Sample records for hydrodynamics code hydra

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langer, Steven H.; Karlin, Ian; Marinak, Marty M.

    HYDRA is used to simulate a variety of experiments carried out at the National Ignition Facility (NIF) [4] and other high energy density physics facilities. HYDRA has packages to simulate radiation transfer, atomic physics, hydrodynamics, laser propagation, and a number of other physics effects. HYDRA has over one million lines of code and includes both MPI and thread-level (OpenMP and pthreads) parallelism. This paper measures the performance characteristics of HYDRA using hardware counters on an IBM BlueGene/Q system. We report key ratios such as bytes/instruction and memory bandwidth for several different physics packages. The total number of bytes read andmore » written per time step is also reported. We show that none of the packages which use significant time are memory bandwidth limited on a Blue Gene/Q. HYDRA currently issues very few SIMD instructions. The pressure on memory bandwidth will increase if high levels of SIMD instructions can be achieved.« less

  2. Hydrodynamics simulations of 2{omega} laser propagation in underdense gasbag plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meezan, N.B.; Divol, L.; Marinak, M.M.

    2004-12-01

    Recent 2{omega} laser propagation and stimulated Raman backscatter (SRS) experiments performed on the Helen laser have been analyzed using the radiation-hydrodynamics code HYDRA [M. M. Marinak, G. D. Kerbel, N. A. Gentile, O. Jones, D. Munro, S. Pollaine, T. R. Dittrich, and S. W. Haan, Phys. Plasmas 8, 2275 (2001)]. These experiments utilized two diagnostics sensitive to the hydrodynamics of gasbag targets: a fast x-ray framing camera (FXI) and a SRS streak spectrometer. With a newly implemented nonlocal thermal transport model, HYDRA is able to reproduce many features seen in the FXI images and the SRS streak spectra. Experimental andmore » simulated side-on FXI images suggest that propagation can be explained by classical laser absorption and the resulting hydrodynamics. Synthetic SRS spectra generated from the HYDRA results reproduce the details of the experimental SRS streak spectra. Most features in the synthetic spectra can be explained solely by axial density and temperature gradients. The total SRS backscatter increases with initial gasbag fill density up to {approx_equal}0.08 times the critical density, then decreases. Data from a near-backscatter imaging camera show that severe beam spray is not responsible for the trend in total backscatter. Filamentation does not appear to be a significant factor in gasbag hydrodynamics. The simulation and analysis techniques established here can be used in ongoing experimental campaigns on the Omega laser facility and the National Ignition Facility.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strozzi, David J.; Perkins, L. J.; Marinak, M. M.

    The effects of an imposed, axial magnetic fieldmore » $$B_{z0}$$ on hydrodynamics and energetic electrons in inertial confinement fusion indirect-drive hohlraums are studied. We present simulations from the radiation-hydrodynamics code HYDRA of a low-adiabat ignition design for the National Ignition Facility, with and without $$B_{z0}=70~\\text{T}$$. The field’s main hydrodynamic effect is to significantly reduce electron thermal conduction perpendicular to the field. This results in hotter and less dense plasma on the equator between the capsule and hohlraum wall. The inner laser beams experience less inverse bremsstrahlung absorption before reaching the wall. The X-ray drive is thus stronger from the equator with the imposed field. We study superthermal, or ‘hot’, electron dynamics with the particle-in-cell code ZUMA, using plasma conditions from HYDRA. During the early-time laser picket, hot electrons based on two-plasmon decay in the laser entrance hole (Regan et al., Phys. Plasmas, vol. 17(2), 2010, 020703) are guided to the capsule by a 70 T field. Twelve times more energy deposits in the deuterium–tritium fuel. For plasma conditions early in peak laser power, we present mono-energetic test-case studies with ZUMA as well as sources based on inner-beam stimulated Raman scattering. Furthermore, the effect of the field on deuterium–tritium deposition depends strongly on the source location, namely whether hot electrons are generated on field lines that connect to the capsule.« less

  4. Imposed magnetic field and hot electron propagation in inertial fusion hohlraums

    DOE PAGES

    Strozzi, David J.; Perkins, L. J.; Marinak, M. M.; ...

    2015-12-02

    The effects of an imposed, axial magnetic fieldmore » $$B_{z0}$$ on hydrodynamics and energetic electrons in inertial confinement fusion indirect-drive hohlraums are studied. We present simulations from the radiation-hydrodynamics code HYDRA of a low-adiabat ignition design for the National Ignition Facility, with and without $$B_{z0}=70~\\text{T}$$. The field’s main hydrodynamic effect is to significantly reduce electron thermal conduction perpendicular to the field. This results in hotter and less dense plasma on the equator between the capsule and hohlraum wall. The inner laser beams experience less inverse bremsstrahlung absorption before reaching the wall. The X-ray drive is thus stronger from the equator with the imposed field. We study superthermal, or ‘hot’, electron dynamics with the particle-in-cell code ZUMA, using plasma conditions from HYDRA. During the early-time laser picket, hot electrons based on two-plasmon decay in the laser entrance hole (Regan et al., Phys. Plasmas, vol. 17(2), 2010, 020703) are guided to the capsule by a 70 T field. Twelve times more energy deposits in the deuterium–tritium fuel. For plasma conditions early in peak laser power, we present mono-energetic test-case studies with ZUMA as well as sources based on inner-beam stimulated Raman scattering. Furthermore, the effect of the field on deuterium–tritium deposition depends strongly on the source location, namely whether hot electrons are generated on field lines that connect to the capsule.« less

  5. Large-scale 3D simulations of ICF and HEDP targets

    NASA Astrophysics Data System (ADS)

    Marinak, Michael M.

    2000-10-01

    The radiation hydrodynamics code HYDRA continues to be developed and applied to 3D simulations of a variety of targets for both inertial confinement fusion (ICF) and high energy density physics. Several packages have been added enabling this code to perform ICF target simulations with similar accuracy as two-dimensional codes of long-time historical use. These include a laser ray trace and deposition package, a heavy ion deposition package, implicit Monte Carlo photonics, and non-LTE opacities, derived from XSN or the linearized response matrix approach.(R. More, T. Kato, Phys. Rev. Lett. 81, 814 (1998), S. Libby, F. Graziani, R. More, T. Kato, Proceedings of the 13th International Conference on Laser Interactions and Related Plasma Phenomena, (AIP, New York, 1997).) LTE opacities can also be calculated for arbitrary mixtures online by combining tabular values generated by different opacity codes. Thermonuclear burn, charged particle transport, neutron energy deposition, electron-ion coupling and conduction, and multigroup radiation diffusion packages are also installed. HYDRA can employ ALE hydrodynamics; a number of grid motion algorithms are available. Multi-material flows are resolved using material interface reconstruction. Results from large-scale simulations run on up to 1680 processors, using a combination of massively parallel processing and symmetric multiprocessing, will be described. A large solid angle simulation of Rayleigh-Taylor instability growth in a NIF ignition capsule has resolved simultaneously the full spectrum of the most dangerous modes that grow from surface roughness. Simulations of a NIF hohlraum illuminated with the initial 96 beam configuration have also been performed. The effect of the hohlraum’s 3D intrinsic drive asymmetry on the capsule implosion will be considered. We will also discuss results from a Nova experiment in which a copper sphere is crushed by a planar shock. Several interacting hydrodynamic instabilities, including the Widnall instability, cause breakup of the resulting vortex ring.

  6. View Factor and Radiation-Hydrodynamic Simulations of Gas-Filled Outer-Quad-Only Hohlraums at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Young, Christopher; Meezan, Nathan; Landen, Otto

    2017-10-01

    A cylindrical National Ignition Facility hohlraum irradiated exclusively by NOVA-like outer quads (44 .5° and 50° beams) is proposed to minimize laser plasma interaction (LPI) losses and avoid problems with propagating the inner (23 .5° and 30°) beams. Symmetry and drive are controlled by shortening the hohlraum, using a smaller laser entrance hole (LEH), beam phasing the 44 .5° and 50° beams, and correcting the remaining P4 asymmetry with a capsule shim. Ensembles of time-resolved view factor simulations help narrow the design space of the new configuration, with fine tuning provided by the radiation-hydrodynamic code HYDRA. Prepared by LLNL under Contract DE-AC52-07NA27344.

  7. Assessment of a hybrid finite element and finite volume code for turbulent incompressible flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Yidong, E-mail: yidong.xia@inl.gov; Wang, Chuanjin; Luo, Hong

    Hydra-TH is a hybrid finite-element/finite-volume incompressible/low-Mach flow simulation code based on the Hydra multiphysics toolkit being developed and used for thermal-hydraulics applications. In the present work, a suite of verification and validation (V&V) test problems for Hydra-TH was defined to meet the design requirements of the Consortium for Advanced Simulation of Light Water Reactors (CASL). The intent for this test problem suite is to provide baseline comparison data that demonstrates the performance of the Hydra-TH solution methods. The simulation problems vary in complexity from laminar to turbulent flows. A set of RANS and LES turbulence models were used in themore » simulation of four classical test problems. Numerical results obtained by Hydra-TH agreed well with either the available analytical solution or experimental data, indicating the verified and validated implementation of these turbulence models in Hydra-TH. Where possible, some form of solution verification has been attempted to identify sensitivities in the solution methods, and suggest best practices when using the Hydra-TH code. -- Highlights: •We performed a comprehensive study to verify and validate the turbulence models in Hydra-TH. •Hydra-TH delivers 2nd-order grid convergence for the incompressible Navier–Stokes equations. •Hydra-TH can accurately simulate the laminar boundary layers. •Hydra-TH can accurately simulate the turbulent boundary layers with RANS turbulence models. •Hydra-TH delivers high-fidelity LES capability for simulating turbulent flows in confined space.« less

  8. Assessment of a hybrid finite element and finite volume code for turbulent incompressible flows

    DOE PAGES

    Xia, Yidong; Wang, Chuanjin; Luo, Hong; ...

    2015-12-15

    Hydra-TH is a hybrid finite-element/finite-volume incompressible/low-Mach flow simulation code based on the Hydra multiphysics toolkit being developed and used for thermal-hydraulics applications. In the present work, a suite of verification and validation (V&V) test problems for Hydra-TH was defined to meet the design requirements of the Consortium for Advanced Simulation of Light Water Reactors (CASL). The intent for this test problem suite is to provide baseline comparison data that demonstrates the performance of the Hydra-TH solution methods. The simulation problems vary in complexity from laminar to turbulent flows. A set of RANS and LES turbulence models were used in themore » simulation of four classical test problems. Numerical results obtained by Hydra-TH agreed well with either the available analytical solution or experimental data, indicating the verified and validated implementation of these turbulence models in Hydra-TH. Where possible, we have attempted some form of solution verification to identify sensitivities in the solution methods, and to suggest best practices when using the Hydra-TH code.« less

  9. Assessment of a hybrid finite element and finite volume code for turbulent incompressible flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Yidong; Wang, Chuanjin; Luo, Hong

    Hydra-TH is a hybrid finite-element/finite-volume incompressible/low-Mach flow simulation code based on the Hydra multiphysics toolkit being developed and used for thermal-hydraulics applications. In the present work, a suite of verification and validation (V&V) test problems for Hydra-TH was defined to meet the design requirements of the Consortium for Advanced Simulation of Light Water Reactors (CASL). The intent for this test problem suite is to provide baseline comparison data that demonstrates the performance of the Hydra-TH solution methods. The simulation problems vary in complexity from laminar to turbulent flows. A set of RANS and LES turbulence models were used in themore » simulation of four classical test problems. Numerical results obtained by Hydra-TH agreed well with either the available analytical solution or experimental data, indicating the verified and validated implementation of these turbulence models in Hydra-TH. Where possible, we have attempted some form of solution verification to identify sensitivities in the solution methods, and to suggest best practices when using the Hydra-TH code.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpenter, John H.; Belcourt, Kenneth Noel

    Completion of the CASL L3 milestone THM.CFD.P6.03 provides a tabular material properties capability to the Hydra code. A tabular interpolation package used in Sandia codes was modified to support the needs of multi-phase solvers in Hydra. Use of the interface is described. The package was released to Hydra under a government use license. A dummy physics was created in Hydra to prototype use of the interpolation routines. Finally, a test using the dummy physics verifies the correct behavior of the interpolation for a test water table. 3

  11. Deep sequencing reveals unique small RNA repertoire that is regulated during head regeneration in Hydra magnipapillata.

    PubMed

    Krishna, Srikar; Nair, Aparna; Cheedipudi, Sirisha; Poduval, Deepak; Dhawan, Jyotsna; Palakodeti, Dasaradhi; Ghanekar, Yashoda

    2013-01-07

    Small non-coding RNAs such as miRNAs, piRNAs and endo-siRNAs fine-tune gene expression through post-transcriptional regulation, modulating important processes in development, differentiation, homeostasis and regeneration. Using deep sequencing, we have profiled small non-coding RNAs in Hydra magnipapillata and investigated changes in small RNA expression pattern during head regeneration. Our results reveal a unique repertoire of small RNAs in hydra. We have identified 126 miRNA loci; 123 of these miRNAs are unique to hydra. Less than 50% are conserved across two different strains of Hydra vulgaris tested in this study, indicating a highly diverse nature of hydra miRNAs in contrast to bilaterian miRNAs. We also identified siRNAs derived from precursors with perfect stem-loop structure and that arise from inverted repeats. piRNAs were the most abundant small RNAs in hydra, mapping to transposable elements, the annotated transcriptome and unique non-coding regions on the genome. piRNAs that map to transposable elements and the annotated transcriptome display a ping-pong signature. Further, we have identified several miRNAs and piRNAs whose expression is regulated during hydra head regeneration. Our study defines different classes of small RNAs in this cnidarian model system, which may play a role in orchestrating gene expression essential for hydra regeneration.

  12. Deep sequencing reveals unique small RNA repertoire that is regulated during head regeneration in Hydra magnipapillata

    PubMed Central

    Krishna, Srikar; Nair, Aparna; Cheedipudi, Sirisha; Poduval, Deepak; Dhawan, Jyotsna; Palakodeti, Dasaradhi; Ghanekar, Yashoda

    2013-01-01

    Small non-coding RNAs such as miRNAs, piRNAs and endo-siRNAs fine-tune gene expression through post-transcriptional regulation, modulating important processes in development, differentiation, homeostasis and regeneration. Using deep sequencing, we have profiled small non-coding RNAs in Hydra magnipapillata and investigated changes in small RNA expression pattern during head regeneration. Our results reveal a unique repertoire of small RNAs in hydra. We have identified 126 miRNA loci; 123 of these miRNAs are unique to hydra. Less than 50% are conserved across two different strains of Hydra vulgaris tested in this study, indicating a highly diverse nature of hydra miRNAs in contrast to bilaterian miRNAs. We also identified siRNAs derived from precursors with perfect stem–loop structure and that arise from inverted repeats. piRNAs were the most abundant small RNAs in hydra, mapping to transposable elements, the annotated transcriptome and unique non-coding regions on the genome. piRNAs that map to transposable elements and the annotated transcriptome display a ping–pong signature. Further, we have identified several miRNAs and piRNAs whose expression is regulated during hydra head regeneration. Our study defines different classes of small RNAs in this cnidarian model system, which may play a role in orchestrating gene expression essential for hydra regeneration. PMID:23166307

  13. pF3D Simulations of SBS and SRS in NIF Hohlraum Experiments

    NASA Astrophysics Data System (ADS)

    Langer, Steven; Strozzi, David; Amendt, Peter; Chapman, Thomas; Hopkins, Laura; Kritcher, Andrea; Sepke, Scott

    2016-10-01

    We present simulations of stimulated Brillouin scattering (SBS) and stimulated Raman scattering (SRS) for NIF experiments using high foot pulses in cylindrical hohlraums and for low foot pulses in rugby-shaped hohlraums. We use pF3D, a massively-parallel, paraxial-envelope laser plasma interaction code, with plasma profiles obtained from the radiation-hydrodynamics codes Lasnex and HYDRA. We compare the simulations to experimental data for SBS and SRS power and spectrum. We also show simulated SRS and SBS intensities at the target chamber wall and report the fraction of the backscattered light that passes through and misses the lenses. Work performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344. Release number LLNL-ABS-697482.

  14. Three-Dimensional Simulations of Flat-Foil Laser-Imprint Experiments at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Shvydky, A.; Radha, P. B.; Rosenberg, M. J.; Anderson, K. S.; Goncharov, V. N.; Marozas, J. A.; Marshall, F. J.; McKenty, P. W.; Regan, S. P.; Sangster, T. C.; Hohenberger, M.; di Nicola, J. M.; Koning, J. M.; Marinak, M. M.; Masse, L.; Karasik, M.

    2017-10-01

    Control of shell nonuniformities imprinted by the laser and amplified by hydrodynamic instabilities in the imploding target is critical for the success of direct-drive ignition at the National Ignition Facility (NIF). To measure a level of imprint and its reduction by the NIF smoothing by spectral dispersion (SSD), we performed experiments that employed flat CH foils driven with a single NIF beam with either no SSD or the NIF indirect-drive SSD applied to the laser pulse. Face-on x-ray radiography was used to measure optical depth variations, from which the amplitudes of the foil areal-density modulations were obtained. Results of 3-D, radiation-hydrodynamic code HYDRA simulations of the growth of the imprint-seeded perturbations are presented and compared with the experimental data. This work was supported by the U.S. Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract Number DE-AC52-07NA27344.

  15. Kinetic simulation of hydrodynamic equivalent capsule implosions

    NASA Astrophysics Data System (ADS)

    Kwan, Thomas; Le, Ari; Schmitt, Mark; Herrmann, Hans

    2016-10-01

    We have carried out simulations of direct-drive hydrodynamic equivalent capsule implosion experiments conducted on Omega laser facility at the Laboratory of Laser Energetics of the University of Rochester. The capsules had a glass shell (SiO2) 4.87 μm with an inner diameter of 1086 μm. One was filled with deuterium (D) and tritium (T) at 6.635 and 2.475 atmospheric pressure respectively. The other capsule with D, T, and He-3 at 2.475, 2.475, and 5.55 atmospheric pressure respectively. The capsules were imploded with 60 laser beams with a square pulse length of 0.6ns of total energy of 15.6 kJ. One-dimensional radiation hydrodynamic calculations with HYDRA and kinetic particle/hybrid simulations with LSP are carried out for the post-shot analysis. HYDRA outputs at 0.6ns are linked to LSP, in which the electrons are treated as a fluid while all the ion dynamics is simulated by the standard particle-in-cell technique. Additionally, simulations with the new photon package in LSP are initiated at the beginning of the implosion to include the implosion phase of the capsule. The simulation results of density, temperature, and velocity profiles of the electrons, D, T, He-3, and SiO2species are compared with HYDRA. Detail comparisons among the kinetic simulations, rad-hydro simulations, and experimental results of neutron yield, yield ratio, fusion burn histories, and shell convergence will be presented to assess plasma kinetic effects. Work performed under the auspices of the US DOE by the Los Alamos National Laboratory under Contract No. W7405-ENG-36.

  16. The complete mitochondrial genome of Chinese green hydra, Hydra sinensis (Hydroida: Hydridae).

    PubMed

    Pan, Hong-Chun; Qian, Xiao-Cheng; Li, Ping; Li, Xiao-Fei; Wang, An-Tai

    2014-02-01

    The complete mitochondrial genome of Chinese green hydra, Hydra sinensis (Hydroida: Hydridae) is a linear molecule of 16,189 bp in length, containing 13 protein-coding genes, small and large subunit ribosomal RNAs, methionine and tryptophan transfer RNAs, a pseudogene consisting of a partial copy of COI and terminal sequences at two ends of the linear mitochondrial DNA. The A + T content of the overall base composition of H-strand is 77.2% (T: 41.7%; C: 10.9%; A: 35.5%; and G: 11.9%). COI and ND1 genes begin with GTG as start codon, while other 11 protein-coding genes start with a typical ATG initiation codon. COII, ATP8, ATP6, COIII, ND5, ND6, ND3, ND1, ND4 and COI genes are terminated with TAA as stop codon, ND4L ends with TAG, ND2 ends with TA and Cyt b ends with T.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christon, Mark A.; Bakosi, Jozsef; Lowrie, Robert B.

    Hydra-TH is a hybrid finite-element/finite-volume code built using the Hydra toolkit specifically to attack a broad class of incompressible, viscous fluid dynamics problems prevalent in the thermalhydraulics community. The purpose for this manual is provide sufficient information for an experience analyst to use Hydra-TH in an effective way. The Hydra-TH User's Manual present a brief overview of capabilities and visualization interfaces. The execution and restart models are described before turning to the detailed description of keyword input. Finally, a series of example problems are presented with sufficient data to permit the user to verify the local installation of Hydra-TH, andmore » to permit a convenient starting point for more detailed and complex analyses.« less

  18. HYDRA-II: A hydrothermal analysis computer code: Volume 2, User's manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCann, R.A.; Lowery, P.S.; Lessor, D.L.

    1987-09-01

    HYDRA-II is a hydrothermal computer code capable of three-dimensional analysis of coupled conduction, convection, and thermal radiation problems. This code is especially appropriate for simulating the steady-state performance of spent fuel storage systems. The code has been evaluated for this application for the US Department of Energy's Commercial Spent Fuel Management Program. HYDRA-II provides a finite-difference solution in cartesian coordinates to the equations governing the conservation of mass, momentum, and energy. A cylindrical coordinate system may also be used to enclose the cartesian coordinate system. This exterior coordinate system is useful for modeling cylindrical cask bodies. The difference equations formore » conservation of momentum incorporate directional porosities and permeabilities that are available to model solid structures whose dimensions may be smaller than the computational mesh. The equation for conservation of energy permits modeling of orthotropic physical properties and film resistances. Several automated methods are available to model radiation transfer within enclosures and from fuel rod to fuel rod. The documentation of HYDRA-II is presented in three separate volumes. Volume 1 - Equations and Numerics describes the basic differential equations, illustrates how the difference equations are formulated, and gives the solution procedures employed. This volume, Volume 2 - User's Manual, contains code flow charts, discusses the code structure, provides detailed instructions for preparing an input file, and illustrates the operation of the code by means of a sample problem. The final volume, Volume 3 - Verification/Validation Assessments, provides a comparison between the analytical solution and the numerical simulation for problems with a known solution. 6 refs.« less

  19. High-Bandwidth Tactical-Network Data Analysis in a High-Performance-Computing (HPC) Environment: Device Status Data

    DTIC Science & Technology

    2015-09-01

    Figures iv List of Tables iv 1. Introduction 1 2. Device Status Data 1 2.1 SNMP 1 2.2 NMS 1 2.3 ICMP Ping 2 3. Data Collection 2 4. Hydra ...Configuration 3 4.1 Status Codes 4 4.2 Request Time 5 4.3 Hydra BLOb Metadata 6 5. Data Processing 6 5.1 Hydra Data Processing Framework 6 5.1.1...Basic Components 6 5.1.2 Map Component 7 5.1.3 Postmap Methods 8 5.1.4 Data Flow 9 5.1.5 Distributed Processing Considerations 9 5.2 Specific Hydra

  20. HYDRA-II: A hydrothermal analysis computer code: Volume 3, Verification/validation assessments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCann, R.A.; Lowery, P.S.

    1987-10-01

    HYDRA-II is a hydrothermal computer code capable of three-dimensional analysis of coupled conduction, convection, and thermal radiation problems. This code is especially appropriate for simulating the steady-state performance of spent fuel storage systems. The code has been evaluated for this application for the US Department of Energy's Commercial Spent Fuel Management Program. HYDRA-II provides a finite difference solution in cartesian coordinates to the equations governing the conservation of mass, momentum, and energy. A cylindrical coordinate system may also be used to enclose the cartesian coordinate system. This exterior coordinate system is useful for modeling cylindrical cask bodies. The difference equationsmore » for conservation of momentum are enhanced by the incorporation of directional porosities and permeabilities that aid in modeling solid structures whose dimensions may be smaller than the computational mesh. The equation for conservation of energy permits modeling of orthotropic physical properties and film resistances. Several automated procedures are available to model radiation transfer within enclosures and from fuel rod to fuel rod. The documentation of HYDRA-II is presented in three separate volumes. Volume I - Equations and Numerics describes the basic differential equations, illustrates how the difference equations are formulated, and gives the solution procedures employed. Volume II - User's Manual contains code flow charts, discusses the code structure, provides detailed instructions for preparing an input file, and illustrates the operation of the code by means of a model problem. This volume, Volume III - Verification/Validation Assessments, provides a comparison between the analytical solution and the numerical simulation for problems with a known solution. This volume also documents comparisons between the results of simulations of single- and multiassembly storage systems and actual experimental data. 11 refs., 55 figs., 13 tabs.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christon, Mark A.; Bakosi, Jozsef; Francois, Marianne M.

    This talk presents an overview of the multiphase flow efforts with Hydra-TH. The presentation begins with a definition of the requirements and design principles for multiphase flow relevant to CASL-centric problems. A brief survey of existing codes and their solution algorithms is presented before turning the model formulation selected for Hydra-TH. The issues of hyperbolicity and wellposedness are outlined, and a three candidate solution algorithms are discussed. The development status of Hydra-TH for multiphase flow is then presented with a brief summary and discussion of future directions for this work.

  2. Models of Interacting Supernovae: Understanding the Physics and Probing the Circumstellar Environment

    NASA Astrophysics Data System (ADS)

    Baron, Edward

    "Interacting supernovae" are poorly understood astronomical events with great potential for expanding our understanding of how stars evolve and die, and could provide important clues about the early formation of large-scale structures such as galaxies in the universe. Interacting supernovae occur when a star explodes within a dense cloud of material shed from the star in the course of its evolution. The resulting violent interaction between the expanding supernova explosion and the cloud of circumstellar material can lead to an enormously bright visual display --- indeed, many of the brightest supernovae ever recorded are thought to arise from circumstellar interaction. In order to understand the properties of the progenitor star and the details of the circumstellar interaction, there is a need for theoretical models of interacting supernovae. These simulated computer spectra can be directly compared to the spectra observed by telescopes. These models allow us to probe the physical circumstances that underlie the observations. The spectra of interacting supernovae are dominated by strong, narrow emission lines of light elements such as hydrogen and helium. These narrow lines give Type IIn supernovae their designation. Similarly, objects of Type Ian, Ibn, Icn, and IIn are somewhat distinct, but are all defined by the narrow emission lines that result from the interaction of their expanding envelopes with their surroundings. The photosphere in these supernovae is formed in the material accreted during the coasting phase, and most of the luminosity has its origin from the conversion of kinetic explosion energy into luminosity. Both thermonuclear (Type Ia) and core-collapse (Types Ib/Ic and II) supernovae may be the inner engine. In fact, several Type IIn supernovae at early times have later been classified as Type Ia, Type Ib/c, or Type II as their spectra reveal more details about the nature of the central explosion. As a result of the dominance of the interaction, models of interacting supernovae must take into account descriptions of the hydrodynamical, ionization, and light fronts: a full radiation-hydrodynamical problem. The low densities imply strong departures from thermodynamic equilibrium and, thus, demand a non-LTE treatment in the radiative transfer calculation. We propose a collaboration between the University of Oklahoma (OU) and Florida State University (FSU) to calculate hydrodynamical models, light curves, and NLTE spectra of circumstellar interacting supernovae. We will parameterize the explosion of a massive star, study the hydrodynamical impact onto a circumstellar medium and calculate light curves and spectra. Direct comparison with observed supernovae with give us detailed information on the progenitor star, its mass loss history, and the nature of binary stellar evolution. We will calculate explosion models for some of the stellar structures and the ongoing interaction with the circumstellar material using our radiation hydro code HYDRA and NLTE generalized model atmospheres code PHOENIX. We intend to focus on the physics of interacting supernovae, going beyond the regime where self-similar solutions and phenomenological approaches are valid. This will limit the parameter space that needs to be examined, while still allowing for direct comparison with observations. Since many interacting supernovae are extremely bright, they can be seen at the highest redshifts and are good probes of the darkages. These supernovae will be well observed by upcoming NASA mission JWST as well as ground based surveys such as LSST. The tools for this work are in place: FSU PI Peter Hoeflich has been developing and using the hydrodynamic code HYDRA for over two decades and PI Eddie Baron (OU) has been developing the generalized stellar atmosphere code PHOENIX over the same time period. Baron and Hoeflich have a good working relationship and have cross-compared our codes.

  3. Fundamentals, current state of the development of, and prospects for further improvement of the new-generation thermal-hydraulic computational HYDRA-IBRAE/LM code for simulation of fast reactor systems

    NASA Astrophysics Data System (ADS)

    Alipchenkov, V. M.; Anfimov, A. M.; Afremov, D. A.; Gorbunov, V. S.; Zeigarnik, Yu. A.; Kudryavtsev, A. V.; Osipov, S. L.; Mosunova, N. A.; Strizhov, V. F.; Usov, E. V.

    2016-02-01

    The conceptual fundamentals of the development of the new-generation system thermal-hydraulic computational HYDRA-IBRAE/LM code are presented. The code is intended to simulate the thermalhydraulic processes that take place in the loops and the heat-exchange equipment of liquid-metal cooled fast reactor systems under normal operation and anticipated operational occurrences and during accidents. The paper provides a brief overview of Russian and foreign system thermal-hydraulic codes for modeling liquid-metal coolants and gives grounds for the necessity of development of a new-generation HYDRA-IBRAE/LM code. Considering the specific engineering features of the nuclear power plants (NPPs) equipped with the BN-1200 and the BREST-OD-300 reactors, the processes and the phenomena are singled out that require a detailed analysis and development of the models to be correctly described by the system thermal-hydraulic code in question. Information on the functionality of the computational code is provided, viz., the thermalhydraulic two-phase model, the properties of the sodium and the lead coolants, the closing equations for simulation of the heat-mass exchange processes, the models to describe the processes that take place during the steam-generator tube rupture, etc. The article gives a brief overview of the usability of the computational code, including a description of the support documentation and the supply package, as well as possibilities of taking advantages of the modern computer technologies, such as parallel computations. The paper shows the current state of verification and validation of the computational code; it also presents information on the principles of constructing of and populating the verification matrices for the BREST-OD-300 and the BN-1200 reactor systems. The prospects are outlined for further development of the HYDRA-IBRAE/LM code, introduction of new models into it, and enhancement of its usability. It is shown that the program of development and practical application of the code will allow carrying out in the nearest future the computations to analyze the safety of potential NPP projects at a qualitatively higher level.

  4. Three-dimensional modeling of the neutron spectrum to infer plasma conditions in cryogenic inertial confinement fusion implosions

    NASA Astrophysics Data System (ADS)

    Weilacher, F.; Radha, P. B.; Forrest, C.

    2018-04-01

    Neutron-based diagnostics are typically used to infer compressed core conditions such as areal density and ion temperature in deuterium-tritium (D-T) inertial confinement fusion (ICF) implosions. Asymmetries in the observed neutron-related quantities are important to understanding failure modes in these implosions. Neutrons from fusion reactions and their subsequent interactions including elastic scattering and neutron-induced deuteron breakup reactions are tracked to create spectra. It is shown that background subtraction is important for inferring areal density from backscattered neutrons and is less important for the forward-scattered neutrons. A three-dimensional hydrodynamic simulation of a cryogenic implosion on the OMEGA Laser System [Boehly et al., Opt. Commun. 133, 495 (1997)] using the hydrodynamic code HYDRA [Marinak et al., Phys. Plasmas 8, 2275 (2001)] is post-processed using the tracking code IRIS3D. It is shown that different parts of the neutron spectrum from the view can be mapped into different regions of the implosion, enabling an inference of an areal-density map. It is also shown that the average areal-density and an areal-density map of the compressed target can be reconstructed with a finite number of detectors placed around the target chamber. Ion temperatures are inferred from the width of the D-D and D-T fusion neutron spectra. Backgrounds can significantly alter the inferred ion temperatures from the D-D reaction, whereas they insignificantly influence the inferred D-T ion temperatures for the areal densities typical of OMEGA implosions. Asymmetries resulting in fluid flow in the core are shown to influence the absolute inferred ion temperatures from both reactions, although relative inferred values continue to reflect the underlying asymmetry pattern. The work presented here is part of the wide range of the first set of studies performed with IRIS3D. This code will continue to be used for post-processing detailed hydrodynamic simulations and interpreting observed neutron spectra in ICF implosions.

  5. Initial Findings on Hydrodynamic Scaling Extrapolations of National Ignition Facility BigFoot Implosions

    NASA Astrophysics Data System (ADS)

    Nora, R.; Field, J. E.; Peterson, J. Luc; Spears, B.; Kruse, M.; Humbird, K.; Gaffney, J.; Springer, P. T.; Brandon, S.; Langer, S.

    2017-10-01

    We present an experimentally corroborated hydrodynamic extrapolation of several recent BigFoot implosions on the National Ignition Facility. An estimate on the value and error of the hydrodynamic scale necessary for ignition (for each individual BigFoot implosion) is found by hydrodynamically scaling a distribution of multi-dimensional HYDRA simulations whose outputs correspond to their experimental observables. The 11-parameter database of simulations, which include arbitrary drive asymmetries, dopant fractions, hydrodynamic scaling parameters, and surface perturbations due to surrogate tent and fill-tube engineering features, was computed on the TRINITY supercomputer at Los Alamos National Laboratory. This simple extrapolation is the first step in providing a rigorous calibration of our workflow to provide an accurate estimate of the efficacy of achieving ignition on the National Ignition Facility. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christon, Mark A.; Baksoi, Jozsef; Barnett, Nathan

    This report describes the work carried out for completion of the Thermal Hydraulics Methods (THM) Level 2 Milestone THM.CFD.P5.01 for the Consortium for Advanced Simulation of Light Water Reactors (CASL). This milestone focused primarily on the initial integration of Hydra-TH in VERA. The primary objective for this milestone was the integration of Hydra-TH as a standalone executable in VERA. A series of code extensions/modifications have been made to Hydra-TH to facilitate integration of Hydra-TH in VERA and to permit future tighter integration and physics coupling. A total of 61 serial and 64 parallel regression tests have been supplied with Hydra-TH.more » These tests are are being executed in the TriBITS environment. Once the VERA team enables the full suite of tests, the results can be posted to the VERA CDash site. Future work will consider the use of the LIME 2.0 interface for tighter integration in VERA with additional efforts focused on multiphysics coupling with radiation transport, fuel performance, and solid/structural mechanics.« less

  7. The complete mitochondrial genome of Hydra vulgaris (Hydroida: Hydridae).

    PubMed

    Pan, Hong-Chun; Fang, Hong-Yan; Li, Shi-Wei; Liu, Jun-Hong; Wang, Ying; Wang, An-Tai

    2014-12-01

    The complete mitochondrial genome of Hydra vulgaris (Hydroida: Hydridae) is composed of two linear DNA molecules. The mitochondrial DNA (mtDNA) molecule 1 is 8010 bp long and contains six protein-coding genes, large subunit rRNA, methionine and tryptophan tRNAs, two pseudogenes consisting respectively of a partial copy of COI, and terminal sequences at two ends of the linear mtDNA, while the mtDNA molecule 2 is 7576 bp long and contains seven protein-coding genes, small subunit rRNA, methionine tRNA, a pseudogene consisting of a partial copy of COI and terminal sequences at two ends of the linear mtDNA. COI gene begins with GTG as start codon, whereas other 12 protein-coding genes start with a typical ATG initiation codon. In addition, all protein-coding genes are terminated with TAA as stop codon.

  8. Designing symmetric polar direct drive implosions on the Omega laser facility

    NASA Astrophysics Data System (ADS)

    Krasheninnikova, Natalia S.; Cobble, James A.; Murphy, Thomas J.; Tregillis, Ian L.; Bradley, Paul A.; Hakel, Peter; Hsu, Scott C.; Kyrala, George A.; Obrey, Kimberly A.; Schmitt, Mark J.; Baumgaertel, Jessica A.; Batha, Steven H.

    2014-04-01

    Achieving symmetric capsule implosions with Polar Direct Drive [S. Skupsky et al., Phys. Plasmas 11, 2763 (2004); R. S. Craxton et al., Phys. Plasmas 12, 056304 (2005); F. J. Marshall et al., J. Phys. IV France 133, 153-157 (2006)] has been explored during recent Defect Induced Mix Experiment campaign on the Omega facility at the Laboratory for Laser Energetics. To minimize the implosion asymmetry due to laser drive, optimized laser cone powers, as well as improved beam pointings, were designed using 3D radiation-hydrodynamics code HYDRA [M. M. Marinak et al., Phys. Plasmas 3, 2070 (1996)]. Experimental back-lit radiographic and self-emission images revealed improved polar symmetry and increased neutron yield which were in good agreement with 2D HYDRA simulations. In particular, by reducing the energy in Omega's 21.4° polar rings by 16.75%, while increasing the energy in the 58.9° equatorial rings by 8.25% in such a way as to keep the overall energy to the target at 16 kJ, the second Legendre mode (P2) was reduced by a factor of 2, to less than 4% at bang time. At the same time the neutron yield increased by 62%. The polar symmetry was also improved relative to nominal DIME settings by a more radical repointing of OMEGA's 42.0° and 58.9° degree beams, to compensate for oblique incidence and reduced absorption at the equator, resulting in virtually no P2 around bang time and 33% more yield.

  9. Spectral and Atomic Physics Analysis of Xenon L-Shell Emission From High Energy Laser Produced Plasmas

    NASA Astrophysics Data System (ADS)

    Thorn, Daniel; Kemp, G. E.; Widmann, K.; Benjamin, R. D.; May, M. J.; Colvin, J. D.; Barrios, M. A.; Fournier, K. B.; Liedahl, D.; Moore, A. S.; Blue, B. E.

    2016-10-01

    The spectrum of the L-shell (n =2) radiation in mid to high-Z ions is useful for probing plasma conditions in the multi-keV temperature range. Xenon in particular with its L-shell radiation centered around 4.5 keV is copiously produced from plasmas with electron temperatures in the 5-10 keV range. We report on a series of time-resolved L-shell Xe spectra measured with the NIF X-ray Spectrometer (NXS) in high-energy long-pulse (>10 ns) laser produced plasmas at the National Ignition Facility. The resolving power of the NXS is sufficiently high (E/ ∂E >100) in the 4-5 keV spectral band that the emission from different charge states is observed. An analysis of the time resolved L-shell spectrum of Xe is presented along with spectral modeling by detailed radiation transport and atomic physics from the SCRAM code and comparison with predictions from HYDRA a radiation-hydrodynamics code with inline atomic-physics from CRETIN. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.

  10. First shock tuning and backscatter measurements for large case-to-capsule ratio beryllium targets

    NASA Astrophysics Data System (ADS)

    Loomis, Eric; Yi, Austin; Kline, John; Kyrala, George; Simakov, Andrei; Wilson, Doug; Ralph, Joe; Dewald, Eduard; Strozzi, David; Celliers, Peter; Millot, Marius; Tommasini, Riccardo

    2016-10-01

    The current under performance of target implosions on the National Ignition Facility (NIF) has necessitated scaling back from high convergence ratio to access regimes of reduced physics uncertainties. These regimes, we expect, are more predictable by existing radiation hydrodynamics codes giving us a better starting point for isolating key physics questions. One key question is the lack of predictable in-flight and hot spot shape due to a complex hohlraum radiation environment. To achieve more predictable, shape tunable implosions we have designed and fielded a large 4.2 case-to-capsule ratio (CCR) target at the NIF using 6.72 mm diameter Au hohlraums and 1.6 mm diameter Cu-doped Be capsules. Simulations show that at these dimensions during a 10 ns 3-shock laser pulse reaching 270 eV hohlraum temperatures, the interaction between hohlraum and capsule plasma, which at lower CCR lead to beam propagation impedance by artificial plasma stagnation, are reduced. In this talk we will present measurements of early time drive symmetry using two-axis line-imaging velocimetry (VISAR) and streaked radiography measuring velocity of the imploding shell and their comparisons to post-shot calculations using the code HYDRA (Lawrence Livermore National Laboratory).

  11. Three-dimensional modeling of the neutron spectrum to infer plasma conditions in cryogenic inertial confinement fusion implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weilacher, F.; Radha, P. B.; Forrest, C.

    Neutron-based diagnostics are typically used to infer compressed core conditions such as areal density and ion temperature in deuterium–tritium (D–T) inertial confinement fusion (ICF) implosions. Asymmetries in the observed neutron-related quantities are important to understanding failure modes in these implosions. Neutrons from fusion reactions and their subsequent interactions including elastic scattering and neutron-induced deuteron breakup reactions are tracked to create spectra. Here, it is shown that background subtraction is important for inferring areal density from backscattered neutrons and is less important for the forward-scattered neutrons. A three-dimensional hydrodynamic simulation of a cryogenic implosion on the OMEGA Laser System [T. R.more » Boehly et al., Opt. Commun. 133, 495 (1997)] using the hydrodynamic code HYDRA [M. M. Marinak et al., Phys. Plasmas 8, 2275 (2001)] is post-processed using the tracking code IRIS3D. It is shown that different parts of the neutron spectrum from the view can be mapped into different regions of the implosion, enabling an inference of an areal-density map. It is also shown that the average areal-density and an areal-density map of the compressed target can be reconstructed with a finite number of detectors placed around the target chamber. Ion temperatures are inferred from the width of the D–D and D–T fusion neutron spectra. Backgrounds can significantly alter the inferred ion temperatures from the D–D reaction, whereas they insignificantly influence the inferred D–T ion temperatures for the areal densities typical of OMEGA implosions. Asymmetries resulting in fluid flow in the core are shown to influence the absolute inferred ion temperatures from both reactions, although relative inferred values continue to reflect the underlying asymmetry pattern. The work presented here is part of the wide range of the first set of studies performed with IRIS3D. Finally, this code will continue to be used for post-processing detailed hydrodynamic simulations and interpreting observed neutron spectra in ICF implosions.« less

  12. Three-dimensional modeling of the neutron spectrum to infer plasma conditions in cryogenic inertial confinement fusion implosions

    DOE PAGES

    Weilacher, F.; Radha, P. B.; Forrest, C.

    2018-04-26

    Neutron-based diagnostics are typically used to infer compressed core conditions such as areal density and ion temperature in deuterium–tritium (D–T) inertial confinement fusion (ICF) implosions. Asymmetries in the observed neutron-related quantities are important to understanding failure modes in these implosions. Neutrons from fusion reactions and their subsequent interactions including elastic scattering and neutron-induced deuteron breakup reactions are tracked to create spectra. Here, it is shown that background subtraction is important for inferring areal density from backscattered neutrons and is less important for the forward-scattered neutrons. A three-dimensional hydrodynamic simulation of a cryogenic implosion on the OMEGA Laser System [T. R.more » Boehly et al., Opt. Commun. 133, 495 (1997)] using the hydrodynamic code HYDRA [M. M. Marinak et al., Phys. Plasmas 8, 2275 (2001)] is post-processed using the tracking code IRIS3D. It is shown that different parts of the neutron spectrum from the view can be mapped into different regions of the implosion, enabling an inference of an areal-density map. It is also shown that the average areal-density and an areal-density map of the compressed target can be reconstructed with a finite number of detectors placed around the target chamber. Ion temperatures are inferred from the width of the D–D and D–T fusion neutron spectra. Backgrounds can significantly alter the inferred ion temperatures from the D–D reaction, whereas they insignificantly influence the inferred D–T ion temperatures for the areal densities typical of OMEGA implosions. Asymmetries resulting in fluid flow in the core are shown to influence the absolute inferred ion temperatures from both reactions, although relative inferred values continue to reflect the underlying asymmetry pattern. The work presented here is part of the wide range of the first set of studies performed with IRIS3D. Finally, this code will continue to be used for post-processing detailed hydrodynamic simulations and interpreting observed neutron spectra in ICF implosions.« less

  13. Constraining heat-transport models by comparison to experimental data in a NIF hohlraum

    NASA Astrophysics Data System (ADS)

    Farmer, W. A.; Jones, O. S.; Barrios Garcia, M. A.; Koning, J. M.; Kerbel, G. D.; Strozzi, D. J.; Hinkel, D. E.; Moody, J. D.; Suter, L. J.; Liedahl, D. A.; Moore, A. S.; Landen, O. L.

    2017-10-01

    The accurate simulation of hohlraum plasma conditions is important for predicting the partition of energy and the symmetry of the x-ray field within a hohlraum. Electron heat transport within the hohlraum plasma is difficult to model due to the complex interaction of kinetic plasma effects, magnetic fields, laser-plasma interactions, and microturbulence. Here, we report simulation results using the radiation-hydrodynamic code, HYDRA, utilizing various physics packages (e.g., nonlocal Schurtz model, MHD, flux limiters) and compare to data from hohlraum plasma experiments which contain a Mn-Co tracer dot. In these experiments, the dot is placed in various positions in the hohlraum in order to assess the spatial variation of plasma conditions. Simulated data is compared to a variety of experimental diagnostics. Conclusions are given concerning how the experimental data does and does not constrain the physics models examined. This work was supported by the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  14. Rapid divergence of histones in Hydrozoa (Cnidaria) and evolution of a novel histone involved in DNA damage response in hydra.

    PubMed

    Reddy, Puli Chandramouli; Ubhe, Suyog; Sirwani, Neha; Lohokare, Rasika; Galande, Sanjeev

    2017-08-01

    Histones are fundamental components of chromatin in all eukaryotes. Hydra, an emerging model system belonging to the basal metazoan phylum Cnidaria, provides an ideal platform to understand the evolution of core histone components at the base of eumetazoan phyla. Hydra exhibits peculiar properties such as tremendous regenerative capacity, lack of organismal senescence and rarity of malignancy. In light of the role of histone modifications and histone variants in these processes it is important to understand the nature of histones themselves and their variants in hydra. Here, we report identification of the complete repertoire of histone-coding genes in the Hydra magnipapillata genome. Hydra histones were classified based on their copy numbers, gene structure and other characteristic features. Genomic organization of canonical histone genes revealed the presence of H2A-H2B and H3-H4 paired clusters in high frequency and also a cluster with all core histones along with H1. Phylogenetic analysis of identified members of H2A and H2B histones suggested rapid expansion of these groups in Hydrozoa resulting in the appearance of unique subtypes. Amino acid sequence level comparisons of H2A and H2B forms with bilaterian counterparts suggest the possibility of a highly mobile nature of nucleosomes in hydra. Absolute quantitation of transcripts confirmed the high copy number of histones and supported the canonical nature of H2A. Furthermore, functional characterization of H2A.X.1 and a unique variant H2A.X.2 in the gastric region suggest their role in the maintenance of genome integrity and differentiation processes. These findings provide insights into the evolution of histones and their variants in hydra. Copyright © 2017 Elsevier GmbH. All rights reserved.

  15. Experimental investigation of the impulse gas injection into liquid and the use of experimental data for verification of the HYDRA-IBRAE/LM thermohydraulic code

    NASA Astrophysics Data System (ADS)

    Lobanov, P. D.; Usov, E. V.; Butov, A. A.; Pribaturin, N. A.; Mosunova, N. A.; Strizhov, V. F.; Chukhno, V. I.; Kutlimetov, A. E.

    2017-10-01

    Experiments with impulse gas injection into model coolants, such as water or the Rose alloy, performed at the Novosibirsk Branch of the Nuclear Safety Institute, Russian Academy of Sciences, are described. The test facility and the experimental conditions are presented in details. The dependence of coolant pressure on the injected gas flow and the time of injection was determined. The purpose of these experiments was to verify the physical models of thermohydraulic codes for calculation of the processes that could occur during the rupture of tubes of a steam generator with heavy liquid metal coolant or during fuel rod failure in water-cooled reactors. The experimental results were used for verification of the HYDRA-IBRAE/LM system thermohydraulic code developed at the Nuclear Safety Institute, Russian Academy of Sciences. The models of gas bubble transportation in a vertical channel that are used in the code are described in detail. A two-phase flow pattern diagram and correlations for prediction of friction of bubbles and slugs as they float up in a vertical channel and of two-phase flow friction factor are presented. Based on the results of simulation of these experiments using the HYDRA-IBRAE/LM code, the arithmetic mean error in predicted pressures was calculated, and the predictions were analyzed considering the uncertainty in the input data, geometry of the test facility, and the error of the empirical correlation. The analysis revealed major factors having a considerable effect on the predictions. The recommendations are given on updating of the experimental results and improvement of the models used in the thermohydraulic code.

  16. ON A GIANT IMPACT ORIGIN OF CHARON, NIX, AND HYDRA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Canup, Robin M., E-mail: robin@boulder.swri.edu

    It is generally believed that Charon was formed as a result of a large, grazing collision with Pluto that supplied the Pluto-Charon system with its high angular momentum. It has also been proposed that Pluto's small outer moons, Nix and Hydra, formed from debris from the Charon-forming impact, although the viability of this scenario remains unclear. Here I use smooth particle hydrodynamics impact simulations to show that it is possible to simultaneously form an intact Charon and an accompanying debris disk from a single impact. The successful cases involve colliding objects that are partially differentiated prior to impact, having thinmore » outer ice mantles overlying a uniform composition rock-ice core. The composition of the resulting debris disks varies from a mixture of rock and ice (similar to the bulk composition of Pluto and Charon) to a pure ice disk. If Nix and Hydra were formed from such an impact-generated disk, their densities should be less than or similar to that of Charon and Pluto, and the small moons could be composed entirely of ice. If they were instead formed from captured material, a mixed rock-ice composition and densities similar to that of Charon and Pluto would be expected. Improved constraints on the properties of Nix and Hydra through occultations and/or the New Horizons encounter may thus help to distinguish between these two modes of origin, particularly if the small moons are found to have ice-like densities.« less

  17. Designing symmetric polar direct drive implosions on the Omega laser facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krasheninnikova, Natalia S.; Cobble, James A.; Murphy, Thomas J.

    2014-04-15

    Achieving symmetric capsule implosions with Polar Direct Drive [S. Skupsky et al., Phys. Plasmas 11, 2763 (2004); R. S. Craxton et al., Phys. Plasmas 12, 056304 (2005); F. J. Marshall et al., J. Phys. IV France 133, 153–157 (2006)] has been explored during recent Defect Induced Mix Experiment campaign on the Omega facility at the Laboratory for Laser Energetics. To minimize the implosion asymmetry due to laser drive, optimized laser cone powers, as well as improved beam pointings, were designed using 3D radiation-hydrodynamics code HYDRA [M. M. Marinak et al., Phys. Plasmas 3, 2070 (1996)]. Experimental back-lit radiographic and self-emissionmore » images revealed improved polar symmetry and increased neutron yield which were in good agreement with 2D HYDRA simulations. In particular, by reducing the energy in Omega's 21.4° polar rings by 16.75%, while increasing the energy in the 58.9° equatorial rings by 8.25% in such a way as to keep the overall energy to the target at 16 kJ, the second Legendre mode (P{sub 2}) was reduced by a factor of 2, to less than 4% at bang time. At the same time the neutron yield increased by 62%. The polar symmetry was also improved relative to nominal DIME settings by a more radical repointing of OMEGA's 42.0° and 58.9° degree beams, to compensate for oblique incidence and reduced absorption at the equator, resulting in virtually no P{sub 2} around bang time and 33% more yield.« less

  18. An investigation of tritium transfer in reactor loops

    NASA Astrophysics Data System (ADS)

    Ilyasova, O. H.; Mosunova, N. A.

    2017-09-01

    The work is devoted to the important task of the numerical simulation and analysis of the tritium behaviour in the reactor loops. The simulation was carried out by HYDRA-IBRAE/LM code, which is being developed in Nuclear safety institute of the Russian Academy of Sciences. The code is intended for modeling of the liquid metal flow (sodium, lead and lead-bismuth) on the base of non-homogeneous and non-equilibrium two-fluid model. In order to simulate tritium transfer in the code, the special module has been developed. Module includes the models describing the main phenomena of tritium behaviour in reactor loops: transfer, permeation, leakage, etc. Because of shortage of the experimental data, a lot of analytical tests and comparative calculations were considered. Some of them are presented in this work. The comparison of estimation results and experimental and analytical data demonstrate not only qualitative but also good quantitative agreement. It is possible to confirm that HYDRA-IBRAE/LM code allows modeling tritium transfer in reactor loops.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnard, J. J.; Hay, M. J.; Logan, B. G.

    The simulations provided in this milestone have solidified the theoretical underpinning of direct drive targets and also the ability to design experiments on NDCX II that will enhance our understanding of ion-beam hydrodynamic coupling, and thus be relevant to IFE. For the case of the IFE targets, we have studied hydro and implosion efficiency using HYDRA in ID, a starting point towards the goal of polar direct drive in geometry compatible with liquid wall chambers. Recent analysis of direct drive fusion energy targets using heavy ion beams has found high coupling efficiency of ion beam energy into implosion energy. However,more » to obtain optimal coupling, the ion energy must increase during the pulse in order to penetrate the outflowing ablated material, and deposit the energy close enough to the fuel so that the fuel achieves sufficient implosion velocity. We have computationally explored ID (radial) time dependent models of ion driven direct drive capsule implosions using the Arbitrary Lagrangian-Eulerian (ALE) code HYDRA, to help validate the theoretical analysis done so far, particularly exploring the effects of varying the ion energy and ion current over the course of the pulse. On NDCX II, experiments have been proposed to explore issues of ion penetration of the outflowing plasma over the course of the ion pulse. One possibility is to create a first pulse of ions that heats a planar target, and produces an outflow of material. A second pulse, {approx}10 ns after the first, of higher ion energy (and hence larger projected range) will interact with this outflow before reaching and further heating the target. We have investigated whether the change in range can be tailored to match the evolution of the ablation front. We have carried out simulations using the one-dimensional hydrodynamic code DISH and HYDRA to set parameters for this class of experiments. DISH was upgraded with an ion deposition algorithm, and we have carried out ID (planar) simulations. HYDRA was also used for ID (planar) and 2D (r,z) simulations of potential experiments. We have also explored whether similar physics could be studied using an energy ramp (i.e., a velocity tilt) rather than two separate pulses. We have shown that an optimum occurs in the macropulse duration (with fixed velocity tilt) that maximizes the shock strength. In the area of IFE target design we have continued to explore direct drive targets composed of deuterium-tritium fuel and ablator layers. We have extended our previous target designs at 0.44 MJ drive energy, gain 50, (50 MeV foot, 500 MeV main pulse, Rb ion, which requires a large number of beams due to a high beam space charge constraint) to a power plant scale 3.7 MJ drive energy, gain {approx}150 (220 MeV foot, 2.2 GeV main pulse, Hg ion) that eases requirements on the accelerator. We have studied the effects of two important design choices on ICF target performance. We have shown that increasing the number of foot pulses may reduce the target's in-flight adiabat and consequently improve its compressibility and fusion yield. As in the case of laser drive, the first three shocks are the most important to the target's performance, with additional shocks contributing only marginally to compression and burn. We have also demonstrated that ion range lengthening during the main pulse can further reduce the target adiabat and improve the efficiency with which beam energy is coupled into the target. (Ion range lengthening using two different kinetic energies for the foot and main pulse has previously proven effective in the design of high gain targets).« less

  20. An Open Software Platform for Sharing Water Resource Models, Code and Data

    NASA Astrophysics Data System (ADS)

    Knox, Stephen; Meier, Philipp; Mohamed, Khaled; Korteling, Brett; Matrosov, Evgenii; Huskova, Ivana; Harou, Julien; Rosenberg, David; Tilmant, Amaury; Medellin-Azuara, Josue; Wicks, Jon

    2016-04-01

    The modelling of managed water resource systems requires new approaches in the face of increasing future uncertainty. Water resources management models, even if applied to diverse problem areas, use common approaches such as representing the problem as a network of nodes and links. We propose a data management software platform, called Hydra, that uses this commonality to allow multiple models using a node-link structure to be managed and run using a single software system. Hydra's user interface allows users to manage network topology and associated data. Hydra feeds this data directly into a model, importing from and exporting to different file formats using Apps. An App connects Hydra to a custom model, a modelling system such as GAMS or MATLAB or to different file formats such as MS Excel, CSV and ESRI Shapefiles. Hydra allows users to manage their data in a single, consistent place. Apps can be used to run domain-specific models and allow users to work with their own required file formats. The Hydra App Store offers a collaborative space where model developers can publish, review and comment on Apps, models and data. Example Apps and open-source libraries are available in a variety of languages (Python, Java and .NET). The App Store can act as a hub for water resource modellers to view and share Apps, models and data easily. This encourages an ecosystem of development using a shared platform, resulting in more model integration and potentially greater unity within resource modelling communities. www.hydraplatform.org www.hydraappstore.com

  1. Electron temperature measurements inside the ablating plasma of gas-filled hohlraums at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Barrios, M. A.; Liedahl, D. A.; Schneider, M. B.; Jones, O.; Brown, G. V.; Regan, S. P.; Fournier, K. B.; Moore, A. S.; Ross, J. S.; Landen, O.; Kauffman, R. L.; Nikroo, A.; Kroll, J.; Jaquez, J.; Huang, H.; Hansen, S. B.; Callahan, D. A.; Hinkel, D. E.; Bradley, D.; Moody, J. D.

    2016-05-01

    The first measurement of the electron temperature (Te) inside a National Ignition Facility hohlraum is obtained using temporally resolved K-shell X-ray spectroscopy of a mid-Z tracer dot. Both isoelectronic- and interstage-line ratios are used to calculate the local Te via the collisional-radiative atomic physics code SCRAM [Hansen et al., High Energy Density Phys 3, 109 (2007)]. The trajectory of the mid-Z dot as it is ablated from the capsule surface and moves toward the laser entrance hole (LEH) is measured using side-on x-ray imaging, characterizing the plasma flow of the ablating capsule. Data show that the measured dot location is farther away from the LEH in comparison to the radiation-hydrodynamics simulation prediction using HYDRA [Marinak et al., Phys. Plasmas 3, 2070 (1996)]. To account for this discrepancy, the predicted simulation Te is evaluated at the measured dot trajectory. The peak Te, measured to be 4.2 keV ± 0.2 keV, is ˜0.5 keV hotter than the simulation prediction.

  2. Advances in HYDRA and its application to simulations of Inertial Confinement Fusion targets

    NASA Astrophysics Data System (ADS)

    Marinak, M. M.; Kerbel, G. D.; Koning, J. M.; Patel, M. V.; Sepke, S. M.; Brown, P. N.; Chang, B.; Procassini, R.; Veitzer, S. A.

    2008-11-01

    We will outline new capabilities added to the HYDRA 2D/3D multiphysics ICF simulation code. These include a new SN multigroup radiation transport package (1D), constitutive models for elastic-plastic (strength) effects, and a mix model. A Monte Carlo burn package is being incorporated to model diagnostic signatures of neutrons, gamma rays and charged particles. A 3D MHD package that treats resistive MHD is available. Improvements to HYDRA's implicit Monte Carlo photonics package, including the addition of angular biasing, now enable integrated hohlraum simulations to complete in substantially shorter time. The heavy ion beam deposition package now includes a new model for ion stopping power developed by the Tech-X Corporation, with improved accuracy below the Bragg peak. Examples will illustrate HYDRA's enhanced capabilities to simulate various aspects of inertial confinement fusion targets.This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344. The work of Tech-X personnel was funded by the Department of Energy under Small Business Innovation Research Contract No. DE-FG02-03ER83797.

  3. Retrieval of exoplanet emission spectra with HyDRA

    NASA Astrophysics Data System (ADS)

    Gandhi, Siddharth; Madhusudhan, Nikku

    2018-02-01

    Thermal emission spectra of exoplanets provide constraints on the chemical compositions, pressure-temperature (P-T) profiles, and energy transport in exoplanetary atmospheres. Accurate inferences of these properties rely on the robustness of the atmospheric retrieval methods employed. While extant retrieval codes have provided significant constraints on molecular abundances and temperature profiles in several exoplanetary atmospheres, the constraints on their deviations from thermal and chemical equilibria have yet to be fully explored. Our present work is a step in this direction. We report HyDRA, a disequilibrium retrieval framework for thermal emission spectra of exoplanetary atmospheres. The retrieval code uses the standard architecture of a parametric atmospheric model coupled with Bayesian statistical inference using the Nested Sampling algorithm. For a given dataset, the retrieved compositions and P-T profiles are used in tandem with the GENESIS self-consistent atmospheric model to constrain layer-by-layer deviations from chemical and radiative-convective equilibrium in the observable atmosphere. We demonstrate HyDRA on the Hot Jupiter WASP-43b with a high-precision emission spectrum. We retrieve an H2O mixing ratio of log(H2O) = -3.54^{+0.82}_{-0.52}, consistent with previous studies. We detect H2O and a combined CO/CO2 at 8-sigma significance. We find the dayside P-T profile to be consistent with radiative-convective equilibrium within the 1-sigma limits and with low day-night redistribution, consistent with previous studies. The derived compositions are also consistent with thermochemical equilibrium for the corresponding distribution of P-T profiles. In the era of high precision and high resolution emission spectroscopy, HyDRA provides a path to retrieve disequilibrium phenomena in exoplanetary atmospheres.

  4. Evolution of Hox-like genes in Cnidaria: Study of Hydra Hox repertoire reveals tailor-made Hox-code for Cnidarians.

    PubMed

    Reddy, Puli Chandramouli; Unni, Manu K; Gungi, Akhila; Agarwal, Pallavi; Galande, Sanjeev

    2015-11-01

    Hox and ParaHox genes play decisive roles in patterning the anterior-posterior body axis in Bilateria. Evolutionary origin of Hox genes and primary body axis predate the divergence of Bilateria and Cnidaria. However, function of Cnidarian Hox-like genes and their regulation in axis determination is obscure due to studies limited to a few representative model systems. Present investigation is conducted using Hydra, a Hydrozoan member of phylum Cnidaria, to gain insights into the roles of Cnidarian Hox-like genes in primary axis formation. Here, we report identification of six Hox-like genes from our in-house transcriptome data. Phylogenetic analysis of these genes shows bilaterian counterparts of Hox1, Gsx and Mox. Additionally, we report CnoxB_HVUL, CnoxC2_HVUL and CnoxC3_HVUL belonging to two Cnidarian specific groups. In situ hybridization analysis of Hydra homologues provided important clues about their possible roles in pattern formation of polyps and bud development. Specifically, Hox1_HVUL is regulated by Wnt signaling and plays critical role in head formation. Collating information about expression patterns of different Hox-like genes from previous reports and this study reveals no conformity within Cnidaria. Indicating that unlike in Bilateria, there is no consolidated Hox-code determining primary body axis in Cnidaria. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakosi, Jozsef; Christon, Mark A.; Francois, Marianne M.

    Progress is reported on computational capabilities for the grid-to-rod-fretting (GTRF) problem of pressurized water reactors. Numeca's Hexpress/Hybrid mesh generator is demonstrated as an excellent alternative to generating computational meshes for complex flow geometries, such as in GTRF. Mesh assessment is carried out using standard industrial computational fluid dynamics practices. Hydra-TH, a simulation code developed at LANL for reactor thermal-hydraulics, is demonstrated on hybrid meshes, containing different element types. A series of new Hydra-TH calculations has been carried out collecting turbulence statistics. Preliminary results on the newly generated meshes are discussed; full analysis will be documented in the L3 milestone, THM.CFD.P5.05,more » Sept. 2012.« less

  6. Electron temperature measurements inside the ablating plasma of gas-filled hohlraums at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrios, M. A.; Liedahl, D. A.; Schneider, M. B.

    The first measurement of the electron temperature (T{sub e}) inside a National Ignition Facility hohlraum is obtained using temporally resolved K-shell X-ray spectroscopy of a mid-Z tracer dot. Both isoelectronic- and interstage-line ratios are used to calculate the local T{sub e} via the collisional–radiative atomic physics code SCRAM [Hansen et al., High Energy Density Phys 3, 109 (2007)]. The trajectory of the mid-Z dot as it is ablated from the capsule surface and moves toward the laser entrance hole (LEH) is measured using side-on x-ray imaging, characterizing the plasma flow of the ablating capsule. Data show that the measured dotmore » location is farther away from the LEH in comparison to the radiation-hydrodynamics simulation prediction using HYDRA [Marinak et al., Phys. Plasmas 3, 2070 (1996)]. To account for this discrepancy, the predicted simulation T{sub e} is evaluated at the measured dot trajectory. The peak T{sub e}, measured to be 4.2 keV ± 0.2 keV, is ∼0.5 keV hotter than the simulation prediction.« less

  7. High Resolution Integrated Hohlraum-Capsule Simulations for Virtual NIF Ignition Campaign

    NASA Astrophysics Data System (ADS)

    Jones, O. S.; Marinak, M. M.; Cerjan, C. J.; Clark, D. S.; Edwards, M. J.; Haan, S. W.; Langer, S. H.; Salmonson, J. D.

    2009-11-01

    We have undertaken a virtual campaign to assess the viability of the sequence of NIF experiments planned for 2010 that will experimentally tune the shock timing, symmetry, and ablator thickness of a cryogenic ignition capsule prior to the first ignition attempt. The virtual campaign consists of two teams. The ``red team'' creates realistic simulated diagnostic data for a given experiment from the output of a detailed radiation hydrodynamics calculation that has physics models that have been altered in a way that is consistent with probable physics uncertainties. The ``blue team'' executes a series of virtual experiments and interprets the simulated diagnostic data from those virtual experiments. To support this effort we have developed a capability to do very high spatial resolution integrated hohlraum-capsule simulations using the Hydra code. Surface perturbations for all ablator layer surfaces and the DT ice layer are calculated explicitly through mode 30. The effects of the fill tube, cracks in the ice layer, and defects in the ablator are included in models extracted from higher resolution calculations. Very high wave number mix is included through a mix model. We will show results from these calculations in the context of the ongoing virtual campaign.

  8. Large-eddy simulations of turbulent flow for grid-to-rod fretting in nuclear reactors

    DOE PAGES

    Bakosi, J.; Christon, M. A.; Lowrie, R. B.; ...

    2013-07-12

    The grid-to-rod fretting (GTRF) problem in pressurized water reactors is a flow-induced vibration problem that results in wear and failure of the fuel rods in nuclear assemblies. In order to understand the fluid dynamics of GTRF and to build an archival database of turbulence statistics for various configurations, implicit large-eddy simulations of time-dependent single-phase turbulent flow have been performed in 3 × 3 and 5 × 5 rod bundles with a single grid spacer. To assess the computational mesh and resolution requirements, a method for quantitative assessment of unstructured meshes with no-slip walls is described. The calculations have been carriedmore » out using Hydra-TH, a thermal-hydraulics code developed at Los Alamos for the Consortium for Advanced Simulation of Light water reactors, a United States Department of Energy Innovation Hub. Hydra-TH uses a second-order implicit incremental projection method to solve the singlephase incompressible Navier-Stokes equations. The simulations explicitly resolve the large scale motions of the turbulent flow field using first principles and rely on a monotonicity-preserving numerical technique to represent the unresolved scales. Each series of simulations for the 3 × 3 and 5 × 5 rod-bundle geometries is an analysis of the flow field statistics combined with a mesh-refinement study and validation with available experimental data. Our primary focus is the time history and statistics of the forces loading the fuel rods. These hydrodynamic forces are believed to be the key player resulting in rod vibration and GTRF wear, one of the leading causes for leaking nuclear fuel which costs power utilities millions of dollars in preventive measures. As a result, we demonstrate that implicit large-eddy simulation of rod-bundle flows is a viable way to calculate the excitation forces for the GTRF problem.« less

  9. HYDRA: High Speed Simulation Architecture for Precision Spacecraft Formation Flying

    NASA Technical Reports Server (NTRS)

    Martin, Bryan J.; Sohl, Garett A.

    2003-01-01

    This viewgraph presentation describes HYDRA, which is architecture to facilitate high-fidelity and real-time simulation of formation flying missions. The contents include: 1) Motivation; 2) Objective; 3) HYDRA-Description and Overview; 4) HYDRA-Hierarchy; 5) Communication in HYDRA; 6) Simulation Specific Concerns in HYDRA; 7) Example application (Formation Acquisition); and 8) Sample Problem Results.

  10. Polar Hydra Data Analysis

    NASA Technical Reports Server (NTRS)

    Scudder, J. D.; Hall, Van Allen

    1998-01-01

    The science activities are: 1) Hydra is still operating successfully on orbit. 2) A large amount of analysis and discovery has occurred with the Hydra ground data processing this past year. 3) Full interdetector calibration has been implemented and documented. This intercalibration was necessitated by the incorrect installation of bias resistors in the pre-acceleration stage to the electron channeltrons. This had the effect of making the counting efficiency for electrons energy dependent as well as channeltron specific. The nature of the error had no impact on the ion detection efficiency since they have a different bias arrangement. This intercalibration is so effective, that the electron and ion moment densities are routinely produced with a level of agreement better than 20%. 4) The data processing routinely removes glint in the sensors and produces public energy time spectrograms on the web overnight. 6) Routine, but more intensive computer processing codes are operational that determine for electrons and ions, the density, the flow vector, the pressure tensor and the heat flux by numerical integration. These codes use the magnetic field to sustain the quality of their output. To gain access to this high quality magnetic field within our data stream we have monitored Russell's web page for zero levels and timing files (since his data acquisition is not telemetry synchronous) and have a local reconstruction of B for our use. We have also detected a routine anomaly in the magnetometer data stream that we have documented to Chris Russell and developed an editing algorithm to intercept these "hits" and remove them from the geophysical analysis.

  11. The Monte Carlo photoionization and moving-mesh radiation hydrodynamics code CMACIONIZE

    NASA Astrophysics Data System (ADS)

    Vandenbroucke, B.; Wood, K.

    2018-04-01

    We present the public Monte Carlo photoionization and moving-mesh radiation hydrodynamics code CMACIONIZE, which can be used to simulate the self-consistent evolution of HII regions surrounding young O and B stars, or other sources of ionizing radiation. The code combines a Monte Carlo photoionization algorithm that uses a complex mix of hydrogen, helium and several coolants in order to self-consistently solve for the ionization and temperature balance at any given type, with a standard first order hydrodynamics scheme. The code can be run as a post-processing tool to get the line emission from an existing simulation snapshot, but can also be used to run full radiation hydrodynamical simulations. Both the radiation transfer and the hydrodynamics are implemented in a general way that is independent of the grid structure that is used to discretize the system, allowing it to be run both as a standard fixed grid code, but also as a moving-mesh code.

  12. High-resolution 3D simulations of NIF ignition targets performed on Sequoia with HYDRA

    NASA Astrophysics Data System (ADS)

    Marinak, M. M.; Clark, D. S.; Jones, O. S.; Kerbel, G. D.; Sepke, S.; Patel, M. V.; Koning, J. M.; Schroeder, C. R.

    2015-11-01

    Developments in the multiphysics ICF code HYDRA enable it to perform large-scale simulations on the Sequoia machine at LLNL. With an aggregate computing power of 20 Petaflops, Sequoia offers an unprecedented capability to resolve the physical processes in NIF ignition targets for a more complete, consistent treatment of the sources of asymmetry. We describe modifications to HYDRA that enable it to scale to over one million processes on Sequoia. These include new options for replicating parts of the mesh over a subset of the processes, to avoid strong scaling limits. We consider results from a 3D full ignition capsule-only simulation performed using over one billion zones run on 262,000 processors which resolves surface perturbations through modes l = 200. We also report progress towards a high-resolution 3D integrated hohlraum simulation performed using 262,000 processors which resolves surface perturbations on the ignition capsule through modes l = 70. These aim for the most complete calculations yet of the interactions and overall impact of the various sources of asymmetry for NIF ignition targets. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.

  13. Molecular Characterization of a Catalase from Hydra vulgaris

    PubMed Central

    Dash, Bhagirathi; Phillips, Timothy D.

    2012-01-01

    Catalase, an antioxidant and hydroperoxidase enzyme protects the cellular environment from harmful effects of hydrogen peroxide by facilitating its degradation to oxygen and water. Molecular information on a cnidarian catalase and/or peroxidase is, however, limited. In this work an apparent full length cDNA sequence coding for a catalase (HvCatalase) was isolated from Hydra vulgaris using 3’- and 5’- (RLM) RACE approaches. The 1859 bp HvCatalase cDNA included an open reading frame of 1518 bp encoding a putative protein of 505 amino acids with a predicted molecular mass of 57.44 kDa. The deduced amino acid sequence of HvCatalase contained several highly conserved motifs including the heme-ligand signature sequence RLFSYGDTH and the active site signature FXRERIPERVVHAKGXGA. A comparative analysis showed the presence of conserved catalytic amino acids [His(71), Asn(145), and Tyr(354)] in HvCatalase as well. Homology modeling indicated the presence of the conserved features of mammalian catalase fold. Hydrae exposed to thermal, starvation, metal and oxidative stress responded by regulating its catalase mRNA transcription. These results indicated that the HvCatalase gene is involved in the cellular stress response and (anti)oxidative processes triggered by stressor and contaminant exposure. PMID:22521743

  14. Computational design of short pulse laser driven iron opacity experiments

    DOE PAGES

    Martin, M. E.; London, R. A.; Goluoglu, S.; ...

    2017-02-23

    Here, the resolution of current disagreements between solar parameters calculated from models and observations would benefit from the experimental validation of theoretical opacity models. Iron's complex ionic structure and large contribution to the opacity in the radiative zone of the sun make iron a good candidate for validation. Short pulse lasers can be used to heat buried layer targets to plasma conditions comparable to the radiative zone of the sun, and the frequency dependent opacity can be inferred from the target's measured x-ray emission. Target and laser parameters must be optimized to reach specific plasma conditions and meet x-ray emissionmore » requirements. The HYDRA radiation hydrodynamics code is used to investigate the effects of modifying laser irradiance and target dimensions on the plasma conditions, x-ray emission, and inferred opacity of iron and iron-magnesium buried layer targets. It was determined that plasma conditions are dominantly controlled by the laser energy and the tamper thickness. The accuracy of the inferred opacity is sensitive to tamper emission and optical depth effects. Experiments at conditions relevant to the radiative zone of the sun would investigate the validity of opacity theories important to resolving disagreements between solar parameters calculated from models and observations.« less

  15. Computational design of short pulse laser driven iron opacity experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, M. E.; London, R. A.; Goluoglu, S.

    Here, the resolution of current disagreements between solar parameters calculated from models and observations would benefit from the experimental validation of theoretical opacity models. Iron's complex ionic structure and large contribution to the opacity in the radiative zone of the sun make iron a good candidate for validation. Short pulse lasers can be used to heat buried layer targets to plasma conditions comparable to the radiative zone of the sun, and the frequency dependent opacity can be inferred from the target's measured x-ray emission. Target and laser parameters must be optimized to reach specific plasma conditions and meet x-ray emissionmore » requirements. The HYDRA radiation hydrodynamics code is used to investigate the effects of modifying laser irradiance and target dimensions on the plasma conditions, x-ray emission, and inferred opacity of iron and iron-magnesium buried layer targets. It was determined that plasma conditions are dominantly controlled by the laser energy and the tamper thickness. The accuracy of the inferred opacity is sensitive to tamper emission and optical depth effects. Experiments at conditions relevant to the radiative zone of the sun would investigate the validity of opacity theories important to resolving disagreements between solar parameters calculated from models and observations.« less

  16. The effect of fast and regeneration in light versus dark on regulation in the hydra-algal symbiosis

    NASA Technical Reports Server (NTRS)

    Bossert, P.; Slobodkin, L. B.

    1983-01-01

    Green hydra are able to regenerate tentacles after fast durations which cause brown, i.e., asymbiotic, hydra to fail completely, but the presence of endosymbiotic algae does not always enhance regeneration in fasted hydra. Green hydra whose nutritional state falls below some threshold, exhibit a light induced inhibition of regeneration. That is, hydra, fasted in the light, then randomly assigned to light or dark after decapitation, regenerate better in the dark. This effect of light does not appear to be present either in brown hydra or in normally green hydra from which the algae were removed. In a large strain of Chlorohydra viridissima, after fasts of intermediate duration (10 and 15 days), this light induced inhibition of regeneration is associated with an increase in the number of algae per gastric cell in regenerating hydra relative to non-regenerating controls.

  17. Evaluation of Multi-Vessel Ship Motion Prediction Codes

    DTIC Science & Technology

    2008-09-01

    each other, and accounting for the hydrodynamic effects between the hulls. The major differences in the capabilities of the codes were in the non...Figure 28. Effects of irregular frequency smoothing has on the resultant pitch transfer function for three meter separation, 135 degree heading, and...and accounting for the hydrodynamic effects between the hulls. The major differences in the capabilities of the codes were in the non-hydrodynamic

  18. Neptune: An astrophysical smooth particle hydrodynamics code for massively parallel computer architectures

    NASA Astrophysics Data System (ADS)

    Sandalski, Stou

    Smooth particle hydrodynamics is an efficient method for modeling the dynamics of fluids. It is commonly used to simulate astrophysical processes such as binary mergers. We present a newly developed GPU accelerated smooth particle hydrodynamics code for astrophysical simulations. The code is named neptune after the Roman god of water. It is written in OpenMP parallelized C++ and OpenCL and includes octree based hydrodynamic and gravitational acceleration. The design relies on object-oriented methodologies in order to provide a flexible and modular framework that can be easily extended and modified by the user. Several pre-built scenarios for simulating collisions of polytropes and black-hole accretion are provided. The code is released under the MIT Open Source license and publicly available at http://code.google.com/p/neptune-sph/.

  19. Hydra effects in discrete-time models of stable communities.

    PubMed

    Cortez, Michael H

    2016-12-21

    A species exhibits a hydra effect when, counter-intuitively, increased mortality of the species causes an increase in its abundance. Hydra effects have been studied in many continuous time (differential equation) multispecies models, but only rarely have hydra effects been observed in or studied with discrete time (difference equation) multispecies models. In addition most discrete time theory focuses on single-species models. Thus, it is unclear what unifying characteristics determine when hydra effects arise in discrete time models. Here, using discrete time multispecies models (where total abundance is the single variable describing each population), I show that a species exhibits a hydra effect in a stable system only when fixing that species' density at its equilibrium density destabilizes the system. This general characteristic is referred to as subsystem instability. I apply this result to two-species models and identify specific mechanisms that cause hydra effects in stable communities, e.g., in host--parasitoid models, host Allee effects and saturating parasitoid functional responses can cause parasitoid hydra effects. I discuss how the general characteristic can be used to identify mechanisms causing hydra effects in communities with three or more species. I also show that the condition for hydra effects at stable equilibria implies the system is reactive (i.e., density perturbations can grow before ultimately declining). This study extends previous work on conditions for hydra effects in single-species models by identifying necessary conditions for stable systems and sufficient conditions for cyclic systems. In total, these results show that hydra effects can arise in many more communities than previously appreciated and that hydra effects were present, but unrecognized, in previously studied discrete time models. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. The Hydra genome: insights, puzzles and opportunities for developmental biologists.

    PubMed

    Steele, Robert E

    2012-01-01

    The sequencing of a Hydra genome marked the beginning of a new era in the use of Hydra as a developmental model. Analysis of the genome sequence has led to a number of interesting findings, has required revisiting of previous work, and most importantly presents new opportunities for understanding the developmental biology of Hydra. This review will de-scribe the history of the Hydra genome project, a selection of results from it that are relevant to developmental biologists, and some future research opportunities provided by Hydra genomics.

  1. Validation of a personal fluid loss monitor.

    PubMed

    Wickwire, J; Bishop, P A; Green, J M; Richardson, M T; Lomax, R G; Casaru, C; Jones, E; Curtner-Smith, M

    2008-02-01

    Dehydration raises heat injury risk and reduces performance [ , , ]. The purpose was to validate the Hydra-Alert Jr (Acumen). The Hydra-Alert was tested in two exercise/clothing conditions. Participants wore it while wearing exercise clothing and exercising at a self-selected intensity (n = 8). Others wore the Hydra-Alert while wearing a ballistic-vest and performing an industrial-protocol (n = 8). For each condition, the Hydra-Alert was tested on two occasions (T1 and T2). The Hydra-Alert was tested against nude weight loss for both conditions. The Hydra-Alert had low test-retest reliability for both conditions (average absolute value of the error between Hydra-Alert outputs of T1 and T2 = 0.08 +/- 0.08 percentage points). With exercise-clothing, the Hydra-Alert evidenced low-moderate correlations between percent nude weight loss and Hydra-Alert output at 20 min (r = 0.59-T1, p = 0.13; r = 0.12-T2, p = 0.78), at 40 min (r = 0.93-T1, p = 0.001; r = 0.63-T2, p = 0.10), and at approximately 2 % weight loss (r = 0.21-T1 and T2, p = 0.61 and 0.62, respectively). The correlation at 40 min during T1 fell during T2 suggesting the Hydra-Alert was inconsistent. When wearing a ballistic-vest, the Hydra-Alert had poor validity (T1: r = - 0.29 [p = 0.48] for weight loss vs. monitor; T2: r = 0.11 [p = 0.80]). At the higher levels of dehydration ( approximately 2 %), the Hydra-Alert error was so high as to render its readings of little value. In some cases, the Hydra-Alert could lead to a false level of security if dehydrated. Therefore, the Hydra-Alert is of little use for those who want to measure their fluid loss while exercising in the heat.

  2. Hydra, the everlasting embryo, confronts aging.

    PubMed

    Martínez, Daniel E; Bridge, Diane

    2012-01-01

    Existing data imply that the cnidarian Hydra vulgaris does not undergo senescence. In contrast, the related species Hydra oligactis shows increased mortality and physiological deterioration following sexual reproduction. Hydra thus offers the chance to study a striking difference in lifespan in members of the same genus. Adult Hydra possess three well-characterized stem cell populations, one of which gives rise to both somatic cells and gametes. The lack of senescence in Hydra vulgaris raises the question of how these stem cell populations are maintained over long periods of time. Investigation of the roles in Hydra of proteins involved in cellular stress responses in other organisms should provide insight into this issue. Proteins of particular interest include the Hsp70 family proteins and the transcription factor FoxO.

  3. Molecular cloning, sequence analysis, prokaryotic expression, and function prediction of foot-specific peroxidase in Hydra magnipapillata Chinese strain.

    PubMed

    Pan, H C; Yang, H Q; Zhao, F X; Qian, X C

    2014-08-28

    The cDNA sequence of foot-specific peroxidase PPOD1 from the Chinese strain of Hydra magnipapillata was cloned by reverse transcription-polymerase chain reaction. The cDNA sequence contained a coding region with an 873-bp open reading frame, a 31-bp 5'-untranslated region, and a 36-bp 3'-untranslated region. The structure prediction results showed that PPOD1 contains 10.34% of α-helix, 38.62% of extended strand, 12.41% of β-turn, and 38.62% of random coil. The structural core was α-helix at the N terminus. The GenBank protein blast server showed that PPOD1 contains 2 fascin-like domains. In addition, high-level PPOD1 activity was only present in the ectodermal epithelial cells located on the edge of the adhesive face of the basal disc, and that these cells extended lamellipodia and filopodia when the basal disc was tightly attached to a glass slide. The fascin-like domains of Hydra PPOD1 might contribute to the bundling of the actin filament of these cells, and hence, the formation of filopodia. In conclusion, these cells might play an important role in strengthening the adsorbability of the basal disc to substrates.

  4. Hydra as a tractable, long-lived model system for senescence.

    PubMed

    Bellantuono, Anthony J; Bridge, Diane; Martínez, Daniel E

    2015-01-30

    Hydra represents a unique model system for the study of senescence, with the opportunity for the comparison of non-aging and induced senescence. Hydra maintains three stem cell lineages, used for continuous tissue morphogenesis and replacement. Recent work has elucidated the roles of the insulin/IGF-1 signaling target FoxO, of Myc proteins, and of PIWI proteins in Hydra stem cells. Under laboratory culture conditions, Hydra vulgaris show no signs of aging even under long-term study. In contrast, Hydra oligactis can be experimentally induced to undergo reproduction-associated senescence. This provides a powerful comparative system for future studies.

  5. Phylogeny and biogeography of Hydra (Cnidaria: Hydridae) using mitochondrial and nuclear DNA sequences.

    PubMed

    Martínez, D E; Iñiguez, A R; Percell, K M; Willner, J B; Signorovitch, J; Campbell, R D

    2010-10-01

    The polyp hydra is ubiquitous in freshwater and is highly variable, with many species names assigned to different strains. Types of hydra do fall into four morphologically recognizable groups but many of the species determinations are confusing. To assess the diversity of hydra we collected 101 strains from six continents and built a phylogeny using three genetic markers. Each of the four well-defined groups of species represents a clade in our phylogeny. The green hydra group diverged first, followed by the braueri group and finally the sister groups vulgaris and oligactis. Each of eight species easily definable by morphological criteria represents a distinct clade in our phylogeny. Hydra of two clades, the green and the vulgaris hydra, are found on all continents (except Antarctica) and many islands, whereas hydra of the other two groups (braueri and oligactis) are restricted to the Northern Hemisphere. Our best estimate of the time of origin of hydra is about 60 Ma, long after the breakage of Pangea into northern and southern landmasses. Hydra appear to have diversified in the Northern Hemisphere, and their current diversity is greatest here. Two species were then able to disperse to the Southern Hemisphere, perhaps due to their thermal tolerance. Copyright 2010 Elsevier Inc. All rights reserved.

  6. The comprehensive analysis of DEG/ENaC subunits in Hydra reveals a large variety of peptide-gated channels, potentially involved in neuromuscular transmission.

    PubMed

    Assmann, Marc; Kuhn, Anne; Dürrnagel, Stefan; Holstein, Thomas W; Gründer, Stefan

    2014-10-14

    It is generally the case that fast transmission at neural synapses is mediated by small molecule neurotransmitters. The simple nervous system of the cnidarian Hydra, however, contains a large repertoire of neuropeptides and it has been suggested that neuropeptides are the principal transmitters of Hydra. An ion channel directly gated by Hydra-RFamide neuropeptides has indeed been identified in Hydra - the Hydra Na+ channel (HyNaC) 2/3/5, which is expressed at the oral side of the tentacle base. Hydra-RFamides are more widely expressed, however, being found in neurons of the head and peduncle region. Here, we explore whether further peptide-gated HyNaCs exist, where in the animal they are expressed, and whether they are all gated by Hydra-RFamides. We report molecular cloning of seven new HyNaC subunits - HyNaC6 to HyNaC12, all of which are members of the DEG/ENaC gene family. In Xenopus oocytes, these subunits assemble together with the four already known subunits into thirteen different ion channels that are directly gated by Hydra-RFamide neuropeptides with high affinity (up to 40 nM). In situ hybridization suggests that HyNaCs are expressed in epitheliomuscular cells at the oral and the aboral side of the tentacle base and at the peduncle. Moreover, diminazene, an inhibitor of HyNaCs, delayed tentacle movement in live Hydra. Our results show that Hydra has a large variety of peptide-gated ion channels that are activated by a restricted number of related neuropeptides. The existence and expression pattern of these channels, and behavioral effects induced by channel blockers, suggests that Hydra co-opted neuropeptides for fast neuromuscular transmission.

  7. The dynamic genome of Hydra.

    PubMed

    Chapman, Jarrod A; Kirkness, Ewen F; Simakov, Oleg; Hampson, Steven E; Mitros, Therese; Weinmaier, Thomas; Rattei, Thomas; Balasubramanian, Prakash G; Borman, Jon; Busam, Dana; Disbennett, Kathryn; Pfannkoch, Cynthia; Sumin, Nadezhda; Sutton, Granger G; Viswanathan, Lakshmi Devi; Walenz, Brian; Goodstein, David M; Hellsten, Uffe; Kawashima, Takeshi; Prochnik, Simon E; Putnam, Nicholas H; Shu, Shengquiang; Blumberg, Bruce; Dana, Catherine E; Gee, Lydia; Kibler, Dennis F; Law, Lee; Lindgens, Dirk; Martinez, Daniel E; Peng, Jisong; Wigge, Philip A; Bertulat, Bianca; Guder, Corina; Nakamura, Yukio; Ozbek, Suat; Watanabe, Hiroshi; Khalturin, Konstantin; Hemmrich, Georg; Franke, André; Augustin, René; Fraune, Sebastian; Hayakawa, Eisuke; Hayakawa, Shiho; Hirose, Mamiko; Hwang, Jung Shan; Ikeo, Kazuho; Nishimiya-Fujisawa, Chiemi; Ogura, Atshushi; Takahashi, Toshio; Steinmetz, Patrick R H; Zhang, Xiaoming; Aufschnaiter, Roland; Eder, Marie-Kristin; Gorny, Anne-Kathrin; Salvenmoser, Willi; Heimberg, Alysha M; Wheeler, Benjamin M; Peterson, Kevin J; Böttger, Angelika; Tischler, Patrick; Wolf, Alexander; Gojobori, Takashi; Remington, Karin A; Strausberg, Robert L; Venter, J Craig; Technau, Ulrich; Hobmayer, Bert; Bosch, Thomas C G; Holstein, Thomas W; Fujisawa, Toshitaka; Bode, Hans R; David, Charles N; Rokhsar, Daniel S; Steele, Robert E

    2010-03-25

    The freshwater cnidarian Hydra was first described in 1702 and has been the object of study for 300 years. Experimental studies of Hydra between 1736 and 1744 culminated in the discovery of asexual reproduction of an animal by budding, the first description of regeneration in an animal, and successful transplantation of tissue between animals. Today, Hydra is an important model for studies of axial patterning, stem cell biology and regeneration. Here we report the genome of Hydra magnipapillata and compare it to the genomes of the anthozoan Nematostella vectensis and other animals. The Hydra genome has been shaped by bursts of transposable element expansion, horizontal gene transfer, trans-splicing, and simplification of gene structure and gene content that parallel simplification of the Hydra life cycle. We also report the sequence of the genome of a novel bacterium stably associated with H. magnipapillata. Comparisons of the Hydra genome to the genomes of other animals shed light on the evolution of epithelia, contractile tissues, developmentally regulated transcription factors, the Spemann-Mangold organizer, pluripotency genes and the neuromuscular junction.

  8. Effects of analogues of hydra peptide morphogen on DNA synthesis in the myocardium of newborn albino rats.

    PubMed

    Sazonova, E N; Yakovenko, I G; Kryzhanovskaya, S Yu; Budylev, A A; Timoshin, S S

    2012-01-01

    DNA-synthetic activity of myocardial cells was studied by (3)H-thymidine autoradiography in newborn albino rats after intraperitoneal injection of hydra peptide morphogen and its analogues. Administration of hydra peptide morphogen stimulated proliferative activity in the myocardium. Short analogues of hydra peptide morphogen, 6C and 3C peptides, produced a similar effect. Administration of arginine-containing analogue of hydra peptide morphogen significantly reduced the number of DNA-synthesizing nuclei in the ventricular myocardium of newborn albino rats. The role of the structure of the peptide molecule in the realization of the morphogenetic effects of hydra peptide morphogen is discussed.

  9. Hydra as a tractable, long-lived model system for senescence

    PubMed Central

    Bellantuono, Anthony J.; Bridge, Diane; Martínez, Daniel E.

    2015-01-01

    Hydra represents a unique model system for the study of senescence, with the opportunity for the comparison of non-aging and induced senescence. Hydra maintains three stem cell lineages, used for continuous tissue morphogenesis and replacement. Recent work has elucidated the roles of the insulin/IGF-1 signaling target FoxO, of Myc proteins, and of PIWI proteins in Hydra stem cells. Under laboratory culture conditions, Hydra vulgaris show no signs of aging even under long-term study. In contrast, Hydra oligactis can be experimentally induced to undergo reproduction-associated senescence. This provides a powerful comparative system for future studies. PMID:26136619

  10. Components, structure, biogenesis and function of the Hydra extracellular matrix in regeneration, pattern formation and cell differentiation.

    PubMed

    Sarras, Michael P

    2012-01-01

    The body wall of Hydra is organized as an epithelial bilayer (ectoderm and endoderm) with an intervening extracellular matrix (ECM), termed mesoglea by early biologists. Morphological studies have determined that Hydra ECM is composed of two basal lamina layers positioned at the base of each epithelial layer with an intervening interstitial matrix. Molecular and biochemical analyses of Hydra ECM have established that it contains components similar to those seen in more complicated vertebrate species. These components include such macromolecules as laminin, type IV collagen, and various fibrillar collagens. These components are synthesized in a complicated manner involving cross-talk between the epithelial bilayer. Any perturbation to ECM biogenesis leads to a blockage in Hydra morphogenesis. Blockage in ECM/cell interactions in the adult polyp also leads to problems in epithelial transdifferentiation processes. In terms of biophysical parameters, Hydra ECM is highly flexible; a property that facilitates continuous movements along the organism's longitudinal and radial axis. This is in contrast to the more rigid matrices often found in vertebrates. The flexible nature of Hydra ECM can in part now be explained by the unique structure of the organism's type IV collagen and fibrillar collagens. This review will focus on Hydra ECM in regard to: 1) its general structure, 2) its molecular composition, 3) the biophysical basis for the flexible nature of Hydra's ECM, 4) the relationship of the biogenesis of Hydra ECM to regeneration of body form, and 5) the functional role of Hydra ECM during pattern formation and cell differentiation.

  11. CMacIonize: Monte Carlo photoionisation and moving-mesh radiation hydrodynamics

    NASA Astrophysics Data System (ADS)

    Vandenbroucke, Bert; Wood, Kenneth

    2018-02-01

    CMacIonize simulates the self-consistent evolution of HII regions surrounding young O and B stars, or other sources of ionizing radiation. The code combines a Monte Carlo photoionization algorithm that uses a complex mix of hydrogen, helium and several coolants in order to self-consistently solve for the ionization and temperature balance at any given time, with a standard first order hydrodynamics scheme. The code can be run as a post-processing tool to get the line emission from an existing simulation snapshot, but can also be used to run full radiation hydrodynamical simulations. Both the radiation transfer and the hydrodynamics are implemented in a general way that is independent of the grid structure that is used to discretize the system, allowing it to be run both as a standard fixed grid code and also as a moving-mesh code.

  12. A hydrodynamic approach to cosmology - Methodology

    NASA Technical Reports Server (NTRS)

    Cen, Renyue

    1992-01-01

    The present study describes an accurate and efficient hydrodynamic code for evolving self-gravitating cosmological systems. The hydrodynamic code is a flux-based mesh code originally designed for engineering hydrodynamical applications. A variety of checks were performed which indicate that the resolution of the code is a few cells, providing accuracy for integral energy quantities in the present simulations of 1-3 percent over the whole runs. Six species (H I, H II, He I, He II, He III) are tracked separately, and relevant ionization and recombination processes, as well as line and continuum heating and cooling, are computed. The background radiation field is simultaneously determined in the range 1 eV to 100 keV, allowing for absorption, emission, and cosmological effects. It is shown how the inevitable numerical inaccuracies can be estimated and to some extent overcome.

  13. The dynamic genome of Hydra

    PubMed Central

    Chapman, Jarrod A.; Kirkness, Ewen F.; Simakov, Oleg; Hampson, Steven E.; Mitros, Therese; Weinmaier, Therese; Rattei, Thomas; Balasubramanian, Prakash G.; Borman, Jon; Busam, Dana; Disbennett, Kathryn; Pfannkoch, Cynthia; Sumin, Nadezhda; Sutton, Granger G.; Viswanathan, Lakshmi Devi; Walenz, Brian; Goodstein, David M.; Hellsten, Uffe; Kawashima, Takeshi; Prochnik, Simon E.; Putnam, Nicholas H.; Shu, Shengquiang; Blumberg, Bruce; Dana, Catherine E.; Gee, Lydia; Kibler, Dennis F.; Law, Lee; Lindgens, Dirk; Martinez, Daniel E.; Peng, Jisong; Wigge, Philip A.; Bertulat, Bianca; Guder, Corina; Nakamura, Yukio; Ozbek, Suat; Watanabe, Hiroshi; Khalturin, Konstantin; Hemmrich, Georg; Franke, André; Augustin, René; Fraune, Sebastian; Hayakawa, Eisuke; Hayakawa, Shiho; Hirose, Mamiko; Hwang, Jung Shan; Ikeo, Kazuho; Nishimiya-Fujisawa, Chiemi; Ogura, Atshushi; Takahashi, Toshio; Steinmetz, Patrick R. H.; Zhang, Xiaoming; Aufschnaiter, Roland; Eder, Marie-Kristin; Gorny, Anne-Kathrin; Salvenmoser, Willi; Heimberg, Alysha M.; Wheeler, Benjamin M.; Peterson, Kevin J.; Böttger, Angelika; Tischler, Patrick; Wolf, Alexander; Gojobori, Takashi; Remington, Karin A.; Strausberg, Robert L.; Venter, J. Craig; Technau, Ulrich; Hobmayer, Bert; Bosch, Thomas C. G.; Holstein, Thomas W.; Fujisawa, Toshitaka; Bode, Hans R.; David, Charles N.; Rokhsar, Daniel S.; Steele, Robert E.

    2015-01-01

    The freshwater cnidarian Hydra was first described in 17021 and has been the object of study for 300 years. Experimental studies of Hydra between 1736 and 1744 culminated in the discovery of asexual reproduction of an animal by budding, the first description of regeneration in an animal, and successful transplantation of tissue between animals2. Today, Hydra is an important model for studies of axial patterning3, stem cell biology4 and regeneration5. Here we report the genome of Hydra magnipapillata and compare it to the genomes of the anthozoan Nematostella vectensis6 and other animals. The Hydra genome has been shaped by bursts of transposable element expansion, horizontal gene transfer, trans-splicing, and simplification of gene structure and gene content that parallel simplification of the Hydra life cycle. We also report the sequence of the genome of a novel bacterium stably associated with H. magnipapillata. Comparisons of the Hydra genome to the genomes of other animals shed light on the evolution of epithelia, contractile tissues, developmentally regulated transcription factors, the Spemann–Mangold organizer, pluripotency genes and the neuromuscular junction. PMID:20228792

  14. Revisiting the age, evolutionary history and species level diversity of the genus Hydra (Cnidaria: Hydrozoa).

    PubMed

    Schwentner, Martin; Bosch, Thomas C G

    2015-10-01

    The genus Hydra has long served as a model system in comparative immunology, developmental and evolutionary biology. Despite its relevance for fundamental research, Hydra's evolutionary origins and species level diversity are not well understood. Detailed previous studies using molecular techniques identified several clades within Hydra, but how these are related to described species remained largely an open question. In the present study, we compiled all published sequence data for three mitochondrial and nuclear genes (COI, 16S and ITS), complemented these with some new sequence data and delimited main genetic lineages (=hypothetical species) objectively by employing two DNA barcoding approaches. Conclusions on the species status of these main lineages were based on inferences of reproductive isolation. Relevant divergence times within Hydra were estimated based on relaxed molecular clock analyses with four genes (COI, 16S, EF1α and 28S) and four cnidarians fossil calibration points All in all, 28 main lineages could be delimited, many more than anticipated from earlier studies. Because allopatric distributions were common, inferences of reproductive isolation often remained ambiguous but reproductive isolation was rarely refuted. Our results support three major conclusions which are central for Hydra research: (1) species level diversity was underestimated by molecular studies; (2) species affiliations of several crucial 'workhorses' of Hydra evolutionary research were wrong and (3) crown group Hydra originated ∼200mya. Our results demonstrate that the taxonomy of Hydra requires a thorough revision and that evolutionary studies need to take this into account when interspecific comparisons are made. Hydra originated on Pangea. Three of four extant groups evolved ∼70mya ago, possibly on the northern landmass of Laurasia. Consequently, Hydra's cosmopolitan distribution is the result of transcontinental and transoceanic dispersal. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Alpha-Linolenic Acid, but Not Palmitic Acid, Negatively Impacts Survival, Asexual Reproductive Rate, and Clonal Offspring Size in Hydra oligactis.

    PubMed

    Kaliszewicz, Anita; Jarząbek, Karolina; Szymańska, Justyna; Karaban, Kamil; Sierakowski, Maciej

    2018-04-01

    Hydra, as sit-and-wait predators with limited food selectivity, could serve as model organisms for the analysis of the effect of a particular dietary component on growth and reproduction. We investigated the effect of food quality and of diets enriched with palmitic (PAM) or α-linolenic acid (ALA) on the life history traits of two hydra species: Hydra oligactis and Hydra vulgaris. We tested the hypothesis that a diet enriched with polyunsaturated fatty acids (PUFA) can stimulate growth and reproduction in simple metazoans with a sit-and-wait type of predatory strategy. Our results revealed that a diet based on Artemia nauplii, which are not a natural food for freshwater hydra, stimulated growth, asexual reproduction, and survival in hydra. Artemia nauplii were characterized by the highest lipid content of all used food sources. The analysis of the fatty acid content of hydra indicated the domination the n-6 fatty acids over n-3 (eicosapentaenoic acid [EPA], docosahexaenoic acid [DHA], and ALA). Arachidonic acid appeared to be the dominant PUFA in Hydra, irrespective of diet supplementation with palmitic acid or ALA. The dietary supplementation of ALA negatively affected the survival, asexual reproductive rate, and size of clonal offspring of H. oligactis and had no effect on the life history traits of H. vulgaris. Our results also suggest that the hydras are not able to efficiently convert ALA into other essential fatty acids, such as EPA and DHA. To our knowledge, this is the first report about the adverse effects of n-3 fatty acid supplementation in primitive metazoans such as hydra. © 2018 AOCS.

  16. Smoothed Particle Hydrodynamic Simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2016-10-05

    This code is a highly modular framework for developing smoothed particle hydrodynamic (SPH) simulations running on parallel platforms. The compartmentalization of the code allows for rapid development of new SPH applications and modifications of existing algorithms. The compartmentalization also allows changes in one part of the code used by many applications to instantly be made available to all applications.

  17. What hydra has to say about the role and origin of symbiotic interactions.

    PubMed

    Bosch, Thomas C G

    2012-08-01

    The Hydra holobiont involves at least three types of organisms that all share a long coevolutionary history and appear to depend on each other. Here I review how symbiotic algae and stably associated bacteria interact with the Hydra host and where in the tissue they are located. In particular I discuss the role of Toll-like receptor (TLR) signaling in maintaining Hydra's species-specific microbiota. I also discuss studies in Hydra viridis and its symbiotic Chlorella algae which indicate that the symbiotic algae are critically involved in the control of sexual differentiation in green Hydra. Finally, I review the state of "omics" in this tripartite association and the fact that the functioning of this holobiont is also a tale of several genomes.

  18. The Effect of Different Materials on the Accuracy of the HYDRA Optical-Fiber-Coupled Coherent Range/Pressure Measurement System and the Development of the Health Care Database System at Old Dominion University

    NASA Technical Reports Server (NTRS)

    Johnson, Kimberly D.

    1995-01-01

    The objective of the first project involving the HYDRA laser system was to determine what effects, if any, could been seen in the system's measurements when testing was done with objects composed of different materials. Ideally we would like to have seen that the range of measurements were all within the accepted 0.4 millimeter accuracy of the system. Unfortunately our results were not as we had hoped, and there did appear to be some significant difference in the measurements made on objects composed of different materials. The second project is a continuing project at Old Dominion University. The ultimate goal is to develop a medical database that allows a doctor or hospital to keep medical records on line. The current data of the system consisted of one patient whose medical data had been hard coded to allow for a demonstration of the potentials of the system. The short term goal for this summer was to add additional patients to the system for testing, and to eliminate the hard coding of data by creating a database where data could be stored and queried to produce the results seen in the current state.

  19. Icy Hydra

    NASA Image and Video Library

    2016-05-06

    The surface of Hydra, Pluto outermost small moon, is dominated by nearly pristine water ice confirming hints that scientists picked up in NASA New Horizons images showing Hydra highly reflective surface.

  20. Conservation of the Nucleotide Excision Repair Pathway: Characterization of Hydra Xeroderma Pigmentosum Group F Homolog

    PubMed Central

    Barve, Apurva; Ghaskadbi, Saroj; Ghaskadbi, Surendra

    2013-01-01

    Hydra, one of the earliest metazoans with tissue grade organization and nervous system, is an animal with a remarkable regeneration capacity and shows no signs of organismal aging. We have for the first time identified genes of the nucleotide excision repair (NER) pathway from hydra. Here we report cloning and characterization of hydra homolog of xeroderma pigmentosum group F (XPF) gene that encodes a structure-specific 5′ endonuclease which is a crucial component of NER. In silico analysis shows that hydra XPF amino acid sequence is very similar to its counterparts from other animals, especially vertebrates, and shows all features essential for its function. By in situ hybridization, we show that hydra XPF is expressed prominently in the multipotent stem cell niche in the central region of the body column. Ectoderm of the diploblastic hydra was shown to express higher levels of XPF as compared to the endoderm by semi-quantitative RT-PCR. Semi-quantitative RT-PCR analysis also demonstrated that interstitial cells, a multipotent and rapidly cycling stem cell lineage of hydra, express higher levels of XPF mRNA than other cell types. Our data show that XPF and by extension, the NER pathway is highly conserved during evolution. The prominent expression of an NER gene in interstitial cells may have implications for the lack of senescence in hydra. PMID:23577191

  1. Value of the Hydra model system for studying symbiosis.

    PubMed

    Kovacevic, Goran

    2012-01-01

    Green Hydra is used as a classical example for explaining symbiosis in schools as well as an excellent research model. Indeed the cosmopolitan green Hydra (Hydra viridissima) provides a potent experimental framework to investigate the symbiotic relationships between a complex eumetazoan organism and a unicellular photoautotrophic green algae named Chlorella. Chlorella populates a single somatic cell type, the gastrodermal myoepithelial cells (also named digestive cells) and the oocyte at the time of sexual reproduction. This symbiotic relationship is stable, well-determined and provides biological advantages to the algal symbionts, but also to green Hydra over the related non-symbiotic Hydra i.e. brown hydra. These advantages likely result from the bidirectional flow of metabolites between the host and the symbiont. Moreover genetic flow through horizontal gene transfer might also participate in the establishment of these selective advantages. However, these relationships between the host and the symbionts may be more complex. Thus, Jolley and Smith showed that the reproductive rate of the algae increases dramatically outside of Hydra cells, although this endosymbiont isolation is debated. Recently it became possible to keep different species of endosymbionts isolated from green Hydra in stable and permanent cultures and compare them to free-living Chlorella species. Future studies testing metabolic relationships and genetic flow should help elucidate the mechanisms that support the maintenance of symbiosis in a eumetazoan species.

  2. Conservation of the nucleotide excision repair pathway: characterization of hydra Xeroderma Pigmentosum group F homolog.

    PubMed

    Barve, Apurva; Ghaskadbi, Saroj; Ghaskadbi, Surendra

    2013-01-01

    Hydra, one of the earliest metazoans with tissue grade organization and nervous system, is an animal with a remarkable regeneration capacity and shows no signs of organismal aging. We have for the first time identified genes of the nucleotide excision repair (NER) pathway from hydra. Here we report cloning and characterization of hydra homolog of xeroderma pigmentosum group F (XPF) gene that encodes a structure-specific 5' endonuclease which is a crucial component of NER. In silico analysis shows that hydra XPF amino acid sequence is very similar to its counterparts from other animals, especially vertebrates, and shows all features essential for its function. By in situ hybridization, we show that hydra XPF is expressed prominently in the multipotent stem cell niche in the central region of the body column. Ectoderm of the diploblastic hydra was shown to express higher levels of XPF as compared to the endoderm by semi-quantitative RT-PCR. Semi-quantitative RT-PCR analysis also demonstrated that interstitial cells, a multipotent and rapidly cycling stem cell lineage of hydra, express higher levels of XPF mRNA than other cell types. Our data show that XPF and by extension, the NER pathway is highly conserved during evolution. The prominent expression of an NER gene in interstitial cells may have implications for the lack of senescence in hydra.

  3. Germline stem cells and sex determination in Hydra.

    PubMed

    Nishimiya-Fujisawa, Chiemi; Kobayashi, Satoru

    2012-01-01

    The sex of germline stem cells (GSCs) in Hydra is determined in a cell-autonomous manner. In gonochoristic species like Hydra magnipapillata or H. oligactis, where the sexes are separate, male polyps have sperm-restricted stem cells (SpSCs), while females have egg-restricted stem cells (EgSCs). These GSCs self-renew in a polyp, and are usually transmitted to a new bud from a parental polyp during asexual reproduction. But if these GSCs are lost during subsequent budding or regeneration events, new ones are generated from multipotent stem cells (MPSCs). MPSCs are the somatic stem cells in Hydra that ordinarily differentiate into nerve cells, nematocytes (stinging cells in cnidarians), and gland cells. By means of such a backup system, sexual reproduction is guaranteed for every polyp. Interestingly, Hydra polyps occasionally undergo sex-reversal. This implies that each polyp can produce either type of GSCs, i.e. Hydra are genetically hermaphroditic. Nevertheless a polyp possesses only one type of GSCs at a time. We propose a plausible model for sex-reversal in Hydra. We also discuss so-called germline specific genes, which are expressed in both GSCs and MPSCs, and some future plans to investigate Hydra GSCs.

  4. Cloning of noggin gene from hydra and analysis of its functional conservation using Xenopus laevis embryos.

    PubMed

    Chandramore, Kalpana; Ito, Yuzuro; Takahashi, Shuji; Asashima, Makoto; Ghaskadbi, Surendra

    2010-01-01

    Hydra, a member of phylum Cnidaria that arose early in evolution, is endowed with a defined axis, organized nervous system, and active behavior. It is a powerful model system for the elucidation of evolution of developmental mechanisms in animals. Here, we describe the identification and cloning of noggin-like gene from hydra. Noggin is a secreted protein involved at multiple stages of vertebrate embryonic development including neural induction and is known to exert its effects by inhibiting the bone morphogenetic protein (BMP)-signaling pathway. Sequence analysis revealed that hydra Noggin shows considerable similarity with its orthologs at the amino acid level. When microinjected in the early Xenopus embryos, hydra noggin mRNA induced a secondary axis in 100% of the injected embryos, demonstrating functional conservation of hydra noggin in vertebrates. This was further confirmed by the partial rescue of Xenopus embryos by hydra noggin mRNA from UV-induced ventralization. By using animal cap assay in Xenopus embryos, we demonstrate that these effects of hydra noggin in Xenopus embryos are because of inhibition of BMP signaling by Noggin. Our data indicate that BMP/Noggin antagonism predates the bilaterian divergence and is conserved during the evolution.

  5. Measuring glutathione-induced feeding response in hydra.

    PubMed

    Kulkarni, Ram; Galande, Sanjeev

    2014-11-16

    Hydra is among the most primitive organisms possessing a nervous system and chemosensation for detecting reduced glutathione (GSH) for capturing the prey. The movement of prey organisms causes mechanosensory discharge of the stinging cells called nematocysts from hydra, which are inserted into the prey. The feeding response in hydra, which includes curling of the tentacles to bring the prey towards the mouth, opening of the mouth and consequent engulfing of the prey, is triggered by GSH present in the fluid released from the injured prey. To be able to identify the molecular mechanism of the feeding response in hydra which is unknown to date, it is necessary to establish an assay to measure the feeding response. Here, we describe a simple method for the quantitation of the feeding response in which the distance between the apical end of the tentacle and mouth of hydra is measured and the ratio of such distance before and after the addition of GSH is determined. The ratio, called the relative tentacle spread, was found to give a measure of the feeding response. This assay was validated using a starvation model in which starved hydra show an enhanced feeding response in comparison with daily fed hydra.

  6. Symbiosis between hydra and chlorella: molecular phylogenetic analysis and experimental study provide insight into its origin and evolution.

    PubMed

    Kawaida, Hitomi; Ohba, Kohki; Koutake, Yuhki; Shimizu, Hiroshi; Tachida, Hidenori; Kobayakawa, Yoshitaka

    2013-03-01

    Although many physiological studies have been reported on the symbiosis between hydra and green algae, very little information from a molecular phylogenetic aspect of symbiosis is available. In order to understand the origin and evolution of symbiosis between the two organisms, we compared the phylogenetic relationships among symbiotic green algae with the phylogenetic relationships among host hydra strains. To do so, we reconstructed molecular phylogenetic trees of several strains of symbiotic chlorella harbored in the endodermal epithelial cells of viridissima group hydra strains and investigated their congruence with the molecular phylogenetic trees of the host hydra strains. To examine the species specificity between the host and the symbiont with respect to the genetic distance, we also tried to introduce chlorella strains into two aposymbiotic strains of viridissima group hydra in which symbiotic chlorella had been eliminated in advance. We discussed the origin and history of symbiosis between hydra and green algae based on the analysis. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Effects of removing symbiotic green algae on the response of Hydra viridissima (Pallas 1776) to metals.

    PubMed

    Karntanut, W; Pascoe, D

    2005-03-01

    Hydra viridissima is distinctively green due to symbiotic algae within the endodermal cells. The current investigation was designed to see if these algae influenced the response of Hydra to pollutants, by comparing the toxicity of copper, cadmium, and zinc to both symbiotic and aposymbiotic (free of their endosymbiotic algae) H. viridissima. The results demonstrated that the toxicity of the metals was generally similar for both groups of Hydra. However, at the lowest copper concentrations there was a difference between the two group of polyps, with aposymbiotic animals dying at concentrations where symbiotic Hydra survived. The lowest observed effect concentrations were 0.0068 and 0.016 mg/L for aposymbiotic and symbiotic Hydra, respectively. It is suggested that the symbiotic Hydra derive benefits from the association that enable them to better tolerate the toxicant. This work demonstrated that experimental manipulation of symbionts can help to explain their complex interactions and the ways in which they respond to pollutants.

  8. TORUS: Radiation transport and hydrodynamics code

    NASA Astrophysics Data System (ADS)

    Harries, Tim

    2014-04-01

    TORUS is a flexible radiation transfer and radiation-hydrodynamics code. The code has a basic infrastructure that includes the AMR mesh scheme that is used by several physics modules including atomic line transfer in a moving medium, molecular line transfer, photoionization, radiation hydrodynamics and radiative equilibrium. TORUS is useful for a variety of problems, including magnetospheric accretion onto T Tauri stars, spiral nebulae around Wolf-Rayet stars, discs around Herbig AeBe stars, structured winds of O supergiants and Raman-scattered line formation in symbiotic binaries, and dust emission and molecular line formation in star forming clusters. The code is written in Fortran 2003 and is compiled using a standard Gnu makefile. The code is parallelized using both MPI and OMP, and can use these parallel sections either separately or in a hybrid mode.

  9. Shadowfax: Moving mesh hydrodynamical integration code

    NASA Astrophysics Data System (ADS)

    Vandenbroucke, Bert

    2016-05-01

    Shadowfax simulates galaxy evolution. Written in object-oriented modular C++, it evolves a mixture of gas, subject to the laws of hydrodynamics and gravity, and any collisionless fluid only subject to gravity, such as cold dark matter or stars. For the hydrodynamical integration, it makes use of a (co-) moving Lagrangian mesh. The code has a 2D and 3D version, contains utility programs to generate initial conditions and visualize simulation snapshots, and its input/output is compatible with a number of other simulation codes, e.g. Gadget2 (ascl:0003.001) and GIZMO (ascl:1410.003).

  10. Hydra effects in stable communities and their implications for system dynamics.

    PubMed

    Cortez, Michael H; Abrams, Peter A

    2016-05-01

    A hydra effect occurs when the mean density of a species increases in response to greater mortality. We show that, in a stable multispecies system, a species exhibits a hydra effect only if maintaining that species at its equilibrium density destabilizes the system. The stability of the original system is due to the responses of the hydra-effect species to changes in the other species' densities. If that dynamical feedback is removed by fixing the density of the hydra-effect species, large changes in the community make-up (including the possibility of species extinction) can occur. This general result has several implications: (1) Hydra effects occur in a much wider variety of species and interaction webs than has previously been described, and may occur for multiple species, even in small webs; (2) conditions for hydra effects caused by predators (or diseases) often differ from those caused by other mortality factors; (3) introducing a specialist or a switching predator of a hydra-effect species often causes large changes in the community, which frequently involve extinction of other species; (4) harvest policies that attempt to maintain a constant density of a hydra-effect species may be difficult to implement, and, if successful, are likely to cause large changes in the densities of other species; and (5) trophic cascades and other indirect effects caused by predators of hydra-effect species can exhibit amplification of effects or unexpected directions of change. Although we concentrate on systems that are originally stable and models with no stage-structure or trait variation, the generality of our result suggests that similar responses to mortality will occur in many systems without these simplifying assumptions. In addition, while hydra effects are defined as responses to altered mortality, they also imply counterintuitive responses to changes in immigration and other parameters affecting population growth.

  11. Molecular phylogenetic study in genus Hydra.

    PubMed

    Kawaida, Hitomi; Shimizu, Hiroshi; Fujisawa, Toshitaka; Tachida, Hidenori; Kobayakawa, Yoshitaka

    2010-11-15

    Among 8000-9000 species of Cnidaria, only several dozens of species of Hydrozoa have been found in the fresh water. Hydra is such a fresh water polyp and has been used as a good material for research in developmental biology, regeneration and pattern formation. Although the genus Hydra has only a few ten species, its distribution is cosmopolitan. The phylogenetic relationship between hydra species is fascinating from the aspect of evolutionary biology and biogeography. However, only a few molecular phylogenetic studies have been reported on hydra. Therefore, we conducted a molecular phylogenetic study of the genus Hydra based on mitochondrial and nuclear nucleotide sequences using a hydra collection that has been kept in the National Institute of Genetics (NIG) of Japan. The results support the idea that four species groups comprise the genus Hydra. Within the viridissima group (green hydra) and braueri group, genetic distances between strains were relatively large. In contrast, genetic distances between strains among the vulgaris and oligactis groups were small irrespective of their geographic distribution. The vulgaris group strains were classified at least (as far as our investigated samples) into three sub-groups, vulgaris sub-group, carnea sub-group, and H. sp. (K5 and K6) sub-group. All of the vulgaris sub-group and H. sp. (K5 and K6) sub-group strains were collected in Eurasia. The carnea sub-group strains in NIG collection were all collected in North America. A few newly collected samples in Japan, however, suggested belonging to the carnea sub-group according to the molecular phylogenic analysis. This suggests a trans-Pacific distribution of the carnea sub-group hydra. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. General Relativistic Smoothed Particle Hydrodynamics code developments: A progress report

    NASA Astrophysics Data System (ADS)

    Faber, Joshua; Silberman, Zachary; Rizzo, Monica

    2017-01-01

    We report on our progress in developing a new general relativistic Smoothed Particle Hydrodynamics (SPH) code, which will be appropriate for studying the properties of accretion disks around black holes as well as compact object binary mergers and their ejecta. We will discuss in turn the relativistic formalisms being used to handle the evolution, our techniques for dealing with conservative and primitive variables, as well as those used to ensure proper conservation of various physical quantities. Code tests and performance metrics will be discussed, as will the prospects for including smoothed particle hydrodynamics codes within other numerical relativity codebases, particularly the publicly available Einstein Toolkit. We acknowledge support from NSF award ACI-1550436 and an internal RIT D-RIG grant.

  13. Hydra, a model system for environmental studies.

    PubMed

    Quinn, Brian; Gagné, François; Blaise, Christian

    2012-01-01

    Hydra have been extensively used for studying the teratogenic and toxic potential of numerous toxins throughout the years and are more recently growing in popularity to assess the impacts of environmental pollutants. Hydra are an appropriate bioindicator species for use in environmental assessment owing to their easily measurable physical (morphology), biochemical (xenobiotic biotransformation; oxidative stress), behavioural (feeding) and reproductive (sexual and asexual) endpoints. Hydra also possess an unparalleled ability to regenerate, allowing the assessment of teratogenic compounds and the impact of contaminants on stem cells. Importantly, Hydra are ubiquitous throughout freshwater environments and relatively easy to culture making them appropriate for use in small scale bioassay systems. Hydra have been used to assess the environmental impacts of numerous environmental pollutants including metals, organic toxicants (including pharmaceuticals and endocrine disrupting compounds), nanomaterials and industrial and municipal effluents. They have been found to be among the most sensitive animals tested for metals and certain effluents, comparing favourably with more standardised toxicity tests. Despite their lack of use in formalised monitoring programmes, Hydra have been extensively used and are regarded as a model organism in aquatic toxicology.

  14. GIZMO: Multi-method magneto-hydrodynamics+gravity code

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.

    2014-10-01

    GIZMO is a flexible, multi-method magneto-hydrodynamics+gravity code that solves the hydrodynamic equations using a variety of different methods. It introduces new Lagrangian Godunov-type methods that allow solving the fluid equations with a moving particle distribution that is automatically adaptive in resolution and avoids the advection errors, angular momentum conservation errors, and excessive diffusion problems that seriously limit the applicability of “adaptive mesh” (AMR) codes, while simultaneously avoiding the low-order errors inherent to simpler methods like smoothed-particle hydrodynamics (SPH). GIZMO also allows the use of SPH either in “traditional” form or “modern” (more accurate) forms, or use of a mesh. Self-gravity is solved quickly with a BH-Tree (optionally a hybrid PM-Tree for periodic boundaries) and on-the-fly adaptive gravitational softenings. The code is descended from P-GADGET, itself descended from GADGET-2 (ascl:0003.001), and many of the naming conventions remain (for the sake of compatibility with the large library of GADGET work and analysis software).

  15. Prototype Mixed Finite Element Hydrodynamics Capability in ARES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rieben, R N

    This document describes work on a prototype Mixed Finite Element Method (MFEM) hydrodynamics algorithm in the ARES code, and its application to a set of standard test problems. This work is motivated by the need for improvements to the algorithms used in the Lagrange hydrodynamics step to make them more robust. We begin by identifying the outstanding issues with traditional numerical hydrodynamics algorithms followed by a description of the proposed method and how it may address several of these longstanding issues. We give a theoretical overview of the proposed MFEM algorithm as well as a summary of the coding additionsmore » and modifications that were made to add this capability to the ARES code. We present results obtained with the new method on a set of canonical hydrodynamics test problems and demonstrate significant improvement in comparison to results obtained with traditional methods. We conclude with a summary of the issues still at hand and motivate the need for continued research to develop the proposed method into maturity.« less

  16. TW Hydrae Family of Stars

    NASA Image and Video Library

    2016-04-19

    A sky map taken by NASA Wide-field Infrared Survey Explorer, or WISE, shows the location of the TW Hydrae family, or association, of stars, which lies about 175 light-years from Earth and is centered in the Hydra constellation.

  17. Acute toxicity assessment of Polish (waste) water with a microplate-based Hydra attenuata assay: a comparison with the Microtox test.

    PubMed

    Pardos, M; Benninghoff, C; Guéguen, C; Thomas, R; Dobrowolski, J; Dominik, J

    1999-12-15

    The use of Hydra attenuata in acute toxicity assessment is a potentially useful tool in (waste) water biomonitoring. The purpose of this study was to compare the sensitivity of H. attenuata with the extensively used Microtox test on 14 (waste) water samples from the Kraków region (South Poland). To this end, specific morphological changes displayed by the freshwater cnidarian Hydra attenuata (lethal LC50s and sublethal EC50s effects) and bioluminescence of the marine bacteria Vibrio fisheri (Microtox) were compared. Clearly, the Hydra assay was the more sensitive indicator of toxicity. No relationship was found among Hydra toxicological responses and water levels of As, Cd, Co, Cu, Pb and Zn. However, it appeared that toxicity to Hydra might be due to ammonia levels. Additional studies to better circumscribe the tolerance of H. attenuata to 'natural' water characteristics are needed.

  18. System of closing relations of a two-fluid model for the HYDRA-IBRAE/LM/V1 code for calculation of sodium boiling in channels of power equipment

    NASA Astrophysics Data System (ADS)

    Usov, E. V.; Butov, A. A.; Dugarov, G. A.; Kudasov, I. G.; Lezhnin, S. I.; Mosunova, N. A.; Pribaturin, N. A.

    2017-07-01

    The system of equations from a two-fluid model is widely used in modeling thermohydraulic processes during accidents in nuclear reactors. The model includes conservation equations governing the balance of mass, momentum, and energy in each phase of the coolant. The features of heat and mass transfer, as well as of mechanical interaction between phases or with the channel wall, are described by a system of closing relations. Properly verified foreign and Russian codes with a comprehensive system of closing relations are available to predict processes in water coolant. As to the sodium coolant, only a few open publications on this subject are known. A complete system of closing relations used in the HYDRA-IBRAE/LM/V1 thermohydraulic code for calculation of sodium boiling in channels of power equipment is presented. The selection of these relations is corroborated on the basis of results of analysis of available publications with an account taken of the processes occurring in liquid sodium. A comparison with approaches outlined in foreign publications is presented. Particular attention has been given to the calculation of the sodium two-phase flow boiling. The flow regime map and a procedure for the calculation of interfacial friction and heat transfer in a sodium flow with account taken of high conductivity of sodium are described in sufficient detail. Correlations are presented for calculation of heat transfer for a single-phase sodium flow, sodium flow boiling, and sodium flow boiling crisis. A method is proposed for prediction of flow boiling crisis initiation.

  19. Using Pulsed Power for Hydrodynamic Code Validation

    DTIC Science & Technology

    2001-06-01

    Air Force Research Laboratory ( AFRL ). A...bank at the Air Force Research Laboratory ( AFRL ). A cylindrical aluminum liner that is magnetically imploded onto a central target by self-induced...James Degnan, George Kiuttu Air Force Research Laboratory Albuquerque, NM 87117 Abstract As part of ongoing hydrodynamic code

  20. CRASH: A BLOCK-ADAPTIVE-MESH CODE FOR RADIATIVE SHOCK HYDRODYNAMICS-IMPLEMENTATION AND VERIFICATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van der Holst, B.; Toth, G.; Sokolov, I. V.

    We describe the Center for Radiative Shock Hydrodynamics (CRASH) code, a block-adaptive-mesh code for multi-material radiation hydrodynamics. The implementation solves the radiation diffusion model with a gray or multi-group method and uses a flux-limited diffusion approximation to recover the free-streaming limit. Electrons and ions are allowed to have different temperatures and we include flux-limited electron heat conduction. The radiation hydrodynamic equations are solved in the Eulerian frame by means of a conservative finite-volume discretization in either one-, two-, or three-dimensional slab geometry or in two-dimensional cylindrical symmetry. An operator-split method is used to solve these equations in three substeps: (1)more » an explicit step of a shock-capturing hydrodynamic solver; (2) a linear advection of the radiation in frequency-logarithm space; and (3) an implicit solution of the stiff radiation diffusion, heat conduction, and energy exchange. We present a suite of verification test problems to demonstrate the accuracy and performance of the algorithms. The applications are for astrophysics and laboratory astrophysics. The CRASH code is an extension of the Block-Adaptive Tree Solarwind Roe Upwind Scheme (BATS-R-US) code with a new radiation transfer and heat conduction library and equation-of-state and multi-group opacity solvers. Both CRASH and BATS-R-US are part of the publicly available Space Weather Modeling Framework.« less

  1. Exploring the HYDRAtion method for loading siRNA on liposomes: the interplay between stability and biological activity in human undiluted ascites fluid.

    PubMed

    Dakwar, George R; Braeckmans, Kevin; Ceelen, Wim; De Smedt, Stefaan C; Remaut, Katrien

    2017-04-01

    Delivery of small interfering RNA (siRNA) is recently gaining tremendous attention for the treatment of ovarian cancer. The present study investigated the potential of different liposomal formulations composed of (2,3-dioleoyloxy-propyl)-trimethylammonium (DOTAP) and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) encapsulating siRNA (hydration method) for their ability to knockdown luciferase (Luc) activity in human ovarian cancer SKOV-3 cells. Fluorescence single particle tracking (fSPT) and fluorescence correlation spectroscopy (FCS) in human-undiluted ascites fluid obtained from a peritoneal carcinomatosis patient revealed that cationic hydra-lipoplexes (HYDRA-LPXs) and HYDRA-LPXs decorated with stable DSPE-PEG (DSPE HYDRA-LPXs) showed high stability during at least 24 h. HYDRA-LPXs decorated with sheddable C8 and C16 PEG-Ceramides (Cer HYDRA-LPXs) resulted in rapid and premature release of siRNA already in the first hours. Despite their role in preventing aggregation in vivo, liposomes decorated with stable PEG residues resulted in a poor transfection compared to the ones decorated with sheddable PEG residues in reduced serum conditions. Yet, the transfection efficiency of both Cer HYDRA-LPXs significantly decreased following 1 h of incubation in ascites fluid due to a drastic drop in the cellular uptake, while DSPE HYDRA-LPXs are still taken up by cells, but too stable to induce efficient gene silencing.

  2. CoCoNuT: General relativistic hydrodynamics code with dynamical space-time evolution

    NASA Astrophysics Data System (ADS)

    Dimmelmeier, Harald; Novak, Jérôme; Cerdá-Durán, Pablo

    2012-02-01

    CoCoNuT is a general relativistic hydrodynamics code with dynamical space-time evolution. The main aim of this numerical code is the study of several astrophysical scenarios in which general relativity can play an important role, namely the collapse of rapidly rotating stellar cores and the evolution of isolated neutron stars. The code has two flavors: CoCoA, the axisymmetric (2D) magnetized version, and CoCoNuT, the 3D non-magnetized version.

  3. Species-Specific Viromes in the Ancestral Holobiont Hydra

    PubMed Central

    Anton-Erxleben, Friederike; Lim, Yan Wei; Schmieder, Robert; Fraune, Sebastian; Franzenburg, Sören; Insua, Santiago; Machado, GloriaMay; Haynes, Matthew; Little, Mark; Kimble, Robert; Rosenstiel, Philip; Rohwer, Forest L.; Bosch, Thomas C. G.

    2014-01-01

    Recent evidence showing host specificity of colonizing bacteria supports the view that multicellular organisms are holobionts comprised of the macroscopic host in synergistic interdependence with a heterogeneous and host-specific microbial community. Whereas host-bacteria interactions have been extensively investigated, comparatively little is known about host-virus interactions and viral contribution to the holobiont. We sought to determine the viral communities associating with different Hydra species, whether these viral communities were altered with environmental stress, and whether these viruses affect the Hydra-associated holobiont. Here we show that each species of Hydra harbors a diverse host-associated virome. Primary viral families associated with Hydra are Myoviridae, Siphoviridae, Inoviridae, and Herpesviridae. Most Hydra-associated viruses are bacteriophages, a reflection of their involvement in the holobiont. Changes in environmental conditions alter the associated virome, increase viral diversity, and affect the metabolism of the holobiont. The specificity and dynamics of the virome point to potential viral involvement in regulating microbial associations in the Hydra holobiont. While viruses are generally regarded as pathogenic agents, our study suggests an evolutionary conserved ability of viruses to function as holobiont regulators and, therefore, constitutes an emerging paradigm shift in host-microbe interactions. PMID:25343582

  4. The head organizer in Hydra.

    PubMed

    Bode, Hans R

    2012-01-01

    Organizers and organizing centers play critical roles in axis formation and patterning during the early stages of embryogenesis in many bilaterians. The presence and activity of an organizer was first described in adult Hydra about 100 years ago, and in the following decades organizer regions were identified in a number of bilaterian embryos. In an adult Hydra, the cells of the body column are constantly in the mitotic cycle resulting in continuous displacement of the tissue to the extremities where it is sloughed. In this context, the head organizer located in the hypostome is continuously active sending out signals to maintain the structure and morphology of the head, body column and foot of the animal. The molecular basis of the head organizer involves the canonical Wnt pathway, which acts in a self-renewing manner to maintain itself in the context of the tissue dynamics of Hydra. During bud formation, Hydra's mode of asexual reproduction, a head organizer based on the canonical Wnt pathway is set up to initiate and control the development of a new Hydra. As this pathway plays a central role in vertebrate embryonic organizers, its presence and activity in Hydra indicate that the molecular basis of the organizer arose early in metazoan evolution.

  5. Species-specific viromes in the ancestral holobiont Hydra.

    PubMed

    Grasis, Juris A; Lachnit, Tim; Anton-Erxleben, Friederike; Lim, Yan Wei; Schmieder, Robert; Fraune, Sebastian; Franzenburg, Sören; Insua, Santiago; Machado, GloriaMay; Haynes, Matthew; Little, Mark; Kimble, Robert; Rosenstiel, Philip; Rohwer, Forest L; Bosch, Thomas C G

    2014-01-01

    Recent evidence showing host specificity of colonizing bacteria supports the view that multicellular organisms are holobionts comprised of the macroscopic host in synergistic interdependence with a heterogeneous and host-specific microbial community. Whereas host-bacteria interactions have been extensively investigated, comparatively little is known about host-virus interactions and viral contribution to the holobiont. We sought to determine the viral communities associating with different Hydra species, whether these viral communities were altered with environmental stress, and whether these viruses affect the Hydra-associated holobiont. Here we show that each species of Hydra harbors a diverse host-associated virome. Primary viral families associated with Hydra are Myoviridae, Siphoviridae, Inoviridae, and Herpesviridae. Most Hydra-associated viruses are bacteriophages, a reflection of their involvement in the holobiont. Changes in environmental conditions alter the associated virome, increase viral diversity, and affect the metabolism of the holobiont. The specificity and dynamics of the virome point to potential viral involvement in regulating microbial associations in the Hydra holobiont. While viruses are generally regarded as pathogenic agents, our study suggests an evolutionary conserved ability of viruses to function as holobiont regulators and, therefore, constitutes an emerging paradigm shift in host-microbe interactions.

  6. New perspectives in hydrodynamic radial polishing techniques for optical surfaces

    NASA Astrophysics Data System (ADS)

    Ruiz, Elfego; Sohn, Erika; Luna, Esteban; Salas, Luis; Cordero, Alberto; González, Jorge; Núñez, Manuel; Salinas, Javier; Cruz-González, Irene; Valdés, Jorge; Cabrera, Victor; Martínez, Benjamín

    2004-09-01

    In order to overcome classic polishing techniques, a novel hydrodynamic radial polishing tool (HyDRa) is presented; it is useful for the corrective lapping and fine polishing of diverse materials by means of a low-cost abrasive flux and a hydrostatic suspension system that avoids contact of the tool with the working surface. This tool enables the work on flat or curved surfaces of currently up to two and a half meters in diameter. It has the advantage of avoiding fallen edges during the polishing process as well as reducing tool wear out and deformation. The functioning principle is based on the generation of a high-velocity, high-pressure, abrasive emulsion flux with radial geometry. The polishing process is repeatable by means of the control of the tool operational parameters, achieving high degrees of precision and accuracy on optical and semiconductor surfaces, with removal rates of up to 9 mm3/hour and promising excellent surface polishing qualities. An additional advantage of this new tool is the possibility to perform interferometric measurements during the polishing process without the need of dismounting the working surface. A series of advantages of this method, numerical simulations and experimental results are described.

  7. Molecular, biochemical and functional analysis of a novel and developmentally important fibrillar collagen (Hcol-I) in hydra.

    PubMed

    Deutzmann, R; Fowler, S; Zhang, X; Boone, K; Dexter, S; Boot-Handford, R P; Rachel, R; Sarras, M P

    2000-11-01

    The body wall of hydra (a member of the phylum Cnidaria) is structurally reduced to an epithelial bilayer with an intervening extracellular matrix (ECM). Previous studies have established that cell-ECM interactions are important for morphogenesis and cell differentiation in this simple metazoan. The ECM of hydra is particularly interesting because it represents a primordial form of matrix. Despite progress in our understanding of hydra ECM, we still know little about the nature of hydra collagens. In the current study we provide a molecular, biochemical and functional analysis of a hydra fibrillar collagen that has similarity to vertebrate type I and type II collagens. This fibrillar collagen has been named hydra collagen-I (Hcol-I) because of its structure and because it is the first ECM collagen to be identified in hydra. It represents a novel member of the collagen family. Similar to vertebrate type I and II collagens, Hcol-I contains an N-terminal propeptide-like domain, a triple helical domain containing typical Gly-X-Y repeats and a C-terminal propeptide domain. The overall identity to vertebrate fibrillar collagens is about 30%, while the identity of the C-terminal propeptide domain is 50%. Because the N-terminal propeptide domain is retained after post-translational processing, Hcol-I does not form thick fibers as seen in vertebrates. This was confirmed using transmission electron microscopy to study rotary shadow images of purified Hcol-I. In addition, absence of crucial lysine residues and an overall reduction in proline content, results in reduced crosslinking of fibrils and increased flexibility of the molecule, respectively. These structural changes in Hcol-I help to explain the flexible properties of hydra ECM. Immunocytochemical studies indicate that Hcol-I forms the 10 nm fibrils that comprise the majority of molecules in the central fibrous zone of hydra ECM. The central fibrous zone resides between the two subepithelial zones where hydra laminin is localized. While previous studies have shown that basal lamina components like laminin are expressed by the endoderm, in situ hybridisation studies show that Hcol-I mRNA expression is restricted to the ectoderm. Hcol-I expression is upregulated during head regeneration, and antisense studies using thio-oligonucleotides demonstrated that blocking the translation of Hcol-I leads to a reversible inhibition of head morphogenesis during this regenerative process. Taken in total, the data presented in this study indicate that Hcol-I is required for morphogensis in hydra and represents a novel fibrillar collagen whose structural characteristics help to explain the unique biophysical properties of hydra ECM. Interestingly, the structure of Hcol-I mimics what is seen in Ehlers-Danlos syndrome type VII in humans; an inherited pathological condition that leads to joint and skin abnormalities. Hcol-I therefore illustrates an adaptive trait in which the normal physiological situation in hydra translates into a pathological condition in humans.

  8. IR wireless cluster synapses of HYDRA very large neural networks

    NASA Astrophysics Data System (ADS)

    Jannson, Tomasz; Forrester, Thomas

    2008-04-01

    RF/IR wireless (virtual) synapses are critical components of HYDRA (Hyper-Distributed Robotic Autonomy) neural networks, already discussed in two earlier papers. The HYDRA network has the potential to be very large, up to 10 11-neurons and 10 18-synapses, based on already established technologies (cellular RF telephony and IR-wireless LANs). It is organized into almost fully connected IR-wireless clusters. The HYDRA neurons and synapses are very flexible, simple, and low-cost. They can be modified into a broad variety of biologically-inspired brain-like computing capabilities. In this third paper, we focus on neural hardware in general, and on IR-wireless synapses in particular. Such synapses, based on LED/LD-connections, dominate the HYDRA neural cluster.

  9. Computer modeling and simulation in inertial confinement fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCrory, R.L.; Verdon, C.P.

    1989-03-01

    The complex hydrodynamic and transport processes associated with the implosion of an inertial confinement fusion (ICF) pellet place considerable demands on numerical simulation programs. Processes associated with implosion can usually be described using relatively simple models, but their complex interplay requires that programs model most of the relevant physical phenomena accurately. Most hydrodynamic codes used in ICF incorporate a one-fluid, two-temperature model. Electrons and ions are assumed to flow as one fluid (no charge separation). Due to the relatively weak coupling between the ions and electrons, each species is treated separately in terms of its temperature. In this paper wemore » describe some of the major components associated with an ICF hydrodynamics simulation code. To serve as an example we draw heavily on a two-dimensional Lagrangian hydrodynamic code (ORCHID) written at the University of Rochester's Laboratory for Laser Energetics. 46 refs., 19 figs., 1 tab.« less

  10. Non-senescent Hydra tolerates severe disturbances in the nuclear lamina.

    PubMed

    Klimovich, Alexander; Rehm, Arvid; Wittlieb, Jörg; Herbst, Eva-Maria; Benavente, Ricardo; Bosch, Thomas C G

    2018-05-10

    The cnidarian Hydra is known for its unlimited lifespan and non-senescence, due to the indefinite self-renewal capacity of its stem cells. While proteins of the Lamin family are recognized as critical factors affecting senescence and longevity in human and mice, their putative role in the extreme longevity and non-senescence in long-living animals remains unknown. Here we analyze the role of a single lamin protein in non-senescence of Hydra . We demonstrate that proliferation of stem cells in Hydra is robust against the disturbance of Lamin expression and localization. While Lamin is indispensable for Hydra , the stem cells tolerate overexpression, downregulation and mislocalization of Lamin, and disturbances in the nuclear envelope structure. This extraordinary robustness may underlie the indefinite self-renewal capacity of stem cells and the non-senescence of Hydra . A relatively low complexity of the nuclear envelope architecture in basal Metazoa might allow for their extreme lifespans, while an increasing complexity of the nuclear architecture in bilaterians resulted in restricted lifespans.

  11. Non-senescent Hydra tolerates severe disturbances in the nuclear lamina

    PubMed Central

    Rehm, Arvid; Wittlieb, Jörg; Herbst, Eva-Maria; Benavente, Ricardo

    2018-01-01

    The cnidarian Hydra is known for its unlimited lifespan and non-senescence, due to the indefinite self-renewal capacity of its stem cells. While proteins of the Lamin family are recognized as critical factors affecting senescence and longevity in human and mice, their putative role in the extreme longevity and non-senescence in long-living animals remains unknown. Here we analyze the role of a single lamin protein in non-senescence of Hydra. We demonstrate that proliferation of stem cells in Hydra is robust against the disturbance of Lamin expression and localization. While Lamin is indispensable for Hydra, the stem cells tolerate overexpression, downregulation and mislocalization of Lamin, and disturbances in the nuclear envelope structure. This extraordinary robustness may underlie the indefinite self-renewal capacity of stem cells and the non-senescence of Hydra. A relatively low complexity of the nuclear envelope architecture in basal Metazoa might allow for their extreme lifespans, while an increasing complexity of the nuclear architecture in bilaterians resulted in restricted lifespans. PMID:29754147

  12. Algal endosymbionts in European Hydra strains reflect multiple origins of the zoochlorella symbiosis.

    PubMed

    Rajević, Nives; Kovačević, Goran; Kalafatić, Mirjana; Gould, Sven B; Martin, William F; Franjević, Damjan

    2015-12-01

    Symbiotic associations are of broad significance in evolution and biodiversity. Green Hydra is a classic example of endosymbiosis. In its gastrodermal myoepithelial cells it harbors endosymbiotic unicellular green algae, most commonly from the genus Chlorella. We reconstructed the phylogeny of cultured algal endosymbionts isolated and maintained in laboratory conditions for years from green Hydra strains collected from four different geographical sites within Croatia, one from Germany and one from Israel. Nuclear (18S rDNA, ITS region) and chloroplast markers (16S, rbcL) for maximum likelihood phylogenetic analyses were used. We focused on investigating the positions of these algal endosymbiotic strains within the chlorophyte lineage. Molecular analyses established that different genera and species of unicellular green algae are present as endosymbionts in green Hydra, showing that endosymbiotic algae growing within green Hydra sampled from four Croatian localities are not monophyletic. Our results indicate that the intracellular algal endosymbionts of green Hydra have become established several times independently in evolution. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Galaxy clusters as hydrodynamics laboratories

    NASA Astrophysics Data System (ADS)

    Roediger, Elke; Sheardown, Alexander; Fish, Thomas; ZuHone, John; Hunt, Matthew; Su, Yuanyuan; Kraft, Ralph P.; Nulsen, Paul; Forman, William R.; Churazov, Eugene; Randall, Scott W.; Jones, Christine; Machacek, Marie E.

    2017-08-01

    The intra-cluster medium (ICM) of galaxy clusters shows a wealth of hydrodynamical features that trace the growth of clusters via the infall of galaxies or smaller subclusters. Such hydrodynamical features include the wakes of the infalling objects as well as the interfaces between the host cluster’s ICM and the atmosphere of the infalling object. Furthermore, the cluster dynamics can be traced by merger shocks, bow shocks, and sloshing motions of the ICM.The characteristics of these dynamical features, e.g., the direction, length, brightness, and temperature of the galaxies' or subclusters' gas tails varies significantly between different objects. This could be due to either dynamical conditions or ICM transport coefficients such as viscosity and thermal conductivity. For example, the cool long gas tails of of some infalling galaxies and groups have been attributed to a substantial ICM viscosity suppressing mixing of the stripped galaxy or group gas with the hotter ambient ICM.Using hydrodynamical simulations of minor mergers we show, however, that these features can be explained naturally by the dynamical conditions of each particular galaxy or group infall. Specifically, we identify observable features to distinguish the first and second infall of a galaxy or group into its host cluster as well as characteristics during apocentre passage. Comparing our simulations with observations, we can explain several puzzling observations such as the long and cold tail of M86 in Virgo and the very long and tangentially oriented tail of the group LEDA 87445 in Hydra A.Using our simulations, we also assess the validity of the stagnation pressure method that is widely used to determine an infalling galaxy's velocity. We show that near pericentre passage the method gives reasonable results, but near apocentre it is not easily applicable.

  14. PIWI proteins and PIWI-interacting RNAs function in Hydra somatic stem cells

    PubMed Central

    Juliano, Celina E.; Reich, Adrian; Liu, Na; Götzfried, Jessica; Zhong, Mei; Uman, Selen; Reenan, Robert A.; Wessel, Gary M.; Steele, Robert E.; Lin, Haifan

    2014-01-01

    PIWI proteins and their bound PIWI-interacting RNAs (piRNAs) are found in animal germlines and are essential for fertility, but their functions outside of the gonad are not well understood. The cnidarian Hydra is a simple metazoan with well-characterized stem/progenitor cells that provides a unique model for analysis of PIWI function. Here we report that Hydra has two PIWI proteins, Hydra PIWI (Hywi) and Hydra PIWI-like (Hyli), both of which are expressed in all Hydra stem/progenitor cells, but not in terminally differentiated cells. We identified ∼15 million piRNAs associated with Hywi and/or Hyli and found that they exhibit the ping-pong signature of piRNA biogenesis. Hydra PIWI proteins are strictly cytoplasmic and thus likely act as posttranscriptional regulators. To explore this function, we generated a Hydra transcriptome for piRNA mapping. piRNAs map to transposons with a 25- to 35-fold enrichment compared with the abundance of transposon transcripts. By sequencing the small RNAs specific to the interstitial, ectodermal, and endodermal lineages, we found that the targeting of transposons appears to be largely restricted to the interstitial lineage. We also identified putative nontransposon targets of the pathway unique to each lineage. Finally we demonstrate that hywi function is essential in the somatic epithelial lineages. This comprehensive analysis of the PIWI–piRNA pathway in the somatic stem/progenitor cells of a nonbilaterian animal suggests that this pathway originated with broader stem cell functionality. PMID:24367095

  15. The putative Notch ligand HyJagged is a transmembrane protein present in all cell types of adult Hydra and upregulated at the boundary between bud and parent.

    PubMed

    Prexl, Andrea; Münder, Sandra; Loy, Bernhard; Kremmer, Elisabeth; Tischer, Susanne; Böttger, Angelika

    2011-09-07

    The Notch signalling pathway is conserved in pre-bilaterian animals. In the Cnidarian Hydra it is involved in interstitial stem cell differentiation and in boundary formation during budding. Experimental evidence suggests that in Hydra Notch is activated by presenilin through proteolytic cleavage at the S3 site as in all animals. However, the endogenous ligand for HvNotch has not been described yet. We have cloned a cDNA from Hydra, which encodes a bona-fide Notch ligand with a conserved domain structure similar to that of Jagged-like Notch ligands from other animals. Hyjagged mRNA is undetectable in adult Hydra by in situ hybridisation but is strongly upregulated and easily visible at the border between bud and parent shortly before bud detachment. In contrast, HyJagged protein is found in all cell types of an adult hydra, where it localises to membranes and endosomes. Co-localisation experiments showed that it is present in the same cells as HvNotch, however not always in the same membrane structures. The putative Notch ligand HyJagged is conserved in Cnidarians. Together with HvNotch it may be involved in the formation of the parent-bud boundary in Hydra. Moreover, protein distribution of both, HvNotch receptor and HyJagged indicate a more widespread function for these two transmembrane proteins in the adult hydra, which may be regulated by additional factors, possibly involving endocytic pathways.

  16. PIWI proteins and PIWI-interacting RNAs function in Hydra somatic stem cells.

    PubMed

    Juliano, Celina E; Reich, Adrian; Liu, Na; Götzfried, Jessica; Zhong, Mei; Uman, Selen; Reenan, Robert A; Wessel, Gary M; Steele, Robert E; Lin, Haifan

    2014-01-07

    PIWI proteins and their bound PIWI-interacting RNAs (piRNAs) are found in animal germlines and are essential for fertility, but their functions outside of the gonad are not well understood. The cnidarian Hydra is a simple metazoan with well-characterized stem/progenitor cells that provides a unique model for analysis of PIWI function. Here we report that Hydra has two PIWI proteins, Hydra PIWI (Hywi) and Hydra PIWI-like (Hyli), both of which are expressed in all Hydra stem/progenitor cells, but not in terminally differentiated cells. We identified ∼15 million piRNAs associated with Hywi and/or Hyli and found that they exhibit the ping-pong signature of piRNA biogenesis. Hydra PIWI proteins are strictly cytoplasmic and thus likely act as posttranscriptional regulators. To explore this function, we generated a Hydra transcriptome for piRNA mapping. piRNAs map to transposons with a 25- to 35-fold enrichment compared with the abundance of transposon transcripts. By sequencing the small RNAs specific to the interstitial, ectodermal, and endodermal lineages, we found that the targeting of transposons appears to be largely restricted to the interstitial lineage. We also identified putative nontransposon targets of the pathway unique to each lineage. Finally we demonstrate that hywi function is essential in the somatic epithelial lineages. This comprehensive analysis of the PIWI-piRNA pathway in the somatic stem/progenitor cells of a nonbilaterian animal suggests that this pathway originated with broader stem cell functionality.

  17. CRKSPH: A new meshfree hydrodynamics method with applications to astrophysics

    NASA Astrophysics Data System (ADS)

    Owen, John Michael; Raskin, Cody; Frontiere, Nicholas

    2018-01-01

    The study of astrophysical phenomena such as supernovae, accretion disks, galaxy formation, and large-scale structure formation requires computational modeling of, at a minimum, hydrodynamics and gravity. Developing numerical methods appropriate for these kinds of problems requires a number of properties: shock-capturing hydrodynamics benefits from rigorous conservation of invariants such as total energy, linear momentum, and mass; lack of obvious symmetries or a simplified spatial geometry to exploit necessitate 3D methods that ideally are Galilean invariant; the dynamic range of mass and spatial scales that need to be resolved can span many orders of magnitude, requiring methods that are highly adaptable in their space and time resolution. We have developed a new Lagrangian meshfree hydrodynamics method called Conservative Reproducing Kernel Smoothed Particle Hydrodynamics, or CRKSPH, in order to meet these goals. CRKSPH is a conservative generalization of the meshfree reproducing kernel method, combining the high-order accuracy of reproducing kernels with the explicit conservation of mass, linear momentum, and energy necessary to study shock-driven hydrodynamics in compressible fluids. CRKSPH's Lagrangian, particle-like nature makes it simple to combine with well-known N-body methods for modeling gravitation, similar to the older Smoothed Particle Hydrodynamics (SPH) method. Indeed, CRKSPH can be substituted for SPH in existing SPH codes due to these similarities. In comparison to SPH, CRKSPH is able to achieve substantially higher accuracy for a given number of points due to the explicitly consistent (and higher-order) interpolation theory of reproducing kernels, while maintaining the same conservation principles (and therefore applicability) as SPH. There are currently two coded implementations of CRKSPH available: one in the open-source research code Spheral, and the other in the high-performance cosmological code HACC. Using these codes we have applied CRKSPH to a number of astrophysical scenarios, such as rotating gaseous disks, supernova remnants, and large-scale cosmological structure formation. In this poster we present an overview of CRKSPH and show examples of these astrophysical applications.

  18. Protostellar hydrodynamics: Constructing and testing a spacially and temporally second-order accurate method. 2: Cartesian coordinates

    NASA Technical Reports Server (NTRS)

    Myhill, Elizabeth A.; Boss, Alan P.

    1993-01-01

    In Boss & Myhill (1992) we described the derivation and testing of a spherical coordinate-based scheme for solving the hydrodynamic equations governing the gravitational collapse of nonisothermal, nonmagnetic, inviscid, radiative, three-dimensional protostellar clouds. Here we discuss a Cartesian coordinate-based scheme based on the same set of hydrodynamic equations. As with the spherical coorrdinate-based code, the Cartesian coordinate-based scheme employs explicit Eulerian methods which are both spatially and temporally second-order accurate. We begin by describing the hydrodynamic equations in Cartesian coordinates and the numerical methods used in this particular code. Following Finn & Hawley (1989), we pay special attention to the proper implementations of high-order accuracy, finite difference methods. We evaluate the ability of the Cartesian scheme to handle shock propagation problems, and through convergence testing, we show that the code is indeed second-order accurate. To compare the Cartesian scheme discussed here with the spherical coordinate-based scheme discussed in Boss & Myhill (1992), the two codes are used to calculate the standard isothermal collapse test case described by Bodenheimer & Boss (1981). We find that with the improved codes, the intermediate bar-configuration found previously disappears, and the cloud fragments directly into a binary protostellar system. Finally, we present the results from both codes of a new test for nonisothermal protostellar collapse.

  19. Testing hydrodynamics schemes in galaxy disc simulations

    NASA Astrophysics Data System (ADS)

    Few, C. G.; Dobbs, C.; Pettitt, A.; Konstandin, L.

    2016-08-01

    We examine how three fundamentally different numerical hydrodynamics codes follow the evolution of an isothermal galactic disc with an external spiral potential. We compare an adaptive mesh refinement code (RAMSES), a smoothed particle hydrodynamics code (SPHNG), and a volume-discretized mesh-less code (GIZMO). Using standard refinement criteria, we find that RAMSES produces a disc that is less vertically concentrated and does not reach such high densities as the SPHNG or GIZMO runs. The gas surface density in the spiral arms increases at a lower rate for the RAMSES simulations compared to the other codes. There is also a greater degree of substructure in the SPHNG and GIZMO runs and secondary spiral arms are more pronounced. By resolving the Jeans length with a greater number of grid cells, we achieve more similar results to the Lagrangian codes used in this study. Other alterations to the refinement scheme (adding extra levels of refinement and refining based on local density gradients) are less successful in reducing the disparity between RAMSES and SPHNG/GIZMO. Although more similar, SPHNG displays different density distributions and vertical mass profiles to all modes of GIZMO (including the smoothed particle hydrodynamics version). This suggests differences also arise which are not intrinsic to the particular method but rather due to its implementation. The discrepancies between codes (in particular, the densities reached in the spiral arms) could potentially result in differences in the locations and time-scales for gravitational collapse, and therefore impact star formation activity in more complex galaxy disc simulations.

  20. An information theoretic approach to use high-fidelity codes to calibrate low-fidelity codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Allison, E-mail: lewis.allison10@gmail.com; Smith, Ralph; Williams, Brian

    For many simulation models, it can be prohibitively expensive or physically infeasible to obtain a complete set of experimental data to calibrate model parameters. In such cases, one can alternatively employ validated higher-fidelity codes to generate simulated data, which can be used to calibrate the lower-fidelity code. In this paper, we employ an information-theoretic framework to determine the reduction in parameter uncertainty that is obtained by evaluating the high-fidelity code at a specific set of design conditions. These conditions are chosen sequentially, based on the amount of information that they contribute to the low-fidelity model parameters. The goal is tomore » employ Bayesian experimental design techniques to minimize the number of high-fidelity code evaluations required to accurately calibrate the low-fidelity model. We illustrate the performance of this framework using heat and diffusion examples, a 1-D kinetic neutron diffusion equation, and a particle transport model, and include initial results from the integration of the high-fidelity thermal-hydraulics code Hydra-TH with a low-fidelity exponential model for the friction correlation factor.« less

  1. Constant mortality and fertility over age in Hydra

    PubMed Central

    Schaible, Ralf; Scheuerlein, Alexander; Dańko, Maciej J.; Gampe, Jutta; Martínez, Daniel E.; Vaupel, James W.

    2015-01-01

    Senescence, the increase in mortality and decline in fertility with age after maturity, was thought to be inevitable for all multicellular species capable of repeated breeding. Recent theoretical advances and compilations of data suggest that mortality and fertility trajectories can go up or down, or remain constant with age, but the data are scanty and problematic. Here, we present compelling evidence for constant age-specific death and reproduction rates in Hydra, a basal metazoan, in a set of experiments comprising more than 3.9 million days of observations of individual Hydra. Our data show that 2,256 Hydra from two closely related species in two laboratories in 12 cohorts, with cohort age ranging from 0 to more than 41 y, have extremely low, constant rates of mortality. Fertility rates for Hydra did not systematically decline with advancing age. This falsifies the universality of the theories of the evolution of aging that posit that all species deteriorate with age after maturity. The nonsenescent life history of Hydra implies levels of maintenance and repair that are sufficient to prevent the accumulation of damage for at least decades after maturity, far longer than the short life expectancy of Hydra in the wild. A high proportion of stem cells, constant and rapid cell turnover, few cell types, a simple body plan, and the fact that the germ line is not segregated from the soma are characteristics of Hydra that may make nonsenescence feasible. Nonsenescence may be optimal because lifetime reproduction may be enhanced more by extending adult life spans than by increasing daily fertility. PMID:26644561

  2. Constant mortality and fertility over age in Hydra.

    PubMed

    Schaible, Ralf; Scheuerlein, Alexander; Dańko, Maciej J; Gampe, Jutta; Martínez, Daniel E; Vaupel, James W

    2015-12-22

    Senescence, the increase in mortality and decline in fertility with age after maturity, was thought to be inevitable for all multicellular species capable of repeated breeding. Recent theoretical advances and compilations of data suggest that mortality and fertility trajectories can go up or down, or remain constant with age, but the data are scanty and problematic. Here, we present compelling evidence for constant age-specific death and reproduction rates in Hydra, a basal metazoan, in a set of experiments comprising more than 3.9 million days of observations of individual Hydra. Our data show that 2,256 Hydra from two closely related species in two laboratories in 12 cohorts, with cohort age ranging from 0 to more than 41 y, have extremely low, constant rates of mortality. Fertility rates for Hydra did not systematically decline with advancing age. This falsifies the universality of the theories of the evolution of aging that posit that all species deteriorate with age after maturity. The nonsenescent life history of Hydra implies levels of maintenance and repair that are sufficient to prevent the accumulation of damage for at least decades after maturity, far longer than the short life expectancy of Hydra in the wild. A high proportion of stem cells, constant and rapid cell turnover, few cell types, a simple body plan, and the fact that the germ line is not segregated from the soma are characteristics of Hydra that may make nonsenescence feasible. Nonsenescence may be optimal because lifetime reproduction may be enhanced more by extending adult life spans than by increasing daily fertility.

  3. The putative Notch ligand HyJagged is a transmembrane protein present in all cell types of adult Hydra and upregulated at the boundary between bud and parent

    PubMed Central

    2011-01-01

    Background The Notch signalling pathway is conserved in pre-bilaterian animals. In the Cnidarian Hydra it is involved in interstitial stem cell differentiation and in boundary formation during budding. Experimental evidence suggests that in Hydra Notch is activated by presenilin through proteolytic cleavage at the S3 site as in all animals. However, the endogenous ligand for HvNotch has not been described yet. Results We have cloned a cDNA from Hydra, which encodes a bona-fide Notch ligand with a conserved domain structure similar to that of Jagged-like Notch ligands from other animals. Hyjagged mRNA is undetectable in adult Hydra by in situ hybridisation but is strongly upregulated and easily visible at the border between bud and parent shortly before bud detachment. In contrast, HyJagged protein is found in all cell types of an adult hydra, where it localises to membranes and endosomes. Co-localisation experiments showed that it is present in the same cells as HvNotch, however not always in the same membrane structures. Conclusions The putative Notch ligand HyJagged is conserved in Cnidarians. Together with HvNotch it may be involved in the formation of the parent-bud boundary in Hydra. Moreover, protein distribution of both, HvNotch receptor and HyJagged indicate a more widespread function for these two transmembrane proteins in the adult hydra, which may be regulated by additional factors, possibly involving endocytic pathways. PMID:21899759

  4. Simulating X-ray bursts with a radiation hydrodynamics code

    NASA Astrophysics Data System (ADS)

    Seong, Gwangeon; Kwak, Kyujin

    2018-04-01

    Previous simulations of X-ray bursts (XRBs), for example, those performed by MESA (Modules for Experiments in Stellar Astrophysics) could not address the dynamical effects of strong radiation, which are important to explain the photospheric radius expansion (PRE) phenomena seen in many XRBs. In order to study the effects of strong radiation, we propose to use SNEC (the SuperNova Explosion Code), a 1D Lagrangian open source code that is designed to solve hydrodynamics and equilibrium-diffusion radiation transport together. Because SNEC is able to control modules of radiation-hydrodynamics for properly mapped inputs, radiation-dominant pressure occurring in PRE XRBs can be handled. Here we present simulation models for PRE XRBs by applying SNEC together with MESA.

  5. Hydra—The National Earthquake Information Center’s 24/7 seismic monitoring, analysis, catalog production, quality analysis, and special studies tool suite

    USGS Publications Warehouse

    Patton, John M.; Guy, Michelle R.; Benz, Harley M.; Buland, Raymond P.; Erickson, Brian K.; Kragness, David S.

    2016-08-18

    This report provides an overview of the capabilities and design of Hydra, the global seismic monitoring and analysis system used for earthquake response and catalog production at the U.S. Geological Survey National Earthquake Information Center (NEIC). Hydra supports the NEIC’s worldwide earthquake monitoring mission in areas such as seismic event detection, seismic data insertion and storage, seismic data processing and analysis, and seismic data output.The Hydra system automatically identifies seismic phase arrival times and detects the occurrence of earthquakes in near-real time. The system integrates and inserts parametric and waveform seismic data into discrete events in a database for analysis. Hydra computes seismic event parameters, including locations, multiple magnitudes, moment tensors, and depth estimates. Hydra supports the NEIC’s 24/7 analyst staff with a suite of seismic analysis graphical user interfaces.In addition to the NEIC’s monitoring needs, the system supports the processing of aftershock and temporary deployment data, and supports the NEIC’s quality assurance procedures. The Hydra system continues to be developed to expand its seismic analysis and monitoring capabilities.

  6. The Hydra small ubiquitin-like modifier.

    PubMed

    Khan, Umair; Mehere, Prajwalini; Deivasigamani, Senthilkumar; Ratnaparkhi, Girish S

    2013-09-01

    SUMO is a protein posttranslational modifier. SUMO cycle components are believed to be conserved in all eukaryotes. Proteomic analyses have lead to the identification a wealth of SUMO targets that are involved in almost every cellular function in eukaryotes. In this article, we describe the characterization of SUMO Cycle components in Hydra, a Cnidarian with an ability to regenerate body parts. In cells, the translated SUMO polypeptide cannot conjugate to a substrate protein unless the C-terminal tail is cleaved, exposing the di-Glycine motif. This critical task is done by SUMO proteases that in addition to SUMO maturation are also involved in deconjugating SUMO from its substrate. We describe the identification, bioinformatics analysis, cloning, and biochemical characterization of Hydra SUMO cycle components, with a focus on SUMO and SUMO proteases. We demonstrate that the ability of SUMO proteases to process immature SUMO is conserved from Hydra to flies. A transgenic Hydra, expressing a SUMO-GFP fusion protein under a constitutive actin promoter, is generated in an attempt to monitor the SUMO Cycle in vivo as also to purify and identify SUMO targets in Hydra. Copyright © 2013 Wiley Periodicals, Inc.

  7. Hydra Emerges from the Shadows

    NASA Image and Video Library

    2015-07-15

    Since its discovery in 2005, Pluto's moon Hydra has been known only as a fuzzy dot of uncertain shape, size, and reflectivity. Imaging obtained during NASA's New Horizons' historic transit of the Pluto-Charon system and transmitted to Earth early this morning has definitively resolved these fundamental properties of Pluto's outermost moon. Long Range Reconnaissance Imager (LORRI) observations revealed an irregularly shaped body characterized by significant brightness variations over the surface. With a resolution of 2 miles (3 kilometers) per pixel, the LORRI image shows the tiny potato-shaped moon measures 27 miles (43 kilometers) by 20 miles (33 kilometers). Like that of Charon, Hydra's surface is probably covered with water ice, the most abundant ice in the universe. Observed within Hydra's bright regions is a darker circular structure with a diameter of approximately 6 miles (10 kilometers). Hydra's reflectivity (the percentage of incident light reflected from the surface) is intermediate between that of Pluto and Charon. Hydra was approximately 400,000 miles away from New Horizons when this image was acquired. http://photojournal.jpl.nasa.gov/catalog/PIA19711

  8. Two-dimensional implosion simulations with a kinetic particle code [2D implosion simulations with a kinetic particle code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sagert, Irina; Even, Wesley Paul; Strother, Terrance Timothy

    Here, we perform two-dimensional implosion simulations using a Monte Carlo kinetic particle code. The application of a kinetic transport code is motivated, in part, by the occurrence of nonequilibrium effects in inertial confinement fusion capsule implosions, which cannot be fully captured by hydrodynamic simulations. Kinetic methods, on the other hand, are able to describe both continuum and rarefied flows. We perform simple two-dimensional disk implosion simulations using one-particle species and compare the results to simulations with the hydrodynamics code rage. The impact of the particle mean free path on the implosion is also explored. In a second study, we focusmore » on the formation of fluid instabilities from induced perturbations. We find good agreement with hydrodynamic studies regarding the location of the shock and the implosion dynamics. Differences are found in the evolution of fluid instabilities, originating from the higher resolution of rage and statistical noise in the kinetic studies.« less

  9. Two-dimensional implosion simulations with a kinetic particle code [2D implosion simulations with a kinetic particle code

    DOE PAGES

    Sagert, Irina; Even, Wesley Paul; Strother, Terrance Timothy

    2017-05-17

    Here, we perform two-dimensional implosion simulations using a Monte Carlo kinetic particle code. The application of a kinetic transport code is motivated, in part, by the occurrence of nonequilibrium effects in inertial confinement fusion capsule implosions, which cannot be fully captured by hydrodynamic simulations. Kinetic methods, on the other hand, are able to describe both continuum and rarefied flows. We perform simple two-dimensional disk implosion simulations using one-particle species and compare the results to simulations with the hydrodynamics code rage. The impact of the particle mean free path on the implosion is also explored. In a second study, we focusmore » on the formation of fluid instabilities from induced perturbations. We find good agreement with hydrodynamic studies regarding the location of the shock and the implosion dynamics. Differences are found in the evolution of fluid instabilities, originating from the higher resolution of rage and statistical noise in the kinetic studies.« less

  10. Modeling Hohlraum-Based Laser Plasma Instability Experiments

    NASA Astrophysics Data System (ADS)

    Meezan, N. B.

    2005-10-01

    Laser fusion targets must control laser-plasma instabilities (LPI) in order to perform as designed. We present analyses of recent hohlraum LPI experiments from the Omega laser facility. The targets, gold hohlraums filled with gas or SiO2 foam, are preheated by several 3φ beams before an interaction beam (2φ or 3φ) is fired along the hohlraum axis. The experiments are simulated in 2-D and 3-D using the code hydra. The choice of electron thermal conduction model in hydra strongly affects the simulated plasma conditions. This work is part of a larger effort to systematically explore the usefulness of linear gain as a design tool for fusion targets. We find that the measured Raman and Brillouin backscatter scale monotonically with the peak linear gain calculated for the target; however, linear gain is not sufficient to explain all trends in the data. This work was performed under the auspices of the U.S. Department of Energy by the University of California Lawrence Livermore National Laboratory under contract No. W-7405-ENG-48.

  11. NLTE atomic kinetics modeling in ICF target simulations

    NASA Astrophysics Data System (ADS)

    Patel, Mehul V.; Mauche, Christopher W.; Scott, Howard A.; Jones, Ogden S.; Shields, Benjamin T.

    2017-10-01

    Radiation hydrodynamics (HYDRA) simulations using recently developed 1D spherical and 2D cylindrical hohlraum models have enabled a reassessment of the accuracy of energetics modeling across a range of NIF target configurations. Higher-resolution hohlraum calculations generally find that the X-ray drive discrepancies are greater than previously reported. We identify important physics sensitivities in the modeling of the NLTE wall plasma and highlight sensitivity variations between different hohlraum configurations (e.g. hohlraum gas fill). Additionally, 1D capsule only simulations show the importance of applying a similar level of rigor to NLTE capsule ablator modeling. Taken together, these results show how improved target performance predictions can be achieved by performing inline atomic kinetics using more complete models for the underlying atomic structure and transitions. Prepared by LLNL under Contract DE-AC52-07NA27344.

  12. Hydra actinoporin-like toxin-1, an unusual hemolysin from the nematocyst venom of Hydra magnipapillata which belongs to an extended gene family.

    PubMed

    Glasser, Eliezra; Rachamim, Tamar; Aharonovich, Dikla; Sher, Daniel

    2014-12-01

    Cnidarians rely on their nematocysts and the venom injected through these unique weaponry systems to catch prey and protect themselves from predators. The development and physiology of the nematocysts of Hydra magnipapillata, a classic model organism, have been intensively studied, yet the composition and biochemical activity of their venom components are mostly unknown. Here, we show that hydra actinoporin-like toxins (HALTs), which have previously been associated with Hydra nematocysts, belong to a multigene family comprising six genes, which have diverged from a single common ancestor. All six genes are expressed in a population of Hydra magnipapillata. When expressed recombinantly, HALT-1 (Δ-HYTX-Hma1a), an actinoporin-like protein found in the stenoteles (the main penetrating nematocysts used in prey capture), reveals hemolytic activity, albeit about two-thirds lower than that of the anemone actinoporin equinatoxin II (EqTII, Δ-AITX-Aeq1a). HALT-1 also differs from EqTII in the size of its pores, and likely does not utilize sphingomyelin as a membrane receptor. We describe features of the HALT-1 sequence which may contribute to this difference in activity, and speculate on the role of this unusual family of pore-forming toxins in the ecology of Hydra. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Structural and Sequence Similarities of Hydra Xeroderma Pigmentosum A Protein to Human Homolog Suggest Early Evolution and Conservation

    PubMed Central

    Ghaskadbi, Saroj

    2013-01-01

    Xeroderma pigmentosum group A (XPA) is a protein that binds to damaged DNA, verifies presence of a lesion, and recruits other proteins of the nucleotide excision repair (NER) pathway to the site. Though its homologs from yeast, Drosophila, humans, and so forth are well studied, XPA has not so far been reported from protozoa and lower animal phyla. Hydra is a fresh-water cnidarian with a remarkable capacity for regeneration and apparent lack of organismal ageing. Cnidarians are among the first metazoa with a defined body axis, tissue grade organisation, and nervous system. We report here for the first time presence of XPA gene in hydra. Putative protein sequence of hydra XPA contains nuclear localization signal and bears the zinc-finger motif. It contains two conserved Pfam domains and various characterized features of XPA proteins like regions for binding to excision repair cross-complementing protein-1 (ERCC1) and replication protein A 70 kDa subunit (RPA70) proteins. Hydra XPA shows a high degree of similarity with vertebrate homologs and clusters with deuterostomes in phylogenetic analysis. Homology modelling corroborates the very close similarity between hydra and human XPA. The protein thus most likely functions in hydra in the same manner as in other animals, indicating that it arose early in evolution and has been conserved across animal phyla. PMID:24083246

  14. Structural and sequence similarities of hydra xeroderma pigmentosum A protein to human homolog suggest early evolution and conservation.

    PubMed

    Barve, Apurva; Ghaskadbi, Saroj; Ghaskadbi, Surendra

    2013-01-01

    Xeroderma pigmentosum group A (XPA) is a protein that binds to damaged DNA, verifies presence of a lesion, and recruits other proteins of the nucleotide excision repair (NER) pathway to the site. Though its homologs from yeast, Drosophila, humans, and so forth are well studied, XPA has not so far been reported from protozoa and lower animal phyla. Hydra is a fresh-water cnidarian with a remarkable capacity for regeneration and apparent lack of organismal ageing. Cnidarians are among the first metazoa with a defined body axis, tissue grade organisation, and nervous system. We report here for the first time presence of XPA gene in hydra. Putative protein sequence of hydra XPA contains nuclear localization signal and bears the zinc-finger motif. It contains two conserved Pfam domains and various characterized features of XPA proteins like regions for binding to excision repair cross-complementing protein-1 (ERCC1) and replication protein A 70 kDa subunit (RPA70) proteins. Hydra XPA shows a high degree of similarity with vertebrate homologs and clusters with deuterostomes in phylogenetic analysis. Homology modelling corroborates the very close similarity between hydra and human XPA. The protein thus most likely functions in hydra in the same manner as in other animals, indicating that it arose early in evolution and has been conserved across animal phyla.

  15. 77 FR 2603 - Public Notice for Waiver of Aeronautical Land-Use Assurance; Willow Run Airport; Detroit, MI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-18

    ..., Hydra-Matic Division, Willow Run Plant Property, South 01 degree 27 minutes 26 seconds West along the..., Hydra-Matic Division, Willow Run Plant Property; thence the following courses and distance along the Southerly line of said Hydra-Matic Division, Willow Run Plant Property, South 89 degrees 55 minutes 54...

  16. Three homologous subunits form a high affinity peptide-gated ion channel in Hydra.

    PubMed

    Dürrnagel, Stefan; Kuhn, Anne; Tsiairis, Charisios D; Williamson, Michael; Kalbacher, Hubert; Grimmelikhuijzen, Cornelis J P; Holstein, Thomas W; Gründer, Stefan

    2010-04-16

    Recently, three ion channel subunits of the degenerin (DEG)/epithelial Na(+) channel (ENaC) gene family have been cloned from the freshwater polyp Hydra magnipapillata, the Hydra Na(+) channels (HyNaCs) 2-4. Two of them, HyNaC2 and HyNaC3, co-assemble to form an ion channel that is gated by the neuropeptides Hydra-RFamides I and II. The HyNaC2/3 channel is so far the only cloned ionotropic receptor from cnidarians and, together with the related ionotropic receptor FMRFamide-activated Na(+) channel (FaNaC) from snails, the only known peptide-gated ionotropic receptor. The HyNaC2/3 channel has pore properties, like a low Na(+) selectivity and a low amiloride affinity, that are different from other channels of the DEG/ENaC gene family, suggesting that a component of the native Hydra channel might still be lacking. Here, we report the cloning of a new ion channel subunit from Hydra, HyNaC5. The new subunit is closely related to HyNaC2 and -3 and co-localizes with HyNaC2 and -3 to the base of the tentacles. Coexpression in Xenopus oocytes of HyNaC5 with HyNaC2 and -3 largely increases current amplitude after peptide stimulation and affinity of the channel to Hydra-RFamides I and II. Moreover, the HyNaC2/3/5 channel has altered pore properties and amiloride affinity, more similarly to other DEG/ENaC channels. Collectively, our results suggest that the three homologous subunits HyNaC2, -3, and -5 form a peptide-gated ion channel in Hydra that could contribute to fast synaptic transmission.

  17. Modeling Laboratory Astrophysics Experiments in the High-Energy-Density Regime Using the CRASH Radiation-Hydrodynamics Model

    NASA Astrophysics Data System (ADS)

    Grosskopf, M. J.; Drake, R. P.; Trantham, M. R.; Kuranz, C. C.; Keiter, P. A.; Rutter, E. M.; Sweeney, R. M.; Malamud, G.

    2012-10-01

    The radiation hydrodynamics code developed by the Center for Radiative Shock Hydrodynamics (CRASH) at the University of Michigan has been used to model experimental designs for high-energy-density physics campaigns on OMEGA and other high-energy laser facilities. This code is an Eulerian, block-adaptive AMR hydrodynamics code with implicit multigroup radiation transport and electron heat conduction. CRASH model results have shown good agreement with a experimental results from a variety of applications, including: radiative shock, Kelvin-Helmholtz and Rayleigh-Taylor experiments on the OMEGA laser; as well as laser-driven ablative plumes in experiments by the Astrophysical Collisionless Shocks Experiments with Lasers (ACSEL), collaboration. We report a series of results with the CRASH code in support of design work for upcoming high-energy-density physics experiments, as well as comparison between existing experimental data and simulation results. This work is funded by the Predictive Sciences Academic Alliances Program in NNSA-ASC via grant DEFC52- 08NA28616, by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, grant number DE-FG52-09NA29548, and by the National Laser User Facility Program, grant number DE-NA0000850.

  18. Dynamic expression of a Hydra FGF at boundaries and termini.

    PubMed

    Lange, Ellen; Bertrand, Stephanie; Holz, Oliver; Rebscher, Nicole; Hassel, Monika

    2014-12-01

    Guidance of cells and tissue sheets is an essential function in developing and differentiating animal tissues. In Hydra, where cells and tissue move dynamically due to constant cell proliferation towards the termini or into lateral, vegetative buds, factors essential for guidance are still unknown. Good candidates to take over this function are fibroblast growth factors (FGFs). We present the phylogeny of several Hydra FGFs and analysis of their expression patterns. One of the FGFs is expressed in all terminal regions targeted by tissue movement and at boundaries crossed by moving tissue and cells with an expression pattern slightly differing in two Hydra strains. A model addressing an involvement of this FGF in cell movement and morphogenesis is proposed: Hydra FGFf-expressing cells might serve as sources to attract tissue and cells towards the termini of the body column and across morphological boundaries. Moreover, a function in morphogenesis and/or differentiation of cells and tissue is suggested.

  19. Thrombospondin Type-1 Repeat Domain-Containing Proteins Are Strongly Expressed in the Head Region of Hydra.

    PubMed

    Hamaguchi-Hamada, Kayoko; Kurumata-Shigeto, Mami; Minobe, Sumiko; Fukuoka, Nozomi; Sato, Manami; Matsufuji, Miyuki; Koizumi, Osamu; Hamada, Shun

    2016-01-01

    The head region of Hydra, the hypostome, is a key body part for developmental control and the nervous system. We herein examined genes specifically expressed in the head region of Hydra oligactis using suppression subtractive hybridization (SSH) cloning. A total of 1414 subtracted clones were sequenced and found to be derived from at least 540 different genes by BLASTN analyses. Approximately 25% of the subtracted clones had sequences encoding thrombospondin type-1 repeat (TSR) domains, and were derived from 17 genes. We identified 11 TSR domain-containing genes among the top 36 genes that were the most frequently detected in our SSH library. Whole-mount in situ hybridization analyses confirmed that at least 13 out of 17 TSR domain-containing genes were expressed in the hypostome of Hydra oligactis. The prominent expression of TSR domain-containing genes suggests that these genes play significant roles in the hypostome of Hydra oligactis.

  20. Incorporation of a horizontally transferred gene into an operon during cnidarian evolution.

    PubMed

    Dana, Catherine E; Glauber, Kristine M; Chan, Titus A; Bridge, Diane M; Steele, Robert E

    2012-01-01

    Genome sequencing has revealed examples of horizontally transferred genes, but we still know little about how such genes are incorporated into their host genomes. We have previously reported the identification of a gene (flp) that appears to have entered the Hydra genome through horizontal transfer. Here we provide additional evidence in support of our original hypothesis that the transfer was from a unicellular organism, and we show that the transfer occurred in an ancestor of two medusozoan cnidarian species. In addition we show that the gene is part of a bicistronic operon in the Hydra genome. These findings identify a new animal phylum in which trans-spliced leader addition has led to the formation of operons, and define the requirements for evolution of an operon in Hydra. The identification of operons in Hydra also provides a tool that can be exploited in the construction of transgenic Hydra strains.

  1. Simulation study of 3-5 keV x-ray conversion efficiency from Ar K-shell vs. Ag L-shell targets on the National Ignition Facility laser

    NASA Astrophysics Data System (ADS)

    Kemp, G. E.; Colvin, J. D.; Fournier, K. B.; May, M. J.; Barrios, M. A.; Patel, M. V.; Scott, H. A.; Marinak, M. M.

    2015-05-01

    Tailored, high-flux, multi-keV x-ray sources are desirable for studying x-ray interactions with matter for various civilian, space and military applications. For this study, we focus on designing an efficient laser-driven non-local thermodynamic equilibrium 3-5 keV x-ray source from photon-energy-matched Ar K-shell and Ag L-shell targets at sub-critical densities (˜nc/10) to ensure supersonic, volumetric laser heating with minimal losses to kinetic energy, thermal x rays and laser-plasma instabilities. Using Hydra, a multi-dimensional, arbitrary Lagrangian-Eulerian, radiation-hydrodynamics code, we performed a parameter study by varying initial target density and laser parameters for each material using conditions readily achievable on the National Ignition Facility (NIF) laser. We employ a model, benchmarked against Kr data collected on the NIF, that uses flux-limited Lee-More thermal conductivity and multi-group implicit Monte-Carlo photonics with non-local thermodynamic equilibrium, detailed super-configuration accounting opacities from Cretin, an atomic-kinetics code. While the highest power laser configurations produced the largest x-ray yields, we report that the peak simulated laser to 3-5 keV x-ray conversion efficiencies of 17.7% and 36.4% for Ar and Ag, respectively, occurred at lower powers between ˜100-150 TW. For identical initial target densities and laser illumination, the Ag L-shell is observed to have ≳10× higher emissivity per ion per deposited laser energy than the Ar K-shell. Although such low-density Ag targets have not yet been demonstrated, simulations of targets fabricated using atomic layer deposition of Ag on silica aerogels (˜20% by atomic fraction) suggest similar performance to atomically pure metal foams and that either fabrication technique may be worth pursuing for an efficient 3-5 keV x-ray source on NIF.

  2. Generation of transgenic Hydra by embryo microinjection.

    PubMed

    Juliano, Celina E; Lin, Haifan; Steele, Robert E

    2014-09-11

    As a member of the phylum Cnidaria, the sister group to all bilaterians, Hydra can shed light on fundamental biological processes shared among multicellular animals. Hydra is used as a model for the study of regeneration, pattern formation, and stem cells. However, research efforts have been hampered by lack of a reliable method for gene perturbations to study molecular function. The development of transgenic methods has revitalized the study of Hydra biology(1). Transgenic Hydra allow for the tracking of live cells, sorting to yield pure cell populations for biochemical analysis, manipulation of gene function by knockdown and over-expression, and analysis of promoter function. Plasmid DNA injected into early stage embryos randomly integrates into the genome early in development. This results in hatchlings that express transgenes in patches of tissue in one or more of the three lineages (ectodermal epithelial, endodermal epithelial, or interstitial). The success rate of obtaining a hatchling with transgenic tissue is between 10% and 20%. Asexual propagation of the transgenic hatchling is used to establish a uniformly transgenic line in a particular lineage. Generating transgenic Hydra is surprisingly simple and robust, and here we describe a protocol that can be easily implemented at low cost.

  3. What Hydra can teach us about chemical ecology -how a simple, soft organism survives in a hostile aqueous environment.

    PubMed

    Rachamim, Tamar; Sher, Daniel

    2012-01-01

    Hydra and its fellow cnidarians - sea anemones, corals and jellyfish - are simple, mostly sessile animals that depend on bioactive chemicals for survival. In this review, we briefly describe what is known about the chemical armament of Hydra, and detail future research directions where Hydra can help illuminate major questions in chemical ecology, pharmacology, developmental biology and evolution. Focusing on two groups of putative toxins from Hydra - phospholipase A2s and proteins containing ShK and zinc metalloprotease domains, we ask: how do different venom components act together during prey paralysis? How is a venom arsenal created and how does it evolve? How is the chemical arsenal delivered to its target? To what extent does a chemical and biotic coupling exist between an organism and its environment? We propose a model whereby in Hydra and other cnidarians, bioactive compounds are secreted both as localized point sources (nematocyte discharges) and across extensive body surfaces, likely combining to create complex "chemical landscapes". We speculate that these cnidarian-derived chemical landscapes may affect the surrounding community on scales from microns to, in the case of coral reefs, hundreds of kilometers.

  4. Evidence that polycystins are involved in Hydra cnidocyte discharge.

    PubMed

    McLaughlin, Susan

    2017-03-01

    Like other cnidarians, the freshwater organism Hydra is characterized by the possession of cnidocytes (stinging cells). Most cnidocytes are located on hydra tentacles, where they are organized along with sensory cells and ganglion cells into battery complexes. The function of the battery complexes is to integrate multiple types of stimuli for the regulation of cnidocyte discharge. The molecular mechanisms controlling the discharge of cnidocytes are not yet fully understood, but it is known that discharge depends on extracellular Ca 2+ and that mechanically induced cnidocyte discharge can be enhanced by the presence of prey extracts and other chemicals. Experiments in this paper show that a PKD2 (polycystin 2) transient receptor potential (TRP) channel is expressed in hydra tentacles and bases. PKD2 (TRPP) channels belong to the TRP channel superfamily and are non-selective Ca 2+ channels involved in the transduction of both mechanical and chemical stimuli in other organisms. Non-specific PKD2 channel inhibitors Neo (neomycin) and Gd 3+ (gadolinium) inhibit both prey capture and cnidocyte discharge in hydra. The PKD2 activator Trip (triptolide) enhances cnidocyte discharge in both starved and satiated hydra and reduces the inhibition of cnidocyte discharge caused by Neo. PKD1 and 2 proteins are known to act together to transduce mechanical and chemical stimuli; in situ hybridization experiments show that a PKD1 gene is expressed in hydra tentacles and bases, suggesting that polycystins play a direct or indirect role in cnidocyte discharge.

  5. Immunochemical Localization of GABAA Receptor Subunits in the Freshwater Polyp Hydra vulgaris (Cnidaria, Hydrozoa).

    PubMed

    Concas, A; Imperatore, R; Santoru, F; Locci, A; Porcu, P; Cristino, L; Pierobon, P

    2016-11-01

    γ-aminobutyric acid (GABA) receptors, responding to GABA positive allosteric modulators, are present in the freshwater polyp Hydra vulgaris (Cnidaria, Hydrozoa), one of the most primitive metazoans to develop a nervous system. We examined the occurrence and distribution of GABA A receptor subunits in Hydra tissues by western blot and immunohistochemistry. Antibodies against different GABA A receptor subunits were used in Hydra membrane preparations. Unique protein bands, inhibited by the specific peptide, appeared at 35, 60, ∼50 and ∼52 kDa in membranes incubated with α3, β1, γ3 or δ antibodies, respectively. Immunohistochemical screening of whole mount Hydra preparations revealed diffuse immunoreactivity to α3, β1 or γ3 antibodies in tentacles, hypostome, and upper part of the gastric region; immunoreactive fibers were also present in the lower peduncle. By contrast, δ antibodies revealed a strong labeling in the lower gastric region and peduncle, as well as in tentacles. Double labeling showed colocalization of α3/β1, α3/γ3 and α3/δ immunoreactivity in granules or cells in tentacles and gastric region. In the peduncle, colocalization of both α3/β1 and α3/γ3 immunoreactivity was found in fibers running horizontally above the foot. These data indicate that specific GABA A receptor subunits are present and differentially distributed in Hydra body regions. Subunit colocalization suggests that Hydra GABA receptors are heterologous multimers, possibly sub-serving different physiological activities.

  6. Open Software Tools Applied to Jordan's National Multi-Agent Water Management Model

    NASA Astrophysics Data System (ADS)

    Knox, Stephen; Meier, Philipp; Harou, Julien; Yoon, Jim; Selby, Philip; Lachaut, Thibaut; Klassert, Christian; Avisse, Nicolas; Khadem, Majed; Tilmant, Amaury; Gorelick, Steven

    2016-04-01

    Jordan is the fourth most water scarce country in the world, where demand exceeds supply in a politically and demographically unstable context. The Jordan Water Project (JWP) aims to perform policy evaluation by modelling the hydrology, economics, and governance of Jordan's water resource system. The multidisciplinary nature of the project requires a modelling software system capable of integrating submodels from multiple disciplines into a single decision making process and communicating results to stakeholders. This requires a tool for building an integrated model and a system where diverse data sets can be managed and visualised. The integrated Jordan model is built using Pynsim, an open-source multi-agent simulation framework implemented in Python. Pynsim operates on network structures of nodes and links and supports institutional hierarchies, where an institution represents a grouping of nodes, links or other institutions. At each time step, code within each node, link and institution can executed independently, allowing for their fully autonomous behaviour. Additionally, engines (sub-models) perform actions over the entire network or on a subset of the network, such as taking a decision on a set of nodes. Pynsim is modular in design, allowing distinct modules to be modified easily without affecting others. Data management and visualisation is performed using Hydra (www.hydraplatform.org), an open software platform allowing users to manage network structure and data. The Hydra data manager connects to Pynsim, providing necessary input parameters for the integrated model. By providing a high-level portal to the model, Hydra removes a barrier between the users of the model (researchers, stakeholders, planners etc) and the model itself, allowing them to manage data, run the model and visualise results all through a single user interface. Pynsim's ability to represent institutional hierarchies, inter-network communication and the separation of node, link and institutional logic from higher level processes (engine) suit JWP's requirements. The use of Hydra Platform and Pynsim helps make complex customised models such as the JWP model easier to run and manage with international groups of researchers.

  7. SPHYNX: an accurate density-based SPH method for astrophysical applications

    NASA Astrophysics Data System (ADS)

    Cabezón, R. M.; García-Senz, D.; Figueira, J.

    2017-10-01

    Aims: Hydrodynamical instabilities and shocks are ubiquitous in astrophysical scenarios. Therefore, an accurate numerical simulation of these phenomena is mandatory to correctly model and understand many astrophysical events, such as supernovas, stellar collisions, or planetary formation. In this work, we attempt to address many of the problems that a commonly used technique, smoothed particle hydrodynamics (SPH), has when dealing with subsonic hydrodynamical instabilities or shocks. To that aim we built a new SPH code named SPHYNX, that includes many of the recent advances in the SPH technique and some other new ones, which we present here. Methods: SPHYNX is of Newtonian type and grounded in the Euler-Lagrange formulation of the smoothed-particle hydrodynamics technique. Its distinctive features are: the use of an integral approach to estimating the gradients; the use of a flexible family of interpolators called sinc kernels, which suppress pairing instability; and the incorporation of a new type of volume element which provides a better partition of the unity. Unlike other modern formulations, which consider volume elements linked to pressure, our volume element choice relies on density. SPHYNX is, therefore, a density-based SPH code. Results: A novel computational hydrodynamic code oriented to Astrophysical applications is described, discussed, and validated in the following pages. The ensuing code conserves mass, linear and angular momentum, energy, entropy, and preserves kernel normalization even in strong shocks. In our proposal, the estimation of gradients is enhanced using an integral approach. Additionally, we introduce a new family of volume elements which reduce the so-called tensile instability. Both features help to suppress the damp which often prevents the growth of hydrodynamic instabilities in regular SPH codes. Conclusions: On the whole, SPHYNX has passed the verification tests described below. For identical particle setting and initial conditions the results were similar (or better in some particular cases) than those obtained with other SPH schemes such as GADGET-2, PSPH or with the recent density-independent formulation (DISPH) and conservative reproducing kernel (CRKSPH) techniques.

  8. Adding kinetics and hydrodynamics to the CHEETAH thermochemical code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fried, L.E., Howard, W.M., Souers, P.C.

    1997-01-15

    In FY96 we released CHEETAH 1.40, which made extensive improvements on the stability and user friendliness of the code. CHEETAH now has over 175 users in government, academia, and industry. Efforts have also been focused on adding new advanced features to CHEETAH 2.0, which is scheduled for release in FY97. We have added a new chemical kinetics capability to CHEETAH. In the past, CHEETAH assumed complete thermodynamic equilibrium and independence of time. The addition of a chemical kinetic framework will allow for modeling of time-dependent phenomena, such as partial combustion and detonation in composite explosives with large reaction zones. Wemore » have implemented a Wood-Kirkwood detonation framework in CHEETAH, which allows for the treatment of nonideal detonations and explosive failure. A second major effort in the project this year has been linking CHEETAH to hydrodynamic codes to yield an improved HE product equation of state. We have linked CHEETAH to 1- and 2-D hydrodynamic codes, and have compared the code to experimental data. 15 refs., 13 figs., 1 tab.« less

  9. Non-linear hydrodynamical evolution of rotating relativistic stars: numerical methods and code tests

    NASA Astrophysics Data System (ADS)

    Font, José A.; Stergioulas, Nikolaos; Kokkotas, Kostas D.

    2000-04-01

    We present numerical hydrodynamical evolutions of rapidly rotating relativistic stars, using an axisymmetric, non-linear relativistic hydrodynamics code. We use four different high-resolution shock-capturing (HRSC) finite-difference schemes (based on approximate Riemann solvers) and compare their accuracy in preserving uniformly rotating stationary initial configurations in long-term evolutions. Among these four schemes, we find that the third-order piecewise parabolic method scheme is superior in maintaining the initial rotation law in long-term evolutions, especially near the surface of the star. It is further shown that HRSC schemes are suitable for the evolution of perturbed neutron stars and for the accurate identification (via Fourier transforms) of normal modes of oscillation. This is demonstrated for radial and quadrupolar pulsations in the non-rotating limit, where we find good agreement with frequencies obtained with a linear perturbation code. The code can be used for studying small-amplitude or non-linear pulsations of differentially rotating neutron stars, while our present results serve as testbed computations for three-dimensional general-relativistic evolution codes.

  10. Developing a Multi-Dimensional Hydrodynamics Code with Astrochemical Reactions

    NASA Astrophysics Data System (ADS)

    Kwak, Kyujin; Yang, Seungwon

    2015-08-01

    The Atacama Large Millimeter/submillimeter Array (ALMA) revealed high resolution molecular lines some of which are still unidentified yet. Because formation of these astrochemical molecules has been seldom studied in traditional chemistry, observations of new molecular lines drew a lot of attention from not only astronomers but also chemists both experimental and theoretical. Theoretical calculations for the formation of these astrochemical molecules have been carried out providing reaction rates for some important molecules, and some of theoretical predictions have been measured in laboratories. The reaction rates for the astronomically important molecules are now collected to form databases some of which are publically available. By utilizing these databases, we develop a multi-dimensional hydrodynamics code that includes the reaction rates of astrochemical molecules. Because this type of hydrodynamics code is able to trace the molecular formation in a non-equilibrium fashion, it is useful to study the formation history of these molecules that affects the spatial distribution of some specific molecules. We present the development procedure of this code and some test problems in order to verify and validate the developed code.

  11. Collisionless stellar hydrodynamics as an efficient alternative to N-body methods

    NASA Astrophysics Data System (ADS)

    Mitchell, Nigel L.; Vorobyov, Eduard I.; Hensler, Gerhard

    2013-01-01

    The dominant constituents of the Universe's matter are believed to be collisionless in nature and thus their modelling in any self-consistent simulation is extremely important. For simulations that deal only with dark matter or stellar systems, the conventional N-body technique is fast, memory efficient and relatively simple to implement. However when extending simulations to include the effects of gas physics, mesh codes are at a distinct disadvantage compared to Smooth Particle Hydrodynamics (SPH) codes. Whereas implementing the N-body approach into SPH codes is fairly trivial, the particle-mesh technique used in mesh codes to couple collisionless stars and dark matter to the gas on the mesh has a series of significant scientific and technical limitations. These include spurious entropy generation resulting from discreteness effects, poor load balancing and increased communication overhead which spoil the excellent scaling in massively parallel grid codes. In this paper we propose the use of the collisionless Boltzmann moment equations as a means to model the collisionless material as a fluid on the mesh, implementing it into the massively parallel FLASH Adaptive Mesh Refinement (AMR) code. This approach which we term `collisionless stellar hydrodynamics' enables us to do away with the particle-mesh approach and since the parallelization scheme is identical to that used for the hydrodynamics, it preserves the excellent scaling of the FLASH code already demonstrated on peta-flop machines. We find that the classic hydrodynamic equations and the Boltzmann moment equations can be reconciled under specific conditions, allowing us to generate analytic solutions for collisionless systems using conventional test problems. We confirm the validity of our approach using a suite of demanding test problems, including the use of a modified Sod shock test. By deriving the relevant eigenvalues and eigenvectors of the Boltzmann moment equations, we are able to use high order accurate characteristic tracing methods with Riemann solvers to generate numerical solutions which show excellent agreement with our analytic solutions. We conclude by demonstrating the ability of our code to model complex phenomena by simulating the evolution of a two-armed spiral galaxy whose properties agree with those predicted by the swing amplification theory.

  12. ARES Modeling of High-foot Implosions (NNSA Milestone #5466)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurricane, O. A.

    ARES “capsule only” simulations demonstrated results of applying an ASC code to a suite of high-foot ICF implosion experiments. While a capability to apply an asymmetric FDS drive to the capsule-only model using add-on Python routines exists, it was not exercised here. The ARES simulation results resemble the results from HYDRA simulations documented in A. Kritcher, et al., Phys. Plasmas, 23, 052709 (2016); namely, 1D simulation and data are in reasonable agreement for the lowest velocity experiments, but diverge from each other at higher velocities.

  13. Phase Curves of Nix and Hydra from the New Horizons Imaging Cameras

    NASA Astrophysics Data System (ADS)

    Verbiscer, Anne J.; Porter, Simon B.; Buratti, Bonnie J.; Weaver, Harold A.; Spencer, John R.; Showalter, Mark R.; Buie, Marc W.; Hofgartner, Jason D.; Hicks, Michael D.; Ennico-Smith, Kimberly; Olkin, Catherine B.; Stern, S. Alan; Young, Leslie A.; Cheng, Andrew; (The New Horizons Team

    2018-01-01

    NASA’s New Horizons spacecraft’s voyage through the Pluto system centered on 2015 July 14 provided images of Pluto’s small satellites Nix and Hydra at viewing angles unattainable from Earth. Here, we present solar phase curves of the two largest of Pluto’s small moons, Nix and Hydra, observed by the New Horizons LOng Range Reconnaissance Imager and Multi-spectral Visible Imaging Camera, which reveal the scattering properties of their icy surfaces in visible light. Construction of these solar phase curves enables comparisons between the photometric properties of Pluto’s small moons and those of other icy satellites in the outer solar system. Nix and Hydra have higher visible albedos than those of other resonant Kuiper Belt objects and irregular satellites of the giant planets, but not as high as small satellites of Saturn interior to Titan. Both Nix and Hydra appear to scatter visible light preferentially in the forward direction, unlike most icy satellites in the outer solar system, which are typically backscattering.

  14. Observations of M87 and Hydra A at 90 GHz

    NASA Technical Reports Server (NTRS)

    Cotton, W. D.; Mason, B. S.; Dicker, S.; Korngut, P.; Devlin, M. J.; Aquirre, J.; Benford, D.; Moseley, H.; Staguhn, J.; Irwin, K.; hide

    2009-01-01

    This paper presents new observations of the AGNs M87 and Hydra A at 90 GHz made with the MUSTANG bolometer array on the Green Bank Telescope at 8.5" resolution. A spectral analysis is performed combining this new data and archival VLA data or1 these objects at longer wavelengths. This analysis can detect variations in spectral index and curvature expected from energy losses in the radiating particles. L187 shows only weak evidence for steepening of the spectrum along the jet suggesting either re-acceleration of the relativistic particles in the jet or insufficient losesto affect the spectrum at 90 GHz The jets in Hydra A show strong steepening as they move from the nucleus suggesting unbalanced losses of the higher energy relativistic particles The difference between these two sources may be accounted for by the different lengths over which the jets are observable, 2 kpc for 5187 and 45 kpc for Hydra A. Subject headings: galaxies: jets, galaxies: active, radio continuum, galaxies: individual (M87. Hydra A),

  15. Hydra multiple head star sensor and its in-flight self-calibration of optical heads alignment

    NASA Astrophysics Data System (ADS)

    Majewski, L.; Blarre, L.; Perrimon, N.; Kocher, Y.; Martinez, P. E.; Dussy, S.

    2017-11-01

    HYDRA is EADS SODERN new product line of APS-based autonomous star trackers. The baseline is a multiple head sensor made of three separated optical heads and one electronic unit. Actually the concept which was chosen offers more than three single-head star trackers working independently. Since HYDRA merges all fields of view the result is a more accurate, more robust and completely autonomous multiple-head sensor, releasing the AOCS from the need to manage the outputs of independent single-head star trackers. Specific to the multiple head architecture and the underlying data fusion, is the calibration of the relative alignments between the sensor optical heads. The performance of the sensor is related to its estimation of such alignments. HYDRA design is first reminded in this paper along with simplification it can bring at system level (AOCS). Then self-calibration of optical heads alignment is highlighted through descriptions and simulation results, thus demonstrating the performances of a key part of HYDRA multiple-head concept.

  16. The Origin of Mucosal Immunity: Lessons from the Holobiont Hydra

    PubMed Central

    Schröder, Katja

    2016-01-01

    ABSTRACT Historically, mucosal immunity—i.e., the portion of the immune system that protects an organism’s various mucous membranes from invasion by potentially pathogenic microbes—has been studied in single-cell epithelia in the gastrointestinal and upper respiratory tracts of vertebrates. Phylogenetically, mucosal surfaces appeared for the first time about 560 million years ago in members of the phylum Cnidaria. There are remarkable similarities and shared functions of mucosal immunity in vertebrates and innate immunity in cnidarians, such as Hydra species. Here, we propose a common origin for both systems and review observations that indicate that the ultimately simple holobiont Hydra provides both a new perspective on the relationship between bacteria and animal cells and a new prism for viewing the emergence and evolution of epithelial tissue-based innate immunity. In addition, recent breakthroughs in our understanding of immune responses in Hydra polyps reared under defined short-term gnotobiotic conditions open up the potential of Hydra as an animal research model for the study of common mucosal disorders. PMID:27803185

  17. Thrombospondin Type-1 Repeat Domain-Containing Proteins Are Strongly Expressed in the Head Region of Hydra

    PubMed Central

    Hamaguchi-Hamada, Kayoko; Kurumata-Shigeto, Mami; Minobe, Sumiko; Fukuoka, Nozomi; Sato, Manami; Matsufuji, Miyuki; Koizumi, Osamu; Hamada, Shun

    2016-01-01

    The head region of Hydra, the hypostome, is a key body part for developmental control and the nervous system. We herein examined genes specifically expressed in the head region of Hydra oligactis using suppression subtractive hybridization (SSH) cloning. A total of 1414 subtracted clones were sequenced and found to be derived from at least 540 different genes by BLASTN analyses. Approximately 25% of the subtracted clones had sequences encoding thrombospondin type-1 repeat (TSR) domains, and were derived from 17 genes. We identified 11 TSR domain-containing genes among the top 36 genes that were the most frequently detected in our SSH library. Whole-mount in situ hybridization analyses confirmed that at least 13 out of 17 TSR domain-containing genes were expressed in the hypostome of Hydra oligactis. The prominent expression of TSR domain-containing genes suggests that these genes play significant roles in the hypostome of Hydra oligactis. PMID:27043211

  18. FoxO is a critical regulator of stem cell maintenance in immortal Hydra.

    PubMed

    Boehm, Anna-Marei; Khalturin, Konstantin; Anton-Erxleben, Friederike; Hemmrich, Georg; Klostermeier, Ulrich C; Lopez-Quintero, Javier A; Oberg, Hans-Heinrich; Puchert, Malte; Rosenstiel, Philip; Wittlieb, Jörg; Bosch, Thomas C G

    2012-11-27

    Hydra's unlimited life span has long attracted attention from natural scientists. The reason for that phenomenon is the indefinite self-renewal capacity of its stem cells. The underlying molecular mechanisms have yet to be explored. Here, by comparing the transcriptomes of Hydra's stem cells followed by functional analysis using transgenic polyps, we identified the transcription factor forkhead box O (FoxO) as one of the critical drivers of this continuous self-renewal. foxO overexpression increased interstitial stem cell and progenitor cell proliferation and activated stem cell genes in terminally differentiated somatic cells. foxO down-regulation led to an increase in the number of terminally differentiated cells, resulting in a drastically reduced population growth rate. In addition, it caused down-regulation of stem cell genes and antimicrobial peptide (AMP) expression. These findings contribute to a molecular understanding of Hydra's immortality, indicate an evolutionarily conserved role of FoxO in controlling longevity from Hydra to humans, and have implications for understanding cellular aging.

  19. The role of viscosity in TATB hot spot ignition

    NASA Astrophysics Data System (ADS)

    Fried, Laurence E.; Zepeda-Ruis, Luis; Howard, W. Michael; Najjar, Fady; Reaugh, John E.

    2012-03-01

    The role of dissipative effects, such as viscosity, in the ignition of high explosive pores is investigated using a coupled chemical, thermal, and hydrodynamic model. Chemical reactions are tracked with the Cheetah thermochemical code coupled to the ALE3D hydrodynamic code. We perform molecular dynamics simulations to determine the viscosity of liquid TATB. We also analyze shock wave experiments to obtain an estimate for the shock viscosity of TATB. Using the lower bound liquid-like viscosities, we find that the pore collapse is hydrodynamic in nature. Using the upper bound viscosity from shock wave experiments, we find that the pore collapse is closest to the viscous limit.

  20. The moving mesh code SHADOWFAX

    NASA Astrophysics Data System (ADS)

    Vandenbroucke, B.; De Rijcke, S.

    2016-07-01

    We introduce the moving mesh code SHADOWFAX, which can be used to evolve a mixture of gas, subject to the laws of hydrodynamics and gravity, and any collisionless fluid only subject to gravity, such as cold dark matter or stars. The code is written in C++ and its source code is made available to the scientific community under the GNU Affero General Public Licence. We outline the algorithm and the design of our implementation, and demonstrate its validity through the results of a set of basic test problems, which are also part of the public version. We also compare SHADOWFAX with a number of other publicly available codes using different hydrodynamical integration schemes, illustrating the advantages and disadvantages of the moving mesh technique.

  1. Generation and Long-term Maintenance of Nerve-free Hydra.

    PubMed

    Tran, Cassidy M; Fu, Sharon; Rowe, Trevor; Collins, Eva-Maria S

    2017-07-07

    The interstitial cell lineage of Hydra includes multipotent stem cells, and their derivatives: gland cells, nematocytes, germ cells, and nerve cells. The interstitial cells can be eliminated through two consecutive treatments with colchicine, a plant-derived toxin that kills dividing cells, thus erasing the potential for renewal of the differentiated cells that are derived from the interstitial stem cells. This allows for the generation of Hydra that lack nerve cells. A nerve-free polyp cannot open its mouth to feed, egest, or regulate osmotic pressure. Such animals, however, can survive and be cultured indefinitely in the laboratory if regularly force-fed and burped. The lack of nerve cells allows for studies of the role of the nervous system in regulating animal behavior and regeneration. Previously published protocols for nerve-free Hydra maintenance involve outdated techniques such as mouth-pipetting with hand-pulled micropipette tips to feed and clean the Hydra. Here, an improved protocol for maintenance of nerve-free Hydra is introduced. Fine-tipped forceps are used to force open the mouth and insert freshly killed Artemia. Following force-feeding, the body cavity of the animal is flushed with fresh medium using a syringe and hypodermic needle to remove undigested material, referred to here as "burping". This new method of force-feeding and burping nerve-free Hydra through the use of forceps and syringes eliminates the need for mouth-pipetting using hand-pulled micropipette tips. It thus makes the process safer and significantly more time efficient. To ensure that the nerve cells in the hypostome have been eliminated, immunohistochemistry using anti-tyrosine-tubulin is conducted.

  2. Dynamics of Mouth Opening in Hydra

    PubMed Central

    Carter, Jason A.; Hyland, Callen; Steele, Robert E.; Collins, Eva-Maria S.

    2016-01-01

    Hydra, a simple freshwater animal famous for its regenerative capabilities, must tear a hole through its epithelial tissue each time it opens its mouth. The feeding response of Hydra has been well-characterized physiologically and is regarded as a classical model system for environmental chemical biology. However, due to a lack of in vivo labeling and imaging tools, the biomechanics of mouth opening have remained completely unexplored. We take advantage of the availability of transgenic Hydra lines to perform the first dynamical analysis, to our knowledge, of Hydra mouth opening and test existing hypotheses regarding the underlying cellular mechanisms. Through cell position and shape tracking, we show that mouth opening is accompanied by changes in cell shape, but not cellular rearrangements as previously suggested. Treatment with a muscle relaxant impairs mouth opening, supporting the hypothesis that mouth opening is an active process driven by radial contractile processes (myonemes) in the ectoderm. Furthermore, we find that all events exhibit the same relative rate of opening. Because one individual can open consecutively to different amounts, this suggests that the degree of mouth opening is controlled through neuronal signaling. Finally, from the opening dynamics and independent measurements of the elastic properties of the tissues, we estimate the forces exerted by the myonemes to be on the order of a few nanoNewtons. Our study provides the first dynamical framework, to our knowledge, for understanding the remarkable plasticity of the Hydra mouth and illustrates that Hydra is a powerful system for quantitative biomechanical studies of cell and tissue behaviors in vivo. PMID:26958895

  3. Dynamics of Mouth Opening in Hydra.

    PubMed

    Carter, Jason A; Hyland, Callen; Steele, Robert E; Collins, Eva-Maria S

    2016-03-08

    Hydra, a simple freshwater animal famous for its regenerative capabilities, must tear a hole through its epithelial tissue each time it opens its mouth. The feeding response of Hydra has been well-characterized physiologically and is regarded as a classical model system for environmental chemical biology. However, due to a lack of in vivo labeling and imaging tools, the biomechanics of mouth opening have remained completely unexplored. We take advantage of the availability of transgenic Hydra lines to perform the first dynamical analysis, to our knowledge, of Hydra mouth opening and test existing hypotheses regarding the underlying cellular mechanisms. Through cell position and shape tracking, we show that mouth opening is accompanied by changes in cell shape, but not cellular rearrangements as previously suggested. Treatment with a muscle relaxant impairs mouth opening, supporting the hypothesis that mouth opening is an active process driven by radial contractile processes (myonemes) in the ectoderm. Furthermore, we find that all events exhibit the same relative rate of opening. Because one individual can open consecutively to different amounts, this suggests that the degree of mouth opening is controlled through neuronal signaling. Finally, from the opening dynamics and independent measurements of the elastic properties of the tissues, we estimate the forces exerted by the myonemes to be on the order of a few nanoNewtons. Our study provides the first dynamical framework, to our knowledge, for understanding the remarkable plasticity of the Hydra mouth and illustrates that Hydra is a powerful system for quantitative biomechanical studies of cell and tissue behaviors in vivo. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  4. Coupled Hydrodynamic and Wave Propagation Modeling for the Source Physics Experiment: Study of Rg Wave Sources for SPE and DAG series.

    NASA Astrophysics Data System (ADS)

    Larmat, C. S.; Delorey, A.; Rougier, E.; Knight, E. E.; Steedman, D. W.; Bradley, C. R.

    2017-12-01

    This presentation reports numerical modeling efforts to improve knowledge of the processes that affect seismic wave generation and propagation from underground explosions, with a focus on Rg waves. The numerical model is based on the coupling of hydrodynamic simulation codes (Abaqus, CASH and HOSS), with a 3D full waveform propagation code, SPECFEM3D. Validation datasets are provided by the Source Physics Experiment (SPE) which is a series of highly instrumented chemical explosions at the Nevada National Security Site with yields from 100kg to 5000kg. A first series of explosions in a granite emplacement has just been completed and a second series in alluvium emplacement is planned for 2018. The long-term goal of this research is to review and improve current existing seismic sources models (e.g. Mueller & Murphy, 1971; Denny & Johnson, 1991) by providing first principles calculations provided by the coupled codes capability. The hydrodynamic codes, Abaqus, CASH and HOSS, model the shocked, hydrodynamic region via equations of state for the explosive, borehole stemming and jointed/weathered granite. A new material model for unconsolidated alluvium materials has been developed and validated with past nuclear explosions, including the 10 kT 1965 Merlin event (Perret, 1971) ; Perret and Bass, 1975). We use the efficient Spectral Element Method code, SPECFEM3D (e.g. Komatitsch, 1998; 2002), and Geologic Framework Models to model the evolution of wavefield as it propagates across 3D complex structures. The coupling interface is a series of grid points of the SEM mesh situated at the edge of the hydrodynamic code domain. We will present validation tests and waveforms modeled for several SPE tests which provide evidence that the damage processes happening in the vicinity of the explosions create secondary seismic sources. These sources interfere with the original explosion moment and reduces the apparent seismic moment at the origin of Rg waves up to 20%.

  5. The shock-heated atmosphere of an asymptotic giant branch star resolved by ALMA

    NASA Astrophysics Data System (ADS)

    Vlemmings, Wouter; Khouri, Theo; O'Gorman, Eamon; De Beck, Elvire; Humphreys, Elizabeth; Lankhaar, Boy; Maercker, Matthias; Olofsson, Hans; Ramstedt, Sofia; Tafoya, Daniel; Takigawa, Aki

    2017-12-01

    Our current understanding of the chemistry and mass-loss processes in Sun-like stars at the end of their evolution depends critically on the description of convection, pulsations and shocks in the extended stellar atmosphere1. Three-dimensional hydrodynamical stellar atmosphere models provide observational predictions2, but so far the resolution to constrain the complex temperature and velocity structures seen in the models has been lacking. Here we present submillimetre continuum and line observations that resolve the atmosphere of the asymptotic giant branch star W Hydrae. We show that hot gas with chromospheric characteristics exists around the star. Its filling factor is shown to be small. The existence of such gas requires shocks with a cooling time longer than commonly assumed. A shocked hot layer will be an important ingredient in current models of stellar convection, pulsation and chemistry at the late stages of stellar evolution.

  6. Masses of Nix and Hydra

    NASA Astrophysics Data System (ADS)

    Tholen, David J.; Buie, M. W.; Grundy, W.

    2007-05-01

    Two new, small satellites of Pluto were discovered in 2005 using deep images from the Hubble Space Telescope. The IAU has approved the name Hydra for the outermost satellite and the name Nix for the one orbiting at an intermediate distance between Charon and Hydra. We used the two discovery observations of Nix and Hydra from 2005, the two confirmation observations from 2006, and the twelve prediscovery observations from 2001 and 2002, as well as available observations of Charon, to perform a four-body orbit solution for the Pluto system. Mutual perturbations have placed constraints on the masses of each member of the system. Previous work placed useful limits on the masses of Pluto and Charon, as well as their densities, given the known sizes of the bodies based on stellar occultation and mutual event observations, therefore our new work is aimed at placing constraints on the masses of Nix and Hydra. The best-fit GM values for Nix and Hydra are 0.040 and 0.021 km3 sec-2. The uncertainty in the GM of Hydra is large enough to allow for a negligible mass. At the one-sigma level, we can rule out masses near the upper limit of what is physically reasonable (correpsonding to a combination of low albedos and high densities) for both satellites, and in the case of Nix, we can also rule out a mass near the lower limit (corresponding to a high albedo and low density). We have determined empirically that the rate of precession of the line of apsides of Charon's slightly eccentric orbit is proportional to the mass of Nix and Hydra. New HST observations of the satellites are scheduled, which should improve the orbit solution and reduce the uncertainties in the masses. Ultimately, these results will place constraints on models for the formation of the system.

  7. Astrometry and orbits of Nix, Kerberos, AND Hydra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buie, Marc W.; Grundy, William M.; Tholen, David J., E-mail: buie@boulder.swri.edu, E-mail: grundy@lowell.edu, E-mail: tholen@ifa.hawaii.edu

    We present new Hubble Space Telescope observations of three of Pluto's outer moons, Nix, Kerberos, and Hydra. This work revises previously published astrometry of Nix and Hydra from 2002 to 2003. New data from a four-month span during 2007 include observations designed to better measure the positions of Nix and Hydra. A third data set from 2010 also includes data on Nix and Hydra as well as some pre-discovery observations of Kerberos. The data were fitted using numerical point-spread function (PSF) fitting techniques to get accurate positions but also to remove the extended wings of the Pluto and Charon PSFsmore » when working on these faint satellites. The resulting astrometric data were fitted with two-body Keplerian orbits that are useful for short-term predictions of the future positions of these satellites for stellar occultation and for guiding encounter planning for the upcoming New Horizons flyby of the Pluto system. The mutual inclinations of the satellites are all within 0.°2 of the plane of Charon's orbit. The periods for all continue to show that their orbits are near but distinct from integer period ratios relative to Charon. Based on our results, the period ratios are Hydra:Charon = 5.98094 ± 0.00001, Kerberos:Charon = 5.0392 ± 0.0003, and Nix:Charon = 3.89135 ± 0.00001. Based on period ratios alone, there is a trend of increased distance from an integer period ratio with decreasing distance from Charon. Our analysis shows that orbital uncertainties for Nix and Hydra are now low enough to permit useful stellar occultation predictions and for New Horizons encounter planning. In 2015 July, our orbits predict a position error of 60 km for Nix and 38 km for Hydra, well below other limiting errors that affect targeting. The orbit for Kerberos, however, still needs a lot of work as its uncertainty in 2015 is quite large at 22,000 km based on these data.« less

  8. Maestro and Castro: Simulation Codes for Astrophysical Flows

    NASA Astrophysics Data System (ADS)

    Zingale, Michael; Almgren, Ann; Beckner, Vince; Bell, John; Friesen, Brian; Jacobs, Adam; Katz, Maximilian P.; Malone, Christopher; Nonaka, Andrew; Zhang, Weiqun

    2017-01-01

    Stellar explosions are multiphysics problems—modeling them requires the coordinated input of gravity solvers, reaction networks, radiation transport, and hydrodynamics together with microphysics recipes to describe the physics of matter under extreme conditions. Furthermore, these models involve following a wide range of spatial and temporal scales, which puts tough demands on simulation codes. We developed the codes Maestro and Castro to meet the computational challenges of these problems. Maestro uses a low Mach number formulation of the hydrodynamics to efficiently model convection. Castro solves the fully compressible radiation hydrodynamics equations to capture the explosive phases of stellar phenomena. Both codes are built upon the BoxLib adaptive mesh refinement library, which prepares them for next-generation exascale computers. Common microphysics shared between the codes allows us to transfer a problem from the low Mach number regime in Maestro to the explosive regime in Castro. Importantly, both codes are freely available (https://github.com/BoxLib-Codes). We will describe the design of the codes and some of their science applications, as well as future development directions.Support for development was provided by NSF award AST-1211563 and DOE/Office of Nuclear Physics grant DE-FG02-87ER40317 to Stony Brook and by the Applied Mathematics Program of the DOE Office of Advance Scientific Computing Research under US DOE contract DE-AC02-05CH11231 to LBNL.

  9. Comparison of Hydrodynamic Load Predictions Between Engineering Models and Computational Fluid Dynamics for the OC4-DeepCwind Semi-Submersible: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benitz, M. A.; Schmidt, D. P.; Lackner, M. A.

    Hydrodynamic loads on the platforms of floating offshore wind turbines are often predicted with computer-aided engineering tools that employ Morison's equation and/or potential-flow theory. This work compares results from one such tool, FAST, NREL's wind turbine computer-aided engineering tool, and the computational fluid dynamics package, OpenFOAM, for the OC4-DeepCwind semi-submersible analyzed in the International Energy Agency Wind Task 30 project. Load predictions from HydroDyn, the offshore hydrodynamics module of FAST, are compared with high-fidelity results from OpenFOAM. HydroDyn uses a combination of Morison's equations and potential flow to predict the hydrodynamic forces on the structure. The implications of the assumptionsmore » in HydroDyn are evaluated based on this code-to-code comparison.« less

  10. A new relativistic viscous hydrodynamics code and its application to the Kelvin-Helmholtz instability in high-energy heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Okamoto, Kazuhisa; Nonaka, Chiho

    2017-06-01

    We construct a new relativistic viscous hydrodynamics code optimized in the Milne coordinates. We split the conservation equations into an ideal part and a viscous part, using the Strang spitting method. In the code a Riemann solver based on the two-shock approximation is utilized for the ideal part and the Piecewise Exact Solution (PES) method is applied for the viscous part. We check the validity of our numerical calculations by comparing analytical solutions, the viscous Bjorken's flow and the Israel-Stewart theory in Gubser flow regime. Using the code, we discuss possible development of the Kelvin-Helmholtz instability in high-energy heavy-ion collisions.

  11. Observation of Burial and Migration of Instrumented Surrogate Munitions Deployed in the Swash Zone

    NASA Astrophysics Data System (ADS)

    Cristaudo, D.; Puleo, J. A.; Bruder, B. L.

    2017-12-01

    Munitions (also known as unexploded ordnance; UXO) in the nearshore environment due to past military activities, may be found on the beach, constituting a risk for beach users. Munitions may be transported from offshore to shallower water and/or migrate along the coast. In addition, munitions may bury in place or be exhumed due to hydrodynamic forcing. Observations on munitions mobility have generally been collected offshore, while observations in the swash zone are scarce. The swash zone is the region of the beach alternately covered by wave runup where hydrodynamic processes may be intense. Studies of munitions mobility require the use of realistic surrogates to quantify mobility/burial and hydrodynamic forcing conditions. Four surrogates (BLU-61 Cluster Bomb, 81 mm Mortar, M151-70 Hydra Rocket and M107 155 mm High Explosive Howitzer) were developed and tested during large-scale laboratory and field studies. Surrogates house sensors that measure different components of motion. Errors between real munitions and surrogate parameters (mass, center of gravity and axial moment of inertia) are all within an absolute error of 20%. Internal munitions sensors consist of inertial motion units (for acceleration and angular velocity in and around the three directions and orientation), pressure transducers (for water depth above surrogate), shock recorders (for high frequency acceleration to detect wave impact on the surrogate), and an in-house designed array of optical sensors (for burial/exposure and rolling). An in situ array of sensors to measure hydrodynamics, bed morphology and sediment concentrations, was deployed in the swash zone, aligned with the surrogate deployment. Data collected during the studies will be shown highlighting surrogate sensor capabilities. Sensors response will be compared with GPS measurements and imagery from cameras overlooking the study sites of surrogate position as a function of time. Examples of burial/exposure and migration of surrogates will be discussed. Relationships between burial/migration and incoming forcing conditions, bed slope and munitions characteristics (such as specific density, length/diameter) will all be shown.

  12. Slow-cycling stem cells in hydra contribute to head regeneration

    PubMed Central

    Govindasamy, Niraimathi; Murthy, Supriya; Ghanekar, Yashoda

    2014-01-01

    ABSTRACT Adult stem cells face the challenge of maintaining tissue homeostasis by self-renewal while maintaining their proliferation potential over the lifetime of an organism. Continuous proliferation can cause genotoxic/metabolic stress that can compromise the genomic integrity of stem cells. To prevent stem cell exhaustion, highly proliferative adult tissues maintain a pool of quiescent stem cells that divide only in response to injury and thus remain protected from genotoxic stress. Hydra is a remarkable organism with highly proliferative stem cells and ability to regenerate at whole animal level. Intriguingly, hydra does not display consequences of high proliferation, such as senescence or tumour formation. In this study, we investigate if hydra harbours a pool of slow-cycling stem cells that could help prevent undesirable consequences of continuous proliferation. Hydra were pulsed with the thymidine analogue 5-ethynyl-2′-deoxyuridine (EdU) and then chased in the absence of EdU to monitor the presence of EdU-retaining cells. A significant number of undifferentiated cells of all three lineages in hydra retained EdU for about 8–10 cell cycles, indicating that these cells did not enter cell cycle. These label-retaining cells were resistant to hydroxyurea treatment and were predominantly in the G2 phase of cell cycle. Most significantly, similar to mammalian quiescent stem cells, these cells rapidly entered cell division during head regeneration. This study shows for the first time that, contrary to current beliefs, cells in hydra display heterogeneity in their cell cycle potential and the slow-cycling cells in this population enter cell cycle during head regeneration. These results suggest an early evolution of slow-cycling stem cells in multicellular animals. PMID:25432513

  13. RNAseq versus genome-predicted transcriptomes: a large population of novel transcripts identified in an Illumina-454 Hydra transcriptome.

    PubMed

    Wenger, Yvan; Galliot, Brigitte

    2013-03-25

    Evolutionary studies benefit from deep sequencing technologies that generate genomic and transcriptomic sequences from a variety of organisms. Genome sequencing and RNAseq have complementary strengths. In this study, we present the assembly of the most complete Hydra transcriptome to date along with a comparative analysis of the specific features of RNAseq and genome-predicted transcriptomes currently available in the freshwater hydrozoan Hydra vulgaris. To produce an accurate and extensive Hydra transcriptome, we combined Illumina and 454 Titanium reads, giving the primacy to Illumina over 454 reads to correct homopolymer errors. This strategy yielded an RNAseq transcriptome that contains 48'909 unique sequences including splice variants, representing approximately 24'450 distinct genes. Comparative analysis to the available genome-predicted transcriptomes identified 10'597 novel Hydra transcripts that encode 529 evolutionarily-conserved proteins. The annotation of 170 human orthologs points to critical functions in protein biosynthesis, FGF and TOR signaling, vesicle transport, immunity, cell cycle regulation, cell death, mitochondrial metabolism, transcription and chromatin regulation. However, a majority of these novel transcripts encodes short ORFs, at least 767 of them corresponding to pseudogenes. This RNAseq transcriptome also lacks 11'270 predicted transcripts that correspond either to silent genes or to genes expressed below the detection level of this study. We established a simple and powerful strategy to combine Illumina and 454 reads and we produced, with genome assistance, an extensive and accurate Hydra transcriptome. The comparative analysis of the RNAseq transcriptome with genome-predicted transcriptomes lead to the identification of large populations of novel as well as missing transcripts that might reflect Hydra-specific evolutionary events.

  14. RNAseq versus genome-predicted transcriptomes: a large population of novel transcripts identified in an Illumina-454 Hydra transcriptome

    PubMed Central

    2013-01-01

    Background Evolutionary studies benefit from deep sequencing technologies that generate genomic and transcriptomic sequences from a variety of organisms. Genome sequencing and RNAseq have complementary strengths. In this study, we present the assembly of the most complete Hydra transcriptome to date along with a comparative analysis of the specific features of RNAseq and genome-predicted transcriptomes currently available in the freshwater hydrozoan Hydra vulgaris. Results To produce an accurate and extensive Hydra transcriptome, we combined Illumina and 454 Titanium reads, giving the primacy to Illumina over 454 reads to correct homopolymer errors. This strategy yielded an RNAseq transcriptome that contains 48’909 unique sequences including splice variants, representing approximately 24’450 distinct genes. Comparative analysis to the available genome-predicted transcriptomes identified 10’597 novel Hydra transcripts that encode 529 evolutionarily-conserved proteins. The annotation of 170 human orthologs points to critical functions in protein biosynthesis, FGF and TOR signaling, vesicle transport, immunity, cell cycle regulation, cell death, mitochondrial metabolism, transcription and chromatin regulation. However, a majority of these novel transcripts encodes short ORFs, at least 767 of them corresponding to pseudogenes. This RNAseq transcriptome also lacks 11’270 predicted transcripts that correspond either to silent genes or to genes expressed below the detection level of this study. Conclusions We established a simple and powerful strategy to combine Illumina and 454 reads and we produced, with genome assistance, an extensive and accurate Hydra transcriptome. The comparative analysis of the RNAseq transcriptome with genome-predicted transcriptomes lead to the identification of large populations of novel as well as missing transcripts that might reflect Hydra-specific evolutionary events. PMID:23530871

  15. Physical Mechanisms Driving Cell Sorting in Hydra.

    PubMed

    Cochet-Escartin, Olivier; Locke, Tiffany T; Shi, Winnie H; Steele, Robert E; Collins, Eva-Maria S

    2017-12-19

    Cell sorting, whereby a heterogeneous cell mixture organizes into distinct tissues, is a fundamental patterning process in development. Hydra is a powerful model system for carrying out studies of cell sorting in three dimensions, because of its unique ability to regenerate after complete dissociation into individual cells. The physicists Alfred Gierer and Hans Meinhardt recognized Hydra's self-organizing properties more than 40 years ago. However, what drives cell sorting during regeneration of Hydra from cell aggregates is still debated. Differential motility and differential adhesion have been proposed as driving mechanisms, but the available experimental data are insufficient to distinguish between these two. Here, we answer this longstanding question by using transgenic Hydra expressing fluorescent proteins and a multiscale experimental and numerical approach. By quantifying the kinematics of single cell and whole aggregate behaviors, we show that no differences in cell motility exist among cell types and that sorting dynamics follow a power law with an exponent of ∼0.5. Additionally, we measure the physical properties of separated tissues and quantify their viscosities and surface tensions. Based on our experimental results and numerical simulations, we conclude that tissue interfacial tensions are sufficient to explain cell sorting in aggregates of Hydra cells. Furthermore, we demonstrate that the aggregate's geometry during sorting is key to understanding the sorting dynamics and explains the exponent of the power law behavior. Our results answer the long standing question of the physical mechanisms driving cell sorting in Hydra cell aggregates. In addition, they demonstrate how powerful this organism is for biophysical studies of self-organization and pattern formation. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. Spectroscopic Confirmation of the Dwarf Galaxies Hydra II and Pisces II and the Globular Cluster Laevens 1

    NASA Astrophysics Data System (ADS)

    Kirby, Evan N.; Simon, Joshua D.; Cohen, Judith G.

    2015-09-01

    We present Keck/DEIMOS spectroscopy of stars in the recently discovered Milky Way satellites Hydra II, Pisces II, and Laevens 1. We measured a velocity dispersion of {5.4}-2.4+3.6 km s-1 for Pisces II, but we did not resolve the velocity dispersions of Hydra II or Laevens 1. We marginally resolved the metallicity dispersions of Hydra II and Pisces II but not Laevens 1. Furthermore, Hydra II and Pisces II obey the luminosity-metallicity relation for Milky Way dwarf galaxies (< [{Fe}/{{H}}]> =-2.02+/- 0.08 and -2.45+/- 0.07, respectively), whereas Laevens 1 does not (< [{Fe}/{{H}}]> =-1.68+/- 0.05). The kinematic and chemical properties suggest that Hydra II and Pisces II are dwarf galaxies, and Laevens 1 is a globular cluster. We determined that two of the previously observed blue stars near the center of Laevens 1 are not members of the cluster. A third blue star has ambiguous membership. Hydra II has a radial velocity < {v}{helio}> =303.1+/- 1.4 km s-1, similar to the leading arm of the Magellanic stream. The mass-to-light ratio for Pisces II is {370}-240+310 {M}⊙ /{L}⊙ . It is not among the most dark matter-dominated dwarf galaxies, but it is still worthy of inclusion in the search for gamma-rays from dark matter self-annihilation. The data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

  17. Neuropeptides and epitheliopeptides: structural and functional diversity in an ancestral metazoan Hydra.

    PubMed

    Takahashi, Toshio

    2013-06-01

    Peptides are known to play important developmental and physiological roles in signaling. The rich diversity of peptides, with functions as diverse as intercellular communication, neurotransmission and signaling that spatially and temporally controls axis formation and cell differentiation, hints at the wealth of information passed between interacting cells. Little is known about peptides that control developmental processes such as cell differentiation and pattern formation in metazoans. The cnidarian Hydra is one of the most basic metazoans and is a key model system for study of the peptides involved in these processes. We developed a novel peptidomic approach for the isolation and identification of functional peptide signaling molecules from Hydra (the Hydra Peptide Project). Over the course of this project, a wide variety of novel neuropeptides were identified. Most of these peptides act directly on muscle cells and their functions include induction of contraction and relaxation. Some peptides are involved in cell differentiation and morphogenesis. Moreover, epitheliopeptides that are produced by epithelial cells were originally identified in Hydra. Some of these epitheliopeptides exhibit morphogen-like activities, whereas others are involved in regulating neuron differentiation, possibly through neuron-epithelial cell interactions. We also describe below our high-throughput reverse-phase nano-flow LCMALDI- TOF-MS/MS approach, which has proved a powerful tool for the discovery of novel peptide signaling molecules in Hydra.

  18. The Role of Viscosity in TATB Hot Spot Ignition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fried, L E; Zepeda-Ruis, L; Howard, W M

    2011-08-02

    The role of dissipative effects, such as viscosity, in the ignition of high explosive pores is investigated using a coupled chemical, thermal, and hydrodynamic model. Chemical reactions are tracked with the Cheetah thermochemical code coupled to the ALE3D hydrodynamic code. We perform molecular dynamics simulations to determine the viscosity of liquid TATB. We also analyze shock wave experiments to obtain an estimate for the shock viscosity of TATB. Using the lower bound liquid-like viscosities, we find that the pore collapse is hydrodynamic in nature. Using the upper bound viscosity from shock wave experiments, we find that the pore collapse ismore » closest to the viscous limit.« less

  19. The Origin of Mucosal Immunity: Lessons from the Holobiont Hydra.

    PubMed

    Schröder, Katja; Bosch, Thomas C G

    2016-11-01

    Historically, mucosal immunity-i.e., the portion of the immune system that protects an organism's various mucous membranes from invasion by potentially pathogenic microbes-has been studied in single-cell epithelia in the gastrointestinal and upper respiratory tracts of vertebrates. Phylogenetically, mucosal surfaces appeared for the first time about 560 million years ago in members of the phylum Cnidaria. There are remarkable similarities and shared functions of mucosal immunity in vertebrates and innate immunity in cnidarians, such as Hydra species. Here, we propose a common origin for both systems and review observations that indicate that the ultimately simple holobiont Hydra provides both a new perspective on the relationship between bacteria and animal cells and a new prism for viewing the emergence and evolution of epithelial tissue-based innate immunity. In addition, recent breakthroughs in our understanding of immune responses in Hydra polyps reared under defined short-term gnotobiotic conditions open up the potential of Hydra as an animal research model for the study of common mucosal disorders. Copyright © 2016 Schröder and Bosch.

  20. The synaptonemal complex of basal metazoan hydra: more similarities to vertebrate than invertebrate meiosis model organisms.

    PubMed

    Fraune, Johanna; Wiesner, Miriam; Benavente, Ricardo

    2014-03-20

    The synaptonemal complex (SC) is an evolutionarily well-conserved structure that mediates chromosome synapsis during prophase of the first meiotic division. Although its structure is conserved, the characterized protein components in the current metazoan meiosis model systems (Drosophila melanogaster, Caenorhabditis elegans, and Mus musculus) show no sequence homology, challenging the question of a single evolutionary origin of the SC. However, our recent studies revealed the monophyletic origin of the mammalian SC protein components. Many of them being ancient in Metazoa and already present in the cnidarian Hydra. Remarkably, a comparison between different model systems disclosed a great similarity between the SC components of Hydra and mammals while the proteins of the ecdysozoan systems (D. melanogaster and C. elegans) differ significantly. In this review, we introduce the basal-branching metazoan species Hydra as a potential novel invertebrate model system for meiosis research and particularly for the investigation of SC evolution, function and assembly. Also, available methods for SC research in Hydra are summarized. Copyright © 2014. Published by Elsevier Ltd.

  1. Identification and characterization of the autophagy-related genes Atg12 and Atg5 in hydra.

    PubMed

    Dixit, Nishikant S; Shravage, Bhupendra V; Ghaskadbi, Surendra

    2017-01-01

    Autophagy is an evolutionarily conserved process in eukaryotic cells that is involved in the degradation of cytoplasmic contents including organelles via the lysosome. Hydra is an early metazoan which exhibits simple tissue grade organization, a primitive nervous system, and is one of the classical non-bilaterian models extensively used in evo-devo research. Here, we describe the characterization of two core autophagy genes, Atg12 and Atg5, from hydra. In silico analyses including sequence similarity, domain analysis, and phylogenetic analysis demonstrate the conservation of these genes across eukaryotes. The predicted 3D structure of hydra Atg12 showed very little variance when compared to human Atg12 and yeast Atg12, whereas the hydra Atg5 predicted 3D structure was found to be variable, when compared with its human and yeast homologs. Strikingly, whole mount in situ hybridization showed high expression of Atg12 transcripts specifically in nematoblasts, whereas Atg5 transcripts were found to be expressed strongly in budding region and growing buds. This study may provide a framework to understand the evolution of autophagy networks in higher eukaryotes.

  2. In vivo imaging of basement membrane movement: ECM patterning shapes Hydra polyps.

    PubMed

    Aufschnaiter, Roland; Zamir, Evan A; Little, Charles D; Özbek, Suat; Münder, Sandra; David, Charles N; Li, Li; Sarras, Michael P; Zhang, Xiaoming

    2011-12-01

    Growth and morphogenesis during embryonic development, asexual reproduction and regeneration require extensive remodeling of the extracellular matrix (ECM). We used the simple metazoan Hydra to examine the fate of ECM during tissue morphogenesis and asexual budding. In growing Hydra, epithelial cells constantly move towards the extremities of the animal and into outgrowing buds. It is not known, whether these tissue movements involve epithelial migration relative to the underlying matrix or whether cells and ECM are displaced as a composite structure. Furthermore, it is unclear, how the ECM is remodeled to adapt to the shape of developing buds and tentacles. To address these questions, we used a new in vivo labeling technique for Hydra collagen-1 and laminin, and tracked the fate of ECM in all body regions of the animal. Our results reveal that Hydra 'tissue movements' are largely displacements of epithelial cells together with associated ECM. By contrast, during the evagination of buds and tentacles, extensive movement of epithelial cells relative to the matrix is observed, together with local ECM remodeling. These findings provide new insights into the nature of growth and morphogenesis in epithelial tissues.

  3. HYDRA : High-speed simulation architecture for precision spacecraft formation simulation

    NASA Technical Reports Server (NTRS)

    Martin, Bryan J.; Sohl, Garett.

    2003-01-01

    e Hierarchical Distributed Reconfigurable Architecture- is a scalable simulation architecture that provides flexibility and ease-of-use which take advantage of modern computation and communication hardware. It also provides the ability to implement distributed - or workstation - based simulations and high-fidelity real-time simulation from a common core. Originally designed to serve as a research platform for examining fundamental challenges in formation flying simulation for future space missions, it is also finding use in other missions and applications, all of which can take advantage of the underlying Object-Oriented structure to easily produce distributed simulations. Hydra automates the process of connecting disparate simulation components (Hydra Clients) through a client server architecture that uses high-level descriptions of data associated with each client to find and forge desirable connections (Hydra Services) at run time. Services communicate through the use of Connectors, which abstract messaging to provide single-interface access to any desired communication protocol, such as from shared-memory message passing to TCP/IP to ACE and COBRA. Hydra shares many features with the HLA, although providing more flexibility in connectivity services and behavior overriding.

  4. Testing a one-dimensional prescription of dynamical shear mixing with a two-dimensional hydrodynamic simulation

    NASA Astrophysics Data System (ADS)

    Edelmann, P. V. F.; Röpke, F. K.; Hirschi, R.; Georgy, C.; Jones, S.

    2017-07-01

    Context. The treatment of mixing processes is still one of the major uncertainties in 1D stellar evolution models. This is mostly due to the need to parametrize and approximate aspects of hydrodynamics in hydrostatic codes. In particular, the effect of hydrodynamic instabilities in rotating stars, for example, dynamical shear instability, evades consistent description. Aims: We intend to study the accuracy of the diffusion approximation to dynamical shear in hydrostatic stellar evolution models by comparing 1D models to a first-principle hydrodynamics simulation starting from the same initial conditions. Methods: We chose an initial model calculated with the stellar evolution code GENEC that is just at the onset of a dynamical shear instability but does not show any other instabilities (e.g., convection). This was mapped to the hydrodynamics code SLH to perform a 2D simulation in the equatorial plane. We compare the resulting profiles in the two codes and compute an effective diffusion coefficient for the hydro simulation. Results: Shear instabilities develop in the 2D simulation in the regions predicted by linear theory to become unstable in the 1D stellar evolution model. Angular velocity and chemical composition is redistributed in the unstable region, thereby creating new unstable regions. After a period of time, the system settles in a symmetric, steady state, which is Richardson stable everywhere in the 2D simulation, whereas the instability remains for longer in the 1D model due to the limitations of the current implementation in the 1D code. A spatially resolved diffusion coefficient is extracted by comparing the initial and final profiles of mean atomic mass. Conclusions: The presented simulation gives a first insight on hydrodynamics of shear instabilities in a real stellar environment and even allows us to directly extract an effective diffusion coefficient. We see evidence for a critical Richardson number of 0.25 as regions above this threshold remain stable for the course of the simulation. The movie of the simulation is available at http://www.aanda.org

  5. Effects of Sensing Capability on Ground Platform Survivability During Ground Forces Maneuver Operations

    DTIC Science & Technology

    2014-09-01

    Hellfire missiles, Hydra -70mm rockets, and M230 30mm automatic cannon (Boeing 2014). Hellfire missiles have shaped-charge HEAT warheads and are...capable of destroying an MBT. These missiles have an operational range between 500 m to 8,000 m (AeroWeb 2014). The Hydra -70mm rocket is also capable of...platforms, but it lacks precision (Army Technology 2014). Similar to the Hydra -70mm rocket, the M230 30mm cannon is effective against soft skin

  6. Ground Radar and Guided Munitions: Increased Oversight and Cooperation Can Help Avoid Duplication among the Services’ Programs

    DTIC Science & Technology

    2014-12-01

    requirement is for a guidance kit that attaches to the existing family of unguided Hydra -70 rockets.17 While the Army and Navy have similar needs, the...duplicative, efforts to meet their requirements. The Army plans to introduce competition for its Hydra -70 rocket guidance kit and consider other...because it does not believe that introducing competition to APKWS would be worth the investment of integrating and qualifying another Hydra -70

  7. A Systems Approach to Architecting a Mission Package for LCS Support of Amphibious Operations

    DTIC Science & Technology

    2014-09-01

    a laser-guided rocket based on the Hydra 70 family of 2.75-inch rockets (U.S. Navy 2012). The APKWS is produced by adding a kit that turns the...integrated into the large inventory of aircraft already qualified to use hydra 70 rockets (U.S. Navy 2012). The APKWS is qualified on all of the...and APKWS missiles, the LOGIR is not considered in this report. Since both missiles use the identical base rocket system ( Hydra 70) their effective

  8. Verification of the Hydrodynamic and Sediment Transport Hybrid Modeling System for Cumberland Sound and Kings Bay Navigation Channel, Georgia

    DTIC Science & Technology

    1989-07-01

    TECHNICAL REPORT HL-89-14 VERIFICATION OF THE HYDRODYNAMIC AND Si SEDIMENT TRANSPORT HYBRID MODELING SYSTEM FOR CUMBERLAND SOUND AND I’) KINGS BAY...Hydrodynamic and Sediment Transport Hybrid Modeling System for Cumberland Sound and Kings Bay Navigation Channel, Georgia 12 PERSONAL AUTHOR(S) Granat...Hydrodynamic results from RMA-2V were used in the numerical sediment transport code STUDH in modeling the interaction of the flow transport and

  9. Parallel processing a three-dimensional free-lagrange code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandell, D.A.; Trease, H.E.

    1989-01-01

    A three-dimensional, time-dependent free-Lagrange hydrodynamics code has been multitasked and autotasked on a CRAY X-MP/416. The multitasking was done by using the Los Alamos Multitasking Control Library, which is a superset of the CRAY multitasking library. Autotasking is done by using constructs which are only comment cards if the source code is not run through a preprocessor. The three-dimensional algorithm has presented a number of problems that simpler algorithms, such as those for one-dimensional hydrodynamics, did not exhibit. Problems in converting the serial code, originally written for a CRAY-1, to a multitasking code are discussed. Autotasking of a rewritten versionmore » of the code is discussed. Timing results for subroutines and hot spots in the serial code are presented and suggestions for additional tools and debugging aids are given. Theoretical speedup results obtained from Amdahl's law and actual speedup results obtained on a dedicated machine are presented. Suggestions for designing large parallel codes are given.« less

  10. Parallel processing a real code: A case history

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandell, D.A.; Trease, H.E.

    1988-01-01

    A three-dimensional, time-dependent Free-Lagrange hydrodynamics code has been multitasked and autotasked on a Cray X-MP/416. The multitasking was done by using the Los Alamos Multitasking Control Library, which is a superset of the Cray multitasking library. Autotasking is done by using constructs which are only comment cards if the source code is not run through a preprocessor. The 3-D algorithm has presented a number of problems that simpler algorithms, such as 1-D hydrodynamics, did not exhibit. Problems in converting the serial code, originally written for a Cray 1, to a multitasking code are discussed, Autotasking of a rewritten version ofmore » the code is discussed. Timing results for subroutines and hot spots in the serial code are presented and suggestions for additional tools and debugging aids are given. Theoretical speedup results obtained from Amdahl's law and actual speedup results obtained on a dedicated machine are presented. Suggestions for designing large parallel codes are given. 8 refs., 13 figs.« less

  11. GANDALF - Graphical Astrophysics code for N-body Dynamics And Lagrangian Fluids

    NASA Astrophysics Data System (ADS)

    Hubber, D. A.; Rosotti, G. P.; Booth, R. A.

    2018-01-01

    GANDALF is a new hydrodynamics and N-body dynamics code designed for investigating planet formation, star formation and star cluster problems. GANDALF is written in C++, parallelized with both OPENMP and MPI and contains a PYTHON library for analysis and visualization. The code has been written with a fully object-oriented approach to easily allow user-defined implementations of physics modules or other algorithms. The code currently contains implementations of smoothed particle hydrodynamics, meshless finite-volume and collisional N-body schemes, but can easily be adapted to include additional particle schemes. We present in this paper the details of its implementation, results from the test suite, serial and parallel performance results and discuss the planned future development. The code is freely available as an open source project on the code-hosting website github at https://github.com/gandalfcode/gandalf and is available under the GPLv2 license.

  12. High-fidelity plasma codes for burn physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooley, James; Graziani, Frank; Marinak, Marty

    Accurate predictions of equation of state (EOS), ionic and electronic transport properties are of critical importance for high-energy-density plasma science. Transport coefficients inform radiation-hydrodynamic codes and impact diagnostic interpretation, which in turn impacts our understanding of the development of instabilities, the overall energy balance of burning plasmas, and the efficacy of self-heating from charged-particle stopping. Important processes include thermal and electrical conduction, electron-ion coupling, inter-diffusion, ion viscosity, and charged particle stopping. However, uncertainties in these coefficients are not well established. Fundamental plasma science codes, also called high-fidelity plasma codes, are a relatively recent computational tool that augments both experimental datamore » and theoretical foundations of transport coefficients. This paper addresses the current status of HFPC codes and their future development, and the potential impact they play in improving the predictive capability of the multi-physics hydrodynamic codes used in HED design.« less

  13. WEC3: Wave Energy Converter Code Comparison Project: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Combourieu, Adrien; Lawson, Michael; Babarit, Aurelien

    This paper describes the recently launched Wave Energy Converter Code Comparison (WEC3) project and present preliminary results from this effort. The objectives of WEC3 are to verify and validate numerical modelling tools that have been developed specifically to simulate wave energy conversion devices and to inform the upcoming IEA OES Annex VI Ocean Energy Modelling Verification and Validation project. WEC3 is divided into two phases. Phase 1 consists of a code-to-code verification and Phase II entails code-to-experiment validation. WEC3 focuses on mid-fidelity codes that simulate WECs using time-domain multibody dynamics methods to model device motions and hydrodynamic coefficients to modelmore » hydrodynamic forces. Consequently, high-fidelity numerical modelling tools, such as Navier-Stokes computational fluid dynamics simulation, and simple frequency domain modelling tools were not included in the WEC3 project.« less

  14. Capturing Nix and Hydra

    NASA Image and Video Library

    2015-07-21

    NASA New Horizons spacecraft captured these images of Pluto moon Nix which shows a reddish spot that has attracted the interest of the mission scientists left, and the small, irregularly shaped moon Hydra right.

  15. The effects of microplastic on freshwater Hydra attenuata feeding, morphology & reproduction.

    PubMed

    Murphy, Fionn; Quinn, Brian

    2018-03-01

    Microplastic pollution has been a growing concern in the aquatic environment for several years. The abundance of microplastics in the environment has invariably led them to interact with a variety of different aquatic species. The small size of microplastics may make them bioavailable to a great range of species however, the impact this may have is not fully understood. Much of the research on microplastic pollution has focused on the marine environment and species with little research undertaken in freshwater. Here we examine the effect of microplastics on the freshwater cnidarian, Hydra attenuata. This study also describes the development and use of a bioassay to investigate the impact of microplastic on freshwater organisms. Hydra attenuata play a vital role in the planktonic make up of slow moving freshwater bodies which they inhabit and are sensitive environmental indicators. Hydra attenuata were exposed to polyethylene flakes (<400 ìm) extracted from facewash at different concentrations (Control, 0.01, 0.02, 0.04, 0.08 g mL -1 ). The ecologically relevant endpoint of feeding was measured by determining the amount of prey consumed (Artemia salina) after 30 and 60 min. The amount of microplastics ingested was also recorded at 30 min and 60 min. After which Hydra attenuata were transferred to clean media and observed after 3, 24, 48 & 96 h with changes in their morphology and reproduction (Hydranth numbers) recorded. The results of this study show that Hydra attenuata are capable of ingesting microplastics, with several individuals completely filling their gastric cavities. Significant reductions in feeding rates were observed after 30 min in 0.02 & 0.08 g mL -1 and after 60 min in 0.04 & 0.08 g mL -1 exposures. Exposure to the microplastics caused significant changes to the morphology of Hydra attenuata, however these changes were non-lethal. This study demonstrates that freshwater Hydra attenuata is capable of ingesting microplastics and that microplastic can significantly impact the feeding of freshwater organisms. Copyright © 2017. Published by Elsevier Ltd.

  16. A new relativistic viscous hydrodynamics code and its application to the Kelvin–Helmholtz instability in high-energy heavy-ion collisions

    DOE PAGES

    Okamoto, Kazuhisa; Nonaka, Chiho

    2017-06-09

    Here, we construct a new relativistic viscous hydrodynamics code optimized in the Milne coordinates. We also split the conservation equations into an ideal part and a viscous part, using the Strang spitting method. In the code a Riemann solver based on the two-shock approximation is utilized for the ideal part and the Piecewise Exact Solution (PES) method is applied for the viscous part. Furthemore, we check the validity of our numerical calculations by comparing analytical solutions, the viscous Bjorken’s flow and the Israel–Stewart theory in Gubser flow regime. Using the code, we discuss possible development of the Kelvin–Helmholtz instability inmore » high-energy heavy-ion collisions.« less

  17. Particle Hydrodynamics with Material Strength for Multi-Layer Orbital Debris Shield Design

    NASA Technical Reports Server (NTRS)

    Fahrenthold, Eric P.

    1999-01-01

    Three dimensional simulation of oblique hypervelocity impact on orbital debris shielding places extreme demands on computer resources. Research to date has shown that particle models provide the most accurate and efficient means for computer simulation of shield design problems. In order to employ a particle based modeling approach to the wall plate impact portion of the shield design problem, it is essential that particle codes be augmented to represent strength effects. This report describes augmentation of a Lagrangian particle hydrodynamics code developed by the principal investigator, to include strength effects, allowing for the entire shield impact problem to be represented using a single computer code.

  18. BALANCING THE LOAD: A VORONOI BASED SCHEME FOR PARALLEL COMPUTATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinberg, Elad; Yalinewich, Almog; Sari, Re'em

    2015-01-01

    One of the key issues when running a simulation on multiple CPUs is maintaining a proper load balance throughout the run and minimizing communications between CPUs. We propose a novel method of utilizing a Voronoi diagram to achieve a nearly perfect load balance without the need of any global redistributions of data. As a show case, we implement our method in RICH, a two-dimensional moving mesh hydrodynamical code, but it can be extended trivially to other codes in two or three dimensions. Our tests show that this method is indeed efficient and can be used in a large variety ofmore » existing hydrodynamical codes.« less

  19. Neutronic calculation of fast reactors by the EUCLID/V1 integrated code

    NASA Astrophysics Data System (ADS)

    Koltashev, D. A.; Stakhanova, A. A.

    2017-01-01

    This article considers neutronic calculation of a fast-neutron lead-cooled reactor BREST-OD-300 by the EUCLID/V1 integrated code. The main goal of development and application of integrated codes is a nuclear power plant safety justification. EUCLID/V1 is integrated code designed for coupled neutronics, thermomechanical and thermohydraulic fast reactor calculations under normal and abnormal operating conditions. EUCLID/V1 code is being developed in the Nuclear Safety Institute of the Russian Academy of Sciences. The integrated code has a modular structure and consists of three main modules: thermohydraulic module HYDRA-IBRAE/LM/V1, thermomechanical module BERKUT and neutronic module DN3D. In addition, the integrated code includes databases with fuel, coolant and structural materials properties. Neutronic module DN3D provides full-scale simulation of neutronic processes in fast reactors. Heat sources distribution, control rods movement, reactivity level changes and other processes can be simulated. Neutron transport equation in multigroup diffusion approximation is solved. This paper contains some calculations implemented as a part of EUCLID/V1 code validation. A fast-neutron lead-cooled reactor BREST-OD-300 transient simulation (fuel assembly floating, decompression of passive feedback system channel) and cross-validation with MCU-FR code results are presented in this paper. The calculations demonstrate EUCLID/V1 code application for BREST-OD-300 simulating and safety justification.

  20. Design and Optimization of Multi-Pixel Transition-Edge Sensors for X-Ray Astronomy Applications

    NASA Technical Reports Server (NTRS)

    Smith, Stephen J.; Adams, Joseph S.; Bandler, Simon R.; Chervenak, James A.; Datesman, Aaron Michael; Eckart, Megan E.; Ewin, Audrey J.; Finkbeiner, Fred M.; Kelley, Richard L.; Kilbourne, Caroline A.; hide

    2017-01-01

    Multi-pixel transition-edge sensors (TESs), commonly referred to as 'hydras', are a type of position sensitive micro-calorimeter that enables very large format arrays to be designed without commensurate increase in the number of readout channels and associated wiring. In the hydra design, a single TES is coupled to discrete absorbers via varied thermal links. The links act as low pass thermal filters that are tuned to give a different characteristic pulse shape for x-ray photons absorbed in each of the hydra sub pixels. In this contribution we report on the experimental results from hydras consisting of up to 20 pixels per TES. We discuss the design trade-offs between energy resolution, position discrimination and number of pixels and investigate future design optimizations specifically targeted at meeting the readout technology considered for Lynx.

  1. The Hydra model - a model for what?

    PubMed

    Gierer, Alfred

    2012-01-01

    The introductory personal remarks refer to my motivations for choosing research projects, and for moving from physics to molecular biology and then to development, with Hydra as a model system. Historically, Trembley's discovery of Hydra regeneration in 1744 was the beginning of developmental biology as we understand it, with passionate debates about preformation versus de novo generation, mechanisms versus organisms. In fact, seemingly conflicting bottom-up and top-down concepts are both required in combination to understand development. In modern terms, this means analysing the molecules involved, as well as searching for physical principles underlying development within systems of molecules, cells and tissues. During the last decade, molecular biology has provided surprising and impressive evidence that the same types of molecules and molecular systems are involved in pattern formation in a wide range of organisms, including coelenterates like Hydra, and thus appear to have been "invented" early in evolution. Likewise, the features of certain systems, especially those of developmental regulation, are found in many different organisms. This includes the generation of spatial structures by the interplay of self-enhancing activation and "lateral" inhibitory effects of wider range, which is a main topic of my essay. Hydra regeneration is a particularly clear model for the formation of defined patterns within initially near-uniform tissues. In conclusion, this essay emphasizes the analysis of development in terms of physical laws, including the application of mathematics, and insists that Hydra was, and will continue to be, a rewarding model for understanding general features of embryogenesis and regeneration.

  2. Transplantation analysis of developmental mechanisms in Hydra.

    PubMed

    Shimizu, Hiroshi

    2012-01-01

    Since the pioneering work of Ethel Browne (1909) who demonstrated for the first time the concept of organizer activity, i.e. the potency of an apical Hydra tissue to induce a secondary axis when transplanted onto a host, Hydra flourished as a fruitful model system for developmental studies. Over the next 60 years this efficient transplantation approach identified graded biological activities along the body column of Hydra named Head Acti-vation and Head Inhibition. These properties inspired theoretical modelers including Lewis Wolpert, Alfred Gierer and Hans Meinhardt to propose models for morphogenesis, respectively the positional information (1969) and reaction-diffusion (1972) models. In 1973, Tsutomu Sugiyama and Toshitaka Fujisawa initiated in Mishima a unique project to analyze the properties of Hydra strains with distinct morphological and developmental characters. To this end, they collected in several areas of Japan multiple Hydra strains that they subsequently characterized and crossed. They also established a lateral transplantation strategy that was much more powerful than the previous ones, as it combined quantitative measurements with cellular analyses thanks to the chimera procedures developed by Campbell and colleagues. In-deed this approach provided a paradigm to quantify in any morphological phenotype the Head Activation and Head Inhibition levels along the body column. In this article, I review the various strains identified by Sugiyama and colleagues, the principles and the main results deduced from the quantitative lateral transplantation strategy. In addition, I briefly discuss the relevance of this approach in the era of molecular biology.

  3. Implementation of Hydrodynamic Simulation Code in Shock Experiment Design for Alkali Metals

    NASA Astrophysics Data System (ADS)

    Coleman, A. L.; Briggs, R.; Gorman, M. G.; Ali, S.; Lazicki, A.; Swift, D. C.; Stubley, P. G.; McBride, E. E.; Collins, G.; Wark, J. S.; McMahon, M. I.

    2017-10-01

    Shock compression techniques enable the investigation of extreme P-T states. In order to probe off-Hugoniot regions of P-T space, target makeup and laser pulse parameters must be carefully designed. HYADES is a hydrodynamic simulation code which has been successfully utilised to simulate shock compression events and refine the experimental parameters required in order to explore new P-T states in alkali metals. Here we describe simulations and experiments on potassium, along with the techniques required to access off-Hugoniot states.

  4. GENASIS: General Astrophysical Simulation System. I. Refinable Mesh and Nonrelativistic Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Cardall, Christian Y.; Budiardja, Reuben D.; Endeve, Eirik; Mezzacappa, Anthony

    2014-02-01

    GenASiS (General Astrophysical Simulation System) is a new code being developed initially and primarily, though by no means exclusively, for the simulation of core-collapse supernovae on the world's leading capability supercomputers. This paper—the first in a series—demonstrates a centrally refined coordinate patch suitable for gravitational collapse and documents methods for compressible nonrelativistic hydrodynamics. We benchmark the hydrodynamics capabilities of GenASiS against many standard test problems; the results illustrate the basic competence of our implementation, demonstrate the strengths and limitations of the HLLC relative to the HLL Riemann solver in a number of interesting cases, and provide preliminary indications of the code's ability to scale and to function with cell-by-cell fixed-mesh refinement.

  5. Application of the new comprehensive X-ray spectral model to the two brightest intermediate polars EX Hydrae and V1223 Sagittarii

    NASA Astrophysics Data System (ADS)

    Hayashi, Takayuki; Ishida, Manabu

    2014-07-01

    We applied the new comprehensive X-ray spectral model for the post-shock accretion column (PSAC) of the intermediate polars (IPs) constructed by Hayashi and Ishida to the Suzaku data of the two brightest IPs EX Hydrae and V1223 Sagittarii. The white dwarf (WD) mass and the specific accretion rate of EX Hya are estimated to be M_WD= 0.63_{-0.14}^{+0.17} M⊙ and a=0.049_{-0.035}^{+0.66} g cm-2 s-1. Our WD mass of EX Hya is greater than that of previous X-ray estimations (˜0.4-0.5 M⊙), where higher specific accretion rate than ours is assumed, and marginally consistent with 0.790 ± 0.026 M⊙ measured by Beuermann and Reinsch using a binary motion. On the other hand, with the aid of the PSAC height of V1223 Sgr hV1223 < 0.07RWD, we estimated M_WD= 0.87_{-0.06}^{+0.10} M_{⊙} and a > 2.0 g cm-2 s-1 for V1223 Sgr. We evaluated the fractional accreting area of EX Hya and V1223 Sgr at 0.0033_{-0.0030}^{+0.0067} and <0.007, respectively. Calculation of the hydrodynamical equations with these best-fitting parameters show that the PSAC height of EX Hya is 0.33 RWD = 2.8 × 108 cm. The maximum temperature of the EX Hya and V1223 Sgr are calculated at 18.0 keV and 43.1 keV, respectively. In EX Hya, the temperature distribution is flatter and the density at the top of the PSAC is smaller than those of the previous PSAC models because of its low specific accretion rate.

  6. Accretion Makes a Splash on TW Hydrae

    NASA Astrophysics Data System (ADS)

    Brickhouse, N. S.

    2011-12-01

    The Chandra Large Program on the Classical T Tauri star TW Hydrae (489 ksec, obtained over the course of one month) brings a wealth of spectral diagnostics to the study of X-ray emission from a young star. The emission measure distribution shows two components separated by a gap (i.e. no emission measure in between). Light curves for the two components can then be constructed from the summed light curves of the appropriate individual lines. The two light curves show uncorrelated variability, with one large flare occurring only in the hot component. We associate the hotter component with the corona, since its peak temperature is ˜10 MK. Ne IX line ratio diagnostics for temperature and density indicate that the source of the cooler component is indeed the accretion shock, as originally reported by Kastner et al. (2002). The temperature and density of the accretion shock are in excellent agreement with models using mass accretion rates derived from the optical. We require a third component, which we call the "post-shock region," from line ratio diagnostics of O VII. The density derived from O VII is lower than the density derived from Ne IX, contrary to standard one-dimensional model expectations and from hydrodynamics simulations to date. The column densities derived from the two ions are also significantly different, with the column density from O VII lower than that from Ne IX. This post-shock region cannot be the settling flow expected from the cooling of the shock column, since its mass is 30 times the mass of material that passes through the shock. Instead this region is the splash of stellar atmosphere that has been hit by the accretion stream and heated by the accretion process (Brickhouse et al. 2010).

  7. Autophagy and self-preservation: a step ahead from cell plasticity?

    PubMed

    Galliot, Brigitte

    2006-01-01

    Silencing the SPINK-related gene Kazal1 in hydra gland cells induces an excessive autophagy of both gland and digestive cells, leading to animal death. Moreover, during regeneration, autophagosomes are immediately detected in regenerating tips, where Kazal1 expression is lowered. When Kazal1 is completely silenced, hydra no longer survive the amputation stress (Chera S, de Rosa R, Miljkovic-Licina M, Dobretz K, Ghila L, Kaloulis K, Galliot B. Silencing of the hydra serine protease inhibitor Kazal1 gene mimics the human Spink1 pancreatic phenotype. J Cell Sci 2006; 119:846-57). These results highlight the essential digestive and cytoprotective functions played by Kazal1 in hydra. In mammals, autophagy of exocrine pancreatic cells is also induced upon SPINK1/Spink3 inactivation, whereas Spink3 is activated in injured pancreatic cells. Hence SPINKs, by preventing an excessive autophagy, appear to act as key players of the stress-induced self-preservation program. In hydra, this program is a prerequisite to the early cellular transition, whereby digestive cells of the regenerating tips transform into a head-organizer center. Enhancing the self-preservation program in injured tissues might therefore be the condition for unmasking their potential cell and/or developmental plasticity.

  8. In vivo imaging of basement membrane movement: ECM patterning shapes Hydra polyps

    PubMed Central

    Aufschnaiter, Roland; Zamir, Evan A.; Little, Charles D.; Özbek, Suat; Münder, Sandra; David, Charles N.; Li, Li; Sarras, Michael P.; Zhang, Xiaoming

    2011-01-01

    Growth and morphogenesis during embryonic development, asexual reproduction and regeneration require extensive remodeling of the extracellular matrix (ECM). We used the simple metazoan Hydra to examine the fate of ECM during tissue morphogenesis and asexual budding. In growing Hydra, epithelial cells constantly move towards the extremities of the animal and into outgrowing buds. It is not known, whether these tissue movements involve epithelial migration relative to the underlying matrix or whether cells and ECM are displaced as a composite structure. Furthermore, it is unclear, how the ECM is remodeled to adapt to the shape of developing buds and tentacles. To address these questions, we used a new in vivo labeling technique for Hydra collagen-1 and laminin, and tracked the fate of ECM in all body regions of the animal. Our results reveal that Hydra ‘tissue movements’ are largely displacements of epithelial cells together with associated ECM. By contrast, during the evagination of buds and tentacles, extensive movement of epithelial cells relative to the matrix is observed, together with local ECM remodeling. These findings provide new insights into the nature of growth and morphogenesis in epithelial tissues. PMID:22194305

  9. Hydra, a fruitful model system for 270 years.

    PubMed

    Galliot, Brigitte

    2012-01-01

    The discovery of Hydra regeneration by Abraham Trembley in 1744 promoted much scientific curiosity thanks to his clever design of experimental strategies away from the natural environment. Since then, this little freshwater cnidarian polyp flourished as a potent and fruitful model system. Here, we review some general biological questions that benefitted from Hydra research, such as the nature of embryogenesis, neurogenesis, induction by organizers, sex reversal, symbiosis, aging, feeding behavior, light regulation, multipotency of somatic stem cells, temperature-induced cell death, neuronal transdifferentiation, to cite only a few. To understand how phenotypes arise, theoricists also chose Hydra to model patterning and morphogenetic events, providing helpful concepts such as reaction-diffusion, positional information, and autocatalysis combined with lateral inhibition. Indeed, throughout these past 270 years, scientists used transplantation and grafting experiments, together with tissue, cell and molecular labelings, as well as biochemical procedures, in order to establish the solid foundations of cell and developmental biology. Nowadays, thanks to transgenic, genomic and proteomic tools, Hydra remains a promising model for these fields, but also for addressing novel questions such as evolutionary mechanisms, maintenance of dynamic homeostasis, regulation of stemness, functions of autophagy, cell death, stress response, innate immunity, bioactive compounds in ecosystems, ecotoxicant sensing and science communication.

  10. Insight into the molecular and functional diversity of cnidarian neuropeptides.

    PubMed

    Takahashi, Toshio; Takeda, Noriyo

    2015-01-23

    Cnidarians are the most primitive animals to possess a nervous system. This phylum is composed of the classes Scyphozoa (jellyfish), Cubozoa (box jellyfish), and Hydrozoa (e.g., Hydra, Hydractinia), which make up the subphylum Medusozoa, as well as the class Anthozoa (sea anemones and corals). Neuropeptides have an early evolutionary origin and are already abundant in cnidarians. For example, from the cnidarian Hydra, a key model system for studying the peptides involved in developmental and physiological processes, we identified a wide variety of novel neuropeptides from Hydra magnipapillata (the Hydra Peptide Project). Most of these peptides act directly on muscle cells and induce contraction and relaxation. Some peptides are involved in cell differentiation and morphogenesis. In this review, we describe FMRFamide-like peptides (FLPs), GLWamide-family peptides, and the neuropeptide Hym-355; FPQSFLPRGamide. Several hundred FLPs have been isolated from invertebrate animals such as cnidarians. GLWamide-family peptides function as signaling molecules in muscle contraction, metamorphosis, and settlement in cnidarians. Hym-355; FPQSFLPRGamide enhances neuronal differentiation in Hydra. Recently, GLWamide-family peptides and Hym-355; FPQSFLPRGamide were shown to trigger oocyte maturation and subsequent spawning in the hydrozoan jellyfish Cytaeis uchidae. These findings suggest the importance of these neuropeptides in both developmental and physiological processes.

  11. A Web 2.0 Interface to Ion Stopping Power and Other Physics Routines for High Energy Density Physics Applications

    NASA Astrophysics Data System (ADS)

    Stoltz, Peter; Veitzer, Seth

    2008-04-01

    We present a new Web 2.0-based interface to physics routines for High Energy Density Physics applications. These routines include models for ion stopping power, sputtering, secondary electron yields and energies, impact ionization cross sections, and atomic radiated power. The Web 2.0 interface allows users to easily explore the results of the models before using the routines within other codes or to analyze experimental results. We discuss how we used various Web 2.0 tools, including the Python 2.5, Django, and the Yahoo User Interface library. Finally, we demonstrate the interface by showing as an example the stopping power algorithms researchers are currently using within the Hydra code to analyze warm, dense matter experiments underway at the Neutralized Drift Compression Experiment facility at Lawrence Berkeley National Laboratory.

  12. Modeling Laser-Driven Laboratory Astrophysics Experiments Using the CRASH Code

    NASA Astrophysics Data System (ADS)

    Grosskopf, Michael; Keiter, P.; Kuranz, C. C.; Malamud, G.; Trantham, M.; Drake, R.

    2013-06-01

    Laser-driven, laboratory astrophysics experiments can provide important insight into the physical processes relevant to astrophysical systems. The radiation hydrodynamics code developed by the Center for Radiative Shock Hydrodynamics (CRASH) at the University of Michigan has been used to model experimental designs for high-energy-density laboratory astrophysics campaigns on OMEGA and other high-energy laser facilities. This code is an Eulerian, block-adaptive AMR hydrodynamics code with implicit multigroup radiation transport and electron heat conduction. The CRASH model has been used on many applications including: radiative shocks, Kelvin-Helmholtz and Rayleigh-Taylor experiments on the OMEGA laser; as well as laser-driven ablative plumes in experiments by the Astrophysical Collisionless Shocks Experiments with Lasers (ACSEL) collaboration. We report a series of results with the CRASH code in support of design work for upcoming high-energy-density physics experiments, as well as comparison between existing experimental data and simulation results. This work is funded by the Predictive Sciences Academic Alliances Program in NNSA-ASC via grant DEFC52- 08NA28616, by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, grant number DE-FG52-09NA29548, and by the National Laser User Facility Program, grant number DE-NA0000850.

  13. Heat transport modeling of the dot spectroscopy platform on NIF

    DOE PAGES

    Farmer, W. A.; Jones, O. S.; Barrios, M. A.; ...

    2018-02-13

    Electron heat transport within an inertial-fusion hohlraum plasma is difficult to model due to the complex interaction of kinetic plasma effects, magnetic fields, laser-plasma interactions, and microturbulence. In this paper, simulations using the radiation-hydrodynamic code, HYDRA, are compared to hohlraum plasma experiments which contain a Manganese–Cobalt tracer dot (Barrios et al 2016 Phys. Plasmas 23 056307). The dot is placed either on the capsule or on a film midway between the capsule and the laser-entrance hole. From spectroscopic measurements, electron temperature and position of the dot are inferred. Simulations are performed with ad hoc flux limiters of f = 0.15more » and f = 0.03 (with electron heat flux, q, limited to fnT 3/2/m 1/2), and two more physical means of flux limitation: the magnetohydrodynamics and nonlocal packages. The nonlocal model agrees best with the temperature of the dot-on-film and dot-on-capsule. The hohlraum produced x-ray flux is over-predicted by roughly ~11% for the f = 0.03 model and the remaining models by ~16%. The simulated trajectories of the dot-on-capsule are slightly ahead of the experimental trajectory for all but the f = 0.03 model. The simulated dot-on-film position disagrees with the experimental measurement for all transport models. In the MHD simulation of the dot-on-film, the dot is strongly perturbative, though the simulation predicts a peak dot-on-film temperature 2–3 keV higher than the measurement. Finally, this suggests a deficiency in the MHD modeling possibly due to the neglect of the Righi–Leduc term or interpenetrating flows of multiple ion species which would reduce the strength of the self-generated fields.« less

  14. Heat transport modeling of the dot spectroscopy platform on NIF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, W. A.; Jones, O. S.; Barrios, M. A.

    Electron heat transport within an inertial-fusion hohlraum plasma is difficult to model due to the complex interaction of kinetic plasma effects, magnetic fields, laser-plasma interactions, and microturbulence. In this paper, simulations using the radiation-hydrodynamic code, HYDRA, are compared to hohlraum plasma experiments which contain a Manganese–Cobalt tracer dot (Barrios et al 2016 Phys. Plasmas 23 056307). The dot is placed either on the capsule or on a film midway between the capsule and the laser-entrance hole. From spectroscopic measurements, electron temperature and position of the dot are inferred. Simulations are performed with ad hoc flux limiters of f = 0.15more » and f = 0.03 (with electron heat flux, q, limited to fnT 3/2/m 1/2), and two more physical means of flux limitation: the magnetohydrodynamics and nonlocal packages. The nonlocal model agrees best with the temperature of the dot-on-film and dot-on-capsule. The hohlraum produced x-ray flux is over-predicted by roughly ~11% for the f = 0.03 model and the remaining models by ~16%. The simulated trajectories of the dot-on-capsule are slightly ahead of the experimental trajectory for all but the f = 0.03 model. The simulated dot-on-film position disagrees with the experimental measurement for all transport models. In the MHD simulation of the dot-on-film, the dot is strongly perturbative, though the simulation predicts a peak dot-on-film temperature 2–3 keV higher than the measurement. Finally, this suggests a deficiency in the MHD modeling possibly due to the neglect of the Righi–Leduc term or interpenetrating flows of multiple ion species which would reduce the strength of the self-generated fields.« less

  15. Heat transport modeling of the dot spectroscopy platform on NIF

    NASA Astrophysics Data System (ADS)

    Farmer, W. A.; Jones, O. S.; Barrios, M. A.; Strozzi, D. J.; Koning, J. M.; Kerbel, G. D.; Hinkel, D. E.; Moody, J. D.; Suter, L. J.; Liedahl, D. A.; Lemos, N.; Eder, D. C.; Kauffman, R. L.; Landen, O. L.; Moore, A. S.; Schneider, M. B.

    2018-04-01

    Electron heat transport within an inertial-fusion hohlraum plasma is difficult to model due to the complex interaction of kinetic plasma effects, magnetic fields, laser-plasma interactions, and microturbulence. Here, simulations using the radiation-hydrodynamic code, HYDRA, are compared to hohlraum plasma experiments which contain a Manganese-Cobalt tracer dot (Barrios et al 2016 Phys. Plasmas 23 056307). The dot is placed either on the capsule or on a film midway between the capsule and the laser-entrance hole. From spectroscopic measurements, electron temperature and position of the dot are inferred. Simulations are performed with ad hoc flux limiters of f = 0.15 and f = 0.03 (with electron heat flux, q, limited to fnT 3/2/m 1/2), and two more physical means of flux limitation: the magnetohydrodynamics and nonlocal packages. The nonlocal model agrees best with the temperature of the dot-on-film and dot-on-capsule. The hohlraum produced x-ray flux is over-predicted by roughly ˜11% for the f = 0.03 model and the remaining models by ˜16%. The simulated trajectories of the dot-on-capsule are slightly ahead of the experimental trajectory for all but the f = 0.03 model. The simulated dot-on-film position disagrees with the experimental measurement for all transport models. In the MHD simulation of the dot-on-film, the dot is strongly perturbative, though the simulation predicts a peak dot-on-film temperature 2-3 keV higher than the measurement. This suggests a deficiency in the MHD modeling possibly due to the neglect of the Righi-Leduc term or interpenetrating flows of multiple ion species which would reduce the strength of the self-generated fields.

  16. Hymyc1 downregulation promotes stem cell proliferation in Hydra vulgaris.

    PubMed

    Ambrosone, Alfredo; Marchesano, Valentina; Tino, Angela; Hobmayer, Bert; Tortiglione, Claudia

    2012-01-01

    Hydra is a unique model for studying the mechanisms underlying stem cell biology. The activity of the three stem cell lineages structuring its body constantly replenishes mature cells lost due to normal tissue turnover. By a poorly understood mechanism, stem cells are maintained through self-renewal while concomitantly producing differentiated progeny. In vertebrates, one of many genes that participate in regulating stem cell homeostasis is the protooncogene c-myc, which has been recently identified also in Hydra, and found expressed in the interstitial stem cell lineage. In the present paper, by developing a novel strategy of RNA interference-mediated gene silencing (RNAi) based on an enhanced uptake of small interfering RNAi (siRNA), we provide molecular and biological evidence for an unexpected function of the Hydra myc gene (Hymyc1) in the homeostasis of the interstitial stem cell lineage. We found that Hymyc1 inhibition impairs the balance between stem cell self renewal/differentiation, as shown by the accumulation of stem cell intermediate and terminal differentiation products in genetically interfered animals. The identical phenotype induced by the 10058-F4 inhibitor, a disruptor of c-Myc/Max dimerization, demonstrates the specificity of the RNAi approach. We show the kinetic and the reversible feature of Hymyc1 RNAi, together with the effects displayed on regenerating animals. Our results show the involvement of Hymyc1 in the control of interstitial stem cell dynamics, provide new clues to decipher the molecular control of the cell and tissue plasticity in Hydra, and also provide further insights into the complex myc network in higher organisms. The ability of Hydra cells to uptake double stranded RNA and to trigger a RNAi response lays the foundations of a comprehensive analysis of the RNAi response in Hydra allowing us to track back in the evolution and the origin of this process.

  17. Hymyc1 Downregulation Promotes Stem Cell Proliferation in Hydra vulgaris

    PubMed Central

    Ambrosone, Alfredo; Marchesano, Valentina; Tino, Angela; Hobmayer, Bert; Tortiglione, Claudia

    2012-01-01

    Hydra is a unique model for studying the mechanisms underlying stem cell biology. The activity of the three stem cell lineages structuring its body constantly replenishes mature cells lost due to normal tissue turnover. By a poorly understood mechanism, stem cells are maintained through self-renewal while concomitantly producing differentiated progeny. In vertebrates, one of many genes that participate in regulating stem cell homeostasis is the protooncogene c-myc, which has been recently identified also in Hydra, and found expressed in the interstitial stem cell lineage. In the present paper, by developing a novel strategy of RNA interference-mediated gene silencing (RNAi) based on an enhanced uptake of small interfering RNAi (siRNA), we provide molecular and biological evidence for an unexpected function of the Hydra myc gene (Hymyc1) in the homeostasis of the interstitial stem cell lineage. We found that Hymyc1 inhibition impairs the balance between stem cell self renewal/differentiation, as shown by the accumulation of stem cell intermediate and terminal differentiation products in genetically interfered animals. The identical phenotype induced by the 10058-F4 inhibitor, a disruptor of c-Myc/Max dimerization, demonstrates the specificity of the RNAi approach. We show the kinetic and the reversible feature of Hymyc1 RNAi, together with the effects displayed on regenerating animals. Our results show the involvement of Hymyc1 in the control of interstitial stem cell dynamics, provide new clues to decipher the molecular control of the cell and tissue plasticity in Hydra, and also provide further insights into the complex myc network in higher organisms. The ability of Hydra cells to uptake double stranded RNA and to trigger a RNAi response lays the foundations of a comprehensive analysis of the RNAi response in Hydra allowing us to track back in the evolution and the origin of this process. PMID:22292012

  18. Misty Star in the Sea Serpent Artist Concept

    NASA Image and Video Library

    2011-10-20

    This artist concept, based on data from NASA Herschel telescope, illustrates an icy planet-forming disk around a young star called TW Hydrae, located about 175 light-years away in the Hydra, or Sea Serpent, constellation.

  19. HYDRA Hyperspectral Data Research Application Tom Rink and Tom Whittaker

    NASA Astrophysics Data System (ADS)

    Rink, T.; Whittaker, T.

    2005-12-01

    HYDRA is a freely available, easy to install tool for visualization and analysis of large local or remote hyper/multi-spectral datasets. HYDRA is implemented on top of the open source VisAD Java library via Jython - the Java implementation of the user friendly Python programming language. VisAD provides data integration, through its generalized data model, user-display interaction and display rendering. Jython has an easy to read, concise, scripting-like, syntax which eases software development. HYDRA allows data sharing of large datasets through its support of the OpenDAP and OpenADDE server-client protocols. The users can explore and interrogate data, and subset in physical and/or spectral space to isolate key areas of interest for further analysis without having to download an entire dataset. It also has an extensible data input architecture to recognize new instruments and understand different local file formats, currently NetCDF and HDF4 are supported.

  20. Innexin gap junctions in nerve cells coordinate spontaneous contractile behavior in Hydra polyps

    NASA Astrophysics Data System (ADS)

    Takaku, Yasuharu; Hwang, Jung Shan; Wolf, Alexander; Böttger, Angelika; Shimizu, Hiroshi; David, Charles N.; Gojobori, Takashi

    2014-01-01

    Nerve cells and spontaneous coordinated behavior first appeared near the base of animal evolution in the common ancestor of cnidarians and bilaterians. Experiments on the cnidarian Hydra have demonstrated that nerve cells are essential for this behavior, although nerve cells in Hydra are organized in a diffuse network and do not form ganglia. Here we show that the gap junction protein innexin-2 is expressed in a small group of nerve cells in the lower body column of Hydra and that an anti-innexin-2 antibody binds to gap junctions in the same region. Treatment of live animals with innexin-2 antibody eliminates gap junction staining and reduces spontaneous body column contractions. We conclude that a small subset of nerve cells, connected by gap junctions and capable of synchronous firing, act as a pacemaker to coordinate the contraction of the body column in the absence of ganglia.

  1. 90 GHz Observations of M87 and Hydra A

    NASA Technical Reports Server (NTRS)

    Cotton, W. D.; Mason, B. S.; Dicker, S. R.; Korngut, P. M.; Devlin, M. J.; Aquirre, J.; Benford, D. J.; Moseley, S. H.; Staguhn, J. G.; Irwin, K. D.; hide

    2009-01-01

    This paper presents new observations of the active galactic nuclei M87 and Hydra A at 90 GHz made with the MUSTANG array on the Green Bank Telescope at 8"5 resolution. A spectral analysis is performed combining this new data and archival VLA 7 data on these objects at longer wavelengths. This analysis can detect variations in spectral index and curvature expected from energy losses in the radiating particles. M87 shows only weak evidence for steepening of the spectrum along the jet suggesting either re-acceleration of the relativistic particles in the jet or insufficient losses to affect the spectrum at 90 GHz. The jets in Hydra A show strong steepening as they move from the nucleus suggesting unbalanced losses of the higher energy relativistic particles. The difference between these two sources may be accounted for by the lengths over which the jets are observable, 2 kpc for M87 and 45 kpc for Hydra A.

  2. Innexin gap junctions in nerve cells coordinate spontaneous contractile behavior in Hydra polyps

    PubMed Central

    Takaku, Yasuharu; Hwang, Jung Shan; Wolf, Alexander; Böttger, Angelika; Shimizu, Hiroshi; David, Charles N.; Gojobori, Takashi

    2014-01-01

    Nerve cells and spontaneous coordinated behavior first appeared near the base of animal evolution in the common ancestor of cnidarians and bilaterians. Experiments on the cnidarian Hydra have demonstrated that nerve cells are essential for this behavior, although nerve cells in Hydra are organized in a diffuse network and do not form ganglia. Here we show that the gap junction protein innexin-2 is expressed in a small group of nerve cells in the lower body column of Hydra and that an anti-innexin-2 antibody binds to gap junctions in the same region. Treatment of live animals with innexin-2 antibody eliminates gap junction staining and reduces spontaneous body column contractions. We conclude that a small subset of nerve cells, connected by gap junctions and capable of synchronous firing, act as a pacemaker to coordinate the contraction of the body column in the absence of ganglia. PMID:24394722

  3. Multi-functionality and plasticity characterize epithelial cells in Hydra

    PubMed Central

    Buzgariu, W; Al Haddad, S; Tomczyk, S; Wenger, Y; Galliot, B

    2015-01-01

    Epithelial sheets, a synapomorphy of all metazoans but porifers, are present as 2 layers in cnidarians, ectoderm and endoderm, joined at their basal side by an extra-cellular matrix named mesoglea. In the Hydra polyp, epithelial cells of the body column are unipotent stem cells that continuously self-renew and concomitantly express their epitheliomuscular features. These multifunctional contractile cells maintain homeostasis by providing a protective physical barrier, by digesting nutrients, by selecting a stable microbiota, and by rapidly closing wounds. In addition, epithelial cells are highly plastic, supporting the adaptation of Hydra to physiological and environmental changes, such as long starvation periods where survival relies on a highly dynamic autophagy flux. Epithelial cells also play key roles in developmental processes as evidenced by the organizer activity they develop to promote budding and regeneration. We propose here an integrative view of the homeostatic and developmental aspects of epithelial plasticity in Hydra. PMID:26716072

  4. Comprehensive machine learning analysis of Hydra behavior reveals a stable basal behavioral repertoire

    PubMed Central

    Taralova, Ekaterina; Dupre, Christophe; Yuste, Rafael

    2018-01-01

    Animal behavior has been studied for centuries, but few efficient methods are available to automatically identify and classify it. Quantitative behavioral studies have been hindered by the subjective and imprecise nature of human observation, and the slow speed of annotating behavioral data. Here, we developed an automatic behavior analysis pipeline for the cnidarian Hydra vulgaris using machine learning. We imaged freely behaving Hydra, extracted motion and shape features from the videos, and constructed a dictionary of visual features to classify pre-defined behaviors. We also identified unannotated behaviors with unsupervised methods. Using this analysis pipeline, we quantified 6 basic behaviors and found surprisingly similar behavior statistics across animals within the same species, regardless of experimental conditions. Our analysis indicates that the fundamental behavioral repertoire of Hydra is stable. This robustness could reflect a homeostatic neural control of "housekeeping" behaviors which could have been already present in the earliest nervous systems. PMID:29589829

  5. Innexin gap junctions in nerve cells coordinate spontaneous contractile behavior in Hydra polyps.

    PubMed

    Takaku, Yasuharu; Hwang, Jung Shan; Wolf, Alexander; Böttger, Angelika; Shimizu, Hiroshi; David, Charles N; Gojobori, Takashi

    2014-01-07

    Nerve cells and spontaneous coordinated behavior first appeared near the base of animal evolution in the common ancestor of cnidarians and bilaterians. Experiments on the cnidarian Hydra have demonstrated that nerve cells are essential for this behavior, although nerve cells in Hydra are organized in a diffuse network and do not form ganglia. Here we show that the gap junction protein innexin-2 is expressed in a small group of nerve cells in the lower body column of Hydra and that an anti-innexin-2 antibody binds to gap junctions in the same region. Treatment of live animals with innexin-2 antibody eliminates gap junction staining and reduces spontaneous body column contractions. We conclude that a small subset of nerve cells, connected by gap junctions and capable of synchronous firing, act as a pacemaker to coordinate the contraction of the body column in the absence of ganglia.

  6. Non-overlapping Neural Networks in Hydra vulgaris.

    PubMed

    Dupre, Christophe; Yuste, Rafael

    2017-04-24

    To understand the emergent properties of neural circuits, it would be ideal to record the activity of every neuron in a behaving animal and decode how it relates to behavior. We have achieved this with the cnidarian Hydra vulgaris, using calcium imaging of genetically engineered animals to measure the activity of essentially all of its neurons. Although the nervous system of Hydra is traditionally described as a simple nerve net, we surprisingly find instead a series of functional networks that are anatomically non-overlapping and are associated with specific behaviors. Three major functional networks extend through the entire animal and are activated selectively during longitudinal contractions, elongations in response to light, and radial contractions, whereas an additional network is located near the hypostome and is active during nodding. These results demonstrate the functional sophistication of apparently simple nerve nets, and the potential of Hydra and other basal metazoans as a model system for neural circuit studies. Published by Elsevier Ltd.

  7. An Atlas of annotations of Hydra vulgaris transcriptome.

    PubMed

    Evangelista, Daniela; Tripathi, Kumar Parijat; Guarracino, Mario Rosario

    2016-09-22

    RNA sequencing takes advantage of the Next Generation Sequencing (NGS) technologies for analyzing RNA transcript counts with an excellent accuracy. Trying to interpret this huge amount of data in biological information is still a key issue, reason for which the creation of web-resources useful for their analysis is highly desiderable. Starting from a previous work, Transcriptator, we present the Atlas of Hydra's vulgaris, an extensible web tool in which its complete transcriptome is annotated. In order to provide to the users an advantageous resource that include the whole functional annotated transcriptome of Hydra vulgaris water polyp, we implemented the Atlas web-tool contains 31.988 accesible and downloadable transcripts of this non-reference model organism. Atlas, as a freely available resource, can be considered a valuable tool to rapidly retrieve functional annotation for transcripts differentially expressed in Hydra vulgaris exposed to the distinct experimental treatments. WEB RESOURCE URL: http://www-labgtp.na.icar.cnr.it/Atlas .

  8. White Dwarf Mergers On Adaptive Meshes. I. Methodology And Code Verification

    DOE PAGES

    Katz, Max P.; Zingale, Michael; Calder, Alan C.; ...

    2016-03-02

    The Type Ia supernova (SN Ia) progenitor problem is one of the most perplexing and exciting problems in astrophysics, requiring detailed numerical modeling to complement observations of these explosions. One possible progenitor that has merited recent theoretical attention is the white dwarf (WD) merger scenario, which has the potential to naturally explain many of the observed characteristics of SNe Ia. To date there have been relatively few self-consistent simulations of merging WD systems using mesh-based hydrodynamics. This is the first study in a series describing simulations of these systems using a hydrodynamics code with adaptive mesh refinement. In this papermore » we describe our numerical methodology and discuss our implementation in the compressible hydrodynamics code CASTRO, which solves the Euler equations, and the Poisson equation for self-gravity, and couples the gravitational and rotation forces to the hydrodynamics. Standard techniques for coupling gravitation and rotation forces to the hydrodynamics do not adequately conserve the total energy of the system for our problem, but recent advances in the literature allow progress and we discuss our implementation here. We present a set of test problems demonstrating the extent to which our software sufficiently models a system where large amounts of mass are advected on the computational domain over long timescales. Finally, future papers in this series will describe our treatment of the initial conditions of these systems and will examine the early phases of the merger to determine its viability for triggering a thermonuclear detonation.« less

  9. SPAMCART: a code for smoothed particle Monte Carlo radiative transfer

    NASA Astrophysics Data System (ADS)

    Lomax, O.; Whitworth, A. P.

    2016-10-01

    We present a code for generating synthetic spectral energy distributions and intensity maps from smoothed particle hydrodynamics simulation snapshots. The code is based on the Lucy Monte Carlo radiative transfer method, I.e. it follows discrete luminosity packets as they propagate through a density field, and then uses their trajectories to compute the radiative equilibrium temperature of the ambient dust. The sources can be extended and/or embedded, and discrete and/or diffuse. The density is not mapped on to a grid, and therefore the calculation is performed at exactly the same resolution as the hydrodynamics. We present two example calculations using this method. First, we demonstrate that the code strictly adheres to Kirchhoff's law of radiation. Secondly, we present synthetic intensity maps and spectra of an embedded protostellar multiple system. The algorithm uses data structures that are already constructed for other purposes in modern particle codes. It is therefore relatively simple to implement.

  10. nIFTY galaxy cluster simulations - III. The similarity and diversity of galaxies and subhaloes

    NASA Astrophysics Data System (ADS)

    Elahi, Pascal J.; Knebe, Alexander; Pearce, Frazer R.; Power, Chris; Yepes, Gustavo; Cui, Weiguang; Cunnama, Daniel; Kay, Scott T.; Sembolini, Federico; Beck, Alexander M.; Davé, Romeel; February, Sean; Huang, Shuiyao; Katz, Neal; McCarthy, Ian G.; Murante, Giuseppe; Perret, Valentin; Puchwein, Ewald; Saro, Alexandro; Teyssier, Romain

    2016-05-01

    We examine subhaloes and galaxies residing in a simulated Λ cold dark matter galaxy cluster (M^crit_{200}=1.1× 10^{15} h^{-1} M_{⊙}) produced by hydrodynamical codes ranging from classic smooth particle hydrodynamics (SPH), newer SPH codes, adaptive and moving mesh codes. These codes use subgrid models to capture galaxy formation physics. We compare how well these codes reproduce the same subhaloes/galaxies in gravity-only, non-radiative hydrodynamics and full feedback physics runs by looking at the overall subhalo/galaxy distribution and on an individual object basis. We find that the subhalo population is reproduced to within ≲10 per cent for both dark matter only and non-radiative runs, with individual objects showing code-to-code scatter of ≲0.1 dex, although the gas in non-radiative simulations shows significant scatter. Including feedback physics significantly increases the diversity. Subhalo mass and Vmax distributions vary by ≈20 per cent. The galaxy populations also show striking code-to-code variations. Although the Tully-Fisher relation is similar in almost all codes, the number of galaxies with 109 h- 1 M⊙ ≲ M* ≲ 1012 h- 1 M⊙ can differ by a factor of 4. Individual galaxies show code-to-code scatter of ˜0.5 dex in stellar mass. Moreover, systematic differences exist, with some codes producing galaxies 70 per cent smaller than others. The diversity partially arises from the inclusion/absence of active galactic nucleus feedback. Our results combined with our companion papers demonstrate that subgrid physics is not just subject to fine-tuning, but the complexity of building galaxies in all environments remains a challenge. We argue that even basic galaxy properties, such as stellar mass to halo mass, should be treated with errors bars of ˜0.2-0.4 dex.

  11. Multi-dimensional computer simulation of MHD combustor hydrodynamics

    NASA Astrophysics Data System (ADS)

    Berry, G. F.; Chang, S. L.; Lottes, S. A.; Rimkus, W. A.

    1991-04-01

    Argonne National Laboratory is investigating the nonreacting jet gas mixing patterns in an MHD second stage combustor by using a 2-D multiphase hydrodynamics computer program and a 3-D single phase hydrodynamics computer program. The computer simulations are intended to enhance the understanding of flow and mixing patterns in the combustor, which in turn may lead to improvement of the downstream MHD channel performance. A 2-D steady state computer model, based on mass and momentum conservation laws for multiple gas species, is used to simulate the hydrodynamics of the combustor in which a jet of oxidizer is injected into an unconfined cross stream gas flow. A 3-D code is used to examine the effects of the side walls and the distributed jet flows on the non-reacting jet gas mixing patterns. The code solves the conservation equations of mass, momentum, and energy, and a transport equation of a turbulence parameter and allows permeable surfaces to be specified for any computational cell.

  12. Software for the Hydra Instrument on the Polar Spacecraft

    NASA Technical Reports Server (NTRS)

    Fillius, Walker

    1996-01-01

    This software was developed by UCSD for the Hydra instrument and conforms with the contractural Statement of Work, with the exception, ordered by the NASA Technical Monitor, that the programming language was assembly language rather than Forth.

  13. HYDRA: Macroscopic 3D Approach of Light Weight Ablator

    NASA Astrophysics Data System (ADS)

    Pinaud, G.; Barcena, J.; Bouilly, J.-M.; Leroy, V.; Fischer, Wpp.; Massuti, T.

    2014-06-01

    The HYDRA project is an European funded program that aims at developing novel solution in term of TPS associated to a demonstration of Technology Readiness Level (TRL) 4. We describe modelling activities (radiation/ablation) compared to plasma test.

  14. Astronomers See First Stages of Planet-Building Around Nearby Star

    NASA Astrophysics Data System (ADS)

    2005-06-01

    Interstellar travelers might want to detour around the star system TW Hydrae to avoid a messy planetary construction site. Astronomer David Wilner of the Harvard-Smithsonian Center for Astrophysics (CfA) and his colleagues have discovered that the gaseous protoplanetary disk surrounding TW Hydrae holds vast swaths of pebbles extending outward for at least 1 billion miles. These rocky chunks should continue to grow in size as they collide and stick together until they eventually form planets. Dust Disk Graphic Artist's Conception of Dusty Disk Around Young Star TW Hydrae CREDIT: Bill Saxton, NRAO/AUI/NSF (Click on image for larger version 1.8 MB) "We're seeing planet building happening right before our eyes," said Wilner. "The foundation has been laid and now the building materials are coming together to make a new solar system." Wilner used the National Science Foundation's Very Large Array to measure radio emissions from TW Hydrae. He detected radiation from a cold, extended dust disk suffused with centimeter-sized pebbles. Such pebbles are a prerequisite for planet formation, created as dust collects together into larger and larger clumps. Over millions of years, those clumps grow into planets. "We're seeing an important step on the path from interstellar dust particles to planets," said Mark Claussen (NRAO), a co-author on the paper announcing the discovery. "No one has seen this before." A dusty disk like that in TW Hydrae tends to emit radio waves with wavelengths similar to the size of the particles in the disk. Other effects can mask this, however. In TW Hydrae, the astronomers explained, both the relatively close distance of the system and the stage of the young star's evolution are just right to allow the relationship of particle size and wavelength to prevail. The scientists observed the young star's disk with the VLA at several centimeter-range wavelengths. "The strong emission at wavelengths of a few centimeters is convincing evidence that particles of about the same size are present," Claussen said. Not only does TW Hydrae show evidence of ongoing planet formation, it also shows signs that at least one giant planet may have formed already. Wilner's colleague, Nuria Calvet (CfA), has created a computer simulation of the disk around TW Hydrae using previously published infrared observations. She showed that a gap extends from the star out to a distance of about 400 million miles - similar to the distance to the asteroid belt in our solar system. The gap likely formed when a giant planet sucked up all the nearby material, leaving a hole in the middle of the disk. Located about 180 light-years away in the constellation Hydra the Water Snake, TW Hydrae consists of a 10 million-year-old star about four-fifths as massive as the Sun. The protoplanetary disk surrounding TW Hydrae contains about one-tenth as much material as the Sun -- more than enough to form one or more Jupiter-sized worlds. "TW Hydrae is unique," said Wilner. "It's nearby, and it's just the right age to be forming planets. We'll be studying it for decades to come." This research was published in the June 20, 2005, issue of the Astrophysical Journal Letters. Headquartered in Cambridge, Mass., the Harvard-Smithsonian Center for Astrophysics (CfA) is a joint collaboration between the Smithsonian Astrophysical Observatory and the Harvard College Observatory. CfA scientists, organized into six research divisions, study the origin, evolution and ultimate fate of the universe. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  15. Assessing the Effects of Data Compression in Simulations Using Physically Motivated Metrics

    DOE PAGES

    Laney, Daniel; Langer, Steven; Weber, Christopher; ...

    2014-01-01

    This paper examines whether lossy compression can be used effectively in physics simulations as a possible strategy to combat the expected data-movement bottleneck in future high performance computing architectures. We show that, for the codes and simulations we tested, compression levels of 3–5X can be applied without causing significant changes to important physical quantities. Rather than applying signal processing error metrics, we utilize physics-based metrics appropriate for each code to assess the impact of compression. We evaluate three different simulation codes: a Lagrangian shock-hydrodynamics code, an Eulerian higher-order hydrodynamics turbulence modeling code, and an Eulerian coupled laser-plasma interaction code. Wemore » compress relevant quantities after each time-step to approximate the effects of tightly coupled compression and study the compression rates to estimate memory and disk-bandwidth reduction. We find that the error characteristics of compression algorithms must be carefully considered in the context of the underlying physics being modeled.« less

  16. Composite Case Development for Weapons Applications and Testing

    DTIC Science & Technology

    2015-03-01

    5 cm axial location for each layer. ............................................................... 68  Figure 52.  Hydra radiographic time sequence...increase by 6.7%. No significant change in hold time was observed for the model with reduced mass. Figure 52. Hydra radiographic time sequence of

  17. On the evolutionary constraint surface of hydra

    NASA Technical Reports Server (NTRS)

    Slobodkin, L. B.; Dunn, K.

    1983-01-01

    Food consumption, body size, and budding rate were measured simultaneously in isolated individual hydra of six strains. For each individual hydra the three measurements define a point in the three dimensional space with axes: food consumption, budding rate, and body size. These points lie on a single surface, regardless of species. Floating rate and incidence of sexuality map onto this surface. It is suggested that this surface is an example of a general class of evolutionary constraint surfaces derived from the conjunction of evolutinary theory and the theory of ecological resource budgets. These constraint surfaces correspond to microevolutionary domains.

  18. FoxO and Stress Responses in the Cnidarian Hydra vulgaris

    PubMed Central

    Bridge, Diane; Theofiles, Alexander G.; Holler, Rebecca L.; Marcinkevicius, Emily; Steele, Robert E.; Martínez, Daniel E.

    2010-01-01

    Background In the face of changing environmental conditions, the mechanisms underlying stress responses in diverse organisms are of increasing interest. In vertebrates, Drosophila, and Caenorhabditis elegans, FoxO transcription factors mediate cellular responses to stress, including oxidative stress and dietary restriction. Although FoxO genes have been identified in early-arising animal lineages including sponges and cnidarians, little is known about their roles in these organisms. Methods/Principal Findings We have examined the regulation of FoxO activity in members of the well-studied cnidarian genus Hydra. We find that Hydra FoxO is expressed at high levels in cells of the interstitial lineage, a cell lineage that includes multipotent stem cells that give rise to neurons, stinging cells, secretory cells and gametes. Using transgenic Hydra that express a FoxO-GFP fusion protein in cells of the interstitial lineage, we have determined that heat shock causes localization of the fusion protein to the nucleus. Our results also provide evidence that, as in bilaterian animals, Hydra FoxO activity is regulated by both Akt and JNK kinases. Conclusions These findings imply that basic mechanisms of FoxO regulation arose before the evolution of bilaterians and raise the possibility that FoxO is involved in stress responses of other cnidarian species, including corals. PMID:20657733

  19. Unraveling the non-senescence phenomenon in Hydra.

    PubMed

    Dańko, Maciej J; Kozłowski, Jan; Schaible, Ralf

    2015-10-07

    Unlike other metazoans, Hydra does not experience the distinctive rise in mortality with age known as senescence, which results from an increasing imbalance between cell damage and cell repair. We propose that the Hydra controls damage accumulation mainly through damage-dependent cell selection and cell sloughing. We examine our hypothesis with a model that combines cellular damage with stem cell renewal, differentiation, and elimination. The Hydra individual can be seen as a large single pool of three types of stem cells with some features of differentiated cells. This large stem cell community prevents "cellular damage drift," which is inevitable in complex conglomerate (differentiated) metazoans with numerous and generally isolated pools of stem cells. The process of cellular damage drift is based on changes in the distribution of damage among cells due to random events, and is thus similar to Muller's ratchet in asexual populations. Events in the model that are sources of randomness include budding, cellular death, and cellular damage and repair. Our results suggest that non-senescence is possible only in simple Hydra-like organisms which have a high proportion and number of stem cells, continuous cell divisions, an effective cell selection mechanism, and stem cells with the ability to undertake some roles of differentiated cells. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. A small molecule screen identifies a novel compound that induces a homeotic transformation in Hydra

    PubMed Central

    Glauber, Kristine M.; Dana, Catherine E.; Park, Steve S.; Colby, David A.; Noro, Yukihiko; Fujisawa, Toshitaka; Chamberlin, A. Richard; Steele, Robert E.

    2013-01-01

    Developmental processes such as morphogenesis, patterning and differentiation are continuously active in the adult Hydra polyp. We carried out a small molecule screen to identify compounds that affect patterning in Hydra. We identified a novel molecule, DAC-2-25, that causes a homeotic transformation of body column into tentacle zone. This transformation occurs in a progressive and polar fashion, beginning at the oral end of the animal. We have identified several strains that respond to DAC-2-25 and one that does not, and we used chimeras from these strains to identify the ectoderm as the target tissue for DAC-2-25. Using transgenic Hydra that express green fluorescent protein under the control of relevant promoters, we examined how DAC-2-25 affects tentacle patterning. Genes whose expression is associated with the tentacle zone are ectopically expressed upon exposure to DAC-2-25, whereas those associated with body column tissue are turned off as the tentacle zone expands. The expression patterns of the organizer-associated gene HyWnt3 and the hypostome-specific gene HyBra2 are unchanged. Structure-activity relationship studies have identified features of DAC-2-25 that are required for activity and potency. This study shows that small molecule screens in Hydra can be used to dissect patterning processes. PMID:24255098

  1. Evo-devo: Hydra raises its Noggin.

    PubMed

    Chandramore, Kalpana; Ghaskadbi, Surendra

    2011-08-01

    Noggin, along with other secreted bone morphogenetic protein (BMP) inhibitors, plays a crucial role in neural induction and neural tube patterning as well as in somitogenesis, cardiac morphogenesis and formation of the skeleton in vertebrates. The BMP signalling pathway is one of the seven fundamental pathways that drive embryonic development and pattern formation in animals. Understanding its evolutionary origin and role in pattern formation is, therefore, important to evolutionary developmental biology (evo-devo). We have studied the evolutionary origin of BMP-Noggin antagonism in hydra, which is a powerful diploblastic model to study evolution of pattern-forming mechanisms because of the unusual cellular dynamics during its pattern formation and its remarkable ability to regenerate. We cloned and characterized the noggin gene from hydra and found it to exhibit considerable similarity with its orthologues at the amino acid level. Microinjection of hydra Noggin mRNA led to duplication of the dorsoventral axis in Xenopus embryos, demonstrating its functional conservation across the taxa. Our data, along with those of others, indicate that the evolutionarily conserved antagonism between BMP and its inhibitors predates bilateral divergence. This article reviews the various roles of Noggin in different organisms and some of our recent work on hydra Noggin in the context of evolution of developmental signalling pathways.

  2. A small molecule screen identifies a novel compound that induces a homeotic transformation in Hydra.

    PubMed

    Glauber, Kristine M; Dana, Catherine E; Park, Steve S; Colby, David A; Noro, Yukihiko; Fujisawa, Toshitaka; Chamberlin, A Richard; Steele, Robert E

    2013-12-01

    Developmental processes such as morphogenesis, patterning and differentiation are continuously active in the adult Hydra polyp. We carried out a small molecule screen to identify compounds that affect patterning in Hydra. We identified a novel molecule, DAC-2-25, that causes a homeotic transformation of body column into tentacle zone. This transformation occurs in a progressive and polar fashion, beginning at the oral end of the animal. We have identified several strains that respond to DAC-2-25 and one that does not, and we used chimeras from these strains to identify the ectoderm as the target tissue for DAC-2-25. Using transgenic Hydra that express green fluorescent protein under the control of relevant promoters, we examined how DAC-2-25 affects tentacle patterning. Genes whose expression is associated with the tentacle zone are ectopically expressed upon exposure to DAC-2-25, whereas those associated with body column tissue are turned off as the tentacle zone expands. The expression patterns of the organizer-associated gene HyWnt3 and the hypostome-specific gene HyBra2 are unchanged. Structure-activity relationship studies have identified features of DAC-2-25 that are required for activity and potency. This study shows that small molecule screens in Hydra can be used to dissect patterning processes.

  3. Insight into the Molecular and Functional Diversity of Cnidarian Neuropeptides

    PubMed Central

    Takahashi, Toshio; Takeda, Noriyo

    2015-01-01

    Cnidarians are the most primitive animals to possess a nervous system. This phylum is composed of the classes Scyphozoa (jellyfish), Cubozoa (box jellyfish), and Hydrozoa (e.g., Hydra, Hydractinia), which make up the subphylum Medusozoa, as well as the class Anthozoa (sea anemones and corals). Neuropeptides have an early evolutionary origin and are already abundant in cnidarians. For example, from the cnidarian Hydra, a key model system for studying the peptides involved in developmental and physiological processes, we identified a wide variety of novel neuropeptides from Hydra magnipapillata (the Hydra Peptide Project). Most of these peptides act directly on muscle cells and induce contraction and relaxation. Some peptides are involved in cell differentiation and morphogenesis. In this review, we describe FMRFamide-like peptides (FLPs), GLWamide-family peptides, and the neuropeptide Hym-355; FPQSFLPRGamide. Several hundred FLPs have been isolated from invertebrate animals such as cnidarians. GLWamide-family peptides function as signaling molecules in muscle contraction, metamorphosis, and settlement in cnidarians. Hym-355; FPQSFLPRGamide enhances neuronal differentiation in Hydra. Recently, GLWamide-family peptides and Hym-355; FPQSFLPRGamide were shown to trigger oocyte maturation and subsequent spawning in the hydrozoan jellyfish Cytaeis uchidae. These findings suggest the importance of these neuropeptides in both developmental and physiological processes. PMID:25625515

  4. FoxO and stress responses in the cnidarian Hydra vulgaris.

    PubMed

    Bridge, Diane; Theofiles, Alexander G; Holler, Rebecca L; Marcinkevicius, Emily; Steele, Robert E; Martínez, Daniel E

    2010-07-21

    In the face of changing environmental conditions, the mechanisms underlying stress responses in diverse organisms are of increasing interest. In vertebrates, Drosophila, and Caenorhabditis elegans, FoxO transcription factors mediate cellular responses to stress, including oxidative stress and dietary restriction. Although FoxO genes have been identified in early-arising animal lineages including sponges and cnidarians, little is known about their roles in these organisms. We have examined the regulation of FoxO activity in members of the well-studied cnidarian genus Hydra. We find that Hydra FoxO is expressed at high levels in cells of the interstitial lineage, a cell lineage that includes multipotent stem cells that give rise to neurons, stinging cells, secretory cells and gametes. Using transgenic Hydra that express a FoxO-GFP fusion protein in cells of the interstitial lineage, we have determined that heat shock causes localization of the fusion protein to the nucleus. Our results also provide evidence that, as in bilaterian animals, Hydra FoxO activity is regulated by both Akt and JNK kinases. These findings imply that basic mechanisms of FoxO regulation arose before the evolution of bilaterians and raise the possibility that FoxO is involved in stress responses of other cnidarian species, including corals.

  5. GASOLINE: Smoothed Particle Hydrodynamics (SPH) code

    NASA Astrophysics Data System (ADS)

    N-Body Shop

    2017-10-01

    Gasoline solves the equations of gravity and hydrodynamics in astrophysical problems, including simulations of planets, stars, and galaxies. It uses an SPH method that features correct mixing behavior in multiphase fluids and minimal artificial viscosity. This method is identical to the SPH method used in the ChaNGa code (ascl:1105.005), allowing users to extend results to problems requiring >100,000 cores. Gasoline uses a fast, memory-efficient O(N log N) KD-Tree to solve Poisson's Equation for gravity and avoids artificial viscosity in non-shocking compressive flows.

  6. RADHOT: A Radiation Hydrodynamics Code for Weapon Effects Calculation.

    DTIC Science & Technology

    1981-03-01

    h4A ( :: [ l), t.110 )" *- 7470 -C - C... C LUMI1LTI A F ’ :: ISUfI ----- --------------- 7480= P2 GM I ’: ;,,l. II 7490C:, A ......... ’ R..E I:I ’ S...AD-AlO 637 AIR FORCE INST OF TECH WRIGHTPATTERSON AFL O SCHOOETC F /8 12/ RADHOT: A RADIATION HYDRODYNAMICS CODE FOR WEAPON EFFECTS CALCU--ETC(U...change of internal energy due to radiation atj rad F monochromatic flux V F -, F inward and outward-going monochromatic fluxes at Va cell boundary F -, F1

  7. Terminal Ballistic Application of Hydrodynamic Computer Code Calculations.

    DTIC Science & Technology

    1977-04-01

    F1’T.D—AO*I 065 BALLISTIC RESEARCH LABS ABnoflN PR0VIM eRotic j~o NTERMiNAL BALLISIIC APPLICATION OF HYDRODYNAMIC C~I~~U7ER COVE CA—ET C(U) I APR 77...this short- coming of the code, design solutions using a combined calculational and empirical design procedure were tried . 18 --- - -- -- - --- -rn...In this calculation , the exp losive was conf ined on its periphery by a steel casing. The calculated liner shape is shown at 18 m icroseconds af

  8. Modeling hydrodynamics, water quality, and benthic processes to predict ecological effects in Narragansett Bay

    EPA Science Inventory

    The environmental fluid dynamics code (EFDC) was used to study the three dimensional (3D) circulation, water quality, and ecology in Narragansett Bay, RI. Predictions of the Bay hydrodynamics included the behavior of the water surface elevation, currents, salinity, and temperatur...

  9. Multi-Dimensional Full Boltzmann-Neutrino-Radiation Hydrodynamic Simulations and Their Detailed Comparisons with Monte-Carlo Methods in Core Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Nagakura, H.; Richers, S.; Ott, C. D.; Iwakami, W.; Furusawa, S.; Sumiyoshi, K.; Yamada, S.; Matsufuru, H.; Imakura, A.

    2016-10-01

    We have developed a 7-dimensional Full Boltzmann-neutrino-radiation-hydrodynamical code and carried out ab-initio axisymmetric CCSNe simulations. I will talk about main results of our simulations and also discuss current ongoing projects.

  10. Production code control system for hydrodynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slone, D.M.

    1997-08-18

    We describe how the Production Code Control System (pCCS), written in Perl, has been used to control and monitor the execution of a large hydrodynamics simulation code in a production environment. We have been able to integrate new, disparate, and often independent, applications into the PCCS framework without the need to modify any of our existing application codes. Both users and code developers see a consistent interface to the simulation code and associated applications regardless of the physical platform, whether an MPP, SMP, server, or desktop workstation. We will also describe our use of Perl to develop a configuration managementmore » system for the simulation code, as well as a code usage database and report generator. We used Perl to write a backplane that allows us plug in preprocessors, the hydrocode, postprocessors, visualization tools, persistent storage requests, and other codes. We need only teach PCCS a minimal amount about any new tool or code to essentially plug it in and make it usable to the hydrocode. PCCS has made it easier to link together disparate codes, since using Perl has removed the need to learn the idiosyncrasies of system or RPC programming. The text handling in Perl makes it easy to teach PCCS about new codes, or changes to existing codes.« less

  11. Simulation study of 3–5 keV x-ray conversion efficiency from Ar K-shell vs. Ag L-shell targets on the National Ignition Facility laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kemp, G. E., E-mail: kemp10@llnl.gov; Colvin, J. D.; Fournier, K. B.

    2015-05-15

    Tailored, high-flux, multi-keV x-ray sources are desirable for studying x-ray interactions with matter for various civilian, space and military applications. For this study, we focus on designing an efficient laser-driven non-local thermodynamic equilibrium 3–5 keV x-ray source from photon-energy-matched Ar K-shell and Ag L-shell targets at sub-critical densities (∼n{sub c}/10) to ensure supersonic, volumetric laser heating with minimal losses to kinetic energy, thermal x rays and laser-plasma instabilities. Using HYDRA, a multi-dimensional, arbitrary Lagrangian-Eulerian, radiation-hydrodynamics code, we performed a parameter study by varying initial target density and laser parameters for each material using conditions readily achievable on the National Ignition Facilitymore » (NIF) laser. We employ a model, benchmarked against Kr data collected on the NIF, that uses flux-limited Lee-More thermal conductivity and multi-group implicit Monte-Carlo photonics with non-local thermodynamic equilibrium, detailed super-configuration accounting opacities from CRETIN, an atomic-kinetics code. While the highest power laser configurations produced the largest x-ray yields, we report that the peak simulated laser to 3–5 keV x-ray conversion efficiencies of 17.7% and 36.4% for Ar and Ag, respectively, occurred at lower powers between ∼100–150 TW. For identical initial target densities and laser illumination, the Ag L-shell is observed to have ≳10× higher emissivity per ion per deposited laser energy than the Ar K-shell. Although such low-density Ag targets have not yet been demonstrated, simulations of targets fabricated using atomic layer deposition of Ag on silica aerogels (∼20% by atomic fraction) suggest similar performance to atomically pure metal foams and that either fabrication technique may be worth pursuing for an efficient 3–5 keV x-ray source on NIF.« less

  12. A nonlocal electron conduction model for multidimensional radiation hydrodynamics codes

    NASA Astrophysics Data System (ADS)

    Schurtz, G. P.; Nicolaï, Ph. D.; Busquet, M.

    2000-10-01

    Numerical simulation of laser driven Inertial Confinement Fusion (ICF) related experiments require the use of large multidimensional hydro codes. Though these codes include detailed physics for numerous phenomena, they deal poorly with electron conduction, which is the leading energy transport mechanism of these systems. Electron heat flow is known, since the work of Luciani, Mora, and Virmont (LMV) [Phys. Rev. Lett. 51, 1664 (1983)], to be a nonlocal process, which the local Spitzer-Harm theory, even flux limited, is unable to account for. The present work aims at extending the original formula of LMV to two or three dimensions of space. This multidimensional extension leads to an equivalent transport equation suitable for easy implementation in a two-dimensional radiation-hydrodynamic code. Simulations are presented and compared to Fokker-Planck simulations in one and two dimensions of space.

  13. Hydra 1 data display system

    NASA Technical Reports Server (NTRS)

    Hodgkins, R. L.; Osgood, D. R.

    1968-01-01

    System, named Hydra, generates charts, graphs, and printed matter on slides or conventional negatives and positives, and combines these media with a capability of storage on magnetic tape for future updating to accommodate engineering changes or contract modifications to be readily added to basic data.

  14. UV induced foot duplication in regenerating hydra is mediated by metalloproteinases and modulation of the Wnt pathway.

    PubMed

    Krishnapati, Lakshmi-Surekha; Londhe, Rohini; Deoli, Vaishali; Barve, Apurva; Ghaskadbi, Saroj; Ghaskadbi, Surendra

    2016-01-01

    We have shown earlier that irradiation with UV induces duplication of foot in regenerating middle pieces of hydra. The present study was undertaken to elucidate the underlying mechanism(s) leading to this curious phenomenon. UV irradiation induced duplicated foot in about 30% of regenerating middle pieces. Metalloproteinases are important in foot formation, while Wnt pathway genes are important in head formation in hydra. The effect of UV irradiation on expression of these genes was studied by in situ hybridization and q-PCR. In whole polyps and middle pieces, UV irradiation led to up-regulation of HMP2 and HMMP, the two metalloproteinases involved in foot formation in hydra. HMP2 expression was significantly increased starting from 30 min post exposure to UV at 254 nm (500 J/m(2)), while HMMP showed significant up-regulation 6 h post UV exposure onwards. In middle pieces, increased expression of both metalloproteinases was observed only at 48 h. In whole polyps as well as in middle pieces, expression of Wnt3 and β-catenin was detected within 30 min of UV exposure and was accompanied by up-regulation of GSK3β, DKK3 and DKK1/2/4, inhibitors of the Wnt pathway. These conditions likely lead to inactivation of Wnt signaling. We therefore conclude that duplication of foot due to UV irradiation in regenerating middle pieces of hydra is a combined effect of up-regulation of metalloproteinases and inactivation of the Wnt pathway. Our results suggest that UV irradiation can be employed as a tool to understand patterning mechanisms during foot formation in hydra.

  15. Evolution of the α-Subunit of Na/K-ATPase from Paramecium to Homo sapiens: Invariance of Transmembrane Helix Topology.

    PubMed

    Morrill, Gene A; Kostellow, Adele B; Liu, Lijun; Gupta, Raj K; Askari, Amir

    2016-05-01

    Na/K-ATPase is a key plasma membrane enzyme involved in cell signaling, volume regulation, and maintenance of electrochemical gradients. The α-subunit, central to these functions, belongs to a large family of P-type ATPases. Differences in transmembrane (TM) helix topology, sequence homology, helix-helix contacts, cell signaling, and protein domains of Na/K-ATPase α-subunit were compared in fungi (Beauveria), unicellular organisms (Paramecia), primitive multicellular organisms (Hydra), and vertebrates (Xenopus, Homo sapiens), and correlated with evolution of physiological functions in the α-subunit. All α-subunits are of similar length, with groupings of four and six helices in the N- and C-terminal regions, respectively. Minimal homology was seen for protein domain patterns in Paramecium and Hydra, with high correlation between Hydra and vertebrates. Paramecium α-subunits display extensive disorder, with minimal helix contacts. Increases in helix contacts in Hydra approached vertebrates. Protein motifs known to be associated with membrane lipid rafts and cell signaling reveal significant positional shifts between Paramecium and Hydra vulgaris, indicating that regional membrane fluidity changes occur during evolution. Putative steroid binding sites overlapping TM-3 occurred in all species. Sites associated with G-protein-receptor stimulation occur both in vertebrates and amphibia but not in Hydra or Paramecia. The C-terminus moiety "KETYY," necessary for the Na(+) activation of pump phosphorylation, is not present in unicellular species indicating the absence of classical Na(+)/K(+)-pumps. The basic protein topology evolved earliest, followed by increases in protein domains and ordered helical arrays, correlated with appearance of α-subunit regions known to involve cell signaling, membrane recycling, and ion channel formation.

  16. Integrated modelling framework for short pulse high energy density physics experiments

    NASA Astrophysics Data System (ADS)

    Sircombe, N. J.; Hughes, S. J.; Ramsay, M. G.

    2016-03-01

    Modelling experimental campaigns on the Orion laser at AWE, and developing a viable point-design for fast ignition (FI), calls for a multi-scale approach; a complete description of the problem would require an extensive range of physics which cannot realistically be included in a single code. For modelling the laser-plasma interaction (LPI) we need a fine mesh which can capture the dispersion of electromagnetic waves, and a kinetic model for each plasma species. In the dense material of the bulk target, away from the LPI region, collisional physics dominates. The transport of hot particles generated by the action of the laser is dependent on their slowing and stopping in the dense material and their need to draw a return current. These effects will heat the target, which in turn influences transport. On longer timescales, the hydrodynamic response of the target will begin to play a role as the pressure generated from isochoric heating begins to take effect. Recent effort at AWE [1] has focussed on the development of an integrated code suite based on: the particle in cell code EPOCH, to model LPI; the Monte-Carlo electron transport code THOR, to model the onward transport of hot electrons; and the radiation hydrodynamics code CORVUS, to model the hydrodynamic response of the target. We outline the methodology adopted, elucidate on the advantages of a robustly integrated code suite compared to a single code approach, demonstrate the integrated code suite's application to modelling the heating of buried layers on Orion, and assess the potential of such experiments for the validation of modelling capability in advance of more ambitious HEDP experiments, as a step towards a predictive modelling capability for FI.

  17. Detection of Thermal Water Vapor Emission from W Hydrae

    NASA Technical Reports Server (NTRS)

    Neufeld, David A.; Chen, Wesley; Melnick, Gary J.; DeGraauw, Thijs; Feuchtgruber, Helmut; Harwitt, Martin

    1997-01-01

    We have detected four far-infrared emission lines of water vapor toward the evolved star W Hydrae, using the Short Wavelength Spectrometer (SWS) of the Infrared Space Observatory (ISO). This is the first detection of thermal water vapor emission from a circumstellar outflow.

  18. Comprehensive machine learning analysis of Hydra behavior reveals a stable basal behavioral repertoire.

    PubMed

    Han, Shuting; Taralova, Ekaterina; Dupre, Christophe; Yuste, Rafael

    2018-03-28

    Animal behavior has been studied for centuries, but few efficient methods are available to automatically identify and classify it. Quantitative behavioral studies have been hindered by the subjective and imprecise nature of human observation, and the slow speed of annotating behavioral data. Here, we developed an automatic behavior analysis pipeline for the cnidarian Hydra vulgaris using machine learning. We imaged freely behaving Hydra , extracted motion and shape features from the videos, and constructed a dictionary of visual features to classify pre-defined behaviors. We also identified unannotated behaviors with unsupervised methods. Using this analysis pipeline, we quantified 6 basic behaviors and found surprisingly similar behavior statistics across animals within the same species, regardless of experimental conditions. Our analysis indicates that the fundamental behavioral repertoire of Hydra is stable. This robustness could reflect a homeostatic neural control of "housekeeping" behaviors which could have been already present in the earliest nervous systems. © 2018, Han et al.

  19. Structural Inheritance of the Actin Cytoskeletal Organization Determines the Body Axis in Regenerating Hydra.

    PubMed

    Livshits, Anton; Shani-Zerbib, Lital; Maroudas-Sacks, Yonit; Braun, Erez; Keren, Kinneret

    2017-02-07

    Understanding how mechanics complement bio-signaling in defining patterns during morphogenesis is an outstanding challenge. Here, we utilize the multicellular polyp Hydra to investigate the role of the actomyosin cytoskeleton in morphogenesis. We find that the supra-cellular actin fiber organization is inherited from the parent Hydra and determines the body axis in regenerating tissue segments. This form of structural inheritance is non-trivial because of the tissue folding and dynamic actin reorganization involved. We further show that the emergence of multiple body axes can be traced to discrepancies in actin fiber alignment at early stages of the regeneration process. Mechanical constraints induced by anchoring regenerating Hydra on stiff wires suppressed the emergence of multiple body axes, highlighting the importance of mechanical feedbacks in defining and stabilizing the body axis. Together, these results constitute an important step toward the development of an integrated view of morphogenesis that incorporates mechanics. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  20. Determination of mercury in ayurvedic dietary supplements that are not rasa shastra using the hydra-C direct mercury analyzer.

    PubMed

    Abdalla, Amir A; Smith, Robert E

    2013-01-01

    Mercury has been determined in Ayurvedic dietary supplements (Trifala, Trifala Guggulu, Turmeric, Mahasudarshan, Yograj, Shatawari, Hingwastika, Shatavari, and Shilajit) by inductively coupled plasma-mass spectrometry (ICP-MS) and direct mercury analysis using the Hydra-C direct mercury analyzer (Teledyne Leeman Labs Hudson, NH, USA). Similar results were obtained from the two methods, but the direct mercury analysis method was much faster and safer and required no microwave digestion (unlike ICP-MS). Levels of mercury ranged from 0.002 to 56  μ g/g in samples of dietary supplements. Standard reference materials Ephedra 3240 and tomato leaves that were from the National Institute of Standard and Technology (NIST) and dogfish liver (DOLT3) that was from the Canadian Research Council were analyzed using Hydra-C method. Average mercury recoveries were 102% (RSD% 0.0018), 100% (RSD% 0.0009), and 101% (RSD% 0.0729), respectively. Hydra-C method Limit Of Quantitation was 0.5 ng.

  1. Determination of Mercury in Ayurvedic Dietary Supplements That Are Not Rasa Shastra Using the Hydra-C Direct Mercury Analyzer

    PubMed Central

    Abdalla, Amir A.; Smith, Robert E.

    2013-01-01

    Mercury has been determined in Ayurvedic dietary supplements (Trifala, Trifala Guggulu, Turmeric, Mahasudarshan, Yograj, Shatawari, Hingwastika, Shatavari, and Shilajit) by inductively coupled plasma-mass spectrometry (ICP-MS) and direct mercury analysis using the Hydra-C direct mercury analyzer (Teledyne Leeman Labs Hudson, NH, USA). Similar results were obtained from the two methods, but the direct mercury analysis method was much faster and safer and required no microwave digestion (unlike ICP-MS). Levels of mercury ranged from 0.002 to 56 μg/g in samples of dietary supplements. Standard reference materials Ephedra 3240 and tomato leaves that were from the National Institute of Standard and Technology (NIST) and dogfish liver (DOLT3) that was from the Canadian Research Council were analyzed using Hydra-C method. Average mercury recoveries were 102% (RSD% 0.0018), 100% (RSD% 0.0009), and 101% (RSD% 0.0729), respectively. Hydra-C method Limit Of Quantitation was 0.5 ng. PMID:23710181

  2. CIRCUMBINARY CHAOS: USING PLUTO'S NEWEST MOON TO CONSTRAIN THE MASSES OF NIX AND HYDRA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Youdin, Andrew N.; Kratter, Kaitlin M.; Kenyon, Scott J.

    The Pluto system provides a unique local laboratory for the study of binaries with multiple low-mass companions. In this paper, we study the orbital stability of P4, the most recently discovered moon in the Pluto system. This newfound companion orbits near the plane of the Pluto-Charon (PC) binary, roughly halfway between the two minor moons Nix and Hydra. We use a suite of few body integrations to constrain the masses of Nix and Hydra, and the orbital parameters of P4. For the system to remain stable over the age of the solar system, the masses of Nix and Hydra likelymore » do not exceed 5 Multiplication-Sign 10{sup 16} kg and 9 Multiplication-Sign 10{sup 16} kg, respectively. These upper limits assume a fixed mass ratio between Nix and Hydra at the value implied by their median optical brightness. Our study finds that stability is more sensitive to their total mass and that a downward revision of Charon's eccentricity (from our adopted value of 0.0035) is unlikely to significantly affect our conclusions. Our upper limits are an order of magnitude below existing astrometric limits on the masses of Nix and Hydra. For a density at least that of ice, the albedos of Nix and Hydra would exceed 0.3. This constraint implies they are icy, as predicted by giant impact models. Even with these low masses, P4 only remains stable if its eccentricity e {approx}< 0.02. The 5:1 commensurability with Charon is particularly unstable, combining stability constraints with the observed mean motion places the preferred orbit for P4 just exterior to the 5:1 resonance. These predictions will be tested when the New Horizons satellite visits Pluto. Based on the results for the PC system, we expect that circumbinary, multi-planet systems will be more widely spaced than their singleton counterparts. Further, circumbinary exoplanets close to the three-body stability boundary, such as those found by Kepler, are less likely to have other companions nearby.« less

  3. Einstein observations of the Hydra A cluster and the efficiency of galaxy formation in groups and clusters

    NASA Technical Reports Server (NTRS)

    David, L. P.; Arnaud, K. A.; Forman, W.; Jones, C.

    1990-01-01

    The Einstein imaging proportional counter observations of the poor cluster of galaxies centered on the radio galaxy Hydra A are examined. From the surface brightness profile, it is found that the X-ray-emitting gas in the Hydra A cluster must be condensing out of the intracluster medium at a rate of 600 solar masses/yr. This is one of the largest mass deposition rates observed in a cluster of galaxies. The ratio of gas mass to stellar mass is compared for a variety of systems, showing that this ratio correlates with the gas temperature.

  4. A Comprehensive Transcriptomic and Proteomic Analysis of Hydra Head Regeneration

    PubMed Central

    Petersen, Hendrik O.; Höger, Stefanie K.; Looso, Mario; Lengfeld, Tobias; Kuhn, Anne; Warnken, Uwe; Nishimiya-Fujisawa, Chiemi; Schnölzer, Martina; Krüger, Marcus; Özbek, Suat; Simakov, Oleg; Holstein, Thomas W.

    2015-01-01

    The cnidarian freshwater polyp Hydra sp. exhibits an unparalleled regeneration capacity in the animal kingdom. Using an integrative transcriptomic and stable isotope labeling by amino acids in cell culture proteomic/phosphoproteomic approach, we studied stem cell-based regeneration in Hydra polyps. As major contributors to head regeneration, we identified diverse signaling pathways adopted for the regeneration response as well as enriched novel genes. Our global analysis reveals two distinct molecular cascades: an early injury response and a subsequent, signaling driven patterning of the regenerating tissue. A key factor of the initial injury response is a general stabilization of proteins and a net upregulation of transcripts, which is followed by a subsequent activation cascade of signaling molecules including Wnts and transforming growth factor (TGF) beta-related factors. We observed moderate overlap between the factors contributing to proteomic and transcriptomic responses suggesting a decoupled regulation between the transcriptional and translational levels. Our data also indicate that interstitial stem cells and their derivatives (e.g., neurons) have no major role in Hydra head regeneration. Remarkably, we found an enrichment of evolutionarily more recent genes in the early regeneration response, whereas conserved genes are more enriched in the late phase. In addition, genes specific to the early injury response were enriched in transposon insertions. Genetic dynamicity and taxon-specific factors might therefore play a hitherto underestimated role in Hydra regeneration. PMID:25841488

  5. Eulerian and Lagrangian Plasma Jet Modeling for the Plasma Liner Experiment

    NASA Astrophysics Data System (ADS)

    Hatcher, Richard; Cassibry, Jason; Stanic, Milos; Loverich, John; Hakim, Ammar

    2011-10-01

    The Plasma Liner Experiment (PLX) aims to demonstrate the feasibility of using spherically-convergent plasma jets to from an imploding plasma liner. Our group has modified two hydrodynamic simulation codes to include radiative loss, tabular equations of state (EOS), and thermal transport. Nautilus, created by TechX Corporation, is a finite-difference Eulerian code which solves the MHD equations formulated as systems of hyperbolic conservation laws. The other is SPHC, a smoothed particle hydrodynamics code produced by Stellingwerf Consulting. Use of the Lagrangian fluid particle approach of SPH is motivated by the ability to accurately track jet interfaces, the plasma vacuum boundary, and mixing of various layers, but Eulerian codes have been in development for much longer and have better shock capturing. We validate these codes against experimental measurements of jet propagation, expansion, and merging of two jets. Precursor jets are observed to form at the jet interface. Conditions that govern evolution of two and more merging jets are explored.

  6. Computation of the Hydrodynamic Forces and Moments on a Body of Revolution with and without Appendages

    DTIC Science & Technology

    1991-08-01

    SUPPLEMENTARY NOTATION 1 COSA. CODES 18 SUBJECT TERMS (,ontnuo 0 ner of necessary Atdi, block n" mbr ) FIELD GROUP SUB.GROUP Submarine ’hyoroaynamic ’~ aDS...hydrodynamic forces and moments developed on the hull and appendages of a submerged vehicle is required for determining its stability, control, and...an approximate method has been developed to compute the hydrodynamic forces and moments for a submerged vehicle. As discussed in Reference 1, the

  7. Py-SPHViewer: Cosmological simulations using Smoothed Particle Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Benítez-Llambay, Alejandro

    2017-12-01

    Py-SPHViewer visualizes and explores N-body + Hydrodynamics simulations. The code interpolates the underlying density field (or any other property) traced by a set of particles, using the Smoothed Particle Hydrodynamics (SPH) interpolation scheme, thus producing not only beautiful but also useful scientific images. Py-SPHViewer enables the user to explore simulated volumes using different projections. Py-SPHViewer also provides a natural way to visualize (in a self-consistent fashion) gas dynamical simulations, which use the same technique to compute the interactions between particles.

  8. Comparing AMR and SPH Cosmological Simulations. I. Dark Matter and Adiabatic Simulations

    NASA Astrophysics Data System (ADS)

    O'Shea, Brian W.; Nagamine, Kentaro; Springel, Volker; Hernquist, Lars; Norman, Michael L.

    2005-09-01

    We compare two cosmological hydrodynamic simulation codes in the context of hierarchical galaxy formation: the Lagrangian smoothed particle hydrodynamics (SPH) code GADGET, and the Eulerian adaptive mesh refinement (AMR) code Enzo. Both codes represent dark matter with the N-body method but use different gravity solvers and fundamentally different approaches for baryonic hydrodynamics. The SPH method in GADGET uses a recently developed ``entropy conserving'' formulation of SPH, while for the mesh-based Enzo two different formulations of Eulerian hydrodynamics are employed: the piecewise parabolic method (PPM) extended with a dual energy formulation for cosmology, and the artificial viscosity-based scheme used in the magnetohydrodynamics code ZEUS. In this paper we focus on a comparison of cosmological simulations that follow either only dark matter, or also a nonradiative (``adiabatic'') hydrodynamic gaseous component. We perform multiple simulations using both codes with varying spatial and mass resolution with identical initial conditions. The dark matter-only runs agree generally quite well provided Enzo is run with a comparatively fine root grid and a low overdensity threshold for mesh refinement, otherwise the abundance of low-mass halos is suppressed. This can be readily understood as a consequence of the hierarchical particle-mesh algorithm used by Enzo to compute gravitational forces, which tends to deliver lower force resolution than the tree-algorithm of GADGET at early times before any adaptive mesh refinement takes place. At comparable force resolution we find that the latter offers substantially better performance and lower memory consumption than the present gravity solver in Enzo. In simulations that include adiabatic gasdynamics we find general agreement in the distribution functions of temperature, entropy, and density for gas of moderate to high overdensity, as found inside dark matter halos. However, there are also some significant differences in the same quantities for gas of lower overdensity. For example, at z=3 the fraction of cosmic gas that has temperature logT>0.5 is ~80% for both Enzo ZEUS and GADGET, while it is 40%-60% for Enzo PPM. We argue that these discrepancies are due to differences in the shock-capturing abilities of the different methods. In particular, we find that the ZEUS implementation of artificial viscosity in Enzo leads to some unphysical heating at early times in preshock regions. While this is apparently a significantly weaker effect in GADGET, its use of an artificial viscosity technique may also make it prone to some excess generation of entropy that should be absent in Enzo PPM. Overall, the hydrodynamical results for GADGET are bracketed by those for Enzo ZEUS and Enzo PPM but are closer to Enzo ZEUS.

  9. Filters | CTIO

    Science.gov Websites

    Visitor's Computer Guidelines Network Connection Request Instruments Instruments by Telescope IR Instruments MOSAIC Filters Hydra Filters IR Filters ANDICAM Filters Y4KCam filters CTIO Various Filters Filters for 5.75X5.75-inch Filters MOSAIC Filters Hydra Filters IR Filters ANDICAM Filters Y4KCam filters CTIO Various

  10. Hydrodynamic study of plasma amplifiers for soft-x-ray lasers: a transition in hydrodynamic behavior for plasma columns with widths ranging from 20 μm to 2 mm.

    PubMed

    Oliva, Eduardo; Zeitoun, Philippe; Velarde, Pedro; Fajardo, Marta; Cassou, Kevin; Ros, David; Sebban, Stephan; Portillo, David; le Pape, Sebastien

    2010-11-01

    Plasma-based seeded soft-x-ray lasers have the potential to generate high energy and highly coherent short pulse beams. Due to their high density, plasmas created by the interaction of an intense laser with a solid target should store the highest amount of energy density among all plasma amplifiers. Our previous numerical work with a two-dimensional (2D) adaptive mesh refinement hydrodynamic code demonstrated that careful tailoring of plasma shapes leads to a dramatic enhancement of both soft-x-ray laser output energy and pumping efficiency. Benchmarking of our 2D hydrodynamic code in previous experiments demonstrated a high level of confidence, allowing us to perform a full study with the aim of the way for 10-100 μJ seeded soft-x-ray lasers. In this paper, we describe in detail the mechanisms that drive the hydrodynamics of plasma columns. We observed transitions between narrow plasmas, where very strong bidimensional flow prevents them from storing energy, to large plasmas that store a high amount of energy. Millimeter-sized plasmas are outstanding amplifiers, but they have the limitation of transverse lasing. In this paper, we provide a preliminary solution to this problem.

  11. A GPL Relativistic Hydrodynamical Code

    NASA Astrophysics Data System (ADS)

    Olvera, D.; Mendoza, S.

    We are currently building a free (in the sense of a GNU GPL license) 2DRHD code in order to be used for different astrophysical situations. Our final target will be to include strong gravitational fields and magnetic fields. We intend to form a large group of developers as it is usually done for GPL codes.

  12. xRage Equation of State

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grove, John W.

    2016-08-16

    The xRage code supports a variety of hydrodynamic equation of state (EOS) models. In practice these are generally accessed in the executing code via a pressure-temperature based table look up. This document will describe the various models supported by these codes and provide details on the algorithms used to evaluate the equation of state.

  13. Coupling hydrodynamics with comoving frame radiative transfer. I. A unified approach for OB and WR stars

    NASA Astrophysics Data System (ADS)

    Sander, A. A. C.; Hamann, W.-R.; Todt, H.; Hainich, R.; Shenar, T.

    2017-07-01

    Context. For more than two decades, stellar atmosphere codes have been used to derive the stellar and wind parameters of massive stars. Although they have become a powerful tool and sufficiently reproduce the observed spectral appearance, they can hardly be used for more than measuring parameters. One major obstacle is their inconsistency between the calculated radiation field and the wind stratification due to the usage of prescribed mass-loss rates and wind-velocity fields. Aims: We present the concepts for a new generation of hydrodynamically consistent non-local thermodynamical equilibrium (non-LTE) stellar atmosphere models that allow for detailed studies of radiation-driven stellar winds. As a first demonstration, this new kind of model is applied to a massive O star. Methods: Based on earlier works, the PoWR code has been extended with the option to consistently solve the hydrodynamic equation together with the statistical equations and the radiative transfer in order to obtain a hydrodynamically consistent atmosphere stratification. In these models, the whole velocity field is iteratively updated together with an adjustment of the mass-loss rate. Results: The concepts for obtaining hydrodynamically consistent models using a comoving-frame radiative transfer are outlined. To provide a useful benchmark, we present a demonstration model, which was motivated to describe the well-studied O4 supergiant ζPup. The obtained stellar and wind parameters are within the current range of literature values. Conclusions: For the first time, the PoWR code has been used to obtain a hydrodynamically consistent model for a massive O star. This has been achieved by a profound revision of earlier concepts used for Wolf-Rayet stars. The velocity field is shaped by various elements contributing to the radiative acceleration, especially in the outer wind. The results further indicate that for more dense winds deviations from a standard β-law occur.

  14. Hydrodynamic evolution of plasma waveguides for soft-x-ray amplifiers

    NASA Astrophysics Data System (ADS)

    Oliva, Eduardo; Depresseux, Adrien; Cotelo, Manuel; Lifschitz, Agustín; Tissandier, Fabien; Gautier, Julien; Maynard, Gilles; Velarde, Pedro; Sebban, Stéphane

    2018-02-01

    High-density, collisionally pumped plasma-based soft-x-ray lasers have recently delivered hundreds of femtosecond pulses, breaking the longstanding barrier of one picosecond. To pump these amplifiers an intense infrared pulse must propagate focused throughout all the length of the amplifier, which spans several Rayleigh lengths. However, strong nonlinear effects hinder the propagation of the laser beam. The use of a plasma waveguide allows us to overcome these drawbacks provided the hydrodynamic processes that dominate the creation and posterior evolution of the waveguide are controlled and optimized. In this paper we present experimental measurements of the radial density profile and transmittance of such waveguide, and we compare them with numerical calculations using hydrodynamic and particle-in-cell codes. Controlling the properties (electron density value and radial gradient) of the waveguide with the help of numerical codes promises the delivery of ultrashort (tens of femtoseconds), coherent soft-x-ray pulses.

  15. Hydrodynamic models of a cepheid atmosphere. Ph.D. Thesis - Maryland Univ., College Park

    NASA Technical Reports Server (NTRS)

    Karp, A. H.

    1974-01-01

    A method for including the solution of the transfer equation in a standard Henyey type hydrodynamic code was developed. This modified Henyey method was used in an implicit hydrodynamic code to compute deep envelope models of a classical Cepheid with a period of 12(d) including radiative transfer effects in the optically thin zones. It was found that the velocity gradients in the atmosphere are not responsible for the large microturbulent velocities observed in Cepheids but may be responsible for the occurrence of supersonic microturbulence. It was found that the splitting of the cores of the strong lines is due to shock induced temperature inversions in the line forming region. The adopted light, color, and velocity curves were used to study three methods frequently used to determine the mean radii of Cepheids. It is concluded that an accuracy of 10% is possible only if high quality observations are used.

  16. Validation of Hydrodynamic Load Models Using CFD for the OC4-DeepCwind Semisubmersible: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benitz, M. A.; Schmidt, D. P.; Lackner, M. A.

    Computational fluid dynamics (CFD) simulations were carried out on the OC4-DeepCwind semi-submersible to obtain a better understanding of how to set hydrodynamic coefficients for the structure when using an engineering tool such as FAST to model the system. The focus here was on the drag behavior and the effects of the free-surface, free-ends and multi-member arrangement of the semi-submersible structure. These effects are investigated through code-to-code comparisons and flow visualizations. The implications on mean load predictions from engineering tools are addressed. The work presented here suggests that selection of drag coefficients should take into consideration a variety of geometric factors.more » Furthermore, CFD simulations demonstrate large time-varying loads due to vortex shedding, which FAST's hydrodynamic module, HydroDyn, does not model. The implications of these oscillatory loads on the fatigue life needs to be addressed.« less

  17. Detection of CO emission in Hydra 1 cluster galaxies

    NASA Technical Reports Server (NTRS)

    Huchtmeier, W. K.

    1990-01-01

    A survey of bright Hydra cluster spiral galaxies for the CO(1-0) transition at 115 GHz was performed with the 15m Swedish-ESO submillimeter telescope (SEST). Five out of 15 galaxies observed have been detected in the CO(1-0) line. The largest spiral galaxy in the cluster, NGC 3312, got more CO than any spiral of the Virgo cluster. This Sa-type galaxy is optically largely distorted and disrupted on one side. It is a good candidate for ram pressure stripping while passing through the cluster's central region. A comparison with global CO properties of Virgo cluster spirals shows a relatively good agreement with the detected Hydra cluster galaxies.

  18. Evaluation of Communication about Groups: The Hydra Phenomenon.

    ERIC Educational Resources Information Center

    Desmond, Roger Jon; Bezzini, John

    A study investigated how the attribution of a problem solution to an individual or group affects the consumer's perception of the solution's quality. Based on the tendency to support group decision-making (Hydra phenomenon) it was predicted that decisions attributed to groups would be perceived as higher in quality than those made by individuals,…

  19. Photometry of Faint Wide Doubles in Hydra

    NASA Astrophysics Data System (ADS)

    Knapp, Wilfried; Thuemen, Chris; Gould, Ross

    2015-11-01

    Images of several double stars in Hydra published on the "Double Star Imaging Project" Yahoo Group page suggest magnitude issues compared with the corresponding WDS catalog data per end of 2014. Taking additional images with V and B filters enabled photometry for these pairs, suggesting significant corrections to the old data in WDS.

  20. Slaying Hydra: A Python-Based Reduction Pipeline for the Hydra Multi-Object Spectrograph

    NASA Astrophysics Data System (ADS)

    Seifert, Richard; Mann, Andrew

    2018-01-01

    We present a Python-based data reduction pipeline for the Hydra Multi-Object Spectrograph on the WIYN 3.5 m telescope, an instrument which enables simultaneous spectroscopy of up to 93 targets. The reduction steps carried out include flat-fielding, dynamic fiber tracing, wavelength calibration, optimal fiber extraction, and sky subtraction. The pipeline also supports the use of sky lines to correct for zero-point offsets between fibers. To account for the moving parts on the instrument and telescope, fiber positions and wavelength solutions are derived in real-time for each dataset. The end result is a one-dimensional spectrum for each target fiber. Quick and fully automated, the pipeline enables on-the-fly reduction while observing, and has been known to outperform the IRAF pipeline by more accurately reproducing known RVs. While Hydra has many configurations in both high- and low-resolution, the pipeline was developed and tested with only one high-resolution mode. In the future we plan to expand the pipeline to work in most commonly used modes.

  1. Population-based structural variation discovery with Hydra-Multi.

    PubMed

    Lindberg, Michael R; Hall, Ira M; Quinlan, Aaron R

    2015-04-15

    Current strategies for SNP and INDEL discovery incorporate sequence alignments from multiple individuals to maximize sensitivity and specificity. It is widely accepted that this approach also improves structural variant (SV) detection. However, multisample SV analysis has been stymied by the fundamental difficulties of SV calling, e.g. library insert size variability, SV alignment signal integration and detecting long-range genomic rearrangements involving disjoint loci. Extant tools suffer from poor scalability, which limits the number of genomes that can be co-analyzed and complicates analysis workflows. We have developed an approach that enables multisample SV analysis in hundreds to thousands of human genomes using commodity hardware. Here, we describe Hydra-Multi and measure its accuracy, speed and scalability using publicly available datasets provided by The 1000 Genomes Project and by The Cancer Genome Atlas (TCGA). Hydra-Multi is written in C++ and is freely available at https://github.com/arq5x/Hydra. aaronquinlan@gmail.com or ihall@genome.wustl.edu Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press.

  2. Extreme Physics

    NASA Astrophysics Data System (ADS)

    Colvin, Jeff; Larsen, Jon

    2013-11-01

    Acknowledgements; 1. Extreme environments: what, where, how; 2. Properties of dense and classical plasmas; 3. Laser energy absorption in matter; 4. Hydrodynamic motion; 5. Shocks; 6. Equation of state; 7. Ionization; 8. Thermal energy transport; 9. Radiation energy transport; 10. Magnetohydrodynamics; 11. Considerations for constructing radiation-hydrodynamics computer codes; 12. Numerical simulations; Appendix: units and constants, glossary of symbols; References; Bibliography; Index.

  3. Symmetry Tuning with Cone Powers for Defect Induced Mix Experiment Implosions

    NASA Astrophysics Data System (ADS)

    Krasheninnikova, N.; Schmitt, M.; Murphy, T.; Cobble, J.; Tregillis, I.; Kyrala, G.; Bradley, P.; Hakel, P.; Hsu, S.; Kanzleiter, R.; Obrey, K.; Baumgaertel, J.; Batha, S.; DIME Team

    2013-10-01

    Recent DIME campaigns have demonstrated the effectiveness of cone power tuning to control the implosion symmetry in PDD configuration. DIME aims to assess the effects of mix on thermonuclear burn during a thin-shell capsule implosion. Plastic shell capsules doped with mid-Z material and filled with 5 atm of DD, are ablatively driven in a PDD laser configuration to a CR of ~7. Time-gated, spectrally and spatially resolved, dopant emission images characterize mix and temperature morphology during the implosion, while neutron diagnostics concurrently give the information about burn. Symmetry should be maintained throughout the implosions to achieve high neutron yield and optimum spectroscopic signal. 2D and 3D computer simulations using code HYDRA were performed to validate and optimize implosion symmetry using cone power tuning. In particular, Omega campaign confirmed P2 tunability with cone powers while experiments on NIF demonstrated that by reducing the energy in polar cones P2 was reduced to <1%. However, during NIF campaigns, self-emission images revealed a complex internal structure around the equator, which was not seen in HYDRA simulations and could be attributed to LPI effects. Subsequent DIME campaigns on NIF were able to eliminate this equatorial feature by reducing the laser drive substantiating the LPI hypothesis. Work performed by LANL under contract DE-AC52-06NA25396 for the National Nuclear Security Administration of the USDoE.

  4. A new species of hydra (Cnidaria: Hydrozoa: Hydridae) and molecular phylogenetic analysis of six congeners from China.

    PubMed

    Wang, An-Tai; Deng, Li; Liu, Hong-Tao

    2012-12-01

    A new species of genus Hydra (Cnidaria: Hydrozoa: Hydridae), Hydra shenzhensis sp. nov. from Guangdong Province, China, is described and illustrated. Most polyps have five tentacles. Column length reaches 11 mm when relaxed. Buds do not acquire tentacles synchronously. Stenotele is broad and pyriform in shape, 1.2 times as long as its width. Holotrichous isorhiza is asymmetrical and slender (more than 2.7 times as long as its width), with transverse and slanting coils. Atrichous isorhiza is long, resembling a melon-seed in shape. Desmoneme is asymmetrically pyriform in shape. The new species, belonging to the vulgaris group, is dioecious; sexual reproduction was found to occur mostly during November and December under conditions of dense culture or food shortage. Two to thirteen testes, cone-like shape with papilla, formed beneath the tentacles. One to three ovaries, with an egg cup, milky white in color, formed on body column. Ninety percent of individuals developed only one ovum. On a mother polyp, a fertilized ovum developed an embryonic theca covering its surface. The embryotheca is brown, with a spine-like structure, covering a layer of transparent, membrane-like material. For phylogenetic analysis, the mitochondrial cytochrome oxidase subunit I gene (COI) of six hydra species collected from China was amplified by polymerase chain reaction (PCR) and sequenced. Morphological characters in combination with molecular evidence support the hydra described here as a new species.

  5. A Comprehensive Transcriptomic and Proteomic Analysis of Hydra Head Regeneration.

    PubMed

    Petersen, Hendrik O; Höger, Stefanie K; Looso, Mario; Lengfeld, Tobias; Kuhn, Anne; Warnken, Uwe; Nishimiya-Fujisawa, Chiemi; Schnölzer, Martina; Krüger, Marcus; Özbek, Suat; Simakov, Oleg; Holstein, Thomas W

    2015-08-01

    The cnidarian freshwater polyp Hydra sp. exhibits an unparalleled regeneration capacity in the animal kingdom. Using an integrative transcriptomic and stable isotope labeling by amino acids in cell culture proteomic/phosphoproteomic approach, we studied stem cell-based regeneration in Hydra polyps. As major contributors to head regeneration, we identified diverse signaling pathways adopted for the regeneration response as well as enriched novel genes. Our global analysis reveals two distinct molecular cascades: an early injury response and a subsequent, signaling driven patterning of the regenerating tissue. A key factor of the initial injury response is a general stabilization of proteins and a net upregulation of transcripts, which is followed by a subsequent activation cascade of signaling molecules including Wnts and transforming growth factor (TGF) beta-related factors. We observed moderate overlap between the factors contributing to proteomic and transcriptomic responses suggesting a decoupled regulation between the transcriptional and translational levels. Our data also indicate that interstitial stem cells and their derivatives (e.g., neurons) have no major role in Hydra head regeneration. Remarkably, we found an enrichment of evolutionarily more recent genes in the early regeneration response, whereas conserved genes are more enriched in the late phase. In addition, genes specific to the early injury response were enriched in transposon insertions. Genetic dynamicity and taxon-specific factors might therefore play a hitherto underestimated role in Hydra regeneration. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  6. Gas stripping and mixing in galaxy clusters: a numerical comparison study

    NASA Astrophysics Data System (ADS)

    Heß, Steffen; Springel, Volker

    2012-11-01

    The ambient hot intrahalo gas in clusters of galaxies is constantly fed and stirred by infalling galaxies, a process that can be studied in detail with cosmological hydrodynamical simulations. However, different numerical methods yield discrepant predictions for crucial hydrodynamical processes, leading for example to different entropy profiles in clusters of galaxies. In particular, the widely used Lagrangian smoothed particle hydrodynamics (SPH) scheme is suspected to strongly damp fluid instabilities and turbulence, which are both crucial to establish the thermodynamic structure of clusters. In this study, we test to which extent our recently developed Voronoi particle hydrodynamics (VPH) scheme yields different results for the stripping of gas out of infalling galaxies and for the bulk gas properties of cluster. We consider both the evolution of isolated galaxy models that are exposed to a stream of intracluster medium or are dropped into cluster models, as well as non-radiative cosmological simulations of cluster formation. We also compare our particle-based method with results obtained with a fundamentally different discretization approach as implemented in the moving-mesh code AREPO. We find that VPH leads to noticeably faster stripping of gas out of galaxies than SPH, in better agreement with the mesh-code than with SPH. We show that despite the fact that VPH in its present form is not as accurate as the moving mesh code in our investigated cases, its improved accuracy of gradient estimates makes VPH an attractive alternative to SPH.

  7. A comparison of cosmological hydrodynamic codes

    NASA Technical Reports Server (NTRS)

    Kang, Hyesung; Ostriker, Jeremiah P.; Cen, Renyue; Ryu, Dongsu; Hernquist, Lars; Evrard, August E.; Bryan, Greg L.; Norman, Michael L.

    1994-01-01

    We present a detailed comparison of the simulation results of various hydrodynamic codes. Starting with identical initial conditions based on the cold dark matter scenario for the growth of structure, with parameters h = 0.5 Omega = Omega(sub b) = 1, and sigma(sub 8) = 1, we integrate from redshift z = 20 to z = O to determine the physical state within a representative volume of size L(exp 3) where L = 64 h(exp -1) Mpc. Five indenpendent codes are compared: three of them Eulerian mesh-based and two variants of the smooth particle hydrodynamics 'SPH' Lagrangian approach. The Eulerian codes were run at N(exp 3) = (32(exp 3), 64(exp 3), 128(exp 3), and 256(exp 3)) cells, the SPH codes at N(exp 3) = 32(exp 3) and 64(exp 3) particles. Results were then rebinned to a 16(exp 3) grid with the exception that the rebinned data should converge, by all techniques, to a common and correct result as N approaches infinity. We find that global averages of various physical quantities do, as expected, tend to converge in the rebinned model, but that uncertainites in even primitive quantities such as (T), (rho(exp 2))(exp 1/2) persists at the 3%-17% level achieve comparable and satisfactory accuracy for comparable computer time in their treatment of the high-density, high-temeprature regions as measured in the rebinned data; the variance among the five codes (at highest resolution) for the mean temperature (as weighted by rho(exp 2) is only 4.5%. Examined at high resolution we suspect that the density resolution is better in the SPH codes and the thermal accuracy in low-density regions better in the Eulerian codes. In the low-density, low-temperature regions the SPH codes have poor accuracy due to statiscal effects, and the Jameson code gives the temperatures which are too high, due to overuse of artificial viscosity in these high Mach number regions. Overall the comparison allows us to better estimate errors; it points to ways of improving this current generation ofhydrodynamic codes and of suiting their use to problems which exploit their best individual features.

  8. RICH: OPEN-SOURCE HYDRODYNAMIC SIMULATION ON A MOVING VORONOI MESH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yalinewich, Almog; Steinberg, Elad; Sari, Re’em

    2015-02-01

    We present here RICH, a state-of-the-art two-dimensional hydrodynamic code based on Godunov’s method, on an unstructured moving mesh (the acronym stands for Racah Institute Computational Hydrodynamics). This code is largely based on the code AREPO. It differs from AREPO in the interpolation and time-advancement schemeS as well as a novel parallelization scheme based on Voronoi tessellation. Using our code, we study the pros and cons of a moving mesh (in comparison to a static mesh). We also compare its accuracy to other codes. Specifically, we show that our implementation of external sources and time-advancement scheme is more accurate and robustmore » than is AREPO when the mesh is allowed to move. We performed a parameter study of the cell rounding mechanism (Lloyd iterations) and its effects. We find that in most cases a moving mesh gives better results than a static mesh, but it is not universally true. In the case where matter moves in one way and a sound wave is traveling in the other way (such that relative to the grid the wave is not moving) a static mesh gives better results than a moving mesh. We perform an analytic analysis for finite difference schemes that reveals that a Lagrangian simulation is better than a Eulerian simulation in the case of a highly supersonic flow. Moreover, we show that Voronoi-based moving mesh schemes suffer from an error, which is resolution independent, due to inconsistencies between the flux calculation and the change in the area of a cell. Our code is publicly available as open source and designed in an object-oriented, user-friendly way that facilitates incorporation of new algorithms and physical processes.« less

  9. EFDC1D - A ONE DIMENSIONAL HYDRODYNAMIC AND SEDIMENT TRANSPORT MODEL FOR RIVER AND STREAM NETWORKS: MODEL THEORY AND USERS GUIDE

    EPA Science Inventory

    This technical report describes the new one-dimensional (1D) hydrodynamic and sediment transport model EFDC1D. This model that can be applied to stream networks. The model code and two sample data sets are included on the distribution CD. EFDC1D can simulate bi-directional unstea...

  10. An Exact Integration Scheme for Radiative Cooling in Hydrodynamical Simulations

    NASA Astrophysics Data System (ADS)

    Townsend, R. H. D.

    2009-04-01

    A new scheme for incorporating radiative cooling in hydrodynamical codes is presented, centered around exact integration of the governing semidiscrete cooling equation. Using benchmark calculations based on the cooling downstream of a radiative shock, I demonstrate that the new scheme outperforms traditional explicit and implicit approaches in terms of accuracy, while remaining competitive in terms of execution speed.

  11. Improved EOS for describing high-temperature off-hugoniot states in epoxy

    NASA Astrophysics Data System (ADS)

    Mulford, R. N.; Lanier, N. E.; Swift, D.; Workman, J.; Graham, Peter; Moore, Alastair

    2007-06-01

    Modeling of off-hugoniot states in an expanding interface subjected to a shock reveals the importance of a chemically complete description of the materials. Hydrodynamic experiments typically rely on pre-shot target characterization to predict how initial perturbations will affect the late-time hydrodynamic mixing. However, it is the condition of these perturbations at the time of shock arrival that dominates their eventual late-time evolution. In some cases these perturbations are heated prior to the arrival of the main shock. Correctly modeling how temperature and density gradients will develop in the pre-heated material requires an understanding of the equation-of-state. In the experiment modelled, an epoxy/foam layered package was subjected to tin L-shell radiation, producing an expanding assembly at a well-defined temperature. This assembly was then subjected to a controlled shock, and the evolution of the epoxy-foam interface imaged with x-ray radiography. Modeling of the data with the hydrodynamics code RAGE is unsuccessful under certain shock conditions, unless condensation of chemical species from the plasma is explicitly included. The EOS code CHEETAH was used to prepare suitable EOS for input into the hydrodynamics modeling.

  12. Improved EOS for Describing High-Temperature Off-Hugoniot States in Epoxy

    NASA Astrophysics Data System (ADS)

    Mulford, R. N.; Swift, D. C.; Lanier, N. E.; Workman, J.; Holmes, R. L.; Graham, P.; Moore, A.

    2007-12-01

    Modelling of off-Hugoniot states in an expanding interface subjected to a shock reveals the importance of a chemically complete description of the materials. Hydrodynamic experiments typically rely on pre-shot target characterization to predict how initial perturbations will affect the late-time hydrodynamic mixing. However, it is the condition of these perturbations at the time of shock arrival that dominates their eventual late-time evolution. In some cases these perturbations are heated prior to the arrival of the main shock. Correctly modelling how temperature and density gradients will develop in the pre-heated material requires an understanding of the equation-of-state. In the experiment modelled, an epoxy/foam layered package was subjected to tin L-shell radiation, producing an expanding assembly at a well-defined temperature. This assembly was then subjected to a controlled shock, and the evolution of the epoxy-foam interface imaged with x-ray radiography. Modelling of the data with the hydrodynamics code RAGE was unsuccessful under certain shock conditions, unless condensation of chemical species from the plasma is explicitly included. The EOS code Cheetah was used to prepare suitable EOS for input into the hydrodynamics modelling.

  13. Environmental Fluid Dynamics Code

    EPA Science Inventory

    The Environmental Fluid Dynamics Code (EFDC)is a state-of-the-art hydrodynamic model that can be used to simulate aquatic systems in one, two, and three dimensions. It has evolved over the past two decades to become one of the most widely used and technically defensible hydrodyn...

  14. The escape of high explosive products: An exact-solution problem for verification of hydrodynamics codes

    DOE PAGES

    Doebling, Scott William

    2016-10-22

    This paper documents the escape of high explosive (HE) products problem. The problem, first presented by Fickett & Rivard, tests the implementation and numerical behavior of a high explosive detonation and energy release model and its interaction with an associated compressible hydrodynamics simulation code. The problem simulates the detonation of a finite-length, one-dimensional piece of HE that is driven by a piston from one end and adjacent to a void at the other end. The HE equation of state is modeled as a polytropic ideal gas. The HE detonation is assumed to be instantaneous with an infinitesimal reaction zone. Viamore » judicious selection of the material specific heat ratio, the problem has an exact solution with linear characteristics, enabling a straightforward calculation of the physical variables as a function of time and space. Lastly, implementation of the exact solution in the Python code ExactPack is discussed, as are verification cases for the exact solution code.« less

  15. Quality of water types in Ukraine evaluated by WaterTox bioassays.

    PubMed

    Arkhipchuk, V V; Malinovskaya, M V

    2002-01-01

    The quality of river, ground-, and tap water was analyzed using the basic set of WaterTox bioassays [Daphnia (Daphnia magna), Hydra (Hydra attenuata), and lettuce (Lactuca sativa)] as well as two additional bioassays, onion (Allium cepa) and microalga (Selenastrum gracile). Samples of these waters were also concentrated fivefold using a solid-phase procedure. The results of the Daphnia and Hydra bioassays showed that the winter and spring concentrated and nonconcentrated samples from the Dnieper and Desna rivers, the main water supply sources for Kiev, were nontoxic. In spring, after concentration, the two river samples brought about the same relative decrease in the lettuce root length (by 35%, p < 0.001), where the Desna River sample considerably reduced (by 79.1%, p < 0.001) the number of microalga cells. Samples of groundwater from countryside wells studied in autumn in several villages of the Kiev region were toxic mainly to Hydra (sublethal effects were found in 11%-78%) and lettuce (the root length decreased 15%-56%). Studies of tap water samples from two of the largest cities of Ukraine, Kiev and Kharkiv, were found to be nontoxic to both plants, lettuce and onion, but showed increased sublethal and lethal effects on both animals, Daphnia and Hydra, as well as a reduced number of microalgae. Different bioassays were sensitive to varying degrees to different water types. This reinforces the necessity of using sets of bioassays in toxicity evaluation. In general, all the tested water samples demonstrated some toxicity. These data suggest that drinking water quality in Ukraine needs improvement. Copyright 2002 Wiley Periodicals, Inc.

  16. Variable Stars in the Field of the Hydra II Ultra-faint Dwarf Galaxy

    NASA Astrophysics Data System (ADS)

    Vivas, A. Katherina; Olsen, Knut; Blum, Robert; Nidever, David L.; Walker, Alistair R.; Martin, Nicolas F.; Besla, Gurtina; Gallart, Carme; van der Marel, Roeland P.; Majewski, Steven R.; Kaleida, Catherine C.; Muñoz, Ricardo R.; Saha, Abhijit; Conn, Blair C.; Jin, Shoko

    2016-05-01

    We report the discovery of one RR Lyrae star in the ultra-faint satellite galaxy Hydra II based on time series photometry in the g, r and I bands obtained with the Dark Energy Camera at Cerro Tololo Inter-American Observatory, Chile. The association of the RR Lyrae star discovered here with Hydra II is clear because is located at 42\\prime\\prime from the center of the dwarf, well within its half-light radius of 102\\prime\\prime . The RR Lyrae star has a mean magnitude of I=21.30+/- 0.04 which is too faint to be a field halo star. This magnitude translates to a heliocentric distance of 151 ± 8 kpc for Hydra II; this value is ˜ 13% larger than the estimate from the discovery paper based on the average magnitude of several blue horizontal branch star candidates. The new distance implies a slightly larger half-light radius of {76}-10+12 pc and a brighter absolute magnitude of {M}V=-5.1+/- 0.3, which keeps this object within the realm of the dwarf galaxies. A comparison with other RR Lyrae stars in ultra-faint systems indicates similar pulsational properties among them, which are different to those found among halo field stars and those in the largest of the Milky Way satellites. We also report the discovery of 31 additional short period variables in the field of view (RR Lyrae, SX Phe, eclipsing binaries, and a likely anomalous cepheid) which are likely not related with Hydra II.

  17. Notch-signalling is required for head regeneration and tentacle patterning in Hydra.

    PubMed

    Münder, Sandra; Tischer, Susanne; Grundhuber, Maresa; Büchels, Nathalie; Bruckmeier, Nadine; Eckert, Stefanie; Seefeldt, Carolin A; Prexl, Andrea; Käsbauer, Tina; Böttger, Angelika

    2013-11-01

    Local self-activation and long ranging inhibition provide a mechanism for setting up organising regions as signalling centres for the development of structures in the surrounding tissue. The adult hydra hypostome functions as head organiser. After hydra head removal it is newly formed and complete heads can be regenerated. The molecular components of this organising region involve Wnt-signalling and β-catenin. However, it is not known how correct patterning of hypostome and tentacles are achieved in the hydra head and whether other signals in addition to HyWnt3 are needed for re-establishing the new organiser after head removal. Here we show that Notch-signalling is required for re-establishing the organiser during regeneration and that this is due to its role in restricting tentacle activation. Blocking Notch-signalling leads to the formation of irregular head structures characterised by excess tentacle tissue and aberrant expression of genes that mark the tentacle boundaries. This indicates a role for Notch-signalling in defining the tentacle pattern in the hydra head. Moreover, lateral inhibition by HvNotch and its target HyHes are required for head regeneration and without this the formation of the β-catenin/Wnt dependent head organiser is impaired. Work on prebilaterian model organisms has shown that the Wnt-pathway is important for setting up signalling centres for axial patterning in early multicellular animals. Our data suggest that the integration of Wnt-signalling with Notch-Delta activity was also involved in the evolution of defined body plans in animals. © 2013 Elsevier Inc. All rights reserved.

  18. Analysis of Hydra PIWI proteins and piRNAs uncover early evolutionary origins of the piRNA pathway.

    PubMed

    Lim, Robyn S M; Anand, Amit; Nishimiya-Fujisawa, Chiemi; Kobayashi, Satoru; Kai, Toshie

    2014-02-01

    To preserve genome integrity, an evolutionarily conserved small RNA-based silencing mechanism involving PIWI proteins and PIWI-interacting RNAs (piRNAs) represses potentially deleterious transposons in animals. Although there has been extensive research into PIWI proteins in bilaterians, these proteins remain to be examined in ancient phyla. Here, we investigated the PIWI proteins Hywi and Hyli in the cnidarian Hydra, and found that both PIWI proteins are enriched in multipotent stem cells, germline stem cells, and in the female germline. Hywi and Hyli localize to the nuage, a perinuclear organelle that has been implicated in piRNA-mediated transposon silencing, together with other conserved nuage and piRNA pathway components. Our findings provide the first report of nuage protein localization patterns in a non-bilaterian. Hydra PIWI proteins possess symmetrical dimethylarginines: modified residues that are known to aid in PIWI protein localization to the nuage and proper piRNA loading. piRNA profiling suggests that transposons are the major targets of the piRNA pathway in Hydra. Our data suggest that piRNA biogenesis through the ping-pong amplification cycle occurs in Hydra and that Hywi and Hyli are likely to preferentially bind primary and secondary piRNAs, respectively. Presumptive piRNA clusters are unidirectionally transcribed and primarily give rise to piRNAs that are antisense to transposons. These results indicate that various conserved features of PIWI proteins, the piRNA pathway, and their associations with the nuage were likely established before the evolution of bilaterians. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Carrying Capacity and Colonization Dynamics of Curvibacter in the Hydra Host Habitat

    PubMed Central

    Wein, Tanita; Dagan, Tal; Fraune, Sebastian; Bosch, Thomas C. G.; Reusch, Thorsten B. H.; Hülter, Nils F.

    2018-01-01

    Most eukaryotic species are colonized by a microbial community – the microbiota – that is acquired during early life stages and is critical to host development and health. Much research has focused on the microbiota biodiversity during the host life, however, empirical data on the basic ecological principles that govern microbiota assembly is lacking. Here we quantify the contribution of colonizer order, arrival time and colonization history to microbiota assembly on a host. We established the freshwater polyp Hydra vulgaris and its dominant colonizer Curvibacter as a model system that enables the visualization and quantification of colonizer population size at the single cell resolution, in vivo, in real time. We estimate the carrying capacity of a single Hydra polyp as 2 × 105 Curvibacter cells, which is robust among individuals and time. Colonization experiments reveal a clear priority effect of first colonizers that depends on arrival time and colonization history. First arriving colonizers achieve a numerical advantage over secondary colonizers within a short time lag of 24 h. Furthermore, colonizers primed for the Hydra habitat achieve a numerical advantage in the absence of a time lag. These results follow the theoretical expectations for any bacterial habitat with a finite carrying capacity. Thus, Hydra colonization and succession processes are largely determined by the habitat occupancy over time and Curvibacter colonization history. Our experiments provide empirical data on the basic steps of host-associated microbiota establishment – the colonization stage. The presented approach supplies a framework for studying habitat characteristics and colonization dynamics within the host–microbe setting. PMID:29593687

  20. Extraocular spectral photosensitivity in the tentacles of Hydra vulgaris.

    PubMed

    Guertin, S; Kass-Simon, G

    2015-06-01

    Previous electrophysiological studies on the cnidarian Hydra vulgaris have shown that hydra have a highly developed and specific photoresponse despite their lack of any structure recognizable as a traditional photoreceptor. In an effort to identify the site of hydra's photoreceptors, we recorded extracellularly from single excised tentacles and from ablated hypostomes lacking tentacles in absolute darkness and during exposure to light of various wavelengths. During recording, after an initial period of absolute darkness, tentacles or hypostomes were exposed to light from 450nm to 600nm, red, and white light. Exposure to light caused a change in the pattern and frequency of impulses in the tentacles that varied with color. The number of large tentacle pulses (TPs) increased at 550 and 600nm relative to darkness, whereas the number of small tentacle pulses (STPs) tended to decrease in 500nm light. Impulse frequency was significantly different among the different wavelengths. In addition to bursts of tentacle contraction pulses, long trains of pulses were observed. A change in lighting caused a switch from bursting to trains or vice versa. In contrast to excised tentacles, no change in electrical activity was seen in ablated hypostomes at any of the wavelengths relative to each other or relative to darkness. These results indicate that isolated tentacles can distinguish among and respond to various colors across the visible spectrum and suggest that electromagnetic information is transmitted from the tentacles to the hypostome where it may be integrated by the hypostomal nervous system, ultimately contributing to hydra's photoreceptive behavior. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Shaped Charge Jet Penetration of Discontinuous Media

    DTIC Science & Technology

    1977-07-01

    operational at the Ballistic1Research Laboratory. These codes are OIL, 1 TOIL, 2 DORF, 3 and HELP,4 ,5 which are Eulerian formulated, and HEMP ,6 which...ELastic Plastic ) is a FORTRAN code developed by Systems, Science and Software, Inc. It evolved from three major hydrodynamic codes previously developed...introduced into the treatment of moving surfaces. The HELP code, using the von Mises yield condition, treats materials as being elastic- plastic . The input for

  2. Hydra

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    (the Water-snake; abbrev. Hya, gen. Hydrae; area 1303 sq. deg.) A predominantly southern constellation which winds its way around almost one-third of the sky between Canis Minor and Libra. The center of the constellation culminates at midnight in mid-March, though part of it is on the meridian from late January to early May. It represents, in Greek mythology, either the multi-headed Lernaean Hydr...

  3. Hydra as a model organism to decipher the toxic effects of copper oxide nanorod: Eco-toxicogenomics approach.

    PubMed

    Murugadas, Anbazhagan; Zeeshan, Mohammed; Thamaraiselvi, Kaliannan; Ghaskadbi, Surendra; Akbarsha, Mohammad Abdulkader

    2016-07-15

    Nanotechnology has emerged as a powerful field of applied research. However, the potential toxicity of nano-materials is a cause of concern. A thorough toxicological investigation is required before a nanomaterial is evaluated for application of any kind. In this context, there is concerted effort to find appropriate test systems to assess the toxicity of nanomaterials. Toxicity of a nanomaterial greatly depends on its physicochemical properties and the biological system with which it interacts. The present research was carried out with a view to generate data on eco-toxicological impacts of copper oxide nanorod (CuO NR) in Hydra magnipapillata 105 at organismal, cellular and molecular levels. Exposure of hydra to CuO NR resulted in severe morphological alterations in a concentration- as well as duration-dependent manner. Impairment of feeding, population growth, and regeneration was also observed. In vivo and in vitro analyses revealed induction of oxidative stress, genotoxicity, and molecular machinery of apoptotic cell death, accompanied by disruption of cell cycle progression. Taken together, CuO nanorod is potentially toxic to the biological systems. Also, hydra offers potential to be used as a convenient model organism for aquatic ecotoxicological risk assessment of nanomaterials.

  4. The two nerve rings of the hypostomal nervous system of Hydra vulgaris-an immunohistochemical analysis.

    PubMed

    Hufnagel, L A; Kass-Simon, G

    2016-11-01

    In Hydra vulgaris, physiological and pharmacological evidence exists for a hypostomal circumferential neuro-effector pathway that initiates ectodermal pacemaker activity at tentacular-hypostomal loci coordinating body and tentacle contractions. Here, we describe an ectodermal nerve ring that runs below and between the tentacles, and an anti-GABA B receptor antibody-labeled ring coincident with it. The location of this ring is consistent with the physiology of the hypostomal pacemaker systems of hydra. We also describe a distally located, ectodermal ring of nerve fibers that is not associated with anti-GABA B receptor antibody labeling. The neurites and cell bodies of sensory cells contribute to both rings. The location of the distal ring and its sensory cell neurites suggests an involvement in the behavior of the mouth. Between the two rings is a network of anastomosing sensory and ganglion cell bodies and their neurites. Phase contrast, darkfield, and antibody-labeled images reveal that the mouth of hydra comprises five or six epithelial folds whose endoderm extensively labels with anti-GABA B receptor antibody, suggesting that endodermal metabotrobic GABA receptors are also involved in regulating mouth behavior.

  5. Hydra as a model organism to decipher the toxic effects of copper oxide nanorod: Eco-toxicogenomics approach

    PubMed Central

    Murugadas, Anbazhagan; Zeeshan, Mohammed; Thamaraiselvi, Kaliannan; Ghaskadbi, Surendra; Akbarsha, Mohammad Abdulkader

    2016-01-01

    Nanotechnology has emerged as a powerful field of applied research. However, the potential toxicity of nano-materials is a cause of concern. A thorough toxicological investigation is required before a nanomaterial is evaluated for application of any kind. In this context, there is concerted effort to find appropriate test systems to assess the toxicity of nanomaterials. Toxicity of a nanomaterial greatly depends on its physicochemical properties and the biological system with which it interacts. The present research was carried out with a view to generate data on eco-toxicological impacts of copper oxide nanorod (CuO NR) in Hydra magnipapillata 105 at organismal, cellular and molecular levels. Exposure of hydra to CuO NR resulted in severe morphological alterations in a concentration- as well as duration-dependent manner. Impairment of feeding, population growth, and regeneration was also observed. In vivo and in vitro analyses revealed induction of oxidative stress, genotoxicity, and molecular machinery of apoptotic cell death, accompanied by disruption of cell cycle progression. Taken together, CuO nanorod is potentially toxic to the biological systems. Also, hydra offers potential to be used as a convenient model organism for aquatic ecotoxicological risk assessment of nanomaterials. PMID:27417574

  6. Organizer formation in Hydra is disrupted by thalidomide treatment.

    PubMed

    Brooun, Maria; Manoukian, Armen; Shimizu, Hiroshi; Bode, Hans R; McNeill, Helen

    2013-06-01

    Thalidomide is a drug that is well known for its teratogenic properties in humans. Surprisingly, thalidomide does not have teratogenic effects on mouse development. We investigated the effect of thalidomide on patterning in hydra, an early metazoan with a very simple axial symmetry. Hydra develops asexually via Wnt-dependent organizer formation, leading to the budding of a new organism. We observe both induction and inhibition of organizer formation depending on cellular context. Interestingly, thalidomide treatment altered budding and the developing organizer, but had little effect on the adult. Expression of Hybra1, a marker of the organizer increased upon thalidomide treatment. However when the organizer is induced by ectopic activation of Wnt signaling via GSK3 inhibition, thalidomide suppresses induction. We show that inhibition of Wnt signaling is not mediated by induction of the BMP pathway. We show that thalidomide activity on organizer formation in hydra depends on the activity of casein kinase1 and the abundance of β-catenin. Finally, we find that interstitial cells, multipotent cells which give rise to nemoatocytes, neural, digestive and germline cells, are partially responsible for the inhibitory effect of thalidomide. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Code Verification Results of an LLNL ASC Code on Some Tri-Lab Verification Test Suite Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, S R; Bihari, B L; Salari, K

    As scientific codes become more complex and involve larger numbers of developers and algorithms, chances for algorithmic implementation mistakes increase. In this environment, code verification becomes essential to building confidence in the code implementation. This paper will present first results of a new code verification effort within LLNL's B Division. In particular, we will show results of code verification of the LLNL ASC ARES code on the test problems: Su Olson non-equilibrium radiation diffusion, Sod shock tube, Sedov point blast modeled with shock hydrodynamics, and Noh implosion.

  8. Measuring implosion velocities in experiments and simulations of laser-driven cylindrical implosions on the OMEGA laser

    NASA Astrophysics Data System (ADS)

    Hansen, E. C.; Barnak, D. H.; Betti, R.; Campbell, E. M.; Chang, P.-Y.; Davies, J. R.; Glebov, V. Yu; Knauer, J. P.; Peebles, J.; Regan, S. P.; Sefkow, A. B.

    2018-05-01

    Laser-driven magnetized liner inertial fusion (MagLIF) on OMEGA involves cylindrical implosions, a preheat beam, and an applied magnetic field. Initial experiments excluded the preheat beam and magnetic field to better characterize the implosion. X-ray self-emission as measured by framing cameras was used to determine the shell trajectory. The 1D code LILAC was used to model the central region of the implosion, and results were compared to 2D simulations from the HYDRA code. Post-processing of simulation output with SPECT3D and Yorick produced synthetic x-ray images that were used to compare the simulation results with the x-ray framing camera data. Quantitative analysis shows that higher measured neutron yields correlate with higher implosion velocities. The future goal is to further analyze the x-ray images to characterize the uniformity of the implosions and apply these analysis techniques to integrated laser-driven MagLIF shots to better understand the effects of preheat and the magnetic field.

  9. Modeling of intense pulsed ion beam heated masked targets for extreme materials characterization

    DOE PAGES

    Barnard, John J.; Schenkel, Thomas

    2017-11-15

    Intense, pulsed ion beams locally heat materials and deliver dense electronic excitations that can induce material modifications and phase transitions. Material properties can potentially be stabilized by rapid quenching. Pulsed ion beams with pulse lengths of order ns have recently become available for materials processing. Here, we optimize mask geometries for local modification of materials by intense ion pulses. The goal is to rapidly excite targets volumetrically to the point where a phase transition or local lattice reconstruction is induced followed by rapid cooling that stabilizes desired material's properties fast enough before the target is altered or damaged by, e.g.,more » hydrodynamic expansion. By using a mask, the longitudinal dimension can be large compared to the transverse dimension, allowing the possibility of rapid transverse cooling. We performed HYDRA simulations that calculate peak temperatures for a series of excitation conditions and cooling rates of silicon targets with micro-structured masks and compare these to a simple analytical model. In conclusion, the model gives scaling laws that can guide the design of targets over a wide range of pulsed ion beam parameters.« less

  10. Modeling of intense pulsed ion beam heated masked targets for extreme materials characterization

    NASA Astrophysics Data System (ADS)

    Barnard, John J.; Schenkel, Thomas

    2017-11-01

    Intense, pulsed ion beams locally heat materials and deliver dense electronic excitations that can induce material modifications and phase transitions. Material properties can potentially be stabilized by rapid quenching. Pulsed ion beams with pulse lengths of order ns have recently become available for materials processing. Here, we optimize mask geometries for local modification of materials by intense ion pulses. The goal is to rapidly excite targets volumetrically to the point where a phase transition or local lattice reconstruction is induced followed by rapid cooling that stabilizes desired material's properties fast enough before the target is altered or damaged by, e.g., hydrodynamic expansion. By using a mask, the longitudinal dimension can be large compared to the transverse dimension, allowing the possibility of rapid transverse cooling. We performed HYDRA simulations that calculate peak temperatures for a series of excitation conditions and cooling rates of silicon targets with micro-structured masks and compare these to a simple analytical model. The model gives scaling laws that can guide the design of targets over a wide range of pulsed ion beam parameters.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnard, John J.; Schenkel, Thomas

    Intense, pulsed ion beams locally heat materials and deliver dense electronic excitations that can induce material modifications and phase transitions. Material properties can potentially be stabilized by rapid quenching. Pulsed ion beams with pulse lengths of order ns have recently become available for materials processing. Here, we optimize mask geometries for local modification of materials by intense ion pulses. The goal is to rapidly excite targets volumetrically to the point where a phase transition or local lattice reconstruction is induced followed by rapid cooling that stabilizes desired material's properties fast enough before the target is altered or damaged by, e.g.,more » hydrodynamic expansion. By using a mask, the longitudinal dimension can be large compared to the transverse dimension, allowing the possibility of rapid transverse cooling. We performed HYDRA simulations that calculate peak temperatures for a series of excitation conditions and cooling rates of silicon targets with micro-structured masks and compare these to a simple analytical model. In conclusion, the model gives scaling laws that can guide the design of targets over a wide range of pulsed ion beam parameters.« less

  12. Hydrozoan insights in animal development and evolution.

    PubMed

    Leclère, Lucas; Copley, Richard R; Momose, Tsuyoshi; Houliston, Evelyn

    2016-08-01

    The fresh water polyp Hydra provides textbook experimental demonstration of positional information gradients and regeneration processes. Developmental biologists are thus familiar with Hydra, but may not appreciate that it is a relatively simple member of the Hydrozoa, a group of mostly marine cnidarians with complex and diverse life cycles, exhibiting extensive phenotypic plasticity and regenerative capabilities. Hydrozoan species offer extensive opportunities to address many developmental mechanisms relevant across the animal kingdom. Here we review recent work from non-Hydra hydrozoans - hydromedusae, hydroids and siphonophores - shedding light on mechanisms of oogenesis, embryonic patterning, allorecognition, stem cell regulation and regeneration. We also highlight potential research directions in which hydrozoan diversity can illuminate the evolution of developmental processes at micro- and macro-evolutionary time scales. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. The Small Satellites of Pluto as Observed by New Horizons

    NASA Technical Reports Server (NTRS)

    Weaver, H. A.; Buie, M. W; Buratti, B. J.; Grundy, W. M.; Lauer, T. R.; Olkin, C. B.; Parker, A .H.; Porter, S. B.; Showalter, M. R.; Spencer, J. R.; hide

    2016-01-01

    The New Horizons mission has provided resolved measurements of Pluto's moons Styx, Nix, Kerberos, and Hydra. All four are small, with equivalent spherical diameters of approx.40 kilometers for Nix and Hydra and approx. 10 kilometers for Styx and Kerberos. They are also highly elongated, with maximum to minimum axis ratios of approx. 2. All four moons have high albedos (approx.50 to 90%) suggestive of a water-ice surface composition. Crater densities on Nix and Hydra imply surface ages of at least 4 billion years. The small moons rotate much faster than synchronous, with rotational poles clustered nearly orthogonal to the common pole directions of Pluto and Charon. These results reinforce the hypothesis that the small moons formed in the aftermath of a collision that produced the Pluto-Charon binary.

  14. A genomic view of 500 million years of cnidarian evolution

    PubMed Central

    Steele, Robert E.; David, Charles N.; Technau, Ulrich

    2010-01-01

    Cnidarians (corals, anemones, jellyfish, and hydras) are a diverse group of animals of interest to evolutionary biologists, ecologists, and developmental biologists. With the publication of the genome sequences of Hydra and Nematostella, whose last common ancestor was the stem cnidarian, we are beginning to see the genomic underpinnings of cnidarian biology. Cnidarians are known for the remarkable plasticity of their morphology and life cycles. This plasticity is reflected in the Hydra and Nematostella genomes, which differ to an exceptional degree in size, base composition, transposable element content, and gene conservation. We now know what cnidarian genomes are capable of doing given 500 million years; the next challenge is to understand how this genomic history has led to the striking diversity we see in cnidarians. PMID:21047698

  15. DIAPHANE: A portable radiation transport library for astrophysical applications

    NASA Astrophysics Data System (ADS)

    Reed, Darren S.; Dykes, Tim; Cabezón, Rubén; Gheller, Claudio; Mayer, Lucio

    2018-05-01

    One of the most computationally demanding aspects of the hydrodynamical modelingof Astrophysical phenomena is the transport of energy by radiation or relativistic particles. Physical processes involving energy transport are ubiquitous and of capital importance in many scenarios ranging from planet formation to cosmic structure evolution, including explosive events like core collapse supernova or gamma-ray bursts. Moreover, the ability to model and hence understand these processes has often been limited by the approximations and incompleteness in the treatment of radiation and relativistic particles. The DIAPHANE project has focused on developing a portable and scalable library that handles the transport of radiation and particles (in particular neutrinos) independently of the underlying hydrodynamic code. In this work, we present the computational framework and the functionalities of the first version of the DIAPHANE library, which has been successfully ported to three different smoothed-particle hydrodynamic codes, GADGET2, GASOLINE and SPHYNX. We also present validation of different modules solving the equations of radiation and neutrino transport using different numerical schemes.

  16. Relativistic low angular momentum accretion: long time evolution of hydrodynamical inviscid flows

    NASA Astrophysics Data System (ADS)

    Mach, Patryk; Piróg, Michał; Font, José A.

    2018-05-01

    We investigate relativistic low angular momentum accretion of inviscid perfect fluid onto a Schwarzschild black hole. The simulations are performed with a general-relativistic, high-resolution (second-order), shock-capturing, hydrodynamical numerical code. We use horizon-penetrating Eddington–Finkelstein coordinates to remove inaccuracies in regions of strong gravity near the black hole horizon and show the expected convergence of the code with the Michel solution and stationary Fishbone–Moncrief toroids. We recover, in the framework of relativistic hydrodynamics, the qualitative behavior known from previous Newtonian studies that used a Bondi background flow in a pseudo-relativistic gravitational potential with a latitude-dependent angular momentum at the outer boundary. Our models exhibit characteristic ‘turbulent’ behavior and the attained accretion rates are lower than those of the Bondi–Michel radial flow. For sufficiently low values of the asymptotic sound speed, geometrically thick tori form in the equatorial plane surrounding the black hole horizon while accretion takes place mainly through the poles.

  17. A Study of Fan Stage/Casing Interaction Models

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles; Carney, Kelly; Gallardo, Vicente

    2003-01-01

    The purpose of the present study is to investigate the performance of several existing and new, blade-case interactions modeling capabilities that are compatible with the large system simulations used to capture structural response during blade-out events. Three contact models are examined for simulating the interactions between a rotor bladed disk and a case: a radial and linear gap element and a new element based on a hydrodynamic formulation. The first two models are currently available in commercial finite element codes such as NASTRAN and have been showed to perform adequately for simulating rotor-case interactions. The hydrodynamic model, although not readily available in commercial codes, may prove to be better able to characterize rotor-case interactions.

  18. CHOLLA: A New Massively Parallel Hydrodynamics Code for Astrophysical Simulation

    NASA Astrophysics Data System (ADS)

    Schneider, Evan E.; Robertson, Brant E.

    2015-04-01

    We present Computational Hydrodynamics On ParaLLel Architectures (Cholla ), a new three-dimensional hydrodynamics code that harnesses the power of graphics processing units (GPUs) to accelerate astrophysical simulations. Cholla models the Euler equations on a static mesh using state-of-the-art techniques, including the unsplit Corner Transport Upwind algorithm, a variety of exact and approximate Riemann solvers, and multiple spatial reconstruction techniques including the piecewise parabolic method (PPM). Using GPUs, Cholla evolves the fluid properties of thousands of cells simultaneously and can update over 10 million cells per GPU-second while using an exact Riemann solver and PPM reconstruction. Owing to the massively parallel architecture of GPUs and the design of the Cholla code, astrophysical simulations with physically interesting grid resolutions (≳2563) can easily be computed on a single device. We use the Message Passing Interface library to extend calculations onto multiple devices and demonstrate nearly ideal scaling beyond 64 GPUs. A suite of test problems highlights the physical accuracy of our modeling and provides a useful comparison to other codes. We then use Cholla to simulate the interaction of a shock wave with a gas cloud in the interstellar medium, showing that the evolution of the cloud is highly dependent on its density structure. We reconcile the computed mixing time of a turbulent cloud with a realistic density distribution destroyed by a strong shock with the existing analytic theory for spherical cloud destruction by describing the system in terms of its median gas density.

  19. Revisiting TW Hydrae association in light of Gaia-DR1

    NASA Astrophysics Data System (ADS)

    Teixeira, R.; Gonoretzky, E. R.; Ducourant, C.; Galli, P. A. B.; Krone-Martins, A. G. O.

    2018-04-01

    TW Hydrae is a very young and nearby association with about 30 known members which is an excellent target for studies on stellar evolution since several of its members present a particular interest (planetary system, brown dwarfs, etc.). With the new data from TGAS and the Gaia DR1 eventually combined with others astrometric data we intend to improve our kinematic knowledge of this association.

  20. A smooth particle hydrodynamics code to model collisions between solid, self-gravitating objects

    NASA Astrophysics Data System (ADS)

    Schäfer, C.; Riecker, S.; Maindl, T. I.; Speith, R.; Scherrer, S.; Kley, W.

    2016-05-01

    Context. Modern graphics processing units (GPUs) lead to a major increase in the performance of the computation of astrophysical simulations. Owing to the different nature of GPU architecture compared to traditional central processing units (CPUs) such as x86 architecture, existing numerical codes cannot be easily migrated to run on GPU. Here, we present a new implementation of the numerical method smooth particle hydrodynamics (SPH) using CUDA and the first astrophysical application of the new code: the collision between Ceres-sized objects. Aims: The new code allows for a tremendous increase in speed of astrophysical simulations with SPH and self-gravity at low costs for new hardware. Methods: We have implemented the SPH equations to model gas, liquids and elastic, and plastic solid bodies and added a fragmentation model for brittle materials. Self-gravity may be optionally included in the simulations and is treated by the use of a Barnes-Hut tree. Results: We find an impressive performance gain using NVIDIA consumer devices compared to our existing OpenMP code. The new code is freely available to the community upon request. If you are interested in our CUDA SPH code miluphCUDA, please write an email to Christoph Schäfer. miluphCUDA is the CUDA port of miluph. miluph is pronounced [maßl2v]. We do not support the use of the code for military purposes.

  1. A 2D and 3D Code Comparison of Turbulent Mixing in Spherical Implosions

    NASA Astrophysics Data System (ADS)

    Flaig, Markus; Thornber, Ben; Grieves, Brian; Youngs, David; Williams, Robin; Clark, Dan; Weber, Chris

    2016-10-01

    Turbulent mixing due to Richtmyer-Meshkov and Rayleigh-Taylor instabilities has proven to be a major obstacle on the way to achieving ignition in inertial confinement fusion (ICF) implosions. Numerical simulations are an important tool for understanding the mixing process, however, the results of such simulations depend on the choice of grid geometry and the numerical scheme used. In order to clarify this issue, we compare the simulation codes FLASH, TURMOIL, HYDRA, MIRANDA and FLAMENCO for the problem of the growth of single- and multi-mode perturbations on the inner interface of a dense imploding shell. We consider two setups: A single-shock setup with a convergence ratio of 4, as well as a higher convergence multi-shock setup that mimics a typical NIF mixcap experiment. We employ both singlemode and ICF-like broadband perturbations. We find good agreement between all codes concerning the evolution of the mix layer width, however, the are differences in the small scale mixing. We also develop a Bell-Plesset model that is able to predict the mix layer width and find excellent agreement with the simulation results. This work was supported by resources provided by the Pawsey Supercomputing Centre with funding from the Australian Government.

  2. A simple model for molecular hydrogen chemistry coupled to radiation hydrodynamics

    NASA Astrophysics Data System (ADS)

    Nickerson, Sarah; Teyssier, Romain; Rosdahl, Joakim

    2018-06-01

    We introduce non-equilibrium molecular hydrogen chemistry into the radiation-hydrodynamics code RAMSES-RT. This is an adaptive mesh refinement grid code with radiation hydrodynamics that couples the thermal chemistry of hydrogen and helium to moment-based radiative transfer with the Eddington tensor closure model. The H2 physics that we include are formation on dust grains, gas phase formation, formation by three-body collisions, collisional destruction, photodissociation, photoionisation, cosmic ray ionisation and self-shielding. In particular, we implement the first model for H2 self-shielding that is tied locally to moment-based radiative transfer by enhancing photo-destruction. This self-shielding from Lyman-Werner line overlap is critical to H2 formation and gas cooling. We can now track the non-equilibrium evolution of molecular, atomic, and ionised hydrogen species with their corresponding dissociating and ionising photon groups. Over a series of tests we show that our model works well compared to specialised photodissociation region codes. We successfully reproduce the transition depth between molecular and atomic hydrogen, molecular cooling of the gas, and a realistic Strömgren sphere embedded in a molecular medium. In this paper we focus on test cases to demonstrate the validity of our model on small scales. Our ultimate goal is to implement this in large-scale galactic simulations.

  3. Coupling hydrodynamic and wave propagation modeling for waveform modeling of SPE.

    NASA Astrophysics Data System (ADS)

    Larmat, C. S.; Steedman, D. W.; Rougier, E.; Delorey, A.; Bradley, C. R.

    2015-12-01

    The goal of the Source Physics Experiment (SPE) is to bring empirical and theoretical advances to the problem of detection and identification of underground nuclear explosions. This paper presents effort to improve knowledge of the processes that affect seismic wave propagation from the hydrodynamic/plastic source region to the elastic/anelastic far field thanks to numerical modeling. The challenge is to couple the prompt processes that take place in the near source region to the ones taking place later in time due to wave propagation in complex 3D geologic environments. In this paper, we report on results of first-principles simulations coupling hydrodynamic simulation codes (Abaqus and CASH), with a 3D full waveform propagation code, SPECFEM3D. Abaqus and CASH model the shocked, hydrodynamic region via equations of state for the explosive, borehole stemming and jointed/weathered granite. LANL has been recently employing a Coupled Euler-Lagrange (CEL) modeling capability. This has allowed the testing of a new phenomenological model for modeling stored shear energy in jointed material. This unique modeling capability has enabled highfidelity modeling of the explosive, the weak grout-filled borehole, as well as the surrounding jointed rock. SPECFEM3D is based on the Spectral Element Method, a direct numerical method for full waveform modeling with mathematical accuracy (e.g. Komatitsch, 1998, 2002) thanks to its use of the weak formulation of the wave equation and of high-order polynomial functions. The coupling interface is a series of grid points of the SEM mesh situated at the edge of the hydrodynamic code domain. Displacement time series at these points are computed from output of CASH or Abaqus (by interpolation if needed) and fed into the time marching scheme of SPECFEM3D. We will present validation tests and waveforms modeled for several SPE tests conducted so far, with a special focus on effect of the local topography.

  4. An open source web interface for linking models to infrastructure system databases

    NASA Astrophysics Data System (ADS)

    Knox, S.; Mohamed, K.; Harou, J. J.; Rheinheimer, D. E.; Medellin-Azuara, J.; Meier, P.; Tilmant, A.; Rosenberg, D. E.

    2016-12-01

    Models of networked engineered resource systems such as water or energy systems are often built collaboratively with developers from different domains working at different locations. These models can be linked to large scale real world databases, and they are constantly being improved and extended. As the development and application of these models becomes more sophisticated, and the computing power required for simulations and/or optimisations increases, so has the need for online services and tools which enable the efficient development and deployment of these models. Hydra Platform is an open source, web-based data management system, which allows modellers of network-based models to remotely store network topology and associated data in a generalised manner, allowing it to serve multiple disciplines. Hydra Platform uses a web API using JSON to allow external programs (referred to as `Apps') to interact with its stored networks and perform actions such as importing data, running models, or exporting the networks to different formats. Hydra Platform supports multiple users accessing the same network and has a suite of functions for managing users and data. We present ongoing development in Hydra Platform, the Hydra Web User Interface, through which users can collaboratively manage network data and models in a web browser. The web interface allows multiple users to graphically access, edit and share their networks, run apps and view results. Through apps, which are located on the server, the web interface can give users access to external data sources and models without the need to install or configure any software. This also ensures model results can be reproduced by removing platform or version dependence. Managing data and deploying models via the web interface provides a way for multiple modellers to collaboratively manage data, deploy and monitor model runs and analyse results.

  5. Hydra viridissima (green Hydra) rapidly recovers from multiple magnesium pulse exposures.

    PubMed

    Prouse, Andrea E; Hogan, Alicia C; Harford, Andrew J; van Dam, Rick A; Nugegoda, Dayanthi

    2015-08-01

    The time taken for organisms to recover from a pulsed toxicant exposure is an important consideration when water quality guidelines are applied to intermittent events in the environment. Organisms may appear to have recovered by standard toxicity testing methods but could carry residual toxicant or damage that may make them more sensitive to subsequent pulses. Such cumulative effects may render guidelines underprotective. The present study evaluated recovery of the freshwater cnidarian Hydra viridissima following multiple pulse exposure to magnesium (Mg). The H. viridissima were exposed to 4-h pulses of 790 mg/L and 1100 mg/L separated by 2-h, 10-h, 18-h, 24-h, 48-h, and 72-h recovery periods. Twenty-four-hour pulses of 570 mg/L, 910 mg/L, and 940 mg/L were separated by 24-h, 96-h, and 168-h recovery periods. All treatments showed similar or reduced sensitivity to the second pulse when compared with the single pulse, indicating that full recovery occurred prior to a second pulse-exposure. Five variations of equivalent time-weighted average concentrations were used to compare sensitivity of Hydra with various pulse scenarios. The sensitivity of the organisms to the multiple pulses was significantly lower than the time-weighted average continuous exposure response in 3 of the 4 scenarios tested, indicating that the Hydra benefited from interpulse recovery periods. The findings will be utilized alongside those from other species to inform the use of a site-specific, duration-based water quality guideline for Mg, and they provide an example of the use of empirical data in the regulation of toxicant pulses in the environment. © 2015 Commonwealth of Australia.

  6. Mechanochemical Symmetry Breaking in Hydra Aggregates

    PubMed Central

    Mercker, Moritz; Köthe, Alexandra; Marciniak-Czochra, Anna

    2015-01-01

    Tissue morphogenesis comprises the self-organized creation of various patterns and shapes. Although detailed underlying mechanisms are still elusive in many cases, an increasing amount of experimental data suggests that chemical morphogen and mechanical processes are strongly coupled. Here, we develop and test a minimal model of the axis-defining step (i.e., symmetry breaking) in aggregates of the Hydra polyp. Based on previous findings, we combine osmotically driven shape oscillations with tissue mechanics and morphogen dynamics. We show that the model incorporating a simple feedback loop between morphogen patterning and tissue stretch reproduces a wide range of experimental data. Finally, we compare different hypothetical morphogen patterning mechanisms (Turing, tissue-curvature, and self-organized criticality). Our results suggest the experimental investigation of bigger (i.e., multiple head) aggregates as a key step for a deeper understanding of mechanochemical symmetry breaking in Hydra. PMID:25954896

  7. The small satellites of Pluto as observed by New Horizons.

    PubMed

    Weaver, H A; Buie, M W; Buratti, B J; Grundy, W M; Lauer, T R; Olkin, C B; Parker, A H; Porter, S B; Showalter, M R; Spencer, J R; Stern, S A; Verbiscer, A J; McKinnon, W B; Moore, J M; Robbins, S J; Schenk, P; Singer, K N; Barnouin, O S; Cheng, A F; Ernst, C M; Lisse, C M; Jennings, D E; Lunsford, A W; Reuter, D C; Hamilton, D P; Kaufmann, D E; Ennico, K; Young, L A; Beyer, R A; Binzel, R P; Bray, V J; Chaikin, A L; Cook, J C; Cruikshank, D P; Dalle Ore, C M; Earle, A M; Gladstone, G R; Howett, C J A; Linscott, I R; Nimmo, F; Parker, J Wm; Philippe, S; Protopapa, S; Reitsema, H J; Schmitt, B; Stryk, T; Summers, M E; Tsang, C C C; Throop, H H B; White, O L; Zangari, A M

    2016-03-18

    The New Horizons mission has provided resolved measurements of Pluto's moons Styx, Nix, Kerberos, and Hydra. All four are small, with equivalent spherical diameters of ~40 kilometers for Nix and Hydra and ~10 kilometers for Styx and Kerberos. They are also highly elongated, with maximum to minimum axis ratios of ~2. All four moons have high albedos (~50 to 90%) suggestive of a water-ice surface composition. Crater densities on Nix and Hydra imply surface ages of at least 4 billion years. The small moons rotate much faster than synchronous, with rotational poles clustered nearly orthogonal to the common pole directions of Pluto and Charon. These results reinforce the hypothesis that the small moons formed in the aftermath of a collision that produced the Pluto-Charon binary. Copyright © 2016, American Association for the Advancement of Science.

  8. A genomic view of 500 million years of cnidarian evolution.

    PubMed

    Steele, Robert E; David, Charles N; Technau, Ulrich

    2011-01-01

    Cnidarians (corals, anemones, jellyfish and hydras) are a diverse group of animals of interest to evolutionary biologists, ecologists and developmental biologists. With the publication of the genome sequences of Hydra and Nematostella, whose last common ancestor was the stem cnidarian, researchers are beginning to see the genomic underpinnings of cnidarian biology. Cnidarians are known for the remarkable plasticity of their morphology and life cycles. This plasticity is reflected in the Hydra and Nematostella genomes, which differ to an exceptional degree in size, base composition, transposable element content and gene conservation. It is now known what cnidarian genomes, given 500 million years, are capable of; as we discuss here, the next challenge is to understand how this genomic history has led to the striking diversity seen in this group. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Silicate Emission in the TW Hydrae Association

    NASA Astrophysics Data System (ADS)

    Sitko, Michael L.; Lynch, David K.; Russell, Ray W.

    2000-11-01

    The TW Hydrae association is the nearest young stellar association. Among its members are HD 98800, HR 4796A, and TW Hydrae itself, the nearest known classical T Tauri star. We have observed these three stars spectroscopically between 3 and 13 μm. In TW Hya, the spectrum shows a silicate emission feature that is similar to many other young stars' with protostellar disks. The 11.2 μm feature indicative of significant amounts of crystalline olivine is not as strong as in some young stars and solar system comets. In HR 4796A, the thermal emission in the silicate feature is very weak, suggesting little in the way of (small silicate) grains near the star. The silicate band of HD 98800 (observed by us, but also reported by Sylvester & Skinner) is intermediate in strength between TW Hya and HR 4796A.

  10. Code Development of Three-Dimensional General Relativistic Hydrodynamics with AMR (Adaptive-Mesh Refinement) and Results from Special and General Relativistic Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Dönmez, Orhan

    2004-09-01

    In this paper, the general procedure to solve the general relativistic hydrodynamical (GRH) equations with adaptive-mesh refinement (AMR) is presented. In order to achieve, the GRH equations are written in the conservation form to exploit their hyperbolic character. The numerical solutions of GRH equations are obtained by high resolution shock Capturing schemes (HRSC), specifically designed to solve nonlinear hyperbolic systems of conservation laws. These schemes depend on the characteristic information of the system. The Marquina fluxes with MUSCL left and right states are used to solve GRH equations. First, different test problems with uniform and AMR grids on the special relativistic hydrodynamics equations are carried out to verify the second-order convergence of the code in one, two and three dimensions. Results from uniform and AMR grid are compared. It is found that adaptive grid does a better job when the number of resolution is increased. Second, the GRH equations are tested using two different test problems which are Geodesic flow and Circular motion of particle In order to do this, the flux part of GRH equations is coupled with source part using Strang splitting. The coupling of the GRH equations is carried out in a treatment which gives second order accurate solutions in space and time.

  11. The Scylla Multi-Code Comparison Project

    NASA Astrophysics Data System (ADS)

    Maller, Ariyeh; Stewart, Kyle; Bullock, James; Oñorbe, Jose; Scylla Team

    2016-01-01

    Cosmological hydrodynamical simulations are one of the main techniques used to understand galaxy formation and evolution. However, it is far from clear to what extent different numerical techniques and different implementations of feedback yield different results. The Scylla Multi-Code Comparison Project seeks to address this issue by running idenitical initial condition simulations with different popular hydrodynamic galaxy formation codes. Here we compare simulations of a Milky Way mass halo using the codes enzo, ramses, art, arepo and gizmo-psph. The different runs produce galaxies with a variety of properties. There are many differences, but also many similarities. For example we find that in all runs cold flow disks exist; extended gas structures, far beyond the galactic disk, that show signs of rotation. Also, the angular momentum of warm gas in the halo is much larger than the angular momentum of the dark matter. We also find notable differences between runs. The temperature and density distribution of hot gas can differ by over an order of magnitude between codes and the stellar mass to halo mass relation also varies widely. These results suggest that observations of galaxy gas halos and the stellar mass to halo mass relation can be used to constarin the correct model of feedback.

  12. [Erratum] The cnidarian origin of the proto-oncogenes NF-κB/STAT and WNT-like oncogenic pathway drives the ctenophores (Review).

    PubMed

    Sinkovics, Joseph G

    2017-01-01

    After the publication of the article, the author noted that there was an error on page 1212, right column, paragraph entitled 'Virus carrier algal symbionts'. The word Hydra virilis should be written as Hydra viridis/viridissima. [the original article was published in the International Journal of Oncology 47: 1211-1229, 2015; DOI: 10.3892/ijo.2015.3102].

  13. Apical and basal epitheliomuscular F-actin dynamics during Hydra bud evagination

    PubMed Central

    Aufschnaiter, Roland; Wedlich-Söldner, Roland; Zhang, Xiaoming

    2017-01-01

    ABSTRACT Bending of 2D cell sheets is a fundamental morphogenetic mechanism during animal development and reproduction. A critical player driving cell shape during tissue bending is the actin cytoskeleton. Much of our current knowledge about actin dynamics in whole organisms stems from studies of embryonic development in bilaterian model organisms. Here, we have analyzed actin-based processes during asexual bud evagination in the simple metazoan Hydra. We created transgenic Hydra strains stably expressing the actin marker Lifeact-GFP in either ectodermal or endodermal epitheliomuscular cells. We then combined live imaging with conventional phalloidin staining to directly follow actin reorganization. Bending of the Hydra epithelial double layer is initiated by a group of epitheliomuscular cells in the endodermal layer. These cells shorten their apical-basal axis and arrange their basal muscle processes in a circular configuration. We propose that this rearrangement generates the initial forces to bend the endoderm towards the ectoderm. Convergent tissue movement in both epithelial layers towards the centre of evagination then leads to elongation and extension of the bud along its new body axis. Tissue movement into the bud is associated with lateral intercalation of epithelial cells, remodelling of apical septate junctions, and rearrangement of basal muscle processes. The work presented here extends the analysis of morphogenetic mechanisms beyond embryonic tissues of model bilaterians. PMID:28630355

  14. PelePhysics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2017-05-17

    PelePhysics is a suite of physics packages that provides functionality of use to reacting hydrodynamics CFD codes. The initial release includes an interface to reaction rate mechanism evaluation, transport coefficient evaluation, and a generalized equation of state (EOS) facility. Both generic evaluators and interfaces to code from externally available tools (Fuego for chemical rates, EGLib for transport coefficients) are provided.

  15. HUFF, a One-Dimensional Hydrodynamics Code for Strong Shocks

    DTIC Science & Technology

    1978-12-01

    results for two sample problems. The first problem discussed is a one-kiloton nuclear burst in infinite sea level air. The second problem is the one...of HUFF as an effective first order hydro- dynamic computer code. 1 KT Explosion The one-kiloton nuclear explosion in infinite sea level air was

  16. A soft X-ray source based on a low divergence, high repetition rate ultraviolet laser

    NASA Astrophysics Data System (ADS)

    Crawford, E. A.; Hoffman, A. L.; Milroy, R. D.; Quimby, D. C.; Albrecht, G. F.

    The CORK code is utilized to evaluate the applicability of low divergence ultraviolet lasers for efficient production of soft X-rays. The use of the axial hydrodynamic code wih one ozone radial expansion to estimate radial motion and laser energy is examined. The calculation of ionization levels of the plasma and radiation rates by employing the atomic physics and radiation model included in the CORK code is described. Computations using the hydrodynamic code to determine the effect of laser intensity, spot size, and wavelength on plasma electron temperature are provided. The X-ray conversion efficiencies of the lasers are analyzed. It is observed that for a 1 GW laser power the X-ray conversion efficiency is a function of spot size, only weakly dependent on pulse length for time scales exceeding 100 psec, and better conversion efficiencies are obtained at shorter wavelengths. It is concluded that these small lasers focused to 30 micron spot sizes and 10 to the 14th W/sq cm intensities are useful sources of 1-2 keV radiation.

  17. Simulation and Analysis of Converging Shock Wave Test Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramsey, Scott D.; Shashkov, Mikhail J.

    2012-06-21

    Results and analysis pertaining to the simulation of the Guderley converging shock wave test problem (and associated code verification hydrodynamics test problems involving converging shock waves) in the LANL ASC radiation-hydrodynamics code xRAGE are presented. One-dimensional (1D) spherical and two-dimensional (2D) axi-symmetric geometric setups are utilized and evaluated in this study, as is an instantiation of the xRAGE adaptive mesh refinement capability. For the 2D simulations, a 'Surrogate Guderley' test problem is developed and used to obviate subtleties inherent to the true Guderley solution's initialization on a square grid, while still maintaining a high degree of fidelity to the originalmore » problem, and minimally straining the general credibility of associated analysis and conclusions.« less

  18. Progenitors of Core-Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Hirschi, R.; Arnett, D.; Cristini, A.; Georgy, C.; Meakin, C.; Walkington, I.

    2017-02-01

    Massive stars have a strong impact on their surroundings, in particular when they produce a core-collapse supernova at the end of their evolution. In these proceedings, we review the general evolution of massive stars and their properties at collapse as well as the transition between massive and intermediate-mass stars. We also summarise the effects of metallicity and rotation. We then discuss some of the major uncertainties in the modelling of massive stars, with a particular emphasis on the treatment of convection in 1D stellar evolution codes. Finally, we present new 3D hydrodynamic simulations of convection in carbon burning and list key points to take from 3D hydrodynamic studies for the development of new prescriptions for convective boundary mixing in 1D stellar evolution codes.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Andrew F.; Marzari, Francesco

    Here, we present two-dimensional hydrodynamic simulations using the Smoothed Particle Hydrodynamic code, VINE, to model a self-gravitating binary system. We model configurations in which a circumbinary torus+disk surrounds a pair of stars in orbit around each other and a circumstellar disk surrounds each star, similar to that observed for the GG Tau A system. We assume that the disks cool as blackbodies, using rates determined independently at each location in the disk by the time dependent temperature of the photosphere there. We assume heating due to hydrodynamical processes and to radiation from the two stars, using rates approximated from amore » measure of the radiation intercepted by the disk at its photosphere.« less

  20. Hydrodynamic Flow Control in Marine Mammals

    DTIC Science & Technology

    2008-05-06

    body- bound vorticity ( Wolfgang et al. 1999). The vorticity is smoothly propagated along the flexing body toward the tail. This vorticity is eventually...and Reichley 1985; Dolphin 1988; Pauly et al. 1998). Whales lunge toward their prey at 2.6 m/s (Jurasz and Jurasz 1979; Hain et al. 1982). The...unsteady RANS CFD code for ship hydrodynamics. IIHR Hydroscience and Engineering Report 531. Iowa City (IA): The University of Iowa. Pauly D, Trites

  1. Chandra Observations of the Nuclei of Radio Galaxies: 3C 295 and Hydra A

    NASA Technical Reports Server (NTRS)

    Harris, D. E.; McNamara, B. R.; David, L. P.; Lavoie, Anthony R. (Technical Monitor)

    2000-01-01

    The angular resolution available with Chandra allows us to isolate the X-ray emission from the nucleus of many radio galaxies and obtain their spectra. As expected from unification schemes, spectra so far obtained can best be interpreted as heavily absorbed power laws. We present the spectral parameters so derived for 3C 295 and Hydra A and compare them to data obtained at other wavelengths.

  2. Metabolic co-dependence drives the evolutionarily ancient Hydra-Chlorella symbiosis.

    PubMed

    Hamada, Mayuko; Schröder, Katja; Bathia, Jay; Kürn, Ulrich; Fraune, Sebastian; Khalturina, Mariia; Khalturin, Konstantin; Shinzato, Chuya; Satoh, Nori; Bosch, Thomas Cg

    2018-05-31

    Many multicellular organisms rely on symbiotic associations for support of metabolic activity, protection, or energy. Understanding the mechanisms involved in controlling such interactions remains a major challenge. In an unbiased approach we identified key players that control the symbiosis between Hydra viridissima and its photosynthetic symbiont Chlorella sp. A99. We discovered significant up-regulation of Hydra genes encoding a phosphate transporter and glutamine synthetase suggesting regulated nutrition supply between host and symbionts. Interestingly, supplementing the medium with glutamine temporarily supports in vitro growth of the otherwise obligate symbiotic Chlorella , indicating loss of autonomy and dependence on the host. Genome sequencing of Chlorella sp. A99 revealed a large number of amino acid transporters and a degenerated nitrate assimilation pathway, presumably as consequence of the adaptation to the host environment. Our observations portray ancient symbiotic interactions as a codependent partnership in which exchange of nutrients appears to be the primary driving force. © 2018, Hamada et al.

  3. Variable Stars in the Field of the Hydra II Ultra-Faint Dwarf Galaxy

    NASA Astrophysics Data System (ADS)

    Vivas, Anna Katherina; Olsen, Knut A.; Blum, Robert D.; Nidever, David L.; Walker, Alistair R.; Martin, Nicolas; Besla, Gurtina; Gallart, Carme; Van Der Marel, Roeland P.; Majewski, Steven R.; Munoz, Ricardo; Kaleida, Catherine C.; Saha, Abhijit; Conn, Blair; Jin, Shoko

    2016-06-01

    We searched for variable stars in Hydra II, one of the recently discovered ultra-faint dwarf satellites of the Milky Way, using gri time-series obtained with the Dark Energy Camera (DECam) at Cerro Tololo Inter-American Observatory, Chile. We discovered one RR Lyrae star in the galaxy which was used to derive a distance of 154±8 kpc to this system and to re-calculate its absolute magnitude and half-light radius.A comparison with other RR Lyrae stars in ultra-faint systems indicates similar pulsational properties among them, which are different to those found among halo field stars and those in the largest of the Milky Way satellites. We also report the discovery of 31 additional short period variables in the field of view (RR Lyrae, SX Phe, eclipsing binaries, and a likely anomalous cepheid) which are likely not related with Hydra II.

  4. Naturally occurring tumours in the basal metazoan Hydra.

    PubMed

    Domazet-Lošo, Tomislav; Klimovich, Alexander; Anokhin, Boris; Anton-Erxleben, Friederike; Hamm, Mailin J; Lange, Christina; Bosch, Thomas C G

    2014-06-24

    The molecular nature of tumours is well studied in vertebrates, although their evolutionary origin remains unknown. In particular, there is no evidence for naturally occurring tumours in pre-bilaterian animals, such as sponges and cnidarians. This is somewhat surprising given that recent computational studies have predicted that most metazoans might be prone to develop tumours. Here we provide first evidence for naturally occurring tumours in two species of Hydra. Histological, cellular and molecular data reveal that these tumours are transplantable and might originate by differentiation arrest of female gametes. Growth of tumour cells is independent from the cellular environment. Tumour-bearing polyps have significantly reduced fitness. In addition, Hydra tumours show a greatly altered transcriptome that mimics expression shifts in vertebrate cancers. Therefore, this study shows that spontaneous tumours have deep evolutionary roots and that early branching animals may be informative in revealing the fundamental mechanisms of tumorigenesis.

  5. Bacteria-bacteria interactions within the microbiota of the ancestral metazoan Hydra contribute to fungal resistance.

    PubMed

    Fraune, Sebastian; Anton-Erxleben, Friederike; Augustin, René; Franzenburg, Sören; Knop, Mirjam; Schröder, Katja; Willoweit-Ohl, Doris; Bosch, Thomas C G

    2015-07-01

    Epithelial surfaces of most animals are colonized by diverse microbial communities. Although it is generally agreed that commensal bacteria can serve beneficial functions, the processes involved are poorly understood. Here we report that in the basal metazoan Hydra, ectodermal epithelial cells are covered with a multilayered glycocalyx that provides a habitat for a distinctive microbial community. Removing this epithelial microbiota results in lethal infection by the filamentous fungus Fusarium sp. Restoring the complex microbiota in gnotobiotic polyps prevents pathogen infection. Although mono-associations with distinct members of the microbiota fail to provide full protection, additive and synergistic interactions of commensal bacteria are contributing to full fungal resistance. Our results highlight the importance of resident microbiota diversity as a protective factor against pathogen infections. Besides revealing insights into the in vivo function of commensal microbes in Hydra, our findings indicate that interactions among commensal bacteria are essential to inhibit pathogen infection.

  6. Bacteria–bacteria interactions within the microbiota of the ancestral metazoan Hydra contribute to fungal resistance

    PubMed Central

    Fraune, Sebastian; Anton-Erxleben, Friederike; Augustin, René; Franzenburg, Sören; Knop, Mirjam; Schröder, Katja; Willoweit-Ohl, Doris; Bosch, Thomas CG

    2015-01-01

    Epithelial surfaces of most animals are colonized by diverse microbial communities. Although it is generally agreed that commensal bacteria can serve beneficial functions, the processes involved are poorly understood. Here we report that in the basal metazoan Hydra, ectodermal epithelial cells are covered with a multilayered glycocalyx that provides a habitat for a distinctive microbial community. Removing this epithelial microbiota results in lethal infection by the filamentous fungus Fusarium sp. Restoring the complex microbiota in gnotobiotic polyps prevents pathogen infection. Although mono-associations with distinct members of the microbiota fail to provide full protection, additive and synergistic interactions of commensal bacteria are contributing to full fungal resistance. Our results highlight the importance of resident microbiota diversity as a protective factor against pathogen infections. Besides revealing insights into the in vivo function of commensal microbes in Hydra, our findings indicate that interactions among commensal bacteria are essential to inhibit pathogen infection. PMID:25514534

  7. Discovery of very high velocity outflow in V Hydra - Wind from an accretion disk in a binary?

    NASA Technical Reports Server (NTRS)

    Sahai, R.; Wannier, P. G.

    1988-01-01

    High-resolution observations of lines from the CO v = 1-0 vibration-rotation band at 4.6 microns, taken with the FTS/KPNO 4-m telescope, are reported for the carbon-rich red giant V Hydra, which is surrounded by an extended expanding molecular envelope resulting from extensive mass loss. The spectrum shows, in addition to the expected absorption at the outflow velocity of the envelope, absorption extending up to 120 km/s bluewards of the stellar velocity. A comparison of the spectrum observed at two epochs shows that the high-velocity absorption features change with time. It is suggested that the observed high-velocity features in V Hydra arise in a high-velocity polar outflow from an accretion disk in a binary system, as proposed in the mass-loss model for bipolar envelopes by Morris (1988).

  8. Application of CHAD hydrodynamics to shock-wave problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trease, H.E.; O`Rourke, P.J.; Sahota, M.S.

    1997-12-31

    CHAD is the latest in a sequence of continually evolving computer codes written to effectively utilize massively parallel computer architectures and the latest grid generators for unstructured meshes. Its applications range from automotive design issues such as in-cylinder and manifold flows of internal combustion engines, vehicle aerodynamics, underhood cooling and passenger compartment heating, ventilation, and air conditioning to shock hydrodynamics and materials modeling. CHAD solves the full unsteady Navier-Stoke equations with the k-epsilon turbulence model in three space dimensions. The code has four major features that distinguish it from the earlier KIVA code, also developed at Los Alamos. First, itmore » is based on a node-centered, finite-volume method in which, like finite element methods, all fluid variables are located at computational nodes. The computational mesh efficiently and accurately handles all element shapes ranging from tetrahedra to hexahedra. Second, it is written in standard Fortran 90 and relies on automatic domain decomposition and a universal communication library written in standard C and MPI for unstructured grids to effectively exploit distributed-memory parallel architectures. Thus the code is fully portable to a variety of computing platforms such as uniprocessor workstations, symmetric multiprocessors, clusters of workstations, and massively parallel platforms. Third, CHAD utilizes a variable explicit/implicit upwind method for convection that improves computational efficiency in flows that have large velocity Courant number variations due to velocity of mesh size variations. Fourth, CHAD is designed to also simulate shock hydrodynamics involving multimaterial anisotropic behavior under high shear. The authors will discuss CHAD capabilities and show several sample calculations showing the strengths and weaknesses of CHAD.« less

  9. Benchmarking the Multidimensional Stellar Implicit Code MUSIC

    NASA Astrophysics Data System (ADS)

    Goffrey, T.; Pratt, J.; Viallet, M.; Baraffe, I.; Popov, M. V.; Walder, R.; Folini, D.; Geroux, C.; Constantino, T.

    2017-04-01

    We present the results of a numerical benchmark study for the MUltidimensional Stellar Implicit Code (MUSIC) based on widely applicable two- and three-dimensional compressible hydrodynamics problems relevant to stellar interiors. MUSIC is an implicit large eddy simulation code that uses implicit time integration, implemented as a Jacobian-free Newton Krylov method. A physics based preconditioning technique which can be adjusted to target varying physics is used to improve the performance of the solver. The problems used for this benchmark study include the Rayleigh-Taylor and Kelvin-Helmholtz instabilities, and the decay of the Taylor-Green vortex. Additionally we show a test of hydrostatic equilibrium, in a stellar environment which is dominated by radiative effects. In this setting the flexibility of the preconditioning technique is demonstrated. This work aims to bridge the gap between the hydrodynamic test problems typically used during development of numerical methods and the complex flows of stellar interiors. A series of multidimensional tests were performed and analysed. Each of these test cases was analysed with a simple, scalar diagnostic, with the aim of enabling direct code comparisons. As the tests performed do not have analytic solutions, we verify MUSIC by comparing it to established codes including ATHENA and the PENCIL code. MUSIC is able to both reproduce behaviour from established and widely-used codes as well as results expected from theoretical predictions. This benchmarking study concludes a series of papers describing the development of the MUSIC code and provides confidence in future applications.

  10. Experimental measurements of hydrodynamic instabilities on NOVA of relevance to astrophysics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Budil, K S; Cherfils, C; Drake, R P

    1998-09-11

    Large lasers such as Nova allow the possibility of achieving regimes of high energy densities in plasmas of millimeter spatial scales and nanosecond time scales. In those plasmas where thermal conductivity and viscosity do not play a significant role, the hydrodynamic evolution is suitable for benchmarking hydrodynamics modeling in astrophysical codes. Several experiments on Nova examine hydrodynamically unstable interfaces. A typical Nova experiment uses a gold millimeter-scale hohlraum to convert the laser energy to a 200 eV blackbody source lasting about a nanosecond. The x-rays ablate a planar target, generating a series of shocks and accelerating the target. The evolvingmore » area1 density is diagnosed by time-resolved radiography, using a second x-ray source. Data from several experiments are presented and diagnostic techniques are discussed.« less

  11. BEARCLAW: Boundary Embedded Adaptive Refinement Conservation LAW package

    NASA Astrophysics Data System (ADS)

    Mitran, Sorin

    2011-04-01

    The BEARCLAW package is a multidimensional, Eulerian AMR-capable computational code written in Fortran to solve hyperbolic systems for astrophysical applications. It is part of AstroBEAR, a hydrodynamic & magnetohydrodynamic code environment designed for a variety of astrophysical applications which allows simulations in 2, 2.5 (i.e., cylindrical), and 3 dimensions, in either cartesian or curvilinear coordinates.

  12. Blast Fragmentation Modeling and Analysis

    DTIC Science & Technology

    2010-10-31

    weapons device containing a multiphase blast explosive (MBX). 1. INTRODUCTION The ARL Survivability Lethality and Analysis Directorate (SLAD) is...velocity. In order to simulate the highly complex phenomenon, the exploding cylinder is modeled with the hydrodynamics code ALE3D , an arbitrary...Lagrangian-Eulerian multiphysics code, developed at Lawrence Livermore National Laboratory. ALE3D includes physical properties, constitutive models for

  13. Prediction of material strength and fracture of glass using the SPHINX smooth particle hydrodynamics code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandell, D.A.; Wingate, C.A.

    1994-08-01

    The design of many military devices involves numerical predictions of the material strength and fracture of brittle materials. The materials of interest include ceramics, that are used in armor packages; glass that is used in truck and jeep windshields and in helicopters; and rock and concrete that are used in underground bunkers. As part of a program to develop advanced hydrocode design tools, the authors have implemented a brittle fracture model for glass into the SPHINX smooth particle hydrodynamics code. The authors have evaluated this model and the code by predicting data from one-dimensional flyer plate impacts into glass, andmore » data from tungsten rods impacting glass. Since fractured glass properties, which are needed in the model, are not available, the authors did sensitivity studies of these properties, as well as sensitivity studies to determine the number of particles needed in the calculations. The numerical results are in good agreement with the data.« less

  14. Magneto-hydrodynamic simulations of Heavy Ion Collisions with ECHO-QGP

    NASA Astrophysics Data System (ADS)

    Inghirami, G.; Del Zanna, L.; Beraudo, A.; Haddadi Moghaddam, M.; Becattini, F.; Bleicher, M.

    2018-05-01

    It is believed that very strong magnetic fields may induce many interesting physical effects in the Quark Gluon Plasma, like the Chiral Magnetic Effect, the Chiral Separation Effect, a modification of the critical temperature or changes in the collective flow of the emitted particles. However, in the hydrodynamic numerical simulations of Heavy Ion Collisions the magnetic fields have been either neglected or considered as external fields which evolve independently from the dynamics of the fluid. To address this issue, we recently modified the ECHO-QGP code, including for the first time the effects of electromagnetic fields in a consistent way, although in the limit of an infinite electrical conductivity of the plasma (ideal magnetohydrodynamics). In this proceedings paper we illustrate the underlying 3+1 formalisms of the current version of the code and we present the results of its basic preliminary application in a simple case. We conclude with a brief discussion of the possible further developments and future uses of the code, from RHIC to FAIR collision energies.

  15. 2D Implosion Simulations with a Kinetic Particle Code

    NASA Astrophysics Data System (ADS)

    Sagert, Irina; Even, Wesley; Strother, Terrance

    2017-10-01

    Many problems in laboratory and plasma physics are subject to flows that move between the continuum and the kinetic regime. We discuss two-dimensional (2D) implosion simulations that were performed using a Monte Carlo kinetic particle code. The application of kinetic transport theory is motivated, in part, by the occurrence of non-equilibrium effects in inertial confinement fusion (ICF) capsule implosions, which cannot be fully captured by hydrodynamics simulations. Kinetic methods, on the other hand, are able to describe both, continuum and rarefied flows. We perform simple 2D disk implosion simulations using one particle species and compare the results to simulations with the hydrodynamics code RAGE. The impact of the particle mean-free-path on the implosion is also explored. In a second study, we focus on the formation of fluid instabilities from induced perturbations. I.S. acknowledges support through the Director's fellowship from Los Alamos National Laboratory. This research used resources provided by the LANL Institutional Computing Program.

  16. Hydrocode and Molecular Dynamics modelling of uniaxial shock wave experiments on Silicon

    NASA Astrophysics Data System (ADS)

    Stubley, Paul; McGonegle, David; Patel, Shamim; Suggit, Matthew; Wark, Justin; Higginbotham, Andrew; Comley, Andrew; Foster, John; Rothman, Steve; Eggert, Jon; Kalantar, Dan; Smith, Ray

    2015-06-01

    Recent experiments have provided further evidence that the response of silicon to shock compression has anomalous properties, not described by the usual two-wave elastic-plastic response. A recent experimental campaign on the Orion laser in particular has indicated a complex multi-wave response. While Molecular Dynamics (MD) simulations can offer a detailed insight into the response of crystals to uniaxial compression, they are extremely computationally expensive. For this reason, we are adapting a simple quasi-2D hydrodynamics code to capture phase change under uniaxial compression, and the intervening mixed phase region, keeping track of the stresses and strains in each of the phases. This strain information is of such importance because a large number of shock experiments use diffraction as a key diagnostic, and these diffraction patterns depend solely on the elastic strains in the sample. We present here a comparison of the new hydrodynamics code with MD simulations, and show that the simulated diffraction taken from the code agrees qualitatively with measured diffraction from our recent Orion campaign.

  17. Horizontal gene transfer contributed to the evolution of extracellular surface structures: the freshwater polyp Hydra is covered by a complex fibrous cuticle containing glycosaminoglycans and proteins of the PPOD and SWT (sweet tooth) families.

    PubMed

    Böttger, Angelika; Doxey, Andrew C; Hess, Michael W; Pfaller, Kristian; Salvenmoser, Willi; Deutzmann, Rainer; Geissner, Andreas; Pauly, Barbara; Altstätter, Johannes; Münder, Sandra; Heim, Astrid; Gabius, Hans-Joachim; McConkey, Brendan J; David, Charles N

    2012-01-01

    The single-cell layered ectoderm of the fresh water polyp Hydra fulfills the function of an epidermis by protecting the animals from the surrounding medium. Its outer surface is covered by a fibrous structure termed the cuticle layer, with similarity to the extracellular surface coats of mammalian epithelia. In this paper we have identified molecular components of the cuticle. We show that its outermost layer contains glycoproteins and glycosaminoglycans and we have identified chondroitin and chondroitin-6-sulfate chains. In a search for proteins that could be involved in organising this structure we found PPOD proteins and several members of a protein family containing only SWT (sweet tooth) domains. Structural analyses indicate that PPODs consist of two tandem β-trefoil domains with similarity to carbohydrate-binding sites found in lectins. Experimental evidence confirmed that PPODs can bind sulfated glycans and are secreted into the cuticle layer from granules localized under the apical surface of the ectodermal epithelial cells. PPODs are taxon-specific proteins which appear to have entered the Hydra genome by horizontal gene transfer from bacteria. Their acquisition at the time Hydra evolved from a marine ancestor may have been critical for the transition to the freshwater environment.

  18. Horizontal Gene Transfer Contributed to the Evolution of Extracellular Surface Structures: The Freshwater Polyp Hydra Is Covered by a Complex Fibrous Cuticle Containing Glycosaminoglycans and Proteins of the PPOD and SWT (Sweet Tooth) Families

    PubMed Central

    Böttger, Angelika; Doxey, Andrew C.; Hess, Michael W.; Pfaller, Kristian; Salvenmoser, Willi; Deutzmann, Rainer; Geissner, Andreas; Pauly, Barbara; Altstätter, Johannes; Münder, Sandra; Heim, Astrid; Gabius, Hans-Joachim; McConkey, Brendan J.; David, Charles N.

    2012-01-01

    The single-cell layered ectoderm of the fresh water polyp Hydra fulfills the function of an epidermis by protecting the animals from the surrounding medium. Its outer surface is covered by a fibrous structure termed the cuticle layer, with similarity to the extracellular surface coats of mammalian epithelia. In this paper we have identified molecular components of the cuticle. We show that its outermost layer contains glycoproteins and glycosaminoglycans and we have identified chondroitin and chondroitin-6-sulfate chains. In a search for proteins that could be involved in organising this structure we found PPOD proteins and several members of a protein family containing only SWT (sweet tooth) domains. Structural analyses indicate that PPODs consist of two tandem β-trefoil domains with similarity to carbohydrate-binding sites found in lectins. Experimental evidence confirmed that PPODs can bind sulfated glycans and are secreted into the cuticle layer from granules localized under the apical surface of the ectodermal epithelial cells. PPODs are taxon-specific proteins which appear to have entered the Hydra genome by horizontal gene transfer from bacteria. Their acquisition at the time Hydra evolved from a marine ancestor may have been critical for the transition to the freshwater environment. PMID:23300632

  19. Peptide-gated ion channels and the simple nervous system of Hydra.

    PubMed

    Gründer, Stefan; Assmann, Marc

    2015-02-15

    Neurons either use electrical or chemical synapses to communicate with each other. Transmitters at chemical synapses are either small molecules or neuropeptides. After binding to their receptors, transmitters elicit postsynaptic potentials, which can either be fast and transient or slow and longer lasting, depending on the type of receptor. Fast transient potentials are mediated by ionotropic receptors and slow long-lasting potentials by metabotropic receptors. Transmitters and receptors are well studied for animals with a complex nervous system such as vertebrates and insects, but much less is known for animals with a simple nervous system like Cnidaria. As cnidarians arose early in animal evolution, nervous systems might have first evolved within this group and the study of neurotransmission in cnidarians might reveal an ancient mechanism of neuronal communication. The simple nervous system of the cnidarian Hydra extensively uses neuropeptides and, recently, we cloned and functionally characterized an ion channel that is directly activated by neuropeptides of the Hydra nervous system. These results demonstrate the existence of peptide-gated ion channels in Hydra, suggesting they mediate fast transmission in its nervous system. As related channels are also present in the genomes of the cnidarian Nematostella, of placozoans and of ctenophores, it should be considered that the early nervous systems of cnidarians and ctenophores have co-opted neuropeptides for fast transmission at chemical synapses. © 2015. Published by The Company of Biologists Ltd.

  20. Ecotoxicological assessment of cobalt using Hydra model: ROS, oxidative stress, DNA damage, cell cycle arrest, and apoptosis as mechanisms of toxicity.

    PubMed

    Zeeshan, Mohammed; Murugadas, Anbazhagan; Ghaskadbi, Surendra; Ramaswamy, Babu Rajendran; Akbarsha, Mohammad Abdulkader

    2017-05-01

    The mechanisms underlying cobalt toxicity in aquatic species in general and cnidarians in particular remain poorly understood. Herein we investigated cobalt toxicity in a Hydra model from morphological, histological, developmental, and molecular biological perspectives. Hydra, exposed to cobalt (0-60 mg/L), were altered in morphology, histology, and regeneration. Exposure to standardized sublethal doses of cobalt impaired feeding by affecting nematocytes, which in turn affected reproduction. At the cellular level, excessive ROS generation, as the principal mechanism of action, primarily occurred in the lysosomes, which was accompanied by the upregulation of expression of the antioxidant genes SOD, GST, GPx, and G6PD. The number of Hsp70 and FoxO transcripts also increased. Interestingly, the upregulations were higher in the 24-h than in the 48-h time-point group, indicating that ROS overwhelmed the cellular defense mechanisms at the latter time-point. Comet assay revealed DNA damage. Cell cycle analysis indicated the induction of apoptosis accompanied or not by cell cycle arrest. Immunoblot analyses revealed that cobalt treatment triggered mitochondria-mediated apoptosis as inferred from the modulation of the key proteins Bax, Bcl-2, and caspase-3. From this data, we suggest the use of Hydra as a model organism for the risk assessment of heavy metal pollution in aquatic ecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Discovery of an M9.5 Candidate Brown Dwarf in the TW Hydrae Association: DENIS J124514.1-442907

    NASA Astrophysics Data System (ADS)

    Looper, Dagny L.; Burgasser, Adam J.; Kirkpatrick, J. Davy; Swift, Brandon J.

    2007-11-01

    We report the discovery of a fifth candidate substellar system in the ~5-10 Myr TW Hydrae association: DENIS J124514.1-442907. This object has a NIR spectrum remarkably similar to that of 2MASS J1139511-315921, a known TW Hydrae brown dwarf, with low surface gravity features such as a triangular-shaped H band, deep H2O absorption, weak alkali lines, and weak hydride bands. We find an optical spectral type of M9.5 and estimate a mass of <~24 MJup, assuming an age of ~5-10 Myr. While the measured proper motion for DENIS J124514.1-442907 is inconclusive as a test for membership, its position in the sky is coincident with the TW Hydrae association. A more accurate proper-motion measurement, higher resolution spectroscopy for radial velocity, and a parallax measurement are needed to derive the true space motion and to confirm its membership. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. This Letter includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  2. How to use Hydra as a model system to teach biology in the classroom.

    PubMed

    Bossert, Patricia; Galliot, Brigitte

    2012-01-01

    As scientists it is our duty to fight against obscurantism and loss of rational thinking if we want politicians and citizens to freely make the most intelligent choices for the future generations. With that aim, the scientific education and training of young students is an obvious and urgent necessity. We claim here that Hydra provides a highly versatile but cheap model organism to study biology at any age. Teachers of biology have the unenviable task of motivating young people, who with many other motivations that are quite valid, nevertheless must be guided along a path congruent with a 'syllabus' or a 'curriculum'. The biology of Hydra spans the history of biology as an experimental science from Trembley's first manipulations designed to determine if the green polyp he found was plant or animal to the dissection of the molecular cascades underpinning, regeneration, wound healing, stemness, aging and cancer. It is described here in terms designed to elicit its wider use in classrooms. Simple lessons are outlined in sufficient detail for beginners to enter the world of 'Hydra biology'. Protocols start with the simplest observations to experiments that have been pretested with students in the USA and in Europe. The lessons are practical and can be used to bring 'life', but also rational thinking into the study of life for the teachers of students from elementary school through early university.

  3. Detailed implosion modeling of deuterium-tritium layered experiments on the National Ignition Facilitya)

    NASA Astrophysics Data System (ADS)

    Clark, D. S.; Hinkel, D. E.; Eder, D. C.; Jones, O. S.; Haan, S. W.; Hammel, B. A.; Marinak, M. M.; Milovich, J. L.; Robey, H. F.; Suter, L. J.; Town, R. P. J.

    2013-05-01

    More than two dozen inertial confinement fusion ignition experiments with cryogenic deuterium-tritium layers have now been performed on the National Ignition Facility (NIF) [G. H. Miller et al., Opt. Eng. 443, 2841 (2004)]. Each of these yields a wealth of data including neutron yield, neutron down-scatter fraction, burn-averaged ion temperature, x-ray image shape and size, primary and down-scattered neutron image shape and size, etc. Compared to 2-D radiation-hydrodynamics simulations modeling both the hohlraum and the capsule implosion, however, the measured capsule yield is usually lower by a factor of 5 to 10, and the ion temperature varies from simulations, while most other observables are well matched between experiment and simulation. In an effort to understand this discrepancy, we perform detailed post-shot simulations of a subset of NIF implosion experiments. Using two-dimensional HYDRA simulations [M. M. Marinak, et al., Phys. Plasmas 8, 2275 (2001).] of the capsule only, these simulations represent as accurately as possible the conditions of a given experiment, including the as-shot capsule metrology, capsule surface roughness, and ice layer defects as seeds for the growth of hydrodynamic instabilities. The radiation drive used in these capsule-only simulations can be tuned to reproduce quite well the measured implosion timing, kinematics, and low-mode asymmetry. In order to simulate the experiments as accurately as possible, a limited number of fully three-dimensional implosion simulations are also being performed. Despite detailed efforts to incorporate all of the effects known and believed to be important in determining implosion performance, substantial yield discrepancies remain between experiment and simulation. Some possible alternate scenarios and effects that could resolve this discrepancy are discussed.

  4. 3φ Laser Beam Propagation in Inertial Confinement Plasmas*

    NASA Astrophysics Data System (ADS)

    Froula, Dustin

    2006-10-01

    A study of the relevant laser-plasma interaction processes in a long-scale length high-temperature transparent plasma has been performed using a new target platform to emulate the plasma conditions in an indirect drive fusion target. Recent experiments in this plasma emulator have demonstrated that for ignition relevant conditions (Te>3 keV, I < 2x10^15 W-cm-2) the 3φ laser light propagates through a high-density (5x10^20 cm-3) plasma with a peak transmission of 90%. Experiments have demonstrated an understanding of filamentation in these conditions that is consistent with theory increasing our confidence in our ability to execute the beam conditioning and focal spot designs for future ignition experiments. This target has been well characterized using Thomson-scattering where the peak electron temperature is shown to be 3.5 keV. The electron temperature measurements agree with HYDRA flux-limited radiation hydrodynamics calculations. Using a recently implemented 3φ transmitted beam diagnostic, the filamentation threshold has been experimentally measured for a beam that employs a continuous phase plate (CPP). For intensities above the threshold for filamentation, the beam was shown to spray. Defocusing the high-power laser beam reduced the backscatter while filamentation was not changed as predicted. Recent experiments investigating the importance of polarization and temporal smoothing of laser beams for propagation in this target platform will be presented. Detailed hydrodynamic and laser-plasma interaction simulations capture the stimulated Brillouin, stimulated Raman, and filamentation thresholds providing significant confidence that our models used for ignition designs can correctly predict the conditions where energy loss and beam propagation through the under dense NIF hohlraum plasmas will be small. ** Collaborators: L. Divol, S. H. Glenzer, J. S. Ross, N. Meezan, S. Prisbrey, S. Dixit.

  5. Comparing Split and Unsplit Numerical Methods for Simulating Low and High Mach Number Turbulent Flows in Xrage

    NASA Astrophysics Data System (ADS)

    Saenz, Juan; Grinstein, Fernando; Dolence, Joshua; Rauenzahn, Rick; Masser, Thomas; Francois, Marianne; LANL Team

    2017-11-01

    We report progress in evaluating an unsplit hydrodynamic solver being implemented in the radiation adaptive grid Eulerian (xRAGE) code, and compare to a split scheme. xRage is a Eulerian hydrodynamics code used for implicit large eddy simulations (ILES) of multi-material, multi-physics flows where low and high Mach number (Ma) processes and instabilities interact and co-exist. The hydrodynamic solver in xRAGE uses a directionally split, second order Godunov, finite volume (FV) scheme. However, a standard, unsplit, Godunov-type FV scheme with 2nd and 3rd order reconstruction options, low Ma correction and a variety of Riemann solvers has recently become available. To evaluate the hydrodynamic solvers for turbulent low Ma flows, we use simulations of the Taylor Green Vortex (TGV), where there is a transition to turbulence via vortex stretching and production of small-scale eddies. We also simulate a high-low Ma shock-tube flow, where a shock passing over a perturbed surface generates a baroclinic Richtmyer-Meshkov instability (RMI); after the shock has passed, the turbulence in the accelerated interface region resembles Rayleigh Taylor (RT) instability. We compare turbulence spectra and decay in simulated TGV flows, and we present progress in simulating the high-low Ma RMI-RT flow. LANL is operated by LANS LLC for the U.S. DOE NNSA under Contract No. DE-AC52-06NA25396.

  6. Experiences and results multitasking a hydrodynamics code on global and local memory machines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandell, D.

    1987-01-01

    A one-dimensional, time-dependent Lagrangian hydrodynamics code using a Godunov solution method has been multitasked for the Cray X-MP/48, the Intel iPSC hypercube, the Alliant FX series and the IBM RP3 computers. Actual multitasking results have been obtained for the Cray, Intel and Alliant computers and simulated results were obtained for the Cray and RP3 machines. The differences in the methods required to multitask on each of the machines is discussed. Results are presented for a sample problem involving a shock wave moving down a channel. Comparisons are made between theoretical speedups, predicted by Amdahl's law, and the actual speedups obtained.more » The problems of debugging on the different machines are also described.« less

  7. Numerical Viscosity and the Survival of Gas Giant Protoplanets in Disk Simulations

    NASA Astrophysics Data System (ADS)

    Pickett, Megan K.; Durisen, Richard H.

    2007-01-01

    We present three-dimensional hydrodynamic simulations of a gravitationally unstable protoplanetary disk model under the condition of local isothermality. Ordinarily, local isothermality precludes the need for an artificial viscosity (AV) scheme to mediate shocks. Without AV, the disk evolves violently, shredding into dense (although short-lived) clumps. When we introduce our AV treatment in the momentum equation, but without heating due to irreversible compression, our grid-based simulations begin to resemble smoothed particle hydrodynamics (SPH) calculations, where clumps are more likely to survive many orbits. In fact, the standard SPH viscosity appears comparable in strength to the AV that leads to clump longevity in our code. This sensitivity to one numerical parameter suggests extreme caution in interpreting simulations by any code in which long-lived gaseous protoplanetary bodies appear.

  8. Solutions of conformal Israel-Stewart relativistic viscous fluid dynamics

    NASA Astrophysics Data System (ADS)

    Marrochio, Hugo; Noronha, Jorge; Denicol, Gabriel S.; Luzum, Matthew; Jeon, Sangyong; Gale, Charles

    2015-01-01

    We use symmetry arguments developed by Gubser to construct the first radially expanding explicit solutions of the Israel-Stewart formulation of hydrodynamics. Along with a general semi-analytical solution, an exact analytical solution is given which is valid in the cold plasma limit where viscous effects from shear viscosity and the relaxation time coefficient are important. The radially expanding solutions presented in this paper can be used as nontrivial checks of numerical algorithms employed in hydrodynamic simulations of the quark-gluon plasma formed in ultrarelativistic heavy ion collisions. We show this explicitly by comparing such analytic and semi-analytic solutions with the corresponding numerical solutions obtained using the music viscous hydrodynamics simulation code.

  9. Interplay of Laser-Plasma Interactions and Inertial Fusion Hydrodynamics.

    PubMed

    Strozzi, D J; Bailey, D S; Michel, P; Divol, L; Sepke, S M; Kerbel, G D; Thomas, C A; Ralph, J E; Moody, J D; Schneider, M B

    2017-01-13

    The effects of laser-plasma interactions (LPI) on the dynamics of inertial confinement fusion hohlraums are investigated via a new approach that self-consistently couples reduced LPI models into radiation-hydrodynamics numerical codes. The interplay between hydrodynamics and LPI-specifically stimulated Raman scatter and crossed-beam energy transfer (CBET)-mostly occurs via momentum and energy deposition into Langmuir and ion acoustic waves. This spatially redistributes energy coupling to the target, which affects the background plasma conditions and thus, modifies laser propagation. This model shows reduced CBET and significant laser energy depletion by Langmuir waves, which reduce the discrepancy between modeling and data from hohlraum experiments on wall x-ray emission and capsule implosion shape.

  10. Measuring implosion velocities in experiments and simulations of laser-driven cylindrical implosions on the OMEGA laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, E. C.; Barnak, D. H.; Betti, R.

    Laser-driven magnetized liner inertial fusion (MagLIF) on OMEGA involves cylindrical implosions, a preheat beam, and an applied magnetic field. Initial experiments excluded the preheat beam and magnetic field to better characterize the implosion. X-ray self-emission as measured by framing cameras was used to determine the shell trajectory. The 1-D code LILAC was used to model the central region of the implosion, and results were compared to 2-D simulations from the HYDRA code. Post-processing of simulation output with SPECT3D and Yorick produced synthetic x-ray images that were used to compare the simulation results with the x-ray framing camera data. Quantitative analysismore » shows that higher measured neutron yields correlate with higher implosion velocities. The future goal is to further analyze the x-ray images to characterize the uniformity of the implosions and apply these analysis techniques to integrated laser-driven MagLIF shots to better understand the effects of preheat and the magnetic field.« less

  11. Fluid Flow Investigations within a 37 Element CANDU Fuel Bundle Supported by Magnetic Resonance Velocimetry and Computational Fluid Dynamics

    DOE PAGES

    Piro, M.H.A; Wassermann, F.; Grundmann, S.; ...

    2017-05-23

    The current work presents experimental and computational investigations of fluid flow through a 37 element CANDU nuclear fuel bundle. Experiments based on Magnetic Resonance Velocimetry (MRV) permit three-dimensional, three-component fluid velocity measurements to be made within the bundle with sub-millimeter resolution that are non-intrusive, do not require tracer particles or optical access of the flow field. Computational fluid dynamic (CFD) simulations of the foregoing experiments were performed with the hydra-th code using implicit large eddy simulation, which were in good agreement with experimental measurements of the fluid velocity. Greater understanding has been gained in the evolution of geometry-induced inter-subchannel mixing,more » the local effects of obstructed debris on the local flow field, and various turbulent effects, such as recirculation, swirl and separation. These capabilities are not available with conventional experimental techniques or thermal-hydraulic codes. Finally, the overall goal of this work is to continue developing experimental and computational capabilities for further investigations that reliably support nuclear reactor performance and safety.« less

  12. Measuring implosion velocities in experiments and simulations of laser-driven cylindrical implosions on the OMEGA laser

    DOE PAGES

    Hansen, E. C.; Barnak, D. H.; Betti, R.; ...

    2018-04-04

    Laser-driven magnetized liner inertial fusion (MagLIF) on OMEGA involves cylindrical implosions, a preheat beam, and an applied magnetic field. Initial experiments excluded the preheat beam and magnetic field to better characterize the implosion. X-ray self-emission as measured by framing cameras was used to determine the shell trajectory. The 1-D code LILAC was used to model the central region of the implosion, and results were compared to 2-D simulations from the HYDRA code. Post-processing of simulation output with SPECT3D and Yorick produced synthetic x-ray images that were used to compare the simulation results with the x-ray framing camera data. Quantitative analysismore » shows that higher measured neutron yields correlate with higher implosion velocities. The future goal is to further analyze the x-ray images to characterize the uniformity of the implosions and apply these analysis techniques to integrated laser-driven MagLIF shots to better understand the effects of preheat and the magnetic field.« less

  13. Fluid Flow Investigations within a 37 Element CANDU Fuel Bundle Supported by Magnetic Resonance Velocimetry and Computational Fluid Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piro, M.H.A; Wassermann, F.; Grundmann, S.

    The current work presents experimental and computational investigations of fluid flow through a 37 element CANDU nuclear fuel bundle. Experiments based on Magnetic Resonance Velocimetry (MRV) permit three-dimensional, three-component fluid velocity measurements to be made within the bundle with sub-millimeter resolution that are non-intrusive, do not require tracer particles or optical access of the flow field. Computational fluid dynamic (CFD) simulations of the foregoing experiments were performed with the hydra-th code using implicit large eddy simulation, which were in good agreement with experimental measurements of the fluid velocity. Greater understanding has been gained in the evolution of geometry-induced inter-subchannel mixing,more » the local effects of obstructed debris on the local flow field, and various turbulent effects, such as recirculation, swirl and separation. These capabilities are not available with conventional experimental techniques or thermal-hydraulic codes. Finally, the overall goal of this work is to continue developing experimental and computational capabilities for further investigations that reliably support nuclear reactor performance and safety.« less

  14. Moving-mesh cosmology: characteristics of galaxies and haloes

    NASA Astrophysics Data System (ADS)

    Kereš, Dušan; Vogelsberger, Mark; Sijacki, Debora; Springel, Volker; Hernquist, Lars

    2012-09-01

    We discuss cosmological hydrodynamic simulations of galaxy formation performed with the new moving-mesh code AREPO, which promises higher accuracy compared with the traditional smoothed particle hydrodynamics (SPH) technique that has been widely employed for this problem. In this exploratory study, we deliberately limit the complexity of the physical processes followed by the code for ease of comparison with previous calculations, and include only cooling of gas with a primordial composition, heating by a spatially uniform ultraviolet background, and a simple subresolution model for regulating star formation in the dense interstellar medium. We use an identical set of physics in corresponding simulations carried out with the well-tested SPH code GADGET, adopting also the same high-resolution gravity solver. We are thus able to compare both simulation sets on an object-by-object basis, allowing us to cleanly isolate the impact of different hydrodynamical methods on galaxy and halo properties. In accompanying papers, Vogelsberger et al. and Sijacki et al., we focus on an analysis of the global baryonic statistics predicted by the simulation codes, and complementary idealized simulations that highlight the differences between the hydrodynamical schemes. Here we investigate their influence on the baryonic properties of simulated galaxies and their surrounding haloes. We find that AREPO leads to significantly higher star formation rates for galaxies in massive haloes and to more extended gaseous discs in galaxies, which also feature a thinner and smoother morphology than their GADGET counterparts. Consequently, galaxies formed in AREPO have larger sizes and higher specific angular momentum than their SPH correspondents. Interestingly, the more efficient cooling flows in AREPO yield higher densities and lower entropies in halo centres compared to GADGET, whereas the opposite trend is found in halo outskirts. The cooling differences leading to higher star formation rates of massive galaxies in AREPO also slightly increase the baryon content within the virial radius of massive haloes. We show that these differences persist as a function of numerical resolution. While both codes agree to acceptable accuracy on a number of baryonic properties of cosmic structures, our results thus clearly demonstrate that galaxy formation simulations greatly benefit from the use of more accurate hydrodynamical techniques such as AREPO and call into question the reliability of galaxy formation studies in a cosmological context using traditional standard formulations of SPH, such as the one implemented in GADGET. Our new moving-mesh simulations demonstrate that a population of extended gaseous discs of galaxies in large volume cosmological simulations can be formed even without energetic feedback in the form of galactic winds, although such outflows appear required to obtain realistic stellar masses.

  15. Modified Hydra Bioassay to Evaluate the Toxicity of Multiple Mycotoxins and Predict the Detoxification Efficacy of a Clay-Based Sorbent

    PubMed Central

    Brown, KA; Mays, T; Romoser, A; Marroquin-Cardona, A; Mitchell, NJ; Elmore, SE; Phillips, TD

    2013-01-01

    Food shortages and lack of food supply regulation in developing countries often leads to chronic exposure of vulnerable populations to hazardous mixtures of mycotoxins, including aflatoxin B1 (AFB1) and fumonisin B1 (FB1). A refined calcium montmorillonite clay (i.e. UPSN) has been reported to tightly bind these toxins, thereby decreasing bioavailability in humans and animals. Hence, our objectives in the present work were to examine the ability of UPSN to bind mixtures of AFB1 and FB1at gastrointestinally relevant pH in vitro, and to utilize a rapid in vivo bioassay to evaluate AFB1 and FB1 toxicity and UPSN efficacy. Isothermal sorption data indicated tight AFB1 binding to UPSN surfaces at both pH 2.0 and 6.5, but substantially more FB1 bound at pH 2.0 than 6.5. Site-specific competition occurred between the toxins when exposed to UPSN in combination. Importantly, treatment with UPSN resulted in significant protection to mycotoxin-exposed hydra maintained at pH 6.9-7.0. Hydra were exposed to FB1, AFB1 and FB1/AFB1 combinations with and without UPSN. Toxic response over 92 hours was rated based on morphology and mortality. Hydra assay results indicated a minimum effective concentration (MEC) of 20 μg/mLfor AFB1, while the MEC for FB1 was not reached. The MEC for co-exposure was 400 μg/mL FB1 + 10 μg/mL AFB1. This study demonstrates that UPSN sorbs both mycotoxins tightly at physiologically relevant pH levels, resulting in decreased bioavailability, and that a modified hydra bioassay can be used as an initial screen in vivo to predict efficacy of toxin binding agents. PMID:23047854

  16. Modified hydra bioassay to evaluate the toxicity of multiple mycotoxins and predict the detoxification efficacy of a clay-based sorbent.

    PubMed

    Brown, K A; Mays, T; Romoser, A; Marroquin-Cardona, A; Mitchell, N J; Elmore, S E; Phillips, T D

    2014-01-01

    Food shortages and a lack of food supply regulation in developing countries often leads to chronic exposure of vulnerable populations to hazardous mixtures of mycotoxins, including aflatoxin B(1) (AFB(1)) and fumonisin B(1) (FB(1)). A refined calcium montmorillonite clay [i.e. uniform particle size NovaSil (UPSN)] has been reported to tightly bind these toxins, thereby decreasing bioavailability in humans and animals. Hence, our objectives in the present study were to examine the ability of UPSN to bind mixtures of AFB(1) and FB(1) at gastrointestinally relevant pH in vitro, and to utilize a rapid in vivo bioassay to evaluate AFB(1) and FB(1) toxicity and UPSN efficacy. Isothermal sorption data indicated tight AFB(1) binding to UPSN surfaces at both pH 2.0 and 6.5, but substantially more FB(1) bound at pH 2.0 than 6.5. Site-specific competition occurred between the toxins when exposed to UPSN in combination. Importantly, treatment with UPSN resulted in significant protection to mycotoxin-exposed hydra maintained at pH 6.9-7.0. Hydra were exposed to FB(1), AFB(1) and FB(1) /AFB(1) combinations with and without UPSN. A toxic response over 92 h was rated based on morphology and mortality. Hydra assay results indicated a minimum effective concentration (MEC) of 20 µg ml(-1) for AFB(1), whereas the MEC for FB(1) was not reached. The MEC for co-exposure was 400 µg ml(-1) FB(1) + 10 µg ml(-1) AFB(1). This study demonstrates that UPSN sorbs both mycotoxins tightly at physiologically relevant pH levels, resulting in decreased bioavailability, and that a modified hydra bioassay can be used as an initial screen in vivo to predict efficacy of toxin-binding agents. Copyright © 2012 John Wiley & Sons, Ltd.

  17. Parabolized Navier-Stokes Code for Computing Magneto-Hydrodynamic Flowfields

    NASA Technical Reports Server (NTRS)

    Mehta, Unmeel B. (Technical Monitor); Tannehill, J. C.

    2003-01-01

    This report consists of two published papers, 'Computation of Magnetohydrodynamic Flows Using an Iterative PNS Algorithm' and 'Numerical Simulation of Turbulent MHD Flows Using an Iterative PNS Algorithm'.

  18. Nada: A new code for studying self-gravitating tori around black holes

    NASA Astrophysics Data System (ADS)

    Montero, Pedro J.; Font, José A.; Shibata, Masaru

    2008-09-01

    We present a new two-dimensional numerical code called Nada designed to solve the full Einstein equations coupled to the general relativistic hydrodynamics equations. The code is mainly intended for studies of self-gravitating accretion disks (or tori) around black holes, although it is also suitable for regular spacetimes. Concerning technical aspects the Einstein equations are formulated and solved in the code using a formulation of the standard 3+1 Arnowitt-Deser-Misner canonical formalism system, the so-called Baumgarte-Shapiro Shibata-Nakamura approach. A key feature of the code is that derivative terms in the spacetime evolution equations are computed using a fourth-order centered finite difference approximation in conjunction with the Cartoon method to impose the axisymmetry condition under Cartesian coordinates (the choice in Nada), and the puncture/moving puncture approach to carry out black hole evolutions. Correspondingly, the general relativistic hydrodynamics equations are written in flux-conservative form and solved with high-resolution, shock-capturing schemes. We perform and discuss a number of tests to assess the accuracy and expected convergence of the code, namely, (single) black hole evolutions, shock tubes, and evolutions of both spherical and rotating relativistic stars in equilibrium, the gravitational collapse of a spherical relativistic star leading to the formation of a black hole. In addition, paving the way for specific applications of the code, we also present results from fully general relativistic numerical simulations of a system formed by a black hole surrounded by a self-gravitating torus in equilibrium.

  19. Molecular gas content of galaxies in the Hydra-Centaurus supercluster

    NASA Technical Reports Server (NTRS)

    Huchtmeier, W. K.

    1993-01-01

    A survey of bright spiral galaxies in the Hydra-Centaurus supercluster for the CO(1-0) transition at 115 GHz was performed with the 15m Swedish-ESO submillimeter telescope (SEST). A total of 30 galaxies have been detected in the CO(1-0) transition out of 47 observed, which is a detection rate over 60%. Global physical parameters of these galaxies derived from optical, CO, HI, and IR measurements compare very well with properties of galaxies in the Virgo cluster.

  20. Simulation study of enhancing laser-driven multi-keV line-radiation through application of external magnetic fields

    NASA Astrophysics Data System (ADS)

    Kemp, G. Elijah; Colvin, J. D.; Fournier, K. B.; May, M. J.; Barrios, M. A.; Patel, M. V.; Koning, J. M.; Scott, H. A.; Marinak, M. M.

    2015-11-01

    Laser-driven, spectrally tailored, high-flux x-ray sources have been developed over the past decade for testing the radiation hardness of materials used in various civilian, space and military applications. The optimal electron temperatures for these x-ray sources occur around twice the desired photon energy. At the National Ignition Facility (NIF) laser, the available energy can produce plasmas with ~ 10keV electron temperatures which result in highly-efficient ~ 5keV radiation but less than optimal emission from the > 10keV sources. In this work, we present a possible venue for enhancing multi-keV x-ray emission on existing laser platforms through the application of an external magnetic field. Preliminary radiation-hydrodynamics calculations with Hydra suggest as much as 2 - 14 × increases in laser-to-x-ray conversion efficiency for 22 - 68keV K-shell sources are possible on the NIF laser - without any changes in laser-drive conditions - through the application of an external axial 50 T field. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  1. VAC: Versatile Advection Code

    NASA Astrophysics Data System (ADS)

    Tóth, Gábor; Keppens, Rony

    2012-07-01

    The Versatile Advection Code (VAC) is a freely available general hydrodynamic and magnetohydrodynamic simulation software that works in 1, 2 or 3 dimensions on Cartesian and logically Cartesian grids. VAC runs on any Unix/Linux system with a Fortran 90 (or 77) compiler and Perl interpreter. VAC can run on parallel machines using either the Message Passing Interface (MPI) library or a High Performance Fortran (HPF) compiler.

  2. Anomalous-hydrodynamic analysis of charge-dependent elliptic flow in heavy-ion collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hongo, Masaru; Hirono, Yuji; Hirano, Tetsufumi

    Anomalous hydrodynamics is a low-energy effective theory that captures effects of quantum anomalies. We develop a numerical code of anomalous hydrodynamics and apply it to dynamics of heavy-ion collisions, where anomalous transports are expected to occur. This is the first attempt to perform fully non-linear numerical simulations of anomalous hydrodynamics. We discuss implications of the simulations for possible experimental observations of anomalous transport effects. From analyses of the charge-dependent elliptic flow parameters (vmore » $$±\\atop{2}$$) as a function of the net charge asymmetry A ±, we find that the linear dependence of Δv$$±\\atop{2}$$ ≡ v$$-\\atop{2}$$ - v$$+\\atop{2}$$ on the net charge asymmetry A ± cannot be regarded as a robust signal of anomalous transports, contrary to previous studies. We, however, find that the intercept Δv$$±\\atop{2}$$ (A ± = 0) is sensitive to anomalous transport effects.« less

  3. Anomalous-hydrodynamic analysis of charge-dependent elliptic flow in heavy-ion collisions

    DOE PAGES

    Hongo, Masaru; Hirono, Yuji; Hirano, Tetsufumi

    2017-12-10

    Anomalous hydrodynamics is a low-energy effective theory that captures effects of quantum anomalies. We develop a numerical code of anomalous hydrodynamics and apply it to dynamics of heavy-ion collisions, where anomalous transports are expected to occur. This is the first attempt to perform fully non-linear numerical simulations of anomalous hydrodynamics. We discuss implications of the simulations for possible experimental observations of anomalous transport effects. From analyses of the charge-dependent elliptic flow parameters (vmore » $$±\\atop{2}$$) as a function of the net charge asymmetry A ±, we find that the linear dependence of Δv$$±\\atop{2}$$ ≡ v$$-\\atop{2}$$ - v$$+\\atop{2}$$ on the net charge asymmetry A ± cannot be regarded as a robust signal of anomalous transports, contrary to previous studies. We, however, find that the intercept Δv$$±\\atop{2}$$ (A ± = 0) is sensitive to anomalous transport effects.« less

  4. StarSmasher: Smoothed Particle Hydrodynamics code for smashing stars and planets

    NASA Astrophysics Data System (ADS)

    Gaburov, Evghenii; Lombardi, James C., Jr.; Portegies Zwart, Simon; Rasio, F. A.

    2018-05-01

    Smoothed Particle Hydrodynamics (SPH) is a Lagrangian particle method that approximates a continuous fluid as discrete nodes, each carrying various parameters such as mass, position, velocity, pressure, and temperature. In an SPH simulation the resolution scales with the particle density; StarSmasher is able to handle both equal-mass and equal number-density particle models. StarSmasher solves for hydro forces by calculating the pressure for each particle as a function of the particle's properties - density, internal energy, and internal properties (e.g. temperature and mean molecular weight). The code implements variational equations of motion and libraries to calculate the gravitational forces between particles using direct summation on NVIDIA graphics cards. Using a direct summation instead of a tree-based algorithm for gravity increases the accuracy of the gravity calculations at the cost of speed. The code uses a cubic spline for the smoothing kernel and an artificial viscosity prescription coupled with a Balsara Switch to prevent unphysical interparticle penetration. The code also implements an artificial relaxation force to the equations of motion to add a drag term to the calculated accelerations during relaxation integrations. Initially called StarCrash, StarSmasher was developed originally by Rasio.

  5. Modelling multi-phase liquid-sediment scour and resuspension induced by rapid flows using Smoothed Particle Hydrodynamics (SPH) accelerated with a Graphics Processing Unit (GPU)

    NASA Astrophysics Data System (ADS)

    Fourtakas, G.; Rogers, B. D.

    2016-06-01

    A two-phase numerical model using Smoothed Particle Hydrodynamics (SPH) is applied to two-phase liquid-sediments flows. The absence of a mesh in SPH is ideal for interfacial and highly non-linear flows with changing fragmentation of the interface, mixing and resuspension. The rheology of sediment induced under rapid flows undergoes several states which are only partially described by previous research in SPH. This paper attempts to bridge the gap between the geotechnics, non-Newtonian and Newtonian flows by proposing a model that combines the yielding, shear and suspension layer which are needed to predict accurately the global erosion phenomena, from a hydrodynamics prospective. The numerical SPH scheme is based on the explicit treatment of both phases using Newtonian and the non-Newtonian Bingham-type Herschel-Bulkley-Papanastasiou constitutive model. This is supplemented by the Drucker-Prager yield criterion to predict the onset of yielding of the sediment surface and a concentration suspension model. The multi-phase model has been compared with experimental and 2-D reference numerical models for scour following a dry-bed dam break yielding satisfactory results and improvements over well-known SPH multi-phase models. With 3-D simulations requiring a large number of particles, the code is accelerated with a graphics processing unit (GPU) in the open-source DualSPHysics code. The implementation and optimisation of the code achieved a speed up of x58 over an optimised single thread serial code. A 3-D dam break over a non-cohesive erodible bed simulation with over 4 million particles yields close agreement with experimental scour and water surface profiles.

  6. Three-Dimensional Hydrodynamic Simulations of OMEGA Implosions

    NASA Astrophysics Data System (ADS)

    Igumenshchev, I. V.

    2016-10-01

    The effects of large-scale (with Legendre modes less than 30) asymmetries in OMEGA direct-drive implosions caused by laser illumination nonuniformities (beam-power imbalance and beam mispointing and mistiming) and target offset, mount, and layers nonuniformities were investigated using three-dimensional (3-D) hydrodynamic simulations. Simulations indicate that the performance degradation in cryogenic implosions is caused mainly by the target offsets ( 10 to 20 μm), beampower imbalance (σrms 10 %), and initial target asymmetry ( 5% ρRvariation), which distort implosion cores, resulting in a reduced hot-spot confinement and an increased residual kinetic energy of the stagnated target. The ion temperature inferred from the width of simulated neutron spectra are influenced by bulk fuel motion in the distorted hot spot and can result in up to 2-keV apparent temperature increase. Similar temperature variations along different lines of sight are observed. Simulated x-ray images of implosion cores in the 4- to 8-keV energy range show good agreement with experiments. Demonstrating hydrodynamic equivalence to ignition designs on OMEGA requires reducing large-scale target and laser-imposed nonuniformities, minimizing target offset, and employing high-efficient mid-adiabat (α = 4) implosion designs that mitigate cross-beam energy transfer (CBET) and suppress short-wavelength Rayleigh-Taylor growth. These simulations use a new low-noise 3-D Eulerian hydrodynamic code ASTER. Existing 3-D hydrodynamic codes for direct-drive implosions currently miss CBET and noise-free ray-trace laser deposition algorithms. ASTER overcomes these limitations using a simplified 3-D laser-deposition model, which includes CBET and is capable of simulating the effects of beam-power imbalance, beam mispointing, mistiming, and target offset. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  7. General relativistic hydrodynamics with Adaptive-Mesh Refinement (AMR) and modeling of accretion disks

    NASA Astrophysics Data System (ADS)

    Donmez, Orhan

    We present a general procedure to solve the General Relativistic Hydrodynamical (GRH) equations with Adaptive-Mesh Refinement (AMR) and model of an accretion disk around a black hole. To do this, the GRH equations are written in a conservative form to exploit their hyperbolic character. The numerical solutions of the general relativistic hydrodynamic equations is done by High Resolution Shock Capturing schemes (HRSC), specifically designed to solve non-linear hyperbolic systems of conservation laws. These schemes depend on the characteristic information of the system. We use Marquina fluxes with MUSCL left and right states to solve GRH equations. First, we carry out different test problems with uniform and AMR grids on the special relativistic hydrodynamics equations to verify the second order convergence of the code in 1D, 2 D and 3D. Second, we solve the GRH equations and use the general relativistic test problems to compare the numerical solutions with analytic ones. In order to this, we couple the flux part of general relativistic hydrodynamic equation with a source part using Strang splitting. The coupling of the GRH equations is carried out in a treatment which gives second order accurate solutions in space and time. The test problems examined include shock tubes, geodesic flows, and circular motion of particle around the black hole. Finally, we apply this code to the accretion disk problems around the black hole using the Schwarzschild metric at the background of the computational domain. We find spiral shocks on the accretion disk. They are observationally expected results. We also examine the star-disk interaction near a massive black hole. We find that when stars are grounded down or a hole is punched on the accretion disk, they create shock waves which destroy the accretion disk.

  8. Revealing the Physics of Galactic Winds Through Massively-Parallel Hydrodynamics Simulations

    NASA Astrophysics Data System (ADS)

    Schneider, Evan Elizabeth

    This thesis documents the hydrodynamics code Cholla and a numerical study of multiphase galactic winds. Cholla is a massively-parallel, GPU-based code designed for astrophysical simulations that is freely available to the astrophysics community. A static-mesh Eulerian code, Cholla is ideally suited to carrying out massive simulations (> 20483 cells) that require very high resolution. The code incorporates state-of-the-art hydrodynamics algorithms including third-order spatial reconstruction, exact and linearized Riemann solvers, and unsplit integration algorithms that account for transverse fluxes on multidimensional grids. Operator-split radiative cooling and a dual-energy formalism for high mach number flows are also included. An extensive test suite demonstrates Cholla's superior ability to model shocks and discontinuities, while the GPU-native design makes the code extremely computationally efficient - speeds of 5-10 million cell updates per GPU-second are typical on current hardware for 3D simulations with all of the aforementioned physics. The latter half of this work comprises a comprehensive study of the mixing between a hot, supernova-driven wind and cooler clouds representative of those observed in multiphase galactic winds. Both adiabatic and radiatively-cooling clouds are investigated. The analytic theory of cloud-crushing is applied to the problem, and adiabatic turbulent clouds are found to be mixed with the hot wind on similar timescales as the classic spherical case (4-5 t cc) with an appropriate rescaling of the cloud-crushing time. Radiatively cooling clouds survive considerably longer, and the differences in evolution between turbulent and spherical clouds cannot be reconciled with a simple rescaling. The rapid incorporation of low-density material into the hot wind implies efficient mass-loading of hot phases of galactic winds. At the same time, the extreme compression of high-density cloud material leads to long-lived but slow-moving clumps that are unlikely to escape the galaxy.

  9. Distinct antimicrobial peptide expression determines host species-specific bacterial associations

    PubMed Central

    Franzenburg, Sören; Walter, Jonas; Künzel, Sven; Wang, Jun; Baines, John F.; Bosch, Thomas C. G.; Fraune, Sebastian

    2013-01-01

    Animals are colonized by coevolved bacterial communities, which contribute to the host’s health. This commensal microbiota is often highly specific to its host-species, inferring strong selective pressures on the associated microbes. Several factors, including diet, mucus composition, and the immune system have been proposed as putative determinants of host-associated bacterial communities. Here we report that species-specific antimicrobial peptides account for different bacterial communities associated with closely related species of the cnidarian Hydra. Gene family extensions for potent antimicrobial peptides, the arminins, were detected in four Hydra species, with each species possessing a unique composition and expression profile of arminins. For functional analysis, we inoculated arminin-deficient and control polyps with bacterial consortia characteristic for different Hydra species and compared their selective preferences by 454 pyrosequencing of the bacterial microbiota. In contrast to control polyps, arminin-deficient polyps displayed decreased potential to select for bacterial communities resembling their native microbiota. This finding indicates that species-specific antimicrobial peptides shape species-specific bacterial associations. PMID:24003149

  10. Dust formation and wind acceleration around the aluminum oxide-rich AGB star W Hydrae

    NASA Astrophysics Data System (ADS)

    Takigawa, Aki; Kamizuka, Takafumi; Tachibana, Shogo; Yamamura, Issei

    2017-11-01

    Dust grains, formed around asymptotic giant branch (AGB) stars, are accelerated by stellar radiation to drive stellar winds, which supply freshly synthesized nuclides to the Galaxy. Silicate is the dominant dust species in space, but 40% of oxygen-rich AGB stars are thought to have comparable amounts of aluminum oxide dust. Dust formation and the wind-driving mechanism around these oxygen-rich stars, however, are poorly understood. We report on the spatial distributions of AlO and 29SiO molecules around an aluminum oxide-rich M-type AGB star, W Hydrae, based on observations obtained with the Atacama Large Millimeter/submillimeter Array. AlO molecules were only observed within three stellar radii (Rstar), whereas 29SiO was distributed in the accelerated wind beyond 5 Rstar without significant depletion. This strongly suggests that condensed aluminum oxide dust plays a key role in accelerating the stellar wind and in preventing the efficient formation of silicate dust around W Hydrae.

  11. Unique, polyfucosylated glycan-receptor interactions are essential for regeneration of Hydra magnipapillata.

    PubMed

    Sahadevan, Sonu; Antonopoulos, Aristotelis; Haslam, Stuart M; Dell, Anne; Ramaswamy, Subramanian; Babu, Ponnusamy

    2014-01-17

    Cell-cell communications, cell-matrix interactions, and cell migrations play a major role in regeneration. However, little is known about the molecular players involved in these critical events, especially cell surface molecules. Here, we demonstrate the role of specific glycan-receptor interactions in the regenerative process using Hydra magnipapillata as a model system. Global characterization of the N- and O-glycans expressed by H. magnipapillata using ultrasensitive mass spectrometry revealed mainly polyfucosylated LacdiNAc antennary structures. Affinity purification showed that a putative C-type lectin (accession number Q6SIX6) is a likely endogenous receptor for the novel polyfucosylated glycans. Disruption of glycan-receptor interactions led to complete shutdown of the regeneration machinery in live Hydra. A time-dependent, lack-of-regeneration phenotype observed upon incubation with exogenous fuco-lectins suggests the involvement of a polyfucose receptor-mediated signaling mechanism during regeneration. Thus, for the first time, the results presented here provide direct evidence for the role of polyfucosylated glycan-receptor interactions in the regeneration of H. magnipapillata.

  12. Stem cells and aging from a quasi-immortal point of view.

    PubMed

    Boehm, Anna-Marei; Rosenstiel, Philip; Bosch, Thomas C G

    2013-11-01

    Understanding aging and how it affects an organism's lifespan is a fundamental problem in biology. A hallmark of aging is stem cell senescence, the decline of functionality, and number of somatic stem cells, resulting in an impaired regenerative capacity and reduced tissue function. In addition, aging is characterized by profound remodeling of the immune system and a quantitative decline of adequate immune responses, a phenomenon referred to as immune-senescence. Yet, what is causing stem cell and immune-senescence? This review discusses experimental studies of potentially immortal Hydra which have made contributions to answering this question. Hydra transcription factor FoxO has been shown to modulate both stem cell proliferation and innate immunity, lending strong support to a role of FoxO as critical rate-of-aging regulator from Hydra to human. Constructing a model of how FoxO responds to diverse environmental factors provides a framework for how stem cell factors might contribute to aging. © 2013 WILEY Periodicals, Inc.

  13. A switch in disulfide linkage during minicollagen assembly in Hydra nematocysts.

    PubMed

    Engel, U; Pertz, O; Fauser, C; Engel, J; David, C N; Holstein, T W

    2001-06-15

    The smallest known collagens with only 14 Gly-X-Y repeats referred to as minicollagens are the main constituents of the capsule wall of nematocysts. These are explosive organelles found in Hydra, jellyfish, corals and other Cnidaria. Minicollagen-1 of Hydra recombinantly expressed in mammalian 293 cells contains disulfide bonds within its N- and C-terminal Cys-rich domains but no interchain cross-links. It is soluble and self-associates through non-covalent interactions to form 25-nm-long trimeric helical rod-like molecules. We have used a polyclonal antibody prepared against the recombinant protein to follow the maturation of minicollagens from soluble precursors present in the endoplasmic reticulum and post-Golgi vacuoles to the disulfide-linked insoluble assembly form of the wall. The switch from intra- to intermolecular disulfide bonds is associated with 'hardening' of the capsule wall and provides an explanation for its high tensile strength and elasticity. The process is comparable to disulfide reshuffling between the NC1 domains of collagen IV in mammalian basement membranes.

  14. Dust formation and wind acceleration around the aluminum oxide–rich AGB star W Hydrae

    PubMed Central

    Takigawa, Aki; Kamizuka, Takafumi; Tachibana, Shogo; Yamamura, Issei

    2017-01-01

    Dust grains, formed around asymptotic giant branch (AGB) stars, are accelerated by stellar radiation to drive stellar winds, which supply freshly synthesized nuclides to the Galaxy. Silicate is the dominant dust species in space, but ~40% of oxygen-rich AGB stars are thought to have comparable amounts of aluminum oxide dust. Dust formation and the wind-driving mechanism around these oxygen-rich stars, however, are poorly understood. We report on the spatial distributions of AlO and 29SiO molecules around an aluminum oxide–rich M-type AGB star, W Hydrae, based on observations obtained with the Atacama Large Millimeter/submillimeter Array. AlO molecules were only observed within three stellar radii (Rstar), whereas 29SiO was distributed in the accelerated wind beyond 5 Rstar without significant depletion. This strongly suggests that condensed aluminum oxide dust plays a key role in accelerating the stellar wind and in preventing the efficient formation of silicate dust around W Hydrae. PMID:29109978

  15. Computer Simulation of the VASIMR Engine

    NASA Technical Reports Server (NTRS)

    Garrison, David

    2005-01-01

    The goal of this project is to develop a magneto-hydrodynamic (MHD) computer code for simulation of the VASIMR engine. This code is designed be easy to modify and use. We achieve this using the Cactus framework, a system originally developed for research in numerical relativity. Since its release, Cactus has become an extremely powerful and flexible open source framework. The development of the code will be done in stages, starting with a basic fluid dynamic simulation and working towards a more complex MHD code. Once developed, this code can be used by students and researchers in order to further test and improve the VASIMR engine.

  16. Dynamics of circumstellar disks. III. The case of GG Tau A

    DOE PAGES

    Nelson, Andrew F.; Marzari, Francesco

    2016-08-11

    Here, we present two-dimensional hydrodynamic simulations using the Smoothed Particle Hydrodynamic code, VINE, to model a self-gravitating binary system. We model configurations in which a circumbinary torus+disk surrounds a pair of stars in orbit around each other and a circumstellar disk surrounds each star, similar to that observed for the GG Tau A system. We assume that the disks cool as blackbodies, using rates determined independently at each location in the disk by the time dependent temperature of the photosphere there. We assume heating due to hydrodynamical processes and to radiation from the two stars, using rates approximated from amore » measure of the radiation intercepted by the disk at its photosphere.« less

  17. Interplay of Laser-Plasma Interactions and Inertial Fusion Hydrodynamics

    DOE PAGES

    Strozzi, D. J.; Bailey, D. S.; Michel, P.; ...

    2017-01-12

    The effects of laser-plasma interactions (LPI) on the dynamics of inertial confinement fusion hohlraums are investigated in this work via a new approach that self-consistently couples reduced LPI models into radiation-hydrodynamics numerical codes. The interplay between hydrodynamics and LPI—specifically stimulated Raman scatter and crossed-beam energy transfer (CBET)—mostly occurs via momentum and energy deposition into Langmuir and ion acoustic waves. This spatially redistributes energy coupling to the target, which affects the background plasma conditions and thus, modifies laser propagation. In conclusion, this model shows reduced CBET and significant laser energy depletion by Langmuir waves, which reduce the discrepancy between modeling andmore » data from hohlraum experiments on wall x-ray emission and capsule implosion shape.« less

  18. Coherent dynamic structure factors of strongly coupled plasmas: A generalized hydrodynamic approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Di; Hu, GuangYue; Gong, Tao

    2016-05-15

    A generalized hydrodynamic fluctuation model is proposed to simplify the calculation of the dynamic structure factor S(ω, k) of non-ideal plasmas using the fluctuation-dissipation theorem. In this model, the kinetic and correlation effects are both included in hydrodynamic coefficients, which are considered as functions of the coupling strength (Γ) and collision parameter (kλ{sub ei}), where λ{sub ei} is the electron-ion mean free path. A particle-particle particle-mesh molecular dynamics simulation code is also developed to simulate the dynamic structure factors, which are used to benchmark the calculation of our model. A good agreement between the two different approaches confirms the reliabilitymore » of our model.« less

  19. The numerical modelling of MHD astrophysical flows with chemistry

    NASA Astrophysics Data System (ADS)

    Kulikov, I.; Chernykh, I.; Protasov, V.

    2017-10-01

    The new code for numerical simulation of magnetic hydrodynamical astrophysical flows with consideration of chemical reactions is given in the paper. At the heart of the code - the new original low-dissipation numerical method based on a combination of operator splitting approach and piecewise-parabolic method on the local stencil. The chemodynamics of the hydrogen while the turbulent formation of molecular clouds is modeled.

  20. VizieR Online Data Catalog: FARGO_THORIN 1.0 hydrodynamic code (Chrenko+, 2017)

    NASA Astrophysics Data System (ADS)

    Chrenko, O.; Broz, M.; Lambrechts, M.

    2017-07-01

    This archive contains the source files, documentation and example simulation setups of the FARGO_THORIN 1.0 hydrodynamic code. The program was introduced, described and used for simulations in the paper. It is built on top of the FARGO code (Masset, 2000A&AS..141..165M, Baruteau & Masset, 2008ApJ...672.1054B) and it is also interfaced with the REBOUND integrator package (Rein & Liu, 2012A&A...537A.128R). THORIN stands for Two-fluid HydrOdynamics, the Rebound integrator Interface and Non-isothermal gas physics. The program is designed for self-consistent investigations of protoplanetary systems consisting of a gas disk, a disk of small solid particles (pebbles) and embedded protoplanets. Code features: I) Non-isothermal gas disk with implicit numerical solution of the energy equation. The implemented energy source terms are: Compressional heating, viscous heating, stellar irradiation, vertical escape of radiation, radiative diffusion in the midplane and radiative feedback to accretion heating of protoplanets. II) Planets evolved in 3D, with close encounters allowed. The orbits are integrated using the IAS15 integrator (Rein & Spiegel, 2015MNRAS.446.1424R). The code detects the collisions among planets and resolve them as mergers. III) Refined treatment of the planet-disk gravitational interaction. The code uses a vertical averaging of the gravitational potential, as outlined in Muller & Kley (2012A&A...539A..18M). IV) Pebble disk represented by an Eulerian, presureless and inviscid fluid. The pebble dynamics is affected by the Epstein gas drag and optionally by the diffusive effects. We also implemented the drag back-reaction term into the Navier-Stokes equation for the gas. Archive summary: ------------------------------------------------------------------------- directory/file Explanation ------------------------------------------------------------------------- /in_relax Contains setup of the first example simulation /in_wplanet Contains setup of the second example simulation /srcmain Contains the source files of FARGOTHORIN /src_reb Contains the source files of the REBOUND integrator package to be linked with THORIN GUNGPL3 GNU General Public License, version 3 LICENSE License agreement README Simple user's guide UserGuide.pdf Extended user's guide refman.pdf Programer's guide ----------------------------------------------------------------------------- (1 data file).

  1. Multi-D Full Boltzmann Neutrino Hydrodynamic Simulations in Core Collapse Supernovae and their detailed comparison with Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Nagakura, Hiroki; Richers, Sherwood; Ott, Christian; Iwakami, Wakana; Furusawa, Shun; Sumiyoshi, Kohsuke; Yamada, Shoichi

    2017-01-01

    We have developed a multi-d radiation-hydrodynamic code which solves first-principles Boltzmann equation for neutrino transport. It is currently applicable specifically for core-collapse supernovae (CCSNe), but we will extend their applicability to further extreme phenomena such as black hole formation and coalescence of double neutron stars. In this meeting, I will discuss about two things; (1) detailed comparison with a Monte-Carlo neutrino transport (2) axisymmetric CCSNe simulations. The project (1) gives us confidence of our code. The Monte-Carlo code has been developed by Caltech group and it is specialized to obtain a steady state. Among CCSNe community, this is the first attempt to compare two different methods for multi-d neutrino transport. I will show the result of these comparison. For the project (2), I particularly focus on the property of neutrino distribution function in the semi-transparent region where only first-principle Boltzmann solver can appropriately handle the neutrino transport. In addition to these analyses, I will also discuss the ``explodability'' by neutrino heating mechanism.

  2. Plasma viscosity with mass transport in spherical inertial confinement fusion implosion simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vold, E. L.; Molvig, K.; Joglekar, A. S.

    2015-11-15

    The effects of viscosity and small-scale atomic-level mixing on plasmas in inertial confinement fusion (ICF) currently represent challenges in ICF research. Many current ICF hydrodynamic codes ignore the effects of viscosity though recent research indicates viscosity and mixing by classical transport processes may have a substantial impact on implosion dynamics. We have implemented a Lagrangian hydrodynamic code in one-dimensional spherical geometry with plasma viscosity and mass transport and including a three temperature model for ions, electrons, and radiation treated in a gray radiation diffusion approximation. The code is used to study ICF implosion differences with and without plasma viscosity andmore » to determine the impacts of viscosity on temperature histories and neutron yield. It was found that plasma viscosity has substantial impacts on ICF shock dynamics characterized by shock burn timing, maximum burn temperatures, convergence ratio, and time history of neutron production rates. Plasma viscosity reduces the need for artificial viscosity to maintain numerical stability in the Lagrangian formulation and also modifies the flux-limiting needed for electron thermal conduction.« less

  3. Plasma viscosity with mass transport in spherical inertial confinement fusion implosion simulations

    DOE PAGES

    Vold, Erik Lehman; Joglekar, Archis S.; Ortega, Mario I.; ...

    2015-11-20

    The effects of viscosity and small-scale atomic-level mixing on plasmas in inertial confinement fusion(ICF) currently represent challenges in ICF research. Many current ICF hydrodynamic codes ignore the effects of viscosity though recent research indicates viscosity and mixing by classical transport processes may have a substantial impact on implosion dynamics. In this paper, we have implemented a Lagrangian hydrodynamic code in one-dimensional spherical geometry with plasmaviscosity and mass transport and including a three temperature model for ions, electrons, and radiation treated in a gray radiation diffusion approximation. The code is used to study ICF implosion differences with and without plasmaviscosity andmore » to determine the impacts of viscosity on temperature histories and neutron yield. It was found that plasmaviscosity has substantial impacts on ICF shock dynamics characterized by shock burn timing, maximum burn temperatures, convergence ratio, and time history of neutron production rates. Finally, plasmaviscosity reduces the need for artificial viscosity to maintain numerical stability in the Lagrangian formulation and also modifies the flux-limiting needed for electron thermal conduction.« less

  4. GPUs, a New Tool of Acceleration in CFD: Efficiency and Reliability on Smoothed Particle Hydrodynamics Methods

    PubMed Central

    Crespo, Alejandro C.; Dominguez, Jose M.; Barreiro, Anxo; Gómez-Gesteira, Moncho; Rogers, Benedict D.

    2011-01-01

    Smoothed Particle Hydrodynamics (SPH) is a numerical method commonly used in Computational Fluid Dynamics (CFD) to simulate complex free-surface flows. Simulations with this mesh-free particle method far exceed the capacity of a single processor. In this paper, as part of a dual-functioning code for either central processing units (CPUs) or Graphics Processor Units (GPUs), a parallelisation using GPUs is presented. The GPU parallelisation technique uses the Compute Unified Device Architecture (CUDA) of nVidia devices. Simulations with more than one million particles on a single GPU card exhibit speedups of up to two orders of magnitude over using a single-core CPU. It is demonstrated that the code achieves different speedups with different CUDA-enabled GPUs. The numerical behaviour of the SPH code is validated with a standard benchmark test case of dam break flow impacting on an obstacle where good agreement with the experimental results is observed. Both the achieved speed-ups and the quantitative agreement with experiments suggest that CUDA-based GPU programming can be used in SPH methods with efficiency and reliability. PMID:21695185

  5. A Gap in TW Hydrae's Disk

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-01-01

    Located a mere 176 light-years away, TW Hydrae is an 8-million-year-old star surrounded by a nearly face-on disk of gas and dust. Recent observations have confirmed the existence of a gap within that disk a particularly intriguing find, since gaps can sometimes signal the presence of a planet.Gaps and PlanetsNumerical simulations have shown that newly-formed planets orbiting within dusty disks can clear the gas and dust out of their paths. This process results in pressure gradients that can be seen in the density structure of the disk, in the form of visible gaps, rings, or spirals.For this reason, finding a gap in a protoplanetary disk can be an exciting discovery. Previous observations of the disk around TW Hydrae had indicated that there might be a gap present, but they were limited in their resolution; despite TW Hydraes relative nearness, attempting to observe the dim light scattered off dust particles in a disk surrounding a distant, bright star is difficult!But a team led by Valerie Rapson (Rochester Institute of Technology, Dudley Observatory) recently set out to follow up on this discovery using a powerful tool: the Gemini Planet Imager (GPI).New ObservationsComparison of the actual image of TW Hydraes disk from GPI (right) to a simulated scattered-light image from a model of a ~0.2 Jupiter-mass planet orbiting in the disk at ~21 AU (left) in two different bands (top: J, bottom: K1).[Adapted from Rapson et al. 2015]GPI is an instrument on the Gemini South Telescope in Chile. Its near-infrared imagers, equipped with extreme adaptive optics, allowed it to probe the disk from ~80 AU all the way in to ~10 AU from the central star, with an unprecedented resolution of ~1.5 AU.These observations from GPI allowed Rapson and collaborators to unambiguously confirm the presence of a gap in TW Hydraes disk. The gap lies at a distance of ~23 AU from the central star (roughly the same distance as Uranus to the Sun), and its ~5 AU wide.Modeled PossibilitiesThere are a number of other potential explanations for this gap for instance, the inner disk could be casting a shadow on the outer disk, or the gap could be a natural consequence of how grains fragment and evolve within the disk.Nevertheless, an orbiting planet embedded in the disk may well be the cause.When Rapson and collaborators ran numerical simulations of a planet orbiting within a disk like TW Hydraes, they found that a planet of 0.16 Jupiter masses, orbiting at a distance of 21 AU, reproduces the observations well.With any luck, well be able to learn more with additional observations in the future. Deeper images may reveal additional features that point to a planet shaping the disk structure. And if the planet is actively accreting gas in the disk, we may even be able to directly image the planet!CitationValerie A. Rapson et al 2015 ApJ 815 L26. doi:10.1088/2041-8205/815/2/L26

  6. Evaluating nuclear physics inputs in core-collapse supernova models

    NASA Astrophysics Data System (ADS)

    Lentz, E.; Hix, W. R.; Baird, M. L.; Messer, O. E. B.; Mezzacappa, A.

    Core-collapse supernova models depend on the details of the nuclear and weak interaction physics inputs just as they depend on the details of the macroscopic physics (transport, hydrodynamics, etc.), numerical methods, and progenitors. We present preliminary results from our ongoing comparison studies of nuclear and weak interaction physics inputs to core collapse supernova models using the spherically-symmetric, general relativistic, neutrino radiation hydrodynamics code Agile-Boltztran. We focus on comparisons of the effects of the nuclear EoS and the effects of improving the opacities, particularly neutrino--nucleon interactions.

  7. FESTR: Finite-Element Spectral Transfer of Radiation spectroscopic modeling and analysis code

    DOE PAGES

    Hakel, Peter

    2016-10-01

    Here we report on the development of a new spectral postprocessor of hydrodynamic simulations of hot, dense plasmas. Based on given time histories of one-, two-, and three-dimensional spatial distributions of materials, and their local temperature and density conditions, spectroscopically-resolved signals are computed. The effects of radiation emission and absorption by the plasma on the emergent spectra are simultaneously taken into account. This program can also be used independently of hydrodynamic calculations to analyze available experimental data with the goal of inferring plasma conditions.

  8. FESTR: Finite-Element Spectral Transfer of Radiation spectroscopic modeling and analysis code

    NASA Astrophysics Data System (ADS)

    Hakel, Peter

    2016-10-01

    We report on the development of a new spectral postprocessor of hydrodynamic simulations of hot, dense plasmas. Based on given time histories of one-, two-, and three-dimensional spatial distributions of materials, and their local temperature and density conditions, spectroscopically-resolved signals are computed. The effects of radiation emission and absorption by the plasma on the emergent spectra are simultaneously taken into account. This program can also be used independently of hydrodynamic calculations to analyze available experimental data with the goal of inferring plasma conditions.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prasad, M.K.; Kershaw, D.S.; Shaw, M.J.

    The authors present detailed features of the ICF3D hydrodynamics code used for inertial fusion simulations. This code is intended to be a state-of-the-art upgrade of the well-known fluid code, LASNEX. ICF3D employs discontinuous finite elements on a discrete unstructured mesh consisting of a variety of 3D polyhedra including tetrahedra, prisms, and hexahedra. The authors discussed details of how the ROE-averaged second-order convection was applied on the discrete elements, and how the C++ coding interface has helped to simplify implementing the many physics and numerics modules within the code package. The author emphasized the virtues of object-oriented design in large scalemore » projects such as ICF3D.« less

  10. Hydra: A web-based system for cardiovascular analysis, diagnosis and treatment.

    PubMed

    Novo, J; Hermida, A; Ortega, M; Barreira, N; Penedo, M G; López, J E; Calvo, C

    2017-02-01

    Cardiovascular (CV) risk stratification is a highly complex process involving an extensive set of clinical trials to support the clinical decision-making process. There are many clinical conditions (e.g. diabetes, obesity, stress, etc.) that can lead to the early diagnosis or establishment of cardiovascular disease. In order to determine all these clinical conditions, a complete set of clinical patient analyses is typically performed, including a physical examination, blood analysis, electrocardiogram, blood pressure (BP) analysis, etc. This article presents a web-based system, called Hydra, which integrates a full and detailed set of services and functionalities for clinical decision support in order to help and improve the work of clinicians in cardiovascular patient diagnosis, risk assessment, treatment and monitoring over time. Hydra integrates a number of different services: a service for inputting all the information gathered by specialists (physical examination, habits, BP, blood analysis, electrocardiogram, etc.); a tool to automatically determine the CV risk stratification, including well-known standard risk stratification tables; and, finally, various tools to incorporate, analyze and graphically present the records of the ambulatory BP monitoring that provides BP analysis over a given period of time (24 or 48 hours). In addition, the platform presents a set of reports derived from all the information gathered from the patient in order to support physicians in their clinical decisions. Hydra was tested and validated in a real domain. In particular, internal medicine specialists at the Hypertension Unit of the Santiago de Compostela University Hospital (CHUS) validated the platform and used it in different clinical studies to demonstrate its utility. It was observed that the platform increased productivity and accuracy in the assessment of patient data yielding a cost reduction in clinical practice. This paper proposes a complete platform that includes different services for cardiovascular clinical decision support. It was also run as a web-based application to facilitate its use by clinicians, who can access the platform from any remote computer with Internet access. Hydra also includes different automated methods to facilitate the physicians' work and avoid potential errors in the analysis of patient data. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. An open-source software platform for data management, visualisation, model building and model sharing in water, energy and other resource modelling domains.

    NASA Astrophysics Data System (ADS)

    Knox, S.; Meier, P.; Mohammed, K.; Korteling, B.; Matrosov, E. S.; Hurford, A.; Huskova, I.; Harou, J. J.; Rosenberg, D. E.; Thilmant, A.; Medellin-Azuara, J.; Wicks, J.

    2015-12-01

    Capacity expansion on resource networks is essential to adapting to economic and population growth and pressures such as climate change. Engineered infrastructure systems such as water, energy, or transport networks require sophisticated and bespoke models to refine management and investment strategies. Successful modeling of such complex systems relies on good data management and advanced methods to visualize and share data.Engineered infrastructure systems are often represented as networks of nodes and links with operating rules describing their interactions. Infrastructure system management and planning can be abstracted to simulating or optimizing new operations and extensions of the network. By separating the data storage of abstract networks from manipulation and modeling we have created a system where infrastructure modeling across various domains is facilitated.We introduce Hydra Platform, a Free Open Source Software designed for analysts and modelers to store, manage and share network topology and data. Hydra Platform is a Python library with a web service layer for remote applications, called Apps, to connect. Apps serve various functions including network or results visualization, data export (e.g. into a proprietary format) or model execution. This Client-Server architecture allows users to manipulate and share centrally stored data. XML templates allow a standardised description of the data structure required for storing network data such that it is compatible with specific models.Hydra Platform represents networks in an abstract way and is therefore not bound to a single modeling domain. It is the Apps that create domain-specific functionality. Using Apps researchers from different domains can incorporate different models within the same network enabling cross-disciplinary modeling while minimizing errors and streamlining data sharing. Separating the Python library from the web layer allows developers to natively expand the software or build web-based apps in other languages for remote functionality. Partner CH2M is developing a commercial user-interface for Hydra Platform however custom interfaces and visualization tools can be built. Hydra Platform is available on GitHub while Apps will be shared on a central repository.

  12. Progress Towards a Rad-Hydro Code for Modern Computing Architectures LA-UR-10-02825

    NASA Astrophysics Data System (ADS)

    Wohlbier, J. G.; Lowrie, R. B.; Bergen, B.; Calef, M.

    2010-11-01

    We are entering an era of high performance computing where data movement is the overwhelming bottleneck to scalable performance, as opposed to the speed of floating-point operations per processor. All multi-core hardware paradigms, whether heterogeneous or homogeneous, be it the Cell processor, GPGPU, or multi-core x86, share this common trait. In multi-physics applications such as inertial confinement fusion or astrophysics, one may be solving multi-material hydrodynamics with tabular equation of state data lookups, radiation transport, nuclear reactions, and charged particle transport in a single time cycle. The algorithms are intensely data dependent, e.g., EOS, opacity, nuclear data, and multi-core hardware memory restrictions are forcing code developers to rethink code and algorithm design. For the past two years LANL has been funding a small effort referred to as Multi-Physics on Multi-Core to explore ideas for code design as pertaining to inertial confinement fusion and astrophysics applications. The near term goals of this project are to have a multi-material radiation hydrodynamics capability, with tabular equation of state lookups, on cartesian and curvilinear block structured meshes. In the longer term we plan to add fully implicit multi-group radiation diffusion and material heat conduction, and block structured AMR. We will report on our progress to date.

  13. Vectorization, threading, and cache-blocking considerations for hydrocodes on emerging architectures

    DOE PAGES

    Fung, J.; Aulwes, R. T.; Bement, M. T.; ...

    2015-07-14

    This work reports on considerations for improving computational performance in preparation for current and expected changes to computer architecture. The algorithms studied will include increasingly complex prototypes for radiation hydrodynamics codes, such as gradient routines and diffusion matrix assembly (e.g., in [1-6]). The meshes considered for the algorithms are structured or unstructured meshes. The considerations applied for performance improvements are meant to be general in terms of architecture (not specifically graphical processing unit (GPUs) or multi-core machines, for example) and include techniques for vectorization, threading, tiling, and cache blocking. Out of a survey of optimization techniques on applications such asmore » diffusion and hydrodynamics, we make general recommendations with a view toward making these techniques conceptually accessible to the applications code developer. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.« less

  14. Numerical Tests and Properties of Waves in Radiating Fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, B M; Klein, R I

    2009-09-03

    We discuss the properties of an analytical solution for waves in radiating fluids, with a view towards its implementation as a quantitative test of radiation hydrodynamics codes. A homogeneous radiating fluid in local thermodynamic equilibrium is periodically driven at the boundary of a one-dimensional domain, and the solution describes the propagation of the waves thus excited. Two modes are excited for a given driving frequency, generally referred to as a radiative acoustic wave and a radiative diffusion wave. While the analytical solution is well known, several features are highlighted here that require care during its numerical implementation. We compare themore » solution in a wide range of parameter space to a numerical integration with a Lagrangian radiation hydrodynamics code. Our most significant observation is that flux-limited diffusion does not preserve causality for waves on a homogeneous background.« less

  15. Hydrodynamic Studies of Turbulent AGN Tori

    NASA Astrophysics Data System (ADS)

    Schartmann, M.; Meisenheimer, K.; Klahr, H.; Camenzind, M.; Wolf, S.; Henning, Th.; Burkert, A.; Krause, M.

    Recently, the MID-infrared Interferometric instrument (MIDI) at the VLTI has shown that dust tori in the two nearby Seyfert galaxies NGC 1068 and the Circinus galaxy are geometrically thick and can be well described by a thin, warm central disk, surrounded by a colder and fluffy torus component. By carrying out hydrodynamical simulations with the help of the TRAMP code (Klahr et al. 1999), we follow the evolution of a young nuclear star cluster in terms of discrete mass-loss and energy injection from stellar processes. This naturally leads to a filamentary large scale torus component, where cold gas is able to flow radially inwards. The filaments join into a dense and very turbulent disk structure. In a post-processing step, we calculate spectral energy distributions and images with the 3D radiative transfer code MC3D Wolf (2003) and compare them to observations. Turbulence in the dense disk component is investigated in a separate project.

  16. PELEC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2017-05-17

    PeleC is an adaptive-mesh compressible hydrodynamics code for reacting flows. It solves the compressible Navier-Stokes with multispecies transport in a block structured framework. The resulting algorithm is well suited for flows with localized resolution requirements and robust to discontinuities. User controllable refinement crieteria has the potential to result in extremely small numerical dissipation and dispersion, making this code appropriate for both research and applied usage. The code is built on the AMReX library which facilitates hierarchical parallelism and manages distributed memory parallism. PeleC algorithms are implemented to express shared memory parallelism.

  17. Developmental toxicity and structure/activity correlates of glycols and glycol ethers.

    PubMed Central

    Johnson, E M; Gabel, B E; Larson, J

    1984-01-01

    In recent years, the National Toxicology Program (NTP) has selected numerous glycol ethers for testing in routine laboratory mammals to ascertain the magnitude of their ability to injure the conceptus. From the lists available of ongoing and projected NTP test chemicals, a series of glycol ethers was selected for examination in vitro in the hydra assay. Also tested were additional chemicals of similar molecular configuration and/or composition. This short-term screening test placed the 14 glycols and glycol ethers tested into a rank order sequence according to their degree of hazard potential to developmental biology, i.e., their ability to interfere with the developmental events characteristic of all ontogenic systems. They were ranked according to the difference between the lowest dose or concentration overtly toxic to adults (A) and the lowest concentration interfering with development (D) of the artificial embryo of reaggregated adult hydra cells and the A/D ratio. Published data from mammalian studies were available for a few of the test chemicals, and in each instance the hydra assay was in direct agreement with the outcomes reported of the more elaborate and standard animal tests. Ethylene glycol and ethylene glycol monomethyl ether were shown by both standard evaluations in mammals, and by the hydra assay, to disrupt embryos only at or very near to their respective adult toxic doses, whereas the mono-ethyl ether perturbed development at approximately one-fifth of the lowest dose overtly toxic to adults.(ABSTRACT TRUNCATED AT 250 WORDS) Images FIGURE 1. A FIGURE 1. B FIGURE 1. C PMID:6499797

  18. Multi-scale biomarker evaluation of the toxicity of a commercial azo dye (Disperse Red 1) in an animal model, the freshwater cnidarian Hydra attenuata.

    PubMed

    de Jong, Laetitia; Pech, Nicolas; de Aragão Umbuzeiro, Gisela; Moreau, Xavier

    2016-06-01

    Acute (24 h, 48 h, 72 h) and chronic (7 days) tests have been performed to evaluate the effects of the commercial azo dye Disperse Red 1 (DR1) using various biomarkers in the freshwater invertebrate Hydra attenuata. Morphological changes have been selected to calculate ecotoxicological thresholds for sublethal and lethal DR1 concentrations. A multinomial logistic model showed that the probability of each morphological stage occurrence was function of concentration, time and interaction between both. Results of oxidative balance parameter measurements (72 h and 7 days) suggest that polyps set up defense mechanisms to limit lipid peroxidation caused by DR1. DR1 exposure at hormetic concentrations induces increase of asexual reproductive rates. This result suggests (1) an impact on the fitness-related phenotypical traits and (2) trade-offs between reproduction and maintenance to allow the population to survive harsher conditions. Changes in serotonin immuno-labeling in polyps showing alterations in feeding behavior suggest that chronic DR1 exposure impaired neuronal processes related to ingesting behavior in H. attenuata. This ecotoxicity study sheds light on the possible serotonin function in Hydra model and reports for the first time that serotonin could play a significant role in feeding behavior. This study used a multi-scale biomarker approach investigating biochemical, morphological, reproductive and behavioral endpoints in Hydra attenuata. This organism is proposed for a pertinent animal model to assess ecotoxicological impact of pollutant mixtures in freshwater environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. The innate immune repertoire in cnidaria--ancestral complexity and stochastic gene loss.

    PubMed

    Miller, David J; Hemmrich, Georg; Ball, Eldon E; Hayward, David C; Khalturin, Konstantin; Funayama, Noriko; Agata, Kiyokazu; Bosch, Thomas C G

    2007-01-01

    Characterization of the innate immune repertoire of extant cnidarians is of both fundamental and applied interest--it not only provides insights into the basic immunological 'tool kit' of the common ancestor of all animals, but is also likely to be important in understanding the global decline of coral reefs that is presently occurring. Recently, whole genome sequences became available for two cnidarians, Hydra magnipapillata and Nematostella vectensis, and large expressed sequence tag (EST) datasets are available for these and for the coral Acropora millepora. To better understand the basis of innate immunity in cnidarians, we scanned the available EST and genomic resources for some of the key components of the vertebrate innate immune repertoire, focusing on the Toll/Toll-like receptor (TLR) and complement pathways. A canonical Toll/TLR pathway is present in representatives of the basal cnidarian class Anthozoa, but neither a classic Toll/TLR receptor nor a conventional nuclear factor (NF)-kappaB could be identified in the anthozoan Hydra. Moreover, the detection of complement C3 and several membrane attack complex/perforin domain (MAC/PF) proteins suggests that a prototypic complement effector pathway may exist in anthozoans, but not in hydrozoans. Together with data for several other gene families, this implies that Hydra may have undergone substantial secondary gene loss during evolution. Such losses are not confined to Hydra, however, and at least one MAC/PF gene appears to have been lost from Nematostella. Consideration of these patterns of gene distribution underscores the likely significance of gene loss during animal evolution whilst indicating ancient origins for many components of the vertebrate innate immune system.

  20. Anomalous-hydrodynamic analysis of charge-dependent elliptic flow in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Hongo, Masaru; Hirono, Yuji; Hirano, Tetsufumi

    2017-12-01

    Anomalous hydrodynamics is a low-energy effective theory that captures effects of quantum anomalies. We develop a numerical code of ideal anomalous hydrodynamics and apply it to dynamics of heavy-ion collisions, where anomalous transports are expected to occur. We discuss implications of the simulations for possible experimental observations of anomalous transport effects. From analyses of the charge-dependent elliptic flow parameters (v2±) as a function of the net charge asymmetry A±, we find that the linear dependence of Δ v2± ≡ v2- - v2+ on the net charge asymmetry A± can come from a mechanism unrelated to anomalous transport effects. Instead, we find that a finite intercept Δ v2± (A± = 0) can come from anomalous effects.

  1. Parametric geometric model and shape optimization of an underwater glider with blended-wing-body

    NASA Astrophysics Data System (ADS)

    Sun, Chunya; Song, Baowei; Wang, Peng

    2015-11-01

    Underwater glider, as a new kind of autonomous underwater vehicles, has many merits such as long-range, extended-duration and low costs. The shape of underwater glider is an important factor in determining the hydrodynamic efficiency. In this paper, a high lift to drag ratio configuration, the Blended-Wing-Body (BWB), is used to design a small civilian under water glider. In the parametric geometric model of the BWB underwater glider, the planform is defined with Bezier curve and linear line, and the section is defined with symmetrical airfoil NACA 0012. Computational investigations are carried out to study the hydrodynamic performance of the glider using the commercial Computational Fluid Dynamics (CFD) code Fluent. The Kriging-based genetic algorithm, called Efficient Global Optimization (EGO), is applied to hydrodynamic design optimization. The result demonstrates that the BWB underwater glider has excellent hydrodynamic performance, and the lift to drag ratio of initial design is increased by 7% in the EGO process.

  2. Using hybrid implicit Monte Carlo diffusion to simulate gray radiation hydrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleveland, Mathew A., E-mail: cleveland7@llnl.gov; Gentile, Nick

    This work describes how to couple a hybrid Implicit Monte Carlo Diffusion (HIMCD) method with a Lagrangian hydrodynamics code to evaluate the coupled radiation hydrodynamics equations. This HIMCD method dynamically applies Implicit Monte Carlo Diffusion (IMD) [1] to regions of a problem that are opaque and diffusive while applying standard Implicit Monte Carlo (IMC) [2] to regions where the diffusion approximation is invalid. We show that this method significantly improves the computational efficiency as compared to a standard IMC/Hydrodynamics solver, when optically thick diffusive material is present, while maintaining accuracy. Two test cases are used to demonstrate the accuracy andmore » performance of HIMCD as compared to IMC and IMD. The first is the Lowrie semi-analytic diffusive shock [3]. The second is a simple test case where the source radiation streams through optically thin material and heats a thick diffusive region of material causing it to rapidly expand. We found that HIMCD proves to be accurate, robust, and computationally efficient for these test problems.« less

  3. The 2006-2007 Observing Campaign On VX Hydrae

    NASA Astrophysics Data System (ADS)

    Templeton, Matthew R.; Samolyk, G.; Dvorak, S.; Poklar, R.; Butterworth, N.; Gerner, H. S.

    2009-12-01

    We present the results of the 2006-2007 observing campaign on the double-mode delta Scuti star VX Hydrae. Nearly 8800 V-band CCD observations were obtained during the two observing seasons. Although the data were taken with small telescopes (0.3-m or less, using consumer-grade CCD cameras), the data quality is very high, enabling the detection of variability at the millimagnitude level at some frequencies. Analysis of the data yields only two primary pulsation frequencies: f(0) = 4.4765 c/d, and f(1) = 5.7899 c/d. The two modes have comparable amplitude, although the amplitude of f(1) appears to have increased slightly from 2006 to 2007 by 0.01 mag. Only two pulsation modes are detected, but at least 18 additional linear combination frequencies are also clearly detected, some having amplitudes as low as 1 mmag, resulting in an incredibly rich Fourier spectrum. We discuss the evidence for amplitude variation in VX Hydrae, along with prospects for future study of this and other similar delta Scuti stars by AAVSO observers.

  4. Disk Accretion in the 10 Myr Old T Tauri Stars TW Hydrae and Hen 3-600A.

    PubMed

    Muzerolle; Calvet; Briceño; Hartmann; Hillenbrand

    2000-05-20

    We have found that two members of the TW Hydrae association, TW Hydrae and Hen 3-600A, are still actively accreting, based on the ballistic infall signature of their broad Halpha emission profiles. We present the first quantitative analysis of accretion in these objects and conclude that the same accretion mechanisms which operate in the well-studied 1 Myr old T Tauri stars can and do occur in older (10 Myr) stars. We derive the first estimates of the disk mass accretion rate in TW Hya and Hen 3-600A, which are 1-2 orders of magnitude lower than the average rates in 1 Myr old objects. The decrease in accretion rates over 10 Myr, as well as the low fraction of TW Hya association objects still accreting, points to significant disk evolution, possibly linked to planet formation. Given the multiplicity of the Hen 3-600 system and the large UV excess of TW Hya, our results show that accretion disks can be surprisingly long lived in spite of the presence of companions and significant UV ionizing flux.

  5. Hydra, a powerful model for aging studies

    PubMed Central

    Tomczyk, Szymon; Fischer, Kathleen; Austad, Steven; Galliot, Brigitte

    2015-01-01

    Cnidarian Hydra polyps escape senescence, most likely due to the robust activity of their three stem cell populations. These stem cells continuously self-renew in the body column and differentiate at the extremities following a tightly coordinated spatial pattern. Paul Brien showed in 1953 that in one particular species, Hydra oligactis, cold-dependent sexual differentiation leads to rapid aging and death. Here, we review the features of this inducible aging phenotype. These cellular alterations, detected several weeks after aging was induced, are characterized by a decreasing density of somatic interstitial cell derivatives, a disorganization of the apical nervous system, and a disorganization of myofibers of the epithelial cells. Consequently, tissue replacement required to maintain homeostasis, feeding behavior, and contractility of the animal are dramatically affected. Interestingly, this aging phenotype is not observed in all H. oligactis strains, thus providing a powerful experimental model for investigations of the genetic control of aging. Given the presence in the cnidarian genome of a large number of human orthologs that have been lost in ecdysozoans, such approaches might help uncover novel regulators of aging in vertebrates. PMID:26120246

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cotton, W. D.; Mason, B. S.; Dicker, S. R.

    This paper presents new observations of the active galactic nuclei M87 and Hydra A at 90 GHz made with the MUSTANG array on the Green Bank Telescope at 8.''5 resolution. A spectral analysis is performed combining this new data and archival VLA{sup 7}The VLA is operated by the National Radio Astronomy Observatory, which is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. data on these objects at longer wavelengths. This analysis can detect variations in spectral index and curvature expected from energy losses in the radiating particles. M87 shows only weak evidence formore » steepening of the spectrum along the jet suggesting either re-acceleration of the relativistic particles in the jet or insufficient losses to affect the spectrum at 90 GHz. The jets in Hydra A show strong steepening as they move from the nucleus suggesting unbalanced losses of the higher energy relativistic particles. The difference between these two sources may be accounted for by the lengths over which the jets are observable, 2 kpc for M87 and 45 kpc for Hydra A.« less

  7. A secreted antibacterial neuropeptide shapes the microbiome of Hydra.

    PubMed

    Augustin, René; Schröder, Katja; Murillo Rincón, Andrea P; Fraune, Sebastian; Anton-Erxleben, Friederike; Herbst, Eva-Maria; Wittlieb, Jörg; Schwentner, Martin; Grötzinger, Joachim; Wassenaar, Trudy M; Bosch, Thomas C G

    2017-09-26

    Colonization of body epithelial surfaces with a highly specific microbial community is a fundamental feature of all animals, yet the underlying mechanisms by which these communities are selected and maintained are not well understood. Here, we show that sensory and ganglion neurons in the ectodermal epithelium of the model organism hydra (a member of the animal phylum Cnidaria) secrete neuropeptides with antibacterial activity that may shape the microbiome on the body surface. In particular, a specific neuropeptide, which we call NDA-1, contributes to the reduction of Gram-positive bacteria during early development and thus to a spatial distribution of the main colonizer, the Gram-negative Curvibacter sp., along the body axis. Our findings warrant further research to test whether neuropeptides secreted by nerve cells contribute to the spatial structure of microbial communities in other organisms.Certain neuropeptides, in addition to their neuromodulatory functions, display antibacterial activities of unclear significance. Here, the authors show that a secreted neuropeptide modulates the distribution of bacterial communities on the body surface during development of the model organism Hydra.

  8. DNA repair enzyme APE1 from evolutionarily ancient Hydra reveals redox activity exclusively found in mammalian APE1.

    PubMed

    Pekhale, Komal; Haval, Gauri; Perween, Nusrat; Antoniali, Giulia; Tell, Gianluca; Ghaskadbi, Surendra; Ghaskadbi, Saroj

    2017-11-01

    Only mammalian apurinic/apyrimidinic endonuclease1 (APE1) has been reported to possess both DNA repair and redox activities. C terminal of the protein is required for base excision repair, while the redox activity resides in the N terminal due to cysteine residues at specific positions. APE1s from other organisms studied so far lack the redox activity in spite of having the N terminal domain. We find that APE1 from the Cnidarian Hydra exhibits both endonuclease and redox activities similar to mammalian APE1. We further show the presence of the three indispensable cysteines in Hydra APE1 for redox activity by site directed mutagenesis. Importance of redox domain but not the repair domain of APE1 in regeneration has been demonstrated by using domain-specific inhibitors. Our findings clearly demonstrate that the redox function of APE1 evolved very early in metazoan evolution and is not a recent acquisition in mammalian APE1 as believed so far. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Cresting the wave: proper motions of the Eastern Banded Structure

    NASA Astrophysics Data System (ADS)

    Deason, Alis J.; Belokurov, Vasily; Koposov, Sergey E.

    2018-01-01

    We study the kinematic properties of the Eastern Banded Structure (EBS) and Hydra I overdensity using exquisite proper motions derived from the Sloan Digital Sky Survey (SDSS) and Gaia source catalogue. Main sequence turn-off stars in the vicinity of the EBS are identified from SDSS photometry; we use the proper motions and, where applicable, spectroscopic measurements of these stars to probe the kinematics of this apparent stream. We find that the EBS and Hydra I share common kinematic and chemical properties with the nearby Monoceros Ring. In particular, the proper motions of the EBS, like Monoceros, are indicative of prograde rotation (Vϕ ∼ 180-220 km s-1), which is similar to the Galactic thick disc. The kinematic structure of stars in the vicinity of the EBS suggests that it is not a distinct stellar stream, but rather marks the 'edge' of the Monoceros Ring. The EBS and Hydra I are the latest substructures to be linked with Monoceros, leaving the Galactic anti-centre a mess of interlinked overdensities which likely share a unified, Galactic disc origin.

  10. Toxicity of water and sediment from stormwater retarding basins to Hydra hexactinella.

    PubMed

    Rosenkrantz, Rikke T; Pollino, Carmel A; Nugegoda, Dayanthi; Baun, Anders

    2008-12-01

    Hydra hexactinella was used to assess the toxicity of stormwater and sediment samples from three retarding basins in Melbourne, Australia, using an acute test, a sublethal test, and a pulse test. Stormwater from the Avoca St retarding basins resulted in a LC50 of 613 ml/L, NOEC and LOEC values of 50 ml/L and 100 ml/L, while the 7h pulse exposure caused a significant increase in the mean population growth rate compared to the control. Water samples from the two other retarding basins were found non-toxic to H. hexactinella. This is the first study to employ sediment tests with Hydra spp. on stormwater sediments and a lower population growth rate was observed for organisms exposed to sediment from the Avoca St retarding basins. The behavioral study showed that H. hexactinella tended to avoid the sediment-water interface when exposed to sediment from all retarding basins, compared to the reference sediment. Further work is needed to determine the long-term effects of stormwater polluted sediments and acute effects due to organism exposure to short-term high concentrations during rain events.

  11. The Formation of a Milky Way-sized Disk Galaxy. I. A Comparison of Numerical Methods

    NASA Astrophysics Data System (ADS)

    Zhu, Qirong; Li, Yuexing

    2016-11-01

    The long-standing challenge of creating a Milky Way- (MW-) like disk galaxy from cosmological simulations has motivated significant developments in both numerical methods and physical models. We investigate these two fundamental aspects in a new comparison project using a set of cosmological hydrodynamic simulations of an MW-sized galaxy. In this study, we focus on the comparison of two particle-based hydrodynamics methods: an improved smoothed particle hydrodynamics (SPH) code Gadget, and a Lagrangian Meshless Finite-Mass (MFM) code Gizmo. All the simulations in this paper use the same initial conditions and physical models, which include star formation, “energy-driven” outflows, metal-dependent cooling, stellar evolution, and metal enrichment. We find that both numerical schemes produce a late-type galaxy with extended gaseous and stellar disks. However, notable differences are present in a wide range of galaxy properties and their evolution, including star-formation history, gas content, disk structure, and kinematics. Compared to Gizmo, the Gadget simulation produced a larger fraction of cold, dense gas at high redshift which fuels rapid star formation and results in a higher stellar mass by 20% and a lower gas fraction by 10% at z = 0, and the resulting gas disk is smoother and more coherent in rotation due to damping of turbulent motion by the numerical viscosity in SPH, in contrast to the Gizmo simulation, which shows a more prominent spiral structure. Given its better convergence properties and lower computational cost, we argue that the MFM method is a promising alternative to SPH in cosmological hydrodynamic simulations.

  12. THE FORMATION OF A MILKY WAY-SIZED DISK GALAXY. I. A COMPARISON OF NUMERICAL METHODS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Qirong; Li, Yuexing, E-mail: qxz125@psu.edu

    The long-standing challenge of creating a Milky Way- (MW-) like disk galaxy from cosmological simulations has motivated significant developments in both numerical methods and physical models. We investigate these two fundamental aspects in a new comparison project using a set of cosmological hydrodynamic simulations of an MW-sized galaxy. In this study, we focus on the comparison of two particle-based hydrodynamics methods: an improved smoothed particle hydrodynamics (SPH) code Gadget, and a Lagrangian Meshless Finite-Mass (MFM) code Gizmo. All the simulations in this paper use the same initial conditions and physical models, which include star formation, “energy-driven” outflows, metal-dependent cooling, stellarmore » evolution, and metal enrichment. We find that both numerical schemes produce a late-type galaxy with extended gaseous and stellar disks. However, notable differences are present in a wide range of galaxy properties and their evolution, including star-formation history, gas content, disk structure, and kinematics. Compared to Gizmo, the Gadget simulation produced a larger fraction of cold, dense gas at high redshift which fuels rapid star formation and results in a higher stellar mass by 20% and a lower gas fraction by 10% at z = 0, and the resulting gas disk is smoother and more coherent in rotation due to damping of turbulent motion by the numerical viscosity in SPH, in contrast to the Gizmo simulation, which shows a more prominent spiral structure. Given its better convergence properties and lower computational cost, we argue that the MFM method is a promising alternative to SPH in cosmological hydrodynamic simulations.« less

  13. The carbohydrate sequence markup language (CabosML): an XML description of carbohydrate structures.

    PubMed

    Kikuchi, Norihiro; Kameyama, Akihiko; Nakaya, Shuuichi; Ito, Hiromi; Sato, Takashi; Shikanai, Toshihide; Takahashi, Yoriko; Narimatsu, Hisashi

    2005-04-15

    Bioinformatics resources for glycomics are very poor as compared with those for genomics and proteomics. The complexity of carbohydrate sequences makes it difficult to define a common language to represent them, and the development of bioinformatics tools for glycomics has not progressed. In this study, we developed a carbohydrate sequence markup language (CabosML), an XML description of carbohydrate structures. The language definition (XML Schema) and an experimental database of carbohydrate structures using an XML database management system are available at http://www.phoenix.hydra.mki.co.jp/CabosDemo.html kikuchi@hydra.mki.co.jp.

  14. Environmental Impact Research Program. Ecological Effects of Rubble-Mound Breakwater Construction and Channel Dredging at West Harbor, Ohio (Western Lake Erie).

    DTIC Science & Technology

    1985-09-01

    Harbor, Ohio (August 1981-1983) Taxa* Percent Porifera (Spongil a) 0.01 Cnidaria (Hydra) 0.30 Rhabdocoela 0.35 Tricladida 0.16 Nemertinea 0.14 Nematoda...Breakwaters at West Harbor. Ohio (April 1982-September 1983) Taxa* Percent * Cnidaria (Hydra) 5.98 Rhabdocoela 0.14 Tricladida 0.37 Nemertinea 0.11 Nematoda...3 3.0 OL!GOCHAE1A 23 85 2t 2000 CHIRONOMIDAE 3 8 0 163 CNIDARIA 0 2 0 30 BRYOZDA + + + 4 4.0 OLIGOCHAETA 325 56 148 7836 CHIRONOMIDAE 26 13 21

  15. Fluctuating Hydrodynamics Confronts the Rapidity Dependence of Transverse Momentum Fluctuations

    NASA Astrophysics Data System (ADS)

    Pokharel, Rajendra; Gavin, Sean; Moschelli, George

    2012-10-01

    Interest in the development of the theory of fluctuating hydrodynamics is growing [1]. Early efforts suggested that viscous diffusion broadens the rapidity dependence of transverse momentum correlations [2]. That work stimulated an experimental analysis by STAR [3]. We attack this new data along two fronts. First, we compute STAR's fluctuation observable using the NeXSPheRIO code, which combines fluctuating initial conditions from a string fragmentation model with deterministic viscosity-free hydrodynamic evolution. We find that NeXSPheRIO produces a longitudinal narrowing, in contrast to the data. Second, we study the hydrodynamic evolution using second order causal viscous hydrodynamics including Langevin noise. We obtain a deterministic evolution equation for the transverse momentum density correlation function. We use the latest theoretical equations of state and transport coefficients to compute STAR's observable. The results are in excellent accord with the measured broadening. In addition, we predict features of the distribution that can distinguish 2nd and 1st order diffusion. [4pt] [1] J. Kapusta, B. Mueller, M. Stephanov, arXiv:1112.6405 [nucl-th].[0pt] [2] S. Gavin and M. Abdel-Aziz, Phys. Rev. Lett. 97, 162302 (2006)[0pt] [3] H. Agakishiev et al., STAR, STAR, Phys. Lett. B704

  16. Study on unsteady hydrodynamic performance of propeller in waves

    NASA Astrophysics Data System (ADS)

    Zhao, Qingxin; Guo, Chunyu; Su, Yumin; Liu, Tian; Meng, Xiangyin

    2017-09-01

    The speed of a ship sailing in waves always slows down due to the decrease in efficiency of the propeller. So it is necessary and essential to analyze the unsteady hydrodynamic performance of propeller in waves. This paper is based on the numerical simulation and experimental research of hydrodynamics performance when the propeller is under wave conditions. Open-water propeller performance in calm water is calculated by commercial codes and the results are compared to experimental values to evaluate the accuracy of the numerical simulation method. The first-order Volume of Fluid (VOF) wave method in STAR CCM+ is utilized to simulate the three-dimensional numerical wave. According to the above prerequisite, the numerical calculation of hydrodynamic performance of the propeller under wave conditions is conducted, and the results reveal that both thrust and torque of the propeller under wave conditions reveal intense unsteady behavior. With the periodic variation of waves, ventilation, and even an effluent phenomenon appears on the propeller. Calculation results indicate, when ventilation or effluent appears, the numerical calculation model can capture the dynamic characteristics of the propeller accurately, thus providing a significant theory foundation for further studying the hydrodynamic performance of a propeller in waves.

  17. Mass transfer effects in a gasification riser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breault, Ronald W.; Li, Tingwen; Nicoletti, Phillip

    2013-07-01

    In the development of multiphase reacting computational fluid dynamics (CFD) codes, a number of simplifications were incorporated into the codes and models. One of these simplifications was the use of a simplistic mass transfer correlation for the faster reactions and omission of mass transfer effects completely on the moderate speed and slow speed reactions such as those in a fluidized bed gasifier. Another problem that has propagated is that the mass transfer correlation used in the codes is not universal and is being used far from its developed bubbling fluidized bed regime when applied to circulating fluidized bed (CFB) risermore » reactors. These problems are true for the major CFD codes. To alleviate this problem, a mechanistic based mass transfer coefficient algorithm has been developed based upon an earlier work by Breault et al. This fundamental approach uses the local hydrodynamics to predict a local, time varying mass transfer coefficient. The predicted mass transfer coefficients and the corresponding Sherwood numbers agree well with literature data and are typically about an order of magnitude lower than the correlation noted above. The incorporation of the new mass transfer model gives the expected behavior for all the gasification reactions evaluated in the paper. At the expected and typical design values for the solid flow rate in a CFB riser gasifier an ANOVA analysis has shown the predictions from the new code to be significantly different from the original code predictions. The new algorithm should be used such that the conversions are not over predicted. Additionally, its behaviors with changes in solid flow rate are consistent with the changes in the hydrodynamics.« less

  18. Early-time radiation flux symmetry optimization and its effect on gas-filled hohlraum ignition targets on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Milovich, J. L.; Dewald, E. L.; Pak, A.; Michel, P.; Town, R. P. J.; Bradley, D. K.; Landen, O.; Edwards, M. J.

    2016-03-01

    Achieving ignition on the National Ignition Facility (NIF) is tied to our ability to control and minimize deviations from sphericity of the capsule implosion. Low-mode asymmetries of the hot spot result from the combined effect of radiation drive asymmetries throughout the laser pulse and initial roughness on the capsule surface. In this paper, we report on simulations and experiments designed to assess, measure, and correct the drive asymmetries produced by the early-time (≈first 2 ns or "picket") period of the laser pulse. The drive asymmetry during the picket is commonly thought to introduce distortions in the hot-spot shape at ignition time. However, a more subtle effect not previously considered is that it also leads to an asymmetry in shock velocity and timing, thereby increasing the fuel adiabat and reducing the margin for ignition. It is shown via hydrodynamic simulations that minimizing this effect requires that the early-time asymmetry be kept below 7.5% in the second Legendre mode (P2), thus keeping the loss of performance margin below ≈10% for a layered implosion. Asymmetries during the picket of the laser pulse are measured using the instantaneous self-emission of a high-Z re-emission sphere in place of an ignition capsule in a hohlraum with large azimuthal diagnostic windows. Three dimensional simulations using the code HYDRA (to capture the effect of non-azimuthal hohlraum features) coupled to a cross-beam energy transfer model [Michel et al., Phys. Plasmas 17, 056305 (2010)] are used to establish the surrogacy of the re-emit target and to assess the early-time drive symmetry. Calculations using this model exhibit the same sensitivity to variations in the relative input powers between the different cones of NIF beams as measured for the "Rev5" CH target [Haan et al., Phys Plasmas 18, 051001 (2011)] and reported by Dewald et al. [Phys. Rev. Lett. 111, 235001 (2013)]. The same methodology applied to recently improved implosions using different hohlraum geometries and picket powers show good agreement with experimental data.

  19. Early-time radiation flux symmetry optimization and its effect on gas-filled hohlraum ignition targets on the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milovich, J. L., E-mail: milovich1@llnl.gov; Dewald, E. L.; Pak, A.

    2016-03-15

    Achieving ignition on the National Ignition Facility (NIF) is tied to our ability to control and minimize deviations from sphericity of the capsule implosion. Low-mode asymmetries of the hot spot result from the combined effect of radiation drive asymmetries throughout the laser pulse and initial roughness on the capsule surface. In this paper, we report on simulations and experiments designed to assess, measure, and correct the drive asymmetries produced by the early-time (≈first 2 ns or “picket”) period of the laser pulse. The drive asymmetry during the picket is commonly thought to introduce distortions in the hot-spot shape at ignition time.more » However, a more subtle effect not previously considered is that it also leads to an asymmetry in shock velocity and timing, thereby increasing the fuel adiabat and reducing the margin for ignition. It is shown via hydrodynamic simulations that minimizing this effect requires that the early-time asymmetry be kept below 7.5% in the second Legendre mode (P{sub 2}), thus keeping the loss of performance margin below ≈10% for a layered implosion. Asymmetries during the picket of the laser pulse are measured using the instantaneous self-emission of a high-Z re-emission sphere in place of an ignition capsule in a hohlraum with large azimuthal diagnostic windows. Three dimensional simulations using the code HYDRA (to capture the effect of non-azimuthal hohlraum features) coupled to a cross-beam energy transfer model [Michel et al., Phys. Plasmas 17, 056305 (2010)] are used to establish the surrogacy of the re-emit target and to assess the early-time drive symmetry. Calculations using this model exhibit the same sensitivity to variations in the relative input powers between the different cones of NIF beams as measured for the “Rev5” CH target [Haan et al., Phys Plasmas 18, 051001 (2011)] and reported by Dewald et al. [Phys. Rev. Lett. 111, 235001 (2013)]. The same methodology applied to recently improved implosions using different hohlraum geometries and picket powers show good agreement with experimental data.« less

  20. Modeling Close-In Airblast from ANFO Cylindrical and Box-Shaped Charges

    DTIC Science & Technology

    2010-10-01

    Eulerian hydrodynamics code [1]. The Jones-Wilkins-Lee (JWL) equation of the state (EOS) [2] of the reacted ANFO was computed using the Cheetah ...thermodynamics code [3]. Cheetah first calculates the detonation state from Chapman-Jouget (C-J) theory and then models the adiabatic expansion from...success modeling a large range of ANFO charge sizes using the Cheetah -generated EOS along with the Ignition and Growth (IG) reactive flow model [6

  1. MULTI2D - a computer code for two-dimensional radiation hydrodynamics

    NASA Astrophysics Data System (ADS)

    Ramis, R.; Meyer-ter-Vehn, J.; Ramírez, J.

    2009-06-01

    Simulation of radiation hydrodynamics in two spatial dimensions is developed, having in mind, in particular, target design for indirectly driven inertial confinement energy (IFE) and the interpretation of related experiments. Intense radiation pulses by laser or particle beams heat high-Z target configurations of different geometries and lead to a regime which is optically thick in some regions and optically thin in others. A diffusion description is inadequate in this situation. A new numerical code has been developed which describes hydrodynamics in two spatial dimensions (cylindrical R-Z geometry) and radiation transport along rays in three dimensions with the 4 π solid angle discretized in direction. Matter moves on a non-structured mesh composed of trilateral and quadrilateral elements. Radiation flux of a given direction enters on two (one) sides of a triangle and leaves on the opposite side(s) in proportion to the viewing angles depending on the geometry. This scheme allows to propagate sharply edged beams without ray tracing, though at the price of some lateral diffusion. The algorithm treats correctly both the optically thin and optically thick regimes. A symmetric semi-implicit (SSI) method is used to guarantee numerical stability. Program summaryProgram title: MULTI2D Catalogue identifier: AECV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECV_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 151 098 No. of bytes in distributed program, including test data, etc.: 889 622 Distribution format: tar.gz Programming language: C Computer: PC (32 bits architecture) Operating system: Linux/Unix RAM: 2 Mbytes Word size: 32 bits Classification: 19.7 External routines: X-window standard library (libX11.so) and corresponding heading files (X11/*.h) are required. Nature of problem: In inertial confinement fusion and related experiments with lasers and particle beams, energy transport by thermal radiation becomes important. Under these conditions, the radiation field strongly interacts with the hydrodynamic motion through emission and absorption processes. Solution method: The equations of radiation transfer coupled with Lagrangian hydrodynamics, heat diffusion and beam tracing (laser or ions) are solved, in two-dimensional axial-symmetric geometry ( R-Z coordinates) using a fractional step scheme. Radiation transfer is solved with angular resolution. Matter properties are either interpolated from tables (equations-of-state and opacities) or computed by user routines (conductivities and beam attenuation). Restrictions: The code has been designed for typical conditions prevailing in inertial confinement fusion (ns time scale, matter states close to local thermodynamical equilibrium, negligible radiation pressure, …). Although a wider range of situations can be treated, extrapolations to regions beyond this design range need special care. Unusual features: A special computer language, called r94, is used at top levels of the code. These parts have to be converted to standard C by a translation program (supplied as part of the package). Due to the complexity of code (hydro-code, grid generation, user interface, graphic post-processor, translator program, installation scripts) extensive manuals are supplied as part of the package. Running time: 567 seconds for the example supplied.

  2. Numerical MHD codes for modeling astrophysical flows

    NASA Astrophysics Data System (ADS)

    Koldoba, A. V.; Ustyugova, G. V.; Lii, P. S.; Comins, M. L.; Dyda, S.; Romanova, M. M.; Lovelace, R. V. E.

    2016-05-01

    We describe a Godunov-type magnetohydrodynamic (MHD) code based on the Miyoshi and Kusano (2005) solver which can be used to solve various astrophysical hydrodynamic and MHD problems. The energy equation is in the form of entropy conservation. The code has been implemented on several different coordinate systems: 2.5D axisymmetric cylindrical coordinates, 2D Cartesian coordinates, 2D plane polar coordinates, and fully 3D cylindrical coordinates. Viscosity and diffusivity are implemented in the code to control the accretion rate in the disk and the rate of penetration of the disk matter through the magnetic field lines. The code has been utilized for the numerical investigations of a number of different astrophysical problems, several examples of which are shown.

  3. Coupling Hydrodynamic and Wave Propagation Codes for Modeling of Seismic Waves recorded at the SPE Test.

    NASA Astrophysics Data System (ADS)

    Larmat, C. S.; Rougier, E.; Delorey, A.; Steedman, D. W.; Bradley, C. R.

    2016-12-01

    The goal of the Source Physics Experiment (SPE) is to bring empirical and theoretical advances to the problem of detection and identification of underground nuclear explosions. For this, the SPE program includes a strong modeling effort based on first principles calculations with the challenge to capture both the source and near-source processes and those taking place later in time as seismic waves propagate within complex 3D geologic environments. In this paper, we report on results of modeling that uses hydrodynamic simulation codes (Abaqus and CASH) coupled with a 3D full waveform propagation code, SPECFEM3D. For modeling the near source region, we employ a fully-coupled Euler-Lagrange (CEL) modeling capability with a new continuum-based visco-plastic fracture model for simulation of damage processes, called AZ_Frac. These capabilities produce high-fidelity models of various factors believed to be key in the generation of seismic waves: the explosion dynamics, a weak grout-filled borehole, the surrounding jointed rock, and damage creation and deformations happening around the source and the free surface. SPECFEM3D, based on the Spectral Element Method (SEM) is a direct numerical method for full wave modeling with mathematical accuracy. The coupling interface consists of a series of grid points of the SEM mesh situated inside of the hydrodynamic code's domain. Displacement time series at these points are computed using output data from CASH or Abaqus (by interpolation if needed) and fed into the time marching scheme of SPECFEM3D. We will present validation tests with the Sharpe's model and comparisons of waveforms modeled with Rg waves (2-8Hz) that were recorded up to 2 km for SPE. We especially show effects of the local topography, velocity structure and spallation. Our models predict smaller amplitudes of Rg waves for the first five SPE shots compared to pure elastic models such as Denny &Johnson (1991).

  4. Gravitational Capture of Small Bodies by Gas Drag Developed Using Hydrodynamic Equations

    NASA Astrophysics Data System (ADS)

    Pereira de Lima, Nicole; Neto, E. V.

    2013-05-01

    Abstract (2,250 Maximum Characters): The giant planets of the Solar System have two kinds of satellites, the regular and the irregular ones. The irregular ones are supposed to come from other regions were captured by the planet. Using the dynamics of the three-body problem it is possible to explain the gravitational capture of these satellites except for the fact that these captures are only temporary. For this reason it is necessary an additional effect to turn these temporary captures into a permanent ones. In this work we will explore the gas drag mechanism. In the last stage of the giant planets formation a gas envelope formed around each one of them. During the flyby of the satellite this envelope can dissipate energy enough to make it a “prisoner” of the planet. We have made some simulations considering the classical case. In these simulations the classical gas was characterized by ordinary differential equations that describe the velocity and density of it. However this model is a simplified case. To make our model more realistic we use the hydrodynamic model. Thus some modification in the early code were required. One important code changes was the way used to describe the gas. In this new model a region (called cell) and not a point is used to characterize the gas. After making some adjusts we have checked the precision of cells and verified its correlation with other parameters. At this step we have to test the new code trying to reproduce and improve all results obtained before. Meanwhile we are using the software Fargo that creates the hydrodynamic gas to be used as input in the code. After this analysis we will let the gas evolve in time in order to acquire a higher level of realism in this study.

  5. A conservative MHD scheme on unstructured Lagrangian grids for Z-pinch hydrodynamic simulations

    NASA Astrophysics Data System (ADS)

    Wu, Fuyuan; Ramis, Rafael; Li, Zhenghong

    2018-03-01

    A new algorithm to model resistive magnetohydrodynamics (MHD) in Z-pinches has been developed. Two-dimensional axisymmetric geometry with azimuthal magnetic field Bθ is considered. Discretization is carried out using unstructured meshes made up of arbitrarily connected polygons. The algorithm is fully conservative for mass, momentum, and energy. Matter energy and magnetic energy are managed separately. The diffusion of magnetic field is solved using a derivative of the Symmetric-Semi-Implicit scheme, Livne et al. (1985) [23], where unconditional stability is obtained without needing to solve large sparse systems of equations. This MHD package has been integrated into the radiation-hydrodynamics code MULTI-2D, Ramis et al. (2009) [20], that includes hydrodynamics, laser energy deposition, heat conduction, and radiation transport. This setup allows to simulate Z-pinch configurations relevant for Inertial Confinement Fusion.

  6. Hydrodynamic Simulations of Protoplanetary Disks with GIZMO

    NASA Astrophysics Data System (ADS)

    Rice, Malena; Laughlin, Greg

    2018-01-01

    Over the past several decades, the field of computational fluid dynamics has rapidly advanced as the range of available numerical algorithms and computationally feasible physical problems has expanded. The development of modern numerical solvers has provided a compelling opportunity to reconsider previously obtained results in search for yet undiscovered effects that may be revealed through longer integration times and more precise numerical approaches. In this study, we compare the results of past hydrodynamic disk simulations with those obtained from modern analytical resources. We focus our study on the GIZMO code (Hopkins 2015), which uses meshless methods to solve the homogeneous Euler equations of hydrodynamics while eliminating problems arising as a result of advection between grid cells. By comparing modern simulations with prior results, we hope to provide an improved understanding of the impact of fluid mechanics upon the evolution of protoplanetary disks.

  7. Inducing Complete Polyp Regeneration from the Aboral Physa of the Starlet Sea Anemone Nematostella vectensis.

    PubMed

    Bossert, Patricia; Thomsen, Gerald H

    2017-01-14

    Cnidarians, and specifically Hydra, were the first animals shown to regenerate damaged or severed structures, and indeed such studies arguably launched modern biological inquiry through the work of Trembley more than 250 years ago. Presently the study of regeneration has seen a resurgence using both "classic" regenerative organisms, such as the Hydra, planaria and Urodeles, as well as a widening spectrum of species spanning the range of metazoa, from sponges through mammals. Besides its intrinsic interest as a biological phenomenon, understanding how regeneration works in a variety of species will inform us about whether regenerative processes share common features and/or species or context-specific cellular and molecular mechanisms. The starlet sea anemone, Nematostella vectensis, is an emerging model organism for regeneration. Like Hydra, Nematostella is a member of the ancient phylum, cnidaria, but within the class anthozoa, a sister clade to the hydrozoa that is evolutionarily more basal. Thus aspects of regeneration in Nematostella will be interesting to compare and contrast with those of Hydra and other cnidarians. In this article, we present a method to bisect, observe and classify regeneration of the aboral end of the Nematostella adult, which is called the physa. The physa naturally undergoes fission as a means of asexual reproduction, and either natural fission or manual amputation of the physa triggers re-growth and reformation of complex morphologies. Here we have codified these simple morphological changes in a Nematostella Regeneration Staging System (the NRSS). We use the NRSS to test the effects of chloroquine, an inhibitor of lysosomal function that blocks autophagy. The results show that the regeneration of polyp structures, particularly the mesenteries, is abnormal when autophagy is inhibited.

  8. Impact of cycling cells and cell cycle regulation on Hydra regeneration.

    PubMed

    Buzgariu, Wanda; Wenger, Yvan; Tcaciuc, Nina; Catunda-Lemos, Ana-Paula; Galliot, Brigitte

    2018-01-15

    Hydra tissues are made from three distinct populations of stem cells that continuously cycle and pause in G2 instead of G1. To characterize the role of cell proliferation after mid-gastric bisection, we have (i) used flow cytometry and classical markers to monitor cell cycle modulations, (ii) quantified the transcriptomic regulations of 202 genes associated with cell proliferation during head and foot regeneration, and (iii) compared the impact of anti-proliferative treatments on regeneration efficiency. We confirm two previously reported events: an early mitotic wave in head-regenerating tips, when few cell cycle genes are up-regulated, and an early-late wave of proliferation on the second day, preceded by the up-regulation of 17 cell cycle genes. These regulations appear more intense after mid-gastric bisection than after decapitation, suggesting a position-dependent regulation of cell proliferation during head regeneration. Hydroxyurea, which blocks S-phase progression, delays head regeneration when applied before but not after bisection. This result is consistent with the fact that the Hydra central region is enriched in G2-paused adult stem cells, poised to divide upon injury, thus forming a necessary constitutive pro-blastema. However a prolonged exposure to hydroxyurea does not block regeneration as cells can differentiate apical structures without traversing S-phase, and also escape in few days the hydroxyurea-induced S-phase blockade. Thus Hydra head regeneration, which is a fast event, is highly plastic, relying on large stocks of adult stem cells paused in G2 at amputation time, which immediately divide to proliferate and/or differentiate apical structures even when S-phase is blocked. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Hydra myc2, a unique pre-bilaterian member of the myc gene family, is activated in cell proliferation and gametogenesis

    PubMed Central

    Hartl, Markus; Glasauer, Stella; Valovka, Taras; Breuker, Kathrin; Hobmayer, Bert; Bister, Klaus

    2014-01-01

    ABSTRACT The myc protooncogene encodes the Myc transcription factor which is the essential part of the Myc–Max network controlling fundamental cellular processes. Deregulation of myc leads to tumorigenesis and is a hallmark of many human cancers. We have recently identified homologs of myc (myc1, myc2) and max in the early diploblastic cnidarian Hydra and have characterized myc1 in detail. Here we show that myc2 is transcriptionally activated in the interstitial stem cell system. Furthermore, in contrast to myc1, myc2 expression is also detectable in proliferating epithelial stem cells throughout the gastric region. myc2 but not myc1 is activated in cycling precursor cells during early oogenesis and spermatogenesis, suggesting that the Hydra Myc2 protein has a possible non-redundant function in cell cycle progression. The Myc2 protein displays the principal design and properties of vertebrate Myc proteins. In complex with Max, Myc2 binds to DNA with similar affinity as Myc1–Max heterodimers. Immunoprecipitation of Hydra chromatin revealed that both Myc1 and Myc2 bind to the enhancer region of CAD, a classical Myc target gene in mammals. Luciferase reporter gene assays showed that Myc1 but not Myc2 transcriptionally activates the CAD promoter. Myc2 has oncogenic potential when tested in primary avian fibroblasts but to a lower degree as compared to Myc1. The identification of an additional myc gene in Cnidaria, a phylum that diverged prior to bilaterians, with characteristic expression patterns in tissue homeostasis and developmental processes suggests that principle functions of myc genes have arisen very early in metazoan evolution. PMID:24771621

  10. Identification and characterization of VEGF and FGF from Hydra.

    PubMed

    Krishnapati, Lakshmi-Surekha; Ghaskadbi, Surendra

    2013-01-01

    Vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF) play important roles in the formation of the blood vascular system and in axon guidance, nervous system development and function. Here, we report isolation and characterization of VEGF and FGF homologues from Hydra vulgaris Ind-Pune, a Cnidarian which exhibits an organized nervous system and primitive epithelio-muscular cells. VEGF expression was prominent in the endoderm of the peduncle region and tentacles, as evident from in situ hybridization of whole polyps and its transverse sections. High levels of FGF were detected in the ectoderm of the budding region. The expression of VEGF in endodermal and FGF in interstitial cells was confirmed using sf-1 hydra, a temperature-sensitive mutant strain of Hydra magnipapillata. Tissue-specific expression of VEGF and FGF was confirmed by semi quantitative RT-PCR for ectodermal and endodermal tissues in H. vulgaris Ind-Pune. Treatment with SU5416, a specific inhibitor of the VEGF receptor, did not affect the whole polyp, but did delay both budding and head regeneration, suggesting a possible role of VEGF in nerve cell development, tube formation and/or in branching. FGF expression in the ectoderm of budding region, where the majority of interstitial stem cells reside suggests its role in interstitial stem cell maintenance. Further, activation of canonical Wnt signalling with the glycogen synthase kinase-3β (GSK-3β) inhibitor alsterpaullone caused down-regulation of VEGF and FGF, suggesting an antagonistic relationship between the Wnt and VEGF/FGF pathways. Our results indicate that VEGF and FGF evolved early in evolution, before the development of the blood vascular system, and open up the possibility of elucidating the evolutionarily ancient functions of VEGF and FGF.

  11. Sequential development of apical-basal and planar polarities in aggregating epitheliomuscular cells of Hydra.

    PubMed

    Seybold, Anna; Salvenmoser, Willi; Hobmayer, Bert

    2016-04-01

    Apical-basal and planar cell polarities are hallmarks of metazoan epithelia required to separate internal and external environments and to regulate trans- and intracellular transport, cytoskeletal organization, and morphogenesis. Mechanisms of cell polarization have been intensively studied in bilaterian model organisms, particularly in early embryos and cultured cells, while cell polarity in pre-bilaterian tissues is poorly understood. Here, we have studied apical-basal and planar polarization in regenerating (aggregating) clusters of epitheliomuscular cells of Hydra, a simple representative of the ancestral, pre-bilaterian phylum Cnidaria. Immediately after dissociation, single epitheliomuscular cells do not exhibit cellular polarity, but they polarize de novo during aggregation. Reestablishment of the Hydra-specific epithelial bilayer is a result of short-range cell sorting. In the early phase of aggregation, apical-basal polarization starts with an enlargement of the epithelial apical-basal diameter and by the development of belt-like apical septate junctions. Specification of the basal pole of epithelial cells occurs shortly later and is linked to synthesis of mesoglea, development of hemidesmosome-like junctions, and formation of desmosome-like junctions connecting the basal myonemes of neighbouring cells. Planar polarization starts, while apical-basal polarization is already ongoing. It is executed gradually starting with cell-autonomous formation, parallelization, and condensation of myonemes at the basal end of each epithelial cell and continuing with a final planar alignment of epitheliomuscular cells at the tissue level. Our findings reveal that epithelial polarization in Hydra aggregates occurs in defined steps well accessible by histological and ultrastructural techniques and they will provide a basis for future molecular studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Evolution of Antp-class genes and differential expression of Hydra Hox/paraHox genes in anterior patterning

    PubMed Central

    Gauchat, Dominique; Mazet, Françoise; Berney, Cédric; Schummer, Michèl; Kreger, Sylvia; Pawlowski, Jan; Galliot, Brigitte

    2000-01-01

    The conservation of developmental functions exerted by Antp-class homeoproteins in protostomes and deuterostomes suggested that homologs with related functions are present in diploblastic animals. Our phylogenetic analyses showed that Antp-class homeodomains belong either to non-Hox or to Hox/paraHox families. Among the 13 non-Hox families, 9 have diploblastic homologs, Msx, Emx, Barx, Evx, Tlx, NK-2, and Prh/Hex, Not, and Dlx, reported here. Among the Hox/paraHox, poriferan sequences were not found, and the cnidarian sequences formed at least five distinct cnox families. Two are significantly related to the paraHox Gsx (cnox-2) and the mox (cnox-5) sequences, whereas three display some relatedness to the Hox paralog groups 1 (cnox-1), 9/10 (cnox-3) and the paraHox cdx (cnox-4). Intermediate Hox/paraHox genes (PG 3 to 8 and lox) did not have clear cnidarian counterparts. In Hydra, cnox-1, cnox-2, and cnox-3 were not found chromosomally linked within a 150-kb range and displayed specific expression patterns in the adult head. During regeneration, cnox-1 was expressed as an early gene whatever the polarity, whereas cnox-2 was up-regulated later during head but not foot regeneration. Finally, cnox-3 expression was reestablished in the adult head once it was fully formed. These results suggest that the Hydra genes related to anterior Hox/paraHox genes are involved at different stages of apical differentiation. However, the positional information defining the oral/aboral axis in Hydra cannot be correlated strictly to that characterizing the anterior–posterior axis in vertebrates or arthropods. PMID:10781050

  13. The innate immune repertoire in Cnidaria - ancestral complexity and stochastic gene loss

    PubMed Central

    Miller, David J; Hemmrich, Georg; Ball, Eldon E; Hayward, David C; Khalturin, Konstantin; Funayama, Noriko; Agata, Kiyokazu; Bosch, Thomas CG

    2007-01-01

    Background Characterization of the innate immune repertoire of extant cnidarians is of both fundamental and applied interest - it not only provides insights into the basic immunological 'tool kit' of the common ancestor of all animals, but is also likely to be important in understanding the global decline of coral reefs that is presently occurring. Recently, whole genome sequences became available for two cnidarians, Hydra magnipapillata and Nematostella vectensis, and large expressed sequence tag (EST) datasets are available for these and for the coral Acropora millepora. Results To better understand the basis of innate immunity in cnidarians, we scanned the available EST and genomic resources for some of the key components of the vertebrate innate immune repertoire, focusing on the Toll/Toll-like receptor (TLR) and complement pathways. A canonical Toll/TLR pathway is present in representatives of the basal cnidarian class Anthozoa, but neither a classic Toll/TLR receptor nor a conventional nuclear factor (NF)-κB could be identified in the anthozoan Hydra. Moreover, the detection of complement C3 and several membrane attack complex/perforin domain (MAC/PF) proteins suggests that a prototypic complement effector pathway may exist in anthozoans, but not in hydrozoans. Together with data for several other gene families, this implies that Hydra may have undergone substantial secondary gene loss during evolution. Such losses are not confined to Hydra, however, and at least one MAC/PF gene appears to have been lost from Nematostella. Conclusion Consideration of these patterns of gene distribution underscores the likely significance of gene loss during animal evolution whilst indicating ancient origins for many components of the vertebrate innate immune system. PMID:17437634

  14. Application of the High Gradient hydrodynamics code to simulations of a two-dimensional zero-pressure-gradient turbulent boundary layer over a flat plate

    NASA Astrophysics Data System (ADS)

    Kaiser, Bryan E.; Poroseva, Svetlana V.; Canfield, Jesse M.; Sauer, Jeremy A.; Linn, Rodman R.

    2013-11-01

    The High Gradient hydrodynamics (HIGRAD) code is an atmospheric computational fluid dynamics code created by Los Alamos National Laboratory to accurately represent flows characterized by sharp gradients in velocity, concentration, and temperature. HIGRAD uses a fully compressible finite-volume formulation for explicit Large Eddy Simulation (LES) and features an advection scheme that is second-order accurate in time and space. In the current study, boundary conditions implemented in HIGRAD are varied to find those that better reproduce the reduced physics of a flat plate boundary layer to compare with complex physics of the atmospheric boundary layer. Numerical predictions are compared with available DNS, experimental, and LES data obtained by other researchers. High-order turbulence statistics are collected. The Reynolds number based on the free-stream velocity and the momentum thickness is 120 at the inflow and the Mach number for the flow is 0.2. Results are compared at Reynolds numbers of 670 and 1410. A part of the material is based upon work supported by NASA under award NNX12AJ61A and by the Junior Faculty UNM-LANL Collaborative Research Grant.

  15. Thermonuclear runaways in thick hydrogen rich envelopes of neutron stars

    NASA Technical Reports Server (NTRS)

    Starrfield, S. G.; Kenyon, S.; Truran, J. W.; Sparks, W. M.

    1981-01-01

    A Lagrangian, fully implicit, one dimensional hydrodynamic computer code was used to evolve thermonuclear runaways in the accreted hydrogen rich envelopes of 1.0 Msub solar neutron stars with radii of 10 km and 20 km. Simulations produce outbursts which last from about 750 seconds to about one week. Peak effective temeratures and luninosities were 26 million K and 80 thousand Lsub solar for the 10 km study and 5.3 millison and 600 Lsub solar for the 20 km study. Hydrodynamic expansion on the 10 km neutron star produced a precursor lasting about one ten thousandth seconds.

  16. Proceedings of the 1976 Army Numerical and Computer Analysis Conference Held at US Army Research Office, Research Triangle Park, North Carolina, 11-12 February 1976

    DTIC Science & Technology

    1976-09-01

    3 PI TERMS LTV * FlrRCF,**f 1 + R)*LENfiTH**f2*A l TIrlF**17*i? - C) s smn flF EXPH~QSInN soL ~lT!nN FOR Pf TFRn FORCFn l * . innnnnanL 01 AREA... Sol vc tho governing equations implicitly, the same sp:tcr:-staggcrcd schcmc is used. The implicit code employs an alternating-direction tcchniquc...Hansen, W. "Hydrodynamical Methods Applied to Oceano - graphic Problems", Proceedings of the Symposium on Mathematical-Hydrodynamical Methods of

  17. Report from the Integrated Modeling Panel at the Workshop on the Science of Ignition on NIF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marinak, M; Lamb, D

    2012-07-03

    This section deals with multiphysics radiation hydrodynamics codes used to design and simulate targets in the ignition campaign. These topics encompass all the physical processes they model, and include consideration of any approximations necessary due to finite computer resources. The section focuses on what developments would have the highest impact on reducing uncertainties in modeling most relevant to experimental observations. It considers how the ICF codes should be employed in the ignition campaign. This includes a consideration of how the experiments can be best structured to test the physical models the codes employ.

  18. Simulations of Laboratory Astrophysics Experiments using the CRASH code

    NASA Astrophysics Data System (ADS)

    Trantham, Matthew; Kuranz, Carolyn; Fein, Jeff; Wan, Willow; Young, Rachel; Keiter, Paul; Drake, R. Paul

    2015-11-01

    Computer simulations can assist in the design and analysis of laboratory astrophysics experiments. The Center for Radiative Shock Hydrodynamics (CRASH) at the University of Michigan developed a code that has been used to design and analyze high-energy-density experiments on OMEGA, NIF, and other large laser facilities. This Eulerian code uses block-adaptive mesh refinement (AMR) with implicit multigroup radiation transport, electron heat conduction and laser ray tracing. This poster will demonstrate some of the experiments the CRASH code has helped design or analyze including: Kelvin-Helmholtz, Rayleigh-Taylor, magnetized flows, jets, and laser-produced plasmas. This work is funded by the following grants: DEFC52-08NA28616, DE-NA0001840, and DE-NA0002032.

  19. The PLUTO code for astrophysical gasdynamics .

    NASA Astrophysics Data System (ADS)

    Mignone, A.

    Present numerical codes appeal to a consolidated theory based on finite difference and Godunov-type schemes. In this context we have developed a versatile numerical code, PLUTO, suitable for the solution of high-mach number flow in 1, 2 and 3 spatial dimensions and different systems of coordinates. Different hydrodynamic modules and algorithms may be independently selected to properly describe Newtonian, relativistic, MHD, or relativistic MHD fluids. The modular structure exploits a general framework for integrating a system of conservation laws, built on modern Godunov-type shock-capturing schemes. The code is freely distributed under the GNU public license and it is available for download to the astrophysical community at the URL http://plutocode.to.astro.it.

  20. Equilibrium Spline Interface (ESI) for magnetic confinement codes

    NASA Astrophysics Data System (ADS)

    Li, Xujing; Zakharov, Leonid E.

    2017-12-01

    A compact and comprehensive interface between magneto-hydrodynamic (MHD) equilibrium codes and gyro-kinetic, particle orbit, MHD stability, and transport codes is presented. Its irreducible set of equilibrium data consists of three (in the 2-D case with occasionally one extra in the 3-D case) functions of coordinates and four 1-D radial profiles together with their first and mixed derivatives. The C reconstruction routines, accessible also from FORTRAN, allow the calculation of basis functions and their first derivatives at any position inside the plasma and in its vicinity. After this all vector fields and geometric coefficients, required for the above mentioned types of codes, can be calculated using only algebraic operations with no further interpolation or differentiation.

  1. Dynamic Fracture Simulations of Explosively Loaded Cylinders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arthur, Carly W.; Goto, D. M.

    2015-11-30

    This report documents the modeling results of high explosive experiments investigating dynamic fracture of steel (AerMet® 100 alloy) cylinders. The experiments were conducted at Lawrence Livermore National Laboratory (LLNL) during 2007 to 2008 [10]. A principal objective of this study was to gain an understanding of dynamic material failure through the analysis of hydrodynamic computer code simulations. Two-dimensional and three-dimensional computational cylinder models were analyzed using the ALE3D multi-physics computer code.

  2. Verification of the New FAST v8 Capabilities for the Modeling of Fixed-Bottom Offshore Wind Turbines: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barahona, B.; Jonkman, J.; Damiani, R.

    2014-12-01

    Coupled dynamic analysis has an important role in the design of offshore wind turbines because the systems are subject to complex operating conditions from the combined action of waves and wind. The aero-hydro-servo-elastic tool FAST v8 is framed in a novel modularization scheme that facilitates such analysis. Here, we present the verification of new capabilities of FAST v8 to model fixed-bottom offshore wind turbines. We analyze a series of load cases with both wind and wave loads and compare the results against those from the previous international code comparison projects-the International Energy Agency (IEA) Wind Task 23 Subtask 2 Offshoremore » Code Comparison Collaboration (OC3) and the IEA Wind Task 30 OC3 Continued (OC4) projects. The verification is performed using the NREL 5-MW reference turbine supported by monopile, tripod, and jacket substructures. The substructure structural-dynamics models are built within the new SubDyn module of FAST v8, which uses a linear finite-element beam model with Craig-Bampton dynamic system reduction. This allows the modal properties of the substructure to be synthesized and coupled to hydrodynamic loads and tower dynamics. The hydrodynamic loads are calculated using a new strip theory approach for multimember substructures in the updated HydroDyn module of FAST v8. These modules are linked to the rest of FAST through the new coupling scheme involving mapping between module-independent spatial discretizations and a numerically rigorous implicit solver. The results show that the new structural dynamics, hydrodynamics, and coupled solutions compare well to the results from the previous code comparison projects.« less

  3. Fibrous mini-collagens in hydra nematocysts.

    PubMed

    Holstein, T W; Benoit, M; Herder, G V; David, C N; Wanner, G; Gaub, H E

    1994-07-15

    Nematocysts (cnidocysts) are exocytotic organelles found in all cnidarians. Here, atomic force microscopy and field emission scanning electron microscopy reveal the structure of the nematocyst capsule wall. The outer wall consists of globular proteins of unknown function. The inner wall consists of bundles of collagen-like fibrils having a spacing of 50 to 100 nanometers and cross-striations at intervals of 32 nanometers. The fibrils consist of polymers of "mini-collagens," which are abundant in the nematocysts of Hydra. The distinct pattern of mini-collagen fibers in the inner wall can provide the tensile strength necessary to withstand the high osmotic pressure (15 megapascals) in the capsules.

  4. A Search for Ram-pressure Stripping in the Hydra I Cluster

    NASA Technical Reports Server (NTRS)

    Brown, B.

    2005-01-01

    Ram-pressure stripping is a method by which hot interstellar gas can be removed from a galaxy moving through a group or cluster of galaxies. Indirect evidence of ram-pressure stripping includes lowered X-ray brightness in a galaxy due to less X-ray emitting gas remaining in the galaxy. Here we present the initial results of our program to determine whether cluster elliptical galaxies have lower hot gas masses than their counterparts in less rich environments. This test requires the use of the high-resolution imaging of the Chandra Observatory and we present our analysis of the galaxies in the nearby cluster Hydra I.

  5. A Search for Ram-pressure Stripping in the Hydra I Cluster

    NASA Technical Reports Server (NTRS)

    Brown, B. A.

    2005-01-01

    Ram-pressure stripping is a method by which hot interstellar gas can be removed from a galaxy moving through a group or cluster of galaxies. Indirect evidence of ram-pressure stripping includes lowered X- ray brightness in a galaxy due to less X-ray emitting gas remaining in the galaxy. Here we present the initial results of our program to determine whether cluster elliptical galaxies have lower hot gas masses than their counterparts in less rich environments. This test requires the use of the high-resolution imaging of the Chundru Observatory and we present our analysis of the galaxies in the nearby cluster Hydra I.

  6. Functional studies on the role of Notch signaling in Hydractinia development.

    PubMed

    Gahan, James M; Schnitzler, Christine E; DuBuc, Timothy Q; Doonan, Liam B; Kanska, Justyna; Gornik, Sebastian G; Barreira, Sofia; Thompson, Kerry; Schiffer, Philipp; Baxevanis, Andreas D; Frank, Uri

    2017-08-01

    The function of Notch signaling was previously studied in two cnidarians, Hydra and Nematostella, representing the lineages Hydrozoa and Anthozoa, respectively. Using pharmacological inhibition in Hydra and a combination of pharmacological and genetic approaches in Nematostella, it was shown in both animals that Notch is required for tentacle morphogenesis and for late stages of stinging cell maturation. Surprisingly, a role for Notch in neural development, which is well documented in bilaterians, was evident in embryonic Nematostella but not in adult Hydra. Adult neurogenesis in the latter seemed to be unaffected by DAPT, a drug that inhibits Notch signaling. To address this apparent discrepancy, we studied the role of Notch in Hydractinia echinata, an additional hydrozoan, in all life stages. Using CRISPR-Cas9 mediated mutagenesis, transgenesis, and pharmacological interference we show that Notch is dispensable for Hydractinia normal neurogenesis in all life stages but is required for the maturation of stinging cells and for tentacle morphogenesis. Our results are consistent with a conserved role for Notch in morphogenesis and nematogenesis across Cnidaria, and a lineage-specific loss of Notch dependence in neurogenesis in hydrozoans. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wouters, Denis; Brun, Pierre, E-mail: denis.wouters@cea.fr, E-mail: pierre.brun@cea.fr

    Axion-like particles (ALPs) belong to a class of new pseudoscalar particles that generically couple to photons, opening the possibility of oscillations from photons into ALPs in an external magnetic field. Having witnessed the turbulence of their magnetic fields, these oscillations are expected to imprint irregularities on a limited energy range of the spectrum of astrophysical sources. In this study, Chandra observations of the Hydra galaxy cluster are used to constrain the value of the coupling of ALPs to photons. We consider the conversion of X-ray photons from the central source Hydra A in the magnetic field of the cluster. Themore » magnetic field strength and structure are well determined observationally, which adds to the robustness of the analysis. The absence of anomalous irregularities in the X-ray spectrum of Hydra A conservatively provides the most competitive constraints on the coupling constant for ALP masses below 7 Multiplication-Sign 10{sup -12} eV at the level of g{sub {gamma}a} < 8.3 Multiplication-Sign 10{sup -12} GeV{sup -1} at the 95% confidence level. Because of the specific phenomenology involved, these constraints actually hold more generally for very light pseudo-Nambu-Goldstone bosons.« less

  8. MyD88-deficient Hydra reveal an ancient function of TLR signaling in sensing bacterial colonizers

    PubMed Central

    Franzenburg, Sören; Fraune, Sebastian; Künzel, Sven; Baines, John F.; Domazet-Lošo, Tomislav; Bosch, Thomas C. G.

    2012-01-01

    Toll-like receptor (TLR) signaling is one of the most important signaling cascades of the innate immune system of vertebrates. Studies in invertebrates have focused on the fruit fly Drosophila melanogaster and the nematode Caenorhabditis elegans, and there is little information regarding the evolutionary origin and ancestral function of TLR signaling. In Drosophila, members of the Toll-like receptor family are involved in both embryonic development and innate immunity. In C. elegans, a clear immune function of the TLR homolog TOL-1 is controversial and central components of vertebrate TLR signaling including the key adapter protein myeloid differentiation primary response gene 88 (MyD88) and the transcription factor NF-κB are not present. In basal metazoans such as the cnidarians Hydra magnipapillata and Nematostella vectensis, all components of the vertebrate TLR signaling cascade are present, but their role in immunity is unknown. Here, we use a MyD88 loss-of-function approach in Hydra to demonstrate that recognition of bacteria is an ancestral function of TLR signaling and that this process contributes to both host-mediated recolonization by commensal bacteria as well as to defense against bacterial pathogens. PMID:23112184

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stagg, Alan K; Yoon, Su-Jong

    This report describes the Consortium for Advanced Simulation of Light Water Reactors (CASL) work conducted for completion of the Thermal Hydraulics Methods (THM) Level 3 Milestone THM.CFD.P11.02: Hydra-TH Extensions for Multispecies and Thermosolutal Convection. A critical requirement for modeling reactor thermal hydraulics is to account for species transport within the fluid. In particular, this capability is needed for modeling transport and diffusion of boric acid within water for emergency, reactivity-control scenarios. To support this need, a species transport capability has been implemented in Hydra-TH for binary systems (for example, solute within a solvent). A species transport equation is solved formore » the species (solute) mass fraction, and both thermal and solutal buoyancy effects are handled with specification of a Boussinesq body force. Species boundary conditions can be specified with a Dirichlet condition on mass fraction or a Neumann condition on diffusion flux. To enable enhanced species/fluid mixing in turbulent flow, the molecular diffusivity for the binary system is augmented with a turbulent diffusivity in the species transport calculation. The new capabilities are demonstrated by comparison of Hydra-TH calculations to the analytic solution for a thermosolutal convection problem, and excellent agreement is obtained.« less

  10. MyD88-deficient Hydra reveal an ancient function of TLR signaling in sensing bacterial colonizers.

    PubMed

    Franzenburg, Sören; Fraune, Sebastian; Künzel, Sven; Baines, John F; Domazet-Loso, Tomislav; Bosch, Thomas C G

    2012-11-20

    Toll-like receptor (TLR) signaling is one of the most important signaling cascades of the innate immune system of vertebrates. Studies in invertebrates have focused on the fruit fly Drosophila melanogaster and the nematode Caenorhabditis elegans, and there is little information regarding the evolutionary origin and ancestral function of TLR signaling. In Drosophila, members of the Toll-like receptor family are involved in both embryonic development and innate immunity. In C. elegans, a clear immune function of the TLR homolog TOL-1 is controversial and central components of vertebrate TLR signaling including the key adapter protein myeloid differentiation primary response gene 88 (MyD88) and the transcription factor NF-κB are not present. In basal metazoans such as the cnidarians Hydra magnipapillata and Nematostella vectensis, all components of the vertebrate TLR signaling cascade are present, but their role in immunity is unknown. Here, we use a MyD88 loss-of-function approach in Hydra to demonstrate that recognition of bacteria is an ancestral function of TLR signaling and that this process contributes to both host-mediated recolonization by commensal bacteria as well as to defense against bacterial pathogens.

  11. Systematic parameter study of hadron spectra and elliptic flow from viscous hydrodynamic simulations of Au+Au collisions at sNN=200 GeV

    NASA Astrophysics Data System (ADS)

    Shen, Chun; Heinz, Ulrich; Huovinen, Pasi; Song, Huichao

    2010-11-01

    Using the (2+1)-dimensional viscous hydrodynamic code vish2+1 [H. Song and U. Heinz, Phys. Lett. BPYLBAJ0370-269310.1016/j.physletb.2007.11.019 658, 279 (2008); H. Song and U. Heinz, Phys. Rev. CPRVCAN0556-281310.1103/PhysRevC.77.064901 77, 064901 (2008); H. Song, Ph. D. thesis, The Ohio State University, 2009], we present systematic studies of the dependence of pion and proton transverse-momentum spectra and their elliptic flow in 200A GeV Au+Au collisions on the parameters of the hydrodynamic model (thermalization time, initial entropy density distribution, decoupling temperature, equation of state, and specific shear viscosity η/s). We identify a tension between the slope of the proton spectra, which (within hydrodynamic simulations that assume a constant shear viscosity to entropy density ratio) prefer larger η/s values, and the slope of the pT dependence of charged hadron elliptic flow, which prefers smaller values of η/s. Changing other model parameters does not appear to permit dissolution of this tension.

  12. Initialization of hydrodynamics in relativistic heavy ion collisions with an energy-momentum transport model

    NASA Astrophysics Data System (ADS)

    Naboka, V. Yu.; Akkelin, S. V.; Karpenko, Iu. A.; Sinyukov, Yu. M.

    2015-01-01

    A key ingredient of hydrodynamical modeling of relativistic heavy ion collisions is thermal initial conditions, an input that is the consequence of a prethermal dynamics which is not completely understood yet. In the paper we employ a recently developed energy-momentum transport model of the prethermal stage to study influence of the alternative initial states in nucleus-nucleus collisions on flow and energy density distributions of the matter at the starting time of hydrodynamics. In particular, the dependence of the results on isotropic and anisotropic initial states is analyzed. It is found that at the thermalization time the transverse flow is larger and the maximal energy density is higher for the longitudinally squeezed initial momentum distributions. The results are also sensitive to the relaxation time parameter, equation of state at the thermalization time, and transverse profile of initial energy density distribution: Gaussian approximation, Glauber Monte Carlo profiles, etc. Also, test results ensure that the numerical code based on the energy-momentum transport model is capable of providing both averaged and fluctuating initial conditions for the hydrodynamic simulations of relativistic nuclear collisions.

  13. Systematic parameter study of hadron spectra and elliptic flow from viscous hydrodynamic simulations of Au+Au collisions at {radical}(s{sub NN})=200 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen Chun; Heinz, Ulrich; Huovinen, Pasi

    2010-11-15

    Using the (2+1)-dimensional viscous hydrodynamic code vish2+1[H. Song and U. Heinz, Phys. Lett. B 658, 279 (2008); H. Song and U. Heinz, Phys. Rev. C 77, 064901 (2008); H. Song, Ph. D. thesis, The Ohio State University, 2009], we present systematic studies of the dependence of pion and proton transverse-momentum spectra and their elliptic flow in 200A GeV Au+Au collisions on the parameters of the hydrodynamic model (thermalization time, initial entropy density distribution, decoupling temperature, equation of state, and specific shear viscosity {eta}/s). We identify a tension between the slope of the proton spectra, which (within hydrodynamic simulations that assumemore » a constant shear viscosity to entropy density ratio) prefer larger {eta}/s values, and the slope of the p{sub T} dependence of charged hadron elliptic flow, which prefers smaller values of {eta}/s. Changing other model parameters does not appear to permit dissolution of this tension.« less

  14. Numerical 3D Hydrodynamics Study of Gravitational Instabilities in a Circumbinary Disk

    NASA Astrophysics Data System (ADS)

    Desai, Karna Mahadev; Steiman-Cameron, Thomas Y.; Michael, Scott; Cai, Kai; Durisen, Richard H.

    2016-01-01

    We present a 3D hydrodynamical study of gravitational instabilities (GIs) in a circumbinary protoplanetary disk around a Solar mass star and a brown dwarf companion (0.02 M⊙). GIs can play an important, and at times dominant, role in driving the structural evolution of protoplanetary disks. The reported simulations were performed employing CHYMERA, a radiative 3D hydrodynamics code developed by the Indiana University Hydrodynamics Group. The simulations include disk self-gravity and radiative cooling governed by realistic dust opacities. We examine the role of GIs in modulating the thermodynamic state of the disks, and determine the strengths of GI-induced density waves, non-axisymmetric density structures, radial mass transport, and gravitational torques. The principal goal of this study is to determine how the presence of the companion affects the nature and strength of GIs. Results are compared with a parallel simulation of a protoplanetary disk without the presence of the brown dwarf binary companion. We detect no fragmentation in either disk. A persistent vortex forms in the inner region of both disks. The vortex seems to be stabilized by the presence of the binary companion.

  15. Evaporation effects in a shock-driven multiphase instability with a spherical interface

    NASA Astrophysics Data System (ADS)

    Paudel, Manoj; Dahal, Jeevan; McFarland, Jacob

    2017-11-01

    This talk presents results from 3D numerical simulations of a shock driven instability of a gas-particle system with a spherical interface. Two cases, one with an evaporating particle cloud and another with a gas only approximation of this particle cloud, were run in the hydrodynamics code FLASH, developed at University of Chicago. It is shown that the gas only approximation, a classical Richtmyer Meshkov instability, cannot replicate effects from particles like, lag, clustering, and evaporation. Instead, both gas hydrodynamics and particle properties influence one another and are coupled. Results are presented to highlight the coupling of interface evolution and particle evaporation. Qualitative and quantitative differences in the RMI and SDMI are presented by studying the change in gas properties like density and vorticity within the interface. Similarly, the effect of gas hydrodynamics on particles distribution and evaporation is studied. Particle evaporation rates are compared with 1D models and show poor agreement. The variation in evaporation rates for similar sized particles and the role of gas hydrodynamics in these variation is explored.

  16. Unsteady Propeller Hydrodynamics

    DTIC Science & Technology

    2001-06-01

    coupling routines, making the code more robust while decreasing the computation burden over currect methods. Finally, a higher order quadratic influence ... function technique was implemented within the wake to more accurately define the induction velocity at the trailing edge which has suffered in the past due to lack of discretization.

  17. The Influence of Physical Forcing on Bottom-water Dissolved Oxygen within the Caloosahatchee River Estuary, FL

    EPA Science Inventory

    Environmental Fluid Dynamic Code (EFDC), a numerical estuarine and coastal ocean circulation hydrodynamic model, was used to simulate the distribution of dissolved oxygen (DO), salinity, temperature, nutrients (nitrogen and phosphorus), and chlorophyll a in the Caloosahatchee Riv...

  18. Structural Loads Analysis for Wave Energy Converters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Rij, Jennifer A; Yu, Yi-Hsiang; Guo, Yi

    2017-06-03

    This study explores and verifies the generalized body-modes method for evaluating the structural loads on a wave energy converter (WEC). Historically, WEC design methodologies have focused primarily on accurately evaluating hydrodynamic loads, while methodologies for evaluating structural loads have yet to be fully considered and incorporated into the WEC design process. As wave energy technologies continue to advance, however, it has become increasingly evident that an accurate evaluation of the structural loads will enable an optimized structural design, as well as the potential utilization of composites and flexible materials, and hence reduce WEC costs. Although there are many computational fluidmore » dynamics, structural analyses and fluid-structure-interaction (FSI) codes available, the application of these codes is typically too computationally intensive to be practical in the early stages of the WEC design process. The generalized body-modes method, however, is a reduced order, linearized, frequency-domain FSI approach, performed in conjunction with the linear hydrodynamic analysis, with computation times that could realistically be incorporated into the WEC design process.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tom, N.; Lawson, M.; Yu, Y. H.

    WEC-Sim is a midfidelity numerical tool for modeling wave energy conversion devices. The code uses the MATLAB SimMechanics package to solve multibody dynamics and models wave interactions using hydrodynamic coefficients derived from frequency-domain boundary-element methods. This paper presents the new modeling features introduced in the latest release of WEC-Sim. The first feature discussed conversion of the fluid memory kernel to a state-space form. This enhancement offers a substantial computational benefit after the hydrodynamic body-to-body coefficients are introduced and the number of interactions increases exponentially with each additional body. Additional features include the ability to calculate the wave-excitation forces based onmore » the instantaneous incident wave angle, allowing the device to weathervane, as well as import a user-defined wave elevation time series. A review of the hydrodynamic theory for each feature is provided and the successful implementation is verified using test cases.« less

  20. Modelling for anchovy recruitment studies in the Gulf of Lions (Western Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    Nicolle, Amandine; Garreau, Pierre; Liorzou, Bernard

    2009-12-01

    Anchovy ( Engraulis encrasicolus) is an important commercial species and one of the most abundant pelagic fish in the Gulf of Lions and the Catalan Sea. The factors influencing its recruitment are crucial to fisheries and ecological research. Among those factors transport of larvae by hydrodynamics (currents) is important because it determines whether the organisms can reach areas favourable to recruitment or are dispersed. Therefore, the first step in anchovy recruitment modelling is to simulate North-western Mediterranean Sea circulation. Several years (2001-2008) of hydrodynamics were simulated with the MARS-3D code. The resulting simulated currents and salinity are used by Lagrangian tool, Ichthyop, to transport anchovy eggs and larvae to the Western Mediterranean Sea. The aim of this study is to understand the main hydrodynamic processes that control anchovy transport and the effects of diel vertical migration on the transport and final distribution of anchovy.

  1. Fast and accurate Voronoi density gridding from Lagrangian hydrodynamics data

    NASA Astrophysics Data System (ADS)

    Petkova, Maya A.; Laibe, Guillaume; Bonnell, Ian A.

    2018-01-01

    Voronoi grids have been successfully used to represent density structures of gas in astronomical hydrodynamics simulations. While some codes are explicitly built around using a Voronoi grid, others, such as Smoothed Particle Hydrodynamics (SPH), use particle-based representations and can benefit from constructing a Voronoi grid for post-processing their output. So far, calculating the density of each Voronoi cell from SPH data has been done numerically, which is both slow and potentially inaccurate. This paper proposes an alternative analytic method, which is fast and accurate. We derive an expression for the integral of a cubic spline kernel over the volume of a Voronoi cell and link it to the density of the cell. Mass conservation is ensured rigorously by the procedure. The method can be applied more broadly to integrate a spherically symmetric polynomial function over the volume of a random polyhedron.

  2. Smoothed Particle Hydrodynamics Simulations of Ultrarelativistic Shocks with Artificial Viscosity

    NASA Astrophysics Data System (ADS)

    Siegler, S.; Riffert, H.

    2000-03-01

    We present a fully Lagrangian conservation form of the general relativistic hydrodynamic equations for perfect fluids with artificial viscosity in a given arbitrary background spacetime. This conservation formulation is achieved by choosing suitable Lagrangian time evolution variables, from which the generic fluid variables of rest-mass density, 3-velocity, and thermodynamic pressure have to be determined. We present the corresponding equations for an ideal gas and show the existence and uniqueness of the solution. On the basis of the Lagrangian formulation we have developed a three-dimensional general relativistic smoothed particle hydrodynamics (SPH) code using the standard SPH formalism as known from nonrelativistic fluid dynamics. One-dimensional simulations of a shock tube and a wall shock are presented together with a two-dimensional test calculation of an inclined shock tube. With our method we can model ultrarelativistic fluid flows including shocks with Lorentz factors of even 1000.

  3. New Equation of State Models for Hydrodynamic Applications

    NASA Astrophysics Data System (ADS)

    Young, David A.; Barbee, Troy W., III; Rogers, Forrest J.

    1997-07-01

    Accurate models of the equation of state of matter at high pressures and temperatures are increasingly required for hydrodynamic simulations. We have developed two new approaches to accurate EOS modeling: 1) ab initio phonons from electron band structure theory for condensed matter and 2) the ACTEX dense plasma model for ultrahigh pressure shocks. We have studied the diamond and high pressure phases of carbon with the ab initio model and find good agreement between theory and experiment for shock Hugoniots, isotherms, and isobars. The theory also predicts a comprehensive phase diagram for carbon. For ultrahigh pressure shock states, we have studied the comparison of ACTEX theory with experiments for deuterium, beryllium, polystyrene, water, aluminum, and silicon dioxide. The agreement is good, showing that complex multispecies plasmas are treated adequately by the theory. These models will be useful in improving the numerical EOS tables used by hydrodynamic codes.

  4. EXAMINING THE ACCURACY OF ASTROPHYSICAL DISK SIMULATIONS WITH A GENERALIZED HYDRODYNAMICAL TEST PROBLEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raskin, Cody; Owen, J. Michael, E-mail: raskin1@llnl.gov, E-mail: mikeowen@llnl.gov

    2016-11-01

    We discuss a generalization of the classic Keplerian disk test problem allowing for both pressure and rotational support, as a method of testing astrophysical codes incorporating both gravitation and hydrodynamics. We argue for the inclusion of pressure in rotating disk simulations on the grounds that realistic, astrophysical disks exhibit non-negligible pressure support. We then apply this test problem to examine the performance of various smoothed particle hydrodynamics (SPH) methods incorporating a number of improvements proposed over the years to address problems noted in modeling the classical gravitation-only Keplerian disk. We also apply this test to a newly developed extension ofmore » SPH based on reproducing kernels called CRKSPH. Counterintuitively, we find that pressure support worsens the performance of traditional SPH on this problem, causing unphysical collapse away from the steady-state disk solution even more rapidly than the purely gravitational problem, whereas CRKSPH greatly reduces this error.« less

  5. Comparisons of CTH simulations with measured wave profiles for simple flyer plate experiments

    DOE PAGES

    Thomas, S. A.; Veeser, L. R.; Turley, W. D.; ...

    2016-06-13

    We conducted detailed 2-dimensional hydrodynamics calculations to assess the quality of simulations commonly used to design and analyze simple shock compression experiments. Such simple shock experiments also contain data where dynamic properties of materials are integrated together. We wished to assess how well the chosen computer hydrodynamic code could do at capturing both the simple parts of the experiments and the integral parts. We began with very simple shock experiments, in which we examined the effects of the equation of state and the compressional and tensile strength models. We increased complexity to include spallation in copper and iron and amore » solid-solid phase transformation in iron to assess the quality of the damage and phase transformation simulations. For experiments with a window, the response of both the sample and the window are integrated together, providing a good test of the material models. While CTH physics models are not perfect and do not reproduce all experimental details well, we find the models are useful; the simulations are adequate for understanding much of the dynamic process and for planning experiments. However, higher complexity in the simulations, such as adding in spall, led to greater differences between simulation and experiment. Lastly, this comparison of simulation to experiment may help guide future development of hydrodynamics codes so that they better capture the underlying physics.« less

  6. AN OPEN-SOURCE NEUTRINO RADIATION HYDRODYNAMICS CODE FOR CORE-COLLAPSE SUPERNOVAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Connor, Evan, E-mail: evanoconnor@ncsu.edu; CITA, Canadian Institute for Theoretical Astrophysics, Toronto, M5S 3H8

    2015-08-15

    We present an open-source update to the spherically symmetric, general-relativistic hydrodynamics, core-collapse supernova (CCSN) code GR1D. The source code is available at http://www.GR1Dcode.org. We extend its capabilities to include a general-relativistic treatment of neutrino transport based on the moment formalisms of Shibata et al. and Cardall et al. We pay special attention to implementing and testing numerical methods and approximations that lessen the computational demand of the transport scheme by removing the need to invert large matrices. This is especially important for the implementation and development of moment-like transport methods in two and three dimensions. A critical component of neutrinomore » transport calculations is the neutrino–matter interaction coefficients that describe the production, absorption, scattering, and annihilation of neutrinos. In this article we also describe our open-source neutrino interaction library NuLib (available at http://www.nulib.org). We believe that an open-source approach to describing these interactions is one of the major steps needed to progress toward robust models of CCSNe and robust predictions of the neutrino signal. We show, via comparisons to full Boltzmann neutrino-transport simulations of CCSNe, that our neutrino transport code performs remarkably well. Furthermore, we show that the methods and approximations we employ to increase efficiency do not decrease the fidelity of our results. We also test the ability of our general-relativistic transport code to model failed CCSNe by evolving a 40-solar-mass progenitor to the onset of collapse to a black hole.« less

  7. Simulating Coupling Complexity in Space Plasmas: First Results from a new code

    NASA Astrophysics Data System (ADS)

    Kryukov, I.; Zank, G. P.; Pogorelov, N. V.; Raeder, J.; Ciardo, G.; Florinski, V. A.; Heerikhuisen, J.; Li, G.; Petrini, F.; Shematovich, V. I.; Winske, D.; Shaikh, D.; Webb, G. M.; Yee, H. M.

    2005-12-01

    The development of codes that embrace 'coupling complexity' via the self-consistent incorporation of multiple physical scales and multiple physical processes in models has been identified by the NRC Decadal Survey in Solar and Space Physics as a crucial necessary development in simulation/modeling technology for the coming decade. The National Science Foundation, through its Information Technology Research (ITR) Program, is supporting our efforts to develop a new class of computational code for plasmas and neutral gases that integrates multiple scales and multiple physical processes and descriptions. We are developing a highly modular, parallelized, scalable code that incorporates multiple scales by synthesizing 3 simulation technologies: 1) Computational fluid dynamics (hydrodynamics or magneto-hydrodynamics-MHD) for the large-scale plasma; 2) direct Monte Carlo simulation of atoms/neutral gas, and 3) transport code solvers to model highly energetic particle distributions. We are constructing the code so that a fourth simulation technology, hybrid simulations for microscale structures and particle distributions, can be incorporated in future work, but for the present, this aspect will be addressed at a test-particle level. This synthesis we will provide a computational tool that will advance our understanding of the physics of neutral and charged gases enormously. Besides making major advances in basic plasma physics and neutral gas problems, this project will address 3 Grand Challenge space physics problems that reflect our research interests: 1) To develop a temporal global heliospheric model which includes the interaction of solar and interstellar plasma with neutral populations (hydrogen, helium, etc., and dust), test-particle kinetic pickup ion acceleration at the termination shock, anomalous cosmic ray production, interaction with galactic cosmic rays, while incorporating the time variability of the solar wind and the solar cycle. 2) To develop a coronal mass ejection and interplanetary shock propagation model for the inner and outer heliosphere, including, at a test-particle level, wave-particle interactions and particle acceleration at traveling shock waves and compression regions. 3) To develop an advanced Geospace General Circulation Model (GGCM) capable of realistically modeling space weather events, in particular the interaction with CMEs and geomagnetic storms. Furthermore, by implementing scalable run-time supports and sophisticated off- and on-line prediction algorithms, we anticipate important advances in the development of automatic and intelligent system software to optimize a wide variety of 'embedded' computations on parallel computers. Finally, public domain MHD and hydrodynamic codes had a transforming effect on space and astrophysics. We expect that our new generation, open source, public domain multi-scale code will have a similar transformational effect in a variety of disciplines, opening up new classes of problems to physicists and engineers alike.

  8. Numerical Simulation of Salinity and Dissolved Oxygen at Perdido Bay and Adjacent Coastal Ocean

    EPA Science Inventory

    Environmental Fluid Dynamic Code (EFDC), a numerical estuarine and coastal ocean circulation hydrodynamic model, was used to simulate the distribution of the salinity, temperature, nutrients and dissolved oxygen (DO) in Perdido Bay and adjacent Gulf of Mexico. External forcing fa...

  9. Numerical comparison of Riemann solvers for astrophysical hydrodynamics

    NASA Astrophysics Data System (ADS)

    Klingenberg, Christian; Schmidt, Wolfram; Waagan, Knut

    2007-11-01

    The idea of this work is to compare a new positive and entropy stable approximate Riemann solver by Francois Bouchut with a state-of the-art algorithm for astrophysical fluid dynamics. We implemented the new Riemann solver into an astrophysical PPM-code, the Prometheus code, and also made a version with a different, more theoretically grounded higher order algorithm than PPM. We present shock tube tests, two-dimensional instability tests and forced turbulence simulations in three dimensions. We find subtle differences between the codes in the shock tube tests, and in the statistics of the turbulence simulations. The new Riemann solver increases the computational speed without significant loss of accuracy.

  10. The Los Alamos Supernova Light Curve Project: Current Projects and Future Directions

    NASA Astrophysics Data System (ADS)

    Wiggins, Brandon Kerry; Los Alamos Supernovae Research Group

    2015-01-01

    The Los Alamos Supernova Light Curve Project models supernovae in the ancient and modern universe to determine the luminosities of observability of certain supernovae events and to explore the physics of supernovae in the local universe. The project utilizes RAGE, Los Alamos' radiation hydrodynamics code to evolve the explosions of progenitors prepared in well-established stellar evolution codes. RAGE allows us to capture events such as shock breakout and collisions of ejecta with shells of material which cannot be modeled well in other codes. RAGE's dumps are then ported to LANL's SPECTRUM code which uses LANL's OPLIB opacities database to calculate light curves and spectra. In this paper, we summarize our recent work in modeling supernovae.

  11. Review of hydrodynamic tunneling issues in high power particle accelerators

    NASA Astrophysics Data System (ADS)

    Tahir, N. A.; Burkart, F.; Schmidt, R.; Shutov, A.; Piriz, A. R.

    2018-07-01

    Full impact of one Large Hadron Collider (LHC) 7 TeV proton beam on solid targets made of different materials including copper and carbon, was simulated using an energy deposition code, FLUKA and a two-dimensional hydrodynamic code, BIG2, iteratively. These studies showed that the penetration depth of the entire beam comprised of 2808 proton bunches significantly increases due to a phenomenon named hydrodynamic tunneling of the protons and the shower. For example, the static range of a single 7 TeV proton and its shower is about 1 m in solid copper, but the full LHC beam will penetrate up to about 35 m in the target, if the hydrodynamic effects were included. Due to the potential implications of this result on the machine protection considerations, it was decided to have an experimental verification of the hydrodynamic tunneling effect. For this purpose, experiments were carried out at the CERN HiRadMat (High Radiation to Materials) facility in which extended solid copper cylindrical targets were irradiated with the 440 GeV proton beam generated by the Super Proton Synchrotron (SPS). Simulations of beam-target heating considering the same beam parameters that were used in the experiments, were also performed. These experiments not only confirmed the existence of the hydrodynamic tunneling, but the experimental measurements showed very good agreement with the experimental results as well. This provided confidence in the work on LHC related beam-matter heating simulations. Currently, a design study is being carried out by the international community (with CERN taking the leading role) for a post LHC collider named, the Future Circular Collider (FCC) which will accelerate two counter rotating proton beams up to a particle energy of 50 TeV. Simulations of the full impact of one FCC beam comprised of 10,600 proton bunches with a solid copper target have also been done. These simulations have shown that although the static range of a single 50 TeV proton and its shower in solid copper is around 1.8 m, the entire beam will penetrate up to about 350 m in the target. Feasibility studies of developing a water beam dump for the FCC have also been carried out. A review of this work and its implications on machine protection system are presented in this paper.

  12. Light-curve solutions for S Cancri and TT Hydrae with rapid rotation

    NASA Technical Reports Server (NTRS)

    Van Hamme, W.; Wilson, R. E.

    1993-01-01

    Physical model light- and velocity-curve solutions for S Cancri and TT Hydrae are obtained, and analyses with incorporation of asynchronous rotation are carried out. A photometric rotation rate for the primary star of TT Hya is determined, and excellent agreement with results from spectral line profiles is found. Both separate light- and velocity-curve solutions and simultaneous light-velocity solutions are listed. The photometric rotation for S Cnc from existing light curves is indeterminate, but is compatible with line profile measures. Evidence for third light from the light curves of S Cnc is found. An explanation for the apparent conflict between the rotational states and mass-transfer activities of the two binaries is suggested.

  13. Understanding complex host-microbe interactions in Hydra

    PubMed Central

    Bosch, Thomas C.G.

    2012-01-01

    Any multicellular organism may be considered a metaorganism or holobiont—comprised of the macroscopic host and synergistic interdependence with bacteria, archaea, fungi, viruses, and numerous other microbial and eukaryotic species including algal symbionts. Defining the individual microbe-host conversations in these consortia is a challenging but necessary step on the path to understanding the function of the associations as a whole. Dissecting the fundamental principles that underlie all host-microbe interactions requires simple animal models with only a few specific bacterial species. Here I present Hydra as such a model with one of the simplest epithelia in the animal kingdom, with the availability of a fully sequenced genome and numerous genomic tools, and with few associated bacterial species. PMID:22688725

  14. Benchmarking the SPHINX and CTH shock physics codes for three problems in ballistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, L.T.; Hertel, E.; Schwalbe, L.

    1998-02-01

    The CTH Eulerian hydrocode, and the SPHINX smooth particle hydrodynamics (SPH) code were used to model a shock tube, two long rod penetrations into semi-infinite steel targets, and a long rod penetration into a spaced plate array. The results were then compared to experimental data. Both SPHINX and CTH modeled the one-dimensional shock tube problem well. Both codes did a reasonable job in modeling the outcome of the axisymmetric rod impact problem. Neither code correctly reproduced the depth of penetration in both experiments. In the 3-D problem, both codes reasonably replicated the penetration of the rod through the first plate.more » After this, however, the predictions of both codes began to diverge from the results seen in the experiment. In terms of computer resources, the run times are problem dependent, and are discussed in the text.« less

  15. TESS: A RELATIVISTIC HYDRODYNAMICS CODE ON A MOVING VORONOI MESH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duffell, Paul C.; MacFadyen, Andrew I., E-mail: pcd233@nyu.edu, E-mail: macfadyen@nyu.edu

    2011-12-01

    We have generalized a method for the numerical solution of hyperbolic systems of equations using a dynamic Voronoi tessellation of the computational domain. The Voronoi tessellation is used to generate moving computational meshes for the solution of multidimensional systems of conservation laws in finite-volume form. The mesh-generating points are free to move with arbitrary velocity, with the choice of zero velocity resulting in an Eulerian formulation. Moving the points at the local fluid velocity makes the formulation effectively Lagrangian. We have written the TESS code to solve the equations of compressible hydrodynamics and magnetohydrodynamics for both relativistic and non-relativistic fluidsmore » on a dynamic Voronoi mesh. When run in Lagrangian mode, TESS is significantly less diffusive than fixed mesh codes and thus preserves contact discontinuities to high precision while also accurately capturing strong shock waves. TESS is written for Cartesian, spherical, and cylindrical coordinates and is modular so that auxiliary physics solvers are readily integrated into the TESS framework and so that this can be readily adapted to solve general systems of equations. We present results from a series of test problems to demonstrate the performance of TESS and to highlight some of the advantages of the dynamic tessellation method for solving challenging problems in astrophysical fluid dynamics.« less

  16. A New Cell-Centered Implicit Numerical Scheme for Ions in the 2-D Axisymmetric Code Hall2de

    NASA Technical Reports Server (NTRS)

    Lopez Ortega, Alejandro; Mikellides, Ioannis G.

    2014-01-01

    We present a new algorithm in the Hall2De code to simulate the ion hydrodynamics in the acceleration channel and near plume regions of Hall-effect thrusters. This implementation constitutes an upgrade of the capabilities built in the Hall2De code. The equations of mass conservation and momentum for unmagnetized ions are solved using a conservative, finite-volume, cell-centered scheme on a magnetic-field-aligned grid. Major computational savings are achieved by making use of an implicit predictor/multi-corrector algorithm for time evolution. Inaccuracies in the prediction of the motion of low-energy ions in the near plume in hydrodynamics approaches are addressed by implementing a multi-fluid algorithm that tracks ions of different energies separately. A wide range of comparisons with measurements are performed to validate the new ion algorithms. Several numerical experiments with the location and value of the anomalous collision frequency are also presented. Differences in the plasma properties in the near-plume between the single fluid and multi-fluid approaches are discussed. We complete our validation by comparing predicted erosion rates at the channel walls of the thruster with measurements. Erosion rates predicted by the plasma properties obtained from simulations replicate accurately measured rates of erosion within the uncertainty range of the sputtering models employed.

  17. Smooth Particle Hydrodynamics for Surf Zone Waves

    DTIC Science & Technology

    2009-01-01

    2010.) The GPU-SPHysics code, initiated by Dr. Alexis Hérault at the Istituto Nazionale di Geofisica e Vulcanologia in Sicily, has been applied to... Geofisica e Vulcanologia, sezione di Catania, for the development of GPU-SPHysics. Drs. Hérault and Bilotta were in residence at JHU during January of

  18. DCOMP Award Lecture (Metropolis): A 3D Spectral Anelastic Hydrodynamic Code for Shearing, Stratified Flows

    NASA Astrophysics Data System (ADS)

    Barranco, Joseph

    2006-03-01

    We have developed a three-dimensional (3D) spectral hydrodynamic code to study vortex dynamics in rotating, shearing, stratified systems (eg, the atmosphere of gas giant planets, protoplanetary disks around newly forming protostars). The time-independent background state is stably stratified in the vertical direction and has a unidirectional linear shear flow aligned with one horizontal axis. Superposed on this background state is an unsteady, subsonic flow that is evolved with the Euler equations subject to the anelastic approximation to filter acoustic phenomena. A Fourier-Fourier basis in a set of quasi-Lagrangian coordinates that advect with the background shear is used for spectral expansions in the two horizontal directions. For the vertical direction, two different sets of basis functions have been implemented: (1) Chebyshev polynomials on a truncated, finite domain, and (2) rational Chebyshev functions on an infinite domain. Use of this latter set is equivalent to transforming the infinite domain to a finite one with a cotangent mapping, and using cosine and sine expansions in the mapped coordinate. The nonlinear advection terms are time integrated explicitly, whereas the Coriolis force, buoyancy terms, and pressure/enthalpy gradient are integrated semi- implicitly. We show that internal gravity waves can be damped by adding new terms to the Euler equations. The code exhibits excellent parallel performance with the Message Passing Interface (MPI). As a demonstration of the code, we simulate vortex dynamics in protoplanetary disks and the Kelvin-Helmholtz instability in the dusty midplanes of protoplanetary disks.

  19. A 3D spectral anelastic hydrodynamic code for shearing, stratified flows

    NASA Astrophysics Data System (ADS)

    Barranco, Joseph A.; Marcus, Philip S.

    2006-11-01

    We have developed a three-dimensional (3D) spectral hydrodynamic code to study vortex dynamics in rotating, shearing, stratified systems (e.g., the atmosphere of gas giant planets, protoplanetary disks around newly forming protostars). The time-independent background state is stably stratified in the vertical direction and has a unidirectional linear shear flow aligned with one horizontal axis. Superposed on this background state is an unsteady, subsonic flow that is evolved with the Euler equations subject to the anelastic approximation to filter acoustic phenomena. A Fourier Fourier basis in a set of quasi-Lagrangian coordinates that advect with the background shear is used for spectral expansions in the two horizontal directions. For the vertical direction, two different sets of basis functions have been implemented: (1) Chebyshev polynomials on a truncated, finite domain, and (2) rational Chebyshev functions on an infinite domain. Use of this latter set is equivalent to transforming the infinite domain to a finite one with a cotangent mapping, and using cosine and sine expansions in the mapped coordinate. The nonlinear advection terms are time-integrated explicitly, the pressure/enthalpy terms are integrated semi-implicitly, and the Coriolis force and buoyancy terms are treated semi-analytically. We show that internal gravity waves can be damped by adding new terms to the Euler equations. The code exhibits excellent parallel performance with the message passing interface (MPI). As a demonstration of the code, we simulate the merger of two 3D vortices in the midplane of a protoplanetary disk.

  20. Structure of the solar photosphere studied from the radiation hydrodynamics code ANTARES.

    PubMed

    Leitner, P; Lemmerer, B; Hanslmeier, A; Zaqarashvili, T; Veronig, A; Grimm-Strele, H; Muthsam, H J

    2017-01-01

    The ANTARES radiation hydrodynamics code is capable of simulating the solar granulation in detail unequaled by direct observation. We introduce a state-of-the-art numerical tool to the solar physics community and demonstrate its applicability to model the solar granulation. The code is based on the weighted essentially non-oscillatory finite volume method and by its implementation of local mesh refinement is also capable of simulating turbulent fluids. While the ANTARES code already provides promising insights into small-scale dynamical processes occurring in the quiet-Sun photosphere, it will soon be capable of modeling the latter in the scope of radiation magnetohydrodynamics. In this first preliminary study we focus on the vertical photospheric stratification by examining a 3-D model photosphere with an evolution time much larger than the dynamical timescales of the solar granulation and of particular large horizontal extent corresponding to [Formula: see text] on the solar surface to smooth out horizontal spatial inhomogeneities separately for up- and downflows. The highly resolved Cartesian grid thereby covers [Formula: see text] of the upper convection zone and the adjacent photosphere. Correlation analysis, both local and two-point, provides a suitable means to probe the photospheric structure and thereby to identify several layers of characteristic dynamics: The thermal convection zone is found to reach some ten kilometers above the solar surface, while convectively overshooting gas penetrates even higher into the low photosphere. An [Formula: see text] wide transition layer separates the convective from the oscillatory layers in the higher photosphere.

Top