal interactions with Jupiter might produce enough heat to maintain a subsurface liquid water layer. But the mechanisms of interior heat loss and resurfacing are currently unclear, as is the question of whether Europa has (or had at one time) a liquid water ocean. Here we report on the morphology and geological interpretation of distinct surface features-pits, domes and spots-discovered in high-resolution images of Europa obtained by the Galileo spacecraft. The features are interpreted as the surface manifestation of diapirs, relatively warm localized ice masses that have risen buoyantly through the subsurface. We find that the formation of the features can be explained by thermally induced solid-state convection within an ice shell, possibly overlying a liquid water layer. Our results are consistent with the possibility that Europa has a liquid water ocean beneath a surface layer of ice, but further tests and observations are needed to demonstrate this conclusively.
Hydrodynamic performance of an annular liquid jet: Production of spherical shells
NASA Technical Reports Server (NTRS)
Kendall, J. M.
1982-01-01
An annular jet flow of liquid surrounding a flow of gas at its core is extremely unstable. Axisymmetric oscillations arise spontaneously, and grow with such rapidity along the axial dimension that a pinch-off of the liquid and an encapsulation of the core gas occurs within as few as four jet diameters. The shells which result thereby may be described as thick-wall bubbles, for which van der Waals forces are unimportant. A description is given of the fluid dynamic processes by which the shells are formed, and of means for preserving and promoting the geometrical of the product. The forming of metallic shells is mentioned.
Khan, Waqar A.; Uddin, Md Jashim; Ismail, A. I. Md.
2013-01-01
The effects of hydrodynamic and thermal slip boundary conditions on the double-diffusive free convective flow of a nanofluid along a semi-infinite flat solid vertical plate are investigated numerically. It is assumed that free stream is moving. The governing boundary layer equations are non-dimensionalized and transformed into a system of nonlinear, coupled similarity equations. The effects of the controlling parameters on the dimensionless velocity, temperature, solute and nanofluid concentration as well as on the reduced Nusselt number, reduced Sherwood number and the reduced nanoparticle Sherwood number are investigated and presented graphically. To the best of our knowledge, the effects of hydrodynamic and thermal slip boundary conditions have not been investigated yet. It is found that the reduced local Nusselt, local solute and the local nanofluid Sherwood numbers increase with hydrodynamic slip and decrease with thermal slip parameters. PMID:23533566
NASA Astrophysics Data System (ADS)
Heimpel, Moritz; Aurnou, Jonathan
2007-04-01
The origin of zonal jets on the jovian planets has long been a topic of scientific debate. In this paper we show that deep convection in a spherical shell can generate zonal flow comparable to that observed on Jupiter and Saturn, including a broad prograde equatorial jet and multiple alternating jets at higher latitudes. We present fully turbulent, 3D spherical numerical simulations of rapidly rotating convection with different spherical shell geometries. The resulting global flow fields tend to be segregated into three regions (north, equatorial, and south), bounded by the tangent cylinder that circumscribes the inner boundary equator. In all of our simulations a strong prograde equatorial jet forms outside the tangent cylinder, whereas multiple jets form in the northern and southern hemispheres, inside the tangent cylinder. The jet scaling of our numerical models and of Jupiter and Saturn is consistent with the theory of geostrophic turbulence, which we extend to include the effect of spherical shell geometry. Zonal flow in a spherical shell is distinguished from that in a full sphere or a shallow layer by the effect of the tangent cylinder, which marks a reversal in the sign of the planetary β-parameter and a jump in the Rhines length. This jump is manifest in the numerical simulations as a sharp equatorward increase in jet widths—a transition that is also observed on Jupiter and Saturn. The location of this transition gives an estimate of the depth of zonal flow, which seems to be consistent with current models of the jovian and saturnian interiors.
Convection, nucleosynthesis, and core collapse
NASA Technical Reports Server (NTRS)
Bazan, Grant; Arnett, David
1994-01-01
We use a piecewise parabolic method hydrodynamics code (PROMETHEUS) to study convective burning in two dimensions in an oxygen shell prior to core collapse. Significant mixing beyond convective boundaries determined by mixing-length theory brings fuel (C-12) into the convective regon, causing hot spots of nuclear burning. Plumes dominate the velocity structure. Finite perturbations arise in a region in which O-16 will be explosively burned to Ni-56 when the star explodes; the resulting instabilities and mixing are likely to distribute Ni-56 throughout the supernova envelope. Inhomogeneities in Y(sub e) may be large enough to affect core collapse and will affect explosive nucleosynthesis. The nature of convective burning is dramatically different from that assumed in one-dimensional simulations; quantitative estimates of nucleosynthetic yields, core masses, and the approach to core collapse will be affected.
Feldman, M.R.
1994-06-01
Several experiments were performed in an attempt to determine the effects of both convection and oxygen levels during hypothetical thermal accident testing of thin-shelled Celotex{trademark}-based packages in furnaces. Obsolete DT-22 packages were used and experiments were performed in two separate fumaces, one gas-fired and one electric, each of which has previously been used for this type of testing. Oxygen levels were varied and measured in the gas-fired furnace while the electric fumace was operated in a standard manner. The gas-fired fumace is constructed so as to induce a very strong convective field within. After testing, the packages were evaluated by several methods to determine the effects of the thermal testing on the package. In general, there were no differences found for the packages tested in the two different furnaces or for packages tested in the same furnace under different conditions. Therefore, after careful consideration, it is concluded that thermal testing can still be performed in electric furnaces in which the oxygen supply is not refurbished and there is no forced convection heat transfer.
NASA Astrophysics Data System (ADS)
Schönberner, D.; Jacob, R.; Lehmann, H.; Hildebrandt, G.; Steffen, M.; Zwanzig, A.; Sandin, C.; Corradi, R. L. M.
We present the result of a study on the expansion properties and internal kinematics of round/elliptical planetary nebulae of the Milky Way disk, the halo, and of the globular cluster M 15. The purpose of this study is to considerably enlarge the small sample of nebulae with precisely determined expansion properties (Schönberner et al. \\cite{SJSPCA.05}). To this aim, we selected a representative sample of objects with different evolutionary stages and metallicities and conducted high-resolution échelle spectroscopy. In most cases we succeeded in detecting the weak signals from the outer nebular shell which are attached to the main line emission from the bright nebular rim. Next to the measurement of the motion of the rim gas by decomposition of the main line components into Gaussians, we were able to measure separately, for most objects for the first time, the gas velocity immediately behind the leading shock of the shell, i.e. the post-shock velocity. We more than doubled the number of objects for which the velocities of both rim and shell are known and confirm that the overall expansion of planetary nebulae is accelerating with time. There are, however, differences between the expansion behaviour of the shell and the rim: The post-shock velocity is starting at values as low as around 20 km s-1 for the youngest nebulae, just above the AGB wind velocity of ˜ 10-15 km s-1, and is reaching values of about 40 km s-1 for the nebulae around hotter central stars. Contrarily, the rim matter is at first decelerated below the typical AGB-wind velocity and remains at about 5-10 km s-1 for a while until finally a typical flow velocity of up to 30 km s-1 is reached. This observed distinct velocity evolution of both rim and shell is explained by radiation-hydrodynamics simulations, at least qualitatively: It is due to the ever changing stellar radiation field and wind-wind interaction together with the varying density profile ahead of the leading shock during the progress
NASA Astrophysics Data System (ADS)
Kimura, Keiji; Takehiro, Shin-ichi; Yamada, Michio
2013-08-01
We investigate the stability and bifurcation of Boussinesq thermal convection in a moderately rotating spherical shell, with the inner sphere free to rotate as a solid body due to the viscous torque of the fluid. The ratio of the inner and outer radii of the spheres and the Prandtl number are fixed to 0.4 and 1, respectively. The Taylor number is varied from 522 to 5002 and the Rayleigh number from 1500 to 10 000. In this parameter range, the finite-amplitude traveling wave solutions, which have four-fold symmetry in the azimuthal direction, bifurcate supercritically at the critical points. The inner sphere rotates in the prograde direction due to the viscous torque of the fluid when the rotation rate is small while it rotates in the retrograde direction when the rotation rate is large. However, the stable region of these traveling wave solutions is quantitatively similar to that in the co-rotating system where the inner and outer spheres rotate with the same angular velocity. The structures of convective motions of these solutions such as the radial component of velocity are quantitatively similar to those in the co-rotating system, but the structure of mean zonal flows is effectively changed by the inner sphere rotation.
NASA Astrophysics Data System (ADS)
Dahley, M. Sc. Norman; Futterer, Birgit; Smieszek, Marlene; Egbers, Christoph; Crumeyrolle, Olivier; Mutabazi, Innocent
In micro pumps, dosing systems, heat exchanger and transfer devices the flow control is realized by means of external impressed force fields. Here we focus on the enhancement of heat transfer in an annular cavity, if an electrohydrodynamic force field is set up. This synthetic force field is established with a high voltage potential between differentially heated inner and outer cylinders, filled with a dielectric insulating fluid. It acts comparable to thermal buoyancy forces induced by gravity. Sitte et al. (2001) performed quantitative parabolic flight experiments without determining critical values and finally reported a broken azimuthally symmetry due to the instability in a recent parabolic flight experiment (Sitte et al., 2003). With the experiment accomplishment in the 14th parabolic flight, first scenarios are realized in order to weigh the different influences of natural buoyancy coming from g and electro-hydrodynamic buoyancy coming from synthetic force fields, which were studied with numerical simulations by Smieszek et al. (2008). Specific experiment objective was the convection in an annular cavity with differentially heated inner and outer cylinders under the influence of the both buoyancy driven forces. By scaling the annulus width to approximate 5mm the initial outer cell radius for a first parabolic flight campaign was set to 10mm. The inner cylinder is made of aluminum and is heated with heating cartridges. The outer cylinder is made of glass. The gap in between is the experimental volume, which is filled with silicone oil and particles. With this a Laser light sheet illumination was set up. The inner cylinder, made of aluminum, is connected to a high-tension up to 10kV. The glass cylinder is coated with Indium-Tin-Oxide (ITO) inside, to make the glass conductive and is connected to ground. The central force field is introduced by applying a high voltage difference between the two cylinders. Convection was observed during the whole parabolic
NASA Astrophysics Data System (ADS)
Ribeiro, A.
2015-12-01
Thermal convection, constrained by rapid rotation and/or large-scale magnetic fields, is observed almost everywhere in the universe: stars, galaxies, and planetary interiors. However, little is known about the essential behaviors of turbulent convection in liquid metals and even less is known about the essential dynamics of planetary cores and stellar convection zones inuenced by background rotation and imposed magnetic fields. To address this decit, we present novel results of a mixed laboratory-numerical investigation of Rayleigh-Benard convection in a cylindrical cavity subject to rotation and/or an imposed magnetic field, using the liquid metal gallium as the working fluid. A broad variety of cell-sized modes are observed experimentally and captured numerically and these modes can be either? steady, oscillatory, or precessing. This work shows that the convection-driven cell-sized modes that can develop in liquid metals are remarkably different from the canonical flows that develop in the fluids used in present day dynamo models.
NASA Astrophysics Data System (ADS)
Plaut, E.; Lebranchu, Y.; Simitev, R.; Busse, F. H.
A general reformulation of the Reynolds stresses created by two-dimensional waves breaking a translational or a rotational invariance is described. This reformulation emphasizes the importance of a geometrical factor: the slope of the separatrices of the wave flow. Its physical relevance is illustrated by two model systems: waves destabilizing open shear flows; and thermal Rossby waves in spherical shell convection with rotation. In the case of shear-flow waves, a new expression of the Reynolds-Orr amplification mechanism is obtained, and a good understanding of the form of the mean pressure and velocity fields created by weakly nonlinear waves is gained. In the case of thermal Rossby waves, results of a three-dimensional code using no-slip boundary conditions are presented in the nonlinear regime, and compared with those of a two-dimensional quasi-geostrophic model. A semi-quantitative agreement is obtained on the flow amplitudes, but discrepancies are observed concerning the nonlinear frequency shifts. With the quasi-geostrophic model we also revisit a geometrical formula proposed by Zhang to interpret the form of the zonal flow created by the waves, and explore the very low Ekman-number regime. A change in the nature of the wave bifurcation, from supercritical to subcritical, is found.
NASA Astrophysics Data System (ADS)
Stemmer, K.; Harder, H.; Hansen, U.
2006-08-01
We present a new finite volume code for modeling three-dimensional thermal convection in a spherical shell with strong temperature- and pressure-dependent viscosity. A new discretization formulation of the viscous term, tailored to the finite volume method on a colocated grid, enables laterally variable viscosity. A smoothed cubed-sphere grid is used to avoid pole problems which occur in latitude-longitude grids with spherical coordinates. The spherical shell is topologically divided into six cubes. The equations are formulated in primitive variables, and are treated in the Cartesian cubes. In order to ensure mass conservation a SIMPLER pressure correction procedure is applied and to handle strong viscosity variations of Δ η = 10 7 and high Rayleigh numbers of Ra = 10 8 the pressure correction algorithm is combined with a pressure weighted interpolation method to satisfy the incompressibility condition and to avoid oscillatory pressure solutions. The model is validated by a comparison of diagnostical parameters of steady-state cubic and tetrahedral convection with other published spherical models and a detailed convergence test on successively refined grids. Lateral variable fluid properties have a significant influence on the convection pattern and heat flow dynamics. The influence of temperature- and pressure-dependent viscosity on the flow is systematically analyzed for basal and mixed-mode heated thermal convection in the spherical shell. A new method to classify the simulations to the mobile, transitional or stagnant-lid regime is given by means of a comparison of selected diagnostical parameters, a significantly improved classification as compared to the common surface layer mobility criterion. A scaling law for the interior temperature and viscosity in the stagnant-lid regime is given. Purely basal heating and strongly temperature-dependent rheology stabilize plume positions and yield with a weak time dependence of the convecting system, while the amount
Convective Properties of Rotating Two-dimensional Core-collapse Supernova Progenitors
NASA Astrophysics Data System (ADS)
Chatzopoulos, E.; Couch, Sean M.; Arnett, W. David; Timmes, F. X.
2016-05-01
We explore the effects of rotation on convective carbon, oxygen, and silicon shell burning during the late stages of evolution in a 20 M ⊙ star. Using the Modules for Experiments in Stellar Astrophysics we construct one-dimensional (1D) stellar models both with no rotation and with an initial rigid rotation of 50% of critical. At different points during the evolution, we map the 1D models into 2D and follow the multidimensional evolution using the FLASH compressible hydrodynamics code for many convective turnover times until a quasi-steady state is reached. We characterize the strength and scale of convective motions via decomposition of the momentum density into vector spherical harmonics. We find that rotation influences the total power in solenoidal modes, with a slightly larger impact for carbon and oxygen shell burning than for silicon shell burning. Including rotation in 1D stellar evolution models alters the structure of the star in a manner that has a significant impact on the character of multidimensional convection. Adding modest amounts of rotation to a stellar model that ignores rotation during the evolutionary stage, however, has little impact on the character of the resulting convection. Since the spatial scale and strength of convection present at the point of core collapse directly influence the supernova mechanism, our results suggest that rotation could play an important role in setting the stage for massive stellar explosions.
Jouve, Laurene; Brun, Allan Sacha E-mail: sacha.brun@cea.fr
2009-08-20
We present the first three-dimensional magnetohydrodynamics study in spherical geometry of the nonlinear dynamical evolution of magnetic flux tubes in a turbulent rotating convection zone (CZ). These numerical simulations use the anelastic spherical harmonic code. We seek to understand the mechanism of emergence of strong toroidal fields through a turbulent layer from the base of the solar CZ to the surface as active regions. To do so, we study numerically the rise of magnetic toroidal flux ropes from the base of a modeled CZ up to the top of our computational domain where bipolar patches are formed. We compare the dynamical behavior of flux tubes in a fully convective shell possessing self-consistently generated mean flows such as meridional circulation (MC) and differential rotation, with reference calculations done in a quiet isentropic zone. We find that two parameters influence the tubes during their rise through the CZ: the initial field strength and amount of twist, thus confirming previous findings in Cartesian geometry. Further, when the tube is sufficiently strong with respect to the equipartition field, it rises almost radially independently of the initial latitude (either low or high). By contrast, weaker field cases indicate that downflows and upflows control the rising velocity of particular regions of the rope and could in principle favor the emergence of flux through {omega}-loop structures. For these latter cases, we focus on the orientation of bipolar patches and find that sufficiently arched structures are able to create bipolar regions with a predominantly east-west orientation. Meridional flow seems to determine the trajectory of the magnetic rope when the field strength has been significantly reduced near the top of the domain. Appearance of local magnetic field also feeds back on the horizontal flows thus perturbing the MC via Maxwell stresses. Finally differential rotation makes it more difficult for tubes introduced at low latitudes to
Moran, B
2005-06-02
We present test problems that can be used to check the hydrodynamic implementation in computer codes designed to model the implosion of a National Ignition Facility (NIF) capsule. The problems are simplified, yet one of them is three-dimensional. It consists of a nearly-spherical incompressible imploding shell subjected to an exponentially decaying pressure on its outer surface. We present a semi-analytic solution for the time-evolution of that shell with arbitrary small three-dimensional perturbations on its inner and outer surfaces. The perturbations on the shell surfaces are intended to model the imperfections that are created during capsule manufacturing.
NASA Astrophysics Data System (ADS)
Tackley, Paul J.
2008-12-01
Here it is documented how an existing code for modelling mantle convection in a cartesian domain, Stag3D, has been converted to model a 3D spherical shell by using the recently introduced yin-yang grid. StagYY is thus the latest evolution of a code that has been in continuous use and development for about 15 years so incorporates much physics and several features including compressibility, phase transitions, compositional variations, non-linear rheology, parallelisation, tracers to track composition, partial melting and melt migration, and the ability to also model spherical patches, cartesian boxes, and various 2D geometries by changing one input switch. StagYY uses a multigrid solver to obtain a velocity-pressure solution at each timestep on a staggered grid, a finite-volume scheme for advection of temperature and tracers to track composition. Convergence of multigrid solvers in the presence of realistically large viscosity variations has always been a problem; here a new pressure interpolation scheme is presented that can dramatically improve the robustness of the iterations to large viscosity variations, with up to 19 orders of magnitude variation in presented tests. Benchmark tests show that StagYY produces results that are consistent with those produced by other codes. Performance tests show reasonable scaling on a parallel Beowulf cluster up to 64 CPUs, with up to 1.2 billion unknowns solved for in a few minutes. StagYY is designed to be a stand-alone application with no libraries required and if MPI is installed it can be run in parallel. Technical issues and goals for the future are discussed.
NASA Astrophysics Data System (ADS)
Geroux, Chris M.; Deupree, Robert G.
2013-07-01
We have developed a three-dimensional radiation hydrodynamics code to simulate the interaction of convection and radial pulsation in classical variable stars. One key goal is the ability to carry these simulations to full amplitude in order to compare them with observed light curves. Previous multi-dimensional calculations were prevented from reaching full amplitude because of drift in the radial coordinate system, due to the algorithm defining radial movement of the coordinate system during the pulsation cycle. We have removed this difficulty by defining our radial coordinate flow algorithm to require that the mass in a spherical shell remain constant for every time step throughout the pulsation cycle. We have used our new code to perform two-dimensional (2D) simulations of the interaction of radial pulsation and convection. We have made comparisons between light curves from our 2D convective simulations with observed light curves and find that our 2D simulated light curves are better able to match the observed light curve shape near the red edge of the RR Lyrae instability strip than light curves from previous one-dimensional time-dependent convective models.
Geroux, Chris M.; Deupree, Robert G.
2013-07-10
We have developed a three-dimensional radiation hydrodynamics code to simulate the interaction of convection and radial pulsation in classical variable stars. One key goal is the ability to carry these simulations to full amplitude in order to compare them with observed light curves. Previous multi-dimensional calculations were prevented from reaching full amplitude because of drift in the radial coordinate system, due to the algorithm defining radial movement of the coordinate system during the pulsation cycle. We have removed this difficulty by defining our radial coordinate flow algorithm to require that the mass in a spherical shell remain constant for every time step throughout the pulsation cycle. We have used our new code to perform two-dimensional (2D) simulations of the interaction of radial pulsation and convection. We have made comparisons between light curves from our 2D convective simulations with observed light curves and find that our 2D simulated light curves are better able to match the observed light curve shape near the red edge of the RR Lyrae instability strip than light curves from previous one-dimensional time-dependent convective models.
Linking 1D evolutionary to 3D hydrodynamical simulations of massive stars
NASA Astrophysics Data System (ADS)
Cristini, A.; Meakin, C.; Hirschi, R.; Arnett, D.; Georgy, C.; Viallet, M.
2016-03-01
Stellar evolution models of massive stars are important for many areas of astrophysics, for example nucleosynthesis yields, supernova progenitor models and understanding physics under extreme conditions. Turbulence occurs in stars primarily due to nuclear burning at different mass coordinates within the star. The understanding and correct treatment of turbulence and turbulent mixing at convective boundaries in stellar models has been studied for decades but still lacks a definitive solution. This paper presents initial results of a study on convective boundary mixing (CBM) in massive stars. The ‘stiffness’ of a convective boundary can be quantified using the bulk Richardson number ({{Ri}}{{B}}), the ratio of the potential energy for restoration of the boundary to the kinetic energy of turbulent eddies. A ‘stiff’ boundary ({{Ri}}{{B}}˜ {10}4) will suppress CBM, whereas in the opposite case a ‘soft’ boundary ({{Ri}}{{B}}˜ 10) will be more susceptible to CBM. One of the key results obtained so far is that lower convective boundaries (closer to the centre) of nuclear burning shells are ‘stiffer’ than the corresponding upper boundaries, implying limited CBM at lower shell boundaries. This is in agreement with 3D hydrodynamic simulations carried out by Meakin and Arnett (2007 Astrophys. J. 667 448-75). This result also has implications for new CBM prescriptions in massive stars as well as for nuclear burning flame front propagation in super-asymptotic giant branch stars and also the onset of novae.
The shadowgraph method in convection experiments
NASA Astrophysics Data System (ADS)
Rasenat, S.; Hartung, G.; Winkler, B. L.; Rehberg, I.
1989-06-01
The shadowgraph method is applied to thermal convection experiments and electro-hydrodynamic convection (EHC) in nematic liquid crystals. In both cases convection leads to a spatially periodic field of the refractive index causing a spatially periodic intensity modulation of parallel light passing the cell. Close to the onset of convection the temperature or director field is given by linear stability analysis. Knowing these functions the determination of their amplitudes becomes possible by means of the shadowgraph method. The method is demostrated using various examples of thermal and EHC convection experiments.
Chemo-hydrodynamic patterns in porous media.
De Wit, A
2016-10-13
Chemical reactions can interplay with hydrodynamic flows to generate chemo-hydrodynamic instabilities affecting the spatio-temporal evolution of the concentration of the chemicals. We review here such instabilities for porous media flows. We describe the influence of chemical reactions on viscous fingering, buoyancy-driven fingering in miscible systems, convective dissolution as well as precipitation patterns. Implications for environmental systems are discussed.This article is part of the themed issue 'Energy and the subsurface'. PMID:27597788
A Study of Detrainment from Deep Convection
NASA Astrophysics Data System (ADS)
Glenn, I. B.; Krueger, S. K.
2014-12-01
Uncertainty in the results of Global Climate Model simulations has been attributed to errors and simplifications in how parameterizations of convection coarsely represent the processes of entrainment, detrainment, and mixing between convective clouds and their environment. Using simulations of convection we studied these processes at a resolution high enough to explicitly resolve them. Two of several recently developed analysis techniques that allow insight into these processes at their appropriate scale are an Eulerian method of directly measuring entrainment and detrainment, and a Lagrangian method that uses particle trajectories to map convective mass flux over height and a cloud variable of interest. The authors of the Eulerian technique used it to show that the dynamics of shells of cold, humid air that surround shallow convective updrafts have important effects on the properties of air entrained and detrained from the updrafts. There is some evidence for the existence of such shells around deep convective updrafts as well, and that detrainment is more important than entrainment in determining the ultimate effect of the deep convection on the large scale environment. We present results from analyzing a simulation of deep convection through the Eulerian method as well as using Lagrangian particle trajectories to illustrate the role of the shell in the process of detrainment and mixing between deep convection and its environment.
ERIC Educational Resources Information Center
Lafrance, Pierre
1978-01-01
Explores in a non-mathematical treatment some of the hydrodynamical phenomena and forces that affect the operation of ships, especially at high speeds. Discusses the major components of ship resistance such as the different types of drags and ways to reduce them and how to apply those principles for the hovercraft. (GA)
Castor, J I
2003-10-16
The discipline of radiation hydrodynamics is the branch of hydrodynamics in which the moving fluid absorbs and emits electromagnetic radiation, and in so doing modifies its dynamical behavior. That is, the net gain or loss of energy by parcels of the fluid material through absorption or emission of radiation are sufficient to change the pressure of the material, and therefore change its motion; alternatively, the net momentum exchange between radiation and matter may alter the motion of the matter directly. Ignoring the radiation contributions to energy and momentum will give a wrong prediction of the hydrodynamic motion when the correct description is radiation hydrodynamics. Of course, there are circumstances when a large quantity of radiation is present, yet can be ignored without causing the model to be in error. This happens when radiation from an exterior source streams through the problem, but the latter is so transparent that the energy and momentum coupling is negligible. Everything we say about radiation hydrodynamics applies equally well to neutrinos and photons (apart from the Einstein relations, specific to bosons), but in almost every area of astrophysics neutrino hydrodynamics is ignored, simply because the systems are exceedingly transparent to neutrinos, even though the energy flux in neutrinos may be substantial. Another place where we can do ''radiation hydrodynamics'' without using any sophisticated theory is deep within stars or other bodies, where the material is so opaque to the radiation that the mean free path of photons is entirely negligible compared with the size of the system, the distance over which any fluid quantity varies, and so on. In this case we can suppose that the radiation is in equilibrium with the matter locally, and its energy, pressure and momentum can be lumped in with those of the rest of the fluid. That is, it is no more necessary to distinguish photons from atoms, nuclei and electrons, than it is to distinguish
NASA Astrophysics Data System (ADS)
Lauga, Eric
2016-01-01
Bacteria predate plants and animals by billions of years. Today, they are the world's smallest cells, yet they represent the bulk of the world's biomass and the main reservoir of nutrients for higher organisms. Most bacteria can move on their own, and the majority of motile bacteria are able to swim in viscous fluids using slender helical appendages called flagella. Low-Reynolds number hydrodynamics is at the heart of the ability of flagella to generate propulsion at the micrometer scale. In fact, fluid dynamic forces impact many aspects of bacteriology, ranging from the ability of cells to reorient and search their surroundings to their interactions within mechanically and chemically complex environments. Using hydrodynamics as an organizing framework, I review the biomechanics of bacterial motility and look ahead to future challenges.
Mapping high-latitude plasma convection with coherent HF radars
NASA Technical Reports Server (NTRS)
Ruohoniemi, J. M.; Greenwald, R. A.; Baker, K. B.; Villain, J.-P.; Hanuise, C.
1989-01-01
Several methods developed for mapping high-latitude plasma convection with a high-latitude HF radar are described, which utilize coherent backscatter from electron density irregularities at F-region altitudes to observe convective plasma motion. Several examples of two-dimensional convection-velocity maps are presented, showing instances of L-shell-aligned flow in the dusk sector, the reversal of convection near magnetic midnight, and counterstreaming in the dayside cleft.
Convection in Type 2 supernovae
Miller, D.S.
1993-10-15
Results are presented here from several two dimensional numerical calculations of events in Type II supernovae. A new 2-D hydrodynamics and neutrino transport code has been used to compute the effect on the supernova explosion mechanism of convection between the neutrinosphere and the shock. This convection is referred to as exterior convection to distinguish it from convection beneath the neutrinosphere. The model equations and initial and boundary conditions are presented along with the simulation results. The 2-D code was used to compute an exterior convective velocity to compare with the convective model of the Mayle and Wilson 1-D code. Results are presented from several runs with varying sizes of initial perturbation, as well as a case with no initial perturbation but including the effects of rotation. The M&W code does not produce an explosion using the 2-D convective velocity. Exterior convection enhances the outward propagation of the shock, but not enough to ensure a successful explosion. Analytic estimates of the growth rate of the neutron finger instability axe presented. It is shown that this instability can occur beneath the neutrinosphere of the proto-neutron star in a supernova explosion with a growth time of {approximately} 3 microseconds. The behavior of the high entropy bubble that forms between the shock and the neutrinosphere in one dimensional calculations of supernova is investigated. It has been speculated that this bubble is a site for {gamma}-process generation of heavy elements. Two dimensional calculations are presented of the time evolution of the hot bubble and the surrounding stellar material. Unlike one dimensional calculations, the 2D code fails to achieve high entropies in the bubble. When run in a spherically symmetric mode the 2-D code reaches entropies of {approximately} 200. When convection is allowed, the bubble reaches {approximately} 60 then the bubble begins to move upward into the cooler, denser material above it.
Pattern Formation in Convective Instabilities
NASA Astrophysics Data System (ADS)
Friedrich, R.; Bestehorn, M.; Haken, H.
The present article reviews recent progress in the study of pattern formation in convective instabilities. After a brief discussion of the relevant basic hydrodynamic equations as well as a short outline of the mathematical treatment of pattern formation in complex systems the self-organization of spatial and spatio-temporal structures due to convective instabilities is considered. The formation of various forms of convective patterns arising in the Bénard experiment, i.e. in a horizontal fluid layer heated from below, is discussed. Then the review considers pattern formation in the Bénard instability in spherical geometries. In that case it can be demonstrated how the interaction among several convective cells may lead to time dependent as well as chaotic evolution of the spatial structures. Finally, the convective instability in a binary fluid mixture is discussed. In contrast to the instability in a single component fluid the instability may be oscillatory. In that case convection sets in in the form of travelling wave patterns which in addition to a complicated and chaotic temporal behaviour exhibit more or less spatial irregularity already close to threshold.
NASA Astrophysics Data System (ADS)
Udayashankar, Paniveni
2015-12-01
Observation of the Solar photosphere through high resolution instruments have long indicated that the surface of the Sun is not a tranquil, featureless surface but is beset with a granular appearance. These cellular velocity patterns are a visible manifestation of sub- photospheric convection currents which contribute substantially to the outward transport of energy from the deeper layers, thus maintaining the energy balance of the Sun as a whole.Convection is the chief mode of transport in the outer layers of all cool stars such as the Sun (Noyes,1982). Convection zone of thickness 30% of the Solar radius lies in the sub-photospheric layers of the Sun. Here the opacity is so large that heat flux transport is mainly by convection rather than by photon diffusion. Convection is revealed on four scales. On the scale of 1000 km, it is granulation and on the scale of 8-10 arcsec, it is Mesogranulation. The next hierarchial scale of convection , Supergranules are in the range of 30-40 arcsec. The largest reported manifestation of convection in the Sun are ‘Giant Cells’or ‘Giant Granules’, on a typical length scale of about 108 m.'Supergranules' is caused by the turbulence that extends deep into the convection zone. They have a typical lifetime of about 20hr with spicules marking their boundaries. Gas rises in the centre of the supergranules and then spreads out towards the boundary and descends.Broadly speaking supergranules are characterized by the three parameters namely the length L, the lifetime T and the horizontal flow velocity vh . The interrelationships amongst these parameters can shed light on the underlying convective processes and are in agreement with the Kolmogorov theory of turbulence as applied to large scale solar convection (Krishan et al .2002 ; Paniveni et. al. 2004, 2005, 2010).References:1) Noyes, R.W., The Sun, Our Star (Harvard University Press, 1982)2) Krishan, V., Paniveni U., Singh , J., Srikanth R., 2002, MNRAS, 334/1,2303) Paniveni
Computer simulation of the fire-tube boiler hydrodynamics
NASA Astrophysics Data System (ADS)
Khaustov, Sergei A.; Zavorin, Alexander S.; Buvakov, Konstantin V.; Sheikin, Vyacheslav A.
2015-01-01
Finite element method was used for simulating the hydrodynamics of fire-tube boiler with the ANSYS Fluent 12.1.4 engineering simulation software. Hydrodynamic structure and volumetric temperature distribution were calculated. The results are presented in graphical form. Complete geometric model of the fire-tube boiler based on boiler drawings was considered. Obtained results are suitable for qualitative analysis of hydrodynamics and singularities identification in fire-tube boiler water shell.
NASA Astrophysics Data System (ADS)
Colgate, S. A.
1981-11-01
The physics as well as astrophysics of the supernova (SN) phenomenon are illustrated with the appropriate numbers. The explosion of a star, a supernova, occurs at the end of its evolution when the nuclear fuel in its core is almost, or completely, consumed. The star may explode due to a small residual thermonuclear detonation, type I SN, or it may collapse, type I and type II SN, leaving a neutron star remnant. The type I progenitor is thought to be an old accreting white dwarf, 1.4 interior mass, with a close companion star. A type II SN is thought to be a massive young star, 6 to 10 interior mass. The mechanism of explosion is still a challenge to model, being the most extreme conditions of matter and hydrodynamics that occur presently and excessively in the universe.
NASA Technical Reports Server (NTRS)
Pappalardo, R. T.; Barr, A. C.
2004-01-01
Numerical modeling of non-Newtonian convection in ice shows that convection controlled by grain boundary sliding rheology may occur in Europa. This modeling confirms that thermal convection alone cannot produce significant dome elevations. Domes may instead be produced by diapirs initiated by thermal convection that in turn induces compositional segregation. Exclusion of impurities from warm upwellings would allow sufficient buoyancy for icy plumes to account for the observed approximately 100 m topography of domes, provided the ice shell has a small effective elastic thickness (approximately 0.2 to 0.5 km) and contains low eutectic-point impurities at the few percent level.
Mantle convection, topography and geoid
NASA Astrophysics Data System (ADS)
Golle, Olivia; Dumoulin, Caroline; Choblet, Gaël.; Cadek, Ondrej
2010-05-01
The internal evolution of planetary bodies often include solid-state convection. This phenomenon may have a large impact on the various interfaces of these bodies (dynamic topography occurs). It also affects their gravity field (and the geoid). Since both geoid and topography can be measured by a spacecraft, and are therefore available for several planetary bodies (while seismological measurements are still lacking for all of them but the Moon and the Earth), these are of the first interest for the study of internal structures and processes. While a classical approach now is to combine gravity and altimetry measurements to infer the internal structure of a planet [1], we propose to complement it by the reverse problem, i.e., producing synthetic geoid and dynamic topography from numerical models of convection as proposed by recent studies (e.g. for the CMB topography of the Earth,[2]). This procedure first include a simple evaluation of the surface topography and geoid from the viscous flow obtained by the 3D numerical tool OEDIPUS [3] modeling convection in a spherical shell. An elastic layer will then be considered and coupled to the viscous model - one question being whether the elastic shell shall be included 'on top' of the convective domain or within it, in the cold 'lithospheric' outer region. What we will present here corresponds to the first steps of this work: the comparison between the response functions of the topography and the geoid obtained from the 3D convection program to the results evaluated by a spectral method handling radial variations of viscosity [4]. We consider the effect of the elastic layer whether included in the convective domain or not. The scale setting in the context of a full thermal convection model overlaid by an elastic shell will be discussed (thickness of the shell, temperature at its base...). References [1] A.M. Wieczorek, (2007), The gravity and topography of the terrestrial planets, Treatise on Geophysics, 10, 165-206. [2
Prueitt, Melvin L.
1996-01-01
Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water.
Prueitt, Melvin L.
1995-01-01
Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water.
Prueitt, M.L.
1996-01-16
Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water. 6 figs.
Prueitt, Melvin L.
1994-01-01
Convection towers which are capable of cleaning the pollution from large quantities of air and of generating electricity utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity. Other embodiments may also provide fresh water, and operate in an updraft mode.
ERIC Educational Resources Information Center
Ebert, James R.; Elliott, Nancy A.; Hurteau, Laura; Schulz, Amanda
2004-01-01
Students must understand the fundamental process of convection before they can grasp a wide variety of Earth processes, many of which may seem abstract because of the scales on which they operate. Presentation of a very visual, concrete model prior to instruction on these topics may facilitate students' understanding of processes that are largely…
NASA Astrophysics Data System (ADS)
Denissenkov, P. A.; Herwig, F.; Truran, J. W.; Paxton, B.
2013-07-01
After off-center C ignition in the cores of super asymptotic giant branch (SAGB) stars, the C flame propagates all the way down to the center, trailing behind it the C-shell convective zone, and thus building a degenerate ONe core. This standard picture is obtained in stellar evolution simulations if the bottom C-shell convection boundary is assumed to be a discontinuity associated with a strict interpretation of the Schwarzschild condition for convective instability. However, this boundary is prone to additional mixing processes, such as thermohaline convection and convective boundary mixing. Using hydrodynamic simulations, we show that contrary to previous results, thermohaline mixing is too inefficient to interfere with the C-flame propagation. However, even a small amount of convective boundary mixing removes the physical conditions required for the C-flame propagation all the way to the center. This result holds even if we allow for some turbulent heat transport in the CBM region. As a result, SAGB stars build in their interiors hybrid C-O-Ne degenerate cores composed of a relatively large CO core (M CO ≈ 0.2 M ⊙) surrounded by a thick ONe zone (ΔM ONe >~ 0.85 M ⊙) with another thin CO layer above. If exposed by mass loss, these cores will become hybrid C-O-Ne white dwarfs. Otherwise, the ignition of C-rich material in the central core, surrounded by the thick ONe zone, may trigger a thermonuclear supernova (SN) explosion. The quenching of the C-flame may have implications for the ignition mechanism of SN Ia in the double-degenerate merger scenario.
Denissenkov, P. A.; Herwig, F.; Truran, J. W.; Paxton, B. E-mail: fherwig@uvic.ca
2013-07-20
After off-center C ignition in the cores of super asymptotic giant branch (SAGB) stars, the C flame propagates all the way down to the center, trailing behind it the C-shell convective zone, and thus building a degenerate ONe core. This standard picture is obtained in stellar evolution simulations if the bottom C-shell convection boundary is assumed to be a discontinuity associated with a strict interpretation of the Schwarzschild condition for convective instability. However, this boundary is prone to additional mixing processes, such as thermohaline convection and convective boundary mixing. Using hydrodynamic simulations, we show that contrary to previous results, thermohaline mixing is too inefficient to interfere with the C-flame propagation. However, even a small amount of convective boundary mixing removes the physical conditions required for the C-flame propagation all the way to the center. This result holds even if we allow for some turbulent heat transport in the CBM region. As a result, SAGB stars build in their interiors hybrid C-O-Ne degenerate cores composed of a relatively large CO core (M{sub CO} Almost-Equal-To 0.2 M{sub Sun }) surrounded by a thick ONe zone ({Delta}M{sub ONe} {approx}> 0.85 M{sub Sun }) with another thin CO layer above. If exposed by mass loss, these cores will become hybrid C-O-Ne white dwarfs. Otherwise, the ignition of C-rich material in the central core, surrounded by the thick ONe zone, may trigger a thermonuclear supernova (SN) explosion. The quenching of the C-flame may have implications for the ignition mechanism of SN Ia in the double-degenerate merger scenario.
NASA Astrophysics Data System (ADS)
Geroux, Chris M.; Deupree, Robert G.
2011-04-01
We are developing a three-dimensional radiation hydrodynamics code to simulate the interaction of convection and pulsation in classical variable stars. One key goal is the ability to carry these simulations to full amplitude in order to compare them with observed light and velocity curves. Previous two-dimensional calculations were prevented from doing this because of drift in the radial coordinate system, due to the algorithm defining radial movement of the coordinate system during the pulsation cycle. We remove this difficulty by defining our coordinate system flow algorithm to require that the mass in a spherical shell remains constant throughout the pulsation cycle. We perform adiabatic test calculations to show that large amplitude solutions repeat over more than 150 pulsation periods. We also verify that the computational method conserves the peak kinetic energy per period, as must be true for adiabatic pulsation models.
Geroux, Chris M.; Deupree, Robert G.
2011-04-10
We are developing a three-dimensional radiation hydrodynamics code to simulate the interaction of convection and pulsation in classical variable stars. One key goal is the ability to carry these simulations to full amplitude in order to compare them with observed light and velocity curves. Previous two-dimensional calculations were prevented from doing this because of drift in the radial coordinate system, due to the algorithm defining radial movement of the coordinate system during the pulsation cycle. We remove this difficulty by defining our coordinate system flow algorithm to require that the mass in a spherical shell remains constant throughout the pulsation cycle. We perform adiabatic test calculations to show that large amplitude solutions repeat over more than 150 pulsation periods. We also verify that the computational method conserves the peak kinetic energy per period, as must be true for adiabatic pulsation models.
Prueitt, M.L.
1994-02-08
Convection towers which are capable of cleaning the pollution from large quantities of air and of generating electricity utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity. Other embodiments may also provide fresh water, and operate in an updraft mode. 5 figures.
Three-dimensional spherical models of layered and whole mantle convection
Glatzmaier, G.A.; Schubert, G.
1993-12-10
We present numerical calculations of three-dimensional spherical shell thermal convection for constant viscosity and stratified viscosity models of whole-layer and two-layer mantle convection. These four examples are intended to provide theoretical guidance for determining the style of convection that is occurring in Earth`s mantle. An impermeable interface between the upper and lower convecting shells in the two-layer solutions is placed at a depth of 670 km to coincide with the mantle seismic discontinuity that divides the upper and lower mantle. The interface results in an internal thermal boundary layer that raises the mean temperature in the lower shell by about 1400 K compared to the whole-layer solutions. The patterns of convection in the upper part of the whole-layer solutions are dominated by narrow acurate sheetlike downflows in a background of weak upflow. In contrast, the upper shells of the two-layer solutions have complicated networks of convective rolls with the upflows and downflows having very similar structure. The structure of convection in the lower shells is similar to that in the lower part of the whole-layer solutions. An increase (decrease) in the viscosity in the lower (upper) shell decreases (increase) the convective velocity in the lower (upper) shell and increases (decreases) the horizontal scale in the lower (upper) shell. The upper and lower shells are viscously coupled at the 670-km interface when viscosity is the same in the two shells. However, when viscosity in the lower shell is 30 times greater than that in the upper shell, the coupling is partially viscous and partially thermal. Based on the horizontal structure of subduction zones on Earth`s surface and on tomographic images of temperature variations in Earth`s mantle, we conclude that the style of convection in Earth`s mantle is more like that of the whole-mantle models. 34 refs., 5 figs.
Hammond, R.P.; King, L.D.P.
1960-03-22
An homogeneous nuclear power reactor utilizing convection circulation of the liquid fuel is proposed. The reactor has an internal heat exchanger looated in the same pressure vessel as the critical assembly, thereby eliminating necessity for handling the hot liquid fuel outside the reactor pressure vessel during normal operation. The liquid fuel used in this reactor eliminates the necessity for extensive radiolytic gas rocombination apparatus, and the reactor is resiliently pressurized and, without any movable mechanical apparatus, automatically regulates itself to the condition of criticality during moderate variations in temperature snd pressure and shuts itself down as the pressure exceeds a predetermined safe operating value.
Thorogood, Robert M.
1983-01-01
A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation.
Thorogood, Robert M.
1986-01-01
A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation.
Thorogood, R.M.
1983-12-27
A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation. 14 figs.
Nucleation and chiral symmetry breaking under controlled hydrodynamic flows
NASA Technical Reports Server (NTRS)
Wu, Xiao-Lun; Martin, Brian; Tharrington, Arnold
1994-01-01
The effects of hydrodynamic convection on nucleation and broken chiral symmetry have been investigated for a simple inorganic molecule, sodium chlorate (NaClO3). Our experiment suggests that the symmetry breaking is a result of hydrodynamic amplification of rare nucleation events. The effect is more pronounced when the primary nucleation occurs on the solute-vapor interface, where mixing in the surface sublayer becomes important. The transition from the achiral to the chiral states appears to be smooth as the hydrodynamic parameters, such as flow rate, are varied.
A Simple Demonstration of Convective Effects on Reaction-Diffusion Systems: A Burning Cigarette.
ERIC Educational Resources Information Center
Pojman, John A.
1990-01-01
Described is a demonstration that provides an introduction to nonequilibrium reaction-diffusion systems and the coupling of hydrodynamics to chemical reactions. Experiments that demonstrate autocatalytic behavior that are effected by gravity and convection are included. (KR)
Convection in Icy Satellites: Implications for Habitability and Planetary Protection
NASA Technical Reports Server (NTRS)
Barr, A. C.; Pappalardo, R. T.
2004-01-01
Solid-state convection and endogenic resurfacing in the outer ice shells of the icy Galilean satellites (especially Europa) may contribute to the habitability of their internal oceans and to the detectability of any biospheres by spacecraft. If convection occurs in an ice I layer, fluid motions are confined beneath a thick stagnant lid of cold, immobile ice that is too stiff to participate in convection. The thickness of the stagnant lid varies from 30 to 50% of the total thickness of the ice shell, depending on the grain size of ice. Upward convective motions deliver approximately 10(exp 9) to 10(exp 13) kg yr(sup -1) of ice to the base of the stagnant lid, where resurfacing events driven by compositional or tidal effects (such as the formation of domes or ridges on Europa, or formation of grooved terrain on Ganymede) may deliver materials from the stagnant lid onto the surface. Conversely, downward convective motions deliver the same mass of ice from the base of the stagnant lid to the bottom of the satellites ice shells. Materials from the satellites surfaces may be delivered to their oceans by downward convective motions if material from the surface can reach the base of the stagnant lid during resurfacing events. Triggering convection from an initially conductive ice shell requires modest amplitude (a few to tens of kelvins) temperature anomalies to soften the ice to permit convection, which may require tidal heating. Therefore, tidal heating, compositional buoyancy, and solid-state convection in combination may be required to permit mass transport between the surfaces and oceans of icy satellites. Callisto and probably Ganymede have thick stagnant lids with geologically inactive surfaces today, so forward contamination of their surfaces is not a significant issue. Active convection and breaching of the stagnant lid is a possibility on Europa today, so is of relevance to planetary protection policy.
Rashidi, Mohammad M; Kavyani, Neda; Abelman, Shirley; Uddin, Mohammed J; Freidoonimehr, Navid
2014-01-01
In this study combined heat and mass transfer by mixed convective flow along a moving vertical flat plate with hydrodynamic slip and thermal convective boundary condition is investigated. Using similarity variables, the governing nonlinear partial differential equations are converted into a system of coupled nonlinear ordinary differential equations. The transformed equations are then solved using a semi-numerical/analytical method called the differential transform method and results are compared with numerical results. Close agreement is found between the present method and the numerical method. Effects of the controlling parameters, including convective heat transfer, magnetic field, buoyancy ratio, hydrodynamic slip, mixed convective, Prandtl number and Schmidt number are investigated on the dimensionless velocity, temperature and concentration profiles. In addition effects of different parameters on the skin friction factor, [Formula: see text], local Nusselt number, [Formula: see text], and local Sherwood number [Formula: see text] are shown and explained through tables.
Rashidi, Mohammad M.; Kavyani, Neda; Abelman, Shirley; Uddin, Mohammed J.; Freidoonimehr, Navid
2014-01-01
In this study combined heat and mass transfer by mixed convective flow along a moving vertical flat plate with hydrodynamic slip and thermal convective boundary condition is investigated. Using similarity variables, the governing nonlinear partial differential equations are converted into a system of coupled nonlinear ordinary differential equations. The transformed equations are then solved using a semi-numerical/analytical method called the differential transform method and results are compared with numerical results. Close agreement is found between the present method and the numerical method. Effects of the controlling parameters, including convective heat transfer, magnetic field, buoyancy ratio, hydrodynamic slip, mixed convective, Prandtl number and Schmidt number are investigated on the dimensionless velocity, temperature and concentration profiles. In addition effects of different parameters on the skin friction factor, , local Nusselt number, , and local Sherwood number are shown and explained through tables. PMID:25343360
Theory and simulations of rotating convection
Barker, Adrian J.; Dempsey, Adam M.; Lithwick, Yoram
2014-08-10
We study thermal convection in a rotating fluid in order to better understand the properties of convection zones in rotating stars and planets. We first derive a mixing-length theory for rapidly rotating convection, arriving at the results of Stevenson via simple physical arguments. The theory predicts the properties of convection as a function of the imposed heat flux and rotation rate, independent of microscopic diffusivities. In particular, it predicts the mean temperature gradient, the rms velocity and temperature fluctuations, and the size of the eddies that dominate heat transport. We test all of these predictions with high resolution three-dimensional hydrodynamical simulations of Boussinesq convection in a Cartesian box. The results agree remarkably well with the theory across more than two orders of magnitude in rotation rate. For example, the temperature gradient is predicted to scale as the rotation rate to the four-fifths power at fixed flux, and the simulations yield 0.75 ± 0.06. We conclude that the mixing-length theory is a solid foundation for understanding the properties of convection zones in rotating stars and planets.
Herwig, Falk; Pignatari, Marco; Woodward, Paul R.; Porter, David H.; Rockefeller, Gabriel; Fryer, Chris L.; Bennett, Michael; Hirschi, Raphael
2011-02-01
Depending on mass and metallicity as well as evolutionary phase, stars occasionally experience convective-reactive nucleosynthesis episodes. We specifically investigate the situation when nucleosynthetically unprocessed, H-rich material is convectively mixed with an He-burning zone, for example in a convectively unstable shell on top of electron-degenerate cores in asymptotic giant branch stars, young white dwarfs, or X-ray bursting neutron stars. Such episodes are frequently encountered in stellar evolution models of stars of extremely low or zero metal content, such as the first stars. We have carried out detailed nucleosynthesis simulations based on stellar evolution models and informed by hydrodynamic simulations. We focus on the convective-reactive episode in the very late thermal pulse star Sakurai's object (V4334 Sagittarii). Asplund et al. determined the abundances of 28 elements, many of which are highly non-solar, ranging from H, He, and Li all the way to Ba and La, plus the C isotopic ratio. Our simulations show that the mixing evolution according to standard, one-dimensional stellar evolution models implies neutron densities in the He intershell ({approx}< few 10{sup 11} cm{sup -3}) that are too low to obtain a significant neutron capture nucleosynthesis on the heavy elements. We have carried out three-dimensional hydrodynamic He-shell flash convection simulations in 4{pi} geometry to study the entrainment of H-rich material. Guided by these simulations we assume that the ingestion process of H into the He-shell convection zone leads only after some delay time to a sufficient entropy barrier that splits the convection zone into the original one driven by He burning and a new one driven by the rapid burning of ingested H. By making such mixing assumptions that are motivated by our hydrodynamic simulations we obtain significantly higher neutron densities ({approx} few 10{sup 15} cm{sup -3}) and reproduce the key observed abundance trends found in Sakurai
Preheat of radiative shock in double-shell ignition targets
Li, J. W.; He, X. T.; Pei, W. B.; Li, J. H.; Zheng, W. D.; Zhu, S. P.; Kang, W.
2013-08-15
For the double-shell ignition target, the nonuniform preheat of the inner shell by high-energy x rays, especially the M-band line radiation and L-shell radiation from the Au hohlraum, aggravates the hydrodynamic instability that causes shell disruption. In this paper, for the first time, we propose another preheating mechanism due to the radiative shock formed in the CH foam, and also confirm and validate such preheat of radiative shock by numerical results. We also give an estimate of the improved double-shell in which the CH foam is replaced by the metallic foam to mitigate the hydrodynamic instabilities, and find that the radiative shock formed in the metallic foam produces a much stronger radiation field to preheat the inner shell, which plays a role in better controlling the instabilities. In double-shells, the preheat of radiative shock, as a potential effect on the instabilities, should be seriously realized and underlined.
Differential rotation in solar convective dynamo simulations
NASA Astrophysics Data System (ADS)
Fan, Yuhong; Fang, Fang
2016-10-01
We carry out a magneto-hydrodynamic (MHD) simulation of convective dynamo in the rotating solar convective envelope driven by the solar radiative diffusive heat flux. The simulation is similar to that reported in Fan and Fang (2014) but with further reduced viscosity and magnetic diffusion. The resulting convective dynamo produces a large scale mean field that exhibits similar irregular cyclic behavior and polarity reversals, and self-consistently maintains a solar-like differential rotation. The main driver for the solar-like differential rotation (with faster rotating equator) is a net outward transport of angular momentum away from the rotation axis by the Reynolds stress, and we found that this transport is enhanced with reduced viscosity and magnetic diffusion.
Scaling supernova hydrodynamics to the laboratory
Kane, J O; Remington, B A; Arnett, D; Fryxell, B A; Drake, R P
1998-11-10
Supernova (SN) 1987A focused attention on the critical role of hydrodynamic instabilities in the evolution of supernovae. To test the modeling of these instabilities, they are attempting to rigorously scale the physics of the laboratory in supernova. The scaling of hydrodynamics on microscopic laser scales to hydrodynamics on the SN-size scales is presented and requirements established. Initial results were reported in [1]. Next the appropriate conditions are generated on the NOVA laser. 10-15 Mbar shock at the interface of a two-layer planar target, which triggers perturbation growth, due to the Richtmyer-Meshkov instability and to the Rayleigh-Taylor instability as the interface decelerates is generated. This scales the hydrodynamics of the He-H interface of a Type II supernova at intermediate times, up to a few x10{sup 3} s. The experiment is modeled using the hydrodynamics codes HYADES and CALE, and the supernova code PROMETHEUS. Results of the experiments and simulations are presented. Analysis of the spike bubble velocities using potential flow theory and Ott thin shell theory is presented, as well as a study of 2D vs. 3D difference in growth at the He-H interface of Sn 1987A.
Simulating Convection in Stellar Envelopes
NASA Astrophysics Data System (ADS)
Tanner, Joel
Understanding convection in stellar envelopes, and providing a mathematical description of it, would represent a substantial advance in stellar astrophysics. As one of the largest sources of uncertainty in stellar models, existing treatments of convection fail to account for many of the dynamical effects of convection, such as turbulent pressure and asymmetry in the velocity field. To better understand stellar convection, we must be able to study and examine it in detail, and one of the best tools for doing so is numerical simulation. Near the stellar surface, both convective and radiative process play a critical role in determining the structure and gas dynamics. By following these processes from first principles, convection can be simulated self-consistently and accurately, even in regions of inefficient energy transport where existing descriptions of convection fail. Our simulation code includes two radiative transfer solvers that are based on different assumptions and approximations. By comparing simulations that differ only in their respective radiative transfer methods, we are able to isolate the effect that radiative efficiency has on the structure of the superadiabatic layer. We find the simulations to be in good general agreement, but they show distinct differences in the thermal structure in the superadiabatic layer and atmosphere. Using the code to construct a grid of three-dimensional radiation hydrodynamic simulations, we investigate the link between convection and various chemical compositions. The stellar parameters correspond to main-sequence stars at several surface gravities, and span a range in effective temperatures (4500 < Teff < 6400). Different chemical compositions include four metallicities (Z = 0.040, 0.020, 0.010, 0.001), three helium abundances (Y = 0.1, 0.2, 0.3) and several levels of alpha-element enhancement. Our grid of simulations shows that various convective properties, such as velocity and the degree of superadiabaticity, are
Hydrodynamically driven colloidal assembly in dip coating.
Colosqui, Carlos E; Morris, Jeffrey F; Stone, Howard A
2013-05-01
We study the hydrodynamics of dip coating from a suspension and report a mechanism for colloidal assembly and pattern formation on smooth substrates. Below a critical withdrawal speed where the coating film is thinner than the particle diameter, capillary forces induced by deformation of the free surface prevent the convective transport of single particles through the meniscus beneath the film. Capillary-induced forces are balanced by hydrodynamic drag only after a minimum number of particles assemble within the meniscus. The particle assembly can thus enter the thin film where it moves at nearly the withdrawal speed and rapidly separates from the next assembly. The interplay between hydrodynamic and capillary forces produces periodic and regular structures below a critical ratio Ca(2/3)/sqrt[Bo] < 0.7, where Ca and Bo are the capillary and Bond numbers, respectively. An analytical model and numerical simulations are presented for the case of two-dimensional flow with circular particles in suspension. The hydrodynamically driven assembly documented here is consistent with stripe pattern formations observed experimentally in dip coating.
Hydrodynamically Driven Colloidal Assembly in Dip Coating
NASA Astrophysics Data System (ADS)
Colosqui, Carlos E.; Morris, Jeffrey F.; Stone, Howard A.
2013-05-01
We study the hydrodynamics of dip coating from a suspension and report a mechanism for colloidal assembly and pattern formation on smooth substrates. Below a critical withdrawal speed where the coating film is thinner than the particle diameter, capillary forces induced by deformation of the free surface prevent the convective transport of single particles through the meniscus beneath the film. Capillary-induced forces are balanced by hydrodynamic drag only after a minimum number of particles assemble within the meniscus. The particle assembly can thus enter the thin film where it moves at nearly the withdrawal speed and rapidly separates from the next assembly. The interplay between hydrodynamic and capillary forces produces periodic and regular structures below a critical ratio Ca2/3/Bo<0.7, where Ca and Bo are the capillary and Bond numbers, respectively. An analytical model and numerical simulations are presented for the case of two-dimensional flow with circular particles in suspension. The hydrodynamically driven assembly documented here is consistent with stripe pattern formations observed experimentally in dip coating.
Three-dimensional spherical models of layered and whole mantle convection
NASA Technical Reports Server (NTRS)
Glatzmaier, Gary A.; Schubert, Gerald
1993-01-01
We present numerical calculations of three-dimensional spherical shell thermal convection for constant viscosity and stratified viscosity models of whole-layer and two-layer mantle convection. These four examples are intended to provide theoretical guidance for determining the style of convection that is occurring in Earth's mantle. An impermeable interface between the upper and lower convecting shells in the two-layer solutions is placed at a depth of 670 km to coincide with the mantle seismic discontinuity that divides the upper and lower mantle. The interface results in an internal thermal boundary layer that raises the mean temperature in the lower shell by about 1400 K compared to the whole-layer solutions. The patterns of convection in the upper part of the whole-layer solutions are dominated by narrow arcuate sheetlike downflows in a background of weak upflow. In contrast, the upper shells of the two-layer solutions have complicated networks of convective rolls with the upflows and downflows having very similar structure. The structure of convection in the lower shells is similar to that in the lower part of the whole-layer solutions. Based on the horizontal structure of subduction zones on Earth's surface and on tomographic images of temperature variations in Earth's mantle, we conclude that the style of convection in Earth's mantle is more like that of the whole-mantle models.
Convection in Oblate Late-Type Stars
NASA Astrophysics Data System (ADS)
Wang, Junfeng
2015-08-01
In this talk, we present recent investigations of the convection, oblateness and differential rota-tion in rapidly rotating late-type stars with a novel and powerful Compressible High-ORder Un-structured Spectral-difference (CHORUS) code (J. Comput. Physics Vol. 290, 190-211, 2015). Recent observations have revealed the drastic effects of rapid rotation on stellar structure, including centrifugal deformation and gravity darkening. The centrifugal force counteracts gravity, causing the equatorial region to expand. Consequently, rapidly rotating stars are oblate and cannot be described by an one-dimensional spherically symmetric model. If convection establishes a substantial differential rotation, as in the envelopes of late-type stars, this can considerably increase the oblateness. We have successfully extended the CHORUS code to model rapidly rotating stars on fixed unstructured grids. In the CHORUS code, the hydrodynamic equations are discretized by a robust and efficient high-order Spectral Difference Method (SDM). The discretization stencil of the spectral difference method is compact and advantageous for parallel processing. CHORUS has been verified by comparing to spherical anelastic convection simulations on benchmark problems. This talk will be centred on the first global simulations by CHORUS for convection in oblate stars with different rotating rates. We quantify the influence of the oblateness on the mean flows and the thermal structure of the convection zone through these new simulations and implications of these results for stellar observations will be discussed.
CONVECTION THEORY AND SUB-PHOTOSPHERIC STRATIFICATION
Arnett, David; Meakin, Casey; Young, Patrick A. E-mail: casey.meakin@gmail.co
2010-02-20
As a preliminary step toward a complete theoretical integration of three-dimensional compressible hydrodynamic simulations into stellar evolution, convection at the surface and sub-surface layers of the Sun is re-examined, from a restricted point of view, in the language of mixing-length theory (MLT). Requiring that MLT use a hydrodynamically realistic dissipation length gives a new constraint on solar models. While the stellar structure which results is similar to that obtained by Yale Rotational Evolution Code (Guenther et al.; Bahcall and Pinsonneault) and Garching models (Schlattl et al.), the theoretical picture differs. A new quantitative connection is made between macro-turbulence, micro-turbulence, and the convective velocity scale at the photosphere, which has finite values. The 'geometric parameter' in MLT is found to correspond more reasonably with the thickness of the superadiabatic region (SAR), as it must for consistency in MLT, and its integrated effect may correspond to that of the strong downward plumes which drive convection (Stein and Nordlund), and thus has a physical interpretation even in MLT. If we crudely require the thickness of the SAR to be consistent with the 'geometric factor' used in MLT, there is no longer a free parameter, at least in principle. Use of three-dimensional simulations of both adiabatic convection and stellar atmospheres will allow the determination of the dissipation length and the geometric parameter (i.e., the entropy jump) more realistically, and with no astronomical calibration. A physically realistic treatment of convection in stellar evolution will require substantial additional modifications beyond MLT, including nonlocal effects of kinetic energy flux, entrainment (the most dramatic difference from MLT found by Meakin and Arnett), rotation, and magnetic fields.
Hydrodynamic Mass of Bluff Bodies with a Cavity
NASA Astrophysics Data System (ADS)
Elgabaili, Mohamed; Desabrais, Kenneth; Johari, Hamid
2012-11-01
Hydrodynamic mass of an object may be used to compute the contribution of unsteady drag resulting from potential flow. Even though the hydrodynamic mass of certain bluff bodies such as cylinder and sphere have been available from analytical considerations for a long time, there are no analytical solutions for a general bluff body with a cavity such as a cup facing the flow or a round parachute canopy. There is, however, an analytical solution for spherical shells of various concavities. The translational hydrodynamic mass of cups having various depth and thickness as well as round parachute canopies during inflation was computed using a finite element solver. The kinetic energy of the potential flow around the body was used to extract the hydrodynamic mass. Results indicate that the hydrodynamic mass of a cup can be decomposed into two components, the hydrodynamic mass of a cylinder whose axis is aligned with the flow and the mass of fluid within the cup cavity. Similarly, the hydrodynamic mass of a parachute canopy during various stages of inflation may be written as the hydrodynamic mass of a disk having the same area as the projected area of the canopy plus the mass of fluid enclosed by the canopy. Sponsored by the US Army Natick RDEC.
2008-06-03
Provides the shell of a plugin based application environment that builds on MVC Framework to allow one to rapidly construct an application by using a collection of plugins. The MVC Shell is implemented in C# as a .NET 2.0 application that can then be used as a shell for building a plugin based application. The infrastructure allows for dynamically processing a specified collection of plugins in order to determine the functionality of the application, wheremore » all plugins operate within the context of the underlying MVC Framework environment.« less
Stellar Explosions: Hydrodynamics and Nucleosynthesis
NASA Astrophysics Data System (ADS)
Jose, Jordi
2016-01-01
Stars are the main factories of element production in the universe through a suite of complex and intertwined physical processes. Such stellar alchemy is driven by multiple nuclear interactions that through eons have transformed the pristine, metal-poor ashes leftover by the Big Bang into a cosmos with 100 distinct chemical species. The products of stellar nucleosynthesis frequently get mixed inside stars by convective transport or through hydrodynamic instabilities, and a fraction of them is eventually ejected into the interstellar medium, thus polluting the cosmos with gas and dust. The study of the physics of the stars and their role as nucleosynthesis factories owes much to cross-fertilization of different, somehow disconnected fields, ranging from observational astronomy, computational astrophysics, and cosmochemistry to experimental and theoretical nuclear physics. Few books have simultaneously addressed the multidisciplinary nature of this field in an engaging way suitable for students and young scientists. Providing the required multidisciplinary background in a coherent way has been the driving force for Stellar Explosions: Hydrodynamics and Nucleosynthesis. Written by a specialist in stellar astrophysics, this book presents a rigorous but accessible treatment of the physics of stellar explosions from a multidisciplinary perspective at the crossroads of computational astrophysics, observational astronomy, cosmochemistry, and nuclear physics. Basic concepts from all these different fields are applied to the study of classical and recurrent novae, type I and II supernovae, X-ray bursts and superbursts, and stellar mergers. The book shows how a multidisciplinary approach has been instrumental in our understanding of nucleosynthesis in stars, particularly during explosive events.
Stellar Explosions: Hydrodynamics and Nucleosynthesis
NASA Astrophysics Data System (ADS)
José, Jordi
2015-12-01
Stars are the main factories of element production in the universe through a suite of complex and intertwined physical processes. Such stellar alchemy is driven by multiple nuclear interactions that through eons have transformed the pristine, metal-poor ashes leftover by the Big Bang into a cosmos with 100 distinct chemical species. The products of stellar nucleosynthesis frequently get mixed inside stars by convective transport or through hydrodynamic instabilities, and a fraction of them is eventually ejected into the interstellar medium, thus polluting the cosmos with gas and dust. The study of the physics of the stars and their role as nucleosynthesis factories owes much to cross-fertilization of different, somehow disconnected fields, ranging from observational astronomy, computational astrophysics, and cosmochemistry to experimental and theoretical nuclear physics. Few books have simultaneously addressed the multidisciplinary nature of this field in an engaging way suitable for students and young scientists. Providing the required multidisciplinary background in a coherent way has been the driving force for Stellar Explosions: Hydrodynamics and Nucleosynthesis. Written by a specialist in stellar astrophysics, this book presents a rigorous but accessible treatment of the physics of stellar explosions from a multidisciplinary perspective at the crossroads of computational astrophysics, observational astronomy, cosmochemistry, and nuclear physics. Basic concepts from all these different fields are applied to the study of classical and recurrent novae, type I and II supernovae, X-ray bursts and superbursts, and stellar mergers. The book shows how a multidisciplinary approach has been instrumental in our understanding of nucleosynthesis in stars, particularly during explosive events.
Hydrodynamic growth and mix experiments at National Ignition Facility
NASA Astrophysics Data System (ADS)
Smalyuk, V. A.; Caggiano, J.; Casey, D.; Cerjan, C.; Clark, D. S.; Edwards, J.; Grim, G.; Haan, S. W.; Hammel, B. A.; Hamza, A.; Hsing, W.; Hurricane, O.; Kilkenny, J.; Kline, J.; Knauer, J.; Landen, O.; McNaney, J.; Mintz, M.; Nikroo, A.; Parham, T.; Park, H.-S.; Pino, J.; Raman, K.; Remington, B. A.; Robey, H. F.; Rowley, D.; Tipton, R.; Weber, S.; Yeamans, C.
2016-03-01
Hydrodynamic growth and its effects on implosion performance and mix were studied at the National Ignition Facility (NIF). Spherical shells with pre-imposed 2D modulations were used to measure Rayleigh-Taylor (RT) instability growth in the acceleration phase of implosions using in-flight x-ray radiography. In addition, implosion performance and mix have been studied at peak compression using plastic shells filled with tritium gas and imbedding localized CD diagnostic layer in various locations in the ablator. Neutron yield and ion temperature of the DT fusion reactions were used as a measure of shell-gas mix, while neutron yield of the TT fusion reaction was used as a measure of implosion performance. The results have indicated that the low-mode hydrodynamic instabilities due to surface roughness were the primary culprits to yield degradation, with atomic ablator-gas mix playing a secondary role.
Convection driven zonal flows and vortices in the major planets.
Busse, F. H.
1994-06-01
The dynamical properties of convection in rotating cylindrical annuli and spherical shells are reviewed. Simple theoretical models and experimental simulations of planetary convection through the use of the centrifugal force in the laboratory are emphasized. The model of columnar convection in a cylindrical annulus not only serves as a guide to the dynamical properties of convection in rotating sphere; it also is of interest as a basic physical system that exhibits several dynamical properties in their most simple form. The generation of zonal mean flows is discussed in some detail and examples of recent numerical computations are presented. The exploration of the parameter space for the annulus model is not yet complete and the theoretical exploration of convection in rotating spheres is still in the beginning phase. Quantitative comparisons with the observations of the dynamics of planetary atmospheres will have to await the consideration in the models of the effects of magnetic fields and the deviations from the Boussinesq approximation. PMID:12780095
Magnetophoresis of superparamagnetic nanoparticles at low field gradient: hydrodynamic effect.
Leong, Sim Siong; Ahmad, Zainal; Lim, JitKang
2015-09-21
Convective current driven by momentum transfer between magnetic nanoparticles (MNPs) and their surrounding fluid during magnetophoresis process under a low gradient magnetic field (<100 T m(-1)) is presented. This magnetophoresis induced convective flow, which imposed direct hydrodynamic effects onto the separation kinetics of the MNPs under low gradient magnetic separation (LGMS), is analogous to the natural convection found in heat transportation. Herein, we show the significance of the induced convection in controlling the transport behavior of MNPs, even at a very low particle concentration of 5 mg L(-1), and this feature can be characterized by the newly defined magnetic Grashof number. By incorporating fluid flow equations into the existing magnetophoresis model, we reveal two unique features of this convective flow associated with low gradient magnetophoresis, namely, (1) the continuous homogenization of the MNPs solution and (2) accompanying sweeping flow that accelerates the collection of MNPs. According to both simulation and experimental data, the induced convection boosts the magnetophoretic capture of MNPs by approximately 30 times compared to the situation with no convection. PMID:26234726
Thermal equilibrium in Europa's ice shell
NASA Astrophysics Data System (ADS)
Moore, William B.
2006-01-01
Models of tidal-convective equilibrium for Europa's ice shell are computed using a laboratory-derived composite flow law for ice. Volume diffusion creep is found to dominate the flow law at equilibrium, and thus the thickness of the shell is strongly dependent on the poorly known grain size of the ice. This grain size is, however, constrained to be less than a few millimeters if equilibrium is achieved at the current eccentricity. Europa's ice shell cannot be thinner than about 16 km in equilibrium at present, since tidal dissipation cannot generate enough heat in such a thin shell to balance the heat transport. No conductive equilibria are found; this is likely due to the fact that most of a conductive shell must be cold if temperature gradients are to be large enough to carry the heat. A minimum eccentricity of about 0.0025 (about 1/4 the present value) below which there are no equilibria is also found.
CONVECTIVE OVERSHOOT MIXING IN MODELS OF THE STELLAR INTERIOR
Zhang, Q. S.
2013-04-01
Convective overshoot mixing plays an important role in stellar structure and evolution. However, overshoot mixing is also a long-standing problem; it is one of the most uncertain factors in stellar physics. As is well known, convective overshoot mixing is determined by the radial turbulent flux of the chemical component. In this paper, a local model of the radial turbulent flux of the chemical component is established based on hydrodynamic equations and some model assumptions and is tested in stellar models. The main conclusions are as follows. (1) The local model shows that convective overshoot mixing could be regarded as a diffusion process and the diffusion coefficient for different chemical elements is the same. However, if the non-local terms i.e., the gradient of the third-order moments, are taken into account, the diffusion coefficient for each chemical element should in general be different. (2) The diffusion coefficient of convective/overshoot mixing shows different behaviors in the convection zone and in the overshoot region because the characteristic length scale of the mixing is large in the convection zone and small in the overshoot region. Overshoot mixing should be regarded as a weak mixing process. (3) The diffusion coefficient of mixing is tested in stellar models, and it is found that a single choice of our central mixing parameter leads to consistent results for a solar convective envelope model as well as for core convection models of stars with masses from 2 M to 10 M.
Material transport across Europa's ice shell
NASA Astrophysics Data System (ADS)
Allu Peddinti, Divya; McNamara, Allen K.
2015-06-01
Jupiter's moon Europa exhibits a deformed icy surface with salt deposits concentrated along the varied geological features. The topographic alignment of salt deposits has been speculated to indicate an endogenic sourcing of the material. Two-way transport of salts from a liquid-water ocean beneath the ice shell to the surface, and vice versa, has been speculated. We present dynamical models that demonstrate the incorporation of newly frozen ice into convective plumes within the ice shell, caused by convection within the ice shell that drives dynamic topography along the ice-ocean boundary. The new ice that forms at the freezing front can be transported by the rising ice plumes toward the surface until it is blocked by a high-viscosity lid at the surface. Weakening of the lid by tidal or tectonic forces could then lead to the surface detection of ocean trace chemistry captured in the newly formed ice.
Mobile Lid Convection Beneath Enceladus' South Polar Terrain
NASA Technical Reports Server (NTRS)
Barr, Amy C.
2008-01-01
Enceladus' south polar region has a large heat flux, 55-110 milliwatts per square meter (or higher), that is spatially associated with cryovolcanic and tectonic activity. Tidal dissipation and vigorous convection in the underlying ice shell are possible sources of heat; however, prior predictions of the heat flux carried by stagnant lid convection range from F(sub conv) 15 to 30 milliwatts per square meter, too low to explain the observed heat flux. The high heat flux and increased cryovolcanic and tectonic activity suggest that near-surface ice in the region has become rheologically and mechanically weakened enough to permit convective plumes to reach close to the surface. If the yield strength of Enceladus' lithosphere is less than 1-10 kPa, convection may instead occur in the mobile lid" regime, which is characterized by large heat fluxes and large horizontal velocities in the near-surface ice. I show that model ice shells with effective surface viscosities between 10(exp 16) and 10(exp 17) Pa s and basal viscosities between 10(exp 13) and 10(exp 15) Pa s have convective heat fluxes comparable to that observed by the Cassini Composite Infrared Spectrometer. If this style of convection is occurring, the south polar terrain should be spreading horizontally with v1-10 millimeter per year and should be resurfaced in 0.1-10 Ma. On the basis of Cassini imaging data, the south polar terrain is 0.5 Ma old, consistent with the mobile lid hypothesis. Maxwell viscoelastic tidal dissipation in such ice shells is not capable of generating enough heat to balance convective heat transport. However, tidal heat may also be generated in the near-surface along faults as suggested by Nimmo et al. and/or viscous dissipation within the ice shell may occur by other processes not accounted for by the canonical Maxwell dissipation model.
Hydrodynamic aspects of fish olfaction
Cox, Jonathan P.L
2008-01-01
Flow into and around the olfactory chamber of a fish determines how odorant from the fish's immediate environment is transported to the sensory surface (olfactory epithelium) lining the chamber. Diffusion times in water are long, even over comparatively short distances (millimetres). Therefore, transport from the external environment to the olfactory epithelium must be controlled by processes that rely on convection (i.e. the bulk flow of fluid). These include the beating of cilia lining the olfactory chamber and the relatively inexpensive pumping action of accessory sacs. Flow through the chamber may also be induced by an external flow. Flow over the olfactory epithelium appears to be laminar. Odorant transfer to the olfactory epithelium may be facilitated in several ways: if the olfactory organs are mounted on stalks that penetrate the boundary layer; by the steep velocity gradients generated by beating cilia; by devices that deflect flow into the olfactory chamber; by parallel arrays of olfactory lamellae; by mechanical agitation of the chamber (or olfactory stalks); and by vortices. Overall, however, our knowledge of the hydrodynamics of fish olfaction is far from complete. Several areas of future research are outlined. PMID:18184629
Driving factors of electro-convective instability in concentration polarization
NASA Astrophysics Data System (ADS)
Abu-Rjal, Ramadan; Rubinstein, Isaak; Zaltzman, Boris
2016-06-01
Until recently, based on the analysis pertaining to a perfectly charge selective interface, electro-convective instability in concentration polarization was attributed to the nonequilibrium mechanism related to the extended space charge which forms next to that of the electric double layer near the limiting current. More recently it was shown that imperfect charge selectivity of the interface makes equilibrium instability possible, driven by either equilibrium electro-osmosis or bulk electro-convection, or both. In this paper we identify and analyze the major surface and bulk factors affecting the electro-convective instability. These factors, some known previously under the names of diffusio-osmosis, electro-osmosis, or bulk electro-convection, and some newly identified in this paper are manifestations of the electric force and pressure gradient, balanced by the viscous force acting in various locations in solution. The contribution of these factors to hydrodynamic stability in concentration polarization is analyzed for a varying charge selectivity of the interface.
VARIATION OF STELLAR ENVELOPE CONVECTION AND OVERSHOOT WITH METALLICITY
Tanner, Joel D.; Basu, Sarbani; Demarque, Pierre
2013-04-10
We examine how metallicity affects convection and overshoot in the superadiabatic layer of main sequence stars. We present results from a grid of three-dimensional radiation hydrodynamic simulations with four metallicities (Z = 0.040, 0.020, 0.010, 0.001), and spanning a range in effective temperature (4950 < T{sub eff} < 6230). We show that changing the metallicity alters properties of the convective gas dynamics, and the structure of the superadiabatic layer and atmosphere. Our grid of simulations shows that the amount of superadiabaticity, which tracks the transition from efficient to inefficient convection, is sensitive to changes in metallicity. We find that increasing the metallicity forces the location of the transition region to lower densities and pressures, and results in larger mean and turbulent velocities throughout the superadiabatic region. We also quantify the degree of convective overshoot in the atmosphere, and show that it increases with metallicity as well.
White Dwarf Convection Preceding Type Ia Supernovae
NASA Astrophysics Data System (ADS)
Zingale, Michael; Almgren, A. S.; Bell, J. B.; Malone, C. M.; Nonaka, A.; Woosley, S. E.
2010-01-01
In the single degenerate scenario for Type Ia supernovae, a Chandrasekhar mass white dwarf `simmers' for centuries preceding the ultimate explosion. During this period, reactions near the center drive convection throughout most of the interior of the white dwarf. The details of this convective flow determine how the first flames in the white dwarf ignite. Simulating this phase is difficult because the flows are highly subsonic. Using the low Mach number hydrodynamics code, MAESTRO, we present 3-d, full star models of the final hours of this convective phase, up to the point of ignition of a Type Ia supernova. We discuss the details of the convective velocity field and the locations of the initial hot spots. Finally, we show some preliminary results with rotation. Support for this work came from the DOE/Office of Nuclear Physics, grant No. DE-FG02-06ER41448 (Stony Brook), the SciDAC Program of the DOE Office of Mathematics, Information, and Computational Sciences under the DOE under contract No. DE-AC02-05CH11231 (LBNL), and the DOE SciDAC program, under grant No. DE-FC02-06ER41438 (UCSC). We made use of the jaguar machine via a DOE INCITE allocation at the Oak Ridge Leadership Computational Facility.
Scaling supernova hydrodynamics to the laboratory
Kane, J.O.
1999-06-01
Supernova (SN) 1987A focused attention on the critical role of hydrodynamic instabilities in the evolution of supernovae. To test the modeling of these instabilities, we are developing laboratory experiments of hydrodynamic mixing under conditions relevant to supernovae. Initial results were reported in J. Kane et al., Astrophys. J.478, L75 (1997) The Nova laser is used to shock two-layer targets, producing Richtmyer-Meshkov (RM) and Rayleigh-Taylor (RT) instabilities at the interfaces between the layers, analogous to instabilities seen at the interfaces of SN 1987A. Because the hydrodynamics in the laser experiments at intermediate times (3-40 ns) and in SN 1987A at intermediate times (5 s-10{sup 4} s) are well described by the Euler equations, the hydrodynamics scale between the two regimes. The experiments are modeled using the hydrodynamics codes HYADES and CALE, and the supernova code PROMETHEUS, thus serving as a benchmark for PROMETHEUS. Results of the experiments and simulations are presented. Analysis of the spike and bubble velocities in the experiment using potential flow theory and a modified Ott thin shell theory is presented. A numerical study of 2D vs. 3D differences in instability growth at the O-He and He-H interface of SN 1987A, and the design for analogous laser experiments are presented. We discuss further work to incorporate more features of the SN in the experiments, including spherical geometry, multiple layers and density gradients. Past and ongoing work in laboratory and laser astrophysics is reviewed, including experimental work on supernova remnants (SNRs). A numerical study of RM instability in SNRs is presented.
Scaling supernova hydrodynamics to the laboratory
Kane, J.; Arnett, D.; Remington, B.A.; Glendinning, S.G.; Bazan, G.; Drake, R.P.; Fryxell, B.A.; Teyssier, R.
1999-05-01
Supernova (SN) 1987A focused attention on the critical role of hydrodynamic instabilities in the evolution of supernovae. To test the modeling of these instabilities, we are developing laboratory experiments of hydrodynamic mixing under conditions relevant to supernovae. Initial results were reported in J. Kane {ital et al.} [Astrophys. J. {bold 478}, L75 (1997) and B. A. Remington {ital et al.}, Phys. Plasmas {bold 4}, 1994 (1997)]. The Nova laser is used to generate a 10{endash}15 Mbar shock at the interface of a two-layer planar target, which triggers perturbation growth due to the Richtmyer{endash}Meshkov instability, and to the Rayleigh{endash}Taylor instability as the interface decelerates. This resembles the hydrodynamics of the He-H interface of a Type II supernova at intermediate times, up to a few {times}10{sup 3}s. The scaling of hydrodynamics on microscopic laser scales to the SN-size scales is presented. The experiment is modeled using the hydrodynamics codes HYADES [J. T. Larson and S. M. Lane, J. Quant. Spect. Rad. Trans. {bold 51}, 179 (1994)] and CALE [R. T. Barton, {ital Numerical Astrophysics} (Jones and Bartlett, Boston, 1985), pp. 482{endash}497], and the supernova code PROMETHEUS [P. R. Woodward and P. Collela, J. Comp. Phys. {bold 54}, 115 (1984)]. Results of the experiments and simulations are presented. Analysis of the spike-and-bubble velocities using potential flow theory and Ott thin-shell theory is presented, as well as a study of 2D versus 3D differences in perturbation growth at the He-H interface of SN 1987A.
Tharmocapillary convection in a liquid bridge under microgravity condition
NASA Astrophysics Data System (ADS)
Shukla, K. N.
The paper highlights the onset of the oscillatory thermocapillary convection in a liquid bridge, subjected to g-jitters. Thermocapillary convection refers to motion driven by the application of a temperature gradient along the interface. The temperature gradient may be large enough to cause oscillations in the basic state of the fluid. The appearance of the oscillatory thermocapillary convection couples with the solidification processes leads to the striations and results into the degradation of the crystals. The vast majority of the liquid bridge investigations performed aboard on the sounding rockets or the space shuttles [1, 2] focused on the float zone processes because the process has been regarded as a candidate for the space based manufacturing of semiconductor materials. The half zone consists of the liquid bridge held between two solid, planar end walls across which a temperature gradient is applied. Thus the basic state of thermocapillary convection consists of a single toroidal roll with the surface motion directed downwards from the hot upper disc to the cold lower one. The interface deformation caused by the gravity jitters depends on the volume of the liquid bridge and cause changes in the physical properties of the liquid, which ultimately influence the basic state of the fluid [3]. The paper discusses thermocapillary convection in a liquid bridge in a microgravity environment. The onset of thermocapillary convection is broadly studied in terms of hydrodynamic instability [4], which requires a traveling wave as the oscillatory mode. Discussions are emphasized in the pattern and oscillatory modes associated with transition process. REFERENCES [1] Grodzka, P.G. and Bannister, T.C., Heat flow and convection demonstration experiments abord Appolo 14, Science (Washington, D.C.), Vol.176, May 1972, pp. 506-508. [2] Bannister, T C., etal, NASA, TMX-64772, 1973 [3] Shukla, K. N., Thermal Convection in a Cylindrical Enclosure, AIAA --2004-1321, 2004 [4
Resurgence in extended hydrodynamics
NASA Astrophysics Data System (ADS)
Aniceto, Inês; Spaliński, Michał
2016-04-01
It has recently been understood that the hydrodynamic series generated by the Müller-Israel-Stewart theory is divergent and that this large-order behavior is consistent with the theory of resurgence. Furthermore, it was observed that the physical origin of this is the presence of a purely damped nonhydrodynamic mode. It is very interesting to ask whether this picture persists in cases where the spectrum of nonhydrodynamic modes is richer. We take the first step in this direction by considering the simplest hydrodynamic theory which, instead of the purely damped mode, contains a pair of nonhydrodynamic modes of complex conjugate frequencies. This mimics the pattern of black brane quasinormal modes which appear on the gravity side of the AdS/CFT description of N =4 supersymmetric Yang-Mills plasma. We find that the resulting hydrodynamic series is divergent in a way consistent with resurgence and precisely encodes information about the nonhydrodynamic modes of the theory.
Stochastic Convection Parameterizations
NASA Technical Reports Server (NTRS)
Teixeira, Joao; Reynolds, Carolyn; Suselj, Kay; Matheou, Georgios
2012-01-01
computational fluid dynamics, radiation, clouds, turbulence, convection, gravity waves, surface interaction, radiation interaction, cloud and aerosol microphysics, complexity (vegetation, biogeochemistry, radiation versus turbulence/convection stochastic approach, non-linearities, Monte Carlo, high resolutions, large-Eddy Simulations, cloud structure, plumes, saturation in tropics, forecasting, parameterizations, stochastic, radiation-clod interaction, hurricane forecasts
Dispersive hydrodynamics: Preface
NASA Astrophysics Data System (ADS)
Biondini, G.; El, G. A.; Hoefer, M. A.; Miller, P. D.
2016-10-01
This Special Issue on Dispersive Hydrodynamics is dedicated to the memory and work of G.B. Whitham who was one of the pioneers in this field of physical applied mathematics. Some of the papers appearing here are related to work reported on at the workshop "Dispersive Hydrodynamics: The Mathematics of Dispersive Shock Waves and Applications" held in May 2015 at the Banff International Research Station. This Preface provides a broad overview of the field and summaries of the various contributions to the Special Issue, placing them in a unified context.
Synchronization via Hydrodynamic Interactions
NASA Astrophysics Data System (ADS)
Kendelbacher, Franziska; Stark, Holger
2013-12-01
An object moving in a viscous fluid creates a flow field that influences the motion of neighboring objects. We review examples from nature in the microscopic world where such hydrodynamic interactions synchronize beating or rotating filaments. Bacteria propel themselves using a bundle of rotating helical filaments called flagella which have to be synchronized in phase. Other micro-organisms are covered with a carpet of smaller filaments called cilia on their surfaces. They beat highly synchronized so that metachronal waves propagate along the cell surfaces. We explore both examples with the help of simple model systems and identify generic properties for observing synchronization by hydrodynamic interactions.
Glass shell manufacturing in space
NASA Technical Reports Server (NTRS)
Nolen, R. L.; Downs, R. L.; Ebner, M. A.
1982-01-01
Highly-uniform, hollow glass spheres, which are used for inertial-confinement fusion targets, are formed from metal-organic gel powder feedstock in a drop-tower furnace. The modelling of this gel-to-sphere transformation has consisted of three phases: gel thermochemistry, furnance-to-gel heat transfer, and gravity-driven degradation of the concentricity of the molten shell. The heat transfer from the furnace to the free-falling gel particle was modelled with forced convection. The gel mass, dimensions, and specific heat as well as furnace temperature profile and furnace gas conductivity, were controlled variables. This model has been experimentally verified. In the third phase, a mathematical model was developed to describe the gravity-driven degradation of concentricity in molten glass shells.
Examining the Impact of Prandtl Number and Surface Convection Models on Deep Solar Convection
NASA Astrophysics Data System (ADS)
O'Mara, B. D.; Augustson, K.; Featherstone, N. A.; Miesch, M. S.
2015-12-01
Turbulent motions within the solar convection zone play a central role in the generation and maintenance of the Sun's magnetic field. This magnetic field reverses its polarity every 11 years and serves as the source of powerful space weather events, such as solar flares and coronal mass ejections, which can affect artificial satellites and power grids. The structure and inductive properties are linked to the amplitude (i.e. speed) of convective motion. Using the NASA Pleiades supercomputer, a 3D fluids code simulates these processes by evolving the Navier-Stokes equations in time and under an anelastic constraint. This code simulates the fluxes describing heat transport in the sun in a global spherical-shell geometry. Such global models can explicitly capture the large-scale motions in the deep convection zone but heat transport from unresolved small-scale convection in the surface layers must be parameterized. Here we consider two models for heat transport by surface convection, including a conventional turbulent thermal diffusion as well as an imposed flux that carries heat through the surface in a manner that is independent of the deep convection and the entropy stratification it establishes. For both models, we investigate the scaling of convective amplitude with decreasing diffusion (increasing Rayleigh number). If the Prandtl number is fixed, we find that the amplitude of convective motions increases with decreasing diffusion, possibly reaching an asymptotic value in the low diffusion limit. However, if only the thermal diffusion is decreased (keeping the viscosity fixed), we find that the amplitude of convection decreases with decreasing diffusion. Such a high-Prandtl-number, high-Peclet-number limit may be relevant for the Sun if magnetic fields mix momentum, effectively acting as an enhanced viscosity. In this case, our results suggest that the amplitude of large-scale convection in the Sun may be substantially less than in current models that employ an
NASA Technical Reports Server (NTRS)
Leissa, A. W.
1973-01-01
The vibrational characteristics and mechanical properties of shell structures are discussed. The subjects presented are: (1) fundamental equations of thin shell theory, (2) characteristics of thin circular cylindrical shells, (3) complicating effects in circular cylindrical shells, (4) noncircular cylindrical shell properties, (5) characteristics of spherical shells, and (6) solution of three-dimensional equations of motion for cylinders.
Building Atoms Shell by Shell.
ERIC Educational Resources Information Center
Sussman, Beverly
1993-01-01
Describes an atom-building activity where students construct three-dimensional models of atoms using a styrofoam ball as the nucleus and pom-poms, gum drops, minimarshmallows, or other small items of two different colors to represent protons and neutrons attached. Rings of various sizes with pom-poms attached represent electron shells and…
Global tectonics from mantle convection models
NASA Astrophysics Data System (ADS)
Coltice, N.
2015-12-01
The motions of the surface of the Earth are described using the theory of Plate Tectonics. Despite the fact that this theory has shaped modern geosciences it has some limitations, and among them the impossibility to evaluate the forces at the origin of the surface displacements and deformations. Hence important questions remain difficult to solve like the origin of the sizes of plates, forces driving mountain building or supercontinent dispersal... Tremendous progresses have been made in the past 15 years in mantle convection modelling. Especially, modern convection codes can solve for motion equations with complex material properties. Since the early 2000's, the development of pseudo-plastic rheologies contributed to produce convection models with plate-like behaviour: plates naturally emerge and interact with the flow in a self-organized manner. Using such models in 3D spherical geometry (computed with StagYY - Tackley, 2008), I will show that important questions on the global tectonics of the planet can be addressed now: the distribution of seafloor ages, the distribution of plate area, the lifetime of small and large plates or modes of plate reorganizations. Tackley, P.J., Modellng compressible mantle convection with large viscosity contrasts in a three-dimensional spherical shell using the yin-yang grid, Phys. Earth Planet. Inter, 171, 7-18 (2008).
Acousto-Convective Drying of Pine Nuts
NASA Astrophysics Data System (ADS)
Zhilin, A. A.; Fedorov, A. V.
2014-07-01
An experimental investigation of the process of drying pine nut grains has been carried out by three methods: acousto-convective, thermoconvective, and thermal. A qualitative and a quantitative comparison of the dynamics of the processes of moisture extraction from the nut grains for the considered drying methods have been made. To elucidate the mechanism of moisture extraction from the pine nut grains, we carried out a separate investigation of the process of drying the nut shell and the kernel. The obtained experimental data on the acousto-convective drying of nuts are well described by the relaxation model, the data on the thermoconvective drying are well described by the bilinear law, and the data on the thermal drying are well described by the combined method consisting of three time steps characterized by different kinetic regimes of drying.
Skew resisting hydrodynamic seal
Conroy, William T.; Dietle, Lannie L.; Gobeli, Jeffrey D.; Kalsi, Manmohan S.
2001-01-01
A novel hydrodynamically lubricated compression type rotary seal that is suitable for lubricant retention and environmental exclusion. Particularly, the seal geometry ensures constraint of a hydrodynamic seal in a manner preventing skew-induced wear and provides adequate room within the seal gland to accommodate thermal expansion. The seal accommodates large as-manufactured variations in the coefficient of thermal expansion of the sealing material, provides a relatively stiff integral spring effect to minimize pressure-induced shuttling of the seal within the gland, and also maintains interfacial contact pressure within the dynamic sealing interface in an optimum range for efficient hydrodynamic lubrication and environment exclusion. The seal geometry also provides for complete support about the circumference of the seal to receive environmental pressure, as compared the interrupted character of seal support set forth in U.S. Pat. Nos. 5,873,576 and 6,036,192 and provides a hydrodynamic seal which is suitable for use with non-Newtonian lubricants.
NASA Technical Reports Server (NTRS)
Barr, A. C.; Pappalardo, R. T.
2004-01-01
Ice I exhibits a complex rheology at temperature and pressure conditions appropriate for the interiors of the ice I shells of Europa, Ganymede, and Callisto. We use numerical methods and existing parameterizations of the critical Rayleigh number to determine the conditions required to trigger convection in an ice I shell with the stress-, temperature- and grain size- dependent rheology measured in laboratory experiments by Goldsby and Kohlstedt [2001]. The critical Rayleigh number depends on the ice grain size and the amplitude and wavelength of temperature perturbation issued to an initially conductive ice I shell. If the shells have an assumed uniform grain size less than 0.4 mm, deformation during initial plume growth is accommodated by Newtonian volume diffusion. If the ice grain size is between 0.4 mm and 3 cm, deformation during plume growth is accommodated by weakly non-Newtonian grain boundary sliding, where the critical ice shell thickness for convection depends on the amplitude of temperature perturbation to the _0.5 power. If the ice grain size exceeds 2 cm, convection can not occur in the ice I shells of the Galilean satellites regardless of the amplitude or wavelength of temperature perturbation. If the grain size in a convecting ice I shell evolves to effective values greater than 2 cm, convection will cease. If the ice shell has a grain size large enough to permit flow by dislocation creep, the ice is too stiff to permit convection, even in the thickest possible ice I shell. Consideration of the composite rheology implies that estimates of the grain size in the satellites and knowledge of their initial thermal states are required when judging the convective instability of their ice I shells.
NASA Astrophysics Data System (ADS)
Roy, Kenneth I.; Kennedy, Robert G., III; Fields, David E.
2013-02-01
The traditional concept of terraforming assumes ready availability of candidate planets with acceptable qualities: orbiting a star in its "Goldilocks zone", liquid water, enough mass, years longer than days, magnetic field, etc. But even stipulating affordable interstellar travel, we still might never find a good candidate elsewhere. Whatever we found likely would require centuries of heavy terraforming, just as Mars or Venus would here. Our increasing appreciation of the ubiquity of life suggests that any terra nova would already possess it. We would then face the dilemma of introducing alien life forms (us, our microbes) into another living world. Instead, we propose a novel method to create habitable environments for humanity by enclosing airless, sterile, otherwise useless planets, moons, and even large asteroids within engineered shells, which avoids the conundrum. These shells are subject to two opposing internal stresses: compression due to the primary's gravity, and tension from atmospheric pressure contained inside. By careful design, these two cancel each other resulting in zero net shell stress. Beneath the shell an Earth-like environment could be created similar in almost all respects to that of Home, except for gravity, regardless of the distance to the sun or other star. Englobing a small planet, moon, or even a dwarf planet like Ceres, would require astronomical amounts of material (quadrillions of tons) and energy, plus a great deal of time. It would be a quantum leap in difficulty over building Dyson Dots or industrializing our solar system, perhaps comparable to a mission across interstellar space with a living crew within their lifetime. But when accomplished, these constructs would be complete (albeit small) worlds, not merely large habitats. They could be stable across historic timescales, possibly geologic. Each would contain a full, self-sustaining ecology, which might evolve in curious directions over time. This has interesting implications
Layered Thermohaline Convection in Hypersaline GeothermalSystems
Oldenburg, Curtis M.; Pruess, Karsten
1997-01-05
Thermohaline convection occurs in hypersaline geothermal systems due to thermal and salinity effects on liquid density. Because of its importance in oceanography, thermohaline convection in viscous liquids has received more attention than thermohaline convection in porous media. The fingered and layered convection patterns observed in viscous liquid thermohaline convection have been hypothesized to occur also in porous media. However, the extension of convective dynamics from viscous liquid systems to porous media systems is complicated by the presence of the solid matrix in porous media. The solid grains cause thermal retardation, hydrodynamic dispersion, and permeability effects. We present simulations of thermohaline convection in model systems based on the Salton Sea Geothermal System, California, that serve to point out the general dynamics of porous media thermohaline convection in the diffusive regime, and the effects of porosity and permeability, in particular. We use the TOUGH2 simulator with residual formulation and fully coupled solution technique for solving the strongly coupled equations governing thermohaline convection in porous media. We incorporate a model for brine density that takes into account the effects of NaCl and CaCl2. Simulations show that in forced convection, the increased pore velocity and thermal retardation in low-porosity regions enhances brine transport relative to heat transport. In thermohaline convection, the heat and brine transport are strongly coupled and enhanced transport of brine over heat cannot occur because buoyancy caused by heat and brine together drive the flow. Random permeability heterogeneity has a limited effect if the scale of flow is much larger than the scale of permeability heterogeneity. For the system studied here, layered thermohaline convection persists for more than one million years for a variety of initial conditions. Our simulations suggest that layered thermohaline convection is possible in
Stein, Robert F
2012-07-13
Convection is the transport of energy by bulk mass motions. Magnetic fields alter convection via the Lorentz force, while convection moves the fields via the curl(v×B) term in the induction equation. Recent ground-based and satellite telescopes have increased our knowledge of the solar magnetic fields on a wide range of spatial and temporal scales. Magneto-convection modelling has also greatly improved recently as computers become more powerful. Three-dimensional simulations with radiative transfer and non-ideal equations of state are being performed. Flux emergence from the convection zone through the visible surface (and into the chromosphere and corona) has been modelled. Local, convectively driven dynamo action has been studied. The alteration in the appearance of granules and the formation of pores and sunspots has been investigated. Magneto-convection calculations have improved our ability to interpret solar observations, especially the inversion of Stokes spectra to obtain the magnetic field and the use of helioseismology to determine the subsurface structure of the Sun. PMID:22665893
Self-Organized Traveling Chemo-Hydrodynamic Fingers Triggered by a Chemical Oscillator.
Escala, D M; Budroni, M A; Carballido-Landeira, J; De Wit, A; Muñuzuri, A P
2014-02-01
Pulsatile chemo-hydrodynamic patterns due to a coupling between an oscillating chemical reaction and buoyancy-driven hydrodynamic flows can develop when two solutions of separate reactants of the Belousov-Zhabotinsky reaction are put in contact in the gravity field and conditions for chemical oscillations are met in the contact zone. In regular oscillatory conditions, localized periodic changes in the concentration of intermediate species induce pulsatile density gradients, which, in turn, generate traveling convective fingers breaking the transverse symmetry. These patterns are the self-organized result of a genuine coupling between chemical and hydrodynamic modes.
Self-Organized Traveling Chemo-Hydrodynamic Fingers Triggered by a Chemical Oscillator.
Escala, D M; Budroni, M A; Carballido-Landeira, J; De Wit, A; Muñuzuri, A P
2014-02-01
Pulsatile chemo-hydrodynamic patterns due to a coupling between an oscillating chemical reaction and buoyancy-driven hydrodynamic flows can develop when two solutions of separate reactants of the Belousov-Zhabotinsky reaction are put in contact in the gravity field and conditions for chemical oscillations are met in the contact zone. In regular oscillatory conditions, localized periodic changes in the concentration of intermediate species induce pulsatile density gradients, which, in turn, generate traveling convective fingers breaking the transverse symmetry. These patterns are the self-organized result of a genuine coupling between chemical and hydrodynamic modes. PMID:26276584
Pulsation driving and convection
NASA Astrophysics Data System (ADS)
Antoci, Victoria
2015-08-01
Convection in stellar envelopes affects not only the stellar structure, but has a strong impact on different astrophysical processes, such as dynamo-generated magnetic fields, stellar activity and transport of angular momentum. Solar and stellar observations from ground and space have shown that the turbulent convective motion can also drive global oscillations in many type of stars, allowing to study stellar interiors at different evolutionary stages. In this talk I will concentrate on the influence of convection on the driving of stochastic and coherent pulsations across the Hertzsprung-Russell diagram and give an overview of recent studies.
On the convective overstability in protoplanetary discs
NASA Astrophysics Data System (ADS)
Latter, Henrik N.
2016-01-01
This paper explores the driving of low-level hydrodynamical activity in protoplanetary-disc dead zones. A small adverse radial entropy gradient, ordinarily stabilized by rotation, excites oscillatory convection (`convective overstability') when thermal diffusion, or cooling, is neither too strong nor too weak. I revisit the linear theory of the instability, discuss its prevalence in protoplanetary discs, and show that unstable modes are exact non-linear solutions in the local Boussinesq limit. Overstable modes cannot grow indefinitely, however, as they are subject to a secondary parametric instability that limits their amplitudes to relatively low levels. If parasites set the saturation level of the ensuing turbulence then the convective overstability is probably too weak to drive significant angular momentum transport or to generate vortices. But I also discuss an alternative, and far more vigorous, saturation route that generates radial `layers' or `zonal flows' (witnessed in semiconvection). Numerical simulations are required to determine which outcome is favoured in realistic discs, and consequently how important the instability is for disc dynamics.
Hydrodynamics of Turning Flocks.
Yang, Xingbo; Marchetti, M Cristina
2015-12-18
We present a hydrodynamic model of flocking that generalizes the familiar Toner-Tu equations to incorporate turning inertia of well-polarized flocks. The continuum equations controlled by only two dimensionless parameters, orientational inertia and alignment strength, are derived by coarse-graining the inertial spin model recently proposed by Cavagna et al. The interplay between orientational inertia and bend elasticity of the flock yields anisotropic spin waves that mediate the propagation of turning information throughout the flock. The coupling between spin-current density to the local vorticity field through a nonlinear friction gives rise to a hydrodynamic mode with angular-dependent propagation speed at long wavelengths. This mode becomes unstable as a result of the growth of bend and splay deformations augmented by the spin wave, signaling the transition to complex spatiotemporal patterns of continuously turning and swirling flocks.
Hydrodynamics of Turning Flocks.
Yang, Xingbo; Marchetti, M Cristina
2015-12-18
We present a hydrodynamic model of flocking that generalizes the familiar Toner-Tu equations to incorporate turning inertia of well-polarized flocks. The continuum equations controlled by only two dimensionless parameters, orientational inertia and alignment strength, are derived by coarse-graining the inertial spin model recently proposed by Cavagna et al. The interplay between orientational inertia and bend elasticity of the flock yields anisotropic spin waves that mediate the propagation of turning information throughout the flock. The coupling between spin-current density to the local vorticity field through a nonlinear friction gives rise to a hydrodynamic mode with angular-dependent propagation speed at long wavelengths. This mode becomes unstable as a result of the growth of bend and splay deformations augmented by the spin wave, signaling the transition to complex spatiotemporal patterns of continuously turning and swirling flocks. PMID:26722945
Fluctuations in relativistic causal hydrodynamics
NASA Astrophysics Data System (ADS)
Kumar, Avdhesh; Bhatt, Jitesh R.; Mishra, Ananta P.
2014-05-01
Formalism to calculate the hydrodynamic fluctuations by applying the Onsager theory to the relativistic Navier-Stokes equation is already known. In this work, we calculate hydrodynamic fluctuations within the framework of the second order hydrodynamics of Müller, Israel and Stewart and its generalization to the third order. We have also calculated the fluctuations for several other causal hydrodynamical equations. We show that the form for the Onsager-coefficients and form of the correlation functions remain the same as those obtained by the relativistic Navier-Stokes equation and do not depend on any specific model of hydrodynamics. Further we numerically investigate evolution of the correlation function using the one dimensional boost-invariant (Bjorken) flow. We compare the correlation functions obtained using the causal hydrodynamics with the correlation function for the relativistic Navier-Stokes equation. We find that the qualitative behavior of the correlation functions remains the same for all the models of the causal hydrodynamics.
The Magnetohydrodynamics of Convection-dominated Accretion Flows
NASA Astrophysics Data System (ADS)
Narayan, Ramesh; Quataert, Eliot; Igumenshchev, Igor V.; Abramowicz, Marek A.
2002-09-01
Radiatively inefficient accretion flows onto black holes are unstable due to both an outwardly decreasing entropy (``convection'') and an outwardly decreasing rotation rate (the ``magnetorotational instability'' [MRI]). Using a linear MHD stability analysis, we show that long-wavelength modes with λ/H>>β-1/2 are primarily destabilized by the entropy gradient and that such ``convective'' modes transport angular momentum inward (λ is the wavelength of the mode, H is the scale height of the disk, and β is the ratio of the gas pressure to the magnetic pressure). Moreover, the stability criteria for the convective modes are the standard Høiland criteria of hydrodynamics. By contrast, shorter wavelength modes with λ/H~β-1/2 are primarily destabilized by magnetic tension and differential rotation. These ``MRI'' modes transport angular momentum outward. The convection-dominated accretion flow (CDAF) model, which has been proposed for radiatively inefficient accretion onto a black hole, posits that inward angular momentum transport and outward energy transport by long-wavelength convective fluctuations are crucial for determining the structure of the accretion flow. Our analysis suggests that the CDAF model is applicable to an MHD accretion flow provided that the magnetic field saturates at a value sufficiently below equipartition (β>>1), so that long-wavelength convective fluctuations with λ/H>>β-1/2 can fit inside the accretion disk. Numerical MHD simulations are required to determine whether such a subequipartition field is in fact obtained.
Blaedel, Kenneth L.; Davis, Pete J.; Landram, Charles S.
2000-01-01
A saw having a self-pumped hydrodynamic blade guide or bearing for retaining the saw blade in a centered position in the saw kerf (width of cut made by the saw). The hydrodynamic blade guide or bearing utilizes pockets or grooves incorporated into the sides of the blade. The saw kerf in the workpiece provides the guide or bearing stator surface. Both sides of the blade entrain cutting fluid as the blade enters the kerf in the workpiece, and the trapped fluid provides pressure between the blade and the workpiece as an inverse function of the gap between the blade surface and the workpiece surface. If the blade wanders from the center of the kerf, then one gap will increase and one gap will decrease and the consequent pressure difference between the two sides of the blade will cause the blade to re-center itself in the kerf. Saws using the hydrodynamic blade guide or bearing have particular application in slicing slabs from boules of single crystal materials, for example, as well as for cutting other difficult to saw materials such as ceramics, glass, and brittle composite materials.
Hydrodynamics of fossil fishes
Fletcher, Thomas; Altringham, John; Peakall, Jeffrey; Wignall, Paul; Dorrell, Robert
2014-01-01
From their earliest origins, fishes have developed a suite of adaptations for locomotion in water, which determine performance and ultimately fitness. Even without data from behaviour, soft tissue and extant relatives, it is possible to infer a wealth of palaeobiological and palaeoecological information. As in extant species, aspects of gross morphology such as streamlining, fin position and tail type are optimized even in the earliest fishes, indicating similar life strategies have been present throughout their evolutionary history. As hydrodynamical studies become more sophisticated, increasingly complex fluid movement can be modelled, including vortex formation and boundary layer control. Drag-reducing riblets ornamenting the scales of fast-moving sharks have been subjected to particularly intense research, but this has not been extended to extinct forms. Riblets are a convergent adaptation seen in many Palaeozoic fishes, and probably served a similar hydrodynamic purpose. Conversely, structures which appear to increase skin friction may act as turbulisors, reducing overall drag while serving a protective function. Here, we examine the diverse adaptions that contribute to drag reduction in modern fishes and review the few attempts to elucidate the hydrodynamics of extinct forms. PMID:24943377
Hydrodynamics of insect spermatozoa
NASA Astrophysics Data System (ADS)
Pak, On Shun; Lauga, Eric
2010-11-01
Microorganism motility plays important roles in many biological processes including reproduction. Many microorganisms propel themselves by propagating traveling waves along their flagella. Depending on the species, propagation of planar waves (e.g. Ceratium) and helical waves (e.g. Trichomonas) were observed in eukaryotic flagellar motion, and hydrodynamic models for both were proposed in the past. However, the motility of insect spermatozoa remains largely unexplored. An interesting morphological feature of such cells, first observed in Tenebrio molitor and Bacillus rossius, is the double helical deformation pattern along the flagella, which is characterized by the presence of two superimposed helical flagellar waves (one with a large amplitude and low frequency, and the other with a small amplitude and high frequency). Here we present the first hydrodynamic investigation of the locomotion of insect spermatozoa. The swimming kinematics, trajectories and hydrodynamic efficiency of the swimmer are computed based on the prescribed double helical deformation pattern. We then compare our theoretical predictions with experimental measurements, and explore the dependence of the swimming performance on the geometric and dynamical parameters.
Hydrodynamics of fossil fishes.
Fletcher, Thomas; Altringham, John; Peakall, Jeffrey; Wignall, Paul; Dorrell, Robert
2014-08-01
From their earliest origins, fishes have developed a suite of adaptations for locomotion in water, which determine performance and ultimately fitness. Even without data from behaviour, soft tissue and extant relatives, it is possible to infer a wealth of palaeobiological and palaeoecological information. As in extant species, aspects of gross morphology such as streamlining, fin position and tail type are optimized even in the earliest fishes, indicating similar life strategies have been present throughout their evolutionary history. As hydrodynamical studies become more sophisticated, increasingly complex fluid movement can be modelled, including vortex formation and boundary layer control. Drag-reducing riblets ornamenting the scales of fast-moving sharks have been subjected to particularly intense research, but this has not been extended to extinct forms. Riblets are a convergent adaptation seen in many Palaeozoic fishes, and probably served a similar hydrodynamic purpose. Conversely, structures which appear to increase skin friction may act as turbulisors, reducing overall drag while serving a protective function. Here, we examine the diverse adaptions that contribute to drag reduction in modern fishes and review the few attempts to elucidate the hydrodynamics of extinct forms. PMID:24943377
Convective Instability in Ice I: Application to Callisto and Ganymede
NASA Technical Reports Server (NTRS)
Barr, A. C.; Pappalardo, R. T.
2004-01-01
Laboratory experiments measuring ice rheology suggest that it deforms under the influence of several nonNewtonian creep mechanisms, where the viscosity depends on both strain rate and temperature [Goldsby & Kohlstedt, 2001]. Whether or not a fluid with a purely temperature-dependent viscosity convects can be determined by comparing the Rayleigh number of the system to the critical Rayleigh number (Racr), which depends on rheological, thermal, and physical parameters of the fluid layer. However, in a nonNewtonian fluid where viscosity depends on the strain rate (i.e. velocity), convection can only occur if a temperature or velocity perturbation is issued to the system to lower the viscosity and permit fluid motions. Therefore, whether convection occurs in an ice I layer depends on initial conditions, in addition to rheological, thermal, and physical properties of the layer. We show new results for a scaling between the critical Rayleigh number and perturbation amplitude for grain boundary sliding rheology. This scaling can be used to determine the conditions required to initiate convection in the ice I shell of a generic icy satellite. We use this scaling to judge the convective instability of Ganymede and Callisto's ice shells in the absence of tidal dissipation.
NASA Technical Reports Server (NTRS)
Barr, Amy C.; Pappalardo, Robert T.
2005-01-01
Ice I exhibits a complex rheology at temperature and pressure conditions appropriate for the interiors of the outer ice I shells of Europa, Ganymede, and Callisto. We use numerical methods to determine the conditions required to trigger convection in an ice I shell with a stress-, temperature-, and grain-size-dependent rheology measured in laboratory experiments by Goldsby and Kohlstedt [2001] (henceforth GK2001). Triggering convection from an initially conductive ice shell with a non-Newtonian rheology for ice I requires that a finite-amplitude temperature perturbation be issued to the ice shell [2]. Here, we characterize the amplitude and wavelength of temperature perturbation required to initiate convection in the outer ice I shells of Europa, Ganymede, and Callisto using the GK2001 rheology for a range of ice grain sizes.
Fossil dust shells around luminous supergiants
NASA Technical Reports Server (NTRS)
Stothers, R.
1975-01-01
The observed frequency with which infrared excesses appear in F, G, and K supergiants of luminosity class Ia supports the idea that these excesses arise in a 'fossil' circumstellar dust shell that was formed during a prior M-super-giant phase of evolution. The required leftward evolution of the star on the H-R diagram would then imply that the Ledoux, rather than the Schwarzschild, criterion for convective mixing is the correct criterion to use in stellar evolution calculations.
Gas distribution and starbursts in shell galaxies
NASA Technical Reports Server (NTRS)
Weil, Melinda L.; Hernquist, Lars
1993-01-01
Detailed maps of most elliptical galaxies reveal that, whereas the greatest part of their luminous mass originates from a smooth distribution with a surface brightness approximated by a de Vaucouleurs law, a small percentage of their light is contributed by low surface brightness distortions termed 'fine structures'. The sharp-edged features called 'shells' are successfully reproduced by merger and infall models involving accretion from less massive companions. In this context, dwarf spheroidal and compact disk galaxies are likely progenitors of these stellar phenomena. However, it is probable that the sources of shell-forming material also contain significant amounts of gas. This component may play an important role in constraining the formation and evolution of shell galaxies. To investigate the effects of the gaseous component, numerical simulations were performed to study the tidal disruption of dwarf galaxies containing both gas and stars by more massive primaries, and the evolution of the ensuing debris. The calculations were performed with a hybrid N-body/hydrodynamics code. Collisionless matter is evolved using a conventional N-body technique and gas is treated using smoothed particle hydrodynamics in which self-gravitating fluid elements are represented as particles evolving according to Lagrangian hydrodynamic equations. An isothermal equation of state is employed so the gas remains at a temperature 104 K. Owing to the large mass ratio between the primary and companion, the primary is modeled as a rigid potential and the self-gravity of both galaxies is neglected.
NASA Astrophysics Data System (ADS)
Stökl, A.
2008-11-01
Context: In spite of all the advances in multi-dimensional hydrodynamics, investigations of stellar evolution and stellar pulsations still depend on one-dimensional computations. This paper devises an alternative to the mixing-length theory or turbulence models usually adopted in modelling convective transport in such studies. Aims: The present work attempts to develop a time-dependent description of convection, which reflects the essential physics of convection and that is only moderately dependent on numerical parameters and far less time consuming than existing multi-dimensional hydrodynamics computations. Methods: Assuming that the most extensive convective patterns generate the majority of convective transport, the convective velocity field is described using two parallel, radial columns to represent up- and downstream flows. Horizontal exchange, in the form of fluid flow and radiation, over their connecting interface couples the two columns and allows a simple circulating motion. The main parameters of this convective description have straightforward geometrical meanings, namely the diameter of the columns (corresponding to the size of the convective cells) and the ratio of the cross-section between up- and downdrafts. For this geometrical setup, the time-dependent solution of the equations of radiation hydrodynamics is computed from an implicit scheme that has the advantage of being unaffected by the Courant-Friedrichs-Lewy time-step limit. This implementation is part of the TAPIR-Code (short for The adaptive, implicit RHD-Code). Results: To demonstrate the approach, results for convection zones in Cepheids are presented. The convective energy transport and convective velocities agree with expectations for Cepheids and the scheme reproduces both the kinetic energy flux and convective overshoot. A study of the parameter influence shows that the type of solution derived for these stars is in fact fairly robust with respect to the constitutive numerical
Chaos in hydrodynamic BL Herculis models
NASA Astrophysics Data System (ADS)
Smolec, R.; Moskalik, P.
2014-06-01
We present non-linear, convective, BL Her-type hydrodynamic models that show complex variability characteristic for deterministic chaos. The bifurcation diagram reveals a rich structure, with many phenomena detected for the first time in hydrodynamic models of pulsating stars. The phenomena include not only period doubling cascades en route to chaos (detected in earlier studies) but also periodic windows within chaotic band, type-I and type-III intermittent behaviour, interior crisis bifurcation and others. Such phenomena are known in many textbook chaotic systems, from the simplest discrete logistic map, to more complex systems like Lorenz equations. We discuss the physical relevance of our models. Although except of period doubling such phenomena were not detected in any BL Her star, chaotic variability was claimed in several higher luminosity siblings of BL Her stars - RV Tau variables, and also in longer-period, luminous irregular pulsators. Our models may help to understand these poorly studied stars. Particularly interesting are periodic windows which are intrinsic property of chaotic systems and are not necessarily caused by resonances between pulsation modes, as sometimes claimed in the literature.
The effects of convective overshooting on naked helium stars
NASA Astrophysics Data System (ADS)
Yan, Jing-Zhi; Zhu, Chun-Hua; Wang, Zhao-Jun; Lü, Guo-Liang
2016-09-01
Using stellar evolutionary models, we investigate the effects of convective overshooting on naked helium stars. We find that a larger value of overshooting parameter δov results in a larger convective core, which prolongs the lifetimes of naked helium stars on the helium main sequence and leads to higher effective temperatures and luminosities. For naked helium stars with masses lower than about 0.8 M⊙, they hardly become giant stars as a result of a weak burning shell. However, naked helium stars with masses between about 0.8 M⊙ and 1.1 M⊙ can evolve into giant branch phases, and finally become carbon oxygen white dwarfs.
Spreading of ultrarelativistically expanding shell: An application to GRBs
NASA Astrophysics Data System (ADS)
Ruffini, R.; Siutsou, I. A.; Vereshchagin, G. V.
2014-02-01
Optically thick energy dominated plasma created in the source of Gamma-Ray Bursts (GRBs) expands radially with acceleration and forms a shell with constant width measured in the laboratory frame. When strong Lorentz factor gradients are present within the shell it is supposed to spread at sufficiently large radii. There are two possible mechanisms of spreading: hydrodynamical and thermal ones. We consider both mechanisms evaluating the amount of spreading that occurs during expansion up to the moment when the expanding shell becomes transparent for photons. We compute the hydrodynamical spreading of an ultrarelativistically expanding shell. In the case of thermal spreading we compute the velocity spread as a function of two parameters: comoving temperature and bulk Lorentz factor of relativistic Maxwellian distribution. Based on this result we determine the value of thermal spreading of relativistically expanding shell. We found that thermal spreading is negligible for typical GRB parameters. Instead hydrodynamical spreading appears to be significant, with the shell width reaching ˜1010 cm for total energy E=1054 erg and baryonic loading B=10-2. Within the fireshell model such spreading will result in the duration of Proper Gamma-Ray Bursts up to several seconds.
Formation of Ganymede's Grooved Terrain by Convection-Driven Resurfacing
NASA Astrophysics Data System (ADS)
Hammond, N. P.; Barr, A. C.
2013-12-01
Over half the surface of Ganymede, Jupiter's largest icy moon, is covered in grooved terrain, which is composed of 10-100 km wide swaths of sub-parallel ridges and troughs [1]. Convection in Ganymede's ice shell was originally suggested as a driving mechanism for grooved terrain formation [2] but subsequent work has argued that convective stresses were too weak to deform the surface [3] and that Ganymede's ice shell was thin and conductive during groove terrain formation [4]. However, the heat flow [5] and strain rate [6] inferred for grooved terrain formation resemble the conditions observed at the active Enceladus South Polar Terrain (SPT), where 'sluggish lid' convection may be occurring [7]. During 'sluggish lid' convection, thermal buoyancy stresses exceed the lithospheric yield stress, allowing convection to reach the surface and drive deformation [8]. Previous work shows that the heat flows and strain rates associated with sluggish lid convection are consistent with the observed heat flow and surface age of the Enceladus SPT [7, 9]. Here we use numerical models of convection in Ganymede's ice shell to show that convection can provide the heat flow and strain rate inferred for grooved terrain formation. We use the finite element model CITCOM [10] to model convection for a wide range of ice shell conditions. We use a newtonian temperature-dependent viscosity consistent with deformation by volume diffusion [11]. We impose a limited viscosity contrast between the surface and base of the ice shell to mimic the effect of an upper surface whose yield stress is less than the critical stress for sluggish lid convection [7, 12] due to impact fracturing [13], tidal flexing, and/or shallow tidal heating. We find that ice shells 10 to 80 km thick are consistent with the heat flow and strain rate inferred for grooved terrain formation. Regions above convective upwellings are consistent with conditions inferred at groove lanes. Regions above downwellings are consistent
TURBULENT CONVECTION IN STELLAR INTERIORS. III. MEAN-FIELD ANALYSIS AND STRATIFICATION EFFECTS
Viallet, Maxime; Meakin, Casey; Mocak, Miroslav; Arnett, David
2013-05-20
We present three-dimensional implicit large eddy simulations of the turbulent convection in the envelope of a 5 M{sub Sun} red giant star and in the oxygen-burning shell of a 23 M{sub Sun} supernova progenitor. The numerical models are analyzed in the framework of one-dimensional Reynolds-Averaged Navier-Stokes equations. The effects of pressure fluctuations are more important in the red giant model, owing to larger stratification of the convective zone. We show how this impacts different terms in the mean-field equations. We clarify the driving sources of kinetic energy, and show that the rate of turbulent dissipation is comparable to the convective luminosity. Although our flows have low Mach numbers and are nearly adiabatic, our analysis is general and can be applied to photospheric convection as well. The robustness of our analysis of turbulent convection is supported by the insensitivity of the mean-field balances to linear mesh resolution. We find robust results for the turbulent convection zone and the stable layers in the oxygen-burning shell model, and robust results everywhere in the red giant model, but the mean fields are not well converged in the narrow boundary regions (which contain steep gradients) in the oxygen-burning shell model. This last result illustrates the importance of unresolved physics at the convective boundary, which governs the mixing there.
The Combined Effect of Precession and Convection on the Dynamo Action
NASA Astrophysics Data System (ADS)
Wei, Xing
2016-08-01
To understand the generation of the Earth’s magnetic field and those of other planets, we numerically investigate the combined effect of precession and convection on dynamo action in a spherical shell. Convection alone, precession alone, and the combined effect of convection and precession are studied at the low Ekman number at which the precessing flow is already unstable. The key result is that although precession or convection alone are not strong enough to support the dynamo action, the combined effect of precession and convection can support the dynamo action because of the resonance of precessional and convective instabilities. This result may explain why the geodynamo has been maintained for such a long time compared to the Martian dynamo.
Influence of inlet and bulk noise on Rayleigh-Bénard convection with lateral flow.
Jung, D; Lücke, M; Szprynger, A
2001-05-01
Spatiotemporal properties of convective fluctuations and of their correlations are investigated theoretically in the vicinity of the threshold for onset of convection in the presence of a lateral through-flow using the full linearized equations of fluctuating hydrodynamics. The effect of external forcing by inlet boundary conditions on the downstream evolution of convective fields is separated from the effect of internal bulk thermal forcing with the use of spatial Laplace transformations. They show how the spatial variation of fluctuations and of their correlations are governed by the six spatial characteristic exponents of the field equations.
Supergranulation, a convective phenomenon
NASA Astrophysics Data System (ADS)
Udayashankar, Paniveni
2015-08-01
Observation of the Solar photosphere through high resolution instruments have long indicated that the surface of the Sun is not a tranquil, featureless surface but is beset with a granular appearance. These cellular velocity patterns are a visible manifestation of sub- photospheric convection currents which contribute substantially to the outward transport of energy from the deeper layers, thus maintaining the energy balance of the Sun as a whole.Convection is the chief mode of transport in the outer layers of all cool stars such as the Sun (Noyes,1982). Convection zone of thickness 30% of the Solar radius lies in the sub-photospheric layers of the Sun. Convection is revealed on four scales. On the scale of 1000 km, it is granulation and on the scale of 8-10 arcsec, it is Mesogranulation. The next hierarchial scale of convection ,Supergranules are in the range of 30-40 arcsec. The largest reported manifestation of convection in the Sun are ‘Giant Cells’or ‘Giant Granules’, on a typical length scale of about 108 m.'Supergranules' is caused by the turbulence that extends deep into the convection zone. They have a typical lifetime of about 20hr with spicules marking their boundaries. Gas rises in the centre of the supergranules and then spreads out towards the boundary and descends.Broadly speaking supergranules are characterized by the three parameters namely the length L, the lifetime T and the horizontal flow velocity vh . The interrelationships amongst these parameters can shed light on the underlying convective processes and are in agreement with the Kolmogorov theory of turbulence as applied to large scale solar convection (Krishan et al .2002 ; Paniveni et. al. 2004, 2005, 2010).References:1) Noyes, R.W., The Sun, Our Star (Harvard University Press, 1982)2) Krishan, V., Paniveni U., Singh , J., Srikanth R., 2002, MNRAS, 334/1,2303) Paniveni , U., Krishan, V., Singh, J., Srikanth, R., 2004, MNRAS, 347, 1279-12814) Paniveni , U., Krishan, V., Singh, J
Anomalously weak solar convection.
Hanasoge, Shravan M; Duvall, Thomas L; Sreenivasan, Katepalli R
2012-07-24
Convection in the solar interior is thought to comprise structures on a spectrum of scales. This conclusion emerges from phenomenological studies and numerical simulations, though neither covers the proper range of dynamical parameters of solar convection. Here, we analyze observations of the wavefield in the solar photosphere using techniques of time-distance helioseismology to image flows in the solar interior. We downsample and synthesize 900 billion wavefield observations to produce 3 billion cross-correlations, which we average and fit, measuring 5 million wave travel times. Using these travel times, we deduce the underlying flow systems and study their statistics to bound convective velocity magnitudes in the solar interior, as a function of depth and spherical-harmonic degree ℓ. Within the wavenumber band ℓ < 60, convective velocities are 20-100 times weaker than current theoretical estimates. This constraint suggests the prevalence of a different paradigm of turbulence from that predicted by existing models, prompting the question: what mechanism transports the heat flux of a solar luminosity outwards? Advection is dominated by Coriolis forces for wavenumbers ℓ < 60, with Rossby numbers smaller than approximately 10(-2) at r/R([symbol: see text]) = 0.96, suggesting that the Sun may be a much faster rotator than previously thought, and that large-scale convection may be quasi-geostrophic. The fact that isorotation contours in the Sun are not coaligned with the axis of rotation suggests the presence of a latitudinal entropy gradient.
Anomalously Weak Solar Convection
NASA Technical Reports Server (NTRS)
Hanasoge, Shravan M.; Duvall, Thomas L.; Sreenivasan, Katepalli R.
2012-01-01
Convection in the solar interior is thought to comprise structures on a spectrum of scales. This conclusion emerges from phenomenological studies and numerical simulations, though neither covers the proper range of dynamical parameters of solar convection. Here, we analyze observations of the wavefield in the solar photosphere using techniques of time-distance helioseismology to image flows in the solar interior. We downsample and synthesize 900 billion wavefield observations to produce 3 billion cross-correlations, which we average and fit, measuring 5 million wave travel times. Using these travel times, we deduce the underlying flow systems and study their statistics to bound convective velocity magnitudes in the solar interior, as a function of depth and spherical- harmonic degree l..Within the wavenumber band l < 60, convective velocities are 20-100 times weaker than current theoretical estimates. This constraint suggests the prevalence of a different paradigm of turbulence from that predicted by existing models, prompting the question: what mechanism transports the heat flux of a solar luminosity outwards? Advection is dominated by Coriolis forces for wavenumbers l < 60, with Rossby numbers smaller than approximately 10(exp -2) at r/R-solar = 0.96, suggesting that the Sun may be a much faster rotator than previously thought, and that large-scale convection may be quasi-geostrophic. The fact that isorotation contours in the Sun are not coaligned with the axis of rotation suggests the presence of a latitudinal entropy gradient.
Dynamics of Turbulent Convection and Convective Overshoot in a Moderate-mass Star
NASA Astrophysics Data System (ADS)
Kitiashvili, I. N.; Kosovichev, A. G.; Mansour, N. N.; Wray, A. A.
2016-04-01
We present results of realistic three-dimensional (3D) radiative hydrodynamic simulations of the outer layers of a moderate-mass star (1.47 M ⊙), including the full convection zone, the overshoot region, and the top layers of the radiative zone. The simulation results show that the surface granulation has a broad range of scales, from 2 to 12 Mm, and that large granules are organized in well-defined clusters, consisting of several granules. Comparison of the mean structure profiles from 3D simulations with the corresponding one-dimensional (1D) standard stellar model shows an increase of the stellar radius by ˜800 km, as well as significant changes in the thermodynamic structure and turbulent properties of the ionization zones. Convective downdrafts in the intergranular lanes between granulation clusters reach speeds of more than 20 km s‑1, penetrate through the whole convection zone, hit the radiative zone, and form an 8 Mm thick overshoot layer. Contrary to semi-empirical overshooting models, our results show that the 3D dynamic overshoot region consists of two layers: a nearly adiabatic extension of the convection zone and a deeper layer of enhanced subadiabatic stratification. This layer is formed because of heating caused by the braking of the overshooting convective plumes. This effect has to be taken into account in stellar modeling and the interpretation of asteroseismology data. In particular, we demonstrate that the deviations of the mean structure of the 3D model from the 1D standard model of the same mass and composition are qualitatively similar to the deviations for the Sun found by helioseismology.
Chemically Driven Hydrodynamic Instabilities
NASA Astrophysics Data System (ADS)
Almarcha, C.; Trevelyan, P. M. J.; Grosfils, P.; de Wit, A.
2010-01-01
In the gravity field, density changes triggered by a kinetic scheme as simple as A+B→C can induce or affect buoyancy-driven instabilities at a horizontal interface between two solutions containing initially the scalars A and B. On the basis of a general reaction-diffusion-convection model, we analyze to what extent the reaction can destabilize otherwise buoyantly stable density stratifications. We furthermore show that, even if the underlying nonreactive system is buoyantly unstable, the reaction breaks the symmetry of the developing patterns. This is demonstrated both numerically and experimentally on the specific example of a simple acid-base neutralization reaction.
Gravity wave initiated convection
NASA Technical Reports Server (NTRS)
Hung, R. J.
1990-01-01
The vertical velocity of convection initiated by gravity waves was investigated. In one particular case, the convective motion-initiated and supported by the gravity wave-induced activity (excluding contributions made by other mechanisms) reached its maximum value about one hour before the production of the funnel clouds. In another case, both rawinsonde and geosynchronous satellite imagery were used to study the life cycles of severe convective storms. Cloud modelling with input sounding data and rapid-scan imagery from GOES were used to investigate storm cloud formation, development and dissipation in terms of growth and collapse of cloud tops, as well as, the life cycles of the penetration of overshooting turrets above the tropopause. The results based on these two approaches are presented and discussed.
Bau, H.H.
1995-12-31
Using stability theory, numerical simulations, and in some instances experiments, it is demonstrated that the critical Rayleigh number for the bifurcation (1) from the no-motion (conduction) state to the motion state and (2) from time-independent convection to time-dependent, oscillatory convection in the thermal convection loop and Rayleigh-Benard problems can be significantly increased or decreased. This is accomplished through the use of a feedback controller effectuating small perturbations in the boundary data. The controller consists of sensors which detect deviations in the fluid`s temperature from the motionless, conductive values and then direct actuators to respond to these deviations in such a way as to suppress the naturally occurring flow instabilities. Actuators which modify the boundary`s temperature/heat flux are considered. The feedback controller can also be used to control flow patterns and generate complex dynamic behavior at relatively low Rayleigh numbers.
Molecular Hydrodynamics from Memory Kernels.
Lesnicki, Dominika; Vuilleumier, Rodolphe; Carof, Antoine; Rotenberg, Benjamin
2016-04-01
The memory kernel for a tagged particle in a fluid, computed from molecular dynamics simulations, decays algebraically as t^{-3/2}. We show how the hydrodynamic Basset-Boussinesq force naturally emerges from this long-time tail and generalize the concept of hydrodynamic added mass. This mass term is negative in the present case of a molecular solute, which is at odds with incompressible hydrodynamics predictions. Lastly, we discuss the various contributions to the friction, the associated time scales, and the crossover between the molecular and hydrodynamic regimes upon increasing the solute radius. PMID:27104730
Rinderknecht, H. G.; Sio, H.; Li, C. K.; Zylstra, A. B.; Rosenberg, M. J.; Amendt, P.; Delettrez, J.; Bellei, C.; Frenje, J. A.; Gatu Johnson, M.; Seguin, F. H.; Petrasso, R. D.; Betti, R.; Glebov, V. Yu.; Meyerhofer, D. D.; Sangster, T. C.; Stoeckl, C.; Landen, O.; Smalyuk, V. A.; Wilks, S.; Greenwood, A.; Nikroo, A.
2014-04-01
A strong nonhydrodynamic mechanism generating atomic fuel-shell mix has been observed in strongly shocked inertial confinement fusion implosions of thin deuterated-plastic shells filled with ^{3}He gas. These implosions were found to produce D^{3}He-proton shock yields comparable to implosions of identical shells filled with a hydroequivalent 50:50 D^{3}He gas mixture. Standard hydrodynamic mixing cannot explain this observation, as hydrodynamic modeling including mix predicts a yield an order of magnitude lower than was observed. Instead, these results can be attributed to ion diffusive mix at the fuel-shell interface.
Rinderknecht, H. G.; Sio, H.; Li, C. K.; Zylstra, A. B.; Rosenberg, M. J.; Amendt, P.; Delettrez, J.; Bellei, C.; Frenje, J. A.; Gatu Johnson, M.; et al
2014-04-01
A strong nonhydrodynamic mechanism generating atomic fuel-shell mix has been observed in strongly shocked inertial confinement fusion implosions of thin deuterated-plastic shells filled with 3He gas. These implosions were found to produce D3He-proton shock yields comparable to implosions of identical shells filled with a hydroequivalent 50:50 D3He gas mixture. Standard hydrodynamic mixing cannot explain this observation, as hydrodynamic modeling including mix predicts a yield an order of magnitude lower than was observed. Instead, these results can be attributed to ion diffusive mix at the fuel-shell interface.
Load responsive hydrodynamic bearing
Kalsi, Manmohan S.; Somogyi, Dezso; Dietle, Lannie L.
2002-01-01
A load responsive hydrodynamic bearing is provided in the form of a thrust bearing or journal bearing for supporting, guiding and lubricating a relatively rotatable member to minimize wear thereof responsive to relative rotation under severe load. In the space between spaced relatively rotatable members and in the presence of a liquid or grease lubricant, one or more continuous ring shaped integral generally circular bearing bodies each define at least one dynamic surface and a plurality of support regions. Each of the support regions defines a static surface which is oriented in generally opposed relation with the dynamic surface for contact with one of the relatively rotatable members. A plurality of flexing regions are defined by the generally circular body of the bearing and are integral with and located between adjacent support regions. Each of the flexing regions has a first beam-like element being connected by an integral flexible hinge with one of the support regions and a second beam-like element having an integral flexible hinge connection with an adjacent support region. A least one local weakening geometry of the flexing region is located intermediate the first and second beam-like elements. In response to application of load from one of the relatively rotatable elements to the bearing, the beam-like elements and the local weakening geometry become flexed, causing the dynamic surface to deform and establish a hydrodynamic geometry for wedging lubricant into the dynamic interface.
Hydrodynamics of pronuclear migration
NASA Astrophysics Data System (ADS)
Nazockdast, Ehssan; Needleman, Daniel; Shelley, Michael
2014-11-01
Microtubule (MT) filaments play a key role in many processes involved in cell devision including spindle formation, chromosome segregation, and pronuclear positioning. We present a direct numerical technique to simulate MT dynamics in such processes. Our method includes hydrodynamically mediated interactions between MTs and other cytoskeletal objects, using singularity methods for Stokes flow. Long-ranged many-body hydrodynamic interactions are computed using a highly efficient and scalable fast multipole method, enabling the simulation of thousands of MTs. Our simulation method also takes into account the flexibility of MTs using Euler-Bernoulli beam theory as well as their dynamic instability. Using this technique, we simulate pronuclear migration in single-celled Caenorhabditis elegans embryos. Two different positioning mechanisms, based on the interactions of MTs with the motor proteins and the cell cortex, are explored: cytoplasmic pulling and cortical pushing. We find that although the pronuclear complex migrates towards the center of the cell in both models, the generated cytoplasmic flows are fundamentally different. This suggest that cytoplasmic flow visualization during pronuclear migration can be utilized to differentiate between the two mechanisms.
Hydrodynamics of Bacterial Cooperation
NASA Astrophysics Data System (ADS)
Petroff, A.; Libchaber, A.
2012-12-01
Over the course of the last several decades, the study of microbial communities has identified countless examples of cooperation between microorganisms. Generally—as in the case of quorum sensing—cooperation is coordinated by a chemical signal that diffuses through the community. Less well understood is a second class of cooperation that is mediated through physical interactions between individuals. To better understand how the bacteria use hydrodynamics to manipulate their environment and coordinate their actions, we study the sulfur-oxidizing bacterium Thiovulum majus. These bacteria live in the diffusive boundary layer just above the muddy bottoms of ponds. As buried organic material decays, sulfide diffuses out of the mud. Oxygen from the pond diffuses into the boundary layer from above. These bacteria form communities—called veils— which are able to transport nutrients through the boundary layer faster than diffusion, thereby increasing their metabolic rate. In these communities, bacteria attach to surfaces and swim in place. As millions of bacteria beat their flagella, the community induces a macroscopic fluid flow, which mix the boundary layer. Here we present experimental observations and mathematical models that elucidate the hydrodynamics linking the behavior of an individual bacterium to the collective dynamics of the community. We begin by characterizing the flow of water around an individual bacterium swimming in place. We then discuss the flow of water and nutrients around a small number of individuals. Finally, we present observations and models detailing the macroscopic dynamics of a Thiovulum veil.
Shell thickness variations and the long-wavelength topography of Titan
NASA Astrophysics Data System (ADS)
Nimmo, F.; Bills, B. G.
2010-08-01
The long-wavelength topography of Titan has an amplitude larger than that expected from tidal and rotational distortions at its current distance from Saturn. This topography is associated with small gravity anomalies, indicating a high degree of compensation. Both observations can be explained if Titan has a floating, isostatically-compensated ice shell with a spatially-varying thickness. The spatial variations arise because of laterally-variable tidal heating within the ice shell. Models incorporating shell thickness variations result in an improved fit to the observations and a degree-two tidal Love number h2t consistent with expectations, without requiring Titan to have moved away from Saturn. Our preferred models have a mean shell thickness of ≈100 km in agreement with the observed gravity anomalies, and a heat flux appropriate to a chondritic Titan. Shell thickness variations are eliminated by convection; we therefore conclude that Titan's ice shell is not convecting at the present day.
Convection-driven compaction as a possible origin of Enceladus's long wavelength topography
NASA Astrophysics Data System (ADS)
Besserer, J.; Nimmo, F.; Roberts, J. H.; Pappalardo, R. T.
2013-05-01
The long wavelength surface topography of Enceladus shows depressions about 1 km in depth and ˜102 km wide. One possible cause of this topography is spatially variable amounts of compaction of an initially porous ice shell, driven by spatial variations in heat flux. Here, we show that the heat flux variations associated with convection in the shell can quantitatively match the observed features. We develop a simple model of viscous compaction that includes the effect of porosity on thermal conductivity, and find that an initial shell porosity of at least 20-25% is required to develop the observed topography over ˜1 Ga. This mechanism produces topographic depressions, not rises, above convective upwellings, and does not generate detectable gravity anomalies. Unlike transient dynamic topography, it can potentially leave a permanent record of ancient convective processes in the shallow lithospheres of icy satellites.
Mercury removal using ground and calcined mussel shell.
Peña-Rodríguez, Susana; Bermúdez-Couso, Alipio; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel; Fernández-Sanjurjo, María J; Alvarez-Rodríguez, Esperanza; Núñez-Delgado, Avelino
2013-12-01
We determined mercury retention on calcined and ground mussel shell, in presence and absence of phosphate, using batch and stirred flow chamber experiments. In batch experiments the calcined shell exhibited higher Hg adsorption, with good fitting to Freundlich equation (R2: 0.925-0.978); the presence of phosphate increased Hg adsorption; mercury desorption was 13% or lower, diminishing up to 2% under the presence of phosphates. In stirred flow chamber experiments calcined shell retained more Hg than ground shells (6300 vs. 4000-5200 micromol/kg); Hg retention increased an additional 40% on calcined shell and up to an additional 70% on ground shells when phosphates were present; mercury desorption was quite similar in all shell types (20%-34%), increasing up to 49%-60% in ground shells when phosphates were present. The higher Hg adsorption on calcined shell would be related to its calcite and dolomite concentrations; mercury-phosphate interactions would cause the increase in Hg retention when phosphates are present. Data on Hg desorption suggest that Hg retention was not easily reversible after batch experiments, increasing in the stirred flow chamber due to convective flow. Calcined and ground mussel shells could be recycled removing Hg from water, with the presence of phosphates in solution improving efficacy.
Le couplage pulsation-convection.
NASA Astrophysics Data System (ADS)
Poyet, J.-P.
Contents: Quelques problèmes Boussinesq bien definis. Les théories de couplage pulsation radiale-convection. Quelques pas dans le domaine du couplage des pulsations non radiales avec la convection. Conclusion.
Neutrino signature of supernova hydrodynamical instabilities in three dimensions.
Tamborra, Irene; Hanke, Florian; Müller, Bernhard; Janka, Hans-Thomas; Raffelt, Georg
2013-09-20
The first full-scale three-dimensional core-collapse supernova (SN) simulations with sophisticated neutrino transport show pronounced effects of the standing accretion shock instability (SASI) for two high-mass progenitors (20 and 27 M([Symbol: see text])). In a low-mass progenitor (11.2 M([Symbol: see text])), large-scale convection is the dominant nonradial hydrodynamic instability in the postshock accretion layer. The SASI-associated modulation of the neutrino signal (80 Hz in our two examples) will be clearly detectable in IceCube or the future Hyper-Kamiokande detector, depending on progenitor properties, distance, and observer location relative to the main SASI sloshing direction. The neutrino signal from the next galactic SN can, therefore, diagnose the nature of the hydrodynamic instability.
Natural convection in porous media
Prasad, V.; Hussain, N.A.
1986-01-01
This book presents the papers given at a conference on free convection in porous materials. Topics considered at the conference included heat transfer, nonlinear temperature profiles and magnetic fields, boundary conditions, concentrated heat sources in stratified porous media, free convective flow in a cavity, heat flux, laminar mixed convection flow, and the onset of convection in a porous medium with internal heat generation and downward flow.
UNSTABLE HELIUM SHELL BURNING ON ACCRETING WHITE DWARFS
Shen, Ken J.; Bildsten, Lars E-mail: bildsten@kitp.ucsb.edu
2009-07-10
AM Canum Venaticorum (AM CVn) binaries consist of a degenerate helium donor and a helium, C/O, or O/Ne white dwarf accretor, with accretion rates of M-dot=10{sup -13}-10{sup -5}M{sub odot}yr{sup -1}. For accretion rates <10{sup -6} M {sub sun} yr{sup -1}, the accreted helium ignites unstably, resulting in a helium flash. As the donor mass and M-dot decrease, the ignition mass increases and eventually becomes larger than the donor mass, yielding a 'last-flash' ignition mass of {approx}<0.1 M{sub sun}. Bildsten et al. have predicted that the largest outbursts of these systems will lead to dynamical burning and thermonuclear supernovae. In this paper, we study the evolution of the He-burning shells in more detail. We calculate maximum achievable temperatures as well as the minimum envelope masses that achieve dynamical burning conditions, finding that AM CVn systems with accretors {approx}>0.8 M {sub sun} will undergo dynamical burning. Triple-{alpha} reactions during the hydrostatic evolution set a lower limit to the {sup 12}C mass fraction of 0.001-0.05 when dynamical burning occurs, but core dredge-up may yield {sup 12}C, {sup 16}O, and/or {sup 20}Ne mass fractions of {approx}0.1. Accreted {sup 14}N will likely remain {sup 14}N during the accretion and convective phases, but regardless of {sup 14}N's fate, the neutron-to-proton ratio at the beginning of convection is fixed until the onset of dynamical burning. During explosive burning, the {sup 14}N will undergo {sup 14}N({alpha}, {gamma}){sup 18}F({alpha}, p){sup 21}Ne, liberating a proton for the subsequent {sup 12}C(p, {gamma}){sup 13}N({alpha}, p){sup 16}O reaction, which bypasses the relatively slow {alpha}-capture onto {sup 12}C. Future hydrodynamic simulations must include these isotopes, as the additional reactions will reduce the Zel'dovich-von Neumann-Doering length, making the propagation of the detonation wave more likely.
NASA Astrophysics Data System (ADS)
Randall, D. A.; Branson, M.; Dutta, R.; Jones, T.
2015-12-01
It has been suggested that stochastic fluctuations of convective activity can lead to systematic changes in large-scale weather and climate. We present results of recent ensemble-prediction experiments with the super-parameterized version of CAM that provide a new way to explore such effects, without the need for adhoc assumptions about the nature of the stochastic effects.
Laboratory experiments on planetary and stellar convection performed on spacelab 3.
Hart, J E; Toomre, J; Deane, A E; Hurlburt, N E; Glatzmaier, G A; Fichtl, G H; Leslie, F; Fowlis, W W; Gilman, P A
1986-10-01
Experiments on thermal convection in a rotating, differentially heated hemispherical shell with a radial buoyancy force were conducted in an orbiting microgravity laboratory. A variety of convective structures, or planforms, were observed, depending on the magnitude of the rotation and the nature of the imposed heating distribution. The results are compared with numerical simulations that can be conducted at the more modest heating rates, and suggest possible regimes of motion in rotating planets and stars. PMID:17742634
Wave generation by turbulent convection
NASA Technical Reports Server (NTRS)
Goldreich, Peter; Kumar, Pawan
1990-01-01
Wave generation by turbulent convection in a plane parallel, stratified atmosphere lying in a gravitational field is studied. The turbulent spectrum is related to the convective energy flux via the Kolmogorov scaling and the mixing length hypothesis. Efficiencies for the conversion of the convective energy flux into both trapped and propagating waves are estimated.
General formulation of transverse hydrodynamics
Ryblewski, Radoslaw; Florkowski, Wojciech
2008-06-15
General formulation of hydrodynamics describing transversally thermalized matter created at the early stages of ultrarelativistic heavy-ion collisions is presented. Similarities and differences with the standard three-dimensionally thermalized relativistic hydrodynamics are discussed. The role of the conservation laws as well as the thermodynamic consistency of two-dimensional thermodynamic variables characterizing transversally thermalized matter is emphasized.
Anomalously weak solar convection
Hanasoge, Shravan M.; Duvall, Thomas L.
2012-01-01
Convection in the solar interior is thought to comprise structures on a spectrum of scales. This conclusion emerges from phenomenological studies and numerical simulations, though neither covers the proper range of dynamical parameters of solar convection. Here, we analyze observations of the wavefield in the solar photosphere using techniques of time-distance helioseismology to image flows in the solar interior. We downsample and synthesize 900 billion wavefield observations to produce 3 billion cross-correlations, which we average and fit, measuring 5 million wave travel times. Using these travel times, we deduce the underlying flow systems and study their statistics to bound convective velocity magnitudes in the solar interior, as a function of depth and spherical-harmonic degree ℓ. Within the wavenumber band ℓ < 60, convective velocities are 20–100 times weaker than current theoretical estimates. This constraint suggests the prevalence of a different paradigm of turbulence from that predicted by existing models, prompting the question: what mechanism transports the heat flux of a solar luminosity outwards? Advection is dominated by Coriolis forces for wavenumbers ℓ < 60, with Rossby numbers smaller than approximately 10-2 at r/R⊙ = 0.96, suggesting that the Sun may be a much faster rotator than previously thought, and that large-scale convection may be quasi-geostrophic. The fact that isorotation contours in the Sun are not coaligned with the axis of rotation suggests the presence of a latitudinal entropy gradient. PMID:22665774
Hydrodynamics of Peristaltic Propulsion
NASA Astrophysics Data System (ADS)
Athanassiadis, Athanasios; Hart, Douglas
2014-11-01
A curious class of animals called salps live in marine environments and self-propel by ejecting vortex rings much like jellyfish and squid. However, unlike other jetting creatures that siphon and eject water from one side of their body, salps produce vortex rings by pumping water through siphons on opposite ends of their hollow cylindrical bodies. In the simplest cases, it seems like some species of salp can successfully move by contracting just two siphons connected by an elastic body. When thought of as a chain of timed contractions, salp propulsion is reminiscent of peristaltic pumping applied to marine locomotion. Inspired by salps, we investigate the hydrodynamics of peristaltic propulsion, focusing on the scaling relationships that determine flow rate, thrust production, and energy usage in a model system. We discuss possible actuation methods for a model peristaltic vehicle, considering both the material and geometrical requirements for such a system.
Synchronization and hydrodynamic interactions
NASA Astrophysics Data System (ADS)
Powers, Thomas; Qian, Bian; Breuer, Kenneth
2008-03-01
Cilia and flagella commonly beat in a coordinated manner. Examples include the flagella that Volvox colonies use to move, the cilia that sweep foreign particles up out of the human airway, and the nodal cilia that set up the flow that determines the left-right axis in developing vertebrate embryos. In this talk we present an experimental study of how hydrodynamic interactions can lead to coordination in a simple idealized system: two nearby paddles driven with fixed torques in a highly viscous fluid. The paddles attain a synchronized state in which they rotate together with a phase difference of 90 degrees. We discuss how synchronization depends on system parameters and present numerical calculations using the method of regularized stokeslets.
Hydrodynamics, resurgence, and transasymptotics
NASA Astrophysics Data System (ADS)
Başar, Gökçe; Dunne, Gerald V.
2015-12-01
The second order hydrodynamical description of a homogeneous conformal plasma that undergoes a boost-invariant expansion is given by a single nonlinear ordinary differential equation, whose resurgent asymptotic properties we study, developing further the recent work of Heller and Spalinski [Phys. Rev. Lett. 115, 072501 (2015)]. Resurgence clearly identifies the nonhydrodynamic modes that are exponentially suppressed at late times, analogous to the quasinormal modes in gravitational language, organizing these modes in terms of a trans-series expansion. These modes are analogs of instantons in semiclassical expansions, where the damping rate plays the role of the instanton action. We show that this system displays the generic features of resurgence, with explicit quantitative relations between the fluctuations about different orders of these nonhydrodynamic modes. The imaginary part of the trans-series parameter is identified with the Stokes constant, and the real part with the freedom associated with initial conditions.
Hydrodynamic effects on coalescence.
Dimiduk, Thomas G.; Bourdon, Christopher Jay; Grillet, Anne Mary; Baer, Thomas A.; de Boer, Maarten Pieter; Loewenberg, Michael; Gorby, Allen D.; Brooks, Carlton, F.
2006-10-01
The goal of this project was to design, build and test novel diagnostics to probe the effect of hydrodynamic forces on coalescence dynamics. Our investigation focused on how a drop coalesces onto a flat surface which is analogous to two drops coalescing, but more amenable to precise experimental measurements. We designed and built a flow cell to create an axisymmetric compression flow which brings a drop onto a flat surface. A computer-controlled system manipulates the flow to steer the drop and maintain a symmetric flow. Particle image velocimetry was performed to confirm that the control system was delivering a well conditioned flow. To examine the dynamics of the coalescence, we implemented an interferometry capability to measure the drainage of the thin film between the drop and the surface during the coalescence process. A semi-automated analysis routine was developed which converts the dynamic interferogram series into drop shape evolution data.
Global Deep Convection Models of Saturn's Atmospheric Features
NASA Astrophysics Data System (ADS)
Heimpel, Moritz; Cuff, Keith; Gastine, Thomas; Wicht, Johannes
2016-04-01
The Cassini mission, along with previous missions and ground-based observations, has revealed a rich variety of atmospheric phenomena and time variability on Saturn. Some examples of dynamical features are: zonal flows with multiple jet streams, turbulent tilted shear flows that seem to power the jets, the north polar hexagon, the south polar cyclone, large anticyclones in "storm alley", numerous convective storms (white spots) of various sizes, and the 2010/2011 great storm, which destroyed an array of vortices dubbed the "string of pearls". Here we use the anelastic dynamo code MagIC, in non-magnetic mode, to study rotating convection in a spherical shell. The thickness of the shell is set to approximate the depth of the low electrical conductivity deep atmosphere of Saturn, and the convective forcing is set to yield zonal flows of similar velocity (Rossby number) to those of Saturn. Internal heating and the outer entropy boundary conditions allow simple modelling of atmospheric layers with neutral stability or stable stratification. In these simulations we can identify several saturnian and jovian atmospheric features, with some variations. We find that large anticyclonic vortices tend to form in the first anticyclonic shear zones away from the equatorial jet. Cyclones form at the poles, and polar polygonal jet streams, comparable to Saturn's hexagon, may or may not form, depending on the model conditions. Strings of small scale vortical structures arise as convective plumes near boundaries of shear zones. They typically precede larger scale convective storms that spawn propagating shear flow disturbances and anticyclonic vortices, which tend to drift across anticyclonic shear zones, toward the equator (opposite the drift direction of Saturn's 2010/2011 storm). Our model results indicate that many identifiable dynamical atmospheric features seen on Jupiter and Saturn arise from deep convection, shaped by planetary rotation, underlying and interacting with stably
Hydrodynamics of sediment threshold
NASA Astrophysics Data System (ADS)
Ali, Sk Zeeshan; Dey, Subhasish
2016-07-01
A novel hydrodynamic model for the threshold of cohesionless sediment particle motion under a steady unidirectional streamflow is presented. The hydrodynamic forces (drag and lift) acting on a solitary sediment particle resting over a closely packed bed formed by the identical sediment particles are the primary motivating forces. The drag force comprises of the form drag and form induced drag. The lift force includes the Saffman lift, Magnus lift, centrifugal lift, and turbulent lift. The points of action of the force system are appropriately obtained, for the first time, from the basics of micro-mechanics. The sediment threshold is envisioned as the rolling mode, which is the plausible mode to initiate a particle motion on the bed. The moment balance of the force system on the solitary particle about the pivoting point of rolling yields the governing equation. The conditions of sediment threshold under the hydraulically smooth, transitional, and rough flow regimes are examined. The effects of velocity fluctuations are addressed by applying the statistical theory of turbulence. This study shows that for a hindrance coefficient of 0.3, the threshold curve (threshold Shields parameter versus shear Reynolds number) has an excellent agreement with the experimental data of uniform sediments. However, most of the experimental data are bounded by the upper and lower limiting threshold curves, corresponding to the hindrance coefficients of 0.2 and 0.4, respectively. The threshold curve of this study is compared with those of previous researchers. The present model also agrees satisfactorily with the experimental data of nonuniform sediments.
NASA Astrophysics Data System (ADS)
Zaussinger, F.; Futterer, B.; Egbers, C.
2012-12-01
Thermal convection is one important driving mechanism of flow in the earth mantle. Setting up a self-gravitating buoyancy in a spherical shell geometry is the limiting factor for laboratory experiments to analyze velocity flow structures and heat transport. The geophysical flow model 'GeoFlow II', which is located at the Columbus module on the ISS, realizes such a central gravity. Under microgravity conditions a central dielectrophoretic force field is applied to a fluid filled spherical annulus. In contrast to the first mission 'GeoFlow I' the electro-hydrodynamical volume expansion coefficient of the working fluid has a strong dependence on the temperature and leads to pattern, which are related to a strong temperature dependent viscosity of the fluid. Even though the oil's viscosity itself is temperature-dependent, too, the maximum of viscosity contrast is only up to 1.5. The optical measurement of the fluid flow is based on the Wollaston shearing interferometry, since the on orbit setup avoids the use of measurement particles. This technique leads to fringe patterns. Simulations with RESPECT and GAIAA tend to verify the experimentally observed patterns by different numerical models.
NASA Astrophysics Data System (ADS)
Battino, U.; Pignatari, M.; Ritter, C.; Herwig, F.; Denisenkov, P.; Den Hartogh, J. W.; Trappitsch, R.; Hirschi, R.; Freytag, B.; Thielemann, F.; Paxton, B.
2016-08-01
The s-process nucleosynthesis in Asymptotic giant branch (AGB) stars depends on the modeling of convective boundaries. We present models and s-process simulations that adopt a treatment of convective boundaries based on the results of hydrodynamic simulations and on the theory of mixing due to gravity waves in the vicinity of convective boundaries. Hydrodynamics simulations suggest the presence of convective boundary mixing (CBM) at the bottom of the thermal pulse-driven convective zone. Similarly, convection-induced mixing processes are proposed for the mixing below the convective envelope during third dredge-up (TDU), where the {}13{{C}} pocket for the s process in AGB stars forms. In this work, we apply a CBM model motivated by simulations and theory to models with initial mass M = 2 and M=3 {M}⊙ , and with initial metal content Z = 0.01 and Z = 0.02. As reported previously, the He-intershell abundances of {}12{{C}} and {}16{{O}} are increased by CBM at the bottom of the pulse-driven convection zone. This mixing is affecting the {}22{Ne}(α, n){}25{Mg} activation and the s-process efficiency in the {}13{{C}}-pocket. In our model, CBM at the bottom of the convective envelope during the TDU represents gravity wave mixing. Furthermore, we take into account the fact that hydrodynamic simulations indicate a declining mixing efficiency that is already about a pressure scale height from the convective boundaries, compared to mixing-length theory. We obtain the formation of the {}13{{C}}-pocket with a mass of ≈ {10}-4 {M}⊙ . The final s-process abundances are characterized by 0.36\\lt [{{s}}/{Fe}]\\lt 0.78 and the heavy-to-light s-process ratio is -0.23\\lt [{hs}/{ls}]\\lt 0.45. Finally, we compare our results with stellar observations, presolar grain measurements and previous work.
Natural convective mixing flows
NASA Astrophysics Data System (ADS)
Ramos, Eduardo; de La Cruz, Luis; del Castillo, Luis
1998-11-01
Natural convective mixing flows. Eduardo Ramos and Luis M. de La Cruz, National University of Mexico and Luis Del Castillo San Luis Potosi University. The possibility of mixing a fluid with a natural convective flow is analysed by solving numerically the mass, momentum and energy equations in a cubic container. Two opposite vertical walls of the container are assumed to have temperatures that oscillate as functions of time. The phase of the oscillations is chosen in such a way that alternating corrotating vortices are formed in the cavity. The mixing efficiency of this kind of flow is examined with a Lagrangian tracking technique. This work was partially financed by CONACyT-Mexico project number GE0044
Recent development of hydrodynamic modeling
NASA Astrophysics Data System (ADS)
Hirano, Tetsufumi
2014-09-01
In this talk, I give an overview of recent development in hydrodynamic modeling of high-energy nuclear collisions. First, I briefly discuss about current situation of hydrodynamic modeling by showing results from the integrated dynamical approach in which Monte-Carlo calculation of initial conditions, quark-gluon fluid dynamics and hadronic cascading are combined. In particular, I focus on rescattering effects of strange hadrons on final observables. Next I highlight three topics in recent development in hydrodynamic modeling. These include (1) medium response to jet propagation in di-jet asymmetric events, (2) causal hydrodynamic fluctuation and its application to Bjorken expansion and (3) chiral magnetic wave from anomalous hydrodynamic simulations. (1) Recent CMS data suggest the existence of QGP response to propagation of jets. To investigate this phenomenon, we solve hydrodynamic equations with source term which exhibits deposition of energy and momentum from jets. We find a large number of low momentum particles are emitted at large angle from jet axis. This gives a novel interpretation of the CMS data. (2) It has been claimed that a matter created even in p-p/p-A collisions may behave like a fluid. However, fluctuation effects would be important in such a small system. We formulate relativistic fluctuating hydrodynamics and apply it to Bjorken expansion. We found the final multiplicity fluctuates around the mean value even if initial condition is fixed. This effect is relatively important in peripheral A-A collisions and p-p/p-A collisions. (3) Anomalous transport of the quark-gluon fluid is predicted when extremely high magnetic field is applied. We investigate this possibility by solving anomalous hydrodynamic equations. We found the difference of the elliptic flow parameter between positive and negative particles appears due to the chiral magnetic wave. Finally, I provide some personal perspective of hydrodynamic modeling of high energy nuclear collisions
Numerical study on double-diffusive convection in the Earth's core
NASA Astrophysics Data System (ADS)
Trümper, T.; Breuer, M.; Hansen, U.
2011-12-01
Our numerical study focuses on convection in a rotating spherical shell with the objective to model combined thermal and compositional convection as proposed for the Earth's core. Since the core is cooling, a thermal gradient is established, which can drive thermal convection. Simultaneously, due to the solidification of the inner core latent heat is released at the freezing front and the concentration of the light constituents of the liquid phase increases thus providing a source for compositional buoyancy. Typically, the molecular diffusivities of both driving components differ by some orders of magnitude. To account for this difference it is indicated to adopt a double-diffusive convection model in treating Earth's core dynamics. As opposed to purely thermal or purely compositional convection the double-diffusive system is controlled by two Rayleigh numbers associated with the respective buoyancy sources. Using the Rayleigh numbers as control parameters neutral curves of the linear onset of convection in the rotating shell are determined for different Ekman numbers and diffusivity ratios. It is found that the neutral curves depend significantly on the system parameters. By comparison with the analytical solutions of the rotating cylindrical annulus it is shown that the neutral curves represent a superposition of curves associated with solutions with different azimuthal wave numbers. Furthermore, fully non-linear simulations are presented in order to elucidate the effect of isochemical and fixed chemical flux boundary conditions on the convection. Both the forcing ratio and the chemical boundary condition have distinct effects on the system that are discussed separately.
Imaging of Compressed Pure-CH Shells and CH Shells with Titanium-Doped Layers on OMEGA
NASA Astrophysics Data System (ADS)
Smalyuk, V. A.; Yaakobi, B.; Goncharov, V. N.; Delettrez, J. A.; Marshall, F. J.; Meyerhofer, D. D.
1999-11-01
The compressed shell integrity of spherical targets has been studied using the 60-beam, 30-kJ UV, OMEGA laser system. The emission from the hot core has been imaged through the cold shell at two narrow, x-ray energy bands, absorbing and nonabsorbing by the shell, allowing nonuniformities in the core emission and the cold shell areal density to be measured. Images of the target have been obtained using a pinhole-array with K-edge filters. The x-ray energies used are around 2.8 and 4.5 keV for pure-CH shells, and around 4.5 and 6 keV for titanium-doped layers. Additional images of the shell are obtained with a framed monochromatic x-ray microscope and a time-integrated crystal-spectrometer/pinhole-array combination. We will present measurements of the compressed shell integrity at the stagnation stage of spherical implosions by varying the position of the titanium-doped layer within the shell, by varying the thickness of the CH shell, and by using two different laser pulse shapes. The experimental results will be compared with 2-D (ORCHID) hydrodynamic simulations. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460, the University of Rochester, and the New York State Energy Research and Development Authority.
Constraining relativistic viscous hydrodynamical evolution
Martinez, Mauricio; Strickland, Michael
2009-04-15
We show that by requiring positivity of the longitudinal pressure it is possible to constrain the initial conditions one can use in second-order viscous hydrodynamical simulations of ultrarelativistic heavy-ion collisions. We demonstrate this explicitly for (0+1)-dimensional viscous hydrodynamics and discuss how the constraint extends to higher dimensions. Additionally, we present an analytic approximation to the solution of (0+1)-dimensional second-order viscous hydrodynamical evolution equations appropriate to describe the evolution of matter in an ultrarelativistic heavy-ion collision.
NASA Astrophysics Data System (ADS)
Takahashi, R.; Matsuo, M.; Ono, M.; Harii, K.; Chudo, H.; Okayasu, S.; Ieda, J.; Takahashi, S.; Maekawa, S.; Saitoh, E.
2016-01-01
Magnetohydrodynamic generation is the conversion of fluid kinetic energy into electricity. Such conversion, which has been applied to various types of electric power generation, is driven by the Lorentz force acting on charged particles and thus a magnetic field is necessary. On the other hand, recent studies of spintronics have revealed the similarity between the function of a magnetic field and that of spin-orbit interactions in condensed matter. This suggests the existence of an undiscovered route to realize the conversion of fluid dynamics into electricity without using magnetic fields. Here we show electric voltage generation from fluid dynamics free from magnetic fields; we excited liquid-metal flows in a narrow channel and observed longitudinal voltage generation in the liquid. This voltage has nothing to do with electrification or thermoelectric effects, but turned out to follow a universal scaling rule based on a spin-mediated scenario. The result shows that the observed voltage is caused by spin-current generation from a fluid motion: spin hydrodynamic generation. The observed phenomenon allows us to make mechanical spin-current and electric generators, opening a door to fluid spintronics.
Hydrodynamics of micropipette aspiration.
Drury, J L; Dembo, M
1999-01-01
The dynamics of human neutrophils during micropipette aspiration are frequently analyzed by approximating these cells as simple slippery droplets of viscous fluid. Here, we present computations that reveal the detailed predictions of the simplest and most idealized case of such a scheme; namely, the case where the fluid of the droplet is homogeneous and Newtonian, and the surface tension of the droplet is constant. We have investigated the behavior of this model as a function of surface tension, droplet radius, viscosity, aspiration pressure, and pipette radius. In addition, we have tabulated a dimensionless factor, M, which can be utilized to calculate the apparent viscosity of the slippery droplet. Computations were carried out using a low Reynolds number hydrodynamics transport code based on the finite-element method. Although idealized and simplistic, we find that the slippery droplet model predicts many observed features of neutrophil aspiration. However, there are certain features that are not observed in neutrophils. In particular, the model predicts dilation of the membrane past the point of being continuous, as well as a reentrant jet at high aspiration pressures. PMID:9876128
Hydrodynamic properties of rodlike and disklike particles in dilute solution
NASA Astrophysics Data System (ADS)
Ortega, A.; García de la Torre, J.
2003-11-01
The hydrodynamic properties of cylindrical (rodlike and discoidal) particles in dilute solution have been computed using the bead-shell model treatment. Previous results [Tirado and Garcı´a de la Torre, J. Chem. Phys. 71, 2581 (1979); 73, 1993 (1980)] for rods with length-to-diameter ratio p>2 are now extended to short cylinders and disks down to p=0.1. The intrinsic viscosity is obtained for rods and disks, and results are presented for the three rotational relaxation times of a cylindrical particle. The hydrodynamic properties are expressed in forms that have a weak variation with p, and are therefore useful for the analysis of experimental values. We present examples of the determination of the length and diameter of the cylindrical particles, for DNA oligonucleotides and tobacco mosaic virus.
Tropical errors and convection
NASA Astrophysics Data System (ADS)
Bechtold, P.; Bauer, P.; Engelen, R. J.
2012-12-01
Tropical convection is analysed in the ECMWF Integrated Forecast System (IFS) through tropical errors and their evolution during the last decade as a function of model resolution and model changes. As the characterization of these errors is particularly difficult over tropical oceans due to sparse in situ upper-air data, more weight compared to the middle latitudes is given in the analysis to the underlying forecast model. Therefore, special attention is paid to available near-surface observations and to comparison with analysis from other Centers. There is a systematic lack of low-level wind convergence in the Inner Tropical Convergence Zone (ITCZ) in the IFS, leading to a spindown of the Hadley cell. Critical areas with strong cross-equatorial flow and large wind errors are the Indian Ocean with large interannual variations in forecast errors, and the East Pacific with persistent systematic errors that have evolved little during the last decade. The analysis quality in the East Pacific is affected by observation errors inherent to the atmospheric motion vector wind product. The model's tropical climate and its variability and teleconnections are also evaluated, with a particular focus on the Madden-Julian Oscillation (MJO) during the Year of Tropical Convection (YOTC). The model is shown to reproduce the observed tropical large-scale wave spectra and teleconnections, but overestimates the precipitation during the South-East Asian summer monsoon. The recent improvements in tropical precipitation, convectively coupled wave and MJO predictability are shown to be strongly related to improvements in the convection parameterization that realistically represents the convection sensitivity to environmental moisture, and the large-scale forcing due to the use of strong entrainment and a variable adjustment time-scale. There is however a remaining slight moistening tendency and low-level wind imbalance in the model that is responsible for the Asian Monsoon bias and for too
NASA Astrophysics Data System (ADS)
Carey, Michael Richard
Binary porous convection falls into the larger category of pattern formation---a symmetry breaking instability which creates a spatially periodic structure within a homogeneous system. The experiments and model presented in this dissertation indicate that an essential piece of physics is missing from the standard Darcian picture used to describe pattern formation in a porous medium convection system. Present theory predicts a bifurcation to an oscillatory state at onset for a binary mixture in a porous media over a wide range of experimental parameters (Brand and Steinberg, Physics Letters 93A 333 (1983)). This theory is inadequate in explaining the predominant large amplitude, backward, stationary overturning convection state observed in our experiments after transients have decayed. Convection experiments were visualized with magnetic resonance imaging and performed with a foam medium in slot and cylindrical geometries as well as a rectangular, packed bead system with water-ethanol mixtures. We explore the possibility that the difference between theory and experiment is due to enhanced solutal mixing not included in previous theories. The enhanced mixing of the fluid produces an effective diffusion coefficient that largely suppresses gradients in the concentration field, resulting in single-fluid like behavior. We model the experimental system with a Lorenz truncation of the binary Darcy equations with enhanced mixing. This model predicts results qualitatively similar to experiments: a forward bifurcation to small amplitude oscillations with a secondary backward bifurcation to large amplitude stationary convection. We have also developed an experimental nuclear magnetic resonance technique that measures the effective diffusion coefficient, D = D(v), as a function of velocity, v, for the individual species of the binary mixture simultaneously. However, the mixing effect measured in plug flow experiments is roughly two to three orders of magnitude too small to have
A convective forecast experiment of global tectonics
NASA Astrophysics Data System (ADS)
Coltice, Nicolas; Giering, Ralf
2016-04-01
Modeling jointly the deep convective motions in the mantle and the deformation of the lithosphere in a self-consistent way is a long-standing quest, for which significant advances have been made in the late 1990's. The complexities used in lithospheric models are making their way into the models of mantle convection (density variations, pseudo-plasticity, elasticity, free surface), hence global models of mantle motions can now display tectonics at their surface, evolving self-consistantly and showing some of the most important properties of plate tectonics on Earth (boundaries, types of boundaries, plate sizes, seafloor spreading properties, continental drift). The goal of this work is to experiment the forecasting power of such convection models with plate-like behavior, being here StagYY (Tackley, 2008). We generate initial conditions for a 3D spherical model in the past (50Ma and younger), using models with imposed plate velocities from 200Ma. By doing this, we introduce errors in the initial conditions that propagate afterwards. From these initial conditions, we run the convection models free, without imposing any sort of motion, letting the self-organization take place. We compare the forecast to the present-day plate velocities and plate boundaries. To investigate the optimal parameterization, and also have a flavor of the sensitivity of the results to rheological parameters, we compute the derivatives of the misfit of the surface velocities relative to the yield stress, the magnitude of the viscosity jump at 660km and the properties of a weak crust. These derivates are computed thanks to the tangent linear model of StagYY, that is built through the automatic differentiation software TAF (Giering and Kaminski, 2003). References Tackley, P. J., Modeling compressible mantle convection with large viscosity contrasts in a three-dimensional spherical shell using the yin-yang grid, Phys. Earth Planet. Inter. 171, 7-18 (2008). Giering, R., Kaminski, T., Applying TAF
Hydrodynamic synchronization of colloidal oscillators
Kotar, Jurij; Leoni, Marco; Bassetti, Bruno; Lagomarsino, Marco Cosentino; Cicuta, Pietro
2010-01-01
Two colloidal spheres are maintained in oscillation by switching the position of an optical trap when a sphere reaches a limit position, leading to oscillations that are bounded in amplitude but free in phase and period. The interaction between the oscillators is only through the hydrodynamic flow induced by their motion. We prove that in the absence of stochastic noise the antiphase dynamical state is stable, and we show how the period depends on coupling strength. Both features are observed experimentally. As the natural frequencies of the oscillators are made progressively different, the coordination is quickly lost. These results help one to understand the origin of hydrodynamic synchronization and how the dynamics can be tuned. Cilia and flagella are biological systems coupled hydrodynamically, exhibiting dramatic collective motions. We propose that weakly correlated phase fluctuations, with one of the oscillators typically precessing the other, are characteristic of hydrodynamically coupled systems in the presence of thermal noise. PMID:20385848
Reciprocal relations in dissipationless hydrodynamics
Melnikovsky, L. A.
2014-12-15
Hidden symmetry in dissipationless terms of arbitrary hydrodynamics equations is recognized. We demonstrate that all fluxes are generated by a single function and derive conventional Euler equations using the proposed formalism.
Relativistic hydrodynamics on graphic cards
NASA Astrophysics Data System (ADS)
Gerhard, Jochen; Lindenstruth, Volker; Bleicher, Marcus
2013-02-01
We show how to accelerate relativistic hydrodynamics simulations using graphic cards (graphic processing units, GPUs). These improvements are of highest relevance e.g. to the field of high-energetic nucleus-nucleus collisions at RHIC and LHC where (ideal and dissipative) relativistic hydrodynamics is used to calculate the evolution of hot and dense QCD matter. The results reported here are based on the Sharp And Smooth Transport Algorithm (SHASTA), which is employed in many hydrodynamical models and hybrid simulation packages, e.g. the Ultrarelativistic Quantum Molecular Dynamics model (UrQMD). We have redesigned the SHASTA using the OpenCL computing framework to work on accelerators like graphic processing units (GPUs) as well as on multi-core processors. With the redesign of the algorithm the hydrodynamic calculations have been accelerated by a factor 160 allowing for event-by-event calculations and better statistics in hybrid calculations.
OBSERVATIONAL SIGNATURES OF CONVECTIVELY DRIVEN WAVES IN MASSIVE STARS
Aerts, C.; Rogers, T. M.
2015-06-20
We demonstrate observational evidence for the occurrence of convectively driven internal gravity waves (IGWs) in young massive O-type stars observed with high-precision CoRoT space photometry. This evidence results from a comparison between velocity spectra based on two-dimensional hydrodynamical simulations of IGWs in a differentially rotating massive star and the observed spectra. We also show that the velocity spectra caused by IGWs may lead to detectable line-profile variability and explain the occurrence of macroturbulence in the observed line profiles of OB stars. Our findings provide predictions that can readily be tested by including a sample of bright, slowly and rapidly rotating OB-type stars in the scientific program of the K2 mission accompanied by high-precision spectroscopy and their confrontation with multi-dimensional hydrodynamic simulations of IGWs for various masses and ages.
Convective heat transfer for fluids passing through aluminum foams
NASA Astrophysics Data System (ADS)
Dyga, Roman; Troniewski, Leon
2015-03-01
This paper analyses the experimental findings within heat transfer when heating up air, water and oil streams which are passed through a duct with internal structural packing elements in the form of metal foams. Three types of aluminum foams with different cell sizes, porosity specifications and thermal conductivities were used in the study. The test data were collected and they made it possible to establish the effect of the foam geometry, properties of fluids and flow hydrodynamic conditions on the convective heat transfer process from the heating surface to the fluid flowing by (wetting) that surface. The foam was found to be involved in heat transfer to a limited extent only. Heat is predominantly transferred directly from the duct wall to a fluid, and intensity of convective heat transfer is controlled by the wall effects. The influence of foam structural parameters, like cell size and/or porosity, becomes more clearly apparent under laminar flow conditions.
ERIC Educational Resources Information Center
Etzold, Carol
1983-01-01
Discusses shell classification exercises. Through keying students advanced from the "I know what a shell looks like" stage to become involved in the classification process: observing, labeling, making decisions about categories, and identifying marine animals. (Author/JN)
End-member models of boundary-modulated convective dynamos
NASA Astrophysics Data System (ADS)
Aurnou, Jonathan M.; Aubert, Julien
2011-08-01
Convective planetary dynamos depend upon secular cooling and internal radioactive decay for generating fluid motions within the core. Some planetary dynamo models also include heat flux variations along the core-mantle boundary (CMB) that modify the dynamo process. Here we study the effects of CMB heat flux variations in two sets of numerical dynamo models. In the first set, the possibility of dynamo action in a stably-stratified, Boussinesq, rotating spherical fluid shell is investigated. In these cases, lateral variations in CMB heat flux can drive significant zonal flows, but no dynamo action develops. In the second set of models, the fluid shell is neutrally-stratified. Dynamo action in these models is controlled by the pattern of CMB heat flux. Our neutrally-stratified models are relevant for studying the limiting effects of strong boundary forcing acting atop a convectively well-mixed state. We study four neutrally-stratified dynamo cases with different spherical harmonic heat flux patterns imposed on the CMB: Y10, Y11, Y20 and Y22. These cases demonstrate that the fundamental symmetries of the dynamo field follow the spatial symmetries of the CMB heat flux pattern. Our results show that convective dynamos are not necessarily killed by boundary-driven thermal winds, a result of interest if Earth's core top is close to adiabatic. A strong Y10 forcing is likely to produce a dynamo with hemispherical magnetic field structure reminiscent of Mars surface magnetization. However, as boundary-modulated convective dynamos produce magnetic fields generally one order of magnitude weaker than homogeneous convective dynamos with an equivalent forcing amplitude, it seems unlikely that this process is at the origin of Mars' regions of strong crustal magnetization.
Natural solutal convection in magnetic fluids: First-order phase transition aspect
NASA Astrophysics Data System (ADS)
Ivanov, Aleksey S.
2016-10-01
Concentration stratification of magnetic fluids under the action of external magnetic field can disturb mechanical equilibrium in the system and cause intensive solutal convection. The current paper is devoted to the study of free solutal convection in magnetic fluids undergoing first-order phase transition. Simulation of solutal convection in OpenFOAM package makes it possible to compare numeric results with physical experiment observations. The numeric simulation of convective hydrodynamic flows was carried out in the framework of several theories of first-order phase transition in ferrocolloids. The numerical results are compared with experimental observations in order to choose the theory which predicts most accurately the concentration stratification in magnetic fluids undergoing magneto-controllable first-order phase transition.
Plasma convection in Neptune's magnetosphere
NASA Technical Reports Server (NTRS)
Selesnick, R. S.
1990-01-01
The magnetosphere of Neptune changes its magnetic configuration continuously as the planet rotates, leading to a strong modulation of the convection electric field. Even though the corotation speed is considerably larger, the modulation causes the small convection speed to have a cumulative effect, much like the acceleration of particles in a cyclotron. A model calculation shows that plasma on one side of the planet convects out of the magnetosphere in a few planetary rotations, while on the other side it convects slowly planetward. The observation of nitrogen ions from a Triton plasma torus may provide a critical test of the model.
Bidispersive-inclined convection
NASA Astrophysics Data System (ADS)
Falsaperla, Paolo; Mulone, Giuseppe; Straughan, Brian
2016-08-01
A model is presented for thermal convection in an inclined layer of porous material when the medium has a bidispersive structure. Thus, there are the usual macropores which are full of a fluid, but there are also a system of micropores full of the same fluid. The model we employ is a modification of the one proposed by Nield & Kuznetsov (2006 Int. J. Heat Mass Transf. 49, 3068-3074. (doi:10.1016/j.ijheatmasstransfer.2006.02.008)), although we consider a single temperature field only.
Albarède, Francis; Van Der Hilst, Rob D
2002-11-15
We review the present state of our understanding of mantle convection with respect to geochemical and geophysical evidence and we suggest a model for mantle convection and its evolution over the Earth's history that can reconcile this evidence. Whole-mantle convection, even with material segregated within the D" region just above the core-mantle boundary, is incompatible with the budget of argon and helium and with the inventory of heat sources required by the thermal evolution of the Earth. We show that the deep-mantle composition in lithophilic incompatible elements is inconsistent with the storage of old plates of ordinary oceanic lithosphere, i.e. with the concept of a plate graveyard. Isotopic inventories indicate that the deep-mantle composition is not correctly accounted for by continental debris, primitive material or subducted slabs containing normal oceanic crust. Seismological observations have begun to hint at compositional heterogeneity in the bottom 1000 km or so of the mantle, but there is no compelling evidence in support of an interface between deep and shallow mantle at mid-depth. We suggest that in a system of thermochemical convection, lithospheric plates subduct to a depth that depends - in a complicated fashion - on their composition and thermal structure. The thermal structure of the sinking plates is primarily determined by the direction and rate of convergence, the age of the lithosphere at the trench, the sinking rate and the variation of these parameters over time (i.e. plate-tectonic history) and is not the same for all subduction systems. The sinking rate in the mantle is determined by a combination of thermal (negative) and compositional buoyancy and as regards the latter we consider in particular the effect of the loading of plates with basaltic plateaux produced by plume heads. Barren oceanic plates are relatively buoyant and may be recycled preferentially in the shallow mantle. Oceanic plateau-laden plates have a more pronounced
Albarède, Francis; Van Der Hilst, Rob D
2002-11-15
We review the present state of our understanding of mantle convection with respect to geochemical and geophysical evidence and we suggest a model for mantle convection and its evolution over the Earth's history that can reconcile this evidence. Whole-mantle convection, even with material segregated within the D" region just above the core-mantle boundary, is incompatible with the budget of argon and helium and with the inventory of heat sources required by the thermal evolution of the Earth. We show that the deep-mantle composition in lithophilic incompatible elements is inconsistent with the storage of old plates of ordinary oceanic lithosphere, i.e. with the concept of a plate graveyard. Isotopic inventories indicate that the deep-mantle composition is not correctly accounted for by continental debris, primitive material or subducted slabs containing normal oceanic crust. Seismological observations have begun to hint at compositional heterogeneity in the bottom 1000 km or so of the mantle, but there is no compelling evidence in support of an interface between deep and shallow mantle at mid-depth. We suggest that in a system of thermochemical convection, lithospheric plates subduct to a depth that depends - in a complicated fashion - on their composition and thermal structure. The thermal structure of the sinking plates is primarily determined by the direction and rate of convergence, the age of the lithosphere at the trench, the sinking rate and the variation of these parameters over time (i.e. plate-tectonic history) and is not the same for all subduction systems. The sinking rate in the mantle is determined by a combination of thermal (negative) and compositional buoyancy and as regards the latter we consider in particular the effect of the loading of plates with basaltic plateaux produced by plume heads. Barren oceanic plates are relatively buoyant and may be recycled preferentially in the shallow mantle. Oceanic plateau-laden plates have a more pronounced
Hydrodynamic escape from planetary atmospheres
NASA Astrophysics Data System (ADS)
Tian, Feng
Hydrodynamic escape is an important process in the formation and evolution of planetary atmospheres. Due to the existence of a singularity point near the transonic point, it is difficult to find transonic steady state solutions by solving the time-independent hydrodynamic equations. In addition to that, most previous works assume that all energy driving the escape flow is deposited in one narrow layer. This assumption not only results in less accurate solutions to the hydrodynamic escape problem, but also makes it difficult to include other chemical and physical processes in the hydrodynamic escape models. In this work, a numerical model describing the transonic hydrodynamic escape from planetary atmospheres is developed. A robust solution technique is used to solve the time dependent hydrodynamic equations. The method has been validated in an isothermal atmosphere where an analytical solution is available. The hydrodynamic model is applied to 3 cases: hydrogen escape from small orbit extrasolar planets, hydrogen escape from a hydrogen rich early Earth's atmosphere, and nitrogen/methane escape from Pluto's atmosphere. Results of simulations on extrasolar planets are in good agreement with the observations of the transiting extrasolar planet HD209458b. Hydrodynamic escape of hydrogen from other hypothetical close-in extrasolar planets are simulated and the influence of hydrogen escape on the long-term evolution of these extrasolar planets are discussed. Simulations on early Earth suggest that hydrodynamic escape of hydrogen from a hydrogen rich early Earth's atmosphere is about two orders magnitude slower than the diffusion limited escape rate. A hydrogen rich early Earth's atmosphere could have been maintained by the balance between the hydrogen escape and the supply of hydrogen into the atmosphere by volcanic outgassing. Origin of life may have occurred in the organic soup ocean created by the efficient formation of prebiotic molecules in the hydrogen rich early
Hydrodynamic Instabilities Driven by Acid-base Neutralization Reaction in Immiscible System
NASA Astrophysics Data System (ADS)
Asad, Ahmed; Yang, Ya-hui; Chai, Chuan; Wu, Jiang-tao
2010-10-01
The hydrodynamic instabilities driven by an acid-base neutralization reaction, in contact along a plane interface, placed in a Hele-Shaw cell under the gravitational field are reported. The system consists of the heavier aqueous tetramethyle-ammonium hydroxide below the lighter layer of organic phase with propionic acid as reacting specie. The effect of chemical composition on hydrodynamic instabilities during interfacial mass transfer accompanied by a neutralization reaction is investigated. Depending on the initial concentration of the reacting species, Marangoni convection in the form of roll cells or trains of waves is observed. Mach-Zehnder interferometer is used to measure the change in base concentration at the time of instability formation. The results show that the instabilities resulted from the convection flow are more efficient to the mechanism of mass transfer and can drastically alter pattern formation in the system.
Experimental study of the hydrodynamics in a model crystal growth crucible
Ruiz, X.; Massons, J.; Aguilo, M.; Diaz, F. . Dept. of Tecnico Quimica)
1989-05-01
In this paper, image processing techniques are applied to the meridional visualizations of the bulk flow generated under different boundary conditions in a model crystal growth crucible. The steady forced convective patterns obtained by means of tracer particles are digitized and processed in order to characterize its hydrodynamic behaviour. This characterization is carried out based on the analysis of the resulting meridional velocity, streamfunction and vorticity distributions. Some comparisons between the present results and other available data are also made.
Convection electric field effects on outer radiation belt electron precipitation
NASA Technical Reports Server (NTRS)
Gelpi, C.; Benbrook, J. R.; Sheldon, W. R.
1986-01-01
A model is presented for the possible diurnal modulation of outer radiation belt electron precipitation by considering the effect of the convection electric field on geomagnetically trapped electrons. The modulation flux is the flux due to electrons in the drift loss cone, i.e., those which drift into the bounce loss cone. The electron flux in the drift loss cone is related to the time allowable for diffusion from the stably trapped population to the drift loss cone for precipitation at a specific geographic location. This time, which is termed the maximum L-shell lifetime, is obtained by computing electron trajectories, using a realistic magnetic field model and a simple model for the electric field. The maximum L-shell lifetimes are taken to be the times between successive entries into the bounce loss cone. Conservation of the first two adiabatic invariants, as electrons are slowly energized by the convection electric field, leads to variations in pitch angle, maximum L-shell lifetimes, and, consequently, to changes in the electron flux in the drift loss cone. These results are compared with observations of precipitating electrons made with sounding rocket payloads.
Modeling ocean deep convection
NASA Astrophysics Data System (ADS)
Canuto, V. M.; Howard, A.; Hogan, P.; Cheng, Y.; Dubovikov, M. S.; Montenegro, L. M.
The goal of this study is to assess models for Deep Convection with special emphasis on their use in coarse resolution ocean general circulation models. A model for deep convection must contain both vertical transport and lateral advection by mesoscale eddies generated by baroclinic instabilities. The first process operates mostly in the initial phases while the second dominates the final stages. Here, the emphasis is on models for vertical mixing. When mesoscales are not resolved, they are treated with the Gent and McWilliams parameterization. The model results are tested against the measurements of Lavender, Davis and Owens, 2002 (LDO) in the Labrador Sea. Specifically, we shall inquire whether the models are able to reproduce the region of " deepest convection," which we shall refer to as DC (mixed layer depths 800-1300 m). The region where it was measured by Lavender et al. (2002) will be referred to as the LDO region. The main results of this study can be summarized as follows. 3° × 3° resolution. A GFDL-type OGCM with the GISS vertical mixing model predicts DC in the LDO region where the vertical heat diffusivity is found to be 10 m 2 s -1, a value that is quite close to the one suggested by heuristic studies. No parameter was changed from the original GISS model. However, the GISS model also predicts some DC in a region to the east of the LDO region. 3° × 3° resolution. A GFDL-type OGCM with the KPP model (everything else being the same) does not predict DC in the LDO region where the vertical heat diffusivity is found to be 0.5 × 10 -4 m 2 s -1 which is the background value. The KPP model yields DC only to the east of the LDO region. 1° × 1° resolution. In this case, a MY2.5 mixing scheme predicts DC in the LDO region. However, it also predicts DC to the west, north and south of it, where it is not observed. The behavior of the KPP and MY models are somewhat anti-symmetric. The MY models yield too low a mixing in stably stratified flows since they
Convective Instability in Ice I with Non-Newtonian Rheology: Application to the Galilean Satellites
NASA Technical Reports Server (NTRS)
Barr, A. C.; Zhong, S.; Pappalardo, R. T.
2004-01-01
At the temperatures and stresses associated with the onset of convection in an ice I shell of the Galilean satellites, ice behaves as a non-Newtonian fluid with a viscosity that depends on both temperature and strain rate. The convective stability of a non-Newtonian ice shell can be judged by comparing the Rayleigh number of the shell to a critical value. Previous studies suggest that the critical Rayleigh number for a non-Newtonian fluid depends on the initial conditions in the fluid layer, in addition to the thermal, rheological, and physical properties of the fluid. We seek to extend the existing definition of the critical Rayleigh number for a non-Newtonian, basally heated fluid by quantifying the conditions required to initiate convection in an ice I layer initially in conductive equilibrium. We find that the critical Rayleigh number for the onset of convection in ice I varies as a power (-0.6 to -0.5) of the amplitude of the initial temperature perturbation issued to the layer, when the amplitude of perturbation is less than the rheological temperature scale. For larger-amplitude perturbations, the critical Rayleigh number achieves a constant value. We characterize the critical Rayleigh number as a function of surface temperature of the satellite, melting temperature of ice, and rheological parameters so that our results may be extrapolated for use with other rheologies and for a generic large icy satellite. The values of critical Rayleigh number imply that triggering convection from a conductive equilibrium in a pure ice shell less than 100 km thick in Europa, Ganymede, or Callisto requires a large, localized temperature perturbation of a few kelvins to tens of kelvins to soften the ice and therefore may require tidal dissipation in the ice shell.
[Development of a ballistic furnace for shell production]. Annual report 1998
Cook, R; Isakov, A I
1998-12-31
During the fourth contract year, the authors continued to develop Ballistic technology of shell formation. A new upgraded version of Ballistic Furnace with longer hot zone (1.56m) and cooling one (1.2m) had been finally assembled, and a lot of shell formation experiments had been carried out. The change of the Ballistic Furnace configuration has led to significant changing in operational conditions suitable for shells production. They had found optimal operational conditions for some grades of initial granules giving them high yield of good shells. Serious attention was paid on initial granules preparation. In the experiments some unexpected results were obtained--first of all it was a strong influence of temperature profile, an initial granule velocity and a trajectory angle on good quality shells yield. Those observations made them consider some additional physical phenomena (initial granule defragmentation and gas convection inside hot zone) to explain good shell formation. Appropriate estimations of the velocity of possible convectional gas currents in the hot zone, strength of formed shells, thermal stress in an initial granule caused by its fast heating in the ballistic furnace etc. were made. Good quality shells up to 2mm in diameters with high yield were produced. Although a production of good quality shells in diameter range > 1.8 mm stays an easy job, their experience led them to declare that Ballistic technology hasn't reach its boundaries, and future development will allow them to obtain perfect results.
Simulated evolution process of core-shell microstructures
NASA Astrophysics Data System (ADS)
Qin, Tao; Wang, Haipeng; Wei, Bingbo
2007-08-01
The evolution process of core-shell microstructures formed in monotectic alloys under the space environment condition was investigated by the numerical simulation method. In order to account for the effect of surface segregation on phase separation, Model H was modified by introducing a surface free energy term into the total free energy of alloy droplet. Three Fe-Cu alloys were taken as simulated examples, which usually exhibit metastable phase separation in undercooled and microgravity states. It was revealed by the dynamic simulation process that the formation of core-shell microstructures depends mainly on surface segregation and Marangoni convection. The phase separation of Fe65Cu35 alloy starts from a dispersed structure and gradually evolves into a triple-layer core-shell micro-structure. Similarly, Fe50Cu50 alloy experiences a structural evolution process of “bicontinuous phase → quadruple-layer core-shell → triple-layer core-shell”, while the microstructures of Fe35Cu65 alloy transfer from the dispersed structure into the final double-layer core-shell morphology. The Cu-rich phase always forms the outer layer because of surface segregation, whereas the internal microstructural evolution is controlled mainly by the Marangoni convection resulting from the temperature gradient.
Modeling Early Galaxies Using Radiation Hydrodynamics
2011-01-01
This simulation uses a flux-limited diffusion solver to explore the radiation hydrodynamics of early galaxies, in particular, the ionizing radiation created by Population III stars. At the time of this rendering, the simulation has evolved to a redshift of 3.5. The simulation volume is 11.2 comoving megaparsecs, and has a uniform grid of 10243 cells, with over 1 billion dark matter and star particles. This animation shows a combined view of the baryon density, dark matter density, radiation energy and emissivity from this simulation. The multi-variate rendering is particularly useful because is shows both the baryonic matter ("normal") and dark matter, and the pressure and temperature variables are properties of only the baryonic matter. Visible in the gas density are "bubbles", or shells, created by the radiation feedback from young stars. Seeing the bubbles from feedback provides confirmation of the physics model implemented. Features such as these are difficult to identify algorithmically, but easily found when viewing the visualization. Simulation was performed on Kraken at the National Institute for Computational Sciences. Visualization was produced using resources of the Argonne Leadership Computing Facility at Argonne National Laboratory.
Budroni, M A
2015-12-01
Cross diffusion, whereby a flux of a given species entrains the diffusive transport of another species, can trigger buoyancy-driven hydrodynamic instabilities at the interface of initially stable stratifications. Starting from a simple three-component case, we introduce a theoretical framework to classify cross-diffusion-induced hydrodynamic phenomena in two-layer stratifications under the action of the gravitational field. A cross-diffusion-convection (CDC) model is derived by coupling the fickian diffusion formalism to Stokes equations. In order to isolate the effect of cross-diffusion in the convective destabilization of a double-layer system, we impose a starting concentration jump of one species in the bottom layer while the other one is homogeneously distributed over the spatial domain. This initial configuration avoids the concurrence of classic Rayleigh-Taylor or differential-diffusion convective instabilities, and it also allows us to activate selectively the cross-diffusion feedback by which the heterogeneously distributed species influences the diffusive transport of the other species. We identify two types of hydrodynamic modes [the negative cross-diffusion-driven convection (NCC) and the positive cross-diffusion-driven convection (PCC)], corresponding to the sign of this operational cross-diffusion term. By studying the space-time density profiles along the gravitational axis we obtain analytical conditions for the onset of convection in terms of two important parameters only: the operational cross-diffusivity and the buoyancy ratio, giving the relative contribution of the two species to the global density. The general classification of the NCC and PCC scenarios in such parameter space is supported by numerical simulations of the fully nonlinear CDC problem. The resulting convective patterns compare favorably with recent experimental results found in microemulsion systems. PMID:26764804
NASA Astrophysics Data System (ADS)
Budroni, M. A.
2015-12-01
Cross diffusion, whereby a flux of a given species entrains the diffusive transport of another species, can trigger buoyancy-driven hydrodynamic instabilities at the interface of initially stable stratifications. Starting from a simple three-component case, we introduce a theoretical framework to classify cross-diffusion-induced hydrodynamic phenomena in two-layer stratifications under the action of the gravitational field. A cross-diffusion-convection (CDC) model is derived by coupling the fickian diffusion formalism to Stokes equations. In order to isolate the effect of cross-diffusion in the convective destabilization of a double-layer system, we impose a starting concentration jump of one species in the bottom layer while the other one is homogeneously distributed over the spatial domain. This initial configuration avoids the concurrence of classic Rayleigh-Taylor or differential-diffusion convective instabilities, and it also allows us to activate selectively the cross-diffusion feedback by which the heterogeneously distributed species influences the diffusive transport of the other species. We identify two types of hydrodynamic modes [the negative cross-diffusion-driven convection (NCC) and the positive cross-diffusion-driven convection (PCC)], corresponding to the sign of this operational cross-diffusion term. By studying the space-time density profiles along the gravitational axis we obtain analytical conditions for the onset of convection in terms of two important parameters only: the operational cross-diffusivity and the buoyancy ratio, giving the relative contribution of the two species to the global density. The general classification of the NCC and PCC scenarios in such parameter space is supported by numerical simulations of the fully nonlinear CDC problem. The resulting convective patterns compare favorably with recent experimental results found in microemulsion systems.
Fluctuating shells under pressure
Paulose, Jayson; Vliegenthart, Gerard A.; Gompper, Gerhard; Nelson, David R.
2012-01-01
Thermal fluctuations strongly modify the large length-scale elastic behavior of cross-linked membranes, giving rise to scale-dependent elastic moduli. Whereas thermal effects in flat membranes are well understood, many natural and artificial microstructures are modeled as thin elastic shells. Shells are distinguished from flat membranes by their nonzero curvature, which provides a size-dependent coupling between the in-plane stretching modes and the out-of-plane undulations. In addition, a shell can support a pressure difference between its interior and its exterior. Little is known about the effect of thermal fluctuations on the elastic properties of shells. Here, we study the statistical mechanics of shape fluctuations in a pressurized spherical shell, using perturbation theory and Monte Carlo computer simulations, explicitly including the effects of curvature and an inward pressure. We predict novel properties of fluctuating thin shells under point indentations and pressure-induced deformations. The contribution due to thermal fluctuations increases with increasing ratio of shell radius to thickness and dominates the response when the product of this ratio and the thermal energy becomes large compared with the bending rigidity of the shell. Thermal effects are enhanced when a large uniform inward pressure acts on the shell and diverge as this pressure approaches the classical buckling transition of the shell. Our results are relevant for the elasticity and osmotic collapse of microcapsules. PMID:23150558
Some aspects of the hydrodynamics of the microencapsulation route to NIF mandrels
Gresho, P M
1998-10-20
Spherical plastic shells for use as mandrels for the fabrication of ICF (Inertial Confinement Fusion) target capsules can be produced by solution-based microencapsulation techniques. The specifications for these mandrels in terms of sphericity are extremely rigorous, and it is clear that various aspects of the solution hydrodynamics associated with their production are important in controlling the quality of the final product. This paper explores what we know (and need to know) about the hydrodynamics of the microencapsulation process in order to lay the foundation for process improvements as well as identify inherent limits.
NASA Astrophysics Data System (ADS)
Venturi, Daniele
2005-11-01
Stochastic bifurcations and stability of natural convective flows in 2d and 3d enclosures are investigated by the multi-element generalized polynomial chaos (ME-gPC) method (Xiu and Karniadakis, SISC, vol. 24, 2002). The Boussinesq approximation for the variation of physical properties is assumed. The stability analysis is first carried out in a deterministic sense, to determine steady state solutions and primary and secondary bifurcations. Stochastic simulations are then conducted around discontinuities and transitional regimes. It is found that these highly non-linear phenomena can be efficiently captured by the ME-gPC method. Finally, the main findings of the stochastic analysis and their implications for heat transfer will be discussed.
Wake topology and hydrodynamic performance of low-aspect-ratio flapping foils
NASA Astrophysics Data System (ADS)
Dong, H.; Mittal, R.; Najjar, F. M.
2006-11-01
Numerical simulations are used to investigate the effect of aspect ratio on the wake topology and hydrodynamic performance of thin ellipsoidal flapping foils. The study is motivated by the quest to understand the hydrodynamics of fish pectoral fins. The simulations employ an immersed boundary method that allows us to simulate flows with complex moving boundaries on fixed Cartesian grids. A detailed analysis of the vortex topology shows that the wake of low-aspect-ratio flapping foils is dominated by two sets of interconnected vortex loops that evolve into distinct vortex rings as they convect downstream. The flow downstream of these flapping foils is characterized by two oblique jets and the implications of this characteristic on the hydrodynamic performance are examined. Simulations are also used to examine the thrust and propulsive efficiency of these foils over a range of Strouhal and Reynolds numbers as well as pitch-bias angles.
Geroux, Christopher M.; Deupree, Robert G.
2014-03-10
We have developed a multi-dimensional radiation hydrodynamics code to simulate the interaction of radial stellar pulsation and convection for full-amplitude pulsating models. Convection is computed using large eddy simulations. Here, we perform three-dimensional (3D) simulations of RR Lyrae stars for comparison with previously reported 2D simulations. We find that the time-dependent behavior of the peak convective flux on pulsation phase is very similar in both the 2D and 3D calculations. The growth rates of the pulsation in the 2D calculations are about 0.1% higher than in the 3D calculations. The amplitude of the light curve for a 6500 K RR Lyrae model is essentially the same for our 2D and 3D calculations, as is the rising light curve. There are differences in the slope at various times during falling light.
Black brane entropy and hydrodynamics
Booth, Ivan; Heller, Michal P.; Spalinski, Michal
2011-03-15
Recent advances in holography have led to the formulation of fluid-gravity duality, a remarkable connection between the hydrodynamics of certain strongly coupled media and dynamics of higher dimensional black holes. This paper introduces a correspondence between phenomenologically defined entropy currents in relativistic hydrodynamics and 'generalized horizons' of near-equilibrium black objects in a dual gravitational description. A general formula is given, expressing the divergence of the entropy current in terms of geometric objects which appear naturally in the gravity dual geometry. The proposed definition is explicitly covariant with respect to boundary diffeomorphisms and reproduces known results when evaluated for the event horizon.
Abnormal pressures as hydrodynamic phenomena
Neuzil, C.E.
1995-01-01
So-called abnormal pressures, subsurface fluid pressures significantly higher or lower than hydrostatic, have excited speculation about their origin since subsurface exploration first encountered them. Two distinct conceptual models for abnormal pressures have gained currency among earth scientists. The static model sees abnormal pressures generally as relict features preserved by a virtual absence of fluid flow over geologic time. The hydrodynamic model instead envisions abnormal pressures as phenomena in which flow usually plays an important role. This paper develops the theoretical framework for abnormal pressures as hydrodynamic phenomena, shows that it explains the manifold occurrences of abnormal pressures, and examines the implications of this approach. -from Author
A Numerical Study on Possible Driving Mechanisms of Core Convection
NASA Astrophysics Data System (ADS)
Breuer, M.; Harder, H.; Hansen, U.
2005-12-01
We present a numerical study on core convection based on a model of a rotating spherical shell where different driving mechanisms are investigated. Two different sources are potentially available to act as driving forces. The first is based on the super adiabatic temperature gradient in the outer core. The second is of chemical nature and is derived from light elements which emerge at the boundary between the inner and the outer core as a result of the freezing process of the outer core. So far it is uncertain if the convective flow in the outer core is dominated by thermal or by chemical buoyancy. Dynamically, both components differ mainly in terms of their diffusional time scales, whereas the chemical component diffuses much faster than the thermal one. To investigate the influence of the driving mechanisms on the convective flow pattern we considered different scenarios including the two extreme cases of purely thermal and purely chemical driven convection and the more likely situation of a joint action of both sources. We focused on the question how the driving mechanisms affects the differential rotation and the spatial distribution of helicity which are particularly important for the dynamo process.
NASA Astrophysics Data System (ADS)
Pasetto, Stefano; Chiosi, Cesare; Cropper, Mark; Grebel, Eva K.
2015-08-01
Convection is one of the fundamental mechanism to transport energy, e.g., in planetology, oceanography as well as in astrophysics where stellar structure customarily described by the mixing-length theory, which makes use of the mixing-length scale parameter to express the convective flux, velocity, and temperature gradients of the convective elements and stellar medium. The mixing-length scale is taken to be proportional to the local pressure scale height of the star, and the proportionality factor (the mixing-length parameter) must be determined by comparing the stellar models to some calibrator, usually the Sun.No strong arguments exist to claim that the mixing-length parameter is the same in all stars and all evolutionary phases. Because of this, all stellar models in literature are hampered by this basic uncertainty.In a recent paper (Pasetto et al 2014) we presented the first fully analytical scale-free theory of convection that does not require the mixing-length parameter. Our self-consistent analytical formulation of convection determines all the properties of convection as a function of the physical behaviour of the convective elements themselves and the surrounding medium (being it a either a star, an ocean, a primordial planet). The new theory of convection is formulated starting from a conventional solution of the Navier-Stokes/Euler equations, i.e. the Bernoulli equation for a perfect fluid, but expressed in a non-inertial reference frame co-moving with the convective elements. In our formalism, the motion of convective cells inside convective-unstable layers is fully determined by a new system of equations for convection in a non-local and time dependent formalism.We obtained an analytical, non-local, time-dependent solution for the convective energy transport that does not depend on any free parameter. The predictions of the new theory in astrophysical environment are compared with those from the standard mixing-length paradigm in stars with
Topological analysis of a mixing flow generated by natural convection
NASA Astrophysics Data System (ADS)
Contreras, Pablo Sebastián; de la Cruz, Luis Miguel; Ramos, Eduardo
2016-01-01
We use topological tools to describe the natural convective motion and the Lagrangian trajectories of a flow generated by stepwise, alternating heating and cooling protocol of opposite vertical walls of a cubic container. The working fluid considered is Newtonian and the system is in presence of the acceleration of gravity but the nonlinear terms are neglected, i.e., we study the piece-wise steady and linear problem. For this convective mixing flow, we identify invariant surfaces formed by the Lagrangian orbits of massless tracers that are topologically equivalent to spherical shells and period-1 lines with elliptic and hyperbolic segments that are located on symmetry planes. We describe the previous features as functions of the Rayleigh number in the range 3 × 104 ≤ Ra ≤ 5 × 105. We show that this system shares properties with other systems with non-toroidal invariant surfaces.
Introduction to the focus issue: chemo-hydrodynamic patterns and instabilities.
De Wit, A; Eckert, K; Kalliadasis, S
2012-09-01
Pattern forming instabilities are often encountered in a wide variety of natural phenomena and technological applications, from self-organization in biological and chemical systems to oceanic or atmospheric circulation and heat and mass transport processes in engineering systems. Spatio-temporal structures are ubiquitous in hydrodynamics where numerous different convective instabilities generate pattern formation and complex spatiotemporal dynamics, which have been much studied both theoretically and experimentally. In parallel, reaction-diffusion processes provide another large family of pattern forming instabilities and spatio-temporal structures which have been analyzed for several decades. At the intersection of these two fields, "chemo-hydrodynamic patterns and instabilities" resulting from the coupling of hydrodynamic and reaction-diffusion processes have been less studied. The exploration of the new instability and symmetry-breaking scenarios emerging from the interplay between chemical reactions, diffusion and convective motions is a burgeoning field in which numerous exciting problems have emerged during the last few years. These problems range from fingering instabilities of chemical fronts and reactive fluid-fluid interfaces to the dynamics of reaction-diffusion systems in the presence of chaotic mixing. The questions to be addressed are at the interface of hydrodynamics, chemistry, engineering or environmental sciences to name a few and, as a consequence, they have started to draw the attention of several communities including both the nonlinear chemical dynamics and hydrodynamics communities. The collection of papers gathered in this Focus Issue sheds new light on a wide range of phenomena in the general area of chemo-hydrodynamic patterns and instabilities. It also serves as an overview of the current research and state-of-the-art in the field. PMID:23020492
Introduction to the Focus Issue: Chemo-Hydrodynamic Patterns and Instabilities
NASA Astrophysics Data System (ADS)
De Wit, A.; Eckert, K.; Kalliadasis, S.
2012-09-01
Pattern forming instabilities are often encountered in a wide variety of natural phenomena and technological applications, from self-organization in biological and chemical systems to oceanic or atmospheric circulation and heat and mass transport processes in engineering systems. Spatio-temporal structures are ubiquitous in hydrodynamics where numerous different convective instabilities generate pattern formation and complex spatiotemporal dynamics, which have been much studied both theoretically and experimentally. In parallel, reaction-diffusion processes provide another large family of pattern forming instabilities and spatio-temporal structures which have been analyzed for several decades. At the intersection of these two fields, "chemo-hydrodynamic patterns and instabilities" resulting from the coupling of hydrodynamic and reaction-diffusion processes have been less studied. The exploration of the new instability and symmetry-breaking scenarios emerging from the interplay between chemical reactions, diffusion and convective motions is a burgeoning field in which numerous exciting problems have emerged during the last few years. These problems range from fingering instabilities of chemical fronts and reactive fluid-fluid interfaces to the dynamics of reaction-diffusion systems in the presence of chaotic mixing. The questions to be addressed are at the interface of hydrodynamics, chemistry, engineering or environmental sciences to name a few and, as a consequence, they have started to draw the attention of several communities including both the nonlinear chemical dynamics and hydrodynamics communities. The collection of papers gathered in this Focus Issue sheds new light on a wide range of phenomena in the general area of chemo-hydrodynamic patterns and instabilities. It also serves as an overview of the current research and state-of-the-art in the field.
A THEORY ON THE CONVECTIVE ORIGINS OF ACTIVE LONGITUDES ON SOLAR-LIKE STARS
Weber, Maria A.; Fan Yuhong; Miesch, Mark S.
2013-06-20
Using a thin flux tube model in a rotating spherical shell of turbulent, solar-like convective flows, we find that the distribution of emerging flux tubes in our simulation is inhomogeneous in longitude, with properties similar to those of active longitudes on the Sun and other solar-like stars. The large-scale pattern of flux emergence our simulations produce exhibits preferred longitudinal modes of low order, drift with respect to a fixed reference system, and alignment across the equator at low latitudes between {+-}15 Degree-Sign . We suggest that these active-longitude-like emergence patterns are the result of columnar, rotationally aligned giant cells present in our convection simulation at low latitudes. If giant convecting cells exist in the bulk of the solar convection zone, this phenomenon, along with differential rotation, could in part provide an explanation for the behavior of active longitudes.
Lindl, J.D.; Bangerter, R.O.
1975-10-31
Multiple shell fusion targets for use with electron beam and ion beam implosion systems are described. The multiple shell targets are of the low-power type and use a separate relatively low Z, low density ablator at large radius for the outer shell, which reduces the focusing and power requirements of the implosion system while maintaining reasonable aspect ratios. The targets use a high Z, high density pusher shell placed at a much smaller radius in order to obtain an aspect ratio small enough to protect against fluid instability. Velocity multiplication between these shells further lowers the power requirements. Careful tuning of the power profile and intershell density results in a low entropy implosion which allows breakeven at low powers. For example, with ion beams as a power source, breakeven at 10-20 Terrawatts with 10 MeV alpha particles for imploding a multiple shell target can be accomplished.
Pore Water Convection in Carbonaceous Chondrite Planetesimals
NASA Astrophysics Data System (ADS)
Travis, B. J.; Schubert, G.
2004-12-01
initial temperature, we use 170 K, assume a constant exterior temperature of 170 K, and apply a radiation surface temperature boundary condition. We then consider variations from the reference case for three variables: permeability (10 darcys), radius (80 km) and radiogenic heat content (50 % increase). Our simulations demonstrate that hydrothermal convection should occur for a range of parameter values and would last for several millions of years. In all of the simulations, radiogenic heating creates a water phase in about 0.6 Myr. The liquid phase lasts at least 4, to over 20 Myr, depending on the case. The center warms to peak temperatures of 360 to 450 K. Convection starts after sufficient cooling at the outer regions (but inside the outer frozen shell) has occurred to create a sufficiently strong radial temperature gradient. In these simulations, boiling does not occur, but, for a time, the systems are not far from that state. In all the simulations the convection is characterized by a mix of plumes and sheets, with plumes sharply defined for the more strongly convecting cases (10 darcys, and 50% increased heating cases). Roughly half the interior experiences water fluxes of 100--200 pore volumes. High pore volume flux facilitates extensive chemical reactions.
Hydrodynamic slip in silicon nanochannels
NASA Astrophysics Data System (ADS)
Ramos-Alvarado, Bladimir; Kumar, Satish; Peterson, G. P.
2016-03-01
Equilibrium and nonequilibrium molecular dynamics simulations were performed to better understand the hydrodynamic behavior of water flowing through silicon nanochannels. The water-silicon interaction potential was calibrated by means of size-independent molecular dynamics simulations of silicon wettability. The wettability of silicon was found to be dependent on the strength of the water-silicon interaction and the structure of the underlying surface. As a result, the anisotropy was found to be an important factor in the wettability of these types of crystalline solids. Using this premise as a fundamental starting point, the hydrodynamic slip in nanoconfined water was characterized using both equilibrium and nonequilibrium calculations of the slip length under low shear rate operating conditions. As was the case for the wettability analysis, the hydrodynamic slip was found to be dependent on the wetted solid surface atomic structure. Additionally, the interfacial water liquid structure was the most significant parameter to describe the hydrodynamic boundary condition. The calibration of the water-silicon interaction potential performed by matching the experimental contact angle of silicon led to the verification of the no-slip condition, experimentally reported for silicon nanochannels at low shear rates.
Topics in fluctuating nonlinear hydrodynamics
Milner, S.T.
1986-01-01
Models of fluctuating nonlinear hydrodynamics have enjoyed much success in explaining the effect of long-wavelength fluctuations in diverse hydrodynamic systems. This thesis explores two such problems; in both, the body of hydrodynamic assumptions powerfully constrains the predictions of a well-posed theory. The effects of layer fluctuations in smectic-A liquid crystals are first examined. The static theory (introduced by Grinstein and Pelcovits) is reviewed. Ward identities, resulting from the arbitrariness of the layering direction, are derived and exploited. The static results motivate an examination of dynamic fluctuation effects. A new sound-damping experiment is proposed that would probe singular dependence of viscosities on applied stress. A theory of Procaccia and Gitterman that reaction rates of chemically reacting binary mixtures are drastically reduced near their thermodynamic critical points is analyzed. Hydrodynamic arguments and Van Hove theory are applied, concluding that the PG idea is drastically slowed, and spatially varying composition fluctuations are at best slowed down over a narrow range of wavenumbers.
Imperfection Insensitive Thin Shells
NASA Astrophysics Data System (ADS)
Ning, Xin
The buckling of axially compressed cylindrical shells and externally pressurized spherical shells is extremely sensitive to even very small geometric imperfections. In practice this issue is addressed by either using overly conservative knockdown factors, while keeping perfect axial or spherical symmetry, or adding closely and equally spaced stiffeners on shell surface. The influence of imperfection-sensitivity is mitigated, but the shells designed from these approaches are either too heavy or very expensive and are still sensitive to imperfections. Despite their drawbacks, these approaches have been used for more than half a century. This thesis proposes a novel method to design imperfection-insensitive cylindrical shells subject to axial compression. Instead of following the classical paths, focused on axially symmetric or high-order rotationally symmetric cross-sections, the method in this thesis adopts optimal symmetry-breaking wavy cross-sections (wavy shells). The avoidance of imperfection sensitivity is achieved by searching with an evolutionary algorithm for smooth cross-sectional shapes that maximize the minimum among the buckling loads of geometrically perfect and imperfect wavy shells. It is found that the shells designed through this approach can achieve higher critical stresses and knockdown factors than any previously known monocoque cylindrical shells. It is also found that these shells have superior mass efficiency to almost all previously reported stiffened shells. Experimental studies on a design of composite wavy shell obtained through the proposed method are presented in this thesis. A method of making composite wavy shells and a photogrametry technique of measuring full-field geometric imperfections have been developed. Numerical predictions based on the measured geometric imperfections match remarkably well with the experiments. Experimental results confirm that the wavy shells are not sensitive to imperfections and can carry axial compression
Transient thermal convection in microgravity
NASA Technical Reports Server (NTRS)
Dressler, R. F.
1981-01-01
The unsteady two-dimensional thermal convection in a cylinder due to a transient acceleration solved for a step-function excitation. From this, the solution was obtained for an arbitrary time-dependent acceleration. The solutions are valied for sufficiently low Rayleigh numbers and therefore, relevant to microgravity fields. As an example, two graphs are presented for he convection resulting from the movement of an astronaut inside the Shuttle. The analysis can be applied to obtain any other convective flows such as those caused by g-jitter or variable rotation of the Shuttle.
Heat distribution by natural convection
Balcomb, J.D.
1985-01-01
Natural convection can provide adequate heat distribution in many situtations that arise in buildings. This is appropriate, for example, in passive solar buildings where some rooms tend to be more strongly solar heated than others or to reduce the number of heating units required in a building. Natural airflow and heat transport through doorways and other internal building apertures is predictable and can be accounted for in the design. The nature of natural convection is described, and a design chart is presented appropriate to a simple, single-doorway situation. Natural convective loops that can occur in buildings are described and a few design guidelines are presented.
Convective adjustment in baroclinic atmospheres
NASA Technical Reports Server (NTRS)
Emanuel, Kerry A.
1986-01-01
Local convection in planetary atmospheres is generally considered to result from the action of gravity on small regions of anomalous density. That in rotating baroclinic fluids the total potential energy for small scale convection contains a centrifugal as well as a gravitational contribution is shown. Convective adjustment in such an atmosphere results in the establishment of near adiabatic lapse rates of temperature along suitably defined surfaces of constant angular momentum, rather than in the vertical. This leads in general to sub-adiabatic vertical lapse rates. That such an adjustment actually occurs in the earth's atmosphere is shown by example and the magnitude of the effect for several other planetary atmospheres is estimated.
Numerical simulations of the convective flame in white dwarfs
NASA Technical Reports Server (NTRS)
Livne, Eli
1993-01-01
A first step toward better understanding of the mechanism driving convective flames in exploding white dwarfs is presented. The propagation of the convective flame is examined using a two-dimensional implicit hydrodynamical code. The large scales of the instability are captured by the grid while the scales that are smaller than the grid resolution are approximated by a mixing-length approximation. It is found that largescale perturbations (of order of the pressure scale height) do grow significantly during the expansion, leading to a very nonspherical burning front. The combustion rate is strongly enhanced (compared to the unperturbed case) during the first second, but later the expansion of the star suppresses the flame speed, leading to only partial incineration of the nuclear fuel. Our results imply that large-scale perturbations by themselves are not enough to explain the mechanism by which convective flames are driven, and a study of the whole spectrum of relevant perturbations is needed. The implications of these preliminary results on future simulations, in the context of current models for Type Ia supernovae, are discussed.
Realistic Solar Surface Convection Simulations
NASA Technical Reports Server (NTRS)
Stein, Robert F.; Nordlund, Ake
2000-01-01
We perform essentially parameter free simulations with realistic physics of convection near the solar surface. We summarize the physics that is included and compare the simulation results with observations. Excellent agreement is obtained for the depth of the convection zone, the p-mode frequencies, the p-mode excitation rate, the distribution of the emergent continuum intensity, and the profiles of weak photospheric lines. We describe how solar convection is nonlocal. It is driven from a thin surface thermal boundary layer where radiative cooling produces low entropy gas which forms the cores of the downdrafts in which most of the buoyancy work occurs. We show that turbulence and vorticity are mostly confined to the intergranular lanes and underlying downdrafts. Finally, we illustrate our current work on magneto-convection.
Dunn, James C.; Hardee, Harry C.; Striker, Richard P.
1985-01-01
A convective heat flow probe device is provided which measures heat flow and fluid flow magnitude in the formation surrounding a borehole. The probe comprises an elongate housing adapted to be lowered down into the borehole; a plurality of heaters extending along the probe for heating the formation surrounding the borehole; a plurality of temperature sensors arranged around the periphery of the probe for measuring the temperature of the surrounding formation after heating thereof by the heater elements. The temperature sensors and heater elements are mounted in a plurality of separate heater pads which are supported by the housing and which are adapted to be radially expanded into firm engagement with the walls of the borehole. The heat supplied by the heater elements and the temperatures measured by the temperature sensors are monitored and used in providing the desired measurements. The outer peripheral surfaces of the heater pads are configured as segments of a cylinder and form a full cylinder when taken together. A plurality of temperature sensors are located on each pad so as to extend along the length and across the width thereof, with a heating element being located in each pad beneath the temperature sensors. An expansion mechanism driven by a clamping motor provides expansion and retraction of the heater pads and expandable packer-type seals are provided along the probe above and below the heater pads.
Convective microsphere monolayer deposition
NASA Astrophysics Data System (ADS)
Gilchrist, James
2011-03-01
There is perhaps no simpler way of modifying surface chemistry and morphology than surface deposition of particles. Micron-sized microspheres were deposited into thin films via rapid convective deposition, similar to the `coffee ring effect' using a similar method to that studied by Prevo and Velev, Langmuir, 2003. By varying deposition rate and blade angle, the optimal operating ranges in which 2D close-packed arrays of microspheres existed were obtained. Self-assembly of colloidal particles through a balance of electrostatic and capillary forces during solvent evaporation was revealed. These interactions were explored through a model comparing the residence time of a particle in the thin film and the characteristic time of capillary-driven crystallization to describe the morphology and microstructure of deposited particles. Co-deposition of binary suspensions of micron and nanoscale particles was tailored to generate higher-quality surface coatings and a simple theory describes the immergence of instabilities that result in formation of stripes. Optical and biomedical applications that utilize the described nanoscale control over surface morphology will also be discussed.
Dunn, J.C.; Hardee, H.C.; Striker, R.P.
1984-01-09
A convective heat flow probe device is provided which measures heat flow and fluid flow magnitude in the formation surrounding a borehole. The probe comprises an elongate housing adapted to be lowered down into the borehole; a plurality of heaters extending along the probe for heating the formation surrounding the borehole; a plurality of temperature sensors arranged around the periphery of the probe for measuring the temperature of the surrounding formation after heating thereof by the heater elements. The temperature sensors and heater elements are mounted in a plurality of separate heater pads which are supported by the housing and which are adapted to be radially expanded into firm engagement with the walls of the borehole. The heat supplied by the heater elements and the temperatures measured by the temperature sensors are monitored and used in providing the desired measurements. The outer peripheral surfaces of the heater pads are configured as segments of a cylinder and form a full cylinder when taken together. A plurality of temperature sensors are located on each pad so as to extend along the length and across the width thereof, with a heating element being located in each pad beneath the temperature sensors. An expansion mechanism driven by a clamping motor provides expansion and retraction of the heater pads and expandable packet-type seals are provided along the probe above and below the heater pads.
NASA Astrophysics Data System (ADS)
Alaia, Alessandro; Puppo, Gabriella
2012-06-01
In this work we present a non stationary domain decomposition algorithm for multiscale hydrodynamic-kinetic problems, in which the Knudsen number may span from equilibrium to highly rarefied regimes. Our approach is characterized by using the full Boltzmann equation for the kinetic regime, the Compressible Euler equations for equilibrium, with a buffer zone in which the BGK-ES equation is used to represent the transition between fully kinetic to equilibrium flows. In this fashion, the Boltzmann solver is used only when the collision integral is non-stiff, and the mean free path is of the same order as the mesh size needed to capture variations in macroscopic quantities. Thus, in principle, the same mesh size and time steps can be used in the whole computation. Moreover, the time step is limited only by convective terms. Since the Boltzmann solver is applied only in wholly kinetic regimes, we use the reduced noise DSMC scheme we have proposed in Part I of the present work. This ensures a smooth exchange of information across the different domains, with a natural way to construct interface numerical fluxes. Several tests comparing our hybrid scheme with full Boltzmann DSMC computations show the good agreement between the two solutions, on a wide range of Knudsen numbers.
Parameterization of precipitating shallow convection
NASA Astrophysics Data System (ADS)
Seifert, Axel
2015-04-01
Shallow convective clouds play a decisive role in many regimes of the atmosphere. They are abundant in the trade wind regions and essential for the radiation budget in the sub-tropics. They are also an integral part of the diurnal cycle of convection over land leading to the formation of deeper modes of convection later on. Errors in the representation of these small and seemingly unimportant clouds can lead to misforecasts in many situations. Especially for high-resolution NWP models at 1-3 km grid spacing which explicitly simulate deeper modes of convection, the parameterization of the sub-grid shallow convection is an important issue. Large-eddy simulations (LES) can provide the data to study shallow convective clouds and their interaction with the boundary layer in great detail. In contrast to observation, simulations provide a complete and consistent dataset, which may not be perfectly realistic due to the necessary simplifications, but nevertheless enables us to study many aspects of those clouds in a self-consistent way. Today's supercomputing capabilities make it possible to use domain sizes that not only span several NWP grid boxes, but also allow for mesoscale self-organization of the cloud field, which is an essential behavior of precipitating shallow convection. By coarse-graining the LES data to the grid of an NWP model, the sub-grid fluctuations caused by shallow convective clouds can be analyzed explicitly. These fluctuations can then be parameterized in terms of a PDF-based closure. The necessary choices for such schemes like the shape of the PDF, the number of predicted moments, etc., will be discussed. For example, it is shown that a universal three-parameter distribution of total water may exist at scales of O(1 km) but not at O(10 km). In a next step the variance budgets of moisture and temperature in the cloud-topped boundary layer are studied. What is the role and magnitude of the microphysical correlation terms in these equations, which
Influence of convection on microstructure
NASA Technical Reports Server (NTRS)
Wilcox, William R.; Regel, Liya L.
1994-01-01
The primary motivation for this research was to determine the cause for space processing altering the microstructure of some eutectics, especially the MnBi-Bi eutectic. Four primary hypotheses were to be tested under this current grant: (1) A fibrous microstructure is much more sensitive to convection than a lamellar microstructure, which was assumed in our prior theoretical treatment. (2) An interface with one phase projecting out into the melt is much more sensitive to convection than a planar interface, which was assumed in our prior theoretical treatment. (3) The Soret effect is much more important in the absence of convection and has a sufficiently large influence on microstructure that its action can explain the flight results. (4) The microstructure is much more sensitive to convection when the composition of the bulk melt is off eutectic. These hypotheses were tested. It was concluded that none of these can explain the Grumman flight results. Experiments also were performed on the influence of current pulses on MnBi-Bi microstructure. A thorough review was made of all experimental results on the influence of convection on the fiber spacing in rod eutectics, including results from solidification in space or at high gravity, and use of mechanical stirring or a magnetic field. Contradictory results were noted. The predictions of models for convective influences were compared with the experimental results. Vigorous mechanical stirring appears to coarsen the microstructure by altering the concentration field in front of the freezing interface. Gentle convection is believed to alter the microstructure of a fibrous eutectic only when it causes a fluctuating freezing rate with a system for which the kinetics of fiber branching differs from that for fiber termination. These fluctuations may cause the microstructure to coarsen or to become finer, depending on the relative kinetics of these processes. The microstructure of lamellar eutectics is less sensitive to
NASA Astrophysics Data System (ADS)
Liu, Yan
2002-06-01
Some shells from both salt water and fresh water show the phenomenon of iridescence color. Pearls and mother-of-pearls also display this phenomenon. In the past, the cause of the iridescence color was attributed to interference. A scanning electron microscope (SEM) was used to study the surface structure of the shell of the mollusk Pinctada Margaritifera. There is a groove structure of reflection grating on the surface area in where the iridescence color appears. An optic experiment with a laser obtained a diffraction pattern produced by the reflection grating structure of the shell. The study led to a conclusion that the iridescence color of the shell is caused by diffraction. A SEM image of the shells of an abalone Haliotis Rufescens (red abalone) showed a statistically regularly arranged tile structure that serves as a two-dimensional grating. This grating structure causes the iridescence color of the shell of red abalone. The dominant color of the iridescence of shells is caused by the uneven grating efficiency in the visible wavelength range when a shell functions as a reflection grating. The wavelength of the dominant color should be at or near the wavelength of the maximum efficiency of the grating.
Static cylindrical matter shells
NASA Astrophysics Data System (ADS)
Arık, Metin; Delice, Özgür
2005-08-01
Static cylindrical shells composed of massive particles arising from matching of two different Levi-Civita space-times are studied for the shell satisfying either an isotropic or an anisotropic equation of state. We find that these solutions satisfy the energy conditions for certain ranges of the parameters.
Mezzacappa, A.; Calder, A.C.; Guidry, M.W.; Strayer, M.R.; Guidry, M.W.; Strayer, M.R.; Umar, A.S. Bruenn, S.W. Blondin, J.M.
1998-02-01
We couple two-dimensional hydrodynamics to realistic one-dimensional multigroup flux-limited diffusion neutrino transport to investigate proto{endash}neutron star convection in core-collapse supernovae, and more specifically, the interplay between its development and neutrino transport. Our initial conditions, time-dependent boundary conditions, and neutrino distributions for computing neutrino heating, cooling, and deleptonization rates are obtained from one-dimensional simulations that implement multigroup flux-limited diffusion and one-dimensional hydrodynamics. The development and evolution of proto{endash}neutron star convection are investigated for both 15 and 25M{sub {circle_dot}} models, representative of the two classes of stars with compact and extended iron cores, respectively. For both models, in the absence of neutrino transport, the angle-averaged radial and angular convection velocities in the initial Ledoux unstable region below the shock after bounce achieve their peak values in {approximately}20ms, after which they decrease as the convection in this region dissipates. The dissipation occurs as the gradients are smoothed out by convection. This initial proto{endash}neutron star convection episode seeds additional convectively unstable regions farther out beneath the shock. The additional proto{endash}neutron star convection is driven by successive negative entropy gradients that develop as the shock, in propagating out after core bounce, is successively strengthened and weakened by the oscillating inner core. The convection beneath the shock distorts its sphericity, but on the average the shock radius is not boosted significantly relative to its radius in our corresponding one-dimensional models. In the presence of neutrino transport, proto{endash}neutron star convection velocities are too small relative to bulk inflow velocities to result in any significant convective transport of entropy and leptons. This is evident in our two-dimensional entropy
Simulations of Steady Magnetospheric Convection
NASA Astrophysics Data System (ADS)
Lemon, C.; Toffoletto, F.; Sazykin, S.; Wolf, R.
2003-12-01
Steady Magnetospheric Convection in the Earth's magnetosphere is typically defined as a period of several hours of enhanced solar wind driving of the magnetosphere (i.e. the Interplanetary Magnetic Field is southward) during which the magnetosphere is nonetheless devoid of substorm signatures. We present and discuss model results of generic Steady Magnetospheric Convection (SMC) events using the Self-consistent Rice Convection Model. The SRCM consists of two coupled models that are used to separately compute the plasma and magnetic field evolution. The Rice Convection Model (RCM) is a multi-fluid guiding-center plasma drift code used to simulate plasma dynamics under the assumption that convection can be modeled quasi-statically as a sequence of force-balanced states. The RCM has been coupled to an equilibrium solver that computes a magnetic field that is in force-balance (and is therefore self-consistent) with the RCM's plasma distribution. Various levels of steady external driving conditions are imposed in order to contrast the ability of the model magnetosphere to respond to differing rates of energy input and form a steady-state convection pattern. Model results will be compared with empirical SMC morphology.
Isentropic Analysis of Convective Motions
NASA Technical Reports Server (NTRS)
Pauluis, Olivier M.; Mrowiec, Agnieszka A.
2013-01-01
This paper analyzes the convective mass transport by sorting air parcels in terms of their equivalent potential temperature to determine an isentropic streamfunction. By averaging the vertical mass flux at a constant value of the equivalent potential temperature, one can compute an isentropic mass transport that filters out reversible oscillatory motions such as gravity waves. This novel approach emphasizes the fact that the vertical energy and entropy transports by convection are due to the combination of ascending air parcels with high energy and entropy and subsiding air parcels with lower energy and entropy. Such conditional averaging can be extended to other dynamic and thermodynamic variables such as vertical velocity, temperature, or relative humidity to obtain a comprehensive description of convective motions. It is also shown how this approach can be used to determine the mean diabatic tendencies from the three-dimensional dynamic and thermodynamic fields. A two-stream approximation that partitions the isentropic circulation into a mean updraft and a mean downdraft is also introduced. This offers a straightforward way to identify the mean properties of rising and subsiding air parcels. The results from the two-stream approximation are compared with two other definitions of the cloud mass flux. It is argued that the isentropic analysis offers a robust definition of the convective mass transport that is not tainted by the need to arbitrarily distinguish between convection and its environment, and that separates the irreversible convective overturning fromoscillations associated with gravity waves.
Hydrodynamics of Conically-Guided Fast-Ignition Targets
Hatchett, S P; Clark, D; Tabak, M; Turner, R E; Stoeckel, C; Stephens, R B; Shiraga, H; Tanaka, K
2005-09-29
The fast ignition (FI) concept requires the generation of a compact, dense, pure fuel mass accessible to an external ignition source. The current baseline FI target is a shell fitted with a re-entrant cone extending to near its center. Conventional direct or indirect drive collapses the shell near the tip of the cone and then an ultra-intense laser pulse focused to the inside cone tip generates high-energy electrons to ignite the dense fuel. Theoretical investigations of this concept with a modest 2-D calculational scheme have sparsely explored the large design space and the tradeoffs available to optimize compaction of the fuel and maintain the integrity of the cone. Experiments have generally validated the modeling while revealing additional complexities. Away from the cone, the shell collapses much as does a conventional implosion, generating a hot, low-density inner core plasma which exhausts out toward the tip of the cone. The hot, low-density inner core can impede the compaction of the cold fuel, lowering the implosion/burn efficiency and the gain, and jetting toward the cone tip can affect the cone integrity. Thicker initial fuel layers, lower velocity implosions, and drive asymmetries can lead to decreased efficiency in converting implosion kinetic energy into compression. Ignition and burn hydrodynamic studies have revealed strategies for generating additional convergence and compression in the FI context. We describe 2-D and 1-D approaches to optimizing designs for cone-guided fast-ignition.
NASA Astrophysics Data System (ADS)
Bentley, Ian
2016-03-01
The appearance and disappearance of nuclear shells and sub-shells has been at the forefront of recent nuclear theory and experimental efforts. This work extends a previously introduced method of structural analysis and applies it to protons in an attempt to provide a more complete understanding of shell structure in nuclei. Experimental observables including the mean square charge radius, as well as other spectroscopic and mass related quantities have been analyzed for shell structure features. A preliminary analysis using Nilsson coefficient fits of experimental quantities, such as odd mass spectra and B(E2) values, along isotopic chains will be discussed. The goal of this work is to provide a means of predicting shell structure far from stability. This work was supported by the National Science Foundation under Grants PHY1419765 and PHY0822648.
NASA Technical Reports Server (NTRS)
Davila, Carlos G.; Camanho, Pedro P.; Turon, Albert
2007-01-01
A cohesive element for shell analysis is presented. The element can be used to simulate the initiation and growth of delaminations between stacked, non-coincident layers of shell elements. The procedure to construct the element accounts for the thickness offset by applying the kinematic relations of shell deformation to transform the stiffness and internal force of a zero-thickness cohesive element such that interfacial continuity between the layers is enforced. The procedure is demonstrated by simulating the response and failure of the Mixed Mode Bending test and a skin-stiffener debond specimen. In addition, it is shown that stacks of shell elements can be used to create effective models to predict the inplane and delamination failure modes of thick components. The results indicate that simple shell models can retain many of the necessary predictive attributes of much more complex 3D models while providing the computational efficiency that is necessary for design.
The creation of AGB fallback shells
NASA Astrophysics Data System (ADS)
Chen, Zhuo; Frank, Adam; Blackman, Eric G.; Nordhaus, Jason
2016-04-01
The possibility that mass ejected during Asymptotic Giant Branch (AGB) stellar evolution phases falls back towards the star has been suggested in applications ranging from the formation of accretion discs to the powering of late-thermal pulses. In this paper, we seek to explicate the properties of fallback flow trajectories from mass-loss events. We focus on a transient phase of mass ejection with sub-escape speeds, followed by a phase of a typical AGB wind. We solve the problem using both hydrodynamic simulations and a simplified one-dimensional analytic model that matches the simulations. For a given set of initial wind characteristics, we find a critical shell velocity that distinguishes between `shell fallback' and `shell escape'. We discuss the relevance of our results for both single and binary AGB stars. In particular, we discuss how our results help to frame further studies of fallback as a mechanism for forming the substantial population of observed post-AGB stars with dusty discs.
Anomalous hydrodynamics of fractional quantum Hall states
Wiegmann, P.
2013-09-15
We propose a comprehensive framework for quantum hydrodynamics of the fractional quantum Hall (FQH) states. We suggest that the electronic fluid in the FQH regime can be phenomenologically described by the quantized hydrodynamics of vortices in an incompressible rotating liquid. We demonstrate that such hydrodynamics captures all major features of FQH states, including the subtle effect of the Lorentz shear stress. We present a consistent quantization of the hydrodynamics of an incompressible fluid, providing a powerful framework to study the FQH effect and superfluids. We obtain the quantum hydrodynamics of the vortex flow by quantizing the Kirchhoff equations for vortex dynamics.
Hydrodynamic simulations with the Godunov smoothed particle hydrodynamics
NASA Astrophysics Data System (ADS)
Murante, G.; Borgani, S.; Brunino, R.; Cha, S.-H.
2011-10-01
We present results based on an implementation of the Godunov smoothed particle hydrodynamics (GSPH), originally developed by Inutsuka, in the GADGET-3 hydrodynamic code. We first review the derivation of the GSPH discretization of the equations of moment and energy conservation, starting from the convolution of these equations with the interpolating kernel. The two most important aspects of the numerical implementation of these equations are (a) the appearance of fluid velocity and pressure obtained from the solution of the Riemann problem between each pair of particles, and (b) the absence of an artificial viscosity term. We carry out three different controlled hydrodynamical three-dimensional tests, namely the Sod shock tube, the development of Kelvin-Helmholtz instabilities in a shear-flow test and the 'blob' test describing the evolution of a cold cloud moving against a hot wind. The results of our tests confirm and extend in a number of aspects those recently obtained by Cha, Inutsuka & Nayakshin: (i) GSPH provides a much improved description of contact discontinuities, with respect to smoothed particle hydrodynamics (SPH), thus avoiding the appearance of spurious pressure forces; (ii) GSPH is able to follow the development of gas-dynamical instabilities, such as the Kevin-Helmholtz and the Rayleigh-Taylor ones; (iii) as a result, GSPH describes the development of curl structures in the shear-flow test and the dissolution of the cold cloud in the 'blob' test. Besides comparing the results of GSPH with those from standard SPH implementations, we also discuss in detail the effect on the performances of GSPH of changing different aspects of its implementation: choice of the number of neighbours, accuracy of the interpolation procedure to locate the interface between two fluid elements (particles) for the solution of the Riemann problem, order of the reconstruction for the assignment of variables at the interface, choice of the limiter to prevent oscillations of
NASA Astrophysics Data System (ADS)
Shvydky, A.; Hohenberger, M.; Radha, P. B.; Rosenberg, M. J.; Craxton, R. S.; Goncharov, V. N.; Marozas, J. A.; Marshall, F. J.; McKenty, P. W.; Regan, S. P.; Sangster, T. C.
2015-11-01
Control of shell nonuniformities imprinted by the laser and amplified by hydrodynamic instabilities in the imploding target is critical to the success of polar-direct-drive ignition at the National Ignition Facility (NIF). To develop a platform for laser-imprint studies, hydrodynamic instability growth experiments in laser-driven implosions were performed on the NIF. The experiments used cone-in-shell targets with sinusoidal modulations of various wavelengths and amplitudes machined on the surface. Throughshell x-ray radiography was used to measure optical depth variations, from which the amplitudes of the shell areal-density modulations were extracted. Results of DRACO simulations of the growth of preimposed modulations and imprint-seeded perturbations will be presented and compared with the experimental data. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
Fridley, Krista M; Nair, Rekha; McDevitt, Todd C
2014-12-01
During development, cell fate specification and tissue development are orchestrated by the sequential presentation of soluble growth factors (GF) and extracellular matrix (ECM) molecules. Similarly, differentiation of stem cells in vitro relies upon the temporal presence of extracellular cues within the microenvironment. Hydrodynamic culture systems are not limited by volume restrictions and therefore offer several practical advantages for scalability over static cultures; however, hydrodynamic cultures expose cells to physical parameters not present in static culture, such as fluid shear stress and mass transfer through convective forces. In this study, the differences between static and hydrodynamic culture conditions on the expression of ECM and GF molecules during the differentiation of mouse embryonic stem cells were examined at both the gene and protein level. The expression of ECM and GF genes exhibited an early decrease in static cultures based on heat map and hierarchical clustering analysis and a relative delayed increase in hydrodynamic cultures. Although the temporal patterns of specific ECM and GF protein expression were comparable between static and hydrodynamic cultures, several notable differences in the magnitudes of expression were observed at similar time points. These results describe the establishment of an analytical framework that can be used to examine the expression patterns of ECM and GF molecules expressed by pluripotent stem cells undergoing differentiation as 3D multicellular aggregates under different culture conditions, and suggest that physical parameters of stem cell microenvironments can alter endogenous ECM and GF expression profiles that may, in turn, influence cell fate decisions. PMID:25423310
Pebay, Cécile; Sella, Catherine; Thouin, Laurent; Amatore, Christian
2013-12-17
Mass transport at infinite regular arrays of microband electrodes was investigated theoretically and experimentally in unstirred solutions. Even in the absence of forced hydrodynamics, natural convection limits the convection-free domain up to which diffusion layers may expand. Hence, several regimes of mass transport may take place according to the electrode size, gap between electrodes, time scale of the experiment, and amplitude of natural convection. They were identified through simulation by establishing zone diagrams that allowed all relative contributions to mass transport to be delineated. Dynamic and steady-state regimes were compared to those achieved at single microband electrodes. These results were validated experimentally by monitoring the chronoamperometric responses of arrays with different ratios of electrode width to gap distance and by mapping steady-state concentration profiles above their surface through scanning electrochemical microscopy. PMID:24283775
The role of hard turbulent thermal convection in the Earth's early thermal evolution
NASA Technical Reports Server (NTRS)
Hansen, Ulli; Yuen, David A.; Zhao, Wuling; Malevsky, Andrei V.
1992-01-01
In the last several years great progress was made in the study of a new transition in thermal convection, called hard turbulence. Initial experiments were conducted with helium gas, then with water. It was shown that for base-heated Newtonian convection a transition occurred at Rayleigh numbers between 10(exp 7) and 10(exp 8). This transition is characterized by the appearance of disconnected plume structures in contrast to continuous plumes with mushroom-shaped tops found for lower Rayleigh numbers. This new hydrodynamic transition is expected to play an important role in reshaping our concepts of mantle convection in the early stages of planetary evolution. We have conducted two-dimensional calculations for large and small aspect-ratio configuration to see whether such a transition would take place for infinite Prandtl number fluids.
Hydrodynamics from Landau initial conditions
Sen, Abhisek; Gerhard, Jochen; Torrieri, Giorgio; Read jr, Kenneth F.; Wong, Cheuk-Yin
2015-01-01
We investigate ideal hydrodynamic evolution, with Landau initial conditions, both in a semi-analytical 1+1D approach and in a numerical code incorporating event-by-event variation with many events and transverse density inhomogeneities. The object of the calculation is to test how fast would a Landau initial condition transition to a commonly used boost-invariant expansion. We show that the transition to boost-invariant flow occurs too late for realistic setups, with corrections of O (20 - 30%) expected at freezeout for most scenarios. Moreover, the deviation from boost-invariance is correlated with both transverse flow and elliptic flow, with the more highly transversely flowing regions also showing the most violation of boost invariance. Therefore, if longitudinal flow is not fully developed at the early stages of heavy ion collisions, 2+1 dimensional hydrodynamics is inadequate to extract transport coefficients of the quark-gluon plasma. Based on [1, 2
Algorithm refinement for fluctuating hydrodynamics
Williams, Sarah A.; Bell, John B.; Garcia, Alejandro L.
2007-07-03
This paper introduces an adaptive mesh and algorithmrefinement method for fluctuating hydrodynamics. This particle-continuumhybrid simulates the dynamics of a compressible fluid with thermalfluctuations. The particle algorithm is direct simulation Monte Carlo(DSMC), a molecular-level scheme based on the Boltzmann equation. Thecontinuum algorithm is based on the Landau-Lifshitz Navier-Stokes (LLNS)equations, which incorporate thermal fluctuations into macroscopichydrodynamics by using stochastic fluxes. It uses a recently-developedsolver for LLNS, based on third-order Runge-Kutta. We present numericaltests of systems in and out of equilibrium, including time-dependentsystems, and demonstrate dynamic adaptive refinement by the computationof a moving shock wave. Mean system behavior and second moment statisticsof our simulations match theoretical values and benchmarks well. We findthat particular attention should be paid to the spectrum of the flux atthe interface between the particle and continuum methods, specificallyfor the non-hydrodynamic (kinetic) time scales.
Radiative-convective instability
NASA Astrophysics Data System (ADS)
Emanuel, Kerry; Wing, Allison A.; Vincent, Emmanuel M.
2014-03-01
equilibrium (RCE) is a simple paradigm for the statistical equilibrium the earth's climate would exhibit in the absence of lateral energy transport. It has generally been assumed that for a given solar forcing and long-lived greenhouse gas concentration, such a state would be unique, but recent work suggests that more than one stable equilibrium may be possible. Here we show that above a critical specified sea surface temperature, the ordinary RCE state becomes linearly unstable to large-scale overturning circulations. The instability migrates the RCE state toward one of the two stable equilibria first found by Raymond and Zeng (2000). It occurs when the clear-sky infrared opacity of the lower troposphere becomes so large, owing to high water vapor concentration, that variations of the radiative cooling of the lower troposphere are governed principally by variations in upper tropospheric water vapor. We show that the instability represents a subcritical bifurcation of the ordinary RCE state, leading to either a dry state with large-scale descent, or to a moist state with mean ascent; these states may be accessed by finite amplitude perturbations to ordinary RCE in the subcritical state, or spontaneously in the supercritical state. As first suggested by Raymond (2000) and Sobel et al. (2007), the latter corresponds to the phenomenon of self-aggregation of moist convection, taking the form of cloud clusters or tropical cyclones. We argue that the nonrobustness of self-aggregation in cloud system resolving models may be an artifact of running such models close to the critical temperature for instability.
Magnetic energy dissipation and mean magnetic field generation in planar convection-driven dynamos.
Tilgner, A
2014-07-01
A numerical study of dynamos in rotating convecting plane layers is presented which focuses on magnetic energies and dissipation rates and the generation of mean fields (where the mean is taken over horizontal planes). The scaling of the magnetic energy with the flux Rayleigh number is different from the scaling proposed in spherical shells, whereas the same dependence of the magnetic dissipation length on the magnetic Reynolds number is found for the two geometries. Dynamos both with and without mean field exist in rapidly rotating convecting plane layers.
Yu, Xiaoli; Sun, Zheng; Huang, Rui; Zhang, Yu; Huang, Yuqi
2015-01-01
Thermal effects such as conduction, convection and viscous dissipation are important to lubrication performance, and they vary with the friction conditions. These variations have caused some inconsistencies in the conclusions of different researchers regarding the relative contributions of these thermal effects. To reveal the relationship between the contributions of the thermal effects and the friction conditions, a steady-state THD analysis model was presented. The results indicate that the contribution of each thermal effect sharply varies with the Reynolds number and temperature. Convective effect could be dominant under certain conditions. Additionally, the accuracy of some simplified methods of thermo-hydrodynamic analysis is further discussed.
Yu, Xiaoli; Sun, Zheng; Huang, Rui; Zhang, Yu; Huang, Yuqi
2015-01-01
Thermal effects such as conduction, convection and viscous dissipation are important to lubrication performance, and they vary with the friction conditions. These variations have caused some inconsistencies in the conclusions of different researchers regarding the relative contributions of these thermal effects. To reveal the relationship between the contributions of the thermal effects and the friction conditions, a steady-state THD analysis model was presented. The results indicate that the contribution of each thermal effect sharply varies with the Reynolds number and temperature. Convective effect could be dominant under certain conditions. Additionally, the accuracy of some simplified methods of thermo-hydrodynamic analysis is further discussed. PMID:26244665
Particle hydrodynamics with tessellation techniques
NASA Astrophysics Data System (ADS)
Heß, Steffen; Springel, Volker
2010-08-01
Lagrangian smoothed particle hydrodynamics (SPH) is a well-established approach to model fluids in astrophysical problems, thanks to its geometric flexibility and ability to automatically adjust the spatial resolution to the clumping of matter. However, a number of recent studies have emphasized inaccuracies of SPH in the treatment of fluid instabilities. The origin of these numerical problems can be traced back to spurious surface effects across contact discontinuities, and to SPH's inherent prevention of mixing at the particle level. We here investigate a new fluid particle model where the density estimate is carried out with the help of an auxiliary mesh constructed as the Voronoi tessellation of the simulation particles instead of an adaptive smoothing kernel. This Voronoi-based approach improves the ability of the scheme to represent sharp contact discontinuities. We show that this eliminates spurious surface tension effects present in SPH and that play a role in suppressing certain fluid instabilities. We find that the new `Voronoi Particle Hydrodynamics' (VPH) described here produces comparable results to SPH in shocks, and better ones in turbulent regimes of pure hydrodynamical simulations. We also discuss formulations of the artificial viscosity needed in this scheme and how judiciously chosen correction forces can be derived in order to maintain a high degree of particle order and hence a regular Voronoi mesh. This is especially helpful in simulating self-gravitating fluids with existing gravity solvers used for N-body simulations.
The Gulf of Lions' hydrodynamics
NASA Astrophysics Data System (ADS)
Millot, Claude
1990-09-01
From an hydrodynamical point of view, the Gulf of Lions can be considered as a very complex region, because several intense and highly variable phenomena compete simultaneously. These processes include the powerful general circulation along the continental slope, the formation of dense water both on the shelf and offshore, a seasonal variation of stratification and the extreme energies associated with meteorological conditions. The cloudless atmospheric conditions encountered generally in the northwestern Mediterranean Sea have enabled us to make use of, over more than 10 years, large use of various satellite imageries. The large space and time variability of the hydrodynamical features, a complex topography and a noticeable fishing activity, represent certain difficulties to the collection of observations in situ. We have obtained, therefore, only a few current time series on the slope; those obtained on the shelf only cover the summer period. Models have been elaborated to help us understand the reasons for the general circulation. Observational programmes to be carried out in the forthcoming years will probably provide us with more definitive results on the Gulf of Lions' hydrodynamics.
Low Mach number fluctuating hydrodynamics of multispecies liquid mixtures
Donev, Aleksandar Bhattacharjee, Amit Kumar; Nonaka, Andy; Bell, John B.; Garcia, Alejandro L.
2015-03-15
We develop a low Mach number formulation of the hydrodynamic equations describing transport of mass and momentum in a multispecies mixture of incompressible miscible liquids at specified temperature and pressure, which generalizes our prior work on ideal mixtures of ideal gases [Balakrishnan et al., “Fluctuating hydrodynamics of multispecies nonreactive mixtures,” Phys. Rev. E 89 013017 (2014)] and binary liquid mixtures [Donev et al., “Low mach number fluctuating hydrodynamics of diffusively mixing fluids,” Commun. Appl. Math. Comput. Sci. 9(1), 47-105 (2014)]. In this formulation, we combine and extend a number of existing descriptions of multispecies transport available in the literature. The formulation applies to non-ideal mixtures of arbitrary number of species, without the need to single out a “solvent” species, and includes contributions to the diffusive mass flux due to gradients of composition, temperature, and pressure. Momentum transport and advective mass transport are handled using a low Mach number approach that eliminates fast sound waves (pressure fluctuations) from the full compressible system of equations and leads to a quasi-incompressible formulation. Thermal fluctuations are included in our fluctuating hydrodynamics description following the principles of nonequilibrium thermodynamics. We extend the semi-implicit staggered-grid finite-volume numerical method developed in our prior work on binary liquid mixtures [Nonaka et al., “Low mach number fluctuating hydrodynamics of binary liquid mixtures,” http://arxiv.org/abs/1410.2300 (2015)] and use it to study the development of giant nonequilibrium concentration fluctuations in a ternary mixture subjected to a steady concentration gradient. We also numerically study the development of diffusion-driven gravitational instabilities in a ternary mixture and compare our numerical results to recent experimental measurements [Carballido-Landeira et al., “Mixed-mode instability of a
A rigid and weathered ice shell on Titan.
Hemingway, D; Nimmo, F; Zebker, H; Iess, L
2013-08-29
Several lines of evidence suggest that Saturn's largest moon, Titan, has a global subsurface ocean beneath an outer ice shell 50 to 200 kilometres thick. If convection is occurring, the rigid portion of the shell is expected to be thin; similarly, a weak, isostatically compensated shell has been proposed to explain the observed topography. Here we report a strong inverse correlation between gravity and topography at long wavelengths that are not dominated by tides and rotation. We argue that negative gravity anomalies (mass deficits) produced by crustal thickening at the base of the ice shell overwhelm positive gravity anomalies (mass excesses) produced by the small surface topography, giving rise to this inverse correlation. We show that this situation requires a substantially rigid ice shell with an elastic thickness exceeding 40 kilometres, and hundreds of metres of surface erosion and deposition, consistent with recent estimates from local features. Our results are therefore not compatible with a geologically active, low-rigidity ice shell. After extrapolating to wavelengths that are controlled by tides and rotation, we suggest that Titan's moment of inertia may be even higher (that is, Titan may be even less centrally condensed) than is currently thought. PMID:23985871
Year of Tropical Convection (YOTC)
NASA Astrophysics Data System (ADS)
Moncrieff, M. W.; Waliser, D. E.
2009-05-01
Tropical convection and the multi-scale organization of precipitating convection are associated with scale interactions that are fundamental to the atmospheric circulation and its interaction with the ocean. The realistic representation of tropical convection and its multi-scale organization is a long-standing challenge for numerical weather prediction and climate models. Incomplete knowledge and practical issues disadvantage the representation of important phenomena and processes in global models, such as the ITCZ, monsoons, MJO, and easterly waves and tropical cyclones. The tropical-extratropical interactions of tropical convection are key aspects of the Predictability and Dynamical Processes of THORPEX. The WCRP and WWRP/THORPEX are jointly coordinating a year of observing, modeling, and forecasting with a focus on the multi-scale organization of tropical convection, prediction, and predictability: Year of Tropical Convection (YOTC). Satellite, in-situ, and field-campaign measurements (e.g., TPARC), operational prediction, and cloud-system resolving models will be utilized. The temporal scales addressed, up to seasonal, enables the above phenomena to be modeled at high resolution, and seamless prediction issues at the intersection of weather and climate addressed. The 'Year', the period 1 May 2008 - 31 October 2009, began with the archiving of ECMWF T799 (i.e., 25 km) products: i) complete global analysis; ii) deterministic forecasts; and iii) special diagnostics. Plans are underway to obtain similar NCEP and NASA GEOS-5 data, and to integrate various multi-sensor satellite products. The YOTC Science Plan, which is available at http://www.wmo.int/pages/prog/arep/wwrp/new/documents/ YOTC_Science_Plan.pdf, has been published as a WMO Technical Document. The YOTC Implementation Plan, presently being drafted, will be discussed and finalized at an international workshop in July 2009. This talk summarizes programmatic aspects; science issues involving the multiscale
Update on Thermal and Hydrodynamic Simulations on LMJ Cryogenic Targets
Moll, G.; Charton, S.
2004-03-15
The temperature of the cryogenic target inside the hohlraum has been studied with a computational fluid dynamics code (FLUENT). Specific models have been developed and used for both thermal and hydrodynamic calculations.With thermal calculations only, we first have found the optimum heat flux required to counteract the effect of the laser entrance windows. This heat flux is centered on the hohlraum wall along the axis of revolution. With this heat flux, the temperature surface profiles of the capsule and the DT ice layer have been significantly reduced. Second, the sensitivity of the target temperature profiles (capsule and DT layer) relatively to capsule displacement has been determined. Thirdly, the effect of the shield extraction (shield surrounding the cryogenic structure) has been studied and has indicated that the target lifetime before the laser shot is less than 1s. Meanwhile, with hydrodynamic simulations, we have investigated the surface temperature profiles alteration due to He and H{sub 2} mixture convection within the hohlraum.In order to find out the variations between different configurations, results of these studies are given with seven significant digit outputs. Those results only indicate a trend because of the material's properties incertitude and the code approximation.
Tropical deep convective cloud morphology
NASA Astrophysics Data System (ADS)
Igel, Matthew R.
A cloud-object partitioning algorithm is developed. It takes contiguous CloudSat cloudy regions and identifies various length scales of deep convective clouds from a tropical, oceanic subset of data. The methodology identifies a level above which anvil characteristics become important by analyzing the cloud object shape. Below this level in what is termed the pedestal region, convective cores are identified based on reflectivity maxima. Identifying these regions allows for the assessment of length scales of the anvil and pedestal of the deep convective clouds. Cloud objects are also appended with certain environmental quantities from the ECMWF reanalysis. Simple geospatial and temporal assessments show that the cloud object technique agrees with standard observations of local frequency of deep-convective cloudiness. Additionally, the nature of cloud volume scale populations is investigated. Deep convection is seen to exhibit power-law scaling. It is suggested that this scaling has implications for the continuous, scale invariant, and random nature of the physics controlling tropical deep convection and therefore on the potentially unphysical nature of contemporary convective parameterizations. Deep-convective clouds over tropical oceans play important roles in Earth's climate system. The response of tropical, deep convective clouds to sea surface temperatures (SSTs) is investigated using this new data set. Several previously proposed feedbacks are examined: the FAT hypothesis, the Iris hypothesis, and the Thermostat hypothesis. When the data are analyzed per cloud object, each hypothesis is broadly found to correctly predict cloud behavior in nature, although it appears that the FAT hypothesis needs a slight modification to allow for cooling cloud top temperatures with increasing SSTs. A new response that shows that the base temperature of deep convective anvils remains approximately constant with increasing SSTs is introduced. These cloud-climate feedbacks are
Pencil: Finite-difference Code for Compressible Hydrodynamic Flows
NASA Astrophysics Data System (ADS)
Brandenburg, Axel; Dobler, Wolfgang
2010-10-01
The Pencil code is a high-order finite-difference code for compressible hydrodynamic flows with magnetic fields. It is highly modular and can easily be adapted to different types of problems. The code runs efficiently under MPI on massively parallel shared- or distributed-memory computers, like e.g. large Beowulf clusters. The Pencil code is primarily designed to deal with weakly compressible turbulent flows. To achieve good parallelization, explicit (as opposed to compact) finite differences are used. Typical scientific targets include driven MHD turbulence in a periodic box, convection in a slab with non-periodic upper and lower boundaries, a convective star embedded in a fully nonperiodic box, accretion disc turbulence in the shearing sheet approximation, self-gravity, non-local radiation transfer, dust particle evolution with feedback on the gas, etc. A range of artificial viscosity and diffusion schemes can be invoked to deal with supersonic flows. For direct simulations regular viscosity and diffusion is being used. The code is written in well-commented Fortran90.
Influence of heating mode on three-dimensional mantle convection
NASA Technical Reports Server (NTRS)
Bercovici, D.; Schubert, G.; Glatzmaier, G. A.
1989-01-01
Numerical models of three-dimensional thermal convection in highly viscous spherical shells with different combinations of internal and basal heating consistently have upwelling concentrations in the form of cylindrical plumes and downwelling in planar sheets. As the proportion of internal heating increases, the number of upwelling plumes increases, and downwelling sheets become more vigorous and time-dependent. With any amount of basal heating, the entire convective pattern, during its evolution, is anchored to the upwelling plumes. As the proportion of internal heating increases, the heat flow carried by the upwelling plumes remains a large fraction of the basal heat flow. Downwelling sheets carry only a minor fraction (approximately 30 percent) of the basal heat flow (even when the shell is entirely heated from below), but they advect almost all of the internally generated heat. The relatively large number of plumes in the earth's mantle (inferred from hotspots), the possibility that downwelling slabs are vigorous enough to penetrate the lower mantle, and the small fraction of terrestrial surface heat flow carried by plumes all suggest that the mantle is predominantly heated from within.
Numerical study on double-diffusive convection in the Earth's core
NASA Astrophysics Data System (ADS)
Trümper, T.; Breuer, M.; Hansen, U.
2012-03-01
Our numerical study focuses on convection in a rotating spherical shell with the objective to model combined thermal and compositional convection as proposed for the Earth's core. Since the core is cooling, a thermal gradient is established, which can drive thermal convection. Simultaneously, due to the solidification of the inner core latent heat is released at the freezing front and the concentration of the light constituents of the liquid phase increases thus providing a source for compositional buoyancy. Typically, the molecular diffusivities of both driving components differ by some orders of magnitude. To account for this difference it is indicated to adopt a double-diffusive convection model in treating Earth's core dynamics. As opposed to purely thermal or purely compositional convection the double-diffusive system is controlled by two Rayleigh numbers associated with the respective buoyancy sources. Using the Rayleigh numbers as control parameters neutral curves of the linear onset of convection in the rotating shell are determined for different Ekman numbers and diffusivity ratios. It is found that the neutral curves depend significantly on the system parameters. By comparison with the analytical solutions of the rotating cylindrical annulus it is shown that the neutral curves represent a superposition of curves associated with solutions for different azimuthal wave numbers. Furthermore, fully non-linear simulations are presented in order to elucidate the effect of isochemical and fixed chemical flux boundary conditions on the convection. We consider three driving scenarios with varying thermo-chemical forcing ratios. Both the forcing ratio and the chemical boundary condition have distinct effects on the system that are discussed separately.
Mantle Convection Models Constrained by Seismic Tomography
NASA Astrophysics Data System (ADS)
Durbin, C. J.; Shahnas, M.; Peltier, W. R.; Woodhouse, J. H.
2011-12-01
Although available three dimensional models of the lateral heterogeneity of the mantle, based upon the latest advances in seismic tomographic imaging (e.g. Ritsema et al., 2004, JGR) have provided profound insights into aspects of the mantle general circulation that drives continental drift, the compatibility of the tomography with explicit models of mantle mixing has remained illusive. For example, it remains a significant issue as to whether hydrodynamic models of the mixing process alone are able to reconcile the observed detailed pattern of surface plate velocities or whether explicit account must be taken of elastic fracture processes to account for the observed equipartition of kinetic energy between the poloidal and toroidal components of the surface velocity pattern (e.g. Forte and Peltier, 1987, JGR). It is also an issue as to the significance of the role of mantle chemical heterogeneity in determining the buoyancy distribution that drives mantle flow, especially given the expected importance of the spin transition of iron that onsets in the mid-lower mantle, at least in the ferropericlase component of the mineralogy. In this paper we focus upon the application of data assimilation techniques to the development of a model of mantle mixing that is consistent with a modern three dimensional tomography based model of seismic body wave heterogeneity. Beginning with the simplest possible scenario, that chemical heterogeneity is irrelevant to first order, we employ a three dimensional version of the recently published control volume based convection model of Shahnas and Peltier (2010, JGR) as the basis for the assimilation of a three dimensional density field inferred from our preferred tomography model (Ritsema et al., 2004, JGR). The convection model fully incorporates the dynamical influence of the Olivine-Spinel and Spinel-Perovskite+Magnesiowustite solid-solid phase transformations that bracket the mantle transition zone as well as the recently discovered
NASA Astrophysics Data System (ADS)
Klug, William S.; Bruinsma, Robijn F.; Michel, Jean-Philippe; Knobler, Charles M.; Ivanovska, Irena L.; Schmidt, Christoph F.; Wuite, Gijs J. L.
2006-12-01
We report a combined theoretical and experimental study of the structural failure of viral shells under mechanical stress. We find that discontinuities in the force-indentation curve associated with failure should appear when the so-called Föppl von Kármán (FvK) number exceeds a critical value. A nanoindentation study of a viral shell subject to a soft-mode instability, where the stiffness of the shell decreases with increasing pH, confirms the predicted onset of failure as a function of the FvK number.
An origin for pulsar kicks in supernova hydrodynamics
NASA Astrophysics Data System (ADS)
Burrows, Adam; Hayes, John
1996-04-01
It is now believed that pulsars comprise the fastest population of stars in the galaxy. With inferred mean, root-mean-square, and maximum 3-D pulsar speeds of ~300-500 km/s, ~500 km/s, and ~2000 km/s, respectively, the question of the origin of such singular proper motions becomes acute. What mechanism can account for speeds that range from zero to twice the galactic escape velocity? We speculate that a major vector component of a neutron star's proper motion comes from the hydrodynamic recoil of the nascent neutron star during the supernova explosion in which it is born. Recently, theorists have shown that asymmetries and instabilities are a natural aspect of supernova dynamics. In this paper, we highlight two phenomena: 1) the ``Brownian-like'' stochastic motion of the core in response to the convective ``boiling'' of the mantle of the protoneutron star during the post-bounce, pre-explosion accretion phase, and 2) the asymmetrical bounce and explosion of an aspherically collapsing Chandrasekhar core. In principle, either phenomenon can leave the young neutron star with a speed of hundreds of kilometers per second. However, neither has yet been adequately simulated or explored. The two-dimensional radiation/hydrodynamic calculations we present here provide only crude estimates of the potential impulses due to mass motions and neutrino emissions. A comprehensive and credible investigation will require fully three-dimensional numerical simulations not yet possible. Nevertheless, we have in the asymmetric hydrodynamics of supernovae a natural means of imparting respectable kicks to neutron stars at birth, though speeds approaching 1000 km/s are still problematic.
Modeling the Rise of Fibril Magnetic Fields in Fully Convective Stars
NASA Astrophysics Data System (ADS)
Weber, Maria A.; Browning, Matthew K.
2016-08-01
Many fully convective stars exhibit a wide variety of surface magnetism, including starspots and chromospheric activity. The manner by which bundles of magnetic field traverse portions of the convection zone to emerge at the stellar surface is not especially well understood. In the solar context, some insight into this process has been gleaned by regarding the magnetism as consisting partly of idealized thin flux tubes (TFTs). Here we present the results of a large set of TFT simulations in a rotating spherical domain of convective flows representative of a 0.3 M ⊙ main-sequence star. This is the first study to investigate how individual flux tubes in such a star might rise under the combined influence of buoyancy, convection, and differential rotation. A time-dependent hydrodynamic convective flow field, taken from separate 3D simulations calculated with the anelastic equations, impacts the flux tube as it rises. Convective motions modulate the shape of the initially buoyant flux ring, promoting localized rising loops. Flux tubes in fully convective stars have a tendency to rise nearly parallel to the rotation axis. However, the presence of strong differential rotation allows some initially low-latitude flux tubes of moderate strength to develop rising loops that emerge in the near-equatorial region. Magnetic pumping suppresses the global rise of the flux tube most efficiently in the deeper interior and at lower latitudes. The results of these simulations aim to provide a link between dynamo-generated magnetic fields, fluid motions, and observations of starspots for fully convective stars.
Mantle convection on modern supercomputers
NASA Astrophysics Data System (ADS)
Weismüller, Jens; Gmeiner, Björn; Mohr, Marcus; Waluga, Christian; Wohlmuth, Barbara; Rüde, Ulrich; Bunge, Hans-Peter
2015-04-01
Mantle convection is the cause for plate tectonics, the formation of mountains and oceans, and the main driving mechanism behind earthquakes. The convection process is modeled by a system of partial differential equations describing the conservation of mass, momentum and energy. Characteristic to mantle flow is the vast disparity of length scales from global to microscopic, turning mantle convection simulations into a challenging application for high-performance computing. As system size and technical complexity of the simulations continue to increase, design and implementation of simulation models for next generation large-scale architectures demand an interdisciplinary co-design. Here we report about recent advances of the TERRA-NEO project, which is part of the high visibility SPPEXA program, and a joint effort of four research groups in computer sciences, mathematics and geophysical application under the leadership of FAU Erlangen. TERRA-NEO develops algorithms for future HPC infrastructures, focusing on high computational efficiency and resilience in next generation mantle convection models. We present software that can resolve the Earth's mantle with up to 1012 grid points and scales efficiently to massively parallel hardware with more than 50,000 processors. We use our simulations to explore the dynamic regime of mantle convection assessing the impact of small scale processes on global mantle flow.
Mantle Convection on Modern Supercomputers
NASA Astrophysics Data System (ADS)
Weismüller, J.; Gmeiner, B.; Huber, M.; John, L.; Mohr, M.; Rüde, U.; Wohlmuth, B.; Bunge, H. P.
2015-12-01
Mantle convection is the cause for plate tectonics, the formation of mountains and oceans, and the main driving mechanism behind earthquakes. The convection process is modeled by a system of partial differential equations describing the conservation of mass, momentum and energy. Characteristic to mantle flow is the vast disparity of length scales from global to microscopic, turning mantle convection simulations into a challenging application for high-performance computing. As system size and technical complexity of the simulations continue to increase, design and implementation of simulation models for next generation large-scale architectures is handled successfully only in an interdisciplinary context. A new priority program - named SPPEXA - by the German Research Foundation (DFG) addresses this issue, and brings together computer scientists, mathematicians and application scientists around grand challenges in HPC. Here we report from the TERRA-NEO project, which is part of the high visibility SPPEXA program, and a joint effort of four research groups. TERRA-NEO develops algorithms for future HPC infrastructures, focusing on high computational efficiency and resilience in next generation mantle convection models. We present software that can resolve the Earth's mantle with up to 1012 grid points and scales efficiently to massively parallel hardware with more than 50,000 processors. We use our simulations to explore the dynamic regime of mantle convection and assess the impact of small scale processes on global mantle flow.
Influence of convection on microstructure
NASA Technical Reports Server (NTRS)
Wilcox, William R.; Eisa, Gaber Faheem; Chandrasekhar, S.; Larrousse, Mark; Banan, Mohsen
1988-01-01
The influence was studied of convection during directional solidification on the resulting microstructure of eutectics, specifically lead/tin and manganese/bismuth. A theory was developed for the influence of convection on the microstructure of lamellar and fibrous eutectics, through the effect of convection on the concentration field in the melt in front of the growing eutectic. While the theory agrees with the experimental spin-up spin-down results, it predicts that the weak convection expected due to buoyancy will not produce a measurable change in eutectic microstructure. Thus, this theory does not explain the two fold decrease in MnBi fiber size and spacing observed when MnBi-Bi is solidified in space or on Earth with a magnetic field applied. Attention was turned to the morphology of the MnBi-Bi interface and to the generation of freezing rate fluctuations by convection. Decanting the melt during solidification of MnBi-Bi eutectic showed that the MnBi phase projects into the melt ahead of the Bi matrix. Temperature measurements in a Bi melt in the vertical Bridgman-Stockbarger configuration showed temperature variations of up to 25 C. Conclusions are drawn and discussed.
Convective Excitation of Internal Waves
NASA Astrophysics Data System (ADS)
Lecoanet, Daniel; Le Bars, Michael; Burns, Keaton; Vasil, Geoffrey; Quataert, Eliot; Brown, Benjamin; Oishi, Jeffrey
2015-11-01
We will present a joint experimental & computational study of internal wave generation by convection. First we describe an experiment using the peculiar property of water that its density maximum is at 4° C . A tank of water cooled from below and heated from above develops a cold, convective layer near 4° C at the bottom of the tank, adjacent to a hot stably stratified layer at the top of the tank. We simulate this setup in 2D using the open-source Dedalus code (dedalus-project.org). Our simulations show that waves are excited from within the convection zone, opposed to at the interface between the convective and stably stratified regions. Finally, we will present 3D simulations of internal wave excitation by convection in a fully compressible atmosphere with multiple density scaleheights. These simulations provide greater freedom in choosing the thermal equilibrium of the system, and are run at higher Rayleigh number. The simulated waves are then compared to analytic predictions of the bulk excitation model.
Three-dimensional hydrodynamic instabilities in stellar core collapses
NASA Astrophysics Data System (ADS)
Lou, Yu-Qing; Lian, Biao
2012-03-01
A spherically symmetric hydrodynamic stellar core collapse process under gravity is time-dependent and may become unstable once disturbed. Subsequent non-linear evolutions of such growth of hydrodynamic instabilities may lead to various physical consequences. Specifically for a homologous collapse of a stellar core characterized by a polytropic exponent Γ= 4/3, we examine oscillations and/or instabilities of three-dimensional (3D) general polytropic perturbations. Being incompressible, the radial component of vorticity perturbation always grows unstably during the same homologous core collapse. For compressible 3D perturbations, the polytropic index γ of perturbations can differ from Γ= 4/3 of the general polytropic hydrodynamic background flow, where the background specific entropy is conserved along streamlines and can vary in radius and time. Our model formulation here is more general than previous ones. The Brunt-Väisälä buoyancy frequency ? does not vanish, allowing for the existence of internal gravity g- modes and/or g+ modes, depending on the sign of ? respectively. Eigenvalues and eigenfunctions of various oscillatory and unstable perturbation modes are computed, given asymptotic boundary conditions. As studied in several specialized cases of Goldreich & Weber and of Lou & Cao and Cao & Lou, we further confirm that acoustic p modes and surface f modes remain stable in the current more general situations. In comparison, g- modes and sufficiently high radial order g+ modes are unstable, leading to inevitable convective motions within the collapsing stellar interior; meanwhile, sufficiently low radial order g+ modes remain stably trapped in the collapsing core. Unstable growths of 3D g-mode disturbances are governed dominantly by the angular momentum conservation and modified by the gas pressure restoring force. We note in particular that unstable temporal growths of 3D vortical perturbations exist even when the specific entropy distribution becomes
Yong, Ee Hou; Nelson, David R; Mahadevan, L
2013-10-25
On microscopic scales, the crystallinity of flexible tethered or cross-linked membranes determines their mechanical response. We show that by controlling the type, number, and distribution of defects on a spherical elastic shell, it is possible to direct the morphology of these structures. Our numerical simulations show that by deflating a crystalline shell with defects, we can create elastic shell analogs of the classical platonic solids. These morphologies arise via a sharp buckling transition from the sphere which is strongly hysteretic in loading or unloading. We construct a minimal Landau theory for the transition using quadratic and cubic invariants of the spherical harmonic modes. Our approach suggests methods to engineer shape into soft spherical shells using a frozen defect topology.
Hollow spherical shell manufacture
O'Holleran, T.P.
1991-11-26
A process is disclosed for making a hollow spherical shell of silicate glass composition in which an aqueous suspension of silicate glass particles and an immiscible liquid blowing agent is placed within the hollow spherical cavity of a porous mold. The mold is spun to reduce effective gravity to zero and to center the blowing agent, while being heated so as to vaporize the immiscible liquid and urge the water carrier of the aqueous suspension to migrate into the body of the mold, leaving a green shell compact deposited around the mold cavity. The green shell compact is then removed from the cavity, and is sintered for a time and a temperature sufficient to form a silicate glass shell of substantially homogeneous composition and uniform geometry. 3 figures.
Hollow spherical shell manufacture
O'Holleran, Thomas P.
1991-01-01
A process for making a hollow spherical shell of silicate glass composition in which an aqueous suspension of silicate glass particles and an immiscible liquid blowing agent is placed within the hollow spherical cavity of a porous mold. The mold is spun to reduce effective gravity to zero and to center the blowing agent, while being heated so as to vaporize the immiscible liquid and urge the water carrier of the aqueous suspension to migrate into the body of the mold, leaving a green shell compact deposited around the mold cavity. The green shell compact is then removed from the cavity, and is sintered for a time and a temperature sufficient to form a silicate glass shell of substantially homogeneous composition and uniform geometry.
NASA Astrophysics Data System (ADS)
Currie, Malcolm J.
This cookbook describes the fundamentals of writing scripts using the UNIX C shell. It shows how to combine Starlink and private applications with shell commands and constructs to create powerful and time-saving tools for performing repetitive jobs, creating data-processing pipelines, and encapsulating useful recipes. The cookbook aims to give practical and reassuring examples to at least get you started without having to consult a UNIX manual. However, it does not offer a comprehensive description of C-shell syntax to prevent you from being overwhelmed or intimidated. The topics covered are: how to run a script, defining shell variables, prompting, arithmetic and string processing, passing information between Starlink applications, obtaining dataset attributes and FITS header information, processing multiple files and filename modification, command-line arguments and options, and loops. There is also a glossary.
Hydrodynamic instability growth and mix experiments at the National Ignition Facility
Smalyuk, V. A.; Barrios, M.; Caggiano, J. A.; Casey, D. T.; Cerjan, C. J.; Clark, D. S.; Edwards, M. J.; Haan, S. W.; Hammel, B. A.; Hamza, A.; Hsing, W. W.; Hurricane, O.; Kroll, J.; Landen, O. L.; Lindl, J. D.; Ma, T.; McNaney, J. M.; Mintz, M.; Parham, T.; Peterson, J. L.; and others
2014-05-15
Hydrodynamic instability growth and its effects on implosion performance were studied at the National Ignition Facility [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 443, 2841 (2004)]. Implosion performance and mix have been measured at peak compression using plastic shells filled with tritium gas and containing embedded localized carbon-deuterium diagnostic layers in various locations in the ablator. Neutron yield and ion temperature of the deuterium-tritium fusion reactions were used as a measure of shell-gas mix, while neutron yield of the tritium-tritium fusion reaction was used as a measure of implosion performance. The results have indicated that the low-mode hydrodynamic instabilities due to surface roughness were the primary culprits for yield degradation, with atomic ablator-gas mix playing a secondary role. In addition, spherical shells with pre-imposed 2D modulations were used to measure instability growth in the acceleration phase of the implosions. The capsules were imploded using ignition-relevant laser pulses, and ablation-front modulation growth was measured using x-ray radiography for a shell convergence ratio of ∼2. The measured growth was in good agreement with that predicted, thus validating simulations for the fastest growing modulations with mode numbers up to 90 in the acceleration phase. Future experiments will be focused on measurements at higher convergence, higher-mode number modulations, and growth occurring during the deceleration phase.
ARM - Midlatitude Continental Convective Clouds
Jensen, Mike; Bartholomew, Mary Jane; Genio, Anthony Del; Giangrande, Scott; Kollias, Pavlos
2012-01-19
Convective processes play a critical role in the Earth's energy balance through the redistribution of heat and moisture in the atmosphere and their link to the hydrological cycle. Accurate representation of convective processes in numerical models is vital towards improving current and future simulations of Earths climate system. Despite improvements in computing power, current operational weather and global climate models are unable to resolve the natural temporal and spatial scales important to convective processes and therefore must turn to parameterization schemes to represent these processes. In turn, parameterization schemes in cloud-resolving models need to be evaluated for their generality and application to a variety of atmospheric conditions. Data from field campaigns with appropriate forcing descriptors have been traditionally used by modelers for evaluating and improving parameterization schemes.
Convective flow during dendritic growth
NASA Technical Reports Server (NTRS)
Glicksman, M. E.; Huang, S. C.
1979-01-01
A review is presented of the major experimental findings obtained from recent ground-based research conducted under the SPAR program. Measurements of dendritic growth at small supercoolings indicate that below approximately 1.5 K a transition occurs from diffusive control to convective control in succinonitrile, a model system chosen for this study. The key theoretical ideas concerning diffusive and convective heat transport during dendritic growth are discussed, and it is shown that a transition in the transport control should occur when the characteristic length for diffusion becomes larger than the characteristic length for convection. The experimental findings and the theoretical ideas discussed suggest that the Fluid Experiment System could provide appropriate experimental diagnostics for flow field visualization and quantification of the fluid dynamical effects presented here.
ERIC Educational Resources Information Center
Sutley, Jane
2009-01-01
"Shells and Patterns" was a project the author felt would easily put smiles on the faces of her fifth-graders, and teach them about unity and the use of watercolor pencils as well. It was thrilling to see the excitement in her students as they made their line drawings of shells come to life. For the most part, they quickly got the hang of…
Sorokin, S. A.; Chaikovsky, S. A.
1997-05-05
Experiments on the double shell liner (DSL) implosions with and without an initial axial magnetic were performed on the SNOP-3 pulse generator (1.1 MA, 100 ns). In implosions of a DSL without an initial axial magnetic field, high radial compressions of the inner shell were observed, as in previous experiments with an initial axial magnetic field. Possible mechanisms for the formation of the initial azimuthal magnetic field are discussed.
Convection in the atmospheres and envelopes of Pre-Main Sequence stars
NASA Astrophysics Data System (ADS)
Montalbán, J.; D'Antona, F.; Kupka, F.; Heiter, U.
2004-03-01
The Teff location of Pre-Main Sequence (PMS) evolutionary tracks depends on the treatment of over-adiabaticity (D'Antona & Mazzitelli \\cite{Antona1994}, \\cite{Antona1998}). Since the convection penetrates into the stellar atmosphere, also the treatment of convection in the modeling of stellar atmospheres will affect the location of the Hayashi tracks. In this paper we present new non-grey PMS tracks for Teff,>4000 K. We compute several grids of evolutionary tracks varying: i) the treatment of convection: either the Mixing Length Theory (MLT) or Canuto et al. (\\cite{Canuto1996e}, CGM) formulation of a Full Spectrum of Turbulence; ii) the atmospheric boundary conditions: we use the new Vienna grids of ATLAS9 atmospheres (Heiter et al. \\cite{Heiter2002a}), which were computed using either MLT (with α=Λ/Hp=0.5) or CGM treatments. For comparison, we also compute grids of models with the NextGen (Allard & Hauschildt \\cite{Allard1997}, AH97) atmosphere models, and a 1 {M⊙} grey MLT evolutionary track using the α calibration based on 2D-hydrodynamical models (Ludwig et al. \\cite{Ludwig1999}). These different grids of models allow us to analyze the effects of convection modeling on the non-grey PMS evolutionary tracks. We disentangle the effect of the wavelength dependent opacity on a self-consistent treatment of convection in the atmosphere from the role of the convection model itself in the atmosphere and in the interior. While for some parts of the HR diagram (e.g., A stars) a low efficiency of atmospheric convection is clearly indicated by the data, for others the evidence is conflicting, showing the weaknesses of all the presently adopted local convection models. Nevertheless, the assumption of a low photospheric efficiency permits us to reproduce a larger amount of data and we have hence restricted our study to this case and draw the following conclusions for it: i) in spite of the solar calibration, if MLT convection is adopted a large uncertainty results
NASA Astrophysics Data System (ADS)
Zhou, Jie; Bhaskar, Atul; Zhang, Xin
2015-11-01
This paper investigates sound transmission through double-walled cylindrical shell lined with poroelastic material in the core, excited by pressure fluctuations due to the exterior turbulent boundary layer (TBL). Biot's model is used to describe the sound wave propagating in the porous material. Three types of constructions, bonded-bonded, bonded-unbonded and unbonded-unbonded, are considered in this study. The power spectral density (PSD) of the inner shell kinetic energy is predicted for two turbulent boundary layer models, different air gap depths and three types of polyimide foams, respectively. The peaks of the inner shell kinetic energy due to shell resonance, hydrodynamic coincidence and acoustic coincidence are discussed. The results show that if the frequency band over the ring frequency is of interest, an air gap, even if very thin, should exist between the two elastic shells for better sound insulation. And if small density foam has a high flow resistance, a superior sound insulation can still be maintained.
Annual Report: Hydrodynamics and Radiative Hydrodynamics with Astrophysical Applications
R. Paul Drake
2005-12-01
We report the ongoing work of our group in hydrodynamics and radiative hydrodynamics with astrophysical applications. During the period of the existing grant, we have carried out two types of experiments at the Omega laser. One set of experiments has studied radiatively collapsing shocks, obtaining high-quality scaling data using a backlit pinhole and obtaining the first (ever, anywhere) Thomson-scattering data from a radiative shock. Other experiments have studied the deeply nonlinear development of the Rayleigh-Taylor (RT) instability from complex initial conditions, obtaining the first (ever, anywhere) dual-axis radiographic data using backlit pinholes and ungated detectors. All these experiments have applications to astrophysics, discussed in the corresponding papers either in print or in preparation. We also have obtained preliminary radiographs of experimental targets using our x-ray source. The targets for the experiments have been assembled at Michigan, where we also prepare many of the simple components. The above activities, in addition to a variety of data analysis and design projects, provide good experience for graduate and undergraduates students. In the process of doing this research we have built a research group that uses such work to train junior scientists.
Lord, J. W.; Rast, M. P.; Cameron, R. H.; Rempel, M.; Roudier, T.
2014-09-20
We model the solar horizontal velocity power spectrum at scales larger than granulation using a two-component approximation to the mass continuity equation. The model takes four times the density scale height as the integral (driving) scale of the vertical motions at each depth. Scales larger than this decay with height from the deeper layers. Those smaller are assumed to follow a Kolmogorov turbulent cascade, with the total power in the vertical convective motions matching that required to transport the solar luminosity in a mixing length formulation. These model components are validated using large-scale radiative hydrodynamic simulations. We reach two primary conclusions. (1) The model predicts significantly more power at low wavenumbers than is observed in the solar photospheric horizontal velocity spectrum. (2) Ionization plays a minor role in shaping the observed solar velocity spectrum by reducing convective amplitudes in the regions of partial helium ionization. The excess low wavenumber power is also seen in the fully nonlinear three-dimensional radiative hydrodynamic simulations employing a realistic equation of state. This adds to other recent evidence suggesting that the amplitudes of large-scale convective motions in the Sun are significantly lower than expected. Employing the same feature tracking algorithm used with observational data on the simulation output, we show that the observed low wavenumber power can be reproduced in hydrodynamic models if the amplitudes of large-scale modes in the deep layers are artificially reduced. Since the large-scale modes have reduced amplitudes, modes on the scale of supergranulation and smaller remain important to convective heat flux even in the deep layers, suggesting that small-scale convective correlations are maintained through the bulk of the solar convection zone.
Radiation Hydrodynamics of Stainless Steel Wire Arrays on the Z Accelerator
Davis, J.; Dasgupta, A.; Thornhill, J. W.; Giuliani, J.; Clark, R. W.; Whitney, K.; Coverdale, C. A.; Lepell, D.; Jones, B.; Deeney, C.
2009-01-21
Experiments on the Z accelerator with nested stainless steel wire arrays produced K-shell x-ray yields exceeding 50 kJ in the energy range 5.5 to 8 keV. Stainless steel (Z = 24-28) can barely be ionized to the K-shell on Z, and the spectra are therefore sensitive to the details of the implosion. We have simulated the implosion dynamics of stainless steel wire arrays with diameters ranging from 4.5 to 8.0 centimeters using a detailed configuration non-LTE radiation hydrodynamics model. Reasonable agreement with total and K-shell experimental yields was obtained for the various array configurations. A comparison is made between the 1-D and 2-D simulations for shot Z-578.
Renormalization and universality of blowup in hydrodynamic flows.
Mailybaev, Alexei A
2012-06-01
We consider self-similar solutions describing intermittent bursts in shell models of turbulence and study their relationship with blowup phenomena in continuous hydrodynamic models. First, we show that these solutions are very close to self-similar solution for the Fourier transformed inviscid Burgers equation corresponding to shock formation from smooth initial data. Then, the result is generalized to hyperbolic conservation laws in one space dimension describing compressible flows. It is shown that the renormalized wave profile tends to a universal function, which is independent both of initial conditions and of a specific form of the conservation law. This phenomenon can be viewed as a new manifestation of the renormalization group theory. Finally, we discuss possibilities for application of the developed theory for detecting and describing a blowup in incompressible flows.
Forced wetting and hydrodynamic assist
NASA Astrophysics Data System (ADS)
Blake, Terence D.; Fernandez-Toledano, Juan-Carlos; Doyen, Guillaume; De Coninck, Joël
2015-11-01
Wetting is a prerequisite for coating a uniform layer of liquid onto a solid. Wetting failure and air entrainment set the ultimate limit to coating speed. It is well known in the coating art that this limit can be postponed by manipulating the coating flow to generate what has been termed "hydrodynamic assist," but the underlying mechanism is unclear. Experiments have shown that the conditions that postpone air entrainment also reduce the apparent dynamic contact angle, suggesting a direct link, but how the flow might affect the contact angle remains to be established. Here, we use molecular dynamics to compare the outcome of steady forced wetting with previous results for the spontaneous spreading of liquid drops and apply the molecular-kinetic theory of dynamic wetting to rationalize our findings and place them on a quantitative footing. The forced wetting simulations reveal significant slip at the solid-liquid interface and details of the flow immediately adjacent to the moving contact line. Our results confirm that the local, microscopic contact angle is dependent not simply only on the velocity of wetting but also on the nature of the flow that drives it. In particular, they support an earlier suggestion that during forced wetting, an intense shear stress in the vicinity of the contact line can assist surface tension forces in promoting dynamic wetting, thus reducing the velocity-dependence of the contact angle. Hydrodynamic assist then appears as a natural consequence of wetting that emerges when the contact line is driven by a strong and highly confined flow. Our theoretical approach also provides a self-consistent model of molecular slip at the solid-liquid interface that enables its magnitude to be estimated from dynamic contact angle measurements. In addition, the model predicts how hydrodynamic assist and slip may be influenced by liquid viscosity and solid-liquid interactions.
Report of convective phenomena team
NASA Technical Reports Server (NTRS)
Orville, H.; Koenig, R.; Miller, J.; Telford, J.; Jones, B.; Alger, G.; Lee, R.; Boudle, D.
1980-01-01
A group meeting was assembled to focus on the planning of specific experiments, to establish some priorities, identify interested scientists who would like to participate, establish any special requirements, make recommendations on data processing, and to prepare flight plan outlines. Since the number of convective storms in the CCOPE (Cooperative Convective Precipitation Experiment) field experiment area are limited to only a few days during the operational time period the flight plans must be designed with a hierarchy of abort experiments so that the easily identified and lowest probability events should take priority until their quota is filled.
Wavenumber selection in Benard convection
Catton, I.
1988-11-01
The results of three related studies dealing with wavenumber selection in Rayleigh--Benard convection are reported. The first, an extension of the power integral method, is used to argue for the existence of multi-wavenumbers at all supercritical wavenumbers. Most existing closure schemes are shown to be inadequate. A thermodynamic stability criterion is shown to give reasonable results but requires empirical measurement of one parameter for closure. The third study uses an asymptotic approach based in part on geometric considerations and requires no empiricism to obtain good predictions of the wavenumber. These predictions, however, can only be used for certain planforms of convection.
Disruptive Innovation in Numerical Hydrodynamics
Waltz, Jacob I.
2012-09-06
We propose the research and development of a high-fidelity hydrodynamic algorithm for tetrahedral meshes that will lead to a disruptive innovation in the numerical modeling of Laboratory problems. Our proposed innovation has the potential to reduce turnaround time by orders of magnitude relative to Advanced Simulation and Computing (ASC) codes; reduce simulation setup costs by millions of dollars per year; and effectively leverage Graphics Processing Unit (GPU) and future Exascale computing hardware. If successful, this work will lead to a dramatic leap forward in the Laboratory's quest for a predictive simulation capability.
Hydrodynamic Synchronisation of Model Microswimmers
NASA Astrophysics Data System (ADS)
Putz, V. B.; Yeomans, J. M.
2009-12-01
We define a model microswimmer with a variable cycle time, thus allowing the possibility of phase locking driven by hydrodynamic interactions between swimmers. We find that, for extensile or contractile swimmers, phase locking does occur, with the relative phase of the two swimmers being, in general, close to 0 or π, depending on their relative position and orientation. We show that, as expected on grounds of symmetry, self T-dual swimmers, which are time-reversal covariant, do not phase-lock. We also discuss the phase behaviour of a line of tethered swimmers, or pumps. These show oscillations in their relative phases reminiscent of the metachronal waves of cilia.
Ergoregion instability: The hydrodynamic vortex
NASA Astrophysics Data System (ADS)
Oliveira, Leandro A.; Cardoso, Vitor; Crispino, Luís C. B.
2014-06-01
Four-dimensional, asymptotically flat spacetimes with an ergoregion but no horizon have been shown to be linearly unstable against a superradiant-triggered mechanism. This result has wide implications in the search for astrophysically viable alternatives to black holes, but also in the understanding of black holes and Hawking evaporation. Here we investigate this instability in detail for a particular setup that can be realized in the laboratory: the hydrodynamic vortex, an effective geometry for sound waves, with ergoregion and without an event horizon.
Hydrodynamic instability modeling for ICF
Haan, S.W.
1993-03-31
The intent of this paper is to review how instability growth is modeled in ICF targets, and to identify the principal issues. Most of the material has been published previously, but is not familiar to a wide audience. Hydrodynamic instabilities are a key issue in ICF. Along with laser-plasma instabilities, they determine the regime in which ignition is possible. At higher laser energies, the same issues determine the achievable gain. Quantitative predictions are therefore of the utmost importance to planning the ICF program, as well as to understanding current Nova results. The key fact that underlies all this work is the stabilization of short wavelengths.
Effective actions for anomalous hydrodynamics
NASA Astrophysics Data System (ADS)
Haehl, Felix M.; Loganayagam, R.; Rangamani, Mukund
2014-03-01
We argue that an effective field theory of local fluid elements captures the constraints on hydrodynamic transport stemming from the presence of quantum anomalies in the underlying microscopic theory. Focussing on global current anomalies for an arbitrary flavour group, we derive the anomalous constitutive relations in arbitrary even dimensions. We demonstrate that our results agree with the constraints on anomaly governed transport derived hitherto using a local version of the second law of thermodynamics. The construction crucially uses the anomaly inflow mechanism and involves a novel thermofield double construction. In particular, we show that the anomalous Ward identities necessitate non-trivial interaction between the two parts of the Schwinger-Keldysh contour.
Hydrodynamic loading of tensegrity structures
NASA Astrophysics Data System (ADS)
Wroldsen, Anders S.; Johansen, Vegar; Skelton, Robert E.; Sørensen, Asgeir J.
2006-03-01
This paper introduces hydrodynamic loads for tensegrity structures, to examine their behavior in marine environments. Wave compliant structures are of general interest when considering large marine structures, and we are motivated by the aquaculture industry where new concepts are investigated in order to make offshore installations for seafood production. This paper adds to the existing models and software simulations of tensegrity structures exposed to environmental loading from waves and current. A number of simulations are run to show behavior of the structure as a function of pretension level and string stiffness for a given loading condition.
Progress in smooth particle hydrodynamics
Wingate, C.A.; Dilts, G.A.; Mandell, D.A.; Crotzer, L.A.; Knapp, C.E.
1998-07-01
Smooth Particle Hydrodynamics (SPH) is a meshless, Lagrangian numerical method for hydrodynamics calculations where calculational elements are fuzzy particles which move according to the hydrodynamic equations of motion. Each particle carries local values of density, temperature, pressure and other hydrodynamic parameters. A major advantage of SPH is that it is meshless, thus large deformation calculations can be easily done with no connectivity complications. Interface positions are known and there are no problems with advecting quantities through a mesh that typical Eulerian codes have. These underlying SPH features make fracture physics easy and natural and in fact, much of the applications work revolves around simulating fracture. Debris particles from impacts can be easily transported across large voids with SPH. While SPH has considerable promise, there are some problems inherent in the technique that have so far limited its usefulness. The most serious problem is the well known instability in tension leading to particle clumping and numerical fracture. Another problem is that the SPH interpolation is only correct when particles are uniformly spaced a half particle apart leading to incorrect strain rates, accelerations and other quantities for general particle distributions. SPH calculations are also sensitive to particle locations. The standard artificial viscosity treatment in SPH leads to spurious viscosity in shear flows. This paper will demonstrate solutions for these problems that they and others have been developing. The most promising is to replace the SPH interpolant with the moving least squares (MLS) interpolant invented by Lancaster and Salkauskas in 1981. SPH and MLS are closely related with MLS being essentially SPH with corrected particle volumes. When formulated correctly, JLS is conservative, stable in both compression and tension, does not have the SPH boundary problems and is not sensitive to particle placement. The other approach to
Hydrodynamical models of young SNRs.
NASA Astrophysics Data System (ADS)
Kosenko, D. I.; Blinnikov, S. I.; Postnov, K. A.; Sorokina, E. I.
X-ray observations of the Tycho supernova (SN) remnant by XMM-Newton telescope present radial profiles of the remnant in emission lines from silicon and iron \\citep{decour}. To reproduce observed spectrum and X-ray profiles hydrodynamical modelling of the remnant was performed by \\citet{elka}. Standard computational SN models cannot reproduce observed spacial behavoir of the X-ray profiles of the remnant in the emission lines. We perform analysis of these numerical models and find conditions under which it is possible to reproduce observed profiles.
Microscale hydrodynamics near moving contact lines
NASA Technical Reports Server (NTRS)
Garoff, Stephen; Chen, Q.; Rame, Enrique; Willson, K. R.
1994-01-01
The hydrodynamics governing the fluid motions on a microscopic scale near moving contact lines are different from those governing motion far from the contact line. We explore these unique hydrodynamics by detailed measurement of the shape of a fluid meniscus very close to a moving contact line. The validity of present models of the hydrodynamics near moving contact lines as well as the dynamic wetting characteristics of a family of polymer liquids are discussed.
Role of viscoelasticity in mantle convection models
NASA Astrophysics Data System (ADS)
Patocka, Vojtech; Cadek, Ondrej; Tackley, Paul
2015-04-01
constitutive equations in a way more suitable for global studies, which is different from the method refered to earlier. The computational domain is expected to be composed of two parts: One in which elastic effects are important and where material does not move significantly within one elastic time step and one where elastic effects are not important, where material is allowed to move across many cells within one elastic time step. Local accumulation of stress in viscoelastic simulations is observed, suggesting elasticity could e.g. trigger plasticity in realistic cases. References Moresi L., Dufour F., Mühlhaus H.-B., 2003: A Lagrangian integration point finite element method for large deformation modeling of viscoelastic geomaterials, Journal of Computational Physics, 184 (2003), 476 - 497 Tackley P., 2008: Modelling compressible mantle convection with large viscosity contrasts in a three-dimensional spherical shell using the yin-yang grid, Physics of the Earth and Planetary Interiors, 171 (2008), 7-18
Multisensor Investigation of Deep Convection
NASA Astrophysics Data System (ADS)
Houze, R.; Yuan, J.; Barnes, H. C.; Brodzik, S. R.
2012-12-01
The array of sensors for studying cloud systems from space provides the opportunity to globally map the occurrence of various types of deep convective cloud systems more precisely than ever before. The revolutionary TRMM satellite has not only determined rainfall from space but also identified the structures of storms producing the rainfall and how the different types of convective structures relate to features of the global circulation. The multiple sensors of the A-Train constellation have added more capacity to globally map convective cloud system types. By simultaneously using Aqua's MODIS 11-micron brightness temperature sensor to map cloud-top size and coldness, Aqua's AMSR-E passive microwave to detect rainfall, and CloudSat's cloud radar observations to see the internal structure of the nonprecipitating anvil clouds extending laterally from the precipitating cores of mesoscale convective systems (MCSs), we have objectively identified and mapped different types of MCSs. This multisensor analysis has determined the degrees to which MCSs vary according to size, amount of anvil cloud, and whether or not they occur separately or in merged complexes. Using these multisensor-derived quantities, we have established the patterns in which tropical MCSs occur over land, ocean, or the maritime continent. Ongoing work is integrating more sensors and other innovative global datasets into the analysis of A-Train data to further knowledge of MCSs and their variability over the Earth. Global lightning data are being integrated with the A-Train data to better understand convective intensity in different types of MCSs. Environments of the MCSs identified by multisensor A-Train analysis are being further analyzed using AIRS temperature profiles and MODIS and CALIPSO aerosol fields to better document the influence of environmental properties on the different types of mesoscale system. The integration of aerosol loading into the global analysis of the patterns of occurrence of
Convective Overshoot in Stellar Interior
NASA Astrophysics Data System (ADS)
Zhang, Q. S.
2015-07-01
In stellar interiors, the turbulent thermal convection transports matters and energy, and dominates the structure and evolution of stars. The convective overshoot, which results from the non-local convective transport from the convection zone to the radiative zone, is one of the most uncertain and difficult factors in stellar physics at present. The classical method for studying the convective overshoot is the non-local mixing-length theory (NMLT). However, the NMLT bases on phenomenological assumptions, and leads to contradictions, thus the NMLT was criticized in literature. At present, the helioseismic studies have shown that the NMLT cannot satisfy the helioseismic requirements, and have pointed out that only the turbulent convection models (TCMs) can be accepted. In the first part of this thesis, models and derivations of both the NMLT and the TCM were introduced. In the second part, i.e., the work part, the studies on the TCM (theoretical analysis and applications), and the development of a new model of the convective overshoot mixing were described in detail. In the work of theoretical analysis on the TCM, the approximate solution and the asymptotic solution were obtained based on some assumptions. The structure of the overshoot region was discussed. In a large space of the free parameters, the approximate/asymptotic solutions are in good agreement with the numerical results. We found an important result that the scale of the overshoot region in which the thermal energy transport is effective is 1 HK (HK is the scale height of turbulence kinetic energy), which does not depend on the free parameters of the TCM. We applied the TCM and a simple overshoot mixing model in three cases. In the solar case, it was found that the temperature gradient in the overshoot region is in agreement with the helioseismic requirements, and the profiles of the solar lithium abundance, sound speed, and density of the solar models are also improved. In the low-mass stars of open
Multidimensional Analysis of Direct-Drive Plastic-Shell Implosions on OMEGA
NASA Astrophysics Data System (ADS)
Radha, P. B.
2004-11-01
Direct-drive implosions of plastic shells with the OMEGA laser are used as energy-scaled warm surrogates for ignition cryogenic targets designed for use on the National Ignition Facility. Plastic targets involve varying shell thickness (15 to 33 μm), fill pressures (3 to 15 atm), and shell adiabats. The multidimensional hydrodynamics code DRACO is used to evaluate the effects of capsule-surface roughness and illumination nonuniformities on target performance. These simulations indicate that shell stability during the acceleration phase plays a critical role in determining fusion yields. For shells that are thick enough to survive the Rayleigh--Taylor growth, target yields are significantly reduced by growth of the long (ℓ < 10) and intermediate modes (20 < ℓ < 50) occurring from single-beam laser nonuniformities. The neutron production rate for these thick shells truncates relative to one-dimensional (1-D) predictions. The neutron-rate curves for the thinner shells, however, have significantly lower amplitudes and widths closer to 1-D results, indicating shell breakup during the acceleration phase. The simulation results are consistent with experimental observations. Previously, the stability of plastic-shell implosions had been correlated to a static ``mix-width'' at the boundary of the gas and plastic pusher estimated using a variety of experimental observables and an assumption of spherical symmetry. Results of these 2-D simulations provide a comprehensive understanding of warm-target implosion dynamics without assumptions of spherical symmetry and serve to answer the question of the hydrodynamic surrogacy between these plastic-shell implosions and the cryogenic ignition designs.
Thermal transport in a noncommutative hydrodynamics
Geracie, M. Son, D. T.
2015-03-15
We find the hydrodynamic equations of a system of particles constrained to be in the lowest Landau level. We interpret the hydrodynamic theory as a Hamiltonian system with the Poisson brackets between the hydrodynamic variables determined from the noncommutativity of space. We argue that the most general hydrodynamic theory can be obtained from this Hamiltonian system by allowing the Righi-Leduc coefficient to be an arbitrary function of thermodynamic variables. We compute the Righi-Leduc coefficient at high temperatures and show that it satisfies the requirements of particle-hole symmetry, which we outline.
Convective heat transfer in a closed two-phase thermosyphon
NASA Astrophysics Data System (ADS)
Al-Ani, M. A.
2014-08-01
A numerical analysis of heat transfer processes and hydrodynamics in a two-phase closed thermosyphon in a fairly wide range of variation of governing parameters has been investigated. A mathematical model is formulated based on the laws of mass conservation, momentum and energy in dimensionless variables "stream function - vorticity vector velocity - temperature". The analysis of the modes of forced and mixed convection for different values of Reynolds number and heat flows in the evaporation zone, the possibility of using two-phase thermosyphon for cooling gas turbine blades, when the heat is coming from the turbine blades to the thermosyphon is recycled a secondary refrigerant has been studied with different values of the centrifugal velocity. Nusselet Number, streamlines, velocity, temperature fields and temperature profile has been calculated during the investigation.
The Chemically Driven Interfacial Convection (CDIC) experiment on MASER 10
NASA Astrophysics Data System (ADS)
Shi, Ying; Eckert, Kerstin; Heinze, Armin; Acker, Margret
2005-08-01
We present a sounding rocket experiment studying the interplay between chemistry and interfacial-tension-driven hydrodynamic instabilities. The system on hand is a combination of two immiscible liquids separated along an initially plane interface at which an interfacial reaction takes place. The reaction leads to an in-situ formation of a surface-active product. This system is studied using an integrated Hele-Shaw cell concept developed in the project. With onset of the microgravity phase four Hele-Shaw cells are filled manually. Basic diagnostic tools are two shadowgraph visualization systems of high resolution and two differential interferometer, each of them containing one cell. The experiment shows an intriguing dynamic interplay between cellular Marangoni convection, thin film dynamics and interfacial deformations.
Segmented waves in a reaction-diffusion-convection system.
Rossi, Federico; Budroni, Marcello A; Marchettini, Nadia; Carballido-Landeira, Jorge
2012-09-01
The interaction of traveling waves, with both Marangoni and buoyancy driven flows, can generate an extraordinary rich array of patterns ranging from stationary structures to chaotic waves. However, the inherent complexity of reaction-diffusion-convection (RDC) systems makes the explanation of the patterning mechanisms very difficult, both numerically and experimentally. In this paper, we describe the appearance of segmented waves in a shallow layer of an excitable Belousov-Zhabotinsky solution. The segmentation process was found to be dependent both on the depth of the solution and on the excitability of the reaction. We caught the essential features of the system through a RDC model, where the chemical waves were coupled both with surface and bulk fluid motions and we found that by varying the excitability of the reaction, and in turn the wavelength of the chemical fronts, it is possible to create a sort of hydrodynamic resonance structures (corridors), which are responsible for the segmentation process.
Multi-Shell Hollow Nanogels with Responsive Shell Permeability
NASA Astrophysics Data System (ADS)
Schmid, Andreas J.; Dubbert, Janine; Rudov, Andrey A.; Pedersen, Jan Skov; Lindner, Peter; Karg, Matthias; Potemkin, Igor I.; Richtering, Walter
2016-03-01
We report on hollow shell-shell nanogels with two polymer shells that have different volume phase transition temperatures. By means of small angle neutron scattering (SANS) employing contrast variation and molecular dynamics (MD) simulations we show that hollow shell-shell nanocontainers are ideal systems for controlled drug delivery: The temperature responsive swelling of the inner shell controls the uptake and release, while the thermoresponsive swelling of the outer shell controls the size of the void and the colloidal stability. At temperatures between 32 °C < T < 42 °C, the hollow nanocontainers provide a significant void, which is even larger than the initial core size of the template, and they possess a high colloidal stability due to the steric stabilization of the swollen outer shell. Computer simulations showed, that temperature induced switching of the permeability of the inner shell allows for the encapsulation in and release of molecules from the cavity.
Multi-Shell Hollow Nanogels with Responsive Shell Permeability.
Schmid, Andreas J; Dubbert, Janine; Rudov, Andrey A; Pedersen, Jan Skov; Lindner, Peter; Karg, Matthias; Potemkin, Igor I; Richtering, Walter
2016-03-17
We report on hollow shell-shell nanogels with two polymer shells that have different volume phase transition temperatures. By means of small angle neutron scattering (SANS) employing contrast variation and molecular dynamics (MD) simulations we show that hollow shell-shell nanocontainers are ideal systems for controlled drug delivery: The temperature responsive swelling of the inner shell controls the uptake and release, while the thermoresponsive swelling of the outer shell controls the size of the void and the colloidal stability. At temperatures between 32 °C < T < 42 °C, the hollow nanocontainers provide a significant void, which is even larger than the initial core size of the template, and they possess a high colloidal stability due to the steric stabilization of the swollen outer shell. Computer simulations showed, that temperature induced switching of the permeability of the inner shell allows for the encapsulation in and release of molecules from the cavity.
Multi-Shell Hollow Nanogels with Responsive Shell Permeability
Schmid, Andreas J.; Dubbert, Janine; Rudov, Andrey A.; Pedersen, Jan Skov; Lindner, Peter; Karg, Matthias; Potemkin, Igor I.; Richtering, Walter
2016-01-01
We report on hollow shell-shell nanogels with two polymer shells that have different volume phase transition temperatures. By means of small angle neutron scattering (SANS) employing contrast variation and molecular dynamics (MD) simulations we show that hollow shell-shell nanocontainers are ideal systems for controlled drug delivery: The temperature responsive swelling of the inner shell controls the uptake and release, while the thermoresponsive swelling of the outer shell controls the size of the void and the colloidal stability. At temperatures between 32 °C < T < 42 °C, the hollow nanocontainers provide a significant void, which is even larger than the initial core size of the template, and they possess a high colloidal stability due to the steric stabilization of the swollen outer shell. Computer simulations showed, that temperature induced switching of the permeability of the inner shell allows for the encapsulation in and release of molecules from the cavity. PMID:26984478
NASA Astrophysics Data System (ADS)
Roberts, J. H.; Nimmo, F.
2007-12-01
Rapid strike-slip motion is predicted to be a consequence of diurnal tidal stresses in most satellites of the outer solar system with short orbital timescales [1]. Such motion can lead to near-surface heating through friction or viscous dissipation [2]. Here we discuss the effect of near-surface shear heating on convection in the underlying ice shells of icy satellites [3], with a focus on Enceladus and a possible origin of the south polar thermal anomaly [4]. We present models of convection in spherical ice shells including both spatially variable volumetric tidal heating [5] and regional shear heating localized in the top 5 km at either the pole or the equator. We observe that the presence of the near-surface heating strongly controls the convective pattern, increasing the wavelength, and promoting the formation of a hot upwelling beneath the shear zone. Our results suggest that localized near- surface heating may result in a degree-1 convective planform in an ice shell of a thickness that may be appropriate for a differentiated Enceladus (d < 0.36 Rsat). The near-surface heating and convection pattern will produce a localized heat flow anomaly. The upwelling beneath the shear zone also produces a few hundred meters of long-wavelength dynamic topography. The ℓ=2 component of the topography may cause reorientation of the satellite [6]. [1] Hoppa, G., B. R. Tufts, R. Greenberg, and P. Geissler, Icarus, 141, 287-298, 1999. [2] Nimmo, F., E. Gaidos, JGR, 107, 5021, 2002. [3] Han, L., A. P. Showman, LPSC XXXVIII, #2277, 2007. [4] Spencer, J. R., et al., Science, 311, 1401-1405. [5] Tobie, G., A. Mocquet, C. Sotin, Icarus, 177 534-549. [6] Nimmo, F., R. T. Pappalardo, Nature, 441, 614-616.
Tensor classification of structure in smoothed particle hydrodynamics density fields
NASA Astrophysics Data System (ADS)
Forgan, Duncan; Bonnell, Ian; Lucas, William; Rice, Ken
2016-04-01
As hydrodynamic simulations increase in scale and resolution, identifying structures with non-trivial geometries or regions of general interest becomes increasingly challenging. There is a growing need for algorithms that identify a variety of different features in a simulation without requiring a `by eye' search. We present tensor classification as such a technique for smoothed particle hydrodynamics (SPH). These methods have already been used to great effect in N-Body cosmological simulations, which require smoothing defined as an input free parameter. We show that tensor classification successfully identifies a wide range of structures in SPH density fields using its native smoothing, removing a free parameter from the analysis and preventing the need for tessellation of the density field, as required by some classification algorithms. As examples, we show that tensor classification using the tidal tensor and the velocity shear tensor successfully identifies filaments, shells and sheet structures in giant molecular cloud simulations, as well as spiral arms in discs. The relationship between structures identified using different tensors illustrates how different forces compete and co-operate to produce the observed density field. We therefore advocate the use of multiple tensors to classify structure in SPH simulations, to shed light on the interplay of multiple physical processes.
Active and driven hydrodynamic crystals.
Desreumaux, N; Florent, N; Lauga, E; Bartolo, D
2012-08-01
Motivated by the experimental ability to produce monodisperse particles in microfluidic devices, we study theoretically the hydrodynamic stability of driven and active crystals. We first recall the theoretical tools allowing to quantify the dynamics of elongated particles in a confined fluid. In this regime hydrodynamic interactions between particles arise from a superposition of potential dipolar singularities. We exploit this feature to derive the equations of motion for the particle positions and orientations. After showing that all five planar Bravais lattices are stationary solutions of the equations of motion, we consider separately the case where the particles are passively driven by an external force, and the situation where they are self-propelling. We first demonstrate that phonon modes propagate in driven crystals, which are always marginally stable. The spatial structures of the eigenmodes depend solely on the symmetries of the lattices, and on the orientation of the driving force. For active crystals, the stability of the particle positions and orientations depends not only on the symmetry of the crystals but also on the perturbation wavelengths and on the crystal density. Unlike unconfined fluids, the stability of active crystals is independent of the nature of the propulsion mechanism at the single-particle level. The square and rectangular lattices are found to be linearly unstable at short wavelengths provided the volume fraction of the crystals is high enough. Differently, hexagonal, oblique, and face-centered crystals are always unstable. Our work provides a theoretical basis for future experimental work on flowing microfluidic crystals. PMID:22864543
Hydromechanical transmission with hydrodynamic drive
Orshansky, Jr., deceased, Elias; Weseloh, William E.
1979-01-01
This transmission has a first planetary gear assembly having first input means connected to an input shaft, first output means, and first reaction means, and a second planetary gear assembly having second input means connected to the first input means, second output means, and second reaction means connected directly to the first reaction means by a reaction shaft. First clutch means, when engaged, connect the first output means to an output shaft in a high driving range. A hydrodynamic drive is used; for example, a torque converter, which may or may not have a stationary case, has a pump connected to the second output means, a stator grounded by an overrunning clutch to the case, and a turbine connected to an output member, and may be used in a starting phase. Alternatively, a fluid coupling or other type of hydrodynamic drive may be used. Second clutch means, when engaged, for connecting the output member to the output shaft in a low driving range. A variable-displacement hydraulic unit is mechanically connected to the input shaft, and a fixed-displacement hydraulic unit is mechanically connected to the reaction shaft. The hydraulic units are hydraulically connected together so that when one operates as a pump the other acts as a motor, and vice versa. Both clutch means are connected to the output shaft through a forward-reverse shift arrangement. It is possible to lock out the torque converter after the starting phase is over.
The hydrodynamics of lamprey locomotion
NASA Astrophysics Data System (ADS)
Leftwich, Megan C.
The lamprey, an anguilliform swimmer, propels itself by undulating most of its body. This type of swimming produces flow patterns that are highly three-dimensional in nature and not very well understood. However, substantial previous work has been done to understand two-dimensional unsteady propulsion, the possible wake structures and thrust performance. Limited studies of three-dimensional propulsors with simple geometries have displayed the importance of the third dimension in designing unsteady swimmers. Some of the results of those studies, primarily the ways in which vorticity is organized in the wake region, are seen in lamprey swimming as well. In the current work, the third dimension is not the only important factor, but complex geometry and body undulations also contribute to the hydrodynamics. Through dye flow visualization, particle induced velocimetry and pressure measurements, the hydrodynamics of anguilliform swimming are studied using a custom built robotic lamprey. These studies all indicate that the undulations of the body are not producing thrust. Instead, it is the tail which acts to propel the animal. This conclusion led to further investigation of the tail, specifically the role of varying tail flexibility on hydrodymnamics. It is found that by making the tail more flexible, one decreases the coherence of the vorticity in the lamprey's wake. Additional flexibility also yields less thrust.
DYNA3D. Explicit 3-d Hydrodynamic FEM Program
Whirley, R.G.; Englemann, B.E. )
1993-11-30
DYNA3D is an explicit, three-dimensional, finite element program for analyzing the large deformation dynamic response of inelastic solids and structures. DYNA3D contains 30 material models and 10 equations of state (EOS) to cover a wide range of material behavior. The material models implemented are: elastic, orthotropic elastic, kinematic/isotropic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, Blatz-Ko rubber, high explosive burn, hydrodynamic without deviatoric stresses, elastoplastic hydrodynamic, temperature-dependent elastoplastic, isotropic elastoplastic, isotropic elastoplastic with failure, soil and crushable foam with failure, Johnson/Cook plasticity model, pseudo TENSOR geological model, elastoplastic with fracture, power law isotropic plasticity, strain rate dependent plasticity, rigid, thermal orthotropic, composite damage model, thermal orthotropic with 12 curves, piecewise linear isotropic plasticity, inviscid two invariant geologic cap, orthotropic crushable model, Moonsy-Rivlin rubber, resultant plasticity, closed form update shell plasticity, and Frazer-Nash rubber model. The hydrodynamic material models determine only the deviatoric stresses. Pressure is determined by one of 10 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, tabulated, and TENSOR pore collapse. DYNA3D generates three binary output databases. One contains information for complete states at infrequent intervals; 50 to 100 states is typical. The second contains information for a subset of nodes and elements at frequent intervals; 1,000 to 10,000 states is typical. The last contains interface data for contact surfaces.
Almarcha, C; Trevelyan, P M J; Grosfils, P; De Wit, A
2013-09-01
A buoyancy-driven hydrodynamic instability appearing when an aqueous acid solution of HCl overlies a denser alkaline aqueous solution of NaOH in a vertically oriented Hele-Shaw cell is studied both experimentally and theoretically. The peculiarity of this reactive convection pattern is its asymmetry with regard to the initial contact line between the two solutions as convective plumes develop in the acidic solution only. We investigate here by a linear stability analysis (LSA) of a reaction-diffusion-convection model of a simple A+B→C reaction the relative role of solutal versus thermal effects in the origin and location of this instability. We show that heat effects are much weaker than concentration-related ones such that the heat of reaction only plays a minor role on the dynamics. Computation of density profiles and of the stability analysis eigenfunctions confirm that the convective motions result from a diffusive layer convection mechanism whereby a locally unstable density stratification develops in the upper acidic layer because of the difference in the diffusion coefficients of the chemical species. The growth rate and wavelength of the pattern are determined experimentally as a function of the Brinkman parameter of the problem and compare favorably with the theoretical predictions of both LSA and nonlinear simulations.
NASA Astrophysics Data System (ADS)
Almarcha, C.; Trevelyan, P. M. J.; Grosfils, P.; De Wit, A.
2013-09-01
A buoyancy-driven hydrodynamic instability appearing when an aqueous acid solution of HCl overlies a denser alkaline aqueous solution of NaOH in a vertically oriented Hele-Shaw cell is studied both experimentally and theoretically. The peculiarity of this reactive convection pattern is its asymmetry with regard to the initial contact line between the two solutions as convective plumes develop in the acidic solution only. We investigate here by a linear stability analysis (LSA) of a reaction-diffusion-convection model of a simple A+B→C reaction the relative role of solutal versus thermal effects in the origin and location of this instability. We show that heat effects are much weaker than concentration-related ones such that the heat of reaction only plays a minor role on the dynamics. Computation of density profiles and of the stability analysis eigenfunctions confirm that the convective motions result from a diffusive layer convection mechanism whereby a locally unstable density stratification develops in the upper acidic layer because of the difference in the diffusion coefficients of the chemical species. The growth rate and wavelength of the pattern are determined experimentally as a function of the Brinkman parameter of the problem and compare favorably with the theoretical predictions of both LSA and nonlinear simulations.
Control of oscillatory thermocapillary convection in microgravity
NASA Astrophysics Data System (ADS)
Neitzel, G. Paul
1994-08-01
Laboratory and numerical experiments are underway to generate, and subsequently suppress, oscillatory thermocapillary convection in thin layer of silicone oil. The laboratory experiments have succeeded in characterizing the flow state in a limited range of Bond number-Marangoni number space of interest, identifying states of: (1) steady, unicellular, thermocapillary convection; (2) steady, multicellular, thermocapillary convection; and (3) oscillatory thermocapillary convection. Comparisons between experimental results and stability computations for a related basic state will be made.
Control of oscillatory thermocapillary convection in microgravity
NASA Technical Reports Server (NTRS)
Neitzel, G. Paul
1994-01-01
Laboratory and numerical experiments are underway to generate, and subsequently suppress, oscillatory thermocapillary convection in thin layer of silicone oil. The laboratory experiments have succeeded in characterizing the flow state in a limited range of Bond number-Marangoni number space of interest, identifying states of: (1) steady, unicellular, thermocapillary convection; (2) steady, multicellular, thermocapillary convection; and (3) oscillatory thermocapillary convection. Comparisons between experimental results and stability computations for a related basic state will be made.
Synthesis : Convection, structure and evolution
NASA Astrophysics Data System (ADS)
Schatzman, E.
1997-12-01
Lectures and discussions at the SCORe workshop have given a general idea of our present understanding of convection and oscillations and its application to the special case of the Sun. This {\\it SYNTHESIS} is just an attempt to present what seems to me to be the most important results, to draw attention to forgotten physical processes and to approach some important unsolved questions.
Three-dimensional spherical models of convection in the earth's mantle
Bercovici, D.; Schubert, G. ); Glatzmaier, G.A. )
1989-05-26
Three-dimensional, spherical models of mantle convection in the earth reveal that upwelling cylindrical plumes and downwelling planar sheets are the primary features of mantle circulation. Thus, subduction zones and descending sheetlike slabs in the mantle are fundamental characteristics of thermal convection in a spherical shell and are not merely the consequences of the rigidity of the slabs, which are cooler than the surrounding mantle. Cylindrical mantle plumes that cause hotspots such as Hawaii are probably the only form of active upwelling and are therefore not just secondary convective currents separate from the large-scale mantle circulation. Active sheetlike upwellings that could be associated with mid-ocean ridges did not develop in the model simulations, a result that is in agreement with evidence suggesting that ridges are passive phenomena resulting from the tearing of surface plates by the pull of descending slabs. 36 refs., 3 figs.
Influence of convection on microstructure
NASA Technical Reports Server (NTRS)
Wilcox, William R.; Regel, Liya L.
1992-01-01
The primary motivation for this research has been to determine the cause for space processing altering the microstructure of some eutectics, especially the MnBi-Bi eutectic. Prior experimental research at Grumman and here showed that the microstructure of MnBi-Bi eutectic is twice as fine when solidified in space or in a magnetic field, is uninfluenced by interfacial temperature gradient, adjusts very quickly to changes in freezing rate, and becomes coarser when spin-up/spin-down (accelerated crucible rotation technique) is used during solidification. Theoretical work at Clarkson predicted that buoyancy driven convection on earth could not account for the two fold change in fiber spacing caused by solidification in space. However, a lamellar structure with a planar interface was assumed, and the Soret effect was not included in the analysis. Experimental work at Clarkson showed that the interface is not planar, and that MnBi fibers project out in front of the Bi matrix on the order of one fiber diameter. Originally four primary hypotheses were to be tested under this current grant: (1) a fibrous microstructure is much more sensitive to convection than a lamellar microstructure, which was assumed in our prior theoretical treatment; (2) an interface with one phase projecting out into the melt is much more sensitive to convection than a planar interface, which was assumed in our prior theoretical treatment; (3) the Soret effect is much more important in the absence of convection and has a sufficiently large influence on microstructure that its action can explain the flight results; and (4) the microstructure is much more sensitive to convection when the composition of the bulk melt is off eutectic. As reported previously, we have learned that while a fibrous microstructure and a non-planar interface are more sensitive to convection than a lamellar microstructure with a planar interface, the influence of convection remains too small to explain the flight and magnetic
How stratified is mantle convection?
NASA Astrophysics Data System (ADS)
Puster, Peter; Jordan, Thomas H.
1997-04-01
We quantify the flow stratification in the Earth's mid-mantle (600-1500 km) in terms of a stratification index for the vertical mass flux, Sƒ (z) = 1 - ƒ(z) / ƒref (z), in which the reference value ƒref(z) approximates the local flux at depth z expected for unstratified convection (Sƒ=0). Although this flux stratification index cannot be directly constrained by observations, we show from a series of two-dimensional convection simulations that its value can be related to a thermal stratification index ST(Z) defined in terms of the radial correlation length of the temperature-perturbation field δT(z, Ω). ST is a good proxy for Sƒ at low stratifications (Sƒ<0.2), where it rises with stratification strength much more rapidly than Sƒ. Assuming that the shear-speed variations δβ(z, Ω) imaged by seismic tomography are primarily due to convective temperature fluctuations, we can approximate ST by Sβ, the analogous index for the radial correlation length of δβ, and thereby construct bounds on Sƒ. We discuss several key issues regarding the implementation of this strategy, including finite resolution of the seismic data, biases due to the parameterization of the tomographic models, and the bias and variance due to noise. From the comparison of the numerical simulations with recent tomographic structures, we conclude that it is unlikely that convection in the Earth's mantle has Sƒ≳0.15. We consider the possibility that this estimate is biased because mantle convection is intermittent and therefore that the present-day tomographic snapshot may differ from its time average. Although this possibility cannot be dismissed completely, we argue that values of Sƒ≳0.2 can be discounted under a weak version of the Uniformitarian Principle. The bound obtained here from global tomography is consistent with local seismological evidence for slab flux into the lower mantle; however, the total material flux has to be significantly greater (by a factor of 2-3) than that
Statistical mechanics of shell models for two-dimensional turbulence
NASA Astrophysics Data System (ADS)
Aurell, E.; Boffetta, G.; Crisanti, A.; Frick, P.; Paladin, G.; Vulpiani, A.
1994-12-01
We study shell models that conserve the analogs of energy and enstrophy and hence are designed to mimic fluid turbulence in two-dimensions (2D). The main result is that the observed state is well described as a formal statistical equilibrium, closely analogous to the approach to two-dimensional ideal hydrodynamics of Onsager [Nuovo Cimento Suppl. 6, 279 (1949)], Hopf [J. Rat. Mech. Anal. 1, 87 (1952)], and Lee [Q. Appl. Math. 10, 69 (1952)]. In the presence of forcing and dissipation we observe a forward flux of enstrophy and a backward flux of energy. These fluxes can be understood as mean diffusive drifts from a source to two sinks in a system which is close to local equilibrium with Lagrange multipliers (``shell temperatures'') changing slowly with scale. This is clear evidence that the simplest shell models are not adequate to reproduce the main features of two-dimensional turbulence. The dimensional predictions on the power spectra from a supposed forward cascade of enstrophy and from one branch of the formal statistical equilibrium coincide in these shell models in contrast to the corresponding predictions for the Navier-Stokes and Euler equations in 2D. This coincidence has previously led to the mistaken conclusion that shell models exhibit a forward cascade of enstrophy. We also study the dynamical properties of the models and the growth of perturbations.
Features of steady magnetospheric convection
NASA Technical Reports Server (NTRS)
Yahnin, A.; Malkov, M. V.; Sergeev, V. A.; Pellinen, R. J.; Aulamo, O.; Vennergstrom, S.; Friis-Christensen, E.; Lassen, K.; Danielsen, C.; Craven, J. D.
1994-01-01
The large-scale patterns of ionospheric convection and particle precipitation are described during two intervals of steady magnetospheric convection (SMC) on November 24, 1981. The unique data set used in the analysis includes recordings from the worldwide network of magnetometers and all-sky cameras, global auroral images from the Dynamics Explorer (DE) 1 spacecraft, and particle precipitation data from low-altitude National Oceanic and Atmospheric Administration (NOAA) 6 and NOAA 7 spacecraft. The data show that intense magnetospheric convection continued during more than 10 hours under the steady southward interplanetary magnetic field without any distinct substorm signatures. All data sets available confirmed the stable character of the large-scale magnetospheric configuration during this period. In particular, the magnetic flux threading the polar cap was stable (within 10%) during 3.5 hours of continued DE 1 observations. The dayside cusp was located at an unusually low latitude (70 deg CGL). The nightside auroral pattern consisted of two distinct regions. The diffuse aurora in the equatorward half of the expanded (10 deg wide) auroral oval was well-separated from the bright, active auroral forms found in the vicinity of the poleward boundary of the oval. The twin-vortex convection pattern had no signature of the Harang discontinuity; its nightside 'convection throat' was spatially coincident with the poleward active auroras. This region of the auroral oval was identified as the primary site of the short-lived transient activations during the SMC intervals. The energetic particle observations show that the auroral precipitation up to its high-latitude limit is on closed field lines and that particle acceleration up to greater than 30-keV energy starts close to this limit. The isotropic boundaries of the greater than 30-keV protons and electrons were found close to each other, separating regions of discrete and diffuse precipitation. This suggests that these
Convective storms in planetary atmospheres
NASA Astrophysics Data System (ADS)
Hueso, R.; Sánchez-Lavega, A.
2013-05-01
The atmospheres of the planets in the Solar System have different physical properties that in some cases can be considered as extreme when compared with our own planet's more familiar atmosphere. From the tenuous and cold atmosphere of Mars to the dense and warm atmosphere of Venus in the case of the terrestrial planets, to the gigantic atmospheres of the outer planets, or the nitrogen and methane atmosphere of Saturn's moon Titan, we can find a large variety of physical environments. The comparative study of these atmospheres provides a better understanding of the physics of a geophysical fluid. In many of these worlds convective storms of different intensity appear. They are analogous to terrestrial atmospheres fed by the release of latent heat when one of the gases in the atmosphere condenses and they are therefore called moist convective storms. In many of these planets they can produce severe meteorological phenomena and by studying them in a comparative way we can aspire to get a further insight in the dynamics of these atmospheres even beyond the scope of moist convection. A classical example is the structure of the complex systems of winds in the giant planets Jupiter and Saturn. These winds are zonal and alternate in latitude but their deep structure is not accessible to direct observation. However the behaviour of large--scale convective storms vertically extending over the "weather layer" allows to study the buried roots of these winds. Another interesting atmosphere with a rather different structure of convection is Titan, a world where methane is close to its triple point in the atmosphere and can condense in bright clouds with large precipitation fluxes that may model part of the orography of the surface making Titan a world with a methane cycle similar to the hydrological cycle of Earth's atmosphere.
Influence of the Geometry on Mantle Convection Models
NASA Astrophysics Data System (ADS)
Noack, L.; Tosi, N.
2012-04-01
Modelling of geodynamic processes like mantle or core convection has strongly improved over the last two decades thanks to the steady development of numerical codes that tend to incorporate a more and more realistic physics. High-performance parallel computations allow the simulation of complex problems, such as the self-consistent generation of tectonic plates or the formation of planetary magnetic fields. However, the need to perform broad explorations of the parameter space and the large computational demands imposed by the non-linear, multi-scale nature of convection require several simplifications, in the domain geometry as well as in the physical complexity of the problem. A straightforward approach to limit the computational complexity of the simulations is to decrease the total number of degrees of freedom of the problem by reducing either the number of dimensions or the size of the model domain. On the one hand, for a given resolution, a 3D spherical shell clearly needs a much larger number of grid points than a 2D cylindrical shell or a 2D Cartesian box. At the resolutions typically employed to solve mantle convection problems, this difference amounts to at least a factor of a few hundreds. On the other hand, for certain problems, only a relatively small part of the mantle may be of interest, as in the case of the modelling of subduction [1], mid-ocean ridges or transform faults [2]. We adapted the code GAIA [3] to solve the Stokes problem in several different geometries (Cartesian box, cylindrical, spherical and regional-spherical) and dimensions (2D and 3D) and started a benchmark along the lines of [4] to assess the loss of accuracy when using reduced domains instead of a 3D spherical shell [5]. In general, upwellings in Cartesian geometry are rather flat, whereas the spherical geometry changes their shape to more mushroom-like structures. Furthermore, the number of plumes, which is representative of the characteristic wavelength of convection, varies
3D Hydrodynamical Simulations of Evolved Stars and Observations of Stellar Surfaces
NASA Astrophysics Data System (ADS)
Chiavassa, A.; Freytag, B.
2015-08-01
Evolved stars are among the largest and brightest stars and they are ideal targets for the new generation of sensitive, high resolution instrumentation that provides spectrophotometric, interferometric, astrometric, and imaging observables. The interpretation of the complex stellar surface images requires numerical simulations of stellar convection that take into account multi-dimensional time-dependent radiation hydrodynamics with realistic input physics. We show how the evolved star simulations are obtained using the radiative hydrodynamics code CO5BOLD and how the accurate observables are computed with the post-processing radiative transfer code OPTIM3D. The synergy between observations and theoretical work is supported by a proper and quantitative analysis using these simulations, and by strong constraints from the observational side.
CALIBRATION OF THE MIXING-LENGTH THEORY FOR CONVECTIVE WHITE DWARF ENVELOPES
Tremblay, P.-E.; Ludwig, H.-G.; Freytag, B.; Fontaine, G.; Brassard, P.; Steffen, M.
2015-02-01
A calibration of the mixing-length parameter in the local mixing-length theory (MLT) is presented for the lower part of the convection zone in pure-hydrogen-atmosphere white dwarfs. The parameterization is performed from a comparison of three-dimensional (3D) CO5BOLD simulations with a grid of one-dimensional (1D) envelopes with a varying mixing-length parameter. In many instances, the 3D simulations are restricted to the upper part of the convection zone. The hydrodynamical calculations suggest, in those cases, that the entropy of the upflows does not change significantly from the bottom of the convection zone to regions immediately below the photosphere. We rely on this asymptotic entropy value, characteristic of the deep and adiabatically stratified layers, to calibrate 1D envelopes. The calibration encompasses the convective hydrogen-line (DA) white dwarfs in the effective temperature range 6000 ≤ T {sub eff} (K) ≤15, 000 and the surface gravity range 7.0 ≤ log g ≤ 9.0. It is established that the local MLT is unable to reproduce simultaneously the thermodynamical, flux, and dynamical properties of the 3D simulations. We therefore propose three different parameterizations for these quantities. The resulting calibration can be applied to structure and envelope calculations, in particular for pulsation, chemical diffusion, and convective mixing studies. On the other hand, convection has no effect on the white dwarf cooling rates until there is a convective coupling with the degenerate core below T {sub eff} ∼ 5000 K. In this regime, the 1D structures are insensitive to the MLT parameterization and converge to the mean 3D results, hence they remain fully appropriate for age determinations.
NASA Astrophysics Data System (ADS)
Freytag, B.; Allard, F.; Ludwig, H.-G.; Homeier, D.; Steffen, M.
2010-04-01
Context. Observationally, spectra of brown dwarfs indicate the presence of dust in their atmospheres while theoretically it is not clear what prevents the dust from settling and disappearing from the regions of spectrum formation. Consequently, standard models have to rely on ad hoc assumptions about the mechanism that keeps dust grains aloft in the atmosphere. Aims: We apply hydrodynamical simulations to develop an improved physical understanding of the mixing properties of macroscopic flows in M dwarf and brown dwarf atmospheres, in particular of the influence of the underlying convection zone. Methods: We performed two-dimensional radiation hydrodynamics simulations including a description of dust grain formation and transport with the CO5BOLD code. The simulations cover the very top of the convection zone and the photosphere including the dust layers for a sequence of effective temperatures between 900 K and 2800 K, all with log g = 5 assuming solar chemical composition. Results: Convective overshoot occurs in the form of exponentially declining velocities with small scale heights, so that it affects only the region immediately above the almost adiabatic convective layers. From there on, mixing is provided by gravity waves that are strong enough to maintain thin dust clouds in the hotter models. With decreasing effective temperature, the amplitudes of the waves become smaller but the clouds become thicker and develop internal convective flows that are more efficient in transporting and mixing material than gravity waves. The presence of clouds often leads to a highly structured appearance of the stellar surface on short temporal and small spatial scales (presently inaccessible to observations). Conclusions: We identify convectively excited gravity waves as an essential mixing process in M dwarf and brown dwarf atmospheres. Under conditions of strong cloud formation, dust convection is the dominant self-sustaining mixing component.
Hydrodynamic instability in the open system of the iodate-arsenous acid reaction.
Pópity-Tóth, Éva; Pimienta, Véronique; Horváth, Dezső; Tóth, Ágota
2013-10-28
Hydrodynamic instability arising in horizontally propagating vertical chemical fronts leading to the formation of a single stable convection roll is investigated experimentally in the iodate-arsenous acid reaction for various stoichiometry. In the presence of a free surface, the tilted reaction front becomes more elongated due to the evaporation of the surface active iodine and the decrease in the surface tension during the reaction. The experimental conditions are then identified where Marangoni instability represents the driving force for the distortion of the reaction front at the surface.
Lee, M.C.; Kendall, J.M.,JR.; Bahrami, P.A.; Wang, T.G.
1986-01-01
Fluid-dynamic and capillary forces can be used to form nearly perfect, very small spherical shells when a liquid that can solidify is passed through an annular die to form an annular jet. Gravity and certain properties of even the most ideal materials, however, can cause slight asymmetries. The primary objective of the present work is the control of this shell formation process in earth laboratories rather than space microgravity, through the development of facilities and methods that minimize the deleterious effects of gravity, aerodynamic drag, and uncontrolled cooling. The spherical shells thus produced can be used in insulation, recyclable filter materials, fire retardants, explosives, heat transport slurries, shock-absorbing armor, and solid rocket motors.
Hamza, Alex V.; Biener, Juergen; Wild, Christoph; Woerner, Eckhard
2016-11-01
A novel method for fabricating diamond shells is introduced. The fabrication of such shells is a multi-step process, which involves diamond chemical vapor deposition on predetermined mandrels followed by polishing, microfabrication of holes, and removal of the mandrel by an etch process. The resultant shells of the present invention can be configured with a surface roughness at the nanometer level (e.g., on the order of down to about 10 nm RMS) on a mm length scale, and exhibit excellent hardness/strength, and good transparency in the both the infra-red and visible. Specifically, a novel process is disclosed herein, which allows coating of spherical substrates with optical-quality diamond films or nanocrystalline diamond films.
Shell Biorefinery: Dream or Reality?
Chen, Xi; Yang, Huiying; Yan, Ning
2016-09-12
Shell biorefinery, referring to the fractionation of crustacean shells into their major components and the transformation of each component into value-added chemicals and materials, has attracted growing attention in recent years. Since the large quantities of waste shells remain underexploited, their valorization can potentially bring both ecological and economic benefits. This Review provides an overview of the current status of shell biorefinery. It first describes the structural features of crustacean shells, including their composition and their interactions. Then, various fractionation methods for the shells are introduced. The last section is dedicated to the valorization of chitin and its derivatives for chemicals, porous carbon materials and functional polymers.
Shell Biorefinery: Dream or Reality?
Chen, Xi; Yang, Huiying; Yan, Ning
2016-09-12
Shell biorefinery, referring to the fractionation of crustacean shells into their major components and the transformation of each component into value-added chemicals and materials, has attracted growing attention in recent years. Since the large quantities of waste shells remain underexploited, their valorization can potentially bring both ecological and economic benefits. This Review provides an overview of the current status of shell biorefinery. It first describes the structural features of crustacean shells, including their composition and their interactions. Then, various fractionation methods for the shells are introduced. The last section is dedicated to the valorization of chitin and its derivatives for chemicals, porous carbon materials and functional polymers. PMID:27484462
Relativistic Hydrodynamics for Heavy-Ion Collisions
ERIC Educational Resources Information Center
Ollitrault, Jean-Yves
2008-01-01
Relativistic hydrodynamics is essential to our current understanding of nucleus-nucleus collisions at ultrarelativistic energies (current experiments at the Relativistic Heavy Ion Collider, forthcoming experiments at the CERN Large Hadron Collider). This is an introduction to relativistic hydrodynamics for graduate students. It includes a detailed…
Hydrodynamic models of a Cepheid atmosphere
NASA Technical Reports Server (NTRS)
Karp, A. H.
1975-01-01
Instead of computing a large number of coarsely zoned hydrodynamic models covering the entire atmospheric instability strip, the author computed a single model as well as computer limitations allow. The implicit hydrodynamic code of Kutter and Sparks was modified to include radiative transfer effects in optically thin zones.
Hydrodynamic description for ballistic annihilation systems
Garcia de Soria, Maria Isabel; Trizac, Emmanuel; Maynar, Pablo; Schehr, Gregory; Barrat, Alain
2009-01-21
The problem of the validity of a hydrodynamic description for a system in which there are no collisional invariants is addressed. Hydrodynamic equations have been derived and successfully tested against simulation data for a system where particles annihilate with a probability p, or collide elastically otherwise. The response of the system to a linear perturbation is analyzed as well.
Dendrite growth under forced convection: analysis methods and experimental tests
NASA Astrophysics Data System (ADS)
Alexandrov, D. V.; Galenko, P. K.
2014-08-01
An analysis is given of the nonisothermal growth of a dendrite crystal under forced fluid flow in a binary system. The theoretical model utilized employs a free moving crystal-liquid interface and makes use of the Oseen approximation for the equations of motion of the liquid. A criterion for the stable growth of two-dimensional and three-dimensional parabolic dendrites is derived under the assumption of an anisotropic surface tension at the crystal-liquid interface, which generalizes the previous known results for the stable growth of a dendrite with convection in a one-component fluid and for the growth of a dendrite in a two-component system at rest. The criterion obtained within the Oseen hydrodynamic approximation is extended to arbitrary Peclet numbers and dendrite growth with convection in a nonisothermal multicomponent system. Model predictions are compared with experimental data on crystal growth kinetics in droplets processed in electromagnetic and electrostatic levitation facilities. Theoretical and simulation methods currently being developed are applied to crystallization processes under earthly and reduced gravity conditions.
A transilient matrix for moist convection
Romps, D.; Kuang, Z.
2011-08-15
A method is introduced for diagnosing a transilient matrix for moist convection. This transilient matrix quantifies the nonlocal transport of air by convective eddies: for every height z, it gives the distribution of starting heights z{prime} for the eddies that arrive at z. In a cloud-resolving simulation of deep convection, the transilient matrix shows that two-thirds of the subcloud air convecting into the free troposphere originates from within 100 m of the surface. This finding clarifies which initial height to use when calculating convective available potential energy from soundings of the tropical troposphere.
Granular convection observed by magnetic resonance imaging
Ehrichs, E.E.; Jaeger, H.M.; Knight, J.B.; Nagel, S.R.; Karczmar, G.S.; Kuperman, V.Yu.
1995-03-17
Vibrations in a granular material can spontaneously produce convection rolls reminiscent of those seen in fluids. Magnetic resonance imaging provides a sensitive and noninvasive probe for the detection of these convection currents, which have otherwise been difficult to observe. A magnetic resonance imaging study of convection in a column of poppy seeds yielded data about the detailed shape of the convection rolls and the depth dependence of the convection velocity. The velocity was found to decrease exponentially with depth; a simple model for this behavior is presented here. 31 refs., 4 figs.
Tropical Convection's Roles in Tropical Tropopause Cirrus
NASA Technical Reports Server (NTRS)
Boehm, Matthew T.; Starr, David OC.; Verlinde, Johannes; Lee, Sukyoung
2002-01-01
The results presented here show that tropical convection plays a role in each of the three primary processes involved in the in situ formation of tropopause cirrus. First, tropical convection transports moisture from the surface into the upper troposphere. Second, tropical convection excites Rossby waves that transport zonal momentum toward the ITCZ, thereby generating rising motion near the equator. This rising motion helps transport moisture from where it is detrained from convection to the cold-point tropopause. Finally, tropical convection excites vertically propagating tropical waves (e.g. Kelvin waves) that provide one source of large-scale cooling near the cold-point tropopause, leading to tropopause cirrus formation.
Granular convection observed by magnetic resonance imaging
NASA Astrophysics Data System (ADS)
Ehrichs, E. E.; Jaeger, H. M.; Karczmar, Greg S.; Knight, James B.; Kuperman, Vadim Yu.; Nagel, Sidney R.
1995-03-01
Vibrations in a granular material can spontaneously produce convection rolls reminiscent of those seen in fluids. Magnetic resonance imaging provides a sensitive and noninvasive probe for the detection of these convection currents, which have otherwise been difficult to observe. A magnetic resonance imaging study of convection in a column of poppy seeds yielded data about the detailed shape of the convection rolls and the depth dependence of the convection velocity. The velocity was found to decrease exponentially with depth; a simple model for this behavior is presented here.
Oyster shell conveyor used to lift shells from the dock ...
Oyster shell conveyor used to lift shells from the dock into the receiving room housed in the 1965 concrete block addition. - J.C. Lore Oyster House, 14430 Solomons Island Road, Solomons, Calvert County, MD
Comparative Hydrodynamics of Bacterial Polymorphism
NASA Astrophysics Data System (ADS)
Spagnolie, Saverio E.; Lauga, Eric
2011-02-01
Most bacteria swim through fluids by rotating helical flagella which can take one of 12 distinct polymorphic shapes, the most common of which is the normal form used during forward swimming runs. To shed light on the prevalence of the normal form in locomotion, we gather all available experimental measurements of the various polymorphic forms and compute their intrinsic hydrodynamic efficiencies. The normal helical form is found to be the most efficient of the 12 polymorphic forms by a significant margin—a conclusion valid for both the peritrichous and polar flagellar families, and robust to a change in the effective flagellum diameter or length. Hence, although energetic costs of locomotion are small for bacteria, fluid mechanical forces may have played a significant role in the evolution of the flagellum.
Hydrodynamic enhanced dielectrophoretic particle trapping
Miles, Robin R.
2003-12-09
Hydrodynamic enhanced dielectrophoretic particle trapping carried out by introducing a side stream into the main stream to squeeze the fluid containing particles close to the electrodes producing the dielelectrophoretic forces. The region of most effective or the strongest forces in the manipulating fields of the electrodes producing the dielectrophoretic forces is close to the electrodes, within 100 .mu.m from the electrodes. The particle trapping arrangement uses a series of electrodes with an AC field placed between pairs of electrodes, which causes trapping of particles along the edges of the electrodes. By forcing an incoming flow stream containing cells and DNA, for example, close to the electrodes using another flow stream improves the efficiency of the DNA trapping.
Radiation hydrodynamics in solar flares
Fisher, G.H.
1985-10-18
Solar flares are rather violent and extremely complicated phenomena, and it should be made clear at the outset that a physically complete picture describing all aspects of flares does not exist. From the wealth of data which is available, it is apparent that many different types of physical processes are involved during flares: energetic particle acceleration, rapid magnetohydrodynamic motion of complex field structures, magnetic reconnection, violent mass motion along magnetic field lines, and the heating of plasma to tens of millions of degrees, to name a few. The goal of this paper is to explore just one aspect of solar flares, namely, the interaction of hydrodynamics and radiation processes in fluid being rapidly heated along closed magnetic field lines. The models discussed are therefore necessarily restrictive, and will address only a few of the observed or observable phenomena. 46 refs., 6 figs.
Integration of quantum hydrodynamical equation
NASA Astrophysics Data System (ADS)
Ulyanova, Vera G.; Sanin, Andrey L.
2007-04-01
Quantum hydrodynamics equations describing the dynamics of quantum fluid are a subject of this report (QFD).These equations can be used to decide the wide class of problem. But there are the calculated difficulties for the equations, which take place for nonlinear hyperbolic systems. In this connection, It is necessary to impose the additional restrictions which assure the existence and unique of solutions. As test sample, we use the free wave packet and study its behavior at the different initial and boundary conditions. The calculations of wave packet propagation cause in numerical algorithm the division. In numerical algorithm at the calculations of wave packet propagation, there arises the problem of division by zero. To overcome this problem we have to sew together discrete numerical and analytical continuous solutions on the boundary. We demonstrate here for the free wave packet that the numerical solution corresponds to the analytical solution.
Hydrodynamic assembly for Fast Ignition
NASA Astrophysics Data System (ADS)
Tabak, Max; Clark, Daniel; Town, Richard; Hatchett, Stephen
2007-11-01
We present directly and indirectly driven implosion designs for Fast Ignition. Directly driven designs using various laser illumination wavelengths are described. We compare these designs with simple hydrodynamic efficiency models. Capsules illuminated with less than 1 MJ of light with perfect zooming at low intensity and low contrast ratio in power can assemble 4 mg of fuel to column density in excess of 3 g/cm^2. We contrast these designs with more optimized designs that lead to Guderley-style self similar implosions. Indirectly driven capsules absorbing 75 kJ of xrays can assemble 0.7 mg to column density 2.7 g/cm^2 in 1D simulations. We describe 2-D simulations including both capsules and attached cones driven by radiation. We describe issues in assembling fuel near the cone tip and cone disruption.
Hydrodynamic model for drying emulsions.
Feng, Huanhuan; Sprakel, Joris; van der Gucht, Jasper
2015-08-01
We present a hydrodynamic model for film formation in a dense oil-in-water emulsion under a unidirectional drying stress. Water flow through the plateau borders towards the drying end leads to the buildup of a pressure gradient. When the local pressure exceeds the critical disjoining pressure, the water films between droplets break and the droplets coalesce. We show that, depending on the critical pressure and the evaporation rate, the coalescence can occur in two distinct modes. At low critical pressures and low evaporation rates, coalescence occurs throughout the sample, whereas at high critical pressures and high evaporation rate, coalescence occurs only at the front. In the latter case, an oil layer develops on top of the film, which acts as a diffusive barrier and slows down film formation. Our findings, which are summarized in a state diagram for film formation, are in agreement with recent experimental findings.
Anomalous hydrodynamics kicks neutron stars
NASA Astrophysics Data System (ADS)
Kaminski, Matthias; Uhlemann, Christoph F.; Bleicher, Marcus; Schaffner-Bielich, Jürgen
2016-09-01
Observations show that, at the beginning of their existence, neutron stars are accelerated briskly to velocities of up to a thousand kilometers per second. We argue that this remarkable effect can be explained as a manifestation of quantum anomalies on astrophysical scales. To theoretically describe the early stage in the life of neutron stars we use hydrodynamics as a systematic effective-field-theory framework. Within this framework, anomalies of the Standard Model of particle physics as underlying microscopic theory imply the presence of a particular set of transport terms, whose form is completely fixed by theoretical consistency. The resulting chiral transport effects in proto-neutron stars enhance neutrino emission along the internal magnetic field, and the recoil can explain the order of magnitude of the observed kick velocities.
IKT for quantum hydrodynamic equations
NASA Astrophysics Data System (ADS)
Tessarotto, Massimo; Ellero, Marco; Nicolini, Piero
2007-11-01
A striking feature of standard quantum mechanics (SQM) is its analogy with classical fluid dynamics. In fact, it is well-known that the Schr"odinger equation is equivalent to a closed set of partial differential equations for suitable real-valued functions of position and time (denoted as quantum fluid fields) [Madelung, 1928]. In particular, the corresponding quantum hydrodynamic equations (QHE) can be viewed as the equations of a classical compressible and non-viscous fluid, endowed with potential velocity and quantized velocity circulation. In this reference, an interesting theoretical problem, in its own right, is the construction of an inverse kinetic theory (IKT) for such a type of fluids. In this note we intend to investigate consequences of the IKT recently formulated for QHE [M.Tessarotto et al., Phys. Rev. A 75, 012105 (2007)]. In particular a basic issue is related to the definition of the quantum fluid fields.
NASA Astrophysics Data System (ADS)
Yan, Yueran
aqueous phase can quench CdTe/CdS QDs. Additionally, the stability of the different ligands capped CdTe/CdS QDs was tested by dialysis measurement, the hydrodynamic diameters of CdTe and CdTe/CdS core/shell QDs were measured by dynamic light scattering, and dissolving issue was found when CdTe and CdTe/CdS core/shell QDs were diluted in CHCl3. We have characterized the CdTe core and the CdTe/CdS core/shell QDs by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), small angle X-ray scattering (SAXS), and ICP-OES measurements. We have found that the CdTe core was of a zincblende structure, and the shell was a wurtzite structure. And the CdTe/CdS QDs were core/shell QDs instead of alloying QDs. We have also analyzed the photophysical properties of CdTe and CdTe/CdS core/shell QDs. Time-resolved photoluminescence (PL) measurements showed the emission decay lifetimes in the tens of nanoseconds. Additionally, ultrafast charge carrier relaxation dynamics of the CdTe core and CdTe/CdS core/shell QDs were studied by the femtosecond transient absorption (TA) spectroscopy. The transient absorption spectra of CdTe and CdTe/CdS core/shell QDs showed multiple bleaches, which have been assigned to the 1S3/2(h)-1S(e), 2S3/2(h)-1S(e), and 1P3/2(h)-1P(e) transitions. The spectral shifts of these bleaches after shell deposition have been analyzed in the context of a quasi-type-II carrier distribution in the core/shell samples, and interestingly the red shift was only contributed from the conduction band energy levels shifting to lower energy. In addition, the ultrafast evolution of these bleach features has been examined to extract electron cooling rates in these samples. A fast decay component in the 1S3/2(h)-1S(e) transition of the small CdTe QDs was discovered due to the hole being trapped by the defects on the surface of QD. Further, we have studied the PL quenching process of the air exposed CdTe QDs via the PL decay and transient absorption measurements. Oxygen
Effect of Surface Roughness on Hydrodynamic Bearings
NASA Technical Reports Server (NTRS)
Majumdar, B. C.; Hamrock, B. J.
1981-01-01
A theoretical analysis on the performance of hydrodynamic oil bearings is made considering surface roughness effect. The hydrodynamic as well as asperity contact load is found. The contact pressure was calculated with the assumption that the surface height distribution was Gaussian. The average Reynolds equation of partially lubricated surface was used to calculate hydrodynamic load. An analytical expression for average gap was found and was introduced to modify the average Reynolds equation. The resulting boundary value problem was then solved numerically by finite difference methods using the method of successive over relaxation. The pressure distribution and hydrodynamic load capacity of plane slider and journal bearings were calculated for various design data. The effects of attitude and roughness of surface on the bearing performance were shown. The results are compared with similar available solution of rough surface bearings. It is shown that: (1) the contribution of contact load is not significant; and (2) the hydrodynamic and contact load increase with surface roughness.
The hydrodynamics of dolphin drafting
Weihs, Daniel
2004-01-01
Background Drafting in cetaceans is defined as the transfer of forces between individuals without actual physical contact between them. This behavior has long been surmised to explain how young dolphin calves keep up with their rapidly moving mothers. It has recently been observed that a significant number of calves become permanently separated from their mothers during chases by tuna vessels. A study of the hydrodynamics of drafting, initiated in the hope of understanding the mechanisms causing the separation of mothers and calves during fishing-related activities, is reported here. Results Quantitative results are shown for the forces and moments around a pair of unequally sized dolphin-like slender bodies. These include two major effects. First, the so-called Bernoulli suction, which stems from the fact that the local pressure drops in areas of high speed, results in an attractive force between mother and calf. Second is the displacement effect, in which the motion of the mother causes the water in front to move forwards and radially outwards, and water behind the body to move forwards to replace the animal's mass. Thus, the calf can gain a 'free ride' in the forward-moving areas. Utilizing these effects, the neonate can gain up to 90% of the thrust needed to move alongside the mother at speeds of up to 2.4 m/sec. A comparison with observations of eastern spinner dolphins (Stenella longirostris) is presented, showing savings of up to 60% in the thrust that calves require if they are to keep up with their mothers. Conclusions A theoretical analysis, backed by observations of free-swimming dolphin schools, indicates that hydrodynamic interactions with mothers play an important role in enabling dolphin calves to keep up with rapidly moving adult school members. PMID:15132740
Low Mach Number Simulation of Core Convection in Massive Stars
NASA Astrophysics Data System (ADS)
Gilet, Candace Elise
species system takes longer to reach quasi-steady state convection. This is due to the fact that a single species model cannot effectively model mixing at the convection zone boundary, where fluid of a differing composition is pulled into the convective region. Simulations in an octant yields flow with statistical properties that are within a factor of two (or less) of the full sphere simulation values. Both the octant and full sphere simulations show similar mixing across the convection zone boundary that is consistent with the turbulent entrainment model. However, the global character of the flow is distinctly different in the octant simulation, showing more rapid changes in the large scale structure of the flow, leading to a more isotropic flow on average. Thus, for studies of more rapid dynamics that could depend sensitively on anisotropy in the flow, such as simulations of the helium flash or oxygen shell burning, performing simulations on a reduced domain is questionable.
NASA Astrophysics Data System (ADS)
Chambers, D. M.; Pinto, P. A.; Hawreliak, J.; Al'Miev, I. R.; Gouveia, A.; Sondhauss, P.; Wolfrum, E.; Wark, J. S.; Glenzer, S. H.; Lee, R. W.; Young, P. E.; Renner, O.; Marjoribanks, R. S.; Topping, S.
2002-08-01
We present detailed spectroscopic analysis of the primary K-shell emission lines from a uniaxially expanding laser-produced hydrogenic and heliumlike aluminum plasma. The spectroscopic measurements are found to be consistent with time-dependent hydrodynamic properties of the plasma, measured using Thomson scattering and shadowgraphy. The K-shell population kinetics code FLY with the measured hydrodynamic parameters is used to generate spectra that are compared to the experimental spectra. Excellent agreement is found between the measured and calculated spectra for a variety of experimental target widths employed to produce plasmas with different optical depths. The peak emission from the hydrogenic Lyman series is determined to be from a temporal and spatial region where the hydrodynamic parameters are essentially constant. This allows a single steady-state solution of FLY to be used to deduce the electron temperature and density, from the measured line ratios and linewidths, for comparison with the Thomson and shadowgraphy data. These measurements are found to agree well with time-dependent calculations, and provide further validation for the FLY calculations of the ionization and excitation balance for a K-shell aluminum plasma. We also discuss the possible application of this data as a benchmark for hydrodynamic simulations and ionization/excitation balance calculations.
Dey, Bibaswan; Sekhar, G P Raja
2016-04-21
This work addresses a theoretical framework for transvascular exchange and extravascular transport of solute macromolecules through soft interstitial space inside a solid tumor. Most of the soft biological tissues show materialistic properties similar to deformable porous material. They exhibit mechanical behavior towards the fluid motion since the solid phase of the tumor tissue gets compressed by the drag force that is associated with the extracellular fluid flow. This paper presents a general view about the transvascular and interstitial transport of solute nutrients inside a tumor in the macroscopic level. Modified Starling׳s equation is used to describe transvascular nutrient transport. On the macroscopic level, motion of extracellular fluid within the tumor interstitium is modeled with the help of biphasic mixture theory and a spherical symmetry solution is given as a simpler case. This present model describes the average interstitial fluid pressure (IFP), extracellular fluid velocity (EFV) and flow rate of extracellular fluid, as well as the deformation of the solid phase of the tumor tissue as an immediate cause of extracellular fluid flow. When the interstitial transport is diffusion dominated, an analytical treatment of advection-diffusion-reaction equation finds the overall nutrient distribution. We propose suitable criteria for the formation of necrosis within the tumor interstitium. This study introduces some parameters that represent the nutrient supply from tumor blood vessels into the tumor extracellular space. These transport parameters compete with the reversible nutrient metabolism of the tumor cells present in the interstitium. The present study also shows that the effectiveness factor corresponding to a first order nutrient metabolism may reach beyond unity if the strength of the distributive solute source assumes positive non-zero values.
Dey, Bibaswan; Sekhar, G P Raja
2016-04-21
This work addresses a theoretical framework for transvascular exchange and extravascular transport of solute macromolecules through soft interstitial space inside a solid tumor. Most of the soft biological tissues show materialistic properties similar to deformable porous material. They exhibit mechanical behavior towards the fluid motion since the solid phase of the tumor tissue gets compressed by the drag force that is associated with the extracellular fluid flow. This paper presents a general view about the transvascular and interstitial transport of solute nutrients inside a tumor in the macroscopic level. Modified Starling׳s equation is used to describe transvascular nutrient transport. On the macroscopic level, motion of extracellular fluid within the tumor interstitium is modeled with the help of biphasic mixture theory and a spherical symmetry solution is given as a simpler case. This present model describes the average interstitial fluid pressure (IFP), extracellular fluid velocity (EFV) and flow rate of extracellular fluid, as well as the deformation of the solid phase of the tumor tissue as an immediate cause of extracellular fluid flow. When the interstitial transport is diffusion dominated, an analytical treatment of advection-diffusion-reaction equation finds the overall nutrient distribution. We propose suitable criteria for the formation of necrosis within the tumor interstitium. This study introduces some parameters that represent the nutrient supply from tumor blood vessels into the tumor extracellular space. These transport parameters compete with the reversible nutrient metabolism of the tumor cells present in the interstitium. The present study also shows that the effectiveness factor corresponding to a first order nutrient metabolism may reach beyond unity if the strength of the distributive solute source assumes positive non-zero values. PMID:26851443
Natural convection in low-g environments
NASA Technical Reports Server (NTRS)
Grodzka, P. G.; Bannister, T. C.
1974-01-01
The present state of knowledge in the area of low-g natural convection is reviewed, taking into account a number of experiments conducted during the Apollo 14, 16, and 17 space flights. Convections due to steady low-g accelerations are considered. Steady g-levels result from spacecraft rotation, gravity gradients, solar wind, and solar pressure. Varying g-levels are produced by engine burns, attitude control maneuvers, and onboard vibrations from machinery or astronaut movement. Thermoacoustic convection in a low-g environment is discussed together with g-jitter convection, surface tension-driven convection, electrohydrodynamics under low-g conditions, phase change convection, and approaches for the control and the utilization of convection in space.
Seismology of Convection in the Sun
NASA Astrophysics Data System (ADS)
Hanasoge, Shravan
2015-08-01
Solar convection lies in extraordinary regime of dynamical parameters. Convective processes in the Sun drive global fluid circulations and magnetic fields, which in turn affect its visible outer layers (solar activity) and, more broadly, the heliosphere (space weather). The precise determination of the depth of solar convection zone, departures from adiabaticity of the temperature gradient, and the internal rotation rate as a function of latitude and depth are among the seminal contributions of helioseismology towards understanding convection in the Sun. Contemporary helioseismology, which is focused on inferring the properties of three-dimensional convective features, suggests that transport velocities are substantially smaller than theoretical predictions. Furthermore, helioseismology provides important constraints on the anisotropic Reynolds stresses that control the global dynamics of the solar convection zone. In this review, I will discuss the state of our understanding of convection in the Sun, with a focus on helioseismic diagnostics.
Seismic Constraints on Interior Solar Convection
NASA Technical Reports Server (NTRS)
Hanasoge, Shravan M.; Duvall, Thomas L.; DeRosa, Marc L.
2010-01-01
We constrain the velocity spectral distribution of global-scale solar convective cells at depth using techniques of local helioseismology. We calibrate the sensitivity of helioseismic waves to large-scale convective cells in the interior by analyzing simulations of waves propagating through a velocity snapshot of global solar convection via methods of time-distance helioseismology. Applying identical analysis techniques to observations of the Sun, we are able to bound from above the magnitudes of solar convective cells as a function of spatial convective scale. We find that convection at a depth of r/R(solar) = 0.95 with spatial extent l < 30, where l is the spherical harmonic degree, comprise weak flow systems, on the order of 15 m/s or less. Convective features deeper than r/R(solar) = 0.95 are more difficult to image due to the rapidly decreasing sensitivity of helioseismic waves.
The Role of the Icy Shell in the Thermal Evolution of Ceres
NASA Astrophysics Data System (ADS)
King, S. D.
2015-12-01
Ceres shape and crater morphology are consistent with a layer of low-density material that appears to be more dense and viscous than pure water ice, over an even more dense and viscous core. In order to understand the evolution of Ceres, we conduct a series of numerical experiments designed to understand the evolution of temperature and flow within a spherical body with a soft outer shell over a nearly rigid core using 3D spherical code CitcomS. In these experiments the sphere is heated from within using chondritic abundances of radiogenic elements. We study the impact of surface temperature, outer shell thickness, as well as the density and rheology of the softer outer shell and stiffer core on the thermal and dynamical evolution of the interior of the body, including both the soft shell and stiff core. For the outer shells with a thickness less than 10% of the radius of the body and a surface temperature at or below 90 K, the entire body remains in a conductive state and the temperature of the soft outer shell never exceeds the melting temperature of pure water ice throughout the history of the solar system. However for a range of outer shell thickness and surface temperatures, we find that within the first Gyr of evolution a degree-1 (i.e. single hemisphere) mode of convection encompassing both the stiff core and soft outer shell overtakes shorter-wavelength convective flow occurring in the softer outer shell. When this happens the body dramatically cools over a time interval of less than 100 Myrs and the internal temperature remains asymmetric throughout the subsequent evolution of the body.
Transition in Internally Heated Convection
NASA Astrophysics Data System (ADS)
Tasaka, Yuji; Yanagisawa, Takatoshi
2005-11-01
Natural convection induced by internal heat generation in a shallow fluid layer was investigated experimentally. Internal heat generation was realized by passing electric current through ionic liquid. Kalliroscope flakes and thermo-chromic liquid crystal were utilized to clarify a transition of the convection with respect to the Rayleigh number, RI. Visualized flow pattern at higher Rayleigh number show two types of deformed cell shape, double cell structure, which has a small cell in a large cell, and spoke like cell structure, where descending flow neat the center of a cell spread like a spoke. Visualized temperature field was converted to temperature field in order to investigate the transition quantitatively. Variation of horizontal temperature fluctuation with respect to RI may show critical Rayleigh number for the transition.
Oceans, Ice Shells, and Life on Europa
NASA Technical Reports Server (NTRS)
Schenk, Paul
2002-01-01
The four large satellites of Jupiter are famous for their planet-like diversity and complexity, but none more so than ice-covered Europa. Since the provocative Voyager images of Europa in 1979, evidence has been mounting that a vast liquid water ocean may lurk beneath the moon's icy surface. Europa has since been the target of increasing and sometimes reckless speculation regarding the possibility that giant squid and other creatures may be swimming its purported cold, dark ocean. No wonder Europa tops everyone's list for future exploration in the outer solar system (after the very first reconnaissance of Pluto and the Kuiper belt, of course). Europa may be the smallest of the Galilean moons (so-called because they were discovered by Galileo Galilei in the early 17th century) but more than makes up for its diminutive size with a crazed, alien landscape. The surface is covered with ridges hundreds of meters high, domes tens of kilometers across, and large areas of broken and disrupted crust called chaos. Some of the geologic features seen on Europa resemble ice rafts floating in polar seas here on Earth-reinforcing the idea that an ice shell is floating over an ocean on this Moon-size satellite. However, such features do not prove that an ocean exists or ever did. Warm ice is unusually soft and will flow under its own weight. If the ice shell is thick enough, the warm bottom of the shell will flow, as do terrestrial glaciers. This could produce all the observed surface features on Europa through a variety of processes, the most important of which is convection. (Convection is the vertical overturn of a layer due to heating or density differences-think of porridge or sauce boiling on the stove.) Rising blobs from the base of the crust would then create the oval domes dotting Europa's surface. The strongest evidence for a hidden ocean beneath Europa's surface comes from the Galileo spacecraft's onboard magnetometer, which detected fluctuations in Jupiter's magnetic
On the Onset of Thermocapillary Convection in a Liquid bridge
NASA Astrophysics Data System (ADS)
Shukla, Kedar
follow the method of Shukla [17] for Boussinesq flow to model the convective instability in an axisymmetric flow in the liquid bridge. The surface deformation caused by g-jitters and its effects on the onset of oscillatory flow will be examined. References: [1] Grodzka, P.G. and Bannister, T.C., Heat flow and convection demonstration experiments abord Appolo 14, Science (Washington, D.C.), Vol.176, May 1972, pp. 506-508. [2] Bannister, T C., etal, NASA, TMX-64772, 1973. [3] Shukla, K.N. Hydrodynamics of Diffusive Processes, Applied Mechanics Review, Vol.54, No.5, 2001, pp. 391-404. [4] Chen, G., Lizee, A., Roux, B.,, Bifurcation analysis of the thermo capillary convection in cylindrical liquid bridge, J Crystal growth, Vol. 180, 1997, pp.638-647. [5] Imaishi, N., Yasuhiro, S., Akiyama, Y and Yoda, S., Numerical simulation of oscillatory Marangoni flow in half zone liquid bridge of low Prandtl number fluid, J., Crystal Growth, Vol. 230, 2001, pp. 164-171. [6] Bennacer, R., Mohamad, A.A., Leonardi, E., The effect o heat flux distribution on thermo capillary convection in a sideheated liquid bridge, Numer. Heat transfer, Part A, vol. 41, 2002, pp. 657-671. [7] Kuhlmann, H C., Rath, H J., Hydrodynamic instabilities in Cylindrical thermocapillary liquid bridges, J Fluid Mech., Vol. 247,1993, pp. 247-274. [8] Wanshura, M., Shevtsova, V M, Kuhlmann, H C and Rath, H J., Convective instability in thermocapillary liquid bridges, Phys. Fluids, Vol. 7, 1995, pp. 912-925. [9] Kasperski, G., Batoul, A., Labrosse, G., Up to the unsteadiness of axisymmetric thermocapillary low in a laterally heated liquid bridge, Phys. Fluids, Vol. 12, 2000, pp. 103-119. [10] Lappa, M., Savino, R., Monti, R., Three dimensional numerical simulation of Marangoni instabilities in non cylindrical liquid bridges in microgravity, Int. J Heat Mass Transfer, Vol. 44, 2001, pp. 1983-2003 [11] Zeng, Z, Mizuseki, H., Simamura, K., Fukud, T. Higashino, K, Kawaazoe, Y., Three dimensional oscillatory thermocapillary
Ghorbani, N.; Taherian, H.; Gorji, M.; Mirgolbabaei, H.
2010-10-15
In this study the mixed convection heat transfer in a coil-in-shell heat exchanger for various Reynolds numbers, various tube-to-coil diameter ratios and different dimensionless coil pitch was experimentally investigated. The experiments were conducted for both laminar and turbulent flow inside coil. Effects of coil pitch and tube diameters on shell-side heat transfer coefficient of the heat exchanger were studied. Different characteristic lengths were used in various Nusselt number calculations to determine which length best fits the data and several equations were proposed. The particular difference in this study in comparison with the other similar studies was the boundary conditions for the helical coils. The results indicate that the equivalent diameter of shell is the best characteristic length. (author)
Fluid convection, constraint and causation
Bishop, Robert C.
2012-01-01
Complexity—nonlinear dynamics for my purposes in this essay—is rich with metaphysical and epistemological implications but is receiving sustained philosophical analysis only recently. I will explore some of the subtleties of causation and constraint in Rayleigh–Bénard convection as an example of a complex phenomenon, and extract some lessons for further philosophical reflection on top-down constraint and causation particularly with respect to causal foundationalism. PMID:23386955
ERIC Educational Resources Information Center
Simpson, Andrew; Wu, Zoe
2002-01-01
Reconsiders development and licensing of agreement as a syntactic projection and argues for a productive developmental relation between agreement and the category of focus. Suggests that focus projections are initially selected by a variety of functional heads with real semantic content, then, over time decays into a simple concord shell. Upon…
ERIC Educational Resources Information Center
Matthews, Catherine
1992-01-01
Presents three inquiry-based lessons to develop the science process skills of observation, identification, and classification. Activities use whelk eggs and snail shells as the focus of the students' inquiries. Provides a list of 19 facts about whelks and snails. (MDH)
ERIC Educational Resources Information Center
Lutz, E. F.
1986-01-01
Shows how olefin isomerization and the exotic olefin metathesis reaction can be harnessed in industrial processes. Indicates that the Shell Higher Olefins Process makes use of organometallic catalysts to manufacture alpha-olefins and internal carbon-11 through carbon-14 alkenes in a flexible fashion that can be adjusted to market needs. (JN)
ERIC Educational Resources Information Center
Seier, Mark; Goedeken, Suzy
2005-01-01
In 2002 Shell Creek Watershed Improvement Group turned to the Newman Grove Public Schools' science department to help educate the public on water quality in the watershed and to establish a monitoring system that would be used to improve surface and groundwater quality in the creek's watershed. Nebraska Department of Environmental Quality provided…
Ice Nucleation in Deep Convection
NASA Technical Reports Server (NTRS)
Jensen, Eric; Ackerman, Andrew; Stevens, David; Gore, Warren J. (Technical Monitor)
2001-01-01
The processes controlling production of ice crystals in deep, rapidly ascending convective columns are poorly understood due to the difficulties involved with either modeling or in situ sampling of these violent clouds. A large number of ice crystals are no doubt generated when droplets freeze at about -40 C. However, at higher levels, these crystals are likely depleted due to precipitation and detrainment. As the ice surface area decreases, the relative humidity can increase well above ice saturation, resulting in bursts of ice nucleation. We will present simulations of these processes using a large-eddy simulation model with detailed microphysics. Size bins are included for aerosols, liquid droplets, ice crystals, and mixed-phase (ice/liquid) hydrometers. Microphysical processes simulated include droplet activation, freezing, melting, homogeneous freezing of sulfate aerosols, and heterogeneous ice nucleation. We are focusing on the importance of ice nucleation events in the upper part of the cloud at temperatures below -40 C. We will show that the ultimate evolution of the cloud in this region (and the anvil produced by the convection) is sensitive to these ice nucleation events, and hence to the composition of upper tropospheric aerosols that get entrained into the convective column.
Influence of convection on microstructure
NASA Technical Reports Server (NTRS)
Wilcox, William R.; Caram, Rubens; Mohanty, A. P.; Seth, Jayshree
1990-01-01
The mechanism responsible for the difference in microstructure caused by solidifying the MnBi-Bi eutectic in space is sought. The objectives for the three year period are as follows: (1) completion of the following theoretical analyses - determination of the influence of the Soret effect on the average solid composition versus distance of off-eutectic mixtures directionally solidified in the absence of convection, determination of the influence of convection on the microstructure of off-eutectic mixtures using a linear velocity profile in the adjacent melt, determination of the influence of volumetric changes during solidification on microconvection near the freezing interface and on microstructure, and determination of the influence of convection on microstructure when the MnBi fibers project out in front of the bismuth matrix; (2) search for patterns in the effect of microgravity on different eutectics (for example, eutectic composition, eutectic temperature, usual microstructure, densities of pure constituents, and density changes upon solidification); and (3) determination of the Soret coefficient and the diffusion coefficient for Mn-Bi melts near the eutectic composition, both through laboratory experiements to be performed here and from data from Shuttle experiments.
Polar Cap Plasma and Convection
NASA Technical Reports Server (NTRS)
Elliott, Heather A.; Craven, Paul D.; Comfort, Richard H.; Chandler, Michael O.; Moore, Thomas E.; Ruohoniemi, J. M.
1998-01-01
This presentation will describe the character of the polar cap plasma in 10% AGU Spring 1998 particular the convection velocities at the perigee (about 1.8 Re) and apogee( about 8.9 Re) of Polar in relationship to Interplanetary Magnetic Field (IMF) and solar wind parameters. This plasma is thought to be due to several sources; the polar wind, cleft ion fountain, and auroral outflow. The plasma in the polar cap tends to be mostly field-aligned. At any given point in the polar cap, this plasma could be from a different regions since convection of magnetic field lines can transport this material. it is quite difficult to study such a phenomena with single point measurements. Current knowledge of the polar cap plasma obtained by in situ measurements will be presented along with recent results from the Polar mission. This study also examines the direct electrical coupling between the magnetosphere and ionosphere by comparing convection velocities measured by the Thermal Ion Dynamics Experiment (TIDE) and Magnetic Field Experiment (MFE) instruments in magnetosphere and measurements of the ionosphere by ground-based radars. At times such a comparison is difficult because the Polar satellite at apogee spends a large amount of time in the polar cap which is a region that is not coverage well by the current SuperDam coherent radars. This is impart due to the lack of irregularities that returns the radar signal.
Vegetation forcing and convective motion
Hong, X.; Leach, M.J.; Raman, S.
1995-04-01
A large irrigated vegetation area in a semiarid or relatively dry location is a strong surface forcing of thermal circulations. Several observational studies have found that such thermally induced mesoscale circulation may contribute to the triggering and development of convective clouds. In the western United States, extensive areas of irrigated farmland are surrounded by hot, dry surfaces, such as a steppe. Substantial gradients of sensible heating in the horizontal direction lead to a {open_quotes}farm breeze{close_quotes} circulation from the cooler agricultural area to the warmer steppes found at Boardman, Oregon. These thermally forced circulations may trigger convection by the related convergence and updraft motion under favorable atmospheric conditions. The role of vegetative covering in convective motion is investigated using a mesoscale numerical model. Two- and three-dimensional simulations are described. The effects of atmospheric stability, moisture in the lower atmosphere, moisture in the upper atmosphere, and horizontal heating scale on thermally induced clouds are studied. The horizontal scale of inhomogeneity is also studied using the two-dimensional model. Finally, a realistic vegetation distribution similar to that of the Boardman Regional Flux Experiment is used in the three-dimensional simulations.
Bifurcation phenomena in cylindrical convection
NASA Astrophysics Data System (ADS)
Tuckerman, Laurette; Boronska, K.; Bordja, L.; Martin-Witkowski, L.; Navarro, M. C.
2008-11-01
We present two bifurcation scenarios occurring in Rayleigh-Benard convection in a small-aspect-ratio cylinder. In water (Pr=6.7) with R/H=2, Hof et al. (1999) observed five convective patterns at Ra=14200. We have computed 14 stable and unstable steady branches, as well as novel time-dependent branches. The resulting complicated bifurcation diagram, can be partitioned according to azimuthal symmetry. For example, three-roll and dipole states arise from an m=1 bifurcation, four-roll and ``pizza'' branches from m=2, and the ``mercedes'' state from an m=3 bifurcation after successive saddle-node bifurcations via ``marigold'', ``mitsubishi'' and ``cloverleaf'' states. The diagram represents a compromise between the physical tendency towards parallel rolls and the mathematical requirement that primary bifurcations be towards trigonometric states. Our second investigation explores the effect of exact counter-rotation of the upper and lower bounding disks on axisymmetric flows with Pr=1 and R/H=1. The convection threshold increases and, for sufficiently high rotation, the instability becomes oscillatory. Limit cycles originating at the Hopf bifurcation are annihilated when their period becomes infinite at saddle-node-on-periodic-orbit (SNOPER) bifurcations.
Scaling Laws For Convection And Jet Speeds On Giant Planet Atmospheres
NASA Astrophysics Data System (ADS)
Kaspi, Yohai; Showman, A. P.; Flierl, G. R.
2010-10-01
Three dimensional studies of convection in deep spherical shells have been used to test the hypothesis that the strong jet streams on giant planets result from convection throughout the molecular envelopes. Due to computational limitations, these simulations must be performed at parameter settings far from Jovian values and generally adopt heat fluxes much larger than the planetary values. Several numerical investigations have identified trends for how the mean jet speed varies with heat flux and viscosity, but no previous theories have been advanced to explain these trends. Here, we show using simple arguments that if convective release of potential energy pumps the jets and viscosity damps them, the mean jet speeds split into different regimes depending on the strength of the convection. For each regime we provide a different scaling based on energy constraints, momentum constraints, and mixing length theory. Transitions between these regimes are predicted and are consistent with three-dimensional numerical experiments. Our scalings provide a good match to the mean jet speeds obtained in previous Boussinesq and anelastic, three-dimensional simulations of convection within giant planets over a broad range of parameters. When extrapolated to the real heat fluxes, these scalings suggest that the mass-weighted jet speeds in the molecular envelopes of the giant planets are much weaker, by an order of magnitude or more, than the jet speeds measured at cloud level.
Modes of mantle convection and the removal of heat from the earth's interior
NASA Technical Reports Server (NTRS)
Spohn, T.; Schubert, G.
1982-01-01
Thermal histories for two-layer and whole-mantle convection models are calculated and presented, based on a parameterization of convective heat transport. The model is composed of two concentric spherical shells surrounding a spherical core. The models were constrained to yield the observed present-day surface heat flow and mantle viscosity, in order to determine parameters. These parameters were varied to determine their effects on the results. Studies show that whole-mantle convection removes three times more primordial heat from the earth interior and six times more from the core than does two-layer convection (in 4.5 billion years). Mantle volumetric heat generation rates for both models are comparable to that of a potassium-depleted chondrite, and thus surface heat-flux balance does not require potassium in the core. Whole and two-layer mantle convection differences are primarily due to lower mantle thermal insulation and the lower heat removal efficiency of the upper mantle as compared with that of the whole mantle.
Supergranulation as the Largest Buoyantly Driven Convective Scale of the Sun
NASA Astrophysics Data System (ADS)
Cossette, Jean-Francois; Rast, Mark P.
2016-09-01
The origin of solar supergranulation remains a mystery. Unlike granulation, the size of which is comparable to both the thickness of the radiative boundary layer and local scale-height in the photosphere, supergranulation does not reflect any obvious length scale of the solar convection zone. Moreover, recent observations of flows in the photosphere using Doppler imaging or correlation or feature tracking show a monotonic decrease in horizontal flow power at scales larger than supergranulation. Both local area and global spherical shell simulations of solar convection by contrast show the opposite, an increase in horizontal flow amplitudes to a low wavenumber. We examine these disparities and investigate how the solar supergranulation may arise as a consequence of nonlocal heat transport by cool diving plumes. Using three-dimensional anelastic simulations with surface driving, we show that the kinetic energy of the largest convective scales in the upper layers of a stratified domain reflects the depth of transition from strong buoyant driving to adiabatic stratification below caused by the dilution of the granular downflows. This depth is quite shallow because of the rapid increase of the mean density below the photosphere. We interpret the observed monotonic decrease in solar convective power at scales larger than supergranulation to be a consequence of this rapid transition, with the supergranular scale the largest buoyantly driven mode of convection in the Sun.
CONVECTIVE BURSTS AND THE COUPLING OF SATURN'S EQUATORIAL STORMS AND INTERIOR ROTATION
Heimpel, Moritz; Aurnou, Jonathan M. E-mail: aurnou@ucla.edu
2012-02-10
Temporal variations of Saturn's equatorial jet and magnetic field hint at rich dynamics coupling the atmosphere and the deep interior. However, it has been assumed that rotation of the interior dynamo must be steady over tens of years of modern observations. Here we use a numerical convection model and scaling estimates to show how equatorial convective bursts can transfer angular momentum to the deeper interior. The numerical model allows angular momentum transfer between a fluid outer spherical shell and a rigid inner sphere. Convection drives a prograde equatorial jet exhibiting quasiperiodic bursts that fill the equatorial volume outside the tangent cylinder. For each burst strong changes in the equatorial surface velocity are associated with retrograde torque on the inner sphere. Our results suggest that Saturn's Great White Spot, a giant storm that was observed to fill the equatorial region in 1990, could mobilize a volume of fluid carrying roughly 15% of Saturn's moment of inertia. Conservation of angular momentum then implies that a 20% change in the equatorial jet angular velocity could change the average interior rotation rate by about 0.1%-roughly an order of magnitude less than the apparent rotation rate changes associated with Saturn's kilometric radio (SKR) signal. However, if the SKR signal originates outside the liquid metal core in a 'planetary tachocline' that separates the layer of fast zonal flow from the magnetically controlled and slowly convecting deep interior, then convective bursts can provide a possible mechanism for the observed {approx}1% SKR changes.
Stability of charged thin shells
Eiroa, Ernesto F.; Simeone, Claudio
2011-05-15
In this article we study the mechanical stability of spherically symmetric thin shells with charge, in Einstein-Maxwell and Einstein-Born-Infeld theories. We analyze linearized perturbations preserving the symmetry, for shells around vacuum and shells surrounding noncharged black holes.
Application of CHAD hydrodynamics to shock-wave problems
Trease, H.E.; O`Rourke, P.J.; Sahota, M.S.
1997-12-31
CHAD is the latest in a sequence of continually evolving computer codes written to effectively utilize massively parallel computer architectures and the latest grid generators for unstructured meshes. Its applications range from automotive design issues such as in-cylinder and manifold flows of internal combustion engines, vehicle aerodynamics, underhood cooling and passenger compartment heating, ventilation, and air conditioning to shock hydrodynamics and materials modeling. CHAD solves the full unsteady Navier-Stoke equations with the k-epsilon turbulence model in three space dimensions. The code has four major features that distinguish it from the earlier KIVA code, also developed at Los Alamos. First, it is based on a node-centered, finite-volume method in which, like finite element methods, all fluid variables are located at computational nodes. The computational mesh efficiently and accurately handles all element shapes ranging from tetrahedra to hexahedra. Second, it is written in standard Fortran 90 and relies on automatic domain decomposition and a universal communication library written in standard C and MPI for unstructured grids to effectively exploit distributed-memory parallel architectures. Thus the code is fully portable to a variety of computing platforms such as uniprocessor workstations, symmetric multiprocessors, clusters of workstations, and massively parallel platforms. Third, CHAD utilizes a variable explicit/implicit upwind method for convection that improves computational efficiency in flows that have large velocity Courant number variations due to velocity of mesh size variations. Fourth, CHAD is designed to also simulate shock hydrodynamics involving multimaterial anisotropic behavior under high shear. The authors will discuss CHAD capabilities and show several sample calculations showing the strengths and weaknesses of CHAD.
Hydrodynamic dispersion at stagnation points: Simulations and experiments
NASA Astrophysics Data System (ADS)
Flekkøy, E. G.; Oxaal, U.; Feder, J.; Jøssang, T.
1995-11-01
The spreading of a passive tracer that is convected back and forth inside a porous medium depends both on the random characteristics of the medium and on the presence of stagnation points. We single out the effect of the latter in the present study of hydrodynamic dispersion in the creeping (low Reynolds number) high Péclet number flow around the single stagnation point on a cylindrical obstacle in a Hele-Shaw cell [U. Oxaal, E. G. Flekko/y, and J. Feder, Phys. Rev. Lett. 72, 3514 (1994)]. Employing both experiments and lattice Boltzmann simulations we analyze the dispersive spreading of a single tracer line, which is initially perpendicular to the flow direction and then convected back and forth around the cylinder. The lattice Boltzmann model used is a modification of the recently introduced two-dimensional lattice bathnagar-Gross-Krook model for miscible fluid dynamics [E. G. Flekko/y, Phys. Rev. E 47, 4247 (1993)]. It includes the full three-dimensional viscous interaction in the Hele-Shaw cell, and, in the case of steady state flow, it allows for a freely tunable Reynolds number. The diffusive behavior of the system is explored extensively and excellent agreement between simulations and experiment is observed. A method to determine very small molecular diffusion coefficients D, which relies on the combination of results from experiment and simulation, is proposed. It is demonstrated that there is good agreement between the result of this method and independent measurement that are carried out in the present case of relatively large D values.
Simulating hydrodynamics on tidal mudflats
NASA Astrophysics Data System (ADS)
Cook, S.; Lippmann, T. C.
2014-12-01
Biogeochemical cycling in estuaries is governed by fluxes from both riverine sources and through estuarine sediment deposits. Although estimates from river sources are relatively common and easily sampled, estimates of nutrient fluxes through the fluid-sediment interface are less common and limited to deeper portions of the bays away from intertidal areas. Lack of quantifiable shear stress estimates over intertidal areas limits our overall understanding of nutrient budgets in estuaries. Unfortunately, observation of intertidal hydrodynamics and nutrient fluxes over tidal flats and near the water's edge is difficult owing to the temporally varying and spatially extensive region where the tides inundate, and thus numerical modeling is often employed. In this work, the Regional Ocean Modeling System (ROMS), a three dimensional numerical hydrodynamic model was used to investigate the shear stresses over intertidal mudflats in the Great Bay, a tidally-dominated New England estuary cut by several tidal channels and with over 50% of the estuary exposed at low tide. The ROMS wetting and drying scheme was used to simulate the rising and falling tide on the flats, a successful approach adapted in other regions of the world but not always inclusive of tidal channels. Bathymetric data obtained in 2009 and 2013 was used to define the model grid. Predicted tides are forced at Adam's Pt., a natural constriction in the estuary about 20 km upstream of the mouth and at the entrance to the Great Bay. Of particular interest are fluxes of material on-to and off-of the tidal flats which contribute to water quality conditions in the estuary, and are largely governed by shear stresses that drive nutrient fluxes at the fluid-sediment interface. Basin wide estimates of near-bottom shear stresses can be used to estimate first order nutrient fluxes over a tidal cycle and hence describe general biogeochemical dynamics of the estuary. Future work will include enhanced forcing of currents by
Turbulent Convection in a Rotating Sphere Filled With Liquid Metal
NASA Astrophysics Data System (ADS)
Nataf, H.; Aubert, J.; Cardin, P.; Brito, D.; Masson, J.
2001-12-01
Understanding the organization of turbulent convective motions in a rotating sphere would help building more realistic models of the geodynamo and solar dynamo. We have performed laboratory experiments using water and gallium as working fluids. We have examined the convective structures that form by following the time--variation of velocity profiles measured by Doppler ultrasonic velocimetry and investigated their dynamical behaviour by monitoring the amplitude of velocity as a function of the Prandtl, Rayleigh and Ekman numbers. Our most striking result is that a strong zonal flow develops in liquid gallium (Prandtl number of 0.025). It can be 2.5 times stronger than typical convective velocities. We explain this phenomenon by the high Reynolds numbers reached in these experiments, up to 2000, much larger than in the water experiments (less than 250). Our observations for gallium are well accounted for by a quasi--geostrophic inertial model, in which kinetic energy is injected at the convective scale and cascades up to a large zonal flow, whose amplitude is limited by friction on the outer sphere. This model predicts that the convective velocity U becomes independent of the two diffusivities (viscous and thermal) and scales as : $ U ~ D Ω ( (α g Q)/(ρ CP Ω 3 D2) )2/5 where D is the thickness of the liquid shell, \\Omega the rotation rate, Q the heat flux, g the gravity acceleration, and \\alpha, \\rho and C_P$ are the thermal expansion coefficient, the density and the heat capacity of the liquid. The sphericity also introduces a variation of velocity with radius. Both the scaling law and these radial variations are in very good agreement with the measured velocity profiles. In contrast, the zonal velocity does depend upon the viscosity of the liquid through friction on the outer boundary. This behaviour illustrates the crucial role of the spherical boundaries in controlling the organization of turbulence. Nevertheless, the motions remain essentially two
On the control of rapidly rotating convection by an axially varying magnetic field
NASA Astrophysics Data System (ADS)
Gopinath, Venkatesh; Sreenivasan, Binod
2015-11-01
The magnetic field in rapidly rotating dynamos is spatially inhomogeneous. The axial variation of the magnetic field is of particular importance because tall columnar vortices aligned with the rotation axis form at the onset of convection. The classical picture of magnetoconvection with constant or axially varying magnetic fields is that the Rayleigh number and wavenumber at onset decrease appreciably from their non-magnetic values. Nonlinear dynamo simulations show that the axial lengthscale of the self-generated azimuthal magnetic field becomes progressively smaller as we move towards a rapidly rotating regime. With a small-scale field, however, the magnetic control of convection is different from that in previous studies with a uniform or large-scale field. This study looks at the competing viscous and magnetic mode instabilities when the Ekman number ? (ratio of viscous to Coriolis forces) is small. As the applied magnetic field strength (measured by the Elsasser number ?) increases, the critical Rayleigh number for onset of convection initially increases in a viscous branch, reaches an apex where both viscous and magnetic instabilities co-exist, and then falls in the magnetic branch. The magnetic mode of onset is notable for its dramatic suppression of convection in the bulk of the fluid layer where the field is weak. The viscous-magnetic mode transition occurs at ?, which implies that small-scale convection can exist at field strengths higher than previously thought. In spherical shell dynamos with basal heating, convection near the tangent cylinder is likely to be in the magnetic mode. The wavenumber of convection is only slightly reduced by the self-generated magnetic field at ?, in agreement with previous planetary dynamo models. The back reaction of the magnetic field on the flow is, however, visible in the difference in kinetic helicity between cyclonic and anticyclonic vortices.
THE RISE OF ACTIVE REGION FLUX TUBES IN THE TURBULENT SOLAR CONVECTIVE ENVELOPE
Weber, Maria A.; Fan Yuhong; Miesch, Mark S.
2011-11-01
We use a thin flux tube model in a rotating spherical shell of turbulent convective flows to study how active region scale flux tubes rise buoyantly from the bottom of the convection zone to near the solar surface. We investigate toroidal flux tubes at the base of the convection zone with field strengths ranging from 15 kG to 100 kG at initial latitudes ranging from 1{sup 0} to 40{sup 0} with a total flux of 10{sup 22} Mx. We find that the dynamic evolution of the flux tube changes from convection dominated to magnetic buoyancy dominated as the initial field strength increases from 15 kG to 100 kG. At 100 kG, the development of {Omega}-shaped rising loops is mainly controlled by the growth of the magnetic buoyancy instability. However, at low field strengths of 15 kG, the development of rising {Omega}-shaped loops is largely controlled by convective flows, and properties of the emerging loops are significantly changed compared to previous results in the absence of convection. With convection, rise times are drastically reduced (from years to a few months), loops are able to emerge at low latitudes, and tilt angles of emerging loops are consistent with Joy's law for initial field strengths of {approx}>40 kG. We also examine other asymmetries that develop between the leading and following legs of the emerging loops. Taking all the results together, we find that mid-range field strengths of {approx}40-50 kG produce emerging loops that best match the observed properties of solar active regions.
Non abelian hydrodynamics and heavy ion collisions
NASA Astrophysics Data System (ADS)
Calzetta, E.
2014-01-01
The goal of the relativistic heavy ion collisions (RHIC) program is to create a state of matter where color degrees of freedom are deconfined. The dynamics of matter in this state, in spite of the complexities of quantum chromodynamics, is largely determined by the conservation laws of energy momentum and color currents. Therefore it is possible to describe its main features in hydrodynamic terms, the very short color neutralization time notwithstanding. In this lecture we shall give a simple derivation of the hydrodynamics of a color charged fluid, by generalizing the usual derivation of hydrodynamics from kinetic theory to the non abelian case.
Nonlinear waves in second order conformal hydrodynamics
NASA Astrophysics Data System (ADS)
Fogaça, D. A.; Marrochio, H.; Navarra, F. S.; Noronha, J.
2015-02-01
In this work we study wave propagation in dissipative relativistic fluids described by a simplified set of the 2nd order viscous conformal hydrodynamic equations corresponding to Israel-Stewart theory. Small amplitude waves are studied within the linearization approximation while waves with large amplitude are investigated using the reductive perturbation method, which is generalized to the case of 2nd order relativistic hydrodynamics. Our results indicate the presence of a "soliton-like" wave solution in Israel-Stewart hydrodynamics despite the presence of dissipation and relaxation effects.
Non abelian hydrodynamics and heavy ion collisions
Calzetta, E.
2014-01-14
The goal of the relativistic heavy ion collisions (RHIC) program is to create a state of matter where color degrees of freedom are deconfined. The dynamics of matter in this state, in spite of the complexities of quantum chromodynamics, is largely determined by the conservation laws of energy momentum and color currents. Therefore it is possible to describe its main features in hydrodynamic terms, the very short color neutralization time notwithstanding. In this lecture we shall give a simple derivation of the hydrodynamics of a color charged fluid, by generalizing the usual derivation of hydrodynamics from kinetic theory to the non abelian case.
Schubert, G.; Bercovici ); Glatzmaier, G.A. )
1990-08-30
Numerical calculations of fully three-dimensional convection in constant viscosity, compressible spherical shells are interpreted in terms of possible convective motions in the mantles of Venus and Mars. The shells are heated both internally and from below to account for radiogenic heating, secular cooling, and heat flow from the core. The lower boundary of each of the shells is isothermal and shear stress free, as appropriate to the interface between a mantle and a liquid outer core. The upper boundary of each of the shells is rigid and isothermal, as appropriate to the base of a thick immobile lithosphere. Calculations with shear stress-free upper boundaries are also carried out to assess the role of the rigid surface condition. The ratio of the inner radius of each shell to its outer radius is in accordance with possible core sizes in both Venus and Mars. A calculation is also carried out for a Mars model with a small core to simulate mantle convection during early core formation. Different relative proportions of internal and bottom heating are investigated, ranging from nearly complete heating from within to almost all heating from below. The Rayleigh numbers of all the cases are approximately 100 times the critical Rayleigh numbers for the onset of convection. Cylindrical plumes are the prominent form of upwelling in the models independent of the surface boundary condition so long as sufficient heat derives from the core. Thus major volcanic centers on Mars, such as Tharsis and Elysium, and the coronae and some equatorial highlands on Venus may be the surface expressions of cylindrical mantle plumes.
Carrasco, B; García de la Torre, J
1999-01-01
The hydrodynamic properties of rigid particles are calculated from models composed of spherical elements (beads) using theories developed by Kirkwood, Bloomfield, and their coworkers. Bead models have usually been built in such a way that the beads fill the volume occupied by the particles. Sometimes the beads are few and of varying sizes (bead models in the strict sense), and other times there are many small beads (filling models). Because hydrodynamic friction takes place at the molecular surface, another possibility is to use shell models, as originally proposed by Bloomfield. In this work, we have developed procedures to build models of the various kinds, and we describe the theory and methods for calculating their hydrodynamic properties, including approximate methods that may be needed to treat models with a very large number of elements. By combining the various possibilities of model building and hydrodynamic calculation, several strategies can be designed. We have made a quantitative comparison of the performance of the various strategies by applying them to some test cases, for which the properties are known a priori. We provide guidelines and computational tools for bead modeling. PMID:10354430
Metal shell technology based upon hollow jet instability. [for inertial confinement fusion
NASA Technical Reports Server (NTRS)
Kendall, J. M.; Lee, M. C.; Wang, T. G.
1982-01-01
Spherical shells of submillimeter size are sought as ICF targets. Such shells must be dimensionally precise, smooth, of high strength, and composed of a high atomic number material. A technology for the production of shells based upon the hydrodynamic instability of an annular jet of molten metal is described. Shells in the 0.7-2.0 mm size range have been produced using tin as a test material. Specimens exhibit good sphericity, fair concentricity, and excellent finish over most of the surface. Work involving a gold-lead-antimony alloy is in progress. Droplets of this are amorphous and possess superior surface finish. The flow of tin models that of the alloy well; experiments on both metals show that the technique holds considerable promise.
Numerical modelling of the stability of loaded shells of revolution containing fluid flows
NASA Astrophysics Data System (ADS)
Bochkarev, S. A.; Matveenko, V. P.
2008-03-01
A mixed finite-element algorithm is proposed to study the dynamic behavior of loaded shells of revolution containing a stationary or moving compressible fluid. The behavior of the fluid is described by potential theory, whose equations are reduced to integral form using the Galerkin method. The dynamics of the shell is analyzed with the use of the variational principle of possible displacements, which includes the linearized Bernoulli equation for calculating the hydrodynamic pressure exerted on the shell by the fluid. The solution of the problem reduces to the calculation and analysis of the eigenvalues of the coupled system of equations. As an example, the effect of hydrostatic pressure on the dynamic behavior of shells of revolution containing a moving fluid is studied under various boundary conditions.
Ratanajanchai, Montri; Soodvilai, Sunhapas; Pimpha, Nuttaporn; Sunintaboon, Panya
2014-01-01
Herein, we prepared PEI-immobilized core-shell particles possessing various types of polymer cores via a visible light-induced surfactant-free emulsion polymerization (SFEP) of three vinyl monomers: styrene (St), methyl methacrylate (MMA), and 2-hydroxyethyl methacrylate (HEMA). An effect of monomers on the polymerization and characteristics of resulting products was investigated. Monomers with high polarity can provide high monomer conversion, high percentage of grafted PEI, stable particles with uniform size distribution but less amino groups per particles. All prepared nanoparticles exhibited a core-shell nanostructure, containing PEI on the shell with hydrodynamic size around 140-230nm. For in-vitro study in Caco-2 cells, we found that the incorporation of PEI into these core-shell nanoparticles can significantly reduce its cytotoxic effect and also be able to internalized within the cells. Accordingly, these biocompatible particles would be useful for various biomedical applications, including gene transfection and intracellular drug delivery.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Split shell. 51.2002 Section 51.2002 Agriculture... Standards for Grades of Filberts in the Shell 1 Definitions § 51.2002 Split shell. Split shell means a shell... of the shell, measured in the direction of the crack....
Effect of Earth's rotation on thermal convection in the mantle
NASA Astrophysics Data System (ADS)
Bozoki, Tamas; Herein, Mátyás; Galsa, Attila
2016-04-01
Numerical model calculations have been carried out to study the effect of the centrifugal force on the thermal convection in the mantle. With the help of a simple dimensional analysis it can be shown that among the inertial forces generated by Earth's rotation, only the centrifugal force might have a detectable effect on the thermal convection in the mantle. A new non-dimensional parameter, RaCF was introduced to characterize the thermal buoyancy caused by the centrifugal force compared to the viscous force. Two-dimensional cylindrical shell geometry was applied with stationary value of angular velocity. The models started from the same non-rotated, quasi-stationary convection and 10 Gyr temporal evolution was observed. In the different models the magnitude of angular velocity varied from the recent value of Ω0 = 7.29E-5 1/s to the extreme value of 100 Ω0. The temporal and spatial variation of the surface heat flux (qs) and the root-mean-square velocity (vRMS) depending on the rotation velocity were investigated systematically in the model. Velocity was decomposed to tangential (vφ) and radial (vr) velocity to analyze the effect of the rotation on the flow system. The rotation arranges the convection to polar up- and equatorial downwellings, which structure is more peculiar at higher angular velocities and by the progress of time. Three main regimes can be identified based on the monitoring parameters (qs, vRMS). At low angular velocities (Ω = 0 - 4 Ω0) the convection pattern and the surface heat flux are slightly influenced by the centrifugal force. The most specific effect appears in the middle transitional regime (Ω = 4 - 15 Ω0) where the monotonic decrease of the heat flux separates from the unvarying average velocity. In this regime the constant vRMS is maintained by the enhanced tangential and reduced radial velocity component which is in accordance with the decrease in the number of plumes. vφ and vr shows an intensive decrease from the angular
Cai, Fei; Sutter, Markus; Bernstein, Susan L; Kinney, James N; Kerfeld, Cheryl A
2015-04-17
Bacterial microcompartments (BMCs) are self-assembling organelles composed entirely of protein. Depending on the enzymes they encapsulate, BMCs function in either inorganic carbon fixation (carboxysomes) or organic carbon utilization (metabolosomes). The hallmark feature of all BMCs is a selectively permeable shell formed by multiple paralogous proteins, each proposed to confer specific flux characteristics. Gene clusters encoding diverse BMCs are distributed broadly across bacterial phyla, providing a rich variety of building blocks with a predicted range of permeability properties. In theory, shell permeability can be engineered by modifying residues flanking the pores (symmetry axes) of hexameric shell proteins or by combining shell proteins from different types of BMCs into chimeric shells. We undertook both approaches to altering shell properties using the carboxysome as a model system. There are two types of carboxysomes, α and β. In both, the predominant shell protein(s) contain a single copy of the BMC domain (pfam00936), but they are significantly different in primary structure. Indeed, phylogenetic analysis shows that the two types of carboxysome shell proteins are more similar to their counterparts in metabolosomes than to each other. We solved high resolution crystal structures of the major shell proteins, CsoS1 and CcmK2, and the presumed minor shell protein CcmK4, representing both types of cyanobacterial carboxysomes and then tested the interchangeability. The in vivo study presented here confirms that both engineering pores to mimic those of other shell proteins and the construction of chimeric shells is feasible.
Hydrodynamic Instabilities Produced by Evaporation
NASA Astrophysics Data System (ADS)
Romo-Cruz, Julio Cesar Ruben; Hernandez-Zapata, Sergio; Ruiz-Chavarria, Gerardo
2012-11-01
When a liquid layer (alcohol in the present work) is in an environment where its relative humidity is less than 100 percent evaporation appears. When RH is above a certain threshold the liquid is at rest. If RH decreases below this threshold the flow becomes unstable, and hydrodynamic cells develop. The aim of this work is to understand the formation of those cells and its main features. Firstly, we investigate how the cell size depends on the layer width. We also study how temperature depends on the vertical coordinate when the cells are present. An inverse temperature gradient is found, that is, the bottom of liquid layer is colder than the free surface. This shows that the intuitive idea that the cells are due to a direct temperature gradient, following a Marangoni-like process, does not work. We propose the hypothesis that the evaporation produce a pressure gradient that is responsible of the cell development. On the other hand, using a Schlieren technique we study the topography of the free surface when cells are present. Finally the alcohol vapor layer adjacent to the liquid surface is explored using scattering experiments, giving some insight on the plausibility of the hypothesis described previously. Authors acknowledge support by DGAPA-UNAM under project IN116312 ``Vorticidad y ondas no lineales en fluidos.''
Hydrodynamic Simulations of Contact Binaries
NASA Astrophysics Data System (ADS)
Kadam, Kundan; Clayton, Geoffrey C.; Frank, Juhan; Marcello, Dominic; Motl, Patrick M.; Staff, Jan E.
2015-01-01
The motivation for our project is the peculiar case of the 'red nova" V1309 Sco which erupted in September 2008. The progenitor was, in fact, a contact binary system. We are developing a simulation of contact binaries, so that their formation, structural, and merger properties could be studied using hydrodynamics codes. The observed transient event was the disruption of the secondary star by the primary, and their subsequent merger into one star; hence to replicate this behavior, we need a core-envelope structure for both the stars. We achieve this using a combination of Self Consistant Field (SCF) technique and composite polytropes, also known as bipolytropes. So far we have been able to generate close binaries with various mass ratios. Another consequence of using bipolytropes is that according to theoretical calculations, the radius of a star should expand when the core mass fraction exceeds a critical value, resulting in interesting consequences in a binary system. We present some initial results of these simulations.
Detonation waves in relativistic hydrodynamics
Cissoko, M. )
1992-02-15
This paper is concerned with an algebraic study of the equations of detonation waves in relativistic hydrodynamics taking into account the pressure and the energy of thermal radiation. A new approach to shock and detonation wavefronts is outlined. The fluid under consideration is assumed to be perfect (nonviscous and nonconducting) and to obey the following equation of state: {ital p}=({gamma}{minus}1){rho} where {ital p}, {rho}, and {gamma} are the pressure, the total energy density, and the adiabatic index, respectively. The solutions of the equations of detonation waves are reduced to the problem of finding physically acceptable roots of a quadratic polynomial {Pi}({ital X}) where {ital X} is the ratio {tau}/{tau}{sub 0} of dynamical volumes behind and ahead of the detonation wave. The existence and the locations of zeros of this polynomial allow it to be shown that if the equation of state of the burnt fluid is known then the variables characterizing the unburnt fluid obey well-defined physical relations.
Demonstrating ignition hydrodynamic equivalence in direct-drive cryogenic implosions on OMEGA
NASA Astrophysics Data System (ADS)
Goncharov, V. N.; Regan, S. P.; Sangster, T. C.; Betti, R.; Boehly, T. R.; Campbell, E. M.; Delettrez, J. A.; Edgell, D. H.; Epstein, R.; Forrest, C. J.; Froula, D. H.; Glebov, V. Yu; Harding, D. R.; Hu, S. X.; Igumenshchev, I. V.; Marshall, F. J.; McCrory, R. L.; Michel, D. T.; Myatt, J. F.; Radha, P. B.; Seka, W.; Shvydky, A.; Stoeckl, C.; Theobald, W.; Yaakobi, B.; Gatu-Johnson, M.
2016-05-01
Achieving ignition in a direct-drive cryogenic implosion at the National Ignition Facility (NIF) requires reaching central stagnation pressures in excess of 100 Gbar, which is a factor of 3 to 4 less than what is required for indirect-drive designs. The OMEGA Laser System is used to study the physics of cryogenic implosions that are hydrodynamically equivalent to the spherical ignition designs of the NIF. Current cryogenic implosions on OMEGA have reached 56 Gbar, and implosions with shell convergence CR< 17 and fuel adiabat α > 3.5 proceed close to 1-D predictions. Demonstrating hydrodynamic equivalence on OMEGA will require reducing coupling losses caused by cross-beam energy transfer (CBET), minimizing long- wavelength nonuniformity seeded by power imbalance and target offset, and removing target debris occumulated during cryogenic target production.
NASA Astrophysics Data System (ADS)
Shi, Dawei; Chen, Junyang; Riaz, Saira; Zhou, Wenping; Han, Xiufeng
2012-08-01
Multiphase core-shell nanowires have been fabricated by controlling the ion transport processes of the microfluids in the nanochannels of the template. Both forced convection and pulsed potential induced migration can be applied to tune the morphologies of the nanostructures obtained by manipulating the ion transport during electrodeposition. The morphology and content of the core-shell structure were studied by field emission scanning electron microscope (FESEM) analysis, transmission electron microscope (TEM) analysis and energy dispersive spectrometry (EDS), respectively. The magnetic properties were analyzed by vibrating sample magnetometer (VSM) analysis. A magnetically hard core and soft shell constitutes the multiphase composite nanostructure. The unique magnetic hysteresis curve indicates the decoupled magnetic reversal processes of the two components. Our work provides deeper insights into the formation mechanisms of a new core-shell nanostructure, which may have potential applications in novel spintronics devices.
Analogies Between Colloidal Sedimentation and Turbulent Convection at High Prandtl Numbers
NASA Technical Reports Server (NTRS)
Tong, P.; Ackerson, B. J.
1999-01-01
A new set of coarse-grained equations of motion is proposed to describe concentration and velocity fluctuations in a dilute sedimenting suspension of non-Brownian particles. With these equations, colloidal sedimentation is found to be analogous to turbulent convection at high Prandtl numbers. Using Kraichnan's mixing-length theory, we obtain scaling relations for the diffusive dissipation length delta(sub theta), the velocity variance delta u, and the concentration variance delta phi. The obtained scaling laws over varying particle radius alpha and volume fraction phi(sub ) are in excellent agreement with the recent experiment by Segre, Herbolzheimer, and Chaikin. The analogy between colloidal sedimentation and turbulent convection gives a simple interpretation for the existence of a velocity cut-off length, which prevents hydrodynamic dispersion coefficients from being divergent. It also provides a coherent framework for the study of sedimentation dynamics in different colloidal systems.
NASA Technical Reports Server (NTRS)
Watring, D. A.; Gillies, D. C.; Lehoczky, S. L.; Szofran, F. R.; Alexander, H.
1996-01-01
In order to simulate the space environment for basic research into the crystal growth mechanism, Hg(0.8)Cd(0.2)Te crystals were grown by the vertical Bridgman-Stockbarger method in the presence of an applied axial magnetic field. The influence of convection, by magneto hydrodynamic damping, on mass transfer in the melt and segregation at the solid-liquid interface was investigated by measuring the axial and radial compositional variations in the grown samples. The reduction of convective mixing in the melt through the application of the magnetic field is found to have a large effect on radial segregation and interface morphology in the grown crystals. Direct comparisons are made with a Hg(0.8)Cd(0.2)Te crystal grown without field and also in the microgravity environment of space during the second United States Microgravity Payload Mission (USMP-2).
Multi-phase Thermohaline Convection in Porous Media
NASA Astrophysics Data System (ADS)
Geiger, S.; Driesner, T.; Matthai, S. K.; Heinrich, C. A.
2003-12-01
The simultaneous motion of heat and dissolved solutes by aqueous or magmatic fluids through porous or fractured media within the earth's crust is a key factor that drives many important geological processes, such as the formation of large ore deposits, cooling of new-formed oceanic crust along mid-ocean ridges, metamorphism, or the evolution of geothermal systems. The motion of such crustal fluids is usually dominated by convection due to density differences within the fluids that arise from pressure, temperature and compositional variations present in the fluids. Oxygen isotope data and fluid inclusion data indicate that fluids may percolate down to 15 km depth and experience temperatures exceeding 700 {o}C. Although crustal fluids commonly contain various dissolved chemical components and gases, the most abundant solute is salt, i.e. NaCl. Hence, changes in the concentration of NaCl influence the density variations of crustal fluids the most. The presence of NaCl in H2O has decisive effects on the thermodynamics and hydrodynamics of crustal fluids. NaCl-H2O fluids can boil and separate into a high-density brine and low-salinity vapor at much higher temperatures and pressures than the critical temperature and pressure for pure H2O. NaCl-H2O fluids may also become saturated with respect to NaCl such that a solid NaCl phase coexists with a liquid or vapor fluid phase. Because salt advects faster than heat but diffuses slower than heat, the resulting double-diffusive and double-convective motion of salt and heat may lead to non-linear flow instabilities such as periodic or chaotic behavior. While many studies have addressed the theory of convection driven by temperature and/or salinity gradients, they were limited to a Boussinesq approximation and neglected phase separation. In this study we have numerically examined the behavior of multi-phase thermohaline convection in a porous media heated and salted from below using a novel finite element - finite volume
Electrical imaging and fluid modeling of convective fingering in a shallow water-table aquifer
NASA Astrophysics Data System (ADS)
Dam, Remke L.; Eustice, Brian P.; Hyndman, David W.; Wood, Warren W.; Simmons, Craig T.
2014-02-01
Unstable density-driven flow can lead to enhanced solute transport in groundwater. Only recently has the complex fingering pattern associated with free convection been documented in field settings. Electrical resistivity (ER) tomography has been used to capture a snapshot of convective instabilities at a single point in time, but a thorough transient analysis is still lacking in the literature. We present the results of a 2 year experimental study at a shallow aquifer in the United Arab Emirates that was designed to specifically explore the transient nature of free convection. ER tomography data documented the presence of convective fingers following a significant rainfall event. We demonstrate that the complex fingering pattern had completely disappeared a year after the rainfall event. The observation is supported by an analysis of the aquifer halite budget and hydrodynamic modeling of the transient character of the fingering instabilities. Modeling results show that the transient dynamics of the gravitational instabilities (their initial development, infiltration into the underlying lower-density groundwater, and subsequent decay) are in agreement with the timing observed in the time-lapse ER measurements. All experimental observations and modeling results are consistent with the hypothesis that a dense brine that infiltrated into the aquifer from a surficial source was the cause of free convection at this site, and that the finite nature of the dense brine source and dispersive mixing led to the decay of instabilities with time. This study highlights the importance of the transience of free convection phenomena and suggests that these processes are more rapid than was previously understood.
How cold pool triggers deep convection?
NASA Astrophysics Data System (ADS)
Yano, Jun-Ichi
2014-05-01
The cold pool in the boundary layer is often considered a major triggering mechanism of convection. Here, presented are basic theoretical considerations on this issue. Observations suggest that cold pool-generated convective cells is available for shallow maritime convection (Warner et al. 1979; Zuidema et al. 2012), maritime deep convection (Barnes and Garstang 1982; Addis et al. 1984; Young et al. 1995) and continental deep convection (e.g., Lima and Wilson 2008; Flamant 2009; Lothon et al. 2011; Dione et al. 2013). Moreover, numerical studies appear to suggest that cold pools promote the organization of clouds into larger structures and thereby aid the transition from shallow to deep convection (Khairoutdinov and Randall 2006, Boing et al. 2012, Schlemmer and Hohenegger, 2014). Even a cold--pool parameterization coupled with convection is already proposed (Grandpeix and Lafore 2010: but see also Yano 2012). However, the suggested link between the cold pool and deep convection so far is phenomenological at the best. A specific process that the cold pool leads to a trigger of deep convection must still to be pinned down. Naively, one may imagine that a cold pool lifts up the air at the front as it propagates. Such an uplifting leads to a trigger of convection. However, one must realize that a shift of air along with its propagation does not necessarily lead to an uplifting, and even if it may happen, it would not far exceed a depth of the cold pool itself. Thus, the uplifting can never be anything vigorous. Its thermodynamic characteristics do help much either for inducing convection. The cold-pool air is rather under rapid recovering process before it can induce convection under a simple parcel-lifting argument. The most likely reason that the cold pool may induce convection is its gust winds that may encounter an air mass from an opposite direction. This induces a strong convergence, also leading to a strong uplifting. This is an argument essentially developed
Garaud, P.; Acevedo Arreguin, L.
2009-10-10
The solar convection zone exhibits a strong level of differential rotation, whereby the rotation period of the polar regions is about 25%-30% longer than the equatorial regions. The Coriolis force associated with these zonal flows perpetually 'pumps' the convection zone fluid, and maintains a quasi-steady circulation, poleward near the surface. What is the influence of this meridional circulation on the underlying radiative zone, and in particular, does it provide a significant source of mixing between the two regions? In Paper I, we began to study this question by assuming a fixed meridional flow pattern in the convection zone and calculating its penetration depth into the radiative zone. We found that the amount of mixing caused depends very sensitively on the assumed flow structure near the radiative-convective interface. We continue this hydrodynamic study here by including a simple model for the convection zone 'pump', and calculating in a self-consistent manner the meridional flows generated in the whole Sun. We find that the global circulation timescale depends in a crucial way on two factors: the overall stratification of the radiative zone as measured by the square root of the Prandtl number times the ratio of the Brunt-Vaeisaelae frequency to the rotation rate, and, for weakly stratified systems, the presence or absence of stresses within the radiative zone capable of breaking the Taylor-Proudman constraint. We conclude by discussing the consequences of our findings for the solar interior and argue that a potentially important mechanism for mixing in young main-sequence stars has so far been neglected.
Choosing an adequate FEM grid for global mantle convection modelling
NASA Astrophysics Data System (ADS)
Thieulot, Cedric
2016-04-01
Global numerical models of mantle convection are typically run on a grid which represents a hollow sphere. In the context of using the Finite Element method, there are many ways to discretise a hollow sphere by means of cuboids in a regular fashion (adaptive mesh refinement is here not considered). I will here focus on the following two: the cubed sphere [1], which is a quasi-uniform mapping of a cube to a sphere (considering both equidistant and equiangular projections), and the 12-block grid used for instance in CITCOM [2]. By means of simple experiments, I will show that at comparable resolutions (and all other things being equal), the 12-block grid is surprisingly vastly superior to the cubed-sphere grid, when used in combination with trilinear velocity - constant pressure elements, while being more difficult to build/implement. [1] C. Ronchi, R. Iacono, and P. S. Paolucci, The "Cubed Sphere": A New Method for the Solution of Partial Differential Equations in Spherical Geometry, Journal of Computational Physics, 124, p93-114 (1996). [2] S. Zhong and M.T. Zuber and L.N. Moresi and M. Gurnis, Role of temperature-dependent viscosity and surface plates in spherical shell models of mantle convection, Journal of Geophysical Research, 105 (B5), p 11,063-11,082 (2000).
Numerical Study of Concentration and Thermocapillary Melt Convection under Pulsed Laser Alloying
NASA Astrophysics Data System (ADS)
Kovalev, O. B.; Popov, A. N.; Smirnova, E. M.; Smurov, I.
The mathematical model of capillary thermal-concentration convection is proposed; on its basis, a numerical simulation of the process of metal surface alloying with the aid of pulse laser radiation was done. The influence of the pulse intensity on melt hydrodynamics and distribution of the alloying substance was evaluated. In the published works on this theme results of researches are not full enough and the extremely limited. For the substrate material, the data of titanium and iron were used, including the dependence of the surface tension on the melt temperature and admixture concentration.
CONVECTION AND DIFFERENTIAL ROTATION IN F-TYPE STARS
Augustson, Kyle C.; Toomre, Juri; Brown, Benjamin P.; Brun, Allan Sacha
2012-09-10
Differential rotation is a common feature of main-sequence spectral F-type stars. In seeking to make contact with observations and to provide a self-consistent picture of how differential rotation is achieved in the interiors of these stars, we use the three-dimensional anelastic spherical harmonic (ASH) code to simulate global-scale turbulent flows in 1.2 and 1.3 M{sub Sun} F-type stars at varying rotation rates. The simulations are carried out in spherical shells that encompass most of the convection zone and a portion of the stably stratified radiative zone below it, allowing us to explore the effects of overshooting convection. We examine the scaling of the mean flows and thermal state with rotation rate and mass and link these scalings to fundamental parameters of the simulations. Indeed, we find that the differential rotation becomes much stronger with more rapid rotation and larger mass, scaling as {Delta}{Omega}{proportional_to}M {sup 3.9}{Omega}{sup 0.6}{sub 0}. Accompanying the growing differential rotation is a significant latitudinal temperature contrast, with amplitudes of 1000 K or higher in the most rapidly rotating cases. This contrast in turn scales with mass and rotation rate as {Delta}T{proportional_to}M {sup 6.4}{Omega}{sup 1.6}{sub 0}. On the other hand, the meridional circulations become much weaker with more rapid rotation and with higher mass, with their kinetic energy decreasing as KE{sub MC}{proportional_to}M {sup -1.2}{Omega}{sup -0.8}{sub 0}. Additionally, three of our simulations exhibit a global-scale shear instability within their stable regions that persists for the duration of the simulations. The flow structures associated with the instabilities have a direct coupling to and impact on the flows within the convection zone.
A 3D Convective Model for the Jovian Wind Bands
NASA Astrophysics Data System (ADS)
Mayr, H. G.; Chan, K. L.
2004-11-01
In an earlier paper (Mayr et al. 1984, Earth, Moon, & Planets, 30, 245), we proposed that Jupiter's alternating wind bands are a manifestation of the global interaction between rotation and convection in a shallow layer. The model, however, was obtained from linearization of the 2D equations of motions. At HKUST/Hong Kong, we are now trying to study this problem by rigorous numerical simulation. Using a three-dimensional spectral numerical code, we compute models for the outermost layer of Jupiter's convective envelope. Two cases have been studied. In one the atmospheric pressure varies from 1 to 23 bar, and in the other from 1 to 115 bar. The physical parameters (internal energy flux, rotation rate) are chosen to be close to those expected, but solar heating, chemistry, as well as dynamical influences from deeper layers are ignored. The models generate wind field patterns that contain alternating jet streams with resemblance to the Jovian bands. Instantaneous values of the mean zonal flow at the equator reach 80 m/sec. Yet the mean meridional flows are less than 1% of such value. The meridional temperature profile at the cloud top level also shows a double hump structure of a few degrees (as observed) in the subtropics. Though there is not complete quantitative agreement (caused perhaps by neglected effects like solar radiation), these models demonstrate, in principle, the feasibility of generating a Jovian type wind pattern through the interaction of fast rotation and convection in a thin shell. KLC thanks RGC/Hong Kong for support.
Relativistic shell model calculations
NASA Astrophysics Data System (ADS)
Furnstahl, R. J.
1986-06-01
Shell model calculations are discussed in the context of a relativistic model of nuclear structure based on renormalizable quantum field theories of mesons and baryons (quantum hadrodynamics). The relativistic Hartree approximation to the full field theory, with parameters determined from bulk properties of nuclear matter, predicts a shell structure in finite nuclei. Particle-hole excitations in finite nuclei are described in an RPA calculation based on this QHD ground state. The particle-hole interaction is prescribed by the Hartree ground state, with no additional parameters. Meson retardation is neglected in deriving the RPA equations, but it is found to have negligible effects on low-lying states. The full Dirac matrix structure is maintained throughout the calculation; no nonrelativistic reductions are made. Despite sensitive cancellations in the ground state calculation, reasonable excitation spectra are obtained for light nuclei. The effects of including charged mesons, problems with heavy nuclei, and prospects for improved and extended calculations are discussed.
Maximum entropy principle and relativistic hydrodynamics
NASA Astrophysics Data System (ADS)
van Weert, Ch. G.
1982-04-01
A relativistic theory of hydrodynamics applicable beyond the hydrodynamic regime is developed on the basis of the maximum entropy principle. This allows the construction of a unique statistical operator representing the state of the system as specified by the values of the hydrodynamical densities. Special attention is paid to the thermodynamic limit and the virial theorem which leads to an expression for the pressure in terms of the field-theoretic energymomentum tensor of Coleman and Jackiw. It is argued that outside the hydrodynamic regime the notion of a local Gibbs relation, as usually postulated, must be abandoned in general. In the nontext of the linear approximation, the memory-retaining and non-local generalizations of the relativistic Navier-Stokes equations are derived from the underlying Heisenberg equations of motion. The formal similarity to the Zwanzig-Mori description of non-relativistic fluids is expounded.
Hydrodynamic trapping of molecules in lipid bilayers
Jönsson, Peter; McColl, James; Clarke, Richard W.; Ostanin, Victor P.; Jönsson, Bengt; Klenerman, David
2012-01-01
In this work we show how hydrodynamic forces can be used to locally trap molecules in a supported lipid bilayer (SLB). The method uses the hydrodynamic drag forces arising from a flow through a conical pipette with a tip radius of 1–1.5 μm, placed approximately 1 μm above the investigated SLB. This results in a localized forcefield that acts on molecules protruding from the SLB, yielding a hydrodynamic trap with a size approximately given by the size of the pipette tip. We demonstrate this concept by trapping the protein streptavidin, bound to biotin receptors in the SLB. It is also shown how static and kinetic information about the intermolecular interactions in the lipid bilayer can be obtained by relating how the magnitude of the hydrodynamic forces affects the accumulation of protein molecules in the trap. PMID:22699491
The interplanetary electric field, cleft currents and plasma convection in the polar caps
NASA Technical Reports Server (NTRS)
Banks, P. M.; Clauer, C. R.; Araki, T.; St. Maurice, J. P.; Foster, J. C.
1984-01-01
The relationship between the pattern of plasma convection in the polar cleft and the dynamics of the interplanetary electric field (IEF) is examined theoretically. It is shown that owing to the geometrical properties of the magnetosphere, the East-West component of the IEF will drive field-aligned currents which connect to the ionosphere at points lying on either side of noon, while currents associated with the North-South component of the IEF will connect the two polar caps as sheet currents, also centered at 12 MLT. In order to describe the consequences of the Interplanetary Magnetic Field (IMF) effects upon high-latitude electric fields and convection patterns, a series of numerical simulations was carried out. The simulations were based on a solution to the steady-state equation of current continuity in a height-integrated ionospheric current. The simulations demonstrate that a simple hydrodynamical model can account for the narrow 'throats' of strong dayside antisunward convection observed during periods of southward interplanetary IMF drift, as well as the sunward convection observed during periods of strongly northward IMF drift.
Stellar models with mixing length and T(τ) relations calibrated on 3D convection simulations
NASA Astrophysics Data System (ADS)
Salaris, Maurizio; Cassisi, Santi
2015-05-01
The calculation of the thermal stratification in the superadiabatic layers of stellar models with convective envelopes is a long-standing problem of stellar astrophysics, and has a major impact on predicted observational properties such as radius and effective temperature. The mixing length theory, almost universally used to model the superadiabatic convective layers, contains one free parameter to be calibrated (αml) whose value controls the resulting effective temperature. Here we present the first self-consistent stellar evolution models calculated by employing the atmospheric temperature stratification, Rosseland opacities, and calibrated variable αml (dependent on effective temperature and surface gravity) from a recently published large suite of three-dimensional radiation hydrodynamics simulations of stellar convective envelopes and atmospheres for solar stellar composition. From our calculations (with the same composition of the radiation hydrodynamics simulations), we find that the effective temperatures of models with the hydro-calibrated variable αml (that ranges between ~1.6 and ~2.0 in the parameter space covered by the simulations) present only minor differences, by at most ~30-50 K, compared to models calculated at constant solar αml (equal to 1.76, as obtained from the same simulations). The depth of the convective regions is essentially the same in both cases. We also analyzed the role played by the hydro-calibrated T(τ) relationships in determining the evolution of the model effective temperatures, when compared to alternative T(τ) relationships often used in stellar model computations. The choice of the T(τ) can have a larger impact than the use of a variable αml compared to a constant solar value. We found that the solar semi-empirical T(τ) by Vernazza et al. (1981, ApJS, 45, 635) provides stellar model effective temperatures that agree quite well with the results with the hydro-calibrated relationships.
Improvements to SOIL: An Eulerian hydrodynamics code
Davis, C.G.
1988-04-01
Possible improvements to SOIL, an Eulerian hydrodynamics code that can do coupled radiation diffusion and strength of materials, are presented in this report. Our research is based on the inspection of other Eulerian codes and theoretical reports on hydrodynamics. Several conclusions from the present study suggest that some improvements are in order, such as second-order advection, adaptive meshes, and speedup of the code by vectorization and/or multitasking. 29 refs., 2 figs.
Flagellar Synchronization Independent of Hydrodynamic Interactions
NASA Astrophysics Data System (ADS)
Friedrich, Benjamin M.; Jülicher, Frank
2012-09-01
Inspired by the coordinated beating of the flagellar pair of the green algae Chlamydomonas, we study theoretically a simple, mirror-symmetric swimmer, which propels itself at low Reynolds number by a revolving motion of a pair of spheres. We show that perfect synchronization between these two driven spheres can occur due to the motion of the swimmer and local hydrodynamic friction forces. Hydrodynamic interactions, though crucial for net propulsion, contribute little to synchronization for this free-moving swimmer.
Energy transport using natural convection boundary layers
Anderson, R
1986-04-01
Natural convection is one of the major modes of energy transport in passive solar buildings. There are two primary mechanisms for natural convection heat transport through an aperture between building zones: (1) bulk density differences created by temperature differences between zones; and (2) thermosyphon pumping created by natural convection boundary layers. The primary objective of the present study is to compare the characteristics of bulk density driven and boundary layer driven flow, and discuss some of the advantages associated with the use of natural convection boundary layers to transport energy in solar building applications.
Cellular convection in the atmosphere of Venus
NASA Technical Reports Server (NTRS)
Baker, R. D., II; Schubert, Gerald
1992-01-01
Among the most intriguing feature of the atmosphere of Venus is the presence of cellular structures near and downwind of the subpolar point. It has been suggested that the structures are atmospheric convection cells, but their breadth and thinness would pose a severe challenge to the dynamics of convection. It is proposed here that strongly penetrative convection into the stable regions above and below the neutrally stable cloud layer coupled with penetrative convection from the surface increases the vertical dimensions of the cells, thereby helping to explain their large horizontal extent.
Transient magmatic convection prolonged by solidification
NASA Technical Reports Server (NTRS)
Brandeis, Genevieve; Marsh, Bruce D.
1990-01-01
Fluid dynamic experiments have been conducted on the solidification of a paraffin layer, in order to elucidate the transient stage of convection created in cooling magma by the fact that strong changes in viscosity with crystallization lock up within an inwardly propagating crust much buoyancy that would otherwise be available to drive convection. The interior of the magma remains isothermal, and the temperature decreases uniformly until it is locked at the convective liquidus; the crystals are fine hairlike dendrites without major compositional differentiations. Measurements over time are presented of crust thickness, convective velocity, and heat transfer.
Convective Instabilities in Liquid Foams
NASA Technical Reports Server (NTRS)
Veretennikov, Igor; Glazier, James A.
2004-01-01
The main goal of this work is to better understand foam behavior both on the Earth and in microgravity conditions and to determine the relation between a foam's structure and wetness and its rheological properties. Our experiments focused on the effects of the bubble size distribution (BSD) on the foam behavior under gradual or stepwise in the liquid flow rate and on the onset of the convective instability. We were able to show experimentally, that the BSD affects foam rheology very strongly so any theory must take foam texture into account.
Bursts in inclined layer convection
NASA Astrophysics Data System (ADS)
Busse, F. H.; Clever, R. M.
2000-08-01
A new instability of longitudinal rolls in an inclined fluid layer heated from below is analyzed in the case of the Prandtl number P=0.71. The instability assumes the form of subharmonic undulations and evolves into a spatially chaotic pattern when the angle of inclination is of the order of 20°. The chaotic state rapidly decays and longitudinal rolls recover until the next burst of chaotic convection occurs. The theoretical findings closely correspond to recent experimental observations by Daniels et al. [Phys. Rev. Lett. (to be published)].
Structural analysis of stratocumulus convection
NASA Technical Reports Server (NTRS)
Siems, S. T.; Baker, M. B.; Bretherton, C. S.
1990-01-01
The 1 and 20 Hz data are examined from the Electra flights made on July 5, 1987. The flight legs consisted of seven horizontal turbulent legs at the inversion, midcloud, and below clouds, plus 4 soundings made within the same period. The Rosemont temperature sensor and the top and bottom dewpoint sensors were used to measure temperature and humidity at 1 Hz. Inversion structure and entrainment; local dynamics and large scale forcing; convective elements; and decoupling of cloud and subcloud are discussed in relationship to the results of the Electra flight.
Osmium isotopes and mantle convection.
Hauri, Erik H
2002-11-15
The decay of (187)Re to (187)Os (with a half-life of 42 billion years) provides a unique isotopic fingerprint for tracing the evolution of crustal materials and mantle residues in the convecting mantle. Ancient subcontinental mantle lithosphere has uniquely low Re/Os and (187)Os/(188)Os ratios due to large-degree melt extraction, recording ancient melt-depletion events as old as 3.2 billion years. Partial melts have Re/Os ratios that are orders of magnitude higher than their sources, and the subduction of oceanic or continental crust introduces into the mantle materials that rapidly accumulate radiogenic (187)Os. Eclogites from the subcontinental lithosphere have extremely high (187)Os/(188)Os ratios, and record ages as old as the oldest peridotites. The data show a near-perfect partitioning of Re/Os and (187)Os/(188)Os ratios between peridotites (low) and eclogites (high). The convecting mantle retains a degree of Os-isotopic heterogeneity similar to the lithospheric mantle, although its amplitude is modulated by convective mixing. Abyssal peridotites from the ocean ridges have low Os isotope ratios, indicating that the upper mantle had undergone episodes of melt depletion prior to the most recent melting events to produce mid-ocean-ridge basalt. The amount of rhenium estimated to be depleted from the upper mantle is 10 times greater than the rhenium budget of the continental crust, requiring a separate reservoir to close the mass balance. A reservoir consisting of 5-10% of the mantle with a rhenium concentration similar to mid-ocean-ridge basalt would balance the rhenium depletion of the upper mantle. This reservoir most likely consists of mafic oceanic crust recycled into the mantle over Earth's history and provides the material that melts at oceanic hotspots to produce ocean-island basalts (OIBs). The ubiquity of high Os isotope ratios in OIB, coupled with other geochemical tracers, indicates that the mantle sources of hotspots contain significant quantities
The hydrodynamic focusing effect inside rectangular microchannels
NASA Astrophysics Data System (ADS)
Lee, Gwo-Bin; Chang, Chih-Chang; Huang, Sung-Bin; Yang, Ruey-Jen
2006-05-01
This paper presents a theoretical and experimental investigation into the hydrodynamic focusing effect in rectangular microchannels. Two theoretical models for two-dimensional hydrodynamic focusing are proposed. The first model predicts the width of the focused stream in symmetric hydrodynamic focusing in microchannels of various aspect ratios. The second model predicts the location and the width of the focused stream in asymmetric hydrodynamic focusing in microchannels with a low or high aspect ratio. In both models, the theoretical results are shown to be in good agreement with the experimental data. Hence, the models provide a useful means of performing a theoretical analysis of flow control in microfluidic devices using hydrodynamic focusing effects. The ability of the proposed models to control the focused stream within a micro flow cytometer is verified in a series of experimental trials performed using polystyrene microparticles with a diameter of 20 µm. The experimental data show that the width of the focused stream can be reduced to the same order of magnitude as that of the particle size. Furthermore, it is shown that the microparticles can be successfully hydrodynamically focused and switched to the desired outlet port of the cytometer. Hence, the models presented in this study provide sufficient control to support cell/particle counting and sorting applications.
NASA Technical Reports Server (NTRS)
Yokota, Jeffrey W.; Huynh, Hung T.
1989-01-01
A new, nonoscillatory upwind scheme is developed for the multidimensional convection equation. The scheme consists of an upwind, nonoscillatory interpolation of data to the surfaces of an intermediate finite volume; a characteristic convection of surface data to a midpoint time level; and a conservative time integration based on the midpoint rule. This procedure results in a convection scheme capable of resolving discontinuities neither aligned with, nor convected along, grid lines.
Characteristics of clouds and the near cloud environment in a simulation of tropical convection
NASA Astrophysics Data System (ADS)
Glenn, Ian Bruce
This work presents the general characteristics of cumulus convection and the large-scale environment in a simulation of tropical precipitating convection known as the Giga-LES. A moist static energy (MSE)-based analysis is used because MSE mixes linearly and is conserved for moist adiabatic motions. The MSE-based analysis is first used to examine the properties of convection over height and amount of dilution through mixing, and a minimum dilution greater than zero is quantified. Additionally, an interesting pattern of average buoyancy over MSE and height in the simulation is revealed, possibly linked to cloudy downdrafts and mixing at the edge of clouds. Investigating further, an MSE-based analysis is performed on selected subregions of the simulation domain, particularly the near cloud environment (NCE) of cloudy updrafts in the simulation. It is found that the NCE around all sizes of updrafts, from shallow to deep convection, contains points with properties of a subsiding shell. The dynamical importance of the evaporative-cooling driven subsiding shell has already been demonstrated in previous work studying shallow cumulus clouds. This work presents the first evidence of subsiding shells in the NCE of deep convection, and quantifies the mass flux associated with subsiding shells for different sized clouds. With a new understanding of the NCE of active cloudy updrafts, the updrafts themselves are studied further. The work of Lin and Arakawa is discussed which clarifies how the entraining plumes of the Arakawa and Schubert parameterization should be interpreted. The physical interpretation is that they are composed of subcloud elements with similar detrainment levels that come from different cloudy updrafts. How are the subcloud elements that make up these ideal plumes distributed throughout the cloud field? The answer to this question has implications for the viability of different techniques of cumulus parameterization. I present a new method for characterizing
An Investigation of Hydrodynamic Instabilities in Wind-Driven Flames
NASA Astrophysics Data System (ADS)
Miller, Colin; Verma, Salman; Trouve, Arnaud; Finney, Mark; Forthofer, Jason; McAllister, Sara; Gollner, Michael
2015-11-01
Recent findings on the importance of convective heating by direct flame contact in wildland fire spread have highlighted the importance of fluid dynamics in the flame spread process. Researchers have observed several dominant coherent structures in the three-dimensional flame in both small and large-scale experiments. This experimental study seeks an understanding of the physical mechanisms by which coherent structures are induced by hydrodynamic instabilities. Experimental data is derived from both a nonreactive hot plate and a stationary burner in a well-characterized laminar flow wind tunnel. Streamwise vortices promote upwash and downwash regions of the flow, and scaling analyses of temperature and velocity maps are proposed. Emphasis is placed on elucidating the regimes in which certain instability mechanisms dominate. The relative strength of shear forces and buoyant forces at certain locations in the boundary layer are examined as contributors to behavior analogous to Klebanoff modes, Gortler vortices, Rayleigh-Taylor instabilities, or Tollmien-Schlichting waves. To further supplement experimental results, comparisons to numerical simulations of hot plates will be made.
A Dynamically Computed Convective Time Scale for the Kain–Fritsch Convective Parameterization Scheme
Many convective parameterization schemes define a convective adjustment time scale τ as the time allowed for dissipation of convective available potential energy (CAPE). The Kain–Fritsch scheme defines τ based on an estimate of the advective time period for deep con...
Transitions in turbulent rotating convection
NASA Astrophysics Data System (ADS)
Rajaei, Hadi; Alards, Kim; Kunnen, Rudie; Toschi, Federico; Clercx, Herman; Fluid Dynamics Lab Team
2015-11-01
This study aims to explore the flow transition from one state to the other in rotating Rayleigh-Bènard convection using Lagrangian acceleration statistics. 3D particle tracking velocimetry (3D-PTV) is employed in a water-filled cylindrical tank of equal height and diameter. The measurements are performed at the center and close to the top plate at a Rayleigh number Ra = 1.28e9 and Prandtl number Pr = 6.7 for different rotation rates. In parallel, direct numerical simulation (DNS) has been performed to provide detailed information on the boundary layers. We report the acceleration pdfs for different rotation rates and show how the transition from weakly to strongly rotating Rayleigh-Bènard affects the acceleration pdfs in the bulk and boundary layers. We observe that the shapes of the acceleration PDFs as well as the isotropy in the cell center are largely unaffected while crossing the transition point. However, acceleration pdfs at the top show a clear change at the transition point. Using acceleration pdfs and DNS data, we show that the transition between turbulent states is actually a boundary layer transition between Prandtl-Blasius type (typical of non-rotating convection) and Ekman type.
Structure in turbulent thermal convection
NASA Astrophysics Data System (ADS)
Balachandar, S.
1992-12-01
Small-scale features of vorticity, strain rate, and temperature gradients are considered in a Rayleigh-Bénard convection. The results reported are from a direct numerical simulation of turbulent convection performed in a rectangular box of aspect ratio 2√2 at a Rayleigh number of 6.5×106 and a Prandtl number of 0.72. In agreement with earlier results [Ashurst et al., Phys. Fluids 30, 2343 (1987) and Ruetsch and Maxey, Phys. Fluids A 3, 1587 (1991)], the intermediate strain rate is on an average positive, but the ratio of alpha, beta, and gamma strain rates are measured to be 5.3:1.0:-6.3. This result differs from the earlier result of 3:1:-4 obtained in homogeneous isotropic and shear turbulences. Buoyancy-induced vorticity production makes significant contribution to the overall enstrophy balance, especially close to the boundaries. Vorticity production by buoyancy is exclusively in the horizontal direction and is balanced by preferred production by stretching and tilting in the vertical direction, due to the preferred alignment of extensional alpha strain rate with the vertical direction. Such directional alignment of vorticity, strain rate, and scalar gradient is explained on the basis of preferred spatial orientation of coherent structures in thermal turbulence.
NASA Technical Reports Server (NTRS)
Tang, Yvette Y.; Silcox, Richard J.; Robinson, Jay H.
1996-01-01
This paper examines sound transmission into two concentric cylindrical sandwich shells subject to turbulent flow on the exterior surface of the outer shell. The interior of the shells is filled with fluid medium and there is an airgap between the shells in the annular space. The description of the pressure field is based on the cross-spectral density formulation of Corcos, Maestrello, and Efimtsov models of the turbulent boundary layer. The classical thin shell theory and the first-order shear deformation theory are applied for the inner and outer shells, respectively. Modal expansion and the Galerkin approach are used to obtain closed-form solutions for the shell displacements and the radiation and transmission pressures in the cavities including both the annular space and the interior. The average spectral density of the structural responses and the transmitted interior pressures are expressed explicitly in terms of the summation of the cross-spectral density of generalized force induced by the boundary layer turbulence. The effects of acoustic and hydrodynamic coincidences on the spectral density are observed. Numerical examples are presented to illustrate the method for both subsonic and supersonic flows.
Hydrodynamic effects on spinodal decomposition kinetics in planar lipid bilayer membranes.
Fan, Jun; Han, Tao; Haataja, Mikko
2010-12-21
The formation and dynamics of spatially extended compositional domains in multicomponent lipid membranes lie at the heart of many important biological and biophysical phenomena. While the thermodynamic basis for domain formation has been explored extensively in the past, domain growth in the presence of hydrodynamic interactions both within the (effectively) two-dimensional membrane and in the three-dimensional solvent in which the membrane is immersed has received little attention. In this work, we explore the role of hydrodynamic effects on spinodal decomposition kinetics via continuum simulations of a convective Cahn-Hilliard equation for membrane composition coupled to the Stokes equation. Our approach explicitly includes hydrodynamics both within the planar membrane and in the three-dimensional solvent in the viscously dominated flow regime. Numerical simulations reveal that dynamical scaling breaks down for critical lipid mixtures due to distinct coarsening mechanisms for elongated versus more isotropic compositional lipid domains. The breakdown in scaling should be readily observable in experiments on model membrane systems. PMID:21186889
NASA Astrophysics Data System (ADS)
Khan, B. A.; Stenchikov, G. L.; Abualnaja, Y.
2014-12-01
Shallow convection has been studied in the sea breeze frontal zone along the Arabian Red Sea coast. This convection is forced by thermal and dynamic instabilities and generally is capped below 500 hPa. The thermally induced sea breeze modifies the desert Planetary Boundary Layer (PBL) and propagates inland as a density current. The leading edge of the denser marine air rapidly moves inland undercutting the hot and dry desert air mass. The warm air lifts up along the sea breeze front (SBF). Despite large moisture flux from the sea, the shallow convection in SBF does not cause precipitation on the most part of the Arabian coastal plane. The main focus of this research is to study the vertical structure and extent of convective activity in SBF and to differentiate flow regimes that lead to dry and wet convection. The Weather Research and Forecasting Model (WRF) has been employed at a high spatial resolution of 500 m to investigate the thermodynamic structure of the atmospheric column along the SBF. We found that convection occurs during offshore and cross-shore mean wind conditions; precipitation in SBF frequently develops in the southern region of the Red Sea along the high terrain of Al-Sarawat Mountains range, while on most of the days convection is dry in the middle region and further north of the Red Sea. The coherent structures in the PBL, horizontal convective rolls (HCRs) and open convective cells (OCCs), play an important role shaping interaction of SBF with the desert boundary layer. The HCRs develop in the midmorning along the mean wind vector and interact with the SBF. Later in the afternoon HCRs evolve into OCCs. The convection is strongest, where the HCR and OCC updrafts overlap with SBF and is weakest in their downdraft regions.
Traveling waves and chaos in thermosolutal convection
NASA Technical Reports Server (NTRS)
Deane, A. E.; Toomre, J.; Knobloch, E.
1987-01-01
Numerical experiments on two-dimensional thermosolutal convection reveal oscillations in the form of traveling, standing, modulated, and chaotic waves. Transitions between these wave forms and steady convection are investigated and compared with theory. Such rich nonlinear behavior is possible in fluid layers of wide horizontal extent, and provides an explanation for waves observed in recent laboratory experiments with binary fluid mixtures.
Convection in stars and heating of coronae
NASA Technical Reports Server (NTRS)
Mullan, D. J.
1991-01-01
The properties of convection in the sun and other cool stars are summarized. Recent studies of convection which have involved the use of supercomputers to model the flow of compressible gas in three dimensions are discussed. It is shown how the results of these computations may eventualy provide an understanding of how nonthermal processes heat coronal gas to temperatures of millions of degrees.
Extremely tall convection: characteristics and controls
NASA Astrophysics Data System (ADS)
Nesbitt, S. W.; Rasmussen, K. L.
2015-12-01
Tall continental convective structures are observed in several climatological regions, and have been shown to be related with severe weather and extreme hydrologic events. Recent work has defined tall convection as regions with precipitation structures observed with spaceborne radar echo extending into the upper troposphere/lower stratosphere. While these climatological regions are known for these tall convective structures (subtropical South America, equatorial Africa, southcentral USA, South Asia), not all observed convective eventsin these regions contain strong structures, and the characteristics of the meteorological environments, including sounding profiles, that dictate the strength of the spectrum of convective systems are poorly constrained. In this study, precipitation radar (PR) data from the Tropical Rainfall Measuring Mission (TRMM) and dual-frequency precipitation radar (DPR) from the Global Precipitation Measurement (GPM) satellites will be examined alongside composites of atmospheric reanalysis data to examine the structural and meteorological environments surrounding observed tall convective systems. Environments of convective systems of various vertical extents will be contrasted with less extreme convection to infer physical causal mechanisms and to examine issues of predictability of these events.
Introductory Analysis of Benard-Marangoni Convection
ERIC Educational Resources Information Center
Maroto, J. A.; Perez-Munuzuri, V.; Romero-Cano, M. S.
2007-01-01
We describe experiments on Benard-Marangoni convection which permit a useful understanding of the main concepts involved in this phenomenon such as, for example, Benard cells, aspect ratio, Rayleigh and Marangoni numbers, Crispation number and critical conditions. In spite of the complexity of convection theory, we carry out a simple and…
Goncharov, V. N.; Sangster, T. C.; Betti, R.; Boehly, T. R.; Bonino, M. J.; Collins, T. J.; Craxton, R. S.; Delettrez, J. A.; Edgell, D. H.; Epstein, R.; Follett, R. K.; Forrest, C. J.; Froula, D. H.; Yu. Glebov, V.; Harding, D. R.; Henchen, R. J.; Hu, S. X.; Igumenshchev, I. V.; Janezic, R.; Kelly, J. H.; Kessler, T. J.; Kosc, T. Z.; Loucks, S. J.; Marozas, J. A.; Marshall, F. J.; Maximov, A. V.; McCrory, R. L.; McKenty, P. W.; Meyerhofer, D. D.; Michel, D. T.; Myatt, J. F.; Nora, R.; Radha, P. B.; Regan, S. P.; Seka, W.; Shmayda, W. T.; Short, R.W.; Shvydky, A.; Skupsky, S.; Stoeckl, C.; Yaakobi, B.; Frenje, J. A.; Gatu-Johnson, M.; Petrasso, R. D.; Casey, D. T.
2014-05-01
Reaching ignition in direct-drive (DD) inertial confinement fusion implosions requires achieving central pressures in excess of 100 Gbar. The OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] is used to study the physics of implosions that are hydrodynamically equivalent to the ignition designs on the National Ignition Facility (NIF) [J. A. Paisner et al., Laser Focus World 30, 75 (1994)]. It is shown that the highest hot-spot pressures (up to 40 Gbar) are achieved in target designs with a fuel adiabat of α ≅ 4, an implosion velocity of 3.8 × 10⁷ cm/s, and a laser intensity of ~10¹⁵ W/cm². These moderate-adiabat implosions are well understood using two-dimensional hydrocode simulations. The performance of lower-adiabat implosions is significantly degraded relative to code predictions, a common feature between DD implosions on OMEGA and indirect-drive cryogenic implosions on the NIF. Simplified theoretical models are developed to gain physical understanding of the implosion dynamics that dictate the target performance. These models indicate that degradations in the shell density and integrity (caused by hydrodynamic instabilities during the target acceleration) coupled with hydrodynamics at stagnation are the main failure mechanisms in low-adiabat designs. To demonstrate ignition hydrodynamic equivalence in cryogenic implosions on OMEGA, the target-design robustness to hydrodynamic instability growth must be improved by reducing laser-coupling losses caused by cross beam energy transfer.
NASA Astrophysics Data System (ADS)
Goncharov, V. N.; Sangster, T. C.; Betti, R.; Boehly, T. R.; Bonino, M. J.; Collins, T. J. B.; Craxton, R. S.; Delettrez, J. A.; Edgell, D. H.; Epstein, R.; Follett, R. K.; Forrest, C. J.; Froula, D. H.; Yu. Glebov, V.; Harding, D. R.; Henchen, R. J.; Hu, S. X.; Igumenshchev, I. V.; Janezic, R.; Kelly, J. H.; Kessler, T. J.; Kosc, T. Z.; Loucks, S. J.; Marozas, J. A.; Marshall, F. J.; Maximov, A. V.; McCrory, R. L.; McKenty, P. W.; Meyerhofer, D. D.; Michel, D. T.; Myatt, J. F.; Nora, R.; Radha, P. B.; Regan, S. P.; Seka, W.; Shmayda, W. T.; Short, R. W.; Shvydky, A.; Skupsky, S.; Stoeckl, C.; Yaakobi, B.; Frenje, J. A.; Gatu-Johnson, M.; Petrasso, R. D.; Casey, D. T.
2014-05-01
Reaching ignition in direct-drive (DD) inertial confinement fusion implosions requires achieving central pressures in excess of 100 Gbar. The OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] is used to study the physics of implosions that are hydrodynamically equivalent to the ignition designs on the National Ignition Facility (NIF) [J. A. Paisner et al., Laser Focus World 30, 75 (1994)]. It is shown that the highest hot-spot pressures (up to 40 Gbar) are achieved in target designs with a fuel adiabat of α ≃ 4, an implosion velocity of 3.8 × 107 cm/s, and a laser intensity of ˜1015 W/cm2. These moderate-adiabat implosions are well understood using two-dimensional hydrocode simulations. The performance of lower-adiabat implosions is significantly degraded relative to code predictions, a common feature between DD implosions on OMEGA and indirect-drive cryogenic implosions on the NIF. Simplified theoretical models are developed to gain physical understanding of the implosion dynamics that dictate the target performance. These models indicate that degradations in the shell density and integrity (caused by hydrodynamic instabilities during the target acceleration) coupled with hydrodynamics at stagnation are the main failure mechanisms in low-adiabat designs. To demonstrate ignition hydrodynamic equivalence in cryogenic implosions on OMEGA, the target-design robustness to hydrodynamic instability growth must be improved by reducing laser-coupling losses caused by cross beam energy transfer.
Effects of Radiative Diffusion on Thin Flux Tubes in Turbulent Solar-like Convection
NASA Astrophysics Data System (ADS)
Weber, M. A.; Fan, Y.
2015-05-01
We study the combined effects of convection and radiative diffusion on the evolution of thin magnetic flux tubes in the solar interior. Radiative diffusion is the primary supplier of heat to convective motions in the lower convection zone, and it results in a heat input per unit volume of magnetic flux tubes that has been ignored by many previous thin flux tube studies. We use a thin flux tube model subject to convection taken from a rotating spherical shell of turbulent, solar-like convection as described by Weber, Fan, and Miesch ( Astrophys. J. 741, 11, 2011; Solar Phys. 287, 239, 2013), now taking into account the influence of radiative heating on 1022 Mx flux tubes, corresponding to flux tubes of large active regions. Our simulations show that flux tubes of ≤ 60 kG that are subject to solar-like convective flows do not anchor in the overshoot region, but rather drift upward because of the increased buoyancy of the flux tube earlier in its evolution, which results from including radiative diffusion. Flux tubes of magnetic field strengths ranging from 15 kG to 100 kG have rise times of ≤ 0.2 years and exhibit a Joy's Law tilt-angle trend. Our results suggest that radiative heating is an effective mechanism by which flux tubes can escape from the stably stratified overshoot region. Moreover, flux tubes do not necessarily need to be anchored in the overshoot region to produce emergence properties similar to those of active regions on the Sun.
Effect of overshooting mixing below the base of the convective envelope on the RGB bump
NASA Astrophysics Data System (ADS)
Li, Yan
2015-08-01
When a low mass star evolves up along the red giant branch (RGB), it will develop much more extensive convection in its envelope. Such envelope convection penetrates rapidly inward into the stellar interior, and finally results in a composition discontinuity when it develops into the chemical gradient region. Subsequently, when the out-moving hydrogen burning-shell encounters the newly-formed composition discontinuity, the star will develops the so-called RGB bump on the HR diagram. Therefore, comparisons of characteristics of the RGB bump are crucial for the overshooting mixing below the base of the stellar convective envelope.In order to treat overshooting convection below the base of the convective envelope, we used the k-omega model of Li (2012) in RGB models of a 1Msun star. We solved equations of the k-omega model in the stellar envelope, and then found that the turbulent kinetic energy and the frequency of turbulence decay in the overshooting region according approximately to power laws of pressure. The decaying indices are found to be sensitive to the parameters of the k-omega model. We adopted a modified overshooting mixing model of Zhang (2013) to investigate the overshooting mixing below the base of the convection zone. We found that the RGB bump appears at a significantly lower luminosity when using the k-omega model than when using the standard mixing-length theory, and its duration is also considerably reduced. Due to extra dredge-up effect of the overshooting mixing, we obtained a little hotter red giant branch using the k-omega model than the one using the standard MLT. We found that the position and duration of the RGB bump sensitively depend on the decaying law of turbulence in the overshooting region. These predictions could be good candidates for asteroseismology of RGB stars.
Multi-scale convection in a geodynamo simulation with uniform heat flux along the outer boundary
NASA Astrophysics Data System (ADS)
King, E. M.; Matsui, H.; Buffett, B. A.
2013-12-01
boundary, the fixed-flux dynamo generates stronger azimuthal flow and magnetic field, and the resulting Lorentz forces alter the nature of convective flow. References King, E.M., Buffett, B.A., Flow speeds and length scales in geodynamo models: the role of viscosity, Earth Planet. Sci. Lett., 2013, 371 156-162. Sakuraba, A., Roberts, P.H., Generation of a strong magnetic field using uniform heat flux at the surface of the core. Nature Geosci., 2009, 2 802-805. Soderlund, K.M., King, E.M., Aurnou, J.M., The weak influence of magnetic fields in planetary dynamo models. Earth Planet. Sci. Lett., 2012, 333. 9-20. Takahashi, F., Shimizu, H., A detailed analysis of a dynamo mechanism in a rapidly rotating spherical shell, J. Fluid Mech., 2012, 701, 228-250.
New Era in 3-D Modeling of Convection and Magnetic Dynamos in Stellar Envelopes and Cores
NASA Astrophysics Data System (ADS)
Toomre, J.; Augustson, K. C.; Brown, B. P.; Browning, M. K.; Brun, A. S.; Featherstone, N. A.; Miesch, M. S.
2012-09-01
The recent advances in asteroseismology and spectropolarimetry are beginning to provide estimates of differential rotation and magnetic structures for a range of F and G-type stars possessing convective envelopes, and in A-type stars with convective cores. It is essential to complement such observational work with theoretical studies based on 3-D simulations of highly turbulent convection coupled to rotation, shear and magnetic fields in full spherical geometries. We have so employed the anelastic spherical harmonic (ASH) code, which deals with compressible magnetohydrodynamics (MHD) in spherical shells, to examine the manner in which the global-scale convection can establish differential rotation and meridional circulations under current solar rotation rates, and these make good contact with helioseismic findings. For younger G stars rotating 3 to 5 times faster than the current Sun, the convection establishes ever stronger angular velocity contrasts between their fast equators and slow poles, and these are accompanied by prominent latitudinal temperature contrasts as well. Turning to MHD simulation of magnetic dynamo action within these younger G stars, the resulting magnetism involves wreaths of strong toroidal magnetic fields (up to 50 to 100 kG strengths) in the bulk of the convection zone, typically of opposite polarity in the northern and southern hemispheres. These fields can persist for long intervals despite being pummeled by the fast convective downflows, but they can also exhibit field reversals and cycles. Turning to shallower convective envelopes in the more luminous F-type stars that range in mass from 1.2 to 1.4 solar masses and for various rotation rates, we find that the convection can again establish solar-like differential rotation profiles with a fast equator and slow poles, but the opposite is achieved at the slower rotation rates. The F stars are also capable of building strong magnetic fields, often as wreaths, through dynamo action. We also
The structure of circumstellar shells
NASA Technical Reports Server (NTRS)
Fix, John D.
1993-01-01
This document provides a report on research activities carried out with the support of NASA grant NAG 5-1174, the Structure of Circumstellar Shells, funded under the Astrophysics Data Program. The research carried out with the support of this grant is a study of the properties of circumstellar dust shells for which spectra are available through IRAS low resolution spectrometry (LRS). This research consisted of the development and application of models of axisymmetric circumstellar shells and a preliminary survey of the applicability of neural nets for analysis of the IRAS LRS spectra of circumstellar dust shells.
Penetrative Convection and Zonal Flow on Jupiter
Zhang; Schubert
1996-08-16
Measurements by the Galileo probe support the possibility that the zonal winds in Jupiter's atmosphere originate from convection that takes place in the deep hydrogen-helium interior. However, according to models based on recent opacity data and the probe's temperature measurements, there may be radiative and nonconvective layers in the outer part of the jovian interior, raising the question of how deep convection could extend to the surface. A theoretical model is presented to demonstrate that, because of predominant rotational effects and spherical geometry, thermal convection in the deep jovian interior can penetrate into any outer nonconvective layer. These penetrative convection rolls interact nonlinearly and efficiently in the model to generate and sustain a mean zonal wind with a larger amplitude than that of the nonaxisymmetric penetrative convective motions, a characteristic of the wind field observed at the cloud level on Jupiter. PMID:8688074
Collective phase description of oscillatory convection
Kawamura, Yoji; Nakao, Hiroya
2013-12-15
We formulate a theory for the collective phase description of oscillatory convection in Hele-Shaw cells. It enables us to describe the dynamics of the oscillatory convection by a single degree of freedom which we call the collective phase. The theory can be considered as a phase reduction method for limit-cycle solutions in infinite-dimensional dynamical systems, namely, stable time-periodic solutions to partial differential equations, representing the oscillatory convection. We derive the phase sensitivity function, which quantifies the phase response of the oscillatory convection to weak perturbations applied at each spatial point, and analyze the phase synchronization between two weakly coupled Hele-Shaw cells exhibiting oscillatory convection on the basis of the derived phase equations.
Magnetospheric convection pattern and its implications
NASA Technical Reports Server (NTRS)
Zhu, Xiaoming
1993-01-01
When we use 14 months of the Fast Plasma Experiment ion velocity measurements, the mean magnetospheric circulation pattern is constructed. It is shown that the magnetospheric convection velocity is of the order tens of kilometers per second. The convection is largely restricted to the outer magnetosphere. During magnetically active periods the convection velocity increases and the convection boundary extends to the region closer to the Earth, indicating more magnetic field flux is being transported to the dayside magnetosphere. It is also shown that the convective flows tend to follow contours of constant unit flux volume as they move around the Earth, especially on the duskside of the magnetosphere. This helps to avoid the pressure balance inconsistency often found in two-dimensional magnetotail models.
On the crystallization of spheres and shells
NASA Astrophysics Data System (ADS)
Hallett, J.
1990-01-01
Isolated drops of many solutions or pure materials readily supercool below their equilibrium crystallization point. In some cases a glass forms; otherwise the crystallization process is usually initiaed at a specific point in the drop leading to a complex structure. Under moderate supercooling, in the first stage of crystallization dendrites grow throughout the drop, leading to latent heat release, and temperature rise. The dendrite growth velocity, tip radius and crystal orientation depend critically on the supercooling. The second stage of crystallization depends on the geometry of the heat loss from the periphery and results in freezing from one side of the drop for asymmetric heat loss or as a thickening shell for symmetrical heat loss. Most solute is rejected at this stage, to nucleate in a geometry determined by the original dendrite distribution and the growth interface, and the internal pressure as it responds to volume changes and cracking of the shell. New crystal orientation appear for nucleation at large supercooling and also in large drops, following reorientation of dendrite arms separated during Ostwald Ripening. Crystal growth is usually uninfluenced by the interface in a gas or liquid environment but changes habit to thin needle like crystals, and increases growth velocity for a solid interface. Drops of size of the tip radius will no longer be spherical on crystallization. For a solvent which evaporates, crystals grow faceted (as hydrates); surface tension forces may move solvent over the surface to give well formed faceted crystals. It is suggested that faceted defect free crystals can be grown from drops under low g using controlled nucleation in a controlled vapor and temperature environment in the absence of convective motion.
New formulation of leading order anisotropic hydrodynamics
NASA Astrophysics Data System (ADS)
Tinti, Leonardo
2015-05-01
Anisotropic hydrodynamics is a reorganization of the relativistic hydrodynamics expansion, with the leading order already containing substantial momentum-space anisotropies. The latter are a cause of concern in the traditional viscous hydrodynamics, since large momentum anisotropies generated in ultrarelativistic heavy-ion collisions are not consistent with the hypothesis of small deviations from an isotropic background, i.e., from the local equilibrium distribution. We discuss the leading order of the expansion, presenting a new formulation for the (1+1)- dimensional case, namely, for the longitudinally boost invariant and cylindrically symmetric flow. This new approach is consistent with the well established framework of Israel and Stewart in the close to equilibrium limit (where we expect viscous hydrodynamics to work well). If we consider the (0+1)-dimensional case, that is, transversally homogeneous and longitudinally boost invariant flow, the new form of anisotropic hydrodynamics leads to better agreement with known solutions of the Boltzmann equation than the previous formulations, especially when we consider massive particles.
Hydrodynamic modulation of pluripotent stem cells
2012-01-01
Controlled expansion and differentiation of pluripotent stem cells (PSCs) using reproducible, high-throughput methods could accelerate stem cell research for clinical therapies. Hydrodynamic culture systems for PSCs are increasingly being used for high-throughput studies and scale-up purposes; however, hydrodynamic cultures expose PSCs to complex physical and chemical environments that include spatially and temporally modulated fluid shear stresses and heterogeneous mass transport. Furthermore, the effects of fluid flow on PSCs cannot easily be attributed to any single environmental parameter since the cellular processes regulating self-renewal and differentiation are interconnected and the complex physical and chemical parameters associated with fluid flow are thus difficult to independently isolate. Regardless of the challenges posed by characterizing fluid dynamic properties, hydrodynamic culture systems offer several advantages over traditional static culture, including increased mass transfer and reduced cell handling. This article discusses the challenges and opportunities of hydrodynamic culture environments for the expansion and differentiation of PSCs in microfluidic systems and larger-volume suspension bioreactors. Ultimately, an improved understanding of the effects of hydrodynamics on the self-renewal and differentiation of PSCs could yield improved bioprocessing technologies to attain scalable PSC culture strategies that will probably be requisite for the development of therapeutic and diagnostic applications. PMID:23168068
On the definition of discrete hydrodynamic variables.
Español, Pep; Zúñiga, Ignacio
2009-10-28
The Green-Kubo formula for discrete hydrodynamic variables involves information about not only the fluid transport coefficients but also about discrete versions of the differential operators that govern the evolution of the discrete variables. This gives an intimate connection between discretization procedures in fluid dynamics and coarse-graining procedures used to obtain hydrodynamic behavior of molecular fluids. We observed that a natural definition of discrete hydrodynamic variables in terms of Voronoi cells leads to a Green-Kubo formula which is divergent, rendering the full coarse-graining strategy useless. In order to understand this subtle issue, in the present paper we consider the coarse graining of noninteracting Brownian particles. The discrete hydrodynamic variable for this problem is the number of particles within Voronoi cells. Thanks to the simplicity of the model we spot the origin of the singular behavior of the correlation functions. We offer an alternative definition, based on the concept of a Delaunay cell that behaves properly, suggesting the use of the Delaunay construction for the coarse graining of molecular fluids at the discrete hydrodynamic level.
Hydrodynamics in Holocene Lake Mega-Chad
NASA Astrophysics Data System (ADS)
Bouchette, Frédéric; Schuster, Mathieu; Ghienne, Jean-François; Denamiel, Cléa; Roquin, Claude; Moussa, Abderamane; Marsaleix, Patrick; Duringer, Philippe
2010-03-01
Holocene Lake Mega-Chad (LMC) was the largest late Quaternary water-body in Africa. The development of this giant paleo-lake is related to a northward shift of the isohyetes interpreted as evidence for an enhanced Monsoon (African Humid Period). Numerous preserved coastal features have been described all around the LMC shore. Such features reveal the main paleo-hydrodynamical tendencies. In the context of a closed water-body like LMC, hydrodynamics are forced mainly by winds. We use a three-dimensional numerical model (SYMPHONIE) to simulate the mean hydrodynamics in LMC under both Harmattan-like (northeasterly trade winds) and Monsoon-like (southwesterly winds) forcings. The northern part of LMC displays coastal features, such as sand spits, that are consistent with the simulations forced by Harmattan-like winds. Geomorphic features related to Monsoon-driven hydrodynamics are not clearly expressed. They could have developed during the early stage of LMC but subsequently reworked. At the time of sand-spit building, Harmattan-like driven hydrodynamics prevailed and related coastal features were preferentially preserved in the sedimentary record.
Hydrodynamic approaches in relativistic heavy ion reactions
NASA Astrophysics Data System (ADS)
Derradi de Souza, R.; Koide, T.; Kodama, T.
2016-01-01
We review several facets of the hydrodynamic description of the relativistic heavy ion collisions, starting from the historical motivation to the present understandings of the observed collective aspects of experimental data, especially those of the most recent RHIC and LHC results. In this report, we particularly focus on the conceptual questions and the physical foundations of the validity of the hydrodynamic approach itself. We also discuss recent efforts to clarify some of the points in this direction, such as the various forms of derivations of relativistic hydrodynamics together with the limitations intrinsic to the traditional approaches, variational approaches, known analytic solutions for special cases, and several new theoretical developments. Throughout this review, we stress the role of course-graining procedure in the hydrodynamic description and discuss its relation to the physical observables through the analysis of a hydrodynamic mapping of a microscopic transport model. Several questions to be answered to clarify the physics of collective phenomena in the relativistic heavy ion collisions are pointed out.
Automated shell theory for rotating structures (ASTROS)
NASA Technical Reports Server (NTRS)
Foster, B. J.; Thomas, J. M.
1971-01-01
A computer program for analyzing axisymmetric shells with inertial forces caused by rotation about the shell axis is developed by revising the STARS II shell program. The basic capabilities of the STARS II shell program, such as the treatment of the branched shells, stiffened wall construction, and thermal gradients, are retained.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Shell. 51.2289 Section 51.2289 Agriculture Regulations... Standards for Shelled English Walnuts (Juglans Regia) Definitions § 51.2289 Shell. Shell means the outer shell and/or the woody partition from between the halves of the kernel, and any fragments of either....
NASA Astrophysics Data System (ADS)
Weber, Maria A.; Fan, Yuhong; Miesch, Mark S.
2014-06-01
The manner by which bundles of magnetic field, or flux tubes, traverse the convection zone to eventual emergence at the solar surface is not well understood. To provide a connection between dynamo-generated magnetic fields and sunspots, I have performed simulations of magnetic flux emergence through the bulk of a turbulent, solar convective envelope by employing a thin flux tube model subject to interaction with flows taken from a hydrodynamic convection simulation computed through the Anelastic Spherical Harmonic (ASH) code. Through performing these simulations, much insight has been gained about the influence of turbulent solar-like convection on the flux emergence process and resulting active region properties. I find that the dynamic evolution of flux tubes change from convection dominated to magnetic buoyancy dominated as the initial field strength of the flux tubes increases from 15 kG to 100 kG. Additionally, active-region-scale flux tubes of 40 kG and greater exhibit properties similar to those of active regions on the Sun, such as: tilt angles, rotation rates, and morphological asymmetries. The joint effect of the Coriolis force and helical motions present in convective upflows help tilt the apex of rising flux tubes toward the equator in accordance with Joy’s Law. Additionally, rotationally aligned, columnar convective structures called giant cells present in the ASH simulation organizes flux emergence into a large-scale longitudinal pattern similar to the active longitude trend on the Sun and other solar-like stars. The effect of radiative diffusion across the radiation zone-convection zone interface on the buoyant rise of magnetic flux tubes is also studied, as well as the possibility of an induced twist of flux tube magnetic fields lines due to the Coriolis force induced tilting of the flux tube apex, presence of turbulent convection, and the conservation of helicity. Flux emergence simulations through the convection zone of a Sun rotating at 5 times
NASA Astrophysics Data System (ADS)
Ng, Kam Wing
A theoretical and experimental study was conducted to investigate the flow-induced noise and vibration caused by confined jet flows in a cylindrical duct. Unrestricted pipe flow and flows restricted by various orifices were tested for a wide range of velocities to simulate the flow in piping systems. Wall pressure data showed that the noise levels vary with the pipe's axial location and the peak noise is located at the vicinity of the end of the jet potential core. A non-dimensional wall pressure spectrum was established for the various confined jets by the Strouhal relationship, where the length scale is the jet hydraulic diameter. This jet pressure spectrum agrees with the wall pressure spectrum of a turbulent boundary layer above a rigid plane. Correlations of wall pressure fluctuations and pipe wall acceleration signals showed that jet flows generate more deterministic features than pipe flow. The coherence functions of the wall pressure and pipe wall acceleration signals are relatively high near the exit of the jet. The high coherence is probably due to the large-scale coherent structures. An analytical model was developed to study the effect of the turbulent jet flow field on the wall pressure and vibratory motion of the duct wall. Based on flow field measurements, the blocked surface pressure was calculated using Lighthill's method, and then used to drive the fluid -filled shell. The wall pressure and pipe wall acceleration were determined by solving the coupled fluid solid interaction problem. The wall pressure was obtained by summing the blocked surface pressure and the pressure due to the wall vibration. An amplitude modulated convecting wave field was used to simulate the moving acoustic sources of the jet. The random nature of the turbulent jet was incorporated into the analytical model. Specifically, the acoustic pressure was assumed to result from hydrodynamic pressure fluctuations which are uncorrelated in the radial direction, but are correlated in
Natural convection between concentric spheres
NASA Technical Reports Server (NTRS)
Garg, Vijay K.
1992-01-01
A finite-difference solution for steady natural convective flow in a concentric spherical annulus with isothermal walls has been obtained. The stream function-vorticity formulation of the equations of motion for the unsteady axisymmetric flow is used; interest lying in the final steady solution. Forward differences are used for the time derivatives and second-order central differences for the space derivatives. The alternating direction implicit method is used for solution of the discretization equations. Local one-dimensional grid adaptation is used to resolve the steep gradients in some regions of the flow at large Rayleigh numbers. The break-up into multi-cellular flow is found at high Rayleigh numbers for air and water, and at significantly low Rayleigh numbers for liquid metals. Excellent agreement with previous experimental and numerical data is obtained.
New Approaches to Parameterizing Convection
NASA Technical Reports Server (NTRS)
Randall, David A.; Lappen, Cara-Lyn
1999-01-01
Many general circulation models (GCMs) currently use separate schemes for planetary boundary layer (PBL) processes, shallow and deep cumulus (Cu) convection, and stratiform clouds. The conventional distinctions. among these processes are somewhat arbitrary. For example, in the stratocumulus-to-cumulus transition region, stratocumulus clouds break up into a combination of shallow cumulus and broken stratocumulus. Shallow cumulus clouds may be considered to reside completely within the PBL, or they may be regarded as starting in the PBL but terminating above it. Deeper cumulus clouds often originate within the PBL with also can originate aloft. To the extent that our models separately parameterize physical processes which interact strongly on small space and time scales, the currently fashionable practice of modularization may be doing more harm than good.
Mechanics of Biomimetic Liposomes Encapsulating an Actin Shell.
Guevorkian, Karine; Manzi, John; Pontani, Léa-Lætitia; Brochard-Wyart, Françoise; Sykes, Cécile
2015-12-15
Cell-shape changes are insured by a thin, dynamic, cortical layer of cytoskeleton underneath the plasma membrane. How this thin cortical structure impacts the mechanical properties of the whole cell is not fully understood. Here, we study the mechanics of liposomes or giant unilamellar vesicles, when a biomimetic actin cortex is grown at the inner layer of the lipid membrane via actin-nucleation-promoting factors. Using a hydrodynamic tube-pulling technique, we show that tube dynamics is clearly affected by the presence of an actin shell anchored to the lipid bilayer. The same force pulls much shorter tubes in the presence of the actin shell compared to bare membranes. However, in both cases, we observe that the dynamics of tube extrusion has two distinct features characteristic of viscoelastic materials: rapid elastic elongation, followed by a slower elongation phase at a constant rate. We interpret the initial elastic regime by an increase of membrane tension due to the loss of lipids into the tube. Tube length is considerably shorter for cortex liposomes at comparable pulling forces, resulting in a higher spring constant. The presence of the actin shell seems to restrict lipid mobility, as is observed in the corral effect in cells. The viscous regime for bare liposomes corresponds to a leakout of the internal liquid at constant membrane tension. The presence of the actin shell leads to a larger friction coefficient. As the tube is pulled from a patchy surface, membrane tension increases locally, leading to a Marangoni flow of lipids. As a conclusion, the presence of an actin shell is revealed by its action that alters membrane mechanics.
Actively convected liquid metal divertor
NASA Astrophysics Data System (ADS)
Shimada, Michiya; Hirooka, Yoshi
2014-12-01
The use of actively convected liquid metals with j × B force is proposed to facilitate heat handling by the divertor, a challenging issue associated with magnetic fusion experiments such as ITER. This issue will be aggravated even more for DEMO and power reactors because the divertor heat load will be significantly higher and yet the use of copper would not be allowed as the heat sink material. Instead, reduced activation ferritic/martensitic steel alloys with heat conductivities substantially lower than that of copper, will be used as the structural materials. The present proposal is to fill the lower part of the vacuum vessel with liquid metals with relatively low melting points and low chemical activities including Ga and Sn. The divertor modules, equipped with electrodes and cooling tubes, are immersed in the liquid metal. The electrode, placed in the middle of the liquid metal, can be biased positively or negatively with respect to the module. The j × B force due to the current between the electrode and the module provides a rotating motion for the liquid metal around the electrodes. The rise in liquid temperature at the separatrix hit point can be maintained at acceptable levels from the operation point of view. As the rotation speed increases, the current in the liquid metal is expected to decrease due to the v × B electromotive force. This rotating motion in the poloidal plane will reduce the divertor heat load significantly. Another important benefit of the convected liquid metal divertor is the fast recovery from unmitigated disruptions. Also, the liquid metal divertor concept eliminates the erosion problem.