Science.gov

Sample records for hydroelectric dam operations

  1. 26. Original hydroelectric unit at Mormon Flat Dam. Unit is ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. Original hydroelectric unit at Mormon Flat Dam. Unit is still in operation. Photographer Mark Durben, 1988. Source: Salt River Project. - Mormon Flat Dam, On Salt River, Eastern Maricopa County, east of Phoenix, Phoenix, Maricopa County, AZ

  2. Analysis of environmental issues related to small-scale hydroelectric development. VI. Dissolved oxygen concentrations below operating dams

    SciTech Connect

    Cada, G.F.; Kumar, K.D.; Solomon, J.A.; Hildebrand, S.G.

    1982-01-01

    Results are presented of an effort aimed at determining whether or not water quality degradation, as exemplified by dissolved oxygen concentrations, is a potentially significant issue affecting small-scale hydropower development in the US. The approach was to pair operating hydroelectric sites of all sizes with dissolved oxygen measurements from nearby downstream US Geological Survey water quality stations (acquired from the WATSTORE data base). The USGS data were used to calculate probabilities of non-compliance (PNCs), i.e., the probabilities that dissolved oxygen concentrations in the discharge waters of operating hydroelectric dams will drop below 5 mg/l. PNCs were estimated for each site, season (summer vs remaining months), and capacity category (less than or equal to 30 MW vs >30 MW). Because of the low numbers of usable sites in many states, much of the subsequent analysis was conducted on a regional basis. During the winter months (November through June) all regions had low mean PNCs regardless of capacity. Most regions had higher mean PNCs in summer than in winter, and summer PNCs were greater for large-scale than for small-scale sites. Among regions, the highest mean summer PNCs were found in the Great Basin, the Southeast, and the Ohio Valley. To obtain a more comprehensive picture of the effects of season and capacity on potential dissolved oxygen problems, cumulative probability distributions of PNC were developed for selected regions. This analysis indicates that low dissolved oxygen concentrations in the tailwaters below operating hydroelectric projects are a problem largely confined to large-scale facilities.

  3. INTAKE AND DAM #3; FACING NORTHEAST Shoshone Falls Hydroelectric ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTAKE AND DAM #3; FACING NORTHEAST - Shoshone Falls Hydroelectric Project, Reservoir and Dam Complex, North Bank of Snake River, extreme Eastern end of the Shoshone Falls Hydroelectric Project, Tipperary Corner, Jerome County, ID

  4. A Framework for Evaluation of CORDEX Using Dam Operation Policies for the East African Hydroelectric Power Industry

    NASA Astrophysics Data System (ADS)

    Smith, K. A.; Semazzi, F. H. M.

    2014-12-01

    The productivity of hydroelectric dams along the Nile River is to a large extent determined by the level of Lake Victoria, which is primarily dictated by the rainfall and temperature variability over the lake basin. The hydrological balance of Lake Victoria is comprised of tributary inflow (15% of the water balance), rainfall over the lake (85%), evaporation from the lake (80%), and outflow from the lake (20%). The Agreed Curve Policy has been used to manage the outflow from Lake Victoria. It guarantees the natural flow of water out of the lake as if there were no dams. However, declining lake levels and population growth have resulted in chronic load shedding for residential and industrial consumers in the region, leading to the need to develop a new release policy. The development of recently proposed water release policies for the hydroelectric dams at the outlet of Lake Victoria do not thoroughly account for projected climate change. We adopt a comprehensive approach using rainfall data from multiple CORDEX models to estimate lake levels and confidence levels for two different release policies. We then compare exceedence curves for the release rule policies based on observed rainfall data for recent decades. Exceedence curves indicate vulnerability to power supply reliability. Factors affecting precipitation in individual models are examined. There is a distinct dry-wet-dry-wet pattern of annual rainfall over the Lake Victoria basin, which is evident in a comparison of precipitation from rain gauge stations used in the water balance model. Previous studies have demonstrated that this feature is determined by a combination of orographic forcing, the thermodynamics of the lake, and the interaction between the prevailing wind flow and lake-land breeze circulation. ENSO has the most influence on precipitation over the lake basin in terms of annual climatology. We evaluate the CORDEX models based on how well they reproduce these metrics in addition to how well they

  5. 77 FR 24949 - Red River Lock & Dam No. 4 Hydroelectric Project; BOST4 Hydroelectric LLC; Notice of Proposed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-26

    ... Energy Regulatory Commission Red River Lock & Dam No. 4 Hydroelectric Project; BOST4 Hydroelectric LLC... affected by issuance of a license for the proposed Red River Lock & Dam No. 4 Hydroelectric Project No... Hydroelectric LLC, as applicant for the proposed Red River Lock & Dam No. 4 Project No. 12757, is invited...

  6. Effects of Hydroelectric Dam Operations on the Restoration Potential of Snake River Fall Chinook Salmon (Oncorhynchus tshawytscha) Spawning Habitat Final Report, October 2005 - September 2007.

    SciTech Connect

    Hanrahan, Timothy P.; Richmond, Marshall C.; Arntzen, Evan V.

    2007-11-13

    This report describes research conducted by the Pacific Northwest National Laboratory for the Bonneville Power Administration (BPA) as part of the Fish and Wildlife Program directed by the Northwest Power and Conservation Council. The study evaluated the restoration potential of Snake River fall Chinook salmon spawning habitat within the impounded lower Snake River. The objective of the research was to determine if hydroelectric dam operations could be modified, within existing system constraints (e.g., minimum to normal pool levels; without partial removal of a dam structure), to increase the amount of available fall Chinook salmon spawning habitat in the lower Snake River. Empirical and modeled physical habitat data were used to compare potential fall Chinook salmon spawning habitat in the Snake River, under current and modified dam operations, with the analogous physical characteristics of an existing fall Chinook salmon spawning area in the Columbia River. The two Snake River study areas included the Ice Harbor Dam tailrace downstream to the Highway 12 bridge and the Lower Granite Dam tailrace downstream approximately 12 river kilometers. These areas represent tailwater habitat (i.e., riverine segments extending from a dam downstream to the backwater influence from the next dam downstream). We used a reference site, indicative of current fall Chinook salmon spawning areas in tailwater habitat, against which to compare the physical characteristics of each study site. The reference site for tailwater habitats was the section extending downstream from the Wanapum Dam tailrace on the Columbia River. Fall Chinook salmon spawning habitat use data, including water depth, velocity, substrate size and channelbed slope, from the Wanapum reference area were used to define spawning habitat suitability based on these variables. Fall Chinook salmon spawning habitat suitability of the Snake River study areas was estimated by applying the Wanapum reference reach habitat

  7. Concrete dam on the Bratsk hydroelectric station

    SciTech Connect

    Solov'eva, Z.I.

    1988-07-01

    The Bratsk concrete dam was designed and constructed with a sufficient degree of reliability. Settlement of the dam together with the powerhouse developed uniformly under the entire foundation. Two irreversible processes causing aging of the dam have been established by operating observations: leaching of the concrete and decompression of the contact zone of the foundation near the upstream face of the powerhouse sections. The decompression is due to the fact that the powerhouse sections are lighter than the spillway sections. At the present level this process can only be slowed by the combined use of grouting and drainage unloading.

  8. 75 FR 22122 - Gibson Dam Hydroelectric Company, LLC; Notice of Application Accepted for Filing and Soliciting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-27

    ... Energy Regulatory Commission Gibson Dam Hydroelectric Company, LLC; Notice of Application Accepted for... Application: Major Project--Existing Dam. b. Project No.: P-12478-003. c. Date filed: August 28, 2009. d. Applicant: Gibson Dam Hydroelectric Company, LLC. e. Name of Project: Gibson Dam Hydroelectric Project....

  9. 78 FR 35630 - Martin Dam Hydroelectric Project; Notice of Availability of the Draft Environmental Impact...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-13

    ... Energy Regulatory Commission Martin Dam Hydroelectric Project; Notice of Availability of the Draft Environmental Impact Statement for the Martin Dam Hydroelectric Project and Intention To Hold Public Meetings In... reviewed the application for license for the Martin Dam Hydroelectric Project (FERC No. 349), located...

  10. Deer Creek Dam, Hydroelectric Powerplant, 868 feet/291 degrees from intersection ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Deer Creek Dam, Hydroelectric Powerplant, 868 feet/291 degrees from intersection of dam complex access road with U.S. Highway 189, 1,340 feet/352 degrees from the dam spillway overpass, Charleston, Wasatch County, UT

  11. Greenhouse gas emissions from Brazil’s Amazonian hydroelectric dams

    NASA Astrophysics Data System (ADS)

    Fearnside, Philip M.

    2016-01-01

    Tropical dams are often falsely portrayed as ‘clean’ emissions-free energy sources. The letter by de Faria et al (2015 Environ. Res. Lett. 10 124019) adds to evidence questioning this myth. Calculations are made for 18 dams that are planned or under construction in Brazilian Amazonia and show that emissions from storage hydroelectric dams would exceed those from electricity generation based on fossil fuels. Fossil fuels need not be the alternative, because Brazil has vast potential for wind and solar power as well as opportunities for energy conservation. Because dam-building is rapidly shifting to humid tropical areas, where emissions are higher than in other climatic zones, the impact of these emissions needs to be given proper weight in energy-policy decisions.

  12. 76 FR 26718 - Gibson Dam Hydroelectric Company, LLC; Notice of Availability of Draft Environmental Assessment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-09

    ... Energy Regulatory Commission Gibson Dam Hydroelectric Company, LLC; Notice of Availability of Draft... Energy Projects has reviewed the application for license for the Gibson Dam Hydroelectric Project, located at the U.S. Department of the Interior, Bureau of Reclamation's, Gibson dam on the Sun River...

  13. An application of extreme value theory to the management of a hydroelectric dam.

    PubMed

    Minkah, Richard

    2016-01-01

    Assessing the probability of very low or high water levels is an important issue in the management of hydroelectric dams. In the case of the Akosombo dam, very low and high water levels result in load shedding of electrical power and flooding in communities downstream respectively. In this paper, we use extreme value theory to estimate the probability and return period of very low water levels that can result in load shedding or a complete shutdown of the dam's operations. In addition, we assess the probability and return period of high water levels near the height of the dam and beyond. This provides a framework for a possible extension of the dam to sustain the generation of electrical power and reduce the frequency of spillage that causes flooding in communities downstream. The results show that an extension of the dam can reduce the probability and prolong the return period of a flood. In addition, we found a negligible probability of a complete shutdown of the dam due to inadequate water level.

  14. 77 FR 14516 - Alabama Power Company, Martin Dam Hydroelectric Project; Notice of Proposed Revised Restricted...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-12

    ... Energy Regulatory Commission Alabama Power Company, Martin Dam Hydroelectric Project; Notice of Proposed... included in, or eligible for inclusion in, the National Register of Historic Places at the Martin Dam....13(e)). The Commission's responsibilities pursuant to section 106 for the Martin Dam...

  15. 75 FR 30852 - Hydroelectric Power Development at Ridgway Dam, Dallas Creek Project, Colorado

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-02

    ...-Federal development of environmentally sustainable hydropower potential on Federal water resource projects... sustainable, low impact, or small hydropower development that avoids, reduces, or minimizes environmental... Bureau of Reclamation Hydroelectric Power Development at Ridgway Dam, Dallas Creek Project,...

  16. Wildlife Impact Assessment and Summary of Previous Mitigation Related to Hydroelectric Projects in Montana, Volume One, Libby Dam Project, Operator, U.S. Army Corps of Engineers.

    SciTech Connect

    Yde, Chris A.

    1984-10-01

    This assessment addresses the impacts to the wildlife populations and wildlife habitats due to the Libby Dam project on the Kootenai River and previous mitigation of these losses. The current assessment documents the best available information concerning the impacts to the wildlife populations inhabiting the project area prior to construction of the dam and creation of the reservoir. Many of the impacts reported in this assessment differ from those contained in the earlier document compiled by the Fish and Wildlife Service; however, this document is a thorough compilation of the available data (habitat and wildlife) and, though conservative, attempts to realistically assess the impacts related to the Libby Dam project. Where appropriate the impacts resulting from highway construction and railroad relocation were included in the assessment. This was consistent with the previous assessments.

  17. The impacts of wind power integration on sub-daily variation in river flows downstream of hydroelectric dams.

    PubMed

    Kern, Jordan D; Patino-Echeverri, Dalia; Characklis, Gregory W

    2014-08-19

    Due to their operational flexibility, hydroelectric dams are ideal candidates to compensate for the intermittency and unpredictability of wind energy production. However, more coordinated use of wind and hydropower resources may exacerbate the impacts dams have on downstream environmental flows, that is, the timing and magnitude of water flows needed to sustain river ecosystems. In this paper, we examine the effects of increased (i.e., 5%, 15%, and 25%) wind market penetration on prices for electricity and reserves, and assess the potential for altered price dynamics to disrupt reservoir release schedules at a hydroelectric dam and cause more variable and unpredictable hourly flow patterns (measured in terms of the Richards-Baker Flashiness (RBF) index). Results show that the greatest potential for wind energy to impact downstream flows occurs at high (∼25%) wind market penetration, when the dam sells more reserves in order to exploit spikes in real-time electricity prices caused by negative wind forecast errors. Nonetheless, compared to the initial impacts of dam construction (and the dam's subsequent operation as a peaking resource under baseline conditions) the marginal effects of any increased wind market penetration on downstream flows are found to be relatively minor.

  18. 18 CFR 292.208 - Special requirements for hydroelectric small power production facilities located at a new dam or...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... attributes which would be adversely affected by hydroelectric development; and (3) The project meets the... hydroelectric development. (d) If the project is located on any segment of a natural watercourse that meets any... for hydroelectric small power production facilities located at a new dam or diversion. 292.208...

  19. 18 CFR 292.208 - Special requirements for hydroelectric small power production facilities located at a new dam or...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... attributes which would be adversely affected by hydroelectric development; and (3) The project meets the... hydroelectric development. (d) If the project is located on any segment of a natural watercourse that meets any... for hydroelectric small power production facilities located at a new dam or diversion. 292.208...

  20. 18 CFR 292.208 - Special requirements for hydroelectric small power production facilities located at a new dam or...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... attributes which would be adversely affected by hydroelectric development; and (3) The project meets the... hydroelectric development. (d) If the project is located on any segment of a natural watercourse that meets any... for hydroelectric small power production facilities located at a new dam or diversion. 292.208...

  1. 75 FR 62531 - Alabama Power Company; Project No. 349-150-Alabama Martin Dam Hydroelectric Project; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-12

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Alabama Power Company; Project No. 349-150--Alabama Martin Dam Hydroelectric... of Historic Places at the Martin Dam Hydroelectric Project. The Programmatic Agreement, when...

  2. Environmental impacts of increased hydroelectric development at existing dams

    SciTech Connect

    Railsback, S. F.; Cada, G. F.; Petrich, C. H.; Sale, M. J.; Shaakir-Ali, J. A.; Watts, J. A.; Webb, J. W.

    1991-04-01

    This report describes the environmental impacts of a proposed U.S. Department of Energy (DOE) initiative to promote the development of hydropower resources at existing dams. Hydropower development at existing dams has, in general, fewer impacts than development of additional fossil-fueled resources or hydropower at new dams, although potential cumulative impacts of developing multiple hydropower projects have not been explicitly addressed. Environmental review of project impacts and mitigation needs can ensure that additional hydropower development at existing dams can provide a renewable resource with fewer impacts than alternative resources.

  3. 77 FR 2970 - Gibson Dam Hydroelectric Company, LLC, Montana; Notice of Availability of Final Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-20

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Gibson Dam Hydroelectric Company, LLC, Montana; Notice of Availability of Final Environmental Assessment In accordance with the National Environmental Policy Act of 1969 and the Federal Energy Regulatory Commission's...

  4. Small-Scale Hydroelectric Power Demonstration Project. Pennsylvania Hydroelectric Development Corporation Flat Rock Dam: Project summary report

    SciTech Connect

    Gleeson, L.

    1991-12-01

    The US Department of Energy Field Office, Idaho, Small-Scale Hydroelectric Power Program was initiated in conjunction with the restoration of three power generating plants in Idaho Falls, Idaho, following damage caused by the Teton Dam failure on June 5, 1976. There were many parties interested in this project, including the state and environmental groups, with different concerns. This report was prepared by the developer and describes the design alternatives the applicant provided in an attempt to secure the Federal Energy Regulatory Commission license. Also included are correspondence between the related parties concerning the project, major design alternatives/project plan diagrams, the license, and energy and project economics.

  5. Enhancement and management of eel fisheries affected by hydroelectric dams in New Zealand

    USGS Publications Warehouse

    Boubee, J.; Chisnall, B.; Watene, E.; Williams, E.; Roper, D.; Haro, A.

    2003-01-01

    Two freshwater anguillid eel species, Anguilla australis and A. dieffenbachia, form the basis of important traditional, recreational, and commercial fisheries in New Zealand. These fisheries have been affected by the damming of many of the major waterways for hydroelectric generation. To create fisheries in reservoirs that would be otherwise inaccessible, elvers have been transferred from the base of dams into habitats upstream. Operations in three catchments: the Patea River (Lake Rotorangi), Waikato River (eight reservoirs notably the two lowermost, lakes Karapiro and Arapuni), and Rangitaiki River (lakes Matahina and Aniwhenua) are discussed. In all reservoirs, the transfers have successfully established fishable populations within six years of the first transfers and, in Lake Arapuni eels have reached the marketable size of 220 g in less than four years. In comparison, it typically takes from 13 to 17 years before eel populations are fishable in the lower Waikato River where direct access to the sea is available. Telemetry and monitoring at the screens and tailraces of several power stations have been used to determine migration timing, triggers, and pathways of mature eels. Successful downstream transfer of mature migrating adults has been achieved by spillway opening and netting in headraces during rain events in autumn, but means of preventing eels from impinging and entraining at the intakes are still required. An integrated, catchment-wide management system will be required to ensure sustainability of the fisheries. ?? Copyright by the American Fisheries Society 2003.

  6. Proliferation of Hydroelectric Dams in the Andean Amazon and Implications for Andes-Amazon Connectivity

    PubMed Central

    Finer, Matt; Jenkins, Clinton N.

    2012-01-01

    Due to rising energy demands and abundant untapped potential, hydropower projects are rapidly increasing in the Neotropics. This is especially true in the wet and rugged Andean Amazon, where regional governments are prioritizing new hydroelectric dams as the centerpiece of long-term energy plans. However, the current planning for hydropower lacks adequate regional and basin-scale assessment of potential ecological impacts. This lack of strategic planning is particularly problematic given the intimate link between the Andes and Amazonian flood plain, together one of the most species rich zones on Earth. We examined the potential ecological impacts, in terms of river connectivity and forest loss, of the planned proliferation of hydroelectric dams across all Andean tributaries of the Amazon River. Considering data on the full portfolios of existing and planned dams, along with data on roads and transmission line systems, we developed a new conceptual framework to estimate the relative impacts of all planned dams. There are plans for 151 new dams greater than 2 MW over the next 20 years, more than a 300% increase. These dams would include five of the six major Andean tributaries of the Amazon. Our ecological impact analysis classified 47% of the potential new dams as high impact and just 19% as low impact. Sixty percent of the dams would cause the first major break in connectivity between protected Andean headwaters and the lowland Amazon. More than 80% would drive deforestation due to new roads, transmission lines, or inundation. We conclude with a discussion of three major policy implications of these findings. 1) There is a critical need for further strategic regional and basin scale evaluation of dams. 2) There is an urgent need for a strategic plan to maintain Andes-Amazon connectivity. 3) Reconsideration of hydropower as a low-impact energy source in the Neotropics. PMID:22529979

  7. Proliferation of hydroelectric dams in the Andean Amazon and implications for Andes-Amazon connectivity.

    PubMed

    Finer, Matt; Jenkins, Clinton N

    2012-01-01

    Due to rising energy demands and abundant untapped potential, hydropower projects are rapidly increasing in the Neotropics. This is especially true in the wet and rugged Andean Amazon, where regional governments are prioritizing new hydroelectric dams as the centerpiece of long-term energy plans. However, the current planning for hydropower lacks adequate regional and basin-scale assessment of potential ecological impacts. This lack of strategic planning is particularly problematic given the intimate link between the Andes and Amazonian flood plain, together one of the most species rich zones on Earth. We examined the potential ecological impacts, in terms of river connectivity and forest loss, of the planned proliferation of hydroelectric dams across all Andean tributaries of the Amazon River. Considering data on the full portfolios of existing and planned dams, along with data on roads and transmission line systems, we developed a new conceptual framework to estimate the relative impacts of all planned dams. There are plans for 151 new dams greater than 2 MW over the next 20 years, more than a 300% increase. These dams would include five of the six major Andean tributaries of the Amazon. Our ecological impact analysis classified 47% of the potential new dams as high impact and just 19% as low impact. Sixty percent of the dams would cause the first major break in connectivity between protected Andean headwaters and the lowland Amazon. More than 80% would drive deforestation due to new roads, transmission lines, or inundation. We conclude with a discussion of three major policy implications of these findings. 1) There is a critical need for further strategic regional and basin scale evaluation of dams. 2) There is an urgent need for a strategic plan to maintain Andes-Amazon connectivity. 3) Reconsideration of hydropower as a low-impact energy source in the Neotropics.

  8. Reaction of the dams behind the Toktoguol and Kurpsa hydroelectric power plants to repeated earthquakes

    SciTech Connect

    Marchuk, A.N.; Umralin, K.B.; Moldebehov, Z.I.

    1994-11-01

    The region where the chain of Naryn hydroelectric power plants are located in the Kyrgyzstan Republic is a seismically active area of Central Tien-Shan and is comparatively well known in seismological respects. No means of measuring the dams themselves, however, were ever incorporated as an instrumental base of investigation. The seismometric possibilities of embedded monitoring-measuring apparatus were disclosed by O.Yu. Schmidt Institute of Earth Physics and have made is possible to evaluate the reactions of dams to seismic effects and of excited seismicity, when residual deformations due to repeated tremors of different force and direction are accumulated over an extended period of time.

  9. Dams in the Amazon: Belo Monte and Brazil's Hydroelectric Development of the Xingu River Basin

    NASA Astrophysics Data System (ADS)

    Fearnside, Phillip M.

    2006-07-01

    Hydroelectric dams represent major investments and major sources of environmental and social impacts. Powerful forces surround the decision-making process on public investments in the various options for the generation and conservation of electricity. Brazil’s proposed Belo Monte Dam (formerly Kararaô) and its upstream counterpart, the Altamira Dam (better known by its former name of Babaquara) are at the center of controversies on the decision-making process for major infrastructure projects in Amazonia. The Belo Monte Dam by itself would have a small reservoir area (440 km2) and large installed capacity (11, 181.3 MW), but the Altamira/Babaquara Dam that would regulate the flow of the Xingu River (thereby increasing power generation at Belo Monte) would flood a vast area (6140 km2). The great impact of dams provides a powerful reason for Brazil to reassess its current policies that allocate large amounts of energy in the country’s national grid to subsidized aluminum smelting for export. The case of Belo Monte and the five additional dams planned upstream (including the Altamira/Babaquara Dam) indicate the need for Brazil to reform its environmental assessment and licensing system to include the impacts of multiple interdependent projects.

  10. Dams in the Amazon: Belo Monte and Brazil's hydroelectric development of the Xingu River Basin.

    PubMed

    Fearnside, Phillip M

    2006-07-01

    Hydroelectric dams represent major investments and major sources of environmental and social impacts. Powerful forces surround the decision-making process on public investments in the various options for the generation and conservation of electricity. Brazil's proposed Belo Monte Dam (formerly Kararaô) and its upstream counterpart, the Altamira Dam (better known by its former name of Babaquara) are at the center of controversies on the decision-making process for major infrastructure projects in Amazonia. The Belo Monte Dam by itself would have a small reservoir area (440 km2) and large installed capacity (11, 181.3 MW), but the Altamira/Babaquara Dam that would regulate the flow of the Xingu River (thereby increasing power generation at Belo Monte) would flood a vast area (6140 km2). The great impact of dams provides a powerful reason for Brazil to reassess its current policies that allocate large amounts of energy in the country's national grid to subsidized aluminum smelting for export. The case of Belo Monte and the five additional dams planned upstream (including the Altamira/Babaquara Dam) indicate the need for Brazil to reform its environmental assessment and licensing system to include the impacts of multiple interdependent projects.

  11. Reducing the Impacts of Hydroelectric Dams on Juvenile Anadromous Fishes: Bioengineering Evaluations Using Acoustic Imaging in the Columbia River, USA

    SciTech Connect

    Johnson, Gary E.; Ploskey, Gene R.; Hedgepeth, J.; Khan, Fenton; Mueller, Robert P.; Nagy, William T.; Richmond, Marshall C.; Weiland, Mark A.

    2008-07-29

    Dams impact the survival of juvenile anadromous fishes by obstructing migration corridors, lowering water quality, delaying migrations, and entraining fish in turbine discharge. To reduce these impacts, structural and operational modifications to dams— such as voluntary spill discharge, turbine intake guidance screens, and surface flow outlets—are instituted. Over the last six years, we have used acoustic imaging technology to evaluate the effects of these modifications on fish behavior, passage rates, entrainment zones, and fish/flow relationships at hydroelectric projects on the Columbia River. The imaging technique has evolved from studies documenting simple movement patterns to automated tracking of images to merging and analysis with concurrent hydraulic data. This chapter chronicles this evolution and shows how the information gleaned from the scientific evaluations has been applied to improve passage conditions for juvenile salmonids. We present data from Bonneville and The Dalles dams that document fish behavior and entrainment zones at sluiceway outlets (14 to 142 m3/s), fish passage rates through a gap at a turbine intake screen, and the relationship between fish swimming effort and hydraulic conditions. Dam operators and fisheries managers have applied these data to support decisions on operational and structural changes to the dams for the benefit of anadromous fish populations in the Columbia River basin.

  12. Widespread Forest Vertebrate Extinctions Induced by a Mega Hydroelectric Dam in Lowland Amazonia

    PubMed Central

    2015-01-01

    Mega hydropower projects in tropical forests pose a major emergent threat to terrestrial and freshwater biodiversity worldwide. Despite the unprecedented number of existing, under-construction and planned hydroelectric dams in lowland tropical forests, long-term effects on biodiversity have yet to be evaluated. We examine how medium and large-bodied assemblages of terrestrial and arboreal vertebrates (including 35 mammal, bird and tortoise species) responded to the drastic 26-year post-isolation history of archipelagic alteration in landscape structure and habitat quality in a major hydroelectric reservoir of Central Amazonia. The Balbina Hydroelectric Dam inundated 3,129 km2 of primary forests, simultaneously isolating 3,546 land-bridge islands. We conducted intensive biodiversity surveys at 37 of those islands and three adjacent continuous forests using a combination of four survey techniques, and detected strong forest habitat area effects in explaining patterns of vertebrate extinction. Beyond clear area effects, edge-mediated surface fire disturbance was the most important additional driver of species loss, particularly in islands smaller than 10 ha. Based on species-area models, we predict that only 0.7% of all islands now harbor a species-rich vertebrate assemblage consisting of ≥80% of all species. We highlight the colossal erosion in vertebrate diversity driven by a man-made dam and show that the biodiversity impacts of mega dams in lowland tropical forest regions have been severely overlooked. The geopolitical strategy to deploy many more large hydropower infrastructure projects in regions like lowland Amazonia should be urgently reassessed, and we strongly advise that long-term biodiversity impacts should be explicitly included in pre-approval environmental impact assessments. PMID:26132139

  13. Widespread Forest Vertebrate Extinctions Induced by a Mega Hydroelectric Dam in Lowland Amazonia.

    PubMed

    Benchimol, Maíra; Peres, Carlos A

    2015-01-01

    Mega hydropower projects in tropical forests pose a major emergent threat to terrestrial and freshwater biodiversity worldwide. Despite the unprecedented number of existing, under-construction and planned hydroelectric dams in lowland tropical forests, long-term effects on biodiversity have yet to be evaluated. We examine how medium and large-bodied assemblages of terrestrial and arboreal vertebrates (including 35 mammal, bird and tortoise species) responded to the drastic 26-year post-isolation history of archipelagic alteration in landscape structure and habitat quality in a major hydroelectric reservoir of Central Amazonia. The Balbina Hydroelectric Dam inundated 3,129 km2 of primary forests, simultaneously isolating 3,546 land-bridge islands. We conducted intensive biodiversity surveys at 37 of those islands and three adjacent continuous forests using a combination of four survey techniques, and detected strong forest habitat area effects in explaining patterns of vertebrate extinction. Beyond clear area effects, edge-mediated surface fire disturbance was the most important additional driver of species loss, particularly in islands smaller than 10 ha. Based on species-area models, we predict that only 0.7% of all islands now harbor a species-rich vertebrate assemblage consisting of ≥80% of all species. We highlight the colossal erosion in vertebrate diversity driven by a man-made dam and show that the biodiversity impacts of mega dams in lowland tropical forest regions have been severely overlooked. The geopolitical strategy to deploy many more large hydropower infrastructure projects in regions like lowland Amazonia should be urgently reassessed, and we strongly advise that long-term biodiversity impacts should be explicitly included in pre-approval environmental impact assessments.

  14. Wildlife Impact Assessment and Summary of Previous Mitigation Related to Hydroelectric Projects in Montana, Phase 1, Volume Two (B), Clark Fork River Projects, Cabinet Gorge and Noxon Rapids Dams, Operator, Washington Water Power Company.

    SciTech Connect

    Wood, Marilyn

    1984-06-01

    This report documents best available information concerning the wildlife species impacted and the degree of the impact. A target species list was developed to focus the impact assessment and to direct mitigation efforts. Many non-target species also incurred impacts but are not discussed in this report. All wildlife habitats inundated by the two reservoirs are represented by the target species. It was assumed the numerous non-target species also affected will be benefited by the mitigation measures adopted for the target species. Impacts addressed are limited to those directly attributable to the loss of habitat and displacement of wildlife populations due to the construction and operation of the two hydroelectric projects. Secondary impacts, such as the relocation of railroads and highways, and the increase of the human population, were not considered. In some cases, both positive and negative impacts were assessed; and the overall net effect was reported. The loss/gain estimates reported represent impacts considered to have occurred during one point in time except where otherwise noted. When possible, quantitative estimates were developed based on historical information from the area or on data from similar areas. Qualitative loss estimates of low, moderate, or high with supporting rationale were assessed for each species or species group.

  15. Analysis of environmental issues related to small scale hydroelectric development. II. Design considerations for passing fish upstream around dams. Environmental Sciences Division Publication No. 1567

    SciTech Connect

    Hildebrand, S.G.

    1980-08-01

    The possible requirement of facilities to move migrating fish upstream around dams may be a factor in determining the feasibility of retrofitting small dams for hydroelectric generation. Basic design considerations are reported that should be evaluated on a site-specific basis if upstream fish passage facilities are being considered for a small scale hydroelectric project (defined as an existing dam that can be retrofitted to generate 25 MW or less). Information on general life history and geographic distribution of fish species that may require passage is presented. Biological factors important in the design of upstream passage facilities are discussed: gas bubble disease, fish swimming speed, oxygen consumption by fish, and diel and photo behavior. Three general types of facilities (fishways, fish locks, and fish lifts) appropriate for upstream fish passage at small scale hydroelectric projects are described, and size dimensions are presented. General design criteria for these facilities (including fish swimming ability and behavior) and general location of facilities at a site are discussed. Basic cost considerations for each type of passage facility, including unit cost, operation and maintenance costs, and costs for supplying attraction water, are indicated.

  16. Impact of High Wind Power Penetration on Hydroelectric Unit Operations in the WWSIS

    SciTech Connect

    Hodge, B.-M.; Lew, D.; Milligan, M.

    2011-07-01

    This report examines the impact of this large amount of wind penetration on hydroelectric unit operations. Changes in hydroelectric unit operating patterns are examined both for an aggregation of all hydro generators and for select individual plants.

  17. Impact of High Wind Power Penetration on Hydroelectric Unit Operations: Preprint

    SciTech Connect

    Hodge, B. M.; Lew, D.; Milligan, M.

    2011-10-01

    This paper examines the impact of this large amount of wind penetration on hydroelectric unit operations. Changes in hydroelectric unit operating unit patterns are examined for an aggregation of all hydro generators.

  18. Analysis of Environmental Issues Related to Small-Scale Hydroelectric Development II: Design Consideration for Passing Fish Upstream Around Dams

    SciTech Connect

    Hildebrandt, S. G.; Bell, M. C.; Anderson, J. J.; Richey, E. P.; Parkhurst, Z. E.

    1980-08-01

    The purpose of this report is to provide general information for use by potential developers of small scale hydroelectric projects that will include facilities to pass migrating fish upstream around dams. The document is not intended to be a textbook on design of fish passage facilities, but rather to be a general guide to some factors that are important when designing such facilities.

  19. Case study analysis of the legal and institutional obstacles and incentives to the development of the hydroelectric power at the Maxwell locks and dam, Pennsylvania

    SciTech Connect

    None,

    1980-05-01

    The legal, institutional and financial obstacles, and incentives to the development of hydroelectric power at the Maxwell locks and dam on the Monongahela River are analyzed. The study is one of five studies prepared by the Energy Law Institute pursuant to a contract with the National Conference of State Legislators. Each of the five studies views dam development by a different category of developer. These categories include a municipality, a public utility, a state, a private developer, and a cooperative. The Maxwell case study concerns potential development by Allegheny Electric Cooperative. Thus, the analysis of obstacles and incentives is focused on those factors which have particular impact on a cooperative. Subjects covered include a description of the site; developer description; the feasibility study; the economic feasibility; financing; Federal licensing by FERC; state licensing; local interest and requirements; the effect of locks and dam operation by the Army Corp of Engineers; and power marketing.

  20. Diversity and activity pattern of wildlife inhabiting catchment of Hulu Terengganu Hydroelectric Dam, Terengganu, Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Adyla, M. N. Nurul; Ikhwan, Z.; Zuhairi, M.; Ngah, Shukor, M. N.

    2016-11-01

    A series of camera trapping surveys were conducted to study the diversity and distribution of wildlife within the catchment of Hulu Terengganu Hydroelectric Dam. A total of 124 camera traps were deployed at nine study sites, continuously from June 2014 until December 2015. The total effort of camera trap surveys from all the study sites during the 18-month sampling period was 29,128 night traps, from which a total of 32 species of wildlife representing nine Orders were recorded. The most common species were Eurasian Wild Pig (Sus scrofa), Barking Deer (Munticus muntjak), and Malayan Tapir (Tapirus indicus). Camera trap data on activity patterns show that Gallus gallus, Muntiacus muntjak and Sus scrofa are diurnal animals, whereas Tapirus indicus, Elephas maximus and Helarctos malayanus are nocturnal animals.

  1. Influence of peak flow changes on the macroinvertebrate drift downstream of a Brazilian hydroelectric dam.

    PubMed

    Castro, D M P; Hughes, R M; Callisto, M

    2013-11-01

    Successive daily peak flows from hydropower plants can disrupt aquatic ecosystems and alter the composition and structure of macroinvertebrates downstream. We evaluated the influence of peak flow changes on macroinvertebrate drift downstream of a hydroelectric plant as a basis for determining ecological flows that might reduce the disturbance of aquatic biota. The aim of this study was to assess the influence of flow fluctuations on the seasonal and daily drift patterns of macroinvertebrates. We collected macroinvertebrates during fixed flow rates (323 m3.s-1 in the wet season and 111 m3.s-1 in the dry season) and when peak flows fluctuated (378 to 481 m3.s-1 in the wet season, and 109 to 173 m3.s-1 in the dry season) in 2010. We collected 31,924 organisms belonging to 46 taxa in the four sampling periods. Taxonomic composition and densities of drifting invertebrates differed between fixed and fluctuating flows, in both wet and dry seasons, but family richness varied insignificantly. We conclude that macroinvertebrate assemblages downstream of dams are influenced by daily peak flow fluctuations. When making environmental flow decisions for dams, it would be wise to consider drifting macroinvertebrates because they reflect ecological changes in downstream biological assemblages.

  2. 33 CFR 209.141 - Coordination of hydroelectric power operations with power marketing agencies.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... hydroelectric power projects and providing information affecting cost and availability of power to the power... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Coordination of hydroelectric... Coordination of hydroelectric power operations with power marketing agencies. (a) Purpose. This...

  3. 33 CFR 209.141 - Coordination of hydroelectric power operations with power marketing agencies.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... hydroelectric power projects and providing information affecting cost and availability of power to the power... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Coordination of hydroelectric... Coordination of hydroelectric power operations with power marketing agencies. (a) Purpose. This...

  4. 33 CFR 209.141 - Coordination of hydroelectric power operations with power marketing agencies.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... hydroelectric power projects and providing information affecting cost and availability of power to the power... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Coordination of hydroelectric... Coordination of hydroelectric power operations with power marketing agencies. (a) Purpose. This...

  5. 33 CFR 209.141 - Coordination of hydroelectric power operations with power marketing agencies.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... hydroelectric power projects and providing information affecting cost and availability of power to the power... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Coordination of hydroelectric... Coordination of hydroelectric power operations with power marketing agencies. (a) Purpose. This...

  6. Small-scale hydroelectric demonstration project: Reactivation of the Elk Rapids Hydroelectric Facility: Final operation and maintenance report

    SciTech Connect

    Miller, R.G.

    1987-03-01

    Information related to the reactivation of the Elk River Hydroelectric Power facility is reported. This report includes a history of the power plant, pertinent cost data, emergency action plans, inspections and testing, warranty work, operating problems, project data, monthly production data, and monthly operating and maintenance costs. 15 figs., 3 tabs.

  7. Impacts of hydroelectric dams on alluvial riparian plant communities in Eastern Brazilian Amazonian.

    PubMed

    Ferreira, Leandro Valle; Cunha, Denise A; Chaves, Priscilla P; Matos, Darley C L; Parolin, Pia

    2013-09-01

    The major rivers of the Amazon River basin and their biota are threatened by the planned construction of large hydroelectric dams that are expected to have strong impacts on floodplain plant communities. The present study presents forest inventories from three floodplain sites colonized by alluvial riparian vegetation in the Tapajós, Xingu and Tocantins River basins in eastern Amazonian. Results indicate that tree species of the highly specialized alluvial riparian vegetation are clearly distinct among the three river basins, although they are not very distinct from each other and environmental constraints are very similar. With only 6 of 74 species occurring in all three inventories, most tree and shrub species are restricted to only one of the rivers, indicating a high degree of local distribution. Different species occupy similar environmental niches, making these fragile riparian formations highly valuable. Conservation plans must consider species complementarily when decisions are made on where to place floodplain forest conservation units to avoid the irreversible loss of unique alluvial riparian vegetation biodiversity.

  8. Optimization of Multiple and Multipurpose Reservoir System Operations by Using Matrix Structure (Case Study: Karun and Dez Reservoir Dams).

    PubMed

    Heydari, Mohammad; Othman, Faridah; Taghieh, Mahmood

    2016-01-01

    Optimal operation of water resources in multiple and multipurpose reservoirs is very complicated. This is because of the number of dams, each dam's location (Series and parallel), conflict in objectives and the stochastic nature of the inflow of water in the system. In this paper, performance optimization of the system of Karun and Dez reservoir dams have been studied and investigated with the purposes of hydroelectric energy generation and providing water demand in 6 dams. On the Karun River, 5 dams have been built in the series arrangements, and the Dez dam has been built parallel to those 5 dams. One of the main achievements in this research is the implementation of the structure of production of hydroelectric energy as a function of matrix in MATLAB software. The results show that the role of objective function structure for generating hydroelectric energy in weighting method algorithm is more important than water supply. Nonetheless by implementing ε- constraint method algorithm, we can both increase hydroelectric power generation and supply around 85% of agricultural and industrial demands.

  9. Libby Dam Hydro-electric Project Mitigation: Efforts for Downstream Ecosystem Restoration.

    SciTech Connect

    Holderman, Charles

    2009-02-10

    Construction of Libby Dam, a large hydropower and flood control dam occurred from 1966 to 1975 on the Kootenai River, near Libby, Montana in the Northwestern United States. Live reservoir storage is substantial, with water residence time of about 5 1/2 months (based on mean annual discharge of about 440 m{sup 3}/s). Downstream river discharge and thermal regimes and the dependent habitat conditions have been significantly altered by dam construction and operation relative to pre-dam conditions. Highly valued Kootenai River fish populations, including white sturgeon Acipenser transmontanus, burbot Lota lota and bull trout Salvelinus confluentus and their supporting ecological conditions have been deteriorating during post-dam years. Measurements of the presence of very low (ultraoligotrophic) concentrations of dissolved phosphorus in the river downstream from Libby Dam were identified as a critical limitation on primary production and overall ecosystem health. A decision was made to initiate the largest experimental river fertilization project to date in the Kootenai River at the Montana-Idaho border. Pre-treatment aquatic biomonitoring began in 2001; post-treatment monitoring began in 2005. A solar-powered nutrient addition system was custom designed and built to dose small releases of dissolved nutrients at rates from 10 to 40 L/hour, depending on river discharge, which averaged several hundred m3/s. Closely monitored experimental additions of ammonium polyphosphate solution (10-34-0) into the river occurred during the summers of 2005 through 2008. Targets for mixed in-river P concentrations were 1.5 {micro}g/L in 2005, and 3 {micro}g/L in subsequent years. Primary productivity and algal accrual rates along with invertebrate and fish community metrics and conditions were consistently measured annually, before and after experimental fertilization. Initial results from the program are very encouraging, and are reported.

  10. Wildlife Impact Assessment and Summary of Previous Mitigation Related to Hydroelectric Projects in Montana, Phase I, Volume Two (A), Clark Fork Projects, Thompson Falls Dam, Operator, Montana Power Company.

    SciTech Connect

    Wood, Marilyn

    1984-03-27

    The Thompson Falls Dam inundated approximately 347 acres of wildlife habitat that likely included conifer forests, deciduous bottoms, mixed conifer-deciduous forests and grassland/hay meadows. Additionally, at least one island, and several gravel bars were inundated when the river was transformed into a reservoir. The loss of riparian and riverine habitat adversely affected the diverse wildlife community inhabiting the lower Clark Fork River area. Quantitative loss estimates were determined for selected target species based on best available information. The loss estimates were based on inundation of the habitat capable of supporting the target species. Whenever possible, loss estimates bounds were developed by determining ranges of impacts based on density estimates and/or acreage loss estimates. Of the twelve target species or species groups, nine were assessed as having net negative impacts. 86 refs., 2 figs., 5 tabs.

  11. Optimization of Multiple and Multipurpose Reservoir System Operations by Using Matrix Structure (Case Study: Karun and Dez Reservoir Dams)

    PubMed Central

    Othman, Faridah; Taghieh, Mahmood

    2016-01-01

    Optimal operation of water resources in multiple and multipurpose reservoirs is very complicated. This is because of the number of dams, each dam’s location (Series and parallel), conflict in objectives and the stochastic nature of the inflow of water in the system. In this paper, performance optimization of the system of Karun and Dez reservoir dams have been studied and investigated with the purposes of hydroelectric energy generation and providing water demand in 6 dams. On the Karun River, 5 dams have been built in the series arrangements, and the Dez dam has been built parallel to those 5 dams. One of the main achievements in this research is the implementation of the structure of production of hydroelectric energy as a function of matrix in MATLAB software. The results show that the role of objective function structure for generating hydroelectric energy in weighting method algorithm is more important than water supply. Nonetheless by implementing ε- constraint method algorithm, we can both increase hydroelectric power generation and supply around 85% of agricultural and industrial demands. PMID:27248152

  12. 2. VIEW EAST, WEST END OF DAM AT CENTER, HEADGATE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW EAST, WEST END OF DAM AT CENTER, HEADGATE OPERATING MECHANISMS AT LEFT - Dayville Mills Hydroelectric Facility, Dam, North side of Route 101, .5 mile west of Route 395, Killingly Center, Windham County, CT

  13. Decision Support Systems to Optimize the Operational Efficiency of Dams and Maintain Regulatory Compliance Criteria

    NASA Astrophysics Data System (ADS)

    Parkinson, S.; Morehead, M. D.; Conner, J. T.; Frye, C.

    2012-12-01

    Increasing demand for water and electricity, increasing variability in weather and climate and stricter requirements for riverine ecosystem health has put ever more stringent demands on hydropower operations. Dam operators are being impacted by these constraints and are looking for methods to meet these requirements while retaining the benefits hydropower offers. Idaho Power owns and operates 17 hydroelectric plants in Idaho and Oregon which have both Federal and State compliance requirements. Idaho Power has started building Decision Support Systems (DSS) to aid the hydroelectric plant operators in maximizing hydropower operational efficiency, while meeting regulatory compliance constraints. Regulatory constraints on dam operations include: minimum in-stream flows, maximum ramp rate of river stage, reservoir volumes, and reservoir ramp rate for draft and fill. From the hydroelectric standpoint, the desire is to vary the plant discharge (ramping) such that generation matches electricity demand (load-following), but ramping is limited by the regulatory requirements. Idaho Power desires DSS that integrate real time and historic data, simulates the rivers behavior from the hydroelectric plants downstream to the compliance measurement point and presents the information in an easily understandable display that allows the operators to make informed decisions. Creating DSS like these has a number of scientific and technical challenges. Real-time data are inherently noisy and automated data cleaning routines are required to filter the data. The DSS must inform the operators when incoming data are outside of predefined bounds. Complex river morphologies can make the timing and shape of a discharge change traveling downstream from a power plant nearly impossible to represent with a predefined lookup table. These complexities require very fast hydrodynamic models of the river system that simulate river characteristics (ex. Stage, discharge) at the downstream compliance point

  14. Downstream passage and impact of turbine shutdowns on survival of silver American Eels at five hydroelectric dams on the Shenandoah River

    USGS Publications Warehouse

    Eyler, Sheila; Welsh, Stuart; Smith, David; Rockey, Mary

    2016-01-01

    Hydroelectric dams impact the downstream migrations of silver American Eels Anguilla rostrata via migratory delays and turbine mortality. A radiotelemetry study of American Eels was conducted to determine the impacts of five run-of-the-river hydroelectric dams located over a 195-km stretch of the Shenandoah River, Virginia–West Virginia, during fall 2007–summer 2010. Overall, 96 radio-tagged individuals (mean TL = 85.4 cm) migrated downstream past at least one dam during the study. Most American Eels passed dams relatively quickly; over half (57.9%) of the dam passage events occurred within 1 h of reaching a dam, and most (81.3%) occurred within 24 h of reaching the dam. Two-thirds of the dam passage events occurred via spill, and the remaining passage events were through turbines. Migratory delays at dams were shorter and American Eels were more likely to pass via spill over the dam during periods of high river discharge than during low river discharge. The extent of delay in migration did not differ between the passage routes (spill versus turbine). Twenty-eight American Eels suffered turbine-related mortality, which occurred at all five dams. Mortality rates for eels passing through turbines ranged from 15.8% to 40.7% at individual dams. Overall project-specific mortality rates (with all passage routes combined) ranged from 3.0% to 14.3%. To protect downstream-migrating American Eels, nighttime turbine shutdowns (1800–0600 hours) were implemented during September 15–December 15. Fifty percent of all downstream passage events in the study occurred during the turbine shutdown period. Implementation of the seasonal turbine shutdown period reduced cumulative mortality from 63.3% to 37.3% for American Eels passing all five dams. Modifying the turbine shutdown period to encompass more dates in the spring and linking the shutdowns to environmental conditions could provide greater protection to downstream-migrating American Eels.

  15. Mitigation for the Construction and Operation of Libby Dam, 2000 Annual Report.

    SciTech Connect

    Hoffman, Greg; Marotz, Brian L.; Dunnigan, James

    2002-09-01

    ''Mitigation for the Construction and Operation of Libby Dam'' is part of the Northwest Power Planning Council's resident fish and wildlife program. The program was mandated by the Northwest Planning Act of 1980, and is responsible for mitigating for damages to fish and wildlife caused by hydroelectric development in the Columbia River Basin. The objective of Phase I of the project (1983 through 1987) was to maintain or enhance the Libby Reservoir fishery by quantifying seasonal water levels and developing ecologically sound operational guidelines. The objective of Phase II of the project (1988 through 1996) was to determine the biological effects of reservoir operations combined with biotic changes associated with an aging reservoir. The objectives of Phase III of the project (1996 through present) are to implement habitat enhancement measures to mitigate for dam effects, to provide data for implementation of operational strategies that benefit resident fish, monitor reservoir and river conditions, and monitor mitigation projects for effectiveness.

  16. Fall Chinook Salmon Spawning Activity Versus Daylight and Flow in the Tailrace of a Large Hydroelectric Dam

    SciTech Connect

    McMichael, Geoffrey A.; McKinstry, Craig A.; Vucelick, Jessica A.; Lukas, Joe

    2005-05-01

    We deployed an acoustic system during the fall Chinook salmon (Oncorhynchus tshawytscha) spawning season in 2001 to determine whether fall Chinook salmon spawning activity in a hydroelectric dam tailrace area was affected by daylight or river flow dynamics. The system was deployed following a randomized study design to record fall Chinook salmon spawning activity during day and night periods in two index areas downstream of Wanapum Dam on the Columbia River in Washington, USA. One index area was a deepwater spawning area located (river kilometer (rkm) 663) in 9 to 11 m of water. The other index site was a moderate depth mid-channel bar, where water depths ranged from 2.5 to 6 m. The acoustic system was used to collect spawning activity data during free-drifts in a boat through the index areas. Spawning activity was defined as digs per minute from underwater sound recordings. Fall Chinook salmon spawning activity in the Wanapum Dam tailrace was influenced by daylight and river discharge. Results showed there was a substantial amount of spawning activity occurring during both daylight and darkness. However, there was significantly more spawning activity during daylight than at night in both index areas. Spawning activity was also affected by flow. Project discharge had a pronounced non-linear effect on spawning activity. Spawning activity was generally highest at project discharges between 1,700 and 2266 m3 sec-1 in both spawning areas, with reduced activity as discharge increased to between 3,400 and 4,250 m3 sec-1. We concluded that fall Chinook salmon spawning activity in highly variable environments was affected more by flow (and velocity) than by daylight.

  17. Assessment of Natural Stream Sites for Hydroelectric Dams in the Pacific Northwest Region

    SciTech Connect

    Douglas G. Hall; Kristin L. Verdin; Randy D. Lee

    2012-03-01

    This pilot study presents a methodology for modeling project characteristics using a development model of a stream obstructing dam. The model is applied to all individual stream reaches in hydrologic region 17, which encompasses nearly all of Idaho, Oregon, and Washington. Project site characteristics produced by the modeling technique include: capacity potential, principal dam dimensions, number of required auxiliary dams, total extent of the constructed impoundment boundary, and the surface area of the resulting reservoir. Aggregated capacity potential values for the region are presented in capacity categories including total, that at existing dams, within federal and environmentally sensitive exclusion zones, and the balance which is consider available for greenfield development within the limits of the study. Distributions of site characteristics for small hydropower sites are presented and discussed. These sites are screened to identify candidate small hydropower sites and distributions of the site characteristics of this site population are presented and discussed. Recommendations are made for upgrading the methodology and extensions to make the results more accessible and available on a larger scale.

  18. 87. DAM TAINTER GATE OPERATING MACHINERY TRAVELING HOIST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    87. DAM - TAINTER GATE OPERATING MACHINERY - TRAVELING HOIST - AMERICAN TYPE ASSEMBLY (ML-5-55/111-FS), February 1938 - Upper Mississippi River 9-Foot Channel Project, Lock & Dam No. 5, Minneiska, Winona County, MN

  19. 33 CFR 209.141 - Coordination of hydroelectric power operations with power marketing agencies.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... power operations with power marketing agencies. 209.141 Section 209.141 Navigation and Navigable Waters... Coordination of hydroelectric power operations with power marketing agencies. (a) Purpose. This regulation... generating facilities with the power marketing agencies. (b) Applicability. This regulation applies to...

  20. Brazil's Samuel Dam: lessons for hydroelectric development policy and the environment in Amazonia.

    PubMed

    Fearnside, Philip M

    2005-01-01

    Brazil's Samuel Dam, which formed a 540-km2 reservoir in the state of Rondônia in 1988, provides lessons for development decisions throughout Amazonia and in other tropical areas. The decision to build the dam was heavily influenced by its role in the political strategies of key decision makers. Samuel illustrates both impacts and benefits of electricity supply and the dilemmas facing decision makers regarding the various options for planned electricity generation. Environmental costs included flooding forest and stimulating illegal logging activity throughout western Amazonia because of an exception opened for Samuel in Brazil's prohibition of export of raw logs. Samuel emitted substantially more greenhouse gases than would have been emitted by generating the same amount of electricity from oil. Contamination of fish in the reservoir resulted from methylation of mercury present in the soil. Social costs of the dam included resettlement of 238 families of farmers; impacts on indigenous people were indirect. Mitigating measures included faunal rescue and creation of a forest reserve. The lessons of Samuel include the need to consider a full range of alternatives prior to making decisions in practice and the importance of adhering to the logical sequence of decision making, where information is gathered and compared prior to the decision. It also shows the need to maintain flexibility when the costs and benefits of different alternatives change significantly over the course of the project's planning and execution, as occurred at Samuel.

  1. Migratory delay leads to reduced passage success of Atlantic salmon smolts at a hydroelectric dam

    USGS Publications Warehouse

    Daniel Nyqvist,; Greenberg, L.; Goerig, E.; Calles, O.; Bergman, E.; William Ardren,; Castro-Santos, Theodore R.

    2016-01-01

    Passage of fish through hydropower dams is associated with mortality, delay, increased energy expenditure and migratory failure for migrating fish and the need for remedial measures for both upstream and downstream migration is widely recognised. A functional fish passage must ensure safe and timely passage routes that a substantial portion of migrating fish will use. Passage solutions must address not only the number or percentage of fish that successfully pass a barrier, but also the time it takes to pass. Here, we used radiotelemetry to study the functionality of a fish bypass for downstream-migrating wild-caught and hatchery-released Atlantic salmon smolts. We used time-to-event analysis to model the influence of fish characteristics and environmental variables on the rates of a series of events associated with dam passage. Among the modelled events were approach rate to the bypass entry zone, retention rates in both the forebay and the entry zone and passage rates. Despite repeated attempts, only 65% of the tagged fish present in the forebay passed the dam. Fish passed via the bypass (33%), via spill (18%) and via turbines (15%). Discharge was positively related to approach, passage and retention rates. We did not detect any differences between wild and hatchery fish. Even though individual fish visited the forebay and the entry zone on multiple occasions, most fish passed during the first exposures to these zones. This study underscores the importance of timeliness to passage success and the usefulness of time-to-event analysis for understanding factors governing passage performance.

  2. Multibeam sonar (DIDSON) assessment of American shad (Alosa sapidissima) approaching a hydroelectric dam

    USGS Publications Warehouse

    Grote, Ann B.; Bailey, Michael M.; Zydlewski, Joseph; Hightower, Joseph E.

    2014-01-01

    We investigated the fish community approaching the Veazie Dam on the Penobscot River, Maine, prior to implementation of a major dam removal and river restoration project. Multibeam sonar (dual-frequency identification sonar, DIDSON) surveys were conducted continuously at the fishway entrance from May to July in 2011. A 5% subsample of DIDSON data contained 43 793 fish targets, the majority of which were of Excellent (15.7%) or Good (73.01%) observation quality. Excellent quality DIDSON targets (n = 6876) were apportioned by species using a Bayesian mixture model based on four known fork length distributions (river herring (alewife,Alosa psuedoharengus, and blueback herring, Alosa aestivalis), American shad, Alosa sapidissima) and two size classes (one sea-winter and multi-sea-winter) of Atlantic salmon (Salmo salar). 76.2% of targets were assigned to the American shad distribution; Atlantic salmon accounted for 15.64%, and river herring 8.16% of observed targets. Shad-sized (99.0%) and salmon-sized (99.3%) targets approached the fishway almost exclusively during the day, whereas river herring-sized targets were observed both during the day (51.1%) and at night (48.9%). This approach demonstrates how multibeam sonar imaging can be used to evaluate community composition and species-specific movement patterns in systems where there is little overlap in the length distributions of target species.

  3. Mitigation for the Construction and Operation of Libby Dam, 2004-2005 Annual Report.

    SciTech Connect

    Dunnigan, James; DeShazer, Jay; Garrow, Larry

    2005-06-01

    ''Mitigation for the Construction and Operation of Libby Dam'' is part of the Northwest Power and Conservation Council's (NPCC) resident fish and wildlife program. The program was mandated by the Northwest Planning Act of 1980, and is responsible for mitigating damages to fish and wildlife caused by hydroelectric development in the Columbia River Basin. The objective of Phase I of the project (1983 through 1987) was to maintain or enhance the Libby Reservoir fishery by quantifying seasonal water levels and developing ecologically sound operational guidelines. The objective of Phase II of the project (1988 through 1996) was to determine the biological effects of reservoir operations combined with biotic changes associated with an aging reservoir. The objectives of Phase III of the project (1996 through present) are to implement habitat enhancement measures to mitigate for dam effects, to provide data for implementation of operational strategies that benefit resident fish, monitor reservoir and river conditions, and monitor mitigation projects for effectiveness. This project completes urgent and high priority mitigation actions as directed by the Kootenai Subbasin Plan. Montana Fish, Wildlife & Parks (MFWP) uses a combination of techniques to collect physical and biological data within the Kootenai River Basin. These data serve several purposes including: the development and refinement of models used in management of water resources and operation of Libby Dam; investigations into the limiting factors of native fish populations, gathering basic life history information, tracking trends in endangered and threatened species, and the assessment of restoration or management activities designed to restore native fishes and their habitats.

  4. Mitigation for the Construction and Operation of Libby Dam, 2001-2002 Annual Report.

    SciTech Connect

    Dunnigan, James L.; Marotz, Brian L.; DeShazer, Jay

    2003-06-01

    Libby Reservoir was created under an International Columbia River Treaty between the United States and Canada for cooperative water development of the Columbia River Basin (Columbia River Treaty 1964). Libby Reservoir inundated 109 stream miles of the mainstem Kootenai River in the United States and Canada, and 40 miles of tributary streams in the U.S. that provided habitat for spawning, juvenile rearing, and migratory passage (Figure 1). The authorized purpose of the dam is to provide power (91.5%), flood control (8.3%), and navigation and other benefits (0.2%; Storm et al. 1982). The Pacific Northwest Power Act of 1980 recognized possible conflicts stemming from hydroelectric projects in the northwest and directed Bonneville Power Administration to ''protect, mitigate, and enhance fish and wildlife to the extent affected by the development and operation of any hydroelectric project of the Columbia River and its tributaries...'' (4(h)(10)(A)). Under the Act, the Northwest Power Planning Council was created and recommendations for a comprehensive fish and wildlife program were solicited from the region's federal, state, and tribal fish and wildlife agencies. Among Montana's recommendations was the proposal that research be initiated to quantify acceptable seasonal minimum pool elevations to maintain or enhance the existing fisheries (Graham et al. 1982). Research to determine how operations of Libby Dam affect the reservoir and river fishery and to suggest ways to lessen these effects began in May, 1983. The framework for the Libby Reservoir Model (LRMOD) was completed in 1989. Development of Integrated Rule Curves (IRCs) for Libby Dam operation was completed in 1996 (Marotz et al. 1996). The Libby Reservoir Model and the IRCs continue to be refined (Marotz et al 1999). Initiation of mitigation projects such as lake rehabilitation and stream restoration began in 1996. The primary focus of the Libby Mitigation project now is to redevelop fisheries and fisheries

  5. Attitudes of Operative Dentistry Faculty toward Rubber Dam Isolation.

    ERIC Educational Resources Information Center

    Brackett, William W.; And Others

    1989-01-01

    Dental faculty responses (N=332) to a survey concerning use of rubber dams for excluding fluids from the working field in operative dentistry procedures indicated students receive adequate instruction in rubber dam use and are proficient at graduation, though motivating students to its use is problematic and patient resistance a factor. (MSE)

  6. Libby Mitigation Program, 2007 Annual Progress Report: Mitigation for the Construction and Operation of Libby Dam.

    SciTech Connect

    Dunnigan, James; DeShazer, J.; Garrow, L.

    2009-05-26

    Libby Reservoir was created under an International Columbia River Treaty between the United States and Canada for cooperative water development of the Columbia River Basin (Columbia River Treaty 1964). Libby Reservoir inundated 109 stream miles of the mainstem Kootenai River in the United States and Canada, and 40 miles of tributary streams in the U.S. that provided habitat for spawning, juvenile rearing, and migratory passage (Figure 1). The authorized purpose of the dam is to provide power (91.5%), flood control (8.3%), and navigation and other benefits (0.2%; Storm et al. 1982). The Pacific Northwest Power Act of 1980 recognized possible conflicts stemming from hydroelectric projects in the northwest and directed Bonneville Power Administration to 'protect, mitigate, and enhance fish and wildlife to the extent affected by the development and operation of any hydroelectric project of the Columbia River and its tributaries' (4(h)(10)(A)). Under the Act, the Northwest Power Planning Council was created and recommendations for a comprehensive fish and wildlife program were solicited from the region's federal, state, and tribal fish and wildlife agencies. Among Montana's recommendations was the proposal that research be initiated to quantify acceptable seasonal minimum pool elevations to maintain or enhance the existing fisheries (Graham et al. 1982). Research to determine how operations of Libby Dam affect the reservoir and river fishery and to suggest ways to lessen these effects began in May 1983. The framework for the Libby Reservoir Model (LRMOD) was completed in 1989. Development of Integrated Rule Curves (IRCs) for Libby Dam operation was completed in 1996 (Marotz et al. 1996). The Libby Reservoir Model and the IRCs continue to be refined (Marotz et al 1999). Initiation of mitigation projects such as lake rehabilitation and stream restoration began in 1996. The primary focus of the Libby Mitigation project now is to restore the fisheries and fish habitat in

  7. Optimization of the weekly operation of a multipurpose hydroelectric development, including a pumped storage plant

    NASA Astrophysics Data System (ADS)

    Popa, R.; Popa, F.; Popa, B.; Zachia-Zlatea, D.

    2010-08-01

    It is presented an optimization model based on genetic algorithms for the operation of a multipurpose hydroelectric power development consisting in a pumped storage plant (PSP) with weekly operation cycle. The lower reservoir of the PSP is supplied upstream from a peak hydropower plant (HPP) with a large reservoir and supplies the own HPP which provides the required discharges towards downstream. Under these conditions, the optimum operation of the assembly consisting in 3 reservoirs and hydropower plants becomes a difficult problem if there are considered the restrictions as regards: the gradients allowed for the reservoirs filling/emptying, compliance with of a long-term policy of the upper reservoir from the hydroelectric development and of the weekly cycle for the PSP upper reservoir, correspondence between the power output/consumption in the weekly load schedule, turning to account of the water resource at maximum overall efficiencies, etc. Maximization of the net energy value (generated minus consumed) was selected as performance function of the model, considering the differentiated price of the electric energy over the week (working or weekend days, peak, half-peak or base hours). The analysis time step was required to be of 3 hours, resulting a weekly horizon of 56 steps and 168 decision variables, respectively, for the 3 HPPs of the system. These were allowed to be the flows turbined at the HPP and the number of working hydrounits at PSP, on each time step. The numerical application has considered the guiding data of Fantanele-Tarnita-Lapustesti hydroelectric development. Results of various simulations carried out proved the qualities of the proposed optimization model, which will allow its use within a decisional support program for such a development.

  8. Potential Effects of Hydroelectric Dam Development in the Mekong River Basin on the Migration of Siamese Mud Carp (Henicorhynchus siamensis and H. lobatus) Elucidated by Otolith Microchemistry

    PubMed Central

    Fukushima, Michio; Jutagate, Tuantong; Grudpan, Chaiwut; Phomikong, Pisit; Nohara, Seiichi

    2014-01-01

    The migration of Siamese mud carp (Henicorhynchus siamensis and H. lobatus), two of the most economically important fish species in the Mekong River, was studied using an otolith microchemistry technique. Fish and river water samples were collected in seven regions throughout the whole basin in Thailand, Laos and Cambodia over a 4 year study period. There was coherence between the elements in the ambient water and on the surface of the otoliths, with strontium (Sr) and barium (Ba) showing the strongest correlation. The partition coefficients were 0.409–0.496 for Sr and 0.055 for Ba. Otolith Sr-Ba profiles indicated extensive synchronized migrations with similar natal origins among individuals within the same region. H. siamensis movement has been severely suppressed in a tributary system where a series of irrigation dams has blocked their migration. H. lobatus collected both below and above the Khone Falls in the mainstream Mekong exhibited statistically different otolith surface elemental signatures but similar core elemental signatures. This result suggests a population originating from a single natal origin but bypassing the waterfalls through a passable side channel where a major hydroelectric dam is planned. The potential effects of damming in the Mekong River are discussed. PMID:25099147

  9. Potential effects of hydroelectric dam development in the Mekong River basin on the migration of Siamese mud carp (Henicorhynchus siamensis and H. lobatus) elucidated by otolith microchemistry.

    PubMed

    Fukushima, Michio; Jutagate, Tuantong; Grudpan, Chaiwut; Phomikong, Pisit; Nohara, Seiichi

    2014-01-01

    The migration of Siamese mud carp (Henicorhynchus siamensis and H. lobatus), two of the most economically important fish species in the Mekong River, was studied using an otolith microchemistry technique. Fish and river water samples were collected in seven regions throughout the whole basin in Thailand, Laos and Cambodia over a 4 year study period. There was coherence between the elements in the ambient water and on the surface of the otoliths, with strontium (Sr) and barium (Ba) showing the strongest correlation. The partition coefficients were 0.409-0.496 for Sr and 0.055 for Ba. Otolith Sr-Ba profiles indicated extensive synchronized migrations with similar natal origins among individuals within the same region. H. siamensis movement has been severely suppressed in a tributary system where a series of irrigation dams has blocked their migration. H. lobatus collected both below and above the Khone Falls in the mainstream Mekong exhibited statistically different otolith surface elemental signatures but similar core elemental signatures. This result suggests a population originating from a single natal origin but bypassing the waterfalls through a passable side channel where a major hydroelectric dam is planned. The potential effects of damming in the Mekong River are discussed.

  10. Response of spawning lake sturgeons to change in hydroelectric facility operation

    SciTech Connect

    Auer, N.A.

    1996-01-01

    Spawning of lake sturgeon Acipenser fulvescens was documented from 1987 to 1992 below the Prickett hydroelectric facility on the Sturgeon River, a tributary to Portage Lake, Michigan. Lake sturgeons were captured at the spawning site with dip nets during periods of reduced flow. A change in the spawning characteristics of the population was noted that corresponded to a changed in the operation of the hydroelectric facility. In 1987 and 1988 the facility operated in a peaking mode, which resulted in large daily fluctuations in river flows. The years 1989 and 1990 were years of transition, and in 1991 and 1992 the facility released near run-of-the-river (ROR) flows. Under near-ROR flows, which were more natural, adult lake sturgeons spent 4-6 weeks less at the spawning sites, 74% more fish were observed, weights were greater due to a 68% increase in number of females, and fish had increased reproductive readiness. The change in flow regime was the result of a Federal Energy Regulatory Commission relicensing action. The positive response observed in lake sturgeon spawning activity that resulted from the change of facility operation to near-ROR flows should be beneficial to the survival and perpetuation of this population. Similar results may be experienced in other lake sturgeon waters affected by manipulated flow regimes. 28 refs., 5 figs., 6 tabs.

  11. Mitigation for the Construction and Operation of Libby Dam, 2003-2004 Annual Report.

    SciTech Connect

    Dunnigan, James; DeShazer, Jay; Garrow, Larry

    2004-06-01

    ''Mitigation for the Construction and Operation of Libby Dam'' is part of the Northwest Power and Conservation Council's (NPCC) resident fish and wildlife program. The program was mandated by the Northwest Planning Act of 1980, and is responsible for mitigating for damages to fish and wildlife caused by hydroelectric development in the Columbia River Basin. The objective of Phase I of the project (1983 through 1987) was to maintain or enhance the Libby Reservoir fishery by quantifying seasonal water levels and developing ecologically sound operational guidelines. The objective of Phase II of the project (1988 through 1996) was to determine the biological effects of reservoir operations combined with biotic changes associated with an aging reservoir. The objectives of Phase III of the project (1996 through present) are to implement habitat enhancement measures to mitigate for dam effects, to provide data for implementation of operational strategies that benefit resident fish, monitor reservoir and river conditions, and monitor mitigation projects for effectiveness. This project completes urgent and high priority mitigation actions as directed by the Kootenai Subbasin Plan. Montana FWP uses a combination of diverse techniques to collect a variety of physical and biological data within the Kootenai River Basin. These data serve several purposes including: the development and refinement of models used in management of water resources and operation of Libby Dam; investigations into the limiting factors of native fish populations, gathering basic life history information, tracking trends in endangered, threatened species, and the assessment of restoration or management activities intended to restore native fishes and their habitats.

  12. Classification of US hydropower dams by their modes of operation

    SciTech Connect

    McManamay, Ryan A.; Oigbokie, II, Clement O.; Kao, Shih -Chieh; Bevelhimer, Mark S.

    2016-02-19

    A key challenge to understanding ecohydrologic responses to dam regulation is the absence of a universally transferable classification framework for how dams operate. In the present paper, we develop a classification system to organize the modes of operation (MOPs) for U.S. hydropower dams and powerplants. To determine the full diversity of MOPs, we mined federal documents, open-access data repositories, and internet sources. W then used CART classification trees to predict MOPs based on physical characteristics, regulation, and project generation. Finally, we evaluated how much variation MOPs explained in sub-daily discharge patterns for stream gages downstream of hydropower dams. After reviewing information for 721 dams and 597 power plants, we developed a 2-tier hierarchical classification based on 1) the storage and control of flows to powerplants, and 2) the presence of a diversion around the natural stream bed. This resulted in nine tier-1 MOPs representing a continuum of operations from strictly peaking, to reregulating, to run-of-river, and two tier-2 MOPs, representing diversion and integral dam-powerhouse configurations. Although MOPs differed in physical characteristics and energy production, classification trees had low accuracies (<62%), which suggested accurate evaluations of MOPs may require individual attention. MOPs and dam storage explained 20% of the variation in downstream subdaily flow characteristics and showed consistent alterations in subdaily flow patterns from reference streams. Lastly, this standardized classification scheme is important for future research including estimating reservoir operations for large-scale hydrologic models and evaluating project economics, environmental impacts, and mitigation.

  13. Classification of US hydropower dams by their modes of operation

    DOE PAGES

    McManamay, Ryan A.; Oigbokie, II, Clement O.; Kao, Shih -Chieh; ...

    2016-02-19

    A key challenge to understanding ecohydrologic responses to dam regulation is the absence of a universally transferable classification framework for how dams operate. In the present paper, we develop a classification system to organize the modes of operation (MOPs) for U.S. hydropower dams and powerplants. To determine the full diversity of MOPs, we mined federal documents, open-access data repositories, and internet sources. W then used CART classification trees to predict MOPs based on physical characteristics, regulation, and project generation. Finally, we evaluated how much variation MOPs explained in sub-daily discharge patterns for stream gages downstream of hydropower dams. After reviewingmore » information for 721 dams and 597 power plants, we developed a 2-tier hierarchical classification based on 1) the storage and control of flows to powerplants, and 2) the presence of a diversion around the natural stream bed. This resulted in nine tier-1 MOPs representing a continuum of operations from strictly peaking, to reregulating, to run-of-river, and two tier-2 MOPs, representing diversion and integral dam-powerhouse configurations. Although MOPs differed in physical characteristics and energy production, classification trees had low accuracies (<62%), which suggested accurate evaluations of MOPs may require individual attention. MOPs and dam storage explained 20% of the variation in downstream subdaily flow characteristics and showed consistent alterations in subdaily flow patterns from reference streams. Lastly, this standardized classification scheme is important for future research including estimating reservoir operations for large-scale hydrologic models and evaluating project economics, environmental impacts, and mitigation.« less

  14. Reservoir stratification affects methylmercury levels in river water, plankton, and fish downstream from Balbina hydroelectric dam, Amazonas, Brazil.

    PubMed

    Kasper, Daniele; Forsberg, Bruce R; Amaral, João H F; Leitão, Rafael P; Py-Daniel, Sarah S; Bastos, Wanderley R; Malm, Olaf

    2014-01-21

    The river downstream from a dam can be more contaminated by mercury than the reservoir itself. However, it is not clear how far the contamination occurs downstream. We investigated the seasonal variation of methylmercury levels in the Balbina reservoir and how they correlated with the levels encountered downstream from the dam. Water, plankton, and fishes were collected upstream and at sites between 0.5 and 250 km downstream from the dam during four expeditions in 2011 and 2012. Variations in thermal stratification of the reservoir influenced the methylmercury levels in the reservoir and in the river downstream. Uniform depth distributions of methylmercury and oxygen encountered in the poorly stratified reservoir during the rainy season collections coincided with uniformly low methylmercury levels along the river downstream from the dam. During dry season collections, the reservoir was strongly stratified, and anoxic hypolimnion water with high methylmercury levels was exported downstream. Methylmercury levels declined gradually to 200 km downstream. In general, the methylmercury levels in plankton and fishes downstream from the dam were higher than those upstream. Higher methylmercury levels observed 200-250 km downstream from the dam during flooding season campaigns may reflect the greater inflow from tributaries and flooding of natural wetlands that occurred at this time.

  15. Experience in the operation of hydraulic structures and equipment of hydroelectric stations

    SciTech Connect

    Gurbanov, I.S.

    1984-01-01

    The guide bearing fixing the position of the turbine shaft at the Bratsk hydroelectric station is made with eight water lubricated rubberized bushings. Specifications are offered for the bearings, turbine shaft, the end seal of the turbine shaft, the rubber ring assembly in the end seal, and the bonding of the joints. For conditions of the Angara and other rivers with clean water it is advised that turbine bearings with water lubricated rubberized bushings be used. The end seals eliminate shaft wear and with correct manufacture and installation will operate reliably for a long time. A shortcoming of the turbine bearings is the absence of devices for adjusting the clearance, which complicates repair and operations. 2 figures.

  16. An assessment of elephant home ranges and movement patterns during construction of Hulu Terengganu hydroelectric dam, Terengganu using GPS satellite collars

    NASA Astrophysics Data System (ADS)

    Magintan, D.; Shukorb, M. N.; Lihan, Tukimat; Campos, Ahimza-arceiz; Saaban, Salman; Husin, Shahril Mohd; Ahmad, Mohd Noh

    2016-11-01

    Home ranges and movement patterns of elephants during construction of hydroelectric dams were carried out in Hulu Terengganu, Terengganu, Peninsular Malaysia. Two elephants from two herds were captured, collared and released in the catchment area four to five months before inundation started in early October 2014. The two elephants were identified as Puah (female) and Sireh (male). The home range size of each individual during the construction of dams was estimated at 96.53 km2 for Puah and 367.99 km2 for Sireh. The monthly estimates of ranging for Puah was between 5.1 km2 and 38.4 km2 with average monthly ranging of 19.2 ± 4.7, while for Sireh, the monthly ranging estimates were between 20.6 km2 and 184.7 km2 with average monthly ranging at 79.9 ± 34.7. The movement mean rate (based on distance per day) for Puah and Sireh per day were 1.3 ± 0.1 km and 1.9 ± 0.1 km, respectively. Puah movement estimates for the first day after putting the collar was 0.88 km, whereas, the distance movement for Sireh on the first day after the collar was 0.02 km. The total distance travelled for Puah before inundation was 226.18 km, while Sireh covered 267.38 km.

  17. Multi-Model Long-Range Ensemble Forecast for Decision Support in Hydroelectric Operations

    NASA Astrophysics Data System (ADS)

    Kunkel, M. L.; Parkinson, S.; Blestrud, D.; Holbrook, V. P.

    2014-12-01

    Idaho Power Company (IPC) is a hydroelectric based utility serving over a million customers in southern Idaho and eastern Oregon. Hydropower makes up ~50% of our power generation and accurate predictions of streamflow and precipitation drive our long-term planning and decision support for operations. We investigate the use of a multi-model ensemble approach for mid and long-range streamflow and precipitation forecasts throughout the Snake River Basin. Forecast are prepared using an Idaho Power developed ensemble forecasting technique for 89 locations throughout the Snake River Basin for periods of 3 to 18 months in advance. A series of multivariable linear regression, multivariable non-linear regression and multivariable Kalman filter techniques are combined in an ensemble forecast based upon two data types, historical data (streamflow, precipitation, climate indices [i.e. PDO, ENSO, AO, etc…]) and single value decomposition derived values based upon atmospheric heights and sea surface temperatures.

  18. 78 FR 38022 - Alabama Power Company; Notice of Authorization for Continued Project Operation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-25

    ... Operation On June 5, 2008, the Alabama Power Company, licensee for the Martin Dam Hydroelectric Project... regulations thereunder. The Martin Dam Hydroelectric Project is located on Tallapoosa River, in Tallapoosa... hereby given that the licensee, Alabama Power Company, is authorized to continue operation of the...

  19. Ex post power economic analysis of record of decision operational restrictions at Glen Canyon Dam.

    SciTech Connect

    Veselka, T. D.; Poch, L. A.; Palmer, C. S.; Loftin, S.; Osiek, B; Decision and Information Sciences; Western Area Power Administration

    2010-07-31

    On October 9, 1996, Bruce Babbitt, then-Secretary of the U.S. Department of the Interior signed the Record of Decision (ROD) on operating criteria for the Glen Canyon Dam (GCD). Criteria selected were based on the Modified Low Fluctuating Flow (MLFF) Alternative as described in the Operation of Glen Canyon Dam, Colorado River Storage Project, Arizona, Final Environmental Impact Statement (EIS) (Reclamation 1995). These restrictions reduced the operating flexibility of the hydroelectric power plant and therefore its economic value. The EIS provided impact information to support the ROD, including an analysis of operating criteria alternatives on power system economics. This ex post study reevaluates ROD power economic impacts and compares these results to the economic analysis performed prior (ex ante) to the ROD for the MLFF Alternative. On the basis of the methodology used in the ex ante analysis, anticipated annual economic impacts of the ROD were estimated to range from approximately $15.1 million to $44.2 million in terms of 1991 dollars ($1991). This ex post analysis incorporates historical events that took place between 1997 and 2005, including the evolution of power markets in the Western Electricity Coordinating Council as reflected in market prices for capacity and energy. Prompted by ROD operational restrictions, this analysis also incorporates a decision made by the Western Area Power Administration to modify commitments that it made to its customers. Simulated operations of GCD were based on the premise that hourly production patterns would maximize the economic value of the hydropower resource. On the basis of this assumption, it was estimated that economic impacts were on average $26.3 million in $1991, or $39 million in $2009.

  20. A review of proposed Glen Canyon Dam interim operating criteria

    SciTech Connect

    LaGory, K.; Hlohowskyj, I.; Tomasko, D.; Hayse, J.; Durham, L.

    1992-04-01

    Three sets of interim operating criteria for Glen Canyon Dam on the Colorado River have been proposed for the period of November 1991, to the completion of the record of decision for the Glen Canyon Dam environmental impact statement (about 1993). These criteria set specific limits on dam releases, including maximum and minimum flows, up-ramp and down-ramp rates, and maximum daily fluctuation. Under the proposed interim criteria, all of these parameters would be reduced relative to historical operating criteria to protect downstream natural resources, including sediment deposits, threatened and endangered fishes, trout, the aquatic food base, and riparian plant communities. The scientific bases of the three sets of proposed operating criteria are evaluated in the present report:(1) criteria proposed by the Research/Scientific Group, associated with the Glen Canyon Environmental Studies (GCES); (2) criteria proposed state and federal officials charged with managing downstream resources; and (3) test criteria imposed from July 1991, to November 1991. Data from Phase 1 of the GCES and other sources established that the targeted natural resources are affected by dam operations, but the specific interim criteria chosen were not supported by any existing studies. It is unlikely that irreversible changes to any of the resources would occur over the interim period if historical operating criteria remained in place. It is likely that adoption of any of the sets of proposed interim operating criteria would reduce the levels of sediment transport and erosion below Glen Canyon Dam; however, these interim criteria could result in some adverse effects, including the accumulation of debris at tributary mouths, a shift of new high-water-zone vegetation into more flood-prone areas, and further declines in vegetation in the old high water zone.

  1. A New Multibeam Sonar Technique for Evaluating Fine-Scale Fish Behavior Near Hydroelectric Dam Guidance Structures

    SciTech Connect

    Johnson, Robert L.; Simmons, Mary Ann; Simmons, Carver S.; Blanton, Susan L.; Coutant, C.

    2002-03-07

    This book chapter describes a Dual-Head Multibeam Sonar (DHMS) system developed by Battelle and deployed at two dam sites on the Snake and Columbia rivers in Washington State to evaluate the fine-scale (

  2. DETAIL OF SPILLWAY GATES; FACING NORTHEAST Shoshone Falls Hydroelectric ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF SPILLWAY GATES; FACING NORTHEAST - Shoshone Falls Hydroelectric Project, Reservoir and Dam Complex, North Bank of Snake River, extreme Eastern end of the Shoshone Falls Hydroelectric Project, Tipperary Corner, Jerome County, ID

  3. INTAKE, VERTICAL VIEW; FACING EAST Shoshone Falls Hydroelectric Project, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTAKE, VERTICAL VIEW; FACING EAST - Shoshone Falls Hydroelectric Project, Intake, North Bank of Snake River, immediately West/Northwest of the Shoshone Falls Hydroelectric Project Dam No. 1, Tipperary Corner, Jerome County, ID

  4. Dam operations affect route-specific passage and survival of juvenile Chinook salmon at a main-stem diversion dam

    USGS Publications Warehouse

    Perry, Russell W.; Kock, Tobias J.; Couter, Ian I; Garrison, Thomas M; Hubble, Joel D; Child, David B

    2016-01-01

    Diversion dams can negatively affect emigrating juvenile salmon populations because fish must pass through the impounded river created by the dam, negotiate a passage route at the dam and then emigrate through a riverine reach that has been affected by reduced river discharge. To quantify the effects of a main-stem diversion dam on juvenile Chinook salmon in the Yakima River, Washington, USA, we used radio telemetry to understand how dam operations and river discharge in the 18-km reach downstream of the dam affected route-specific passage and survival. We found evidence of direct mortality associated with dam passage and indirect mortality associated with migration through the reach below the dam. Survival of fish passing over a surface spill gate (the west gate) was positively related to river discharge, and survival was similar for fish released below the dam, suggesting that passage via this route caused little additional mortality. However, survival of fish that passed under a sub-surface spill gate (the east gate) was considerably lower than survival of fish released downstream of the dam, with the difference in survival decreasing as river discharge increased. The probability of fish passing the dam via three available routes was strongly influenced by dam operations, with passage through the juvenile fish bypass and the east gate increasing with discharge through those routes. By simulating daily passage and route-specific survival, we show that variation in total survival is driven by river discharge and moderated by the proportion of fish passing through low-survival or high-survival passage routes.

  5. Development of Dam Operation Scheme in a Hydrology Model

    NASA Astrophysics Data System (ADS)

    He, Y.; Liang, X.

    2013-12-01

    A novel scheme for dam operation has been developed based on the artificial neural network approach to predict the reservoir management and hydrologic effects in response to climate variation and change. The scheme is built upon the historic management information of operating each dam, including climate, ecology properties and attributes (e.g., storage, surface area) for all relevant reservoirs. The scheme implicitly introduces the relationship between water demand and supply for downstream fluvial ecosystem, agriculture irrigation, and hydropower. This study will first present the fundamental formulation of the predictive scheme along with detailed analysis of the historical management data, and then evaluate the performance for its application in the Colorado River basin. Caveats and merits will also be discussed.

  6. Brief reconnaissance study for the addition of hydropower for Spray Dam, Eden, North Carolina

    SciTech Connect

    Gebhard, T.G. Jr.

    1981-01-30

    The feasibility of retrofitting the Spray Dam near Eden, North Carolina for power generation was examined. This dam has a developable head of 10 ft., was built in 1898 for hydroelectric power generation with one of 2 installed units currently operating. The study of environmental, institutional, safety and economic factors showed that hydroelectric power development at this site is possible and that the economics of retrofits will depend on whether existing equipment can be repaired or will have to be replaced. (LCL)

  7. 78 FR 34258 - Safety Zone; Salvage Operations at Marseilles Dam; Illinois River

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-07

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Salvage Operations at Marseilles Dam... extending 600 yards upstream of the Marseilles Dam to Mile Marker 247.2. This zone is intended to restrict the movement of vessels due to the salvage operations and repair efforts at the Marseilles Dam....

  8. Changes in human schistosomiasis levels after the construction of two large hydroelectric dams in central Côte d'Ivoire.

    PubMed Central

    N'Goran, E. K.; Diabate, S.; Utzinger, J.; Sellin, B.

    1997-01-01

    The construction of large dams has been shown to increase the prevalence and intensity of human schistosomiasis. However, until now no study had been carried out to assess the impact of such a project in Côte d'Ivoire. For Kossou and Taabo, two large dams which became operational in the 1970s, baseline data are available on schistosomiasis prevalence in the surrounding area before dam construction, so that the changes in schistosomiasis levels can be assessed. We re-evaluated the prevalence of Schistosoma haematobium and S. mansoni in November 1992, by analysing 548 urine and 255 stool samples, respectively, from schoolchildren from five villages around each lake. A marked increase in the overall prevalence of S. haematobium was observed, from 14% to 53% around Lake Kossou and from 0 to 73% around Lake Taabo. Baseline data for S. mansoni are only available for Lake Taabo, where a prevalence of 3% was found in 1979 and where the prevalence in 1992 was still low at 2%. The construction of these two large dams therefore led to little change in S. mansoni prevalence but to a significant increase in that of S. haematobium. PMID:9509626

  9. An Integrated Risk Approach for Assessing the Use of Ensemble Streamflow Forecasts in Hydroelectric Reservoir Operations

    NASA Astrophysics Data System (ADS)

    Lowry, T. S.; Wigmosta, M.; Barco, J.; Voisin, N.; Bier, A.; Coleman, A.; Skaggs, R.

    2012-12-01

    This paper presents an integrated risk approach using ensemble streamflow forecasts for optimizing hydro-electric power generation. Uncertainty in the streamflow forecasts are translated into integrated risk by calculating the deviation of an optimized release schedule that simultaneously maximizes power generation and environmental performance from release schedules that maximize the two objectives individually. The deviations from each target are multiplied by the probability of occurrence and then summed across all probabilities to get the integrated risk. The integrated risk is used to determine which operational scheme exposes the operator to the least amount of risk or conversely, what are the consequences of basing future operations on a particular prediction. Decisions can be made with regards to the tradeoff between power generation, environmental performance, and exposure to risk. The Hydropower Seasonal Concurrent Optimization for Power and Environment (HydroSCOPE) model developed at Sandia National Laboratories (SNL) is used to model the flow, temperature, and power generation and is coupled with the DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) optimization package to identify the maximum potential power generation, the maximum environmental performance, and the optimal operational scheme that maximizes both for each instance of the ensemble forecasts. The ensemble forecasts were developed in a collaborative effort between the Pacific Northwest National Laboratory (PNNL) and the University of Washington to develop an Enhanced Hydrologic Forecasting System (EHFS) that incorporates advanced ensemble forecasting approaches and algorithms, spatiotemporal datasets, and automated data acquisition and processing. Both the HydroSCOPE model and the EHFS forecast tool are being developed as part of a larger, multi-laboratory water-use optimization project funded through the US Department of Energy. The simulations were based on the

  10. 33 CFR 165.T09-0405 - Safety Zone; Salvage Operations at Marseilles Dam; Illinois River.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... at Marseilles Dam; Illinois River. 165.T09-0405 Section 165.T09-0405 Navigation and Navigable Waters... Guard District § 165.T09-0405 Safety Zone; Salvage Operations at Marseilles Dam; Illinois River. (a... of the Marseilles Dam to Mile Marker 247.2. (b) Effective and enforcement period. This safety...

  11. Assessment of spermatogenesis and plasma sex steroids in a seasonal breeding teleost: a comparative study in an area of influence of a tributary, downstream from a hydroelectric power dam, Brazil.

    PubMed

    Domingos, Fabricio F T; Thomé, Ralph G; Arantes, Fabio P; Castro, Antonio Carlos S; Sato, Yoshimi; Bazzoli, Nilo; Rizzo, Elizete

    2012-12-01

    River damming and building of hydroelectric power plants interrupt the reproductive migration routes and change the major physicochemical parameters of water quality, with drastic consequences for populations of migratory fishes. The goal of this study was to evaluate proliferation and cell death during spermatogenesis and serum profiles of sex steroids in Prochilodus argenteus, from the São Francisco River, downstream from the Três Marias Dam. A total of 257 adult males were caught quarterly during a reproductive cycle in two sites: the first 34 km of the river after the dam (site 1) and the second 34-54 km after the dam (site 2), after the confluence with a tributary, the Abaeté River. Seasonal changes in the testicular activity associated with morphometric analyses of germ cells as well as proliferation and testicular apoptosis support a more active spermatogenesis in fish from site 2, where higher levels of sex steroids and gonadosomatic index (GSI) were also found. In site 1, fish presented low serum levels of testosterone, 17β-estradiol and 17α-hydroxyprogesterone and a low GSI during gonadal maturation. Spermatogonial proliferation (PCNA) and apoptosis (TUNEL) were more elevated in fish from site 1, but spermatocytes were mainly labelled in fish from site 2. Overall, these data demonstrate changes in testicular activity and plasma sex steroids in a neotropical teleost fish living downstream from a hydroelectric dam, supplying new data on fish reproduction in regulated rivers. Moreover, morphometric analyses associated with sex steroids profiles provide reliable tools to assess fish spermatogenesis under environmental stress conditions.

  12. Modeling the ecological impacts of Flaming Gorge Dam operations

    SciTech Connect

    Yin, S.C.L.; LaGory, K.E.; Hayse, J.W.; Hlohowskyj, I.; Van Lonkhuyzen, R.A.; Cho, H.E.

    1996-05-01

    Hydropower operations at Flaming Gorge Dam on the Green River in Utah, US, can produce rapid downstream changes in flow and stage during a day. These changes can, in turn, affect ecological resources below the dam, including riparian vegetation, trout, and endangered fish. Four hydropower operational scenarios featuring varying degrees of hydropower-induced flow fluctuation were evaluated with hydrologic models and multispectral aerial videography of the river. Year-round high fluctuations would support the least amount of stable spawning habitat for trout and nursery habitat for endangered fish, and would have the greatest potential for reducing growth and over winter survival of fish. Seasonally, adjusted moderate fluctuation and seasonally adjusted steady flow scenarios could increase food production and over winter survival and would provide the greatest amount of spawning and nursery habitat for fish. The year-round high fluctuation, seasonally adjusted high fluctuation, and seasonally adjusted moderate fluctuation scenarios would result in a 5% decrease in upper riparian zone habitat. the seasonally adjusted steady flow scenario would result in an 8% increase in upper riparian zone habitat. Lower riparian zone habitat would increase by about 17% for year-round and seasonally adjusted high fluctuating flow scenarios but decrease by about 24% and 69% for seasonally adjusted moderate fluctuating and steady flow scenarios, respectively.

  13. OVERVIEW OF FALLS AND DAM COMPLEX, SPILLWAY AT RIGHT; FACING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERVIEW OF FALLS AND DAM COMPLEX, SPILLWAY AT RIGHT; FACING EAST-NORTHEAST - Shoshone Falls Hydroelectric Project, Reservoir and Dam Complex, North Bank of Snake River, extreme Eastern end of the Shoshone Falls Hydroelectric Project, Tipperary Corner, Jerome County, ID

  14. OVERVIEW OF DAM COMPLEX FROM SPILLWAY TO INTAKE; FACING WESTNORTHWEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERVIEW OF DAM COMPLEX FROM SPILLWAY TO INTAKE; FACING WEST-NORTHWEST - Shoshone Falls Hydroelectric Project, Reservoir and Dam Complex, North Bank of Snake River, extreme Eastern end of the Shoshone Falls Hydroelectric Project, Tipperary Corner, Jerome County, ID

  15. INTAKE, DAMS #1, #2, AND #3, AND FOOTBRIDGE; FACING NORTHNORTHEAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTAKE, DAMS #1, #2, AND #3, AND FOOTBRIDGE; FACING NORTH-NORTHEAST - Shoshone Falls Hydroelectric Project, Intake, North Bank of Snake River, immediately West/Northwest of the Shoshone Falls Hydroelectric Project Dam No. 1, Tipperary Corner, Jerome County, ID

  16. 9. INTERIOR VIEW OF OPERATING HOUSE NO. 1, SHOWING DETAIL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. INTERIOR VIEW OF OPERATING HOUSE NO. 1, SHOWING DETAIL OF ELECTRICAL CONTROL PANELS, WORM WHEEL GEAR ASSEMBLY, AND NO. 1 CONTROL GATE HAND BRAKE, LOOKING WEST - Long Lake Hydroelectric Plant, Spillway Dam, Spanning Spokane River, Ford, Stevens County, WA

  17. 10. INTERIOR VIEW OF OPERATING HOUSE NO. 4, SHOWING ORIGINAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. INTERIOR VIEW OF OPERATING HOUSE NO. 4, SHOWING ORIGINAL 20 HP WEST HOIST MOTOR (RIGHT FOREGROUND), WORM WHEEL GEAR ASSEMBLY, AND MOTOR GEAR, LOOKING EAST - Long Lake Hydroelectric Plant, Spillway Dam, Spanning Spokane River, Ford, Stevens County, WA

  18. Adapting Dam and Reservoir Design and Operations to Climate Change

    NASA Astrophysics Data System (ADS)

    Roy, René; Braun, Marco; Chaumont, Diane

    2013-04-01

    In order to identify the potential initiatives that the dam, reservoir and water resources systems owners and operators may undertake to cope with climate change issues, it is essential to determine the current state of knowledge of their impacts on hydrological variables at regional and local scales. Future climate scenarios derived from climate model simulations can be combined with operational hydrological modeling tools and historical observations to evaluate realistic pathways of future hydrological conditions for specific drainage basins. In the case of hydropower production those changes in hydrological conditions may have significant economic impacts. For over a decade the state owned hydropower producer Hydro Québec has been exploring the physical impacts on their watersheds by relying on climate services in collaboration with Ouranos, a consortium on regional climatology and adaptation to climate change. Previous climate change impact analysis had been including different sources of climate simulation data, explored different post-processing approaches and used hydrological impact models. At a new stage of this collaboration the operational management of Hydro Quebec aspired to carry out a cost-benefit analysis of considering climate change in the refactoring of hydro-power installations. In the process of the project not only a set of scenarios of future runoff regimes had to be defined to support long term planning decisions of a dam and reservoir operator, but also the significance of uncertainties needed to be communicated and made understood. We provide insight into a case study that took some unexpected turns and leaps by bringing together climate scientists, hydrologists and hydro-power operation managers. The study includes the selection of appropriate climate scenarios, the correction of biases, the application of hydrological models and the assessment of uncertainties. However, it turned out that communicating the science properly and

  19. The effect of dam operation on the hydrology and ecology of a tropical riverine floodplain system

    NASA Astrophysics Data System (ADS)

    Köck, Florian; Blaser, Wilma J.; Shanungu, Griffin

    2014-05-01

    Worldwide, dam operation has been changing the flow regimes of many rivers with significant impact on riverine ecosystems. At the same time, dam management itself provides the key to better control the specifics of this hydraulic alteration and hence to mitigate negative effects of river regulation. In our study we aimed at substantiating the ecological basis for an adapted dam management for the case of a seasonally inundated riverine floodplain system in Zambia, Southern Africa. We quantified dam-induced alterations and investigated the relationship between an altered flow regime and altered ecological conditions in the floodplain. For this, we adapted the "Indicators of Hydraulic Alterations" to seasonal tropical river systems and used them to analyze both the pristine and the regulated hydrological regime, namely the inflow to the floodplain, water level in the floodplain and modeled flooded area in the ecologically most valuable part of the floodplain. We checked the reliability of the adapted indicators and demonstrated how dam operation reduces the correlation between them, making it undesirable to further reduce the number of indicators. Using the limited ecological data available we then identified critical hydrological situations that put at risk the functioning of the dam-impacted, flood-dependent grazing ecosystem and investigated the potential of an adapted dam operation for managing these situations. We formulated targets for an adapted dam operation and assessed the potential and the limitations for achieving these targets, where possible giving water management and monitoring recommendations.

  20. Operation of the Lower Granite Dam Adult Trap, 2008.

    SciTech Connect

    Harmon, Jerrel R.

    2009-01-01

    During 2008 we operated the adult salmonid trap at Lower Granite Dam from 7 March through 25 November, except during a short summer period when water temperatures were too high to safely handle fish. We collected and handled a total of 20,463 steelhead Oncorhynchus mykiss and radio-tagged 34 of the hatchery steelhead. We took scale samples from 3,724 spring/summer Chinook salmon O. tshawytscha for age and genetic analysis. We collected and handled a total of 8,254 fall Chinook salmon. Of those fish, 2,520 adults and 942 jacks were transported to Lyons Ferry Hatchery on the Snake River in Washington. In addition, 961 adults and 107 jacks were transported to the Nez Perce Tribal Hatchery on the Clearwater River in Idaho. The remaining 3,724 fall Chinook salmon were passed upstream. Scales samples were taken from 780 fall Chinook salmon tagged with passive integrated transponder (PIT) tags and collected by the sort-by-code system.

  1. Review of Pacific Northwest Laboratory research on aquatic effects of hydroelectric generation and assessment of research needs

    SciTech Connect

    Fickeisen, D.H.; Becker, C.D.; Neitzel, D.A.

    1981-05-01

    This report is an overview of Pacific Northwest Laboratory's (PNL) research on how hydroelectric generation affects aquatic biota and environments. The major accomplishments of this research are described, and additional work needed to permit optimal use of available data is identified. The research goals are to: (1) identify impacts of hydroelectric generation, (2) provide guidance in allocating scarce water resources, and (3) develop techniques to avoid or reduce the impacts on aquatic communities or to compensate for unavoidable impacts. Through laboratory and field experiments, an understanding is being developed of the generic impacts of hydrogeneration. Because PNL is located near the Columbia River, which is extensively developed for hydroelectric generation, it is used as a natural laboratory for studying a large-scale operating system. Although the impacts studied result from a particular system of dams and operating procedures and occur within a specific ecosystem, the results of these studies have application at hydroelectric generating facilities throughout the United States.

  2. Optimal control of hydroelectric facilities

    NASA Astrophysics Data System (ADS)

    Zhao, Guangzhi

    This thesis considers a simple yet realistic model of pump-assisted hydroelectric facilities operating in a market with time-varying but deterministic power prices. Both deterministic and stochastic water inflows are considered. The fluid mechanical and engineering details of the facility are described by a model containing several parameters. We present a dynamic programming algorithm for optimizing either the total energy produced or the total cash generated by these plants. The algorithm allows us to give the optimal control strategy as a function of time and to see how this strategy, and the associated plant value, varies with water inflow and electricity price. We investigate various cases. For a single pumped storage facility experiencing deterministic power prices and water inflows, we investigate the varying behaviour for an oversimplified constant turbine- and pump-efficiency model with simple reservoir geometries. We then generalize this simple model to include more realistic turbine efficiencies, situations with more complicated reservoir geometry, and the introduction of dissipative switching costs between various control states. We find many results which reinforce our physical intuition about this complicated system as well as results which initially challenge, though later deepen, this intuition. One major lesson of this work is that the optimal control strategy does not differ much between two differing objectives of maximizing energy production and maximizing its cash value. We then turn our attention to the case of stochastic water inflows. We present a stochastic dynamic programming algorithm which can find an on-average optimal control in the face of this randomness. As the operator of a facility must be more cautious when inflows are random, the randomness destroys facility value. Following this insight we quantify exactly how much a perfect hydrological inflow forecast would be worth to a dam operator. In our final chapter we discuss the

  3. GENERAL VIEW OF THE WILSON DAM, LOOKING SOUTHEAST, GENERATING PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW OF THE WILSON DAM, LOOKING SOUTHEAST, GENERATING PLANT IN THE BACKGROUND. - Wilson Dam & Hydroelectric Plant, Spanning Tennessee River at Wilson Dam Road (Route 133), Muscle Shoals, Colbert County, AL

  4. View of upstream face of Lake Sabrina Dam showing the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of upstream face of Lake Sabrina Dam showing the redwood planks and base of dam from Lake Sabrina Basin, view north - Bishop Creek Hydroelectric System, Plant 2, Lake Sabrina Dam, Bishop Creek, Bishop, Inyo County, CA

  5. View of Lake Sabrina Dam downstream face from parking lot ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Lake Sabrina Dam downstream face from parking lot showing concrete outlet structure on tow of dam at left edge of photo, view southeast - Bishop Creek Hydroelectric System, Plant 2, Lake Sabrina Dam, Bishop Creek, Bishop, Inyo County, CA

  6. Deer Creek Dam, Dam, 1,204 feet/238 degrees from intersection of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Deer Creek Dam, Dam, 1,204 feet/238 degrees from intersection of dam complex access road and U.S. Highway 189 to center of dam, 874 feet/352 degrees from Hydroelectric Powerplant (HAER UT-93-B) to center of dam, Charleston, Wasatch County, UT

  7. Simulation of Ohio River Hydrodynamics to Support Emergency Maintenance Operations on Lock and Dam 52

    DTIC Science & Technology

    2015-08-01

    to create a numerical mesh for the two-dimensional (2D) Adaptive Hydraulics model (AdH) developed by ERDC-CHL (Berger et al. 2013). The model mesh...Emergency Maintenance Operations on Lock and Dam 52 by Nathan Clifton, Steve Scott, P.E., and David Abraham, P.E. PURPOSE: This Coastal and Hydraulics ...Laboratory Technical Note (CHETN) describes the results of an engineering assessment conducted with a numerical model for a section of Lock and Dam

  8. The limnological status of Lake Mead and Lake Mohave under present and future powerplant operations of Hoover Dam. Technical report no. 1 (final)

    SciTech Connect

    Paulson, L.J.; Baker, J.R.; Deacon, J.E.

    1980-01-01

    The U.S. Bureau of Reclamation is considering several alternatives for modifying Hoover Dam existing hydroelectric facilities, or add new facilities in the Lake Mead Recreation Area to increase peak-power output. This report deals with the investigations conducted on both Lake Mead and Mohave to assess the impacts of power modifications on the limnology of the reservoirs. Physical, chemical, biological and nutrients were measured in the Colorado River at Pierce Ferry and below Hoover Dam and in Las Vegas.

  9. 2. SWIMMING POOL. VIEW TO SOUTHEAST. Rainbow Hydroelectric Facility, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. SWIMMING POOL. VIEW TO SOUTHEAST. - Rainbow Hydroelectric Facility, Swimming Pool, On north bank of Missouri River 2 miles Northeast of Great Falls, & end of Rainbow Dam Road, Great Falls, Cascade County, MT

  10. 3. SWIMMING POOL. VIEW TO SOUTHEAST. Rainbow Hydroelectric Facility, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. SWIMMING POOL. VIEW TO SOUTHEAST. - Rainbow Hydroelectric Facility, Swimming Pool, On north bank of Missouri River 2 miles Northeast of Great Falls, & end of Rainbow Dam Road, Great Falls, Cascade County, MT

  11. 6. CLUBHOUSE. SOUTHWEST SIDE. VIEW TO NORTHEAST. Rainbow Hydroelectric ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. CLUBHOUSE. SOUTHWEST SIDE. VIEW TO NORTHEAST. - Rainbow Hydroelectric Facility, Clubhouse, On north bank of Missouri River 2 miles Northeast of Great Falls, & end of Rainbow Dam Road, Great Falls, Cascade County, MT

  12. 4. CLUBHOUSE. NORTHEAST SIDE. VIEW TO SOUTHWEST. Rainbow Hydroelectric ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. CLUBHOUSE. NORTHEAST SIDE. VIEW TO SOUTHWEST. - Rainbow Hydroelectric Facility, Clubhouse, On north bank of Missouri River 2 miles Northeast of Great Falls, & end of Rainbow Dam Road, Great Falls, Cascade County, MT

  13. 1. SWIMMING POOL. VIEW TO WEST. Rainbow Hydroelectric Facility, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. SWIMMING POOL. VIEW TO WEST. - Rainbow Hydroelectric Facility, Swimming Pool, On north bank of Missouri River 2 miles Northeast of Great Falls, & end of Rainbow Dam Road, Great Falls, Cascade County, MT

  14. 27. Original Mormon Flat hydroelectric unit showing crane above. Photographer ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. Original Mormon Flat hydroelectric unit showing crane above. Photographer Mark Durben, 1988. Source: Salt River Project. - Mormon Flat Dam, On Salt River, Eastern Maricopa County, east of Phoenix, Phoenix, Maricopa County, AZ

  15. Inflow forecasting model construction with stochastic time series for coordinated dam operation

    NASA Astrophysics Data System (ADS)

    Kim, T.; Jung, Y.; Kim, H.; Heo, J. H.

    2014-12-01

    Dam inflow forecasting is one of the most important tasks in dam operation for an effective water resources management and control. In general, dam inflow forecasting with stochastic time series model is possible to apply when the data is stationary because most of stochastic process based on stationarity. However, recent hydrological data cannot be satisfied the stationarity anymore because of climate change. Therefore a stochastic time series model, which can consider seasonality and trend in the data series, named SARIMAX(Seasonal Autoregressive Integrated Average with eXternal variable) model were constructed in this study. This SARIMAX model could increase the performance of stochastic time series model by considering the nonstationarity components and external variable such as precipitation. For application, the models were constructed for four coordinated dams on Han river in South Korea with monthly time series data. As a result, the models of each dam have similar performance and it would be possible to use the model for coordinated dam operation.Acknowledgement This research was supported by a grant 'Establishing Active Disaster Management System of Flood Control Structures by using 3D BIM Technique' [NEMA-NH-12-57] from the Natural Hazard Mitigation Research Group, National Emergency Management Agency of Korea.

  16. Sluiceway Operations to Pass Juvenile Salmonids at The Dalles Dam, Columbia River, USA

    SciTech Connect

    Johnson, Gary E.; Khan, Fenton; Skalski, J. R.; Klatte, Bernard A.

    2013-11-20

    Existing ice and trash sluiceways are commonly used to pass juvenile salmonids downstream at hydropower dams through a benign, non-turbine route. At The Dalles Dam on the Columbia River, managers undertook optimizing operations of sluiceway weirs to maximize survival of juvenile salmonids at the powerhouse. We applied fixed-location hydroacoustic methods to compare fish passage rates and sluiceway efficiencies for two weir configurations during 2004 and 2005: three weirs versus six weirs, located at the mid- versus east powerhouse, respectively. We also analyzed horizontal distributions of passage at the sluiceway and turbines and the effects of operating turbines beneath open sluiceway gates to provide supporting data relevant to operations optimization. Based on the findings, we recommend the following for long-term operations for the sluiceway at The Dalles Dam: open six rather than three sluiceway weirs to take advantage of the maximum hydraulic capacity of the sluiceway; open the three weirs above the western-most operating main turbine unit (MU) and the three weirs at MU 8 where turbine passage rates are relatively high; operate the turbine units below open sluiceway weirs as a standard procedure; operate the sluiceway 24 h/d year-round to maximize its benefits to juvenile salmonids; and use the same operations for spring and summer emigrants. These operational concepts are transferable to dams where sluiceway surface flow outlets are used protect downstream migrating fishes.

  17. Precipitation Estimates for Hydroelectricity

    NASA Technical Reports Server (NTRS)

    Tapiador, Francisco J.; Hou, Arthur Y.; de Castro, Manuel; Checa, Ramiro; Cuartero, Fernando; Barros, Ana P.

    2011-01-01

    Hydroelectric plants require precise and timely estimates of rain, snow and other hydrometeors for operations. However, it is far from being a trivial task to measure and predict precipitation. This paper presents the linkages between precipitation science and hydroelectricity, and in doing so it provides insight into current research directions that are relevant for this renewable energy. Methods described include radars, disdrometers, satellites and numerical models. Two recent advances that have the potential of being highly beneficial for hydropower operations are featured: the Global Precipitation Measuring (GPM) mission, which represents an important leap forward in precipitation observations from space, and high performance computing (HPC) and grid technology, that allows building ensembles of numerical weather and climate models.

  18. 18 CFR 292.209 - Exceptions from requirements for hydroelectric small power production facilities located at a new...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... requirements for hydroelectric small power production facilities located at a new dam or diversion. 292.209... Exceptions from requirements for hydroelectric small power production facilities located at a new dam or... license or exemption is filed for a project located at a Government dam, as defined in section 3(10)...

  19. 18 CFR 292.209 - Exceptions from requirements for hydroelectric small power production facilities located at a new...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... requirements for hydroelectric small power production facilities located at a new dam or diversion. 292.209... Exceptions from requirements for hydroelectric small power production facilities located at a new dam or... license or exemption is filed for a project located at a Government dam, as defined in section 3(10)...

  20. 18 CFR 292.209 - Exceptions from requirements for hydroelectric small power production facilities located at a new...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... requirements for hydroelectric small power production facilities located at a new dam or diversion. 292.209... Exceptions from requirements for hydroelectric small power production facilities located at a new dam or... license or exemption is filed for a project located at a Government dam, as defined in section 3(10)...

  1. Effects of Flaming Gorge Dam hydropower operations on downstream flow, stage, and sediment transport

    SciTech Connect

    Yin, S.C.L.; Tomasko, D.; Cho, H.E.; Williams, G.; McCoy, J.; Palmer, C.

    1996-11-01

    Hydropower operations at Flaming Gorge Dam, located on the Green River in Utah, can produce rapid downstream changes in flow and stage. These changes can in turn affect sediment transport and ecologic resources below the dam. To evaluate these effects, four hydropower operational scenarios with varying degrees of hydropower-release fluctuations were examined. This study demonstrates that the combined use of river-flow routing, water-surface profile, and sediment-transport models can provide useful information for evaluating the potential impacts of hydropower-operations on ecological and other resources downstream of the dam. Study results show that flow fluctuations may or may not persist for a long distance, depending on the initial magnitude of fluctuation and the duration of hydropower peaking. Stage fluctuations depend not only on flow fluctuations but also on river channel characteristics, such as channel width and longitudinal slope.

  2. Modeling Shasta Dam operations to regulate temperatures for Chinook salmon under extreme climate and climate change

    NASA Astrophysics Data System (ADS)

    Dai, A.; Saito, L.; Sapin, J. R.; Rajagopalan, B.; Hanna, R. B.; Kauneckis, D. L.

    2014-12-01

    Chinook salmon populations have declined significantly after the construction of Shasta Dam on the Sacramento River in 1945 prevented them from spawning in the cold waters upstream. In 1994, the winter-run Chinook were listed under the Endangered Species Act and 3 years later the US Bureau of Reclamation began operating a temperature control device (TCD) on the dam that allows for selective withdrawal for downstream temperature control to promote salmon spawning while also maximizing power generation. However, dam operators are responsible to other interests that depend on the reservoir for water such as agriculture, municipalities, industry, and recreation. An increase in temperatures due to climate change may place additional strain on the ability of dam operations to maintain spawning habitat for salmon downstream of the dam. We examined the capability of Shasta Dam to regulate downstream temperatures under extreme climates and climate change by using stochastically generated streamflow, stream temperature, and weather inputs with a two-dimensional CE-QUAL-W2 model under several operational options. Operation performance was evaluated using degree days and cold pool volume (volume of water below a temperature threshold). Model results indicated that a generalized operations release schedule, in which release elevations varied over the year to match downstream temperature targets, performed best overall in meeting temperature targets while preserving cold pool volume. Releasing all water out the bottom throughout the year tended to meet temperature targets at the expense of depleting the cold pool, and releasing all water out uppermost gates preserved the cold pool, but released water that was too warm during the critical spawning period. With higher air temperatures due to climate change, both degree day and cold pool volume metrics were worse than baseline conditions, which suggests that Chinook salmon may be more negatively affected under climate change.

  3. Sluiceway Operations for Adult Steelhead Downstream Passage at The Dalles Dam, Columbia River, USA

    SciTech Connect

    Khan, Fenton; Royer, Ida M.; Johnson, Gary E.; Tackley, Sean C.

    2013-10-01

    This study evaluated adult steelhead (Oncorhynchus mykiss; fallbacks and kelts) downstream passage at The Dalles Dam in the Columbia River, USA, during the late fall, winter, and early spring months between 2008 and 2011. The purpose of the study was to determine the efficacy of operating the dam’s ice-and-trash sluiceway during non-spill months to provide a relatively safe, non-turbine, surface outlet for overwintering steelhead fallbacks and downstream migrating steelhead kelts. We applied the fixed-location hydroacoustic technique to estimate fish passage rates at the sluiceway and turbines of the dam. The spillway was closed during our sampling periods, which generally occurred in late fall, winter, and early spring. The sluiceway was highly used by adult steelhead (91–99% of total fish sampled passing the dam) during all sampling periods. Turbine passage was low when the sluiceway was not operated. This implies that lack of a sluiceway route did not result in increased turbine passage. However, when the sluiceway was open, adult steelhead used it to pass through the dam. The sluiceway may be operated during late fall, winter, and early spring to provide an optimal, non-turbine route for adult steelhead (fallbacks and kelts) downstream passage at The Dalles Dam.

  4. A Hydro System Modeling Hierarchy to Optimize the Operation of the BC Hydroelectric System

    NASA Astrophysics Data System (ADS)

    Shawwash, Z.

    2012-12-01

    We present the Hydro System Modeling Hierarchy that we have developed to optimize the operation of the BC Hydro system in British Columbia, Canada. The Hierarchy consists of a number of simulation and optimization models that we have developed over the past twelve years in a research program under the Grant-in-Aid Agreement between BC Hydro and the Department of Civil Engineering at UBC. We first provide an overview of the BC Hydro system and then present our modeling framework and discuss a number of optimization modeling tools that we have developed and are currently in use at BC Hydro and we briefly outline ongoing research and model development work supported by BC Hydro and leveraged by a Natural Sciences and Engineering Research Council's (NSERC) Collaborative Research and Development (CRD) grants.he BC Hydro System Optimization Modeling Hierarchy

  5. Climate Change Modeling Needs and Efforts for Hydroelectric System Operations in the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Pytlak, E.

    2014-12-01

    This presentation will outline ongoing, multi-year hydroclimate change research between the Columbia River Management Joint Operating Committee (RMJOC), The University of Washington, Portland State University, and their many regional research partners and stakeholders. Climate change in the Columbia River Basin is of particular concern to the Bonneville Power Administration (BPA) and many Federal, Tribal and regional stakeholders. BPA, the U.S. Army Corp of Engineers, and U.S. Bureau of Reclamation, which comprise the RMJOC, conducted an extensive study in 2009-11 using climate change streamflows produced by the University of Washington Climate Impacts Group (CIG). The study reconfirmed that as more winter precipitation in the Columbia Basin falls as rain rather than snow by mid-century, particularly on the U.S. portion of the basin, increased winter runoff is likely, followed by an earlier spring snowmelt peak, followed by less summer flows as seasonal snowmelt diminished earlier in the water year. Since that initial effort, both global and regional climate change modeling has advanced. To take advantage of the new outputs from the Fifth Coupled Model Intercomparison Project (CMIP-5), the RMJOC, through BPA support, is sponsoring new hydroclimate research which considers not only the most recent information from the GCMs, but also the uncertainties introduced by the hydroclimate modeling process itself. Historical streamflows, which are used to calibrate hydrologic models and ascertain their reliability, are subject to both measurement and modeling uncertainties. Downscaling GCMs to a hydrologically useful spatial and temporal resolution introduces uncertainty, depending on the downscaling methods. Hydrologic modeling introduces uncertainties from calibration and geophysical states, some of which, like land surface characteristics, are likely to also change with time. In the upper Columbia Basin, glacier processes introduce yet another source of uncertainty. The

  6. 33 CFR 207.310 - Mississippi River at Keokuk, Iowa; operation of power dam by Mississippi River Power Co.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...; operation of power dam by Mississippi River Power Co. 207.310 Section 207.310 Navigation and Navigable... Mississippi River at Keokuk, Iowa; operation of power dam by Mississippi River Power Co. (a) All previous... by the Mississippi River Power Co., including the memorandum of March 24, 1908, approved by...

  7. 33 CFR 207.310 - Mississippi River at Keokuk, Iowa; operation of power dam by Mississippi River Power Co.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...; operation of power dam by Mississippi River Power Co. 207.310 Section 207.310 Navigation and Navigable... Mississippi River at Keokuk, Iowa; operation of power dam by Mississippi River Power Co. (a) All previous... by the Mississippi River Power Co., including the memorandum of March 24, 1908, approved by...

  8. 33 CFR 207.310 - Mississippi River at Keokuk, Iowa; operation of power dam by Mississippi River Power Co.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...; operation of power dam by Mississippi River Power Co. 207.310 Section 207.310 Navigation and Navigable... Mississippi River at Keokuk, Iowa; operation of power dam by Mississippi River Power Co. (a) All previous... by the Mississippi River Power Co., including the memorandum of March 24, 1908, approved by...

  9. 33 CFR 207.310 - Mississippi River at Keokuk, Iowa; operation of power dam by Mississippi River Power Co.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...; operation of power dam by Mississippi River Power Co. 207.310 Section 207.310 Navigation and Navigable... Mississippi River at Keokuk, Iowa; operation of power dam by Mississippi River Power Co. (a) All previous... by the Mississippi River Power Co., including the memorandum of March 24, 1908, approved by...

  10. 33 CFR 207.310 - Mississippi River at Keokuk, Iowa; operation of power dam by Mississippi River Power Co.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...; operation of power dam by Mississippi River Power Co. 207.310 Section 207.310 Navigation and Navigable... Mississippi River at Keokuk, Iowa; operation of power dam by Mississippi River Power Co. (a) All previous... by the Mississippi River Power Co., including the memorandum of March 24, 1908, approved by...

  11. Rubber dam use during routine operative dentistry procedures: findings from The Dental PBRN

    PubMed Central

    Gilbert, Gregg H.; Litaker, Mark S.; Pihlstrom, Daniel J.; Amundson, Craig W.; Gordan, Valeria V.

    2010-01-01

    SUMMARY Rubber dam use during operative dentistry procedures has been quantified based on questionnaires completed by dentists. However, to our knowledge there are no reports based on use during actual clinical procedures other than in dental materials studies, and none based on routine care. Our objectives were to: (1) quantify how commonly the rubber dam is used during operative dentistry procedures; (2) test the hypothesis that certain dentist-, restoration- and patient-level factors are associated with its use. A total of 229 dentist practitioner-investigators in “The Dental Practice-Based Research Network (DPBRN)” participated. DPBRN comprises five regions: Alabama/Mississippi, Florida/Georgia, Minnesota, Permanente Dental Associates, and Scandinavia. Practitioner-investigators collected data on 9,890 consecutive restorations done in previously-unrestored tooth surfaces from 5,810 patients. Most dentists (63%) did not use a rubber dam for any restoration in the study. A rubber dam was used for only 12% of restorations, 83% of which were used in one DPBRN region. With region accounted for, no other dentist characteristics were significant. A multi-level multiple logistic regression of rubber dam use was done with restoration- and patient-level variables modeled simultaneously. In this multi-variable context, these restoration-level characteristics were statistically significant: tooth-arch type, restoration classification, and reason for placing the restoration. These patient-level characteristics were statistically significant: ethnicity, dental insurance, and age. These results, obtained from actual clinical procedures rather than questionnaires, document a low prevalence of usage of rubber dam during operative dentistry procedures. Usage varied with certain dentist-, restoration-, and patient-level characteristics. PMID:20945739

  12. Rubber dam use during routine operative dentistry procedures: findings from the dental PBRN.

    PubMed

    Gilbert, Gregg H; Litaker, Mark S; Pihlstrom, Daniel J; Amundson, Craig W; Gordan, Valeria V

    2013-04-01

    Rubber dam use during operative dentistry procedures has been quantified based on questionnaires completed by dentists. However, based on the knowledge of the authors of the current study, there are no reports based on use during actual clinical procedures other than in dental materials studies and none based on routine care. The objectives of the current study were to: 1) quantify how commonly the rubber dam is used during operative dentistry procedures; 2) test the hypothesis that certain dentist, restoration and patient-level factors are associated with its use. A total of 229 dentist practitioner-investigators in The Dental Practice-Based Research Network (DPBRN) participated. DPBRN comprises 5 regions: Alabama/Mississippi, Florida/Georgia, Minnesota, Permanente Dental Associates; and Scandinavia. Practitioner-investigators collected data on 9,890 consecutive restorations done in previously unrestored tooth surfaces from 5,810 patients. Most dentists (63%) did not use a rubber dam for any restoration in this study. A rubber dam was used for only 12% of restorations, 83% of which were used in 1 DPBRN region. With regions accounted for, no other dentist characteristics were significant. A multi-level multiple logistic regression of rubber dam use was done with restoration and patient-level variables modeled simultaneously. In this multi-variable context, these restoration-level characteristics were statistically significant: tooth-arch type, restoration classification and reason for placing the restoration. These patient-level characteristics were statistically significant: ethnicity, dental insurance, and age. These results, obtained fromactual clinical procedures rather than questionnaires, document a low prevalence of usage of the rubber dam during operative dentistry procedures. Usage varied with certain dentist, restoration, and patient level characteristics.

  13. Rubber dam use during routine operative dentistry procedures: findings from the Dental PBRN.

    PubMed

    Gilbert, Gregg H; Litaker, Mark S; Pihlstrom, Daniel J; Amundson, Craig W; Gordan, Valeria V

    2010-01-01

    Rubber dam use during operative dentistry procedures has been quantified based on questionnaires completed by dentists. However, based on the knowledge of the authors of the current study, there are no reports based on use during actual clinical procedures other than in dental materials studies and none based on routine care. The objectives of the current study were to: 1) quantify how commonly the rubber dam is used during operative dentistry procedures; 2) test the hypothesis that certain dentist, restoration and patient-level factors are associated with its use. A total of 229 dentist practitioner-investigators in The Dental Practice-Based Research Network (DPBRN) participated. DPBRN comprises five regions of the USA: Alabama/Mississippi, Florida/Georgia, Minnesota, Permanente Dental Associates and Scandinavia. Practitioner-investigators collected data on 9,890 consecutive restorations done in previously unrestored tooth surfaces from 5,810 patients. Most dentists (63%) did not use a rubber dam for any restoration in this study. A rubber dam was used for only 12% of restorations, 83% of which were used in one DPBRN region. With regions accounted for, no other dentist characteristics were significant. A multi-level multiple logistic regression of rubber dam use was done with restoration and patient-level variables modeled simultaneously. In this multi-variable context, these restoration-level characteristics were statistically significant: tooth-arch type, restoration classification and reason for placing the restoration. These patient-level characteristics were statistically significant: ethnicity, dental insurance and age. These results, obtained from actual clinical procedures rather than questionnaires, document a low prevalence of usage of the rubber dam during operative dentistry procedures. Usage varied with certain dentist, restoration and patient-level characteristics.

  14. Operation of Glen Canyon Dam. Final environmental impact statement, summary, comments and responses

    SciTech Connect

    1995-03-01

    The Federal action considered in this environmental impact statement (EIS) is the operation of Glen Canyon Dam, Colorado River Storage Project (CRSP), Arizona. The purpose of the reevaluation is to determine specific options that could be implemented to minimize--consistent with law-adverse impacts on the downstream environmental and cultural resources, as well as Native American interests in Glen and Grand Canyons.

  15. Building a hydroelectric project at a fishway

    SciTech Connect

    Bagnall, C.L. ); Haake, H.E. )

    1993-12-01

    It's not unusual to hear about a fishway being installed at a hydro facility. However, the reverse -- installing a hydro plant at an existing fish passage facility -- is unique. Northern Wasco County People's Utility District (PUD) in Oregon has proved the validity of the idea. For decades, the Pacific Northwest has relied upon hydropower as a reliable and economic means of generating electricity. In recent years, however, in the Columbia River Basin, efforts to protect diminishing salmon stocks have taken precedence over the development of new hydropower plants. With that in mind, the Northern Wasco County PUD in Oregon set out to develop a hydroelectric project that not only provided for fish passage, but also took advantage of an existing fishway. The Dalles Dam North Fishway Project began operating in 1991. The project site is a fishway at the US Army Corps of Engineers' The Dalles Lock and Dam. The 5-MW project received intense scrutiny from state and federal fishery agencies and Indian tribes. All of the parties worked together to settle differences and to develop a feasible project that meets multiple needs.

  16. Effect of opening of joints on the behavior of concrete dams during operation

    SciTech Connect

    Vovkushevskii, A.V.; Trapeznikov, L.P.; Sheinker, N.Ya.; Ginzburg, S.M.

    1995-08-01

    The present work presents the results of studies of the effect of thermal opening of joints on the downstream face on opening of the contact joint and was carried out for the example of the dam of the Bratsk hydroelectric station. Theoretical investigations confirmed considerable opening of the contact joint both in nonoverflow and in powerhouse sections. Other conditions being equal, the length of the zone of opening of the contact joint in the powerhouse sections is 2-3 meters greater than in the nonoverflow sections. In the winter period, the zone of opening in the powerhosue sections reaches the grout curtain, while in the summer period, the opening is about half as much. Such opening of the joint, together with decompressions of the foundation, leads to an increase in the uplift pressure, increase of seepage discharges, and decrease of safety against shearing. Calculations showed that the zone of opening of the contact joint can be followed by a closed joint zone with displaced surfaces (sliding zone). The size of the zone depends on many factors and requires further refinements, but in any event, this zone can completely enter the second column.

  17. DAM Safety and Deformation Monitoring in Dams

    NASA Astrophysics Data System (ADS)

    Kalkan, Y.; Bilgi, S.; Potts, L.; Miiama, J.; Mahgoub, M.; Rahman, S.

    2013-12-01

    Water is the life and necessity to water is increasing day by day with respect to the World population, rising of living standards and destruction of nature. Thus, the importance of water and water structures have been increasing gradually. Dams are among the most important engineering structures used for water supplies, flood controls, agricultural purposes as well as drinking and hydroelectric power. There are about 150.000 large size dams in the World. Especially after the Second World War, higher and larger capacity dams have been constructed. Dams create certain risks like the other manmade structures. No one knows precisely how many dam failures have occurred in the World, whereas hundreds of dam failures have occurred throughout the U.S. history. Some basic physical data are very important for assessing the safety and performance of dams. These are movement, water pressure, seepage, reservoir and tail-water elevations, local seismic activities, total pressure, stress and strain, internal concrete temperature, ambient temperature and precipitation. These physical data are measured and monitored by the instruments and equipment. Dams and their surroundings have to be monitored by using essential methods at periodic time intervals in order to determine the possible changes that may occur over the time. Monitoring programs typically consist of; surveillance or visual observation. These programs on dams provide information for evaluating the dam's performance related to the design intent and expected changes that could affect the safety performance of the dam. Additionally, these programs are used for investigating and evaluating the abnormal or degrading performance where any remedial action is necessary. Geodetic and non-geodetic methods are used for monitoring. Monitoring the performance of the dams is critical for producing and maintaining the safe dams. This study provides some information, safety and the techniques about the deformation monitoring of the

  18. The bat fauna of the Kararaô and Kararaô Novo caves in the area under the influence of the Belo Monte hydroelectric dam, in Pará, Brazil.

    PubMed

    Zortéa, M; Bastos, N A; Acioli, T C

    2015-08-01

    Brazil's large territory displays significant richness in caves with about 12 thousand caves already recorded. Nevertheless, studies on bats in these environments are extremely scarce and fragmented. This study characterized the chiropteran fauna from two sandstone caves under the influence of the Belo Monte hydroelectric dam (Belo Monte UHE) in Pará, Brazil. The Kararaô and Kararaô Novo caves are located on the same ridge, 250 m apart. Three expeditions were carried out in 2013 and 2014, with a 4- to 5-month interval in between. A total of 589 animals were caught, 246 in the Kararaô cave and 343 in the Kararaô Novo cave. Fifteen species were recorded (13 in each cave) representing 79% similarity. With the exception of Vampyrum spectrum, which is not a cave species, the remaining recorded species were mostly cave bat species. Some species seemed to use the caves seasonally, although the basis of this pattern is still unknown. The most commonly observed species were Pteronotus personatus (dominant in the Kararaô cave), P. parnellii (dominant in the Kararaô Novo cave), and Lionycteris spurrelli, which accounted for 65% of all captures recorded for the two caves. Natalus macrourus is a species recorded in the Kararaô cave that is regionally threatened with extinction. Both caves are less than 500 m from the future reservoir; however, because the Kararaô cave entry is in an area that is lower than the reservoir, it can suffer alterations that would affect its dynamics. This raises great concern about the cave's associated fauna.

  19. Deformation Monitoring and Bathymetry Analyses in Rock-Fill Dams, a Case Study at Ataturk Dam

    NASA Astrophysics Data System (ADS)

    Kalkan, Y.; Bilgi, S.

    2014-12-01

    Turkey has 595 dams constructed between 1936 and 2013 for the purposes of irrigation, flood control, hydroelectric energy and drinking water. A major portion of the dam basins in Turkey are deprived of vegetation and have slope topography on near surrounding area. However, landscaping covered with forest around the dam basin is desirable for erosion control. In fact; the dams, have basins deprived of vegetation, fill up quickly due to sediment transport. Erosion control and forestation are important factors, reducing the sediment, to protect the water basins of the dams and increase the functioning life of the dams. The functioning life of dams is as important as the investment and construction. Nevertheless, in order to provide safety of human life living around, well planned monitoring is essential for dams. Dams are very large and critical structures and they demand the use or application of precise measuring systems. Some basic physical data are very important for assessing the safety and performance of dams. These are movement, water pressure, seepage, reservoir and tail-water elevations, local seismic activities, total pressure, stress and strain, internal concrete temperature, ambient temperature and precipitation. Monitoring is an essential component of the dam after construction and during operation and must en­able the timely detection of any behavior that could deteriorate the dam, potentially result in its shutdown or failure. Considering the time and labor consumed by long-term measurements, processing and analysis of measured data, importance of the small structural motions at regular intervals could be comprehended. This study provides some information, safety and the techniques about the deformation monitoring of the dams, dam safety and related analysis. The case study is the deformation measurements of Atatürk Dam in Turkey which is the 6th largest dam of world considering the filling volume of embankment. Brief information is given about the

  20. 10. DETAIL OF NONOVERFLOW SECTION OF DAM SHOWING PENSTOCK OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. DETAIL OF NON-OVERFLOW SECTION OF DAM SHOWING PENSTOCK OF SUBMERSIBLE TURBINE-GENERATOR - Middle Creek Hydroelectric Dam, On Middle Creek, West of U.S. Route 15, 3 miles South of Selinsgrove, Selinsgrove, Snyder County, PA

  1. 5. UPSTREAM (WEST) VIEW OF SPILLWAY, WITH COOKE DAM POND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. UPSTREAM (WEST) VIEW OF SPILLWAY, WITH COOKE DAM POND IN FOREGROUND AND NORTH EMBANKMENT (MI-98-A) AT LEFT. VIEW TO NORTHEAST. - Cooke Hydroelectric Plant, Spillway, Cook Dam Road at Au Sable River, Oscoda, Iosco County, MI

  2. 3. POOL, DAM, AND INTAKE TO PIPELINE LEADING TO FISH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. POOL, DAM, AND INTAKE TO PIPELINE LEADING TO FISH WHEEL, LOOKING WEST-NORTHWEST. - Santa Ana River Hydroelectric System, Bear Creek Diversion Dam & Confluence Pool, Redlands, San Bernardino County, CA

  3. 19. View of low crib dam, headworks, and tramway above ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. View of low crib dam, headworks, and tramway above dam, looking southeast. Photo by Jet Lowe, HAER, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  4. View of upstream face of Lake Sabrina Dam showing redwood ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of upstream face of Lake Sabrina Dam showing redwood planks and boulders in Lake Sabrina Basin, view north - Bishop Creek Hydroelectric System, Plant 2, Lake Sabrina Dam, Bishop Creek, Bishop, Inyo County, CA

  5. View of Lake Sabrina Dam upstream face from ridge showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Lake Sabrina Dam upstream face from ridge showing spillway at lower right of photo, view southwest - Bishop Creek Hydroelectric System, Plant 2, Lake Sabrina Dam, Bishop Creek, Bishop, Inyo County, CA

  6. View of Lake Sabrina Dam and Lake Sabrina from east ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Lake Sabrina Dam and Lake Sabrina from east ridge showing spillway at photo center, view southwest - Bishop Creek Hydroelectric System, Plant 2, Lake Sabrina Dam, Bishop Creek, Bishop, Inyo County, CA

  7. View of Lake Sabrina Dam showing the wooden planks along ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Lake Sabrina Dam showing the wooden planks along the upstream side face and the spillway at the right center of photo, view north - Bishop Creek Hydroelectric System, Plant 2, Lake Sabrina Dam, Bishop Creek, Bishop, Inyo County, CA

  8. 3. VIEW SOUTHEAST, WEST END OF DAM AT LEFT CENTER, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW SOUTHEAST, WEST END OF DAM AT LEFT CENTER, HEADGATE STRUCTURE AT CENTER - Dayville Mills Hydroelectric Facility, Dam, North side of Route 101, .5 mile west of Route 395, Killingly Center, Windham County, CT

  9. 1. VIEW NORTH, SOUTH FACE OF DAM AT RIGHT CENTER, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW NORTH, SOUTH FACE OF DAM AT RIGHT CENTER, HEADGATES AND CANAL AT LEFT - Dayville Mills Hydroelectric Facility, Dam, North side of Route 101, .5 mile west of Route 395, Killingly Center, Windham County, CT

  10. Minidoka Dam Wildlife Impact Assessment: Final Report.

    SciTech Connect

    Martin, Robert C.; Meuleman, G. Allyn

    1989-03-01

    A wildlife impact assessment has been developed for the US Bureau of Reclamation's Minidoka Dam and Reservoir in south central Idaho. This assessment was conducted to fulfill requirements of the Fish and Wildlife Program. Specific objectives of this study included the following: select target wildlife species, and identify their current status and management goals; estimate the net effects on target wildlife species resulting from hydroelectric development and operation; recommend protection, mitigation, and enhancement goals for target wildlife species affected by hydroelectric development and operation; and consult and coordinate impact assessment activities with the Northwest Power Planning Council, Bonneville Power Administration, US Bureau of Reclamation, Bureau of Land Management, Shoshone-Bannock Tribes, US Fish and Wildlife Service, Pacific Northwest Utilities Conference Committee, and other entities expressing interest in the project. 62 refs., 2 figs., 11 tabs.

  11. POLLUTION PREVENTION OPPORTUNITY ASSESSMENT OF THE UNITED STATES ARMY CORPS OF ENGINEERS GARRISON DAM HYDRO- ELECTRIC POWERPLANT - RIVERDALE, NORTH DAKOTA

    EPA Science Inventory

    The report describes the results of pollution prevention opportunity assessments conducted at a representative U.S. Army Corps of Engineers civil works dam and hydroelectric power plant. ecommended methods for reducing pollution resulting primarily from the operation of these fac...

  12. Scientific substantiation of safe operation of the Earthen Dams at the Votkinsk HPP

    SciTech Connect

    Deev, A. P.; Fisenko, V. F.; Sol'skii, S. V.; Lopatina, M. G.; Gints, A. V.; Aref'eva, A. N.

    2012-11-15

    Over a period of 15 years, coworkers of the B. E. Vedeneev Scientific-Research Institute of Hydraulic Engineering have conducted scientific accompaniment of the operation of the earthen dams at the Votkinsk HPP. During that time, basic performance characteristics associated with complex hydrogeologic and hydrochemical conditions, and the forms of their unfavorable manifestations influencing the reliability and safety of the structures were revealed, and, recommendations and measures were developed for their elimination.

  13. Hydroelectric power provides a cheap source of electricity with few carbon emissions. Yet, reservoirs are not operated sustainably, which we define as meeting societal needs for water and power while protecting long-term health of the river ecosystem. Reservoirs that generate hydropower are typically operated with the goal of maximizing energy reve

    SciTech Connect

    Jager, Yetta; Smith, Brennan T

    2008-02-01

    Hydroelectric power provides a cheap source of electricity with few carbon emissions. Yet, reservoirs are not operated sustainably, which we define as meeting societal needs for water and power while protecting long-term health of the river ecosystem. Reservoirs that generate hydropower are typically operated with the goal of maximizing energy revenue, while meeting other legal water requirements. Reservoir optimization schemes used in practice do not seek flow regimes that maximize aquatic ecosystem health. Here, we review optimization studies that considered environmental goals in one of three approaches. The first approach seeks flow regimes that maximize hydropower generation, while satisfying legal requirements, including environmental (or minimum) flows. Solutions from this approach are often used in practice to operate hydropower projects. In the second approach, flow releases from a dam are timed to meet water quality constraints on dissolved oxygen (DO), temperature and nutrients. In the third approach, flow releases are timed to improve the health of fish populations. We conclude by suggesting three steps for bringing multi-objective reservoir operation closer to the goal of ecological sustainability: (1) conduct research to identify which features of flow variation are essential for river health and to quantify these relationships, (2) develop valuation methods to assess the total value of river health and (3) develop optimal control softwares that combine water balance modelling with models that predict ecosystem responses to flow.

  14. Analysis of environmental issues related to small-scale hydroelectric development. III. Water level fluctuation

    SciTech Connect

    Hildebrand, S.G.

    1980-10-01

    Potential environmental impacts in reservoirs and downstream river reaches below dams that may be caused by the water level fluctuation resulting from development and operation of small scale (under 25MW) hydroelectric projects are identified. The impacts discussed will be of potential concern at only those small-scale hydroelectric projects that are operated in a store and release (peaking) mode. Potential impacts on physical and chemical characteristics in reservoirs resulting from water level fluctuation include resuspension and redistribution of bank and bed sediment; leaching of soluble organic matter from sediment in the littoral zone; and changes in water quality resulting from changes in sediment and nutrient trap efficiency. Potential impacts on reservoir biota as a result of water level fluctuation include habitat destruction and the resulting partial or total loss of aquatic species; changes in habitat quality, which result in reduced standing crop and production of aquatic biota; and possible shifts in species diversity. The potential physical effects of water level fluctuation on downstream systems below dams are streambed and bank erosion and water quality problems related to resuspension and redistribution of these materials. Potential biological impacts of water level fluctuation on downstream systems below dams result from changes in current velocity, habitat reduction, and alteration in food supply. These alterations, either singly or in combination, can adversely affect aquatic populations below dams. The nature and potential significance of adverse impacts resulting from water level fluctuation are discussed. Recommendations for site-specific evaluation of water level fluctuation at small-scale hydroelectric projects are presented.

  15. 76 FR 21885 - BOST5 Hydroelectric Company, LLC; Notice of Application Tendered for Filing With the Commission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-19

    ... With the Commission and Soliciting Additional Study Requests Take notice that the following...: BOST5 Hydroelectric Company, LLC (BOST5). e. Name of Project: Red River Lock & Dam No. 5 Hydroelectric... (Corps) Red River Lock & Dam No. 5 on the Red River, near the town of Ninock near the City of...

  16. Large dams and alluvial rivers in the Anthropocene: The impacts of the Garrison and Oahe Dams on the Upper Missouri River

    USGS Publications Warehouse

    Skalak, Katherine; Benthem, Adam J.; Schenk, Edward R.; Hupp, Cliff R.; Galloway, Joel M.; Nustad, Rochelle A.; Wiche, Gregg J.

    2013-01-01

    The Missouri River has had a long history of anthropogenic modification with considerable impacts on river and riparian ecology, form, and function. During the 20th century, several large dam-building efforts in the basin served the needs for irrigation, flood control, navigation, and the generation of hydroelectric power. The managed flow provided a range of uses, including recreation, fisheries, and habitat. Fifteen dams impound the main stem of the river, with hundreds more on tributaries. Though the effects of dams and reservoirs are well-documented, their impacts have been studied individually, with relatively little attention paid to their interaction along a river corridor. We examine the morphological and sedimentological changes in the Upper Missouri River between the Garrison Dam in ND (operational in 1953) and Oahe Dam in SD (operational in 1959). Through historical aerial photography, stream gage data, and cross sectional surveys, we demonstrate that the influence of the upstream dam is still a major control of river dynamics when the backwater effects of the downstream reservoir begin. In the “Anthropocene”, dams are ubiquitous on large rivers and often occur in series, similar to the Garrison Dam Segment. We propose a conceptual model of how interacting dams might affect river geomorphology, resulting in distinct and recognizable morphologic sequences that we term “Inter-Dam sequence” characteristic of major rivers in the US.

  17. Water quantity and quality optimization modeling of dams operation based on SWAT in Wenyu River Catchment, China.

    PubMed

    Zhang, Yongyong; Xia, Jun; Chen, Junfeng; Zhang, Minghua

    2011-02-01

    Water quantity and quality joint operation is a new mode in the present dams' operation research. It has become a hot topic in governmental efforts toward integrated basin improvement. This paper coupled a water quantity and quality joint operation model (QCmode) and genetic algorithm with Soil and Water Assessment Tool (SWAT). Together, these tools were used to explore a reasonable operation of dams and floodgates at the basin scale. Wenyu River Catchment, a key area in Beijing, was selected as the case study. Results showed that the coupled water quantity and quality model of Wenyu River Catchment more realistically simulates the process of water quantity and quality control by dams and floodgates. This integrated model provides the foundation for research of water quantity and quality optimization on dam operation in Wenyu River Catchment. The results of this modeling also suggest that current water quality of Wenyu River will improve following the implementation of the optimized operation of the main dams and floodgates. By pollution control and water quantity and quality joint operation of dams and floodgates, water quality of Wenyu river will change significantly, and the available water resources will increase by 134%, 32%, 17%, and 82% at the downstream sites of Sha River Reservoir, Lutong Floodgate, Xinpu Floodgate, and Weigou Floodgate, respectively. The water quantity and quality joint operation of dams will play an active role in improving water quality and water use efficiency in Wenyu River Basin. The research will provide the technical support for water pollution control and ecological restoration in Wenyu River Catchment and could be applied to other basins with large number of dams. Its application to the Wenyu River Catchment has a great significance for the sustainable economic development of Beijing City.

  18. Seasonal variation of water quality in a lateral hyporheic zone with response to dam operations

    NASA Astrophysics Data System (ADS)

    Chen, X.; Chen, L.; Zhao, J.

    2015-12-01

    Aquatic environment of lateral hyporheic zone in a regulated river were investigated seasonally under fluctuated water levels induced by dam operations. Groundwater levels variations in preassembled wells and changes in electronic conductivity (EC), dissolved oxygen (DO) concentration, water temperature and pH in the hyporheic zone were examined as environmental performance indicators for the water quality. Groundwater tables in wells were highly related to the river water levels that showed a hysteresis pattern, and the lag time is associated with the distances from wells to the river bank. The distribution of DO and EC were strongly related to the water temperature, indicating that the cold water released from up-reservoir could determine the biochemistry process in the hyporheic zone. Results also showed that the hyporheic water was weakly alkaline in the study area but had a more or less uniform spatial distribution. Dam release-storage cycles were the dominant factor in changing lateral hyporheic flow and water quality.

  19. 46. Photocopy of photograph, c. 1933. VIEW OF DAM AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. Photocopy of photograph, c. 1933. VIEW OF DAM AND FOREBAY. NOTE ALL WATER FLOWING THROUGH FOREBAY AND OUT EITHER TAILRACE OR SLUICE GATE (INSTEAD OF OVER DAM) BECAUSE OF LOW WATER FLOW. (Courtesy of the Potomac Edison Company Library (Hagerstown, MD), Historical Data Files, Dam No. 5 listing - Dam No. 5 Hydroelectric Plant, On Potomac River, Hedgesville, Berkeley County, WV

  20. 43. Credit TR. Reconstruction of Dam No. 4 after 1936 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. Credit TR. Reconstruction of Dam No. 4 after 1936 flood. Pouring concrete for new dam section; opening at left for flume to remove water from behind coffer dam. Photo c. 1936 - Dam No. 4 Hydroelectric Plant, Potomac River, Martinsburg, Berkeley County, WV

  1. Hydropower and the environment: A case study at Glen Canyon Dam

    SciTech Connect

    Wegner, D.L.

    1995-12-31

    The management of hydroelectric resources in the Colorado River requires a balancing of hydrologic, social, natural and cultural resources. The resulting management often has to deal with inherently conflicting objectives, short and long-term goals, time frames and operational flexibility. Glen Canyon Dam, AZ, on the Colorado River, controls the release of water into the Grand Canyon. The dam has been under intense public scrutiny since it was completed in 1963. An Environmental Impact Statement evaluating the future operations and options for Glen Canyon Dam was initiated by the Department of the Interior in 1989 and completed in 1995. An Adaptive Management approach to future operational management has been developed as part of the Glen Canyon Dam Environmental Impact Statement process. Future operations at Glen Canyon Dam will take into consideration the need to balance water movement and hydroelectricity development with natural, recreation, Native American and cultural needs. Future management of rivers requires acknowledgement of the dynamic nature of ecosystems and the need to link scientific information into the decision-making process. Lessons learned and programs developed at Glen Canyon Dam may be applied to other river systems.

  2. Problems of operating the 500-kV outdoor electrical equipment of the Sayano-Shushenskoe hydroelectric station

    SciTech Connect

    Mitrofanov, A.N.

    1994-10-01

    The Sayano-Shushenskoe hydroelectric station is part of the Siberian interconnected power system. Power is transmitted to the grid by two 500 kV transmission lines. The site characteristics made nearby placement of conventional 500 kV switchyard equipment impossible. The original plans were to place the switchyard 35 km away, but the 500 kV lines to the yard would have passed through mountain regions with intense thunderstorm activity. Because of the unique design of the generators, the number of lightning-induced disconnects was substantial. For greater reliability, 500 kV equipment suitable for placement at the sight was designed, and the overall electrical layout of the yard was revised by reconstructing the middle network of the 4/3 scheme to three networks with two switches per connection. Sectioning of the collecting bus systems was necessary for a further increase in the reliability of the yard.

  3. Application of wavelet analysis for monitoring the hydrologic effects of dam operation: Glen canyon dam and the Colorado River at lees ferry, Arizona

    USGS Publications Warehouse

    White, M.A.; Schmidt, J.C.; Topping, D.J.

    2005-01-01

    Wavelet analysis is a powerful tool with which to analyse the hydrologic effects of dam construction and operation on river systems. Using continuous records of instantaneous discharge from the Lees Ferry gauging station and records of daily mean discharge from upstream tributaries, we conducted wavelet analyses of the hydrologic structure of the Colorado River in Grand Canyon. The wavelet power spectrum (WPS) of daily mean discharge provided a highly compressed and integrative picture of the post-dam elimination of pronounced annual and sub-annual flow features. The WPS of the continuous record showed the influence of diurnal and weekly power generation cycles, shifts in discharge management, and the 1996 experimental flood in the post-dam period. Normalization of the WPS by local wavelet spectra revealed the fine structure of modulation in discharge scale and amplitude and provides an extremely efficient tool with which to assess the relationships among hydrologic cycles and ecological and geomorphic systems. We extended our analysis to sections of the Snake River and showed how wavelet analysis can be used as a data mining technique. The wavelet approach is an especially promising tool with which to assess dam operation in less well-studied regions and to evaluate management attempts to reconstruct desired flow characteristics. Copyright ?? 2005 John Wiley & Sons, Ltd.

  4. 77 FR 40607 - Whitman River Dam, Inc.; Notice of Availability of Environmental Assessment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-10

    ... Energy Regulatory Commission Whitman River Dam, Inc.; Notice of Availability of Environmental Assessment... Projects has reviewed the application for an original license for the Crocker Dam Hydroelectric Project, to... ``Crocker Dam Hydroelectric Project No. 13237-003'' to all comments. For further information, contact...

  5. Effect of the Operation of Kerr and Hungry Horse Dams on the Reproductive Success of Kokanee in the Flathead System; Technical Addendum to the Final Report.

    SciTech Connect

    Beattie, Will; Tohtz, Joel

    1990-03-01

    This addendum to the Final Report presents results of research on the zooplankton and fish communities of Flathead Lade. The intent of the Study has been to identify the impacts of hydroelectric operations at Kerr and Hungry Horse Dam on the reproductive success of kokanee an to propose mitigation for these impacts. Recent changes in the trophic ecology of the lake, have reduced the survival of kokanee. In the last three year the Study has been redirected to identify, if possible, the biological mechanisms which now limit kokanee survival, and to test methods of enhancing the kokanee fishery by artificial supplementation. These studies were necessary to the formulation of mitigation plans. The possibility of successfully rehabilitating the kokanee population, is the doubt because of change in the trophic ecology of the system. This report first presents the results of studies of the population dynamics of crustacean zooplankton, upon which planktivorous fish depend. A modest effort was directed to measuring the spawning escapement of kokanee in 1988. Because of its relevance to the study, we also report assessments of 1989 kokanee spawning escapement. Hydroacoustic assessment of the abundance of all fish species in Flathead Lake was conducted in November, 1988. Summary of the continued efforts to document the growth rates and food habits of kokanee and lake whitefish are included in this report. Revised kokanee spawning and harvest estimates, and management implications of the altered ecology of Flathead Lake comprise the final sections of this addendum. 83 refs., 20 figs., 25 tabs.

  6. Legal obstacles and incentives to the development of small-scale hydroelectric power in Rhode Island

    SciTech Connect

    None,

    1980-05-01

    The legal and institutional obstacles to the development of small-scale hydroelectric energy at the state level are discussed. The Federal government also exercises extensive regulatory authority in the area, and the dual regulatory system from the standpoint of the appropriate legal doctrine, the law of pre-emption, application of the law to the case of hydroelectric development, and an inquiry into the practical use of the doctrine by the FERC is examined. In Rhode Island, any private rights in the flowing waters of a river or stream depend upon ownership of the abutting land. It appears Rhode Island follows the reasonable use theory of riparian law. The Department of Environmental Management is the most significant administrative agency with regard to dam construction, alteration, and operation in the state of Rhode Island.

  7. Integrated Data-Archive and Distributed Hydrological Modelling System for Optimized Dam Operation

    NASA Astrophysics Data System (ADS)

    Shibuo, Yoshihiro; Jaranilla-Sanchez, Patricia Ann; Koike, Toshio

    2013-04-01

    Analysis System, a Japanese national project for collecting, integrating and analyzing massive amount of global scale observation data, meaning that the present system is applicable worldwide. We demonstrate the integrated system with observed extreme events in Angat Watershed, the Philippines, and Upper Tone River basin, Japan. The results show promising performance for operational use of the system to support river and dam managers' decision-making.

  8. Morphological impact of river below dam due to reservoir desiltation operation in Taiwan

    NASA Astrophysics Data System (ADS)

    Wang, H. W.; Lee, F. Z.; Lai, J. S.; Huang, C. C.; Kang, S. Y.

    2014-12-01

    The morphological impact of river below dams due to such reservoir desiltation operation was considered and Shihmen reservoir was adopted to discuss such issue due to the new sediment venting tunnel was implemented from 2013 in this study. The Shihmen reservoir had a natural drainage area of 762.4 km2 and located at the northern Taiwan. Due to serious sediment deposition problem from 2004 induced by Typhoon AERE, the stratified withdraw facility was built at dam site to avoid the lack of public water and the one of venting tunnel of power plant was designed to vent turbidity current (Fig. 1(a)). In 2013, the sediment venting tunnel was first operated during Typhoon Soulik and abundant sediment was released to the downstream river. The 2D numerical model with sediment transport consideration was adopted to investigate morphological impact of downstream river, especially at Jiangzicui area in Fig. 1(b). Due to ecological wet land, flood diversion work and ferry boat transportation were concentrated in this area, the sediment transportation and morphological impact is important to be realized. The Fig. 1(b) shows the original morphological bed form before sediment releasing from sediment venting tunnel and Fig. 1(c) shows the simulation results after sediment releasing from sediment venting. It seems 0.2 m morphological changing due to this operation. Fig. 1(d) is the field morphological survey after Typhoon Soulik and comparison to Fig. 1 (b), not significantly deposition or erosion is observed. According to the grain size of released sediment from Shihmen reservoir, d50 is approximately 10 μm and it is belonged to fine sediment. Therefore, the released sediment is classified clay and for the morphological impact is not significantly. So, morphological impact of downstream river below Shihmen dam due to reservoir desiltation operation is unapparent after Typhoon Soulik at Jiangzicui area. Keywords: venting tunnel, turbid current, morphological impact, 2D numerical

  9. Water temperature effects from simulated dam operations and structures in the Middle Fork Willamette River, western Oregon

    USGS Publications Warehouse

    Buccola, Norman L.; Turner, Daniel F.; Rounds, Stewart A.

    2016-09-14

    Significant FindingsStreamflow and water temperature in the Middle Fork Willamette River (MFWR), western Oregon, have been regulated and altered since the construction of Lookout Point, Dexter, and Hills Creek Dams in 1954 and 1961, respectively. Each year, summer releases from the dams typically are cooler than pre-dam conditions, with the reverse (warmer than pre-dam conditions) occurring in autumn. This pattern has been detrimental to habitat of endangered Upper Willamette River (UWR) Chinook salmon (Oncorhynchus tshawytscha) and UWR winter steelhead (O. mykiss) throughout multiple life stages. In this study, scenarios testing different dam-operation strategies and hypothetical dam-outlet structures were simulated using CE-QUAL-W2 hydrodynamic/temperature models of the MFWR system from Hills Creek Lake (HCR) to Lookout Point (LOP) and Dexter (DEX) Lakes to explore and understand the efficacy of potential flow and temperature mitigation options.Model scenarios were run in constructed wet, normal, and dry hydrologic calendar years, and designed to minimize the effects of Hills Creek and Lookout Point Dams on river temperature by prioritizing warmer lake surface releases in May–August and cooler, deep releases in September–December. Operational scenarios consisted of a range of modified release rate rules, relaxation of power-generation constraints, variations in the timing of refill and drawdown, and maintenance of different summer maximum lake levels at HCR and LOP. Structural scenarios included various combinations of hypothetical floating outlets near the lake surface and hypothetical new outlets at depth. Scenario results were compared to scenarios using existing operational rules that give temperature management some priority (Base), scenarios using pre-2012 operational rules that prioritized power generation over temperature management (NoBlend), and estimated temperatures from a without-dams condition (WoDams).Results of the tested model scenarios led

  10. Evaluation of advanced turbomachinery for underground pumped hydroelectric storage. Part 3. Multistage unregulated pump/turbines for operating heads of 1000 to 1500 m

    SciTech Connect

    Frigo, A.A.; Pistner, C.

    1980-08-01

    This is the final report in a series of three on studies of advanced hydraulic turbomachinery for underground pumped hydroelectric storage. All three reports address Francis-type, reversible pump/turbines. The first report covered single-stage regulated units; the second report covered two-stage regulated units; the present report covers multistage unregulated units. Multistage unregulated pump/turbines offer an economically attractive option for heads of 1000 to 1500 m. The feasibility of developing such machines for capacities up to 500 MW and operating heads up to 1500 m has been evaluated. Preliminary designs have been generated for six multistage pump/turbines. The designs are for nominal capacities of 350 and 500 MW and for operating heads of 1000, 1250, and 1500 m. Mechanical, hydraulic, and economic analyses indicate that these machines will behave according to the criteria used to design them and that they can be built at a reasonable cost with no unsolvable problems. Efficiencies of 85.8% and 88.5% in the generating and pumping modes, respectively, can be expected for the 500-MW, 1500-m unit. Performances of the other five machines are at least comparable, and usually better. Over a 1000 to 1500-m head range, specific $/kW costs of the pump/turbines in mid-1978 US dollars vary from 19.0 to 23.1 for the 500-MW machines, and from 21.0 to 24.1 for the 350-MW machines.

  11. Oblique view of southwest and southeast sides of hydroelectric power ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Oblique view of southwest and southeast sides of hydro-electric power house with upstream side of dam to left and concrete pylon at upper entrance to lock on right, view towards north - St. Lucie Canal, St. Lucie Lock No. 1, St. Lucie, Cross State Canal, Okeechobee Intracoastal Waterway, Stuart, Martin County, FL

  12. Planar view of interior northwest side of lock wall, hydroelectric ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Planar view of interior northwest side of lock wall, hydro-electric power house and dam in background, westernmost section of lock, view towards northwest - St. Lucie Canal, St. Lucie Lock No. 1, St. Lucie, Cross State Canal, Okeechobee Intracoastal Waterway, Stuart, Martin County, FL

  13. Monitoring of Downstream Salmon and Steelhead at Federal Hydroelectric Facilities, 1995 Annual Report.

    SciTech Connect

    Martinson, Rick D.; Graves, Richie J.; Langeslay, Michael J.

    1996-12-01

    The seaward migration of juvenile salmonids was monitored by the National Marine Fisheries Service (NMFS) at Bonneville and John Day Dams on the Columbia river in 1995. The NMFS Smolt Monitoring Project is part of a larger Smolt Monitoring Program (SMP) coordinated by the Fish Passage Center (FPC) for the Columbia Basin Fish and Wildlife Authority. This program focuses on protecting, mitigating, and enhancing fish populations affected by the development and operation of hydroelectric power plants on the Columbia River. The purpose of the SMP is to monitor the migration of the juvenile salmonid stocks in the Columbia basin and make flow and spill recommendations designed to facilitate fish passage. Data are also used for travel time, migration timing, and relative run size analysis. The purpose of the NMFS portion of the program is to provide FPC with species and project specific real time data from John Day and Bonneville Dams.

  14. The further environmental development of Polyphyto Hydroelectric Project reservoir in Kozani prefecture and its contribution to the life quality improvement

    NASA Astrophysics Data System (ADS)

    Saounatsou, Chara; Georgi, Julia

    2014-08-01

    The Polyphyto Hydroelectric Project was constructed in 1974 and it has been operating since on the Aliakmonas River, Kozani prefecture, by the Greek Public Power Corporation. The construction of the Ilarion Hydroelectric Project, upstream from the Polyphyto Reservoir, has been recently completed and will start operating in the near future. Apart from hydroelectric power production, the Polyphyto reservoir provides flood control to the areas below the Polyphyto dam. It is also used to manage water provision to the city of Thessaloniki and adjacent agricultural plain, providing at the same time cooling water to the Thermo Electric Projects in Ptolemaida. The Polyphyto reservoir has potential for further development as an economic fulcrum to the region in which is located. The Kozani and Servia-Velvendos Municipalities have proceeded to the construction of several touristic, nautical - athletic and fishing projects. In order to promote such developments, while preserving the artificial wetland, flora and fauna of the Polyphyto Reservoir, it is important to reduce the fluctuation of the reservoir elevation which according to its technical characteristics is 21m. The aim of this paper is to propose the combined operation of the two Hydroelectric Project reservoirs to satisfy all the present Polyphyto Hydroelectric Project functions and to reduce the annual fluctuation of the Polyphyto Reservoir. The HEC-5, Version 8 / 1998 computer model was used in our calculations, as developed by the Hydrologic Engineering Center (HEC) of the US Army Corps of Engineers for reservoir operation simulation. Five possible operation scenarios are tested in this paper to show that the present fluctuation of the Polyphyto Reservoir can be reduced, with some limitations, except during dry weather periods.

  15. 8. INTERIOR VIEW OF OPERATING HOUSE NO. 1, SHOWING ORIGINAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. INTERIOR VIEW OF OPERATING HOUSE NO. 1, SHOWING ORIGINAL 20 HP WEST HOIST MOTOR, NO. 2 CONTROL. GATE HAND BRAKE IN FOREGROUND, BANK OF ELECTRICAL CONTROL. PANELS, AND WORM WHEEL GEAR ASSEMBLY (RIGHT FOREGROUND), LOOKING EAST - Long Lake Hydroelectric Plant, Spillway Dam, Spanning Spokane River, Ford, Stevens County, WA

  16. 11. INTERIOR VIEW OF OPERATING HOUSE NO. 4, SHOWING WORM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. INTERIOR VIEW OF OPERATING HOUSE NO. 4, SHOWING WORM WHEEL GEAR ASSEMBLY, ORIGINAL 20 HP EAST HOIST MOTOR, AND CONTROL GATES 7 AND 8 HAND BRAKES, WITH MOTOR SELECTOR SWITCH, MOTOR STARTING SWITCH, AND OIL CIRCUIT BREAKER IN BACKGROUND - Long Lake Hydroelectric Plant, Spillway Dam, Spanning Spokane River, Ford, Stevens County, WA

  17. Projection of climate change Impact on water resources for hydropower and irrigation under new dam construction in the Mekong River

    NASA Astrophysics Data System (ADS)

    Kudo, R.; Masumoto, T.; Horikawa, N.; Yoshida, T.

    2011-12-01

    1. Introduction Many projects for water resources development are planned in the Mekong River basin. Hydrological cycles in river basins are affected by such developments as well as by climate change. In Laos there are about 70 hydroelectric power projects and several hydroelectric dams are currently under construction upstream from the Nam Ngum dam (NN1 dam), one of the largest hydroelectric dams in the Mekong River. In this study, the combined impacts of climate change and the construction of new dams on water resources in the Nam Ngum River were investigated by using a distributed hydrological model, a reservoir operation model, and future climate scenarios based on a Global Climate Model (GCM). 2. Distributed Hydrological and Reservoir Operation Models The hydrological model used in this study contains four sub-models, evapotranspiration, cropping pattern and area, agricultural water use, and runoff. For modeling, a basin is divided into a 10 km grid and the ratios of five land-use categories (forest, rain-fed paddy, irrigated paddy, upland field, and water body) are set for each grid cell. A reservoir operation model was developed to represent the operation of dams in the Nam Ngum River basin and this model was incorporated in the distributed hydrological model. This model was applied to the NN1 dam and other new dams. 3. Data and Methods Future climate scenarios simulated by MRI-AGCM3.1S (SRES-A1B), a GCM developed by Meteorological Research Institute (MRI) of Japan, were used as input data for the hydrological model. The climate scenarios were statistically corrected to eliminate biases between the GCM simulations and the observations. Simulations were carried out for five scenarios: Present: Without dam construction under present climate conditions (1979-2003) Near future1: Without dam construction under near future climate conditions (2015-2039) Near future2: With dam construction under near future climate conditions (2015-2039) Future1: Without dam

  18. Effect of the Operation of Kerr and Hungry Horse Dams on the Reproductive Success of Kokanee in the Flathead System, 1987 Final Report.

    SciTech Connect

    Beattie, Will; Zubik, Raymond; Clancey, Patrick

    1988-05-01

    Studies of kokanee reproductive success in the Flathead system from 1981 to 1987 have assessed the losses in fish production attributable to hydroelectric operations. We estimated that the Flathead Lake shoreline spawning stock has lost at least 50,000 fish annually, since Kerr Dam was completed in 1938. The Flathead River spawning stock has lost 95,000 spawners annually because of the operations of Hungry Horse Dam. Lakeshore spawning has been adversely affected because Flathead Lake has been drafted to minimum pool during the winter when kokanee eggs are incubating in shallow shoreline redds. Egg mortality from exposure and desiccation of kokanee redds has increased since the mid 1970's. When the lake was drafted more quickly and held longer at minimum pool. Escapement surveys in the early 1950's, and a creel survey in the early 1960's have provided a baseline to which the present escapement levels can be compared, and loss estimated. Main stem Flathead River spawning has also declined since the mid 1970's when fluctuating discharge from Hungry Horse Dam during the spawning and incubation season exposed redds at the river margin and increased mortality. This decline followed an increase in main stem spawning in the late 1950's through the mid 1960's attributable to higher winter water temperature and relatively stable discharge from Hungry Horse Dam. Spawning escapement in the main stem exceeded 300,000 kokanee in the early 1970's as a result. Spawning in spring-influenced sites has comprised 35 percent of the main stem escapement from 1979 to 1986. We took that proportion of the early 1970's escapement (105,000) as the baseline against which to measure historic loss. Agricultural and suburban development has contributed less significantly to degradation of kokanee spawning habitat in the river system and on the Flathead Lake shoreline. Their influence on groundwater quality and substrate composition has limited reproductive success in few sites. Studies of the

  19. Underground pumped hydroelectric storage

    SciTech Connect

    Allen, R.D.; Doherty, T.J.; Kannberg, L.D.

    1984-07-01

    Underground pumped hydroelectric energy storage was conceived as a modification of surface pumped storage to eliminate dependence upon fortuitous topography, provide higher hydraulic heads, and reduce environmental concerns. A UPHS plant offers substantial savings in investment cost over coal-fired cycling plants and savings in system production costs over gas turbines. Potential location near load centers lowers transmission costs and line losses. Environmental impact is less than that for a coal-fired cycling plant. The inherent benefits include those of all pumped storage (i.e., rapid load response, emergency capacity, improvement in efficiency as pumps improve, and capacity for voltage regulation). A UPHS plant would be powered by either a coal-fired or nuclear baseload plant. The economic capacity of a UPHS plant would be in the range of 1000 to 3000 MW. This storage level is compatible with the load-leveling requirements of a greater metropolitan area with population of 1 million or more. The technical feasibility of UPHS depends upon excavation of a subterranean powerhouse cavern and reservoir caverns within a competent, impervious rock formation, and upon selection of reliable and efficient turbomachinery - pump-turbines and motor-generators - all remotely operable.

  20. Environmental Assessment : Tumwater Dam and Dryden Dam Fish Passage Projects.

    SciTech Connect

    United States. Bonneville Power Administration.

    1986-01-01

    Existing fish passage facilities at Tumwater Dam and Dryden Dam currently do not effectively pass the anadromous fish runs in the Wenatchee River. At Tumwater Dam, the proposed action includes the construction of a new fish ladder which will improve water flow characteristics and, subsequently, fish passage. In order to improve fish passage at Dryden Dam, a new fish ladder will be constructed to replace the existing ladder and another ladder will be constructed. The proposed action will supplement mitigation of adverse hydroelectric impacts to the fisheries of the Columbia River basin. The proposal to fund the Tumwater Dam and Dryden Dam Fish Passage facilities does not appear to constitute a major Federal action significantly affecting the quality of the human environment and would not require an environmental impact statement.

  1. Small-Scale Hydroelectric Power Demonstration Project

    SciTech Connect

    Gleeson, L.

    1991-12-01

    The US Department of Energy Field Office, Idaho, Small-Scale Hydroelectric Power Program was initiated in conjunction with the restoration of three power generating plants in Idaho Falls, Idaho, following damage caused by the Teton Dam failure on June 5, 1976. There were many parties interested in this project, including the state and environmental groups, with different concerns. This report was prepared by the developer and describes the design alternatives the applicant provided in an attempt to secure the Federal Energy Regulatory Commission license. Also included are correspondence between the related parties concerning the project, major design alternatives/project plan diagrams, the license, and energy and project economics.

  2. Simulating potential structural and operational changes for Detroit Dam on the North Santiam River, Oregon, for downstream temperature management

    USGS Publications Warehouse

    Buccola, Norman L.; Rounds, Stewart A.; Sullivan, Annett B.; Risley, John C.

    2012-01-01

    Detroit Dam was constructed in 1953 on the North Santiam River in western Oregon and resulted in the formation of Detroit Lake. With a full-pool storage volume of 455,100 acre-feet and a dam height of 463 feet, Detroit Lake is one of the largest and most important reservoirs in the Willamette River basin in terms of power generation, recreation, and water storage and releases. The U.S. Army Corps of Engineers operates Detroit Dam as part of a system of 13 reservoirs in the Willamette Project to meet multiple goals, which include flood-damage protection, power generation, downstream navigation, recreation, and irrigation. A distinct cycle in water temperature occurs in Detroit Lake as spring and summer heating through solar radiation creates a warm layer of water near the surface and isolates cold water below. Controlling the temperature of releases from Detroit Dam, therefore, is highly dependent on the location, characteristics, and usage of the dam's outlet structures. Prior to operational changes in 2007, Detroit Dam had a well-documented effect on downstream water temperature that was problematic for endangered salmonid fish species, releasing water that was too cold in midsummer and too warm in autumn. This unnatural seasonal temperature pattern caused problems in the timing of fish migration, spawning, and emergence. In this study, an existing calibrated 2-dimensional hydrodynamic water-quality model [CE-QUAL-W2] of Detroit Lake was used to determine how changes in dam operation or changes to the structural release points of Detroit Dam might affect downstream water temperatures under a range of historical hydrologic and meteorological conditions. The results from a subset of the Detroit Lake model scenarios then were used as forcing conditions for downstream CE-QUAL-W2 models of Big Cliff Reservoir (the small reregulating reservoir just downstream of Detroit Dam) and the North Santiam and Santiam Rivers. Many combinations of environmental, operational, and

  3. Effects of hydropower operations on recreational use and nonuse values at Glen Canyon and Flaming Gorge Dams

    SciTech Connect

    Carlson, J.L.

    1995-03-01

    Increases in streamflows are generally positively related to the use values of angling and white-water boating, and constant flows tend to increase the use values more than fluctuating flows. In most instances, however, increases in streamflows beyond some threshold level cause the use values to decrease. Expenditures related to angling and white-water boating account for about $24 million of activity in the local economy around Glen Canyon Dam and $24.8 million in the local economy around flaming Gorge Dam. The range of operational scenarios being considered in the Western Area Power Administration`s Electric Power Marketing Environmental Impact Statement, when use rates are held constant, could change the combined use value of angling and white-water boating below Glen Canyon Dam, increasing it by as much as 50%, depending on prevailing hydrological conditions. Changes in the combined use value below Flaming Gorge Dam could range from a decrease of 9% to an increase of 26%. Nonuse values, such as existence and bequest values, could also make a significant contribution to the total value of each site included in this study; however, methodological and data limitations prevented estimating how each operational scenario could change nonuse values.

  4. Using causal maps to support ex-post assessment of social impacts of dams

    SciTech Connect

    Aledo, Antonio; García-Andreu, Hugo; Pinese, José

    2015-11-15

    - Highlights: • We defend the usefulness of causal maps (CM) for ex-post impact assessment of dams. • Political decisions are presented as unavoidable technical measures. • CM enable the identification of multiple causes involved in the dam impacts. • An alternative management of the dams is shown from the precise tracking of the causes. • Participatory CM better the quality of information and the governance of the research. This paper presents the results of an ex-post assessment of two important dams in Brazil. The study follows the principles of Social Impact Management, which offer a suitable framework for analyzing the complex social transformations triggered by hydroelectric dams. In the implementation of this approach, participative causal maps were used to identify the ex-post social impacts of the Porto Primavera and Rosana dams on the community of Porto Rico, located along the High Paraná River. We found that in the operation of dams there are intermediate causes of a political nature, stemming from decisions based on values and interests not determined by neutral, exclusively technical reasons; and this insight opens up an area of action for managing the negative impacts of dams.

  5. 22. View of tramway and car used for servicing dam, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. View of tramway and car used for servicing dam, looking north. Photo by Jet Lowe, HAER, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  6. 18. View, looking south, of low crib dam and headworks ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. View, looking south, of low crib dam and headworks from north side of White River. Photo by Jet Lowe, HAER, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  7. 21. Detail of dam and flashboards, looking north. Photo by ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Detail of dam and flashboards, looking north. Photo by Brian C. Morris, Puget Power, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  8. 17. General view of dam and headworks, looking northeast. Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. General view of dam and headworks, looking northeast. Photo by Brian C. Morris, Puget Power, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  9. View of Diversion Dam and Flume Intake of the Childs ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Diversion Dam and Flume Intake of the Childs System at the Irving Powerhouse. Looking northwest - Childs-Irving Hydroelectric Project, Childs System, Flume Intake & Forebay, Forest Service Road 708/502, Camp Verde, Yavapai County, AZ

  10. Use of aerial videography to evaluate the effects of Flaming Gorge Dam operations on natural resources of the Green River

    SciTech Connect

    Snider, M.A.; Hayse, J.W.; Hlohowskyj, I.; LaGory, K.E.; Greaney, M.M.; Kuiper, J.A.; Van Lonkhuyzen, R.A.

    1993-07-01

    Peaking hydropower operations can profoundly alter natural stream flow and thereby affect the natural resources dependent on these flows. In this paper, we describe how aerial videography was used to collect environmental data and evaluate impacts of hydropower operations at Flaming Gorge Dam on natural resources of the Green River. An airborne multispectral video/radiometer remote sensing system was used to collect resource data under four different flow conditions from seven sites (each about one mile in length) located downstream from the dam. Releases from Flaming Gorge Dam during data collection ranged from approximately 800 to 4,000 cubic feet/sec (cfs), spanning most of the normal operating range for this facility. For each site a series of contiguous, non-overlapping images was prepared from the videotapes and used to quantify surface water area, backwater habitats, and areas of riparian vegetation under varying flow conditions. From this information, relationships between flow and habitat parameters were developed and used in conjunction with hydrologic modeling and ecological information to evaluate impacts of various modes of operation.

  11. Getting two for one: Adding hydropower at the Milner Irrigation Dam

    SciTech Connect

    Brewer, G.W. )

    1992-10-01

    Since 1905, Milner Dam has diverted water out of the Snake River to irrigate 500,000 acres of prime farmland in southern Idaho. Water not used for irrigation was spilled over the dam-essentially wasted. Beginning this fall, that wasted water will be used to generate inexpensive, renewable, clean hydropower, thanks to a cooperative agreement between two irrigation canal companies and an investor-owned utility. The Twin Falls Land and Water Co. built Milner Dam at the turn of the century as part of an irrigation development along the Snake River. The structure comprised three earth and rockfill embankments that spanned the river, north to south, connecting two islands with the shores. The original spillway-consisting of 99 wooden slide gates-was built on the southern island. Over decades of use, the island's rock cliff-on which the spillway discharged-had eroded back toward the spillway. In the mid-1980s, leaks along the dam raised concerns about the dam's stability and, consequently, its ability to withstand an earthquake. To ensure safety, the dam had to be rehabilitated. Milner dam, Inc. (a wholly owned company of the Twin Falls Canal and the North Side Canal companies), in partnership with Idaho Power Co., decided to rehabilitate the dam and, at the same time, to add hydroelectric facilities. Under the partnership agreement, Idaho Power will own and operate the new power facilities, and Milner Dam Inc. will own and operate the rebuilt dam and related structures. The developers received a license from the Federal Energy Regulatory Commission (FERC) in 1988 to build the hydro project. Four years later, the dam has been rehabilitated and the 58.3-MW power facilities constructed. Turbine-generator testing is under way, and the project's three units should all be on line by the end of October 1992.

  12. Hydroelectric structures studies using 3-dimensional methods

    SciTech Connect

    Harrell, T.R.; Jones, G.V.; Toner, C.K. )

    1989-01-01

    Deterioration and degradation of aged, hydroelectric project structures can significantly affect the operation and safety of a project. In many cases, hydroelectric headworks (in particular) have complicated geometrical configurations, loading patterns and hence, stress conditions. An accurate study of such structures can be performed using 3-dimensional computer models. 3-D computer models can be used for both stability evaluation and for finite element stress analysis. Computer aided engineering processes facilitate the use of 3-D methods in both pre-processing and post-processing of data. Two actual project examples are used to emphasize the authors' points.

  13. Methodology for Risk Analysis of Dam Gates and Associated Operating Equipment Using Fault Tree Analysis

    DTIC Science & Technology

    2005-05-01

    aging gate structures at dam spillways, there is an increasing risk of potential dam failures due to gate inoperability, malfunction, or under-design...method uses probabilities for more events defined more precisely than in standard practice, and adds criticality analysis to rank each of the potential ...a combination of the two. One method defined by Boeing Systems (1998) classifies failure modes according to the three levels defined be- low in

  14. The Feasibility of Using an Ultrasonic Fish Tracking System in the Tailrace of Lower Granite Dam in 2002

    SciTech Connect

    Faber, Derrek M.; Weiland, Mark A.; Carlson, Thomas J.; Cash, Kenneth; Zimmerman, Shon A.

    2003-09-10

    This report describes a study conducted by PNNL in Spring 2002 at Lower Granite Dam on the Snake River for the US Army Corps of Engineers Portland District. Our goal was to determine the feasibility of using ultrasonic fish tracking in the untested environment of a hydroelectric dam tailrace. If fish tracking were determined to be feasible, we would track the movement of juvenile hatchery chinook (Oncorhynchus tshawytscha), juvenile hatchery steelhead (O. mykiss), and juvenile wild steelhead (O. mykiss) and relate their movement to dam operations. The majority of fish to be tracked were released as a part of a separate study conducted by the Biological Resources Division of the U.S. Geological Survey (BRD), which was investigating the movement of juvenile salmon in the forebay of Lower Granite Dam in relation to Removable Spillway Weir (RSW) testing. The two studies took place consecutively from April 14 to June 7, 2002.

  15. Modeling the vulnerability of hydroelectricity generation under drought scenarios

    NASA Astrophysics Data System (ADS)

    Yan, E.; Tidwell, V. C.; Bizjack, M.; Espinoza, V.; Jared, A.

    2015-12-01

    Hydroelectricity generation highly relies on in-stream and reservoir water availability. The western US has recently experienced increasingly sever, frequent, and prolonged droughts resulting in significant water availability issues. A large number of hydropower plants in Western Electricity Coordinating Council (WECC) are located in California River Basin and Pacific Northwest River Basin. In supporting the WECC's long-term transmission planning, a drought impact analysis was performed with a series of data and modeling tools. This presentation will demonstrate a case study for California River Basin, which has recently experienced one of the worst droughts in its history. The purpose of this study is to evaluate potential risk for hydroelectricity generation due to projected drought scenarios in the medium-term (through the year of 2030). On the basis of historical droughts and the projected drought year for 2020-2030, three drought scenarios were identified. The hydrologic model was constructed and calibrated to simulate evapotranspiration, streamflow, soil moisture, irrigation as well as reservoir storage and discharge based on various dam operation rules and targets under three drought scenarios. The model also incorporates the projected future water demand in 2030 (e.g. municipal, agricultural, electricity generation). The projected monthly reservoir discharges were used to predict the monthly hydropower generation for hydropower plants with a capacity greater than 50 MW in California River Basin for each drought scenario. The results from this study identify spatial distribution of vulnerable hydropower plants and watersheds as well as the level of potential reduction of electricity generation under various drought scenarios and provide valuable insights into future mitigation strategies and long-term planning.

  16. Adult chinook salmon passage at Little Goose Dam in relation to spill operations

    USGS Publications Warehouse

    Jepson, M.A.; Caudill , C.C.; Clabough, T.S.; Peery, C.A.; Beeman, J.W.; Fielding, S.

    2009-01-01

    Spill patterns at Little Goose Dam in 2007 were modified in anticipation of a spillway weir installation intended to improve downstream passage of juvenile salmonids. However, in spill pattern was associated with reduced daily counts of adult salmon passing the dam. Consequently, the behaviors and upstream passage times of radio-tagged adult spring–summer Chinook salmon were evaluated in response to three spillway discharge patterns at Little Goose Dam during 2008. Simultaneously, tailrace conditions were characterized by monitoring the downstream paths of GPS-equipped drogues. Two of the spill treatments (i.e., Bulk and Alternate) were variations of patterns thought to mimic those produced if a spillway weir was installed. The third treatment (Uniform) was characterized by spilling similar volumes of water through most spillbays.

  17. Development of a 1 D hydrodynamic habitat model for the Hippopotamus amphibious as basis for sustainable exploitation of hydroelectric power

    NASA Astrophysics Data System (ADS)

    Manful, D. Y.; Kaule, G.; Wieprecht, S.; Rees, J.; Hu, W.

    2009-12-01

    operating rules of the reservoir in the post-construction phase of the dam. A great deal of work has been done on the effects of stream flow changes on fish especially salmonids. Very little work however has been done assessing the impact of hydropower schemes on aquatic mammals especially in Africa. HIPStrA is the first attempt at developing a computer-based habitat model for a large aquatic megaherbivore. The need for energy for development, the availability of large rivers and a rich biodiversity base in Africa makes a case for careful and ecological smart exploitation. The overarching aim of the study is the sustainable development of hydroelectric power through the use of methodologies and tools to rigorously assess changes in instream conditions that impact aquatic mammals.

  18. Productivity and efficiency analysis of privatized hydroelectric generation with a sometimes free input

    NASA Astrophysics Data System (ADS)

    Halabi, Claudia Elizabeth

    2000-10-01

    In this paper I use a stochastic distance frontier approach to assess the performance of Chile's hydroelectric industry, which operates within a regulatory framework designed to achieve a competitive outcome. An occasionally free input, water, is the sole energy input. The econometric analysis indicates substantial technical and allocative inefficiencies as well as volatile productivity scores, due presumably to the volatility of the energy input. Some allocative inefficiencies have diminished dramatically as the time under deregulation has grown. The Lerner index suggests that firms in the industry enjoy some degree of market power, reflected by prices that exceed marginal costs. This market power is consistent with operation within a centralized dispatch center, as predicted by a strategic bidding model. I also find that run-of-river plants exhibit increasing returns to scale, while plants relying on dams show slightly diminishing returns. The shadow marginal cost for run-of-river plants is found to be close to zero. Substantial cost savings could be realized if firms in Chile's hydro-electric generation industry were to operate efficiently.

  19. 3D Cam controls: Operation, installation and benefits at the Dalles and John Day Dams in Northern Oregon

    SciTech Connect

    Ford, R.W.

    1995-12-31

    The pursuit of maximum efficiency Kaplan Turbine operation has been ongoing since the inception of the Kaplan Turbine itself. This paper deals directly with the background, operation and installation of Electronic 3 Dimensional (or 3D) Cams at The Dalles Dam on the Columbia River in North Central Oregon. These systems are currently being used by the United States Army Corps of Engineers to control turbine blade angle on large hydrogenerators throughout the Northwest. The efficient generation of electrical power has several significant benefits to individual operators. Producing the maximum kilowatt per gallon with an ever decreasing water supply can add to investment return. Maintenance costs are due to less cavitation damage to turbine parts as a direct result of increased efficiency. Clearly the benefits of increased efficiency make the addition of systems like the Electronic 3D Cam attractive to powerplant operators. Environmental issues also make precision blade control attractive. Fish passage through the turbine has been shown to increase as the efficiency of the unit increases. With the addition of resent legislation, requiring public and private generation plants to provide maximum possible efficiency, precise Kaplan blade angle control is an economic, safe and effective method of meeting these new operating criteria. At The Dalles Dam, the installation of electronic 3D cams was relatively simple and did not involve major component replacement.

  20. The effects of Glen Canyon Dam operations on early life stages of rainbow trout in the Colorado River

    USGS Publications Warehouse

    Korman, Josh; Melis, Theodore S.

    2011-01-01

    The Lees Ferry reach of the Colorado River-a 16-mile segment from Glen Canyon Dam to the confluence with the Paria River-supports an important recreational rainbow trout (Oncorhynchus mykiss) fishery. In Grand Canyon, nonnative rainbow trout prey on and compete for habitat and food with native fish, such as the endangered humpback chub (Gila cypha). Experimental flow fluctuations from the dam during winter and spring 2003-5 dewatered and killed a high proportion of rainbow trout eggs in gravel spawning bars, but this mortality had no measurable effect on the abundance of juvenile fish. Flow fluctuations during summer months reduced growth of juvenile trout relative to steadier flows. A high-flow experiment in March 2008 increased both trout survival rates for early life stages and fish abundance. These findings demonstrate that Glen Canyon Dam operations directly affect the trout population in the Lees Ferry reach and could be used to regulate nonnative fish abundance to limit potential negative effects of trout on native fish in Grand Canyon.

  1. Ten years of the Three Gorges Dam: a call for policy overhaul

    NASA Astrophysics Data System (ADS)

    Yang, Xiankun; Lu, X. X.

    2013-12-01

    The Three Gorges Dam (TGD), the world’s largest source of ‘clean’ hydroelectric power (Shen and Xie 2004), has entered its tenth year after the first turbine went into operation in June 2003. The dam, with a generating capacity 20 times that of the United States’ Hoover Dam, has been hailed as a crucial part of a solution to China’s energy crisis. Despite great benefits, however, major concerns have been voiced over the disastrous environmental and social consequences of this massive engineering project (Stone 2011). In this paper, we review the benefits and impacts learned from the controversial megadam over the past decade and discuss perspective quests on policy overhaul for future environmental protection.

  2. 77 FR 1923 - Solia 8 Hydroelectric, LLC, FFP Missouri 13, LLC, et al.; Notice of Intent To File License...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-12

    ... Power''). e. Name of Projects: Point Marion Lock and Dam Project, P-13771- 001; Grays Landing Lock and.... Project No. Projects County Township P-13771 Point Marion Lock and Dam Fayette Uniontown. Hydroelectric... Species Act and the joint agency regulations thereunder at 50 CFR, Part 402; (b) NOAA Fisheries...

  3. Downstream movement of mature eels in a hydroelectric reservoir in New Zealand

    USGS Publications Warehouse

    Watene, E.M.; Boubee, J.A.T.; Haro, A.

    2003-01-01

    This study investigates the behavior of migrant eels as they approached the Patea hydroelectric dam on the West Coast of the North Island, New Zealand. Seventeen mature migrant eels (870-1,240 mm; 2,000-6,380 g) were implanted with coded acoustic transmitters and released. Their movements in the reservoir were monitored for 14 months with stationary data logging and manual tracking receivers. The downstream migration of sexually maturing eels was found to occur mainly at night, usually during, or immediately after, rainfall events. Eels tended to travel at the surface, within the upper 4 m of the water column, at speeds ranging from 16 to 89 cm/s. Upon reaching the headrace, eels typically spent time searching, presumably for an unobstructed downstream route. In order to aid downstream passage of eels at the Patea Dam, power station operators began spillway opening trials during peak migration periods. Although this allowed some migrant eels to safely pass over the dam, information on the relative effectiveness and cost of this method over other possible mitigation methods is still required. ?? Copyright by the American Fisheries Society 2003.

  4. Status Review of Wildlife Mitigation, Columbia Basin Hydroelectric Projects, Washington Facilities (Intrastate) Final Report.

    SciTech Connect

    Howerton, Jack

    1984-11-01

    This report was prepared for BPA in fulfillment of section 1004 (b)(1) of the Pacific Northwest Electric Power Planning and Conservation Act of 1980, to review the status of past, present, and proposed future wildlife planning and mitigation program at existing hydroelectric projects in the Columbia River Basin. The project evaluations will form the basis for determining any needed remedial measures or additional project analysis. Projects addressed are: Merwin Dam; Swift Project; Yale Project; Cowlitz River; Boundary Dam; Box Canyon Dam; Lake Chelan; Condit Project; Enloe Project; Spokane River; Tumwater and Dryden Dam; Yakima; and Naches Project.

  5. Comparison of Gross Greenhouse Gas Fluxes from Hydroelectric Reservoirs in Brazil with Thermopower Generation

    NASA Astrophysics Data System (ADS)

    Rogerio, J. P.; Dos Santos, M. A.; Matvienko, B.; dos Santos, E.; Rocha, C. H.; Sikar, E.; Junior, A. M.

    2013-05-01

    Widespread interest in human impacts on the Earth has prompted much questioning in fields of concern to the general public. One of these issues is the extent of the impacts on the environment caused by hydro-based power generation, once viewed as a clean energy source. From the early 1990s onwards, papers and studies have been challenging this assumption through claims that hydroelectric dams also emit greenhouse gases, generated by the decomposition of biomass flooded by filling these reservoirs. Like as other freshwater bodies, hydroelectric reservoirs produce gases underwater by biology decomposition of organic matter. Some of these biogenic gases are effective in terms of Global Warming. The decomposition is mainly due by anaerobically regime, emitting methane (CH4), nitrogen (N2) and carbon dioxide (CO2). This paper compare results obtained from gross greenhouse fluxes in Brazilian hydropower reservoirs with thermo power plants using different types of fuels and technology. Measurements were carried in the Manso, Serra da Mesa, Corumbá, Itumbiara, Estreito, Furnas and Peixoto reservoirs, located in Cerrado biome and in Funil reservoir located at Atlantic forest biome with well defined climatologically regimes. Fluxes of carbon dioxide and methane in each of the reservoirs selected, whether through bubbles and/or diffusive exchange between water and atmosphere, were assessed by sampling. The intensity of emissions has a great variability and some environmental factors could be responsible for these variations. Factors that influence the emissions could be the water and air temperature, depth, wind velocity, sunlight, physical and chemical parameters of water, the composition of underwater biomass and the operational regime of the reservoir. Based in this calculations is possible to conclude that the large amount of hydro-power studied is better than thermopower source in terms of atmospheric greenhouse emissions. The comparisons between the reservoirs studied

  6. COOKE DAM POND AND UPSTREAM (WEST) SIDE OF (LR) NORTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    COOKE DAM POND AND UPSTREAM (WEST) SIDE OF (L-R) NORTH EMBANKMENT (MI-98-A), SPILLWAY (MI-98-B), PENSTOCK ENTRANCES, POWERHOUSE (MI-98-C), AND SOUTH EMBANKMENT (MI-98-E). VIEW TO NORTHEAST - Cooke Hydroelectric Plant, Cook Dam Road at Au Sable River, Oscoda, Iosco County, MI

  7. 3. LOOKING NORTHEAST ACROSS DAM TO GATE CONTROLS, CABLE CAR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. LOOKING NORTHEAST ACROSS DAM TO GATE CONTROLS, CABLE CAR ANCHORING, AND, AT RIGHT, HEAD WORKS AT PORTAL OF TUNNEL ZERO FOR DIVERSION OF WATER TO BEAR CREEK/SANTA ANA RIVER CONFLUENCE POOL. - Santa Ana River Hydroelectric System, Santa Ana River Diversion Dam, Redlands, San Bernardino County, CA

  8. View of Lake Sabrina Dam showing wooden planks along the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Lake Sabrina Dam showing wooden planks along the upstream face and concrete base added in 1916/1917 and showing the iron grating covering upstream side of outlet structure is visible at lower photo center, view northeast - Bishop Creek Hydroelectric System, Plant 2, Lake Sabrina Dam, Bishop Creek, Bishop, Inyo County, CA

  9. View of Lake Sabrina Dam and dry Lake Sabrina Basin ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Lake Sabrina Dam and dry Lake Sabrina Basin with the upstream side of the outlet structure visible at photo center, view to north-northwest - Bishop Creek Hydroelectric System, Plant 2, Lake Sabrina Dam, Bishop Creek, Bishop, Inyo County, CA

  10. Fisheries Mitigation and Implementation Plan for Losses Attributable to the Construction and Operation of Libby Dam, 1998 Technical Report.

    SciTech Connect

    Montana Department of Fish, Wildlife and Parks Staff; Confederated Salish and Kootenai Tribes; Kootenai Tribe of Idaho.

    2003-08-25

    In this document we present fisheries losses, mitigation alternatives, and recommendations to protect, mitigate, and enhance resident fish and aquatic habitat affected by the construction and operation of Libby Dam. This plan addresses resident fish program measures in Section 10.3B of the existing Fish and Wildlife Program (NPPC 1995). This document represents a mitigation and implementation plan for consideration by the Northwest Power Planning Council (NPPC) process as called for in 10.3B.11. The work was funded the U.S. Army Corps of Engineers (ACOE) and Bonneville Power Administration (BPA).

  11. VIEW OF FOSSIL CREEK DIVERSION DAM FROM DOWNSTREAM (INCLUDES 1950s ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF FOSSIL CREEK DIVERSION DAM FROM DOWNSTREAM (INCLUDES 1950s AUTOMATIC/REMOTE CONTROL SLUICE GATE IN UPPER CENTER OF DAM, NORTH SIDE). LOOKING NORTH-NORTHWEST - Childs-Irving Hydroelectric Project, Fossil Creek Diversion Dam, Forest Service Road 708/502, Camp Verde, Yavapai County, AZ

  12. 77 FR 58820 - Grand River Dam Authority; Notice of Application Accepted for Filing, Soliciting Comments...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-24

    ... Energy Regulatory Commission Grand River Dam Authority; Notice of Application Accepted for Filing.... Applicant: Grand River Dam Authority. e. Name of Project: Pensacola Hydroelectric Project. f. Location: The.... Jahnke, Assistant General Counsel, Grand River Dam Authority, P.O. Box 409, Vinita, Oklahoma......

  13. Potential effects of four Flaming Gorge Dam hydropower operational scenarios on riparian vegetation of the Green River, Utah and Colorado

    SciTech Connect

    LaGory, K.E.; Van Lonkhuyzen, R.A.

    1995-06-01

    Four hydropower operational scenarios at Flaming Gorge Dam were evaluated to determine their potential effects on riparian vegetation along the Green River in Utah and Colorado. Data collected in June 1992 indicated that elevation above the river had the largest influence on plant distribution. A lower riparian zone occupied the area between the approximate elevations of 800 and 4,200-cfs flows--the area within the range of hydropower operational releases. The lower zone was dominated by wetland plants such as cattail, common spikerush, coyote willow, juncus, and carex. An upper riparian zone was above the elevation of historical maximum power plant releases from the dam (4,200 cfs), and it generally supported plants adapted to mesic, nonwetland conditions. Common species in the upper zone included box elder, rabbitbrush, grasses, golden aster, and scouring rush. Multispectral aerial videography of the Green River was collected in May and June 1992 to determine the relationship between flow and the areas of water and the riparian zone. From these relationships, it was estimated that the upper zone would decrease in extent by about 5% with year-round high fluctuation, seasonally adjusted high fluctuation, and seasonally adjusted moderate fluctuation, but it would increase by about 8% under seasonally adjusted steady flow. The lower zone would increase by about 13% for both year-round and seasonally adjusted high fluctuation scenarios but would decrease by about 40% and 74% for seasonally adjusted moderate fluctuation and steady flows, respectively. These changes are considered to be relatively minor and would leave pre-dam riparian vegetation unaffected. Occasional high releases above power plant capacity would be needed for long-term maintenance of this relict vegetation.

  14. Historical patterns of river stage and fish communities as criteria for operations of dams on the Illinois River

    USGS Publications Warehouse

    Koel, T.M.; Sparks, R.E.

    2002-01-01

    The hydrologic regime of the Illinois River has been altered over the past 100 years. Locks and dams regulate water surface elevations and flow, enabling commercial navigation to continue year round. This study relates changes in water surface elevation to fish abundance in the river, and establishes target criteria for operating locks and dams. Using longterm records of daily river stage, we identified ecologically meaningful hydrological parameters for eight gage locations along the Illinois River. Inter-annual variability of a long-term fisheries dataset beginning in 1957 was related to variability in stage, flood and recession duration, frequency, timing, and rate of change of water levels. Reversals in water surface elevation, maximum stage levels, and lenght of the spring flood were the most important parameters influencing abundance of age-zero fishes in annual collections. Smallmouth buffalo (Ictiobus bubalus), black crappie (Pomoxis nigromaculatus), freshwater drum (Aplodinotus grunneins), and white bass (Morone chrysops) were most abundant in samples during years that approximated the natural water level regime. Of the 33 hydrologic parameters evaluated for the entire water year from an Illinois River gage site on La Grange Reach, all except average stage in January and Julian date (JD) of maximum stage had moderate or high hydrologic alteration based on the historical range of variation (RVA). The highest degree of hydrologic alteration was for minimum stage levels (1-day, 3-day, and 7-day), rate-of-rise, and rate-of-fall. Other parameters that have been severely altered were 30-day minimum stage, 90-day maximum stage, and the annual number of water level reversals. Operations of the La Grange and Peoria locks and dams could be modified so water level variability would approximate that of the late 1800s, when fish and wildlife resources were abundant. The water regime could be regulated to maintain navigation and improve conditions for native plants and

  15. Effect of the Operation of Kerr and Hungry Horse Dams on the Reproduction Success of Kokanee in the Flathead River System, 1986 Annual Progress Report.

    SciTech Connect

    Beattie, Will; Clancey, Patrick

    1987-03-01

    eggs above minimum pool depends on redds being wetted by groundwater seeps. After 40 days exposure by drawdown, eggs in groundwater seeps showed 86 percent survival, whereas outside of the groundwater seeps eggs survived less than six days. These results confirm that exposure by drawdown is the primary factor that limits kokanee reproductive success in redds above minimum pool. We surveyed the west and south shoreline of Flathead Lake to locate potential kokanee spawning habitat. We found conditions which could support incubating eggs at two sites in South Ray and two sites on the west shore of the lake. Seven other sites on the west shore were not suitable due to low groundwater discharge or low dissolved oxygen. In all these areas suitable substrate existed only within the drawdown zone. The lake should be drafted earlier in the fall, and filled earlier in the spring to improve recruitment from lakeshore spawning. We conducted creel surveys during 1985, and estimated that anglers caught 192,000 kokanee. Anglers harvested 49,200 fish during the ice fishery in Skidoo Bay, 129,000 fish during the summer fishery on the lake, and 13,800 during the fall river fishery. Estimated fishing pressure for the year exceeded 188,000 angler hours. The abundance of mysid shrimp in Flathead Lake, measured at six index stations, increased to 130/mIf in 1986. My&Is increased tenfold from 1984 to 1985, and about threefold from 1985 to 1986. Monitoring of mysid shrimp and zooplankton populations in Flathead Lake is supplementing an investigation of the growth and survival of juvenile kokanee. Kokanee and mysid shrimp feed primarily on planktonic crustaceans. This work was designed to detect a potential decline in kokanee recruitment or growth brought about by competitive interaction with mysid shrimp. Fluctuation in adult kokanee year class strength is in part attributable to the negative effects of hydroelectric dam operation on reproductive success in the main stem Flathead River and in

  16. Carbon emission from global hydroelectric reservoirs revisited.

    PubMed

    Li, Siyue; Zhang, Quanfa

    2014-12-01

    Substantial greenhouse gas (GHG) emissions from hydropower reservoirs have been of great concerns recently, yet the significant carbon emitters of drawdown area and reservoir downstream (including spillways and turbines as well as river reaches below dams) have not been included in global carbon budget. Here, we revisit GHG emission from hydropower reservoirs by considering reservoir surface area, drawdown zone and reservoir downstream. Our estimates demonstrate around 301.3 Tg carbon dioxide (CO2)/year and 18.7 Tg methane (CH4)/year from global hydroelectric reservoirs, which are much higher than recent observations. The sum of drawdown and downstream emission, which is generally overlooked, represents 42 % CO2 and 67 % CH4 of the total emissions from hydropower reservoirs. Accordingly, the global average emissions from hydropower are estimated to be 92 g CO2/kWh and 5.7 g CH4/kWh. Nonetheless, global hydroelectricity could currently reduce approximate 2,351 Tg CO2eq/year with respect to fuel fossil plant alternative. The new findings show a substantial revision of carbon emission from the global hydropower reservoirs.

  17. Impacts of the Columbia River hydroelectric system on main-stem habitats of fall chinook salmon

    USGS Publications Warehouse

    Dauble, D.D.; Hanrahan, T.P.; Geist, D.R.; Parsley, M.J.

    2003-01-01

    Salmonid habitats in main-stem reaches of the Columbia and Snake rivers have changed dramatically during the past 60 years because of hydroelectric development and operation. Only about 13% and 58% of riverine habitats in the Columbia and Snake rivers, respectively, remain. Most riverine habitat is found in the upper Snake River; however, it is upstream of Hells Canyon Dam and not accessible to anadromous salmonids. We determined that approximately 661 and 805 km of the Columbia and Snake rivers, respectively, were once used by fall chinook salmon Oncorhynchus tshawytscha for spawning. Fall chinook salmon currently use only about 85 km of the main-stem Columbia River and 163 km of the main-stem Snake River for spawning. We used a geomorphic model to identify three river reaches downstream of present migration barriers with high potential for restoration of riverine processes: the Columbia River upstream of John Day Dam, the Columbia-Snake-Yakima River confluence, and the lower Snake River upstream of Little Goose Dam. Our analysis substantiated the assertion that historic spawning areas for fall chinook salmon occurred primarily within wide alluvial floodplains, which were once common in the mainstem Columbia and Snake rivers. These areas possessed more unconsolidated sediment and more bars and islands and had lower water surface slopes than did less extensively used areas. Because flows in the main stem are now highly regulated, the predevelopment alluvial river ecosystem is not expected to be restored simply by operational modification of one or more dams. Establishing more normative flow regimes - specifically, sustained peak flows for scouring - is essential to restoring the functional characteristics of existing, altered habitats. Restoring production of fall chinook salmon to any of these reaches also requires that population genetics and viability of potential seed populations (i.e., from tributaries, tailrace spawning areas, and hatcheries) be considered.

  18. Impacts of the Columbia River Hydroelectric System on Mainstem Habitats of Fall Chinook Salmon

    SciTech Connect

    Dauble, Dennis D.; Hanrahan, Timothy P.; Geist, David R.; Parsley, Michael J.

    2003-08-01

    Salmonid habitats in mainstem reaches of the Columbia and Snake rivers have changed dramatically during the past 60 years because of hydroelectric development and operation. Only about 13 and 58% of riverine habitats in the Columbia and Snake rivers, respectively, remain. Most riverine habitat is found in the upper Snake River; however, it is upstream of Hells Canyon Dam and not accessible to anadromous salmonids. We determined that approximately 661 and 805 km of the Columbia and Snake rivers, respectively, were once used by fall chinook salmon Oncorhynchus tshawytscha for spawning. Fall chinook salmon currently use only about 85 km of the mainstem Columbia River and 163 km of the mainstem Snake River for spawning. We used a geomorphic model to identify three river reaches downstream of present migration barriers with high potential for restoration of riverine processes: the Columbia River upstream of John Day Dam, the Columbia-Snake-Yakima River confluence, and the lower Snake River upstream of Little Goose Dam. Our analysis substantiated the assertion that historic spawning areas for fall chinook salmon occurred primarily within wide alluvial floodplains once common in the mainstem Columbia and Snake rivers. These areas possessed more unconsolidated sediment, more bars and islands, and had lower water surface slopes than areas not extensively used. Because flows in the mainstem are now highly regulated, the pre-development alluvial river ecosystem is not expected to be restored simply by operational modification of one or more dams. Establishing more normative flow regimes, specifically sustained peak flows for scouring, is essential to restoring the functional characteristics of existing, altered habitats. Restoring production of fall chinook salmon to any of these reaches also requires that population genetics and viability of potential seed populations (i.e., from tributaries and tailrace spawning areas, and hatcheries) be considered.

  19. What is the real price of hydroelectric production on the Senegal River?

    NASA Astrophysics Data System (ADS)

    Raso, Luciano; Bader, Jean-Claude; Malaterre, Pierre-Olivier

    2014-05-01

    Manantali is an annual reservoir on the Senegal River, located in Mali and serving Senegal and Mauritania. The reservoir is used to regulate the flow for hydroelectric production, in the face of the extremely variable seasonal climate of the region. Manantali has been operative for about 10 years now, exceeding the planned production capacity. The economic benefit comes at a price. Before the dam's construction, the annual flood was the basis of flood recession agriculture, traditionally practiced by the local population. Hydroelectric production requires a more regular flow; therefore flow peaks that used to create the flood are now dumped in the reservoir. Floods are reduced because the current reservoir management privileges hydroelectric production to flood recession agriculture. Moreover, the local water authority is evaluating the construction of 6 more reservoirs, which will enhance even further the controllability of the river flow. This study assesses the externalities of energy production for the agricultural production, quantifying the reduction of flooded surface when energy production is maximized, or alternatively, the loss energy production to maintain a minimum sustainable flood. In addition, we examine the system reliability against extreme events, and how a better use of hydrological information can improve the present reservoir management, in order to find a win-win solution. In this study we employ Stochastic Dual Dynamic Programming (SDDP) methodology. SDDP is a leaner version of Stochastic Dynamic Programming (SDP). SDDP does not suffer of the "curse of dimensionality", and therefore it can be applied to larger systems. In this application we include in the model: i) A semi-distributed hydrological model, ii) the reservoir, iii) the hydraulic routing process within the catchment and from the reservoir to the floodplain.

  20. Underground pumped hydroelectric storage

    NASA Astrophysics Data System (ADS)

    Allen, R. D.; Doherty, T. J.; Kannberg, L. D.

    1984-07-01

    Underground pumped hydroelectric energy storage was conceived as a modification of surface pumped storage to eliminate dependence upon fortuitous topography, provide higher hydraulic heads, and reduce environmental concerns. A UPHS plant offers substantial savings in investment cost over coal-fired cycling plants and savings in system production costs over gas turbines. Potential location near load centers lowers transmission costs and line losses. Environmental impact is less than that for a coal-fired cycling plant. The inherent benefits include those of all pumped storage (i.e., rapid load response, emergency capacity, improvement in efficiency as pumps improve, and capacity for voltage regulation). A UPHS plant would be powered by either a coal-fired or nuclear baseload plant. The economic capacity of a UPHS plant would be in the range of 1000 to 3000 MW. This storage level is compatible with the load-velocity requirements of a greater metropolitan area with population of 1 million or more.

  1. Detecting dam failures

    SciTech Connect

    Knarr, C.M.; Barker, T.J.; McKenery, S.F. )

    1994-06-01

    This article describes efforts by Southern California Edison to meet Federal Energy Regulatory Commission requirements for unattended dam monitoring against failure. The topics include a description of the two dam systems, monitoring system design and operation including warning sirens for remote camping areas, and installation of the systems.

  2. Weighing a dam's economic and environmental impact

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    While some people claim that it was a publicity stunt or criticize it as an economic loss and a move in the wrong direction, the breaching of the low-slung Edwards Dam on July 1 has changed the landscape of the Kennebec River flowing through Augusta, Maine, and may also change the landscape for some other dammed rivers nationwide.The breaching marks the first time that the Federal Energy Regulatory Commission (FERC), which licenses nonfederal hydroelectric projects, has ruled that a dam should be removed because the environmental damage that it causes outweighs its economic benefits.

  3. 76 FR 58837 - Notice of Intent to Accept Proposals, Select Lessee, and Contract for Hydroelectric Power...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-22

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE INTERIOR Bureau of Reclamation Notice of Intent to Accept Proposals, Select Lessee, and Contract for Hydroelectric Power Development at Caballo Dam, Rio Grande Project, New Mexico AGENCY: Bureau of Reclamation,...

  4. 76 FR 1148 - CRD Hydroelectric LLC, Iowa; Notice of Availability of Environmental Assessment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-07

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission CRD Hydroelectric LLC, Iowa; Notice of Availability of Environmental..., Iowa, at the U.S. Army Corps of Engineers' Red Rock Dam. Staff prepared an environmental assessment...

  5. Will We Need to Change the Rules: The Implications of Climate Change for Dam Operations in Oregon's McKenzie River Basin

    NASA Astrophysics Data System (ADS)

    Danner, A. G.; Grant, G. E.

    2012-12-01

    Dams and reservoirs are common components of many water resource systems, but their operation may be susceptible to climate change impacts due to structural constraints and limited flexibility of operational policies. Federal policy calls for dams to be multipurpose projects that allocate reservoir storage volume and outflow to various uses throughout the year. In order to balance uses and ensure that authorized purposes are met, water control plans are developed at the time of construction using historical hydrological data. Because these plans remain in place unless major structural or authorization changes are mandated, operational policies must be flexible enough to provide the authorized services of the project throughout the variety of climatic conditions over the dam's lifetime. While this implies a more-or-less stationary flow regime, climate change is predicted to have significant effects on streamflow, motivating analysis of the magnitude of effects of these changes on reservoir operations and performance. In particular, we ask whether predicted changes may require changing current operational rules, or whether streamflow objectives for both flood control and summer flow augmentation can continue to be met. We employ a two-part modeling approach to assess the risk of operational performance failures by examining a case study of Cougar Dam, a US Army Corps of Engineers multipurpose flood control dam in Oregon, USA. Synthetic streamflow sequences for historical and future climate were generated using a stochastic model that integrates output from a physically based hydrologic model together with forcing from downscaled global climate data. The synthetic streamflow sequences are the basis for simulating reservoir operations using a simple operations model. We compare past reservoir performance to measured historical elevation and flow data to validate the model. Comparing past and future simulations reveals potential effects of climate change, identifies

  6. A GIS-based method to calculate flow accumulation by considering dams and their specific operation time

    NASA Astrophysics Data System (ADS)

    Schäuble, Holger; Marinoni, Oswald; Hinderer, Matthias

    2008-06-01

    This paper presents a new approach to calculate flow accumulation with geographic information systems (GIS). It is based on the well-known D8 single-flow algorithm that is extended to consider the trap-efficiencies of dams and their specific operation time. This allows realistic calculations of flow accumulation for any time period. The new approach is not restricted to surface water runoff but can be applied to all kinds of mass fluxes like suspended or dissolved sediment load (weighted flow accumulation). To facilitate its use, two GIS extensions for ArcView and ArcGIS have been developed. This paper presents the principles of the new approach, the functionality of the extensions and gives some applications in the fields of hydrology and sedimentology.

  7. Upstream movements of Atlantic Salmon in the Lower Penobscot River, Maine following two dam removals and fish passage modifications

    USGS Publications Warehouse

    Izzo, Lisa K.; Maynard, George A.; Zydlewski, Joseph

    2016-01-01

    The Penobscot River Restoration Project (PRRP), to be completed in 2016, involved an extensive plan of dam removal, increases in hydroelectric capacity, and fish passage modifications to increase habitat access for diadromous species. As part of the PRRP, Great Works and Veazie dams were removed, making Milford Dam the first impediment to federally endangered Atlantic Salmon Salmo salar. Upstream habitat access for Atlantic Salmon is dependent upon successful and timely passage at Milford Dam because nearly all suitable spawning habitat is located upstream. In 2014 and 2015, a total of 73 adult salmon were radio-tagged to track their upstream movements through the Penobscot River to assess potential delays at (1) the dam remnants, (2) the confluence of the Stillwater Branch and the main stem of the Penobscot River below the impassable Orono Dam, and (3) the Milford Dam fish lift (installed in 2014). Movement rates through the dam remnants and the Stillwater confluence were comparable to open river reaches. Passage efficiency of the fish lift was high in both years (95% and 100%). However, fish experienced long delays at Milford Dam, with approximately one-third of fish taking more than a week to pass in each year, well below the Federal Energy Regulatory Commission passage standard of 95% within 48 h. Telemetry indicates most fish locate the fishway entrance within 5 h of arrival and were observed at the entrance at all hours of the day. These data indicate that overall transit times through the lower river were comparable to reported movement rates prior to changes to the Penobscot River due to the substantial delays seen at Milford Dam. The results of this study show that while adult Atlantic Salmon locate the new fish lift entrance quickly, passage of these fish was significantly delayed under 2014–2015 operations.

  8. Wind-Driven Ecological Flow Regimes Downstream from Hydropower Dams

    NASA Astrophysics Data System (ADS)

    Kern, J.; Characklis, G. W.

    2012-12-01

    Conventional hydropower can be turned on and off quicker and less expensively than thermal generation (coal, nuclear, or natural gas). These advantages enable hydropower utilities to respond to rapid fluctuations in energy supply and demand. More recently, a growing renewable energy sector has underlined the need for flexible generation capacity that can complement intermittent renewable resources such as wind power. While wind power entails lower variable costs than other types of generation, incorporating it into electric power systems can be problematic. Due to variable and unpredictable wind speeds, wind power is difficult to schedule and must be used when available. As a result, integrating large amounts of wind power into the grid may result in atypical, swiftly changing demand patterns for other forms of generation, placing a premium on sources that can be rapidly ramped up and down. Moreover, uncertainty in wind power forecasts will stipulate increased levels of 'reserve' generation capacity that can respond quickly if real-time wind supply is less than expected. These changes could create new hourly price dynamics for energy and reserves, altering the short-term financial signals that hydroelectric dam operators use to schedule water releases. Traditionally, hourly stream flow patterns below hydropower dams have corresponded in a very predictable manner to electricity demand, whose primary factors are weather (hourly temperature) and economic activity (workday hours). Wind power integration has the potential to yield more variable, less predictable flows at hydro dams, flows that at times could resemble reciprocal wind patterns. An existing body of research explores the impacts of standard, demand-following hydroelectric dams on downstream ecological flows; but weighing the benefits of increased reliance on wind power against further impacts to ecological flows may be a novel challenge for the environmental community. As a preliminary step in meeting this

  9. Non-intrusive measurement techniques for hydroelectric applicants

    SciTech Connect

    Birch, R.; Lemon, D.

    1995-12-31

    Non-intrusive acoustic methods for measuring flows, originally developed for oceanographic applications, are being used in and around hydroelectric dams. The acoustic methods can be categorized as either back-scattering or forward-scattering. The first, using the back-scattered signal, measures the Doppler shift of the returning echo to determine the along-beam component of flow. These instruments are generally called Acoustic Doppler Current Profilers (ADCP). Three beam solutions allow computation of the velocity components. Time gating the return provides a velocity profile with bin segments as small as 0.25 in. In areas of strong magnetic deviation, often the case beside large dams, a gyrocompass can be used to provide directional orientation. The velocity data can also be used to quickly compute river or channel discharge. Typical applications and several case studies are presented. The second acoustic technique is based on a forward-scattering phenomenon known as scintillation. This technique has been used on the Fraser River to monitor flows, and properties of the signal have recently been correlated with the biomass of upstream-migrating salmon. Acoustic scintillation flow measurements are well suited to applications with limited space in the along-flow direction. Applications to hydroelectric dams include turbine intake flow measurements, and a system has been developed to measure flow along fish diversion screens.

  10. Investigating passage of ESA-listed juvenile fall Chinook salmon at Lower Granite Dam during winter when the fish bypass system is not operated. 2006 Annual Report

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Kock, Tobias J.; Connor, William P.

    2007-01-01

    During the winter of 2005-06, we radio and PIT tagged and released 48 juvenile fall Chinook salmon to evaluate over-wintering behavior and dam passage in the lower Snake River, Washington. Fish were released at the upstream end of the Lower Granite Dam forebay in November and December 2005. Fixed radio telemetry detection sites located in forebay and tailrace areas of Lower Granite, Little Goose, Lower Monumental and Ice Harbor dams were used to monitor fish movements and dam passage through early-May 2006. Of the 48 fish released during our study, 39 (81 %) passed Lower Granite Dam and were detected at downstream detection sites, 29 (60%) passed Little Goose Dam, 25 (52%) passed Lower Monumental Dam, and 15 (31%) passed Ice Harbor Dam. Thirty-seven (95%), 23 (79%), 16 (64%), and 9 (60%) of the fish that passed Lower Granite, Little Goose, Lower Monumental, and Ice Harbor dams respectively, did so when the fish bypass system was not operated. Passage of tagged fish past lower Snake River dams generally declined during the winter, but increased again after bypass began in April. Fish residence times in reservoirs and forebays was lengthy during the winter (up to 118 d), and varied by reservoir and time of year. We observed no diel passage trends. Only 15 of the 48 fish were subsequently detected at a PIT-tag interrogation site the following spring. We believe that passage of overwintering juvenile fall Chinook salmon during winter is due more to chance than directed downstream movement. Since the primary route of passage during the winter is through powerhouse turbines, the potential exists for increased mortality for over-wintering juvenile fall Chinook salmon in the Snake River. Our findings also have implications for transportation studies of subyearling fall Chinook salmon in the Snake River. Specifically, the finding that some fish can pass undetected during the winter may bias smolt-to-adult return rate calculations that are typically used to measure the

  11. 78 FR 69658 - Domtar Wisconsin Dam Corporation; Notice of Application To Amend License and Accepted for Filing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-20

    ... Energy Regulatory Commission Domtar Wisconsin Dam Corporation; Notice of Application To Amend License and...: Domtar Wisconsin Dam Corporation. e. Name of Projects: Port Edwards and Nekoosa Hydroelectric Projects. f... Dam Corporation, 301 Point Basse Avenue, Nekoosa, Wisconsin 54457; telephone (715) 886-7711. i....

  12. 75 FR 4363 - Grand River Dam Authority; Notice of Application for Amendment of License and Soliciting Comments...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-27

    ... Energy Regulatory Commission Grand River Dam Authority; Notice of Application for Amendment of License..., 2009. d. Applicant: Grand River Dam Authority. e. Name of Project: Markham Ferry Hydroelectric Project... Contact: D. Casey Davis, Grand River Dam Authority, P.O. Box 409, 226 West Dwain Willis Avenue,......

  13. Factors influencing movement of two migratory fishes within the tailrace of a large neotropical dam and their implications for hydropower impacts

    USGS Publications Warehouse

    Suzuki, F. M.; Dunham, Jason; Silva, L. G. M.; Alves, C. B. M.; Pompeu, P.S.

    2016-01-01

    Fish attempting to move upstream through hydroelectric dams can be trapped and killed in turbines. Understanding fish movement patterns can provide useful insights for how to manage dam operations to minimize fish kill in turbines. We evaluated the movements of two migratory fish (Curimba—Prochilodus argenteus and Mandi—Pimelodus maculatus) using acoustic telemetry in the tailrace of Três Marias Dam (São Francisco River, Brazil) from 31 October 2011 to 16 February 2012. The majority of tagged fish left the tailrace in less than one week; however, some individuals returned, performing several visits to the tailrace. Mandi remained longer in the tailrace than Curimba. The number of visits was influenced by diel period, turbine and spillway discharge. Although the diel period was the only important contributor to the visits performed by Curimba, the movements of Mandi were significantly influenced by three factors. We found that whereas Curimba was predominantly diurnal, Mandi showed nocturnal habits. Additionally, visits of Mandi were significantly greater during higher turbine and spillway discharge. We discuss the implications of these results for understanding fish movements in the Três Marias Dam tailrace and their potential implications for adapting hydroelectric operations to minimize fish kills.

  14. Effects of Flaming Gorge Dam hydropower operations on flow and stage in the Green River, Utah and Colorado

    SciTech Connect

    Yin, S.C.L.; Cho, H.E.; McCoy, J.J.; Palmer, S.C.

    1995-05-01

    This report presents the development of Flaming Gorge Reservoir release patterns and resulting downstream flows and stages for four potential hydropower operational scenarios. The release patterns were developed for three representative hydrologic years: moderate, dry, and wet. Computer models were used to estimate flows and stages in the Green River resulting from these release patterns for the moderate water year. The four hydropower operational scenarios for Flaming Gorge Dam were year-round high fluctuating flows, seasonally adjusted high fluctuating flows, seasonally adjusted moderate fluctuating flows, and seasonally adjusted steady flows. The year-round high fluctuating flow scenario assumes that the monthly total reservoir releases would be the same as historical releases. The remaining seasonally adjusted flow scenarios would comply with the 1992 Biological Opinion of the US Fish and Wildlife Service, which requires high flows in the spring and limited hourly fluctuations, especially in summer and autumn releases, to protect endangered fish. Within one year, the maximum daily river stage fluctuations resulting from hydropower operations under the seasonally adjusted high fluctuating flow scenario would be similar to the maximum daily fluctuations under the year-round high fluctuating flow scenario. However, reduced or no fluctuations would occur in some time periods under the former scenario. The maximum daily river stage fluctuations under the seasonally adjusted moderate fluctuating flow scenario would be about half of those under the seasonally adjusted high fluctuating flow scenario.

  15. Temperature Effects of Point Sources, Riparian Shading, and Dam Operations on the Willamette River, Oregon

    USGS Publications Warehouse

    Rounds, Stewart A.

    2007-01-01

    Water temperature is an important factor influencing the migration, rearing, and spawning of several important fish species in rivers of the Pacific Northwest. To protect these fish populations and to fulfill its responsibilities under the Federal Clean Water Act, the Oregon Department of Environmental Quality set a water temperature Total Maximum Daily Load (TMDL) in 2006 for the Willamette River and the lower reaches of its largest tributaries in northwestern Oregon. As a result, the thermal discharges of the largest point sources of heat to the Willamette River now are limited at certain times of the year, riparian vegetation has been targeted for restoration, and upstream dams are recognized as important influences on downstream temperatures. Many of the prescribed point-source heat-load allocations are sufficiently restrictive that management agencies may need to expend considerable resources to meet those allocations. Trading heat allocations among point-source dischargers may be a more economical and efficient means of meeting the cumulative point-source temperature limits set by the TMDL. The cumulative nature of these limits, however, precludes simple one-to-one trades of heat from one point source to another; a more detailed spatial analysis is needed. In this investigation, the flow and temperature models that formed the basis of the Willamette temperature TMDL were used to determine a spatially indexed 'heating signature' for each of the modeled point sources, and those signatures then were combined into a user-friendly, spreadsheet-based screening tool. The Willamette River Point-Source Heat-Trading Tool allows the user to increase or decrease the heating signature of each source and thereby evaluate the effects of a wide range of potential point-source heat trades. The predictions of the Trading Tool were verified by running the Willamette flow and temperature models under four different trading scenarios, and the predictions typically were accurate

  16. Status Review of Wildlife Mitigation at Columbia Basin Hydroelectric Projects, Oregon Facilities, Final Report.

    SciTech Connect

    Bedrossian, Karen L.

    1984-08-01

    The report presents a review and documentation of existing information on wildlife resources at Columbia River Basin hydroelectric facilities within Oregon. Effects of hydroelectric development and operation; existing agreements; and past, current and proposed wildlife mitigation, enhancement, and protection activities were considered. (ACR)

  17. 76 FR 81929 - South Carolina Public Service Authority; Notice of Workshop for Santee Cooper Hydroelectric Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-29

    ... Cooper Hydroelectric Project On May 26 and November 8, 2011, Commission staff met with representatives of...), licensee for the Santee-Cooper Hydroelectric Project No. 199, to discuss what is needed to complete formal... understand the project, its operations, and the technical feasibility of implementing measures at the...

  18. Effects of the Operation of Hungry Horse Dam on the Kokanee Fishery in the Flathead River System, 1983 Annual Progress Report.

    SciTech Connect

    Fraley, John J.

    1983-11-01

    This study was undertaken to assess the effects of the operation of Hungry Horse Dam on the kokanee fishery in the Flathead River system. This annual report covers the 1982-1983 field season concerning the effects of Hungry Horse operations on kokanee abundance, migration, spawning, egg incubation and fry emergence in the Flathead River system. This report also addresses the expected recovery of the mainstem kokanee population under the flow regime recommended by the Department of Fish, Wildlife and Parks in 1982.

  19. The Sensor Fish - Making Dams More Salmon-Friendly

    SciTech Connect

    Carlson, Thomas J.; Duncan, Joanne P.; Gilbride, Theresa L.; Keilman, Geogre

    2004-07-31

    This article describes the Sensor Fish, an instrument package that travels through hydroelectric dams collecting data on the hazardous conditions that migrating salmon smolt encounter. The Sensor Fish was developed by Pacific Northwest National Laboratory with funding from DOE and the US Army Corps of Engineers and has been used at several federal and utility-run hydroelectric projects on the Snake and Columbia Rivers of the US Pacific Northwest. The article describes the evolution of the Sensor Fish design and provides examples of its use at McNary and Ice Harbor dams.

  20. The Three Gorges Dam: Does it accelerate or delay the progress towards eliminating transmission of schistosomiasis in China?

    PubMed

    Zhou, Yi-Biao; Liang, Song; Chen, Yue; Jiang, Qing-Wu

    2016-07-05

    The Three Gorges Dam, located in the largest endemic area of schistosomiasis in China, is one of the world's largest hydroelectric projects to date. Some large-scale hydro projects have resulted in schistosomiasis emergence or re-emergence. Therefore, the dam's potential impact on the transmission of Schistosoma japonicum has raised concerns from medical researchers worldwide. A systematic literature review, coupled with an analysis of data on the water level and snail density in the Yangtze River was conducted to assess the impact of the dam on schistosomiasis transmission after more than 10 years of operation. The dam has significantly altered the water levels in the Yangtze River according to different seasons. These changes directly impact the ecology of the schistosome snail host. Due to the dam, there has been a reduction in the density of Oncomelania snails and/or changes in the distribution of snails. The prevalence of infection with S. japonicum has decreased in the downstream areas of the dam, including in the Dongting and Poyang Lakes. The prevalence of infection with S. japonicum in humans has decreased from 6.80 % in 2002 (before the dam began operating) to 0.50 % in 2012, and the number of people infected with S. japonicum have decreased from 94 208 in 2002 to 59 200 in 2011 in the Poyang Lake region. The presence of the dam does not seem to affect snail breeding or the prevalence of schistosomiasis in the Three Gorges Reservoir. Overall, the Three Gorges Dam has significantly contributed to changes in hydrology after more than 10 years of the dam operating. The changes caused by the dam, together with integrated control of schistosomiasis, might be accelerating the progress towards eliminating the transmission of S. japonicum in the middle and lower reaches of the Yangtze River. Despite the positive effect the dam is having in controlling S. japonicum transmission, continued surveillance is required to monitor the future ecological impacts of the

  1. Assessing the potential hydrological impact of the Gibe III Dam on Lake Turkana water level using multi-source satellite data

    NASA Astrophysics Data System (ADS)

    Velpuri, N. M.; Senay, G. B.

    2012-10-01

    Lake Turkana, the largest desert lake in the world, is fed by ungauged or poorly gauged river systems. To meet the demand of electricity in the East African region, Ethiopia is currently building the Gibe III hydroelectric dam on the Omo River, which supplies more than 80% of the inflows to Lake Turkana. On completion, the Gibe III dam will be the tallest dam in Africa with a height of 241 m. However, the nature of interactions and potential impacts of regulated inflows to Lake Turkana are not well understood due to its remote location and unavailability of reliable in situ datasets. In this study, we used 12 yr (1998-2009) of existing multi-source satellite and model-assimilated global weather data. We used a calibrated multi-source satellite data-driven water balance model for Lake Turkana that takes into account model routed runoff, lake/reservoir evapotranspiration, direct rain on lakes/reservoirs and releases from the dam to compute lake water levels. The model evaluates the impact of the Gibe III dam using three different approaches - a historical approach, a rainfall based approach, and a statistical approach to generate rainfall-runoff scenarios. All the approaches provided comparable and consistent results. Model results indicated that the hydrological impact of the Gibe III dam on Lake Turkana would vary with the magnitude and distribution of rainfall post-dam commencement. On average, the reservoir would take up to 8-10 months, after commencement, to reach a minimum operation level of 201 m depth of water. During the dam filling period, the lake level would drop up to 1-2 m (95% confidence) compared to the lake level modeled without the dam. The lake level variability caused by regulated inflows after the dam commissioning were found to be within the natural variability of the lake of 4.8 m. Moreover, modeling results indicated that the hydrological impact of the Gibe III dam would depend on the initial lake level at the time of dam commencement. Areas

  2. Potential effects of four Flaming Gorge Dam hydropower operational scenarios on the fishes of the Green River, Utah and Colorado

    SciTech Connect

    Hlohowskyj, I.; Hayse, J.W.

    1995-09-01

    Aerial videography and modeling were used to evaluate the impacts of four hydropower operational scenarios at Flaming Gorge Dam, Utah, on trout and native fishes in the Green River, Utah and Colorado. The four operational scenarios studied were year-round high fluctuations, seasonally adjusted high fluctuations, seasonally adjusted moderate fluctuations, and seasonally adjusted steady flows. Impacts on trout were evaluated by examining differences among scenarios in the areas of inundated substrates that serve as spawning and feeding habitat. All scenarios would provide at least 23 acres per mile of habitat for spawning and food production; seasonally adjusted operations would provide additional areas during periods of sustained high release. Seasonally adjusted high fluctuations would increase inundated areas by 12 to 26% for a short period in winter and spring, but food production and reproduction would not be expected to increase. Seasonally adjusted moderate fluctuations and steady flows would produce similar increases in area, but the longer period of inundation could also result in increased food production and provide additional spawning sites for trout. Impacts on native fishes were assessed by examining daily changes in backwater nursery areas. Compared with year-round high fluctuations, the daily changes in backwater area would decrease by about 47, 89, and 100% under the seasonally adjusted high fluctuation, moderate fluctuation, and steady flow scenarios, respectively. Similarly, daily stage fluctuations during the nursery period would decrease by 72, 89, and 100% under the seasonally adjusted high fluctuation, moderate fluctuation, and steady flow scenarios, respectively. These reductions in daily fluctuations in backwater area and stage would improve conditions in nursery habitats and could in turn improve recruitment and overwinter survival. Introduced fish species could also benefit from the seasonally adjusted operational scenarios.

  3. Active tectonics and Holocene versus modern catchment erosion rates at 300 MW Baspa II hydroelectric power plant (NW Himalaya, India)

    NASA Astrophysics Data System (ADS)

    Draganits, Erich; Grasemann, Bernhard; Gier, Susanne; Hofmann, Christa-Charlotte; Janda, Christoph; Bookhagen, Bodo; Preh, Alexander

    2015-04-01

    The Baspa River is one of the most important tributaries to the Sutlej River in the NW Himalaya (India). Its catchment is 1116 km2 in size, ranges from c. 6400 m asl to 1770 m asl and contains India's largest private hydroelectric facility, the 300 MW Baspa II. Geologically, the hydroelectric installation is located in the Higher Himalayan Crystalline, just above the active Karcham Normal Fault, which is reactivating the Early Miocene Main Central Thrust, one of the principal Himalayan faults. The area is seismically active and mass-movements are common. Around 8200 yrs BP the Baspa was dammed by a rock-avalanche dam, leading to the formation of the originally c. 260 m deep palaeo-lake Sangla palaeo-lake. Detailed sedimentological investigations and radiocarbon dating indicate that the palaeo-lake was completely filled with sediments until c. 5100 yrs BP. This makes the Sangla palaeo-lake to a very rare example of a mass-movement dam with very long duration and its lacustrine sediments represent a valuable archive for geological processes and environmental proxies within the Baspa catchment during the c. 3100 years of its existence - which are the aim of our study. At least 5 levels of soft-sediment deformation have been recorded in the exposed part of the lacustrine sediments of Sangla palaeo-lake, including brecciated laminae, overturned laminae, folds, faults and deformation bands, separated by undeformed deposits. They are interpreted as seismites, indicating at least 5 earthquakes within 2500 years strong enough to cause liquefaction. The 300 MW Baspa II hydro-electric power plant has been built exactly on top of this palaeo-lake. This special location represents a very rare possibility to evaluate the short-term, river load and hydrological parameters measured during the planning and operational stages of Baspa II with the long-term parameters gained from the palaeo-lake sediments from the catchment. This data show that the Mid-Holocene erosion rates of the

  4. Draft environmental impact statement for construction and operation of the proposed Bangor Hydro-Electric Company`s second 345-kV transmission tie line to New Brunswick

    SciTech Connect

    1993-10-01

    This Draft Environmental Impact Statement (DEIS) was prepared by the US Department of Energy (US DOE). The proposed action is the issuance of Presidential Permit PP-89 by DOE to Bangor Hydro-Electric Company to construct and operate a new international transmission line interconnection to New Brunswick, Canada that would consist of an 83.8 mile (US portion), 345-kilovolt (kV) alternating current transmission line from the US-Canadian border at Baileyville, Maine to an existing substation at Orrington, Maine. The principal environmental impacts of the construction and operation of the transmission line would be incremental in nature and would include the conversion of forested uplands (mostly commercial timberlands) and wetlands to right-of-way (small trees, shrubs, and herbaceous vegetation). The proposed line would also result in localized minor to moderate visual impacts and would contribute a minor incremental increase in the exposure of some individuals to electromagnetic fields. This DEIS documents the purpose and need for the proposed action, describes the proposed action and alternatives considered and provides a comparison of the proposed and alternatives routes, and provides detailed information on analyses of the environmental consequences of the proposed action and alternatives, as well as mitigative measures to minimize impacts.

  5. Using an Integrated, Remote-Sensing Methodology to Evaluate the Effects of Dam Operations on Fine-Grained Sediment Storage and Sand Bar Restoration in Marble Canyon

    NASA Astrophysics Data System (ADS)

    Breedlove, M. J.; Hazel, J. E.; Kaplinski, M. A.; Schmidt, J. C.; Topping, D. J.; Rubin, D. M.; Fuller, A. E.; Tusso, R.; Gonzales, F. M.

    2005-12-01

    Eddy sand bars and other sandy deposits in and along the Colorado River in Grand Canyon National Park (GCNP) were an integral part of the pre-dam riverscape, and are still important for habitat, protection of archeological sites, and recreation. These deposits began eroding following the 1963 closure of Glen Canyon Dam that reduced the supply of sand at the upstream boundary of GCNP by about 94 % and are still eroding today. In the 1990s, resource managers and scientists began a long series of experiments and monitoring aimed at answering one primary science question. Given existing sand inputs to the ecosystem, can any set of dam operations actually restore and maintain sand bars within the Canyon? In order to test this question, a reach-based approach was developed to examine temporal and longitudinal trends in sediment storage and composition in six, 3 to 6-km reaches of the channel in Eastern GCNP. The reach-based approach integrates various remote-sensing technologies to supplement historical survey techniques. These include: LiDAR and multi-beam sonar for measuring the elevations of subaerial and subaqueous surfaces; an underwater microscope (the flying eyeball) and its subaerial sister, the beachball, for measuring the composition of sediment surfaces; and traditional surveys to provide fine-level control. Between 2000-2005, 7 distinct measurements were made for all reaches. These bracketed two high-flow experiments (controlled floods) and intermediate periods characterized by normal Dam operations. Sediment-surface changes will allow scientists to quantify system responses to specific Dam operations in attempting to address the primary science question.

  6. 78 FR 62616 - Salmon Creek Hydroelectric Company, Salmon Creek Hydroelectric Company, LLC; Notice of Transfer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-22

    ... Salmon Creek Hydroelectric Project, FERC No. 3730, originally issued August 10, 1981.\\1\\ The project is... Hydroelectric Project of 5 Megawatts or Less and Dismissing Application for Preliminary Permit. 2. Salmon Creek Hydroelectric Company, LLC is now the exemptee of the Salmon Creek Hydroelectric Project, FERC No. 3730....

  7. 76 FR 61689 - Sutton Hydroelectric Company, LLC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-05

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Sutton Hydroelectric Company, LLC Notice of Site Visit On February 6, 2008, Sutton Hydroelectric Company, LLC (Sutton Hydroelectric) filed a notice of intent and...

  8. Use of mediation to resolve the dispute over low-head hydroelectric development at Swan Lake

    SciTech Connect

    O'Connor, D.

    1980-08-01

    In 1978, the Maine Hydroelectric Development Corporation announced that the company planned to renovate five dams on the Goose River near Belfast, Maine to generate electricity. The most important part of the plan involved the use of the first of the dams, at the lower end of Swan Lake, to regulate the flow of water to the downstream dams. For Maine Hydro, management of the Swan Lake dam could make an otherwise marginal proposal lucrative. However, Swan Lake is vitally important to the residents of Swanville. The town was so concerned about the impact of this proposed hydroelectric project that it petitioned the Federal Energy Regulatory Commission (FERC) to deny Maine Hydro's application on the grounds that it would damage the environment, reduce property values and eliminate recreational opportunities for its citizens. This report was written by the mediator of the dispute and represents the views and behavior of the parties as the mediator understood them. It is intended to present the mediator's observations in a way which will inform and assist others who may someday face a difficult situation like the one the Town of Swanville and Maine Hydroelectric Development Corporation faced, and successfully resolved, in the spring and summer of 1979.

  9. Survival Estimates for the Passage of Juvenile Chinook Salmon through Snake River Dams and Reservoirs, 1993 Annual Report.

    SciTech Connect

    Iwamoto, Robert N.; Sandford, Benjamin P.; McIntyre, Kenneth W.

    1994-04-01

    A pilot study was conducted to estimate survival of hatchery-reared yearling chinook salmon through dams and reservoirs on the Snake River. The goals of the study were to: (1) field test and evaluate the Single-Release, Modified-Single-Release, and Paired-Release Models for the estimation of survival probabilities through sections of a river and hydroelectric projects; (2) identify operational and logistical constraints to the execution of these models; and (3) determine the usefulness of the models in providing estimates of survival probabilities. Field testing indicated that the numbers of hatchery-reared yearling chinook salmon needed for accurate survival estimates could be collected at different areas with available gear and methods. For the primary evaluation, seven replicates of 830 to 1,442 hatchery-reared yearling chinook salmon were purse-seined from Lower Granite Reservoir, PIT tagged, and released near Nisqually John boat landing (River Kilometer 726). Secondary releases of PIT-tagged smolts were made at Lower Granite Dam to estimate survival of fish passing through turbines and after detection in the bypass system. Similar secondary releases were made at Little Goose Dam, but with additional releases through the spillway. Based on the success of the 1993 pilot study, the authors believe that the Single-Release and Paired-Release Models will provide accurate estimates of juvenile salmonid passage survival for individual river sections, reservoirs, and hydroelectric projects in the Columbia and Snake Rivers.

  10. Survival of migrating salmon smolts in large rivers with and without dams.

    PubMed

    Welch, David W; Rechisky, Erin L; Melnychuk, Michael C; Porter, Aswea D; Walters, Carl J; Clements, Shaun; Clemens, Benjamin J; McKinley, R Scott; Schreck, Carl

    2008-10-28

    The mortality of salmon smolts during their migration out of freshwater and into the ocean has been difficult to measure. In the Columbia River, which has an extensive network of hydroelectric dams, the decline in abundance of adult salmon returning from the ocean since the late 1970s has been ascribed in large measure to the presence of the dams, although the completion of the hydropower system occurred at the same time as large-scale shifts in ocean climate, as measured by climate indices such as the Pacific Decadal Oscillation. We measured the survival of salmon smolts during their migration to sea using elements of the large-scale acoustic telemetry system, the Pacific Ocean Shelf Tracking (POST) array. Survival measurements using acoustic tags were comparable to those obtained independently using the Passive Integrated Transponder (PIT) tag system, which is operational at Columbia and Snake River dams. Because the technology underlying the POST array works in both freshwater and the ocean, it is therefore possible to extend the measurement of survival to large rivers lacking dams, such as the Fraser, and to also extend the measurement of survival to the lower Columbia River and estuary, where there are no dams. Of particular note, survival during the downstream migration of at least some endangered Columbia and Snake River Chinook and steelhead stocks appears to be as high or higher than that of the same species migrating out of the Fraser River in Canada, which lacks dams. Equally surprising, smolt survival during migration through the hydrosystem, when scaled by either the time or distance migrated, is higher than in the lower Columbia River and estuary where dams are absent. Our results raise important questions regarding the factors that are preventing the recovery of salmon stocks in the Columbia and the future health of stocks in the Fraser River.

  11. Assessing the Potential Hydrological Impact of the Gibe III Dam on Lake Turkana Water Level Using Multi-Source Satellite Data

    USGS Publications Warehouse

    ,; Senai, G.B.

    2012-01-01

    Lake Turkana, the largest desert lake in the world, is fed by ungauged or poorly gauged river systems. To meet the demand of electricity in the East African region, Ethiopia is currently building the Gibe III hydroelectric dam on the Omo River, which supplies more than 80% of the inflows to Lake Turkana. On completion, the Gibe III dam will be the tallest dam in Africa with a height of 241 m. However, the nature of interactions and potential impacts of regulated inflows to Lake Turkana are not well understood due to its remote location and unavailability of reliable in-situ datasets. In this study, we used 12 years (1998–2009) of existing multi-source satellite and model-assimilated global weather data. We use calibrated multi-source satellite data-driven water balance model for Lake Turkana that takes into account model routed runoff, lake/reservoir evapotranspiration, direct rain on lakes/reservoirs and releases from the dam to compute lake water levels. The model evaluates the impact of Gibe III dam using three different approaches such as (a historical approach, a knowledge-based approach, and a nonparametric bootstrap resampling approach) to generate rainfall-runoff scenarios. All the approaches provided comparable and consistent results. Model results indicated that the hydrological impact of the dam on Lake Turkana would vary with the magnitude and distribution of rainfall post-dam commencement. On average, the reservoir would take up to 8–10 months, after commencement, to reach a minimum operation level of 201 m depth of water. During the dam filling period, the lake level would drop up to 2 m (95% confidence) compared to the lake level modelled without the dam. The lake level variability caused by regulated inflows after the dam commissioning were found to be within the natural variability of the lake of 4.8 m. Moreover, modelling results indicated that the hydrological impact of the Gibe III dam would depend on the initial lake level at the time of

  12. Assessing the potential hydrological impact of the Gibe III Dam on Lake Turkana water level using multi-source satellite data

    NASA Astrophysics Data System (ADS)

    Velpuri, N. M.; Senay, G. B.

    2012-03-01

    Lake Turkana, the largest desert lake in the world, is fed by ungauged or poorly gauged river systems. To meet the demand of electricity in the East African region, Ethiopia is currently building the Gibe III hydroelectric dam on the Omo River, which supplies more than 80% of the inflows to Lake Turkana. On completion, the Gibe III dam will be the tallest dam in Africa with a height of 241 m. However, the nature of interactions and potential impacts of regulated inflows to Lake Turkana are not well understood due to its remote location and unavailability of reliable in-situ datasets. In this study, we used 12 years (1998-2009) of existing multi-source satellite and model-assimilated global weather data. We use calibrated multi-source satellite data-driven water balance model for Lake Turkana that takes into account model routed runoff, lake/reservoir evapotranspiration, direct rain on lakes/reservoirs and releases from the dam to compute lake water levels. The model evaluates the impact of Gibe III dam using three different approaches such as (a historical approach, a knowledge-based approach, and a nonparametric bootstrap resampling approach) to generate rainfall-runoff scenarios. All the approaches provided comparable and consistent results. Model results indicated that the hydrological impact of the dam on Lake Turkana would vary with the magnitude and distribution of rainfall post-dam commencement. On average, the reservoir would take up to 8-10 months, after commencement, to reach a minimum operation level of 201 m depth of water. During the dam filling period, the lake level would drop up to 2 m (95% confidence) compared to the lake level modelled without the dam. The lake level variability caused by regulated inflows after the dam commissioning were found to be within the natural variability of the lake of 4.8 m. Moreover, modelling results indicated that the hydrological impact of the Gibe III dam would depend on the initial lake level at the time of dam

  13. Energy Perspective: Is Hydroelectricity Green?

    ERIC Educational Resources Information Center

    Childress, Vincent W.

    2009-01-01

    The current worldwide concern over energy is primarily related to imported oil, oil drilling and refining capacity, and transportation capacity. However, this concern has bolstered interest in a broader range of "green" energy technologies. In this article, the author discusses the use of hydroelectricity as an alternative energy source…

  14. The Three Gorges Dam of China: Technology to Bridge Two Centuries

    ERIC Educational Resources Information Center

    Wahby, Wafeek S.

    2003-01-01

    Some of the most sophisticated 20th-century technologies have been applied to build the largest hydroelectric dam in the world, the Three Gorges Dam Project (TGDP) of China. The author administered a study abroad course in China from May 27 to June 10, 2000, to study the massive project as it approached the halfway mark of its second and most…

  15. 78 FR 6321 - Stephen Phillips, Brentwood Dam Ventures, LLC; Notice of Transfer of Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-30

    ... Exemption From Licensing of a Small Hydroelectric Project of 5 Megawatts or Less. 2. Brentwood Dam Ventures... Hydro 1 Project, FERC No. 4254, originally issued December 1, 1981,\\1\\ has been transferred to Brentwood Dam Ventures, LLC. The project is located on the Exeter River in Rockingham County, New Hampshire....

  16. After Three Gorges Dam: What have we learned?

    NASA Astrophysics Data System (ADS)

    Natali, J.; Williams, P.; Wong, R.; Kondolf, G. M.

    2013-12-01

    China is at a critical point in its development path. By investing heavily in large-scale infrastructure, the rewards of economic growth weigh against long-term environmental and social costs. The construction of Three Gorges Dam, the world's largest hydroelectric project, began in 1994. Between 2002 and 2010, its 660 kilometer reservoir filled behind a 181 meter dam, displacing at least 1.4 million people and transforming Asia's longest river (the Yangtze) while generating nearly 100 billion kWh/yr of electricity -- 2.85% of China's current electric power usage. As the mega-project progenitor in a cascade of planned dams, the Three Gorges Dam emerges as a test case for how China will plan, execute and mitigate its development pathway and the transformation of its environment. Post-Project Assessments (PPA) provide a systematic, scientific method for improving the practice of environmental management - particularly as they apply to human intervention in river systems. In 2012, the Department of Landscape Architecture and Environmental Planning at University of California, Berkeley organized a symposium-based PPA for the Three Gorges Dam on the Yangtze River. Prior to this symposium, the twelve invited Chinese scientists, engineers and economists with recent research on Three Gorges Dam had not had the opportunity to present their evaluations together in an open, public forum. With a 50-year planning horizon, the symposium's five sessions centered on impacts on flows, geomorphology, geologic hazards, the environment and socioeconomic effects. Three Gorges' project goals focused on flood control, hydropower and improved navigation. According to expert research, major changes in sediment budget and flow regime from reservoir operation have significantly reduced sediment discharge into the downstream river and estuary, initiating a series of geomorphic changes with ecological and social impacts. While the dam reduces high flow stages from floods originating above the

  17. Nile River, Lake Nasser, Aswan Dam, Egypt

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Egypt's High Aswan Dam on the Nile River at the first cataracts, Nile River, (24.0N, 33.0E) was completed in 1971 to provide cheap hydroelectric power and to regulate the historically uneven flow of the Nile River. The contrast between the largely base rock desert east of the Nile versus the sand covered desert west of the river and the ancient irrigated floodplain downstream from the damsite is clearly shown.

  18. 76 FR 22128 - Notice of Intent To Accept Proposals, Select One Lessee, and Contract for Hydroelectric Power...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-20

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE INTERIOR Notice of Intent To Accept Proposals, Select One Lessee, and Contract for Hydroelectric Power Development at the Granby Dam Outlet, a Feature of the Colorado-Big Thompson (C-BT) Project, Colorado...

  19. 76 FR 22143 - Notice of Intent To Accept Proposals, Select One Lessee, and Contract for Hydroelectric Power...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-20

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE INTERIOR Bureau of Reclamation Notice of Intent To Accept Proposals, Select One Lessee, and Contract for Hydroelectric Power Development at the Pueblo Dam River Outlet, a feature of the Fryingpan-Arkansas Project...

  20. 106. DAM EARTH DIKE SUBMERSIBLE DAMS & DIKE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    106. DAM - EARTH DIKE - SUBMERSIBLE DAMS & DIKE CONN. AT MOVABLE DAM (ML-8-52/2-FS) March 1940 - Upper Mississippi River 9-Foot Channel, Lock & Dam No. 8, On Mississippi River near Houston County, MN, Genoa, Vernon County, WI

  1. 1. View looking upstream (southwest) at diversion dam. Water enters ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. View looking upstream (southwest) at diversion dam. Water enters half-round flume on right. Break in diversion structure provides a view of water flow in flume during the high water runoff in June. - Rock Creek Hydroelectric Project, Rock Creek, Baker County, OR

  2. 20. Detail of low crib dam and apron, looking north. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Detail of low crib dam and apron, looking north. Building across river is part of Muckleshoot Indian fish hatchery, constructed in 1989. Photo by Jet Lowe, HAER, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  3. 11. SHOSHONE INTAKE DAM, VIEW TO THE NORTHWEST. RESTROOM BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. SHOSHONE INTAKE DAM, VIEW TO THE NORTHWEST. RESTROOM BUILDING AND STEAM CLEANER BUILDING ARE SEEN BELOW THE WEST SPAN OF THE BRIDGE; HOIST HOUSE AND CABLEWAY TOWER APE ABOVE CENTER. - Shoshone Hydroelectric Plant Complex, 60111 U.S. Highway 6, Garfield County, CO

  4. 60. Aerial view looking southeast; Dundee Dam and Passaic River ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    60. Aerial view looking southeast; Dundee Dam and Passaic River at center, Dundee Canal and headgates, guardlock, and former hydroelectric facility at right, Dundee Textile Mill between river and canal - Dundee Canal Industrial Historic District, Beginning at George Street in Passaic & extending north along Dundee Canal approximately 1.2 miles to Canal headgates opposite East Clifton Avenue in Clifton, Passaic, Passaic County, NJ

  5. Effects of the Operation of Kerr and Hungry Horse Dams on the Kokanee Fishery in the Flathead River System, 1979-1985 Final Research Report.

    SciTech Connect

    Clancy, Patrick

    1986-05-01

    This study was undertaken to assess the effects of the operation of Hungry Horse Dam on the kokanee fishery in the Flathead River system. Studies concerning operation of the dam on the Flathead River aquatic biota began in 1979 and continued to 1982 under Bureau of Reclamation funding. These studies resulted in flow recommendations for the aquatic biota in the main stem Flathead River, below the influence of Hungry Horse Dam on the South Fork. Studies concerned specifically with kokanee salmon have continued under Bonneville Power Administration funding since 1982. This completion report covers the entire study period (September 1979 to June 1985). Major results of this study were: (1) development and refinement of methods to assess hydropower impacts on spawning and incubation success of kokanee; (2) development of a model to predict kokanee year class strength from Flathead River flows; and (3) implementation of flows favorable for successful kokanee reproduction. A monitoring program has been developed which will assess the recovery of the kokanee population as it proceeds, and to recommend management strategies to maintain management goals for the kokanee fishery in the river system.

  6. Organization of monitoring the state of structures at the Sayano-Shushenskoe Hydroelectric Station

    SciTech Connect

    Bryzgalov, V.I.; Stafievskii, V.A.

    1994-06-01

    Engineering art when reference is to the reliability of an engineering structure should not depend on the political situation in the country. For example, in stagnant years it was decided to replace the type of dam at the Krasnoyarsk hydroelectric station (HES). Despite the insistence of the design organization for a so-called buttress dam, the engineering corps of like-minded persons - the construction engineers and customer headed by the chief of the construction project - categorically objected to the proposed design: in the construction industry the technology was not ready for openwork construction under harsh climatic conditions, and, what really matters, millions of people living downstream of the dam should be safeguarded against disasters. As a result a gravity dam was adopted.

  7. Small-scale hydroelectric power demonstration project. Riegel Textile Corporation, Fries, Virginia plant hydro-project. Final operation and maintenance report

    SciTech Connect

    Not Available

    1983-12-01

    Riegel Textile Corporation completed a 2163 KW rated turbine generator project at its plant on the New River in Fries, Virginia. A new powerhouse was constructed to enclose a used 2900 HP vertical Kaplan turbine and Westinghouse generator. The turbine is a 4-bladed 72-inch S. Morgan Smith manufactured in 1939. At the original setting of 46 feet, the unit had a rating of 3880 HP and the generator had a rating of 3000 KVA. Overhaul and installation of the used equipment was accomplished by the plant maintenance department. Overhaul of the used equipment and preparation of the license application began in June 1979. Construction of the new powerhouse began in June 1980. On July 24, 1981, construction was completed, the new unit was synchronized with Appalachian Power Company, and the first electrical energy was produced. The installation of this equipment, in conjunction with existing equipment already in place, increased the total plant generating capacity to 5251 KW. A total of four generators are now used and approximately 75% of the manufacturing plant's electrical requirements are self-generated. The purpose of this report is to summarize the operating and maintenance activities, costs, and revenues for the first two years of operation.

  8. Effects of dam operation on the endangered Júcar nase, Parachondrostoma arrigonis, related to mesohabitats, microhabitat availability and water temperature regime, in the river Cabriel (Spain)

    NASA Astrophysics Data System (ADS)

    Martinez-Capel, Francisco; Costa, Rui; Muñoz-Mas, Rafael; Diego Alcaraz-Hernandez, Juan; Hernandez-Mascarell, Aina

    2010-05-01

    The presence of large dams affects habitat availability, often regarded as the primary factor that limits population and community recovery in rivers. Physical habitat is often targeted in restoration, but there is often a paucity of useful information. Habitat degradation has reduced the complexity and connectivity of the Mediterranean streams in Spain. These changes have diminished the historical range of the endangered Júcar nase, Parachondrostoma arrigonis (Steindachner, 1866), isolated the populations of this species, and probably contributed to its risk of extinction. In the Júcar River basin (Spain), where this fish is endemic, the populations are mainly restricted to the river Cabriel, which is fragmented in two segments by the large dam of Contreras. In this river, 3 main lines of research were developed from 2006 to 2008, i.e., microhabitat suitability, mesohabitat suitability, and water temperature, in order to relate such kind of variables with the flow regime. The main goal of the research project, funded by the Spanish Ministry of Environment, was to detect the main reasons of the species decline, and to propose dam operation improvements to contribute to the recovery of the species. The flow and water temperature regimes were also studied in the river Cabriel, upstream and downstream the large dam of Contreras. During the three years of study, below the dam it was observed a small and not significant variation in the proportions of slow and fast habitats; the regulated flow regime was pointed out as the main reason of such variations. At the microhabitat scale, optimal ranges for average depth and velocity were defined; these data allowed us to develop an estimation of weighted useable area under natural and regulated conditions. The Júcar nase were found majorly at depths no greater than 1,15 meters with slow water velocities. It was possible to observe a clear alteration of the flow and water temperature regime below the dam, due to the cold

  9. Holocene versus modern catchment erosion rates at 300 MW Baspa II hydroelectric power plant (India, NW Himalaya)

    NASA Astrophysics Data System (ADS)

    Draganits, Erich; Gier, Susanne; Hofmann, Christa-Ch.; Janda, Christoph; Bookhagen, Bodo; Grasemann, Bernhard

    2014-08-01

    300 MW Baspa II is India's largest private hydroelectric facility, located at the Baspa River which is an important left-hand tributary to the Sutlej River in the NW Himalaya (India). In this valley the Sangla palaeo-lake has been dammed around 8200 yr BP behind a rock-avalanche dam and Baspa II is located exactly on top of this palaeo-lake. This special location represents a very rare possibility to evaluate the short-term, river load and hydrological parameters measured during the planning and operational stages of Baspa II with the long-term parameters gained from the palaeo-lake sediments from the catchment. Sedimentological and geomorphological investigations of the lacustrine sediments have been used to reconstruct environmental changes during >2500 years of its existence. The Mid-Holocene erosion rates of the Baspa catchment estimated from the volume and duration of deposition of the exposed lake sediments are at 0.7-1.0 mm yr-1, almost identical with the modern erosion rates calculated from river gauge data from Baspa II. Several charcoal layers and charcoal pieces from the uppermost palaeo-lake levels around 5000 cal yr BP might be related to woodland clearance and they possibly represent one of the oldest evidences for human presence in the Baspa Valley during Neolithic time.

  10. A critical analysis of the environment impact assessment report of the 2000 MW lower subansiri hydroelectric project with special reference to the down stream ecology and people's livelihood.

    PubMed

    Baruah, Debojit; Dutta, Ranjit; Hazarika, Lakhi Prasad; Sarmah, Sarada Kanta

    2011-10-01

    The Environment Impact Assessment (EIA) report of the 2000 MW Lower Subansiri Hydroelectric Project prepared by the WAPCOS (Water and Power Consultancy Service, 2003) indicates that downstream survey was done only up to 7 km from the dam site without giving much importance to the actual scenario and avoiding some most crucial ecological aspects. In the report, insufficient records of terrestrial flora, phytoplanktons and fish diversity are given. No records of aquatic macrophytes, riparian flora, zooplanktons, avian fauna, floodplain crops, besides peoples' livelihood and diverse habitat provided by the river in its downstream are presented in the report. Especially the wetlands, associated and influenced by the unregulated Subansiri River did not find any place in the EIA report. Interestingly, no mention of the Ganges Dolphin--Platanista gangetica gangetica Roxb. could be found in the report, whereas the river provides a healthy habitat for a good number of this critically endangered fresh water dolphin. From our pre-impact study, it is clear that rich downstream ecology of the river with its present and existing environmental scenario will be adversely affected due to the construction and operation of the proposed project, and there will be distinct possibilities of elimination of other native species. In addition, people's livelihood will be affected largely through alteration of the flow regime of the river. In-depth study with comprehensive documentation of all biotic and abiotic parameters is obligatory before taking any decision about the operation of the 2000 MW Lower Subansiri Hydroelectric Project.

  11. Ecological consequences of hydropower development in Central America: Impacts of small dams and water diversion on neotropical stream fish assemblages

    USGS Publications Warehouse

    Anderson, Elizabeth P.; Freeman, Mary C.; Pringle, C.M.

    2006-01-01

    Small dams for hydropower have caused widespread alteration of Central American rivers, yet much of recent development has gone undocumented by scientists and conservationists. We examined the ecological effects of a small hydropower plant (Dona Julia Hydroelectric Center) on two low-order streams (the Puerto Viejo River and Quebradon stream) draining a mountainous area of Costa Rica. Operation of the Dona Julia plant has dewatered these streams, reducing discharge to ~ 10% of average annual flow. This study compared fish assemblage composition and aquatic habitat upstream and downstream of diversion dams on two streams and along a ~ 4 km dewatered reach of the Puerto Viejo River in an attempt to evaluate current instream flow recommendations for regulated Costa Rican streams. Our results indicated that fish assemblages directly upstream and downstream of the dam on the third order Puerto Viejo River were dissimilar, suggesting that the small dam (< 15 in high) hindered movement of fishes. Along the ~ 4 km dewatered reach of the Puerto Viejo River, species count increased with downstream distance from the dam. However, estimated species richness and overall fish abundance were not significantly correlated with downstream distance from the dam. Our results suggested that effects of stream dewatering may be most pronounced for a subset of species with more complex reproductive requirements, classified as equilibrium-type species based on their life-history. In the absence of changes to current operations, we expect that fish assemblages in the Puerto Viejo River will be increasingly dominated by opportunistic-type, colonizing fish species. Operations of many other small hydropower plants in Costa Rica and other parts of Central America mirror those of Doha Julia; the methods and results of this study may be applicable to some of those projects.

  12. 75 FR 61458 - Grand River Dam Authority; Notice of Application for Amendment of License and Soliciting Comments...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-05

    ... Energy Regulatory Commission Grand River Dam Authority; Notice of Application for Amendment of License.... Date Filed: May 27, 2010, supplemented on August 12 and August 16, 2010. d. Applicant: Grand River Dam Authority. e. Name of Project: Pensacola Hydroelectric Project. f. Location: Grand Lake in Ottawa...

  13. White sturgeon (Acipenser transmontanus) passage at the Dalles Dam, Columbia River, USA

    USGS Publications Warehouse

    Parsley, M.J.; Wright, C.D.; Van Der Leeuw, B. K.; Kofoot, E.E.; Peery, C.A.; Moser, M.L.

    2007-01-01

    White sturgeon (Acipenser transmontanus) ???95 cm TL were monitored using acoustic and radio telemetry at a large hydroelectric dam (the Dalles Dam) on the Columbia River, during March 2004 through November 2005 to determine timing and routes of passage and to characterize general movements. Transmitters were surgically implanted into 148 fish during the study; 90 were released into the tailrace and 58 into the forebay. We documented 26 passage events by 19 tagged fish: eight upstream via fish ladders and 18 downstream, mostly through open spill gates. During the study 17 fish entered the two ladders one or more times; 11 entered only the east ladder, three entered only the north ladder, and three entered both ladders at sometime. Residence time within the ladders by individual fish was variable, ranging from about 1 min to nearly 6 months (median = 7.7 h). Only six fish successfully ascended the east ladder, one fish twice. We could not unequivocally determine which fish ladder one fish used to pass upstream. Differences in construction between the north and east fish ladders may account for the greater success of the east fish ladder in passing sturgeon upstream. Changes to operations at hydroelectric dams to benefit migrating anadromous salmonids may influence upstream or downstream passage by white sturgeon. Altering patterns and timing of spill discharge, altering fish ladder entrance attraction flows, and the use of lights, sound, and partial barriers to direct other species of fish to preferred passage routes have unknown effects on sturgeon passage. A better understanding of the consequences to the metapopulation of increasing or precluding upstream or downstream passage is needed. ?? 2007 The Authors.

  14. Mercury accumulation in bats near hydroelectric reservoirs in Peninsular Malaysia.

    PubMed

    Syaripuddin, Khairunnisa; Kumar, Anjali; Sing, Kong-Wah; Halim, Muhammad-Rasul Abdullah; Nursyereen, Muhammad-Nasir; Wilson, John-James

    2014-09-01

    In large man-made reservoirs such as those resulting from hydroelectric dam construction, bacteria transform the relatively harmless inorganic mercury naturally present in soil and the submerged plant matter into toxic methylmercury. Methylmercury then enters food webs and can accumulate in organisms at higher trophic levels. Bats feeding on insects emerging from aquatic systems can show accumulation of mercury consumed through their insect prey. In this study, we investigated whether the concentration of mercury in the fur of insectivorous bat species was significantly higher than that in the fur of frugivorous bat species, sampled near hydroelectric reservoirs in Peninsular Malaysia. Bats were sampled at Temenggor Lake and Kenyir Lake and fur samples from the most abundant genera of the two feeding guilds-insectivorous (Hipposideros and Rhinolophus) and frugivorous (Cynopterus and Megaerops) were collected for mercury analysis. We found significantly higher concentrations of total mercury in the fur of insectivorous bats. Mercury concentrations also differed significantly between insectivorous bats sampled at the two sites, with bats from Kenyir Lake, the younger reservoir, showing higher mercury concentrations, and between the insectivorous genera, with Hipposideros bats showing higher mercury concentrations. Ten bats (H. cf. larvatus) sampled at Kenyir Lake had mercury concentrations approaching or exceeding 10 mg/kg, which is the threshold at which detrimental effects occur in humans, bats and mice.

  15. 107. DAM EARTH DIKE SUBMERSIBLE DAMS PLANS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    107. DAM - EARTH DIKE - SUBMERSIBLE DAMS - PLANS & SECTIONS (ML-8-52/3-FS) March 1940 - Upper Mississippi River 9-Foot Channel, Lock & Dam No. 8, On Mississippi River near Houston County, MN, Genoa, Vernon County, WI

  16. Determination of Fishery Losses in the Flathead System Resulting from the Construction of Hungry Horse Dam, 1986 Final Completion Report.

    SciTech Connect

    Zubik, Raymond J.; Fraley, John

    1987-01-01

    This study is part of the Northwest Power Planning Council's residential fish and wildlife plan, which is responsible for mitigating damages to fish and wildlife resources caused by hydroelectric development in the Columbia River basin. The major goal of this study was to provide estimates of fishery losses to the Flathead system as a result of the completion of Hungry Horse Dam and to propose mitigation alternatives for enhancing the fishery. Construction of Hungry Horse Dam had the greatest adverse impacts on cutthroat and full trout from Flathead Lake and mitigative measures should be taken to offset these losses, if biologically and economically feasible. Also, other losses to fish and wildlife have been documented in the Flathead basin due to hydroelectric facilities and their operation. Some of these research projects will not be completed until 1989, when mitigation will be recommended using a basin-wide approach. Since HHR is at the headwaters of the Columbia system, mitigative measures may also affect downstream projects. Therefore, we presented an array of possible mitigation alternatives for consideration by decision-makers, with suggestions on the ones we feel are the most cost effective. Possible mitigation measures are included.

  17. Have Large Dams Altered Extreme Precipitation Patterns?

    NASA Astrophysics Data System (ADS)

    Hossain, Faisal; Jeyachandran, Indumathi; Pielke, Roger

    2009-12-01

    Dams and their impounded waters are among the most common civil infrastructures, with a long heritage of modern design and operations experience. In particular, large dams, defined by the International Commission on Large Dams (ICOLD) as having a height greater than 15 meters from the foundation and holding a reservoir volume of more than 3 million cubic meters, have the potential to vastly transform local climate, landscapes, regional economics, and urbanization patterns. In the United States alone, about 75,000 dams are capable of storing a volume of water equaling almost 1 year's mean runoff of the nation [Graf, 1999]. The World Commission on Dams (WCD) reports that at least 45,000 large dams have been built worldwide since the 1930s. These sheer numbers raise the question of the extent to which large dams and their impounded waters alter patterns that would have been pervasive had the dams not been built.

  18. Egypt: after the Aswan Dam

    SciTech Connect

    Walton, S.

    1981-05-01

    Ten years after its completion, the controversial Aswan High Dam's hydrologic and human consequences are clearer because of a joint US-Egyptian interdisciplinary study. Water supply and distribution is emerging as a major world resource problem with the recognition that unsafe drinking water and inadequate sanitation contribute to health problems. Dams provide water supplies, but they also create conditions favorable to the spread of water-borne diseases. The Aswan Dam solved problems of flooding and drought by opening 2.5 million acres to year-round irrigation, although some of the reclaimed land has been lost to urban expansion and shoreline erosion, and provides hydroelectric power. The negative effects include increasing soil salinity, changes in the water table, excessive downstream water plant growth, and diseases such as schistosomiasis and other intestinal parasites, and the social impact on the Nubians, whose homeland was flooded. Planners must use the information gathered in this study to see that the benefits outweigh the human costs. 22 references, 7 figures.

  19. Proposed fish passage improvements at Three Mile Falls Diversion Dam, Umatilla River, Oregon: Finding of no significant impact

    SciTech Connect

    Not Available

    1986-05-01

    The Bureau of Reclamation proposes to administer the construction of fish passage and protective facilities at Three Mile Falls Diversion Dam on the Umatilla River in Oregon to increase the numbers of anadromous fish. The Bonneville Power Administration (BPA) proposes to provide funding for the project. These agencies' actions would implement section 904(d) of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program which addresses the provision of offsite enhancement to compensate for fish and wildlife losses caused by hydroelectric project development and operations throughout the Columbia River Basin. This Finding of No Significant Impact (FONSI) is the National Environmental Policy Act (NEPA) decision document for both agencies. The proposed action would improve both upstream and downstream passage by providing a new right bank ladder on Three Mile Falls Diversion Dam, modifying the existing left bank ladder, and installing rotary drum fish screens and related structures on the adjacent West Extension Irrigation District (WEID) Canal. Four other alternatives are considered in the environmental assessment (EA): a concrete apron plus a left bank ladder; a cap on the crest of the dam plus a left bank ladder; dam removal; and no action. 5 figs., 6 tabs.

  20. Environmental mitigation at hydroelectric projects: Volume II. Benefits and costs of fish passage and protection

    SciTech Connect

    Francfort, J. E.; Cada, G. F.; Dauble, D. D.; Hunt, R. T.; Jones, D. W.; Rinehart, B. N.; Sommers, G. L.; Costello, R. J.

    1994-01-01

    The Department of Energy, through its hydropower program, is studying environmental mitigation practices at hydroelectric projects. The study of environmental mitigation is intended to provide greater understanding of environmental problems and solutions that are associated with conventional hydroelectric projects. This volume examines upstream and downstream fish passage/protection technologies and the associated practices, benefits, and costs. Fish passage/protection mitigation technologies are investigated by three methods: (a) national, regional (Federal Energy Regulatory Commission regions), and temporal frequencies of fish passage/protection mitigation are examined at 1,825 operating and conventional (excludes pumped storage) Federal Energy Regulatory Commission (FERC) regulated hydroelectric sites in the United States; (b) general fish passage/protection mitigation costs are discussed for 50 FERC regulated hydroelectric projects; and (c) 16 case studies are used to examine specific fish passage/protection mitigation practices, benefits, and costs.

  1. Use of an autonomous sensor to evaluate the biological performance of the advanced turbine at Wanapum Dam

    DOE PAGES

    Deng, Zhiqun; Carlson, Thomas J.; Duncan, Joanne P.; ...

    2010-10-13

    Hydropower is the largest renewable energy resource in the United States and the world. However, hydropower dams have adverse ecological impacts because migrating fish may be injured or killed when they pass through hydroturbines. In the Columbia and Snake River basins, dam operators and engineers are required to make those hydroelectric facilities more fish-friendly through changes in hydroturbine design and operation after fish population declines and the subsequent listing of several species of Pacific salmon under the Endangered Species Act of 1973. Public Utility District No. 2 of Grant County, Washington, requested authorization from the Federal Energy Regulatory Commission tomore » replace the ten turbines at Wanapum Dam with advanced hydropower turbines designed to improve survival for fish passing through the turbines while improving operation efficiency and increasing power generation. As an additional measure to the primary metric of direct injury and mortality rates of juvenile Chinook salmon using balloon tag-recapture methodology, this study used an autonomous sensor device - the Sensor Fish - to provide insight into the specific hydraulic conditions and physical stresses experienced by the fish as well as the specific causes of fish biological response. We found that the new hydroturbine blade shape and the corresponding reduction of turbulence in the advanced hydropower turbine were effective in meeting the objectives of improving fish survival while enhancing operational efficiency of the dam. The frequency of severe events based on Sensor Fish pressure and acceleration measurements showed trends similar to those of fish survival determined by the balloon tag-recapture methodology. In addition, the new turbine provided a better pressure and rate of pressure change environment for fish passage. Altogether, the Sensor Fish data indicated that the advanced hydroturbine design improved passage of juvenile salmon at Wanapum Dam.« less

  2. Use of an autonomous sensor to evaluate the biological performance of the advanced turbine at Wanapum Dam

    SciTech Connect

    Deng, Zhiqun; Carlson, Thomas J.; Duncan, Joanne P.; Richmond, Marshall C.; Dauble, Dennis D.

    2010-10-13

    Hydropower is the largest renewable energy resource in the United States and the world. However, hydropower dams have adverse ecological impacts because migrating fish may be injured or killed when they pass through hydroturbines. In the Columbia and Snake River basins, dam operators and engineers are required to make those hydroelectric facilities more fish-friendly through changes in hydroturbine design and operation after fish population declines and the subsequent listing of several species of Pacific salmon under the Endangered Species Act of 1973. Public Utility District No. 2 of Grant County, Washington, requested authorization from the Federal Energy Regulatory Commission to replace the ten turbines at Wanapum Dam with advanced hydropower turbines designed to improve survival for fish passing through the turbines while improving operation efficiency and increasing power generation. As an additional measure to the primary metric of direct injury and mortality rates of juvenile Chinook salmon using balloon tag-recapture methodology, this study used an autonomous sensor device - the Sensor Fish - to provide insight into the specific hydraulic conditions and physical stresses experienced by the fish as well as the specific causes of fish biological response. We found that the new hydroturbine blade shape and the corresponding reduction of turbulence in the advanced hydropower turbine were effective in meeting the objectives of improving fish survival while enhancing operational efficiency of the dam. The frequency of severe events based on Sensor Fish pressure and acceleration measurements showed trends similar to those of fish survival determined by the balloon tag-recapture methodology. In addition, the new turbine provided a better pressure and rate of pressure change environment for fish passage. Altogether, the Sensor Fish data indicated that the advanced hydroturbine design improved passage of juvenile salmon at Wanapum Dam.

  3. Case study analysis of the legal and institutional obstacles and incentives to the development of the hydroelectric power of the Boardman River at Traverse City, Michigan

    SciTech Connect

    None,

    1980-05-01

    An analytic description of one decision-making process concerning whether or not to develop the hydroelectric potential of the Boardman River is presented. The focus of the analysis is on the factor that the developers considered, or should consider in making a responsible commitment to small-scale hydroelectric development. Development of the Boardman River would occur at the five dam sites. Two existing dams, owned by the county, previously generated hydroelectricity, as did a third before being washed out. One dam has never been utilized. It is owned by the city which also owns the washed-out area. The study concludes that hydroelectric power is feasible at each. Grand Traverse County and Traverse City would engage in a joint venture in developing the resource. Chapter I presents a detailed description of the developers, the river resource, and the contemplated development. Chapter II is an analysis of the factors affecting the decision making process. Chapter III summarizes the impact of the more significant barriers and incentives and presents recommendations that, if implemented, will favorably affect decisions to develop small-scale hydroelectric generation capability.

  4. 33 CFR 208.19 - Marshall Ford Dam and Reservoir (Mansfield Dam and Lake Travis), Colorado River, Texas.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (Mansfield Dam and Lake Travis), Colorado River, Texas. 208.19 Section 208.19 Navigation and Navigable Waters... Marshall Ford Dam and Reservoir (Mansfield Dam and Lake Travis), Colorado River, Texas. In the interest of flood control, the Lower Colorado River Authority (LCRA) shall operate the Marshall Ford Dam...

  5. Environmental mitigation at hydroelectric projects. Volume 2, Benefits and costs of fish passage and protection

    SciTech Connect

    Francfort, J.E.; Rinehart, B.N.; Sommers, G.L.; Cada, G.F.; Jones, D.W.; Dauble, D.D.; Hunt, R.T.; Costello, R.J.

    1994-01-01

    This study examines envirorunental mitigation practices that provide upstream and downstream fish passage and protection at hydroelectric projects. The study includes a survey of fish passage and protection mitigation practices at 1,825 hydroelectric plants regulated by the Federal Energy Regulatory Commission (FERC) to determine frequencies of occurrence, temporal trends, and regional practices based on FERC regions. The study also describes, in general terms, the fish passage/protection mitigation costs at 50 non-Federal hydroelectric projects. Sixteen case studies are used to examine in detail the benefits and costs of fish passage and protection. The 16 case studies include 15 FERC licensed or exempted hydroelectric projects and one Federally-owned and-operated hydroelectric project. The 16 hydroelectric projects are located in 12 states and range in capacity from 400 kilowatts to 840 megawatts. The fish passage and protection mitigation methods at the case studies include fish ladders and lifts, an Eicher screen, spill flows, airburst-cleaned inclined and cylindrical wedgewire screens, vertical barrier screens, and submerged traveling screens. The costs, benefits, monitoring methods, and operating characteristics of these and other mitigation methods used at the 16 case studies are examined.

  6. Examining global electricity supply vulnerability to climate change using a high-fidelity hydropower dam model.

    PubMed

    Turner, Sean W D; Ng, Jia Yi; Galelli, Stefano

    2017-07-15

    An important and plausible impact of a changing global climate is altered power generation from hydroelectric dams. Here we project 21st century global hydropower production by forcing a coupled, global hydrological and dam model with three General Circulation Model (GCM) projections run under two emissions scenarios. Dams are simulated using a detailed model that accounts for plant specifications, storage dynamics, reservoir bathymetry and realistic, optimized operations. We show that the inclusion of these features can have a non-trivial effect on the simulated response of hydropower production to changes in climate. Simulation results highlight substantial uncertainty in the direction of change in globally aggregated hydropower production (~-5 to +5% change in mean global production by the 2080s under a high emissions scenario, depending on GCM). Several clearly impacted hotspots are identified, the most prominent of which encompasses the Mediterranean countries in southern Europe, northern Africa and the Middle East. In this region, hydropower production is projected to be reduced by approximately 40% on average by the end of the century under a high emissions scenario. After accounting for each country's dependence on hydropower for meeting its current electricity demands, the Balkans countries emerge as the most vulnerable (~5-20% loss in total national electricity generation depending on country). On the flipside, a handful of countries in Scandinavia and central Asia are projected to reap a significant increase in total electrical production (~5-15%) without investing in new power generation facilities.

  7. Examining global electricity supply vulnerability to climate change using a high-fidelity hydropower dam model

    DOE PAGES

    Turner, Sean W. D.; Ng, Jia Yi; Galelli, Stefano

    2017-03-07

    Here, an important and plausible impact of a changing global climate is altered power generation from hydroelectric dams. Here we project 21st century global hydropower production by forcing a coupled, global hydrological and dam model with three General Circulation Model (GCM) projections run under two emissions scenarios. Dams are simulated using a detailed model that accounts for plant specifications, storage dynamics, reservoir bathymetry and realistic, optimized operations. We show that the inclusion of these features can have a non-trivial effect on the simulated response of hydropower production to changes in climate. Simulation results highlight substantial uncertainty in the direction ofmore » change in globally aggregated hydropower production (~–5 to + 5% change in mean global production by the 2080s under a high emissions scenario, depending on GCM). Several clearly impacted hotspots are identified, the most prominent of which encompasses the Mediterranean countries in southern Europe, northern Africa and the Middle East. In this region, hydropower production is projected to be reduced by approximately 40% on average by the end of the century under a high emissions scenario. After accounting for each country's dependence on hydropower for meeting its current electricity demands, the Balkans countries emerge as the most vulnerable (~ 5–20% loss in total national electricity generation depending on country). On the flipside, a handful of countries in Scandinavia and central Asia are projected to reap a significant increase in total electrical production (~ 5–15%) without investing in new power generation facilities.« less

  8. Yacyreta hydroelectric project contract signed

    SciTech Connect

    Not Available

    1987-09-01

    On June 26, 1987 the $270 million contract for the supply of 20 large hydraulic turbines for the Yacyreta Hydroelectric Project was signed by the Entidad Binacional Yacyreta, (a binational agency created by the governments of Argentina and Paraguay for the development of Yacyreta), and by Voith Hydro, Inc., of York, Pennsylvania, and Canadian General Electric of Montreal, Canada. Under the terms of the contract, 9 turbine units will be supplied by Voith Hydro, Inc. from its York, Pennsylvania plant, 4 units by Canadian General Electric of Montreal, and 7 units by Metanac, a consortium of Argentine manufacturers, who will utilize technology and technical assistance from Voith and CGE. The Yacyreta Project is being built on the Parana River on the border between Argentina and Paraguay. Construction at the site commenced in late 1983. Voith's portion of this contrast represents approximately $130 million dollars worth of business for its York, Pennsylvania facility.

  9. Modeling flood induced interdependencies among hydroelectricity generating infrastructures.

    PubMed

    Sultana, S; Chen, Z

    2009-08-01

    This paper presents a new kind of integrated modeling method for simulating the vulnerability of a critical infrastructure for a hazard and the subsequent interdependencies among the interconnected infrastructures. The developed method has been applied to a case study of a network of hydroelectricity generating infrastructures, e.g., water storage concrete gravity dam, penstock, power plant and transformer substation. The modeling approach is based on the fragility curves development with Monte Carlo simulation based structural-hydraulic modeling, flood frequency analysis, stochastic Petri net (SPN) modeling, and Markov Chain analysis. A certain flood level probability can be predicted from flood frequency analysis, and the most probable damage condition for this hazard can be simulated from the developed fragility curves of the dam. Consequently, the resulting interactions among the adjacent infrastructures can be quantified with SPN analysis; corresponding Markov Chain analysis simulates the long term probability matrix of infrastructure failures. The obtained results are quite convincing to prove the novel contribution of this research to the field of infrastructure interdependency analysis which might serve as a decision making tool for flood related emergency response and management.

  10. Organic carbon burial efficiency in a subtropical hydroelectric reservoir

    NASA Astrophysics Data System (ADS)

    Mendonça, Raquel; Kosten, Sarian; Sobek, Sebastian; Jaqueline Cardoso, Simone; Figueiredo-Barros, Marcos Paulo; Henrique Duque Estrada, Carlos; Roland, Fábio

    2016-06-01

    Hydroelectric reservoirs bury significant amounts of organic carbon (OC) in their sediments. Many reservoirs are characterized by high sedimentation rates, low oxygen concentrations in bottom water and a high share of terrestrially derived OC, and all of these factors have been linked to a high efficiency of OC burial. However, investigations of OC burial efficiency (OCBE, i.e., the ratio between buried and deposited OC) in reservoirs are limited to a few studies, none of which include spatially resolved analyses. In this study we determined the spatial variation in OCBE in a large subtropical reservoir and related it to sediment characteristics. Our results show that the sediment accumulation rate explains up to 92 % of the spatial variability in OCBE, outweighing the effect of other variables, such as OC source and oxygen exposure time. OCBE at the pelagic sites varied from 48 to 86 % (mean 67 %) and decreased towards the dam. At the margins, OCBE was lower (9-17 %) due to the low sediment accumulation in shallow areas. Our data show that the variability in OCBE both along the rivers-dam and the margin-pelagic axes must be considered in whole-reservoir assessments. Combining these results with a spatially resolved assessment of sediment accumulation and OC burial in the studied reservoir, we estimated a spatially resolved mean OC burial efficiency of 57 %. Being the first assessment of OCBE with such a high spatial resolution in a reservoir, these results suggest that reservoirs may bury OC more efficiently than natural lakes.

  11. The role of dams in the water stability and oxygenation of semi-enclosed bays

    NASA Astrophysics Data System (ADS)

    Zacharias, Ierotheos; Kountoura, Krystallia

    2013-04-01

    It is well known that dams were constructed in order to provide significant domestic and economic benefits. Apart from the advantages of these constructions, such as the hydroelectric power production, the flooding control and the storage of water for irrigation, there are also important impacts. Among the most serious of them upstream, is the conversion from a river system to a lake, the sediment transport and changes in the river's temperature and oxygen. However due to the irregular discharge resulting from the dams operation, there are also changes in biodiversity and in bio-geochemical cycle of carbon, oxygen, nitrogen and phosphorus thereby causing changes in temperature, turbidity, stratification, dissolved oxygen, nutrients and heavy metals, downstream. In order to determine how the existence of dams affects both the water stability and the dissolved oxygen conditions, we studied the enclosed bay of Amvrakikos Gulf in Western Greece. The gulf receives freshwater inputs from north by two rivers along which there are three dams. Before the dams, the maximum discharges into the Amvrakikos Gulf were during late winter and spring months. During autumn and early winter stratification was weak and mixing could take place within the entire gulf. After the dams construction, the rivers have been discharging large amounts of freshwater into the gulf in accordance to the Public Power Corporation's needs. Due to the fact that large volumes of fresh water discharged into the system during summer and autumn, much later than would occur without the presence of dams, the water column is characterized by stratification during those periods. As a consequence, the pycnocline which is characterized by high static stability, prevents both the mixing between the surface and the bottom layer and the oxygenation of the isolated water near the bottom. On the other hand due to the limited hydropower needs during spring, the volume of fresh water which discharged into the system is

  12. Characterization of grain sizes in the reservoir impoundment behind Marmot Dam post-dam removal

    NASA Astrophysics Data System (ADS)

    di Leonardo, D. R.; Podolak, C.; Wilcock, P.

    2009-12-01

    Marmot Dam was built in 1913 and stood until 2007 to divert water from the Sandy River to the Bull Run Hydroelectric Plant. During that time Marmot Dam impounded a reservoir deposit of approximately 750,000 cubic meters of sediment. Prior to dam removal Squier Associates completed a series of sediment cores and bulk samples to estimate the composition of the deposit (Stillwater 2000). Since 2007 the Sandy River has carved a path through the reservoir leaving vertical sections of the deposit exposed. This study aims to use these remains of the deposit to make another estimate of its composition using pebble counts and a bulk sample. It serves as a back of the envelope double check of the Squier Associates study and an experiment with a new sampling method. Our results suggest that the deposit may be coarser than previously thought

  13. Effects of Flaming Gorge Dam hydropower operations on sediment transport in the Browns Park reach of the Green River, Utah and Colorado

    SciTech Connect

    Williams, G.P.; Tomasko, D.; Cho, H.E.; Yin, S.C.L.

    1995-05-01

    Three methods for comparing sediment transport were applied to four proposed hydropower operational scenarios under study for Flaming Gorge Dam on the Green River in Utah. These methods were effective discharge, equilibrium potential, and cumulative sediment load with flow exceedance plots. Sediment loads transported by the Green River in the Browns Park reach were calculated with the Engelund-Hansen equation for three historical water years and four hydropower operational scenarios. A model based on the Engelund-Hansen equation was developed using site-specific information and validated by comparing predictions for a moderate water year with measured historical values. The three methods were used to assess the impacts of hydropower operational scenarios on sediment resources. The cumulative sediment load method provided the most useful information for impact evaluation. Effective discharge was not a useful tool because of the limited number of discrete flows associated with synthetic hydrographs for the hydropower operational scenarios. The equilibrium potential method was relatively insensitive to the variations in operating conditions, rendering it comparatively ineffective for impact evaluation.

  14. Legal obstacles and incentives to the development of small scale hydroelectric potential in Wisconsin

    SciTech Connect

    None,

    1980-05-01

    The legal and institutional obstacles to the development of small-scale hydroelectric energy at the state level are discussed. The Federal government also exercises extensive regulatory in the area, and the dual regulatory system from the standpoint of the appropriate legal doctrine, the law of pre-emption, application of the law to the case of hydroelectric development, and an inquiry into the practical use of the doctrine by the FERC is examined. The initial obstacle that all developers confront in Wisconsin is obtaining the authority to utilize the bed, banks, and flowing water at a proposed dam site. This involves a determination of ownership of the stream banks and bed and the manner of obtaining either their title or use; and existing constraints with regard to the use of the water. Wisconsin follows the riparian theory of water law.

  15. Analysis of Environmental Issues Related to Small-Scale Hydroelectric Development IV: Fish Mortality Resulting From Turbine Passage

    SciTech Connect

    Turbak, Susan C.; Reichle, Donna R.; Shriner, Carole R.

    1981-01-01

    The purpose of this report is to provide summary information for use by potential developers and regulators of small-scale hydroelectric projects (defined as existing dams that can be retrofitted to a total site capacity of ≤30 MW), where turbine-related mortality of fish is a potential issue affecting site-specific development. Mitigation techniques for turbine-related mortality are not covered in this report.

  16. Use of the acoustic method for checking the quality of concrete of hydroelectric and pumped storage stations

    SciTech Connect

    Filonidov, A.M.; Lyubinskii, V.Yu.

    1987-09-01

    This article describes acoustic methods used in the in-service inspection of the dams and peripheral concrete structures of the Toktogul, Kurpsai, and Bratsk hydroelectric and pumped storage plants. The tests were conducted to assess the compression strength, elasticity, and tensile strength of the concretes. Comparative evaluations against drill core studies proved the acoustic methods to be sufficiently accurate in predicting aging behavior and loss of mechanical and physical integrity in the concretes.

  17. Executive summary: legal obstacles and incentives to small-scale hydroelectric development in the six middle atlantic states

    SciTech Connect

    None,

    1980-05-01

    The executive summary describes the relationship of Federal law and regulation to state law and regulation of small-scale hydroelectric facilities, highlighting important features of the constitutional, statutory, case law, and regulations of each of the six middle atlantic states (Maryland, Delaware, New York, New Jersey, Pennsylvania, and Virginia). Water law, direct and indirect regulation, and financial considerations for each state are presented. A flow diagram of regulation of small dams in each state is also included.

  18. Hungry Horse Mitigation Plan; Fisheries Mitigation Plan for Losses Attributable to the Construction and Operation of Hungry Horse Dam, 1990-2003 Technical Report.

    SciTech Connect

    Fraley, John J.; Marotz, Brian L.; DosSantos, Joseph M.

    2003-04-01

    In this document we present fisheries losses, mitigation alternatives, and recommendations to protect, mitigate, and enhance resident fish and aquatic habitat affected by the construction and operation of Hungry Horse Dam. This plan addresses six separate program measures in the 1987 Columbia Basin Fish and Wildlife Program. We designed the plan to be closely coordinated in terms of dam operations, funding, and activities with the Kerr Mitigation Plan presently before the Federal Energy Regulatory Commission. This document represents a mitigation plan for consideration by the Northwest Power Planning Council process; it is not an implementation plan. Flathead Lake is one of the cleanest lakes of its size in the world. The exceptional water quality and unique native fisheries make the Flathead Lake/River system extremely valuable to the economy and quality of life in the basin. The recreational fishery in Flathead Lake has an estimated value of nearly eight million dollars annually. This mitigation process represents our best opportunity to reduce the impacts of hydropower in this valuable aquatic system and increase angling opportunity. We based loss estimates and mitigation alternatives on an extensive data base, agency reports, nationally and internationally peer-reviewed scientific articles, and an innovative biological model for Hungry Horse Reservoir and the Flathead River. We conducted an extensive, 14-month scoping and consultation process with agency representatives, representatives of citizen groups, and the general public. This consultation process helped identify issues, areas of agreement, areas of conflict, and advantages and disadvantages of mitigation alternatives. The results of the scoping and consultation process helped shape our mitigation plan. Our recommended plan is based firmly on principles of adaptive management and recognition of biological uncertainty. After we receive direction from the NPPC, we will add more detailed hypotheses and

  19. National Dam Safety Program. Windmiller Dam Number 1 (MO 10035), Windmiller Dam Number 2 (MO 11675), Missouri - Kansas City Basin, Boone County, Missouri. Phase I Inspection Report.

    DTIC Science & Technology

    1979-05-01

    excavated through limestone bedrock approx- Cimately 1300 feet north of the left end of the dam. See Plate A-l. (b) Dam No. 2 discharge is through a...flows and flow from the spring are not periodi- cally monitored for change of color or change in volume. b. Dam No. 2. The lack of control of erosion of...which is considered a deficiency. c. Operating Records. There are no controlled operating facilities for these dams. d. Post Construction Changes . It

  20. Brief reconnaissance study for the addition of hydropower for Carr Fork Dam, Sassafras, Kentucky

    SciTech Connect

    Gebhard, T.G. Jr.

    1982-05-24

    The feasibility of retrofitting the Carr Fork Dam near Hazard, KY for power generation was examined. This dam has a developable head of 80 ft and was built in 1975 to provide flood protection. The study of environmental, institutional, safety, and economic factors showed that the total investment cost would be $909,600 and that hydroelectric power development at this site is not feasible unless a higher price could be obtained for the power sold. (LCL)

  1. 75 FR 62024 - Metal and Nonmetal Dams

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-07

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF LABOR Mine Safety and Health Administration 30 CFR Parts 56 and 57 RIN 1219-AB70 Metal and Nonmetal Dams AGENCY... measures to assure that metal and nonmetal mine operators design, construct, operate and maintain dams in...

  2. Geologic factors pertinent to the proposed A. J. Wiley Hydroelectric Project No. 2845, Bliss, Idaho

    USGS Publications Warehouse

    Malde, Harold E.

    1981-01-01

    The A.J. Wiley Hydroelectric Project is a proposal by the Idaho Power Company to develop hydroelectricity near Bliss, Idaho, by building a dam on the Snake River (fig. 1). The proposed dam would impound a narrow reservoir as deep as 85 feet in a free-flowing reach of the river that extends from the upper reach of water impounded by the Bliss Dam to the foot of the Lower Salmon Falls Dam, nearly 8 miles farther upstream. The proposed dam would be built in three sections: a spillway section and a powerhouse (intake) section to be constructed of concrete in the right-handed part, and an embankment section to be constructed as a zoned-fill of selected earth materials in the left-hand part. (Right and left are to be understood in the sense of looking downstream.) In August, 1979, the Idaho Power Company was granted a 3-year permit (Project No. 2845) by the Federal Energy Regulatory Commission (FERC) to make site investigations and environmental studies in the project area. A year later, on August 26, 1980, the company applied to FERC for a license to construct the project. On October 8, 1980, as explained in a letter by William W. Lindsay, Director of the Office of Electric Power Regulation, the company was given 90 days to correct certain deficiencies in the application. Because several of the deficiencies identified by Mr. Lindsay pertain to geologic aspects of the project, his letter is attached to this report as Appendix A. Hereafter in this report, the deficiencies listed by Mr. Lindsay are identified by the numerical entries in his letter. The Idaho Power Company is referred to as the applicant.

  3. Hoopa Valley Small Scale Hydroelectric Feasibility Project

    SciTech Connect

    Curtis Miller

    2009-03-22

    This study considered assessing the feasibility of developing small scale hydro-electric power from seven major tributaries within the Hoopa Valley Indian Reservation of Northern California (http://www.hoopa-nsn.gov/). This study pursued the assessment of seven major tributaries of the Reservation that flow into the Trinity River. The feasibility of hydropower on the Hoopa Valley Indian Reservation has real potential for development and many alternative options for project locations, designs, operations and financing. In order to realize this opportunity further will require at least 2-3 years of intense data collection focusing on stream flow measurements at multiple locations in order to quantify real power potential. This also includes on the ground stream gradient surveys, road access planning and grid connectivity to PG&E for sale of electricity. Imperative to this effort is the need for negotiations between the Hoopa Tribal Council and PG&E to take place in order to finalize the power rate the Tribe will receive through any wholesale agreement that utilizes the alternative energy generated on the Reservation.

  4. Modeling water quality effects of structural and operational changes to Scoggins Dam and Henry Hagg Lake, Oregon

    USGS Publications Warehouse

    Sullivan, Annett B.; Rounds, Stewart A.

    2006-01-01

    To meet water quality targets and the municipal and industrial water needs of a growing population in the Tualatin River Basin in northwestern Oregon, an expansion of Henry Hagg Lake is under consideration. Hagg Lake is the basin's primary storage reservoir and provides water during western Oregon's typically dry summers. Potential modifications include raising the dam height by 6.1 meters (20 feet), 7.6 meters (25 feet), or 12.2 meters (40 feet); installing additional outlets (possibly including a selective withdrawal tower); and adding additional inflows to provide greater reliability of filling the enlarged reservoir. One method of providing additional inflows is to route water from the upper Tualatin River through a tunnel and into Sain Creek, a tributary to the lake. Another option is to pump water from the Tualatin River (downstream of the lake) uphill and into the reservoir during the winter--the 'pump-back' option. A calibrated CE-QUAL-W2 model of Henry Hagg Lake's hydrodynamics, temperature, and water quality was used to examine the effect of these proposed changes on water quality in the lake and downstream. Most model scenarios were run with the calibrated model for 2002, a typical water year; a few scenarios were run for 2001, a drought year. More...

  5. Nile River, Lake Nasser, Aswan High Dam, Egypt, Africa

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Lake Nasser, (24.0N, 33.0E) at the Aswan High Dam on the Nile River, in Egypt is the world's second largest artificial lake, extending 500 km, in length and about 5000 sq. km. in area. The lake has a storage capacity sufficient to irrigate farms in Egypt and Sudan year round allowing up to three harvests per year. Other benefits include year round river navagation, hydroelectric power, more fish harvests, reduced flooding and more industrial employment. opportunites.

  6. Case study analysis of legal and institutional obstacles and incentives to the development of the hydroelectric potential at Goose River, Maine

    SciTech Connect

    None,

    1980-05-01

    The case study is an analysis of the legal, institutional, and financial incentives and obstacles to the development of the hydroelectric potential on the Goose River in Maine. The Goose River project concerns development by a private developer, Maine Hydro-Electric Development Corporation. The project is comprised of a five-dam system, with the first dam located at Swan Lake and the fifth dam about one mile from the sea. It will utilize the 7500 acre-feet of storage capacity of Swan Lake to run the four downstream power stations. The system is designed to generate 430 kWs of total capacity which would be sold to Central Maine Power, the local investor-owned public utility.

  7. Analysis of synchronous and induction generators used at hydroelectric power plant

    NASA Astrophysics Data System (ADS)

    Diniş, C. M.; Popa, G. N.; lagăr, A.

    2017-01-01

    In this paper is presented an analysis of the operating electric generators (synchronous and induction) within a small capacity hydroelectric power plant. Such is treated the problem of monitoring and control hydropower plant using SCADA systems. Have been carried an experimental measurements in small hydropower plant for different levels of water in the lake and various settings of the operating parameters.

  8. Evaluation of a Prototype Surface Flow Bypass for Juvenile Salmon and Steelhead at the Powerhouse of Lower Granite Dam, Snake River, Washington, 1996-2000

    SciTech Connect

    Johnson, Gary E.; Anglea, Steven M.; Adams, Noah S.; Wik, Timothy O.

    2005-02-28

    A surface flow bypass provides a route in the upper water column for naturally, surface-oriented juvenile salmonids to safely migrate through a hydroelectric dam. Surface flow bypasses were recommended in several regional salmon recovery plans as a means to increase passage survival of juvenile salmonids at Columbia and Snake River dams. A prototype surface flow bypass, called the SBC, was retrofit on Lower Granite Dam and evaluated from 1996 to 2000 using biotelemetry and hydroacoustic techniques. In terms of passage efficiency, the best SBC configurations were a surface skimmer (99 m3/s [3,500 cfs], three entrances 5 m wide, 5 m deep and one entrance 5 m wide, 15 m deep) and a single chute (99 m3/s, one entrance 5 m wide, 8.5 m deep). They each passed 62 ? 3% (95% confidence interval) of the total juvenile fish population that entered the section of the dam with the SBC entrances (Turbine Units 4-5). Smooth entrance shape and concentrated surface flow characteristics of these configurations are worth pursuing in designs for future surface flow bypasses. In addition, a guidance wall in the Lower Granite Dam forebay diverted the following percentages of juvenile salmonids away from Turbine Units 1-3 toward other passage routes, including the SBC: run-at-large 79 ? 18%; hatchery steelhead 86%; wild steelhead 65%; and yearling chinook salmon 66%. When used in combination with spill or turbine intake screens, a surface flow bypass with a guidance wall can produce a high level (> 90% of total project passage) of non-turbine passage and provide operational flexibility to fisheries managers and dam operators responsible for enhancing juvenile salmonid survival.

  9. Legal obstacles and incentives to the development of small scale hydroelectric potential in Michigan

    SciTech Connect

    None,

    1980-05-01

    The legal and institutional obstacles to the development of small-scale hydroelectric energy at the state level is described. The Federal government also exercises extensive regulatory authority in the area. The first obstacle which any developer must confront in Michigan is obtaining the authority to utilize the river bed, banks, and flowing water at a proposed dam site. This involves a determination of ownership of the stream banks and bed, and the manner of obtaining either their title or use; and existing constraints with regard to the use of the water. Michigan follows the riparian theory of water law. The direct regulation; indirect regulation; public utilities regulation; financing; and taxation are discussed.

  10. Detail of MoronytoRainbow Hframe structure just east of Ryan Dam ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of Morony-to-Rainbow H-frame structure just east of Ryan Dam Road showing three historic porcelain suspension insulators in strings of six. View to east - Morony Hydroelectric Facility, Morony-to-Rainbow 100 kV Transmission Line, West bank of the Missouri River, Great Falls, Cascade County, MT

  11. Design Tools to Assess Hydro-Turbine Biological Performance: Priest Rapids Dam Turbine Replacement Project

    SciTech Connect

    Richmond, Marshall C.; Rakowski, Cynthia L.; Serkowski, John A.; Strickler, Brad; Weisbeck, Molly; Dotson, Curtis L.

    2013-06-25

    Over the past two decades, there have been many studies describing injury mechanisms associated with turbine passage, the response of various fish species to these mechanisms, and the probability of survival through dams. Although developing tools to design turbines that improve passage survival has been difficult and slow, a more robust quantification of the turbine environment has emerged through integrating physical model data, fish survival data, and computational fluid dynamics (CFD) studies. Grant County Public Utility District (GCPUD) operates the Priest Rapids Dam (PRD), a hydroelectric facility on the Columbia River in Washington State. The dam contains 10 Kaplan-type turbine units that are now almost 50 years old. The Utility District plans to refit all of these aging turbines with new turbines. The Columbia River at PRD is a migratory pathway for several species of juvenile and adult salmonids, so passage of fish through the dam is a major consideration when replacing the turbines. In this presentation, a method for turbine biological performance assessment (BioPA) is introduced. Using this method, a suite of biological performance indicators is computed based on simulated data from a CFD model of a proposed turbine design. Each performance indicator is a measure of the probability of exposure to a certain dose of an injury mechanism. Using known relationships between the dose of an injury mechanism and frequency of injury (dose–response) from laboratory or field studies, the likelihood of fish injury for a turbine design can be computed from the performance indicator. By comparing the values of the indicators from proposed designs, the engineer can identify the more-promising alternatives. We will present application of the BioPA method for baseline risk assessment calculations for the existing Kaplan turbines at PRD that will be used as the minimum biological performance that a proposed new design must achieve.

  12. Impacts of Water Level Fluctuations on Kokanee Reproduction in Flathead Lake; Effects of Operation of Kerr and Hungry Horse Dam on Reproductive Success, 1983 Annual Report.

    SciTech Connect

    Decker-Hess, Janet; McMullin, Steve L.

    1983-11-01

    Koktneesalmon (Oncorhvnchusnerka), the land-locked form of sockeye salmon, were originally introduced to Flathead Lake in 1916. My 1933, kokanee had become established in the lake and provided a popular summer trolling fishery as well as a fall snagging fishery in shoreline areas. Presently, Flathead Lake supports the second highest fishing pressure of any lake or reservoir in Montana (Montana Department of Fish and Game 1976). During 1981-82, the lake provided 168,792 man-days of fishing pressure. Ninety-two percent of the estimated 536,870 fish caught in Flathead Lake in 1981-82 were kokanee salmon. Kokanee also provided forage for bull trout seasonally and year round for lake trout. Kokanee rear to maturity in Flathead Lake, then return to various total grounds to spawn. Spawning occurred in lake outlet streams, springs, larger rivers and lake shoreline areas in suitable but often limited habitat. Shoreline spawning in Flathead Lake was first documented in the mid-1930's. Spawning kokanee were seized from shoreline areas in 1933 and 21,000 cans were processed and packed for distribution to the needy. Stefanich (1953 and 1954) later documented extensive but an unquantified amount of spawning along the shoreline as well as runs in Whitefish River and McDonald Creek in the 1950's. A creel census conducted in 1962-63 determined 11 to 13 percent of the kokanee caught annually were taken during the spawning period (Robbins 1966). During a 1981-82 creel census, less than one percent of the fishermen on Flathead Lake were snagging kokanee (Graham and Fredenberg 1982). The operation of Kerr Dam, located below Flathead Lake on the Flathead River, has altered seasonal fluctuations of Flathead Lake. Lake levels presently remain high during kokanee spawning in November and decline during the incubation and emergence periods. Groundwater plays an important role in embryo and fry survival in redds of shoreline areas exposed by lake drawdown. Stefanich (1954) and Domrose (1968

  13. Light-Emitting Tag Testing in Conjunction with Testing of the Minimum Gap Runner Turbine Design at Bonneville Dam Powerhouse 1

    SciTech Connect

    Carlson, Thomas J.; Weiland, Mark A.

    2001-01-30

    This report describes a pilot study conducted by Tom Carlson of PNNL and Mark Weiland of MEVATEC Corp to test the feasibility of using light-emitting tags to visually track objects passing through the turbine environment of a hydroelectric dam. Light sticks were released at the blade tip, mid-blade, and hub in the MGR turbine and a Kaplan turbine at Bonneville Dam and videotaped passing thru the dam to determine visibility and object trajectories.

  14. Capturing the Green River -- Multispectral airborne videography to evaluate the environmental impacts of hydropower operations

    SciTech Connect

    Snider, M.A.; Hayse, J.W.; Hlohowskyj, I.; LaGory, K.E.

    1996-02-01

    The 500-mile long Green River is the largest tributary of the Colorado River. From its origin in the Wind River Range mountains of western Wyoming to its confluence with the Colorado River in southeastern Utah, the Green River is vital to the arid region through which it flows. Large portions of the area remain near-wilderness with the river providing a source of recreation in the form of fishing and rafting, irrigation for farming and ranching, and hydroelectric power. In the late 1950`s and early 1960`s hydroelectric facilities were built on the river. One of these, Flaming Gorge Dam, is located just south of the Utah-Wyoming border near the town of Dutch John, Utah. Hydropower operations result in hourly and daily fluctuations in the releases of water from the dam that alter the natural stream flow below the dam and affect natural resources in and along the river corridor. In the present study, the authors were interested in evaluating the potential impacts of hydropower operations at Flaming Gorge Dam on the downstream natural resources. Considering the size of the area affected by the daily pattern of water release at the dam as well as the difficult terrain and limited accessibility of many reaches of the river, evaluating these impacts using standard field study methods was virtually impossible. Instead an approach was developed that used multispectral aerial videography to determine changes in the affected parameters at different flows, hydrologic modeling to predict flow conditions for various hydropower operating scenarios, and ecological information on the biological resources of concern to assign impacts.

  15. Integration of hydroelectric power and apiary management. Final report

    SciTech Connect

    Mitchell, C.

    1983-06-19

    Appropriate Technology Grant 3-80-342 is an attempt to integrate hydroelectric power with apiary management. The biggest challenge to the efficient completion of the project was connecting with the appropriate technology and associated personel to guide the project. Most of the so called ''experts'' in this field are at an early experimental stage in technology and knowledge. The existing system is capable of generating ample electricity six to seven months out of the year. The unit was operating consistantly near the end of winter. At present, it is not running due to lack of sufficient water.

  16. Effects of the Operation of Hungry Horse Dam on the Kokanee Fishery in the Flathead River System, 1984 Annual Progress Report.

    SciTech Connect

    Fraley, John J.

    1984-12-01

    This study assessed the effects of the operation of Hungry Horse Dam on the kokanee fishery in the Flathead River system. This report covers the 1983-84 field season concerning the effects of Hungry Horse operations on kokanee abundance and reproductive success in the upper Flathead River system. This report also addresses the projected recovery of the main stem kokanee run under the flow regime recommended by the Department of Fish, Wildlife and Parks and implemented by the Bureau of Reclamation and Bonneville Power Administration in 1982. An estimated 58,775 kokanee reached spawning grounds in the Flathead River System in 1983. The 1983 spawning run was composed of 92% age III + fish, as compared to an average of 80% from 1972-1983. A total of 6883 kokanee redds were enumerated in the main stem Flathead River in 1983. A total of 2366 man-days of angling pressure was estimated during the 1983 kokanee lure fishery in the Flathead River system. Estimated numbers of fry emigrating from McDonald Creek, the Whitefish River and Brenneman's Slough were 13,100,000, 66,254 and 37,198, yielding egg to fry survival rates of 76%, 10.4% and 19.2%.

  17. Hiilangaay Hydroelectric Project – Final Report

    SciTech Connect

    Twitchell, Sara; Stimac, Michael; Lang, Lisa; Witwer, Doreen; Jameson, Vincent

    2016-06-01

    The Hiilangaay Hydroelectric Project (“Hiilangaay” or the “Project”) is a 5-megawatt hydroelectric resource currently under construction on Prince of Wales Island (POW), Alaska, approximately ten miles east of Hydaburg. The objective of the Project is to interconnect with the existing transmission grid on Prince of Wales Island, increasing the hydroelectric generation capability by 5 MW, eliminating the need for diesel generation, increasing the reliability of the electrical system, and allowing the interconnected portion of the island to have 100 percent renewable energy generation. Pre-construction activities including construction planning, permit coordination and compliance, and final design have made it possible to move forward with construction of the Hiilangaay Project. Despite repeated delays to the schedule, persistence and long-term planning will culminate in the construction of the Project, and make Prince of Wales Island independent of diesel-fueled energy

  18. Big Creek Hydroelectric System, East & West Transmission Line, 241mile ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Big Creek Hydroelectric System, East & West Transmission Line, 241-mile transmission corridor extending between the Big Creek Hydroelectric System in the Sierra National Forest in Fresno County and the Eagle Rock Substation in Los Angeles, California, Visalia, Tulare County, CA

  19. ELECTRICAL SWITCHBOARD IN UPPER LEVEL OF HYDROELECTRIC POWER HOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ELECTRICAL SWITCHBOARD IN UPPER LEVEL OF HYDROELECTRIC POWER HOUSE - St. Lucie Canal, Lock No. 1, Hydroelectric Power House, St. Lucie, Cross State Canal, Okeechobee Intracoastal Waterway, Stuart, Martin County, FL

  20. 1. WEST FRONT OF HYDROELECTRIC POWERHOUSE WITH INTAKE STRUCTURE, CANAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. WEST FRONT OF HYDROELECTRIC POWERHOUSE WITH INTAKE STRUCTURE, CANAL SPILLWAY AT LEFT CENTER, VIEW EAST - Dayville Mills Hydroelectric Facility, Powerhouse, North side of Route 101, .5 mile west of Route 395, Killingly Center, Windham County, CT

  1. 3. VIEW EAST, DETAIL WEST FRONT OF HYDROELECTRIC POWERHOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW EAST, DETAIL WEST FRONT OF HYDROELECTRIC POWERHOUSE - Dayville Mills Hydroelectric Facility, Powerhouse, North side of Route 101, .5 mile west of Route 395, Killingly Center, Windham County, CT

  2. Use of an Autonomous Sensor to Evaluate the Biological Performance of the Advanced Turbine at Wanapum Dam

    SciTech Connect

    Deng, Zhiqun; Carlson, Thomas J.; Duncan, Joanne P.; Richmond, Marshall C.; Dauble, Dennis D.

    2010-10-13

    Hydropower is the largest renewable energy resource in the world and the United States. However, Hydropower dams have adverse ecological impacts because migrating fish may be injured or killed when they pass through hydro turbines. In the Columbia and Snake River basins, dam operators and engineers are required to make these hydroelectric facilities more fish-friendly through changes in hydro-turbine design and operation after fish population declines and the subsequent listing of several species of Pacific salmon in the Endangered Species Act of 1973. Grant County Public Utility District (Grant PUD) requested authorization from the Federal Energy Regulatory Commission to replace the 10 turbines at Wanapum Dam with advanced hydropower turbines that are designed to improve survival for fish passing through the turbines while improving operation efficiency and increasing power generation. The U.S. Department of Energy Office of Energy Efficiency and Renewable Energy provided co-funding to Grant PUD for aspects of performance testing that supported the application. As an additional measure to the primary evaluation measure of direct injury and mortality rates of juvenile Chinook salmon using balloon tag-recapture methodology, this study used an autonomous sensor device to provide insight into the specific hydraulic conditions or physical stresses that the fish experienced or the specific causes of the biological response. We found that the new blade shape and the corresponding reduction of turbulence in the advanced hydropower turbine were effective. The frequency of severe events based on Sensor Fish pressure and acceleration measurements showed trends similar to those of fish survival determined by balloon tag-recapture tests. In addition, the new turbine provided a better pressure and rate of change environment for fish passage. Overall, the Sensor Fish data indicated that the advanced hydro turbine design met the desired fish passage goals for Wanapum Dam.

  3. Spatial variation of sediment mineralization supports differential CO2 emissions from a tropical hydroelectric reservoir

    PubMed Central

    Cardoso, Simone J.; Vidal, Luciana O.; Mendonça, Raquel F.; Tranvik, Lars J.; Sobek, Sebastian; Fábio, Roland

    2013-01-01

    Substantial amounts of organic matter (OM) from terrestrial ecosystems are buried as sediments in inland waters. It is still unclear to what extent this OM constitutes a sink of carbon, and how much of it is returned to the atmosphere upon mineralization to carbon dioxide (CO2). The construction of reservoirs affects the carbon cycle by increasing OM sedimentation at the regional scale. In this study we determine the OM mineralization in the sediment of three zones (river, transition, and dam) of a tropical hydroelectric reservoir in Brazil as well as identify the composition of the carbon pool available for mineralization. We measured sediment organic carbon mineralization rates and related them to the composition of the OM, bacterial abundance and pCO2 of the surface water of the reservoir. Terrestrial OM was an important substrate for the mineralization. In the river and transition zones most of the OM was allochthonous (56 and 48%, respectively) while the dam zone had the lowest allochthonous contribution (7%). The highest mineralization rates were found in the transition zone (154.80 ± 33.50 mg C m-2 d-1) and the lowest in the dam (51.60 ± 26.80 mg C m-2 d-1). Moreover, mineralization rates were significantly related to bacterial abundance (r2 = 0.50, p < 0.001) and pCO2 in the surface water of the reservoir (r2 = 0.73, p < 0.001). The results indicate that allochthonous OM has different contributions to sediment mineralization in the three zones of the reservoir. Further, the sediment mineralization, mediated by heterotrophic bacteria metabolism, significantly contributes to CO2 supersaturation in the water column, resulting in higher pCO2 in the river and transition zones in comparison with the dam zone, affecting greenhouse gas emission estimations from hydroelectric reservoirs. PMID:23641239

  4. Investigating passage of ESA-listed juvenile fall Chinook salmon at Lower Granite Dam during winter when the fish bypass system is not operated

    USGS Publications Warehouse

    Kock, Tobias J.; Tiffan, Kenneth F.; Connor, William P.

    2007-01-01

    During the winter of 2006-07, we radio and passive integrated transponder (PIT) tagged, and released 99 juvenile fall Chinook salmon to evaluate over-wintering behavior and dam passage in the lower Snake River, Washington. All fish were released 10 km upstream of Lower Granite Dam at Granite Point in early November, 2006. Fixed radio telemetry detection sites located in the forebay and tailrace areas of Lower Granite, Little Goose, Lower Monumental, Ice Harbor, Bonneville dams, and at Lyle, Washington were used to monitor fish movements and dam passage through early-May 2007. Of the 99 fish released during our study, 80 passed Lower Granite Dam and were detected at downstream detection sites, 37 passed Little Goose Dam, 41 passed Lower Monumental Dam, 31 passed Ice Harbor Dam, 18 passed Lyle, WA, and 13 passed Bonneville Dam. Of the fish that passed Lower Granite Dam in the fall, 63 fish did so during the extended bypass period from November 1 through December 16. Of these fish, 53 were also detected by the PIT-tag interrogation system. Fifteen of the fish that passed Lower Granite Dam in the fall continued to pass lower Snake River dams and exit the system by the end of January. The remaining fish either died, their tags failed, or they resided in Little Goose Reservoir until spring when relatively few continued their seaward migration. Passage of tagged fish past lower Snake River dams generally declined during the winter as temperatures decreased, but increased again in the spring as temperatures and flows increased. Fish residence times in reservoirs and forebays was lengthy during the winter (up to 160 d), and varied by reservoir and time of year. We observed no diel trends in fish passage. Very few fish were detected at PIT-tag interrogation sites in the spring compared to detection by radio telemetry detection sites indicating that fish may have passed via spill. We believe that passage of overwintering juvenile fall Chinook salmon during winter is due more

  5. Dental dam patch: an effective intraoral repair technique using cyanoacrylate.

    PubMed

    Liebenberg, W H

    1998-10-01

    Secondary dental dam retention is a critical component of successful dental dam isolation and relates to the provision of an effective seal at the dam/tooth junction. Restorative success can be compromised if this seal is inadvertently interrupted during the operative effort. One such periodic mishap is entanglement of the bur and the interdental dam strip during caries or restorative removal. This invariably results in a gaping interproximal defect in the dam. This article discusses the importance of optimum isolation as it relates to current "wet bonding" adhesive procedures, and introduces a repair technique using a patch of dental dam and cyanoacrylate.

  6. 76 FR 67169 - Solia 9 Hydroelectric LLC Riverbank Hydro No. 17 LLC Lock Hydro Friends Fund XLI FFP Project 54...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-31

    ...), and operate run-of-river utilizing surplus water from the Tom Bevill Lock & Dam, as directed by the... surplus water from the Tom Bevill Lock & Dam, as directed by the Corps. Applicant Contact: Mr. Kuo-Bao... utilizing surplus water from the Tom Bevill Lock & Dam, as directed by the Corps. Applicant Contact:...

  7. Engineering theory of slide processes in the design of earth dams on a soft ground foundation

    SciTech Connect

    Krasil'nikov, N.A.

    1987-11-01

    This paper discusses the slope stability and landslide propensity of several hydroelectric plant earth dams throughout the Soviet Union from the standpoint of slide theory and compares the research of several Soviet institutions into this problem with existing standards and recommendations on dam stability and reliability. The comparisons are made for earth dams having a soft ground foundation under static loading conditions. Applicable properties are discussed for a wide range of soils and rocks including clays, loams, sands, alluvials, and soft and hard gravels. Seismic effects are not discussed.

  8. American Recovery and Reinvestment Act: North Fork Skokomish Powerhouse at Cushman No. 2 Dam

    SciTech Connect

    Fischer, Steve; McCarty, Patrick

    2013-09-30

    The objective of this project was to add generating capacity on an in-stream flow release at Tacoma Power's Cushman hydroelectric project, Cushman No. 2 Dam, FERC Project P-460. The flow that is being used to generate additional electricity was being discharged from a valve at the base of the dam without recovery of the energy. A second objective to the project was to incorporate upstream fish passage by use of a fish collection structure attached to the draft tubes of the hydroelectric units. This will enable reintroduction of native anadromous fish above the dams which have blocked fish passage since the late 1920's. The project was funded in part by the American Recovery and Reinvestment Act through the Department of Energy, Office of Energy, Efficiency and Renewable Energy, Wind and Water Power Program.

  9. The Use of Advanced Hydroelectric Turbines to Improve Water Quality and Fish Populations

    SciTech Connect

    Brookshier, P A; Cada, G F; Flynn, J V; Rinehart, B N; Sale, M J; Sommers, G L

    1999-09-20

    Hydroelectric power contributes about 10 percent of the electrical energy generated in the United States, and nearly 20 percent of the world's electrical energy. It is a renewable energy source that can contribute significantly to reduction of greenhouse gases by offsetting conventional carbon-based electricity generation. However, rather than growing in importance, hydroelectric generation has actually declined in recent years, often as a consequence of environmental concerns centering around (1) restriction of upstream and downstream fish passage by the dam, and (2) alteration of water quality and river flows by the impoundment. The Advanced Hydropower Turbine System (AHTS) Program of the U.S. Department of Energy is developing turbine technology which would help to maximize global hydropower resources while minimizing adverse environmental effects. Major technical goals for the Program are (1) the reduction of mortality among turbine-passed fish to 2 percent or less, compared to current levels ranging up to 30 percent or greater; and (2) development of aerating turbines that would ensure that water discharged from reservoirs has a dissolved oxygen concentration of at least 6 mg/L. These advanced, "environmentally friendly" turbines would be suitable both for new hydropower installations and for retrofitting at existing dams. Several new turbine designs that have been developed in the initial phases of the AHTS program are described.

  10. Advanced, Environmentally Friendly Hydroelectric Turbines for the Restoration of Fish and Water Quality

    SciTech Connect

    Brookshier, P.A.; Cada, G.F.; Flynn, J.V.; Rinehart, B.N.; Sale, M.J.; Sommers, G.L.

    1999-09-06

    Hydroelectric power contributes about 10 percent of the electrical energy generated in the United States, and nearly 20 percent of the world�s electrical energy. The contribution of hydroelectric generation has declined in recent years, often as a consequence of environmental concerns centering around (1) restriction of upstream and downstream fish passage by the dam, and (2) alteration of water quality and river flows by the impoundment. The Advanced Hydropower Turbine System (AHTS) Program of the U.S. Department of Energy is developing turbine technology which would help to maximize global hydropower resources while minimizing adverse environmental effects. Major technical goals for the Program are (1) the reduction of mortality among turbine-passed fish to 2 percent or less, compared to current levels ranging up to 30 percent or greater; and (2) development of aerating turbines that would ensure that water discharged from reservoirs has a dissolved oxygen concentration of at least 6 mg/L. These advanced, �environmentally friendly� turbines would be suitable both for new hydropower installations and for retrofitting at existing dams. Several new turbine designs that have been he AHTS program are described.

  11. A model for the data extrapolation of greenhouse gas emissions in the Brazilian hydroelectric system

    NASA Astrophysics Data System (ADS)

    Pinguelli Rosa, Luiz; Aurélio dos Santos, Marco; Gesteira, Claudio; Elias Xavier, Adilson

    2016-06-01

    Hydropower reservoirs are artificial water systems and comprise a small proportion of the Earth’s continental territory. However, they play an important role in the aquatic biogeochemistry and may affect the environment negatively. Since the 90s, as a result of research on organic matter decay in manmade flooded areas, some reports have associated greenhouse gas emissions with dam construction. Pioneering work carried out in the early period challenged the view that hydroelectric plants generate completely clean energy. Those estimates suggested that GHG emissions into the atmosphere from some hydroelectric dams may be significant when measured per unit of energy generated and should be compared to GHG emissions from fossil fuels used for power generation. The contribution to global warming of greenhouse gases emitted by hydropower reservoirs is currently the subject of various international discussions and debates. One of the most controversial issues is the extrapolation of data from different sites. In this study, the extrapolation from a site sample where measurements were made to the complete set of 251 reservoirs in Brazil, comprising a total flooded area of 32 485 square kilometers, was derived from the theory of self-organized criticality. We employed a power law for its statistical representation. The present article reviews the data generated at that time in order to demonstrate how, with the help of mathematical tools, we can extrapolate values from one reservoir to another without compromising the reliability of the results.

  12. Efforts to Reduce the Impacts of Hydroelectric Power Production on Reservoir Fisheries in the United States.

    SciTech Connect

    Cada, G. F.

    1997-09-08

    Research into the environmental effects of hydroelectric power production in the United States has focused increasingly on resident and migratory fish populations. Hydropower dams and reservoirs can block fish movements in both upstream and downstream directions. These movements are essential for important stocks of anadromous and catadromous fish. In addition, some strictly freshwater fish may move long distances within a river during their life cycle.A dam can pose an impassable barrier for fish trying to move upstream unless mitigation measures in the form of ladders or lifts are provided. Fish moving downstream to the sea may become disoriented when they encounter static water within a reservoir. Both resident and migratory fish may be injured or killed by passing through the turbine or over the spillway. In the United States, a variety of organizations conduct applied research and development of measures to (1) enhance fish passage, (2) reduce the numbers of fish that are drawn into the turbine intakes, and (3) reduce the injury and mortality rates of fish that pass through the turbines. Examples of these efforts from a variety of river systems and hydroelectric power plants are described.

  13. 43 CFR 418.18 - Diversions at Derby Dam.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false Diversions at Derby Dam. 418.18 Section... Operations and Management § 418.18 Diversions at Derby Dam. (a) Diversions of Truckee River water at Derby Dam must be managed to maintain minimum terminal flow to Lahontan Reservoir or the Carson River...

  14. Performance of a surface bypass structure to enhance juvenile steelhead passage and survival at Lower Granite Dam, Washington

    USGS Publications Warehouse

    Adams, Noah S.; Plumb, John M.; Perry, Russell W.; Rondorf, Dennis W.

    2014-01-01

    An integral part of efforts to recover stocks of Pacific salmon Oncorhynchus spp. and steelhead O. mykiss in Pacific Northwest rivers is to increase passage efficacy and survival of juveniles past hydroelectric dams. As part of this effort, we evaluated the efficacy of a prototype surface bypass structure, the removable spillway weir (RSW), installed in a spillbay at Lower Granite Dam, Washington, on the Snake River during 2002, 2003, 2005, and 2006. Radio-tagged juvenile steelhead were released upstream from the dam and their route of passage through the turbines, juvenile bypass, spillway, or RSW was recorded. The RSW was operated in an on-or-off condition and passed 3–13% of the total discharge at the dam when it was on. Poisson rate models were fit to the passage counts of hatchery- and natural-origin juvenile steelhead to predict the probability of fish passing the dam. Main-effect predictor variables were RSW operation, diel period, day of the year, proportion of flow passed by the spillway, and total discharge at the dam. The combined fish passage through the RSW and spillway was 55–85% during the day and 37–61% during the night. The proportion of steelhead passing through nonturbine routes was <88% when the RSW was off during the day and increased to >95% when the RSW was on during the day. The ratio of the proportion of steelhead passed to the proportion of water passing the RSW was from 6.3:1 to 10.0:1 during the day and from 2.7:1 to 5.2:1 during the night. Steelhead passing through the RSW exited the tailrace about 15 min faster than fish passing through the spillway. Mark–recapture single-release survival estimates for steelhead passing the RSW ranged from 0.95 to 1.00. The RSW appeared to be an effective bypass structure compared with other routes of fish passage at the dam.

  15. 33 CFR 208.19 - Marshall Ford Dam and Reservoir (Mansfield Dam and Lake Travis), Colorado River, Tex.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (Mansfield Dam and Lake Travis), Colorado River, Tex. 208.19 Section 208.19 Navigation and Navigable Waters... Marshall Ford Dam and Reservoir (Mansfield Dam and Lake Travis), Colorado River, Tex. The Secretary of the Interior, through his agent, the Lower Colorado River Authority (LCRA) shall operate the Marshall Ford...

  16. 33 CFR 208.19 - Marshall Ford Dam and Reservoir (Mansfield Dam and Lake Travis), Colorado River, Tex.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (Mansfield Dam and Lake Travis), Colorado River, Tex. 208.19 Section 208.19 Navigation and Navigable Waters... Marshall Ford Dam and Reservoir (Mansfield Dam and Lake Travis), Colorado River, Tex. The Secretary of the Interior, through his agent, the Lower Colorado River Authority (LCRA) shall operate the Marshall Ford...

  17. 33 CFR 208.19 - Marshall Ford Dam and Reservoir (Mansfield Dam and Lake Travis), Colorado River, Tex.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (Mansfield Dam and Lake Travis), Colorado River, Tex. 208.19 Section 208.19 Navigation and Navigable Waters... Marshall Ford Dam and Reservoir (Mansfield Dam and Lake Travis), Colorado River, Tex. The Secretary of the Interior, through his agent, the Lower Colorado River Authority (LCRA) shall operate the Marshall Ford...

  18. Use and usability of experimental monitoring data and temperature modeling to inform adaptive management of the Colorado River's thermal regime for native fish conservation below Glen Canyon Dam

    NASA Astrophysics Data System (ADS)

    Melis, T. S.

    2014-12-01

    Seasonal thermal variability of the Colorado River in Grand Canyon was severely decreased by closure of Glen Canyon Dam and filling of Lake Powell reservoir that was achieved in 1980. From 1973 to 2002, downstream summer river temperatures at Lees Ferry were about 18°C below pre-dam conditions, and limited juvenile native fish growth and survival. A large-scale flow experiment to improve the river's thermal regime for spawning and rearing habitat of endangered native humpback chub and other native fish in eastern Grand Canyon was conducted in Water Year 2000. Monitoring revealed warming, but well below the 16-18°C optimum for chub 124 km below the dam near the Little Colorado River confluence, and no measurable chub population increase in Grand Canyon. Fall-timed stable flow experiments to improve shoreline chub nursery habitat (2008-12) were also inconclusive relative to juvenile chub growth and recruitment. Field studies also showed that daytime warming of shoreline habitats used by fish under steady flows is limited by high daily exchange rates with main channel water. Monthly averaged and higher resolution temperature models have also been developed and used to support more recent experimental management planning. Temperature simulations have been useful for screening dam release scenarios under varied reservoir storage conditions with and without use of previously proposed but never constructed multilevel intake structures on the dam's hydroelectric units. Most importantly, modeling revealed the geophysical limits on downstream warming under existing water management and dam operating policies. Hourly unsteady flow simulations in 2006 predicted equivalent levels of average downstream river warming under either fluctuating or steady flows for a given monthly release volume. River warming observed since 2002, has resulted from reduced Lake Powell storage resulting from drier upper basin hydrology. In support of new environmental compliance on dam operations

  19. National Program for Inspection of Non-Federal Dams, Black Brook Dam (MA 01057), Connecticut River Basin, Blandford, Massachusetts. Phase I Inspection Report.

    DTIC Science & Technology

    1980-03-01

    has been in operation since that time. (i) Normal Operation Procedure The Black Brook Dam is normally self regulating with the only controlled outlet...made from originals provided by the Soil Conserva- tion Service. 2.3 Operational Data 1 The dam is self regulating for flood control purposes, and no...operational procedures are available for this dam. The dam is normally self regulating for flood control purposes. The sluice gate on the pond drain is

  20. Evaluation of a prototype surface flow bypass for juvenile salmon and steelhead at the powerhouse of Lower Granite Dam, Snake River, Washington, 1996-2000

    USGS Publications Warehouse

    Johnson, G.E.; Anglea, S.M.; Adams, N.S.; Wik, T.O.

    2005-01-01

    A surface flow bypass takes advantage of the natural surface orientation of most juvenile salmon Oncorhynchus spp. and steelhead O. mykiss by providing a route in the upper water column that downstream migrant fishes can use to pass a hydroelectric dam safely. A prototype structure, called the surface bypass and collector (SBC), was retrofitted on the powerhouse of Lower Granite Dam and was evaluated annually with biotelemetry and hydroacoustic techniques during the 5-year life span of the structure (1996-2000) to determine the entrance configuration that maximized passage efficiency and minimized forebay residence time. The best tested entrance configuration had maximum inflow (99 m 3/s) concentrated in a single surface entrance (5 m wide, 8.5 m deep). We identified five important considerations for future surface flow bypass development in the lower Snake River and elsewhere: (1) an extensive flow net should be formed in the forebay by use of relatively high surface flow bypass discharge (>7% of total project discharge); (2) a gradual increase in water velocity with increasing proximity to the surface flow bypass (ideally, acceleration 3 m/s) to entrain the subject juvenile fishes; (4) the shape and orientation of the surface entrance(s) should be adapted to fit site-specific features; and (5) construction of a forebay wall to increase fish availability to the surface flow bypass should be considered. The efficiency of the SBC was not high enough (maximum of 62% relative to passage at turbine units 4-5) for the SBC to operate as a stand-alone bypass. Anywhere that surface-oriented anadromous fish must negotiate hydroelectric dams, surface flow bypass systems can provide cost-effective use of typically limited water supplies to increase the nonturbine passage, and presumably survival, of downstream migrants. ??Copyright by the American Fisheries Society 2005.

  1. CRIB DAM, LOOKING ALONG DAM FROM WEST ABUTMENT, SHOWING PLANK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CRIB DAM, LOOKING ALONG DAM FROM WEST ABUTMENT, SHOWING PLANK SHEATHING IN FOREGROUND. VIEW TO EAST - Kachess Dam, 1904 Cascade Canal Company Crib Dam, Kachess River, 1.5 miles north of Interstate 90, Easton, Kittitas County, WA

  2. 50. LOCK AND DAM NO. 26 (REPLACEMENT). FIRST STAGE DAM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. LOCK AND DAM NO. 26 (REPLACEMENT). FIRST STAGE DAM -- DAM CONCRETE -- GENERAL ARRANGEMENT -- SECTION AND ELEVATIONS. M-L 26(R) 40/3 - Upper Mississippi River 9-Foot Channel Project, Lock & Dam 26R, Alton, Madison County, IL

  3. 49. LOCK AND DAM NO. 26 (REPLACEMENT). FIRST STAGE DAM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    49. LOCK AND DAM NO. 26 (REPLACEMENT). FIRST STAGE DAM -- DAM CONCRETE -- TYPICAL PIER ISOMETRIC. M-L 26(R) 40/1 - Upper Mississippi River 9-Foot Channel Project, Lock & Dam 26R, Alton, Madison County, IL

  4. Benthic invertebrate communities in the fluctuating riverine habitat below Conowingo Dam. Final report

    SciTech Connect

    Janicki, A.J.; Ross, R.N.

    1982-03-01

    This report summarizes the findings of a benthic invertebrate study conducted on the Susquehanna River in the vicinity of the Conowingo Dam and hydroelectric generating station. Variations in the release of water from hydroelectric projects can strongly affect the availability of suitable habitats for downstream benthic invertebrates. To examine the extent of this problem in the Susquehanna River below Conowingo reservoir, basket samples were deployed along four transects in three habitats: constantly submerged channels, pools that become isolated at low flow, and areas exposed at low flow. Samplers were incubated for 3-week periods from June through October.

  5. Federal legal obstacles and incentives to the development of the small-scale hydroelectric potential of the nineteen Northeastern states. Executive summary

    SciTech Connect

    None,

    1980-05-01

    The main report for which this report is the executive summary, DOE/RA--23-216.00.0-01 (see EAPA 5:3929), was published in revised form in March 1979. Also, since that time, Energy Law Institute has produced detailed legal memoranda on obstacles and incentives for each of the 19 states. This executive summary summarizes the findings and observations of the original report. Specific summaries included are: Federal Jurisdiction Over Small-Scale Hydroelectric Facilities; The FERC; The Regulation of Construction in and the Discharge of Dredged, Fill, and Other Materials into the Waters of the US; The Protection of Fish, Wildlife, and Endangered Species; The Preservation of Historic Places, Archaeological Sites, and Natural Areas; Regulation of the Use of Federal Lands; Federal Dam Construction and Power-Distribution Agencies; Additional Federal Agencies Concerned with Small-Scale Hydroelectric Dams; Federal Tax Devices and Business Structures Affecting Small-Scale Hydroelectric Development; and an Outline of Federal-Assistance programs Available for Small-Scale Hydroelectric Development.

  6. 33 CFR 208.25 - Pensacola Dam and Reservoir, Grand (Neosho) River, Okla.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Pensacola Dam and Reservoir..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE FLOOD CONTROL REGULATIONS § 208.25 Pensacola Dam and Reservoir... Dam, referred to in this section as the Representative shall operate the dam and reservoir in...

  7. 33 CFR 208.25 - Pensacola Dam and Reservoir, Grand (Neosho) River, Okla.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Pensacola Dam and Reservoir..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE FLOOD CONTROL REGULATIONS § 208.25 Pensacola Dam and Reservoir... Dam, referred to in this section as the Representative shall operate the dam and reservoir in...

  8. 33 CFR 208.25 - Pensacola Dam and Reservoir, Grand (Neosho) River, Okla.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Pensacola Dam and Reservoir..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE FLOOD CONTROL REGULATIONS § 208.25 Pensacola Dam and Reservoir... Dam, referred to in this section as the Representative shall operate the dam and reservoir in...

  9. 33 CFR 208.25 - Pensacola Dam and Reservoir, Grand (Neosho) River, Okla.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Pensacola Dam and Reservoir..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE FLOOD CONTROL REGULATIONS § 208.25 Pensacola Dam and Reservoir... Dam, referred to in this section as the Representative shall operate the dam and reservoir in...

  10. 33 CFR 208.25 - Pensacola Dam and Reservoir, Grand (Neosho) River, Okla.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Pensacola Dam and Reservoir..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE FLOOD CONTROL REGULATIONS § 208.25 Pensacola Dam and Reservoir... Dam, referred to in this section as the Representative shall operate the dam and reservoir in...

  11. Preliminary analysis of legal obstacles and incentives to the development of low-head hydroelectric power in the northeastern United States

    SciTech Connect

    Not Available

    1980-05-01

    A preliminary analysis of the legal obstacles and incentives to the development of the low-head hydroelectric potential of the 19 northeastern US (Maine, New Hampshire, Vermont, Massachusetts, Rhode Island, Connecticut, New York, New Jersey, Pennsylvania, Ohio, Indiana, Michigan, Illinois, Wisconsin, Kentucky, Maryland, Delaware, Virginia, and West Virginia) is presented. The statutes and case laws of the 19 states and the Federal government which affect developers of small dams are stressed. The legal uncertainty which confronts the developer of small dams and the regulatory burden to which the developer may be subjected once the uncertainty is resolved are emphasized.

  12. Focusing on dam safety

    SciTech Connect

    Lagassa, G.

    1993-01-01

    With increased relicensing activity and a federal emphasis on safety, dam repair and refurbishment is a growing business. Providers of goods and services are gearing up to meet the dam repair and rehabilitation needs that result.

  13. Environmental requirements at hydroelectric power plants

    SciTech Connect

    Cada, G.F.; Francfort, J.E.

    1993-12-31

    Hydroelectric power is the most mature and widely implemented of the renewable energy technologies. The energy of flowing water has been used to perform work directly since ancient times, and the use of hydropower turbines to generate electricity traces back to the 19th century. Two commonly used turbine types, the Francis and Kaplan turbines, are essentially refinements of the simple reaction turbine of Hero of Alexandria, dating from about 100 B.C. (NAS 1976). Hydroelectric power production provides over 10% of the net electrical generation in the US, more than petroleum or natural gas and far more than the other renewable energy technologies combined. On a regional basis, hydroelectric power represents 14% of the net electrical power generation in the Rocky Mountain states and nearly 63% along the Pacific Coast. Those states that have the largest percentages of their electricity generated by hydropower (e.g., Idaho, Oregon, Montana, and Washington) also tend to have the lowest average cost of electricity per kilowatt-hour.

  14. Assessing survival of Mid-Columbia River released juvenile salmonids at McNary Dam, Washington, 2008-09

    USGS Publications Warehouse

    Evans, Scott D.; Walker, Christopher E.; Brewer, Scott J.; Adams, Noah S.

    2010-01-01

    Few studies have evaluated survival of juvenile salmon over long river reaches in the Columbia River and information regarding the survival of sockeye salmon at lower Columbia River dams is lacking. To address these information gaps, the U.S. Geological Survey was contracted by the U.S. Army Corps of Engineers to evaluate the possibility of using tagged fish released in the Mid-Columbia River to assess passage and survival at and downstream of McNary Dam. Using the acoustic telemetry systems already in place for a passage and survival study at McNary Dam, fish released from the tailraces of Wells, Rocky Reach, Rock Island, Wanapum, and Priest Rapids Dams were detected at McNary Dam and at the subsequent downstream arrays. These data were used to generate route-specific survival probabilities using single-release models from fish released in the Mid-Columbia River. We document trends in passage and survival probabilities at McNary Dam for yearling Chinook and sockeye salmon and juvenile steelhead released during studies in the Mid-Columbia River. Trends in the survival and passage of these juvenile salmonid species are presented and discussed. However, comparisons made across years and between study groups are not possible because of differences in the source of the test fish, the type of acoustic tags used, the absence of the use of passive integrated transponder tags in some of the release groups, differences in tagging and release protocols, annual differences in dam operations and configurations, differences in how the survival models were constructed (that is, number of routes that could be estimated given the number of fish detected), and the number and length of reaches included in the analysis (downstream reach length and arrays). Despite these differences, the data we present offer a unique opportunity to examine the migration behavior and survival of a group of fish that otherwise would not be studied. This is particularly true for sockeye salmon because

  15. Hoover Dam Learning Packet.

    ERIC Educational Resources Information Center

    Bureau of Reclamation (Dept. of Interior), Washington, DC.

    This learning packet provides background information about Hoover Dam (Nevada) and the surrounding area. Since the dam was built at the height of the Depression in 1931, people came from all over the country to work on it. Because of Hoover Dam, the Colorado River was controlled for the first time in history and farmers in Nevada, California, and…

  16. Beyond hydrology in the sustainability assessment of dams: A planners perspective - The Sarawak experience

    NASA Astrophysics Data System (ADS)

    Andre, Edward

    2012-01-01

    SummaryThere is increasing concern about the availability of water supplies in developing countries to provide clean drinking water and sanitation as well as providing for irrigation for food security. This has led to hydrologically led investigation to establish the feasibility and storage capacity of potentially new dam sites. This task has become more difficult for hydrologists and others with the uncertainties created by climate change and the measurement of the hydrological, geographical and ecological footprint of new dams. The questions asked by hydrologists are increasingly likely to be required to be cast in terms of the four pillars of sustainability; environmental, economic, social and institutional. Similarly, regional planners have to be more cognisant of the social outcomes of dam development while understanding the wider hydrological context at a watershed and basin level. The paper defines the concept of sustainability assessment in the context of resettlement and analyses its implications for the Bakun Hydro-electric project in Sarawak, Malaysia. Specifically it attempts to address the question of what social sustainability would really mean in the context of communities affected by dam projects, and their catchments using hermeneutics, tradeoffs and offsets. The findings of this question were presented at a hydrological conference held in Santiago in October 2010, based on the outcome of specific questionnaire responses received from indigenous peoples affected by the Bakun Dam hydroelectric project. The paper also offers some insights pertaining to the social sustainability assessment aspects of dams and their catchments.

  17. Determining operating policies for a water resource system

    NASA Astrophysics Data System (ADS)

    Dagli, C. H.; Miles, J. F.

    1980-07-01

    The object of the study described in this paper was to find a method of determining operating policies for a set of four dams which are to be constructed on the Firat (Euphrates) River in Turkey. Each of the dams has an associated hydro-electric power plant, and there are requirements to supply water for irrigation, as well as maintaining river flows downstream of the dams into Syria and Iraq. The problem is thus complex and conventional stochastic models would entail an excessive amount of computation. Moreover, the set of feasible operating policies is so large that simulation cannot be considered a viable alternative. The method adopted might be described as adaptive planning (AP). At time l a forecast is made of the inflow values expected during the planning period and using these forecast values a deterministic model of the system is solved to obtain an operating policy for time l + 1. The forecast is updated and the model re-run at each successive time period to yield revised policies based on the latest available data. The solution obtained by this method for a five-year test period, using historical data, was within 0.4% of the optimal solution.

  18. McNary Dam, Ice Harbor Dam, and Lower Monumental Dam Smolt Monitoring Program; 1996 Annual Report.

    SciTech Connect

    Hillson, Todd; Lind, Sharon; Price, William

    1997-07-01

    The Washington Department of Fish & Wildlife (WDFW) assumed responsibility for the Smolt Monitoring Program at McNary Dam on the Columbia River in 1990 and at the new juvenile collection facility at Lower Monumental Dam on the Snake River in 1993. In 1996, Smolt Monitoring Program activities also began at the new juvenile collection facility located at Ice Harbor Dam. This report summarizes the 1996 Smolt Monitoring work at all three sites. The work at Ice Harbor consisted of Gas Bubble Trauma (GBT) monitoring only. In general, the 1996 passage season at both the McNary and Lower Monumental sites can be characterized by reduced passage of juveniles through the collection systems due to elevated river flows and spill, and low (<1%) overall facility mortality rates most likely resulting from cooler water temperatures. In accordance with the National Marine Fisheries Service recommendations (NMFS, 1995) all spring migrants were bypassed at McNary Dam in 1996. Mechanical problems within the McNary collection system resulted in collection and sampling activities being delayed until April 18 at this site, while sampling and collection began on the scheduled starting date of April 1 at Lower Monumental Dam. Monitoring operations were conducted through December 14 at McNary Dam and through October 28 at Lower Monumental Dam. An ongoing transportation evaluation summer migrant marking program was conducted at McNary Dam in 1996 by the NMFS. This necessitated the sampling of 394,211 additional fish beyond the recommended sampling guidelines. All total, 509,237 and 31,219 juvenile salmonids were anesthetized and individually counted, examined for scale loss, injuries, and brands by WDFW Smolt Monitoring personnel in 1996 at McNary Dam and Lower Monumental Dam, respectively.

  19. Seismic performance analysis of Tendaho earth fill dam, Ethiopia.

    NASA Astrophysics Data System (ADS)

    Berhe, T.; Wu, W.

    2009-04-01

    The Tendaho dam is found in the Afar regional state, North Eastern part of Ethiopia. It is located within an area known as the ‘Tendaho Graben' ,which forms the center of Afar triangle, a low lying area of land where East African, Red sea and the Gulf of Eden Rift systems converge. The dam is an earthfill dam with a volume of about 4 Million cubic meters and with mixed clay core. The geological setting associated with the site of the dam, the geotechnical properties of the dam materials and seismicity of the region are reviewed. Based on this review, the foundation materials and dam body include some liquefiable granular soils. Moreover, the active East African Rift Valley fault, which can generate an earthquake of magnitude greater than 6, passes through the dam body. This valley is the primary seismic source contributing to the hazard at the Tendaho dam site. The availability of liquefiable materials beneath and within the dam body and the presence of the active fault crossing the dam site demand a thorough seismic analysis of the dam. The peak ground acceleration (PGA) is selected as a measure of ground motion severity. The PGA was selected according to the guidelines of the International Commission on Large Dams, ICOLD. Based on the criteria set by the ICOLD, the dam is analyzed for two different earthquake magnitudes, the Maximum Credible Earthquake (MCE) and the Operating Basis Earthquake (OBE). Numerical codes are useful tools to investigate the safety of dams in seismic prone areas. In this paper, FLAC3D numerical tool is used to investigate the performance of the dam under dynamic loading. Based on the numerical analysis, the seismic performance of the dam is investigated.

  20. PERSPECTIVE ON LANDSLIDE DAMS.

    USGS Publications Warehouse

    Schuster, Robert L.; Costa, John E.; ,

    1986-01-01

    The most common types of mass movements that form landslide dams are rock and soil slumps and slides; mud, debris, and earth flows: and rock and debris avalanches. The most common initiation mechanisms for dam-forming landslides are excessive rainfall and snow melt, and earthquakes. Most landslide dams are remarkable short-lived. In a sample of 63 documented cases, 22 percent of the landslide dams failed in less than 1 day after formation, and half failed within 10 days. Overtopping was by far the most frequent cause of landslide-dam failure. Backwater flooding behind landslide dams can inundate communities and valuable agricultural land. Floods from the failure of landslide dams are smaller than floods from constructed dams impounding bodies of water with the same potential energy, but larger than floods from failure of ice dams. Secondary effects of landslide-dam failures include additional landslides as reservoir levels drop rapidly, aggradation of valleys upstream and downstream of the dams, and avulsive channel changes downstream.

  1. Hydroelectric System Response to Part Load Vortex Rope Excitation

    NASA Astrophysics Data System (ADS)

    Alligné, S.; Nicolet, C.; Bégum, A.; Landry, C.; Gomes, J.; Avellan, F.

    2016-11-01

    The prediction of pressure and output power fluctuations amplitudes on Francis turbine prototype is a challenge for hydro-equipment industry since it is subjected to guarantees to ensure smooth and reliable operation of the hydro units. The European FP7 research project Hyperbole aims to setup a methodology to transpose the pressure fluctuations induced by the cavitation vortex rope on the reduced scale model to the prototype generating units. A Francis turbine unit of 444MW with a specific speed value of v = 0.29, is considered as case study. A SIMSEN model of the power station including electrical system, controllers, rotating train and hydraulic system with transposed draft tube excitation sources is setup. Based on this model, a frequency analysis of the hydroelectric system is performed to analyse potential interactions between hydraulic excitation sources and electrical components.

  2. A multi-year analysis of spillway survival for juvenile salmonids as a function of spill bay operations at McNary Dam, Washington and Oregon, 2004-09

    USGS Publications Warehouse

    Adams, Noah S.; Hansel, Hal C.; Perry, Russell W.; Evans, Scott D.

    2012-01-01

    We analyzed 6 years (2004-09) of passage and survival data collected at McNary Dam to examine how spill bay operations affect survival of juvenile salmonids passing through the spillway at McNary Dam. We also examined the relations between spill bay operations and survival through the juvenile fish bypass in an attempt to determine if survival through the bypass is influenced by spill bay operations. We used a Cormack-Jolly-Seber release-recapture model (CJS model) to determine how the survival of juvenile salmonids passing through McNary Dam relates to spill bay operations. Results of these analyses, while not designed to yield predictive models, can be used to help develop dam-operation strategies that optimize juvenile salmonid survival. For example, increasing total discharge typically had a positive effect on both spillway and bypass survival for all species except sockeye salmon (Oncorhynchus nerka). Likewise, an increase in spill bay discharge improved spillway survival for yearling Chinook salmon (Oncorhynchus tshawytscha), and an increase in spillway discharge positively affected spillway survival for juvenile steelhead (Oncorhynchus mykiss). The strong linear relation between increased spill and increased survival indicates that increasing the amount of water through the spillway is one strategy that could be used to improve spillway survival for yearling Chinook salmon and juvenile steelhead. However, increased spill did not improve spillway survival for subyearling Chinook salmon and sockeye salmon. Our results indicate that a uniform spill pattern would provide the highest spillway survival and bypass survival for subyearling Chinook salmon. Conversely, a predominantly south spill pattern provided the highest spillway survival for yearling Chinook salmon and juvenile steelhead. Although spill pattern was not a factor for spillway survival of sockeye salmon, spill bay operations that optimize passage through the north and south spill bays maximized

  3. 77 FR 5502 - Stuyvesant Falls Hydroelectric Project; Notice of Application Ready for Environmental Analysis...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-03

    ... Federal Energy Regulatory Commission Stuyvesant Falls Hydroelectric Project; Notice of Application Ready..., New York. e. Name of Project: Stuyvesant Falls Hydroelectric Project. f. Location: On Kinderhook Creek... environmental analysis. l. The existing Stuyvesant Falls Hydroelectric Project is currently being restored...

  4. 75 FR 54621 - Lockhart Power Company-South Carolina Pacolet Hydroelectric Project; Notice of Proposed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-08

    ... Energy Regulatory Commission Lockhart Power Company--South Carolina Pacolet Hydroelectric Project; Notice... eligible for inclusion in, the National Register of Historic Places at the Pacolet Hydroelectric Project... ). The Commission's responsibilities pursuant to section 106 for the Pacolet Hydroelectric Project...

  5. Application of the contingent valuation method in a developing country: a case study of the Yusufeli dam in northeast Turkey.

    PubMed

    Alp, Emre; Yetiş, Ulkü

    2010-01-01

    Hydroelectric power plants and dams often play an important role in developing countries in terms of their contribution to economy. In accordance with the energy policies of Turkish Republic, Yusufeli Dam and Hydroelectric Power Plant in Northeastern Turkey have been initiated. In this study, the Contingent Valuation Method (CVM) was conducted in Yusufeli Village to determine the environmental costs of the Yusufeli Project. The purpose is to assess the willingness to pay (WTP) of Yusufeli Village residents for restoration of the environmental impacts of the dam project and also to investigate the underlying economic, psychological, and social motivations for WTP. WTP was calculated as US$761 per person which can further be used in the cost-benefit analysis. The results from the study suggest that application of the CVM in rural and urban areas located in the same region can show differences.

  6. 16. Parker Dam, only top fourth of dam visible, at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Parker Dam, only top fourth of dam visible, at 320' high, Parker Dam is one of the highest in the world. Much of this height is because dam penetrates well below river bottom to fasten to bedrock. - Parker Dam, Spanning Colorado River between AZ & CA, Parker, La Paz County, AZ

  7. National Dam Safety Program. Lakeview Park Dam (MO 30288) Mississippi - Kaskaskia - St. Louis Basin, St. Francois County, Missouri. Phase I Inspection Report.

    DTIC Science & Technology

    1980-10-01

    material taken from the lake bottom in 1976 during desilting operations was deposited upstream and downstream from the road crossing the dam in the...addition of significant quantities of materials taken from the lake bottom during desilting operations in 1976. The maximum measured slope was IV to...Comtinue an revere* side if neceamy and identlf, by block number) Dam Safety, Lake , Dam Inspection, Private Dams 20 ’ ASTRAcr (am o reversm "a if nc amd

  8. Dynamic hydrologic economic modeling of tradeoffs in hydroelectric systems

    NASA Astrophysics Data System (ADS)

    Kern, Jordan D.

    Hydropower producers face a future beset by unprecedented changes in the electric power industry, including the rapid growth of installed wind power capacity and a vastly increased supply of natural gas due to horizontal hydraulic fracturing (or "fracking"). There is also increased concern surrounding the potential for climate change to impact the magnitude and frequency of droughts. These developments may significantly alter the financial landscape for hydropower producers and have important ramifications for the environmental impacts of dams. Incorporating wind energy into electric power systems has the potential to affect price dynamics in electricity markets and, in so doing, alter the short-term financial signals on which dam operators rely to schedule reservoir releases. Chapter 1 of this doctoral dissertation develops an integrated reservoir-power system model for assessing the impact of large scale wind power integration of hydropower resources. Chapter 2 explores how efforts to reduce the carbon footprint of electric power systems by using wind energy to displace fossil fuel-based generation may inadvertently yield further impacts to river ecosystems by disrupting downstream flow patterns. Increased concern about the potential for climate change to alter the frequency and magnitude of droughts has led to growing interest in "index insurance" that compensates hydropower producers when values of an environmental variable (or index), such as reservoir inflows, crosses an agreed upon threshold (e.g., low flow conditions). Chapter 3 demonstrates the need for such index insurance contracts to also account for changes in natural gas prices in order to be cost-effective. Chapter 4 of this dissertation analyzes how recent low natural gas prices (partly attributable to fracking) have reduced the cost of implementing ramp rate restrictions at dams, which help restore sub-daily variability in river flows by limiting the flexibility of dam operators in scheduling

  9. Application of a Hydrodynamic Model for Assessing the Hydraulic Capacity and Flow Field at Willamette Falls Dam, Oregon

    SciTech Connect

    Lee, Cheegwan; Yang, Zhaoqing; Khangaonkar, Tarang P.; Divers, Arya-Behbehani

    2006-08-03

    The Willamette Falls Hydroelectric Power Dam, operated by Portland General Electric (PGE), is located on the Willamette River, Oregon. The Project site consists of T.W. Sullivan Power Plant and a 2,950-ft-long spillway located on the top of the Willamette Falls Dam. As part of the effort of protection and enhancement of environmental resources, a flow control structure at the dam was proposed to improve the flow field and enhance the downstream juvenile fish passage in the region just upstream of the forebay (pre-forebay). The flow in the pre-forebay of Willamette Falls Dam is affected by the complex geometry and bathymetry, powerhouse flow, fish ladder flow and the spillway around the dam. The expectation was that the flow would be sensitive to the proposed flow control structures and could be modified to enhance downstream migration. In this study, a three-dimensional, free-surface hydrodynamic model (EFDC) was developed for the pre-forebay region of Willamette Falls to evaluate the feasibility of the proposed alternative and its effect on the flow field in two different flow regimes (low and high river flow), as well as to assess the hydraulic capacity of flow control structures. One of the key challenges in this modeling study was to properly specify the free open boundary conditions along the 2,950-feet-long spillway. In this study, a pressure boundary condition based on hydraulic head rating curves was applied to the free spillway boundary. The numerical model was calibrated with ADP velocity measurements at 17 stations for the existing low flow condition. Good agreements between model results and measured data were obtained, indicating the successful application of pressure boundary condition on the free spillway boundary. The calibrated model was applied to simulate the flow field and free surface elevation in the high flow region near the control flow structures under different alternative conditions. The model results were used to evaluate the

  10. Environmental and Water Quality Operational Studies. Effects of Flow Alterations on Trout, Angling, and Recreation in the Chattahoochee River between Buford Dam and Peachtree Creek.

    DTIC Science & Technology

    1986-08-01

    39180-0631 0 0 0 0 0 0 0 0 0 0 0 0 Unclassified SECURITY CLASSIFICATION OF THIS PAGE r’I,.,, Dst. Entered) REPORT DOCUMENTATION PAGE READ INSTRUCTIONS...releases can cause pass- age problems through the shoal areas for canoeists. Thus, canoeing in the major reach between Morgan Falls Dam and the...carp C A Ericymba buccata--silverjaw minnow R Nocomis leptocephalus- -bluehead chub R Notemigonus crysoleucas--golden R shiner Catostomidae --suckers

  11. 2. VIEW SOUTH, NORTH SIDE OF HYDROELECTRIC POWERHOUSE AT LEFT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW SOUTH, NORTH SIDE OF HYDROELECTRIC POWERHOUSE AT LEFT WITH BRIDGE OVER CANAL SPILLWAY IN FOREGROUND AND MILL COMPLEX IN BACKGROUND - Dayville Mills Hydroelectric Facility, Powerhouse, North side of Route 101, .5 mile west of Route 395, Killingly Center, Windham County, CT

  12. Operational constraints and hydrologic variability limit hydropower in supporting wind integration

    NASA Astrophysics Data System (ADS)

    Fernandez, Alisha R.; Blumsack, Seth A.; Reed, Patrick M.

    2013-06-01

    Climate change mitigation will require rapid adoption of low-carbon energy resources. The integration of large-scale wind energy in the United States (US) will require controllable assets to balance the variability of wind energy production. Previous work has identified hydropower as an advantageous asset, due to its flexibility and low-carbon emissions production. While many dams currently provide energy and environmental services in the US and globally, we find that multi-use hydropower facilities would face significant policy conflicts if asked to store and release water to accommodate wind integration. Specifically, we develop a model simulating hydroelectric operational decisions when the electric facility is able to provide wind integration services through a mechanism that we term ‘flex reserves’. We use Kerr Dam in North Carolina as a case study, simulating operations under two alternative reservoir policies, one reflecting current policies and the other regulating flow levels to promote downstream ecosystem conservation. Even under perfect information and significant pricing incentives, Kerr Dam faces operational conflicts when providing any substantial levels of flex reserves while also maintaining releases consistent with other river management requirements. These operational conflicts are severely exacerbated during periods of drought. Increase of payments for flex reserves does not resolve these operational and policy conflicts.

  13. Fish mercury increase in Lago Manso, a new hydroelectric reservoir in tropical Brazil.

    PubMed

    Hylander, Lars D; Gröhn, Janina; Tropp, Magdalena; Vikström, Anna; Wolpher, Henriette; de Castro E Silva, Edinaldo; Meili, Markus; Oliveira, Lázaro J

    2006-10-01

    It has been frequently demonstrated that mercury (Hg) concentrations in fish rise in newly constructed hydroelectric reservoirs in the Northern Hemisphere. In the present work, we studied whether similar effects take place also in a tropical upland reservoir during impoundment and discuss possible causes and implications. Total Hg concentrations in fish and several soil and water parameters were determined before and after flooding at Rio Manso hydroelectric power plant in western Brazil. The Hg concentrations in soil and sediment were within the background levels in the region (22-35 ng g(-1) dry weight). There was a strong positive correlation between Hg and carbon and sulphur in sediment. Predatory fish had total Hg concentrations ranging between 70 and 210 ng g(-1) f.w. 7 years before flooding and between 72 and 755 ng g(-1) f.w. during flooding, but increased to between 216 and 938 ng g(-1) f.w. in the piscivorous and carnivorous species Pseudoplatystoma fasciatum, cachara, and Salminus brasiliensis, dourado, 3 years after flooding. At the same time, concentrations of organic carbon in the water increased and oxygen concentrations decreased, indicating increased decomposition and anoxia as contributing to the increased Hg concentrations in fish. The present fish Hg concentrations in commonly consumed piscivorous species are a threat to the health of the population dependent on fishing in the dam and downstream river for sustenance. Mercury exposure can be reduced by following fish consumption recommendations until fish Hg concentrations decrease to a safe level.

  14. Influence of the Amazon Hydrological Regime on Eutrophication Indicators of a Hydroelectric Power Plant Reservoir.

    PubMed

    Freire, Jean Carlos A; Hauser-Davis, Rachel Ann; da Costa Lobato, Tarcísio; de Morais, Jefferson M; de Oliveira, Terezinha F; F Saraiva, Augusto Cesar

    2017-02-08

    Dam constructions in the Amazon have increased exponentially in the last decades, causing several environmental impacts and serious anthropogenic impacts in certain hydroelectric power plant reservoirs in the region have been identified. The assessment of the trophic status of these reservoirs is of interest to indicate man-made changes in the environment, but must take into account the hydrological cycle of the area. This can be relevant for environmental management actions, aiding in the identification of the ecological status of water bodies. In this context, physico-chemical parameters and eutrophication indicators were determined in a hydroelectric power plant reservoir in the Brazilian Amazon to assess trophic variations during the regional hydrological regime phases on the reservoir, namely dry, filling, full and emptying stages. The local hydrological regimes were shown to significantly influence TSS and turbidity, as well as NH4, NO3, PO4, with higher values consistently observed during the filling stage of the reservoir. In addition, differences among the sampling stations regarding land use, population and anthropogenic activities were reflected in the PO4(3-) values during the different hydrological phases.

  15. 9. Excavation work at Pleasant Dam (now called Waddell Dam). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Excavation work at Pleasant Dam (now called Waddell Dam). Photographer unknown, July, 22, 1926. Source: Maricopa County Municipal Water Conservation District Number One (MWD). - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  16. Recent sediment studies refute Glen Canyon Dam Hypothesis

    NASA Astrophysics Data System (ADS)

    Rubin, David M.; Topping, David J.; Schmidt, John C.; Hazel, Joe; Kaplinski, Matt; Melis, Theodore S.

    Recent studies of sedimentology hydrology, and geomorphology indicate that releases from Glen Canyon Dam are continuing to erode sandbars and beaches in the Colorado River in Grand Canyon National Park, despite attempts to restore these resources. The current strategy for dam operations is based on the hypothesis that sand supplied by tributaries of the Colorado River downstream from the dam will accumulate in the channel during normal dam operations and remain available for restoration floods. Recent work has shown that this hypothesis is false, and that tributary sand inputs are exported downstream rapidly typically within weeks or months under the current flow regime.

  17. Recent sediment studies refute Glen Canyon Dam hypothesis

    USGS Publications Warehouse

    Rubin, David M.; Topping, David J.; Schmidt, John C.; Hazel, Joe; Kaplinski, Matt; Melis, Theodore S.

    2002-01-01

    Recent studies of sedimentology hydrology, and geomorphology indicate that releases from Glen Canyon Dam are continuing to erode sandbars and beaches in the Colorado River in Grand Canyon National Park, despite attempts to restore these resources. The current strategy for dam operations is based on the hypothesis that sand supplied by tributaries of the Colorado River downstream from the dam will accumulate in the channel during normal dam operations and remain available for restoration floods. Recent work has shown that this hypothesis is false, and that tributary sand inputs are exported downstream rapidly typically within weeks or months under the current flow regime.

  18. New notch weir system designed to pass shad through Potomac Dam

    SciTech Connect

    1996-08-01

    This article discusses the design and functional characteristics of a notch and three-weir labyrinth fish passage facility at Little Falls Dam. Most effective at low-head hydroelectric power plants, the weir system will reduce flow velocities to a value thought to be low enough for healthy shad to swim against. It is felt that this system will re-establish the shad population in a 10-mile stretch of the Patomac River near Washington.

  19. First structure on MoronytoRainbow 100kV Transmission Line below Morony Dam ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    First structure on Morony-to-Rainbow 100kV Transmission Line below Morony Dam and Power House. Three-pole H-frame structure with historic porcelain suspension insulators, jumper supports insulators, overhead ground wires, and pole stubs. View to east-northeast - Morony Hydroelectric Facility, Morony-to-Rainbow 100 kV Transmission Line, West bank of the Missouri River, Great Falls, Cascade County, MT

  20. Results of a Two-Dimensional Hydrodynamic and Sediment-Transport Model to Predict the Effects of the Phased Construction and Operation of the Olmsted Locks and Dam on the Ohio River near Olmsted, Illinois

    USGS Publications Warehouse

    Wagner, Chad R.

    2004-01-01

    The Olmsted two-dimensional hydrodynamic and sediment-transport model was developed in cooperation with the U.S. Army Corps of Engineers, Louisville District. The model was used to estimate the effects that the phased-construction sequence and operation of the Olmsted Locks and Dam had on sediment-transport patterns in the 11.9-mile study reach (Ohio River miles 962.6 to 974.5), particularly over an area of endangered orange-footed pearly mussel (Plethobasus cooperianus) beds beginning approximately 2 miles downstream of the dam construction. A Resource Management Associates?2 (RMA-2) two-dimensional hydrodynamic model for the reach was calibrated to a middle-flow hydraulic survey (350,000 cubic feet per second) and verified with data collected during low- and high-flow hydraulic surveys (72,500 and 770,000 cubic feet per second, respectively). The calibration and validation process included matching water-surface elevations at the construction site and velocity profiles at 15 cross sections throughout the study reach. The sediment-transport aspect of the project was simulated with the Waterways Experiment Station's Sed2D model for a 6-year planned-construction period (construction-phase modeling) and a subsequent 3-year operational period (operational-phase modeling). The sediment-transport results from the construction and operational models both were compared to results of concurrent baseline simulations to determine the changes in erosional and depositional patterns induced by the dam construction and operation throughout the study reach and more importantly over the area of the endangered mussel beds. Simulation of the phased-in-the-wet Olmsted Locks and Dam construction and subsequent operation period resulted in a maximum additional deposition of approximately 2 feet over a localized region of the mussel beds when compared to the bed change simulated with baseline conditions (river conditions that included only the completed locks section). Most areas on the

  1. Quantifying and Generalizing Hydrologic Responses to Dam Regulation using a Statistical Modeling Approach

    SciTech Connect

    McManamay, Ryan A

    2014-01-01

    Despite the ubiquitous existence of dams within riverscapes, much of our knowledge about dams and their environmental effects remains context-specific. Hydrology, more than any other environmental variable, has been studied in great detail with regard to dam regulation. While much progress has been made in generalizing the hydrologic effects of regulation by large dams, many aspects of hydrology show site-specific fidelity to dam operations, small dams (including diversions), and regional hydrologic regimes. A statistical modeling framework is presented to quantify and generalize hydrologic responses to varying degrees of dam regulation. Specifically, the objectives were to 1) compare the effects of local versus cumulative dam regulation, 2) determine the importance of different regional hydrologic regimes in influencing hydrologic responses to dams, and 3) evaluate how different regulation contexts lead to error in predicting hydrologic responses to dams. Overall, model performance was poor in quantifying the magnitude of hydrologic responses, but performance was sufficient in classifying hydrologic responses as negative or positive. Responses of some hydrologic indices to dam regulation were highly dependent upon hydrologic class membership and the purpose of the dam. The opposing coefficients between local and cumulative-dam predictors suggested that hydrologic responses to cumulative dam regulation are complex, and predicting the hydrology downstream of individual dams, as opposed to multiple dams, may be more easy accomplished using statistical approaches. Results also suggested that particular contexts, including multipurpose dams, high cumulative regulation by multiple dams, diversions, close proximity to dams, and certain hydrologic classes are all sources of increased error when predicting hydrologic responses to dams. Statistical models, such as the ones presented herein, show promise in their ability to model the effects of dam regulation effects at

  2. The Three Gorges Dam Affects Regional Precipitation

    NASA Technical Reports Server (NTRS)

    Wu, Liguang; Zhang, Qiang; Jiang, Zhihong

    2006-01-01

    Issues regarding building large-scale dams as a solution to power generation and flood control problems have been widely discussed by both natural and social scientists from various disciplines, as well as the policy-makers and public. Since the Chinese government officially approved the Three Gorges Dam (TGD) projects, this largest hydroelectric project in the world has drawn a lot of debates ranging from its social and economic to climatic impacts. The TGD has been partially in use since June 2003. The impact of the TGD is examined through analysis of the National Aeronautics and Space Administration (NASA) Tropical Rainfall Measuring Mission (TRMM) rainfall rate and Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature and high-resolution simulation using the Pennsylvania State University-National Center for Atmospheric Research (PSU-NCAR) fifth-generation Mesoscale Model (MM5). The independent satellite data sets and numerical simulation clearly indicate that the land use change associated with the TGD construction has increased the precipitation in the region between Daba and Qinling mountains and reduced the precipitation in the vicinity of the TGD after the TGD water level abruptly rose from 66 to 135 m in June 2003. This study suggests that the climatic effect of the TGD is on the regional scale (approx.100 km) rather than on the local scale (approx.10 km) as projected in previous studies.

  3. Effects of operation of Raccoon Mountain pumped-storage project on Nickajack Reservoir flow conditions

    SciTech Connect

    Garrison, J.; Price, J.T.

    1980-01-01

    The results from a study to determine the effects of Raccoon Mountain Pumped-Storage Plant operations on flow conditions within Nickajack Reservoir are presented. Computer simulations and field studies have shown that flow reversals occur in Nickajack Reservoir as a result of the power peaking operations of the Nickajack and Chickamauga hydroelectric plants, both situated on the Tennessee River. The primary cause of these reversals is attributable to shutdowns of the Chickamauga turbines. The focus of this study is on flow reversals near the Moccasin Bend sewage treatment plant and near the Tennessee American water treatment plant, both of which are located on the Tennessee River near Chattanooga. Results from the study show that, under normal and extreme operating conditions at Chickamauga and Nickajack Dams, operation of the Raccoon Mountain Pumped-Storage Plant has no appreciable influence on flow reversals at the two plant sites.

  4. Monitoring of Downstream Salmon and Steelhead at Federal Hydroelectric Facilities, 1991 Annual Report.

    SciTech Connect

    Hawkes, Lynette A.; Martinson, Rick D.; Smith, W. William

    1992-04-01

    The 1991 smolt monitoring project of the National Marine Fisheries Service provided data on the seaward migration of juvenile salmon and steelhead at John Day, The Dalles and Bonneville Dams. All pertinent fish capture and condition data as well as dam operations and river flow data were provided to Fish Passage Center for use in developing fish passage indices and migration timing, and for water budget and spill management.

  5. Final Technical Report - Modernization of the Boulder Canyon Hydroelectric Project

    SciTech Connect

    Taddeucci, Joe

    2013-03-29

    The Boulder Canyon Hydroelectric Project (BCH) was purchased by the City of Boulder, CO (the city) in 2001. Project facilities were originally constructed in 1910 and upgraded in the 1930s and 1940s. By 2009, the two 10 MW turbine/generators had reached or were nearing the end of their useful lives. One generator had grounded out and was beyond repair, reducing plant capacity to 10 MW. The remaining 10 MW unit was expected to fail at any time. When the BCH power plant was originally constructed, a sizeable water supply was available for the sole purpose of hydroelectric power generation. Between 1950 and 2001, that water supply had gradually been converted to municipal water supply by the city. By 2001, the water available for hydroelectric power generation at BCH could not support even one 10 MW unit. Boulder lacked the financial resources to modernize the facilities, and Boulder anticipated that when the single, operational historical unit failed, the project would cease operation. In 2009, the City of Boulder applied for and received a U.S. Department of Energy (DOE) grant for $1.18 million toward a total estimated project cost of $5.155 million to modernize BCH. The federal funding allowed Boulder to move forward with plant modifications that would ensure BCH would continue operation. Federal funding was made available through the American Recovery and Reinvestment Act (ARRA) of 2009. Boulder determined that a single 5 MW turbine/generator would be the most appropriate capacity, given the reduced water supply to the plant. Average annual BCH generation with the old 10 MW unit had been about 8,500 MW-hr, whereas annual generation with a new, efficient turbine could average 11,000 to 12,000 MW-hr. The incremental change in annual generation represents a 30% increase in generation over pre-project conditions. The old turbine/generator was a single nozzle Pelton turbine with a 5-to-1 flow turndown and a maximum turbine/generator efficiency of 82%. The new unit is a

  6. Dammed or Damned?

    ERIC Educational Resources Information Center

    Hirsch, Philip

    1988-01-01

    Summarizes issues raised at a workshop on "People and Dams" organized by the Society for Participatory Research in Asia. Objectives were to (1) understand problems created by dams for people, (2) consider forces affecting displaced populations and rehabilitation efforts, and (3) gain a perspective on popular education efforts among…

  7. Jackson Mills and Mine Falls Dams, Nashua, New Hampshire. Reconnaissance Report, Hydroelectric Feasibility. Volume 2. Mine Falls Dam.

    DTIC Science & Technology

    1980-01-01

    PUBLIC WORKS OF THE UNITED STATES SEN1ATE, that the Board of Engineers for Rivers and Harbors is hereby requested to review the reports of the Chief of... Engineers on the Merrimack River , Massachusetts and New Hampshire, published as House Document Number 689, 75th Congress, 3rd Session, and other reports...AMPHIR WATHA04M JAKSN ILSAN MN FLL DM U SCALE1I" 200 CORP OFT ENGINEERS EXISTING SPILLWAY NASHUA RIVER -- EXISTING ABUTMENT ’ L:.. . . .. .,: PLAN GATE

  8. Jackson Mills and Mine Falls Dams, Nashua, New Hampshire. Reconnaissance Report, Hydroelectric Feasibility. Volume 1, Jackson Mills Dam.

    DTIC Science & Technology

    1979-12-01

    crabapple Ac-er negundo Box elder Euonymus atropurpureus Burning busi Rubus sp. Raspberry Po-lus deltoides Common Cottonwood ata pa biniionioides Common...SPILL WAY OBSERVATION OON PLAN 100-i, PLO0D 20’ FLOOOPROOF TO 123’ CREST ELEV. 115.6’ _YR~l TAILWATER "S RASM /T.R--., C PROFILE pI fGATE OSOU iVAT

  9. Formulation of an Integrated Community Based Disaster Management for Hydroelectric facilities: The Malaysia Case

    NASA Astrophysics Data System (ADS)

    Hijazzi, Norshamirra; Thiruchelvam, Sivadass; Sabri Muda, Rahsidi; Nasharuddin Mustapha, Kamal; Che Muda, Zakaria; Ghazali, Azrul; Kamal Kadir, Ahmad; Hakimie, Hazlinda; Sahari, Khairul Salleh Mohamed; Hasini, Hasril; Mohd Sidek, Lariyah; Itam, Zarina; Fadhli Mohamad, Mohd; Razad, Azwin Zailti Abdul

    2016-03-01

    Dams, however significant their contributions are to the society, are not immune to failures and diminishing lifespan not unlike other structural elements in our infrastructure. Despite continuing efforts on design, construction, operation, and maintenance of dams to improve the safety of the dams, the possibility of unforeseen events of dam failures is still possible. Seeing that dams are usually integrated into close approximities with the community, dam failures may consequent in tremendous loss of lives and properties. The aims of formulation of Integrated Community Based Disaster Management (ICBDM) is to simulate evacuation modelling and emergency planning in order to minimize loss of life and property damages in the event of a dam-related disaster. To achieve the aim above, five main pillars have been identified for the formulation of ICBDM. A series of well-defined program inclusive of hydrological 2-D modelling, life safety modelling, community based EWS and CBTAP will be conducted. Finally, multiple parties’ engagement is to be carried out in the form of table top exercise to measure the readiness of emergency plans and response capabilities of key players during the state of a crisis.

  10. The effects of overwinter flowson the spring condition of rainbow and brown trout size classes in the Green River downstream of Flaming Gorge Dam, Utah.

    SciTech Connect

    Magnusson, A. K.; LaGory, K. E.; Hayse, J. W.; Environmental Science Division

    2010-06-25

    Flaming Gorge Dam, a hydroelectric facility operated by the Bureau of Reclamation (Reclamation), is located on the Green River in Daggett County, northeastern Utah. Until recently, and since the early 1990s, single daily peak releases or steady flows have been the operational pattern of the dam during the winter period. However, releases from Flaming Gorge Reservoir followed a double-peak pattern (two daily flow peaks) during the winters of 2006-2007 and 2008-2009. Because there is little recent long-term history of double-peaking at Flaming Gorge Dam, the potential effects of double-peaking operations on trout body condition in the dam's tailwater are not known. A study plan was developed that identified research activities to evaluate potential effects from winter double-peaking operations (Hayse et al. 2009). Along with other tasks, the study plan identified the need to conduct a statistical analysis of historical trout condition and macroinvertebrate abundance to evaluate the potential effects of hydropower operations. The results from analyses based on the combined size classes of trout (85-630 mm) were presented in Magnusson et al. (2008). The results of this earlier analysis suggested possible relationships between trout condition and flow, but concern that some of the relationships resulted from size-based effects (e.g., apparent changes in condition may have been related to concomitant changes in size distribution, because small trout may have responded differently to flow than large trout) prompted additional analysis of within-size class relationships. This report presents the results of analyses of three different size classes of trout (small: 200-299 mm, medium: 300-399 mm, and large: {ge}400 mm body length). We analyzed historical data to (1) describe temporal patterns and relationships among flows, benthic macroinvertebrate abundance, and condition of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) in the tailwaters of Flaming

  11. 1. GORGE HIGH DAM. THIS THIN ARCH DAM WITH A ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GORGE HIGH DAM. THIS THIN ARCH DAM WITH A GRAVITY SECTION IS THE THIRD DAM BUILT BY SEATTLE CITY LIGHT TO PROVIDE WATER FOR GORGE POWERHOUSE AND WAS COMPLETED IN 1961, 1989. - Skagit Power Development, Gorge High Dam, On Skagit River, 2.9 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  12. Measuring intake flows in hydroelectric plants with an acoustic scintillation flowmeter

    SciTech Connect

    Lemon, D.D.

    1995-12-31

    The Acoustic Scintillation Flowmeter (ASFM) offers some unique advantages for measuring intake flows in hydroelectric plants. The method is non-intrusive, resulting in a minimum of flow interference and is well-suited to use in low-head dams and other applications where intake tunnels are short or have awkward geometries. Deployment in intake gate slots is straightforward, allowing data to be collected quickly and easily, with a minimum of plant down-time. An example of such flow measurements is shown. Interest in assessing the capability of the ASFM to make the highly-accurate measurements suitable for system efficiency evaluations led to our performing a series of tow-tank tests. Over a range of speeds from 0.5 to 5.0 m/sec, the mean deviation between the towing speed and the ASFM measurements was less than 0.5%. Measurements at an instrumented dam site are planned as the next stage in the accuracy assessment.

  13. Optimizing the dammed: water supply losses and fish habitat gains from dam removal in California.

    PubMed

    Null, Sarah E; Medellín-Azuara, Josué; Escriva-Bou, Alvar; Lent, Michelle; Lund, Jay R

    2014-04-01

    Dams provide water supply, flood protection, and hydropower generation benefits, but also harm native species by altering the natural flow regime and degrading aquatic and riparian habitat. Restoring some rivers reaches to free-flowing conditions may restore substantial environmental benefits, but at some economic cost. This study uses a systems analysis approach to preliminarily evaluate removing rim dams in California's Central Valley to highlight promising habitat and unpromising economic use tradeoffs for water supply and hydropower. CALVIN, an economic-engineering optimization model, is used to evaluate water storage and scarcity from removing dams. A warm and dry climate model for a 30-year period centered at 2085, and a population growth scenario for year 2050 water demands represent future conditions. Tradeoffs between hydropower generation and water scarcity to urban, agricultural, and instream flow requirements were compared with additional river kilometers of habitat accessible to anadromous fish species following dam removal. Results show that existing infrastructure is most beneficial if operated as a system (ignoring many current institutional constraints). Removing all rim dams is not beneficial for California, but a subset of existing dams are potentially promising candidates for removal from an optimized water supply and free-flowing river perspective. Removing individual dams decreases statewide delivered water by 0-2282 million cubic meters and provides access to 0 to 3200 km of salmonid habitat upstream of dams. The method described here can help prioritize dam removal, although more detailed, project-specific studies also are needed. Similarly, improving environmental protection can come at substantially lower economic cost, when evaluated and operated as a system.

  14. Floodplain Hyporheic Response under Dam Release Hydrographs

    NASA Astrophysics Data System (ADS)

    Zhou, T.; Ward, A. S.; O'Connor, B. L.; Endreny, T. A.

    2012-12-01

    Hydropower operations cause altered hydrograph patterns downstream of dams, which regulates the direction and magnitude of floodplain and riverbed hyporheic flux. Periodic adjustments in river stage changes temporal and spatial patterns in hydraulic pressure, initiates propagation of lateral and vertical hyporheic flux, and affects the riparian ecological system by changing the hyporheic penetration distance, hyporheic flux rate, and thermal conditions in river banks. While this issue has been largely neglected by watershed scientists and managers, there is the potential to use hyporheic metrics in setting dam release rules and restoring downstream river reaches. In order to evaluate the hyporheic feedbacks of various dam release patterns, this study applied a computational fluid dynamics (CFD) model to simulate the interaction of open water hydrographs on porous media lateral hyporheic exchange for the Green River, Utah, downstream of Flaming Gorge Dam. The CFD initially represented the river as a straight channel with a thick porous media extending from the channel banks and bottom. The dam release hydrographs changed the patterns of hyporheic flux at the river banks, the penetration distance of the hyporheic flux, the subsurface thermal patterns, and the residence time of water in the subsurface. The results suggest the undulating river stage downstream of dam releases can initiate patterns of hyporheic exchange similar to those induced by restoration of river bed morphology.

  15. DESCHUTES PROJECT – WICKIUP DAM, CONTROL TOWER COMPLETE TO ELEVATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DESCHUTES PROJECT – WICKIUP DAM, CONTROL TOWER COMPLETE TO ELEVATION 4348.5 WITH TEMPORARY ROOF. BURNING OPERATIONS ON RESERVOIR CLEARING IN THE DISTANCE. Photocopy of historic photographs (original photograph on file at National Archives, Rocky Mountain Region, Denver, CO). Unknown USBR Photographer, August 31, 1943 - Wickiup Dam, Deschutes River, La Pine, Deschutes County, OR

  16. 43 CFR 418.18 - Diversions at Derby Dam.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Operations and Management § 418.18 Diversions at Derby Dam. (a) Diversions of Truckee River water at Derby Dam must be managed to maintain minimum terminal flow to Lahontan Reservoir or the Carson River except... releases from Stampede Reservoir and other reservoirs, in cooperation with the Federal Water Master,...

  17. 43 CFR 418.18 - Diversions at Derby Dam.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Operations and Management § 418.18 Diversions at Derby Dam. (a) Diversions of Truckee River water at Derby Dam must be managed to maintain minimum terminal flow to Lahontan Reservoir or the Carson River except... releases from Stampede Reservoir and other reservoirs, in cooperation with the Federal Water Master,...

  18. 3. CREST OF THE SOUTH CHANNEL DAM, SHOWING BLOCK HOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. CREST OF THE SOUTH CHANNEL DAM, SHOWING BLOCK HOUSE (NOT ORIGINAL) COVERING THE ELECTRICALLY POWERED GATE-LIFTING MECHANISM THAT REPLACED THE ORIGINAL HAND-OPERATED LIFTING DEVICE, LOOKING NORTH. - Washington Water Power Company Post Falls Power Plant, South Channel Dam, West of intersection of Spokane & Fourth Streets, Post Falls, Kootenai County, ID

  19. 33 CFR 117.705 - Beaver Dam Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Beaver Dam Creek. 117.705 Section 117.705 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.705 Beaver Dam Creek. The draw of...

  20. 33 CFR 117.705 - Beaver Dam Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Beaver Dam Creek. 117.705 Section 117.705 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.705 Beaver Dam Creek. The draw of...

  1. 33 CFR 117.705 - Beaver Dam Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Beaver Dam Creek. 117.705 Section 117.705 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.705 Beaver Dam Creek. The draw of...

  2. 33 CFR 117.705 - Beaver Dam Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Beaver Dam Creek. 117.705 Section 117.705 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.705 Beaver Dam Creek. The draw of...

  3. 33 CFR 117.705 - Beaver Dam Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Beaver Dam Creek. 117.705 Section 117.705 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.705 Beaver Dam Creek. The draw of...

  4. 5. LOOKING WEST ALONG THE AXIS OF THE DAM TOWARD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. LOOKING WEST ALONG THE AXIS OF THE DAM TOWARD THE OUTLET STRUCTURE. HAND OPERATED MECHANICAL TAMPERS ARE COMPACTING THE FILL ALONG THE STEEL SHEET PILING CUTOFF WALL IN THE FOREGROUND. Volume XIX, No. 6, April 12, 1940. - Prado Dam, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  5. 18. Cross section of Mormon Flat Dam completed. Structure on ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Cross section of Mormon Flat Dam completed. Structure on parapet contains the operating mechanisms for the penstock gates. Power house is not yet under construction. Photographer unknown, 1926. Source: Salt River Project. - Mormon Flat Dam, On Salt River, Eastern Maricopa County, east of Phoenix, Phoenix, Maricopa County, AZ

  6. 5. VIEW SHOWING HORSE MESA DAM UNDER CONSTRUCTION. THREE PENSTOCKS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW SHOWING HORSE MESA DAM UNDER CONSTRUCTION. THREE PENSTOCKS ARE AT CENTER AND CONCRETE TOWER LINES. AGGREGATE OPERATION IS VISIBLE ABOVE CONSTRUCTION SITE July 22, 1926 - Horse Mesa Dam, Salt River, 65 miles East of Phoenix, Phoenix, Maricopa County, AZ

  7. Washington Water Power Spokane River Upper Falls Hydroelectric Development, Gates ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Washington Water Power Spokane River Upper Falls Hydroelectric Development, Gates & Gate-Lifting Mechanisms, Spokane River, approximately 0.5 mile northeast of intersection of Spokane Falls Boulevard & Post Street, Spokane, Spokane County, WA

  8. Washington Water Power Spokane River Upper Falls Hydroelectric Development, Gate ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Washington Water Power Spokane River Upper Falls Hydroelectric Development, Gate House, Spokane River, approximately 0.5 mile northeast of intersection of Spokane Falls Boulevard & Post Street, Spokane, Spokane County, WA

  9. Legal obstacles and incentives to the third development of small-scale hydroelectric potential in the six New England states: executive summary

    SciTech Connect

    None,

    1980-05-01

    This executive summary describes the relationship of Federal law and regulation to state law and regulation of small-scale hydroelectric facilities. It also highlights important features of the constitutional law, statutory law, case law, and regulations of each of the six New England states. The summary may serve as a concise overview of and introduction to the detailed reports prepared by the Energy Law Institute on the legal and regulatory systems of each of the six states. The dual regulatory system is a function of the federalist nature of our government. This dual system is examined from the standpoint of the appropriate legal doctrine, i.e., the law of pre-emption, and the application of this law to the case of hydroelectric development. The regulation of small dams are discussed and flow diagrams of the regulations are presented for each of the six states - Maine, Massachusetts, Vermont, New Hampshire, Vermont, and Connecticut.

  10. Deformation Monitoring Studies and GPR Application on Dams

    NASA Astrophysics Data System (ADS)

    Kalkan, Y.; Bilgi, S.

    2015-12-01

    Some basic physical data are very important for assessing the safety and performance of dams. These are movement, water pressure, seepage, reservoir and tail-water elevations, local seismic activities, total pressure, stress and strain, internal concrete temperature, ambient temperature and precipitation. Dams and their surroundings have to be monitored by using essential methods at periodic time intervals in order to determine the possible changes that may occur over the time. Monitoring programs typically consist of; surveillance or visual observation. These programs on dams provide information for evaluating the dam's performance related to the design intent and expected changes that could affect the safety performance of the dam. Additionally, these programs are used for investigating and evaluating the abnormal or degrading performance where any remedial action is necessary. Geodetic and non-geodetic methods are used for monitoring. Geometric changes at the dam surface and in the galleries are defined using geodetic methods. Physical and geometrical changes in embankment inside are defined using non-geodetic methods. This study provides information about the deformation monitoring techniques of the dams, dam safety and related analysis. The case study is the deformation monitoring of Atatürk Dam, 6th largest dam of world considering the reservoir volume, which was constructed on Euphrates (Fırat) River having importance for providing drinking water, hydroelectric power and irrigation. In the study, brief information is given about this dam and the methods of geodetic and non-geodetic deformation monitoring measurements applied by various disciplines. Bathymetric surveying techniques in the water covered area and Real Time Kinematic (RTK) GNSS surveying technique on the other area were used in order to determine the topography of the embankment and reservoir surfaces. Contour maps were drawn to determine the slumping and heaving areas. Also Ground

  11. Assessment of dam effects on streams and fish assemblages of the conterminous USA.

    PubMed

    Cooper, Arthur R; Infante, Dana M; Daniel, Wesley M; Wehrly, Kevin E; Wang, Lizhu; Brenden, Travis O

    2017-02-20

    Despite the prevalence of damming as a global disturbance to river habitats, detailed reach-based assessments of the ecological effects of dams are lacking, particularly across large spatial extents. Using data from nearly 50,000 large dams, we assessed stream network fragmentation and flow alteration by large dams for streams of the conterminous USA. We developed 21 dam metrics characterizing a diversity of dam influences operating at both localized (e.g., distances-to-dams) and landscape scales (e.g., cumulative reservoir storage throughout stream networks) for every stream reach in the study region. We further evaluated how dams have affected stream fish assemblages within large ecoregions using more than 37,000 stream fish samples. Streams have been severely fragmented by large dams, with the number of stream segments increasing by 801% compared to free-flowing streams in the absence of dams and a staggering 79% of stream length is disconnected from their outlet (i.e., oceans and Great Lakes). Flow alteration metrics demonstrate a landscape-scale disturbance of dams, resulting in total upstream reservoir storage volumes exceeding estimated annual discharge volumes of many of the nation's largest rivers. Further, we show large-scale changes in fish assemblages with dams. Species adapted to lentic habitats increase with dams across the conterminous USA, while rheophils, lithophils, and intolerant fishes decrease with dams. Overall, fragmentation and flow alteration by dams have affected fish assemblages as much or more than other anthropogenic stressors, with dam effects generally increasing with stream size. Dam-induced stream fragmentation and flow alteration are critical natural resource issues. This study emphasizes the importance of considering dams as a landscape-scale disturbance to river habitats along with the need to assess differential effects that dams may have on river habitats and the fishes they support. Together, these insights are essential for

  12. Simulation of the transient processes of load rejection under different accident conditions in a hydroelectric generating set

    NASA Astrophysics Data System (ADS)

    Guo, W. C.; Yang, J. D.; Chen, J. P.; Peng, Z. Y.; Zhang, Y.; Chen, C. C.

    2016-11-01

    Load rejection test is one of the essential tests that carried out before the hydroelectric generating set is put into operation formally. The test aims at inspecting the rationality of the design of the water diversion and power generation system of hydropower station, reliability of the equipment of generating set and the dynamic characteristics of hydroturbine governing system. Proceeding from different accident conditions of hydroelectric generating set, this paper presents the transient processes of load rejection corresponding to different accident conditions, and elaborates the characteristics of different types of load rejection. Then the numerical simulation method of different types of load rejection is established. An engineering project is calculated to verify the validity of the method. Finally, based on the numerical simulation results, the relationship among the different types of load rejection and their functions on the design of hydropower station and the operation of load rejection test are pointed out. The results indicate that: The load rejection caused by the accident within the hydroelectric generating set is realized by emergency distributing valve, and it is the basis of the optimization for the closing law of guide vane and the calculation of regulation and guarantee. The load rejection caused by the accident outside the hydroelectric generating set is realized by the governor. It is the most efficient measure to inspect the dynamic characteristics of hydro-turbine governing system, and its closure rate of guide vane set in the governor depends on the optimization result in the former type load rejection.

  13. 75 FR 30805 - Gibson Dam Hydroelectric Company, LLC; Notice Soliciting Comments, and Final Terms and Conditions...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-02

    ... Terms and Conditions, Recommendations, and Prescriptions May 26, 2010. Take notice that the following... comments, recommendations, terms and conditions, and fishway prescriptions: 60 days from the issuance date... in all capital letters the title ``COMMENTS,'' ``REPLY COMMENTS,'' ``RECOMMENDATIONS,'' ``TERMS...

  14. Project Planning for Cougar Dam during 2010

    USGS Publications Warehouse

    Haskell, Craig A.; Tiffan, Kenneth F.

    2011-01-01

    Cougar Dam is a 158 m-tall, rock fill dam located about 63 km east of Springfield, Oregon. Completed in 1963, the dam is owned and operated by the U.S. Army Corps of Engineers (USACE). It impounds Cougar Reservoir, which is 9.7 km long, has a surface area of 518 ha, and is predominately used for flood control. The pool elevation typically ranges from a maximum conservation pool of 515 m (1,690 ft) National Geodetic Vertical Datum (NGVD) in summer to a minimum flood control elevation of 467 m (1,532 ft NGVD) in winter. The reservoir thermally stratifies in the summer, has an average depth of 37 m, and holds 153,500 acre-feet when full. Cougar Dam is located on the South Fork of the McKenzie River 7 km upstream from the mainstem McKenzie River, a tributary of the Willamette River. The McKenzie River Basin basin supports the largest remaining population of wild spawning spring Chinook salmon in the Willamette River Basin (National Oceanic and Atmospheric Administration; NOAA, 2008). Cougar Dam and others were collectively deemed to cause jeopardy to the sustainability of anadromous fish stocks in the Willamette River Basin (NOAA, 2008). Prior to dam construction, as many as 805 redds were observed in the South Fork of the McKenzie River (Willis and others, 1960) and it is estimated that 40 km of spawning habitat were lost when access was blocked after dam construction. The 2008 Willamette Biological Opinion (BIOP) requires improvements to operations and structures to reduce impacts on Upper Willamette River (UWR) Chinook salmon (Oncorhynchus tshawytscha) and UWR steelhead (O. mykiss; NOAA, 2008). In 2010, an adult fish collection facility was completed below Cougar Dam to collect returning adult salmon for transport to spawning habitats above the dam. Before that time, returning adult spring Chinook salmon were transported to upstream spawning areas as part of a trap-and-haul program with adults passed ranging annually from 0 to 1,038 (Taylor, 2000). The progeny of

  15. 43 CFR 418.23 - Diversion of Rock Dam Ditch water.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Diversion of Rock Dam Ditch water. 418.23... Operations and Management § 418.23 Diversion of Rock Dam Ditch water. Project water may be diverted directly to Rock Dam Ditch from the Truckee Canal only when diversions cannot be made from the outlet works...

  16. 33 CFR 208.34 - Norman Dam and Lake Thunderbird, Little River, Okla.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Norman Dam and Lake Thunderbird... OF THE ARMY, DEPARTMENT OF DEFENSE FLOOD CONTROL REGULATIONS § 208.34 Norman Dam and Lake Thunderbird, Little River, Okla. The Bureau of Reclamation, or its designated agent, shall operate Norman Dam and...

  17. 33 CFR 208.32 - Sanford Dam and Lake Meredith, Canadian River, Tex.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Sanford Dam and Lake Meredith... OF THE ARMY, DEPARTMENT OF DEFENSE FLOOD CONTROL REGULATIONS § 208.32 Sanford Dam and Lake Meredith, Canadian River, Tex. The Bureau of Reclamation, or its designated agent, shall operate the Sanford Dam...

  18. 33 CFR 208.34 - Norman Dam and Lake Thunderbird, Little River, Okla.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Norman Dam and Lake Thunderbird... OF THE ARMY, DEPARTMENT OF DEFENSE FLOOD CONTROL REGULATIONS § 208.34 Norman Dam and Lake Thunderbird, Little River, Okla. The Bureau of Reclamation, or its designated agent, shall operate Norman Dam and...

  19. 33 CFR 208.34 - Norman Dam and Lake Thunderbird, Little River, Okla.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Norman Dam and Lake Thunderbird... OF THE ARMY, DEPARTMENT OF DEFENSE FLOOD CONTROL REGULATIONS § 208.34 Norman Dam and Lake Thunderbird, Little River, Okla. The Bureau of Reclamation, or its designated agent, shall operate Norman Dam and...

  20. 33 CFR 208.34 - Norman Dam and Lake Thunderbird, Little River, Okla.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Norman Dam and Lake Thunderbird... OF THE ARMY, DEPARTMENT OF DEFENSE FLOOD CONTROL REGULATIONS § 208.34 Norman Dam and Lake Thunderbird, Little River, Okla. The Bureau of Reclamation, or its designated agent, shall operate Norman Dam and...

  1. 33 CFR 208.32 - Sanford Dam and Lake Meredith, Canadian River, Tex.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Sanford Dam and Lake Meredith... OF THE ARMY, DEPARTMENT OF DEFENSE FLOOD CONTROL REGULATIONS § 208.32 Sanford Dam and Lake Meredith, Canadian River, Tex. The Bureau of Reclamation, or its designated agent, shall operate the Sanford Dam...

  2. 33 CFR 208.32 - Sanford Dam and Lake Meredith, Canadian River, Tex.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Sanford Dam and Lake Meredith... OF THE ARMY, DEPARTMENT OF DEFENSE FLOOD CONTROL REGULATIONS § 208.32 Sanford Dam and Lake Meredith, Canadian River, Tex. The Bureau of Reclamation, or its designated agent, shall operate the Sanford Dam...

  3. 33 CFR 208.32 - Sanford Dam and Lake Meredith, Canadian River, Tex.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Sanford Dam and Lake Meredith... OF THE ARMY, DEPARTMENT OF DEFENSE FLOOD CONTROL REGULATIONS § 208.32 Sanford Dam and Lake Meredith, Canadian River, Tex. The Bureau of Reclamation, or its designated agent, shall operate the Sanford Dam...

  4. 43 CFR 418.23 - Diversion of Rock Dam Ditch water.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Diversion of Rock Dam Ditch water. 418.23... Operations and Management § 418.23 Diversion of Rock Dam Ditch water. Project water may be diverted directly to Rock Dam Ditch from the Truckee Canal only when diversions cannot be made from the outlet works...

  5. 43 CFR 418.23 - Diversion of Rock Dam Ditch water.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false Diversion of Rock Dam Ditch water. 418.23... Operations and Management § 418.23 Diversion of Rock Dam Ditch water. Project water may be diverted directly to Rock Dam Ditch from the Truckee Canal only when diversions cannot be made from the outlet works...

  6. 43 CFR 418.23 - Diversion of Rock Dam Ditch water.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false Diversion of Rock Dam Ditch water. 418.23... Operations and Management § 418.23 Diversion of Rock Dam Ditch water. Project water may be diverted directly to Rock Dam Ditch from the Truckee Canal only when diversions cannot be made from the outlet works...

  7. 33 CFR 208.22 - Twin Buttes Dam and Reservoir, Middle and South Concho Rivers, Tex.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Twin Buttes Dam and Reservoir... ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE FLOOD CONTROL REGULATIONS § 208.22 Twin Buttes Dam..., shall operate the Twin Buttes Dam and Reservoir in the interest of flood control as follows:...

  8. 33 CFR 208.82 - Hetch Hetchy, Cherry Valley, and Don Pedro Dams and Reservoirs.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Don Pedro Dams and Reservoirs. 208.82 Section 208.82 Navigation and Navigable Waters CORPS OF..., Cherry Valley, and Don Pedro Dams and Reservoirs. The Turlock Irrigation District and Modesto Irrigation District, acting jointly, hereinafter called the Districts, shall operate Don Pedro Dam and Reservoir...

  9. 33 CFR 208.28 - Foss Dam and Reservoir, Washita River, Oklahoma.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Foss Dam and Reservoir, Washita... THE ARMY, DEPARTMENT OF DEFENSE FLOOD CONTROL REGULATIONS § 208.28 Foss Dam and Reservoir, Washita River, Oklahoma. The Bureau of Reclamation shall operate the Foss Dam and Reservoir in the interest...

  10. 33 CFR 208.27 - Fort Cobb Dam and Reservoir, Pond (Cobb) Creek, Oklahoma.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Fort Cobb Dam and Reservoir, Pond..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE FLOOD CONTROL REGULATIONS § 208.27 Fort Cobb Dam and Reservoir, Pond (Cobb) Creek, Oklahoma. The Bureau of Reclamation shall operate the Fort Cobb Dam and Reservoir...

  11. 33 CFR 208.28 - Foss Dam and Reservoir, Washita River, Oklahoma.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Foss Dam and Reservoir, Washita... THE ARMY, DEPARTMENT OF DEFENSE FLOOD CONTROL REGULATIONS § 208.28 Foss Dam and Reservoir, Washita River, Oklahoma. The Bureau of Reclamation shall operate the Foss Dam and Reservoir in the interest...

  12. 33 CFR 208.82 - Hetch Hetchy, Cherry Valley, and Don Pedro Dams and Reservoirs.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Don Pedro Dams and Reservoirs. 208.82 Section 208.82 Navigation and Navigable Waters CORPS OF..., Cherry Valley, and Don Pedro Dams and Reservoirs. The Turlock Irrigation District and Modesto Irrigation District, acting jointly, hereinafter called the Districts, shall operate Don Pedro Dam and Reservoir...

  13. 33 CFR 208.28 - Foss Dam and Reservoir, Washita River, Oklahoma.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Foss Dam and Reservoir, Washita... THE ARMY, DEPARTMENT OF DEFENSE FLOOD CONTROL REGULATIONS § 208.28 Foss Dam and Reservoir, Washita River, Oklahoma. The Bureau of Reclamation shall operate the Foss Dam and Reservoir in the interest...

  14. 33 CFR 208.82 - Hetch Hetchy, Cherry Valley, and Don Pedro Dams and Reservoirs.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Don Pedro Dams and Reservoirs. 208.82 Section 208.82 Navigation and Navigable Waters CORPS OF..., Cherry Valley, and Don Pedro Dams and Reservoirs. The Turlock Irrigation District and Modesto Irrigation District, acting jointly, hereinafter called the Districts, shall operate Don Pedro Dam and Reservoir...

  15. 33 CFR 208.28 - Foss Dam and Reservoir, Washita River, Oklahoma.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Foss Dam and Reservoir, Washita... THE ARMY, DEPARTMENT OF DEFENSE FLOOD CONTROL REGULATIONS § 208.28 Foss Dam and Reservoir, Washita River, Oklahoma. The Bureau of Reclamation shall operate the Foss Dam and Reservoir in the interest...

  16. 33 CFR 208.28 - Foss Dam and Reservoir, Washita River, Oklahoma.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Foss Dam and Reservoir, Washita... THE ARMY, DEPARTMENT OF DEFENSE FLOOD CONTROL REGULATIONS § 208.28 Foss Dam and Reservoir, Washita River, Oklahoma. The Bureau of Reclamation shall operate the Foss Dam and Reservoir in the interest...

  17. 33 CFR 208.27 - Fort Cobb Dam and Reservoir, Pond (Cobb) Creek, Oklahoma.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Fort Cobb Dam and Reservoir, Pond..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE FLOOD CONTROL REGULATIONS § 208.27 Fort Cobb Dam and Reservoir, Pond (Cobb) Creek, Oklahoma. The Bureau of Reclamation shall operate the Fort Cobb Dam and Reservoir...

  18. 33 CFR 208.27 - Fort Cobb Dam and Reservoir, Pond (Cobb) Creek, Oklahoma.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Fort Cobb Dam and Reservoir, Pond..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE FLOOD CONTROL REGULATIONS § 208.27 Fort Cobb Dam and Reservoir, Pond (Cobb) Creek, Oklahoma. The Bureau of Reclamation shall operate the Fort Cobb Dam and Reservoir...

  19. 33 CFR 208.27 - Fort Cobb Dam and Reservoir, Pond (Cobb) Creek, Oklahoma.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Fort Cobb Dam and Reservoir, Pond..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE FLOOD CONTROL REGULATIONS § 208.27 Fort Cobb Dam and Reservoir, Pond (Cobb) Creek, Oklahoma. The Bureau of Reclamation shall operate the Fort Cobb Dam and Reservoir...

  20. 33 CFR 208.27 - Fort Cobb Dam and Reservoir, Pond (Cobb) Creek, Oklahoma.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Fort Cobb Dam and Reservoir, Pond..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE FLOOD CONTROL REGULATIONS § 208.27 Fort Cobb Dam and Reservoir, Pond (Cobb) Creek, Oklahoma. The Bureau of Reclamation shall operate the Fort Cobb Dam and Reservoir...

  1. 33 CFR 208.82 - Hetch Hetchy, Cherry Valley, and Don Pedro Dams and Reservoirs.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Don Pedro Dams and Reservoirs. 208.82 Section 208.82 Navigation and Navigable Waters CORPS OF..., Cherry Valley, and Don Pedro Dams and Reservoirs. The Turlock Irrigation District and Modesto Irrigation District, acting jointly, hereinafter called the Districts, shall operate Don Pedro Dam and Reservoir...

  2. Wynoochee Dam Foundation Report

    DTIC Science & Technology

    1988-01-01

    metamorphosed tholeiitic basalt, diabase , volcaniclastic, and associated sediments. From 8 miles upstream to 10 miles downstream from the dam the rocks are...clay and fine sandy interbeds are occasion- ally present at flow contacts. locally, the basalt is cut by dark gray, moderately jointed diabase dike...rock. 3.03.2 All of the concrete dam is founded on bedrock (figure 3-3). Basalt forms the right abutment, diabase forms the left, and a contact zone

  3. Contaminants in fishes from great lakes-influenced sections and above dams of three Michigan Rivers: III. Implications for health of bald eagles

    USGS Publications Warehouse

    Giesy, J.P.; Bowerman, W.W.; Mora, M.A.; Verbrugge, D.A.; Othoudt, R. A.; Newsted, J.L.; Summer, C. L.; Aulerich, R.J.; Bursian, S.J.; Ludwig, J. P.; Dawson, G. A.; Kubiak, T.J.; Best, D. A.; Tillitt, D. E.

    1995-01-01

    Recently, there have been discussions of the relative merits of passage of fishes around hydroelectric dams on three rivers (Au Sable, Manistee, and Muskegon) in Michigan. A hazard assessment was conducted to determine the potential for adverse effects on bald eagles that could consume such fishes from above and below dams on the three primary rivers. The hazard assessments were verified by comparing the reproductive productivities of eagles nesting in areas where they ate primarily fish from either above or below dams on the three primary rivers, as well as on two additional rivers in Michigan, the Menominee and Thunder Bay. Concentrations of organochlorine insecticides (OCI), polychlorinated biphenyls (total PCBs), 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents (TCDD-EQ), and total mercury (Hg) were measured in composite samples of fishes from above and below hydroelectric dams on the Manistee and Muskegon Rivers, which flow into Lake Michigan, and the Au Sable River, which flows into Lake Huron. Mean concentrations of OCI, total PCBs, and TCDD-EQ were all greater in fishes from below the dams than in those from above. The hazard assessment indicated that current concentrations of Hg and OCI other than DDT (DDT + DDE + DDD) in fish from neither above nor below dams would present a significant hazard to bald eagles (Haliaeetus leucocephalus). Both total PCBs and TCDD-EQ in fishes from below the dams currently present a significant hazard to bald eagles, since their mean hazard quotients (HQ) were all greater than one.

  4. Culinary and pressure irrigation water system hydroelectric generation

    SciTech Connect

    Christiansen, Cory

    2016-01-29

    Pleasant Grove City owns and operates a drinking water system that included pressure reducing stations (PRVs) in various locations and flow conditions. Several of these station are suitable for power generation. The City evaluated their system to identify opportunities for power generation that can be implemented based on the analysis of costs and prediction of power generation and associated revenue. The evaluation led to the selection of the Battle Creek site for development of a hydro-electric power generating system. The Battle Creek site includes a pipeline that carries spring water to storage tanks. The system utilizes a PRV to reduce pressure before the water is introduced into the tanks. The evaluation recommended that the PRV at this location be replaced with a turbine for the generation of electricity. The system will be connected to the utility power grid for use in the community. A pelton turbine was selected for the site, and a turbine building and piping system were constructed to complete a fully functional power generation system. It is anticipated that the system will generate approximately 440,000 kW-hr per year resulting in $40,000 of annual revenue.

  5. Storing hydroelectricity to meet peak-hour demand

    SciTech Connect

    Valenti, M.

    1992-04-01

    This paper reports on pumped storage plants which have become an effective way for some utility companies that derive power from hydroelectric facilities to economically store baseload energy during off-peak hours for use during peak hourly demands. According to the Electric Power Research Institute (EPRI) in Palo Alto, Calif., 36 of these plants provide approximately 20 gigawatts, or about 3 percent of U.S. generating capacity. During peak-demand periods, utilities are often stretched beyond their capacity to provide power and must therefore purchase it from neighboring utilities. Building new baseload power plants, typically nuclear or coal-fired facilities that run 24 hours per day seven days a week, is expensive, about $1500 per kilowatt, according to Robert Schainker, program manager for energy storage at the EPRI. Schainker the that building peaking plants at $400 per kilowatt, which run a few hours a day on gas or oil fuel, is less costly than building baseload plants. Operating them, however, is more expensive because peaking plants are less efficient that baseload plants.

  6. Mountain goat response to hydroelectric exploration in northwestern British Columbia

    SciTech Connect

    Foster, B.R.; Rahs, E.Y.

    1983-03-01

    The behavioral responses of more than 800 mountain goats, comprised of 195 social groups, were recorded during hydroelectric exploration activities (primarily aircraft) in northwestern British Columbia. Four categories of overt response were recorded during case tests, ranging from maintenance activity to severe flight. More than 80 percent (n=667) of the observed goats elicited some form of behavioral stress-response, with 33 percent (n=265) displaying a severe flight response to local rock or plant cover. Multiple regression analysis inferred goat responses to be statistically independent of the time of year, type, and vertical orientation of disturbance and group size. As expected, significant correlations (p less than or equal to 0.05) existed between distance of disturbance, geographic area, cover availability, and degree of awareness. Responses were stimulated primarily by auditory and secondarily by visual cues. Repeated aerial and ground follow-up surveys documented temporary range abandonment and changing observability indices (habitat use and activity patterns) associated with areas of intense exploration activity. The assessed data offer mitigation possibilities and enable formulation of management guidelines to lessen project impacts during future exploration, construction, and operation phases.

  7. Mountain goat response to hydroelectric exploration in northwestern British Columbia

    NASA Astrophysics Data System (ADS)

    Foster, Bryan R.; Rahs, Engel Y.

    1983-03-01

    The behavioral responses of more than 800 mountain goats, comprised of 195 social groups, were recorded during hydroelectric exploration activities (primarily aircraft) in northwestern British Columbia. Four categories of overt response were recorded during case tests, ranging from maintenance activity to severe flight. More than 80 percent ( n=667) of the observed goats elicited some form of behavioral stress-response, with 33 percent ( n=265) displaying a severe flight response to local rock or plant cover. Multiple regression analysis inferred goat responses to be statistically independent of the time of year, type, and vertical orientation of disturbance and group size. As expected, significant correlations ( p≤0.05) existed between distance of disturbance, geographic area, cover availability, and degree of awareness. Responses were stimulated primarily by auditory and secondarily by visual cues. Repeated aerial and ground follow-up surveys documented temporary range abandonment and changing observability indices (habitat use and activity patterns) associated with areas of intense exploration activity. The assessed data offer mitigation possibilities and enable formulation of management guidelines to lessen project impacts during future exploration, construction, and operation phases.

  8. Foundation Report, Dam & Spillway, Taylorsville Lake, Ohio River Basin, Salt River, Kentucky.

    DTIC Science & Technology

    1983-04-01

    earth core, rock-filled dam ; an operating tower; conduit and stilling basin in the right abutment; an open cut uncon- trolled spillway through the right...Engineering Company (Rural Route 3, Harrisburg, Illinois 62946). It involved construction of an earth core, rock-filled dam ; an open cut uncontrolled... earth materials for later use in the dam . These stockpiles were located adjacent to the spillway and in the upstream area so designated above the dam

  9. Changes in a large regulated tropical river: The Paraná River downstream from the Porto Primavera Dam, Brazil

    NASA Astrophysics Data System (ADS)

    Stevaux, José C.; Martins, Débora P.; Meurer, M.

    2009-12-01

    Dams disturb in the fluvial dynamics by changing the natural cycle of the rivers, interfering with the transport-deposition processes and affecting river ecology. The Brazilian part of the Paraná Basin has the largest hydrometrical power potential of the country with more than 150 hydroelectric power dams that transformed the Paraná River and its tributaries in a succession of lakes. This research aims to analyze the changes in certain fluvial variables in the last natural downstream reach of the Upper Paraná River after closure of the Porto Primavera Dam. Data acquired before and after dam construction showed changes in water discharge, bank erosion, flood pulse, bed load grain size discharge, concentration of suspended load and bedform morphology and size. Those alterations generated changes in river ecology especially on fish reproduction, benthic community, and rotifers variety and density. A review of the obscure regional literature, generally in Portuguese, is also presented.

  10. Coastal and lower Elwha River, Washington, prior to dam removal--history, status, and defining characteristics: Chapter 1 in Coastal habitats of the Elwha River, Washington--biological and physical patterns and processes prior to dam removal

    USGS Publications Warehouse

    Duda, Jeffrey J.; Warrick, Jonathan A.; Magirl, Christopher S.; Duda, Jeffrey J.; Warrick, Jonathan A.; Magirl, Christopher S.

    2011-01-01

    Characterizing the physical and biological characteristics of the lower Elwha River, its estuary, and adjacent nearshore habitats prior to dam removal is essential to monitor changes to these areas during and following the historic dam-removal project set to begin in September 2011. Based on the size of the two hydroelectric projects and the amount of sediment that will be released, the Elwha River in Washington State will be home to the largest river restoration through dam removal attempted in the United States. Built in 1912 and 1927, respectively, the Elwha and Glines Canyon Dams have altered key physical and biological characteristics of the Elwha River. Once abundant salmon populations, consisting of all five species of Pacific salmon, are restricted to the lower 7.8 river kilometers downstream of Elwha Dam and are currently in low numbers. Dam removal will reopen access to more than 140 km of mainstem, flood plain, and tributary habitat, most of which is protected within Olympic National Park. The high capture rate of river-borne sediments by the two reservoirs has changed the geomorphology of the riverbed downstream of the dams. Mobilization and downstream transport of these accumulated reservoir sediments during and following dam removal will significantly change downstream river reaches, the estuary complex, and the nearshore environment. To introduce the more detailed studies that follow in this report, we summarize many of the key aspects of the Elwha River ecosystem including a regional and historical context for this unprecedented project.

  11. Output improvement of Sg. Piah run-off river hydro-electric station with a new computed river flow-based control system

    NASA Astrophysics Data System (ADS)

    Jidin, Razali; Othman, Bahari

    2013-06-01

    The lower Sg. Piah hydro-electric station is a river run-off hydro scheme with generators capable of generating 55MW of electricity. It is located 30km away from Sg. Siput, a small town in the state of Perak, Malaysia. The station has two turbines (Pelton) to harness energy from water that flow through a 7km tunnel from a small intake dam. The trait of a run-off river hydro station is small-reservoir that cannot store water for a long duration; therefore potential energy carried by the spillage will be wasted if the dam level is not appropriately regulated. To improve the station annual energy output, a new controller based on the computed river flow has been installed. The controller regulates the dam level with an algorithm based on the river flow derived indirectly from the intake-dam water level and other plant parameters. The controller has been able to maintain the dam at optimum water level and regulate the turbines to maximize the total generation output.

  12. Alternatives to Dam Building: Deindustrialization and the Redevelopment of Waterways in the Northeast During the Twentieth Century

    NASA Astrophysics Data System (ADS)

    Taber, J. S.; Pompeii, B. J.; Nicoletti, C.; Lopez-Morales, C. A.

    2010-12-01

    generation; and (4) these alternatives included conservation measures such as the preservation of wetlands, but they also included the construction of coal and nuclear power plants in place of hydroelectric dams. Documenting the complexities underlying dam building and its alternatives in a deindustrializing region saddled with obsolete dams can contextualize contemporary debates regarding the maintenance or removal of old dams.

  13. Dam Effects on Sediment Transport and Channel Form in the Klamath River: Implications for Salmonid Restoration

    NASA Astrophysics Data System (ADS)

    Tompkins, M. R.; Kondolf, G. M.

    2009-12-01

    By virtue of the historical importance of its salmonid fishery and recent controversies over agricultural water diversions and fish mortality, the Klamath River (California and Oregon) has attracted significant attention from the public and federal agencies, including reports by two committees of the National Research Council since 2000. One proposal under consideration to restore Klamath River salmonid fisheries is to remove four hydroelectric dams that influence hydrology, sediment transport, and fish passage. The Klamath River is unusual in many respects, including the fact that its upper reaches are low-gradient, lake and bedrock-sill-controlled, with small sediment yields but large influxes of natural and anthropogenic nutrients. The river’s gradient and sediment load increase downstream as it passes through the steep Klamath Mountains and Coast Range. Therefore, the impact of the four dams proposed for removal on downstream geomorphic conditions varies with location in the watershed. Thus, some expectations of downstream dam effects based on observations on other rivers may not be directly applicable to the Klamath dams. We conducted a two-year study of reservoir sedimentation, bed material size, bed mobility, sediment transport, and channel form between Klamath Falls, Oregon and Seiad Valley, California. Based on our results, we identified geomorphically distinct reaches, and quantified bed mobility and sensitivity to channel change, as a basis to evaluate dam effects on downstream channel morphology. Our findings could be used to inform future dam removal approaches for the Klamath River.

  14. Dams and Intergovernmental Transfers

    NASA Astrophysics Data System (ADS)

    Bao, X.

    2012-12-01

    Gainers and Losers are always associated with large scale hydrological infrastructure construction, such as dams, canals and water treatment facilities. Since most of these projects are public services and public goods, Some of these uneven impacts cannot fully be solved by markets. This paper tried to explore whether the governments are paying any effort to balance the uneven distributional impacts caused by dam construction or not. It showed that dam construction brought an average 2% decrease in per capita tax revenue in the upstream counties, a 30% increase in the dam-location counties and an insignificant increase in downstream counties. Similar distributional impacts were observed for other outcome variables. like rural income and agricultural crop yields, though the impacts differ across different crops. The paper also found some balancing efforts from inter-governmental transfers to reduce the unevenly distributed impacts caused by dam construction. However, overall the inter-governmental fiscal transfer efforts were not large enough to fully correct those uneven distributions, reflected from a 2% decrease of per capita GDP in upstream counties and increase of per capita GDP in local and downstream counties. This paper may shed some lights on the governmental considerations in the decision making process for large hydrological infrastructures.

  15. Introduction of an Emergency Response Plan for flood loading of Sultan Abu Bakar Dam in Malaysia

    NASA Astrophysics Data System (ADS)

    Said, N. F. Md; Sidek, L. M.; Basri, H.; Muda, R. S.; Razad, A. Z. Abdul

    2016-03-01

    Sultan Abu Bakar Dam Emergency Response Plan (ERP) is designed to assist employees for identifying, monitoring, responding and mitigation dam safety emergencies. This paper is outlined to identification of an organization chart, responsibility for emergency management team and triggering level in Sultan Abu Bakar Dam ERP. ERP is a plan that guides responsibilities for proper operation of Sultan Abu Bakar Dam in respond to emergency incidents affecting the dam. Based on this study four major responsibilities are needed for Abu Bakar Dam owing to protect any probable risk for downstream which they can be Incident Commander, Deputy Incident Commander, On-Scene Commander, Civil Engineer. In conclusion, having organization charts based on ERP studies can be helpful for decreasing the probable risks in any projects such as Abu Bakar Dam and it is a way to identify and suspected and actual dam safety emergencies.

  16. Japanese experiences to enhance the World Commission on Dams guidelines

    NASA Astrophysics Data System (ADS)

    Nakayama, Mikiyasu; Fujikura, Ryo; Yoshida, Tsuneaki

    2002-08-01

    The impact of large dam construction projects on the human environment, and particularly on resettlers, is often the main reason for opposition toward large dam construction projects. The World Commission on Dams (WCD) published its only and final report Dams and Development in November 2000. The report contains a set of 26 guidelines. The WCD itself mentioned that the guidelines are not intended as a blueprint, and that these should be used as a starting point for discussion. Despite the clarification by the WCD, some non-governmental organizations argue that these guidelines must be immediately adopted for all future large dam projects. The authors assume that only several of these guidelines are operational and many of these are either too experimental or theoretical to be put into use. Furthermore, some seemingly ready for operation guidelines still need to be enhanced to be really operational in the real world. About 2000 large dams were constructed in Japan after World War II. Various principles and mechanisms were then developed to better address the issues related to involuntary resettlement. The knowledge accumulated through large dam construction projects in Japan may be applied to other countries. The aim of this paper is to identify the lessons, out of the experiences gained in Japan through large dam construction projects in the past, which could be applicable for future large dam construction projects in other nations. The socio-economic setting, as well as the legal framework, in Japan differs much from those in the developing world. Nevertheless, the following aspects of the experiences gained in Japan are found to be both applicable and useful for future large dam construction projects abroad: (a) integrity of community in the negotiation process, (b) provision of alternative occupations, (c) funding mechanism in the post-project period, (d) measures needed during planning process; and (e) making resettlers shareholders. These lessons may prove

  17. 5 CFR 532.269 - Special wage schedules for Corps of Engineers, U.S. Army navigation lock and dam employees.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Engineers, U.S. Army navigation lock and dam employees. 532.269 Section 532.269 Administrative Personnel... Determinations § 532.269 Special wage schedules for Corps of Engineers, U.S. Army navigation lock and dam... and dam equipment or who repair and maintain navigation lock and dam operating machinery and...

  18. 5 CFR 532.269 - Special wage schedules for Corps of Engineers, U.S. Army navigation lock and dam employees.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Engineers, U.S. Army navigation lock and dam employees. 532.269 Section 532.269 Administrative Personnel... Determinations § 532.269 Special wage schedules for Corps of Engineers, U.S. Army navigation lock and dam... and dam equipment or who repair and maintain navigation lock and dam operating machinery and...

  19. 5 CFR 532.269 - Special wage schedules for Corps of Engineers, U.S. Army navigation lock and dam employees.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Engineers, U.S. Army navigation lock and dam employees. 532.269 Section 532.269 Administrative Personnel... Determinations § 532.269 Special wage schedules for Corps of Engineers, U.S. Army navigation lock and dam... and dam equipment or who repair and maintain navigation lock and dam operating machinery and...

  20. 5 CFR 532.269 - Special wage schedules for Corps of Engineers, U.S. Army navigation lock and dam employees.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Engineers, U.S. Army navigation lock and dam employees. 532.269 Section 532.269 Administrative Personnel... Determinations § 532.269 Special wage schedules for Corps of Engineers, U.S. Army navigation lock and dam... and dam equipment or who repair and maintain navigation lock and dam operating machinery and...

  1. 5 CFR 532.269 - Special wage schedules for Corps of Engineers, U.S. Army navigation lock and dam employees.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Engineers, U.S. Army navigation lock and dam employees. 532.269 Section 532.269 Administrative Personnel... Determinations § 532.269 Special wage schedules for Corps of Engineers, U.S. Army navigation lock and dam... and dam equipment or who repair and maintain navigation lock and dam operating machinery and...

  2. Coupled dam safety analysis using WinDAM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Windows® Dam Analysis Modules (WinDAM) is a set of modular software components that can be used to analyze overtopping and internal erosion of embankment dams. Dakota is an extensive software framework for design exploration and simulation. These tools can be coupled to create a powerful framework...

  3. ECHETA DAM RIPRAP ON RESERVOIR SIDE OF THE DAM AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ECHETA DAM RIP-RAP ON RESERVOIR SIDE OF THE DAM AT BREACH. VIEW TO NORTH-NORTHEAST. - Echeta Dam & Reservoir, 2.9 miles east of Echeta Road at Echeta Railroad Siding at County Road 293, Echeta, Campbell County, WY

  4. 32. AERIAL VIEW OF TIETON DAM, UPSTREAM FACE OF DAM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. AERIAL VIEW OF TIETON DAM, UPSTREAM FACE OF DAM (Trashrack-structure for outlet at lower left in reservoir, spillway at upper left. Reservoir nearly empty due to drought.) - Tieton Dam, South & East of State Highway 12, Naches, Yakima County, WA

  5. Dam health diagnosis and evaluation

    NASA Astrophysics Data System (ADS)

    Wu, Zhongru; Su, Huaizhi

    2005-06-01

    Based on the bionics principle in the life sciences field, we regard a dam as a vital and intelligent system. A bionics model is constructed to observe, diagnose and evaluate dam health. The model is composed of a sensing system (nerve), central processing unit (cerebrum) and decision-making implement (organism). In addition, the model, index system and engineering method on dam health assessment are presented. The proposed theories and methods are applied to evaluate dynamically the health of one concrete dam.

  6. 76 FR 22393 - Eagle Mountain Pumped Storage Hydroelectric Project, Eagle Crest Energy; Notice of Cancellation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-21

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Eagle Mountain Pumped Storage Hydroelectric Project, Eagle Crest Energy... and Wildlife Service for the proposed Eagle Mountain Pumped Storage Hydroelectric Project....

  7. 77 FR 47628 - Eagle Mountain Pumped Storage Hydroelectric Project; Eagle Crest Energy; Notice of Meeting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-09

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Eagle Mountain Pumped Storage Hydroelectric Project; Eagle Crest Energy... Management Act and the Federal Power Act), on the Eagle Mountain Pumped Storage Hydroelectric...

  8. 76 FR 76153 - Grand Coulee Project Hydroelectric Authority; Notice of Preliminary Permit Application Accepted...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-06

    ... Energy Regulatory Commission Grand Coulee Project Hydroelectric Authority; Notice of Preliminary Permit... Coulee Project Hydropower Authority (Grand Coulee Authority) filed an application for a preliminary... the Scooteney Inlet Drop Hydroelectric Project (Scooteney Inlet Project or project) to be located...

  9. 75 FR 41856 - East Texas Electric Cooperative, Inc.: Lake Livingston Hydroelectric Project; Notice of Proposed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-19

    ... Energy Regulatory Commission East Texas Electric Cooperative, Inc.: Lake Livingston Hydroelectric Project... inclusion in, the National Register of Historic Places at the proposed Lake Livingston Hydroelectric Project... Commission's responsibilities pursuant to section 106 for the project would be fulfilled through...

  10. Status Review of Wildlife Mitigation at 14 of 27 Major Hydroelectric Projects in Idaho, 1983-1984 Final Report.

    SciTech Connect

    Martin, Robert C.; Mehrhoff, L.A.

    1985-01-01

    The Pacific Northwest Electric Power Planning and Conservation Act and wildlife and their habitats in the Columbia River Basin and to compliance with the Program, the wildlife mitigation status reports coordination with resource agencies and Indian Tribes. developed the Columbia River Basin Fish and Wildlife Program development, operation, and maintenance of hydroelectric projects on existing agreements; and past, current, and proposed wildlife factual review and documentation of existing information on wildlife meet the requirements of Measure 1004(b)(l) of the Program. The mitigation, enhancement, and protection activities were considered. In mitigate for the losses to those resources resulting from the purpose of these wildlife mitigation status reports is to provide a resources at some of the Columbia River Basin hydroelectric projects the river and its tributaries. To accomplish this goal, the Council were written with the cooperation of project operators, and in within Idaho.

  11. Further tests of changes in fish escape behavior resulting from sublethal stresses associated with hydroelectric turbine passage

    SciTech Connect

    Ryon, Michael G.; Cada, Glenn F.; Smith, John G.

    2004-04-01

    Fish that pass through a hydroelectric turbine may not be killed directly, but may nonetheless experience sublethal stresses that will increase their susceptibility to predators (indirect mortality). There is a need to develop reliable tests for indirect mortality so that the full consequences of passage through turbines (and other routes around a hydroelectric dam) can be assessed. The most commonly used laboratory technique for assessing susceptibility to predation is the predator preference test. This report evaluates the field application of a new technique that may be valuable for assessing indirect mortality, based on changes in a behavioral response to a startling stimulus (akin to perceiving an approaching predator). The study compared the behaviors of 70 fish passed through the turbine and another 70 under control conditions (either transferred from the holding tank or injected into the Alden loop downstream of turbine). The resulting image files were analyzed for a variety of behavioral measures including: presence of a startle response, time to first reaction, duration of reaction, time to formation of the maximum C-shape, time to completion of the C-shape, completeness of the C-shape, direction of turn, and degree of turn. The data were evaluated for statistical significance and patterns of response were identified.

  12. Monitoring of Downstream Salmon and Steelhead at Federal Hydroelectric Facilities, 1989 Annual Report.

    SciTech Connect

    Johnsen, Richard C.

    1990-02-19

    This project is a part of the continuing Smolt Monitoring Program (SMP) to monitor Columbia Basin salmonid stocks coordinated by the Fish Passage Center (FPC). The SMP provides timely data to the Fish Passage Managers for in season flow and spill management for fish passage and post-season analysis by the FPC for travel time, relative magnitude and timing of the smolt migration. Sampling sites were McNary, John Day and Bonneville Dams under the SMP, and the Dalles Dam under the Fish Spill Memorandum of Agreement'' for 1989. All pertinent fish capture, condition and brand data, as well as dam operations and river flow data were incorporated into the FPC Fish Passage Data Information System (FPDIS). 15 refs., 6 figs., 6 tabs.

  13. 78 FR 62361 - Green Mountain Power Corporation; Vermont; Otter Creek Hydroelectric Project; Notice of Proposed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-21

    ... Energy Regulatory Commission Green Mountain Power Corporation; Vermont; Otter Creek Hydroelectric Project... that could be affected by issuance of a new license for the Otter Creek Hydroelectric Project No. 2558..., as applicant for the Otter Creek Hydroelectric Project, has expressed an interest in this...

  14. 75 FR 6371 - Jordan Hydroelectric Limited Partnership; Notice of Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-09

    ... Application: Major Original License b. Project No.: P-12740-003 c. Date filed: July 13, 2009 d. Applicant: Jordan Hydroelectric Limited Partnership e. Name of Project: Flannagan Hydroelectric Project f. Location... Energy Regulatory Commission Jordan Hydroelectric Limited Partnership; Notice of Application Accepted...

  15. 78 FR 39725 - Grenada Lake Hydroelectric Project; Notice Of Proposed Restricted Service List for a Programmatic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-02

    ... Energy Regulatory Commission Grenada Lake Hydroelectric Project; Notice Of Proposed Restricted Service... by issuance of a license for the proposed Grenada Lake Hydroelectric Project No. 13702. The... applicant for the proposed Grenada Lake Hydroelectric Project, the U.S. Army Corps of Engineers, the...

  16. 77 FR 38796 - Alabama Power Company; Holt Hydroelectric Project; Notice of Revised Restricted Service List for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ... Energy Regulatory Commission Alabama Power Company; Holt Hydroelectric Project; Notice of Revised... new license for the Holt Hydroelectric Project No. 2203. The programmatic agreement, when executed by... a ] restricted service list for the Holt Hydroelectric Project. On June 21, 2012, the Choctaw...

  17. 75 FR 37790 - Mahoning Creek Hydroelectric Company, LLC; Notice of Intent To Issue a Supplemental Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-30

    ... Energy Regulatory Commission Mahoning Creek Hydroelectric Company, LLC; Notice of Intent To Issue a Supplemental Environmental Assessment for the Proposed Mahoning Creek Hydroelectric Project June 23, 2010. On... Hydroelectric Project. On April 22, 2010, the U.S. Army Corps of Engineers, Pittsburgh District (Corps)...

  18. 78 FR 25434 - Henwood Associates, Inc.; Salmon Creek Hydroelectric Company; Notice of Transfer of Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-01

    ... Hydroelectric Project, FERC No. 3730, originally issued August 10, 1981,\\1\\ has been transferred to Salmon Creek Hydroelectric Company. The project is located on Salmon and Sardine Creeks in Sierra County, California. The... Exemption from Licensing of a Small Hydroelectric Project of 5 Megawatts or Less and Dismissing...

  19. 75 FR 30021 - South Carolina Electric and Gas Company; Saluda Hydroelectric Project; Notice of Teleconference...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-28

    ... Energy Regulatory Commission South Carolina Electric and Gas Company; Saluda Hydroelectric Project... sturgeon for the Saluda Hydroelectric Project. The South Carolina Electric and Gas Company will also... parties are invited to listen by telephone. The FERC contact for the Saluda Hydroelectric Project is...

  20. 77 FR 38796 - Georgia Power Company; Bartletts Ferry Hydroelectric Project; Notice of Revised Restricted...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ... Energy Regulatory Commission Georgia Power Company; Bartletts Ferry Hydroelectric Project; Notice of... that could be affected by issuance of a new license for the Bartletts Ferry Hydroelectric Project No... list for the Bartletts Ferry Hydroelectric Project. On June 14, 2012, the Kialegee Tribal...

  1. 75 FR 30021 - South Carolina Electric & Gas Company Saluda Hydroelectric Project; Notice of Proposed Restricted...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-28

    ... Energy Regulatory Commission South Carolina Electric & Gas Company Saluda Hydroelectric Project; Notice... eligible for inclusion in, the National Register of Historic Places at the Saluda Hydroelectric Project No... Electric & Gas Company, as licensee for Saluda Hydroelectric Project No. 516, the Catawba Indian...

  2. 78 FR 69663 - Jonathan and Jayne Chase Troy Mills Hydroelectric Inc.; Notice of Transfer of Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-20

    ... exemption from licensing for the Troy Hydroelectric Project, FERC No. 13381, originally issued December 2, 2011,\\1\\ has been transferred to Troy Mills Hydroelectric Inc. The project is located on the Missisquoi... Inc. is now the exemptee of the Troy Hydroelectric Project, FERC No. 13381. All correspondence...

  3. 76 FR 57729 - Boundary Hydroelectric Project; Sullivan Creek Project; Notice of Availability of the Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-16

    ... Energy Regulatory Commission Boundary Hydroelectric Project; Sullivan Creek Project; Notice of Availability of the Final Environmental Impact Statement for the Relicensing of the Boundary Hydroelectric... reviewed the applications for license for the Boundary Hydroelectric Project (FERC No. 2144-38), and...

  4. Carbon stock estimation in the catchment of Kotli Bhel 1A hydroelectric reservoir, Uttarakhand, India.

    PubMed

    Kumar, Amit; Sharma, M P

    2016-12-01

    Constructions of dams/reservoirs all over the world are reported to emit significant amount of greenhouse gases (GHGs) and are considered as environmental polluters. Organic carbon is contributed by the forest in the catchment, part of soil organic carbon is transported through the runoffs to the reservoir and undergoes aerobic and anaerobic degradation with time to release GHGs to the atmosphere. Literature reveals that no work is available on the estimation of 'C' stock of trees of forest catchment for assessing/predicting the GHGs emissions from the reservoirs to atmosphere. To assess the GHGs emission potential of the reservoir, an attempt is made in the study to estimate the 'C' stock in the forest catchment of Kotli Bhel 1A hydroelectric reservoir located in Tehri Garhwal district of Uttarakhand, India. For this purpose, the selected area was categorized into the site-I, II and III along the Bhagirathi River based on type of forest available in the catchment. The total carbon density (TCD) of tree species of different forest types was calculated using diameter at breast height (dbh) and trees height. The results found that the TCD of forest catchment was found 76.96MgCha(-1) as the highest at the site-II and 29.93MgCha(-1) as lowest at site-I with mean of 51.50MgCha(-1). The estimated forest 'C' stock shall be used to know the amount of carbon present before and after construction of the dam and to predict net GHGs emissions. The results may be helpful to study the potential of a given reservoir to release GHG and its subsequent impacts on global warming/climate challenges.

  5. Fish passage mitigation of impacts from hydroelectric power projects in the United States

    SciTech Connect

    Cada, G.F.

    1996-10-01

    Obstruction of fish movements by dams continues to be the major environmental issue facing the hydropower industry in the US. Dams block upstream migrations, which can cut off adult fish form their historical spawning grounds and severely curtail reproduction. Conversely, downstream-migrating fish may be entrained into the turbine intake flow and suffer turbine-passage injury or mortality. Hydroelectric projects can interfere with the migrations of a wide variety of fish. Maintenance, restoration or enhancement of populations of these species may require the construction of facilities to allow for upstream and downstream fish passage. The Federal Energy Regulatory Commission (FERC), by law, must give fish and wildlife resources equal consideration with power production in its licensing decisions, must be satisfied that a project is consistent with comprehensive plans for a waterway (including fisheries management plans), and must consider all federal and state resource agency terms and conditions for the protection of fish and wildlife. As a consequence, FERC often requires fish passage mitigation measures as a condition of the hydropower license when such measures are deemed necessary for the protection of fish. Much of the recent research and development efforts of the US Department of Energy`s Hydropower Program have focused on the mitigation of impacts to upstream and downstream fish passage. This paper descries three components of that effort: (1) a survey of environmental mitigation measures at hydropower sites across the country; (2) a critical review of the effectiveness of fish passage mitigation measures at 16 case study sites; and (3) ongoing efforts to develop new turbine designs that minimize turbine-passage mortality.

  6. Thermal effects of dams in the Willamette River basin, Oregon

    USGS Publications Warehouse

    Rounds, Stewart A.

    2010-01-01

    Methods were developed to assess the effects of dams on streamflow and water temperature in the Willamette River and its major tributaries. These methods were used to estimate the flows and temperatures that would occur at 14 dam sites in the absence of upstream dams, and river models were applied to simulate downstream flows and temperatures under a no-dams scenario. The dams selected for this study include 13 dams built and operated by the U.S. Army Corps of Engineers (USACE) as part of the Willamette Project, and 1 dam on the Clackamas River owned and operated by Portland General Electric (PGE). Streamflows in the absence of upstream dams for 2001-02 were estimated for USACE sites on the basis of measured releases, changes in reservoir storage, a correction for evaporative losses, and an accounting of flow effects from upstream dams. For the PGE dam, no-project streamflows were derived from a previous modeling effort that was part of a dam-relicensing process. Without-dam streamflows were characterized by higher peak flows in winter and spring and much lower flows in late summer, as compared to with-dam measured flows. Without-dam water temperatures were estimated from measured temperatures upstream of the reservoirs (the USACE sites) or derived from no-project model results (the PGE site). When using upstream data to estimate without-dam temperatures at dam sites, a typical downstream warming rate based on historical data and downstream river models was applied over the distance from the measurement point to the dam site, but only for conditions when the temperature data indicated that warming might be expected. Regressions with measured temperatures from nearby or similar sites were used to extend the without-dam temperature estimates to the entire 2001-02 time period. Without-dam temperature estimates were characterized by a more natural seasonal pattern, with a maximum in July or August, in contrast to the measured patterns at many of the tall dam sites

  7. National Dam Safety Program. Darlington Lake Dam (NJ00230), Passaic River Basin, Darlington Brook, Bergen County, New Jersey. Phase 1 Inspection Report

    DTIC Science & Technology

    1980-03-01

    OF REPJRT & PERIOD COVERED S1National Dam Safety Program- 9,NA 6. l ’IWu Darlington Lak Dam (c&c REPV39 NUMBER DAGW61 GRANT0 NUMB ER(e...this report. I d. The owner should develop written operating procedures and a periodic maintenance plan to ensure the safety of the dam within one...date of approvel of this report. d. The owner should develop written operating procedures and a periodic maintenance plan to ensure the safety of the dam

  8. Risk Perception Analysis Related To Existing Dams In Italy

    NASA Astrophysics Data System (ADS)

    Solimene, Pellegrino

    2013-04-01

    In the first part of this work, the progress of Italian National Rules about dams design, construction and operation are presented to highlight the strong connection existing between the promulgation of new decrees, as a consequence of a dam accidents, and the necessity to prevent further loss of lives and goods downstream. Following the Gleno Dam failure (1923), a special Ministerial Committee wrote out the first Regulations and made the proposal to establish, within the High Council of Public Works, a special department that become soon the "Dam Service", with the tasks of control and supervision about construction and operation phases of the dams and their reservoirs. A different definition of tasks and the structure of Dam Service were provided in accordance with law n° 183/1989, which transferred all the technical services to the Office of the Prime Minister; the aim was to join the Dam Office with the Department for National Technical Services, with the objective of increasing the knowledge of the territory and promoting the study on flood propagation downstream in case of operations on bottom outlet or hypothetical dam-break. In fact, population living downstream is not ready to accept any amount of risk because has not a good knowledge of the efforts of experts involved in dam safety, both from the operators and from the safety Authority. So it's important to optimize all the activities usually performed in a dam safety program and improve the emergency planning as a response to people's primary needs and feeling about safety from Civil Protection Authority. In the second part of the work, a definition of risk is provided as the relationship existing between probability of occurrence and loss, setting out the range within to plan for prevention (risk mitigation), thanks to the qualitative assessment of the minimum safety level that is suited to assign funds to plan for Civil Protection (loss mitigation). The basic meaning of the reliability of a zoned

  9. Profiling of Sediment Microbial Community in Dongting Lake before and after Impoundment of the Three Gorges Dam.

    PubMed

    Huang, Wei; Jiang, Xia

    2016-06-21

    The sediment microbial community in downstream-linked lakes can be affected by the operation of large-scale water conservancy projects. The present study determined Illumina reads (16S rRNA gene amplicons) to analyze and compare the bacterial communities from sediments in Dongting Lake (China) before and after impoundment of the Three Gorges Dam (TGD), the largest hydroelectric project in the world. Bacterial communities in sediment samples in Dongting Lake before impoundment of the TGD (the high water period) had a higher diversity than after impoundment of the TGD (the low water period). The most abundant phylum in the sediment samples was Proteobacteria (36.4%-51.5%), and this result was due to the significant abundance of Betaproteobacteria and Deltaproteobacteria in the sediment samples before impoundment of the TGD and the abundance of Gammaproteobacteria in the sediment samples after impoundment of the TGD. In addition, bacterial sequences of the sediment samples are also affiliated with Acidobacteria (11.0% on average), Chloroflexi (10.9% on average), Bacteroidetes (6.7% on average), and Nitrospirae (5.1% on average). Variations in the composition of the bacterial community within some sediment samples from the river estuary into Dongting Lake were related to the pH values. The bacterial community in the samples from the three lake districts of Dongting Lake before and after impoundment of the TGD was linked to the nutrient concentration.

  10. Profiling of Sediment Microbial Community in Dongting Lake before and after Impoundment of the Three Gorges Dam

    PubMed Central

    Huang, Wei; Jiang, Xia

    2016-01-01

    The sediment microbial community in downstream-linked lakes can be affected by the operation of large-scale water conservancy projects. The present study determined Illumina reads (16S rRNA gene amplicons) to analyze and compare the bacterial communities from sediments in Dongting Lake (China) before and after impoundment of the Three Gorges Dam (TGD), the largest hydroelectric project in the world. Bacterial communities in sediment samples in Dongting Lake before impoundment of the TGD (the high water period) had a higher diversity than after impoundment of the TGD (the low water period). The most abundant phylum in the sediment samples was Proteobacteria (36.4%–51.5%), and this result was due to the significant abundance of Betaproteobacteria and Deltaproteobacteria in the sediment samples before impoundment of the TGD and the abundance of Gammaproteobacteria in the sediment samples after impoundment of the TGD. In addition, bacterial sequences of the sediment samples are also affiliated with Acidobacteria (11.0% on average), Chloroflexi (10.9% on average), Bacteroidetes (6.7% on average), and Nitrospirae (5.1% on average). Variations in the composition of the bacterial community within some sediment samples from the river estuary into Dongting Lake were related to the pH values. The bacterial community in the samples from the three lake districts of Dongting Lake before and after impoundment of the TGD was linked to the nutrient concentration. PMID:27338434

  11. Capturing the power potential on the Arkansas at existing dams

    SciTech Connect

    Warner, C.Q. )

    1993-08-01

    Low energy prices stopped the first wave of hydro development on the Arkansas River short of the waterway's full potential. Arkansas' electric cooperatives, sparked by new energy economics and an interest in clean, renewable power sources, are helping to finish the job. One 32-MW hydro plant came on-line in 1988 and another is scheduled to begin operating in October, 1993. When the entire program is complete, hydroelectric power will supply 12% of the cooperatives' total generating capacity.

  12. PLANAR VIEW OF NORTHEAST SIDE OF HYDROELECTRIC POWER HOUSE AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PLANAR VIEW OF NORTHEAST SIDE OF HYDRO-ELECTRIC POWER HOUSE AND SOUTHWEST END OF DREDGE BYPASS IN FOREGROUND, VIEW TOWARDS SOUTHWEST. - St. Lucie Canal, Lock No. 2, Dredge Bypass, St. Lucie, Cross State Canal, Okeechobee Intracoastal Waterway, Stuart, Martin County, FL

  13. Small-scale hydroelectric power in the southeast: new impetus for an old energy source

    SciTech Connect

    Not Available

    1980-06-01

    The Southeastern conference, Small-Scale Hydroelectric Power: New Impetus for an Old Energy Source, was convened to provide a forum for state legislators and other interested persons to discuss the problems facing small-scale hydro developers, and to recommend appropriate solutions to resolve those problems. During the two-day meeting state legislators and their staffs, along with dam developers, utility and industry representatives, environmentalists and federal/state officials examined and discussed the problems impeding small-scale hydro development at the state level. Based upon the problem-oriented discussions, alternative policy options were recommended for consideration by the US Department of Energy, state legislatures and the staff of the National Conference of State Legislatures (NCSL). Emphasis was placed on the legal, institutional, environmental and economic barriers at the state level, as well as the federal delays associated with licensing small-scale hydro projects. Whereas other previously held conferences have emphasized the identification and technology of small-scale hydro as an alternative energy source, this conference stressed legislative resolution of the problems and delays in small-scale hydro licensing and development. Panel discussions and workshops are summarized. Papers on the environmental, economic, and legal aspects of small-scale hydropower development are presented. (LCL)

  14. The development of advanced hydroelectric turbines to improve fish passage survival

    SciTech Connect

    Cada, Glenn F.

    2001-09-01

    Recent efforts to improve the survival of hydroelectric turbine-passed juvenile fish have explored modifications to both operation and design of the turbines. Much of this research is being carried out by power producers in the Columbia River basin (U.S. Army Corps of Engineers and the public utility districts), while the development of low impact turbines is being pursued on a national scale by the U.S. Department of Energy. Fisheries managers are involved in all aspects of these efforts. Advanced versions of conventional Kaplan turbines are being installed and tested in the Columbia River basin, and a pilot scale version of a novel turbine concept is undergoing laboratory testing. Field studies in the last few years have shown that improvements in the design of conventional turbines have increased the survival of juvenile fish. There is still much to be learned about the causes and extent of injuries in the turbine system (including the draft tube and tailrace), as well as the significance of indirect mortality and the effects of turbine passage on adult fish. However, improvements in turbine design and operation, as well as new field, laboratory, and modeling techniques to assess turbine-passage survival, are contributing toward resolution of the downstream fish passage issue at hydroelectric power plants.

  15. Erosion risk analysis by GIS in environmental impact assessments: a case study--Seyhan Köprü Dam construction.

    PubMed

    Sahin, S; Kurum, E

    2002-11-01

    Environmental Impact Assessment (EIA) is a systematically constructed procedure whereby environmental impacts caused by proposed projects are examined. Geographical Information Systems (GIS) are crucially efficient tools for impact assessment and their use is likely to dramatically increase in the near future. GIS have been applied to a wide range of different impact assessment projects and dams among them have been taken as the case work in this article. EIA Regulation in force in Turkey requires the analysis of steering natural processes that can be adversely affected by the proposed project, particularly in the section of the analysis of the areas with higher landscape value. At this point, the true potential value of GIS lies in its ability to analyze spatial data with accuracy. This study is an attempt to analyze by GIS the areas with higher landscape value in the impact assessment of dam constructions in the case of Seyhan-Köprü Hydroelectric Dam project proposal. A method needs to be defined before the overlapping step by GIS to analyze the areas with higher landscape value. In the case of Seyhan-Köprü Hydroelectric Dam project proposal of the present work, considering the geological conditions and the steep slopes of the area and the type of the project, the most important natural process is erosion. Therefore, the areas of higher erosion risk were considered as the Areas with Higher Landscape Value from the conservation demands points of view.

  16. The Cotingo Dam as a Test of Brazil's System for Evaluating Proposed Developments in Amazonia

    PubMed

    Fearnside; Barbosa

    1996-09-01

    The proposed Cotingo Dam in Brazil's far northern state of Roraima is examined with the objective of drawing lessons for Brazil's system of evaluating environmental, social, and financial consequences of development decisions. The Cotingo Dam illustrates the difficulty of translating into practice the principles of economic and environmental assessment. Examination of the financial arguments for the Cotingo Dam indicates that justifications in this sphere are insufficient to explain why the project is favored over other alternatives and points to political factors as the best explanation of the project's high priority. Strong pressure from political and entrepreneurial interest groups almost invariably dominates decision making in Amazonia. The analysis indicates the inherent tendency of the present system to produce decisions in favor of large construction projects at the expense of the environment and local peoples. The requirements intended to assure proper weight for these concerns, such as the report on environmental impacts (RIMA) and the public hearing, fail to serve this role. Cotingo also provides a test case for constitutional protections restricting construction of dams in indigenous lands.KEY WORDS: Hydroelectric dams; Amazonia; Indigenous peoples; Brazil; Roraima

  17. 76 FR 4649 - Grand River Dam Authority; Notice of Intent To File License Application, Filing of Pre...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-26

    ... Energy Regulatory Commission Grand River Dam Authority; Notice of Intent To File License Application...: Grand River Dam Authority. e. Name of Project: Salina Pumped Storage Project. f. Location: In Mayes..., and Mr. Charles Atkins, Superintendent of Hydro Operations, Grand River Dam Authority, P.O. Box...

  18. Using historic aerial photography and paleohydrologic techniques to assess long-term ecological response to two Montana dam removals.

    PubMed

    Schmitz, Denine; Blank, Matt; Ammondt, Selita; Patten, Duncan T

    2009-07-01

    The restorative potential of dam removal on ecosystem function depends on the reversibility of dam effects and its operations. While dam removal is an established engineering practice, the need for an understanding of the ecological response remains. We used paleoflood hydrology, hydrologic modeling, and aerial photo interpretation to investigate the long-term ecologic responses to dam failure and breach. We investigated downstream geomorphic and vegetation responses to a dam failure (Pattengail Dam in 1927) and a controlled dam breach, which used natural sediment removal (Mystic Lake Dam in 1985). Our data showed vegetation responses indicative of channel and floodplain evolution at Pattengail. The size of the flood following the Pattengail dam failure initiated a series of channel adjustments and reworked over 19ha of floodplain downstream of the dam. In Mystic, we observed few flood stage indicators and a slight response in floodplain vegetation. We made several findings. (1) Dam removal effects on channel evolution and floodplain development depend on reach types and their responsiveness to flow regime change. (2) Ecologic response to dam removal depends on the sizes and timing of high flow events during and following removal. (3) Paleohydrology can be used to assess historic floods (>20 years). We see the utility of assessing the ecological responsiveness of a system to previous fluvial events or changes in flow regime. Informed about the character of a system based on its history, dam removal scientists can use these tools to set realistic restoration goals for removing a dam.

  19. Colorado River Basin Hover Dam - Review of Flood Control Regulation.

    DTIC Science & Technology

    1982-07-01

    AD-A132 464 COLORADO RIVER BASIN HOVER DAM - REVIEW OF FLOOD1f CONTROL REGULATION(U) ARMY ENGINEER DISTRICT LOS ANGELES CALIF JUL- 82 UNCLAIFIEDF/G3...Lower Colorado River Regional Office of the Bureau of Reclamation and the Los Angeles District, Corps of Engineers . The detailed investigations... Engineers , Regarding Flood Control Operation of Hoover Dam and Lake Mead, Colorado River , Nevada- Arizona; and, in addition, agency views and responses

  20. Hydroelectric power in Hawaii. A report on the statewide survey of potential hydroelectric sites

    SciTech Connect

    Beck, C. A.

    1981-02-01

    An assessment was made of the hydropower potential in Hawaii. The major conclusion of this study is that hydropower resources in the State of Hawaii are substantial, and they offer the potential for major increases in hydropower generating capacity. Hydropower resources on all islands total about 50 MW of potential generating capacity. Combined with the 18 MW of existing hydropower capacity, hydropower resources potentially could generate about 307 million kWh of electric energy annually. This represents about 28% of the present combined electricity needs of the Neighbor Islands, Kauai, Molokai, Maui, and the Big Island. Hydropower resources on Kauai equal 72% of that island's electricity needs; on Molokai, 40%, on the Big Island, 20%; and on Maui, 18%. The island of Oahu, however, has only small hydropower resources, and could only generate a negligible portion of its electricity needs from this energy source. A summary of existing and future (potential) hydropower capacities and estimated annual outputs for each island is presented. How much of the potential capacity is being actively considered for development and how much is only tentatively proposed at the time is indicated. The economics of hydropower at specific sites were analyzed. The major conclusion of this analysis is that hydropower development costs vary widely among the different sites, but that generally the cost of hydroelectric power is either less than or comparable to the cost of oil-fired power.